

Intel® Cluster Studio XE 2012
for Linux* OS
Tutorial

Copyright © 2011 Intel Corporation

All Rights Reserved

Document Number: 325977-001EN

Revision: 20111108

World Wide Web: http://www.intel.com

 Intel Corporation Document Number: 325977-001EN 2

2

Contents
Disclaimer and Legal Information ... 5

2. Introduction ... 7

3. Intel Software Downloads and Installation of Intel® Cluster Studio XE on Linux* OS 11
3.1 Linux* OS Installation .. 12

4. Integrated Development Environments for Intel® Cluster Studio XE 40

5. Getting Started with Intel® MPI Library .. 41
5.1 Launching MPD Daemons .. 42
5.2 How to Set Up MPD Daemons on Linux* OS .. 43
5.3 The mpdboot Command for Linux* OS ... 44
5.4 Compiling and Linking with Intel® MPI Library on Linux* OS 44
5.5 Selecting a Network Fabric .. 45
5.6 Running an MPI Program Using Intel® MPI Library on Linux* OS 46
5.7 Experimenting with Intel® MPI Library on Linux* OS 47
5.8 Controlling MPI Process Placement on Linux* OS 49
5.9 Using the Automatic Tuning Utility Called mpitune 50

5.9.1 Cluster Specific Tuning .. 52
5.9.2 MPI Application-Specific Tuning .. 52

5.10 Extended File I/O System Support on Linux* OS 53
5.10.1 How to Use the Environment Variables I_MPI_EXTRA_FILESYSTEM and

I_MPI_EXTRA_FILESYSTEM_LIST ... 53

6. Interoperability of Intel® MPI Library with the Intel® Debugger (IDB) 55
6.1 Login Session Preparations for Using Intel® Debugger on Linux* OS 56

7. Working with the Intel® Trace Analyzer and Collector Examples 66
7.1 Experimenting with Intel® Trace Analyzer and Collector in a Fail-Safe Mode . 68
7.2 Using itcpin to Instrument an Application .. 70
7.3 Experimenting with Intel® Trace Analyzer and Collector in Conjunction with the

LD_PRELOAD Environment Variable ... 72
7.4 Experimenting with Intel® Trace Analyzer and Collector in Conjunction with PAPI*

Counters .. 74
7.5 Experimenting with the Message Checking Component of Intel® Trace Collector

 ... 77
7.6 Saving a Working Environment through a Project File 89
7.7 Analysis of Application Imbalance .. 92
7.8 Analysis with the Ideal Interconnect Simulator .. 95
7.9 Building a Simulator with the Custom Plug-in Framework 98

8. Getting Started in Using the Intel® Math Kernel Library (Intel® MKL) 99
8.1 Gathering Instrumentation Data and Analyzing the ScaLAPACK* Examples with the

Intel® Trace Analyzer and Collector ... 103
8.2 Experimenting with the Cluster DFT Software .. 108
8.3 Experimenting with the High Performance Linpack Benchmark* 114

9. Using the Intel® MPI Benchmarks .. 118

10. Uninstalling the Intel® Cluster Studio XE on Linux* OS 120

11. Hardware Recommendations for Installation on Linux* OS 121

 Intel Corporation Document Number: 325977-001EN 3

3

12. System Administrator Checklist for Linux* OS .. 123

13. User Checklist for Linux* OS .. 124

14. Using the Compiler Switch -tcollect ... 126

15. Using Co-Array Fortran ... 137
15.1 Running a Co-array Fortran Example on a Distributed System 138
15.2 Trouble Shooting for the Absence of Multipurpose Daemons 140

16. Using the CEAN Language Extension and Programming Model 142

17. Using Intel® VTuneTM Amplifier XE ... 145
17.1 How do I get a List of Command-line Options for the Intel® VTuneTM Amplifier XE Tool?

 ... 146
17.2 What does a Programming Example Look Like that I might run with Intel® VTuneTM

Amplifier XE? .. 146
17.3 How do I Run and Collect Intel® VTuneTM Amplifier XE Performance Information within

an Intel® MPI Library Application? ... 147
17.4 What does the Intel® VTuneTM Amplifier XE Graphical User Interface Look Like?

 ... 148

18. Using Intel® Inspector XE ... 149
18.1 How do I get a List of Command-line Options for the Intel® Inspector XE Tool?150
18.2 What does a Programming Example Look Like that has a Memory Leak? 150
18.3 How do I Run and Collect Memory Leak Information within an Intel® MPI Library

Application? .. 151
18.4 What does the Intel® Inspector XE Graphical User Interface Look Like? 151

19. Using Intel® Parallel Advisor for non-MPI C/C++ Software Applications 156

 Intel Corporation Document Number: 325977-001EN 4

4

Revision History

Document
Number

Revision
Number

Description Revision Date

325977-
001EN

20111108 Updated Intel® Cluster Studio XE 2012 for
Linux OS Tutorial to reflect changes and
improvements to the software components.

11/08/2011

 Intel Corporation Document Number: 325977-001EN 5

5

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT
DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL
PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The information here is subject to change without notice. Do not finalize a design with this
information.
The products described in this document may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized
errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and
before placing your product order.
Copies of documents which have an order number and are referenced in this document, or
other Intel literature, may be obtained by calling 1-800-548-4725, or go
to: http://www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate
features within each processor family, not across different processor families. Go to:
http://www.intel.com/products/processor_number/

MPEG-1, MPEG-2, MPEG-4, H.261, H.263, H.264, MP3, DV, VC-1, MJPEG, AC3, AAC, G.711,
G.722, G.722.1, G.722.2, AMRWB, Extended AMRWB (AMRWB+), G.167, G.168, G.169,
G.723.1, G.726, G.728, G.729, G.729.1, GSM AMR, GSM FR are international standards
promoted by ISO, IEC, ITU, ETSI, 3GPP and other organizations. Implementations of these
standards, or the standard enabled platforms may require licenses from various entities,
including Intel Corporation.

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside,
E-GOLD, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel Core,
Intel Inside, Intel Insider, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel
Sponsors of Tomorrow. logo, Intel StrataFlash, Intel vPro, Intel XScale, InTru, the InTru logo,
the InTru Inside logo, InTru soundmark, Itanium, Itanium Inside, MCS, MMX, Moblin, Pentium,
Pentium Inside, Puma, skoool, the skoool logo, SMARTi, Sound Mark, The Creators Project,
The Journey Inside, Thunderbolt, Ultrabook, vPro Inside, VTune, Xeon, Xeon Inside, X-GOLD,
XMM, X-PMU and XPOSYS are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Microsoft, Windows, Visual Studio, Visual C++, and the Windows logo are trademarks, or
registered trademarks of Microsoft Corporation in the United States and/or other countries.

http://www.intel.com/design/literature.htm�
http://www.intel.com/products/processor_number/�

 Intel Corporation Document Number: 325977-001EN 6

6

Java is a registered trademark of Oracle and/or its affiliates.

Copyright (C) [2011], Intel Corporation. All rights reserved.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors
for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee
the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 7

7

2. Introduction
The Intel® Cluster Studio XE 2012 release on Linux* OS consists of:

1. Intel® C++ Compiler XE 12.1
2. Intel® Debugger 12.1
3. Intel® Fortran Compiler XE 12.1
4. Intel® Inspector XE 2011 Update 6
5. Intel® Integrated Performance Primitives 7.0 Update 5
6. Intel® Math Kernel Library 10.3 Update 6
7. Intel® MPI Benchmarks 3.2.3
8. Intel® MPI Library 4.0 Update 3
9. Intel® Threading Building Blocks 4.0
10. Intel® Trace Analyzer and Collector 8.0 Update 3
11. Intel® VTuneTM Amplifier XE 2011 Update 5

The software architecture of the Intel Cluster Studio XE for Linux OS is illustrated in
Figure 2.1:

 Intel Corporation Document Number: 325977-001EN 8

8

Figure 2.1 – The Software Architecture of Intel® Cluster Studio XE on

Linux* OS

The following are acronyms and definitions of those acronyms that may be
referenced within this document.

Application
Sources

Intel® C++
Compiler
and/or
Intel®
Fortran

Compiler

Executable

Intel Application Libraries

Intel® Integrated Performance Primitives

Intel® Math Kernel Library (includes
ScaLAPACK and Cluster DFT)

Intel® MPI Library

Intel® Threading Building Blocks

Intel Analysis/Development Tools

Intel® Debugger

Intel® Inspector XE

Intel® Trace Analyzer and Collector

Intel® VTuneTM Amplifier XE

 Intel Corporation Document Number: 325977-001EN 9

9

Acronym Definition
ABI Application Binary Interface – describes the low-level

interface an application program and the operating
system, between an application and its libraries, or
between component parts of an application.

BLACS Basic Linear Algebra Communication Subprograms –
provides a linear algebra oriented message passing
interface for distributed memory computing platforms.

BLAS Basic Linear Algebra Subroutines

DAPL* Direct Access Program Library - an Application
Program Interface (API) for Remote Data Memory
Access (RDMA).

DFT Discrete Fourier Transform
Ethernet Ethernet is the predominant local area networking

technology. It is transports data over a variety of
electrical or optical media. It transports any of several
upper layer protocols through data packet
transmissions.

GB Gigabyte
ICS Intel® Cluster Studio
ICSXE Intel® Cluster Studio XE
IMB Intel® MPI Benchmarks

IP Internet protocol
ITA or ita Intel® Trace Analyzer
ITAC or itac Intel® Trace Analyzer and Collector
ITC or itc Intel® Trace Collector

MPD Multi-purpose daemon protocol – a daemon that runs
on each node of a cluster. These MPDs configure the
nodes of the cluster into a “virtual machine” that is
capable of running MPI programs.

MPI Message Passing Interface - an industry standard,
message-passing protocol that typically uses a two-
sided send-receive model to transfer messages
between processes.

NFS The Network File System (acronym NFS) is a
client/server application that lets a computer user
view and optionally store and update file on a remote
computer as though they were on the user's own
computer. The user's system needs to have an NFS
client and the other computer needs the NFS server.
Both of them require that you also have TCP/IP
installed since the NFS server and client use TCP/IP as
the program that sends the files and updates back and
forth.

PVM* Parallel Virtual Machine

http://searchexchange.techtarget.com/sDefinition/0,,sid43_gci212118,00.html�
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci214173,00.html�

 Intel Corporation Document Number: 325977-001EN 10

10

RAM Random Access Memory

RDMA Remote Direct Memory Access - this capability allows
processes executing on one node of a cluster to be
able to "directly" access (execute reads or writes
against) the memory of processes within the same
user job executing on a different node of the cluster.

RDSSM TCP + shared memory + DAPL* (for SMP clusters
connected through RDMA-capable fabrics)

RPM* Red Hat Package Manager* - a system that eases
installation, verification, upgrading, and uninstalling
Linux packages.

ScaLAPACK* SCAlable LAPACK - an acronym for Scalable Linear
Algebra Package or Scalable LAPACK.

shm Shared memory only (no sockets)

SMP Symmetric Multi-processor

ssm TCP + shared memory (for SMP clusters connected
through Ethernet)

STF Structured Trace Format – a trace file format used by
the Intel Trace Collector for efficiently recording data,
and this trace format is used by the Intel Trace
Analyzer for performance analysis.

TCP Transmission Control Protocol - a session-oriented
streaming transport protocol which provides
sequencing, error detection and correction, flow
control, congestion control and multiplexing.

VML Vector Math Library
VSL Vector Statistical Library

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 11

11

3. Intel Software Downloads
and Installation of Intel®
Cluster Studio XE on Linux*
OS

The Intel Cluster Studio XE installation process on Linux OS is comprised of eight
basic steps. The Intel Cluster Studio XE 2012 package consists of the following
components:

Software
Component

Default Installation Directory on IA-32
Architecture for Linux OS

Default Installation Directory on
Intel® 64 Architecture for Linux OS

Intel® C++
Compiler XE
12.1

/opt/intel/composer_xe_2011_sp1.6.0x
x

/opt/intel/
composer_xe_2011_sp1.6.0xx

Intel®
Debugger
12.1

/opt/intel/
composer_xe_2011_sp1.6.0xx

/opt/intel/
composer_xe_2011_sp1.6.0xx

Intel®
Fortran
Compiler XE
12.1

/opt/intel/
composer_xe_2011_sp1.6.0xx

/opt/intel/
composer_xe_2011_sp1.6.0xx

Intel®
Inspector
XE 2011
Update 4

/opt/intel/inspector_xe_2011

/opt/intel/inspector_xe_2011

Intel®
Integrated
Performanc
e Primitives
7.0 Update
5

/opt/intel/
composer_xe_2011_sp1.6.0xx/ipp

/opt/intel/
composer_xe_2011_sp1.6.0xx/ipp

Intel® Math
Kernel
Library
(MKL) 10.3
Update 6

/opt/intel/
composer_xe_2011_sp1.6.0xx/mkl

/opt/intel/
composer_xe_2011_sp1.6.0xx/mkl

Intel® MPI
Benchmarks
3.2.3

/opt/intel/icsxe/2012.0.0xx/imb /opt/intel/icsxe/2012.0.0xx/imb

Intel® MPI
Library 4.0
Update 3

/opt/intel/icsxe/2012.0.0xx/impi /opt/intel/icsxe/2012.0.0xx/impi

Intel® /opt/intel/ /opt/intel/

 Intel Corporation Document Number: 325977-001EN 12

12

Threading
Building
Blocks 4.0

composer_xe_2011_sp1.6.0xx/tbb composer_xe_2011_sp1.6.0xx/tbb

Intel®
Trace
Analyzer
and
Collector
8.0 Update
3

/opt/intel/icsxe/2012.0.0xx/itac /opt/intel/icsxe/2012.0.0xx/itac

Intel®
VtuneTM
Amplifier XE
2011
Update 3

/opt/intel/vtune_amplifier_xe_2011 /opt/intel/vtune_amplifier_xe_201
1

For the table above, references to 0xx in the directory path represents a build
number such as 037.

NOTE: The Intel Cluster Studio XE installer will automatically make the appropriate

selection of binaries, scripts, and text files from its installation archive based
on the Intel processor architecture of the host system where the installation
process is initiated. You do not have to worry about selecting the correct
software component names for the given Intel® architecture.

As a user of the Intel Cluster Studio XE on Linux OS, you may need assistance from
your system administrator in installing the associated software packages on your
cluster system, if the installation directory requires system administrative write
privileges (for example, /opt/intel on Linux OS). This assumes that your login
account does not have administrative capabilities.

Back to Table of Contents

3.1 Linux* OS Installation
To begin installation on Linux*:

1. For Linux Systems, the Intel® Cluster Studio XE installer can do:

a. An install of the software on a single file server that is accessible to all nodes

of the cluster.

b. A distributed install where the software components are installed on each

node of the cluster.

For a distributed install, a machines.LINUX file will either need to be created, or
an existing machines.LINUX file can be used by the Intel Cluster Studio XE
installer to deploy amongst the nodes of the cluster, the appropriate Cluster
Studio XE software components. This machines.LINUX file contains a list of the

 Intel Corporation Document Number: 325977-001EN 13

13

computing nodes (for example, the hostnames) for the cluster. The format is one
hostname per line:

hostname

The hostname should be the same as the result from the Linux command
“hostname”. An example of the content for the file machines.LINUX, where a
contrived cluster consists of eight nodes might be:

clusternode1
clusternode2
clusternode3
clusternode4
clusternode5
clusternode6
clusternode7
clusternode8

A line of text above is consider a comment line if column one contains the “#”
symbol. It is always assumed that the first node in the list is the master node.
The remaining nodes are the compute nodes. The text clusternode1 and
clusternode2, for example, represent the names of two of the nodes in a
contrived computing cluster. You can also use the contents of the
machines.LINUX file to construct an mpd.hosts file for the multi-purpose
daemon (MPD) protocol. The MPD protocol is used for running MPI applications
that utilize Intel MPI Library.

2. In preparation for the installation, you may want to create a staging area. On the

system where the Intel Cluster Studio XE software components are to be
installed, it is recommended that a staging area be constructed in a directory
such as /tmp. An example folder path staging area might be:

/tmp/icsxe_staging_area

where icsxe_staging_area is an acronym for Intel Cluster Studio XE staging
area.

3. Upon registering for Intel Cluster Studio XE 2012, you will receive a serial

number (for example, C111-12345678) for this product. Your serial number can
be found within the email receipt of your product purchase. Go to the Intel®
Software Development Products Registration Center site and provide the product
serial number information. Once the admission has been granted into the
registration center, you will be able to access the Intel® Premier Web pages for
software support.

4. The license for the Intel Cluster Studio XE license file that is provided to you
should be placed in a directory pointed to by the INTEL_LICENSE_FILE
environment variable. Do not change the file name because the ".lic" extension
is critical. Common locations for the attached license file are:

https://registrationcenter.intel.com/regcenter/register.aspx�
https://registrationcenter.intel.com/regcenter/register.aspx�

 Intel Corporation Document Number: 325977-001EN 14

14

<installation path>/licenses

where licenses is a sub-directory. For example, on the cluster system where the
Intel Cluster Studio XE software is to be installed, all licenses for Intel-based
software products might be placed in:

/opt/intel/licenses

It is also imperative that you and/or the system administrator set the
environment variable INTEL_LICENSE_FILE to the directory path where the Intel
software licenses will reside prior to doing an installation of the Intel Cluster
Studio XE. For Bourne* Shell or Korn* Shell the syntax for setting the
INTEL_LICENSE_FILE environment variable might be:

export INTEL_LICENSE_FILE=/opt/intel/licenses

For C Shell, the syntax might be:

setenv INTEL_LICENSE_FILE /opt/intel/licenses

5. Patrons can place the Intel Cluster Studio XE software package into the staging

area folder.

6. The installer package for the Intel Cluster Studio XE has the following general

nomenclature:

l_ics_<major>.<update>.<package_num>.tar.gz

where <major>.<update>.<package_num> is a string such as:

2012.0.xxx

The <package_num> meta-symbol is a string such as 037. This string indicates the
package number.

The command:

tar –xvzf l_ics_<major>.<update>.<package_num>.tar.gz

will create a sub-directory called l_ics_<major>.<update>.<package_num>.
Change to that directory with the shell command:

cd l_ics_<major>.<update>.<package_num>

For example, suppose the installation package is called
l_ics_2012.0.037.tar.gz. In the staging area that has been created, type the
command:

 Intel Corporation Document Number: 325977-001EN 15

15

tar –xvzf l_ics_2012.0.037.tar.gz

This will create a sub-directory called l_ics_2012.0.037. Change to that
directory with the shell command:

cd l_ics_2012.0.037

In that folder, make sure that machines.LINUX file, as mentioned in item 1
above, is either in this directory or you should know the directory path to this file.

7. Also within the l_ics_<major>.<update>.<package_num> directory staging area,
the expect shell script file called “sshconnectivity.exp” can be used to help
you establish secure shell connectivity on a cluster system, where expect is a
tool for automating interactive applications. To run “sshconnectivity.exp”, the
expect runtime software needs to be installed on your Linux system. To make
sure that the expect runtime software is properly installed, type:

which expect

If you encounter a “Command not found.” error message, you can download the
expect software package from the following URL:

http://expect.nist.gov/

The syntax for the “sshconnectivity.exp” command is:

./sshconnectivity.exp machines.LINUX

This expect shell script will create or update a ~/.ssh directory on each node of
the cluster beginning with the master node which must be the first name listed
in the machines.LINUX file. This script will prompt you for your password twice.

Enter your user password:
Re-enter your user password:

To provide security each time you enter your user password, asterisks will
appear in lieu of the password text. Upon successful completion of the script, the
following message fragment will appear:

…

Node count = 4
Secure shell connectivity was established on all nodes.

…

…

http://expect.nist.gov/�

 Intel Corporation Document Number: 325977-001EN 16

16

A log of the transactions for this script will be recorded in:

/tmp/sshconnectivity.<login-name>.log

where <login-name> is a meta-symbol for your actual login.

NOTE: The shell script sshconnectivity.exp will remove the write access capability
on the group and other “permission categories” for the user’s home directory
folder. If this is not done, a password prompt will continue to be issued for
any secure shell activity.

