Intel® Software
Development Products

Getting Started Tutorial: Finding
Hotspots

Intel® VTune™ Amplifier XE 2013 for Windows* OS
Fortran Sample Application Code

Document Number: 327358-001

Legal Information

Contents

Contents

Legal Information....ccciiiiiiimirsssmmssssssssssssssssssssssannssssannnssssnnnnnnnnns 5
OV eI VI CW . i eiiuerinnrsansnssssssssssssassssssssssssssssssssssssssssssssssssssnsssnssnnssnnssnnnnnnns 7

Chapter 1: Navigation Quick Start
Chapter 2: Finding Hotspots

Visual Studio* IDE: Choose Project and Build Application..........ccoooeiiiinen, 14
Standalone GUI: Build Application and Create New Project.............covvvvvvnnn. 17
RUN HOESPOtS ANalySiS. . ueiniiiiiiiii i e e r e e e ee e 20
Interpret HOotSPots RESUILS.viiii i e 21
ST o A7 1= U= 24
RUN CONCUITENCY ANAlYSiS. ittt et eran e rneeneas 25
Interpret ConCurrenCy RESUILS.....c.iiiii i e e 26
RuUnN Locks and Waits ANalySiS. ..cuiiiiiiii it i i e i e i e aes 28
Interpret Locks and Waits ReSUIES......oiiiiiiiiiiii i e 29
(=] g g Lo}V T o Lol 32
Compare with Previous ReSUIL........cviiiiiii e 33

Chapter 3: Summary
Chapter 4: Key Terms

Getting Started Tutorial: Finding Hotspots

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH,
HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR
DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR
ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL
PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order. Copies of documents which have an order number and are referenced in this
document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://
www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within
each processor family, not across different processor families. Go to: http://www.intel.com/products/
processor_number/

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside, E-GOLD,
Flexpipe, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel CoFluent, Intel Core,
Intel Inside, Intel Insider, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo, Intel
StrataFlash, Intel vPro, Intel Xeon Phi, Intel XScale, InTru, the InTru logo, the InTru Inside logo, InTru
soundmark, Itanium, Itanium Inside, MCS, MMX, Pentium, Pentium Inside, Puma, skoool, the skoool logo,
SMARTI, Sound Mark, Stay With It, The Creators Project, The Journey Inside, Thunderbolt, Ultrabook, vPro
Inside, VTune, Xeon, Xeon Inside, X-GOLD, XMM, X-PMU and XPOSYS are trademarks of Intel Corporation in
the U.S. and/or other countries.

*Qther names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation
in the United States and/or other countries.

Copyright © 2009-2012, Intel Corporation. All rights reserved.

Getting Started Tutorial: Finding Hotspots

Overview

Discover how to use Hotspots analysis of the Intel® VTune™ Amplifier XE to understand where your
application is spending time, identify hotspots - the most time-consuming program units, and detect how

they were called.

Hotspots analysis is useful to analyze the performance of both serial and parallel applications.

More Resources .

About This Tutorial This tutorial uses the sample tachyon and guides you through basic steps
required to analyze the code for hotspots.

Estimated Duration 10-15 minutes.

Learning Objectives After you complete this tutorial, you should be able to:

Choose an analysis target.

Choose the Hotspots analysis type.

Run the Hotspots analysis to locate most time-consuming functions in an
application.

Analyze the function call flow and threads.

Analyze the source code to locate the most time-critical code lines.
Compare results before and after optimization.

Intel® Parallel Studio XE tutorials (HTML, PDF): http://software.intel.com/en-
us/articles/intel-software-product-tutorials/

Intel® Parallel Studio XE support page: http://software.intel.com/en-us/
articles/intel-parallel-studio-xe/

Getting Started Tutorial: Finding Hotspots

Navigation Quick Start

Am

Intel® VTune™ Amplifier XE, an Intel® Parallel Studio XE tool, provides information on code
performance for users developing serial and multithreaded applications on Windows* and Linux* operating
systems. VTune Amplifier XE helps you analyze algorithm choices and identify where and how your
application can benefit from available hardware resources.

VTune Amplifier XE Access

To access the VTune Amplifier XE in the Visual Studio* IDE: From the Windows* Start menu, choose Intel
Parallel Studio XE 2013 > Parallel Studio XE 2013 with [VS2008 | VS2010].

To access the Standalone VTune Amplifier XE GUI, do one of the following:

e From the Windows* Start menu, choose Intel Parallel Studio XE 2013 > Intel VTune Amplifier XE
2013.

e From the Windows* Start menu, choose Intel Parallel Studio XE 2013 > Command Prompt >
Parallel Studio XE > IA-32 Visual Studio [2008 | 2010] mode to set your environment, then type
amplxe-gui.

VTune Amplifier XE/Visual Studio* IDE Integration

1 Getting Started Tutorial: Finding Hotspots

O rmatrix - Microsoft Visual Studio (@dministrator) E@
File Edit Miew Project Build Debug Tearn Data Tools Test Window Help
Dl e (T | # S S DIE R (Release ~[{win3z - @ 2

Solution Ex., = I X

-
M Concurrency {H
; Solution ‘rmatrid (1

a B Amplifier XE Re € Analysis Target Analysis Type
4 =3 matrix

B @ ri00ge Grouping: [Functiu:un J Call Skack, CPU FunctionfCPU Stack - CPU |Z|

@ ri0lce Wiewing 4 1ofl P selected sta
7 matrix Function f Call Stack | 100.0% (44,6345 of 444.6345) |

Faroror

CPU Time by Utilizationw ® 1 Overhead
Bide BPoor @Ok Wideal "™
= rultiphyl sa4.534; (D ;
. ThreadFunction < | 444.634: [NN
[# main 0.061s
Selected 1 rowes): 444,63 45
. |

15 205 255 305 & |[¥] Threads :
1 ! | ! L1 .
[mainCRTStartup (135] B E [B8 Running ‘E
TheandFoimetinn (M Al [#]] waits E
cpuUsso: | RURESESRSERSNSNRRRRREE, | | s cruTime

& b Transitions -

| > [al * | LA v | [a]

A Use the VTune Amplifier XE toolbar to configure and control result collection.

B VTune Amplifier XE results *.amplxe show up in the Solution Explorer under the My
Amplifier XE Results folder. To configure and control result collection, right-click the project
in the Solution Explorer and select the Intel VTune Amplifier XE 2013 menu from the pop-
up menu. To manage previously collected results, right-click the result (for example,
r000ge.amplxe) and select the required command from the pop-up menu.

c From the drop-down menu, select a viewpoint, a preset configuration of windows/panes for an
analysis result. For each analysis type, you can switch among several viewpoints to focus on
particular performance metrics.

D Click the buttons on navigation toolbars to change window views and toggle window panes on
and off.
E In the Timeline pane, analyze the thread activity and transitions presented for the user-mode

sampling and tracing analysis results (for example, Hotspots, Concurrency, Locks and Waits) or
analyze the distribution of the application performance per metric over time for the event-
based sampling analysis results (for example, Memory Access, Bandwidth Breakdown).

E Use the Call Stack pane to view call paths for a function selected in the grid.

10

Navigation Quick Start 1

G Use the filter toolbar to filter out the result data according to the selected categories.

Standalone VTune Amplifier XE GUI

Flle ‘u"lew Helpﬂ

Pro]ectNawgator X |

e Chworlk\sam...

