

Intel® Cluster Studio XE 2012 for Linux* OS

Tutorial

Copyright © 2011 Intel Corporation All Rights Reserved Document Number: 325977-001EN Revision: 20111108 World Wide Web: http://www.intel.com

Contents

2.	Introduc	tion	7
3.	Intel Sof	ftware Downloads and Installation of Intel® Cluster Studio XE on Linux* OS	S 11
	3.1 I	Linux* OS Installation	12
4.	Integrat	ed Development Environments for Intel® Cluster Studio XE	40
5.	Getting	Started with Intel® MPI Library	41
	5.1 I	Launching MPD Daemons	42
	5.2 I	How to Set Up MPD Daemons on Linux* OS	43
	5.3 -	The mpdboot Command for Linux* OS	44
	5.4 (Compiling and Linking with Intel® MPI Library on Linux* OS	44
	5.5 \$	Selecting a Network Fabric	45
	5.6 F	Running an MPI Program Using Intel® MPI Library on Linux* OS	46
	5.7 E	Experimenting with Intel® MPI Library on Linux* OS	47
	5.8 (Controlling MPI Process Placement on Linux* OS	49
	5.9 l	Using the Automatic Tuning Utility Called mpitune	50
		5.9.1 Cluster Specific Tuning	52
		5.9.2 MPI Application-Specific Tuning	52
	5.10 E	Extended File I/O System Support on Linux* OS	53
		5.10.1 How to Use the Environment Variables I_MPI_EXTRA_FILESYSTEM I_MPI_EXTRA_FILESYSTEM_LIST	1 and 53
4	Interene	rebility of Intel® MDL library with the Intel® Debugger (IDD)	
э.	interope	erability of Intel® MPT Library with the Intel® Debugger (IDB)	55
	6.1 l	Login Session Preparations for Using Intel® Debugger on Linux* OS	56
7.	Working	with the Intel® Trace Analyzer and Collector Examples	66
	7.1 E	${\sf Experimenting with Intel } {\sf @ Trace Analyzer and Collector in a Fail-Safe Mode}$. 68
	7.2 l	Using itcpin to Instrument an Application	70
	7.3 I	Experimenting with Intel® Trace Analyzer and Collector in Conjunction with LD_PRELOAD Environment Variable	1 the 72
	7.4 I	Experimenting with Intel® Trace Analyzer and Collector in Conjunction with Counters	• PAPI ' 74
	7.5 I	Experimenting with the Message Checking Component of Intel® Trace Colle	ector 77
	7.6	Saving a Working Environment through a Project File.	89
	7.7	Analysis of Application Imbalance	. 92
	7.8	Analysis with the Ideal Interconnect Simulator	95
	7.9 E	Building a Simulator with the Custom Plug-in Framework	98
8.	Getting	Started in Using the Intel® Math Kernel Library (Intel® MKL)	99
	8.1 (Gathering Instrumentation Data and Analyzing the ScaLAPACK* Examples V	vith th
	8.2 F	Experimenting with the Cluster DFT Software	108
	8.3 I	Experimenting with the High Performance Linpack Benchmark*	114
9. Using th	ne Intel® MF	PI Benchmarks	118
10.	Uninstal	ling the Intel® Cluster Studio XE on Linux* OS	120
11.	Hardwar	re Recommendations for Installation on Linux* OS	121
		Intel Corporation Document Number: 325977-001	FN

12.	System Administrator Checklist for Linux* OS 123
13.	User Checklist for Linux* OS 124
14.	Using the Compiler Switch -tcollect
15.	Using Co-Array Fortran137
	 15.1 Running a Co-array Fortran Example on a Distributed System
16.	Using the CEAN Language Extension and Programming Model
17.	Using Intel® VTune [™] Amplifier XE145
	17.1 How do I get a List of Command-line Options for the Intel® VTune [™] Amplifier XE Tool?
	17.2 What does a Programming Example Look Like that I might run with Intel® VTune [™] Amplifier XE?
	17.3 How do I Run and Collect Intel® VTune [™] Amplifier XE Performance Information within an Intel® MPI Library Application?
	17.4 What does the Intel® VTune [™] Amplifier XE Graphical User Interface Look Like?
18.	Using Intel® Inspector XE
	18.1 How do I get a List of Command-line Options for the Intel® Inspector XE Tool?150
	18.2 What does a Programming Example Look Like that has a Memory Leak? 150
	18.3 How do I Run and Collect Memory Leak Information within an Intel® MPI Library Application?
	18.4 What does the Intel® Inspector XE Graphical User Interface Look Like? 151
19.	Using Intel® Parallel Advisor for non-MPI C/C++ Software Applications

Revision History

Document Number	Revision Number	Description	Revision Date
325977- 001EN	20111108	Updated Intel® Cluster Studio XE 2012 for Linux OS Tutorial to reflect changes and improvements to the software components.	11/08/2011

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Go to: <u>http://www.intel.com/products/processor_number/</u>

MPEG-1, MPEG-2, MPEG-4, H.261, H.263, H.264, MP3, DV, VC-1, MJPEG, AC3, AAC, G.711, G.722, G.722.1, G.722.2, AMRWB, Extended AMRWB (AMRWB+), G.167, G.168, G.169, G.723.1, G.726, G.728, G.729, G.729.1, GSM AMR, GSM FR are international standards promoted by ISO, IEC, ITU, ETSI, 3GPP and other organizations. Implementations of these standards, or the standard enabled platforms may require licenses from various entities, including Intel Corporation.

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside, E-GOLD, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Insider, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo, Intel StrataFlash, Intel vPro, Intel XScale, InTru, the InTru logo, the InTru Inside logo, InTru soundmark, Itanium, Itanium Inside, MCS, MMX, Moblin, Pentium, Pentium Inside, Puma, skoool, the skoool logo, SMARTi, Sound Mark, The Creators Project, The Journey Inside, Thunderbolt, Ultrabook, vPro Inside, VTune, Xeon, Xeon Inside, X-GOLD, XMM, X-PMU and XPOSYS are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Microsoft, Windows, Visual Studio, Visual C++, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Copyright (C) [2011], Intel Corporation. All rights reserved.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Back to Table of Contents

2. Introduction

The Intel® Cluster Studio XE 2012 release on Linux* OS consists of:

- 1. Intel® C++ Compiler XE 12.1
- 2. Intel® Debugger 12.1
- 3. Intel® Fortran Compiler XE 12.1
- 4. Intel® Inspector XE 2011 Update 6
- 5. Intel® Integrated Performance Primitives 7.0 Update 5
- 6. Intel® Math Kernel Library 10.3 Update 6
- 7. Intel® MPI Benchmarks 3.2.3
- 8. Intel® MPI Library 4.0 Update 3
- 9. Intel® Threading Building Blocks 4.0
- 10. Intel® Trace Analyzer and Collector 8.0 Update 3
- 11. Intel® VTune[™] Amplifier XE 2011 Update 5

The software architecture of the Intel Cluster Studio XE for Linux OS is illustrated in Figure 2.1:

Figure 2.1 – The Software Architecture of Intel® Cluster Studio XE on Linux* OS

The following are acronyms and definitions of those acronyms that may be referenced within this document.

Acronym	Definition
ABI	Application Binary Interface – describes the low-level interface an application program and the operating system, between an application and its libraries, or between component parts of an application.
BLACS	Basic Linear Algebra Communication Subprograms – provides a linear algebra oriented message passing interface for distributed memory computing platforms.
BLAS	Basic Linear Algebra Subroutines
DAPL*	Direct Access Program Library - an Application Program Interface (API) for Remote Data Memory Access (RDMA).
DFT	Discrete Fourier Transform
Ethernet	Ethernet is the predominant local area networking technology. It is transports data over a variety of electrical or optical media. It transports any of several upper layer protocols through data packet transmissions.
GB	Gigabyte
ICS	Intel® Cluster Studio
ICSXE	Intel [®] Cluster Studio XE
IMB	Intel® MPI Benchmarks
IP	Internet protocol
ITA or ita	Intel® Trace Analyzer
ITAC or itac	Intel® Trace Analyzer and Collector
ITC or itc	Intel® Trace Collector
MPD	Multi-purpose daemon protocol – a daemon that runs on each node of a cluster. These MPDs configure the nodes of the cluster into a "virtual machine" that is capable of running MPI programs.
MPI	Message Passing Interface - an industry standard, message-passing protocol that typically uses a two- sided send-receive model to transfer messages between processes.
NFS	The Network File System (acronym NFS) is a client/server application that lets a computer user view and optionally store and update <u>file</u> on a remote computer as though they were on the user's own computer. The user's system needs to have an NFS client and the other computer needs the NFS server. Both of them require that you also have <u>TCP/IP</u> installed since the NFS server and client use TCP/IP as the program that sends the files and updates back and forth.

RAM	Random Access Memory
RDMA	Remote Direct Memory Access - this capability allows processes executing on one node of a cluster to be able to "directly" access (execute reads or writes against) the memory of processes within the same user job executing on a different node of the cluster.
RDSSM	TCP + shared memory + DAPL* (for SMP clusters connected through RDMA-capable fabrics)
RPM*	Red Hat Package Manager* - a system that eases installation, verification, upgrading, and uninstalling Linux packages.
ScaLAPACK*	SCAIable LAPACK - an acronym for Scalable Linear Algebra Package or Scalable LAPACK.
shm	Shared memory only (no sockets)
SMP	Symmetric Multi-processor
ssm	TCP + shared memory (for SMP clusters connected through Ethernet)
STF	Structured Trace Format – a trace file format used by the Intel Trace Collector for efficiently recording data, and this trace format is used by the Intel Trace Analyzer for performance analysis.
ТСР	Transmission Control Protocol - a session-oriented streaming transport protocol which provides sequencing, error detection and correction, flow control, congestion control and multiplexing.
VML	Vector Math Library
VSL	Vector Statistical Library

Back to Table of Contents

3. Intel Software Downloads and Installation of Intel® Cluster Studio XE on Linux* OS

The Intel Cluster Studio XE installation process on Linux OS is comprised of eight basic steps. The Intel Cluster Studio XE 2012 package consists of the following components:

Software Component	Default Installation Directory on IA-32 Architecture for Linux OS	Default Installation Directory on Intel® 64 Architecture for Linux OS
Intel® C++ Compiler XE 12.1	/opt/intel/composer_xe_2011_sp1.6.0x x	/opt/intel/ composer_xe_2011_sp1.6.0xx
Intel® Debugger 12.1	/opt/intel/ composer_xe_2011_sp1.6.0xx	/opt/intel/ composer_xe_2011_spl.6.0xx
Intel® Fortran Compiler XE 12.1	/opt/intel/ composer_xe_2011_spl.6.0xx	/opt/intel/ composer_xe_2011_spl.6.0xx
Intel® Inspector XE 2011 Update 4	/opt/intel/inspector_xe_2011	/opt/intel/inspector_xe_2011
Intel® Integrated Performanc e Primitives 7.0 Update 5	/opt/intel/ composer_xe_2011_spl.6.0xx/ipp	/opt/intel/ composer_xe_2011_spl.6.0xx/ipp
Intel® Math Kernel Library (MKL) 10.3 Update 6	/opt/intel/ composer_xe_2011_spl.6.0xx/mkl	/opt/intel/ composer_xe_2011_spl.6.0xx/mkl
Intel® MPI Benchmarks 3.2.3	/opt/intel/icsxe/2012.0.0xx/imb	/opt/intel/icsxe/2012.0.0xx/imb
Intel® MPI Library 4.0 Update 3	/opt/intel/icsxe/2012.0.0xx/impi	/opt/intel/icsxe/2012.0.0xx/impi
Intel®	/opt/intel/	/opt/intel/

Threading Building Blocks 4.0	composer_xe_2011_spl.6.0xx/tbb	composer_xe_2011_spl.6.0xx/tbb
Intel® Trace Analyzer and Collector 8.0 Update 3	/opt/intel/icsxe/2012.0.0xx/itac	/opt/intel/icsxe/2012.0.0xx/itac
Intel® Vtune [™] Amplifier XE 2011 Update 3	/opt/intel/vtune_amplifier_xe_2011	/opt/intel/vtune_amplifier_xe_201 1

For the table above, references to 0xx in the directory path represents a build number such as 037.

NOTE: The Intel Cluster Studio XE installer will automatically make the appropriate selection of binaries, scripts, and text files from its installation archive based on the Intel processor architecture of the host system where the installation process is initiated. You do not have to worry about selecting the correct software component names for the given Intel® architecture.

As a user of the Intel Cluster Studio XE on Linux OS, you may need assistance from your system administrator in installing the associated software packages on your cluster system, if the installation directory requires system administrative write privileges (for example, /opt/intel on Linux OS). This assumes that your login account does not have administrative capabilities.

Back to Table of Contents

3.1 Linux* OS Installation

To begin installation on Linux*:

- 1. For Linux Systems, the Intel® Cluster Studio XE installer can do:
 - a. An install of the software on a single file server that is accessible to all nodes of the cluster.
 - b. A distributed install where the software components are installed on each node of the cluster.

For a distributed install, a machines.LINUX file will either need to be created, or an existing machines.LINUX file can be used by the Intel Cluster Studio XE installer to deploy amongst the nodes of the cluster, the appropriate Cluster Studio XE software components. This machines.LINUX file contains a list of the

computing nodes (for example, the hostnames) for the cluster. The format is one hostname per line:

hostname

The hostname should be the same as the result from the Linux command "hostname". An example of the content for the file machines.LINUX, where a contrived cluster consists of eight nodes might be:

```
clusternode1
clusternode2
clusternode4
clusternode5
clusternode6
clusternode7
clusternode8
```

A line of text above is consider a comment line if column one contains the "#" symbol. It is always assumed that the first node in the list is the master node. The remaining nodes are the compute nodes. The text clusternodel and clusternode2, for example, represent the names of two of the nodes in a contrived computing cluster. You can also use the contents of the machines.LINUX file to construct an mpd.hosts file for the multi-purpose daemon (MPD) protocol. The MPD protocol is used for running MPI applications that utilize Intel MPI Library.

 In preparation for the installation, you may want to create a staging area. On the system where the Intel Cluster Studio XE software components are to be installed, it is recommended that a staging area be constructed in a directory such as /tmp. An example folder path staging area might be:

/tmp/icsxe_staging_area

where icsxe_staging_area is an acronym for Intel Cluster Studio XE staging area.

- 3. Upon registering for Intel Cluster Studio XE 2012, you will receive a serial number (for example, C111-12345678) for this product. Your serial number can be found within the email receipt of your product purchase. Go to the <u>Intel®</u> <u>Software Development Products Registration Center</u> site and provide the product serial number information. Once the admission has been granted into the registration center, you will be able to access the Intel® Premier Web pages for software support.
- 4. The license for the Intel Cluster Studio XE license file that is provided to you should be placed in a directory pointed to by the INTEL_LICENSE_FILE environment variable. Do not change the file name because the ".lic" extension is critical. Common locations for the attached license file are:

<installation path>/licenses

where licenses is a sub-directory. For example, on the cluster system where the Intel Cluster Studio XE software is to be installed, all licenses for Intel-based software products might be placed in:

/opt/intel/licenses

It is also imperative that you and/or the system administrator set the environment variable INTEL_LICENSE_FILE to the directory path where the Intel software licenses will reside *prior* to doing an installation of the Intel Cluster Studio XE. For Bourne* Shell or Korn* Shell the syntax for setting the INTEL_LICENSE_FILE environment variable might be:

```
export INTEL_LICENSE_FILE=/opt/intel/licenses
```

For C Shell, the syntax might be:

setenv INTEL_LICENSE_FILE /opt/intel/licenses

- 5. Patrons can place the Intel Cluster Studio XE software package into the staging area folder.
- 6. The installer package for the Intel Cluster Studio XE has the following general nomenclature:

l_ics_<major>.<update>.<package_num>.tar.gz

where <major>.<update>.<package_num> is a string such as:

2012.0.xxx

The *<package_num>* meta-symbol is a string such as 037. This string indicates the package number.

The command:

tar -xvzf l_ics_<major>.<update>.<package_num>.tar.gz

will create a sub-directory called l_ics_<major>.<update>.<package_num>. Change to that directory with the shell command:

cd l_ics_<major>.<update>.<package_num>

For example, suppose the installation package is called 1_ics_2012.0.037.tar.gz. In the staging area that has been created, type the command:

tar -xvzf l_ics_2012.0.037.tar.gz

This will create a sub-directory called $1_{ics}_{2012.0.037}$. Change to that directory with the shell command:

```
cd l_ics_2012.0.037
```

In that folder, make sure that machines.LINUX file, as mentioned in item 1 above, is either in this directory or you should know the directory path to this file.

7. Also within the l_ics_<major>.<update>.<package_num> directory staging area, the expect shell script file called "sshconnectivity.exp" can be used to help you establish secure shell connectivity on a cluster system, where expect is a tool for automating interactive applications. To run "sshconnectivity.exp", the expect runtime software needs to be installed on your Linux system. To make sure that the expect runtime software is properly installed, type:

which expect

If you encounter a "Command not found." error message, you can download the expect software package from the following URL:

http://expect.nist.gov/

The syntax for the "sshconnectivity.exp" command is:

./sshconnectivity.exp machines.LINUX

This expect shell script will create or update a ~/.ssh directory on each node of the cluster beginning with the master node which must be the first name listed in the machines.LINUX file. This script will prompt you for your password twice.

Enter your user password: Re-enter your user password:

To provide security each time you enter your user password, asterisks will appear in lieu of the password text. Upon successful completion of the script, the following message fragment will appear:

A log of the transactions for this script will be recorded in:

/tmp/sshconnectivity.<login-name>.log

where <login-name> is a meta-symbol for your actual login.

NOTE: The shell script sshconnectivity.exp will remove the write access capability on the group and other "permission categories" for the user's home directory folder. If this is not done, a password prompt will continue to be issued for any secure shell activity.

This process of establishing secure shell connectivity in step 7 above is demonstrated by the following complete graph¹ (Figure 3.1) illustration where a vertex in the graph represents a cluster computing node, and an edge between two vertices connotes that the two cluster computing nodes have exchanged public keys for secure shell connectivity. Secure shell connectivity is intended to provide secure, encrypted communication channels between two or more cluster nodes over an insecure network.

The script sshconnectivity.exp will call the appropriate secure shell utilities to generate a private key and a public key for each node of the cluster.

¹ A mathematical definition of a complete graph in graph theory is a simple graph where an edge connects every pair of vertices. The complete graph on *n* vertices has *n* vertices and n(n - 1)/2 edges, and is denoted by K_n . Each vertex in the graph has degree n - 1. All complete graphs are their own cliques (a maximal complete graph). A graph of this type is maximally connected because the only vertex cut which disconnects the graph is the complete set of vertices.

Figure 3.1 – Illustration of Secure Shell Connectivity for a Computing Cluster

For the complete graph example in Figure 3.1, suppose there are nodes (vertices) 1 to n in the cluster. For a given node *i*, nodes 1 to i - 1 and nodes i + 1 to n are provided with the public key from node *i*. The user's public keys for a given node will be stored in the $\sim/.ssh$ folder associated with the user's home directory for that computing node. Since there are n - 1 edges to a given node *i* in Figure 3.1, that node *i* will have n - 1 public keys in the $\sim/.ssh$ folder that were provided by the other n - 1 nodes in the cluster. The example in Figure 3.1 represents a computing cluster that has at total of five nodes. The edges connecting a node indicate that that node has received four public keys from the remaining computing nodes. Also looking out from a given node indicates that

the given node has provided its own public key to the remaining nodes that are reachable through the four edge paths.

If the home directory for a cluster is shared by all of the nodes of the cluster, for example, all of the nodes use the same ~/.ssh folder, the connectivity illustrated in Figure 3.1 is represented through the contents of the ~/.ssh/known_hosts file.

 Make sure that the Java* Runtime Environment package is installed on your system. The directory path for where the Java* Runtime Environment may reside might be:

/usr/java

If you cannot find the Java* Runtime Environment library installation on your system, visit the URL:

http://www.java.com/en/download/

to download the appropriate version of the Java* Runtime Environment. After doing the download, install the Java* Runtime Environment on your system. You may need a system administrator to help you with the installation.

If you have located an existing and compatible Java* Runtime Environment library on your system, or you have proceeded to visit the URL above and completed a download and installation, set your PATH environment variable to include the directory path to the Java* Runtime Environment library. The Bourne* and Korn* Shell syntax for setting the PATH environment variable might be something like the following:

```
export PATH=/usr/java/jre1.5.0_22/bin:$PATH
```

For C Shell, the syntax for setting the PATH environment variable might be something like:

setenv PATH /usr/java/jre1.5.0_22/bin:\$PATH

Once secure shell connectivity is established and the Java* Runtime Environment is verified, type a variation of the install.sh as illustrated in Figure 3.2.

Figure 3.2 – Initiating the installation process with the command install.sh

```
- 0
                                                  X
V2 Xvnc: s
.
 File Edit View Terminal Tabs Help
                                                  ٠
Step no: 1 of 6 | Welcome
           Welcome to the Intel(R) Cluster Tools 2012 for Linux*
installation.
                                                    Ε
You will complete the steps below during this installa
Step 1 : Welcome
Step 2 : License
Step 3 : Activation
Step 4 : Options
Step 5 : Installation
Step 6 : Complete
Note: Some Intel(R) VTune(TM) Amplifier XE features th
use Event-based Sampling (EBS) require a genuine Intel
processor and a non-virtual OS.
      Press "Enter" key to continue or "q" to quit:
                                                  -
1
            111
```

Figure 3.3 – The six steps in the installation process

Figure 3.4 – License agreement

X V2 Xvnc: File Edit View Terminal Tabs Help terms and conditions of the End User License Agreement 📤 (EULA). The EULA is displayed using the "more" utility. Press the spacebar to advance to the next Ξ page or enter "g" to skip to the end. After reading th e EULA, you must enter "accept" to continue the installation or "decline" to return to the previous menu. IMPORTANT - READ BEFORE COPYING, INSTALLING OR USING. Do not copy, install, or use the Materials provided un der this license agreement ("Agreement"), until you have carefully read the following terms and conditions Do you agree to be bound by the terms and conditions o f this license agreement? Type "accept" to continue or "decline" to back to the previous menu: accept -III <

Figure 3.5 – Enter the accept word to acknowledge the terms of the license agreement

V2 Xvnc::	x	
- · · ·	×)	^
<u>Eile Edit View Terminal Tabs Help</u>		
choose to evaluate the product or defer activation by choosing the evaluate option. Evaluation software will time out in about one month. Also you can use license file, license manager, or the system you are installing on does not have internet access activation options.	•	ш
 I want to activate my product using a serial number [default] I want to evaluate my product or activate later I want to activate either remotely, or by using a license file, or by using a license manager 		
<pre>h. Help b. Back to the previous menu q. Quit Please type a selection or press "Enter" to accept default choice [1]: 3</pre>		+

Figure 3.6 – Step 3 – Select option 3 where you want to provide a license file to complete the installation process

```
- 0
                                               X
V2 Xvnc:
File Edit View Terminal Tabs Help
Step no: 3 of 6 | Activation > Advanced activation
                                              *
             You can use license file, license manager, or the
system you are installing on does not have internet
                                                Ξ
access activation options.
  1. Use a different computer with internet access
[default]
2. Use a license file
3. Use a license server
h. Help
b. Back to the previous menu
q. Quit
_____
           Please type a selection or press "Enter" to accept
default choice [1]: 2
                                              -
            III
```

Figure 3.7 - Step 3 Continued – Selection option 2 to direct the installer to ask for a license file

V2 Xvnc:	X	3
	×	
<u>Eile Edit View T</u> erminal Ta <u>b</u> s <u>H</u> elp		
Step no: 3 of 6 Activation > Advanced activation		
You can use license file, license manager, or the system you are installing on does not have internet access activation options.		ш
 Use a different computer with internet access [default] Use a license file Use a license server 		
h. Help b. Back to the previous menu q. Quit		
Please type a selection or press "Enter" to accept default choice [1]: 2 Note: Press "Enter" key to back to the previous menu. Please type the full path to your license file(s): /sh ared/scratch/ics_2012_staging_area/	III	
	-	-
		-41

Figure 3.8 – Step 3 Continued – Provide a directory path to where the license file resides

```
- 0
                                                      X
V2 Xvnc: :
.
File Edit View Terminal Tabs Help
                                                     *
system you are installing on does not have internet
access activation options.
1. Use a different computer with internet access
                                                        Ξ
[default]
2. Use a license file
3. Use a license server
h. Help
b. Back to the previous menu
q. Quit
Please type a selection or press "Enter" to accept
default choice [1]: 2
Note: Press "Enter" key to back to the previous menu.
Please type the full path to your license file(s): /sh
ared/scratch/ics_2012_staging_area/
          _____
                                  _____
Activation completed successfully.
                _____
Press "Enter" key to continue:
                                                     -
             III
٠
                                                      Þ
```


Figure 3.9 – Verification of license activation

Figure 3.10 – Step 4 – Select option 2 in order to change the install directory from the default which is /opt/intel

```
V2 Xvnc:
File Edit View Terminal Tabs Help
first. You can view a summary of the settings by
selecting
"Show pre-install summary".
  _____
                                                   E
1. Start installation Now

    Change install directory [/opt/intel ]

3. Change components to install [ Custom ]
4. Change advanced options
5. Cluster installation [ Current node ]
6. Show pre-install summary
h. Help
b. Back to the previous menu
q. Quit
------
Please type a selection or press "Enter" to accept
default choice [1]: 2
Note: Press "Enter" key to back to the previous menu.
Please type the full path to the installation director
y starting with "/" : /usr/local/opt/intel
                                                 -
4
            111
                                                 ь
```

Figure 3.11 - Step 4 Continued – Provide the alternative directory path

```
X
V2 Xvnc::
.
File Edit View Terminal Tabs Help
                                                 .
customize these settings by selecting any of the
change options given below
first. You can view a summary of the settings by
selecting
                                                   Ξ
"Show pre-install summary".
        _____
1. Start installation Now
Change install directory [
/usr/local/opt/intel ]
3. Change components to install [ Custom ]
4. Change advanced options
5. Cluster installation [ Current node ]
6. Show pre-install summary
h. Help
b. Back to the previous menu
a. Quit
              Please type a selection or press "Enter" to accept
default choice [1]: 5
                                                 -
•
            111
```

Figure 3.12 – Step 4 Continued – Select option 5 so as to do a distributed install as opposed to installing only on the current (I.e., the master) node

- 0 V2 Xvnc: : X File Edit View Terminal Tabs Help ٠ Step no: 4 of 6 | Advanced Options Advanced configuration Ξ 1. Finish setting advanced options [default] 2. Installation type [Current node] h. Help b. Back to the previous menu g. Quit Please type a selection or press "Enter" to accept default choice [1]: 2 -111

Figure 3.13 – Step 4 Continued – Select option 2 to continue the process of doing a distributed install

V2 Xvnc:	×	
	×	^
<u>Eile Edit View Terminal Tabs Help</u>		
Step no: 4 of 6 Advanced Options		
Advanced configuration		
1. Finish setting advanced options [default]		
2. Installation type [Current node]		•
h. Help b. Back to the previous menu q. Quit		
Please type a selection or press "Enter" to accept default choice [1]: 2		
Note: Press "Enter" key to back to the previous menu. Please enter path to machines.LINUX file: /shared/scra		
tch/tmp		
		- -
< <u> </u>	+	.4

Figure 3.14 – Step 4 Continued – Provide a directory path to a file that contains a list of the nodes for the cluster

```
- 0
                                                X
V2 Xvnc: :
File Edit View Terminal Tabs Help
                                                .
Step no: 4 of 6 | Advanced Options
             _____
Advanced configuration
 E
1. Finish setting advanced options [default]
2. Installation type
                                          [ A11
cluster nodes ]
3. File name for cluster node list
                                          [
/shared/scratch/tmp/machines.LINUX ]
4. Number of parallel installations
                                          [3]
5. Check for shared installation directory?
                                          [ yes
h. Help
b. Back to the previous menu
g. Quit
             Please type a selection or press "Enter" to accept
default choice [1]:
                                                -
۲.
            111
```

Figure 3.15 – Step 4 Continued – Select the default option of 1 as an indication that all advanced configuration options have been exercised

```
- 0
                                                SZ
V2 Xvnc:
File Edit View Terminal Tabs Help
                                                .
Step no: 4 of 6 | Options
          _____
You are now ready to begin installation. You can use
all default installation
settings by simply choosing the "Start installation
Now" option or you can
customize these settings by selecting any of the
change options given below
                                                  =
first. You can view a summary of the settings by
selecting
"Show pre-install summary".
1. Start installation Now
Change install directory [
/usr/local/opt/intel ]
3. Change components to install [ Custom ]
4. Change advanced options
5. Cluster installation
                         [ All cluster nodes
6. Show pre-install summary
h. Help
b. Back to the previous menu
q. Quit
            Please type a selection or press "Enter" to accept
default choice [1]:
                                                -
                                                  ÷
4
            III
                                                ъ
```

Figure 3.16 – Step 4 Continued – Select the default option of 1 as an indication that you ready to start the installation

```
X
V2 Xvnc:
File Edit View Terminal Tabs Help
Step no: 4 of 6 | Options > Prerequisite(s)
                                           .
There is one or more optional unresolved issues. It
is highly recommended
to fix it all before you continue the installation.
You can fix it without
exiting from the installation and re-check. Or you
can quit from the
                                             Ξ
installation, fix it and run the installation again.
Prerequisite(s)
-- Intel(R) VTune(TM) Amplifier XE 2011: The system
does not use a supported Intel Architecture processor
1. Skip prerequisites [default]
2. Show the detailed info about issue(s)
3. Re-check the prerequisites
h. Help
b. Back to the previous menu
q. Quit
Please type a selection or press "Enter" to accept
default choice [1]:
                                           -
                                             ÷
           111
4
```

Figure 3.17 – Step 4 Continued – Let the install process proceed

Step 5 is the actual installation process. This is followed by step 6 which is the completion of the installation process.