This process of establishing secure shell connectivity in step 7 above is
demonstrated by the following complete graph1

 (Figure 3.1) illustration where a
vertex in the graph represents a cluster computing node, and an edge between
two vertices connotes that the two cluster computing nodes have exchanged
public keys for secure shell connectivity. Secure shell connectivity is intended to
provide secure, encrypted communication channels between two or more cluster
nodes over an insecure network.

The script sshconnectivity.exp will call the appropriate secure shell utilities to
generate a private key and a public key for each node of the cluster.

1 A mathematical definition of a complete graph in graph theory is a simple graph
where an edge connects every pair of vertices. The complete graph on n vertices has
n vertices and n(n - 1)/2 edges, and is denoted by Kn. Each vertex in the graph has
degree n - 1. All complete graphs are their own cliques (a maximal complete
graph). A graph of this type is maximally connected because the only vertex cut
which disconnects the graph is the complete set of vertices.

 Intel Corporation Document Number: 325977-001EN 17

17

Figure 3.1 – Illustration of Secure Shell Connectivity for a Computing

Cluster

For the complete graph example in Figure 3.1, suppose there are nodes
(vertices) 1 to n in the cluster. For a given node i, nodes 1 to i - 1 and nodes i
+ 1 to n are provided with the public key from node i. The user’s public keys for
a given node will be stored in the ~/.ssh folder associated with the user’s home
directory for that computing node. Since there are n - 1 edges to a given node i
in Figure 3.1, that node i will have n - 1 public keys in the ~/.ssh folder that
were provided by the other n - 1 nodes in the cluster. The example in Figure 3.1
represents a computing cluster that has at total of five nodes. The edges
connecting a node indicate that that node has received four public keys from the
remaining computing nodes. Also looking out from a given node indicates that

Node 2

~/.ssh/

Looking out from a
given node, each

edge represents the
sharing of that

node’s public key

Compute
node in

the
cluster

Node 4

~/.ssh/

Node 1

~/.ssh/

Node 3

~/.ssh/

Node 5

~/.ssh/

 Intel Corporation Document Number: 325977-001EN 18

18

the given node has provided its own public key to the remaining nodes that are
reachable through the four edge paths.

If the home directory for a cluster is shared by all of the nodes of the cluster, for
example, all of the nodes use the same ~/.ssh folder, the connectivity illustrated
in Figure 3.1 is represented through the contents of the ~/.ssh/known_hosts file.

8. Make sure that the Java* Runtime Environment package is installed on your

system. The directory path for where the Java* Runtime Environment may reside
might be:

/usr/java

If you cannot find the Java* Runtime Environment library installation on your
system, visit the URL:

http://www.java.com/en/download/

to download the appropriate version of the Java* Runtime Environment. After
doing the download, install the Java* Runtime Environment on your system. You
may need a system administrator to help you with the installation.

If you have located an existing and compatible Java* Runtime Environment
library on your system, or you have proceeded to visit the URL above and
completed a download and installation, set your PATH environment variable to
include the directory path to the Java* Runtime Environment library. The
Bourne* and Korn* Shell syntax for setting the PATH environment variable might
be something like the following:

export PATH=/usr/java/jre1.5.0_22/bin:$PATH

For C Shell, the syntax for setting the PATH environment variable might be
something like:

setenv PATH /usr/java/jre1.5.0_22/bin:$PATH

Once secure shell connectivity is established and the Java* Runtime Environment
is verified, type a variation of the install.sh as illustrated in Figure 3.2.

http://www.java.com/en/download/�

 Intel Corporation Document Number: 325977-001EN 19

19

Figure 3.2 – Initiating the installation process with the command install.sh

 Intel Corporation Document Number: 325977-001EN 20

20

Figure 3.3 – The six steps in the installation process

 Intel Corporation Document Number: 325977-001EN 21

21

 Intel Corporation Document Number: 325977-001EN 22

22

Figure 3.4 – License agreement

 Intel Corporation Document Number: 325977-001EN 23

23

Figure 3.5 – Enter the accept word to acknowledge the terms of the license
agreement

 Intel Corporation Document Number: 325977-001EN 24

24

Figure 3.6 – Step 3 – Select option 3 where you want to provide a license
file to complete the installation process

 Intel Corporation Document Number: 325977-001EN 25

25

Figure 3.7 - Step 3 Continued – Selection option 2 to direct the installer to
ask for a license file

 Intel Corporation Document Number: 325977-001EN 26

26

Figure 3.8 – Step 3 Continued – Provide a directory path to where the
license file resides

 Intel Corporation Document Number: 325977-001EN 27

27

Figure 3.9 – Verification of license activation

 Intel Corporation Document Number: 325977-001EN 28

28

Figure 3.10 – Step 4 – Select option 2 in order to change the install
directory from the default which is /opt/intel

 Intel Corporation Document Number: 325977-001EN 29

29

Figure 3.11 - Step 4 Continued – Provide the alternative directory path

 Intel Corporation Document Number: 325977-001EN 30

30

Figure 3.12 – Step 4 Continued – Select option 5 so as to do a distributed
install as opposed to installing only on the current (I.e., the master) node

 Intel Corporation Document Number: 325977-001EN 31

31

Figure 3.13 – Step 4 Continued – Select option 2 to continue the process of
doing a distributed install

 Intel Corporation Document Number: 325977-001EN 32

32

Figure 3.14 – Step 4 Continued – Provide a directory path to a file that
contains a list of the nodes for the cluster

 Intel Corporation Document Number: 325977-001EN 33

33

Figure 3.15 – Step 4 Continued – Select the default option of 1 as an
indication that all advanced configuration options have been exercised

 Intel Corporation Document Number: 325977-001EN 34

34

Figure 3.16 – Step 4 Continued – Select the default option of 1 as an
indication that you ready to start the installation

 Intel Corporation Document Number: 325977-001EN 35

35

Figure 3.17 – Step 4 Continued – Let the install process proceed

 Intel Corporation Document Number: 325977-001EN 36

36

Step 5 is the actual installation process. This is followed by step 6 which is the
completion of the installation process.

Figure 3.18 - Step 6 – The install process has completed and press the enter
key to close the installer session

By default, the global root directory for the installation of the Intel Cluster Studio XE
is:

/opt/intel/icsxe/<major>.<update>.<package_num>

where <major>, <minor>, <update>, and <package_num> are integers. An example
would be 2012.0.037.

 Intel Corporation Document Number: 325977-001EN 37

37

Within the folder path /opt/intel/icsxe/<major>.<update>.<package_num> you
will find the text files:

ictvars.csh

ictvars.sh

and

icsxesupport.txt

If you are using Bourne Shell or Korn Shell for the login session, you should type:

. ./ictvars.sh

and for a login session that uses C Shell, you should type:

source ./ictvars.csh

The file called:

icsxesupport.txt

contains the package ID and package contents information. Use the information in
icsxesupport.txt when submitting customer support requests.

For the default installation path, an index file, an FAQ file, and the Getting Started
Guide are located in the directory path:

/opt/intel/icsxe/<major>.<update>.<package_num>/doc

whereas mentioned above, <major>, <update>, and <package_num> are integers. A
complete default folder path to the documentation directory might be:

/opt/intel/icsxe/2012.0.037/doc

The name of the index file is:

Doc_Index.htm

The index file can be used to navigate to the FAQ, the release notes, the Getting
Started Guide, and an internet accessible Intel Cluster Studio XE Tutorial. This web-
based tutorial may have the latest information and instructions.

NOTE: For Beta programs involving the Intel Cluster Studio XE, there is no web

based tutorial.

The documentation map file will also provide links to Intel® C++ Compiler XE
documentation, Intel® Debugger Documentation, Intel® Fortran Compiler XE

http://software.intel.com/en-us/articles/intel-cluster-toolkit-compiler-edition-311-tutorial/�

 Intel Corporation Document Number: 325977-001EN 38

38

documentation, Intel® Inspector XE documentation, Intel® Integrated Performance
Primitives documentation, Intel® Math Kernel Library (MKL) documentation, Intel®
MPI Library documentation, Intel® MPI Benchmarks documentation, Intel®
Threading Building Blocks, Intel® Trace Analyzer and Collector documentation, and
Intel® VTuneTM Amplifier XE documentation. The content of the index file will look
something like the following (Figure 3.19):

Figure 3.19 – A Rendering of the Intel Cluster Studio XE Documentation
Index File display

 Intel Corporation Document Number: 325977-001EN 39

39

The name of the FAQ file is:

HelpMe_FAQ.htm

The name of the Getting Started Guide file is:

Getting_Started.htm

By default, the local version of the release notes is located in the directory path:

/opt/intel/icsxe/<major>.<update>.<package_num>/release_notes

The name of the release notes file is:

Release_Notes.htm

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 40

40

4. Integrated Development
Environments for Intel®
Cluster Studio XE

For Linux* OS, there is an integrated development environment (IDE) by which you can
develop software through Intel® Cluster Studio XE. This integrated development environment
is Eclipse* for Intel® C++ Compiler XE.

If you are interested in using Eclipse*, install two software components that are not part of
Intel® Cluster Studio XE. These two components are Eclipse*, and C/C++ Development
Tooling* project (CDT*). CDT* provides an interface by which the Intel® C/C++ Compiler XE
can be plugged into Eclipse*.

For further information about respectively downloading and installing Eclipse* and CDT* visit
the URLs:

http://www.eclipse.org/

http://www.eclipse.org/cdt/

Back to Table of Contents

http://www.eclipse.org/�
http://www.eclipse.org/cdt/�

 Intel Corporation Document Number: 325977-001EN 41

41

5. Getting Started with Intel®
MPI Library

This chapter will provide some basic information about getting started with Intel®
MPI Library. For complete documentation, see the Intel MPI Library documents Intel
MPI Library Getting Started Guide located in <directory-path-to-Intel-MPI-
Library>/doc/Getting_Started.pdf and Intel MPI Library Reference Manual
located in <directory-path-to-Intel-MPI-Library>/doc/Reference_Manual.pdf
on the system where Intel MPI Library is installed.

The software architecture for Intel MPI Library is described in Figure 5.1. With Intel
MPI Library on Linux-based systems, you can choose the best interconnection fabric
for running an application on a cluster that is based on IA-32, or Intel® 64
architecture. This is done at runtime by setting the I_MPI_FABRICS environment
variable (See Section 5.4). Execution failure can be avoided even if interconnect
selection fails. This feature helps avoid execution failures in batch computing. For
such situations, the sockets interface will automatically be selected (Figure 5.1) as a
backup.

Similarly using Intel MPI Library on Microsoft Windows CCS, you can choose the best
interconnection fabric for running an application on a cluster that is based on Intel®
64 architecture.

 Intel Corporation Document Number: 325977-001EN 42

42

Back to Table of Contents

5.1 Launching MPD Daemons
The Intel MPI Library uses a Multi-Purpose Daemon (MPD) job startup mechanism.
To run programs compiled with mpicc (or related) commands, you must first set up
MPD daemons. It is strongly recommended that you start and maintain your own set
of MPD daemons, as opposed to having the system administrator start up the MPD
daemons once for use by all users on the system. This setup enhances system
security and gives you greater flexibility in controlling your execution environment.

Figure 5.1 – Software architecture of the Intel® MPI Library
Interface to Multiple Fast Interconnection Fabrics through

shared memory, DAPL (Direct Access Programming Library),
and the TCP/IP fallback

 Intel Corporation Document Number: 325977-001EN 43

43

Back to Table of Contents

5.2 How to Set Up MPD Daemons on Linux* OS
1. Set up environment variables with appropriate values and directories, for

example, in the .cshrc or .bashrc files. At a minimum, set the following
environment variables. Ensure that the PATH variable includes the following:
• The <directory-path-to-Intel-MPI-Library>/bin directory. For

example, the <directory-path-to-Intel-MPI-Library>/bin directory
path should be set.

• Directory for Python* version 2.2 or greater.
• If you are using Intel® C++ Compilers and/or Intel® Fortran Compilers,

ensure that the LD_LIBRARY_PATH variable contains the directories for the
compiler library. You can set this variable by using the *vars.[c]sh scripts
included with the compiler. Set any additional environment variables your
application uses.

2. Create a $HOME/.mpd.conf file that contains your MPD password. Your MPD
password is not the same as any Linux login password, but rather is used for
MPD only. It is an arbitrary password string that is used only to control access
to the MPD daemons by various cluster users. To set up your MPD password:

secretword=<your mpd secretword>

Do not use any Linux login password for <your mpd secretword>. An arbitrary
<your mpd secretword> string only controls access to the MPD daemons by
various cluster users.

3. Set protection on the file so that you have read and write privileges, for
example, and ensure that the $HOME/.mpd.conf file is visible on, or copied to,
all the nodes in the cluster as follows:

chmod 600 $HOME/.mpd.conf

4. Verify that PATH settings and .mpd.conf contents can be observed through ssh

on all nodes in the cluster. For example, use the following commands with each
<node> in the cluster:

ssh <node> env
ssh <node> cat $HOME/.mpd.conf

5. Create an mpd.hosts text file that lists the nodes in the cluster, with one

machine name per line, for use by mpdboot. Recall that the contents of the
machines.LINUX file that was referenced previously can be used to construct
an mpd.hosts file.

6. Start up the MPD daemons as follows:

mpdboot [-d -v] -n <#nodes> [-f <path/name of mpd.hosts file>]

 Intel Corporation Document Number: 325977-001EN 44

44

For more information about the mpdboot command, see Setting up MPD
Daemons in the <directory-path-to-Intel-MPI-
Library>/doc/Getting_Started.pdf or the mpdboot section of <directory-
path-to-Intel-MPI-Library>/doc/Reference_Manual.pdf.

7. Determine the status of the MPD daemons as follows:

mpdtrace

The output should be a list of nodes that are currently running MPD daemons.

Remarks

• If required, shut down the MPD daemons as follows:

mpdallexit

• You as a user should start your own set of MPD daemons. It is not

recommended to start MPD as root due to setup problems and security issues.

Back to Table of Contents

5.3 The mpdboot Command for Linux* OS
Use the mpdboot –f <hosts file> option to select a specific hosts file to be used.
The default is to use ${PWD}/mpd.hosts. A valid host file must be accessible in order
for mpdboot to succeed. As mentioned previously, you can also use the contents of
the machines.LINUX file to construct an mpd.hosts file.

Back to Table of Contents

5.4 Compiling and Linking with Intel® MPI Library
on Linux* OS

This section describes the basic steps required to compile and link an MPI program,
when you use only the Intel MPI Library Development Kit. To compile and link an MPI
program with the Intel MPI Library:

1. Ensure that the underlying compiler and related software appear in your PATH. If

you are using Intel compilers, ensure that the compiler library directories appear
in LD_LIBRARY_PATH environment variable. For example, regarding the Intel
12.1 compilers, the execution of the appropriate set-up scripts will do this
automatically (the build number for the compilers might be something different
than “composer_xe_2011_sp1.6.061” for your installation):

/opt/intel/composer_xe_2011_sp1.6.061/bin/iccvars.[c]sh

and

 Intel Corporation Document Number: 325977-001EN 45

45

/opt/intel/composer_xe_2011_sp1.6.061/bin/ifortvars.[c]sh

2. Compile your MPI program through the appropriate mpi compiler command. For

example, C code uses the mpiicc command as follows:

mpiicc <directory-path-to-Intel-MPI-Library>/test/test.c

Other supported compilers have an equivalent command that uses the prefix mpi on
the standard compiler command. For example, the Intel MPI Library command for
the Intel® Fortran Compiler (ifort) is mpiifort.

Supplier of
Core
Compiler

MPI
Compilation
Command

Core
Compiler
Compilation
Command

Compiler
Programming
Language

Support
Application
Binary
Interface
(ABI)

GNU*
Compilers

mpicc gcc, cc C 32/64 bit
mpicxx g++ version

3.x
g++ version
4.x

C/C++ 32/64 bit

mpif77 f77 or g77 Fortran 77 32/64 bit
mpif90 gfortran Fortran 95 32/64 bit

Intel Compilers
version 11.1,
12.0, or 12.1

mpiicc icc C 32/64 bit
mpiicpc icpc C++ 32/64 bit
mpiifort ifort Fortran 77 and

Fortran 95
32/64 bit

Remarks
The Compiling and Linking section of <directory-path-to-Intel-MPI-
Library>/doc/Getting_Started.pdf or the Compiler Commands section of
<directory-path-to-Intel-MPI-Library>/doc/Reference_Manual.pdf on the
system where Intel MPI Library is installed include additional details on mpiicc and
other compiler commands, including commands for other compilers and languages.

Back to Table of Contents

5.5 Selecting a Network Fabric
Intel MPI Library supports multiple, dynamically selectable network fabric device
drivers to support different communication channels between MPI processes. The
default communication method uses a built-in TCP (Ethernet, or sockets) device
driver. Before the introduction of Intel® MPI Library 4.0, selection of alternative
devices was done through the command line using the I_MPI_DEVICE environment
variable. With Intel® MPI Library 4.0 and its successors, the I_MPI_FABRICS
environment variable is to be used, and the environment variable I_MPI_DEVICE is
considered a deprecated syntax. The following table lists the network fabric types for
I_MPI_FABRICS that are supported by Intel MPI Library 4.0 and its successors:

 Intel Corporation Document Number: 325977-001EN 46

46

Possible Interconnection-Device-
Fabric Values for the
I_MPI_FABRICS Environment
Variable

Interconnection Device Fabric
Meaning

shm Shared-memory
dapl DAPL–capable network fabrics, such as

InfiniBand*, iWarp*, Dolphin*, and
XPMEM* (through DAPL*)

tcp TCP/IP-capable network fabrics, such as
Ethernet and InfiniBand* (through
IPoIB*)

tmi Network fabrics with tag matching
capabilities through the Tag Matching
Interface (TMI), such as Qlogic* and
Myrinet*

ofa Network fabric, such as InfiniBand* (through
OpenFabrics* Enterprise Distribution (OFED*)
verbs) provided by the Open Fabrics Alliance*
(OFA*)

The environment variable I_MPI_FABRICS has the following syntax:

I_MPI_FABRICS=<fabric> | <intra-node fabric>:<internodes-fabric>

where the <fabric> value meta-symbol can have the values shm, dapl, tcp, tmi, or
ofa. The <intra-node fabric> value meta-symbol can have the values shm, dapl,
tcp, tmi, or ofa. Finally, the <inter-node fabric> value meta-symbol can have
the values dapl, tcp, tmi, or ofa.

The next section will provide some examples for using the I_MPI_FABRICS
environment variable within the mpiexec command-line.

Back to Table of Contents

5.6 Running an MPI Program Using Intel® MPI
Library on Linux* OS

Use the mpiexec command to launch programs linked with the Intel MPI Library
example:

mpiexec -n <# of processes> ./myprog

The only required option for the mpiexec command is the -n option to set the
number of processes. If your MPI application is using a network fabric other than the
default fabric, use the –env option to specify a value to be assigned to the
I_MPI_FABRICS variable. For example, to run an MPI program while using the shared

 Intel Corporation Document Number: 325977-001EN 47

47

memory for intra-node communication and sockets for inter-node communication,
use the following command:

mpiexec -n <# of processes> -env I_MPI_FABRICS shm:tcp ./myprog.exe

As an example of running an MPI application on a cluster system with a combined
shared-memory and DAPL-enabled network fabric, the following mpiexec command-
line might be used:

mpiexec -n <# of processes> -env I_MPI_FABRICS shm:dapl ./myprog.exe

See the section titled Selecting a Network Fabric in <directory-path-to-Intel-
MPI-Library>\doc\Getting_Started.pdf, or the section titled Fabrics Control in
<directory-path-to-Intel-MPI-Library>\doc\Reference_Manual.pdf.