EI--W My Amplifier

g 000hs
] 001w

c

& AnalyﬂsTarget |

Analysis Type

F

Summar}r & Bottom- up S Tr-p -down Tree

Grouping: [Function / Call Stack

Function / Call 5tack

EIMQUEEMS_ip_SETQUEEM .
. NQUEEMS_ip_SETQUEE|

chkstk
B kmp_x86_pause |
Selected 1 row(s):|

R ER T
(0T, L

CPU Time by Utilizationw * & Overhead

||{DIdle B Poor 0Ok [Ideal

15.674ms [N
15.574ms (I
15.500ms (NN
15.526rms (NN

15674ms

Time
Oms
Oms
Oms

Oms

ngue|”

ngue
ngue

libior

E Tasks
CPU Function/CPU Stack - [»] *

Viewing 4 1ofl [selecte
| 100.0% (0.0165 of 0.0165) |=

rrrr

ngueens_parallel.exe...

ngueens_parallel.exe..,

ngueens_parallel.exe...

ngueens_parallel.exe...

nnieene narallzl sue
4 i |

Threads

1
: [mainCRTStartup (Dx2be
OMP Worker Thread 1

[+] B Running
Uk CPU Time

CPU Usage

x| Mo filters are applied. T | [All

| call Stack Mode: Inline Mode:

CPU Usage
duk CPU Time

A Use the VTune Amplifier XE menu to control result collection, define and view project
properties, and set various options.

B Configure and manage projects and results, and launch new analyses from the primary
toolbar. Click the Project Properties button on this toolbar to manage result file locations.

c The Project Navigator provides an iconic representation of your projects and analysis
results. Click the Project Navigator button on the toolbar to enable/disable the Project
Navigator.

D Newly completed and opened analysis results along with result comparisons appear in the

results tab for easy navigation.

E Use the drop-down menu to select a viewpoint, a preset configuration of windows/panes for
an analysis result. For each analysis type, you can switch among several viewpoints to focus
on particular performance metrics. Click the yellow question mark icon to read the viewpoint
description.

F Switch between window tabs to explore the analysis type configuration options and collected
data provided by the selected viewpoint.

G Use the Grouping drop-down menu to choose a granularity level for grouping data in the grid.

11

1 Getting Started Tutorial: Finding Hotspots

H Use the filter toolbar to filter out the result data according to the selected categories.

12

Finding Hotspots

m You can use the Intel® VTune™ Amplifier XE to identify and analyze hotspot functions in your serial or
parallel application by performing a series of steps in a workflow. This tutorial guides you through these
workflow steps while using a sample multithreaded application named nqueens parallel.

Prepare for analysis

Build
application

Choose/Create

project

Y ¥ y

Find hotspots

Run Hotspots
analysis

Interpret data

Resolve issue

Analyze parallelism

Run Concurrency
analysis

Interpret data

Identify locks

Run Locks and
Waits analysis

Interpret data

Remove lock

v

Compare with
previous result

Step 1: Prepare
for analysis

Do one of the following:

e In the Visual Studio* IDE: Choose a project, verify settings, and build application
¢ In the Standalone Intel VTune Amplifier XE GUI: Build an application to analyze
for hotspots and create a new VTune Amplifier XE project

Step 2: Find
hotspots

e Choose and run the Hotspots analysis.
e Interpret the result data.
* Resolve issue.

Step 3: Analyze
parallelism

e Choose and run the Concurrency analysis.
e Interpret the result data.

Step 4: Identify
locks

* Choose and run the Locks and Waits analysis.
¢ Interpret the result data.
* Remove lock.

Step 5: Check
your work

Re-build the target, re-run the Locks and Waits analysis, and compare the result
data before and after optimization.

13

2 Getting Started Tutorial: Finding Hotspots

Visual Studio* IDE: Choose Project and Build Application

m Before you start analyzing your application target for hotspots, do the following:

Get software tools.

Choose a project.

Verify optimal compiler/linker options.
Configure target properties.

Build the target in the release mode.
Create a performance baseline.

PUAWNE

Get Software Tools

You need the following tools to try tutorial steps yourself using the nqueens fortran sample application:

e VTune Amplifier XE, including sample applications
e .zip file extraction utility
e Supported Fortran compiler (see Release Notes for more information)

Acquire Intel VTune Amplifier XE

If you do not already have access to the VTune Amplifier XE, you can download an evaluation copy from
http://software.intel.com/en-us/articles/intel-software-evaluation-center/.

Install and Set Up VTune Amplifier XE Sample Applications

1. Copy the nqueens fortran.zip file from the <install-dir>\samples\<locale>\Fortran\
directory to a writable directory or share on your system. The default installation path is C:\ [Program
Files]\Intel\VTune Amplifier XE 2013\ .

2. Extract the sample from the .zip file.

NOTE

e Samples are non-deterministic. Your screens may vary from the screen captures shown throughout
this tutorial.

e Samples are designed only to illustrate the VTune Amplifier XE features; they do not represent best
practices for creating code.

Choose a Project
Choose a project with the analysis target in the Visual Studio IDE as follows:
1. From the Visual Studio menu, select File > Open > Project/Solution....

The Open Project dialog box opens.
2. Inthe Open Project dialog box, browse to the location you used to extract the nqueens fortran.zip
file and select the nqueens fortran.sln file.

14

HTTP://SOFTWARE.INTEL.COM/EN-US/ARTICLES/INTEL-SOFTWARE-EVALUATION-CENTER/

Finding Hotspots

2

n

File Edit View Project Build Debu
EYRSEORAr=N" I N TEERk:
CIEET AR T

Solution Explorer - nqueens_serial - 3 X

=

=)
[Solution 'nqueens_fortran' (2 projects)
I'j ﬁ ngueens_parallel
[Header Files
[Resource Files
- (1] Source Files

e il

The solution is added to Visual Studio IDE and shows up in the Solution Explorer.

In the Solution Explorer, right-click the nqueens_parallel project and select Project > Set as

StartUp Project.

nqueens_parallel appears in bold in the Solution Explorer.

NOTE nqueens_serial project provides a single-threaded version of the sample application. This
project is provided for your reference only and not described in this tutorial.

When you choose a project in Visual Studio IDE, the VTune Amplifier XE automatically creates the

config.amplxeproj project file and sets the nqueens parallel application as an analysis target in the

project properties.

Verify Optimal Compiler/Linker Options

Configure Visual Studio project properties to generate the debug information for your application so that the
VTune Amplifier XE can open the source code.

1.

4.

Select the nqueens_parallel project and go to Project > Properties.

The nqueens_parallel Property Pages dialog box opens.

Select Configuration Properties > General and make sure the selected Configuration (top of the

dialog) is Release.

Select Fortran > General pane and specify the Debug Information Format as Full (/debug:full) .

Configuration: | Active(Release)

= | Platform: |Active(Win32)

[L [

Configuration Properties Suppress Startup Banner Yes (/nologo)
General Additional Include Directories
Fortran Optimization Maxirmize Speed
Linker Preprocessor Definitions
Resources Compile Time Diagnostics Custom
MIDL

Select Fortran > Optimization pane and set the Optimization to Maximize Speed

2 Getting Started Tutorial: Finding Hotspots

ngueens_parallel Property Pages

E! Configuration: |Active{ﬂelease] v‘ Platform: IActive[Wini?_] v‘
Configuration Properties » Maximize Speed

General Inline Function Expansion Any Suitable

Debugging Favor Size or Speed Favor Fast Code

Fortran Omit Frame Pointers Yes
General Loop Unroll Count
Optimiz.ati-:un Parallelization Mo
E]el::lugglng Thresheld For Auto-Parallelization 100

Configure Target Properties

1.

2.

3.

Right-click the nqueens_parallel project and select Properties from the context menu.

The nqueens_parallel Property Pages dialog box opens.

In the nqueens_parallel Property Pages dialog box, select Configuration Properties >
Debugging.

In the right pane, specify the Command Arguments as 14.

Build the Target in the Release Mode

Build the target in the Release mode with full optimizations, which is recommended for performance analysis.

1.

2.

