Intel® Advisor User Guide

Intel Corporation

Intel® Advisor User Guide

Contents

Chapter 1: Intele Advisor User Guide

INErOdUCEION o e e 7
What's New in Intel® AdViSOr....cciviiiiiiii i e 8
Design and Optimization Methodology......ccvovviiiiiiiiiiiii e 12
Tutorials and SamPles. ... e 16
Get Help and SUP PO .o e 17

Install and Launch Intel® AdVISOrcvieiiiiiiii i e e 17
INStall INtel® AdViSO . ittt r e e ane e ennens 18
Set Up Environment Variables ..o 19
Set Up System to Analyze GPU Kernelsccoviviiiiiiiiiii i e eea s 21
Set Up Environment to Offload SYCL, OpenMP* target, and OpenCL™

Applications 0 CPU ... 23
Launch Intel® AdVisSOor v e e 24
GUI Navigation QUICK Start......cccviiiiiiii i i i e 27
Y=L U o o 0 = o PP 29
Configure Target Applicationccoiiiiiii i e 29
Limit the Number of Threads Used by Parallel Frameworks 30
s Choose a Small, Representative Data Setcceoiiiiiiiinnne. 30
Build Target Application.....ccviiiiiii i 31
Create ProjeCt. . i e 36
CoNfigUre ProjeCt vt e 37
Configure Binary/Symbol Search Directories.......cccvvvviiiiiiinnnnnen. 45
Configure Source Search Directoryoooviiiiiiiiiiiiciic e 46
Binary/Symbol Search and Source Search Locations.................... 46

Analyze Vectorization Perspectiveocvviiiiiiiiii i e 48

Run Vectorization and Code Insights Perspective from GUI.................... 50
Vectorization Accuracy Presets....cccviiiiiiiiiiii i i e 51
Customize Vectorization and Code Insights Perspective 52

Run Vectorization and Code Insights Perspective from Command Line 58
Vectorization Accuracy Levels in Command Linec..coevvieennne. 60

Explore Vectorization and Code Insights Resultsccoviiiiiiiiiiinnnen, 62
Vectorization Report OVerviewccoiviiiiiii i 65
Examine Not-Vectorized and Under-Vectorized Loopsccvtn.s 67
Analyze Loop Call Countoiiiiiiii i i i e e 70
Investigate Memory Usage and Traffic.......ccovviiiiiiiiiiiiiiiciiice e, 71
Find Data DependenCies. . ..oviiiiiiii i i aaea s 74

ANalyze CPU ROOf NG ...t e e e e 75

Run CPU / Memory Roofline Insights Perspective from GUI.................... 77
CPU Roofline Accuracy Presetsccoiiiiiiiiiiiiiicicii e 78
Customize CPU / Memory Roofline Insights Perspective................. 79

Run CPU / Memory Roofline Insights Perspective from Command Line 84
CPU Roofline Accuracy Levels in Command Linecovvivevnnen. 87

Explore CPU/Memory Roofline Resultscccvviviiiiiiiiiiiiici e 88
CPU Roofline Report OVEIVIEWcviiiiiiiiiiii i vieeeaneas 91
Examine Bottlenecks on CPU Roofline Chart...........cocoviiiiiiiiinnnns 97
Examine Relationships Between Memory Levelscccovvivennne. 100
Compare CPU Roofline RESUIESccvvviiiiiiiii i i 105

Model Threading DeSIgNS ... vttt i e i e e et ae e aaneeaas 107

Contents

Run Threading Perspective from GUIL........ccooiiiiiiiiiiiiiiiiiic e 109
Customize Threading Perspectivecooiiiiiiiiiiiii e 110
Run Threading Perspective from Command Linec.ccovvvviiiiiiininnnnns 116
Threading Accuracy Levels in Command Linecccevvivvivvinnnnnn. 118
Annotate Code for Deeper ANalysSiScvoeiiiniiiii e 119
Annotate Code to Model Parallelismccoooiiiiiiiiiee, 120
ANNOLALIONS L.viii i e 131
ANNotation REPOIt.....oivviiiiiii 163
Explore Threading ReSUIESoeiiiii e 169
Model Threading Parallelism...... ..o e 172
Suitability Report OVEerviewcoooiieiiiii e 175
Choose Modeling Parameters in the Suitability Report 179
Fix Annotation-related Errors Detected by the Suitability Tool...... 181
Advanced Modeling OptioNS......ccviiiiiiiiii e 182
Reduce Parallel Overhead, Lock Contention, and Enable Chunking 183
Check for DependencCies ISSUESiiiiiiiii it ae e eaeaeas 184
Code Locations Panecoiiiiiiii i 185
Filter Pane (Dependencies Report).....ccovieviiiiiiiiiiiiii e, 186
Problems and Messages Paneccvvviniiiiiiiiiiii e 187
Dependencies Source WindOWccveeiniieiiiiiiiiiii e eeeee e 188
Add Parallelism to Your Program........coceiiiiiii e 192
Before You Add Parallelism: Choose a Parallel Framework........... 193
Add the Parallel Framework to Your Build Environment............... 196
ANNotation REPOIt.....oiviiiiiii 200
Replace Annotations with Intele oneAPI Threading Building
Blocks (ONETBB) COdE ..vviiiiiiiiiiiie it e e s 201
Replace Annotations with OpenMP* Codecovviviiiiiiiiiiinnnnnn. 206
Next Steps for the Parallel Programc.covviiiiiiiiiiiiiienen 219
Model Offloading to @ GPU ..o e 221
Run Offload Modeling Perspective from GUIccoiiiiiiiiiiiiiiiiinens 223
Offload Modeling Accuracy Presetscccovviiiiiiiiiiiiii e 225
Customize Offload Modeling Perspective........ccoooviiiiiiiiiiinennn. 226
Run Offload Modeling Perspective from Command Line....................... 233
Offload Modeling Accuracy Levels in Command Line 245
Run GPU-to-GPU Performance Modeling from Command Line...... 249
Explore Offload Modeling ReSUItS........oiviiiiiiiiii e 253
Offload Modeling Report OVEervVIiEWoovvviiiiiiii i 257
Examine Regions Recommended for Offloadingccocvvnnennn. 260
Examine Data Transfers for Modeled Regionscccevvvvivinnnnnn. 262
Check for Dependency ISSUESciveviiiiiiiiii i naee s 266
Explore Performance Gain from GPU-to-GPU Modeling................ 267
Investigate Non-Offloaded Code RegionS.......ccvevvviviiiiiieiininnnnns. 270
Advanced Modeling Configurationcoooiiiiiiiiiii e 278
Model Application Performance on a Custom Target GPU Device .. 278
Check How Assumed Dependencies Affect Modeling................... 282
Manage Invocation TaXeSc.vvviiiiiiiiiii i e 284
Enforce Offloading for Specific LOOPS ...ovvvviviiiiiiiiiiiiiiiieneea 286
ANAlyze GPU ROOFIINE ... e e e e 287
Run GPU Roofline Insights Perspective from GUI...........cocviiiiiiiniinnnns 288
GPU Roofline Accuracy Presetsccoviviiiiiiiiiii i 289
Customize GPU Roofline Insights Perspectivec.ccoviviivinnn. 290
Run GPU Roofline Insights Perspective from Command Line 295
GPU Roofline Accuracy Levels in Command Linec.cceneee. 298
Explore GPU RoOfline RESUILSciviiiiiiiiiiiiii e 300
Examine GPU Roofline SUMMaAaryccoovviiiiiiiiiiii e 303