Back to Table of Contents

5.7 Experimenting with Intel® MPI Library on
Linux* OS

For the experiments that follow, it is assumed that a computing cluster has at least
two nodes and there are two symmetric multi-processors (SMPs) per node. Start up
the MPD daemons by issuing a command such as:

mpdboot -n 2 -r ssh -f ~/mpd.hosts

Type the command:

mpdtrace

to verify that there are MPD daemons running on the two nodes of the cluster. The
response from issuing this command should be something like:

clusternode1
clusternode2

assuming that the two nodes of the cluster are called clusternode1 and
clusternode2. The actual response will be a function of your cluster configuration.

In the <directory-path-to-Intel-MPI-Library>/test folder where Intel MPI
Library resides, there are source files for four MPI test cases. In your local user area,
you should create a test directory called:

test_intel_mpi/

From the installation directory of Intel MPI Library, copy the test files from
<directory-path-to-Intel-MPI-Library>/test to the directory above. The
contents of test_intel_mpi should now be:

 Intel Corporation Document Number: 325977-001EN 48

48

test.c test.cpp test.f test.f90

Compile the test applications into executables using the following commands:

mpiifort test.f -o testf
mpiifort test.f90 -o testf90
mpiicc test.c -o testc
mpiicpc test.cpp -o testcpp

Issue the mpiexec commands:

mpiexec -n 2 ./testf
mpiexec -n 2 ./testf90
mpiexec -n 2 ./testc
mpiexec -n 2 ./testcpp

The output from testcpp should look something like:

Hello world: rank 0 of 2 running on clusternode1
Hello world: rank 1 of 2 running on clusternode2

If you have successfully run the above applications using Intel MPI Library, you can
now run (without re-linking) the four executables on clusters that use Direct Access
Program Library (DAPL) interfaces to alternative interconnection fabrics. If you
encounter problems, please see the section titled Troubleshooting within the
document Intel MPI Library Getting Started Guide located in <directory-path-to-
Intel-MPI-Library>/doc/Getting_Started.pdf for possible solutions.

Assuming that you have a dapl device fabric installed on the cluster, you can issue
the following commands for the four executables so as to access that device fabric:

mpiexec -env I_MPI_FABRICS dapl -n 2 ./testf
mpiexec -env I_MPI_FABRICS dapl -n 2 ./testf90
mpiexec –env I_MPI_FABRICS dapl -n 2 ./testc
mpiexec -env I_MPI_FABRICS dapl -n 2 ./testcpp

The output from testf90 using the dapl device value for the I_MPI_FABRICS
environment variable should look something like:

Hello world: rank 0 of 2 running on
 clusternode1

Hello world: rank 1 of 2 running on
 clusternode2

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 49

49

5.8 Controlling MPI Process Placement on Linux*
OS

The mpiexec command controls how the ranks of the processes are allocated to the
nodes in the cluster. By default, mpiexec uses round-robin assignment of ranks to
the nodes. This placement algorithm may not be the best choice for your application,
particularly for clusters with symmetric multi-processor (SMP) nodes.

Suppose that the geometry is <#ranks> = 4 and <#nodes> = 2, where adjacent
pairs of ranks are assigned to each node (for example, for 2-way SMP nodes). Issue
the command:

cat ~/mpd.hosts

The results should be something like:

clusternode1
clusternode2

Since each node of the cluster is a 2-way SMP, and four processes are to be used for
the application, the next experiment will distribute the four processes such that two
of the processes will execute on clusternode1 and two processes will execute on
clusternode2. For example, you might issue the following commands:

mpiexec -n 2 -host clusternode1 ./testf : -n 2 -host clusternode2 ./testf
mpiexec -n 2 -host clusternode1 ./testf90 : -n 2 -host clusternode2 ./testf90
mpiexec -n 2 -host clusternode1 ./testc : -n 2 -host clusternode2 ./testc
mpiexec -n 2 -host clusternode1 ./testcpp : -n 2 -host clusternode2 ./testcpp

The following output should be produced for the executable testc:

Hello world: rank 0 of 4 running on clusternode1
Hello world: rank 1 of 4 running on clusternode1
Hello world: rank 2 of 4 running on clusternode2
Hello world: rank 3 of 4 running on clusternode2

In general, if there are i nodes in the cluster and each node is j-way SMP system,
the mpiexec command-line syntax for distributing the i by j processes amongst the
i by j processors within the cluster is:

mpiexec -n j -host <nodename-1> ./mpi_example : \
 -n j -host <nodename-2> ./mpi_example : \
 -n j -host <nodename-3> ./mpi_example : \

…
 -n j -host <nodename-i> ./mpi_example

NOTE: Fill in appropriate host names for <nodename-1> through <nodename-i> with

respect to your cluster system. For a complete discussion on how to control

 Intel Corporation Document Number: 325977-001EN 50

50

process placement through the mpiexec command, see the Local Options
section of the Intel MPI Library Reference Manual located in <directory-
path-to-Intel-MPI-Library>/doc/Reference_Manual.pdf.

Back to Table of Contents

5.9 Using the Automatic Tuning Utility Called
mpitune

The mpitune utility was first introduced with Intel® MPI Library 3.2. It can be used
to find optimal settings of Intel® MPI Library in regards to the cluster configuration
or a user’s application for that cluster.

As an example, the executables testc, testcpp, testf, and testf90 in the
directory test_intel_mpi could be used. The command invocation for mpitune
might look something like the following:

mpitune –-host-file machines.LINUX –-output-file testc.conf --
application \”mpiexec –n 4 testc\”

where the options above are just a subset of the following complete command-line
switches:

Command-line Option Semantic Meaning
-a \”<app_cmd_line>\” | --
application \”<app_cmd_line>\”

Switch on the application tuning mode.
Quote the full command line as shown

-cm | --cluster-mode {exclusive |
full}

Set the cluster usage mode
exclusive – only one task will executed
on the cluster at a time
full – maximum number of tasks will be
execute. This is the default mode

-d | --debug Print debug information
-dl [d1[,d2…[,dN]]] | --device-list
[d1[,d2…[,dN]]]

Select the device(s) you want to tune. By
default use all of the devices mentioned
in the
<installdir>/<arch>/etc/devices.xml
file

-er | --existing-ring Try to use an existing MPD ring. By
default, create a new MPD ring

-fl [f1[,f2…[,fN]]] | --fabric-list
[f1[,f2…[,fN]]]

Select the fabric(s) you want to tune. By
default use all of the fabrics mentioned in
the
<installdir>/<arch>/etc/fabrics.xml
file

-h | --help Display a help message
-hf <hostsfile> | --host-file
<hostsfile>

Specify an alternative host file name. By
default, use the $PWD/mpd.hosts

 Intel Corporation Document Number: 325977-001EN 51

51

-hr | --host-range {min:max | min:
| :max}

Set the range of hosts used for testing.
The default minimum value is 1. The
default maximum value is the number of
hosts defined by the mpd.hosts or the
existing MPD ring. The min: or :max
format will use the default values as
appropriate

-i <count> | --iterations <count> Define how many times to run each
tuning step. Higher iteration counts
increase the tuning time, but may also
increase the accuracy of the results. The
default value is 3

-mh | --master-host Dedicate a single host to mpitune
--message-range {min:max | min: |
:max}

Set the message size range. The default
minimum value is 0. The default
maximum value is 4194304 (4mb). By
default, the values are given in bytes.
They can also be given in the following
format: 16kb, 8mb, or 2gb. The min: or
:max format will use the default values
as appropriate

-of <file-name> | --output-file
<file-name>

Specify the application configuration file
to be generated in the application-
specific mode. By default, use the
$PWD/app.conf

-od <outputdir> | --output-
directory <outputdir>

Specify the directory name for all output
files. By default, use the current
directory. The directory should be
accessible from all hosts

-pr {min:max | min: | :max} | -–
ppn-range {min:max | min: | :max} |
-–perhost-range {min:max | min: |
:max}

Set the maximum number of processes
per host. The default minimum value is
1. The default maximum value is the
number of cores of the processor. The
min: or :max format will use the default
values as appropriate

-sf [file-path] | --session-file
[file-path]

Continue the tuning process starting
from the state saved in the file-path
session file

-s | --silent Suppress all diagnostic output
-td <dir-path> | --temp-directory
<dir-path>

Specify a directory name for the
temporary data. By default, use the
$PWD/mpitunertemp. This directory
should be accessible from all hosts

-t \”<test_cmd_line>\” | --test
\”<test_cmd_line>\”

Replace the default Intel® MPI
Benchmarks by the indicated
benchmarking program in the cluster-
specific mode. Quote the full command
line as shown

 Intel Corporation Document Number: 325977-001EN 52

52

-tl <minutes> | --time-limit
<minutes>

Set mpitune execution time limit in
minutes. The default value is 0, which
means no limitations

-V | --version Print out the version information

Details on optimizing the settings for Intel® MPI Library with regards to the cluster
configuration or a user’s application for that cluster are described in the next two
subsections.

Back to Table of Contents

5.9.1 Cluster Specific Tuning
Once you have installed the Intel® Cluster Tools on your system, you may want to
use the mpitune utility to generate a configuration file that is targeted at optimizing
the Intel® MPI Library with regards to the cluster configuration. For example, the
mpitune command:

mpitune –hf machines.LINUX –of testc.conf –-test \”testc\”

could be used, where machines.LINUX contains a list of the nodes in the cluster.
Completion of this command may take some time. The mpitune utility will generate a
configuration file that might have a name such as app.conf. You can then run the
mpiexec command on an application using the –tune option. For example, the
mpiexec command-line syntax for the testc executable might look something like
the following:

mpiexec –tune –n 4 testc

Back to Table of Contents

5.9.2 MPI Application-Specific Tuning
The mpitune invocation:

mpitune –hf machines.Linux –of testf90.conf --application \”mpiexec –n

4 testf90\”

will generate a file called app.config that is base on the application testf90.
Completion of this command may take some time also. This configuration file can be
used in the following manner:

mpiexec –tune testf90.conf –n 4 testf90

where the mpiexec command will load the configuration options recorded in
testf90.conf.

If you want to use mpitune utility on each of the test applications testc, testcpp,
testf, and testf90, see the complete discussion on how to use the mpitune utility

 Intel Corporation Document Number: 325977-001EN 53

53

in the Intel MPI Library for Linux* OS Reference Manual located in <directory-
path-to-Intel-MPI-Library>/doc/Reference_Manual.pdf.

Back to Table of Contents

5.10 Extended File I/O System Support on Linux*
OS

Intel® MPI Library provides loadable shared library modules to provide native
support for the following file I/O systems:

• Panasas* ActiveScale* File System (PanFS)
• Parallel Virtual File System*, Version 2 (Pvfs2)

Set the I_MPI_EXTRA_FILESYSTEM environment variable to on to enable parallel file
system support. Set the I_MPI_EXTRA_FILESYSTEM_LIST environment variable to
request native support for the specific file system. For example, to request the native
support for the Panasas* ActiveScale* File System, do the following:

mpiexec –env I_MPI_EXTRA_FILESYSTEM on –env I_MPI_EXTRA_FILESYSTEM_LIST

panfs –n 4 ./myprog

Back to Table of Contents

5.10.1 How to Use the Environment Variables
I_MPI_EXTRA_FILESYSTEM and
I_MPI_EXTRA_FILESYSTEM_LIST

The environment variable I_MPI_EXTRA_FILESYSTEM is used to enable parallel I/O
file system support. The general syntax for this environment variable is:

I_MPI_EXTRA_FILESYSTEM=<value>

where <value> can be:

Value Meaning
enable or yes or on or 1 Turn on native support for a parallel file I/O

system
disable or no or off or 0 Turn off native support for a parallel file I/O

system. This is the default setting.

In conjunction with the I_MPI_EXTRA_FILESYSTEM environment variable, the
environment variable I_MPI_EXTRA_FILESYSTEM_LIST will control which file I/O
system or systems are used. In general, the syntax for the
I_MPI_EXTRA_FILESYSTEM_LIST environment variable is:

 Intel Corporation Document Number: 325977-001EN 54

54

I_MPI_EXTRA_FILESYSTEM_LIST=<file-system1>[,<file-system2>,<file-

system3>, … , <file-systemn>]

where <file-systemi> can be:

File I/O System <file-systemi> Meaning
panfs Panasas* ActiveScale* File system
Pvfs2 Parallel Virtual File System, Version 2

The mpiexec and mpirun commands associated with Intel® MPI Library will load the
shared I/O libraries associated with the I_MPI_EXTRA_FILESYSTEM_LIST environment
variable. As mentioned previously, you must use the environment variables
I_MPI_EXTRA_FILESYSTEM and I_MPI_EXTRA_FILESYSTEM_LIST together.

For a complete discussion on how to use the environment variables
I_MPI_EXTRA_FILESYSTEM and I_MPI_EXTRA_FILESYSTEM_LIST, see the Extended
File System Support section of the Intel MPI Library for Linux* OS Reference Manual
located in <directory-path-to-Intel-MPI-Library>/doc/Reference_Manual.pdf.

To make inquiries about Intel MPI Library, visit the URL: http://premier.intel.com.

Back to Table of Contents

http://premier.intel.com/�

 Intel Corporation Document Number: 325977-001EN 55

55

6. Interoperability of Intel®
MPI Library with the Intel®
Debugger (IDB)

As mentioned previously (for example, Figure 2.1), components of the Intel Cluster
Studio XE will now work with the Intel® Debugger. The Intel Debugger is a parallel
debugger with the following software architecture (Figure 6.1):

Figure 6.1 – The Software Architecture of the Intel Debugger

Aggregator
0:3

Aggregator
4:7

Aggregator
8:11

Aggregator
12:15

Aggregator
0:15

Intel®
Debugger

User
Interface

User Program
Process U0

idb
Process L0

User Program
Process U7

idb
Process L4

User Program
Process U11

idb
Process L8

idb
Process L11

User Program
Process U15

Branching factor for this
example is 4

(Default branching factor is 8)

 Intel Corporation Document Number: 325977-001EN 56

56

With respect to Figure 6.1, there is a user interface to a root debugger. This is
demonstrated at the bottom of Figure 6.1. The root debugger communicates with a
tree of parallel debuggers. These are the leaf nodes at the top of the illustration.
There are aggregation capabilities for consolidating debug information. This is done
through the aggregators in Figure 6.1.

All processes with the same output are aggregated into a single and final output
message. For example, the following message represents 42 MPI processes:

[0-41] Linux Application Debugger for Xeon(R)-based applications,
Version XX

Diagnostics which have different hexadecimal digits, but are otherwise identical, are
condensed by aggregating the differing digits into a range. As an example:

[0-41]>2 0x120006d6c in
feedback(myid=[0;41],np=42,name=0x11fffe018="mytest") "mytest.c":41

Back to Table of Contents

6.1 Login Session Preparations for Using Intel®
Debugger on Linux* OS

The debugger executable for the Intel Debugger is called idb. In the 11.1 version of
the Intel® Debugger, the idb command invokes the GUI. Alternatively for the 11.1
version of Intel® Debugger, to get the command-line interface, use idbc. You
should follow three steps in preparing your login session to use the Intel Debugger.

1. The Intel® IDB Debugger graphical environment is a Java* application and

requires a Java* Runtime Environment* (JRE*) to execute. The debugger will run
with a version 5.0 (also called 1.5) JRE.

Install the JRE according to the JRE provider's instructions.

Finally you need to export the path to the JRE as follows:

export PATH=<path_to_JRE_bin_DIR>:$PATH export

2. Set the environment variable IDB_HOME to the folder path where the Intel

Debugger executable, idb, resides. Also, you will need to source either
idbvars.sh or idbvars.csh through ifortvars.[c]sh or iccvars.[c]sh
depending on which command-line shell you are using. For example in
augmenting your .bashrc file for the Bourne* Shell or the Korn* Shell, you can
source the Intel® C++ Compiler XE file called iccvars.sh or the Intel® Fortran
Compiler XE file ifortvars.sh which are located within the bin directory of the

 Intel Corporation Document Number: 325977-001EN 57

57

Intel® Compiler XE installation directory on your system. Regarding your
.bashrc file, the Bourne Shell or the Korn Shell sourcing syntax might look
something like the following for Intel® 64 architecture:

. /opt/intel/composer_xe_2011_sp1.6.061/bin/iccvars.sh intel64
export IDB_HOME=/opt/intel/composer_xe_2011_sp1.6.061/bin/intel64

or

. /opt/intel/composer_xe_2011_sp1.6.061/bin/ifortvars.sh intel64
export IDB_HOME=/opt/intel/composer_xe_2011_sp1.6.061/bin/intel64

For augmenting your .cshrc file, the C Shell syntax should be something like:

source /opt/intel/composer_xe_2011_sp1.6.061/bin/iccvars.csh intel64
setenv IDB_HOME /opt/intel/composer_xe_2011_sp1.6.061/bin/intel64

or

source /opt/intel/composer_xe_2011_sp1.6.061/bin/ifortvars.csh intel64
setenv IDB_HOME /opt/intel/composer_xe_2011_sp1.6.061/bin/intel64

Depending on the Intel® architecture, the argument to iccvars.[c]sh and
ifortvars.[c]sh can be ia32, or intel64. Sourcing iccvars.[c]sh or
ifortvars.[c]sh will update the PATH and MANPATH environment variables also.

3. Edit the ~/.rhosts file in your home directory so that it contains the list of nodes

that comprise the cluster. Recall the contents of a file called machines.LINUX,
where a contrived cluster consisting of eight nodes might be:

clusternode1
clusternode2
clusternode3
clusternode4
clusternode5
clusternode6
clusternode7
clusternode8

For example, assuming that the names listed above make up your cluster, they
could be added to your ~/.rhosts file with the following general syntax:

<hostname as echoed by the shell command hostname> <your username>

For the list of nodes above and assuming that your login name is user01, the
contents of your ~/.rhosts file might be:

clusternode1 user01
clusternode2 user01
clusternode3 user01

 Intel Corporation Document Number: 325977-001EN 58

58

clusternode4 user01
clusternode5 user01
clusternode6 user01
clusternode7 user01
clusternode8 user01

The permission bit settings of ~/.rhosts should be set to 600 using the chmod
command. The shell command for doing this might be:

chmod 600 ~/.rhosts

Once you complete the three steps above, you are ready to use the Intel Debugger.
The general syntax for using the Intel Debugger with Intel MPI Library is as follows:

mpiexec -idb –genv MPIEXEC_DEBUG 1 -n <number of processes> [other
Intel MPI options] <executable> [arguments to the executable]

The environment variable MPIEXEC_DEBUG needs to be referenced so that MPI
processes will suspend their execution to wait for the debuggers to attach to them.
For the command-line example above, the –genv command-line option sets the
environment variable MPIEXEC_DEBUG for all MPI processes. In general, the global
environment variable command line switch –genv has the syntax:

–genv <environment variable> <value>

where <environment variable> is a meta-symbol that is a stand-in for a relevant
environment variable, and <value> is a stand-in for setting an appropriate value for
the preceding environment variable name.

For the contents of the directory test_intel_mpi that was described in Chapter 5,
there should be the four source files:

test.c test.cpp test.f test.f90

Compile the test applications into executables using the following commands:

mpiifort –g test.f -o testf
mpiifort –g test.f90 -o testf90
mpiicc –g test.c -o testc
mpiicpc –g test.cpp -o testcpp

You can issue mpiexec commands that might look something like the following:

mpiexec –idb –genv MPIEXEC_DEBUG 1 -n 4 ./testf
mpiexec –idb –genv MPIEXEC_DEBUG 1 -n 4 ./testf90
mpiexec –idb –genv MPIEXEC_DEBUG 1 -n 4 ./testc
mpiexec –idb –genv MPIEXEC_DEBUG 1 -n 4 ./testcpp

The commands above are using four MPI processes. Figure 6.2 shows what the
debug session might look like after issuing the shell command:

 Intel Corporation Document Number: 325977-001EN 59

59

mpiexec –idb –genv MPIEXEC_DEBUG 1 -n 4 ./testcpp

In Figure 6.2, the debugger stops the testcpp application at the C++ method
MPI::Init(argc, argv).

Figure 6.2 – idb session for the executable called testc

 Intel Corporation Document Number: 325977-001EN 60

60

NOTE: The user interface for idb is gdb*-compatible by default. To see where the

MPI application is with respect to execution, you can type the IDB command
called where after the prompt (idb) in Figure 6.2. This will produce a call
stack something like what is shown in Figure 6.3.