V2 Xvnc:	X	
	×	^
<u>Eile Edit View Terminal Tabs Help</u>		
Step no: 6 of 6 Complete	•	
Thank you for installing and for using the Intel(R) Cluster Studio XE 2012 for Linux* OS.		
Support services start from the time you install or activate your product, so please create your support account now in order to take full advantage of your product purchase. Your Subscription Service support account provides access to free product updates interactive issue management, technical support, sample code, and documentation.		III
To create your support account, please visit the Subscription Services web site https://registrationcenter.intel.com/RegCenter/regist erexpress.aspx?media=MNC		
<pre>q. Quit [default] Please type a selection or press "Enter" to accept</pre>		
default choice [q]:		-
<	۴	

Figure 3.18 - Step 6 – The install process has completed and press the enter key to close the installer session

By default, the global root directory for the installation of the Intel Cluster Studio XE is:

/opt/intel/icsxe/<major>.<update>.<package_num>

where <major>, <minor>, <update>, and <package_num> are integers. An example would be 2012.0.037.
Within the folder path /opt/intel/icsxe/<major>.<update>.<package_num> you will find the text files:

ictvars.csh

ictvars.sh

and

icsxesupport.txt

If you are using Bourne Shell or Korn Shell for the login session, you should type:

. ./ictvars.sh

and for a login session that uses C Shell, you should type:

source ./ictvars.csh

The file called:

icsxesupport.txt

contains the package ID and package contents information. Use the information in icsxesupport.txt when submitting customer support requests.

For the default installation path, an index file, an FAQ file, and the Getting Started Guide are located in the directory path:

/opt/intel/icsxe/<major>.<update>.<package_num>/doc

whereas mentioned above, *<major>*, *<update>*, and *<package_num>* are integers. A complete default folder path to the documentation directory might be:

/opt/intel/icsxe/2012.0.037/doc

The name of the index file is:

Doc_Index.htm

The index file can be used to navigate to the FAQ, the release notes, the Getting Started Guide, and an internet accessible <u>Intel Cluster Studio XE Tutorial</u>. This web-based tutorial may have the latest information and instructions.

NOTE: For Beta programs involving the Intel Cluster Studio XE, there is no web based tutorial.

The documentation map file will also provide links to Intel® C++ Compiler XE documentation, Intel® Debugger Documentation, Intel® Fortran Compiler XE

documentation, Intel® Inspector XE documentation, Intel® Integrated Performance Primitives documentation, Intel® Math Kernel Library (MKL) documentation, Intel® MPI Library documentation, Intel® MPI Benchmarks documentation, Intel® Threading Building Blocks, Intel® Trace Analyzer and Collector documentation, and Intel® VTune[™] Amplifier XE documentation. The content of the index file will look something like the following (Figure 3.19):

🛞 💮 - 🖉 Xhopt intellyicsxel 2012.0.033\doc\Doc_Index.htm + 47 X 🖏 Google	ب م
X Select	
× Google View More >) Sign In 🔌 🗸
🖕 Favorites 👍 🚺 Suggested Sites 🔻 😻 Windows Marketplace Ori 😻 Windows Marketplace Ori 🖉 Web Slice Gallery 🔻 🖉 Customize Links	
🍘 🖛 🗟 🔻 🖸 🖉 Rage 🔻 Safety 🖛	Tools 🔻 🔞 🕶
Document File Name Type of Comment	*
Name Information in the Document	
Intel@_Cluster Getting_Started.htm Contains interoperability information about: For details about the Intel@ Cluster Studio XE, please see to Intel@ Debugger 12.1 Started Guide Started Guide Contains interoperability information about: For details about the Intel@ Cluster Studio XE 2012 Getting Started Guide. Intel@ C++ Compiler XE 12.1 Intel@ Portran Compiler XE 12.1 Intel@ Portran Compiler XE 12.1 Intel@ Math Kernel Library (MKL) 10.3.6 Intel@ Math Intel@ MPI Benchmarks 32.3 Intel@ MI Benchmarks 32.3 Intel@ Integrated Performance Performance Performance Performance Publicks	E
Intel® VTune TM Amplifier XE 2011 Update 5 Studio XE Release_Notes.htm Contains information about this release and this release and how to use the library with various compilers. Includes: • Overview • System Requirements • Installer Guide Install-thm Contains installer Guida XE Station XE Station XE Station XE Station XE Install-thm Contains installer Guida XE Station XE Station XE Station XE Station XE Station XE Station XE	-
😜 internet Protected Mode. Off	€ 100% -

Figure 3.19 – A Rendering of the Intel Cluster Studio XE Documentation Index File display

The name of the FAQ file is:

HelpMe_FAQ.htm

The name of the Getting Started Guide file is:

Getting_Started.htm

By default, the local version of the release notes is located in the directory path:

/opt/intel/icsxe/<major>.<update>.<package_num>/release_notes

The name of the release notes file is:

Release_Notes.htm

Back to Table of Contents

4. Integrated Development Environments for Intel® Cluster Studio XE

For Linux* OS, there is an integrated development environment (IDE) by which you can develop software through Intel® Cluster Studio XE. This integrated development environment is Eclipse* for Intel® C++ Compiler XE.

If you are interested in using Eclipse*, install two software components that are not part of Intel® Cluster Studio XE. These two components are Eclipse*, and C/C++ Development Tooling* project (CDT*). CDT* provides an interface by which the Intel® C/C++ Compiler XE can be plugged into Eclipse*.

For further information about respectively downloading and installing Eclipse* and CDT* visit the URLs:

http://www.eclipse.org/

http://www.eclipse.org/cdt/

Back to Table of Contents

5. Getting Started with Intel® MPI Library

This chapter will provide some basic information about getting started with Intel® MPI Library. For complete documentation, see the Intel MPI Library documents Intel MPI Library Getting Started Guide located in <directory-path-to-Intel-MPI-Library>/doc/Getting_Started.pdf and Intel MPI Library Reference Manual located in <directory-path-to-Intel-MPI-Library>/doc/Reference_Manual.pdf on the system where Intel MPI Library is installed.

The software architecture for Intel MPI Library is described in Figure 5.1. With Intel MPI Library on Linux-based systems, you can choose the best interconnection fabric for running an application on a cluster that is based on IA-32, or Intel® 64 architecture. This is done at runtime by setting the I_MPI_FABRICS environment variable (See Section 5.4). Execution failure can be avoided even if interconnect selection fails. This feature helps avoid execution failures in batch computing. For such situations, the sockets interface will automatically be selected (Figure 5.1) as a backup.

Similarly using Intel MPI Library on Microsoft Windows CCS, you can choose the best interconnection fabric for running an application on a cluster that is based on Intel® 64 architecture.

Figure 5.1 – Software architecture of the Intel® MPI Library Interface to Multiple Fast Interconnection Fabrics through shared memory, DAPL (Direct Access Programming Library), and the TCP/IP fallback

Back to Table of Contents

5.1 Launching MPD Daemons

The Intel MPI Library uses a Multi-Purpose Daemon (MPD) job startup mechanism. To run programs compiled with mpicc (or related) commands, you must first set up MPD daemons. It is strongly recommended that you start and maintain your own set of MPD daemons, as opposed to having the system administrator start up the MPD daemons once for use by all users on the system. This setup enhances system security and gives you greater flexibility in controlling your execution environment.

Back to Table of Contents

5.2 How to Set Up MPD Daemons on Linux* OS

- 1. Set up environment variables with appropriate values and directories, for example, in the .cshrc or .bashrc files. At a minimum, set the following environment variables. Ensure that the PATH variable includes the following:
 - The <directory-path-to-Intel-MPI-Library>/bin directory. For example, the <directory-path-to-Intel-MPI-Library>/bin directory path should be set.
 - Directory for Python* version 2.2 or greater.
 - If you are using Intel® C++ Compilers and/or Intel® Fortran Compilers, ensure that the LD_LIBRARY_PATH variable contains the directories for the compiler library. You can set this variable by using the *vars.[c]sh scripts included with the compiler. Set any additional environment variables your application uses.
- 2. Create a \$HOME/.mpd.conf file that contains your MPD password. Your MPD password is not the same as any Linux login password, but rather is used for MPD only. It is an arbitrary password string that is used only to control access to the MPD daemons by various cluster users. To set up your MPD password:

secretword=<your mpd secretword>

Do not use any Linux login password for *your mpd secretword*. An arbitrary *your mpd secretword* string only controls access to the MPD daemons by various cluster users.

3. Set protection on the file so that you have read and write privileges, for example, and ensure that the \$HOME/.mpd.conf file is visible on, or copied to, all the nodes in the cluster as follows:

chmod 600 \$HOME/.mpd.conf

4. Verify that PATH settings and .mpd.conf contents can be observed through ssh on all nodes in the cluster. For example, use the following commands with each <node> in the cluster:

ssh <node> env
ssh <node> cat \$HOME/.mpd.conf

- 5. Create an mpd.hosts text file that lists the nodes in the cluster, with one machine name per line, for use by mpdboot. Recall that the contents of the machines.LINUX file that was referenced previously can be used to construct an mpd.hosts file.
- 6. Start up the MPD daemons as follows:

mpdboot [-d -v] -n <#nodes> [-f <path/name of mpd.hosts file>]

For more information about the mpdboot command, see Setting up MPD Daemons in the <directory-path-to-Intel-MPI-Library>/doc/Getting_Started.pdf or the mpdboot section of <directorypath-to-Intel-MPI-Library>/doc/Reference_Manual.pdf.

7. Determine the status of the MPD daemons as follows:

mpdtrace

The output should be a list of nodes that are currently running MPD daemons.

Remarks

• If required, shut down the MPD daemons as follows:

mpdallexit

• You as a user should start your own set of MPD daemons. It is not recommended to start MPD as root due to setup problems and security issues.

Back to Table of Contents

5.3 The mpdboot Command for Linux* OS

Use the mpdboot -f <hosts file> option to select a specific hosts file to be used. The default is to use \${PWD}/mpd.hosts. A valid host file must be accessible in order for mpdboot to succeed. As mentioned previously, you can also use the contents of the machines.LINUX file to construct an mpd.hosts file.

Back to Table of Contents

5.4 Compiling and Linking with Intel[®] MPI Library on Linux* OS

This section describes the basic steps required to compile and link an MPI program, when you use only the *Intel MPI Library Development Kit*. To compile and link an MPI program with the Intel MPI Library:

 Ensure that the underlying compiler and related software appear in your PATH. If you are using Intel compilers, ensure that the compiler library directories appear in LD_LIBRARY_PATH environment variable. For example, regarding the Intel 12.1 compilers, the execution of the appropriate set-up scripts will do this automatically (the build number for the compilers might be something different than "composer_xe_2011_sp1.6.061" for your installation):

/opt/intel/composer_xe_2011_sp1.6.061/bin/iccvars.[c]sh

and

/opt/intel/composer_xe_2011_spl.6.061/bin/ifortvars.[c]sh

2. Compile your MPI program through the appropriate mpi compiler command. For example, C code uses the mpiicc command as follows:

mpiicc <directory-path-to-Intel-MPI-Library>/test/test.c

Other supported compilers have an equivalent command that uses the prefix mpi on the standard compiler command. For example, the Intel MPI Library command for the Intel® Fortran Compiler (ifort) is mpiifort.

Supplier of Core Compiler	MPI Compilation Command	Core Compiler Compilation Command	Compiler Programming Language	Support Application Binary Interface (ABI)
GNU*	mpicc	gcc, cc	С	32/64 bit
Compilers	mpicxx	g++ version 3.x g++ version 4.x	C/C++	32/64 bit
	mpif77	f77 or g77	Fortran 77	32/64 bit
	mpif90	gfortran	Fortran 95	32/64 bit
Intel Compilers	mpiicc	icc	С	32/64 bit
version 11.1,	mpiicpc	icpc	C++	32/64 bit
12.0, or 12.1	mpiifort	ifort	Fortran 77 and Fortran 95	32/64 bit

Remarks

The Compiling and Linking section of <directory-path-to-Intel-MPI-Library>/doc/Getting_Started.pdf or the Compiler Commands section of <directory-path-to-Intel-MPI-Library>/doc/Reference_Manual.pdf on the system where Intel MPI Library is installed include additional details on mpiicc and other compiler commands, including commands for other compilers and languages.

Back to Table of Contents

5.5 Selecting a Network Fabric

Intel MPI Library supports multiple, dynamically selectable network fabric device drivers to support different communication channels between MPI processes. The default communication method uses a built-in TCP (Ethernet, or sockets) device driver. Before the introduction of Intel® MPI Library 4.0, selection of alternative devices was done through the command line using the I_MPI_DEVICE environment variable. With Intel® MPI Library 4.0 and its successors, the I_MPI_FABRICS environment variable is to be used, and the environment variable I_MPI_DEVICE is considered a deprecated syntax. The following table lists the network fabric types for I_MPI_FABRICS that are supported by Intel MPI Library 4.0 and its successors:

Possible Interconnection-Device- Fabric Values for the I_MPI_FABRICS Environment Variable	Interconnection Device Fabric Meaning
shm	Shared-memory
dapl	DAPL-capable network fabrics, such as InfiniBand*, iWarp*, Dolphin*, and XPMEM* (through DAPL*)
tcp	TCP/IP-capable network fabrics, such as Ethernet and InfiniBand* (through IPoIB*)
tmi	Network fabrics with tag matching capabilities through the Tag Matching Interface (TMI), such as Qlogic* and Myrinet*
ofa	Network fabric, such as InfiniBand* (through OpenFabrics* Enterprise Distribution (OFED*) verbs) provided by the Open Fabrics Alliance* (OFA*)

The environment variable I_MPI_FABRICS has the following syntax:

I_MPI_FABRICS=<fabric> | <intra-node fabric>:<internodes-fabric>

where the *<fabric>* value meta-symbol can have the values shm, dapl, tcp, tmi, or ofa. The *<intra-node fabric>* value meta-symbol can have the values shm, dapl, tcp, tmi, or ofa. Finally, the *<inter-node fabric>* value meta-symbol can have the values dapl, tcp, tmi, or ofa.

The next section will provide some examples for using the I_MPI_FABRICS environment variable within the mpiexec command-line.

Back to Table of Contents

5.6 Running an MPI Program Using Intel[®] MPI Library on Linux* OS

Use the mpiexec command to launch programs linked with the Intel MPI Library example:

mpiexec -n <# of processes> ./myprog

The only required option for the mpiexec command is the -n option to set the number of processes. If your MPI application is using a network fabric other than the default fabric, use the -env option to specify a value to be assigned to the I_MPI_FABRICS variable. For example, to run an MPI program while using the shared

memory for intra-node communication and sockets for inter-node communication, use the following command:

mpiexec -n <# of processes> -env I_MPI_FABRICS shm:tcp ./myprog.exe

As an example of running an MPI application on a cluster system with a combined shared-memory and DAPL-enabled network fabric, the following mpiexec command-line might be used:

mpiexec -n <# of processes> -env I_MPI_FABRICS shm:dapl ./myprog.exe

See the section titled *Selecting a Network Fabric* in <*directory-path-to-Intel-MPI-Library*>\doc\Getting_Started.pdf, or the section titled *Fabrics Control* in <*directory-path-to-Intel-MPI-Library*>\doc\Reference_Manual.pdf.

Back to Table of Contents

5.7 Experimenting with Intel[®] MPI Library on Linux* OS

For the experiments that follow, it is assumed that a computing cluster has at least two nodes and there are two symmetric multi-processors (SMPs) per node. Start up the MPD daemons by issuing a command such as:

mpdboot -n 2 -r ssh -f ~/mpd.hosts

Type the command:

mpdtrace

to verify that there are MPD daemons running on the two nodes of the cluster. The response from issuing this command should be something like:

clusternode1 clusternode2

assuming that the two nodes of the cluster are called clusternode1 and clusternode2. The actual response will be a function of your cluster configuration.

In the *<directory-path-to-Intel-MPI-Library>/test* folder where Intel MPI Library resides, there are source files for four MPI test cases. In your local user area, you should create a test directory called:

test_intel_mpi/

From the installation directory of Intel MPI Library, copy the test files from <*directory-path-to-Intel-MPI-Library*>/test to the directory above. The contents of test_intel_mpi should now be:

test.c test.cpp test.f test.f90

Compile the test applications into executables using the following commands:

mpiifort test.f -o testf
mpiifort test.f90 -o testf90
mpiicc test.c -o testc
mpiicpc test.cpp -o testcpp

Issue the mpiexec commands:

mpiexec -n 2 ./testf
mpiexec -n 2 ./testf90
mpiexec -n 2 ./testc
mpiexec -n 2 ./testcpp

The output from testcpp should look something like:

Hello world: rank 0 of 2 running on clusternode1 Hello world: rank 1 of 2 running on clusternode2

If you have successfully run the above applications using Intel MPI Library, you can now run (without re-linking) the four executables on clusters that use Direct Access Program Library (DAPL) interfaces to alternative interconnection fabrics. If you encounter problems, please see the section titled *Troubleshooting* within the document *Intel MPI Library Getting Started Guide* located in *<directory-path-to-Intel-MPI-Library>*/doc/Getting_Started.pdf for possible solutions.

Assuming that you have a dapl device fabric installed on the cluster, you can issue the following commands for the four executables so as to access that device fabric:

mpiexec -env I_MPI_FABRICS dapl -n 2 ./testf
mpiexec -env I_MPI_FABRICS dapl -n 2 ./testf90
mpiexec -env I_MPI_FABRICS dapl -n 2 ./testc
mpiexec -env I_MPI_FABRICS dapl -n 2 ./testcpp

The output from testf90 using the dapl device value for the I_MPI_FABRICS environment variable should look something like:

Hello world: rank clusternode1	0	of	2	running	on
Hello world: rank clusternode2	1	of	2	running	on

Back to Table of Contents

5.8 Controlling MPI Process Placement on Linux* OS

The mpiexec command controls how the ranks of the processes are allocated to the nodes in the cluster. By default, mpiexec uses round-robin assignment of ranks to the nodes. This placement algorithm may not be the best choice for your application, particularly for clusters with symmetric multi-processor (SMP) nodes.

Suppose that the geometry is $\langle \#ranks \rangle = 4$ and $\langle \#nodes \rangle = 2$, where adjacent pairs of ranks are assigned to each node (for example, for 2-way SMP nodes). Issue the command:

cat ~/mpd.hosts

The results should be something like:

clusternode1 clusternode2

Since each node of the cluster is a 2-way SMP, and four processes are to be used for the application, the next experiment will distribute the four processes such that two of the processes will execute on clusternodel and two processes will execute on clusternode2. For example, you might issue the following commands:

```
mpiexec -n 2 -host clusternode1 ./testf : -n 2 -host clusternode2 ./testf
mpiexec -n 2 -host clusternode1 ./testf90 : -n 2 -host clusternode2 ./testf90
mpiexec -n 2 -host clusternode1 ./testc : -n 2 -host clusternode2 ./testc
mpiexec -n 2 -host clusternode1 ./testcpp : -n 2 -host clusternode2 ./testcpp
```

The following output should be produced for the executable testc:

Hello world: rank 0 of 4 running on clusternodel Hello world: rank 1 of 4 running on clusternodel Hello world: rank 2 of 4 running on clusternode2 Hello world: rank 3 of 4 running on clusternode2

In general, if there are *i* nodes in the cluster and each node is *j*-way SMP system, the mpiexec command-line syntax for distributing the *i* by *j* processes amongst the *i* by *j* processors within the cluster is:

NOTE: Fill in appropriate host names for *<nodename-1>* through *<nodename-i>* with respect to your cluster system. For a complete discussion on how to control

process placement through the mpiexec command, see the *Local Options* section of the *Intel MPI Library Reference Manual* located in *<directory-path-to-Intel-MPI-Library*/doc/Reference_Manual.pdf.

Back to Table of Contents

5.9 Using the Automatic Tuning Utility Called *mpitune*

The mpitume utility was first introduced with Intel® MPI Library 3.2. It can be used to find optimal settings of Intel® MPI Library in regards to the cluster configuration or a user's application for that cluster.

As an example, the executables testc, testcpp, testf, and testf90 in the directory test_intel_mpi could be used. The command invocation for mpitune might look something like the following:

where the options above are just a subset of the following complete command-line switches:

Command-line Option	Semantic Meaning
-a \" <app_cmd_line>\" </app_cmd_line>	Switch on the application tuning mode.
application $\"\"$	Quote the full command line as shown
-cm cluster-mode {exclusive	Set the cluster usage mode
full}	exclusive – only one task will executed
	on the cluster at a time
	full – maximum number of tasks will be
	execute. This is the default mode
-d debug	Print debug information
-dl [d1[,d2[,dN]]] device-list	Select the device(s) you want to tune. By
[d1[,d2[,dN]]]	default use all of the devices mentioned
	in the
	<installdir>/<arch>/etc/devices.xml</arch></installdir>
	file
-er existing-ring	Try to use an existing MPD ring. By
	default, create a new MPD ring
-fl [f1[,f2[,fN]]] fabric-list	Select the fabric(s) you want to tune. By
[f1[,f2[,fN]]]	default use all of the fabrics mentioned in
	the
	<installdir>/<arch>/etc/fabrics.xml</arch></installdir>
	file
-h help	Display a help message
-hf <hostsfile> host-file</hostsfile>	Specify an alternative host file name. By
<hostsfile></hostsfile>	default, use the \$PWD/mpd.hosts

-hr host-range {min:max min:	Set the range of hosts used for testing.
:max}	The default minimum value is 1. The
	default maximum value is the number of
	hosts defined by the mod hosts or the
	ovisting MPD ring. The min: or image
	format will use the default values as
	normat will use the default values as
i counts literations counts	Define how menu times to run cach
	Define now many times to run each
	increase the tuning time, but may also
	increase the conuncy of the results. The
	default value is 2
what we show he st	
	Dedicate a single nost to mpitune
message-range {min:max min:	Set the message size range. The default
·IIIax }	minimum value is 0. The default
	maximum value is 4194304 (4mb). By
	default, the values are given in bytes.
	They can also be given in the following
	format: 16kb, 8mb, or 2gb. The min: or
	:max format will use the default values
	as appropriate
-of <file-name> output-file</file-name>	Specify the application configuration file
<file-name></file-name>	to be generated in the application-
	specific mode. By default, use the
	\$PWD/app.conf
-od <i><outputdir></outputdir></i> output-	Specify the directory name for all output
airectory <i>coulputairs</i>	files. By default, use the current
	directory. The directory should be
	accessible from all hosts
-pr {min:max min: :max}	Set the maximum number of processes
	per host. The default minimum value is
:max}	1. The default maximum value is the
· max j	number of cores of the processor. The
	min: or :max format will use the default
	values as appropriate
-sf [file-path] session-file	Continue the tuning process starting
[file-path]	from the state saved in the file-path
	session file
-s silent	Suppress all diagnostic output
-td <dir-path> temp-directory</dir-path>	Specify a directory name for the
<dir-path></dir-path>	temporary data. By default, use the
	<pre>\$PWD/mpitunertemp. This directory</pre>
	should be accessible from all hosts
-t \" <test_cmd_line>\" test</test_cmd_line>	Replace the default Intel® MPI
$\"\"$	Benchmarks by the indicated
	benchmarking program in the cluster-
	specific mode. Quote the full command
	line as shown

-tl <minutes> time-limit</minutes>	Set mpitune execution time limit in
<minutes></minutes>	minutes. The default value is 0, which
	means no limitations
-V version	Print out the version information

Details on optimizing the settings for Intel® MPI Library with regards to the cluster configuration or a user's application for that cluster are described in the next two subsections.

Back to Table of Contents

5.9.1 Cluster Specific Tuning

Once you have installed the Intel® Cluster Tools on your system, you may want to use the mpitume utility to generate a configuration file that is targeted at optimizing the Intel® MPI Library with regards to the cluster configuration. For example, the mpitume command:

```
mpitune -hf machines.LINUX -of testc.conf --test \"testc\"
```

could be used, where machines.LINUX contains a list of the nodes in the cluster. Completion of this command may take some time. The mpitune utility will generate a configuration file that might have a name such as app.conf. You can then run the mpiexec command on an application using the -tune option. For example, the mpiexec command-line syntax for the testc executable might look something like the following:

mpiexec -tune -n 4 testc

Back to Table of Contents

5.9.2 MPI Application-Specific Tuning

The mpitune invocation:

```
mpitune -hf machines.Linux -of testf90.conf --application \"mpiexec -n 4 testf90\"
```

will generate a file called app.config that is base on the application testf90. Completion of this command may take some time also. This configuration file can be used in the following manner:

```
mpiexec -tune testf90.conf -n 4 testf90
```

where the mpiexec command will load the configuration options recorded in testf90.conf.

If you want to use mpitune utility on each of the test applications testc, testcpp, testf, and testf90, see the complete discussion on how to use the mpitune utility

in the Intel MPI Library for Linux* OS Reference Manual located in <directorypath-to-Intel-MPI-Library>/doc/Reference_Manual.pdf.

Back to Table of Contents

5.10 Extended File I/O System Support on Linux* OS

Intel® MPI Library provides loadable shared library modules to provide native support for the following file I/O systems:

- Panasas* ActiveScale* File System (PanFS)
- Parallel Virtual File System*, Version 2 (Pvfs2)

Set the I_MPI_EXTRA_FILESYSTEM environment variable to on to enable parallel file system support. Set the I_MPI_EXTRA_FILESYSTEM_LIST environment variable to request native support for the specific file system. For example, to request the native support for the Panasas* ActiveScale* File System, do the following:

Back to Table of Contents

5.10.1 How to Use the Environment Variables I_MPI_EXTRA_FILESYSTEM and I_MPI_EXTRA_FILESYSTEM_LIST

The environment variable I_MPI_EXTRA_FILESYSTEM is used to enable parallel I/O file system support. The general syntax for this environment variable is:

I_MPI_EXTRA_FILESYSTEM=<value>

where <value> can be:

Value	Meaning
enable Or yes Or on Or 1	Turn on native support for a parallel file I/O system
disable Or no Or off Or O	Turn off native support for a parallel file I/O system. This is the default setting.