Intel® Advisor User Guide

Examine Bottlenecks on GPU Roofline Chart ..o, 305
Examine Kernel Detailsccoiiniieii e 310
Compare GPU Roofline RESUILS.....ccoiiiiiii e 314
Design and Analyze FIOW Graphsoeiiiiiiii e e 316
Where to Find the Flow Graph Analyzer.......ooiiiiiiiiiii e 316
Launching the Flow Graph Analyzerooiiiiiiii e 316
Flow Graph Analyzer GUI OVEIrVIEWoviiiiiiiiie e e e 317
= 0 6 319
TOOIDAIS e e 321
L= 01 P 322
1= T I O= T 0 Y= T 325
(O] -1 o o3 PP 325
Flow Graph Analyzer Workflows........o.oieiiiiiiii e 327
Designer WOrKfIOW ... e 327
Adding Nodes, Edges, and Ports.........ccocvieiiiiiiiiiii i 328
Modifying Node Properties........oooviieiiiiiii e 329
Viewing Edge Properties.o v e 331
Validating @ Graph ..o 331
Saving @a Graph to @ File....cooniii e 331
Generating C++ StUbS ... 332
P e O ENCES ... 335
Scalability ANalysSiscoeiii i 338
Activating the Graph.......cooi i 338
Scalability Analysis Prerequisites........ccovieiiiiiiiiii s 338
Running the Scalability Analysis......c.cooiiiiiiiee 341
Exploring the Parallelism in a Concurrent Nodecceveeneenn. 341
Showing Non-Parallel Nature of a Serial Nodec.ccovvvviiinnnn. 341
Explore Parallelism Provided by the Topology of a Graph............. 342
Understanding Analysis Color Codesocvieiiiiiiiiiiiiiiieeenen, 344
Collecting Traces from Applicationscciiiiiiiii e 344
Building an Application for Trace Collectionc.ccoieiiiniienenn. 345
Collecting Trace Filesvieiiii e 346
Nested Parallelism in Flow Graph Analyzer........coooiiiiiiiiiiiiiiiieen, 352
Analyzer WOrkflOW e 353
Find Time Regions of Low Concurrency and Their Cause 353
Finding a Critical Path ... 354
Finding Tasks with Small Durations.........c.cocoiiiiiiiiii e, 355
Reduce Scheduler Overhead using Lightweight Policy 356
Identifying Tasks that Operate on Common Input..............c.cceeees 358
SUPPOIE fOr SYCL . aniiii i eeaees 359
Experimental Support for OpenMP* Applications..........cccoeiiiiiiiiiennnnn. 367
Collecting Traces for OpenMP* Applications..........ccocviiiiiiiennnns 368
OpenMP* Constructs in the Per-Thread Task Viewc..... 369
OpenMP* Constructs in the Graph Canvasccccviiiiiiieiiennnns 370
Sample Trace Files. ... e e 374
code_generation Samples ..o 375
performance_analysis Sampleso 376
Additional RESOUICESoiiiieiiei e e ees 380
Minimize Analysis Overhead.........ccoiiiiii i 380
Collection Controls to Minimize Analysis Overheadc..cocoiiientns 384
Loop Markup to Minimize Analysis Overheadc.cooviviiiiiiiiiiennenn. 391
Filtering to Minimize Analysis Overhead.........ccooviiiiiiiiiiii i, 396
Execution Speed/Duration/Scope Properties to Minimize Analysis
OVEINEAA . . 397
Miscellaneous Techniques to Minimize Analysis Overhead.................... 400

Contents

Analyze MPI AppliCations ..o 403
Model MPI Application Performance on GPUc.ciiiiiiiiiiiiinnn. 408
Control Collection with an MPI_Pcontrol Function.............ccooiiiiiiintns 412

MaNAgE RESUITS ... uei ittt e 413
OPEN @ RESUIE ..t 414
Rename an Existing Resulto 415
Delete @ ReSUIE ..viii i e 415
Save Results to a Custom Locationccooiiiiiiiiiiiiiii e 415
Work with Standalone HTML RepPOrtS....coeiniiiiiiiiiieie e 416
Create a Read-only Result Snapshotcoooiiiiiii i 420
Create a Result Snapshot Dialog BOXciueiiiieiieiii i 421
Open a Result as a Read-only File in Visual Studiocccoiviiientns 422

Command Line INtErface ...ovie i et ea e 423
advisor Command Line Interface Referenceccoooviiiiiiiiiiiiinnennn, 423

advisor Command Action Reference........cocoveviiiiiiiiiiiiieennen 425
advisor Command Option Referenceccveviviiiiiiiiiiiiieennen 435
Offload Modeling Command Line Reference.........cooevviiiiiiiiiciiinennnn, 567
rUN_0a.pY OPLiONS ..o e 569
COllect.py OPLiONS ..o e 575
analyze.py OptioNS. ... 580
Generate Pre-configured Command LiNeSooeiiiiiiiiiiiii i 589

TroubIEShOOtING. ... e e 591
Error Message: Application Sets Its Own Handler for Signal 593
Error Message: Cannot Collect GPU Hardware Metrics for the Selected

GPU APl e 594
Error Message: Memory Model Cache Hierarchy Incompatible.............. 594
Error Message: No Annotations FOUNd..........c.cooviiiiiiiiiiiiiie e, 595
Error Message: No Data Is Collected........cooviniiiiiiiiii e 596
Error Message: Stack Size Is Too Small ... 596
Error Message: Undefined Linker References to dlopen or dlsym.......... 597
Problem: Broken Call Tree . ..vie i e 598
Problem: Code Region is not Marked Upccoiviiiiiiiiiiiieieeeee, 599
Problem: Debug Information Not Availableccciiiiiiiiiiiiin. 600
Problem: NO Data ..cviiiiiiiiii i e 601
Problem: Source Not Available ... 602
Problem: Stack in the Top-Down Tree Window Is Incorrect.................. 603
Problem: Survey Tool does not Display Survey Report.............ceeneenn. 604
Problem: Unexpected C/C++ Compilation Errors After Adding

ANNOLAIONS . e 605
Problem: Unexpected Unmatched Annotations in the Dependencies

= 5 o 606
Warning: Analysis of Debug Buildc.cooiiiiiiii e 607
Warning: Analysis of Release Buildccooiiiiiiiiiiiii e 607

2] =] = g Lol =T PR 608

Data REfIENCE .ttt e e e 608
(O o U of o Tl 608
Accelerator MetriCS. . v 626

Dependencies Problem and Message TYPeSvvvveiiiiiiiiieiieieinaeenenn, 671
(D=] g |11 gL I ool R 673
Data CommuniCationo.eiiiii i 674
Data Communication, Child Taskccoviiiiiiiiiiiiici e 675
Inconsistent LOCK USeo 676
Lock Hierarchy Violation......c.cooiiiiiiii e 677
MEMOKY REUSE. ...ttt e 679
Memory Reuse, Child Task........cooeiiiiiiiii e 680

Intel® Advisor User Guide

Memory WatCh ... 681
MiSSING ENA St ..onei i e 682
Missing ENd Task.....ccooiriiiii i 683
Missing Start Site......ooiiiii 683
MisSiNg Start TasK ...coue i 684

No Tasks in Parallel Siteo e 685

One Task Instance in Parallel Site.......c.coviiiiiiiii s 685
Orphaned TaskKcieieiii e 686
Parallel Site Informationccoiiiiiiii e 687
Thread Information ..o e 688
Unhandled Application EXception.......ccoovieviiiiiiiiiiiiieeeen, 688
Recommendation Reference.......ooe i 689
Vectorization Recommendations for C++.......ooiiiiiiiiiiiiennnn. 689
Vectorization Recommendations for Fortranc.ccoovieiieenenn. 716

User Interface ReferenCeo.vviiiiiiiii e 737
Dialog Box: Corresponding Command Lineccoeeviiniiennnnn. 737
Dialog Box: Create a Project........cooviiiiii i, 738
Dialog Box: Create a Result Snapshot............cocoiiiiiiiiien. 738
Dialog Box: Options - Assemblycoooiiiiiii e 739
Editor Tab ..o 740
Dialog Box: Options - General.......c.ccoiviniiiiiii e 741
Dialog Box: Options - Result Locationcccooviiiiiiiiiiinen. 742
Dialog Box: Project Properties - Analysis Targetcccvennen.. 743
Dialog Box: Project Properties - Binary/Symbol Search 750
Dialog Box: Project Properties - Source Searchcceeennen. 751
Pane: Advanced VIEW ..o e e e e 752
Pane: Analysis WOrkfloOwcoouiiiiiiiiii e 754
Pane: Roofline Chart....... ..o e 756
Pane: GPU Roofline Chart......ccoiiiiiii e 759
Project Navigator Panecoviiiiiiiiiiii e 763
Toolbar: Intel AdViSOro.eie e 764
ANNOtation REPOI....coiviiiii i 765
Window: Dependencies SOUINCEcvviieiiiiieiie i eeaes 765
Window: GPU Roofline RegioNSccovviviiiiiiiiiiiii e 768
Window: GPU Roofline Insights Summary..........cccooiiiiiiiiienenne. 771
Window: Memory Access Patterns Source..........ccooiviiiiiienennn. 772
Window: Offload Modeling Summaryccoeviiiiiiiiiiiieieene 773
Window: Offload Modeling Report - Accelerated Regions............. 779
Window: Perspective Selector.......cooviiiiiiiiii e 781
Window: Refinement Reportsoooviiiiiiiiiii e 781
Window: Suitability Report.......cooeiiiii e 785
Window: Suitability SOUICe.....c.iiei e 786
Window: Survey REePOI ..o 787
WiINAOW: SUINVEY SOUMCE....uiiitie i ie et e e e e e aaeaeeeenes 790
Window: Threading SUMMAryccooviiiiiii e eeaes 791
Window: Vectorization Summaryocoovieiiiiiiii e 793
7AYo 011 g o 794
Data Sharing Problems ..o 794
Data Sharing Problem Types......cciiiiiiiiiii e 795
Problem Solving Strategies.........covieiiiiiiiii e 798
Notational CoNVENTIONSc.uiiiii e e 807
S}V ©e] o= o] = 808
(€] (o 11T | Y PP 809
Parallelism ... e 811
Related Information.occii i e 815

Intel® Advisor User Guide 1

Intel® Advisor User Guide

This document provides a detailed overview of the Intel® Advisor functionality, workflows, and instructions.