Go to the Build > Configuration Manager... dialog box and select the Release mode for your target
project.
From the Visual Studio menu, select Build > Build nqueens_parallel.

The nqueens parallel.exe application is built with your default Fortran compiler. For this tutorial,
Intel® Fortran Compiler XE is used.

ﬂ NOTE The build configuration for nqueens _parallel may initially be set to Debug, which is typically

used for development. When analyzing performance issues with the VTune Amplifier XE, you are
recommended to use the Release build with normal optimizations. In this way, the VTune Amplifier XE
is able to analyze the realistic performance of your application.

Create a Performance Baseline

Run the application to create a performance baseline that will be used to identify optimization you achieve
during performance tuning with the VTune Amplifier XE.

1.

From the Visual Studio menu, select Debug > Start Without Debugging.

The nqueens parallel.exe application starts running.

NOTE Before you start the application, minimize the amount of other software running on your
computer to get more accurate results.

Starting ngueens solver for size 14 with 4 threadis?
Mumber of solutions: 365596
Correct Result?

Calculations took 31215ms.
Press any key to continue . . .

16

Finding Hotspots 2

2. Note the execution time displayed in the window caption. In the example above, the execution time is
31215 milliseconds.

e Run the application several times, note the execution time for each run, and use the average
number. This helps to minimize skewed results due to transient system activity.
e The screenshots and execution time data provided in this tutorial are created on a system with 4
CPU cores. Your data may vary depending on the number and type of CPU cores on your system.

Recap

You chose the target for the Hotspots analysis, set up your environment to enable generating symbol
information for your binary files, built the target in the Release mode, and created the performance baseline.
Your application is ready for analysis.

Key Terms

e Baseline
e Hotspots analysis
e Target

Next Step
Run Hotspots Analysis

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Standalone GUI: Build Application and Create New Project

m Before you start analyzing your application target for hotspots, do the following:

1. Get software tools.
2. Build application.

If you build the code in Visual Studio*, make sure to:

e Verify optimal Fortran compiler options.
e Build the target in the release mode.
3. Create a performance baseline.
4. Create a VTune Amplifier XE project.

Get Software Tools
You need the following tools to try tutorial steps yourself using the nqueens fortran sample application:

e VTune Amplifier XE, including sample applications
e .zip file extraction utility

17

2 Getting Started Tutorial: Finding Hotspots

e Supported Fortran compiler (see Release Notes for more information)
Acquire Intel VTune Amplifier XE

If you do not already have access to the VTune Amplifier XE, you can download an evaluation copy from
http://software.intel.com/en-us/articles/intel-software-evaluation-center/.

Install and Set Up VTune Amplifier XE Sample Applications

1. Copy the nqueens fortran.zip file from the <install-dir>\samples\<locale>\Fortran\
directory to a writable directory or share on your system. The default installation path is C:\ [Program
Files]\Intel\VTune Amplifier XE 2013\ .

2. Extract the sample from the zip file.

NOTE
[]

Samples are non-deterministic. Your screens may vary from the screen captures shown throughout
this tutorial.

e Samples are designed only to illustrate the VTune Amplifier XE features; they do not represent best
practices for creating code.

Verify Optimal Compiler/Linker Options

Configure Visual Studio project properties to generate the debug information for your application so that the
VTune Amplifier XE can open the source code.
1. Select the nqueens_parallel project and go to Project > Properties.

The nqueens_parallel Property Pages dialog box opens.

2. Select Configuration Properties > General and make sure the selected Configuration (top of the
dialog) is Release.

3. Select Fortran > General pane and specify the Debug Information Format as Full (/debug:full) .

rnqueens _parallel Pro

Configuration: | Active(Release) v] Platform: ’Active['nﬂ.finﬂ]
Configuration Properties Suppress Startup Banner Yes (/nologo)
General Additional Include Directories
Fortran Optimization Maxirmize Speed
Linker Preprocessor Definitions
Resources Compile Time Diagnostics Custom
MIDL

4. Select Fortran > Optimization pane and set the Optimization to Maximize Speed.

rnqueeng _parallel Proj

Configuration: | Active(Release) vl Platform: ’Active['l.ﬂ-finﬂ] -
Configuration Properties = Maximize Speed

General i Inline Function Expansion Any Suitable

Debugging Favor Size or Speed Favor Fast Code

Fartran Omit Frame Pointers Yes
General Loop Unroll Count
Gptimiz.atiﬂn Parallelization Mo
Elel::lugglng Threshold For Auto-Parallelization 100

18

HTTP://SOFTWARE.INTEL.COM/EN-US/ARTICLES/INTEL-SOFTWARE-EVALUATION-CENTER/

Finding Hotspots 2

Configure Target Properties

1.

2.

3.

Right-click the nqueens parallel project and select Properties from the context menu.

The nqueens_parallel Property Pages dialog box opens.

In the nqueens_parallel Property Pages dialog box, select Configuration Properties >
Debugging.

In the right pane, specify the Command Arguments as 14.

Build the Target in the Release Mode
Build the target in the Release mode with full optimizations, which is recommended for performance analysis.

1.

2.

B

Go to the Build > Configuration Manager... dialog box and select the Release mode for your target
project.
From the Visual Studio menu, select Build > Build nqueens_parallel.

The nqueens_parallel.exe application is built with your default Fortran compiler. For this tutorial,
Intel® Fortran Compiler XE is used.

NOTE The build configuration for nqueens parallel may initially be set to Debug, which is typically
used for development. When analyzing performance issues with the VTune Amplifier XE, you are
recommended to use the Release build with normal optimizations. In this way, the VTune Amplifier XE
is able to analyze the realistic performance of your application.

Create a Performance Baseline

Run the application to create a performance baseline that will be used to identify optimization you achieve
during performance tuning with the VTune Amplifier XE.

1.

B

From the Visual Studio menu, select Debug > Start Without Debugging.

The nqueens parallel.exe application starts running.

NOTE Before you start the application, minimize the amount of other software running on your
computer to get more accurate results.

Starting ngueens solver for size 14 with 4 thread<s>
Mumber of solutions: 365596
Correct Resultt

Calculations took 31215ms.
Press any key to continue . . .

Note the execution time displayed in the shell window caption. In the example above, the execution
time is 31215 milliseconds.

e Run the application several times, note the execution time for each run, and use the average
number. This helps to minimize skewed results due to transient system activity.

¢ The screenshots and execution time data provided in this tutorial are created on a system with 4
CPU cores. Your data may vary depending on the number and type of CPU cores on your system.

Create a Project

1.

2.

From the Start menu select Intel Parallel Studio XE 2013 > Intel VTune Amplifier XE 2013 to
launch the VTune Amplifier XE standalone GUI.

Create a new project via File > New > Project....

19

2 Getting Started Tutorial: Finding Hotspots

The Create a Project dialog box opens.
3. Specify the project name nqueens parallel that will be used as the project directory name.

VTune Amplifier XE creates the nqueens parallel project directory under the $USERPROFILES\My
Documents\My Amplifier Projects directory and opens the Project Properties: Target dialog
box.

4. Inthe Target tab, select the Application to Launch target type and specify your target as follows:

e For the Application field, browse to: <sample code dir>, for example: C:\samples
\nqueens_fortran\vi9\nqueens parallel\Release\nqueens parallel.exe.

5. In the Application parameters field, specify the task size for this target: 14.

6. Click OK to apply the settings and exit the Project Properties dialog box.

Recap

You set up your environment to enable generating symbol information for your binary files, built the target in
the Release mode, created the performance baseline, and created the VTune Amplifier XE project for your
analysis target. Your application is ready for analysis.

Key Terms

e Baseline
e Target

Next Step
Run Hotspots Analysis

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Run Hotspots Analysis

In this tutorial, you run the Hotspots analysis to identify the hotspots that took much time to execute.