 Intel Corporation Document Number: 325977-001EN 61

61

Figure 6.3 – The application call stack after typing the IDB command where

The C++ application has the source file name test.cpp and according to the IDB
debugger stack trace, the line referenced in test.cpp is line 29. If you would like to
use a text editor to look at test.cpp, you can modify the debugging user interface
from the default which is gdb* to that if idb by typing the debug command:

set $cmdset = "idb"

You can then type the command:

edit +29 test.cpp

in Figure 6.3 and the result will be something like that shown in Figure 6.4. Line 29
of test.cpp is the MPI library call to Init. The edit session in Figure 6.4 is using the
vi editor. In general, the editor that is invoked is a function of the EDITOR
environment variable.

 Intel Corporation Document Number: 325977-001EN 62

62

Figure 6.4 – Launching of an edit session from the Intel Debugger

You can use the command :q! to close the vi edit session. This is demonstrated in
Figure 5.5.

 Intel Corporation Document Number: 325977-001EN 63

63

Figure 6.5 – Terminating the vi editing session using the command :q!

The "run" command is disabled in MPI debugging. To continue the execution of the
MPI application, use “cont”. If you proceed to type the word cont after the (idb)
prompt shown at the bottom of Figure 6.6, then debugging session results that might
look something like that shown in Figure 6.7 will appear. Also, “Hello world”
messages will appear in the login session where the mpiexec command was issued.

 Intel Corporation Document Number: 325977-001EN 64

64

Figure 6.6 – Returning control back to IDB after terminating the editing
session

The four MPI processes for the example in Figure 6.7 are labeled 0 to 3.

 Intel Corporation Document Number: 325977-001EN 65

65

Figure 6.7 – State of the IDB session as a result of issuing the IDB command
cont

You can type the word quit to end the IDB debug session, and therefore close the
display shown in Figure 6.7.

The rerun command is not supported within IDB. To rerun MPI application with the
IDB debugger, quit IDB and then re-enter the mpiexec command.

For a complete discussion on how to use the Intel Debugger (9.1.x or greater), see
the contents of the Intel Debugger (IDB) Manual located in <directory-path-to-
Intel-
composerxe>/Documentation/en_US/debugger/debugger_documentation.htm on
your computing system.

To make inquiries about the Intel Debugger, visit the URL: http://premier.intel.com.

Back to Table of Contents

http://premier.intel.com/�

 Intel Corporation Document Number: 325977-001EN 66

66

7. Working with the Intel®
Trace Analyzer and Collector
Examples

In the folder path where Intel® Trace Analyzer and Collector reside, there is a folder
called examples. The folder path where the examples directory resides might be
something like:

/opt/intel/icsxe/2012.0.037/itac/examples

If you copy the examples folder into a work area which is accessible by all of the
nodes of the cluster, you might try the following sequence of commands:

gmake distclean

gmake all

This set of commands will respectively clean up the folder content and compile and
execute the following C and Fortran executables:

vnallpair
vnallpairc
vnjacobic
vnjacobif
vtallpair
vtallpairc
vtcounterscopec
vtjacobic
vtjacobif

If you select the executable vtjacobic and run it with the following environment
variable setting:

setenv VT_LOGFILE_PREFIX vtjacobic_inst

where the mpiexec command uses four processes as shown:

mpiexec -n 4 ./vtjacobic

then the trace data will be placed into the folder vtjacobic_inst. The contents of
vtjacobic_inst will look something like the following:

. vtjacobic.stf.dcl vtjacobic.stf.msg.anc
.. vtjacobic.stf.frm vtjacobic.stf.pr.0
vtjacobic.prot vtjacobic.stf.gop vtjacobic.stf.pr.0.anc
vtjacobic.stf vtjacobic.stf.gop.anc vtjacobic.stf.sts

 Intel Corporation Document Number: 325977-001EN 67

67

vtjacobic.stf.cache vtjacobic.stf.msg

when the command:

ls –aC --width=80 vtjacobic_inst

is used. If you run the Intel Trace Analyzer with the command:

traceanalyzer vtjacobic_inst/vtjacobic.stf

the following display panel will appear (Figure 7.1):

Figure 7.1 - Intel Trace Analyzer Display for vtjacobic.stf

Figure 7.2 shows the Event Timeline display which results when following the menu
path Charts->Event Timeline within Figure 7.1.

 Intel Corporation Document Number: 325977-001EN 68

68

Figure 7.2 - Intel Trace Analyzer Display for vtjacobic.stf using Charts-
>Event Timeline

You can use the trace analyzer to view the contents of the other *.stf files in this
working directory on your cluster system.

Back to Table of Contents

7.1 Experimenting with Intel® Trace Analyzer and
Collector in a Fail-Safe Mode

There may be situations where an application will end prematurely; thus trace data
could be lost. The Intel Trace Collector has a trace library that works in a fail-safe
mode. An example shell command-line syntax for linking such a library is:

mpiicc test.c -o testc_fs -L${VT_LIB_DIR} -lVTfs ${VT_ADD_LIBS}

 Intel Corporation Document Number: 325977-001EN 69

69

where the special Intel Trace Collector Library for fail-safe (acronym fs) tracing is –
lVTfs.

In case of execution failure by the application, the fail-safe library freezes all MPI
processes and then writes out the trace file. Figure 7.3 shows an Intel Trace Analyzer
display for test.c.

Figure 7.3 – Intel Trace Analyzer display of Fail-Safe Trace Collection by
Intel Trace Collector

Regarding -lVTfs library, see the Intel Trace Collector user documentation by
viewing the file:

<directory-path-to-ITAC>/doc/ITC_Reference_Guide.pdf

on the system where the Intel Trace Collector is installed. You can use vtfs as a
search phrase within the documentation.

 Intel Corporation Document Number: 325977-001EN 70

70

Back to Table of Contents

7.2 Using itcpin to Instrument an Application
The itcpin utility is a binary instrumentation tool that comes with Intel Trace
Analyzer and Collector. The Intel® architectures must be IA-32, or Intel® 64.

The basic syntax for instrumenting a binary executable with the itcpin utility is as
follows:

itcpin [<ITC options>] -- <application command line>

where -- is a delimiter between Intel® Trace Collector (ITC) options and the
application command-line.

The <ITC options> that will be used are:

--run (off)

 itcpin only runs the given executable if this option is used.
 Otherwise it just analyzes the executable and prints configurable
 information about it.

--insert

Intel Trace Collector has several libraries that can be used to do different
kinds of tracing. An example library value could be VT which is the Intel
Trace Collector Library. This is the default instrumentation library.

To obtain a list of all of the options, type:

itcpin -–help

To demonstrate the use of itcpin, you can compile a C programming language
example for calculating the value of pi where the application uses the MPI parallel
programming paradigm. You can download the C source from the URL:

http://www.nccs.gov/wp-content/training/mpi-examples/C/pical.c

For the pi.c example, the following shell commands will allow you to instrument the
binary called pi.exe with Intel Trace Collector instrumentation. The shell commands
before and after the invocation of itcpin should be thought of as prolog and epilog
code to aid in the use of the itcpin utility.

mpiicc -o pi.exe pi.c
setenv VT_LOGFILE_FORMAT STF
setenv VT_PCTRACE 5
setenv VT_LOGFILE_PREFIX ${PWD}/itcpin_inst
setenv VT_PROCESS "0:N ON"

http://www.nccs.gov/wp-content/training/mpi-examples/C/pical.c�

 Intel Corporation Document Number: 325977-001EN 71

71

rm -rf ${VT_LOGFILE_PREFIX}
mkdir ${VT_LOGFILE_PREFIX}
mpiexec –n 4 itcpin --run -- pi.exe

The shell commands above could be packaged into a C Shell script. An explanation
for the instrumentation environment variables can be found in the Intel Trace
Collector Users’ Guide under the search topic “ITC Configuration”.

Figure 7.4 shows the timeline and function panel displays that are generated from
the instrumentation data that is stored into the directory ${PWD}/itcpin_inst as
indicated by the environment variable VT_LOGFILE_PREFIX. The command that
initiated the Intel Trace Analyzer with respect to the directory ${PWD} is:

traceanalyzer itcpin_inst/pi.exe.stf &

Figure 7.4 – Intel Trace Analyzer display of the “pi” integration application

that has been binary instrumented with itcpin

 Intel Corporation Document Number: 325977-001EN 72

72

Complete user documentation regarding the itcpin utility for the Intel Trace
Collector can be found within the file:

<directory-path-to-ITAC>/doc/ITC_Reference_Guide.pdf

on the system where the Intel Trace Collector is installed. You can use itcpin as a
search phrase within the documentation. To make inquiries about the Intel Trace
Analyzer, visit the URL: http://premier.intel.com.

Back to Table of Contents

7.3 Experimenting with Intel® Trace Analyzer and
Collector in Conjunction with the LD_PRELOAD
Environment Variable

There is an environment variable called LD_PRELOAD which can be initialized to
reference instrumentation libraries. LD_PRELOAD instructs the operating system
loader to load additional libraries into a program, beyond what was specified when it
was initially compiled. In general, this environment variable allows users to add or
replace functionality such as inserting performance tuning instrumentation. For
Bourne* Shell or Korn* Shell, the syntax for setting the LD_PRELOAD environment
variable to instrument with Intel Trace Collector might be:

export LD_PRELOAD="libVT.so:libdl.so"

For C Shell, the syntax might be:

setenv LD_PRELOAD "libVT.so:libdl.so"

For the pi.c example, the following shell commands will allow you to use the
LD_PRELOAD environment variable to instrument a binary with Intel Trace Collector
instrumentation.

mpiicc -o pi.exe pi.c
setenv VT_PCTRACE 5
setenv VT_LOGFILE_PREFIX ${PWD}/ld_preload_inst
setenv VT_PROCESS "0:N ON"
setenv LD_PRELOAD "libVT.so:libdl.so"
rm -rf ${VT_LOGFILE_PREFIX}
mkdir ${VT_LOGFILE_PREFIX}
mpiexec -n 4 ./pi.exe 1000000

As mentioned previously, the shell commands above could be packaged into a C
Shell script. The mpiexec command uses four MPI processes and the value of
1,000,000 indicates the number of intervals that will be used in the calculation of
“pi”. Figure 7.5 shows the timeline and function panel displays that are generated
from the instrumentation data that was stored in the directory

http://premier.intel.com/�

 Intel Corporation Document Number: 325977-001EN 73

73

${PWD}/ld_preload_inst as indicated by the environment variable
VT_LOGFILE_PREFIX. The command that initiated the Intel Trace Analyzer with
respect to the directory ${PWD} is:

traceanalyzer ld_preload_inst/pi.exe.instr.stf &

Figure 7.5 – Intel Trace Analyzer display of the “pi” integration application
that has been instrumented through the LD_PRELOAD environment variable

Complete user documentation regarding the LD_PRELOAD environment variable for
the Intel Trace Collector can be found within the file:

<directory-path-to-ITAC>/doc/ITC_Reference_Guide.pdf

on the system where the Intel Trace Collector is installed. You can use LD_PRELOAD
as a search phrase within the documentation. To make inquiries about LD_PRELOAD in
conjunction with Intel Trace Analyzer and Collector, visit the
URL: http://premier.intel.com.

http://premier.intel.com/�

 Intel Corporation Document Number: 325977-001EN 74

74

Back to Table of Contents

7.4 Experimenting with Intel® Trace Analyzer and
Collector in Conjunction with PAPI* Counters

The counter analysis discussion that follows assumes that a PAPI* library is installed
on the cluster system. PAPI is an acronym for Performance API and it serves to
gather information regarding performance counter hardware. Details can be found at
the URL:

http://icl.cs.utk.edu/papi/

This discussion assumes that the PAPI library is installed in a directory path such as
/usr/local/papi. In the examples directory for Intel Trace Analyzer and Collector,
there is a subfolder called poisson. Using root privileges, the library called
libVTsample.a needs to be configured in the lib directory of Intel Trace Analyzer and
Collector so that PAPI instrumentation can be captured through the Intel Trace
Analyzer and Collector. The library path for the Intel Trace Analyzer and Collector
might be something like:

${VT_ROOT}/lib

In this directory, a system administrator can use the following gmake command to
create the libVTsample.a library:

export PAPI_ROOT=/usr/local
gmake all

The environment variable PAPI_ROOT is used by the makefile to formulate the path to
${PAPI_ROOT}/include which is a directory that contains PAPI header files. When
the libVTsample.a library is built, the Poisson example can be linked with PAPI
instrumentation as follows:

gmake MPI_HOME=${I_MPI_ROOT} make_dir=./ LIB_PATH="" LIBS="-
L${VT_ROOT}/lib –lVTsample –lVT –L${PAPI_ROOT}/papi/lib –lpapi
${VT_ADD_LIBS}"

The shell commands for running the poisson application might be the following:

rm -rf ${PWD}/papi_inst
mkdir ${PWD}/papi_inst
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${PAPI_ROOT}/papi/lib
setenv VT_LOGFILE_PREFIX ${PWD}/papi_inst
setenv VT_CONFIG ${PWD}/vtconfig
mpiexec -n 16 ./poisson

http://icl.cs.utk.edu/papi/�

 Intel Corporation Document Number: 325977-001EN 75

75

The Intel Trace Collector configuration file which is called vtconfig for the above
example contains the following PAPI counter selection:

COUNTER PAPI_L1_DCM ON

This PAPI counter directive is for L1 data cache misses. The general syntax for
counter directives is:

COUNTER <name of counter> ON

The value of ON indicates that this particular hardware counter is to be monitored by
Intel Trace Collector. The names of the PAPI hardware counters can be found in the
folder path ${PAPI_ROOT}/include/papiStdEventDefs.h on the system where the
PAPI library is installed.

Figure 7.6 illustrates a maximized view for the Counter Timeline Chart and the
Function Profile Chart that were generated from the instrumentation data that was
stored in the directory ${PWD}/papi_inst as indicated by the environment variable
VT_LOGFILE_PREFIX. The command that initiated the Intel Trace Analyzer with
respect to the directory ${PWD} was:

traceanalyzer papi_inst/poisson.stf &

 Intel Corporation Document Number: 325977-001EN 76

76

Figure 7.6 – A maximized view for the Counter Timeline Chart and the
Function Profile Chart

NOTE: In the Counter Timeline Chart in Figure 7.6 that the PAPI counter

PAPI_L1_DCM appears as a label in the right margin.

In general, the shell syntax for compiling the Intel MPI Library test files called
test.c, test.cpp, test.f, and test.f90 with the PAPI interface involves the link
options that look something like:

-L${VT_LIB_DIR} -lVTsample -lVT –L${PAPI_ROOT}/papi/lib -lpapi
${VT_ADD_LIBS}

The compilation commands are:

mpiicc test.c -o testc -L${VT_LIB_DIR} -lVTsample -lVT –
L${PAPI_ROOT}/papi/lib -lpapi ${VT_ADD_LIBS}

 Intel Corporation Document Number: 325977-001EN 77

77

mpiicpc test.cpp -o testcpp -L${VT_LIB_DIR} -lVTsample -lVT -
L${PAPI_ROOT}/papi/lib -lpapi ${VT_ADD_LIBS}

mpiifort test.f -o testf -L${VT_LIB_DIR} -lVTsample -lVT -
L${PAPI_ROOT}/papi/lib -lpapi ${VT_ADD_LIBS}

mpiifort test.f90 -o testf90 -L${VT_LIB_DIR} -lVTsample -lVT -
L${PAPI_ROOT}/papi/lib -lpapi ${VT_ADD_LIBS}

On Linux OS, complete user documentation regarding PAPI hardware counters for
the Intel Trace Collector can be found within the file:

<directory-path-to-ITAC>/doc/ITC_Reference_Guide.pdf

on the system where the Intel Trace Collector is installed. You can use PAPI as a
search phrase within the documentation. To make inquiries about PAPI in
conjunction with the Intel Trace Analyzer and Collector, visit the
URL: http://premier.intel.com.

Back to Table of Contents

7.5 Experimenting with the Message Checking
Component of Intel® Trace Collector

Intel Trace Collector environment variables which should be useful for message
checking are:

VT_DEADLOCK_TIMEOUT <delay>, where <delay> is a time value. The default value is
1 minute and the notation for the meta-symbol <delay> could be 1m. This controls
the same mechanism to detect deadlocks as in libVTfs which is the fail-safe library.
For interactive use it is recommended to set it to a small value like “10s” to detect
deadlocks quickly without having to wait long for the timeout.

VT_DEADLOCK_WARNING <delay> where <delay> is a time value. The default value is
5 minutes and the notation for the meta-symbol <delay> could be 5m. If on average
the MPI processes are stuck in their last MPI call for more than this threshold, then a
GLOBAL:DEADLOCK:NO PROGRESS warning is generated. This is a sign of a load
imbalance or a deadlock which cannot be detected because at least one process polls
for progress instead of blocking inside an MPI call.

VT_CHECK_TRACING <on | off>. By default, during correctness checking with
libVTmc no events are recorded and no trace file is written. This option enables
recording of all events also supported by the normal libVT and the writing of a trace
file. The trace file will also contain the errors found during the run.

On Linux OS, complete user documentation regarding the message checking feature
for the Intel Trace Collector can be found within the file:

http://premier.intel.com/�

 Intel Corporation Document Number: 325977-001EN 78

78

<directory-path-to-ITAC>/doc/ITC_Reference_Guide.pdf

The chapter title is called “Correctness Checking”.

An MPI application can be instrumented in four ways with the message checking
library.

1) Compile the application with a static version of the message checking library:

mpiicc deadlock.c -o deadlock_static.exe -g -L ${VT_LIB_DIR} -lVTmc
${VT_ADD_LIBS}

mpiexec -genv VT_CHECK_TRACING on -genv VT_DEADLOCK_TIMEOUT 20s -genv
VT_DEADLOCK_WARNING 25s -n 2 ./deadlock_static.exe 0 80000

2) Compile the application with a shared object version of the message checking

library:

mpiicc deadlock.c -o deadlock_shared.exe -g -L ${VT_SLIB_DIR} -lVTmc
${VT_ADD_LIBS}

mpiexec -genv VT_CHECK_TRACING on -genv VT_DEADLOCK_TIMEOUT 20s -genv
VT_DEADLOCK_WARNING 25s -n 2 ./deadlock_shared.exe 0 80000

NOTE: The library path for the Intel® C++ Compiler will vary from version to

version.

3) Use the itcpin command:

mpiicc deadlock.c -o deadlock.exe –g

mpiexec -genv VT_CHECK_TRACING on -genv VT_DEADLOCK_TIMEOUT 20s -genv
VT_DEADLOCK_WARNING 25s –n 2 itcpin --insert libVTmc.so -–run --
./deadlock.exe 0 80000

4) Use the LD_PRELOAD environment variable with the mpiexec command. An

example might be:

mpiicc deadlock.c -o deadlock.exe –g

mpiexec -genv VT_CHECK_TRACING on -genv LD_PRELOAD libVTmc.so -genv
VT_DEADLOCK_TIMEOUT 20s -genv VT_DEADLOCK_WARNING 25s -n 2
./deadlock.exe 0 80000

There is a sub-directory of the examples directory called checking. The checking
directory has the following contents:

global/ GNUmakefile local/ misc/

 Intel Corporation Document Number: 325977-001EN 79

79

The GNUmakefile has targets all, clean, print, and run, where all is the default.
After typing gmake, one can type the command:

gmake run

The output error diagnostics for the command above will be sent to stderr. If you
wish to retain the output into a file, the results for stderr can be directed to a file.