Intel® Advisor is composed of a set of tools, or perspectives, to help ensure your Fortran, C, C++, SYCL ,
OpenMP*, Intel® oneAPI Level Zero (Level Zero), and OpenCL™ applications realize full performance potential
on modern processors:

e Vectorization and Code Insights: Identify high-impact, under-optimized loops, what is blocking
vectorization, and where it is safe to force vectorization. It also provides code-specific how-can-I-fix-this-
issue recommendations. For details, see Analyze Vectorization Perspective.

e CPU / Memory Roofline Insights and GPU Roofline Insights: Visualize actual performance against
hardware-imposed performance ceilings (rooflines). They provide insights into where the bottlenecks are,
which loops are worth optimizing for performance, what are the likely causes of bottlenecks and what
should be the next optimization steps. For details, see Analyze CPU Roofline or Analyze GPU Roofline.

e Offload Modeling: Identify high-impact opportunities to offload to GPU as well as the areas that are not
advantageous to offload. It provides performance speedup projection on accelerators along with offload
overhead estimation and pinpoints accelerator performance bottlenecks. For details, see the Model
Offloading to a GPU.

e Threading: Analyze, design, tune, and check threading design options without disrupting your normal
development. For details, see Model Threading Designs.

Flow Graph Analyzer is a part of the Intel® Advisor installation. Use it to visualize and analyze performance
for applications that use the Intel® oneAPI Threading Building Blocks (oneTBB) flow graph interfaces. For
details, see Flow Graph Analyzer.

Intel® Advisor is available as a standalone product and as part of the Intel® oneAPI Base Toolkit.

e Standalone Intel® Advisor
e Intel® oneAPI Base Toolkit

Documentation for older versions of Intel® Advisor is available for download only. For a list of available
documentation downloads by product version, see these pages:

e Download Documentation for Intel® Parallel Studio XE
e Download Documentation for Intel® System Studio

Start Here

¢ Design and Optimization Methodology
e What's New in Intel® Advisor

e Install and Launch Intel® Advisor

e Get Started with Intel Advisor

e Intel Advisor Cookbook

Introduction

This document provides a detailed overview of the
product functionality, workflows, or perspectives, and
instruction to use Intel® Advisor.

Use Intel® Advisor to check that your application realize full performance potential on modern hardware
platforms (CPU, GPU) and get recommendations for where to add optimization.

With the Intel Advisor, you can:

e Model your application performance on an accelerator
¢ Visualize performance bottlenecks on a CPU or GPU with a Roofline chart
e Check vectorization efficiency

https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/advisor.html
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-parallel-studio-xe-current-previous.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-system-studio-current-previous.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-cookbook/top.html

1 Intel® Advisor User Guide

e Prototype threading designs

What's New in Intel® Advisor

This topic lists new high-level features and improvements in Intel® Advisor. For a full list of new features, see
Intel Advisor Release Notes.

Intel® Advisor 2023.0
GPU Profiling and Roofline on PVC-XT:

e Get actionable advice to design code that runs optimally on Intel® Data Center GPU MAX Series (formerly
code named Ponte Vecchio).

e Discover GPU application performance characterization, such as bandwidth sensitivity, instruction mix, and
cache-line use.

e Automated Roofline Analysis helps to identify and prioritize memory, cache, or compute bottlenecks and
understand their likely causes.

Intel® Advisor 2022.1
e Usability:
¢ Performance metrics in GPU Roofline Source view in the Intel Advisor GUI

In the GPU Roofline Insights report, you can switch to Source View and examine the source code of
your application with performance metrics for each kernel, such as elapsed time and memory traffic.

matrix_transpose_opl.opp
Ling Source Elapzed Tima Trafc, GB Ingtruction Count SED Usization
&2
€3
64 gekSize,
-1 [[intel: ire AT LE- =y 475 T8 o4 993 517 550 ra Ro g
L]
(13
ER

&9 Byelsient i roopnpls: pub_grou 5 = LT.get_s

e New panes in an interactive HTML Report: GPU Details in the GPU Roofline Insights
perspective and Data Transfer Estimations in the Offload Modeling perspective

The interactive HTML report, which combines Offload Modeling and GPU Roofline Insights results, now
includes two new panes, which are similar to the panes with the same name in the Intel Advisor GUI
report:

e GPU Roofline Insights perspective includes the GPU Details pane, which reports detailed code
analytics for a selected kernel, such as Roofline guidance with the main limiting roof and estimated
speedup after optimization, compute and memory bandwidth, memory usage metrics.

https://www.intel.com/content/www/us/en/developer/articles/release-notes/advisor-release-notes.html

Intel® Advisor User Guide 1

it GPU Details ~ X
GEMM
SUMMARY ~ ROOFLINE GUIDANCE ~
. SINTOPS 14.901 E |, Int32 Viactor Add Peak
Ela & B =
1.890s E o/
: GFLOPS 4.546 i
Er
N \
Globa . 2= .
21008 Loca ;}-’ (T23x}
1024 x 1024 1x1; 256 x 1 14.8 4
Lign || GTigeu ET=
163.274 Tz]
5
=
5
1o
i
(e
o
INTOR/B
T
0.17
PERFORMANCE CHARACTERISTICS ~
Active: 63.3%
Stalled: 36.7%
Idle: 0.0%
EU Threading Occupancy: 99.8%
2 FPUs Active: 16.2%
SIMD Width 32

e Offload Modeling perspective includes the Data Transfer Estimations pane, which reports
estimated data transferred between host and target devices in each direction and a list of offloaded

objects.
Details Data Transfer Estimations A~ X
TRANSFERRED DATA & TAX ~ OFFLOADED OBJECTS ~ ANALYTICS ~
IUS | ‘U-[]IU1S | <U.UIU19|. 5. Type Di... Size R... 2000 |
=0.001s mmul... heap A 4.1kB 2500
Total =
8 mmul... heap 4 41kB
16.8 MB 2000 |
mmul... heap 4 4.1kB o
=0.001s
CPU=GPU J mmul... heap + 8.2kB 1500 4
16.8MB mmul.. heap - 8.2 kB 1000
<0.001s mmul... heap 0 3.2 kB
GPU=CPU 500
2 3k8 mmul... heap + 3.2 kB _
T T T T T T I mmul... heap - 2.2 KB W T T T T T T T T
0B 5.0 MB 10.0ME 15.0MBE 1kB 16 kB =128 kB
mmul... heap (o] 5.2kKB

Transfemred data u Tax
You can use the interactive HTML reports to analyze Intel Advisor results on a remote machine using
your web browser or share the results. See Work with Standalone HTML Reports for details.
e Offload Modeling:
¢ Adjustable hardware parameters in an interactive HTML report and GUI report
Offload Modeling report includes a new Modeling Parameters pane, which shows available target

devices for modeling and hardware configuration parameters for a selected device. Each parameter is a
slider that you can adjust to a desired value to get a custom configuration for remodeling.

1 Intel® Advisor User Guide

Modeling Parameters A

¢ Save to Remodel

Target Device

XelP Max 96

Set to Hardware Default

Hardware Parameters

EU Count - 96
Frequency ~ 1.65 GHz
GTI Bandwidth - 211.2 GBIs
L3 Bandwidth - 633.6 GBIs
L3 Size - 16 MB
Memaory Bandwidth - G8.27 GB/s
PCle Bandwidth - 14.56 GBIs

SLM Bandwidth _ 1.27 TB/s

SLM Size _ 768 kB
———

The pane is available in the interactive HTML report and Intel Advisor GUI report and has the same
functionality. You can use it to:

e Examine device parameters that the application performance was modeled on to understand how
they affect the estimated performance.

e Change the target device to compare the new configuration with the current modeled device.

e Adjust the parameters and remodel performance for a custom device. You can experiment with
parameters to see how they affect the application performance or adjust the configuration to model
performance for a future or a specific device not listed in the target devices. See the sections below
for a full workflow.