To run an analysis:

1.
From the VTune Amplifier XE toolbar, click the New Analysis button.

VTune Amplifier XE result tab opens with the Analysis Type window active.

2. On the left pane of the Analysis Type window, locate the analysis tree and select Algorithm Analysis
> Hotspots.

The right pane is updated with the predefined settings for the Hotspots analysis.
3. Click the Start button on the right command bar.

20

Finding Hotspots 2

A Choose Analysis Type Intel VTune Amplifier X& 20

B iy ospots

-l Algorithm Analysis -
- .A_lightweight Hotspot:

Identify your most time-consuming
source code. Unlike Lightweight

¥, m Hotspots, Hotspots collects stack and
.4 Concurrency call tree information. This analysis type
P A Locks and Waits cannot be used to profile the syst...

VTune Amplifier XE launches the nqueens parallel application that makes calculations, displays the
execution time, and exits. VTune Amplifier XE finalizes the collected results and opens the analysis results in
the Hotspots viewpoint.

To make sure the performance of the application is repeatable, go through the entire tuning process on the
same system with a minimal amount of other software executing.

NOTE This tutorial explains how to run an analysis from the VTune Amplifier XE graphical user
interface (GUI). You can also use the VTune Amplifier XE command-line interface (amplxe-cl
command) to run an analysis. For more details, check the Command-line Interface Support section of
the VTune Amplifier XE Help.

Key Terms

e Elapsed time
e Finalization
e Hotspot

e Viewpoint

Next Step

Interpret Hotspots Results

Interpret Hotspots Results

m When the sample application exits, the Intel® VTune™ Amplifier XE finalizes the results and opens the
Hotspots viewpoint where each window or pane is configured to display code regions that consumed a lot of
CPU time. To interpret the data on the sample code performance, do the following:

1. Explore application-level performance.

2. Analyze the most time-consuming functions.

3. Identify the hotspot code region.

! NOTE The screenshots and execution time data provided in this tutorial are created on a system with
4 CPU cores. Your data may vary depending on the number and type of CPU cores on your system.

Explore Application-level Performance

Start analysis with the Summary window that opens by default when data collection completes. To interpret

the data, hover over the question mark icons "“' to read the pop-up help and better understand what each
performance metric means.

21

2 Getting Started Tutorial: Finding Hotspots

Elapsed Time: 32.440s

Total Thread Count: 4
CPU Time: 108.833=
Paused Time: 0=

Note that CPU Time for the sample application is equal to 108.833 seconds. It is the sum of CPU time for all
application threads. Total Thread Count is 4, so the sample application is multi-threaded.

The Top Hotspots section provides data on the most time-consuming functions (hotspot functions) sorted
by CPU time spent on their execution.

Function CPU Time

NQUEENS_ip_SETQUEEN 105.684s

chkstk 2687s
MOQUEEMS_ip_SOLVE 0187=
__kmp_fork_barrier 01255
MtDelayExecution 00645

For the sample application, the NQUEENS ip SETQUEEN function, which took 105.684 seconds to execute,
shows up at the top of the list as the hottest function.

The [Others] entry at the bottom shows the sum of CPU time for all functions not listed in the table.

Analyze the Most Time-consuming Functions

Click the Bottom-up tab to explore the Bottom-up pane. By default, the data in the grid is sorted by
Function/Call Stack.

Analyze the CPU Time column values. This column is marked with a yellow star as the Data of Interest
column. It means that the VTune Amplifier XE uses this type of data for some calculations (for example,
filtering, stack contribution, and others). Functions that took most CPU time to execute are listed on top.

The NQUEENS ip SETQUEEN function took 105.684 seconds to execute.

™ Hotspots - Hotspots /4 @

& Analysis Target Analysis Type | | B8 Collection Log @& Bottom-up

Grouping: [Functiun J Call Stack v]
Function / Call Stack CPU Timew Module Function (Full)
nqueens_parallel.exe | NQUEENS_ip_SETQUEEN }

[chkstk 2697 ngueens_parallel.exe chkstk

FNQUEEMNS ip_SOLVE 0187 ngueens_parallel.exe MQUEENS_ip_S0LVE

[_kmp_fork_barrier 01255 libiornpSmd.dll __kmp_fork_barrier(int, ...
MtDelayExecution 0.064= ntdll.dll MtDelayExecution

Double-click the hotspot function to open the source and identify the most time-critical code lines.

22

Finding Hotspots 2

Identify the Hotspot Code Region

([Source._J[_Assently]| B | 0 2 @ 9
3
Source Line Source CPU Time W
117 recursive subroutine setQueen (queens, row, col) ?.1?15'
118 implicit none
119 integer, intent{inout) :: gqueens(:)
120 integer, intent{in) :: row, col
121 integer :: i 1 2
122
123 ! In order to avoid a data race on the "queens™ array,
124 integer :: lcl_gueens (ubound (queens,dim=1)) 1.861s
125
126 | Make copy of gQueens array
127 lcl gueens = gueens
128
129 do i=1, row-1 1.519:

The table below explains some of the features available in the Source window when viewing the Hotspots
analysis data.

1 Source pane displaying the source code of the application if the function symbol information is
available. The beginning of the hotspot function is highlighted. The source code in the Source
pane is not editable.

If the function symbol information is not available, the Assembly pane opens displaying
assembler instructions for the selected hotspot function. To enable the Source pane, make sure to
build the target properly.

2 Processor time attributed to a particular code line. If the hotspot is a system function, its time, by
default, is attributed to the user function that called this system function.

3 Source window toolbar. Use the hotspot navigation buttons to switch between most performance-
critical code lines. Hotspot navigation is based on the metric column selected as a Data of Interest.
For the Hotspots analysis, this is CPU Time. Use the Source/Assembly buttons to toggle the
Source/Assembly panes (if both of them are available) on/off.

By default, when you double-click the hotspot in the Bottom-up pane, the VTune Amplifier XE opens the

source file related to this function. Click the ¥ hotspot navigation button to go to the code line that took the
most CPU time. For the NQUEENS ip SETQUEEN function, the hottest code line is 127. This code is used to

create a local copy of the queens array to avoid a data race. Click the Source Editor button on the

Source window toolbar to open the default code editor and work on optimizing the code.

Key Terms

e CPU time
e Viewpoint

Next Step
Resolve Issue

23

2 Getting Started Tutorial: Finding Hotspots

Resolve Issue

@ You identified that the most time-consuming function is NQUEENS ip SETQUEEN. If you click the
Source Editor button from the Source pane, the VTune Amplifier XE opens the source
nqueens_parallel.£90 file at the hotspot line in the default code editor. You see that the OpenMP* cycle is
calling the recursive setQueen function that initializes the queens array. To avoid a data race, this array is
copied in each thread (see line 127):

Eecursive routine to set a gueen on the board

1 o n

recur=sive subrontine set{ueen (gueens, row, col)
implicit none

[T

1 integer, intent(inout) :: gueens|(:)

1 integer, intent(in) :: row, col

121 integer :: 1

122

123 In order to avold a data race on the "gueens" array, create a local copy.
124 integer :: lcl queens (ubound(gueens,dim=1))

Make copy of gueens array
lcl gueens = gueens

do i=1,row-1

[= TR

vertical attacks

|
Cad G fad L L K3 R R R B3 ORI ORI ORI ORI ORI
1 o n

131 if (lcl gueens(i) == col) return

132 diagonal attacks

133 if (abs(lcl_gqueens(i)-col) == (row-i)) return
134 end do

This means that the number of local copies is equal to the number of threads. Since the function is recursive,
the array is also copied in every function call, which is unnecessary and creates a big overhead.