In conjunction with the I_MPI_EXTRA_FILESYSTEM environment variable, the environment variable I_MPI_EXTRA_FILESYSTEM_LIST will control which file I/O system or systems are used. In general, the syntax for the I_MPI_EXTRA_FILESYSTEM_LIST environment variable is:

I_MPI_EXTRA_FILESYSTEM_LIST=<file-system1>[,<file-system2>,<filesystem3>, ..., <file-systemn>]

where *<file-system_i* > can be:

<pre>File I/O System <file-system<sub>i></file-system<sub></pre>	Meaning
panfs	Panasas* ActiveScale* File system
Pvfs2	Parallel Virtual File System, Version 2

The mpiexec and mpirun commands associated with Intel® MPI Library will load the shared I/O libraries associated with the I_MPI_EXTRA_FILESYSTEM_LIST environment variable. As mentioned previously, you must use the environment variables I_MPI_EXTRA_FILESYSTEM and I_MPI_EXTRA_FILESYSTEM_LIST together.

For a complete discussion on how to use the environment variables I_MPI_EXTRA_FILESYSTEM and I_MPI_EXTRA_FILESYSTEM_LIST, see the *Extended File System Support* section of the *Intel MPI Library for Linux* OS Reference Manual* located in <directory-path-to-Intel-MPI-Library>/doc/Reference_Manual.pdf.

To make inquiries about Intel MPI Library, visit the URL: <u>http://premier.intel.com</u>.

Back to Table of Contents

6. Interoperability of Intel® MPI Library with the Intel® Debugger (IDB)

As mentioned previously (for example, Figure 2.1), components of the Intel Cluster Studio XE will now work with the Intel® Debugger. The Intel Debugger is a parallel debugger with the following software architecture (Figure 6.1):

Figure 6.1 – The Software Architecture of the Intel Debugger

With respect to Figure 6.1, there is a user interface to a root debugger. This is demonstrated at the bottom of Figure 6.1. The root debugger communicates with a tree of parallel debuggers. These are the leaf nodes at the top of the illustration. There are aggregation capabilities for consolidating debug information. This is done through the aggregators in Figure 6.1.

All processes with the same output are aggregated into a single and final output message. For example, the following message represents 42 MPI processes:

[0-41] Linux Application Debugger for Xeon(R)-based applications, Version XX

Diagnostics which have different hexadecimal digits, but are otherwise identical, are condensed by aggregating the differing digits into a range. As an example:

[0-41]>2 0x120006d6c in feedback(myid=[0;41],np=42,name=0x11fffe018="mytest") "mytest.c":41

Back to Table of Contents

6.1 Login Session Preparations for Using Intel[®] Debugger on Linux* OS

The debugger executable for the Intel Debugger is called idb. In the 11.1 version of the Intel® Debugger, the idb command invokes the GUI. Alternatively for the 11.1 version of Intel® Debugger, to get the command-line interface, use idbc. You should follow three steps in preparing your login session to use the Intel Debugger.

1. The Intel® IDB Debugger graphical environment is a Java* application and requires a Java* Runtime Environment* (JRE*) to execute. The debugger will run with a version 5.0 (also called 1.5) JRE.

Install the JRE according to the JRE provider's instructions.

Finally you need to export the path to the JRE as follows:

export PATH=<path_to_JRE_bin_DIR>:\$PATH export

2. Set the environment variable IDB_HOME to the folder path where the Intel Debugger executable, idb, resides. Also, you will need to source either idbvars.sh or idbvars.csh through ifortvars.[c]sh or iccvars.[c]sh depending on which command-line shell you are using. For example in augmenting your .bashrc file for the Bourne* Shell or the Korn* Shell, you can source the Intel® C++ Compiler XE file called iccvars.sh or the Intel® Fortran Compiler XE file ifortvars.sh which are located within the bin directory of the

Intel® Compiler XE installation directory on your system. Regarding your .bashrc file, the Bourne Shell or the Korn Shell sourcing syntax might look something like the following for Intel® 64 architecture:

. /opt/intel/composer_xe_2011_sp1.6.061/bin/iccvars.sh intel64 export IDB_HOME=/opt/intel/composer_xe_2011_sp1.6.061/bin/intel64

or

. /opt/intel/composer_xe_2011_spl.6.061/bin/ifortvars.sh intel64 export IDB_HOME=/opt/intel/composer_xe_2011_spl.6.061/bin/intel64

For augmenting your .cshrc file, the C Shell syntax should be something like:

source /opt/intel/composer_xe_2011_sp1.6.061/bin/iccvars.csh intel64
setenv IDB_HOME /opt/intel/composer_xe_2011_sp1.6.061/bin/intel64

or

source /opt/intel/composer_xe_2011_sp1.6.061/bin/ifortvars.csh intel64
setenv IDB_HOME /opt/intel/composer_xe_2011_sp1.6.061/bin/intel64

Depending on the Intel® architecture, the argument to iccvars.[c]sh and ifortvars.[c]sh can be ia32, or intel64. Sourcing iccvars.[c]sh or ifortvars.[c]sh will update the PATH and MANPATH environment variables also.

- 3. Edit the ~/.rhosts file in your home directory so that it contains the list of nodes that comprise the cluster. Recall the contents of a file called machines.LINUX, where a contrived cluster consisting of eight nodes might be:
 - clusternode1 clusternode2 clusternode4 clusternode5 clusternode6 clusternode7 clusternode8

For example, assuming that the names listed above make up your cluster, they could be added to your $\sim/.rhosts$ file with the following general syntax:

<hostname as echoed by the shell command hostname> <your username>

For the list of nodes above and assuming that your login name is user01, the contents of your ~/.rhosts file might be:

clusternode1 user01 clusternode2 user01 clusternode3 user01

clusternode4 user01 clusternode5 user01 clusternode6 user01 clusternode7 user01 clusternode8 user01

The permission bit settings of ~/.rhosts should be set to 600 using the chmod command. The shell command for doing this might be:

```
chmod 600 ~/.rhosts
```

Once you complete the three steps above, you are ready to use the Intel Debugger. The general syntax for using the Intel Debugger with Intel MPI Library is as follows:

mpiexec -idb -genv MPIEXEC_DEBUG 1 -n <number of processes> [other Intel MPI options] <executable> [arguments to the executable]

The environment variable MPIEXEC_DEBUG needs to be referenced so that MPI processes will suspend their execution to wait for the debuggers to attach to them. For the command-line example above, the -genv command-line option sets the environment variable MPIEXEC_DEBUG for *all* MPI processes. In general, the global environment variable command line switch -genv has the syntax:

-genv <environment variable> <value>

where *<environment variable>* is a meta-symbol that is a stand-in for a relevant environment variable, and *<value>* is a stand-in for setting an appropriate value for the preceding environment variable name.

For the contents of the directory test_intel_mpi that was described in Chapter 5, there should be the four source files:

test.c test.cpp test.f test.f90

Compile the test applications into executables using the following commands:

mpiifort -g test.f -o testf
mpiifort -g test.f90 -o testf90
mpiicc -g test.c -o testc
mpiicpc -g test.cpp -o testcpp

You can issue mpiexec commands that might look something like the following:

mpiexec -idb -genv MPIEXEC_DEBUG 1 -n 4 ./testf
mpiexec -idb -genv MPIEXEC_DEBUG 1 -n 4 ./testf90
mpiexec -idb -genv MPIEXEC_DEBUG 1 -n 4 ./testc
mpiexec -idb -genv MPIEXEC_DEBUG 1 -n 4 ./testcpp

The commands above are using four MPI processes. Figure 6.2 shows what the debug session might look like after issuing the shell command:

In Figure 6.2, the debugger stops the testcpp application at the C++ method MPI::Init(argc, argv).

iii iii ii i	_ = × ^
<pre>Intel(R) Debugger for applications running on Intel(R) 64, Version 11.1, Build [1.2097.2.169] Attaching to program: /usr/bin/python, process 23082 File error: Permission denied. Unable to open file "/var/db/nscd/hosts".File error: Permission denied. Reading symbols from /usr/bin/python(no debugging symbols found)done. [New Thread 182894176640 (LWP 23082)]select_nocancel () in /lib64/tls/libc-2.3.4.so Unable to open file "/var/db/nscd/passed". Info: Optimized variables show as <no value=""> when no location is allocated. Continuing. MPIR_Breakpoint () at /tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/pm/mpd/mtv.c:100 No source file named /tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/pm/mpd/mtv.c: (idb) [0:3] Intel(R) Debugger for applications running on Intel(R) 64, Version 11.1, Build [1.2097.2.169] %1 [0:3] Attaching to program: /shared/scratch/test_idb/testcppdone. %2 [0:3] [New Thread 18290450048;182900454144] (LWP [22283;23087])] [0:3] NPTRe_WaitForDebugger () at /localdisk/tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/pm/02.20090312/dev/src/pm/mpd/mtv.c: spinit.c:133 [0:3] No source file named /localdisk/tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/pm/02.20090312/dev/src/pm/04/mtv.c: %2 [0:3] [New Thread [182900450048;182900454144] (LWP [22283;23087])] [0:3] NPTRe_WaitForDebugger () at /localdisk/tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/pmi/d c. %***********************************</no></pre>	mpi/debugger/db bugger/dbginit.
<pre>(idb) [0:3] 25 int i, rank, size, namelen; [0:3] 26 char name[MPI_MAX_PROCESSOR_NAME]; [0:3] 27 MPI::Status stat; [0:3] 28 [0:3] 28 [0:3] 29 MPI::Init (argc, argv); [0:3] 30 [0:3] 31 size = MPI::COMM_WORLD.Get_size (); [0:3] 32 rank = MPI::COMM_WORLD.Get_rank (); [0:3] 33 MPI::Get_processor_name (name, namelen); (idb) (idb)</pre>	
	٤

Figure 6.2 - idb session for the executable called testc

NOTE: The user interface for idb is gdb*-compatible by default. To see where the MPI application is with respect to execution, you can type the IDB command called where after the prompt (idb) in Figure 6.2. This will produce a call stack something like what is shown in Figure 6.3.

		×
■	o x	<u>^</u>
<pre>Reading symbols from /usr/bin/python(no debugging symbols found)done. [New Thread 182894176640 (LWP 23082)] select_nocancel () in /lib64/tls/libc-2.3.4.so Unable to open file "/var/db/nscd/passwd". Info: Optimized variables show as <no value=""> when no location is allocated. Continuing. WFIR_Breakpoint () at /tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/pm/mpd/mtv.c:100 No source file named /tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/pm/mpd/mtv.c. (idb) [0:3] Intel(R) Debugger for applications running on Intel(R) 64, Version 11.1, Build [1.2097.2.169] %1 [0:3] Reading symbols from /shared/scratch/test_idb/testcpp, process [22283;23087]] [0:3] Reading symbols from /shared/scratch/test_idb/testcpp,done. %2 [0:3] [New Thread [182900450448]182900454144] (LWF [22283;23087])] [0:3] MPIR_WaitForDebugger () at /localdisk/tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/mpi/debugger/dginit.c:139 [0:3] No source file named /localdisk/tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/mpi/debugger/dbginit c. (idb) [0:3] stopped at [int main(int, char**);29 0x000000000401860] [0:3] 29 MPI:!init (argc, argv); (idb) [0:3] 25 int i, rank, size, namelen; [0:3] 25 int i, rank, size, namelen; [0:3] 27 MPI::Status stat; [0:3] 27 MPI::Status stat; [0:3] 27 MPI::Status stat;</no></pre>	db t.	
<pre>[0:3] 28 [0:3] > 29 MPI::Init (argc, argv); [0:3] 30 [0:3] 31 size = MPI::COMM_WORLD.Get_size (); [0:3] 32 rank = MPI::COMM_WORLD.Get_rank (); [0:3] 33 MPI::Get_processor_name (name, namelen); (idb) (idb) where (idb)</pre>		
[0:3] #0 0x000000000401860 in main (argc=1, argv=0x7fbfffebf8) at /shared/scratch/test_idb/test.cpp:29		
(idb)		~
)	

Figure 6.3 – The application call stack after typing the IDB command where

The C++ application has the source file name test.cpp and according to the IDB debugger stack trace, the line referenced in test.cpp is line 29. If you would like to use a text editor to look at test.cpp, you can modify the debugging user interface from the default which is gdb* to that if idb by typing the debug command:

set \$cmdset = "idb"

You can then type the command:

edit +29 test.cpp

in Figure 6.3 and the result will be something like that shown in Figure 6.4. Line 29 of test.cpp is the MPI library call to Init. The edit session in Figure 6.4 is using the vi editor. In general, the editor that is invoked is a function of the EDITOR environment variable.

Va				×
		idb	_ 🗆 X	^
	<u>1</u> /* 2 3	Copyright 2003-2004 Intel Corporation. All Rights Reserved.		
	4 5	The source code contained or described herein and all documents related to the source code ("Material") are owned by Intel Corporation or its suppliers or licensons. Title to the Material remains with		
	7	Intel Corporation or its suppliers and licensors. The Material is protected by worldwide copyright and trade secret laws and treaty		
	<u>10</u> <u>11</u> 12	provisions. No part of the naterial may be used, copied, reproduced, modified, published, uploaded, posted, transmitted, distributed, or disclosed in any way without Intel's prior express written permission.		
	13 14 15	No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the Materials, either expressly, by		111
	<u>16</u> <u>17</u> 18	implication, inducement, estoppel or otherwise. Any license under such intellectual property rights must be express and approved by Intel in writing.		
	<u>19</u> */ 20_#in 21_#in	clude "mpi.h" clude <iostream></iostream>		
	22 23 int 24 {	<pre>main (int argc, char *argv[])</pre>		
	25 26 27	int i, rank, size, namelen; char name[MPI_MAX_PROCESSOR_NAME]; MPI**Statue stat:		
	28 29 70	<pre>PI::Init (argc, argv);</pre>		
	<u> </u>	<pre>size = MPI::COMM_WORLD.Get_size (); rank = MPI::COMM_WORLD.Get_rank ();</pre>		
	<u>33</u> 34 35	<pre>MPI::Get_processor_name (name, namelen); if (rank == 0) {</pre>		
	36 37 "test.cpp"	std::cout << "Hello world: rank " << rank << " of " << size << " running on " << name << "\n"; 59L, 2112C		
				~
<			>	:

Figure 6.4 – Launching of an edit session from the Intel Debugger

You can use the command :q! to close the vi edit session. This is demonstrated in Figure 5.5.

V2	
•	_ = × ^
1/* 2 3 4 5 related to the source code ("Material") are owned by Intel Corporation or its suppliers or licensors. Title to the Material remains with Intel Corporation or its suppliers and licensors. The Material is protected by worldwide copyright and trade secret laws and treaty provisions. No part of the Material may be used, copied, reproduced, modified, published, uploaded, posted, transmitted, distributed, or disclosed in any way without Intel's prior express written permission. 12 No license under any patent, copyright, trade secret or other intellectual property rights must be expressly, by implication, inducement, estoppel or otherwise. Any license under such intellectual property rights must be express and approved by Intel in writing. 13 No license under any patent with such and proved by Intel lectual property rights must be express and approved by Intel in writing.	
20 #include "mpi,h" 21 #include <iostream> 22 23 int main (int argc, char *argv[]) 24 { 25 int i, rank, size, namelen; 26 char name[MPI_MAX_PROCESSOR_NAME]; 27 MPI::Status stat; 28 29 MPI::Init (argc, argv); 30 31 size = MPI::COMM_WORLD.Get_size (); 32 rank = MPI::COMM_WORLD.Get_rank (); 33 MPI::Get_processor_name (name, namelen); 34 35 if (rank == 0) { 36 37 std::cout << "Hello world: rank " << rank << " of " << size << " running"</iostream>	ng on " << name << "\n";
<.	> .::

Figure 6.5 – Terminating the vi editing session using the command :q!

The "run" command is disabled in MPI debugging. To continue the execution of the MPI application, use "cont". If you proceed to type the word cont after the (idb) prompt shown at the bottom of Figure 6.6, then debugging session results that might look something like that shown in Figure 6.7 will appear. Also, "Hello world" messages will appear in the login session where the mpiexec command was issued.

		×
idb	_ = ×	^
<pre>Unable to open file "/var/db/nscd/passwd". Info: Optimized variables show as <no value=""> when no location is allocated. Continuing. MPIR_Breakpoint () at /tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/pm/mpd/mtv.c:100 No source file named /tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/pm/mpd/mtv.c. (idb) [0:3] Intel(R) Debugger for applications running on Intel(R) 64, Version 11.1, Build [1.2097.2.169] %1 [0:3] Attaching to program: /shared/scratch/test_idb/testcpp, process [22283;23087] [0:3] Reading symbols from /shared/scratch/test_idb/testcppdone. %2 [0:3] [New Thread [182900450048;182900454144] (LWP [22283;23087])] [0:3] MPIR_WaitForDebugger () at /localdisk/tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/m c. (idb) [0:3] No source file named /localdisk/tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/m c. (idb) [0:3] stopped at [int main(int, char**);29 0x00000000401860]</no></pre>	v∕src/mpi/debugger/db mpi/debugger/dbginit.	1111
<pre>[0:3] 29 MPI::Init (argc, argv); (idb) [0:3] 25 int i, rank, size, namelen; [0:3] 26 char name[MPI_MAX_PROCESSOR_NAME]; [0:3] 27 MPI::Status stat; [0:3] 28 [0:3] 29 MPI::Init (argc, argv); [0:3] 30 [0:3] 31 size = MPI::COMM_WORLD.Get_size (); [0:3] 32 rank = MPI::COMM_WORLD.Get_rank (); [0:3] 33 MPI::Get_processor_name (name, namelen);</pre>		
<pre>(idb) (idb) where (idb) [0:3] #0 0x00000000401860 in main (argc=1, argv=0x7fbfffebf8) at /shared/scratch/test_idb/test.cpp:29 (idb) set \$cmdset = "idb" (idb) (idb) edit +29 test.cpp (idb) </pre>		~
	0	

Figure 6.6 – Returning control back to IDB after terminating the editing session

The four MPI processes for the example in Figure 6.7 are labeled 0 to 3.

⊡ ID	_ 🗆 × 🗠
No source file named /tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/pm/mpd/mtv.c. (idb) [0:3] Intel(R) Debugger for applications running on Intel(R) 64, Version 11.1, Build [1.2097.2.169] 21 [0:3] Reading symbols from /shared/scratch/test_idb/testcpp, process [22283;23087] [0:3] Reading symbols from /shared/scratch/test_idb/testcppdone. 22 [0:3] [New Thread [182900450048;182900454144] (LWP [22283;23087])] [0:3] MPIR_WaitForDebugger () at /localdisk/tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/mpi/debugger/dbg [0:3] No source file named /localdisk/tmp/vgusev.xtmpdir.svlmpi20.31765/mpi2.32e.svsmpi020.20090312/dev/src/mpi/debugger/dbg c. (idb) [0:3] 29 MPI::Init (argc, argv); (idb) [0:3] 25 int i, rank, size, namelen; [0:3] 26 char name[MPI_MAX_PROCESSOR_NAME]; [0:3] 27 MPI::Status stat; [0:3] 28 [0:3] > 29 MPI::Init (argc, argv); (idid) [0:3] 29 MPI::Init (argc, argv); (idid) [0:3] 20 MPI::Init (argc, argv); (idid) [0:3] 20 MPI::Init (argc, argv); (idid) [0:3] 20 MPI::Init (argc, argv); [0:3] 20 MPI::Ini	er/db init.
[0:3] 31 size = MPI::COMM_WORLD.Get_size (); [0:3] 32 rank = MPI::COMM_WORLD.Get_rank (); [0:3] 33 MPI::Get_processor_name (name, namelen);	
<pre>(idb) (idb) where (idb) [0:3] #0 0x000000000401860 in main (argc=1, argv=0x7fbfffebf8) at /shared/scratch/test_idb/test.cpp:29 (idb) set \$cmdset = "idb" (idb)</pre>	
(idb) (idb) cont (idb) [0:3] Process has exited with status 0 (idb)	~
	> .;;

Figure 6.7 – State of the IDB session as a result of issuing the IDB command cont

You can type the word quit to end the IDB debug session, and therefore close the display shown in Figure 6.7.

The rerun command is not supported within IDB. To rerun MPI application with the IDB debugger, quit IDB and then re-enter the mpiexec command.

For a complete discussion on how to use the Intel Debugger (9.1.x or greater), see the contents of the Intel Debugger (IDB) Manual located in <directory-path-to-Intel-

composerxe>/Documentation/en_US/debugger/debugger_documentation.htm ON
your computing system.

To make inquiries about the Intel Debugger, visit the URL: <u>http://premier.intel.com</u>.

Back to Table of Contents

7. Working with the Intel® Trace Analyzer and Collector Examples

In the folder path where Intel® Trace Analyzer and Collector reside, there is a folder called examples. The folder path where the examples directory resides might be something like:

/opt/intel/icsxe/2012.0.037/itac/examples

If you copy the examples folder into a work area which is accessible by all of the nodes of the cluster, you might try the following sequence of commands:

gmake distclean

gmake all

This set of commands will respectively clean up the folder content and compile and execute the following C and Fortran executables:

```
vnallpair
vnallpairc
vnjacobic
vnjacobif
vtallpair
vtallpairc
vtcounterscopec
vtjacobic
vtjacobif
```

If you select the executable vtjacobic and run it with the following environment variable setting:

setenv VT_LOGFILE_PREFIX vtjacobic_inst

where the mpiexec command uses four processes as shown:

mpiexec -n 4 ./vtjacobic

then the trace data will be placed into the folder vtjacobic_inst. The contents of vtjacobic_inst will look something like the following:

	vtjacobic.stf.dcl	vtjacobic.stf.msg.anc
	vtjacobic.stf.frm	vtjacobic.stf.pr.0
vtjacobic.prot	vtjacobic.stf.gop	vtjacobic.stf.pr.0.anc
vtjacobic.stf	vtjacobic.stf.gop.anc	vtjacobic.stf.sts

vtjacobic.stf.cache vtjacobic.stf.msg

when the command:

ls -aC --width=80 vtjacobic_inst

is used. If you run the Intel Trace Analyzer with the command:

traceanalyzer vtjacobic_inst/vtjacobic.stf

the following display panel will appear (Figure 7.1):

🗙 Intel® Trace Analyzer - [1: /sha	ared/scratch/exar	nples/vtjacobic_	_inst/vtjacobic.st	f]			
<u>E</u> ile <u>S</u> tyle <u>W</u> indows					<u>H</u> el	pF1	XF
<u>V</u> iew <u>C</u> harts <u>N</u> avigate <u>A</u> c	dvanced <u>L</u> ayo	ut					
Flat Profile Load Balance	Call Tree	Call Graph					
Group All_Processes		·					
Name $ abla$	TSelf	TSelf	TTotal	#Calls	TSelf /Call		
Group All_Processes Group Application Group MPI Group Setup Group Communication	87.2352e-3 s 522.72e-3 s 1.16799e-3 s 10.1889e-3 s		621.312e-3 s 522.72e-3 s 6.12993e-3 s 313.532e-3 s	4 4884 16 1608	21.8088e-3 s 107.027e-6 s 72.9994e-6 s 6.33639e-6 s		
0.000 000, 0.155 687: 0.155	687 sec.	All_Proc	esses	Major Fu	Inction Groups	Тад	Filter

Figure 7.1 - Intel Trace Analyzer Display for vtjacobic.stf

Figure 7.2 shows the Event Timeline display which results when following the menu path **Charts**->**Event Timeline** within Figure 7.1.

🗙 Intel® Trace A	nalyzer - [1:	/shared/scrate	h/examples	/vtjacobic_	_inst/vtjacobic.s	tf]				
<u>E</u> ile <u>S</u> tyle	<u>W</u> indows								<u>H</u> elp F	
<u>V</u> iew <u>C</u> harts	<u>N</u> avigate	<u>A</u> dvanced	<u>L</u> ayout							
).00 s 0	.02 s	0.04 s	0.06	s	1.08 s	0.10 s	0	.12 s).14 s	
P0 ANIMUMPUM P1 ANI IIIFIIII P2 ANIMUTIIII P3 ANIMUTIIII										
Flat Profile	_oad Balan	ice Call Tr	e Call (Graph						
Group A	All_Process	es 🖃								
Name ∇		TSelf	TSe	əlf	TTotal	#Calls		TSelf /Call		
Group All_	Processes									
Group A	pplication	87.2352	e-3 s 🗧		621.312e-3 :	s	4	21.8088e-	-3 s	
Group N	/IPI	522.72	e-3 s 🔜		522.72e-3 :	S	4884	107.027e-	-6s	
- Group S	Setup	1.16799	e-3 s		6.12993e-3 :	S	16	72.9994e-	-6s	
Group C	ommunica	10.1889	e-3 s		313.532e-3 :	S	1608	6.33639e-	-6 S	
0.0145957 s										

Figure 7.2 - Intel Trace Analyzer Display for vtjacobic.stf using Charts->Event Timeline

You can use the trace analyzer to view the contents of the other *.stf files in this working directory on your cluster system.

Back to Table of Contents

7.1 Experimenting with Intel[®] Trace Analyzer and Collector in a Fail-Safe Mode

There may be situations where an application will end prematurely; thus trace data could be lost. The Intel Trace Collector has a trace library that works in a fail-safe mode. An example shell command-line syntax for linking such a library is:

mpiicc test.c -o testc_fs -L\${VT_LIB_DIR} -lVTfs \${VT_ADD_LIBS}

where the special Intel Trace Collector Library for fail-safe (acronym fs) tracing is – lvTfs.

In case of execution failure by the application, the fail-safe library freezes all MPI processes and then writes out the trace file. Figure 7.3 shows an Intel Trace Analyzer display for test.c.

X Intel® Trace Analyzer - [1:	/shared/scratch	/test_intel_mpi	/fs_inst/testc_fs.	stf]		
<u>F</u> ile <u>S</u> tyle <u>W</u> indows						Help F1 🔍
<u>V</u> iew <u>C</u> harts <u>N</u> avigate	<u>A</u> dvanced <u>L</u>	ayout				
D.000 s 0.001 s	0.002 s	0.003 s	0.004 s).005 s	.006 s 0.007	0.008 s
P0 Application			- AMPNMP	I <mark>IIIMPI</mark>		Â
P1 Application			INMPI			
P2 Application			IMMP!	/		
P3 Application						
 ⊲∟						
Elat Profile I oad Balar	nce 🛛 Call Tree	Call Gran	n			B
Group All Processes	vi		. 1			
Name V	TSelf	TSelf	TTotal	#Calls	TSelf /Call	
	16.2738e-3 s 16.0488e-3 s		32.3226e-3 s 16.0488e-3 s	4 40	4.06845e-3 s 401.22e-6 s	
0.000 000, 0.008 252: 0.	008 252 sec.	All_	Processes	Maj	or Function Groups	s Tag Filter

Figure 7.3 – Intel Trace Analyzer display of Fail-Safe Trace Collection by Intel Trace Collector

Regarding -lvTfs library, see the Intel Trace Collector user documentation by viewing the file:

<directory-path-to-ITAC>/doc/ITC_Reference_Guide.pdf

on the system where the Intel Trace Collector is installed. You can use vtfs as a search phrase within the documentation.

Back to Table of Contents

7.2 Using itcpin to Instrument an Application

The itcpin utility is a binary instrumentation tool that comes with Intel Trace Analyzer and Collector. The Intel® architectures must be IA-32, or Intel® 64.

The basic syntax for instrumenting a binary executable with the *itcpin* utility is as follows:

itcpin [<ITC options>] -- <application command line>

where -- is a delimiter between Intel® Trace Collector (ITC) options and the application command-line.

The *<ITC* options> that will be used are:

--run (Off)

itcpin only runs the given executable if this option is used. Otherwise it just analyzes the executable and prints configurable information about it.

--insert

Intel Trace Collector has several libraries that can be used to do different kinds of tracing. An example library value could be VT which is the Intel Trace Collector Library. This is the default instrumentation library.