For CPU-to-GPU modeling, you can remodel performance using Intel Advisor CLI only.

See Model Application Performance on a Custom Target GPU Device for more information about how to
work with the pane.

e New recommendation to optimize data transfer costs with data reuse when porting your
application from a CPU to a GPU

Offload Modeling perspective introduces a new actionable recommendation for optimizing data transfer
costs with data reuse before porting your application from a CPU to a GPU. Data reuse can help you
improve the application performance on the GPU by optimizing data transfer efficiency.

The recommendation is reported in a Recommendations pane of the Accelerated Regions tab. The
recommendation includes estimated performance characteristics and data reuse gain, as well as code
snippet examples for applying data reuse techniques.

10

Intel® Advisor User Guide 1

Inefficient data transfer present

Thi keimel i5 mosiy bounded by Data Transfer; L3 Bw
g kemal ala transher will not b eMcient and will decrease perfomance. For compulations that run on & GPU, wou should minimize data

transfers between host and target devices

.ﬂ.;lpl_,- data reuss

Apply the dala reuss technique
¥iiEh this technigue, two sequential kernels can share data without addtional data transer, which can improve data transfer efficiency. For varabies used by

mufple tanged constructs, use the target enter data and target sxit dsta direcives lo minimize data transiers Detwean host and target devices

See Examine Data Transfers for Modeled Regions for details.
e Documentation:

e Sample-based scenario for the Offload Modeling perspective in the Get Started with Intel
Advisor document

Identify High-impact Opportunities to Offload to GPU topic in the get started guide now uses a sample
to introduce the main Offload Modeling features. You can download the sample or use your own
application to follow this topic instructions and understand the basic Offload Modeling workflow with
the Intel Advisor.

The following topics in the get started guide with a sample-based scenario are also available:

e Discover Where Vectorization Pays Off The Most
e Prototype Threading Designs

Intel® Advisor 2022.0
¢ GPU Roofline:

¢ New recommendation to optimize GPU general purpose register file (GRF) usage and
improve performance.

The GPU Roofline Insights perspective introduces actionable recommendations for improving your
application performance on GPU by optimizing GRF usage. The recommendations are reported in a
Recommendations pane in the GPU Roofline Regions report. See Get Recommendations for
details.

¢ New GPU memory and compute metrics.

The GPU pane in the GPU Roofline Regions tab introduces several new metrics. Some of the new
metrics are:

Memory metrics:

e GPU memory usage summary

e |3 shader usage summary

e Shared Local Memory (SLM) usage summary
e Register spilling detection

Compute metrics:

e FLOP operation summary
e INT operation summary
e Documentation:

¢ Command-line cheat sheet for quick reference

Introduced a new downloadable Intel Advisor command-line cheat sheet, which lists the most useful
command-line interface (CLI) options. You can use this print-friendly PDF for quick reference on the
Intel Advisor CLI.

11

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top/identify-opportunities-to-offload-to-gpu.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top/discover-where-vectorization-will-pay-off.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top/prototype-threading-designs.html
https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-cheat-sheet.pdf

1 Intel® Advisor User Guide

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

NOTE

e Download Documentation for Intel® Parallel Studio XE
e Download Documentation for Intel® System Studio

Design and Optimization Methodology

Intel® Advisor helps you to design and optimize high-performing Fortran, C, C++, SYCL, OpenMP*, and
OpenCL™ code to realize full performance potential on modern computer architecture. You can measure your
application performance, collect required data, and look at your code from different perspectives depending
on your goal to dig deeper and get hints for optimization.

Visualize Performance Bottlenecks with Roofline Chart

When optimizing your C, C++, SYCL, or Fortran application, it is useful to know application's current and
potential performance in relation to hardware-imposed limitations like memory bandwidth and compute
capacity of a target platform that it runs on - a CPU or a GPU.

Roofline model of the Intel Advisor visualizes actual performance against hardware-imposed performance
ceilings and helps you determine the main limiting factor (memory bandwidth or compute capacity) to
provide an ideal road map of potential optimization steps. This analysis highlights loops that have the most
headroom for improvement, which allows you to focus on areas that deliver the biggest performance payoff.

To generate a Roofline report, the Intel Advisor:

e Collects loop/function (for CPU) or OpenCL" kernels (for GPU) timings and memory data.
e Measures the hardware limitations and collects floating-point and integer operations data.

12

https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-parallel-studio-xe-current-previous.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-system-studio-current-previous.html

Intel® Advisor User Guide 1

GFLOPs/S

9

Compute Roof

Loop/Function

°

Performance

-
>

Arithmetic Intensity (FLOPs/Byte)

The Roofline chart plots an application achieved performance and arithmetic intensity against the hardware
maximum achievable performance:

e Arithmetic intensity (x axis) - measured in number of floating-point operations (FLOPs) and/or integer
operations (INTOPs) per byte, based on the loop/function algorithm, transferred between CPU/VPU/GPU
and memory.

e Performance (y axis) - measured in billions of floating-point operations per second (GFLOPS) and/or
billions of integer operations per second (GINTOPS).

With the data collected, the Intel Advisor plots the Roofline chart:

e Execution time of each loop/function/kernel is reflected in the size and color of each dot. The dots on the
chart correspond to OpenCL kernels for GPU Roofline, while for the CPU Roofline, they correspond to
individual loops/functions.

e Memory bandwidth limitations are plotted as diagonal lines.

e Compute capacity limitations are plotted as horizontal lines.

For details on how to get the Roofline report and read the results, see CPU / Memory Roofline Insights
Perspective or GPU Roofline Insights Perspective.

Model Offloading to Accelerator
When designing your application to offload to an accelerator, you might first want to:

e Estimate the offload benefit and overhead for each loop/function in your original C++ or Fortran code to
make better decisions on which parts of code to offload

e Check performance gain for a SYCL , OpenCL™, or OpenMP* target application if you offload it to a
different accelerator

Offload Modeling perspective of the Intel® Advisor can identify high-impact portions of a code that are
profitable to offload to a target platform (for example, to a GPU) as well as the code regions that are not
advantageous to offload. It can also predict the code performance if run on the target platform and lets you
experiment with accelerator configuration parameters.

13

1 Intel® Advisor User Guide

Offload Modeling takes measured baseline metrics and application characteristics as an input and applies an
analytical model to estimate execution time and characteristics on a target platform.

Data transfer costs

Offload Modeling is based on three models:

e Compute throughput model counts arithmetic operations in a region on a baseline platform and
estimates the execution time on a target platform required to achieve the same mix of arithmetic
operations, considering it as bound by compute engines only.

¢ Memory sub-system throughput model traces memory accesses inside a region on a baseline
platform and estimates the execution time on a target platform needed to transfer the same amount of
memory. Memory traffic is measured using a cache simulator that reflects the target platform's memory
configuration.

o Offload data transfer analysis measures memory accesses that are read from or written to a region
and will need to be sent over a PCle* if the region is offloaded to a target platform.

For details on how to run the Offload Modeling perspective and read the reports, see Offload Modeling
Perspective.

Check Vectorization Efficiency

Modern Intel® processors have extensions that support SIMD (single instruction, multiple data) parallelism
with Intel® Streaming SIMD Extensions (Intel® SSE), Intel® Advanced Vector Extensions 2 (Intel® AVX2),
Intel® Advanced Vector Extensions 512 (Intel® AVX-512) . To take advantage of SIMD instructions with the
expanded vector width and achieve higher performance, applications need to be vectorized.

You can rely on your desired compiler - Intel® C++ Compiler Classic, Intel® Fortran Compiler Classic, Intel®
oneAPI DPC++/C++ Compiler, GNU Compiler Collection (GCC)* - to auto-vectorize some loops, but serial
constraints of programming languages limit the compiler's ability to vectorize some loops. The need arose for
explicit vector programming methods to extend vectorization capability for supporting reductions,
vectorizing:

e Quter loops
e Loops with user-defined functions
e Loops that the compiler assumes to have data dependencies

To improve the performance of CPU-bound applications on modern processors with vector processing units,
you might use explicit vector programming apply structural changes for thread-level parallelism and SIMD-
level parallelism.