To resolve this issue, you may enable OpenMP to make a copy of the array per thread. To do this:
1. Comment out lines 124 and 127.

integer :: lcl queens (ubound (gqueens,dim=1))

Make copy of gueens array

1cl gueens = gueens

2. Search and replace all 1c1_queens entries with queens.
3. Editline 159 to add the PRIVATE (queens) directive.

This enables the OpenMP run-rime to create a private copy of the array for each thread.

'%0MPF PRARALLEL DO PRIVATE (gQueens)

oy n

[R

1 do i=l,=size

L6L§ try all positions in first row
_625 call Set{meen (gueens, 1, i)

163 end do

4. Save the changes made in the source file.
5. From the Visual Studio Build menu, select Rebuild nqueens_parallel.

The project is rebuilt.
6. From Visual Studio Debug menu, select Start Without Debugging to run the application.

24

In order to avoid a data race on the "gueens" array, create a local copy.

Finding Hotspots 2

Starting ngueens solver for size 14 with 4 threadis>
umber of solutions: 365576
orrect Result?

alculations took 16035ms.
ress any key to continue . . .

Visual Studio runs nqueens_parallel.exe. Note that the execution time has reduced from 31215 ms
to 16035 ms. This means that the proposed solution gives 15180 ms of CPU time reduction.

To identify other possible performance issues, you may run the Concurrency analysis and see how effectively
your application is parallelized.

Next Step
Run Concurrency Analysis

Run Concurrency Analysis

Run the Concurrency analysis to understand how effectively your application is parallelized.

To run an analysis:

1.
From the VTune Amplifier XE toolbar, click the New Analysis button.
VTune Amplifier XE result tab opens with the Analysis Type window active.

2. On the left pane of the Analysis Type window, locate the analysis tree and select Algorithm Analysis
> Concurrency.

The right pane is updated with the predefined settings for the Concurrency analysis.
3. Click the Start button on the right command bar.

™ Choose Analysis Type Intel VTune Amplifier XE 2

é}" zﬂ A’ *Ek Concurrency Copy |

E‘ 1% Algorithm Analysis analyze how your application is using awvailable

- i Lightweight Hotspots logical CPUs, discover where parallelism is

I.ﬁ., Hokspioks incurring synchranization overbead, and idenkify
A Concurrency pokential candidates for parallelization. This

A Locks and Wats analysis bype uses user-mode sampling a. ..

El ,__,.r Advanced Intel(R) Core(TH) 2
: S General Exploration

v Collect highly accurate CRU time Project Properties

L o | Py Y

VTune Amplifier XE launches the nqueens parallel application that makes calculations, displays the
execution time, and exits. VTune Amplifier XE finalizes the collected results and opens the analysis results in
the Hotspots by Thread Concurrency viewpoint.

To make sure the performance of the application is repeatable, go through the entire tuning process on the
same system with a minimal amount of other software executing.

u NOTE This tutorial explains how to run an analysis from the VTune Amplifier XE graphical user
interface (GUI). You can also use the VTune Amplifier XE command-line interface (amplxe-cl
command) to run an analysis. For more details, check the Command-line Interface Support section of
the VTune Amplifier XE Help.

25

2 Getting Started Tutorial: Finding Hotspots

Key Terms

e Finalization
e Viewpoint

Next Step
Interpret Concurrency Results

Interpret Concurrency Results

m When the sample application exits, the Intel® VTune™ Amplifier E finalizes the results and opens the
Hotspots by Thread Concurrency viewpoint where each window or pane is configured to display data on
application parallelism and usage of processor cores. To interpret the data on the sample code performance,
do the following:

1. Explore application-level concurrency
2. Identify the most time-consuming function.

NOTE The screenshots and execution time data provided in this tutorial are created on a system with
4 CPU cores. Your data may vary depending on the number and type of CPU cores on your system.

Explore Application-level Concurrency
Start analysis with the Summary window that opens by default when data collection completes. To interpret

the data, hover over the question mark icons ' to read the pop-up help and better understand what each
performance metric means.

You see that after optimization the Elapsed time has reduced from 32.440 seconds to 18.351 seconds.

Elapsed Time: 18.351s

Cwverhead Time: 0.497<
CPU Time: 59.385=
Total Thread Count: 5
Paused Time: 0=

ﬂ NOTE The Concurrency analysis adds an overhead to the application execution. The overhead often
depends on the number of threads and synchronization objects used in the application. This is the
reason why Elapsed time data provided in the Summary window may differ from the data reported
after the application launch outside of the VTune Amplifier XE.

The Thread Concurrency Histogram shows that the average concurrency level of the sample application is
about 3.2 while the target concurrency level for this application on the 4-core system is 4. If you hover over
the highest bar, you see that this application has run 4 threads for more than 11 seconds, which is
categorized by the VTune Amplifier XE as Ideal processor utilization. The application has run one and two
threads simultaneously for more than 4 seconds, which is classified as poor parallelization.

26

Finding Hotspots 2

12=

Elapsed Time

Simultaneously Running Threads: 4
Elapsed Time: 11.475s

e BEIN del Over

& & &

Simultaneously Running Threads

Identify the Most Time-consuming Function

Click the Bottom-up tab to switch to the Bottom-up window and analyze application performance by
function. By default, the grid is sorted by the CPU Time by Utilization metric in the descending order.
Select the Function/Thread/Call Stack grouping level from the Grouping menu. This granularity enables
you to visualize threads where the hotspots functions were executed.

After initial optimization, the NQUEENS ip SETQUEEN function is still a bottleneck. Click the plus sign * at the
NQUEENS_ip SETQUEEN function. You see that this function's execution was parallelized among four threads.

has] =
M Concurrency - Hotspots by Thread Concurrency 4 @

Grouping: [Funcﬁon [Thread [Call Stack

CPU Time by Utilizationw ~ * B Overhead Wait Time by Utilization 2!
Bidle BPoor MOk Wideal @Over '™ @idie §Poor @Ok B

= NQUEENS_jp_SETQUEEN 50081s W 0422s| 2875

Function / Thread / Call Stack

OMP Worker Thread #1 (:dc40) | 17.138< [N 0150s 0.747s
mainCRTStartup (Dxl c80) 15.544: [/ 0111s 0639
OMP Worker Thread £2 (0:1f1c) 14.174= [0.040s 0.804s
OMP Worker Thread #3 (1d20) | 12.226< [0121s 0.684s
MtDelayExecution 0.097< 0s
MQUEENS_jp_SOLVE 0.040s 0.040s 1.631s
RtlEnterCritical5ection 0.036= 0.036=

Select these threads in the grid, right-click and choose the Filter In by Selection context menu option. The
Timeline pane below is updated to display data for the selected threads only.

' ' ' 1%5 'I& [+] Threads

13 15

T I
Cib 11 3 5 7z 9 1ls =
2 iﬂ':RTStEI’tLIFI mﬂca l: "o v Il ilull._l = - F‘.unnlng
3 [OMP Worker Thread 2L |0+ w0 o a3 G i R | [v] 1 Waits
S [OMP Worker Thread 22]| I * 11 il « ‘i R 1 —] stk CPU Time
I-E OMP Worker Thread 23 1 1 I l I 1 I | :" .

Timeline area. When you hover over the graph element, the timeline tooltip displays the time
passed since the application has been launched.

27

2 Getting Started Tutorial: Finding Hotspots

2 Threads area that shows the distribution of CPU time utilization per thread. Hover over a bar to
see the CPU time utilization in percent for this thread at each moment of time. Dark green zones
show the time threads are active. Light-green zones show the time threads were waiting.

3 Transitions. The execution flow between threads where one thread signals to another thread
waiting to receive that signal. You may zoom in to a time region to get more detailed view of the
transitions. To do this, drag and drop to select the region and right-click to select the Zoom In on
Selection option from the context menu.