Each leaf sub-folder contains a source file and an “*.ref.out” file which can be used
as a point of reference for the expected diagnostics that the message checking
component of the Intel® Trace Collector should capture. For example, if you search
the global sub-directory, you will find a folder path of the following form:

global/collective/datatype_mismatch/

The contents of the leaf directory consist of:

MPI_Bcast.c MPI_Bcast.ref.out

The file MPI_Bcast.ref.out has diagnostic information that looks something like the
following:

…
[0] INFO: initialization completed successfully

[0] ERROR: GLOBAL:COLLECTIVE:DATATYPE:MISMATCH: error
[0] ERROR: Mismatch found in local rank [1] (global rank [1]),
[0] ERROR: other processes may also be affected.
[0] ERROR: No problem found in local rank [0] (same as global rank):
[0] ERROR: MPI_Bcast(*buffer=0x7fbfffe9f0, count=1, datatype=MPI_INT,
root=0, comm=MPI_COMM_WORLD)
[0] ERROR: main (global/collective/datatype_mismatch/MPI_Bcast.c:50)
[0] ERROR: 1 elements transferred by peer but 4 expected by
[0] ERROR: the 3 processes with local ranks [1:3] (same as global ranks):
[0] ERROR: MPI_Bcast(*buffer=0x7fbfffe9f4, count=4, datatype=MPI_CHAR,
root=0, comm=MPI_COMM_WORLD)
[0] ERROR: main (global/collective/datatype_mismatch/MPI_Bcast.c:53)

[0] INFO: GLOBAL:COLLECTIVE:DATATYPE:MISMATCH: found 1 time (1 error + 0
warnings), 0 reports were suppressed
[0] INFO: Found 1 problem (1 error + 0 warnings), 0 reports were suppressed.

For the text above, there are error messages of the form:

[0] ERROR: main (global/collective/datatype_mismatch/MPI_Bcast.c:50)

and

[0] ERROR: main (global/collective/datatype_mismatch/MPI_Bcast.c:53)

 Intel Corporation Document Number: 325977-001EN 80

80

These error messages refer to the line number 50 and 53 respectively in the source
file MPI_Bcast.c:

…
 39 int main (int argc, char **argv)
 40 {
 41 int rank, size;
 42
 43 MPI_Init(&argc, &argv);
 44 MPI_Comm_size(MPI_COMM_WORLD, &size);
 45 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 46
 47 /* error: types do not match */
 48 if(!rank) {
 49 int send = 0;
 50 MPI_Bcast(&send, 1, MPI_INT, 0, MPI_COMM_WORLD);
 51 } else {
 52 char recv[4];
 53 MPI_Bcast(&recv, 4, MPI_CHAR, 0, MPI_COMM_WORLD);
 54 }
 55
 56 MPI_Finalize();
 57
 58 return 0;
 59 }

At lines 52 and 53, adjustments can be made to the source which would look
something like the following:

 52 int recv[4];
 53 MPI_Bcast(&recv, 1, MPI_INT, 0, MPI_COMM_WORLD);

The modifications are to change the data-type definition for the object “recv” at line
52 from char to int, and at line 53, the third argument which is the MPI data-type is
modified from MPI_CHAR to MPI_INT.

Upon doing this and following a process of recompiling and re-running the application
will generate the following:

…

[0 Thu Mar 26 19:53:34 2009] INFO: Error checking completed without
finding any problems.

…

This indicates the message checking errors that were originally encountered have
been eliminated for this example.

 Intel Corporation Document Number: 325977-001EN 81

81

At the URL:

http://www.shodor.org/refdesk/Resources/Tutorials/BasicMPI/deadlock.c

one can obtain the source to an MPI example using C bindings that demonstrates
deadlock.

When issuing the mpiexec command with the LD_PRELOAD environment variable:

mpiexec -genv VT_CHECK_TRACING on -genv VT_LOGFILE_PREFIX
/shared/scratch/test_correctness_checking/inst -genv LD_PRELOAD
libVTmc.so -genv VT_DEADLOCK_TIMEOUT 20s -genv VT_DEADLOCK_WARNING 25s
-n 2 ./deadlock.exe 0 80000

diagnostic messages that look something like the following are generated.

…
0/2: receiving 80000

1/2: receiving 80000
[0] ERROR: no progress observed in any process for over 0:29 minutes,
aborting application
[0] WARNING: starting premature shutdown

[0] ERROR: GLOBAL:DEADLOCK:HARD: fatal error
[0] ERROR: Application aborted because no progress was observed for
over 0:29 minutes,
[0] ERROR: check for real deadlock (cycle of processes waiting for
data) or
[0] ERROR: potential deadlock (processes sending data to each other
and getting blocked
[0] ERROR: because the MPI might wait for the corresponding
receive).
[0] ERROR: [0] no progress observed for over 0:29 minutes, process
is currently in MPI call:
[0] ERROR: MPI_Recv(*buf=0x7fbf9e4740, count=800000,
datatype=MPI_INT, source=1, tag=999, comm=MPI_COMM_WORLD,
*status=0x7fbfffef40)
[0] ERROR: main
(/shared/scratch/test_correctness_checking/deadlock.c:49)
[0] ERROR: (/lib64/tls/libc-2.3.4.so)
[0] ERROR:
(/shared/scratch/test_correctness_checking/deadlock.exe)
[0] ERROR: [1] no progress observed for over 0:29 minutes, process
is currently in MPI call:
[0] ERROR: MPI_Recv(*buf=0x7fbf9e4740, count=800000,
datatype=MPI_INT, source=0, tag=999, comm=MPI_COMM_WORLD,
*status=0x7fbfffef40)

http://www.shodor.org/refdesk/Resources/Tutorials/BasicMPI/deadlock.c�

 Intel Corporation Document Number: 325977-001EN 82

82

12 [0] ERROR: main
(/shared/scratch/test_correctness_checking/deadlock.c:49)

13 [0] ERROR: (/lib64/tls/libc-2.3.4.so)

14 [0] ERROR:
(/shared/scratch/test_correctness_checking/deadlock.exe)

15

16 [0] INFO: GLOBAL:DEADLOCK:HARD: found 1 time (1 error + 0
warnings), 0 reports were suppressed

17 [0] INFO: Found 1 problem (1 error + 0 warnings), 0 reports were
suppressed.

The compiler option -g inserts debug information that allows one to map from the
executable back to the source code. Because the environment variable
VT_CHECK_TRACING was set for the mpiexec command, trace information was placed
into the directory referenced by VT_LOGFILE_PREFIX which for the example
command-line:

mpiexec -genv VT_CHECK_TRACING on -genv VT_LOGFILE_PREFIX
/shared/scratch/test_correctness_checking/inst -genv LD_PRELOAD
libVTmc.so -genv VT_DEADLOCK_TIMEOUT 20s -genv VT_DEADLOCK_WARNING 25s
-n 2 ./deadlock.exe 0 80000

is /shared/scratch/test_correctness_checking/inst.

You can use the Intel® Trace Analyzer to view the deadlock problem that was
reported in the output listing above. Here is what the trace information might look
like (Figure 7.7):

 Intel Corporation Document Number: 325977-001EN 83

83

Figure 7.7 – Event Timeline illustrating an error as signified by the black
circle

For the event timeline chart, errors and warnings are represented by yellow-
bordered circles (Figure 7.7). The color of each circle depends on the type of the
particular diagnostic. If there is an error the circle will be filled in with a black
coloring. If there is a warning, the circle will be filled in with a gray coloring.

For Figure 7.7, error messages and warnings can be suppressed by using a context
menu. A context menu will appear if you right click the mouse as shown in Figure 7.8
and follow the path Show->Issues. If you uncheck the Issues item, the black and
gray circles will clear.

 Intel Corporation Document Number: 325977-001EN 84

84

Figure 7.8 – Context menu that can be used to suppress “Issues”. This is
done by un-checking the “Issues” item

You can determine what source line is associated with an error message by using the
context menu and selecting Details on Function. This will generate the following
Details on Function panel (Figure 7.9):

 Intel Corporation Document Number: 325977-001EN 85

85

Figure 7.9 – Illustration of the Detail on Function panel. The Show Source
tab is the first item on the left

If you click on the Show Source tab in Figure 7.9, you will ultimately reach a source
file panel such as what is demonstrated in Figure 7.10.

 Intel Corporation Document Number: 325977-001EN 86

86

Figure 7.10 – The source panel display which shows the line in the user’s
source where deadlock has taken place.

The diagnostic text messages and the illustration in Figure 7.10 reference line 49 of
deadlock.c looks something like the following:

 Intel Corporation Document Number: 325977-001EN 87

87

…

 49 MPI_Recv (buffer_in, MAX_ARRAY_LENGTH, MPI_INT, other,
999,
 50 MPI_COMM_WORLD, &status);
 51 MPI_Send (buffer_out, messagelength, MPI_INT, other, 999,
 52 MPI_COMM_WORLD);

…

This is illustrated in Figure 7.11. To avoid deadlock situations, one might be able to
resort to the following solutions:

1. Use a different ordering of MPI communication calls between processes
2. Use non-blocking calls
3. Use MPI_Sendrecv or MPI_Sendrecv_replace
4. Buffered mode

The If-structure for the original program looks something like the following:

…
 41 if (sendfirst) {
 42 printf ("\n%d/%d: sending %d\n", rank, size, messagelength);
 43 MPI_Send (buffer_out, messagelength, MPI_INT, other, 999, MPI_COMM_WORLD);
 44 MPI_Recv (buffer_in, MAX_ARRAY_LENGTH, MPI_INT, other, 999,
 45 MPI_COMM_WORLD, &status);
 46 printf ("\n%d/%d: received %d\n", rank, size, messagelength);
 47 } else {
 48 printf ("\n%d/%d: receiving %d\n", rank, size, messagelength);
 49 MPI_Recv (buffer_in, MAX_ARRAY_LENGTH, MPI_INT, other, 999,
 50 MPI_COMM_WORLD, &status);
 51 MPI_Send (buffer_out, messagelength, MPI_INT, other, 999,
 52 MPI_COMM_WORLD);
 33 printf ("\n%d/%d: sendt %d\n", rank, size, messagelength);
 54 }

…

MPI_Recv

MPI_Send

MPI_Recv

MPI_Send

Process 0 Process 1

Figure 7.11 – Cycle illustration for processes 0 and 1 when
executing source lines 49 and 43 within application deadlock.c

 Intel Corporation Document Number: 325977-001EN 88

88

If you replace lines 43 to 44 and lines 49 to 52 with calls to MPI_Sendrecv so that
they look something like:

MPI_Sendrecv (buffer_out, messagelength, MPI_INT, other, 999,
buffer_in, MAX_ARRAY_LENGTH, MPI_INT, other, 999, MPI_COMM_WORLD,
&status);

and save this information into a file called deadlock2.c, and proceed to compile the
modified application. The result of running the mpiexec command:

mpiexec -genv VT_CHECK_TRACING on -genv LD_PRELOAD libVTmc.so -genv
VT_DEADLOCK_TIMEOUT 20s -genv VT_DEADLOCK_WARNING 25s -n 2
./deadlock2.exe 0 80000

is the following:

…
0/2: receiving 80000

1/2: receiving 80000

0/2: sent 80000

1/2: sent 80000

[0] INFO: Error checking completed without finding any problems.

This indicates the deadlock errors that were originally encountered have been
eliminated for this example. Using the Intel® Trace Analyzer to view the
instrumentation results, you can see that the deadlock issues have been resolved
(Figure 7.12).

 Intel Corporation Document Number: 325977-001EN 89

89

Figure 7.12 – Illustration of deadlock removal by using MPI_Sendrecv in the

original source file called deadlock.c

Back to Table of Contents

7.6 Saving a Working Environment through a
Project File

There may be situations where you are in the middle of an inspection with Intel®
Trace Analyzer and you need to be away. For example, suppose you initially typed
the command:

traceanalyzer test_inst/testcpp.stf

and you need to temporarily stop the analysis, and you are looking at the following
panel:

 Intel Corporation Document Number: 325977-001EN 90

90

Figure 7.13 – Event timeline for running 4 MPI processes for the executable

generated from test.cpp

For the panel rendering above, if you selection Project->Save Project or Project-
>Save Project As…, you will generate a subpanel that allows you to save the state
of your session. This is project file has a suffix of “.itapr”, which is an acronym for
Intel® Trace Analyzer project. Figure 7.14 shows the process of saving the state of
your session through a project file.

 Intel Corporation Document Number: 325977-001EN 91

91

Figure 7.14 – Saving a Project File called testcpp.itapr

Suppose at a later time you wish to continue the analysis with Intel® Trace
Analyzer. You can type the command:

traceanalyzer

You can then select Project->Load Project… and the following subpanel will
appear (Figure 7.15):

 Intel Corporation Document Number: 325977-001EN 92

92

Figure 7.15 – Loading a Project File called testcpp.itapr

With regards to Figure 7.15, click on the Open button and you will immediately go
back to point where you last left off (Figure 7.13). For complete details on saving
and loading a project file, please see Section 2.2 of the Intel® Trace Analyzer
Reference Guide, which is titled “Project Menu”. The path to this file is:

<directory-path-to-ITAC>/doc/ITA_Reference_Guide.pdf

on the system where the Intel® Trace Analyzer and Collector is installed.

Back to Table of Contents

7.7 Analysis of Application Imbalance
With respect to Figure 6.13, you may want to know a summary of process imbalance
for the executable. You can do this by selecting the menu path Advanced-

 Intel Corporation Document Number: 325977-001EN 93

93

>Application Imbalance Diagram. Figure 7.16 shows the result of making this
selection.

Figure 7.16 – Selecting Application Imbalance for the menu selection
Advanced->Application Imbalance Diagram

Click on the OK button in the subpanel will generate the following (Figure 7.17). You
can verify the meaning of the histogram subcomponents by clicking on the Colors…
button in Figure 7.17. This will generate the panel shown in Figure 7.18.

 Intel Corporation Document Number: 325977-001EN 94

94

Figure 7.17 – Histogram subpanel as a result of pressing the OK button
shown in Figure 7.16

 Intel Corporation Document Number: 325977-001EN 95

95

Figure 7.18 – Legend for interpreting the histogram contributions for the
Application Imbalance Diagram

For complete details on application imbalance, please see Section 5.4 of the Intel®
Trace Analyzer Reference Guide, which is titled “Application Imbalance Diagram
Dialog Box”. The path to this file is:

<directory-path-to-ITAC>/doc/ITA_Reference_Guide.pdf

on the system where the Intel® Trace Analyzer and Collector is installed.

Back to Table of Contents

7.8 Analysis with the Ideal Interconnect Simulator
In analyzing the performance of your executable, you can compare your
instrumentation trace with an ideal trace for the executable. To do this, make the

 Intel Corporation Document Number: 325977-001EN 96

96

menu selection Advanced->Idealization. As a result, a dialog subpanel will appear
which will allow you to create an idealized trace of execution (Figure 7.19):

Figure 7.19 – Trace Idealizer dialog box generated as a result of the menu
selection Advanced->Idealization

By clicking on the Start button in the dialog panel for Figure 7.19, a trace file will be
generated called “testcpp.ideal.stf”. After creating this file, you can then make
the menu selection File->Open for the given Intel® Trace Analyzer panel and open
the trace file “testcpp.ideal.stf” for comparative analysis. Figure 7.20 shows the
side-by-side results of the actual execution trace and the ideal trace for the
application “test.cpp”.

 Intel Corporation Document Number: 325977-001EN 97

97

Figure 7.20 – Comparison of the actual execution trace versus the idealized

trace for the application test.cpp

NOTE: In Figure 7.20, the cost of doing message passing in the ideal case is

negligible. You can use the data from the ideal case to help gauge the type of
tuning performance that should be pursued.

For complete details on application imbalance, please see Section 5.3 of the Intel®
Trace Analyzer Reference Guide, which is titled “Trace Idealizer Dialog Box”. The
path to this file is:

 Intel Corporation Document Number: 325977-001EN 98

98

<directory-path-to-ITAC>/doc/ITA_Reference_Guide.pdf

on the system where the Intel® Trace Analyzer and Collector is installed.

Back to Table of Contents

7.9 Building a Simulator with the Custom Plug-in
Framework

The Intel® Trace Analyzer and Collector provides you with a custom plug-in API that
allows you to write your own simulator. You can find the simulator API in the folder
path:

<directory-path-to-ITAC>/examples/icpf/

on the system where the Intel® Trace Analyzer and Collector is installed. The API
source file within the subfolder icpf is called h_devsim.cpp. For background on
building a customer simulator for trace files, please see Chapter 9 of the Intel®
Trace Analyzer Reference Guide, which is titled “Custom Plug-in Framework”. The
path to this file is:

<directory-path-to-ITAC>/doc/ITA_Reference_Guide.pdf

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 99

99

8. Getting Started in Using the
Intel® Math Kernel Library
(Intel® MKL)

On Linux-based platforms, the installation process for Intel MKL on the cluster
system will produce a sub-directory that looks something like .../mkl where the
build number 037 may vary. The default directory path for the library installation
process is:

/opt/intel/icsxe/2012.0.037/mkl

The contents of the .../mkl sub-directory should be:

benchmarks/
bin/
examples/
include/
interfaces/
lib/
tests/
tools/

Complete user documentation for Intel Math Kernel Library 10.3 Update 6 can be
found within the directory path:

<directory-path-to-mkl>/doc

where <directory-path-to-mkl> is the absolute directory path to where the Intel
MKL files and sub-directories are installed on the cluster system.

To experiment with the ScaLAPACK test suite, recursively copy the contents of the
directory path:

<directory-path-to-mkl>/tests/scalapack

to a scratch directory area which is sharable by all of the nodes of the cluster. In the
scratch directory, issue the command:

cd scalapack

You can type the command:

gmake libem64t mpi=intelmpi LIBdir=<directory-path-to-mkl>/lib/intel64

 Intel Corporation Document Number: 325977-001EN 100

100

NOTE: The gmake command above is applicable to Intel® 64 processor-based
systems. This makefile creates and runs executables for the ScaLAPACK*
(SCAlable LAPACK) examples.

<directory-path-to-mkl>/tests/scalapack/source/TESTING

Finally, for IA-32 architectures, the gmake command might be:

gmake libia32 mpi=intelmpi LIBdir=<directory-path-to-mkl>/lib/ia32

In the scalapack working directory where the gmake command was issued, the
ScaLAPACK executables can be found in source/TESTING, and the results of the
computation will be placed into a sub-directory called _results. The _results
directory will be created in same directory from which the gmake command was
launched. Within this folder is another sub-folder which has a naming convention
that uses the following makefile variable configuration:

$(arch)$(mpi)_$(comp)_$(opt)_$(ADD_IFACE)

For example, on Intel® 64 architecture, using Intel MPI Library 4.0, the Intel
compiler and no compiler optimization, the sub-directory under _results might be
called:

_libintel64_intelmpi_intel_noopt_lp64

The “*.txt” files for the execution results can be found here. You can invoke an
editor to view the results in each of the “*.txt” files that have been created.

As an example result, the file
“_results/_libintel64_intelmpi_intel_noopt_lp64/cdtlu.txt” might have
something like the following in terms of contents for an execution run on a cluster
using four MPI processes. The cluster that generated this sample output consisted of
four nodes. The text file was generated by the corresponding executable xcdtlu.

 Intel Corporation Document Number: 325977-001EN 101

101

SCALAPACK banded linear systems.
'MPI machine'

Tests of the parallel complex single precision band matrix solve
The following scaled residual checks will be computed:
 Solve residual = ||Ax - b|| / (||x|| * ||A|| * eps * N)
 Factorization residual = ||A - LU|| / (||A|| * eps * N)
The matrix A is randomly generated for each test.

An explanation of the input/output parameters follows:
TIME : Indicates whether WALL or CPU time was used.
N : The number of rows and columns in the matrix A.
bwl, bwu : The number of diagonals in the matrix A.
NB : The size of the column panels the matrix A is split into. [-1 for default]
NRHS : The total number of RHS to solve for.
NBRHS : The number of RHS to be put on a column of processes before going
 on to the next column of processes.
P : The number of process rows.
Q : The number of process columns.
THRESH : If a residual value is less than THRESH, CHECK is flagged as PASSED
Fact time: Time in seconds to factor the matrix
Sol Time: Time in seconds to solve the system.
MFLOPS : Rate of execution for factor and solve using sequential operation count.
MFLOP2 : Rough estimate of speed using actual op count (accurate big P,N).