To obtain a list of all of the options, type:

itcpin --help

To demonstrate the use of itcpin, you can compile a C programming language example for calculating the value of pi where the application uses the MPI parallel programming paradigm. You can download the C source from the URL:

http://www.nccs.gov/wp-content/training/mpi-examples/C/pical.c

For the pi.c example, the following shell commands will allow you to instrument the binary called pi.exe with Intel Trace Collector instrumentation. The shell commands before and after the invocation of itcpin should be thought of as prolog and epilog code to aid in the use of the itcpin utility.

mpiicc -o pi.exe pi.c
setenv VT_LOGFILE_FORMAT STF
setenv VT_PCTRACE 5
setenv VT_LOGFILE_PREFIX \${PWD}/itcpin_inst
setenv VT_PROCESS "0:N ON"

```
rm -rf ${VT_LOGFILE_PREFIX}
mkdir ${VT_LOGFILE_PREFIX}
mpiexec -n 4 itcpin --run -- pi.exe
```

The shell commands above could be packaged into a C Shell script. An explanation for the *instrumentation* environment variables can be found in the Intel Trace Collector Users' Guide under the search topic "ITC Configuration".

Figure 7.4 shows the timeline and function panel displays that are generated from the instrumentation data that is stored into the directory $f_{PWD}/itcpin_inst$ as indicated by the environment variable VT_LOGFILE_PREFIX. The command that initiated the Intel Trace Analyzer with respect to the directory f_{PWD} is:

traceanalyzer itcpin_inst/pi.exe.stf &

Figure 7.4 – Intel Trace Analyzer display of the "pi" integration application that has been binary instrumented with itcpin

Complete user documentation regarding the *itcpin* utility for the Intel Trace Collector can be found within the file:

```
<directory-path-to-ITAC>/doc/ITC_Reference_Guide.pdf
```

on the system where the Intel Trace Collector is installed. You can use *itcpin* as a search phrase within the documentation. To make inquiries about the Intel Trace Analyzer, visit the URL: <u>http://premier.intel.com</u>.

Back to Table of Contents

7.3 Experimenting with Intel[®] Trace Analyzer and Collector in Conjunction with the LD_PRELOAD Environment Variable

There is an environment variable called LD_PRELOAD which can be initialized to reference instrumentation libraries. LD_PRELOAD instructs the operating system loader to load additional libraries into a program, beyond what was specified when it was initially compiled. In general, this environment variable allows users to add or replace functionality such as inserting performance tuning instrumentation. For Bourne* Shell or Korn* Shell, the syntax for setting the LD_PRELOAD environment variable to instrument with Intel Trace Collector might be:

export LD_PRELOAD="libVT.so:libdl.so"

For C Shell, the syntax might be:

setenv LD_PRELOAD "libVT.so:libdl.so"

For the pi.c example, the following shell commands will allow you to use the LD_PRELOAD environment variable to instrument a binary with Intel Trace Collector instrumentation.

```
mpiicc -o pi.exe pi.c
setenv VT_PCTRACE 5
setenv VT_LOGFILE_PREFIX ${PWD}/ld_preload_inst
setenv VT_PROCESS "0:N ON"
setenv LD_PRELOAD "libVT.so:libdl.so"
rm -rf ${VT_LOGFILE_PREFIX}
mkdir ${VT_LOGFILE_PREFIX}
mpiexec -n 4 ./pi.exe 1000000
```

As mentioned previously, the shell commands above could be packaged into a C Shell script. The mpiexec command uses four MPI processes and the value of 1,000,000 indicates the number of intervals that will be used in the calculation of "pi". Figure 7.5 shows the timeline and function panel displays that are generated from the instrumentation data that was stored in the directory
\${PWD}/ld_preload_inst as indicated by the environment variable
VT_LOGFILE_PREFIX. The command that initiated the Intel Trace Analyzer with
respect to the directory \${PWD} is:

Vintel® Trace Analyzer - [1	: /shared/scratch	//d_preload/id	nreload inst/ni e	ve.stfl				
<u>File Style Windows</u>							Help F1	- - X
View Charts Navigate	Advanced I	avout						
	00 s 0.0	_ayoat	0.003/000	s O	.004	1000 s 0.00	15 000 s	
0.000 500 s	0.001 500 \$	s 0.002	500 s 0	.003 500	s	0.004 500 s	0.00	5 5
P0 Application .Ap	oplication					MP	i <mark>7</mark> MI	21
							_/	- 11
P1 Application	Application					NN.	1F	- 11
						<u>N</u>		- 11
P2 Application	Application					N	1RMF	- 11
								- 11
P3 Application	Application						MRMF	- 11
								V
4								
Flat Profile Load Bala	nce Call Tree	ə 🛛 Call Grap	h					
Group All_Processes	Ā							
Name ∇	TSelf	TSelf	TTotal	#Calls		TSelf /Call		
Group All_Processes								
Group Application	18.8/29e-3 s		20.5009e-3 s		4 16	4./1823e-3 s 101.75e-6 s		
	1.0206-0 3	•	1.0206-0.3		10	101.00-03		
0.000 000, 0.005 554: 0	.005 554 sec.	All_	Processes		Majo	r Function Groups	Tag	Filter

traceanalyzer ld_preload_inst/pi.exe.instr.stf &

Figure 7.5 – Intel Trace Analyzer display of the "pi" integration application that has been instrumented through the LD_PRELOAD environment variable

Complete user documentation regarding the LD_PRELOAD environment variable for the Intel Trace Collector can be found within the file:

<directory-path-to-ITAC>/doc/ITC_Reference_Guide.pdf

on the system where the Intel Trace Collector is installed. You can use LD_PRELOAD as a search phrase within the documentation. To make inquiries about LD_PRELOAD in conjunction with Intel Trace Analyzer and Collector, visit the URL: <u>http://premier.intel.com</u>.

Back to Table of Contents

7.4 Experimenting with Intel[®] Trace Analyzer and Collector in Conjunction with PAPI* Counters

The counter analysis discussion that follows assumes that a PAPI* library is installed on the cluster system. PAPI is an acronym for Performance API and it serves to gather information regarding performance counter hardware. Details can be found at the URL:

http://icl.cs.utk.edu/papi/

This discussion assumes that the PAPI library is installed in a directory path such as /usr/local/papi. In the examples directory for Intel Trace Analyzer and Collector, there is a subfolder called poisson. Using root privileges, the library called libVTsample.a needs to be configured in the lib directory of Intel Trace Analyzer and Collector so that PAPI instrumentation can be captured through the Intel Trace Analyzer and Collector might be something like:

\${VT_ROOT}/lib

In this directory, a system administrator can use the following gmake command to create the libVTsample.a library:

export PAPI_ROOT=/usr/local
gmake all

The environment variable PAPI_ROOT is used by the makefile to formulate the path to ${PAPI_ROOT}/{include}$ which is a directory that contains PAPI header files. When the libVTsample.a library is built, the Poisson example can be linked with PAPI instrumentation as follows:

```
gmake MPI_HOME=${I_MPI_ROOT} make_dir=./ LIB_PATH="" LIBS="-
L${VT_ROOT}/lib -lVTsample -lVT -L${PAPI_ROOT}/papi/lib -lpapi
${VT_ADD_LIBS}"
```

The shell commands for running the poisson application might be the following:

```
rm -rf ${PWD}/papi_inst
mkdir ${PWD}/papi_inst
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${PAPI_ROOT}/papi/lib
setenv VT_LOGFILE_PREFIX ${PWD}/papi_inst
setenv VT_CONFIG ${PWD}/vtconfig
mpiexec -n 16 ./poisson
```

The Intel Trace Collector configuration file which is called vtconfig for the above example contains the following PAPI counter selection:

```
COUNTER PAPI_L1_DCM ON
```

This PAPI counter directive is for L1 data cache misses. The general syntax for counter directives is:

COUNTER < name of counter> ON

The value of ON indicates that this particular hardware counter is to be monitored by Intel Trace Collector. The names of the PAPI hardware counters can be found in the folder path $f[PAPI_ROOT]/include/papiStdEventDefs.h$ on the system where the PAPI library is installed.

Figure 7.6 illustrates a maximized view for the Counter Timeline Chart and the Function Profile Chart that were generated from the instrumentation data that was stored in the directory $f^{PWD}/papi_{inst}$ as indicated by the environment variable $VT_LOGFILE_PREFIX$. The command that initiated the Intel Trace Analyzer with respect to the directory f^{PWD} was:

traceanalyzer papi_inst/poisson.stf &

Figure 7.6 – A maximized view for the Counter Timeline Chart and the Function Profile Chart

NOTE: In the Counter Timeline Chart in Figure 7.6 that the PAPI counter PAPI_L1_DCM appears as a label in the right margin.

In general, the shell syntax for compiling the Intel MPI Library test files called test.c, test.cpp, test.f, and test.f90 with the PAPI interface involves the link options that look something like:

-L\${VT_LIB_DIR} -lVTsample -lVT -L\${PAPI_ROOT}/papi/lib -lpapi \${VT_ADD_LIBS}

The compilation commands are:

```
mpiicc test.c -o testc -L${VT_LIB_DIR} -lVTsample -lVT -
L${PAPI_ROOT}/papi/lib -lpapi ${VT_ADD_LIBS}
```

```
mpiicpc test.cpp -o testcpp -L${VT_LIB_DIR} -lVTsample -lVT -
L${PAPI_ROOT}/papi/lib -lpapi ${VT_ADD_LIBS}
mpiifort test.f -o testf -L${VT_LIB_DIR} -lVTsample -lVT -
L${PAPI_ROOT}/papi/lib -lpapi ${VT_ADD_LIBS}
mpiifort test.f90 -o testf90 -L${VT_LIB_DIR} -lVTsample -lVT -
L${PAPI_ROOT}/papi/lib -lpapi ${VT_ADD_LIBS}
```

On Linux OS, complete user documentation regarding PAPI hardware counters for the Intel Trace Collector can be found within the file:

<directory-path-to-ITAC>/doc/ITC_Reference_Guide.pdf

on the system where the Intel Trace Collector is installed. You can use PAPI as a search phrase within the documentation. To make inquiries about PAPI in conjunction with the Intel Trace Analyzer and Collector, visit the URL: <u>http://premier.intel.com</u>.

Back to Table of Contents

7.5 Experimenting with the Message Checking Component of Intel[®] Trace Collector

Intel Trace Collector environment variables which should be useful for message checking are:

VT_DEADLOCK_TIMEOUT <delay>, where <delay> is a time value. The default value is 1 minute and the notation for the meta-symbol <delay> could be 1m. This controls the same mechanism to detect deadlocks as in libVTfs which is the fail-safe library. For interactive use it is recommended to set it to a small value like "10s" to detect deadlocks quickly without having to wait long for the timeout.

VT_DEADLOCK_WARNING <delay> where <delay> is a time value. The default value is 5 minutes and the notation for the meta-symbol <delay> could be 5m. If on average the MPI processes are stuck in their last MPI call for more than this threshold, then a GLOBAL: DEADLOCK: NO PROGRESS warning is generated. This is a sign of a load imbalance or a deadlock which cannot be detected because at least one process polls for progress instead of blocking inside an MPI call.

VT_CHECK_TRACING <on | off>. By default, during correctness checking with libVTmc no events are recorded and no trace file is written. This option enables recording of all events also supported by the normal libVT and the writing of a trace file. The trace file will also contain the errors found during the run.

On Linux OS, complete user documentation regarding the message checking feature for the Intel Trace Collector can be found within the file:

<directory-path-to-ITAC>/doc/ITC_Reference_Guide.pdf

The chapter title is called "Correctness Checking".

An MPI application can be instrumented in four ways with the message checking library.

1) Compile the application with a static version of the message checking library:

mpiicc deadlock.c -o deadlock_static.exe -g -L \${VT_LIB_DIR} -lVTmc
\${VT_ADD_LIBS}

mpiexec -genv VT_CHECK_TRACING on -genv VT_DEADLOCK_TIMEOUT 20s -genv VT_DEADLOCK_WARNING 25s -n 2 ./deadlock_static.exe 0 80000

2) Compile the application with a shared object version of the message checking library:

mpiicc deadlock.c -o deadlock_shared.exe -g -L \${VT_SLIB_DIR} -lVTmc
\${VT_ADD_LIBS}

mpiexec -genv VT_CHECK_TRACING on -genv VT_DEADLOCK_TIMEOUT 20s -genv VT_DEADLOCK_WARNING 25s -n 2 ./deadlock_shared.exe 0 80000

- **NOTE:** The library path for the Intel® C++ Compiler will vary from version to version.
- 3) Use the itcpin command:

mpiicc deadlock.c -o deadlock.exe -g

mpiexec -genv VT_CHECK_TRACING on -genv VT_DEADLOCK_TIMEOUT 20s -genv VT_DEADLOCK_WARNING 25s -n 2 itcpin --insert libVTmc.so --run --./deadlock.exe 0 80000

4) Use the LD_PRELOAD environment variable with the mpiexec command. An example might be:

mpiicc deadlock.c -o deadlock.exe -g

mpiexec -genv VT_CHECK_TRACING on -genv LD_PRELOAD libVTmc.so -genv VT_DEADLOCK_TIMEOUT 20s -genv VT_DEADLOCK_WARNING 25s -n 2 ./deadlock.exe 0 80000

There is a sub-directory of the examples directory called checking. The checking directory has the following contents:

global/ GNUmakefile local/ misc/

The GNUmakefile has targets all, clean, print, and run, where all is the default. After typing gmake, one can type the command:

gmake run

The output error diagnostics for the command above will be sent to stderr. If you wish to retain the output into a file, the results for stderr can be directed to a file.

Each leaf sub-folder contains a source file and an "*.ref.out" file which can be used as a point of reference for the expected diagnostics that the message checking component of the Intel® Trace Collector should capture. For example, if you search the global sub-directory, you will find a folder path of the following form:

global/collective/datatype_mismatch/

The contents of the leaf directory consist of:

MPI_Bcast.c MPI_Bcast.ref.out

The file MPI_Bcast.ref.out has diagnostic information that looks something like the following:

•••
[0] INFO: initialization completed successfully
[0] ERROR: GLOBAL:COLLECTIVE:DATATYPE:MISMATCH: error
[0] ERROR: Mismatch found in local rank [1] (global rank [1]),
[0] ERROR: other processes may also be affected.
[0] ERROR: No problem found in local rank [0] (same as global rank):
[0] ERROR: MPI_Bcast(*buffer=0x7fbfffe9f0, count=1, datatype=MPI_INT,
root=0, comm=MPI_COMM_WORLD)
[0] ERROR: main (global/collective/datatype_mismatch/MPI_Bcast.c:50)
[0] ERROR: 1 elements transferred by peer but 4 expected by
[0] ERROR: the 3 processes with local ranks [1:3] (same as global ranks):
<pre>[0] ERROR: MPI_Bcast(*buffer=0x7fbfffe9f4, count=4, datatype=MPI_CHAR,</pre>
root=0, comm=MPI_COMM_WORLD)
[0] ERROR: main (global/collective/datatype_mismatch/MPI_Bcast.c:53)
[0] INFO: GLOBAL:COLLECTIVE:DATATYPE:MISMATCH: found 1 time (1 error + 0
warnings), 0 reports were suppressed
[0] INFO: Found 1 problem (1 error + 0 warnings), 0 reports were suppressed.

For the text above, there are error messages of the form:

[0] ERROR: main (global/collective/datatype_mismatch/MPI_Bcast.c:50)

and

[0] ERROR: main (global/collective/datatype_mismatch/MPI_Bcast.c:53)

These error messages refer to the line number 50 and 53 respectively in the source file MPI_Bcast.c:

```
•••
39 int main (int argc, char **argv)
40 {
41
       int rank, size;
42
43
       MPI_Init( &argc, &argv );
44
       MPI_Comm_size( MPI_COMM_WORLD, &size );
45
       MPI_Comm_rank( MPI_COMM_WORLD, &rank );
46
47
       /* error: types do not match */
48
       if(!rank) {
49
           int send = 0;
50
           MPI_Bcast( &send, 1, MPI_INT, 0, MPI_COMM_WORLD );
       } else {
51
52
           char recv[4];
53
           MPI_Bcast( &recv, 4, MPI_CHAR, 0, MPI_COMM_WORLD );
54
       }
55
56
       MPI_Finalize( );
57
58
       return 0;
59 }
```

At lines 52 and 53, adjustments can be made to the source which would look something like the following:

52 int recv[4]; 53 MPI_Bcast(&recv, 1, MPI_INT, 0, MPI_COMM_WORLD);

The modifications are to change the data-type definition for the object "recv" at line 52 from char to int, and at line 53, the third argument which is the MPI data-type is modified from MPI_CHAR to MPI_INT.

Upon doing this and following a process of recompiling and re-running the application will generate the following:

•••

[0 Thu Mar 26 19:53:34 2009] INFO: Error checking completed without finding any problems.

•••

This indicates the message checking errors that were originally encountered have been eliminated for this example.

At the URL:

http://www.shodor.org/refdesk/Resources/Tutorials/BasicMPI/deadlock.c

one can obtain the source to an MPI example using C bindings that demonstrates deadlock.

When issuing the mpiexec command with the LD_PRELOAD environment variable:

mpiexec -genv VT_CHECK_TRACING on -genv VT_LOGFILE_PREFIX
/shared/scratch/test_correctness_checking/inst -genv LD_PRELOAD
libVTmc.so -genv VT_DEADLOCK_TIMEOUT 20s -genv VT_DEADLOCK_WARNING 25s
-n 2 ./deadlock.exe 0 80000

diagnostic messages that look something like the following are generated.

```
•••
0/2: receiving 80000
1/2: receiving 80000
[0] ERROR: no progress observed in any process for over 0:29 minutes,
aborting application
[0] WARNING: starting premature shutdown
[0] ERROR: GLOBAL: DEADLOCK: HARD: fatal error
[0] ERROR: Application aborted because no progress was observed for
over 0:29 minutes,
[0] ERROR: check for real deadlock (cycle of processes waiting for
data) or
[0] ERROR: potential deadlock (processes sending data to each other
and getting blocked
[0] ERROR: because the MPI might wait for the corresponding
receive).
[0] ERROR:
            [0] no progress observed for over 0:29 minutes, process
is currently in MPI call:
               MPI_Recv(*buf=0x7fbf9e4740, count=800000,
[0] ERROR:
datatype=MPI_INT, source=1, tag=999, comm=MPI_COMM_WORLD,
*status=0x7fbfffef40)
[0] ERROR:
               main
(/shared/scratch/test_correctness_checking/deadlock.c:49)
[0] ERROR:
            (/lib64/tls/libc-2.3.4.so)
[0] ERROR:
(/shared/scratch/test_correctness_checking/deadlock.exe)
[0] ERROR: [1] no progress observed for over 0:29 minutes, process
is currently in MPI call:
[0] ERROR:
               MPI_Recv(*buf=0x7fbf9e4740, count=800000,
datatype=MPI_INT, source=0, tag=999, comm=MPI_COMM_WORLD,
*status=0x7fbfffef40)
```

12 [0] ERROR: main (/shared/scratch/test_correctness_checking/deadlock.c:49) 13 [0] ERROR: (/lib64/tls/libc-2.3.4.so) 14 [0] ERROR: (/shared/scratch/test_correctness_checking/deadlock.exe) 15 16 [0] INFO: GLOBAL: DEADLOCK: HARD: found 1 time (1 error + 0 warnings), 0 reports were suppressed [0] INFO: Found 1 problem (1 error + 0 warnings), 0 reports were 17 suppressed.

The compiler option -g inserts debug information that allows one to map from the executable back to the source code. Because the environment variable VT_CHECK_TRACING was set for the mpiexec command, trace information was placed into the directory referenced by VT_LOGFILE_PREFIX which for the example command-line:

```
mpiexec -genv VT_CHECK_TRACING on -genv VT_LOGFILE_PREFIX
/shared/scratch/test_correctness_checking/inst -genv LD_PRELOAD
libVTmc.so -genv VT_DEADLOCK_TIMEOUT 20s -genv VT_DEADLOCK_WARNING 25s
-n 2 ./deadlock.exe 0 80000
```

is /shared/scratch/test_correctness_checking/inst.

You can use the Intel® Trace Analyzer to view the deadlock problem that was reported in the output listing above. Here is what the trace information might look like (Figure 7.7):

😻 localhost:5000 - Remote	Desktop						
Trace Analyzer - [1	: Z:/message_cl	necking/test_i	nst/deadlocl	k.stf]			
File Style Windows Help I	F1						
View Charts Navigate Advar	, Layout	20 5		3.0	5	40 5	
5 5	15 s		25 s		35 5		45 s 💌
PO MPI							
P1 MPI							
							_
I							Þ
Flat Profile Load Balance	Call Tree Call	Graph					
Group All_Processes	· ·						
Name 🛆	TSelf	TSelf	TTotal	#Calls	TSelf /Call		
Group All_Processes	140 2052 -		01 7502 -	~	70 10242 -		
Group MPI	91.619 s		91.7392 S 91.619 S	6	15.2698 s		
<u> </u>							
0.000 000, 45.881 019: 45.881 0	19 sec.	All_Proc	esses	Major	Function Groups	Tag	Filter
<							>

Figure 7.7 – Event Timeline illustrating an error as signified by the black circle

For the event timeline chart, errors and warnings are represented by yellowbordered circles (Figure 7.7). The color of each circle depends on the type of the particular diagnostic. If there is an error the circle will be filled in with a black coloring. If there is a warning, the circle will be filled in with a gray coloring.

For Figure 7.7, error messages and warnings can be suppressed by using a context menu. A context menu will appear if you right click the mouse as shown in Figure 7.8 and follow the path **Show**->**Issues**. If you uncheck the **Issues** item, the black and gray circles will clear.

1/1 1/1 <th>🗱 Intel® 1</th> <th>Trace Analyzei</th> <th>- [1: Z:/mes</th> <th>sage_checking/</th> <th>test_inst/deadloc</th> <th>k.stf]</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_ 8 ×</th>	🗱 Intel® 1	Trace Analyzei	- [1: Z:/mes	sage_checking/	test_inst/deadloc	k.stf]							_ 8 ×
	File Sty View Charl	yle Windows I to Navigate (Help F1 Idvanced Law	out									_ <u>=</u>
4. 14.7 1	0 3	cs Navigato P	avancea cay	8 J		16 5		24 3	2	2 5	40 5		
Over Urgrade for function Over Image for complete Image for complete Image for complete Image for complete<		4 3			12 5		20 s		28 s	36 3		44 3	
Not Ordel on Function Urgingo Group Mr 1 Functions Order Monosophies State Order Order Monosophies Monosophies Order Order Colderty Order Monosophies Monosophies Order Order Order Order Monosophies Monosophies Over Order Over Order Over Order Monosophies Over Order Over Order Over Order Monosophies Over Order Over Order Over Order Over Order Over Order <td></td> <td>-</td>													-
0.000 Outation Function Universe Outation Function Universe Interfamily Strage Out Interfamily Strage Interfamily Strage Interfamily Strage													
1951 Understann Function Ungroup Group MPI Institution g Weight and Statings. Institutit and Stating Weight and Stating Weight and Statings.													
0.00000, 45,001.019; 45,081.019 sc. AL Processe More Function Group Tool More Function Group Tool More Function Group													
Details on function trypog Group PH2 Star Unit Star Const	PO MPI												
Option of notation Unitation Unitation Unitation Out Unitation Out Unitation Out Unitation Out Unitation Out Unitation Cost Out-History Cost Out-History Cost Out-History Cost Out-History Cost Out-History Processes Instance Secong HIST Sold State Socopy HIST Sold State Socopy HIST Sold State Outproverse Socopy HIST Socopy HIST Sold State Socopy HIST Sold State Outproverse Socopy HIST Socopy HIST Sold State													
Ungroup Group PEI Solve Solve Ungroup Group PEI Solve Sol							Details on Function						
Story Practicus Messages Messages Messages Bose Opt Core Chart Cut+ShitH Bose Opt Core Chart Cut+ShitH Bose Intermediation Core Chart Cut+ShitH Bose Intermediation Core Chart Cut+ShitH Bose Bose Intermediation Core Chart Cut+ShitH Bose Bose Core All Tree Core Chart Cut+ShitH Bose Core All Tree Core All Tree Core All Tree Core All Tree Staft Total Staft Staf							Ungroup Group MPI						
Out • Messages • Caleche Operations Devel Trealers Settrops • Caleche Operations Ose Chat Colleche Operations Profile Load Balance Cal Tree Cal Graph Trealer Todal Todal Todal Cale Tree Profile Load Balance Cal Tree Cal Graph • Colleche Operations Treal Todal Todal Todal Todal • Cale Tree Ocropy Algencesses • • • • Ocropy Algencesses • • • • Ocropy Staff Todal # Cale Tself • • • Ocropy Algencesses • • • • • Ocropy Staff Todal # Cale Tself • • • • • Ocropy Algencesses • 91.619 s • 15.259 s • • • • • • • •							Show	۱.	✓ Functions				
Event Treelles Settings Colective Operations Cose Chart Cri+Shit NL Stelles							Chart	•	 Messages 				
Obse Chart CutH shift H, ✓ Source 3ref Close Chart CutH shift H, ✓ Source 1 Close Chart CutH shift H, ✓ Source 2 Source Source Source Source 2 Source So							Event Timeline Setting		✓ Collective Operations				
000 000, 45,881 019; 45,881 019 se. All_Processes Mayre function Groups Tag File							Close Chart	Ctrl+Shift+K	✓ Issues				
Net													
File Coll Balance Call Free Call Graph 2 File Total #Calls TSelf TSelf Call Opcrup ALProcesses Image: Call Tself Call Image: Call Tself Call Opcrup TSelf TSelf Total #Calls TSelf Call Opcrup ALProcesses Image: Call Tself Call Image: Call Tself Call Opcrup ALProcesses Image: Call Tself TSelf Total #Calls TSelf Image: Call Tself Call Opcrup ALProcesses Image: Call Tself Image: Call Tself Call Image: Call Tself Call Image: Call Tself Call Tself Call Image: Call Tself Ca	1 4007												
0.000 000, 45.881 019: 45.881 019 sec. Al_Processes May Function Groups Tag Filer	-1 199-1												
Plak Profile Load Balance Call Graph Torup All_Processes Image / TSef Total #Calls Brocup All_Processes 91.7592 # 2 70.1024e-3 # Image Image: Image Image: Image Image: Image Image: Image Image: Image: Image: Image Image: I													
Hat Profile Coad Balance Call Graph roop All Processes Image Iself Total #Cals Tself / Call Bane Iself Tself Total #Cals Tself / Call Image: Call Graph Bane Iself Tself Total #Cals Tself / Call Image: Call Graph Image: Call Graph Bane Iself Tself Total #Cals Tself / Call Image: Call Graph													
File Profile Load Balance Call Graph 2 File Profile Self Total #Calls Total #Calls Bine													
1142 Profile Load Blance: Coll Tiree Coll Graph 126 Profile Coll Graph Tooli #Cals Tooli #Cals 20 Provp All_Processes													-
Tisk Profit Load Balance Call Graph roup All processes Image: State S	4												<u> </u>
Image TSelf Total #Cats TSelf /Call Group All_Processes 91.7592 ± 2.70.1024=-3 ± Group All_Station 140.205e-3 ± 91.7592 ± 2.70.1024e-3 ± Group All_Station 140.205e-3 ± 91.619 ± 6 J.1.619 ± 51.619 ± 51.619 ± 6 0.000.000, 45.881.019.45.881.019 sec. All_Processes Major Function Groups Tag	Flat Profile	Load Balanc	e Call Tree	Call Graph									
lame / Test / Total / Cols / Ser / Call / Cols / Secure Application 140.2058-3 s 91.7592 s 2 70.10248-3 s 91.619 s 6 15.2699 s 91.619 s 15.2699 s 91.619 s 91.619 s 15.2699 s 91.619	Group All_Pr	rocesses	· ·	[[=								
Group Application 140.205+3 s 91.7592 s 2 70.1024a-3 s Group MPI 91.619 s 6 15.2698 s	Name El Groun	All Process		TSelf	TTotal	#Calls TSelf /Call							
Group HPI 91.619 s 6 15.2696 s 0.000 000, 45.881 019; 45.881 019 sec. All_Processes Major Function Groups Tag Filter	Gr	oup Applicat	ion 140.20	Se-3 s	91.7592 s	2 70.1024e-3 :	5						
0.000 000, 45,881 019: 45,881 019 sec. All_Processes Major Function Groups Tag Filter	Gr	oup MPI	91	.619 s	91.619 s	6 15.2698 :	5						
0.000 000, 45,881 019: 45,881 019 sec. All_Processes Major Function Groups Tag Filter													
0.000 000, 45.881 019: 45.881 019 sec. All_Processes Mejor Function Groups Tag Filter													
0.000 000, 45.881 019: 45.881 019 sec. All_Processes Major Function Groups Tag Filter													
0.000 000, 45.881 019: 45.881 019 sec. All_Processes Major Function Groups Tag Filter													
0.000 000, 45,881 019: 45,881 019 sec. All_Processes Major Function Groups Tag Filter													
0.000 000, 45,881 019: 45,881 019 sec. All_Processes Major Function Groups Tag Filter													
0.000 000, 45.881 019: 45.881 019 sec. All_Processes Major Function Groups Tag Filter													
0.000 000, 45.881 019: 45.881 019 sec. All_Processes Major Function Groups Tag Filter													
0.000 000, 45.881 019: 45.881 019 sec. All_Processes Major Function Groups Tag Filter													
0.000 000, 45.881 019: 45.881 019 sec. All_Processes Major Function Groups Tag Filter													
U.UUUUUU, HS.Iddi UI91 HS.Iddi UI91 Sec. All_Processes Major Function Groups Tag Filter			18 001 015										ente
		0.000 000,	45.881 019: 4	5.001 019	sec.	1	All_Processes	(major Hunction Groups	(iag	riiter

Figure 7.8 – Context menu that can be used to suppress "Issues". This is done by un-checking the "Issues" item

You can determine what source line is associated with an error message by using the context menu and selecting Details on Function. This will generate the following Details on Function panel (Figure 7.9):

💐 localhost:5000 - Remote De	sktop		
👺 Details on Function MPI			? × ^
View: 1: Z:/message_checking/test_ Chart:3: Event Timeline	inst/deadlock.stf		
Euroction			
Chau Nama Drasass	Dumphian Shareh Time Find Tim	Tatal	1
Source Group	[s] [s] [s]	#Calls	
Group MPI PO	45.809 487 0.071 489 45.880	376	1
			ок
<			// ⊻

Figure 7.9 – Illustration of the Detail on Function panel. The Show Source tab is the first item on the left

If you click on the **Show Source** tab in Figure 7.9, you will ultimately reach a source file panel such as what is demonstrated in Figure 7.10.