Use the Vectorization and Code Insights perspective of the Intel Advisor to analyze your application run time
behavior and identify application parts that will benefit most from vectorization. Vectorization and Code
Insights perspective helps you to achieve the best performance using vectorization and identify:

e Where vectorization, or parallelization with threads, will pay off the most
e If vectorized loops are providing benefit, and if not, why not

e Un-vectorized loops and why they are not vectorized

e Performance problems in general

14

Intel® Advisor User Guide 1

For details on how to run the perspective and read the reports, see Vectorization and Code Insights
Perspective.

Prototype Threading Designs

The best performance improvements from adding parallel execution (parallelism) to a program occur when
many cores are busy most of the time doing useful work. Achieving this requires a lot of analysis, knowledge,
and testing.

Because your serial program was not designed to allow parallel execution, as you convert parts of it to use
parallel execution, you may encounter unexpected errors that occur only during parallel execution. Instead of
wasting effort on portions of the program that use almost no CPU time, you should focus on the hotspots,
and the functions between the main entry point and each hotspot.

If you add parallel execution to a program without proper preparation, unpredictable crashes, program
hangs, and wrong answers can result from incorrect parallel task interactions. For example, you may need to
add synchronization to avoid incorrect parallel task interactions, but this must be done carefully because
locking overhead and serial synchronization can reduce the benefits of the parallel execution.

Threading perspective of the Intel Advisor helps you quickly prototype multiple threading options, project
scaling on larger systems, optimize faster, and implement with confidence.

e Identify issues and fix them before implementing parallelism

e Add threading to C, C++, and Fortran code

e Prototype the performance impact of different threaded designs and project scaling on systems with
larger core counts without disrupting development or implementation

e Find and eliminate data-sharing issues during design (when they're less expensive to fix)

The high-level parallel frameworks available for each programming language include:

Language Available High-Level Parallel Frameworks

C OpenMP

C++ Intel® oneAPI Threading Building Blocks (oneTBB)
OpenMP

Fortran OpenMP

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

For details on how to run the perspective and read the reports, see Threading Perspective.
Using Amdahl's Law and Measuring the Program
There are two rules of optimization that apply to parallel programming:

e Focus on the part of the program that uses the most time.
¢ Do not guess, measure.

Amdahl's Law

In the context of parallel programming, Gene Amdahl formalized a rule called Amdahl's Law, which states
that the speed-up that is possible from parallelizing one part of a program is limited by the portion of the
program that still runs serially.

The consequence may be surprising: parallelizing the part of your program where it spends 80% of its time
cannot speed it up by more than a factor of five, no matter how many cores you run it on.

15

1 Intel® Advisor User Guide

Therefore, to get maximum benefit from parallelizing your program, you could add parallelism to all parts of
your program as suggested by Amdahl's Law. However, it is more practical to find where it spends most of its
time and focus on areas that can provide the most benefit.

Do Not Guess - Measure

This leads to another rule of optimization: Do Not guess - Measure. Programmers' intuitions about where
their programs are spending time are notoriously inaccurate. Intel® Advisor includes a Survey tool you can
use to profile your running program and measure where it spends it time.

After you add Intel® Advisor annotations to your program to mark the proposed parallel code regions, run the
Suitability tool to predict the approximate maximum performance gain for the program and the annotated
sites. These estimated performance gain values are based on a model of parallel execution that reflects the
impact of Amdahl's law.

Tutorials and Samples

Intel® Advisor provides tutorials with step-by-step instructions on analyzing performance of applications with
sample code.

Discover Where Vectorization Pays Off The Most

Get Started Guide: Discover Where Vectorization Pays Off The Most
Sample: included in the product package

Learning Objective: Use Vectorization report to:

e Identify loops that will benefit most from vectorization.
o Identify what is blocking effective vectorization.

e Increase the confidence that vectorization is safe.

e Explore the benefit of alternative data reorganizations.

Prototype Threading Designs
Get Started Guide: Prototype Threading Designs
Sample: included in the product package

Learning Objective: Demonstrates an end-to-end workflow you can ultimately apply to your own
applications:

1. Survey the target executable to locate the loops and functions where your application spends the most
time.

2. In the target sources, add Intel Advisor annotations to mark possible parallel tasks and their enclosing
parallel sites.

3. Check Suitability to predict the maximum parallel performance speedup of the target based on these
annotations.

4. Check Dependencies to predict parallel data sharing problems in the target based on these annotations.

5. If the predicted maximum speedup benefit is worth the effort to fix the predicted parallel data sharing

problems, fix the problems.

Recheck Suitability to see how your fixes impact the predicted maximum speedup.

7. If the predicted maximum speedup benefit is still worth the effort to add parallelism to the target,
replace the annotations with parallel framework code that enables parallel execution.

o

Use the Automated Roofline Chart to Make Optimization Decisions - C++ Sample
Windows* OS Tutorial: HTML

Sample: Download roofline demo_ samples sample. You can download source code or pre-collected
results to save time.

16

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top/discover-where-vectorization-will-pay-off.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top/prototype-threading-designs.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-tutorial-roofline/top.html
https://www.intel.com/content/www/us/en/develop/articles/training-sample-intel-advisor-roofline.html

Intel® Advisor User Guide 1

Duration: 20 minutes (with pre-collected results)
Learning Objective: Use the Roofline chart to answer the following questions:

e What is the maximum achievable performance with your current hardware resources?

e Does your application work optimally on current hardware resources?

e If not, what are the best candidates for optimization?

e Is memory bandwidth or compute capacity limiting performance for each optimization candidate?

NOTE

e Sample applications are non-deterministic.
e Sample applications are designed only to illustrate the Intel Advisor features and do not represent
best practices for creating and optimizing code.

Get Help and Support

This topic explain the different options for accessing the Help documentation and technical support for Intel®
Advisor.

Get Help
The documents provided with this release are available in HTML format. You can access the documentation:

e For Windows* OS only: From the Start menu, or Start screen, under the Intel oneAPI [version]
group.

e Help > Intel Advisor [version]

e Access context-sensitive Help on active GUI elements:

e In the Advisor Workflow tab and in the Result tab, click certain links to get specific help related to
the underlined word.

¢ In the Result tab, you can right-click an element to display its context menu. Certain context menus
display a What Should I Do Next? menu item. Choose this menu item to get help specific to the
active user interface element.

e F1 Help: Press F1 to get help for an active dialog box, property page, pane, or window.

Get Support

The following links provide information and support on Intel® software products, including developer suite
products:

e https://www.intel.com/content/www/us/en/develop/tools.html
At this site, you will find comprehensive product information, including:

e Links to each product, where you will find technical information such as white papers and articles
e Links to user forums
e Links to news and events

e https://www.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html

Intel® oneAPI Base Toolkit product page with links to download, support forums, knowledge base, and
product documentation.

For detailed system requirements and additional support information, see the product Release Notes.

Install and Launch Intel® Advisor

The following sections provide simple steps to quickly configure and run the Intel® Advisor graphical user
interface (GUI) or command line interface (CLI).

17

https://www.intel.com/content/www/us/en/develop/tools.html
https://www.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://www.intel.com/content/www/us/en/develop/articles/intel-advisor-release-notes.html

1 Intel® Advisor User Guide

e Install Intel Advisor as part of the Intel® oneAPI Base Toolkit or standalone.
e Set up Intel Advisor environment variables to launch Intel Advisor from command line or a terminal.

e Optional: To analyze GPU kernels of your SYCL, OpenMP* target, or OpenCL™ application with the GPU
Roofline Insights or Offload Modeling perspective, configure your system to analyze GPU kernels.
e Optional: To analyze SYCL, OpenMP target, or OpenCL application running on a CPU with the Offload
Modeling perspective, set up your system to offload the application to CPU.
e Launch the Intel Advisor .

Quick steps to ramp up with the Intel Advisor are included in Getting Started with Intel Advisor.

Install Intel® Advisor

Use this topic to download and install Intel® Advisor
using oneAPI Installer and yum/APT package
managers.

Intel® Advisor is available for download as:

e Standalone installation
e Part of Intel® oneAPI Base Toolkit

Depending on your internet connection, choose local or online installer.

To install Intel Advisor as part of Intel® oneAPI Base Toolkit, refer to Installation Guide for Intel® oneAPI
Toolkits.

NOTE Different major versions can co-exist with each other, but on Windows* OS, only one version of
Intel Advisor can be integrated with Visual Studio* IDE.

On Windows* OS

1. Double-click the compressed self-extracting executable file as a user with administrative privileges.
2. To get a complete set of user interfaces (GUI front end and Visual Studio* IDE integration), select the
Recommended Installation option. The default installation path is C:\Program Files
(x86) \Intel\oneAPI. To change the installation path, select the Custom Installation option.