The following parameter values will be used:
 N : 3 5 17
 bwl : 1
 bwu : 1
 NB : -1
 NRHS : 4
 NBRHS: 1
 P : 1 1 1 1
 Q : 1 2 3 4

Relative machine precision (eps) is taken to be 0.596046E-07
Routines pass computational tests if scaled residual is less than 3.0000

TIME TR N BWL BWU NB NRHS P Q L*U Time Slv Time MFLOPS MFLOP2 CHECK
---- -- ------ --- --- ---- ----- ---- ---- -------- -------- -------- -------- ------

WALL N 3 1 1 3 4 1 1 0.000 0.0001 1.06 1.00 PASSED
WALL N 5 1 1 5 4 1 1 0.000 0.0001 1.75 1.66 PASSED
WALL N 17 1 1 17 4 1 1 0.000 0.0001 6.10 5.77 PASSED
WALL N 3 1 1 2 4 1 2 0.000 0.0003 0.36 0.53 PASSED
WALL N 5 1 1 3 4 1 2 0.000 0.0002 0.90 1.35 PASSED
WALL N 17 1 1 9 4 1 2 0.000 0.0002 3.03 4.59 PASSED
WALL N 3 1 1 2 4 1 3 0.001 0.0006 0.19 0.27 PASSED
WALL N 5 1 1 2 4 1 3 0.001 0.0010 0.17 0.30 PASSED
WALL N 17 1 1 6 4 1 3 0.001 0.0010 0.75 1.16 PASSED
WALL N 3 1 1 2 4 1 4 0.001 0.0007 0.17 0.24 PASSED
WALL N 5 1 1 2 4 1 4 0.002 0.0026 0.08 0.13 PASSED
WALL N 17 1 1 5 4 1 4 0.001 0.0011 0.66 1.00 PASSED

Finished 12 tests, with the following results:
 12 tests completed and passed residual checks.
 0 tests completed and failed residual checks.
 0 tests skipped because of illegal input values.

END OF TESTS.

 Intel Corporation Document Number: 325977-001EN 102

102

The text in the table above reflects the organization of actual output that you will
see.

Recall from Intel MPI Library and Intel Trace Analyzer and Collector discussions that
the above results are dependent on factors such as the processor type, the memory
configuration, competing processes, and the type of interconnection network
between the nodes of the cluster. Therefore, the results will vary from one cluster
configuration to another.

If you proceed to load the cdtlu.txt table above into a Microsoft Excel*
spreadsheet, and build a chart to compare the Time in Seconds to Solve the System
(SLV) and the Megaflop values, you might see something like the following (Figure
8.1):

Figure 8.1 – Display of ScaLAPACK DATA from the executable xcdtlu

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 103

103

8.1 Gathering Instrumentation Data and Analyzing
the ScaLAPACK* Examples with the Intel®
Trace Analyzer and Collector

In the chapter entitled Interoperability of Intel MPI Library with the Intel® Trace
Analyzer and Collector, cursory explanations were provided in gathering trace data
and opening various analyzer panels for viewing trace-file content. Analysis of the
ScaLAPACK examples with Intel Trace Collector and Intel Trace Analyzer can also be
done easily. This subsection will dwell further on the instrumentation and analysis
process. The discussion will focus on how to alter the command-line options for the
ScaLAPACK gmake command so that performance data collection will be possible.
However, you will want to have plenty of disk storage available for collecting trace
information on all of the examples because there are approximately 68 ScaLAPACK
executables. To instrument the ScaLAPACK examples on an IA-32 cluster that is
running Linux OS, you could use the following gmake command:

gmake libia32 mpi=intelmpi
LIBdir=/opt/intel/icsxe/2012.0.037/mkl/lib/ia32 INSLIB="-L${VT_LIB_DIR}
-lVT ${VT_ADD_LIBS}"

Finally, for the Intel® 64 architecture, the gmake command for gathering ScaLAPACK
instrumentation data on Linux could possibly be:

gmake libintel64 mpi=intelmpi
LIBdir=/opt/intel/icsxe/2012.0.037/mkl/lib/intel64 INSLIB="-
L${VT_LIB_DIR} -lVT ${VT_ADD_LIBS}"

For all two command-line examples listed above, the make file variable INSLIB is
used to specify the library path name and the libraries used for instrumentation by
the Intel® Trace Collector. The variable name INSLIB is simply an acronym for
instrumentation library.

Recall the instrumentation processes discussed in Chapter 6. The recommended
amount of disk storage for collecting trace data on all of the ScaLAPACK test cases is
about 5 gigabytes. For an executable such as
_results/_libintel64_intelmpi_intel_noopt_lp64/xzvec located in
source/TESTING that has been instrumented with the Intel Trace Collector, a trace
file called xzevc.stf will be generated. For the gmake commands above, the STF
files will also be located in the sub-directory path source/TESTING and the summary
reports for each ScaLAPACK executable will be placed under a sibling directory path
to source called _results. Recalling the protocol that was discussed in the chapter
for using Intel Trace Analyzer, you can proceed to analyze the content of xzevc.stf
with the following shell command:

traceanalyzer xzevc.stf &

 Intel Corporation Document Number: 325977-001EN 104

104

This command for invoking the Intel Trace Analyzer will cause the Event Timeline
Chart and the Function Profile Chart (Figure 8.2) to be produced as described
previously:

Figure 8.2 – Event Timeline Chart and the Function Profile Chart for the
executable _results/_libintel64_intelmpi_intel_noopt_lp64/xzevc

By default, the ScaLAPACK makefile uses four MPI processes. If you wish to decrease
or increase the number of MPI processes, you can adjust the MPIRUN makefile
variable. An example for doing this on a system based on Intel® 64 architecture
might be the following:

gmake libintel64 mpi=intelmpi
LIBdir=/opt/intel/icsxe/2012.0.037/mkl/lib/intel64 MPILIB="-
L${VT_LIB_DIR} -lVT ${VT_ADD_LIBS}" MPIRUN="mpiexec -n 6"

You should again realize that the contents of a trace file such as
source/TESTING/xzevc.stf will vary from cluster configuration to cluster
configuration due to factors such as the processor type, the memory configuration,

 Intel Corporation Document Number: 325977-001EN 105

105

competing processes, and the type of interconnection network between the nodes of
the cluster.

Figure 8.3 – The Message Profile Chart (lower right) for the executable
_results/_libintel64_intelmpi_intel_noopt_lp64/xzevc

If you proceed to select Charts->Message Profile, you will generate the Message
Profile Chart shown in Figure 8.3. Subsequently, if Charts->Collective Operations
Profile is selected, then the chart shown in Figure 8.4 will be produced.

 Intel Corporation Document Number: 325977-001EN 106

106

Figure 8.4 – Display of the Collective Operations Profile Chart (lower right)

for _results/_libintel64_intelmpi_intel_noopt_lp64/xzevc

You can zoom in on a particular time interval for the Event Timeline Chart in Figure
8.4. Clicking on the left-most mouse button and panning across the desired time
interval will cause the zoom in function. For example, Figure 8.5 shows zooming in to
the time interval which spans from approximately 3.0 seconds to approximately 3.01
seconds.

NOTE: The number of message lines that are shown in black in Figure 8.5 is

significantly reduced with respect to Figure 8.4.

 Intel Corporation Document Number: 325977-001EN 107

107

Figure 8.5 – Zooming in on the Event Timeline Chart for example
_results/_libintel64_intelmpi_intel_noopt_lp64/xzevc

For Figure 8.5, the blue collective operation communication lines can be “drilled-
down-to” by using the context menu as shown in Figure 8.6 to view the collective
operation.

 Intel Corporation Document Number: 325977-001EN 108

108

Figure 8.6 – Context Menu Selection for starting the process of drilling down

to what the particular collective operation was executing (e.g.
MPI_Allreduce) within the executable

_results/_libintel64_intelmpi_intel_noopt_lp64/xzevc

NOTE: If you would like to do a drill-down to actual source, the source files used to

build the executables would have to be compiled with the –g option, and the
Intel Trace Collector VT_PCTRACE environment variable would have to be set.
For the ScaLAPACK gmake command, you might set the –g option with the
following makefile variable:

OPTS="-O0 -g"

Back to Table of Contents

8.2 Experimenting with the Cluster DFT Software
On Linux OS, in the directory path:

<directory-path-to-mkl>/examples

you will find a set of sub-directories that look something like:

./ cdftc/ fftw2x_cdft/ interval/ pdepoissonf/ versionquery/

 Intel Corporation Document Number: 325977-001EN 109

109

../ cdftf/ fftw2xf/ java/ pdettc/ vmlc/
blas/ dftc/ fftw3xc/ lapack/ pdettf/ vmlf/
blas95/ dftf/ fftw3xf/ lapack95/ solver/ vslc/
cblas/ fftw2xc/ gmp/ pdepoissonc/ spblas/ vslf/

The two sub-directories that will be discussed here are cdftc and cdftf. These two
directories respectively contain C and Fortran programming language examples of
the Cluster Discrete Fourier Transform (CDFT). To do experimentation with the
contents of these two folders, a sequence of shell commands could be used to create
instrumented executables and result information. For the C language version of the
CDFT, the Bourne Shell or Korn Shell commands might look something like:

Intel
Processor
Architectur
e

Command-line Sequence for Linux Trace
Results
are
Located
In

Execution Results
are Located In

IA-32 #!/bin/sh
export CWD=${PWD}
export VT_LOGFILE_PREFIX=${CWD}/cdftc_inst
rm -rf ${VT_LOGFILE_PREFIX}
mkdir ${VT_LOGFILE_PREFIX}
export VT_PCTRACE=5
export VT_DETAILED_STATES=5
cd
/usr/local/opt/intel/icsxe/2012.0.037/mkl/e
xamples/cdftc
gmake libia32 mpi=intel3
workdir=${VT_LOGFILE_PREFIX} CS="mpiicc -
t=log" RS="mpiexec -n 4"
RES_DIR=${VT_LOGFILE_PREFIX}

${CWD}/cd
ftc_inst

${CWD}/cdftc_inst

Intel® 64 #!/bin/sh
export CWD=${PWD}
export VT_LOGFILE_PREFIX=${CWD}/cdftc_inst
rm -rf ${VT_LOGFILE_PREFIX}
mkdir ${VT_LOGFILE_PREFIX}
export VT_PCTRACE=5
export VT_DETAILED_STATES=5
cd
/usr/local/opt/intel/icsxe/2012.0.037/mkl/e
xamples/cdftc
gmake libintel64 mpi=intel3
workdir=${VT_LOGFILE_PREFIX} CS="mpiicc -
t=log" RS="mpiexec -n 4"
RES_DIR=${VT_LOGFILE_PREFIX}

${CWD}/cd
ftc_inst

${CWD}/cdftc_inst

where <directory-path-to-mkl>/examples in the shell command-sequence above
is:

/usr/local/opt/intel/icsxe/2012.0.037/mkl/examples

 Intel Corporation Document Number: 325977-001EN 110

110

NOTE: The folder path above will vary depending on where the Intel Cluster Studio
XE was installed on your system. The change directory command above (for
example, cd …) transfers the Bourne Shell or Korn Shell session to:

/usr/local/opt/intel/icsxe/2012.0.037/mkl/examples/cdftc

The gmake command for the target lib32 is one contiguous line that ends with
CS="mpiicc -t=log". This command references the makefile variables libia32,
mpi, workdir, CS, and RS. As mentioned above, the target for the gmake command is
libia32. The other target of this type is libintel64. The target libintel64 is for
Intel® 64 architecture. The makefile variable CS is set so that the resulting
executable is linked against the logging versions of Intel MPI and the Intel Trace
Collector. The RS makefile variable allows you to control the number of MPI
processes. The default for RS is “mpiexec –n 2” when using Intel MPI Library. You
can get complete information about this makefile by looking at its contents. There is
also a help target built within the makefile, and therefore you can type:

gmake help

Assuming that ${CWD} has been defined from above for the Fortran language version
of the CDFT, the Bourne Shell or Korn Shell commands might look something like:

Intel
Processor
Architectur
e

Command-line Sequence for Linux Trace
Results
are
Located
In

Execution Results
are Located In

IA-32 export VT_LOGFILE_PREFIX=${CWD}/cdftf_inst
rm -rf ${VT_LOGFILE_PREFIX}
mkdir ${VT_LOGFILE_PREFIX}
export VT_PCTRACE=5
export VT_DETAILED_STATES=5
cd
/usr/local/opt/intel/icsxe/2012.0.037/mkl/e
xamples/cdftf
gmake libia32 mpi=intel3
workdir=${VT_LOGFILE_PREFIX} CS="mpiifort -
t=log -DMPI_KIND_=4" RS="mpiexec -n 4"
RES_DIR=${VT_LOGFILE_PREFIX}"

${CWD}/cd
ftf_inst

${CWD}/cdftf_inst

Intel® 64 export VT_LOGFILE_PREFIX=${CWD}/cdftf_inst
rm -rf ${VT_LOGFILE_PREFIX}
mkdir ${VT_LOGFILE_PREFIX}
export VT_PCTRACE=5
export VT_DETAILED_STATES=5
cd
/usr/local/opt/intel/icsxe/2012.0.037/mkl/e
xamples/cdftf
gmake libintel64 mpi=intel3
workdir=${VT_LOGFILE_PREFIX} CS="mpiifort -
t=log -DMPI_KIND_=4" RS="mpiexec -n 4"

${CWD}/cd
ftf_inst

${CWD}/cdftf_inst

 Intel Corporation Document Number: 325977-001EN 111

111

RES_DIR=${VT_LOGFILE_PREFIX}

If you consolidate the shell script commands for performing C and Fortran Cluster
Discrete Fourier computation on a particular Intel processor architecture, say Intel®
64 architecture, the complete Bourne shell script content might look something like:

#!/bin/sh
export CWD=${PWD}
export VT_LOGFILE_PREFIX=${CWD}/cdftc_inst
rm -rf ${VT_LOGFILE_PREFIX}
mkdir ${VT_LOGFILE_PREFIX}
export VT_PCTRACE=5
export VT_DETAILED_STATES=5
cd /usr/local/opt/intel/icsxe/2012.0.037/mkl/examples/cdftc
gmake libintel64 mpi=intel3 workdir=${VT_LOGFILE_PREFIX} CS="mpiicc -
t=log" RS="mpiexec -n 4" RES_DIR=${VT_LOGFILE_PREFIX}
export VT_LOGFILE_PREFIX=${CWD}/cdftf_inst
rm -rf ${VT_LOGFILE_PREFIX}
mkdir ${VT_LOGFILE_PREFIX}
export VT_PCTRACE=5
export VT_DETAILED_STATES=5
cd /usr/local/opt/intel/icsxe/2012.0.037/mkl/examples/cdftf
gmake libintel64 mpi=intel3 workdir=${VT_LOGFILE_PREFIX} CS="mpiifort -
t=log -DMPI_KIND_=4" RS="mpiexec -n 4" RES_DIR=${VT_LOGFILE_PREFIX}

After executing the shell script above, the ${CWD}/cdftc_inst and
${CWD}/cdftf_inst folders should contain the respective executables and the output
results. The executable and result contents of each folder path might look something
like:

dm_complex_2d_double_ex1.exe
dm_complex_2d_double_ex2.exe
dm_complex_2d_single_ex1.exe
dm_complex_2d_single_ex2.exe

and

dm_complex_2d_double_ex1.res
dm_complex_2d_double_ex2.res
dm_complex_2d_single_ex1.res
dm_complex_2d_single_ex2.res

The files with the suffix .res are the output results. A partial listing for results file
called dm_complex_2d_double_ex1.res might be something like:

Program is running on 4 processes

 DM_COMPLEX_2D_DOUBLE_EX1
 Forward-Backward 2D complex transform for double precision data inplace

 Configuration parameters:

 Intel Corporation Document Number: 325977-001EN 112

112

 DFTI_FORWARD_DOMAIN = DFTI_COMPLEX
 DFTI_PRECISION = DFTI_DOUBLE
 DFTI_DIMENSION = 2
 DFTI_LENGTHS (MxN) = {20,12)
 DFTI_FORWARD_SCALE = 1.0
 DFTI_BACKWARD_SCALE = 1.0/(m*n)

…

Compute DftiComputeForwardDM

 Forward result X, 4 columns

 Row 0:
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 Row 1:
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 Row 2:
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 Row 3:
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 Row 4:
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 Row 5:
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 Row 6:
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 Row 7:
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 Row 8:
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)
 (1.000, 0.000)(1.000, 0.000)(1.000, 0.000)(1.000, 0.000)

…

Also, the setting of the environment variable VT_LOGFILE_PREFIX within the shell
script results in the deposit of trace information into the directories cdftc_inst and
cdftf_inst as demonstrated with a listing of the Structured Trace Format (STF)
index files:

cdftc_inst/dm_complex_2d_double_ex1.exe.stf
cdftc_inst/dm_complex_2d_double_ex2.exe.stf
cdftc_inst/dm_complex_2d_single_ex1.exe.stf
cdftc_inst/dm_complex_2d_single_ex2.exe.stf

 Intel Corporation Document Number: 325977-001EN 113

113

and

cdftf_inst/dm_complex_2d_double_ex1.exe.stf
cdftf_inst/dm_complex_2d_double_ex2.exe.stf
cdftf_inst/dm_complex_2d_single_ex1.exe.stf
cdftf_inst/dm_complex_2d_single_ex2.exe.stf

You can issue the following Intel Trace Analyzer shell command to initiate
performance analysis on cdftc_inst/dm_complex_2d_double_ex1.exe.stf:

traceanalyzer ./cdftc_inst/dm_complex_2d_double_ex1.exe.stf &

Figure 8.7 shows the result of simultaneously displaying the Function Profile Chart
and the Event Timeline Chart.

 Intel Corporation Document Number: 325977-001EN 114

114

Figure 8.7 – The Event Timeline Chart and the Function Profile Chart for a
Cluster Discrete Fourier Transform Example

Back to Table of Contents

8.3 Experimenting with the High Performance
Linpack Benchmark*

On Linux OS, in the directory path:

<directory-path-to-mkl>/benchmarks/mp_linpack

you will find a set of files and subdirectories that look something like the following:

./ BUGS* include/ Makefile* Make.top* setup/ TUNING*
../ COPYRIGHT* INSTALL* Make.ia32* man/ src/ www/
bin/ HISTORY* lib/ Make.intel64* nodeperf.c* testing/
bin_intel/ HPL.build.log.220120040613* lib_hybrid/ makes/ README* TODO*

 Intel Corporation Document Number: 325977-001EN 115

115

If you make a scratch directory, say:

test_mp_linpack

on a file share for your cluster, and copy the contents of <directory-path-to-
mkl>/benchmarks/mp_linpack into that scratch directory you can then proceed to
build a High Performance Linpack executable. To create an executable for Intel® 64
architecture, you might issue the following gmake command:

gmake arch=intel64
LAdir=/usr/local/opt/intel/icsxe/2012.0.037/mkl/lib/intel64
LAinc=/usr/local/opt/intel/icsxe/2012.0.037/mkl/include

where the command sequence above is one continuous line. The macros LAdir and
LAinc describe the directory path to the Intel® 64 Math Kernel library and the
Intel® MKL include directory, respectively. The partial directory path
/usr/local/opt/intel/icsxe/2012.0.037 for the macros LAdir and LAinc should
be considered an example of where an Intel® Math Kernel Library might reside.

NOTE: On your system, the path and a version number value such as 2012.0.037

may vary depending on your software release.

The High Performance Linpack* executable for the gmake command above will be
placed into …/test_mp_linpack/bin/intel64 and will be called xhpl. The table
below summarizes makefile and associated mpiexec commands that might be used
to create xhpl executables for IA-32, and Intel® 64 architectures, respectively. The
command-line syntax in the table is that of Bourne* Shell or Korn* Shell. The
mpiexec commands use 4 MPI processes to do the domain decomposition.