The Timeline pane for the sample application shows a large number of transitions between threads, which
means that the threads spent noticeable time transferring execution to each other. If you uncheck the
Transitions display option on the right, you see that workload balance is also poor since three of four
threads were waiting for OMP Worker Thread #1 to complete execution.

Run the Locks and Waits analysis to understand what prevents the sample code from effective thread
concurrency and processor utilization.

Key Terms

e Thread concurrency
o Viewpoint

Next Step
Run Locks and Waits Analysis

Run Locks and Waits Analysis

m Run the Locks and Waits analysis to identify synchronization objects that caused contention and fix the
problem in the source.

To run an analysis:

1. . | .
From the VTune Amplifier XE toolbar, click the New Analysis button.

VTune Amplifier XE result tab opens with the Analysis Type window active.
2. From the analysis tree on the left, select Algorithm Analysis > Locks and Waits.

The right pane is updated with the default options for the Locks and Waits analysis.
3. Click the Start button on the right command bar.

B Choose Analysis Type Intel VTune Amplifier XE 2

é}'- gﬁﬁ ﬁ' fk Locks and Waits Copy |

EHSr Algorithim Analysis Identify where your application is waiting

-4 Lightweight Hotspots on synchranization obijecks or Ij0

;ﬁ, Hotspaots operations and discover how these waits
A Concurrency affect your application performance. This
A Locks and Waits analysis bype uses user-mode sampling a. ..

Iv Collect Spin time data Project Propetties

| e P TS Y N SOt R R

EIL_“,,.? Advanced Intel(R) CorelTH) 2
- A General Explaration

VTune Amplifier XE launches the nqueens parallel executable that makes calculations, displays the
execution time, and exits. VTune Amplifier XE finalizes the collected data and opens the results in the Locks
and Waits viewpoint .

28

Finding Hotspots 2

e To make sure the performance of the application is repeatable, go through the entire tuning
process on the same system with a minimal amount of other software executing.

e This tutorial explains how to run an analysis from the VTune Amplifier XE graphical user interface
(GUI). You can also use the VTune Amplifier XE command-line interface (amplxe-cl command) to
run an analysis. For more details, check the Command-line Interface Support section of the VTune
Amplifier XE Help.

Key Terms

e Finalization
e Viewpoint

Next Step
Interpret Locks and Waits Results

Interpret Locks and Waits Results

m When the sample application exits, the Intel® VTune™ Amplifier XE finalizes the results and opens the
Locks and Waits viewpoint that is configured to display synchronization objects sorted by Wait time. To
interpret the data on the sample code performance, do the following:

1. Identify locks.
2. Analyze source code.

Identify Locks
Click the Bottom-up tab to open the Bottom-up pane.

B Lacks and Waits - Locks and Waits /& @& Intel VTune Amp

& Analysis Target Analysis Type | | 38 Collection Log | | ¥ Summary

Grouping: [Sync Object / Function / Call Stack

Wait Time by Utilizatione ™ 2 Wait Spin

Sync Object / Function / Call Stack | _
|DIdle @ Poor 0Ok B Ideal B Owver Count Time

GMPJuinBarrier_NquEF;ﬁ_ip_Sowaﬁg§ 9.066< (I | (5 § ¢
[Multiple Objects 0.002s 1 Os

The table below explains the type of data provided in the Bottom-up pane:

1 Synchronization objects that control threads in the application. The hash (unique number) appended
" to some names of the objects identify the stack creating this synchronization object.

The utilization of the processor time when a given thread waited for some event to occur. By default,
the synchronization objects are sorted by Poor processor utilization type. Bars showing OK or Ideal
utilization (orange and green) are utilizing the processors well. You should focus your optimization

efforts on functions with the longest poor CPU utilization (red B bars if the bar format is selected).

2

Next, search for the longest over-utilized time (blue - bars).

29

2 Getting Started Tutorial: Finding Hotspots

This is the Data of Interest column for the Locks and Waits analysis results that is used for different
types of calculations, for example: call stack contribution, percentage value on the filter toolbar.

3 Number of times the corresponding system wait API was called. For a lock, it is the number of times
the lock was contended and caused a wait. Usually you are recommended to focus your tuning efforts
on the waits with both high Wait Time and Wait Count values, especially if they have poor utilization.

4 Wait time, during which the CPU is busy. This often occurs when a synchronization API causes the
CPU to poll while the software thread is waiting. Some Spin time may be preferable to the alternative
of the increased thread context switches. However, too much Spin time can reflect lost opportunity
for productive work.

In the nqueens_parallel sample code, there are two critical wait objects, oMP
Critical NQUEENS ip SETQUEEN and OMP Join Barrier NQUEENS ip SOLVE, that caused redundant
synchronization and took the longest Wait time and highest Wait count. The bar indicators in the Wait Time
column indicate that most of the time for these objects processor cores were either underutilized or idle.

Analyze Source Code

Explore the source of the critical synchronization objects that caused significant Wait time and poor processor
utilization. Double-click the OMP Critical NQUEENS ip SETQUEEN object to analyze the source of the

NQUEENS_ip SETQUEEN wait function. Click the % putton on the Source pane toolbar to go to the biggest
hotspot code line in the function. VTune Amplifier XE highlights line 142 protected by the OpenMP* critical
section.

[Source ” Assembly]| |
Su:ugrce Source WEitTir‘r‘lEh}fUt”iIE...ﬁ Wait Spin
Line @1dle §Poor [Ok W Count Time
139 if (row == 3ize) then
140 ! Change the Critical session for the Atomic directiwve
141 'sOMP CRITICAL
: nr0fSolutions = nr0fSolutions + 1 11.964= I| 24,551 8147s
143 '$OMP END CRITICRL
144 else

The NQUEENS_ip SETQUEEN function was waiting for almost 12 seconds while this code line was executing
and most of the time the processor was either underutilized or idle. During this time, this operation was
contended 24,551 times.

Hover over any transition line in the Timeline pane below to explore the infotip and make sure that all the
transitions are caused by the OMP Critical NQUEENS ip SETQUEEN critical section.

30

2

Finding Hotspots

! ! 1 !] ! ! 1 ! 1 ! ! ! !] ! ! ! 1 1 1 !
e 2 e i ; IIE:SS‘EEBIE’I 1%5 i .13:55. H 1115 i .14:55. ;
_ |mainCRTStartup (0:A7b |1, w s T w - b S R
= |OMP Worker Thread 21 | [« 71 & & il o TR
EGMPWorkerThread#l o Ar i U S FRE
OMP Worker Thread £3 =2 OMP Worlker Thread #1 ((:1a10)
CPU Time
CPU Usage 100%:
Waits
Start: 12,6625 Duration: 1.053s
Thread Concurrency Sync Object: OMP Critical _NQUEENS_ip_SETQUEEN:141 0:x185f1e51
Source File: nqueens_parallel.fa0
1 Source Line: 142
%eWait5ignal Source File: nqueens_parallel.f90
* Filter: 31.9% is shown . ‘?r’.:-‘u".faitSignaI Source Line: 142

The OMP Critical NQUEENS ip SETQUEEN section is the place where the application is serializing. Each
thread has to wait for the critical section to be available before it can proceed. Only one thread can be in the
critical section at a time.

To explore the next issue, double-click the OMP Join Barrier NQUEENS ip SOLVE synchronization object
to open the source function and go to the hottest line.

[Source ” Assembly ” | |

Sour... : | Wait Time by Utilization™ 2 Wait Spin
Line i Count Time

OIdle B Poor O Ok B Idea

153 subroutine solve (gueens)

154 implicit none

155 integer, intent{inout) :: gqueens(:)

156 integer :: i

157

158 | Enable dynamic load scheduling

1,529 1| 0.030s

'SCOMP PRARATLEL DO FRIVATE (gqueens)
do i=1,s8ize

160

The OMP Join Barrier NQUEENS ip SOLVE object creates a barrier for threads synchronization: a thread
should wait until other threads complete execution. The Timeline pane illustrates the thread imbalance
displaying light-green wait regions for each thread. If you hover over a wait region, the infotip shows that
the wait happened on the OMP Join Barrier NQUEENS ip SOLVE synchronization object.