NOTE To perform silent, non-interactive installation, refer to Intel® oneAPI Toolkits Installation Guide
for Windows*.

3. Click the Install button to complete the installation.

On Linux* OS

1. Make sure to have read/write permissions for the /tmp directory and start the installation.
e To install on the local system, run the installer using the following command:

sh <package-name>.sh
e If you want to install Intel Advisor for use by any user, you must do this as a root user. To install
Intel Advisor to a network-mounted drive or shared file systems available for multiple users, run the
following command:

sh <package-name>.sh --SHARED INSTALL
2. To get a complete set of user interfaces (GUI front end and Eclipse* IDE integration), select the
Recommended Installation option. The default installation path is /opt/intel/oneapi for root
users and $SHOME/intel/oneapi for non-root users. To change the installation path, select the Custom
Installation option.

18

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top.html
https://www.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#advisor
https://www.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit/download.html
https://www.intel.com/content/www/us/en/develop/articles/installation-guide-for-intel-oneapi-toolkits.html
https://www.intel.com/content/www/us/en/develop/articles/installation-guide-for-intel-oneapi-toolkits.html
https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-windows/top/installation/install-with-command-line.html
https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-windows/top/installation/install-with-command-line.html

Intel® Advisor User Guide 1

3. Integrate Intel Advisor with Eclipse IDE by specifying the path to Eclipse IDE executable. Skip this step
if you prefer to install Intel Advisor without integration into Eclipse IDE.
4. Click the Install button to complete the installation.

NOTEIntel Advisor is available for installation via yum and APT package managers.

System Requirements

See the list of System Requirements for more information.

See Also
After installation, consider the following next steps:

e Set Up Environment Variables
e Set Up Environment to Analyze GPU Kernels
e Set Up Environment to Model Performance on GPU-Enabled Applications

Set Up Environment Variables

Use this topic to get guidance on setting up
environment variables for Intel® Advisor.

Set the environment variables if you want to:

e Run Intel Advisor command line interface

e Run Intel Advisor graphical user interface from command line (for example, on Linux OS)

e Compile your application with Intel Advisor annotations using additional include directories, so the
compiler can find the include file that defines annotations

You can set the variables using one of the following methods:

e Recommended: Set up variables using a script.
e Set up variables manually. Use this method to set up variables for a custom Intel Advisor location or to
set the variables permanently.

Default Installation Paths

In the instructions below, be sure to replace any values in brackets, such as <version> or <install-dir>.
<version> is the Intel Advisor year and update version (for example, 2021.1).The default installation path
for the application, <install-dir>, can be one the following:

¢ On Linux* OS:

e /opt/intel/oneapi for root users
e SHOME/intel/oneapi for non-root users
e On Windows* OS: C:\Program Files (x86)\Intel\oneAPI

For 32-bit systems, the Program Files (x86) folderis Program Files.
e On macOS*: /opt/intel/oneapi

Set Up Environment Variables via Script

This is the recommended method to set up the Intel Advisor environment variables. In particular, use it if you
want to run the Offload Modeling using the dedicated Python* scripts. The script automatically sets up all the
required variables pointing to the Intel Advisor installation directory.

Linux OS and macOS

Run one of the following shell scripts:

19

https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top/installation/install-using-package-managers/yum-dnf-zypper.html
https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top/installation/install-using-package-managers/apt.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-system-requirements.html

1 Intel® Advisor User Guide

source <install-dir>/setvars.sh
source <install-dir>/setvars.csh

The scripts set up the environment for the /atestintel Advisor version installed on your system.

NOTE If you want to set up environment for a lower version of the Intel Advisor installed on your
system, also run one of the following Intel Advisor-specific scripts:
source <install-dir>/advisor/<version>/env/vars.sh

source <install-dir>/advisor/<version>/env/vars.csh

where <version> is the Intel Advisor version you want to use.

Windows OS
Run the following batch script:
<install-dir>\setvars.bat

The script sets up the environment for the latest Intel Advisor version installed on your system.

NOTE If you want to set up environment for a lower version of the Intel Advisor installed on your
system, also run one of the following Intel Advisor-specific scripts:
source <install-dir>/advisor/<version>/env/vars.sh

source <install-dir>/advisor/<version>/env/vars.csh

where <version> is the Intel Advisor version you want to use.

Set Up Environment Variables Manually
Linux OS and macOS

1. Open a terminal.
2. Check the current definition of the environment variable. For example, with the bash shell, type:

env | grep ADVISOR <version-year> DIR
where <version-year> is a major Intel Advisor version installed on your system. For example, 2021.

If the variable is defined and points to the correct Intel Advisor installation directory, skip the steps
below and continue to launch the Intel Advisor.
3. Set the environment variable using the export command. Enter:

export ADVISOR <version-year> DIR="<install-dir>"
For example, for the Intel Advisor 2022 in the default installation directory:

export ADVISOR 2022 DIR="/opt/intel/oneapi/advisor/latest"
4. To set this variable permanently on the current system, add this definition to your .1login or a similar
shell initialization file.
5. Check the definition of the environment variable set:

env | grep ADVISOR <version-year> DIR
You should see the environment variable with its value printed to the terminal.
Windows OS

1. Open a command prompt.
2. Check the current definition of the environment variable. For example, type:

20

Intel® Advisor User Guide 1

set ADVISOR <version-year> DIR
where <version-year> is a major Intel Advisor version installed on your system. For example, 2021.

If the variable is defined and points to the correct Intel Advisor installation directory, skip the steps
below and continue to launch the Intel Advisor.
3. Use a set command to set the environment variable. Type:

set ADVISOR <version-year> DIR="<install-dir>"
For example, for the Intel Advisor 2022:

set ADVISOR 2022 DIR="C:\Program Files (x86)\Intel\oneAPI\advisor\latest"
4. To set this variable permanently on the current system, add this definition to your system or user
environment variables using Control Panel > System and Security > System > Advanced system
settings > Environment Variables....

Additional Variables
Consider setting the following environment variables:

¢ To determine whether evaluation features have been activated, set the ADVISOR EXPERIMENTAL
environment variable.

e To locate the Intel® oneAPI Threading Building Blocks (oneTBB) include directory when working with
programs that use oneTBB , set the TBBROOT environment variable. See Defining the TBBROOT
Environment Variable.

¢ On Linux OS and macOS: set the BROWSER environment variable to locate an installed HTML browser.
This enables the display of Get Started, Tutorials or Help from the Intel® Advisor GUI Help menu.

e On Linux OS and macOS: set the VISUAL or EDITOR environment variable to specify an external editor
to launch when you double-click a line in a Source window. VISUAL takes precedence over EDITOR.

Next Steps

Launch Intel Advisor from GUI or from command line interface.

See Also

Set Up System to Analyze GPU Kernels

Set Up Environment to Offload SYCL, OpenMP* target, and OpenCL"™ Applications to CPU
Limit the Number of Threads Used by Parallel Frameworks

Intel Advisor Annotation Definitions File

Set Up System to Analyze GPU Kernels

To analyze performance of GPU kernels in your SYCL, OpenMP* target, or OpenCL™ application with the GPU
Roofline Insights or GPU-to-GPU Offload Modeling perspective, you need to configure your system properly:

1. Make sure you have the Intel® Metrics Discovery Application Programming Interface. The library is
included with the Intel® Advisor.

2. Install and configure a graphics processing unit (GPU) driver for your system.

3. For Linux* OS: Set up environment variables.

Important For the Offload Modeling perspective, make sure the kernels run with the oneAPI Level
Zero back end.

21

1 Intel® Advisor User Guide

Install Intel® Metrics Discovery Application Programming Interface

To collect GPU hardware metrics and GPU utilization data, Intel Advisor uses the Intel Metric Discovery
Application Programming Interface library. This library is delivered with the Intel Advisor. If you already have
the library installed and you want to use your local library, make sure you have the correct version as
explained below.

NOTE If you see the Cannot Collect GPU Hardware Metrics for the Selected GPU Adapter error
message, install the library as follows. The message means the Intel Advisor cannot access the library.

Windows* OS

Intel Metric Discovery Application Programming Interface library is part of a GPU driver package. You should
have a driver version higher than 27.20.100.8280 for your system.

If you have a lower version of the driver, you can download it from https://downloadcenter.intel.com/.
Linux* OS

Intel Metrics Discovery Application Programming Interface library is supported on Linux OS with kernel
version 4.14 or higher. You should have the Intel Metric Discovery Application Programming Interface library
1.6.0 or higher to support the selection of video adapters.

If you have a lower version of the library, you can build and install it from https://github.com/intel/metrics-
discovery.