 Intel Corporation Document Number: 325977-001EN 116

116

Intel
Processor
Architectur
e

Command-line Sequence for Linux Executa
ble is
Located
In

Execution Results
are Located In

IA-32 #!/bin/sh
export CWD=${PWD}
gmake clean_arch_all arch=ia32
gmake arch=ia32
LAdir=/usr/local/opt/intel/icsxe/2012.0.037
/mkl/lib/ia32
LAinc=/usr/local/opt/intel/icsxe/2012.0.037
/mkl/include
cd ${CWD}/bin/ia32
mpiexec –n 4 ./xhpl > results.ia32.out

${CWD}/bi
n/ia32

${CWD}/bin/ia32

Intel® 64 #!/bin/sh
export CWD=${PWD}
gmake clean_arch_all arch=intel64
gmake arch=intel64
LAdir=/usr/local/opt/intel/icsxe/2012.0.037
/mkl/lib/intel64
LAinc=/usr/local/opt/intel/icsxe/2012.0.037
/mkl/include
cd ${CWD}/bin/intel64
mpiexec –n 4 ./xhpl > results.em64t.out

${CWD}/bi
n/intel64

${CWD}/bin/intel64

The output results might look something like the following for Intel® 64
architecture:

==
HPLinpack 2.0 -- High-Performance Linpack benchmark -- September 10, 2008
Written by A. Petitet and R. Clint Whaley, Innovative Computing Laboratory, UTK
Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK
Modified by Julien Langou, University of Colorado Denver
==

An explanation of the input/output parameters follows:
T/V : Wall time / encoded variant.
N : The order of the coefficient matrix A.
NB : The partitioning blocking factor.
P : The number of process rows.
Q : The number of process columns.
Time : Time in seconds to solve the linear system.
Gflops : Rate of execution for solving the linear system.

The following parameter values will be used:

N : 1000
NB : 112 120
PMAP : Row-major process mapping
P : 1 2 1 4
Q : 1 2 4 1
PFACT : Left
NBMIN : 4 2
NDIV : 2
RFACT : Crout

 Intel Corporation Document Number: 325977-001EN 117

117

BCAST : 1ring
DEPTH : 0
SWAP : Mix (threshold = 256)
L1 : no-transposed form
U : no-transposed form
EQUIL : no
ALIGN : 8 double precision words

--

…

==
T/V N NB P Q Time Gflops
--
WR00C2L2 1000 120 4 1 0.35 1.894e+00
--
||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 0.0052671 PASSED
==

Finished 16 tests with the following results:
 16 tests completed and passed residual checks,
 0 tests completed and failed residual checks,
 0 tests skipped because of illegal input values.
--

End of Tests.
==

The file <directory-path-to-mkl>/doc/mkl_documentation.htm contains a landing
page linking various documentation files associated with Intel MKL 10.3 Update 6. To
make inquiries about Intel Math Kernel Library 10.3 Update 6, visit the
URL: http://premier.intel.com.

Back to Table of Contents

http://premier.intel.com/�

 Intel Corporation Document Number: 325977-001EN 118

118

9. Using the Intel® MPI
Benchmarks

The Intel MPI Benchmarks have been ported to Linux* OS. The directory structure
for the Intel® MPI Benchmarks 3.2.3 looks something like the following where the
parenthesized text contains descriptive information:

- ./doc (ReadMe_IMB.txt; IMB_Users_Guide.pdf, the methodology description)
- ./src (program source code and Makefiles)
- ./license (Source license agreement, trademark and use license agreement)
- ./versions_news (version history and news)
- ./WINDOWS (Microsoft* Visual Studio* projects)

The WINDOWS folder as noted above contains Microsoft* Visual Studio* 2005 and
2008 project folders which allow you to use a pre-existing ".vcproj" project file in
conjunction with Microsoft* Visual Studio* to build and run the associated Intel® MPI
Benchmark application. This is not relevant to Linux* OS.

If you type the command gmake within the src subdirectory, then you will get
general help information that looks something like the following:

IMB_3.2 does not have a default Makefile any more.
This Makefile can be used to

gmake clean

For installing, please use:

gmake -f make_ict

to install the Intel(r) Cluster Tools (ict) version.
When an Intel(r) MPI Library install and mpiicc path exists,
this should work immediately.

Alternatively, use

gmake -f make_mpich

to install an mpich or similar version; for this,
you normally have to edit at least the MPI_HOME
variable provided in make_mpich

To clean up the directory structure, in the directory src, type:

gmake clean

 Intel Corporation Document Number: 325977-001EN 119

119

To compile the Intel MPI Benchmarks with the Intel Cluster Tools, type the
command:

gmake –f make_ict

The three executables that will be created with the all target are:

IMB-EXT
IMB-IO
IMB-MPI1

Assuming that you have a four node cluster, and the Bourne Shell is being used type
the commands:

mpiexec -n 4 IMB-EXT > IMB-EXT.report 2>&1

mpiexec -n 4 IMB-IO > IMB-IO.report 2>&1

mpiexec -n 4 IMB-MPI1 > IMB-MPI1.report 2>&1

Similarly, if C Shell is the command-line interface, type the commands:

mpiexec -n 4 IMB-EXT >&! IMB-EXT.report

mpiexec -n 4 IMB-IO >&! IMB-IO.report

mpiexec -n 4 IMB-MPI1 >&! IMB-MPI1.report

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 120

120

10. Uninstalling the Intel®
Cluster Studio XE on Linux*
OS

To uninstall the Intel Cluster Studio XE from a Linux OS, you can use a shell script
called uninstall.sh. This script can be found in folder path:

<Path-to-Intel-Cluster-Studio-XE>/uninstall.sh

An example folder might be:

/usr/local/opt/intel/icsxe/2012.0.037/uninstall.sh

When this uninstall script is invoked, it will prompt you for that location of the
machines.LINUX file.

The uninstall script has command-line options. Type a shell command referencing
uninstall.sh such as:

uninstall.sh --help | less

You will see a list of options that look something like:

NAME
 uninstall.sh - Uninstall Intel(R) Cluster Studio XE 2012 for
Linux*.

SYNOPSIS

 uninstall.sh [options]

Copyright(C) 1999-2011, Intel Corporation. All Rights Reserved.

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 121

121

11. Hardware
Recommendations for
Installation on Linux* OS

Processor System Requirements

Intel® Pentium® 4 processor, or
Intel® Xeon® processor, or
Intel® Core™2 Duo processor (example of Intel® 64 architecture)

NOTE: It is assumed that the processors listed above are configured into homogeneous
clusters.

Disk-Space Requirements

20 GBs of disk space (minimum)

NOTE: During the installation process, the installer may need approximately 4 gigabytes of
temporary disk storage to manage the intermediate installation files.

Operating System Requirements for Linux* OS

OS
Distributions

IA-32
Architecture

Intel® 64 Architecture
32-Bit

Applications
64-Bit

Applications

Intel® Cluster
Ready2

N/A N/A S

Red Hat
Enterprise
Linux* 5.0

S S S

Red Hat
Enterprise
Linux* 6.0

S S S

SUSE Linux
Enterprise
Server* 10

S S S

SUSE Linux
Enterprise
Server* 11

S S S

S = Supported

 Intel Corporation Document Number: 325977-001EN 122

122

2 Intel® Cluster Ready* is an applications platform architecture standard for Linux*
clusters. Convey to your users the Linux* platform needed for your MPI application
with:

This application has been verified to run correctly on Linux* clusters which are
conforming to the Intel® Cluster Ready platform architecture. Each Intel® Cluster
Ready system is shipped and tested with a diagnostic tool: Intel® Cluster Checker.
Intel® Cluster Checker is used to validate operability and compliance, as well as
overall system health. On an Intel® Cluster Ready system, start with these
commands to easily find out about diagnostic logs:

$. /opt/intel/clck/<version>/clckvars.sh

$ cluster-check –report

For more information on Intel® Cluster Ready, and on the alliance of partner
vendors, please visit http://www.intel.com/go/cluster.

Memory Requirements

2 GB of RAM (minimum)

Back to Table of Contents

http://www.intel.com/go/cluster�

 Intel Corporation Document Number: 325977-001EN 123

123

12. System Administrator
Checklist for Linux* OS

Intel license keys should be place in a common repository for access by the software
components of the Intel Cluster Studio XE. An example license directory path might
be:

/opt/intel/licenses

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 124

124

13. User Checklist for Linux*
OS

1. The Intel® Debugger graphical environment is a Java* application and requires a
Java Runtime Environment* (JRE*) to execute. The debugger will run with a
version 5.0 (also called 1.5) JRE.

Install the JRE according to the JRE provider's instructions.

Finally you need to export the path to the JRE as follows:

export PATH=<path_to_JRE_bin_DIR>:$PATH export

2. Configure the environment variables. For the ~/.bashrc file, an example of

setting environment variables and sourcing shell scripts might be the following
for Intel® 64 architecture:

export INTEL_LICENSE_FILE=/opt/intel/licenses
. /opt/intel/icsxe/2012.0.037/ictvars.sh

Alternatively, for ~/.cshrc the syntax might be something like:

setenv INTEL_LICENSE_FILE /opt/intel/licenses
source /opt/intel/icsxe/2012.0.037/ictvars.csh

3. For Bourne* Shell on Linux* OS, once the Intel® Cluster Studio XE environment

variables referenced within “ictvars.sh” file have been sourced via a .bashrc
file, users for a given Bourne* Shell login session can simply type:

. ictvars.sh ia32

for creating IA-32 executables. Alternatively, to restore the default Intel® Cluster
Studio XE environment variable settings so as to build executables with Intel® 64
address extensions, type:

. ictvars.sh

within the Bourne* Shell login session.

NOTE: The full path to ictvars.sh can be omitted once it has been sourced in the .bashrc
file.

For a C Shell login session on Linux* OS, IA-32 executables can be created with a
login session command such as:

source /opt/intel/icsxe/2012.0.037/ictvars.csh ia32

 Intel Corporation Document Number: 325977-001EN 125

125

Within a C Shell login session, to restore the default Intel® Cluster Studio XE
environment variable settings so as to build executables with Intel® 64 address
extensions, type:

source /opt/intel/icsxe/2012.0.037/ictvars.csh

4. When using the Intel Debugger (IDB) with Intel MPI Library, you also want to
create or update the ~/.rhosts file with the names of the nodes of the cluster.
The ~/.rhosts file should have node names that use the following general
syntax:

<hostname as echoed by the shell command hostname> <your username>

The permission bit settings of ~/.rhosts should be set to 600 using the chmod
command. The shell command for doing this might be:

chmod 600 ~/.rhosts

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 126

126

14. Using the Compiler Switch
-tcollect

The Intel® C++ and Intel® Fortran Compilers on Linux OS have the command-line
switch called -tcollect which allows functions and procedures to be instrumented
during compilation with Intel® Trace Collector calls. This compiler command-line
switch accepts an optional argument to specify the Intel® Trace Collector library to
link with.

Library Selection Meaning How to Request
libVT.a Default library -tcollect

libVTcs.a Client-server trace
collection library

-tcollect=VTcs

libVTfs.a Fail-safe trace collection
library

-tcollect=Vtfs

Recall once again that in the test_intel_mpi folder for Intel MPI Library, there are
four source files called:

test.c test.cpp test.f test.f90

To build executables with the -tcollect compiler option for the Intel Compilers, one
might use the following compilation and link commands:

mpiicc test.c -tcollect -g -o testc_tcollect
mpiicpc test.cpp -g -tcollect -o testcpp_tcollect
mpiifort test.f -tcollect -g -o testf_tcollect
mpiifort test.f90 -tcollect -g -o testf90_tcollect

The names of the MPI executables for the above command-lines should be:

testc_tcollect
testcpp_tcollect
testf_tcollect
testf90_tcollect

To make a comparison with the Intel Trace Collector STF files:

testc.stf testcpp.stf testf.stf testf90.stf

within the directory test_inst, use the following mpiexec commands:

mpiexec -n 4 -env VT_LOGFILE_PREFIX test_inst testc_tcollect
mpiexec -n 4 -env VT_LOGFILE_PREFIX test_inst testcpp_tcollect
mpiexec -n 4 -env VT_LOGFILE_PREFIX test_inst testf_tcollect
mpiexec -n 4 -env VT_LOGFILE_PREFIX test_inst testf90_tcollect

 Intel Corporation Document Number: 325977-001EN 127

127

The corresponding STF data will be placed into the folder test_inst. To do a
comparison between the STF data in testcpp.stf and testcpp_tcollect.stf the
following traceanalyzer command can be launched from a Linux command-line
panel within the folder test_intel_mpi:

traceanalyzer

Figure 14.1 shows the base panel for the Intel Trace Analyzer as a result of invoking
the command above from a Linux panel.

Figure 14.1 – Base panel for the Intel Trace Analyzer when invoking a Linux

Shell Command: traceanalyzer without any arguments

If you select the menu path File->Open and click on the test_inst folder, the
following panel will appear:

 Intel Corporation Document Number: 325977-001EN 128

128

 Intel Corporation Document Number: 325977-001EN 129

129

Figure 14.2 – Open a Tracefile Rendering for the test_inst Folder where

testcpp.stf has been Highlighted

Selecting testcpp.stf will generate a Flat Profile panel within the Intel Trace
Analyzer session that might look something like the following.

 Intel Corporation Document Number: 325977-001EN 130

130

Figure 14.3 – Flat Panel Display for test_inst\testcpp.stf

For the Flat Panel Display, if you select File->Compare the following sub-panel will
appear.

 Intel Corporation Document Number: 325977-001EN 131

131

Figure 14.4 – Sub-panel Display for Adding a Comparison STF File

Click on the Open another file button and select testcpp_tcollect.stf and then
proceed to push on the Open button with your mouse.

 Intel Corporation Document Number: 325977-001EN 132

132

Figure 14.5 – Sub-panel Activating the Second STF File for Comparison

Click on the OK button in Figure 14.5 and the comparison display in Figure 14.6 will
appear. In Figure 14.6, the timeline display for testcpp_tcollect.stf (for example,
the second timeline) is longer than that of the top timeline display (testcpp.stf).

 Intel Corporation Document Number: 325977-001EN 133

133

Figure 14.6 – Comparison of testcpp.stf and testcpp_tcollect.stf

At the bottom and towards the right of this panel there are two labels with the same
name, namely, Major Function Groups. Click on the top label with this name, and
a sub-panel will appear with the following information:

 Intel Corporation Document Number: 325977-001EN 134

134

Figure 14.7 – “Function Group Editor for file A” Display (i.e, for file
testcpp.stf)

Highlight the All Functions tree entry and press the Apply but in the low right
corner of this panel. Then click on the OK button. Repeat this process for the second
Major Function Groups label at the bottom of the main Trace Analyzer panel. You
should now see a panel rendering that looks something like:

 Intel Corporation Document Number: 325977-001EN 135

135

Figure 14.8 – Comparison of STF Files testcpp.stf and testcpp_tcollect.stf
after making the All Functions Selection

At the top of the display panel, if you make the menu selection Charts->Function
Profile you will be able to see a function profile comparison (lower middle and
lower right) for the two executables:

 Intel Corporation Document Number: 325977-001EN 136

136

Figure 14.9 – Function Profile Sub-panels in the Lower Middle and Lower
Right Sections of the Display for testcpp.stf and testcpp_tcollect.stf

NOTE: The lower right panel (testcpp_tcollect.stf) has much more function

profiling information than the lower middle panel (testcpp.stf). This is the
result of using the -tcollect switch during the compilation process. You can
proceed to do similar analysis with:

1) testc.stf and testc_tcollect.stf
2) testf.stf and testf_tcollect.stf
3) testf90.stf and testf90_tcollect.stf

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 137

137

15. Using Co-Array Fortran
The Intel® Fortran Compiler XE, which is included as part of Intel® Cluster Studio
XE, supports parallel programming using co-array semantics. These co-array
semantics are defined by the Fortran 2008 Standard. You must specify the -coarray
compiler option to enable use of co-array syntax. The possible configurations for
using the -coarray compilation option are:

–coarray | -coarray=shared | -coarray=distributed

By default, when a co-array Fortran application is compiled with Intel® Fortran
Compiler XE, the compiler creates as many images as there are processor cores on
the host platform where the compilation takes place. The compilation command-line
settings –coarray and -coarray=shared have the same semantic meaning.

No special procedure is necessary to run a program that uses co-arrays. You can
simply run the executable file. The underlying parallelization implementation is
Intel® MPI Library. Installation of the compiler automatically installs the necessary
Intel® MPI run-time libraries. The use of co-array applications with any other MPI
implementation, or with OpenMP*, is not supported at this time.

There are two methodologies for controlling the number if images that are created
for a co-array Fortran executable.

By default, the number of images created is equal to the number of execution units
on the current system. You can override that by specifying the option –coarray-num-
images=<n> on the ifort command that compiles the main program. <n> is a
positive integer. You can also specify the number of images through an environment
variable called FOR_COARRAY_NUM_IMAGES. Setting this environment variable will
control the number of images that the executable will spawn at run-time.

To access a co-array Fortran example for Linux OS click on the following Co-array
Fortran path where Intel® Cluster Studio XE is installed. This path points to a tar/Zip
package that has a co-array Fortran example. Copy this tar package to a scratch
directory and untar it into the scratch folder. After completing the untar step, you
should see a folder called “coarray_samples”. Within this sub-directory, you should
find a Fortran source file called hello_image.f90 which has contents which look
something like the following:

program hello_image

 write(*,*) "Hello from image ", this_image(), &
 "out of ", num_images()," total images"

end program hello_image

To build an executable for hello_image.f90, you can simply type something like:

 Intel Corporation Document Number: 325977-001EN 138

138

ifort -coarray hello_image.f90 –o hello_image.exe

The executable that is created from the command above is called hello_image.exe
and it can be executed by typing the command:

./hello_image.exe

The resulting output might look something like the following:

Hello from image 1 out of 4 total images
Hello from image 2 out of 4 total images
Hello from image 3 out of 4 total images
Hello from image 4 out of 4 total images

The exact results that you observe on your system will be a function of your
processor architecture, OS configuration, etc.

Back to Table of Contents

15.1 Running a Co-array Fortran Example on a
Distributed System

Suppose that you have a four node cluster that you wish to run the
hello_image.f90 application on. So as to verify that the corresponding executable is
running on each of the four nodes, you can augment the original source so that it
looks something like the following:

program hello_image

 use IFPORT

 character(MAX_HOSTNAM_LENGTH + 1) hostname
 integer istat

 istat = hostnam(hostname)
 write(*,*) "Hello from image ", this_image(), &
 "on host: ", hostname, "out of ", &
 num_images()," total images"

end program hello_image

For the above source, the Fortran module IFPORT has been added so that the
function called hostnam can be used to extract the hostname from each of the nodes
for which the co-array Fortran application is running on. The hostname variable is
included in the write statement contents above.

Here is a quick recipe for compiling and executing the modified co-array Fortran
example on Linux*-based distributed system.

 Intel Corporation Document Number: 325977-001EN 139

139

1) Issue the command mpdtrace to see if there are any multipurpose daemons

running on your cluster. Let us assume that this is a four node cluster where the
nodes are respectively called clusternode1, clusternode2, clusternode3, and
clusternode4. The command for verifying the presence of the multipurpose
daemons should look something like the following:

mpdtrace

If these daemons are in existence, you should see a list of compute nodes. In our
case, the list would be:

clusternode1
clusternode2
clusternode3
clusternode4

If instead, you see a message that looks something like:

mpdtrace: cannot connect to local mpd (/tmp/mpd2.console_user01);
possible causes:
1. no mpd is running on this host
2. an mpd is running but was started without a "console" (-n
option)

Then proceed to section 15.2 before proceeding to step 2.

2) Create a configuration file that might look something like the following for a four

node cluster:

-n 1 -host clusternode1 ./hello_image.exe : \
-n 1 -host clusternode2 ./hello_image.exe : \
-n 1 -host clusternode3 ./hello_image.exe : \
-n 1 -host clusternode4 ./hello_image.exe

Save the contents of the above into a file called configuration. The file called
configuration will be used as part of the ifort compilation line.