Lo o o Con,
O QEFC—Cs 1s 3s S Ts 9 11s 135 [15.21s|17s & |[¥] Threads e
1 L 1 1 .
mainCRTStartup (0x1c8 | . | [¥]E Running
5 |OMP Worker Thread #1] Waits
IE OMP Worker Thread £2 | b CPU Time
OMP Worker Thread £3 | | 10 S A i H = Teomcitiome | 2
CPU Tirme
Thread Concurrency Waits
Start: 14.759< Duration: 3.576s
4 Sync Object: OMP Join Barrier _MQUEENS_ip_SOLVE159 Oxd fe310b1

31

2 Getting Started Tutorial: Finding Hotspots

You need to optimize the code to make it more concurrent. Click the Source Editor button on the
Source window toolbar to open the code editor and optimize the code.

Key Terms

e Elapsed time
e Wait time

Next Step

Remove Lock

Remove Locks

m In the Source window, you located the synchronization objects that caused significant waits while the
processor cores were underutilized and generated multiple wait count. To resolve the issues, do the
following:

1. Open the code editor.
2. Modify the code to remove locks.
3. Recompile the project and check the result.

Open the Code Editor

Click the Source Editor button to open the nqueens parallel.£90 file in your default editor:

140 ! Change the Critical session for the Atomic directive OMP ATOMIC
141 SOMP CRITICAL

142 nrfSolutions = nrl0fSolution=s + 1

143 120MP END CRITICAL

144 else

145 try to £ill next row

146

do i=l,=size
14 call set{ueen (gueens, row+l, i)
end do
end if
end subroutine SetQueen

[T =3

P
[T W]

[
s

Remove Locks

The critical section introduced in line 141 protects the global variable from a race condition in a
multithreaded application but it spawns a redundant synchronization. To resolve this issue, you may replace
the critical section with an atomic operation as follows:

1. Edit like 141 to replace the OMP CRITICAL with the OMP ATOMIC directive.
2. Comment out or remove line 143.

A threads barrier, created by OpenMP* directive in line 159, synchronizes the threads but creates a lock with
long Wait time. You may resolve this by enabling dynamic load scheduling as follows:

1. Editline 159 to add the SCHEDULE (DYNAMIC) directive to the OpenMP pragma:

32

Finding Hotspots 2

141 120ME ATCMIC

142 nrfSolutions = nrlfSolution=s + 1
143 11Z0MP END CRITICAL

144 else

14 ! try to £ill next row

14 do i=1l,size
14 call =set{meen (gueens, row+l, i)
end do
end if
end subrontine Setueen

[
I 1
[T T RS]

Main solver routine
subrontine solve [(gueens)
implicit none
integer, intent(inout) :: gueens|(:)
integer :: 1

L i e e
] oy LN f [R %]

! Enable dynamic load scheduling
1SCMP PARALLEL DO PRIVATE (queens) SCHEDULE (DYMAMIC)

wom

2. Save your changes.

Recompile the Project and Check the Result
1. From the Build menu, select Rebuild hqueens_parallel.

The project is rebuilt.
2. From the Debug menu, select Start Without Debugging to run the application.
Starting ngueens solver for size 14 with 4 threadis?

Mumber of solutions: 365596
Correct Result?

Calculations took 15767ms.
Press any key to continue . . .

Visual Studio runs the nqueens parallel.exe. Note that execution time reduced from 16035 ms to
15767 ms.

Key Terms

e Wait time

Next Step

Compare with Previous Result

Compare with Previous Result

You made sure that removing the critical section gave you 268 ms of optimization in the application
execution time. To understand the impact of your changes and how the CPU utilization has changed, re-run
the Locks and Waits analysis on the optimized code and compare results:

1. Compare results before and after optimization.
2. Identify the performance gain by metrics.
3. Compare timeline data.

33

2 Getting Started Tutorial: Finding Hotspots

Compare Results Before and After Optimization

1. Run the Locks and Waits analysis on the modified code.

2.
Click the Compare Results button on the VTune Amplifier XE toolbar.

The Compare Results window opens.
3. Specify the Locks and Waits analysis results you want to compare:

™ Choose Results to Compare

Result 1; IrDDEIw.ampIxe j Brawse. .., |
Result 2: | RNy Browse. .. |

These results can be compared, Click the

Swap Resulks |

The Summary window opens providing the statistics for the difference between collected results.

Identify the Performance Gain by Metrics

The Result Summary section of the Summary window shows that after optimization all critical metric
values has reduced significantly. The Elapsed Time data shows the optimization of 4 seconds for the whole
application. Wait Time decreased by 20.5 seconds, Wait Count - by 24,570.

Elapsed Time: 20.467s - 16.446s = 4.022s

Total Thread Count: Mot changed, 5
Wait Time: 41.221s - 20,7055 = 20.516s
Spin Time: §.449s - 0428 = 8.021s
Wait Count: 24,662 - 92 = 24,570
CPU Time: 66448z - 594355 = 7.013s
Paused Time: Mot changed, Os

ﬂ NOTE The Locks and Waits analysis adds an overhead to the application execution. The overhead
often depends on the number of threads and synchronization objects used in the application. This is
the reason why Elapsed time data provided in the Summary window may differ from the data
reported after the application launch outside of the VTune Amplifier XE.

According to the Thread Concurrency histogram, after optimization (an orange bar) 4 threads ran in
parallel effectively utilizing CPU cores for 14 seconds, which is categorized by the VTune Amplifier XE as the
Ideal processor utilization. The previous version of the application ran on 4 threads for 11.5 seconds.

34

Finding Hotspots 2

Elapsed Time

h Ideal Over

Simultanecusly Running Threads

In the Bottom-up pane, locate the OpenMP* critical section you identified as a bottleneck in your code.
Since you removed it during optimization, the optimized result r003lw does not show any performance data
for this synchronization object. If you collapse the Wait Time:Difference by Utilization column by clicking
the %l button, you see that with the optimized result you got almost 12 seconds of optimization in Wait time.
Using dynamic scheduling for the threads barrier gave you 4.5 seconds of optimization in Wait time.

r002hw-r003w

B Locks and Waits - L and Waits /& @

Grouping: [Sync Object / Function / Call Stadk

Wait Time:Difference Wait Time:r002hw by Utilization™ 2 Wait Time:r003Iw by Utilization

Sync Object / Function / Call Stack bv Utilization -
¥ Cldle B Poor OOk Bideal @O Olidle B Poor OOk B Ideal @

OMP Critical _NQUEENS_ip_SETQ)| 11.964s (] 11.964s

[# OMP Join Barrier _NQUEENS_ip_5| 4.549s] 9.066s | 4.517s]
Stream C\Windows\Globalization 0.000= 0.000=

Streamn 0x2f221507 0.000s 0.000s

[# Multiple Objects 0.000s 0.002s 0.002s

Compare Timeline Data
Open the optimized result of the Locks and Waits analysis r003lw, click the Bottom-up tab and analyze the
Timeline pane.

OV U VT U UV U A S WL S | UV U] TRl
(2 e O e 1s 25 35 45 s B 75 8s < reads
" -Running

mainCR TSkartup (Ox1bbe)

OMP orker Thread 41 (|| | | [waits

OMP Worker Thread £2(|| | Wk CPU Time
OMP Worker Thread £330 || | LI Transitions

Threads

The optimized result does not have transitions anymore. Though the threads are not fully balanced, the wait
regions have reduced.