Install a GPU driver
To collect GPU hardware metrics, install Intel® software packages for general purpose GPU capabilities.
On Windows OS, install a GPU driver for your system from Download Center.

On Linux OS, follows the instructions in the GPGPU Installation Guides to install and configure drivers for
your operating system.

Set Up Environment Variables
On Windows OS, run the Survey step of the perspective as an Administrator.
On Linux OS, run the Survey step of the perspective with root privileges.

If you do not have root permissions on Linux OS, enable collecting GPU hardware metrics for non-privileged
users as follows:

1. Add your username to the video group.

a. To check if you are already in the video group, run:

groups | grep video
b. If you are not part of the video group, add your username to it:

sudo usermod -a -G video <username>
c. Type groups to verify that you successfully added your username to the video group . If video is
not listed, log out and log back in.
2. For Ubuntu* 19.10 and higher: Add your username to the render group.

a. To check if you are already in the render group, run:

groups | grep render
b. If you are not part of the render group, add your username to it:

sudo usermod -a -G render <username>

22

https://downloadcenter.intel.com/
https://github.com/intel/metrics-discovery
https://github.com/intel/metrics-discovery
https://downloadcenter.intel.com/
https://dgpu-docs.intel.com/installation-guides/index.html

Intel® Advisor User Guide 1

c. Type groups to verify that you successfully added your username to the render group . If
render is not listed, log out and log back in.
3. Setthe value of the dev.1915.perf stream paranoid sysctl option to 0:

sysctl -w dev.i915.perf stream paranoid=0

NOTE This command makes a temporary change that is lost on the next reboot. To change this option
permanently, run:

echo dev.i915.perf stream paranoid=0 > /etc/sysctl.d/60-mdapi.conf

»

Open the grub file in the /etc/default directory.

5. Find GRUB_CMDLINE LINUX DEFAULT and type 1915.enable hangcheck=0 between the "" to disable
time limit and run OpenCL™ kernel for a longer period of time. Save the file and close.

6. Run the following command to update the configuration:

sudo update-grub
Next Steps

e Set up environment variables and run the Intel Advisorfrom a command line interface.
e Run the Intel Advisorfrom a graphical user interface and set up a project if you do not have one.

See Also

Model Offloading to a GPU Find high-impact opportunities to offload/run your code and identify
potential performance bottlenecks on a target graphics processing unit (GPU) by running the
Offload Modeling perspective.

Analyze GPU Roofline Measure and visualize the actual performance of GPU kernels using
benchmarks and hardware metric profiling against hardware-imposed performance ceilings, as
well as determine the main limiting factor, by running the GPU Roofline Insights perspective.

Set Up Environment to Offload SYCL, OpenMP* target, and OpenCL™ Applications to CPU

If you have an application that contains SYCL, C++/Fortran with OpenMP* target, or OpenCL™ code and
prepared for offloading to a target device, you can analyze and model its potential performance on a different
target device with the it with the Intel® Advisor.

To do this, use CPU offload profiling to offload your code temporarily to a CPU so that you can profile it and
model its performance with the Offload Modeling perspective.

Important Offload your SYCL, C++/Fortran with OpenMP target, or OpenCL code to CPU only to
analyze it with the CPU-to-GPU Offload Modeling workflow. To analyze it with the GPU-to-GPU Offload
Modeling workflow or GPU Roofline workflow, configure your system to analyze GPU kernels instead.

Depending on your operating system, do one of the following:

Linux* OS
1. For SYCL code: Force offloading to a CPU using one of the following:

e Recommended: Set the SYCL DEVICE FILTER environment variable as follows:

export SYCL DEVICE FILTER=opencl:cpu
e If your application uses a SYCL device selector:

23

1 Intel® Advisor User Guide

1. In the application source code, add the following to specify the CPU as the target device:
sycl::cpu_selector

For details, see Device selectors in the SYCL Reference.
2. Rebuild the application,
2. For OpenMP code: Force offloading to a CPU with one of the following:

e Recommended: To offload code to CPU, set the following environment variables:
export OMP TARGET OFFLOAD=MANDATORY
export LIBOMPTARGET DEVICETYPE=CPU

export LIBOMPTARGET PLUGIN=OPENCL
e To run code natively on CPU, set the following variable:

export OMP TARGET OFFLOAD=DISABLED
3. If your application uses OpenCL code: Configure your code to be offloaded to a CPU. Refer to the
OpenCL documentation at https://www.khronos.org/registry/OpenCL/ for specific instructions.

Windows* OS
1. Set the following environment variable to use the JIT profiling API:

set INTEL JIT BACKWARD COMPATIBILITY=1
2. For SYCL code: Force offloading to a CPU using one of the following:

e Recommended: Set the SYCL DEVICE FILTER environment variable as follows:

set SYCL DEVICE FILTER=opencl:cpu
e If your application uses a SYCL device selector:

1. In the application source code, add the following to specify the CPU as the target device:
sycl::cpu selector

For details, see Device selectors in the SYCL Reference.
2. Rebuild the application,
3. For OpenMP code: Force offloading to a CPU with one of the following:

e Recommended: To offload code to CPU, set the following environment variables:
set OMP TARGET OFFLOAD=MANDATORY
set LIBOMPTARGET DEVICETYPE=CPU

set LIBOMPTARGET PLUGIN=OPENCL
e To run code natively on CPU, set the following variable:

set OMP_TARGET OFFLOAD=DISABLED
4. If your application uses OpenCL code: Configure your code to be offloaded to a CPU. Refer to the
OpenCL documentation at https://www.khronos.org/registry/OpenCL/ for specific instructions.

Next Steps

e Set up a project if you do not have one and run the Intel Advisorfrom a graphical user interface.
e Run the Intel Advisorfrom a graphical user interface and set up a project if you do not have one.

Launch Intel® Advisor

This topic provides overview and simple steps for running Intel® Advisor graphical user interface (GUI) and
command line interface (CLI).

24

https://docs.oneapi.io/versions/latest/iface/device-selector.html
https://www.khronos.org/registry/OpenCL/
https://docs.oneapi.io/versions/latest/iface/device-selector.html
https://www.khronos.org/registry/OpenCL/

Intel® Advisor User Guide 1

Launch the Intel® Advisor GUI

The Intel® Advisor GUI is available:

e On the Microsoft Windows* OS: From the Start menu, choose All Programs > Intel oneAPI
[version] > Intel Advisor [version]

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

In the Microsoft Visual Studio*:

e From the Tools menu, choose Intel Advisor [version] > Vectorization and Threading Advisor
Analysis.

From the top toolbar: Click m Intel Advisor icon.

Important If you do not see the icon, right-click the toolbar and select Intel Advisor from the
context menu.

e From a command line on Windows* or Linux* OS systems.

1.Set up the environment variables to be able to launch the GUI from the command line.
2.Run the advisor-gui command to open the Intel Advisor GUI.

To open a specific project or result, enter:
advisor-gui <path>
where <path> is one of the following:

e Full (absolute) path to a result file (*.advixe)
e Full path to a project file (config.advixeproj)

e Full path to a project directory. If there is no project file in the directory, the Create a Project
dialog box opens and prompts you to create a project in the specified directory.

On Windows systems, if the path contains embedded spaces, enclose it in quotation marks.

NOTE By default, Intel Advisor opens a new graphical user interface (GUI). To switch back to an old
GUI, set ADVISOR EXPERIMENTAL=advixe-gui variable and re-open the Intel Advisor.

After opening the Intel Advisor, continue to create a project or run a perspective and view the results if you
already have a project.

Launch the Intel Advisor CLI
Prerequisite: Set up environment variables to enable the command line interface.
To run the advisor command line interface, use the following syntax:
advisor <--action> [--action-options] [--global-options] -- <target-application> [target options]
where:

e <--gction> is an Intel Advisor action to do, such as collect or report.
e [--action-options] and [--global-options] are options to modify action behavior.

e <target-application> is an application executable to analyze with optional [target-options] to apply to the
target.

The advisor command line interface supports all Intel Advisor perspective and is the recommended method
to run the Intel Advisor from command line.

25

1 Intel® Advisor User Guide

You can also run the Offload Modeling perspective using Python* scripts as follows:

advisor-python <APM>/<offload-script>.py <project-dir> [--options] [-- <target-application>
[target-options]]

where:

<APM> is the environment variable that points to the directory with the Intel Advisor scripts. It is SAPM
for Linux* OS and $aPM% for Windows* OS.

<offload-script> is a script to run: run_oa, collect, or analyze.

<project-dir> is a path to a project directory.