👺 Source View: Group MPI

View: 1: Z:/message_checking/test_inst/deadlock.stf Chart:3: Event Timeline

```
Process 1
                                                                                                           18
         if (size!=2) (
19
             printf("\bwrong number of processes\n");
20
             exit(0);
21
        }
22
23
        if (argc<3) {
24
             \label{eq:printf("\n(1) Usage: a.out \_sendfirst(1|0)_ _messagelength_\n");
25
             exit(0);
26
        ł
27
        sscanf(argv[1],"%d",&sendfirst);
28
        if (sendfirst!=044sendfirst!=1) {
29
            printf("\n(2) Usage: a.out _sendfirst(1|0)_ _messagelength_\n");
30
             exit(0);
31
        ł
32
        sscanf(argv[2],"%d",&messagelength);
        if (messagelength<1 || messagelength>MAX_ARRAY_LENGTH) (
33
34
            printf("(3) _messagelength_ should be between 1 and %d\n",
35
                MAX_ARRAY_LENGTH);
36
             exit(0);
37
        ł
38
        other = (rank+1)%2;
39
40
        if (sendfirst) {
 41
 42
            printf("\n%d/%d: sending %d\n",rank,size,messagelength);
             MPI_Send(buffer_out,messagelength,MPI_INT,other,999,MPI_COMM_WORLD);
43
44
             MPI_Recv(buffer_in,MAX_ARRAY_LENGTH,MPI_INT,other,999,MPI_COMM_WORLD,
                 &status);
45
 46
             printf("\n%d/%d: received %d\n",rank,size,messagelength);
 47
         } else {
48
             printf("\n%d/%d: receiving %d\n".rank.size.messagelength);
49
            MPI_Recv(buffer_in,MAX_ARRAY_LENGTH,MPI_INT,other,999,MPI_COMM_WORLD,
50
                 &status);
51
             MPI_Send(buffer_out,messagelength,MPI_INT,other,999,MPI_COMM_WORLD);
                                                                                                           •
                                   Call stack:
Z:/message_checking/deadlock.c, line 49
Z:/message_checking/deadlock.c, line 266
Not found: unknown, line 0
Not found: unknown, line 0
Not found: unknown, line 0
                                                                                                        OK
```

? ×

Figure 7.10 – The source panel display which shows the line in the user's source where deadlock has taken place.

The diagnostic text messages and the illustration in Figure 7.10 reference line 49 of deadlock.c looks something like the following:

			•••
	49	MPI_Recv	(buffer_in, MAX_ARRAY_LENGTH, MPI_INT, other,
999,			
	50		MPI_COMM_WORLD, &status);
	51	MPI_Send	(buffer_out, messagelength, MPI_INT, other, 999,
	52		MPI_COMM_WORLD);
			•••

This is illustrated in Figure 7.11. To avoid deadlock situations, one might be able to resort to the following solutions:

Figure 7.11 – Cycle illustration for processes 0 and 1 when executing source lines 49 and 43 within application deadlock.c

- 1. Use a different ordering of MPI communication calls between processes
- 2. Use non-blocking calls
- 3. Use MPI_Sendrecv or MPI_Sendrecv_replace
- 4. Buffered mode

The If-structure for the original program looks something like the following:

```
41
    if (sendfirst) {
42
         printf ("\n%d/%d: sending %d\n", rank, size, messagelength);
         MPI_Send (buffer_out, messagelength, MPI_INT, other, 999, MPI_COMM_WORLD);
43
        MPI_Recv (buffer_in, MAX_ARRAY_LENGTH, MPI_INT, other, 999,
44
                  MPI_COMM_WORLD, &status);
45
        printf ("\n%d/%d: received %d\n", rank, size, messagelength);
46
47
       } else ·
48
        printf ("\n%d/%d: receiving %d\n", rank, size, messagelength);
49
        MPI_Recv (buffer_in, MAX_ARRAY_LENGTH, MPI_INT, other, 999,
50
                   MPI_COMM_WORLD, &status);
51
         MPI_Send (buffer_out, messagelength, MPI_INT, other, 999,
52
                  MPI_COMM_WORLD);
33
         printf ("\n%d/%d: sendt %d\n", rank, size, messagelength);
54
       }
```

...

•••

If you replace lines 43 to 44 and lines 49 to 52 with calls to MPI_Sendrecv so that they look something like:

MPI_Sendrecv (buffer_out, messagelength, MPI_INT, other, 999, buffer_in, MAX_ARRAY_LENGTH, MPI_INT, other, 999, MPI_COMM_WORLD, &status);

and save this information into a file called deadlock2.c, and proceed to compile the modified application. The result of running the mpiexec command:

mpiexec -genv VT_CHECK_TRACING on -genv LD_PRELOAD libVTmc.so -genv VT_DEADLOCK_TIMEOUT 20s -genv VT_DEADLOCK_WARNING 25s -n 2 ./deadlock2.exe 0 80000

is the following:

•••

- 0/2: receiving 80000
- 1/2: receiving 80000
- 0/2: sent 80000
- 1/2: sent 80000

[0] INFO: Error checking completed without finding any problems.

This indicates the deadlock errors that were originally encountered have been eliminated for this example. Using the Intel® Trace Analyzer to view the instrumentation results, you can see that the deadlock issues have been resolved (Figure 7.12).

Figure 7.12 – Illustration of deadlock removal by using MPI_Sendrecv in the original source file called deadlock.c

Back to Table of Contents

7.6 Saving a Working Environment through a Project File

There may be situations where you are in the middle of an inspection with Intel® Trace Analyzer and you need to be away. For example, suppose you initially typed the command:

traceanalyzer test_inst/testcpp.stf

and you need to temporarily stop the analysis, and you are looking at the following panel:

な localhost:5000 - Remote Desktop	
👺 Intel® Trace Analyzer	
<u>File Project Style Windows Help F1</u>	
쭡 1: Z:/test/test_inst/testcpp.stf	
<u>View Charts Navigate Advanced Layout</u>	
0.00 s 0.02 s 0.04 s 0.05 s	0.06 s 0.08 s
P0 Application	,Ap <mark>MPI</mark>
P1 Application	10 MPI
P2 Application	4pmpi
P3 Application	ADMPI
	•
Elat Profile Load Balance Call Tree Call Graph	
Group All Processes	
Name 🛆 TSelf TSelf TTotal #Calls TSelf /Call	
Group All_Processes	
Group Application 326.836e-3 s 348.232e-3 s 4 81.70896	e-3 s
······································	e-o 5
0.0333016 c. Euroption Application	

Figure 7.13 – Event timeline for running 4 MPI processes for the executable generated from test.cpp

For the panel rendering above, if you selection **Project**->**Save Project** or **Project**->**Save Project As...**, you will generate a subpanel that allows you to save the state of your session. This is project file has a suffix of ".itapr", which is an acronym for Intel® Trace Analyzer project. Figure 7.14 shows the process of saving the state of your session through a project file.

😼 localhos	t:5000 - Ren	note Desktop							- 0	×
🚆 Intel® Ti	ace Analyzer								_ 🗆 🗵	
File Project	Style Windo	ows Help F1								
🧮 1: Z:/tes	t/test_inst/te	estcpp.stf							_ _ _ _	
View Chart	s Navigate <i>i</i>	Advanced Layout								
0.00 s	0.01 5	0.02 5	0.03 5	0.04 5	0.05 5	0.06 5	0.07 \$	0.08 5	-	
						1				
									-	
PU App	🧱 Saving of	the project					? ×	APMI	2	
	Lookin	Tutestitest inst) – 🗖 🗖		_	
		T Treschest Tust								
P1 Applicatio	鰔 My C							ApiMF	Ы	
	🚺 Admir								_	
P2 Applicatio								4p <mark>M</mark> F	ы	
P3 Applicatio								AnM	л	
									•	
									<u> </u>	
4										
Flat Profile										
Group All_Pi										
Name										
🖻 Group		<u> </u>								
Gr	File name:	testcpp					Save			
	-									
	Files of type:	ITA Project File (*.ita	apr)			-	Cancel			
-							///]		
0.000.00	0 0.088.280+0	1 088 280	-			Major Eupction	Groups	Тад	Filter -	1
4	o, 0.000 200: t	5.000 200 Se		All_FLOCESSES		major r unicului	r ar odps	iay		-
<			Ш						>	

Figure 7.14 – Saving a Project File called testcpp.itapr

Suppose at a later time you wish to continue the analysis with $Intel \ Trace$ Analyzer. You can type the command:

traceanalyzer

You can then select **Project**->**Load Project**... and the following subpanel will appear (Figure 7.15):

Figure 7.15 – Loading a Project File called testcpp.itapr

With regards to Figure 7.15, click on the **Open** button and you will immediately go back to point where you last left off (Figure 7.13). For complete details on saving and loading a project file, please see Section 2.2 of the Intel® Trace Analyzer Reference Guide, which is titled "Project Menu". The path to this file is:

<directory-path-to-ITAC>/doc/ITA_Reference_Guide.pdf

on the system where the Intel® Trace Analyzer and Collector is installed.

Back to Table of Contents

7.7 Analysis of Application Imbalance

With respect to Figure 6.13, you may want to know a summary of process imbalance for the executable. You can do this by selecting the menu path **Advanced**-

>**Application Imbalance Diagram**. Figure 7.16 shows the result of making this selection.

🔁 localhost:5000 - Remote De	sktop	
👺 Intel® Trace Analyzer		_ 🗆 ×
File Project Style Windows Hel	p F1	
1: 2:/test/test_inst/testcpp.s	stf	
View Charts Navigate Advance	d Layout	0.08 x
0.01 5	0.03 s 0.05 s 0.07 s	
P0 Application		/ApMPI
	Choose Idealized Trace ? X	
P1 Application		ApMPI
	Please choose the idealized trace:	
	Traces available	
P2 Application	I: Z:/test/test_inst/testcpp.stf	ApMPI
	Open another file	
P3 Application	Breakdown parameters	ApMPI
	-Short messages border	
₹		Þ
Flat Profile Load Balance	512 Bytes S 32/68 Bytes	
Group All_Processes		
Name 🛆	Rebuild BDI hie(s)	
Group All_Processes		
Group MPI	OK Cancel	
0.000 000, 0.088 280: 0.088 280) sec. All_Processes Major Function Groups	Tag Filter
<		>

Figure 7.16 – Selecting Application Imbalance for the menu selection Advanced->Application Imbalance Diagram

Click on the **OK** button in the subpanel will generate the following (Figure 7.17). You can verify the meaning of the histogram subcomponents by clicking on the **Colors...** button in Figure 7.17. This will generate the panel shown in Figure 7.18.

😼 localho	ost:5000 - Rei	mote Desktop							
🚆 Intel®	Trace Analyze	r							
Eile Proje	ct <u>S</u> tyle <u>W</u> ind	ows <u>H</u> elp F1							
🗮 1: Z:/te	est/test_inst/t	estcpp.stf							
⊻iew ⊆ha Looio r	arts <u>N</u> avigate	Advanced Layout		0.04 -		0.06 r		0.08 -	
	0.01 5	****	0.03 5		0.05 s		0.07 s	*	
	E Application	Imbalance Diagram	(Total Mode)						<u> </u>
P0	Total	Choose the display m	ode 🔽 Display the	e application time			Colors	/ApMPI	
	0.362806 -								
P1 Applic	0.332572 -							ApMPI	
	0.302339 -								
P2 Applic	0.272105 -							ApMPI	
	0.241871 -								
P3 Applic	9 0.211637 - . E							ApMPI	
	0.181403 -								
Flat Pro	0.151169-								
Group All	0.120935 -								[
Name	0.0907016 -								
	0.0604677 -								
	0.0302339 -								
	Application Imba	lance Diagram (Total Mo	de)						
0.049343	s								
							_	_	──

Figure 7.17 – Histogram subpanel as a result of pressing the OK button shown in Figure 7.16

Figure 7.18 – Legend for interpreting the histogram contributions for the Application Imbalance Diagram

For complete details on application imbalance, please see Section 5.4 of the Intel® Trace Analyzer Reference Guide, which is titled "Application Imbalance Diagram Dialog Box". The path to this file is:

<directory-path-to-ITAC>/doc/ITA_Reference_Guide.pdf

on the system where the Intel® Trace Analyzer and Collector is installed.

Back to Table of Contents

7.8 Analysis with the Ideal Interconnect Simulator

In analyzing the performance of your executable, you can compare your instrumentation trace with an ideal trace for the executable. To do this, make the

menu selection **Advanced**->**Idealization**. As a result, a dialog subpanel will appear which will allow you to create an idealized trace of execution (Figure 7.19):

な localhost:5000 - Remote Deskto	p						
👺 Intel® Trace Analyzer							_ 🗆 🗠 📤
File Project Style Windows Help F1							
1: Z:/test/test_inst/testcpp.stf View Charts Navigate Advanced La	avout						
0.02	3	0.04 s		0.05 5		0.08 s	
0.0µ s	0.03 5		0.05 3		0.07 3		
P0 Application						/AnMPI	
							_
P1 Application						Ap <mark>MPI</mark>	
	🚆 Trace Idealizer						
	File: Z:/test/test_inst/l	:estcpp.stf					
P2 Application	Output file name —					ApMPI	
	Z:/test/test_inst/test	cpp.ideal.stf		Browse			
P3 Application	Trace conversion par	ameters		_		ApMPI	
	0.000000	start time, sec 0.0	88280	end time, sec			
I	Ready to convert						
Flat Profile Load Balance Call Tr				0%			
Group All_Processes	I Open the new trac	einaview I (Create a single S	TF file			
Name 🛆 TSelf			Start	Cancel			
Group All_Processes Group Application 326.8	36e-3 s	348.232e-3 s	4 81.708	39e-3 s	1		
Group MPI 21.39	63e-3 s	21.3963e-3 s	40 534.90)7e-6 s			
0.000 000, 0.088 280: 0.088 280	sec.	All_Processes		Major Function	Groups	Tag	Filter
<							>

Figure 7.19 – Trace I dealizer dialog box generated as a result of the menu selection Advanced->I dealization

By clicking on the Start button in the dialog panel for Figure 7.19, a trace file will be generated called "testcpp.ideal.stf". After creating this file, you can then make the menu selection **File**->**Open** for the given Intel® Trace Analyzer panel and open the trace file "testcpp.ideal.stf" for comparative analysis. Figure 7.20 shows the side-by-side results of the actual execution trace and the ideal trace for the application "test.cpp".

📭 localhost:5000 - Remote Desktop	
👺 Intel® Trace Analyzer	- - - - - -
Eile Project Style Windows Help F1	
월 1: Z:/test/test_inst/testcpp.stf	
View Charts Navigate Advanced Layout	
0.00 s 0.02 s 0.04 s	0.06 5 0.08 5
	o.urs
P0 Application	AppMPI
D1 Application	Lomer Londer
P2 Application	
P3 Application	Ap/MPI
	<u> </u>
Flat Profile Load Balance Call Tree Call Graph	
Group All_Processes	
Name 🛆 TSelf TSelf TTotal #Calls TSelf /Call	
· · · · · · · · · · · · · · · · · · ·	
View Charts Navinate Advanced Lavout	
View Charts Navigate Advanced Layout 0.00 s 0.02 s 0.04 s	0.05 s 0.0
0.00 s 0.02 s 0.02 s 0.04 s 0.01 s 0.02 s 0.09 s 0.04 s	
2.2.2.2.2.CSC This Conception and the second seco	0.05 s 0.07 s • •
Piew Charts Navigate Advanced Layout 0.00 s 0.01 s 0.02 s 0.02 s 0.02 s 0.02 s 0.02 s 0.02 s	0.05 s 0.07 s • • • • • • • • • • • • • • • • • •
Piew Charts Navigate Advanced Layout 0.00 s 0.01 s 0.02 s 0.05 s	0.06 s 0.07 s 0.08 s
2 2 <td>s 0.06 s 0.07 s 0.08 s</td>	s 0.06 s 0.07 s 0.08 s
Piew Charts Navigate Advanced Layout 0.00 s 0.01 s 0.02 s 0.03 s 0.04 s 0.05 s 0.05 s	s 0.0k s 0.07 s 0.0k s
Piew Charts Navigate Advanced Layout 0:00 s 0:01 s 0:02	s 0.0k s 0.07 s 0.0k s
View Charts Navigate Advanced Layout View Charts Navigate Advanced Layout 0.00 s 0.02 s 0.02 s 0.04 s 0.05 P0 Application P1 Application P2 Application	0.06 s 0.07 s 0.06 s x App
22.2.2.2.7 (CESC_INSUCESCONDUCTION 0:00 ; </td <td>0.06 s 0.07 s 0.06 s x App</td>	0.06 s 0.07 s 0.06 s x App
Piew Charts Navigate Advanced Layout 0.00 s 0.01 s 0.02 s 0.02 s 0.02 s 0.03 s 0.04 s 0.05	0.06 s 0.07 s 0.06 s 0.07 s 0.06 s 0.07
Piew Charts Navigate Advanced Layout 0.0 s 0.0 k s 0.0 k s 0.0 k s	
Piew Charts Navigate Advanced Layout 0.0 s 0.0 s 0.0	2 0.06 5 0.07 5 0.08 5 × 7 2 0.07 5 0.07 5 0.08 5 × 7 App App App ↓
Piew Charts Navigate Advanced Layout 0.0 s 0.0 s	2 0.06 5 0.07 5 0.08 5 × 7 2 0.07 5 0.07 5 0.08 7 × 7 App App App ↓
Piere Charts Navigate Advanced Layout 0:0 s 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s P0 Application P1 Application P2 Application P3 Application P3 Application P3 Application P3 Application P3 Application P4 Trace Call Graph Group All_Processes Vame TSelf TSelf	x 0.06 s 0.07 s x x x x x x x x x x x x x x x x x x
Piew Charts Mavigate Advanced Layout 0.01 // 0.01 // 0.02 // 0.05 // 0.09 // 0.05 //	App App App App
Piew Charts Navigate Advanced Layout 0.0 s 0.0 s	
First Nation 0.01 x 0.02 x 0.01 x 0.02 x 0.01 x 0.02 x 0.02 x 0.02 x 0.01 x 0.02 x 0.01 x 0.02 x 0.01 x 0.02 x 0.01 x 0.02 x 0 x 0.02 x 0 x 0.02 x 0 x 0.02 x 0 x 0 x 0 x 0 x 0 x 0 x	App App App App App App App
Piew Charts Navigate Advanced Layout 0.00 s 0.02 s 0.04 s 0.01 s 0.02 s 0.04 s 0.02 s 0.05 s 0.05 s P0 Application P1 Application P2 Application P3 Application P4 Flat Profile Load Balance Call Tree Call Processes P Name TSelf TSelf TSelf Total P Group All_Processes Croup MPI 0 s O s 0 s	App App App App App App
Piew Charts Navigate Advanced Layout 0.01 //	App App App App App App
Piew Charts Navigate Advanced Layout 0.01 s 0.02 s 0.04 s 0.08 P0 Application P1 Application P2 Application P3 Application P4 Flat Profile Load Balance Call Tree Croup All_Processes Croup MPI O s O s O s O s	
Pick (carl, resylecate) Biological (carl) 0.00 s 0.01 s 0.01 s 0.01 s 0.01 s 0.02 s 0.02 s 0.04 s 0.05 s P0 Application P1 Application P2 Application P3 Application P4 Call Free Call Free Call Graph Group All_Processes ▼ Name △ TSelf Group Application 326.836e-3 s 326.836e-3 s 4 81.7089e-3 Group Application 326.836e-3 s 326.836e-3 s 4 81.7089e-3 Group Application 326.836e-3 s 0 s 0 s 0 s 0.000 000, 0.062 528: 0.082 528 sec. All Processes	s 0.0k s 0.05 s c c c c c c c c c c c c c c c c c c

Figure 7.20 – Comparison of the actual execution trace versus the idealized trace for the application test.cpp

NOTE: In Figure 7.20, the cost of doing message passing in the ideal case is negligible. You can use the data from the ideal case to help gauge the type of tuning performance that should be pursued.

For complete details on application imbalance, please see Section 5.3 of the Intel® Trace Analyzer Reference Guide, which is titled "Trace Idealizer Dialog Box". The path to this file is:

<directory-path-to-ITAC>/doc/ITA_Reference_Guide.pdf

on the system where the Intel® Trace Analyzer and Collector is installed.

Back to Table of Contents

7.9 Building a Simulator with the Custom Plug-in Framework

The Intel® Trace Analyzer and Collector provides you with a custom plug-in API that allows you to write your own simulator. You can find the simulator API in the folder path:

<directory-path-to-ITAC>/examples/icpf/

on the system where the Intel® Trace Analyzer and Collector is installed. The API source file within the subfolder icpf is called h_devsim.cpp. For background on building a customer simulator for trace files, please see Chapter 9 of the Intel® Trace Analyzer Reference Guide, which is titled "Custom Plug-in Framework". The path to this file is:

<directory-path-to-ITAC>/doc/ITA_Reference_Guide.pdf

Back to Table of Contents

8. Getting Started in Using the Intel® Math Kernel Library (Intel® MKL)

On Linux-based platforms, the installation process for Intel MKL on the cluster system will produce a sub-directory that looks something like .../mkl where the build number 037 may vary. The default directory path for the library installation process is:

```
/opt/intel/icsxe/2012.0.037/mkl
```

The contents of the .../mkl sub-directory should be:

benchmarks/ bin/ examples/ include/ interfaces/ lib/ tests/ tools/

Complete user documentation for Intel Math Kernel Library 10.3 Update 6 can be found within the directory path:

```
<directory-path-to-mkl>/doc
```

where *<directory-path-to-mkl>* is the absolute directory path to where the Intel MKL files and sub-directories are installed on the cluster system.

To experiment with the ScaLAPACK test suite, recursively copy the contents of the directory path:

```
<directory-path-to-mkl>/tests/scalapack
```

to a scratch directory area which is sharable by all of the nodes of the cluster. In the scratch directory, issue the command:

```
cd scalapack
```

You can type the command:

gmake libem64t mpi=intelmpi LIBdir=<directory-path-to-mkl>/lib/intel64

NOTE: The gmake command above is applicable to Intel® 64 processor-based systems. This makefile creates and runs executables for the ScaLAPACK* (SCAlable LAPACK) examples.

```
<directory-path-to-mkl>/tests/scalapack/source/TESTING
```

Finally, for IA-32 architectures, the gmake command might be:

gmake libia32 mpi=intelmpi LIBdir=<directory-path-to-mkl>/lib/ia32

In the scalapack working directory where the gmake command was issued, the ScaLAPACK executables can be found in source/TESTING, and the results of the computation will be placed into a sub-directory called _results. The _results directory will be created in same directory from which the gmake command was launched. Within this folder is another sub-folder which has a naming convention that uses the following makefile variable configuration:

```
_$(arch)_$(mpi)_$(comp)_$(opt)_$(ADD_IFACE)
```

For example, on Intel® 64 architecture, using Intel MPI Library 4.0, the Intel compiler and no compiler optimization, the sub-directory under _results might be called:

```
_libintel64_intelmpi_intel_noopt_lp64
```

The "*.txt" files for the execution results can be found here. You can invoke an editor to view the results in each of the "*.txt" files that have been created.

As an example result, the file

"_results/_libintel64_intelmpi_intel_noopt_lp64/cdtlu.txt" might have something like the following in terms of contents for an execution run on a cluster using four MPI processes. The cluster that generated this sample output consisted of four nodes. The text file was generated by the corresponding executable xcdtlu.

```
SCALAPACK banded linear systems.
'MPI machine'
Tests of the parallel complex single precision band matrix solve
The following scaled residual checks will be computed:
Solve residual = ||Ax - b|| / (||x|| * ||A|| * eps * N)
Factorization residual = ||A - LU|| / (||A|| * eps * N)
The matrix A is randomly generated for each test.
An explanation of the input/output parameters follows:
TIME
      : Indicates whether WALL or CPU time was used.
      : The number of rows and columns in the matrix A.
N
         : The number of diagonals in the matrix A.
bwl, bwu
NB : The size of the column panels the matrix A is split into. [-1 for default]
NRHS
      : The total number of RHS to solve for.
NBRHS
     : The number of RHS to be put on a column of processes before going
        on to the next column of processes.
     : The number of process rows.
Р
Q
      : The number of process columns.
THRESH : If a residual value is less than THRESH, CHECK is flagged as PASSED
Fact time: Time in seconds to factor the matrix
Sol Time: Time in seconds to solve the system.
MFLOPS : Rate of execution for factor and solve using sequential operation count.
MFLOP2 : Rough estimate of speed using actual op count (accurate big P,N).
The following parameter values will be used:
          3
 Ν
     :
                      5
 bwl :
                 1
 bwu :
                 1
 NB
     :
                 -1
 NRHS :
                 4
 NBRHS:
                 1
                            1
                       1
                                1
 P :
                 1
                 1
                       2
 0
     :
                            3
                                 4
Relative machine precision (eps) is taken to be 0.596046E-07
Routines pass computational tests if scaled residual is less than 3.0000
TIME TR
         N BWL BWU NB NRHS P Q L*U Time Slv Time MFLOPS MFLOP2 CHECK
3 1 1
                             1 1
WALL N
                    3
                         4
                                       0.000
                                                0.0001
                                                        1.06 1.00 PASSED
          5 1 1 5
                        4 1 1 0.000
                                                0.0001 1.75 1.66 PASSED
WALL N
         0.0001
0.0003
                                   1 0.000
2 0.000
                                                        6.10
0.36
                                                              5.77 PASSED
0.53 PASSED
WALL N
WALL N
          5 1 1 3 4 1
                                   2 0.000 0.0002
                                                        0.90 1.35 PASSED
WALL N
WALL N
         17 1 1 9 4 1 2 0.000 0.0002 3.03
                                                                4.59 PASSED
         3
5
                    3
WALL N
              1
                 1
                                        0.001
                                                0.0006
                                                         0.19
                                                                 0.27 PASSED
                1
                                                              0.30 PASSED
                                                0.0010
                                                        0.17
                                        0.001
WALL N
              1
                                    3
         17 1 1 6
                          4 1 3 0.001 0.0010
                                                        0.75 1.16 PASSED
WALL N
         0.0007
0.0026
                                                        0.17
0.08
                                                              0.24 PASSED
0.13 PASSED
WALL N
WALL N
                                       0.001 0.0011 0.66 1.00 PASSED
WALL N
Finished
          12 tests, with the following results:
  12 tests completed and passed residual checks.
   0 tests completed and failed residual checks.
   0 tests skipped because of illegal input values.
END OF TESTS.
```

The text in the table above reflects the *organization* of actual output that you will see.