Compare analysis results regularly to look for regressions and to track how incremental changes to the code
affect its performance. You may also want to use the VTune Amplifier XE command-line interface and run the
amplxe-cl command to test your code for regressions. For more details, see the Command-line Interface

Support section in the VTune Amplifier XE online help.

Key Terms
e Elapsed time

35

2 Getting Started Tutorial: Finding Hotspots

e Thread concurrency
e Wait time

36

Summary

You have completed the Finding Hotspots tutorial. Here are some important things to remember when
using the Intel® VTune™ Amplifier E to analyze your code for hotspots:

Step

Tutorial Recap

Key Tutorial Take-aways

1. Prepare for
analysis

2. Find hotspots

3. Eliminate
hotspots

If you used the Visual Studio*
IDE: You chose the target for
the Hotspots analysis,
configured Visual Studio to
generate symbol information
for your binary files, built the
target in the Release mode,
and created the performance
baseline.

If you used the standalone
GUI: You set up your
environment to enable
generating symbol information
for your binary files, built the
target in the Release mode,
created the performance
baseline, and created the
VTune Amplifier XE project for
your analysis target.

You launched the Hotspots
data collection that analyzed
function calls and CPU time
spent in each program unit of
your application and identified
the following hotspots:

e A function that took the
most CPU time and could
be a good candidate for
algorithm tuning.

e The code section that took
the most CPU time to
execute.

You optimized the algorithm
by enabling the OpenMP*
library create a private copy of
the array. You rebuilt the
application and got
performance gain of 15180
ms.

Configure your project properties to get the
most accurate results for user binaries and to
analyze the performance of your application at
the code line level.

Create a performance baseline to compare the
application versions before and after
optimization. Make sure to use the same
workload for each application run.

Use the Project Properties: Target tab to
choose and configure your analysis target. For
Visual Studio* projects, the analysis target
settings are inherited automatically.

Use the Analysis Type configuration window
to choose, configure, and run the analysis. You
can also run the analysis from command line
using the amplxe-cl command.

Start analyzing the performance of your
application from the Summary window to
explore the performance metrics for the whole
application. Then, move to the Bottom-up
window to analyze the performance per
function. Focus on the hotspots - functions
that took the most CPU time. By default, they
are located at the top of the table.
Double-click the hotspot function in the
Bottom-up pane or Call Stack pane to open
its source code and navigate between hotspots
using the Source window navigation buttons.

Click the Source Editor button to open your
default source editor directly from the VTune
Amplifier XE Source window.

37

3 Getting Started Tutorial: Finding Hotspots

Step

Tutorial Recap

Key Tutorial Take-aways

4. Analyze
concurrency

5. Find lock

6. Remove lock

7. Check your
work

You launched the Concurrency
analysis and identified poor
thread concurrency for the
whole application execution.
You analyzed the timeline and
identified poor thread balance:
all OpenMP threads were
constantly transferring
execution to each other and
were waiting for all threads to
complete execution.

You ran the Locks and Waits
analysis and identified the
following hotspots:

¢ Two synchronization
objects with the high Wait
Time and Wait Count
values and poor CPU
utilization that could be
locks affecting application
parallelism. Your next step
is to analyze the code of
their wait functions.

e The code sections that
caused significant waits
and numerous transitions
between threads.

You optimized the application
execution time by removing
the unnecessary critical
section that caused redundant
synchronization and by adding
the dynamic load scheduling.

You ran the Locks and Waits
analysis on the optimized code
and compared the results
before and after optimization
using the Compare mode of
the VTune Amplifier XE.

e Start your analysis with the Summary
window. Consider the Target concurrency
metric specified in the Thread Concurrency
Histogram as your optimization goal. The
Average metric is calculated as CPU time /
Elapsed time. Use this number as another
baseline for your performance measurements.
The closer this number to the number of
cores, the better.

¢ In the Bottom-up window, use the Filter In
by Selection context menu option to focus on
the performance-critical functions in the grid
and analyze their performance over time in the
Timeline pane.

e Use the Analysis Type configuration window
to choose, configure, and run the analysis. For
recently used analysis types, you may use the
shortcuts to run a recent analysis:

e In the standalone interface: From the File
menu, select New >
[recent_analysis_type].

e In Visual Studio: Click the down arrow next

to the New Analysis button on the
VTune Amplifier XE toolbar and select the
required analysis type from the drop-down
list.
¢ In the Bottom-up window, focus on the
synchronization objects that under- or over-
utilized the available logical CPUs and have the
highest Wait time and Wait Count values. By
default, the objects with the highest Wait time
values show up at the top of the window.

Double-click the most time-critical
synchronization object in the Bottom-up pane.

This opens the source code for the wait function it

belongs to. Use the hotspot navigation buttons to
identify the most time-critical code lines.

Perform regular regression testing by comparing

analysis results before and after optimization.

From GUI, click the Compare Results
button on the VTune Amplifier XE toolbar. From

command line, use the amplxe-cl command.

Next step: Prepare your own application(s) for analysis. Then use the VTune Amplifier XE to find and

eliminate hotspots.

38

Key Terms

b

baseline: A performance metric used as a basis for comparison of the application versions before and after
optimization. Baseline should be measurable and reproducible.

CPU time: The amount of time a thread spends executing on a logical processor. For multiple threads, the
CPU time of the threads is summed. The application CPU time is the sum of the CPU time of all the threads
that run the application.

Elapsed time: The total time your target ran, calculated as follows: Wall clock time at end of application
- Wall clock time at start of application.

finalization: A process during which the VTune Amplifier XE converts the collected data to a database,
resolves symbol information, and pre-computes data to make further analysis more efficient and responsive.

hotspot: A section of code that took a long time to execute. Some hotspots may indicate bottlenecks and
can be removed, while other hotspots inevitably take a long time to execute due to their nature.

target: A target is an executable file you analyze using the VTune Amplifier XE.

thread concurrency: A performance metric that helps identify how an application utilizes the processors in
the system by comparing the application concurrency level (the number of active threads) and target
concurrency level (by default, equal to the number of physical cores). Thread concurrency may be higher
than CPU usage if threads are in the runnable state and not consuming CPU time.

Utilizatio Default Description

n Type color

Idle All threads in the program are waiting - no threads are running. There can be
only one node in the Summary chart indicating idle utilization.

Poor] Poor utilization. By default, poor utilization is when the number of threads is up
to 50% of the target concurrency.

OK] Acceptable (OK) utilization. By default, OK utilization is when the number of
threads is between 51-85% of the target concurrency.

Ideal] Ideal utilization. By default, ideal utilization is when the number of threads is
between 86-115% of the target concurrency.

Over] Over-utilization. By default, over-utilization is when the number of threads is
more than 115% of the target concurrency.

viewpoint: A preset result tab configuration that filters out the data collected during a performance analysis
and enables you to focus on specific performance problems. When you select a viewpoint, you select a set of
performance metrics the VTune Amplifier XE shows in the windows/panes of the result tab. To select the
required viewpoint, click the button and use the drop-down menu at the top of the result tab.

Wait time: The amount of time that a given thread waited for some event to occur, such as:
synchronization waits and I/O waits.

39

4 Getting Started Tutorial: Finding Hotspots

40

	Getting Started Tutorial: Finding Hotspots

	Legal Information
	Contents
	Overview
	Navigation Quick Start
	Finding Hotspots
	Visual Studio* IDE: Choose Project and Build Application
	Standalone GUI: 	 Build Application and Create New Project
	Run Hotspots Analysis
	Interpret Hotspots Results
	Resolve Issue
	Run Concurrency Analysis
	Interpret Concurrency Results
	Run Locks and Waits Analysis
	Interpret Locks and Waits Results
	Remove Locks
	Compare with Previous Result

	Summary
	Key Terms