3) Compile the modified co-array Fortran application above using the
configuration file as follows:

ifort hello_image.f90 -coarray=distributed -coarray-config-

file=configuration -o hello_image.exe

4) Run the executable by typing the command:

./hello_image.exe

The results might look something like the following:

 Intel Corporation Document Number: 325977-001EN 140

140

Hello from image 1 on host: clusternode1 out of 4 total images
Hello from image 2 on host: clusternode2 out of 4 total images
Hello from image 3 on host: clusternode3 out of 4 total images
Hello from image 4 on host: clusternode4 out of 4 total images

Notice in the resulting output that each of the nodes in our cluster example (that
is, clusternode1, clusternode2, clusternode3, and clusternode4) is
referenced.

Back to Table of Contents

15.2 Trouble Shooting for the Absence of
Multipurpose Daemons

This subsection is designed to help you if you issued an mpdtrace command on
cluster system and you received a message that looks something like the following:

mpdtrace: cannot connect to local mpd (/tmp/mpd2.console_user01);
possible causes:
1. no mpd is running on this host
2. an mpd is running but was started without a "console" (-n
option)

1) Either locate or create a text file with the list of nodes (one per line) that make

up the cluster. Suppose that you have a four node cluster where the nodes of the
cluster are respectively:

clusternode1
clusternode2
clusternode3
clusternode4

Place these node names into a file where this file that contains the cluster names
might be called machines.LINUX. Next, issue the command:

mpdboot -n 4 –r ssh -f machines.LINUX

2) After issuing the mpdboot command, verify that nodes in say the machines.LINUX

have been registered properly by issuing the command mpdtrace. The results of
the mpdtrace command should look something like the following:

clusternode1
clusternode2
clusternode3
clusternode4

 Intel Corporation Document Number: 325977-001EN 141

141

you can proceed to step 2 in Section 15.1.

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 142

142

16. Using the CEAN Language
Extension and
Programming Model

For Intel® Cluster Studio XE, CEAN is an array language extension to C/C++,
providing array section notations for SIMD vector parallelism and parallel function
maps for multi-threading. CEAN is an acronym for C/C++ Extensions for Array
Notations. This is an Intel-specific programming language extension supported by
the Intel compiler. For the complete language extension specification, see the C/C++
Extension for Array Notation (CEAN) Specification Version 1.0.

The example below combines the use of C/C++ Extensions for Array Notations along
with using the MPI_Gather communication collective.

#include <malloc.h>
#include "mpi.h"
#include <stdio.h>
#include <string.h>
const int MAX_ARRAY_SIZE = 100;

int main (int argc, char *argv[])
{

int i, namelen, rank, root_process = 0, size;
char name[MPI_MAX_PROCESSOR_NAME];
int a[MAX_ARRAY_SIZE], b[MAX_ARRAY_SIZE], c[MAX_ARRAY_SIZE];
int *d;
MPI_Status stat;

MPI_Init (&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Get_processor_name(name, &namelen);

// The root process will allocated array storage for gathering results
from each of
// the processes

if (rank == root_process) {
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 d = (int *) malloc(size * 100 * sizeof(int));
}

// Use C/C++ array notation to do partial array computation within each
MPI process
a[0:MAX_ARRAY_SIZE] = 1 + rank;
b[0:MAX_ARRAY_SIZE] = 2 + rank;
c[0:MAX_ARRAY_SIZE] = a[0:MAX_ARRAY_SIZE] + b[0:MAX_ARRAY_SIZE];

 Intel Corporation Document Number: 325977-001EN 143

143

fprintf(stdout,"Process rank %d of %d running on %s ready to call
MPI_Gather\n",
 rank,size,name);

// Use the MPI Gather communication collective to gather the partial
results
MPI_Gather(c, 100, MPI_INT, d, 100, MPI_INT, root_process,
MPI_COMM_WORLD);

MPI_Finalize();

// Print out the first and last result elements that were computed by
each MPI process
if (rank == root_process) {
 for (i = 0; i < size; i++)
 fprintf(stdout,"Strided array elements d[%d] = %d; d[%d] =
 %d\n",i*MAX_ARRAY_SIZE,
 d[i*MAX_ARRAY_SIZE],i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1,
 d[i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1]);
 free(d);
}

return (0);

}

The MPI_Gather communication collective gathers partial results from adding vectors
“a”, and “b” together and storing the computations into array “c”. Each MPI process
transfers its “c” data into an array “d” which has the capacity to store all the values
for each array “c” instance as defined by each MPI process.

You can cut and paste the code fragment above into a C file such as cean.c, and
create an executable by issuing the following command:

mpiicc cean.c –o cean.exe

This may be following by issuing an mpiexec command such as:

mpiexec –n 4 ./cean.exe

where 4 MPI processes are used. The output results might look something like:

Process rank 0 of 4 running on clusternode1 ready to call MPI_Gather
Process rank 2 of 4 running on clusternode3 ready to call MPI_Gather
Process rank 1 of 4 running on clusternode2 ready to call MPI_Gather
Process rank 3 of 4 running on clusternode3 ready to call MPI_Gather
Strided array elements d[0] = 3; d[99] = 3
Strided array elements d[100] = 5; d[199] = 5
Strided array elements d[200] = 7; d[299] = 7
Strided array elements d[300] = 9; d[399] = 9

 Intel Corporation Document Number: 325977-001EN 144

144

The type of results that you obtain will be dependent on your cluster configuration
and the number of MPI processes that you use.

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 145

145

17. Using Intel® VTuneTM
Amplifier XE

To analyze the performance of an MPI program at the threading level, the Intel®
VTuneTM Amplifier XE performance analyzer should be used. It is installed at
/opt/intel/vtune_amplifier_xe_2011.

To use Intel® VTuneTM Amplifier XE, follow three basic steps:

1. Use the amplxe-cl command line tool to analyze the program. By default all

processes are analyzed, but it is possible to filter the data collection using the
amplxe-cl tool to limit the number of processes analyzed to that of a subset. An
individual result directory will be created for each spawned MPI program process
that is to be analyzed.

2. The finalization is done automatically for each result directory once the
performance data collection has finished.

3. Each result directory from step 1 can be opened in an Intel® VTuneTM Amplifier XE
GUI standalone viewer to analyze the data for the specific process.

For Intel® Cluster Studio XE 2012 on Linux* OS, the behavior of ictvars.sh and
ictvars.csh is different. On Linux* OS, ictvars.csh is unable to initialize
environment variables for Intel® VTuneTM Amplifier XE. This defect will be resolved in
a future release of Intel® Cluster Studio XE. In the meantime, if you wish to use
Intel® VTuneTM Amplifier XE, source ictvars.sh. For Bourne* Shell on Linux*
OS, once the Intel® Cluster Studio XE environment variables referenced within the
“ictvars.sh” file have been sourced via a .bashrc file, users for a given Bourne*
Shell login session can simply type:

. ictvars.sh ia32

for creating IA-32 executables. Alternatively, to restore the default Intel® Cluster
Studio XE environment variable settings so as to build executables with Intel® 64
address extensions, type:

. ictvars.sh

within the Bourne* Shell login session.

NOTE: The full path to ictvars.sh can be omitted once it has been sourced in the .bashrc

file.

Chapter 13, which is titled User Checklist for Linux* OS, provides details on setting
up ictvars.sh within Bourne* Shell.

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 146

146

17.1 How do I get a List of Command-line Options
for the Intel® VTuneTM Amplifier XE Tool?

Within a Bourne* Shell login session, type the command:

amplxe-cl –help

Back to Table of Contents

17.2 What does a Programming Example Look
Like that I might run with Intel® VTuneTM
Amplifier XE?

This programming example uses the C/C++ array notation that was discussed
earlier.

#include <malloc.h>
#include "mpi.h"
#include <stdio.h>
#include <string.h>
const int MAX_ARRAY_SIZE = 100;

int main (int argc, char *argv[])
{

int i, namelen, rank, root_process = 0, size;
char name[MPI_MAX_PROCESSOR_NAME];
int a[MAX_ARRAY_SIZE], b[MAX_ARRAY_SIZE], c[MAX_ARRAY_SIZE];
int *d;
MPI_Status stat;

MPI_Init (&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Get_processor_name(name, &namelen);

// The root process will allocated array storage for gathering results

from each of
// the processes

if (rank == root_process) {
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 d = (int *) malloc(size * 100 * sizeof(int));
}

 Intel Corporation Document Number: 325977-001EN 147

147

// Use C/C++ array notation to do partial array computation within each
MPI process

a[0:MAX_ARRAY_SIZE] = 1 + rank;
b[0:MAX_ARRAY_SIZE] = 2 + rank;
c[0:MAX_ARRAY_SIZE] = a[0:MAX_ARRAY_SIZE] + b[0:MAX_ARRAY_SIZE];

fprintf(stdout,"Process rank %d of %d running on %s ready to call

MPI_Gather\n",
 rank,size,name);

// Use the MPI Gather communication collective to gather the partial

results
MPI_Gather(c, 100, MPI_INT, d, 100, MPI_INT, root_process,

MPI_COMM_WORLD);

MPI_Finalize();

// Print out the first and last result elements that were computed by each
MPI process
if (rank == root_process) {
 for (i = 0; i < size; i++)
 fprintf(stdout,"Strided array elements d[%d] = %d; d[%d] =
%d\n",i*MAX_ARRAY_SIZE,
 d[i*MAX_ARRAY_SIZE],i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1,
 d[i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1]);
 free(d);
}

return (0);

}

Back to Table of Contents

17.3 How do I Run and Collect Intel® VTuneTM
Amplifier XE Performance Information
within an Intel® MPI Library Application?

A command-line that uses Intel® Amplifier XE might look something like:

mpiexec -n 4 amplxe-cl -r amplifierxe_results -collect hotspots --
./cean.exe

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 148

148

17.4 What does the Intel® VTuneTM Amplifier XE
Graphical User Interface Look Like?

One method of launching the graphical user interface for Intel® Amplifier XE is
through the command-line:

amplxe-gui amplifierxe_results.0

where amplifierxe_results.0 is a results folder for an MPI process.

Figure 17.1 – Launching the Intel® VTuneTM Amplifier XE GUI

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 149

149

18. Using Intel® Inspector XE
To analyze the correctness of an MPI program at the threading level, the Intel®
Inspector XE checker should be used. It is installed in the folder path
/opt/intel/inspector_xe_2011.

To use Intel® Inspector XE, there are three basic steps:

1. Use the inspxe-cl command line tool to analyze the program. By default all

processes are analyzed, but it is possible to filter the data collection using the
inspxe-cl tool to limit the number of processes checked to that of a subset. An
individual result directory will be created for each spawned MPI program process
that is to be checked.

2. The finalization is done automatically for each result directory once the checking
analysis has finished.

3. Each result directory from step 1 can be opened in an Intel® Inspector XE GUI
standalone viewer to analyze the data for the specific process.

For Intel® Cluster Studio XE 2012 on Linux* OS, the behavior of ictvars.sh and
ictvars.csh is different. On Linux* OS, ictvars.csh is unable to initialize
environment variables for Intel® Inspector XE. This defect will be resolved in a
future release of Intel® Cluster Studio XE. In the meantime, if you wish to use
Intel® Inspector XE, source ictvars.sh. For Bourne* Shell on Linux* OS, once
the Intel® Cluster Studio XE environment variables referenced within the
“ictvars.sh” file have been sourced via a .bashrc file, users for a given Bourne*
Shell login session can simply type:

. ictvars.sh ia32

for creating IA-32 executables. Alternatively, to restore the default Intel® Cluster
Studio XE environment variable settings so as to build executables with Intel® 64
address extensions, type:

. ictvars.sh

within the Bourne* Shell login session.

NOTE: The full path to ictvars.sh can be omitted once it has been sourced in the .bashrc

file.

Chapter 13, which is titled User Checklist for Linux* OS, provides details on setting
up ictvars.sh within Bourne* Shell.

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 150

150

18.1 How do I get a List of Command-line Options
for the Intel® Inspector XE Tool?

Within a Bourne* Shell login session, type the command:

inspxe-cl –help

Back to Table of Contents

18.2 What does a Programming Example Look
Like that has a Memory Leak?

This programming example has a call to malloc without a call to free.

#include <malloc.h>
#include "mpi.h"
#include <stdio.h>
#include <string.h>
const int MAX_ARRAY_SIZE = 100;

int main (int argc, char *argv[])
{

int i, namelen, rank, root_process = 0, size;
char name[MPI_MAX_PROCESSOR_NAME];
int a[MAX_ARRAY_SIZE], b[MAX_ARRAY_SIZE], c[MAX_ARRAY_SIZE];
int *d;
MPI_Status stat;

MPI_Init (&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Get_processor_name(name, &namelen);

// The root process will allocated array storage for gathering results

from each of
// the processes

if (rank == root_process) {
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 d = (int *) malloc(size * 100 * sizeof(int));
}

// Use C/C++ array notation to do partial array computation within each

MPI process
a[0:MAX_ARRAY_SIZE] = 1 + rank;
b[0:MAX_ARRAY_SIZE] = 2 + rank;
c[0:MAX_ARRAY_SIZE] = a[0:MAX_ARRAY_SIZE] + b[0:MAX_ARRAY_SIZE];

 Intel Corporation Document Number: 325977-001EN 151

151

fprintf(stdout,"Process rank %d of %d running on %s ready to call

MPI_Gather\n",
 rank,size,name);

// Use the MPI Gather communication collective to gather the partial

results
MPI_Gather(c, 100, MPI_INT, d, 100, MPI_INT, root_process,

MPI_COMM_WORLD);

MPI_Finalize();

// Print out the first and last result elements that were computed by

each MPI process
if (rank == root_process) {
 for (i = 0; i < size; i++)
 fprintf(stdout,"Strided array elements d[%d] = %d; d[%d] =

%d\n",i*MAX_ARRAY_SIZE,
 d[i*MAX_ARRAY_SIZE],i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1,
 d[i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1]);
}

return (0);

}

Back to Table of Contents

18.3 How do I Run and Collect Memory Leak
Information within an Intel® MPI Library
Application?

A command-line that uses Intel® Inspector XE might look something like:

mpiexec -n 4 inspxe-cl -r inspectorxe_results -collect mi1 --

./cean.exe

Back to Table of Contents

18.4 What does the Intel® Inspector XE Graphical
User Interface Look Like?

One method of launching the graphical user interface for Intel® Inspector XE is
through the command-line:

 Intel Corporation Document Number: 325977-001EN 152

152

inspxe-gui inspectorxe_results.0

where inspectorxe_results.0 is a results folder for an MPI process.

Figure 18.1 – Launching the Intel® Inspector XE GUI

 Intel Corporation Document Number: 325977-001EN 153

153

Figure 18.2 – Isolating a Memory Leak in the User’s Applications by Pressing
on ID Row P1

The way to resolve this memory leak in Figure 18.2 is to add a call to the free
function for the pointer object “d”. The C/C++ code fragment:

…

// Print out the first and last result elements that were computed by each
MPI process
if (rank == root_process) {
 for (i = 0; i < size; i++)
 fprintf(stdout,"Strided array elements d[%d] = %d; d[%d] =
%d\n",i*MAX_ARRAY_SIZE,
 d[i*MAX_ARRAY_SIZE],i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1,
 d[i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1]);
}

 Intel Corporation Document Number: 325977-001EN 154

154

…

will be modified to:

…

// Print out the first and last result elements that were computed by each
MPI process
if (rank == root_process) {
 for (i = 0; i < size; i++)
 fprintf(stdout,"Strided array elements d[%d] = %d; d[%d] =
%d\n",i*MAX_ARRAY_SIZE,
 d[i*MAX_ARRAY_SIZE],i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1,
 d[i*MAX_ARRAY_SIZE+MAX_ARRAY_SIZE-1]);
 free(d);
}

…

where a free statement for object “d” has been added. The mpiexec command for
rerunning the Intel® Inspector XE application might look something like:

mpiexec -n 4 inspxe-cl -r inspectorxe_results2 -collect mi1 --
./cean2.exe

Rerunning the GUI analysis tool:

inspxe-gui inspectorxe_results2.0

demonstrates that the memory leak for pointer object “d” has been removed (Figure
18.3).

 Intel Corporation Document Number: 325977-001EN 155

155

Figure 18.3 – The memory leak for pointer object “d” has been removed

Back to Table of Contents

 Intel Corporation Document Number: 325977-001EN 156

156

19. Using Intel® Parallel
Advisor for non-MPI C/C++
Software Applications

Intel® Parallel Advisor is only available on Microsoft* Windows* OS.

Back to Table of Contents

	Contents
	Revision History
	Disclaimer and Legal Information
	2. Introduction
	3. Intel Software Downloads and Installation of Intel® Cluster Studio XE on Linux* OS
	3.1 Linux* OS Installation

	4. Integrated Development Environments for Intel® Cluster Studio XE
	5. Getting Started with Intel® MPI Library
	5.1 Launching MPD Daemons
	5.2 How to Set Up MPD Daemons on Linux* OS
	5.3 The mpdboot Command for Linux* OS
	5.4 Compiling and Linking with Intel® MPI Library on Linux* OS
	5.5 Selecting a Network Fabric
	5.6 Running an MPI Program Using Intel® MPI Library on Linux* OS
	5.7 Experimenting with Intel® MPI Library on Linux* OS
	5.8 Controlling MPI Process Placement on Linux* OS
	5.9 Using the Automatic Tuning Utility Called mpitune
	5.9.1 Cluster Specific Tuning
	5.9.2 MPI Application-Specific Tuning

	5.10 Extended File I/O System Support on Linux* OS
	5.10.1 How to Use the Environment Variables I_MPI_EXTRA_FILESYSTEM and I_MPI_EXTRA_FILESYSTEM_LIST

	6. Interoperability of Intel® MPI Library with the Intel® Debugger (IDB)
	6.1 Login Session Preparations for Using Intel® Debugger on Linux* OS

	7. Working with the Intel® Trace Analyzer and Collector Examples
	7.1 Experimenting with Intel® Trace Analyzer and Collector in a Fail-Safe Mode
	7.2 Using itcpin to Instrument an Application
	7.3 Experimenting with Intel® Trace Analyzer and Collector in Conjunction with the LD_PRELOAD Environment Variable
	7.4 Experimenting with Intel® Trace Analyzer and Collector in Conjunction with PAPI* Counters
	7.5 Experimenting with the Message Checking Component of Intel® Trace Collector
	7.6 Saving a Working Environment through a Project File
	7.7 Analysis of Application Imbalance
	7.8 Analysis with the Ideal Interconnect Simulator
	7.9 Building a Simulator with the Custom Plug-in Framework

	8. Getting Started in Using the Intel® Math Kernel Library (Intel® MKL)
	8.1 Gathering Instrumentation Data and Analyzing the ScaLAPACK* Examples with the Intel® Trace Analyzer and Collector
	8.2 Experimenting with the Cluster DFT Software
	8.3 Experimenting with the High Performance Linpack Benchmark*

	9. Using the Intel® MPI Benchmarks
	10. Uninstalling the Intel® Cluster Studio XE on Linux* OS
	11. Hardware Recommendations for Installation on Linux* OS
	12. System Administrator Checklist for Linux* OS
	13. User Checklist for Linux* OS
	14. Using the Compiler Switch -tcollect
	15. Using Co-Array Fortran
	15.1 Running a Co-array Fortran Example on a Distributed System
	15.2 Trouble Shooting for the Absence of Multipurpose Daemons

	16. Using the CEAN Language Extension and Programming Model
	17. Using Intel® VTuneTM Amplifier XE
	17.1 How do I get a List of Command-line Options for the Intel® VTuneTM Amplifier XE Tool?
	17.2 What does a Programming Example Look Like that I might run with Intel® VTuneTM Amplifier XE?
	17.3 How do I Run and Collect Intel® VTuneTM Amplifier XE Performance Information within an Intel® MPI Library Application?
	17.4 What does the Intel® VTuneTM Amplifier XE Graphical User Interface Look Like?

	18. Using Intel® Inspector XE
	18.1 How do I get a List of Command-line Options for the Intel® Inspector XE Tool?
	18.2 What does a Programming Example Look Like that has a Memory Leak?
	18.3 How do I Run and Collect Memory Leak Information within an Intel® MPI Library Application?
	18.4 What does the Intel® Inspector XE Graphical User Interface Look Like?

	19. Using Intel® Parallel Advisor for non-MPI C/C++ Software Applications