Recall from Intel MPI Library and Intel Trace Analyzer and Collector discussions that the above results are dependent on factors such as the processor type, the memory configuration, competing processes, and the type of interconnection network between the nodes of the cluster. Therefore, the results will vary from one cluster configuration to another.

If you proceed to load the cdtlu.txt table above into a Microsoft Excel* spreadsheet, and build a chart to compare the Time in Seconds to Solve the System (SLV) and the Megaflop values, you might see something like the following (Figure 8.1):

Back to Table of Contents

8.1 Gathering Instrumentation Data and Analyzing the ScaLAPACK* Examples with the Intel[®] Trace Analyzer and Collector

In the chapter entitled Interoperability of Intel MPI Library with the Intel® Trace Analyzer and Collector, cursory explanations were provided in gathering trace data and opening various analyzer panels for viewing trace-file content. Analysis of the ScaLAPACK examples with Intel Trace Collector and Intel Trace Analyzer can also be done easily. This subsection will dwell further on the instrumentation and analysis process. The discussion will focus on how to alter the command-line options for the ScaLAPACK gmake command so that performance data collection will be possible. However, you will want to have plenty of disk storage available for collecting trace information on all of the examples because there are approximately 68 ScaLAPACK executables. To instrument the ScaLAPACK examples on an IA-32 cluster that is running Linux OS, you could use the following gmake command:

```
gmake libia32 mpi=intelmpi
LIBdir=/opt/intel/icsxe/2012.0.037/mkl/lib/ia32 INSLIB="-L${VT_LIB_DIR}
-lVT ${VT_ADD_LIBS}"
```

Finally, for the Intel® 64 architecture, the gmake command for gathering ScaLAPACK instrumentation data on Linux could possibly be:

```
gmake libintel64 mpi=intelmpi
LIBdir=/opt/intel/icsxe/2012.0.037/mkl/lib/intel64 INSLIB="-
L${VT_LIB_DIR} -lVT ${VT_ADD_LIBS}"
```

For all two command-line examples listed above, the make file variable INSLIB is used to specify the library path name and the libraries used for instrumentation by the Intel® Trace Collector. The variable name INSLIB is simply an acronym for instrumentation library.

Recall the instrumentation processes discussed in Chapter 6. The recommended amount of disk storage for collecting trace data on all of the ScaLAPACK test cases is about 5 gigabytes. For an executable such as

_results/_libintel64_intelmpi_intel_noopt_lp64/xzvec located in source/TESTING that has been instrumented with the Intel Trace Collector, a trace file called xzevc.stf will be generated. For the gmake commands above, the STF files will also be located in the sub-directory path source/TESTING and the summary reports for each ScaLAPACK executable will be placed under a sibling directory path to source called _results. Recalling the protocol that was discussed in the chapter for using Intel Trace Analyzer, you can proceed to analyze the content of xzevc.stf with the following shell command:

traceanalyzer xzevc.stf &

This command for invoking the Intel Trace Analyzer will cause the Event Timeline Chart and the Function Profile Chart (Figure 8.2) to be produced as described previously:

Figure 8.2 – Event Timeline Chart and the Function Profile Chart for the executable _results/_libintel64_intelmpi_intel_noopt_lp64/xzevc

By default, the ScaLAPACK makefile uses four MPI processes. If you wish to decrease or increase the number of MPI processes, you can adjust the MPIRUN makefile variable. An example for doing this on a system based on Intel® 64 architecture might be the following:

```
gmake libintel64 mpi=intelmpi
LIBdir=/opt/intel/icsxe/2012.0.037/mkl/lib/intel64 MPILIB="-
L${VT_LIB_DIR} -lVT ${VT_ADD_LIBS}" MPIRUN="mpiexec -n 6"
```

You should again realize that the contents of a trace file such as source/TESTING/xzevc.stf will vary from cluster configuration to cluster configuration due to factors such as the processor type, the memory configuration,

competing processes, and the type of interconnection network between the nodes of the cluster.

Figure 8.3 – The Message Profile Chart (lower right) for the executable _results/_libintel64_intelmpi_intel_noopt_lp64/xzevc

If you proceed to select **Charts->Message Profile**, you will generate the Message Profile Chart shown in Figure 8.3. Subsequently, if **Charts->Collective Operations Profile** is selected, then the chart shown in Figure 8.4 will be produced.

Figure 8.4 – Display of the Collective Operations Profile Chart (lower right) for _results/_libintel64_intelmpi_intel_noopt_lp64/xzevc

You can zoom in on a particular time interval for the Event Timeline Chart in Figure 8.4. Clicking on the left-most mouse button and panning across the desired time interval will cause the zoom in function. For example, Figure 8.5 shows zooming in to the time interval which spans from approximately 3.0 seconds to approximately 3.01 seconds.

NOTE: The number of message lines that are shown in black in Figure 8.5 is significantly reduced with respect to Figure 8.4.

🔀 Intel® Trace Analyzer					
<u>Eile Style Windows</u>					<u>H</u> elp
1: /shared/scratch/tmp/scalapack/source/TESTI	NG/xzevc_em64t_intel	mpi20_intel_noopt.stf			•
View Charts Navigate Advanced Layout					
3.000 s 3.001 s	3.003 a	004 s 3.005 s	3.006 s 3.00	3.008 s 17 s 3.009	3.01
					-
	MMMPI MPI M	PI IMPI IMPI IMMI	MMPI INNMINI <mark>MIMI</mark> NIN	IMPI MPI IIMPI MMI	MPI IMPI I
					$ \land h$
	\mathbf{N}				
P2 MUT JPI MUMPI MUMPI	IMPI MPI	MPI MPIMPIMPI MI	the TNH VIIV VIPLE MAN	MMFI MYMPI MFI	MPI, MP
P3 MM MNW PI MMPI MMPI	IMPLIME	T IMPLINIX MPL	INTELLING AND ACTEL		
P3	MP1 MP1 MP		Inder David And And		
	лон (менлие	т мет мориет			
P3 Mar IF PI LIMPI MMPI		al Time [s] (Sender by Rec	eiver)	Total Time [s] (Collective Opera	tion by Process)
P3 MAR PC PI LIMPI WMPI		al Time [s] (Sender by Rec	elver)	Total Time [s] (Collective Opera	tion by Process)
P3 MAR PC PI LMPI MMPI Flat Profile Load Balance Call Tree Ca Group All_Processes Name TSelf TSelf	Tota	al Time [s] (Sender by Rec	eiver)	Total Time [s] (Collective Opera	tion by Process)
P3 MAR PC PI LMPI MMPI Flat Profile Load Balance Call Tree Calls Group All_Processes Name V TSelf TSelf Group All_Processes	Tota	al Time [s] (Sender by Rec	eiver)	Total Time [s] (Collective Opera	tion by Process)
P3 I M as PC PI LIMPI MMPI Flat Profile Load Balance Call Tree Ca Group All_Processes ✓ Name ∨ TSelf TSelf B-Group All_Processes Group All_Processes	P0	al Time [s] (Sender by Reco P1 P2 P3 0.002 0.001 0.0	elver)	Total Time [5] (Collective Opera	tion by Process)
P3 MAR PCPI MMPI MMPI Flat Profile Load Balance Call Tree Ca Group All_Processes ✓ Name ✓ TSelf TSelf B-Group All_Processes Group Application 0.002 933 s Group MPI 0.038 295 s	P0	al Time [s] (Sender by Rec P1 P2 P3 0.002 0.001 0.0	elver)	Total Time [5] (Collective Opera F0 P1 F2 I_Bcast 0.002 0.002 0. I_Allreduce 0.003 0.004 0.	tion by Process)
P3 Mar. PC.PI UMPI MMPI Flat Profile Load Balance Call Tree Ca Group All_Processes ✓ Name ✓ TSelf TSelf Group All_Processes Group All_Processes Group All_Processes Group All_Processes	P0 P1 0.001	al Time [s] (Sender by Reco P1 P2 P3 0.002 0.001 0.0 0.001	eiver)	Total Time [s] (Collective Opera F0 F1 F2 I_Bcast 0.002 0.002 0. I_Allreduce 0.003 0.004 0.	tion by Process) 002 003 003 003
P3 MAR PCPI MMPI MMPI Flat Profile Load Balance Call Tree Ca Group All_Processes Name ∨ TSelf TSelf Group All_Processes Group All_Processes Group All_Processes Group All_Processes Group All_Processes	P0 P1 0.001	al Time [s] (Sender by Rec P1 P2 P3 0.002 0.001 0.0 0.001	elver)	Total Time [s] (Collective Opera	tion by Process) 002 003 005 006 006 007 007 007 007 007 007
P3 MAR PCPI MMPI MMPI Flat Profile Load Balance Call Tree Ca Group All_Processes Name ∨ TSelf TSelf Group All_Processes Group All_Processes Group All_Processes Group All_Processes Group All_Processes	P0 P0 P1 0.001	al Time [s] (Sender by Rec P1 P2 P3 0.002 0.001 0.0 0.001	eiver)	Total Time [s] (Collective Opera	tion by Process) 002 003 006 006 006 006 000 000 000
P3 IIIM IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	P0 P0 P1 0.001 P2	al Time [s] (Sender by Recc P1 P2 P3 0.002 0.001 0.0 0.001 0.0	eiver)	Total Time [s] (Collective Operative Control of the contro	tion by Process) 2 002 003 006 003 006 0003 006 0.003 0
P3 MAR PCPI LMPI MMPI	P0 P0 P0 P1 0.001 P2 0.001	al Time [s] (Sender by Rec P1 P2 P3 0.002 0.001 0.0 0.001 0.0	eiver)	Total Time [s] (Collective Operative Control of the contro	tion by Process) 002 003 005 006 006 000 000 000 000 000
P3 MAR PCPI LMPI MMPI Flat Profile Load Balance Call Tree Ca Group All_Processes Group All_Processes Group Application 0.002 933 s Group MPI 0.038 295 s	P0 P0 P1 0.001 P2 0.001	al Time [s] (Sender by Rec P1 P2 P3 0.002 0.001 0.0 0.001 0.001 0.001	eiver)	Total Time [s] (Collective Opera F0 F1 F2 I_Bcast 0.002 0.002 0. I_Allreduce 0.003 0.004 0. an 0.002 0.003 0.	tion by Process) 2 002 002 003 004 0.003 0.0

Figure 8.5 – Zooming in on the Event Timeline Chart for example __results/_libintel64_intelmpi_intel_noopt_lp64/xzevc

For Figure 8.5, the blue collective operation communication lines can be "drilleddown-to" by using the context menu as shown in Figure 8.6 to view the collective operation.

File Style Windows				- C A
1: /shared/scratch/tmp/scalapack/source/TEST	ING/vzevc em64t intelmr	i20 intel noont stf		
View Charts Navigate Advanced Lavout	internezovo_oniost_interne			
3.000 s 3.002 s	3.004	4 s 3.00	06 s 3	3.008 s 3.01
3.001 s	3.003 s	3.005 s	3.007 s	3.009 s
P1 VIPI TIMI MATMPI MIMPI M	afi Mimiti	Details on Function, Collect	tive INIMPI MIM	ipi <u>Mimipi Mpi Mi</u>
		Ungroup Group MPI		
P2 MIL API MPI MIME		PL Chart		MPI MPI MPI MPI MPI
		Close Chart	Ctrl+Shift+K	
	MPI MPI MPI		MIMPI	MPI IMPI IMPI IMP
4				
			.	
Flat Profile Load Balance Call Tree Cal	Total T	ime [s] (Sender by Receiver)	🛛 🔀 Total Time	[s] (Collective Operation by Process)
Flat Profile Load Balance Call Tree Call Group All_Processes	Total T	Time [s] (Sender by Receiver)	- X Total Time	[s] (Collective Operation by Process)
Flat Profile Load Balance Call Tree Call Group All_Processes I	PO P1	Time [s] (Sender by Receiver)	.002 267	[s] (Collective Operation by Process)
Flat Profile Load Balance Call Tree Call Group All_Processes Image: Call Tree Call Name TSelf TSelf Image: Coup Application 0.002 933 s	PO PI	P2 P3 P2 P3 P3<	1.002 267	[s] (Collective Operation by Process) F0 F1 F2 0.003 0.002 0.002 0.002
Flat Profile Load Balance Call Tree Call Group All_Processes ✓ ✓ Name ✓ TSelf TSelf terroup All_Processes ✓ 0.002 933 s Group Application 0.002 933 s Group MPI 0.038 295 s	P0 P1	F2 F3 0.002 0.001 0.001	1.002 267 1.002 092 1.001 916	[s] (Collective Operation by Process) PO P1 P2 0.003 0.002 0.002 0.002 0.002 0.002 0.003
Flat Profile Load Balance Call Tree Call Group All_Processes ✓ Name ✓ TSelf te-Group All_Processes ✓ Group All_Processes ✓	P0 P1	"ime [s] (Sender by Receiver) P2 P3 0.002 0.001 0.001	.002 267 .002 092 .001 916 .001 916 .001 9141 MPI_Allreduce	[s] (Collective Operation by Process) PO P1 P2 0.003 0.002 0.002 0.002 0.003 0.004 0.003 0.003
Flat Profile Load Balance Call Tree Call Group All_Processes Image: Comp All_Processes Image: Comp All_Processes Image: Comp All_Processes Group All_Processes Group All_Processes 0.002 933 s Image: Comp All_Processes Group All_Processes 0.038 295 s Image: Comp All_Processes Image: Comp All_Processes	P0 P1 0.001	F2 F3 0.002 0.001 0.001 0.001	.002 267 .002 092 .001 916 .001 565 .001 565 .001 565	[s] (Collective Operation by Process) PO P1 P2 0.002 0.002 0.002 0.003 0.004 0.003 0.003 0.004 0.003
Flat Profile Load Balance Call Tree Call Group All_Processes Image: Comp All_Processes Image: Comp All_Processes Image: Comp All_Processes Group All_Processes Group All_Processes 0.002 933 s Image: Comp All_Processes Group All_Processes Group All_Processes 0.038 295 s Image: Comp All_Processes	P0 P1 0,001	Ime [s] (Sender by Receiver) F2 F3 0.002 0.001 0.001	.002 267 .002 092 .001 916 .001 741 .001 389 .001 389 Sum	FO F1 F2 0.003 0.002 0.002 0.003
Flat Profile Load Balance Call Tree Call Group All_Processes Image: Comparison of the second s	F0 F1 0,001 F2 0,001	Ime [s] (Sender by Receiver) P2 P3 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	1.002 267 1.002 092 1.001 916 1.001 741 1.001 565 1.001 214 NPI_Allreduce Sum 1.001 214 Mean	F0 F1 F2 0.003 0.002 0.002 0.002 0.002 0.003 0.004 0.003 0.003 0.005 0.007 0.006 0.002 0.002 0.003 0.004 0.003
Flat Profile Load Balance Call Tree Call Group All_Processes Image: Comparison of the stress of the s	F0 F1 0,001 F2 0,001	Ime [s] (Sender by Receiver) P2 P3 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	1.002 267 1.002 092 1.001 916 1.001 741 1.001 565 1.001 214 1.001 214 1.001 653 1.001 238 1.001 653 1.001 653 1.001 653	F0 P1 P2 0.003
Flat Profile Load Balance Call Tree Call Group All_Processes Image: Comp All_Processes Image: Comp All_Processes Image: Comp All_Processes Group All_Processes Group All_Processes Image: Comp All_Processes Image: Comp All_Processes Group All_Processes Group All_Processes 0.002 933 s Image: Comp All_Processes Group All_Processes Group All_Processes 0.038 295 s Image: Comp All_Processes	F0 F1 0,001 F2 0,001	Ime [s] (Sender by Receiver) P2 0.002 0.001 0.001 0.001 0.001 0.001	.002 267 .002 092 .001 916 .001 741 .001 565 .001 214 .001 239 .001 234 MPI_Allreduce Sum .001 234 Mean .000 663	F0 F1 F2 0.003 0.002 0.002 0.002 0.003 0.003 0.004 0.003 0.003 0.005 0.007 0.006 0.002 0.002 0.003 0.003 0.003
Flat Profile Load Balance Call Tree Call Group All_Processes Image: Comp All_Processes Image: Comp All_Processes Group All_Processes Group All_Processes Image: Comp All_Processes Group All_Processes Group All_Processes Image: Comp All_Processes Group All_Processes Group All_Processes Image: Comp All_Processes Group MPI 0.038 295 s Image: Comp All_Processes 2.999 782, 3.010 089: 0.010 307 sec. All_Processes	P0 P1 0,001 P2 0,001 P2 0,001 P2 0,001 P2	Ime [s] (Sender by Receiver) P2 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	.002 267 .002 092 .001 916 .001 741 .001 565 .001 214 .001 234 .001 399 .001 214 .001 687 .000 687	[s] (Collective Operation by Process) PO P1 P2 0.002 0.002 0.002 0.003 0.004 0.003 0.005 0.007 0.006 0.002 0.003 0.003 0.002 0.002 0.003 0.004 0.002 0.002 0.003 0.004 0.002 0.002 0.002 0.002 0.002 0.002 0.003

Figure 8.6 – Context Menu Selection for starting the process of drilling down to what the particular collective operation was executing (e.g. MPI_Allreduce) within the executable _results/_libintel64_intelmpi_intel_noopt_lp64/xzevc

NOTE: If you would like to do a drill-down to actual source, the source files used to build the executables would have to be compiled with the -g option, and the Intel Trace Collector VT_PCTRACE environment variable would have to be set. For the ScaLAPACK gmake command, you might set the -g option with the following makefile variable:

OPTS="-00 -g"

Back to Table of Contents

8.2 Experimenting with the Cluster DFT Software

On Linux OS, in the directory path:

<directory-path-to-mkl>/examples

you will find a set of sub-directories that look something like:

./ cdftc/ fftw2x_cdft/ interval/ pdepoissonf/ versionquery/
/	cdftf/	fftw2xf/	java/	pdettc/	vmlc/
blas/	dftc/	fftw3xc/	lapack/	pdettf/	vmlf/
blas95/	dftf/	fftw3xf/	lapack95/	solver/	vslc/
cblas/	fftw2xc/	gmp/	pdepoissonc/	spblas/	vslf

The two sub-directories that will be discussed here are cdftc and cdftf. These two directories respectively contain C and Fortran programming language examples of the Cluster Discrete Fourier Transform (CDFT). To do experimentation with the contents of these two folders, a sequence of shell commands could be used to create instrumented executables and result information. For the C language version of the CDFT, the Bourne Shell or Korn Shell commands might look something like:

Intel Processor Architectur e	Command-line Sequence for Linux	Trace Results are Located In	Execution Results are Located In
IA-32	<pre>#!/bin/sh export CWD=\${PWD} export VT_LOGFILE_PREFIX=\${CWD}/cdftc_inst rm -rf \${VT_LOGFILE_PREFIX} mkdir \${VT_LOGFILE_PREFIX} export VT_PCTRACE=5 export VT_DETAILED_STATES=5 cd /usr/local/opt/intel/icsxe/2012.0.037/mkl/e xamples/cdftc gmake libia32 mpi=intel3 workdir=\${VT_LOGFILE_PREFIX} CS="mpiicc - t=log" RS="mpiexec -n 4" RES_DIR=\${VT_LOGFILE_PREFIX}</pre>	\${CWD}/cd ftc_inst	\${CWD}/cdftc_inst
Intel® 64	<pre>#!/bin/sh export CWD=\${PWD} export VT_LOGFILE_PREFIX=\${CWD}/cdftc_inst rm -rf \${VT_LOGFILE_PREFIX} mkdir \${VT_LOGFILE_PREFIX} export VT_PCTRACE=5 export VT_DETAILED_STATES=5 cd /usr/local/opt/intel/icsxe/2012.0.037/mkl/e xamples/cdftc gmake libintel64 mpi=intel3 workdir=\${VT_LOGFILE_PREFIX} CS="mpiicc - t=log" RS="mpiexec -n 4" RES_DIR=\${VT_LOGFILE_PREFIX}</pre>	<pre>\${CWD}/cd ftc_inst</pre>	\${CWD}/cdftc_inst

where <directory-path-to-mkl>/examples in the shell command-sequence above is:

/usr/local/opt/intel/icsxe/2012.0.037/mkl/examples

NOTE: The folder path above will vary depending on where the Intel Cluster Studio XE was installed on your system. The change directory command above (for example, cd ...) transfers the Bourne Shell or Korn Shell session to:

/usr/local/opt/intel/icsxe/2012.0.037/mkl/examples/cdftc

The gmake command for the target lib32 is one contiguous line that ends with CS="mpiicc -t=log". This command references the makefile variables libia32, mpi, workdir, CS, and RS. As mentioned above, the target for the gmake command is libia32. The other target of this type is libintel64. The target libintel64 is for Intel® 64 architecture. The makefile variable CS is set so that the resulting executable is linked against the logging versions of Intel MPI and the Intel Trace Collector. The RS makefile variable allows you to control the number of MPI processes. The default for RS is "mpiexec -n 2" when using Intel MPI Library. You can get complete information about this makefile by looking at its contents. There is also a help target built within the makefile, and therefore you can type:

gmake help

Assuming that CWD has been defined from above for the Fortran language version of the CDFT, the Bourne Shell or Korn Shell commands might look something like:

Intel Processor Architectur e	Command-line Sequence for Linux	Trace Results are Located In	Execution Results are Located In
IA-32	<pre>export VT_LOGFILE_PREFIX=\${CWD}/cdftf_inst rm -rf \${VT_LOGFILE_PREFIX} mkdir \${VT_LOGFILE_PREFIX} export VT_PCTRACE=5 export VT_DETAILED_STATES=5 cd /usr/local/opt/intel/icsxe/2012.0.037/mkl/e xamples/cdftf gmake libia32 mpi=intel3 workdir=\${VT_LOGFILE_PREFIX} CS="mpiifort - t=log -DMPI_KIND_=4" RS="mpiexec -n 4" RES_DIR=\${VT_LOGFILE_PREFIX}"</pre>	\${CWD}/cd ftf_inst	\${CWD}/cdftf_inst
Intel® 64	<pre>export VT_LOGFILE_PREFIX=\${CWD}/cdftf_inst rm -rf \${VT_LOGFILE_PREFIX} mkdir \${VT_LOGFILE_PREFIX} export VT_PCTRACE=5 export VT_DETAILED_STATES=5 cd /usr/local/opt/intel/icsxe/2012.0.037/mkl/e xamples/cdftf gmake libintel64 mpi=intel3 workdir=\${VT_LOGFILE_PREFIX} CS="mpiifort - t=log -DMPI_KIND_=4" RS="mpiexec -n 4"</pre>	\${CWD}/cd ftf_inst	\${CWD}/cdftf_inst

	RES_DIR=\${VT_LOGFILE_PREFIX}			
--	-------------------------------	--	--	--

If you consolidate the shell script commands for performing C and Fortran Cluster Discrete Fourier computation on a particular Intel processor architecture, say Intel® 64 architecture, the complete Bourne shell script content might look something like:

```
#!/bin/sh
export CWD=${PWD}
export VT_LOGFILE_PREFIX=${CWD}/cdftc_inst
rm -rf ${VT LOGFILE PREFIX}
mkdir ${VT_LOGFILE_PREFIX}
export VT_PCTRACE=5
export VT_DETAILED_STATES=5
cd /usr/local/opt/intel/icsxe/2012.0.037/mkl/examples/cdftc
gmake libintel64 mpi=intel3 workdir=${VT_LOGFILE_PREFIX} CS="mpiicc -
t=log" RS="mpiexec -n 4" RES_DIR=${VT_LOGFILE_PREFIX}
export VT_LOGFILE_PREFIX=${CWD}/cdftf_inst
rm -rf ${VT_LOGFILE_PREFIX}
mkdir ${VT_LOGFILE_PREFIX}
export VT_PCTRACE=5
export VT_DETAILED_STATES=5
cd /usr/local/opt/intel/icsxe/2012.0.037/mkl/examples/cdftf
gmake libintel64 mpi=intel3 workdir=${VT_LOGFILE_PREFIX} CS="mpiifort -
t=log -DMPI_KIND_=4" RS="mpiexec -n 4" RES_DIR=${VT_LOGFILE_PREFIX}
```

After executing the shell script above, the $f(wD)/cdftc_inst$ and $f(wD)/cdftf_inst$ folders should contain the respective executables and the output results. The executable and result contents of each folder path might look something like:

dm_complex_2d_double_ex1.exe
dm_complex_2d_double_ex2.exe
dm_complex_2d_single_ex1.exe
dm_complex_2d_single_ex2.exe

and

dm_complex_2d_double_ex1.res
dm_complex_2d_double_ex2.res
dm_complex_2d_single_ex1.res
dm_complex_2d_single_ex2.res

The files with the suffix .res are the output results. A partial listing for results file called dm_complex_2d_double_ex1.res might be something like:

Program is running on 4 processes DM_COMPLEX_2D_DOUBLE_EX1 Forward-Backward 2D complex transform for double precision data inplace Configuration parameters:

```
DFTI_FORWARD_DOMAIN = DFTI_COMPLEX
                 = DFTI_DOUBLE
DFTI_PRECISION
DFTI DIMENSION
                     = 2
DFTI_LENGTHS (MxN) = \{20, 12\}
DFTI_FORWARD_SCALE = 1.0
DFTI_BACKWARD_SCALE = 1.0/(m*n)
Compute DftiComputeForwardDM
Forward result X, 4 columns
Row 0:
( 1.000,
           0.000)(
                      1.000,
                                  0.000)(
                                           1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
    1.000,
                                                                1.000,
             0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                         0.000)
(
    1.000,
                        1.000,
                                                                         0.000)
             0.000)(
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
Row 1:
    1.000,
              0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
    1.000,
              0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
    1.000,
              0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
Row 2:
                        1.000,
                                                                1.000,
    1.000,
              0.000)(
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                         0.000)
 (
    1.000,
              0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
(
                        1.000,
    1.000,
              0.000)(
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
 (
Row 3:
    1.000.
              0.000)(
                        1.000.
                                  0.000)(
                                            1.000.
                                                                1.000.
                                                                         0.000)
                                                     0.000)(
(
    1.000,
              0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
    1.000,
              0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
 (
Row 4:
                        1.000,
                                  0.000)(
    1.000,
              0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
                        1.000,
    1.000,
              0.000)(
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
    1.000,
              0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
Row 5:
    1.000,
             0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
    1.000,
             0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
                        1.000,
    1.000,
             0.000)(
                                 0.000)(
                                            1.000,
                                                     0.000)(
                                                               1.000,
                                                                         0.000)
Row 6:
    1.000,
              0.000)(
                        1.000.
                                  0.000)(
                                            1.000.
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
    1.000,
                                                                1.000,
              0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                         0.000)
                        1.000,
             0.000)(
                                 0.000)(
                                            1.000,
                                                     0.000)(
                                                               1.000,
                                                                         0.000)
    1.000,
(
Row 7:
    1.000,
             0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
                        1.000,
    1.000,
             0.000)(
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
    1.000,
              0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
Row 8:
    1.000,
              0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
(
    1.000,
                        1.000,
                                                     0.000)(
                                                                1.000,
              0.000)(
                                  0.000)(
                                            1.000,
                                                                         0.000)
    1.000,
              0.000)(
                        1.000,
                                  0.000)(
                                            1.000,
                                                     0.000)(
                                                                1.000,
                                                                         0.000)
 (
```

Also, the setting of the environment variable VT_LOGFILE_PREFIX within the shell script results in the deposit of trace information into the directories cdftc_inst and cdftf_inst as demonstrated with a listing of the Structured Trace Format (STF) index files:

cdftc_inst/dm_complex_2d_double_ex1.exe.stf cdftc_inst/dm_complex_2d_double_ex2.exe.stf cdftc_inst/dm_complex_2d_single_ex1.exe.stf cdftc_inst/dm_complex_2d_single_ex2.exe.stf

cdftf_inst/dm_complex_2d_double_ex1.exe.stf cdftf_inst/dm_complex_2d_double_ex2.exe.stf cdftf_inst/dm_complex_2d_single_ex1.exe.stf cdftf_inst/dm_complex_2d_single_ex2.exe.stf

You can issue the following Intel Trace Analyzer shell command to initiate performance analysis on cdftc_inst/dm_complex_2d_double_ex1.exe.stf:

traceanalyzer ./cdftc_inst/dm_complex_2d_double_ex1.exe.stf &

Figure 8.7 shows the result of simultaneously displaying the Function Profile Chart and the Event Timeline Chart.

Intel Corporation Document Number: 325977-001EN 113

and

🔀 Intel® Trace Analyzer				
<u>E</u> ile <u>S</u> tyle <u>W</u> indows				<u>H</u> elp
1: /shared/scratch/tmp	/cdftc/cdftc_inst/dm_complex_2d	_double_ex1.exe.stf		▼ ▲ ×
<u>V</u> iew <u>C</u> harts <u>N</u> avigate	Advanced Layout			
0.000 s 0.010 0.005 s	0.020 s 0.02 0.015 s 0.025 s	}0 s 0.040 s 0.035 s	0.050 s 0.045 s 0.	0.060 s
P1 AMArApplication	Application		Ap	<mark>77# (MENNA)/ IN</mark> ANN ANN
P2 / Application	Applicatior			
P3 AMA Application	Application		Appl	MIMINI V
<				
Flat Profile Load Bala	ice Call Tree Call Graph			
Group All_Processes	Δ			
Name 🗸	TSelf TSelf TTota	al #Calls	TSelf /Call	
Group All_Processes	0.168 170 s 0.24 0.077 829 s 0.07	5 999 s 4 7 829 s 434	0.042 042 s 0.000 179 s	
0.0321025 s				

Figure 8.7 – The Event Timeline Chart and the Function Profile Chart for a Cluster Discrete Fourier Transform Example

Back to Table of Contents

8.3 Experimenting with the High Performance Linpack Benchmark*

On Linux OS, in the directory path:

<directory-path-to-mkl>/benchmarks/mp_linpack

you will find a set of files and subdirectories that look something like the following:

./	BUGS*	include/	Makefile*	Make.top*	setup/	TUNING*
/	COPYRIGHT*	INSTALL*	Make.ia32*	man/	src/	www/
bin/	HISTORY*	lib/	Make.intel64*	nodeperf.c*	testing/	
bin_intel/	HPL.build.log.220120040613*	lib_hybrid/	makes/	README*	TODO*	

If you make a scratch directory, say:

test_mp_linpack

on a file share for your cluster, and copy the contents of *<directory-path-to-mkl>/benchmarks/mp_linpack* into that scratch directory you can then proceed to build a High Performance Linpack executable. To create an executable for Intel® 64 architecture, you might issue the following gmake command:

gmake arch=intel64 LAdir=/usr/local/opt/intel/icsxe/2012.0.037/mkl/lib/intel64 LAinc=/usr/local/opt/intel/icsxe/2012.0.037/mkl/include

where the command sequence above is one continuous line. The macros LAdir and LAinc describe the directory path to the Intel® 64 Math Kernel library and the Intel® MKL include directory, respectively. The partial directory path /usr/local/opt/intel/icsxe/2012.0.037 for the macros LAdir and LAinc should be considered an *example* of where an Intel® Math Kernel Library might reside.

NOTE: On your system, the path and a version number value such as 2012.0.037 may vary depending on *your* software release.

The High Performance Linpack* executable for the gmake command above will be placed into .../test_mp_linpack/bin/intel64 and will be called xhpl. The table below summarizes makefile and associated mpiexec commands that might be used to create xhpl executables for IA-32, and Intel® 64 architectures, respectively. The command-line syntax in the table is that of Bourne* Shell or Korn* Shell. The mpiexec commands use 4 MPI processes to do the domain decomposition.

Intel Processor	Command-line Sequence for Linux	Executa ble is	Execution Results are Located In
Architectur		Located	
е		In	
IA-32	<pre>#!/bin/sh export CWD=\${PWD} gmake clean_arch_all arch=ia32 gmake arch=ia32 LAdir=/usr/local/opt/intel/icsxe/2012.0.037 /mkl/lib/ia32 LAing=/usr/local/opt/intel/icsxe/2012.0.037</pre>	\${CWD}/bi n/ia32	\${CWD}/bin/ia32
	<pre>/mkl/include cd \${CWD}/bin/ia32 mpiexec -n 4 ./xhpl > results.ia32.out</pre>		
Intel® 64	<pre>#!/bin/sh export CWD=\${PWD} gmake clean_arch_all arch=intel64 gmake arch=intel64 LAdir=/usr/local/opt/intel/icsxe/2012.0.037 /mkl/lib/intel64 LAinc=/usr/local/opt/intel/icsxe/2012.0.037 /mkl/include cd \${CWD}/bin/intel64 mpiexec -n 4 ./xhpl > results.em64t.out</pre>	\${CWD}/bi n/intel64	\${CWD}/bin/intel64

The output results *might* look something like the following for Intel® 64 architecture:

_____ HPLinpack 2.0 -- High-Performance Linpack benchmark -- September 10, 2008 Written by A. Petitet and R. Clint Whaley, Innovative Computing Laboratory, UTK Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK Modified by Julien Langou, University of Colorado Denver An explanation of the input/output parameters follows: T/V : Wall time / encoded variant. NB : The partitioning blocking for
 P : The number of process rows.
 Q : The number of process column : The order of the coefficient matrix A. : The partitioning blocking factor. : The number of process columns. Time : Time in seconds to solve the linear system. Gflops : Rate of execution for solving the linear system. The following parameter values will be used: 1000 Ν : NB : 112 120 PMAP : Row-major process mapping P: 1 2 1 Q: 1 2 4 4 1 PFACT : Left NBMIN : 4 NDIV : 2 2 RFACT : Crout

BCAST DEPTH SWAP L1 U EQUIL ALIGN	:	lring Mix (tl no-tran no-tran 8 doub	g hreshol hsposed hsposed le prec	d = 25 form form ision	words			
							•••	
====== T/V			====== N	===== NB		Q	Time	Gflops
WR00C21	L2		1000	120	4	1	0.35	1.894e+00
Ax-b ======	_	_oo/(ep	s*(A ======	_00* =====	x _o	p+ b .	_oo)*N)= 0.0052671	PASSED
Finished 16 tests with the following results: 16 tests completed and passed residual checks, 0 tests completed and failed residual checks, 0 tests skipped because of illegal input values.								
End of ======	Те ===	ests.						

The file <*directory-path-to-mkl>/doc/mkl_documentation.htm* contains a landing page linking various documentation files associated with Intel MKL 10.3 Update 6. To make inquiries about Intel Math Kernel Library 10.3 Update 6, visit the URL: http://premier.intel.com.

9. Using the Intel® MPI Benchmarks

The Intel MPI Benchmarks have been ported to Linux* OS. The directory structure for the Intel® MPI Benchmarks 3.2.3 looks something like the following where the parenthesized text contains descriptive information:

- ./doc (ReadMe_IMB.txt; IMB_Users_Guide.pdf, the methodology description)
- ./src (program source code and Makefiles)
- ./license (Source license agreement, trademark and use license agreement)
- ./versions_news (version history and news)
- ./WINDOWS (Microsoft* Visual Studio* projects)

The WINDOWS folder as noted above contains Microsoft* Visual Studio* 2005 and 2008 project folders which allow you to use a pre-existing ".vcproj" project file in conjunction with Microsoft* Visual Studio* to build and run the associated Intel® MPI Benchmark application. This is not relevant to Linux* OS.

If you type the command gmake within the src subdirectory, then you will get general help information that looks something like the following:

IMB_3.2 does not have a default Makefile any more. This Makefile can be used to

gmake clean

For installing, please use:

gmake -f make_ict

to install the Intel(r) Cluster Tools (ict) version. When an Intel(r) MPI Library install and mpiicc path exists, this should work immediately.

Alternatively, use

gmake -f make_mpich

to install an mpich or similar version; for this, you normally have to edit at least the MPI_HOME variable provided in make_mpich

To clean up the directory structure, in the directory src, type:

gmake clean

To compile the Intel MPI Benchmarks with the Intel Cluster Tools, type the command:

```
gmake -f make_ict
```

The three executables that will be created with the all target are:

IMB-EXT IMB-IO IMB-MPI1

Assuming that you have a four node cluster, and the Bourne Shell is being used type the commands:

mpiexec -n 4 IMB-EXT > IMB-EXT.report 2>&1
mpiexec -n 4 IMB-IO > IMB-IO.report 2>&1
mpiexec -n 4 IMB-MPI1 > IMB-MPI1.report 2>&1

Similarly, if C Shell is the command-line interface, type the commands:

mpiexec -n 4 IMB-EXT >&! IMB-EXT.report
mpiexec -n 4 IMB-IO >&! IMB-IO.report
mpiexec -n 4 IMB-MPI1 >&! IMB-MPI1.report

10. Uninstalling the Intel® Cluster Studio XE on Linux* OS

To uninstall the Intel Cluster Studio XE from a Linux OS, you can use a shell script called uninstall.sh. This script can be found in folder path:

<Path-to-Intel-Cluster-Studio-XE>/uninstall.sh

An example folder might be:

/usr/local/opt/intel/icsxe/2012.0.037/uninstall.sh

When this uninstall script is invoked, it will prompt you for that location of the machines.LINUX file.

The uninstall script has command-line options. Type a shell command referencing uninstall.sh such as:

```
uninstall.sh --help | less
```

You will see a list of options that look something like:

NAME

```
uninstall.sh - Uninstall Intel(R) Cluster Studio XE 2012 for Linux*.
```

SYNOPSIS uninstall.sh [options]

Copyright(C) 1999-2011, Intel Corporation. All Rights Reserved.

11. Hardware Recommendations for Installation on Linux* OS

Processor System Requirements

Intel® Pentium® 4 processor, or Intel® Xeon® processor, or Intel® Core™2 Duo processor (example of Intel® 64 architecture)

NOTE: It is assumed that the processors listed above are configured into homogeneous clusters.

Disk-Space Requirements

20 GBs of disk space (minimum)

NOTE: During the installation process, the installer may need approximately 4 gigabytes of temporary disk storage to manage the intermediate installation files.

Operating System Requirements for Linux* OS

OS	IA-32	Intel® 64 A	rchitecture
Distributions	Architecture	32-Bit Applications	64-Bit Applications
Intel® Cluster Ready ²	N/A	N/A	S
Red Hat Enterprise Linux* 5.0	S	S	S
Red Hat Enterprise Linux* 6.0	S	S	S
SUSE Linux Enterprise Server* 10	S	S	S
SUSE Linux Enterprise Server* 11	S	S	S

S = Supported

² Intel® Cluster Ready* is an applications platform architecture standard for Linux* clusters. Convey to your users the Linux* platform needed for your MPI application with:

This application has been verified to run correctly on Linux* clusters which are conforming to the Intel® Cluster Ready platform architecture. Each Intel® Cluster Ready system is shipped and tested with a diagnostic tool: Intel® Cluster Checker. Intel® Cluster Checker is used to validate operability and compliance, as well as overall system health. On an Intel® Cluster Ready system, start with these commands to easily find out about diagnostic logs:

- \$. /opt/intel/clck/<version>/clckvars.sh
- \$ cluster-check -report

For more information on Intel® Cluster Ready, and on the alliance of partner vendors, please visit <u>http://www.intel.com/go/cluster</u>.

Memory Requirements

2 GB of RAM (minimum)

12. System Administrator Checklist for Linux * OS

Intel license keys should be place in a common repository for access by the software components of the Intel Cluster Studio XE. An example license directory path might be:

/opt/intel/licenses

13. User Checklist for Linux* OS

1. The Intel® Debugger graphical environment is a Java* application and requires a Java Runtime Environment* (JRE*) to execute. The debugger will run with a version 5.0 (also called 1.5) JRE.

Install the JRE according to the JRE provider's instructions.

Finally you need to export the path to the JRE as follows:

```
export PATH=<path_to_JRE_bin_DIR>:$PATH export
```

 Configure the environment variables. For the ~/.bashrc file, an example of setting environment variables and sourcing shell scripts might be the following for Intel® 64 architecture:

export INTEL_LICENSE_FILE=/opt/intel/licenses
. /opt/intel/icsxe/2012.0.037/ictvars.sh

Alternatively, for ~/.cshrc the syntax might be something like:

setenv INTEL_LICENSE_FILE /opt/intel/licenses
source /opt/intel/icsxe/2012.0.037/ictvars.csh

3. For Bourne* Shell on Linux* OS, once the Intel® Cluster Studio XE environment variables referenced within "ictvars.sh" file have been sourced via a .bashrc file, users for a given Bourne* Shell login session can simply type:

. ictvars.sh ia32

for creating IA-32 executables. Alternatively, to restore the default Intel® Cluster Studio XE environment variable settings so as to build executables with Intel® 64 address extensions, type:

. ictvars.sh

within the Bourne* Shell login session.

NOTE: The full path to ictvars.sh can be omitted once it has been sourced in the .bashrc file.

For a C Shell login session on Linux* OS, IA-32 executables can be created with a login session command such as:

source /opt/intel/icsxe/2012.0.037/ictvars.csh ia32

Within a C Shell login session, to restore the default Intel® Cluster Studio XE environment variable settings so as to build executables with Intel® 64 address extensions, type:

source /opt/intel/icsxe/2012.0.037/ictvars.csh

4. When using the Intel Debugger (IDB) with Intel MPI Library, you also want to create or update the ~/.rhosts file with the names of the nodes of the cluster. The ~/.rhosts file should have node names that use the following general syntax:

<hostname as echoed by the shell command hostname> <your username>

The permission bit settings of ~/.rhosts should be set to 600 using the chmod command. The shell command for doing this might be:

chmod 600 ~/.rhosts

14. Using the Compiler Switch -tcollect

The Intel® C++ and Intel® Fortran Compilers on Linux OS have the command-line switch called -tcollect which allows functions and procedures to be instrumented during compilation with Intel® Trace Collector calls. This compiler command-line switch accepts an optional argument to specify the Intel® Trace Collector library to link with.

Library Selection	Meaning	How to Request
libVT.a	Default library	-tcollect
libVTcs.a	Client-server trace collection library	-tcollect=VTcs
libVTfs.a	Fail-safe trace collection library	-tcollect=Vtfs

Recall once again that in the test_intel_mpi folder for Intel MPI Library, there are four source files called:

test.c test.cpp test.f test.f90

To build executables with the -tcollect compiler option for the Intel Compilers, one might use the following compilation and link commands:

mpiicc test.c -tcollect -g -o testc_tcollect
mpiicpc test.cpp -g -tcollect -o testcpp_tcollect
mpiifort test.f -tcollect -g -o testf_tcollect
mpiifort test.f90 -tcollect -g -o testf90_tcollect

The names of the MPI executables for the above command-lines should be:

testc_tcollect
testcpp_tcollect
testf_tcollect
testf90_tcollect

To make a comparison with the Intel Trace Collector STF files:

testc.stf testcpp.stf testf.stf testf90.stf

within the directory test_inst, use the following mpiexec commands:

mpiexec -n 4 -env VT_LOGFILE_PREFIX test_inst testc_tcollect mpiexec -n 4 -env VT_LOGFILE_PREFIX test_inst testcpp_tcollect mpiexec -n 4 -env VT_LOGFILE_PREFIX test_inst testf_tcollect mpiexec -n 4 -env VT_LOGFILE_PREFIX test_inst testf90_tcollect

The corresponding STF data will be placed into the folder test_inst. To do a comparison between the STF data in testcpp.stf and testcpp_tcollect.stf the following traceanalyzer command can be launched from a Linux command-line panel within the folder test_intel_mpi:

traceanalyzer

Figure 14.1 shows the base panel for the Intel Trace Analyzer as a result of invoking the command above from a Linux panel.

👸 Ар	plicati	ons Actions 🏠 📃			7:38 PM	V .c
			Intel® '	Trace Analyzer		_ & ×
<u>F</u> ile	<u>S</u> tyle	Windows				<u>H</u> elp F1
				Intel® Trace Analyzer		

Figure 14.1 – Base panel for the Intel Trace Analyzer when invoking a Linux Shell Command: traceanalyzer without any arguments

If you select the menu path File->Open and click on the test_inst folder, the following panel will appear:

👸 Applications Actions 🏠 🛄	7:39 PM 🛒 📧
Intel® Trace Analyzer	_ 🔁 🗙
<u>F</u> ile <u>S</u> tyle <u>W</u> indows	<u>H</u> elp F1
Open a Tracefile Look n:/shared/scratch/test_intel_mpi/test_inst/	
Intel® Trace Analyzer	

Figure 14.2 – Open a Tracefile Rendering for the test_inst Folder where testcpp.stf has been Highlighted

Selecting testcpp.stf will generate a Flat Profile panel within the Intel Trace Analyzer session that might look something like the following.

🐮 Applications Actions 🏠 🛄					7:40 PM	V .e
Intel® Trace Analy	yzer - [1: /sł	hared/scratc	h/test_intel_mp	pi/test_inst/testcpp.stf]		_ & X
<u>Eile S</u> tyle <u>W</u> indows					<u>H</u> elp F1	T
<u>V</u> iew <u>C</u> harts <u>N</u> avigate <u>A</u> dvanced <u>L</u> ayout						
Flat Profile Load Balance Call Tree Call Graph						
Group All_Processes						
Name 🗸 TSelf TSelf	TTotal	#Calls	TSelf /Call			
Group All_Processes	44.491e-3 s 60.2508e-3 s	40 4	1.11227e-3 s			
0.000 000, 0.044 754: 0.044 754 sec.		All_Processe	es Trace Analyzer	Major Function Groups	Ta	ag Filter

Figure 14.3 – Flat Panel Display for test_inst\testcpp.stf

For the Flat Panel Display, if you select File->Compare the following sub-panel will appear.

🐮 Applications Actions 🏠 🛄	7:42 PM	V 📧
Intel® Trace Analyzer - [1: /shared/scratch/test_intel_mpi/test_inst/testcpp.stf]		- 9 X
Eile Style Windows	<u>H</u> elp F1	<u>-</u>
<u>V</u> iew <u>C</u> harts <u>N</u> avigate <u>A</u> dvanced <u>L</u> ayout		
Flat Profile Load Balance Call Tree Call Graph		
Group All_Processes		
Name 🗸 TSelf TSelf TTotal #Calls TSelf /Call		
De-Group All_Processes Group MPI 44.491e-3 s 40 1.11227e-3 s Group Application 15.7598e-3 s 60.2508e-3 s 4 3.93995e-3 s		
Intel® Trace Analyzer	×	
Please choose the View to compare to: Views available 1: /shared/scratch/test_intel_mpi/test_inst/testcpp.stf		
Open another File		
	cel //	
0.000 000, 0.044 754: 0.044 754 sec. All_Processes Major Function Groups	Ta	ag Filter
Intel® Trace Analyzer - [1: /shared/scratch/test_intel_mpi/t		

Figure 14.4 – Sub-panel Display for Adding a Comparison STF File

Click on the **Open another file** button and select testcpp_tcollect.stf and then proceed to push on the **Open** button with your mouse.

CApplications Actions 🏠 🛄 7:43 PM	V E
Intel® Trace Analyzer - [1: /shared/scratch/test_intel_mpi/test_inst/testcpp.stf]	_ 9 X
Eile Style Windows	<u></u>
<u>V</u> iew <u>C</u> harts <u>N</u> avigate <u>A</u> dvanced <u>L</u> ayout	
Flat Profile Load Balance Call Tree Call Graph	
Group All_Processes	
Name 🗸 TSelf TSelf TTotal #Calls TSelf /Call	
b - Group All_Processes G roup MPI 4 4.491e-3 s G roup Application 1 5.7598e-3 s	
Intel® Trace Analyzer	
Please choose the View to compare to: Views available Views available 1: /shared/scratch/test_intel_mpi/test_inst/testcpp.stf 2: /shared/scratch/test_intel_mpi/test_inst/testcpp_tcollect.stf	
Open another File	
OK Cancel	
0.000 000, 0.044 754: 0.044 754 sec. All_Processes Major Function Groups Ta	ag Filter
Intel® Trace Analyzer - [1: /shared/scratch/test_intel_mpi/tv	

Figure 14.5 – Sub-panel Activating the Second STF File for Comparison

Click on the **OK** button in Figure 14.5 and the comparison display in Figure 14.6 will appear. In Figure 14.6, the timeline display for testcpp_tcollect.stf (for example, the second timeline) is longer than that of the top timeline display (testcpp.stf).

CApplications	s Actions										7:45 PM	V =
Intel® T	race Anal	yzer - [3: Cor	npare /shared	/scratch/te	st_intel_	mpi/test_i	nst/testcpp	o.stf (A) wi	th /share	ad/scratch/t	est_intel	_ • ×
<u>F</u> ile <u>S</u> tyle	Windows										Help F1	<u></u>
View <u>C</u> harts	Navigate /	Advanced Layou	t C <u>o</u> mparison									
A: /shared/scratch	h/test_intel_m	pi/test_inst/testcpp	.stf									
B: /shared/scratch 0.000 s	i/test_intel_mp	0.010 s	_tcollect.stf	0.	020 s		0.0	30 s		0.04	0 s	
P0 AnMPI	0.005 s		0.015 s			0.025 s			0.035 s		- MPI	
												-
P1 Ap Applicant	on a											
P2 AppApplicati	ion <mark>b</mark>					_						
P3 ApjApplicati	on 🔒											-
0.000 #		0.010 c		0.020			0.030 <			0.040 e		
0.000 5	0.005 s	0.010 5	0.015 s	0.01	\$	0.025 s	0.050	0.0	J\$5 s	0.040 5	0.04	5 5
P0 ApMPI	M	PI										—
P1 AppApplicat	ion 🦾											
P2 AprApplicat	tion 🕌											
P3 App Applicat	tion 🔒											
A A												
Slot Brofile	ad Balanca											
Crown All	Dau Barance	Can free										
	_Processes		TTota	LaCi		TSolf /Call	[
Group All_P	rocesses		11010	****	dis	Toelivean						
- Group M	IPI	1.031	1	1.031	1.000		1.031					
Group A	pplication	1.224		1.081	34.000		0.036					
A: 0.0137526 s												
()					[]Intel @	Trace Ana	alyzer - [3: Co	ompare /sh	ared/scrat	.ch/test_ir	2	

Figure 14.6 - Comparison of testcpp.stf and testcpp_tcollect.stf

At the bottom and towards the right of this panel there are two labels with the same name, namely, **Major Function Groups**. Click on the top label with this name, and a sub-panel will appear with the following information:

👸 Applications Actions 🏠 🛄	7:47	PM 🛒 📧
Intel® Trace Analyzer - [3: Compa	re /shared/scratch/test_intel_mpi/test_inst/testcpp.stf (A) with /shared/scratch/test_in	tel 🔁 🗙
<u>F</u> ile <u>S</u> tyle <u>W</u> indows	Help	F1 V
<u>V</u> iew <u>C</u> harts <u>N</u> avigate <u>A</u> dvanced <u>L</u> ayout (Comparison	
A: /shared/scratch/test_intel_mpi/test_inst/testcpp.stf B: /shared/scratch/test_intel_mpi/test_inst/testcpp_tco	niect stř	
0.000 s 0.005 s	0.020 s 0.030 s 0.040 s 0.040 s	A
PO <mark>Ap</mark> MPI MPI	MF	<u> </u>
P1 ApApplication	Function Group Editor for file A X	
P2 AppApplication	File A:/shared/scratch/test_intel_mpi/test_inst/testcpp.stf	
P3 AniApplication	 View: 3: Compare / shared/ scratch/ test_intel_mpi/ test_inst/ testcpp.stf (A) with / shared/ scratch/ test intel_mpi/ test inst/ testcop_tcollect stf (B) 	
	Name Depth Children Id	
0.000 s 0.005 s	b-/	0.045 s
PO <mark>Ap</mark> MPI MPI	GMPI 1 62147403040	
P1 AppApplication A	_ 1 12147487039 □ □ □ □ □ □ □ 12147487039 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
P2 AprApplication		
P3 App Application		
$\overline{\prec}$		
Flat Profile Load Balance Call Tree		
Group All Processes		
B/A ∇ TSelf TSelf	Apply chosen appreciation to other File (P)-	
Group All_Processes	Never.	
Group Application 1.224	OK Cancel Apply	
A: 0.00890422 \$		
(Intel® Trace Analyzer - [3: Compare /shared/scratch/test_ir	

Figure 14.7 – "Function Group Editor for file A" Display (i.e, for file testcpp.stf)

Highlight the **All Functions** tree entry and press the **Apply** but in the low right corner of this panel. Then click on the **OK** button. Repeat this process for the second **Major Function Groups** label at the bottom of the main **Trace Analyzer** panel. You should now see a panel rendering that looks something like:

🐮 Applications Actions 🏠 🛄 8:44	4 PM 🛛	X E
Intel® Trace Analyzer - [4: Compare /shared/scratch/test_intel_mpi/test_inst/testcpp.stf (A) with /shared/scratch/test_i	ntel_	- 🗗 X
Eile Style Windows	p F1	<u> </u>
⊻iew <u>C</u> harts <u>N</u> avigate <u>A</u> dvanced <u>L</u> ayout Comparison		
A: /shared/scratch/test_intel_mpi/test_inst/testcpp.stf B: /shared/scratch/test_intel_mpi/test_inst/testcpp.stf		
0.000 s 0.010 s 0.010 s 0.020 s 0.030 s 0.040 s 0.040 s	_	A
PO USIMPI_Recv MPI_Recv N	1PI_Rec	-
P1 UsiUser_Code		
P2 UseUser_Code A		
P3 UseUser_Code		H
0.000 s 0.010 s 0.020 s 0.030 s 0.040 s 0.040 s 0.025 s 0.035 s 0.035 s	0.045	s [4
P0 maMPI_Recv MPI_Recv		-
P1 maimain		
P2 maimain		
P3 mairmain		
	_	
Elat Profile Load Balance Call Tree		
Group All Processes		
B/A \(\bar{\text{V}}\) TSelf TSelf TTotal #Calls TSelf /Call		
D-Group All_Processes		-11
A unmapped; _ZNK3MPI4Comm8Get_rankEv B only B only B only B only A unmapped; ZN3MPI8DatatypeC1Ei B only B only B only	B only B only	
A unmapped; _ZN3MPI8DatatypeD1Ev B only B only B only	B only	- 11
A unmapped; _2N3MPI8DatatypeC9Ei B only B	B only B only	- 11
A unmapped; _ZNK3MPI4Comm8Get_sizeEv B only B only B only	B only	Y
0.000 000, 0.044 754: 0.044 754 All_Processes All Functions	Tag	3 Filter
0.000 000, 0.046 554: 0.046 554 All_Processes All Functions	Тар	g Filter
Intel® Trace Analyzer - [4: Compare /shared/scratch/test_ir		

Figure 14.8 – Comparison of STF Files testcpp.stf and testcpp_tcollect.stf after making the All Functions Selection

At the top of the display panel, if you make the menu selection Charts->Function Profile you will be able to see a function profile comparison (lower middle and lower right) for the two executables:

🗑 Applications Actions		8:51 PM 🛒 🖭
Intel® Trace Analyzer - [4: Compare /s	nared/scratch/test_intel_mpi/test_inst/testcpp.stf (A	A) with /shared/scratch/test_intel_ 🗕 🗗 🗙
<u>File</u> <u>S</u> tyle <u>W</u> indows		Help F1 💌
<u>View Charts Navigate Advanced Layout Compa</u>	ison	
A: /shared/scratch/test_intel_mpi/test_inst/testcpp.stf B: /shared/scratch/test_intel_mpi/test_inst/testcpp_stf		
0.000 s 0.010 s 0.010 s	0.020 s 0.030 s	0.035 s
P0 USIMPI_Recv MPI_Recv		MPI_Recy N
P1 UstUser_Code		
P2 UseUser_Code		
P3 UseUser_Code		H
0.000 s 0.005 s 0.010 s 0.	0.020 s 0.030 s	0.040 s 0.035 s 0.045 s
P0 maMPI_Recv MPI_Recv		
P1 mairmain		
P2 maimain		
1		
Elat Profile	Elat Profile	t Profile Load Balance Call Tree Call Gr
B/A V	Name V TSelf TSe A	ame ∇
Group All_Processes	B-Group All_Processes	-MPI_Comm_rank
 A unmapped; _ZNK3MPI4Comm8Get_rankEv A unmapped; _ZN3MPI8DatatypeC1Ei 	MPI_Recv 43.561e-3 s MPI_Get_processor_name 25e-6 s	-main -MPI_Comm_size
-A unmapped; _ZN3MPI8DatatypeD1Ev	-User_Code 15.7598e-3 s	ZNK3MPI4Comm4SendEPKviRKNS_8Dataty
 A unmapped; _2N3MPI8DatatypeC9E1 A unmapped; _2NK3MPI4Comm4RecvEPviRK 	– MPI_Comm_rank 14e-6 s – MPI_Comm_size 18e-6 s	ZNK3MPI4Commodel_sizeEv
	[/]	
A: 0.00741241 s		
()	Intel® Trace Analyzer - [4: Compare	e /shared/scratch/test_ir

Figure 14.9 – Function Profile Sub-panels in the Lower Middle and Lower Right Sections of the Display for testcpp.stf and testcpp_tcollect.stf

- **NOTE:** The lower right panel (testcpp_tcollect.stf) has much more function profiling information than the lower middle panel (testcpp.stf). This is the result of using the -tcollect switch during the compilation process. You can proceed to do similar analysis with:
 - 1) testc.stf and testc_tcollect.stf
 - 2) testf.stf and testf_tcollect.stf
 - 3) testf90.stf and testf90_tcollect.stf

15. Using Co-Array Fortran

The Intel® Fortran Compiler XE, which is included as part of Intel® Cluster Studio XE, supports parallel programming using co-array semantics. These co-array semantics are defined by the Fortran 2008 Standard. You must specify the -coarray compiler option to enable use of co-array syntax. The possible configurations for using the -coarray compilation option are:

-coarray | -coarray=shared | -coarray=distributed

By default, when a co-array Fortran application is compiled with Intel® Fortran Compiler XE, the compiler creates as many images as there are processor cores on the host platform where the compilation takes place. The compilation command-line settings -coarray and -coarray=shared have the same semantic meaning.

No special procedure is necessary to run a program that uses co-arrays. You can simply run the executable file. The underlying parallelization implementation is Intel® MPI Library. Installation of the compiler automatically installs the necessary Intel® MPI run-time libraries. The use of co-array applications with any other MPI implementation, or with OpenMP*, is not supported at this time.

There are two methodologies for controlling the number if images that are created for a co-array Fortran executable.

By default, the number of images created is equal to the number of execution units on the current system. You can override that by specifying the option -coarray-numimages=<n> on the ifort command that compiles the main program. <n> is a positive integer. You can also specify the number of images through an environment variable called FOR_COARRAY_NUM_IMAGES. Setting this environment variable will control the number of images that the executable will spawn at run-time.

To access a co-array Fortran example for Linux OS click on the following Co-array Fortran path where Intel® Cluster Studio XE is installed. This path points to a tar/Zip package that has a co-array Fortran example. Copy this tar package to a scratch directory and untar it into the scratch folder. After completing the untar step, you should see a folder called "coarray_samples". Within this sub-directory, you should find a Fortran source file called hello_image.f90 which has contents which look something like the following:

program hello_image

```
end program hello_image
```

To build an executable for hello_image.f90, you can simply type something like:

ifort -coarray hello_image.f90 -o hello_image.exe

The executable that is created from the command above is called hello_image.exe and it can be executed by typing the command:

```
./hello_image.exe
```

The resulting output might look something like the following:

Hello from	image	1	out	of	4	total	images
Hello from	image	2	out	of	4	total	images
Hello from	image	3	out	of	4	total	images
Hello from	image	4	out	of	4	total	images

The *exact* results that you observe on your system will be a function of your processor architecture, OS configuration, etc.

Back to Table of Contents

15.1 Running a Co-array Fortran Example on a Distributed System

Suppose that you have a four node cluster that you wish to run the hello_image.f90 application on. So as to *verify* that the corresponding executable is running on each of the four nodes, you can augment the original source so that it looks something like the following:

program hello_image

```
end program hello_image
```

For the above source, the Fortran module IFPORT has been added so that the function called hostnam can be used to extract the hostname from each of the nodes for which the co-array Fortran application is running on. The hostname variable is included in the write statement contents above.

Here is a quick recipe for compiling and executing the modified co-array Fortran example on Linux*-based distributed system.

 Issue the command mpdtrace to see if there are any multipurpose daemons running on your cluster. Let us assume that this is a four node cluster where the nodes are respectively called clusternode1, clusternode2, clusternode3, and clusternode4. The command for verifying the presence of the multipurpose daemons should look something like the following:

mpdtrace

If these daemons are in existence, you should see a list of compute nodes. In our case, the list would be:

```
clusternode1
clusternode2
clusternode3
clusternode4
```

If instead, you see a message that looks something like:

mpdtrace: cannot connect to local mpd (/tmp/mpd2.console_user01); possible causes: 1. no mpd is running on this host 2. an mpd is running but was started without a "console" (-n option)

Then proceed to section 15.2 before proceeding to step 2.

 Create a configuration file that might look something like the following for a four node cluster:

-n	1	-host	clusternodel	./hello_image.exe	:	\backslash
-n	1	-host	clusternode2	./hello_image.exe	:	\setminus
-n	1	-host	clusternode3	./hello_image.exe	:	\setminus
-n	1	-host	clusternode4	./hello_image.exe		

Save the contents of the above into a file called configuration. The file called configuration will be used as part of the ifort compilation line.

 Compile the modified co-array Fortran application above using the configuration file as follows:

```
ifort hello_image.f90 -coarray=distributed -coarray-config-
file=configuration -o hello_image.exe
```

4) Run the executable by typing the command:

./hello_image.exe

The results might look *something* like the following:

Hello from image 1 on host: clusternodel out of 4 total images Hello from image 2 on host: clusternode2 out of 4 total images Hello from image 3 on host: clusternode3 out of 4 total images Hello from image 4 on host: clusternode4 out of 4 total images

Notice in the resulting output that each of the nodes in our cluster example (that is, clusternode1, clusternode2, clusternode3, and clusternode4) is referenced.

Back to Table of Contents

15.2 Trouble Shooting for the Absence of Multipurpose Daemons

This subsection is designed to help you if you issued an mpdtrace command on cluster system and you received a message that looks something like the following:

mpdtrace: cannot connect to local mpd (/tmp/mpd2.console_user01); possible causes: 1. no mpd is running on this host 2. an mpd is running but was started without a "console" (-n option)

1) Either locate or create a text file with the list of nodes (one per line) that make up the cluster. Suppose that you have a four node cluster where the nodes of the cluster are respectively:

```
clusternode1
clusternode2
clusternode3
clusternode4
```

Place these node names into a file where this file that contains the cluster names might be called machines.LINUX. Next, issue the command:

mpdboot -n 4 -r ssh -f machines.LINUX

2) After issuing the mpdboot command, verify that nodes in say the machines.LINUX have been registered properly by issuing the command mpdtrace. The results of the mpdtrace command should look something like the following:

clusternode1 clusternode2 clusternode3 clusternode4

you can proceed to step 2 in Section 15.1.

16. Using the CEAN Language Extension and Programming Model

For Intel® Cluster Studio XE, CEAN is an array language extension to C/C++, providing array section notations for SIMD vector parallelism and parallel function maps for multi-threading. CEAN is an acronym for C/C++ Extensions for Array Notations. This is an Intel-specific programming language extension supported by the Intel compiler. For the complete language extension specification, see the C/C++ Extension for Array Notation (CEAN) Specification Version 1.0.

The example below combines the use of C/C++ Extensions for Array Notations along with using the MPI_Gather communication collective.

```
#include <malloc.h>
#include "mpi.h"
#include <stdio.h>
#include <string.h>
const int MAX_ARRAY_SIZE = 100;
int main (int argc, char *argv[])
int i, namelen, rank, root_process = 0, size;
char name[MPI_MAX_PROCESSOR_NAME];
int a[MAX_ARRAY_SIZE], b[MAX_ARRAY_SIZE], c[MAX_ARRAY_SIZE];
int *d;
MPI_Status stat;
MPI Init (&argc, &argv);
MPI Comm size(MPI COMM WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Get_processor_name(name, &namelen);
// The root process will allocated array storage for gathering results
from each of
// the processes
if (rank == root_process) {
    MPI_Comm_size(MPI_COMM_WORLD, &size);
    d = (int *) malloc(size * 100 * sizeof(int));
}
// Use C/C++ array notation to do partial array computation within each
MPI process
a[0:MAX ARRAY SIZE] = 1 + rank;
b[0:MAX ARRAY SIZE] = 2 + rank;
c[0:MAX ARRAY SIZE] = a[0:MAX ARRAY SIZE] + b[0:MAX ARRAY SIZE];
```

```
fprintf(stdout, "Process rank %d of %d running on %s ready to call
MPI_Gather\n",
        rank,size,name);
// Use the MPI Gather communication collective to gather the partial
results
MPI_Gather(c, 100, MPI_INT, d, 100, MPI_INT, root_process,
MPI COMM WORLD);
MPI_Finalize();
// Print out the first and last result elements that were computed by
each MPI process
if (rank == root_process) {
    for (i = 0; i < size; i++)
        fprintf(stdout,"Strided array elements d[%d] = %d; d[%d] =
                %d\n",i*MAX_ARRAY_SIZE,
                d[i*MAX_ARRAY_SIZE],i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1,
                d[i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1]);
    free(d);
}
return (0);
}
```

The MPI_Gather communication collective gathers partial results from adding vectors "a", and "b" together and storing the computations into array "c". Each MPI process transfers its "c" data into an array "d" which has the capacity to store all the values for each array "c" instance as defined by each MPI process.

You can cut and paste the code fragment above into a C file such as cean.c, and create an executable by issuing the following command:

```
mpiicc cean.c -o cean.exe
```

This may be following by issuing an mpiexec command such as:

mpiexec -n 4 ./cean.exe

where 4 MPI processes are used. The output results might look something like:

```
Process rank 0 of 4 running on clusternodel ready to call MPI_Gather
Process rank 2 of 4 running on clusternode3 ready to call MPI_Gather
Process rank 1 of 4 running on clusternode2 ready to call MPI_Gather
Process rank 3 of 4 running on clusternode3 ready to call MPI_Gather
Strided array elements d[0] = 3; d[99] = 3
Strided array elements d[100] = 5; d[199] = 5
Strided array elements d[200] = 7; d[299] = 7
Strided array elements d[300] = 9; d[399] = 9
```

The type of results that you obtain will be dependent on your cluster configuration and the number of MPI processes that you use.
17. Using Intel® VTune[™] Amplifier XE

To analyze the performance of an MPI program at the threading level, the Intel® VTuneTM Amplifier XE performance analyzer should be used. It is installed at /opt/intel/vtune_amplifier_xe_2011.

To use Intel[®] VTune[™] Amplifier XE, follow three basic steps:

- Use the amplxe-cl command line tool to analyze the program. By default all processes are analyzed, but it is possible to filter the data collection using the amplxe-cl tool to limit the number of processes analyzed to that of a subset. An individual result directory will be created for each spawned MPI program process that is to be analyzed.
- 2. The finalization is done automatically for each result directory once the performance data collection has finished.
- 3. Each result directory from step 1 can be opened in an Intel® VTune[™] Amplifier XE GUI standalone viewer to analyze the data for the specific process.

For Intel® Cluster Studio XE 2012 on Linux* OS, the behavior of ictvars.sh and ictvars.csh is different. On Linux* OS, ictvars.csh is unable to initialize environment variables for Intel® VTuneTM Amplifier XE. This defect will be resolved in a future release of Intel® Cluster Studio XE. In the meantime, if you wish to use Intel® VTuneTM Amplifier XE, source ictvars.sh. For Bourne* Shell on Linux* OS, once the Intel® Cluster Studio XE environment variables referenced within the "ictvars.sh" file have been sourced via a .bashrc file, users for a given Bourne* Shell login session can simply type:

. ictvars.sh ia32

for creating IA-32 executables. Alternatively, to restore the default Intel® Cluster Studio XE environment variable settings so as to build executables with Intel® 64 address extensions, type:

. ictvars.sh

within the Bourne* Shell login session.

NOTE: The full path to ictvars.sh can be omitted once it has been sourced in the .bashrc file.

Chapter 13, which is titled <u>User Checklist for Linux* OS</u>, provides details on setting up ictvars.sh within Bourne* Shell.

Back to Table of Contents

17.1 How do I get a List of Command-line Options for the Intel[®] VTune[™] Amplifier XE Tool?

Within a Bourne* Shell login session, type the command:

amplxe-cl -help

Back to Table of Contents

17.2 What does a Programming Example Look Like that I might run with Intel® VTune™ Amplifier XE?

This programming example uses the C/C++ array notation that was discussed earlier.

```
#include <malloc.h>
#include "mpi.h"
#include <stdio.h>
#include <string.h>
const int MAX_ARRAY_SIZE = 100;
int main (int argc, char *argv[])
ł
int i, namelen, rank, root_process = 0, size;
char name[MPI_MAX_PROCESSOR_NAME];
int a[MAX_ARRAY_SIZE], b[MAX_ARRAY_SIZE], c[MAX_ARRAY_SIZE];
int *d;
MPI Status stat;
MPI_Init (&argc, &argv);
MPI Comm size(MPI COMM WORLD, &size);
MPI Comm rank(MPI COMM WORLD, &rank);
MPI_Get_processor_name(name, &namelen);
// The root process will allocated array storage for gathering results
    from each of
// the processes
if (rank == root_process) {
    MPI_Comm_size(MPI_COMM_WORLD, &size);
    d = (int *) malloc(size * 100 * sizeof(int));
}
```

```
// Use C/C++ array notation to do partial array computation within each
    MPI process
a[0:MAX_ARRAY_SIZE] = 1 + rank;
b[0:MAX_ARRAY_SIZE] = 2 + rank;
c[0:MAX ARRAY SIZE] = a[0:MAX ARRAY SIZE] + b[0:MAX ARRAY SIZE];
fprintf(stdout, "Process rank %d of %d running on %s ready to call
   MPI_Gathern",
        rank,size,name);
// Use the MPI Gather communication collective to gather the partial
    results
MPI_Gather(c, 100, MPI_INT, d, 100, MPI_INT, root_process,
    MPI_COMM_WORLD);
MPI_Finalize();
// Print out the first and last result elements that were computed by each
MPI process
if (rank == root_process) {
    for (i = 0; i < size; i++)</pre>
        fprintf(stdout,"Strided array elements d[%d] = %d; d[%d] =
%d\n",i*MAX_ARRAY_SIZE,
                d[i*MAX_ARRAY_SIZE],i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1,
                d[i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1]);
    free(d);
}
return (0);
}
```

```
Back to Table of Contents
```

17.3 How do I Run and Collect Intel[®] VTune[™] Amplifier XE Performance Information within an Intel[®] MPI Library Application?

A command-line that uses Intel® Amplifier XE might look something like:

Back to Table of Contents

17.4 What does the Intel[®] VTune[™] Amplifier XE Graphical User Interface Look Like?

One method of launching the graphical user interface for $Intel \mbox{ Mmplifier XE}$ is through the command-line:

amplxe-gui amplifierxe_results.0

where amplifierxe_results.0 is a results folder for an MPI process.

<u>V2</u>			
A	<no current="" project=""> - Intel VTune Amplifier XE 2</no>	011	_ = × ^
<u>F</u> ile H	elp		
i 🙇 👔	2 🖻 💿 [🕨 🖨 🜗		
r002hs	×		-
💹 Hot	spots - Hotspots 🗶 🧿		Intel VTune Amplifier XE 2011
⊲ ⊕	Analysis Target 🛆 Analysis Type 🕅 Summary 🧬 Bottom-up 🗣 Top-down Tree	🖪 cean2.c 🛛 🕷	
Sour		Ly country of	CDU time
Sour	ce Assembly 12 min we we we we		CPU time
Line	Source	CPU Time 🙀 🛋	□ 1 stack(s) selected. Viewing □ 1 of 1 □
1	#include <malloc.h></malloc.h>		Current stack is 100.0% of selection
2	#include "mpl.h"		100.0% (0.020s of 0.020s)
3	#include <stalo.n></stalo.n>		cean.exe!main - cean2.c
4	#INCLUDE <sting.n></sting.n>		cean.exe!_start+0x8d9 - [Unknown]
0	CONST INT MAA_ARRAI_SIZE = 100;		Ξ
7	int main (int and then there (1)		
/	int main (int argc, cnar "argv[])		
8	1		
9	int i nordlan and material of since		
	Selected 1 row(s):	•	
	▼		
0.9	Q+O−O+ 0.01s 0.03s 0.05s 0.07s 0.09s 0.11s	0.13s 0.15s	0.17s + V Threads
Thre	ad (0x1bf9)		Running
ads			V Hut CPU Time
Pre			
			2 CPO Time
	CPU Usage		
			<u>▶</u> »
🛠 No fil	ters are applied. 🋠 Module: [All] 🔹 Thread: [All]	✓ Call State	ck Mode: Only user functions 🛛 👻 🗮

Figure 17.1 – Launching the Intel® VTune[™] Amplifier XE GUI

Back to Table of Contents

18. Using Intel® Inspector XE

To analyze the correctness of an MPI program at the threading level, the Intel® Inspector XE checker should be used. It is installed in the folder path /opt/intel/inspector_xe_2011.

To use Intel® Inspector XE, there are three basic steps:

- Use the inspxe-cl command line tool to analyze the program. By default all processes are analyzed, but it is possible to filter the data collection using the inspxe-cl tool to limit the number of processes checked to that of a subset. An individual result directory will be created for each spawned MPI program process that is to be checked.
- 2. The finalization is done automatically for each result directory once the checking analysis has finished.
- 3. Each result directory from step 1 can be opened in an Intel® Inspector XE GUI standalone viewer to analyze the data for the specific process.

For Intel® Cluster Studio XE 2012 on Linux* OS, the behavior of ictvars.sh and ictvars.csh is different. On Linux* OS, ictvars.csh is unable to initialize environment variables for Intel® Inspector XE. This defect will be resolved in a future release of Intel® Cluster Studio XE. In the meantime, if you wish to use Intel® Inspector XE, source ictvars.sh. For Bourne* Shell on Linux* OS, once the Intel® Cluster Studio XE environment variables referenced within the "ictvars.sh" file have been sourced via a .bashrc file, users for a given Bourne* Shell login session can simply type:

. ictvars.sh ia32

for creating IA-32 executables. Alternatively, to restore the default Intel® Cluster Studio XE environment variable settings so as to build executables with Intel® 64 address extensions, type:

. ictvars.sh

within the Bourne* Shell login session.

NOTE: The full path to ictvars.sh can be omitted once it has been sourced in the .bashrc file.

Chapter 13, which is titled <u>User Checklist for Linux* OS</u>, provides details on setting up ictvars.sh within Bourne* Shell.

Back to Table of Contents

18.1 How do I get a List of Command-line Options for the Intel[®] Inspector XE Tool?

Within a Bourne* Shell login session, type the command:

inspxe-cl -help

Back to Table of Contents

18.2 What does a Programming Example Look Like that has a Memory Leak?

This programming example has a call to malloc without a call to free.

```
#include <malloc.h>
#include "mpi.h"
#include <stdio.h>
#include <string.h>
const int MAX_ARRAY_SIZE = 100;
int main (int argc, char *argv[])
{
int i, namelen, rank, root_process = 0, size;
char name[MPI MAX PROCESSOR NAME];
int a[MAX_ARRAY_SIZE], b[MAX_ARRAY_SIZE], c[MAX_ARRAY_SIZE];
int *d;
MPI_Status stat;
MPI_Init (&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI Get processor name(name, &namelen);
// The root process will allocated array storage for gathering results
    from each of
// the processes
if (rank == root_process) {
    MPI_Comm_size(MPI_COMM_WORLD, &size);
    d = (int *) malloc(size * 100 * sizeof(int));
}
// Use C/C++ array notation to do partial array computation within each
   MPI process
a[0:MAX_ARRAY_SIZE] = 1 + rank;
b[0:MAX ARRAY SIZE] = 2 + rank;
c[0:MAX_ARRAY_SIZE] = a[0:MAX_ARRAY_SIZE] + b[0:MAX_ARRAY_SIZE];
```

```
fprintf(stdout, "Process rank %d of %d running on %s ready to call
    MPI_Gather\n",
        rank,size,name);
// Use the MPI Gather communication collective to gather the partial
   results
MPI_Gather(c, 100, MPI_INT, d, 100, MPI_INT, root_process,
   MPI COMM WORLD);
MPI_Finalize();
// Print out the first and last result elements that were computed by
    each MPI process
if (rank == root_process) {
    for (i = 0; i < size; i++)</pre>
        fprintf(stdout,"Strided array elements d[%d] = %d; d[%d] =
    %d\n",i*MAX_ARRAY_SIZE,
                d[i*MAX_ARRAY_SIZE],i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1,
                d[i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1]);
}
return (0);
}
```

Back to Table of Contents

18.3 How do I Run and Collect Memory Leak Information within an Intel[®] MPI Library Application?

A command-line that uses Intel® Inspector XE might look something like:

mpiexec -n 4 inspxe-cl -r inspectorxe_results -collect mi1 -./cean.exe

Back to Table of Contents

18.4 What does the Intel[®] Inspector XE Graphical User Interface Look Like?

One method of launching the graphical user interface for $Intel \ensuremath{\mathbb{R}}$ Inspector XE is through the command-line:

inspxe-gui inspectorxe_results.0

where inspectorxe_results.0 is a results folder for an MPI process.

<u>V2</u>									
2						ano current pro	ect> - Intel Inspector XE 2011		_ = ×
Eile	Help								
) 🗃 🛛						
ins	pectorxe	e results.0	1	-					
									Intel Inconstar VE 2011
	Dete	ct Leaks							Interinspector XE 2011
4	\varTheta Targ	et 🛕 Ana	lysis Type	🖥 Collecti	on Log	Summary			
Pro	oblems			1.821				8 Filters	Sort 🔻 😽 😮
ID -		Problem	Source	es Mod	ules	Object Size	State	Severity	
P1	0	Memory	leak cean.	c cean	.exe	1600	New	Error	4 item(s)
P2	0	Memory	leak simple	e_pmi.c libm	pi_dbg.so.4	4	New	Problem	
P3	0	Memory	leak simple	e_pmi.c libm	pi_dbg.so.4	8	New	Memory leak	4 item(s)
P4	o	Memory	leak simple	e_pmi.c libm	pi_dbg.so.4	256	New	Source	
								cean.c	1 item(s)
								simple_pmi.c	3 item(s)
								Module	
					0			cean.exe	1 item(s)
Co	de Locat	tions					Code Locations / Timel	libmpi_dbg.so.4	3 item(s)
ID	Descri	iption 🔺	Source	Function	Module	Object Size	State	State	
۰x	3 Alloca	tion site	🖹 cean.c:2	5 main	cean.exe	e 1600	New	New	4 item(s)
	23 if	f (rank ==	root_pro	cess) {	Suppressed	All			
	24	MPI_Com	m_size(MP	I_COMM_WORI	LD, &size); eef(int));		Not suppressed	4 item(s)
	26 }	a = (11	t -) mall	oc(size -)	100 - 512	eor(int));		Investigated	
	27							Not investigated	4 item(s)
									í l
4									
	-				-	A DECEMBER OF A			

Figure 18.1 – Launching the Intel® Inspector XE GUI

cho current projects - Intel Inspector XE 2011 Help Concerner projects - Intel Inspector XE 2011 Help Collector xe_results.0 © Detect Leaks Target Analysis Type Collection Log Summary ems		_
Help Help		
Ectorxe_results.0 Detect Leaks Target Analysis Type Collection Log Summary ems		
ectorxe_results.0 📧 Detect Leaks Target 🏠 Analysis Type 🌈 Collection Log 🥥 Summary ems		
Detect Leaks Target 🛱 Analysis Type 🔀 Collection Log 🔷 Summary		Ŧ
ems	Intel I	nspector XE 2011
ems		
ems /	2 Elbarr	Annual Contract of State
	8 Fillers	Solt + a
Problem Sources Modules Object Size State	Severity	11 A
Memory leak cean.c cean.exe 1600 New	Error	4 item(s)
Memory leak simple_pmi.c libmpi_dbg.so.4 4 New	Problem	
Memory leak simple_print_libmpi_ubg.so.4 o New	Memory leak	4 item(s)
 Memory reak simple_printe nonpi_obg.so.4 2.50 New 	Source	
	cean.c	1 item(s)
	simple_pmi.c	3 item(s)
	Module	
	cean.exe	1 item(s)
Locations Code Locations / Timeline	libmpi_dbg.so.4	3 item(s)
Description Source Function Module Object Size State	State	
Allocation site can c/25 main cran exe 1600 New	New	4 item(s)
3 if (rank == root process) {	Suppressed	
4 MPI_Comm_size(MPI_COMM_WORLD, &size);	Not suppressed	4 item(s)
<pre>5 d = (int *) malloc(size * 100 * sizeof(int));</pre>	Investigated	
6 } 7	Not investigated	4 item(s)
1		0.03

Figure 18.2 – I solating a Memory Leak in the User's Applications by Pressing on ID Row P1

•••

The way to resolve this memory leak in Figure 18.2 is to add a call to the free function for the pointer object "d". The C/C + + code fragment:

will be modified to:

where a free statement for object "d" has been added. The mpiexec command for rerunning the Intel® Inspector XE application might look something like:

•••

```
mpiexec -n 4 inspxe-cl -r inspectorxe_results2 -collect mil --
./cean2.exe
```

Rerunning the GUI analysis tool:

inspxe-gui inspectorxe_results2.0

demonstrates that the memory leak for pointer object "d" has been removed (Figure 18.3).

...

2									
2					<no current="" pr<="" th=""><th>oject> - Intel Ins</th><th>pector XE 2011</th><th></th><th>_ 🗆 ×</th></no>	oject> - Intel Ins	pector XE 2011		_ 🗆 ×
Eile	Help								
	1 🛍 🖬		🖨 🜗						
insp	ectorxe_r	esults2.0 🗵	1						-
In .	Detect	Leaks						Intel I	nspector XE 2011
	Target	Analycic	Type E Cr	lection	A Summary				
Proh	lame	Analysis	Type Co	Shection Log	• Summary		9	Eitore	Sort a 2
	O D	Problem	Sourcor	Modulor	Object Size	State	U	Filters	3011 7 8
1		Memory leak	simple pmi c	libmni dha si	0 0 Ject Size	Now		Severity	3 itom(s)
2	0	Memory leak	simple_princ	libmpi_dbg.st	p.4 8	New		Brohlem	5 tterin(s)
3	0	Memory leak	simple_pmi.c	libmpi_dbg.so	0.4 256	New		Memory leak	3 item(s)
								Source	5 Herritor
								simple_pmi.c	3 item(s)
								Module	
								libmpi_dbg.so.4	3 item(s)
								State	
Code	e Location	15				Code Lo	cations / Timeline 💡	New	3 item(s)
D	Descriptio	on A Source		Function	Module	Object Size	State	Suppressed	
X3	Allocation	n site 😤 simp	ple_pmi.c:249	iPMI_Init_Ext	libmpi_dbg.so.4	4	New	Not suppressed	3 item(s)
								Investigated	
								Not investigated	3 item(s)
						III	**		,

Figure 18.3 – The memory leak for pointer object "d" has been removed

Back to Table of Contents

19. Using Intel® Parallel Advisor for non-MPI C/C++ Software Applications

Intel® Parallel Advisor is only available on Microsoft* Windows* OS.

Back to Table of Contents