[--options] is options to modify script behavior.

<target-application> is an application executable to analyze with optional [target-options] to apply to the
target.

When you run the first Intel Advisor analysis to a target application from the command line, it also creates a
new project for the target.

Review the typical workflows for the Intel Advisor CLI in the dedicated topics for each perspective.

Run Vectorization and Code Insights Perspective from Command Line
Run CPU / Memory Roofline Insights Perspective from Command Line
Run Threading Perspective from Command Line

Run Offload Modeling Perspective from Command Line

Run GPU Roofline Insights Perspective from Command Line

For details about the Intel Advisor command line syntax and options, see the advisor Command Line
Interface Reference.

Launch the Intel Advisor from a Docker* Container on Linux* OS

This section contains steps to run Intel® Advisor in a Docker* container. Containers allow you to set up and
configure environments and distribute them using images:

You can install an image containing an environment pre-configured with all the tools you need, then
develop within that environment.

You can save an environment and use the image to move that environment to another system without
additional setup.

You can prepare containers with different sets of compilers, tools, libraries, or other components, as
needed.

Set up the Docker container

1.

Pull the Docker image from the oneAPI Containers Repository with the following commands:

image=amr-registry.caas.intel.com/oneapi/oneapi:base-dev-ubuntul8.04
docker pull "S$image"
2.

Run the Docker container using the following command:

docker run --cap-add=SYS PTRACE -it "Simage"

NOTE

e The --device=/dev/dri option enables the gpu (if available).
¢ You can specify proxy information using options as follows: -e http proxy="$http proxy" -e
https proxy="$https proxy"

For the rest of the steps in this section, run any commands from the command line prompt inside the
Docker container.

26

https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers/

Intel® Advisor User Guide 1

For example, to set up the Mandelbrot sample, you can run:

cd /one-api-code-samples/HPC/mandelbrot
make
./main -dl
./main -t gpu # run on gpu
./main -t cpu # run on cpu
make clean
4. Run the following commands to source Intel Advisor variables:

source /opt/intel/oneapi/setvars.sh

NOTE This step is not required, but allows you to run tools from any directory, rather than using
absolute file paths.

5. Now that your Docker container is running, you can run Advisor from the command line as you would
without a container. For example:

advisor --collect=survey /bin/ls

When you run the first Intel Advisor analysis to a target application from the command line, it also creates a
new project for the target.

For details about the Intel Advisor command line syntax and options, see the advisor Command Line
Interface Reference. Review the typical workflows for the Intel Advisor CLI in the dedicated topics for each
perspective.

See Also
Set Up a Project

Analyze Vectorization Perspective Improve your application performance, get code-specific
recommendations for how to fix vectorization issues and quick visibility into source code and
assembly code by running the Vectorization and Code Insights perspective.

Analyze CPU Roofline Visualize actual performance against hardware-imposed performance
ceilings by running the CPU / Memory Roofline Insights perspective. It helps you determine the
main limiting factor (memory bandwidth or compute capacity) and provides an ideal roadmap of
potential optimization steps.

Model Threading Designs Analyze, design, tune, and check threading design options without
disrupting your normal development by running the Threading Perspective.

Model Offloading to a GPU Find high-impact opportunities to offload/run your code and identify
potential performance bottlenecks on a target graphics processing unit (GPU) by running the
Offload Modeling perspective.

Analyze GPU Roofline Measure and visualize the actual performance of GPU kernels using
benchmarks and hardware metric profiling against hardware-imposed performance ceilings, as
well as determine the main limiting factor, by running the GPU Roofline Insights perspective.

GUI Navigation Quick Start

Use Get Started with Intel® Advisor to learn how to run perspectives using code samples and collect your first
results.

Navigation Quick Start

After you launch the Intel® Advisor, a Welcome pane opens with the following controls:

27

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top.html

1 Intel® Advisor User Guide

Project Navigator) [File 01 View & Help g Welcome %
1l

= a4 mmult
a_e015
d wect

intel Gel Staried
[> Run Analysis [5] show Result
ADVISOR . I
Vectorization Optimization, Memory Insights and Offload Design
Current Project: vect Recent Projects
Show Result Select Perspective mmult
Configure Project Open Project/Result
Create Project
1 Use the left-side toolbar for quick access to Intel
: Advisor projects and perspective controls. For
example:

.ii - Open the Perspective Selector window

and select a perspective to run.

L] .I
+ .
- Create a project.

E - Open an existing project.

Use the Project Navigator to view your projects
and results based on the directory where the
opened project resides.

Use the menu to create projects and dynamic
analysis results, open projects and results,
configure projects, set various options, open new
panes, and access the Intel Advisor help.

4 Use the main Welcome window to create/open a
project, configure current project, see recent
projects, open the Get Started page.

See Also
Set Up a Project

28

Intel® Advisor User Guide 1

Vectorization and Code Insights Perspective Improve your application performance, get code-
specific recommendations for how to fix vectorization issues and quick visibility into source code
and assembly code by running the Vectorization and Code Insights perspective.

CPU / Memory Roofline Insights Perspective Visualize actual performance against hardware-
imposed performance ceilings by running the CPU / Memory Roofline Insights perspective. It helps
you determine the main limiting factor (memory bandwidth or compute capacity) and provides an
ideal roadmap of potential optimization steps.

Threading Perspective Analyze, design, tune, and check threading design options without
disrupting your normal development by running the Threading Perspective.

Offload Modeling Perspective Find high-impact opportunities to offload/run your code and identify
potential performance bottlenecks on a target graphics processing unit (GPU) by running the
Offload Modeling perspective.

GPU Roofline Insights Perspective Measure and visualize the actual performance of GPU kernels
using benchmarks and hardware metric profiling against hardware-imposed performance ceilings,
as well as determine the main limiting factor, by running the GPU Roofline Insights perspective.

Set Up Project

To run Intel® Advisor, you need to create a project with your target executable. The project serves as a
reusable container for:

e The location of a target executable, which is your compiled application
e Target executable sources and binaries

e A collection of configurable properties

e A previously collected analysis result

To set up a project:

1. Optional: Configure your target application to optimize it for analyses
2. Build your target application with optimal build settings
3. Create and configure a project with your target application

Configure Target Application
Intel® Advisor supports targets:

e Developed to run on Windows* or Linux* operating systems using the Intel® oneAPI DPC++/C++
Compiler, Intel® C++ Compiler Classic, Intel® Fortran Compiler Classic, or GNU* gcc compiler
development environment

e That use C/C++, Fortran, or mixed Python* code for the portions that will run in parallel.

e That use SYCL, OpenCL™, or OpenMP* with pragma omp target (for C++) or directive omp target (for
Fortran) code

The target executable must contain source symbol table debug information, so the Intel® Advisor can provide
source line correlation and viewing sources.

Important To analyze an application with the Intel® Advisor, the application should take longer than
500 milliseconds to execute on CPU or GPU. If your application execution time is lower, it might cause
inaccurate data sampling or a No data is collected error.

Before you start profiling your application and applying changes that should increase performance, you can
configure the application as follows to optimize it for analyses:

e Limit the number of threads used by parallel frameworks to configure the application for threading.
e Choose a small, representative data set to reduce analysis overheads by reducing the amount of analyzed
data.

29

1 Intel® Advisor User Guide

Limit the Number of Threads Used by Parallel Frameworks

Intel® Advisor tools are designed to collect data and analyze serial programs. Before you use the Intel
Advisor to examine a partially parallel program, modify your program so it runs as a serial program with a
single thread within each parallel site.

Run Your Program as a Serial Program

To run the current version of your program as a serial program, you need to limit the number of threads to 1.
To run your program with a single thread:

e With Intel® oneAPI Threading Building Blocks (oneTBB) , in the main thread create a
tbb::task scheduler init init(1); object for the lifetime of the program and run the executable
again. For example:

int main() {
tbb::task scheduler init init(1);
// ...rest of program...
return 0;

}

The effect of task scheduler init applies separately to each user-created thread. So if the program
creates threads elsewhere, you need to create a tbb: :task scheduler init init (1); for that
thread's lifetime as well. Use of certain oneTBB features can prevent the program from running serially.
For more information, see the oneTBB documentation.

e With OpenMP*, do one of the following:

e Set the OpenMP* environment variable OMP NUM THREADS to 1 before you run the program.

e Omit the compiler option that enables recognition of OpenMP pragmas and directives. On Windows*
0S, omit /Qopenmp, and on Linux* OS omit -openmp.

For more information, see your compiler documentation.

If you cannot remove the parallelism, you should add annotations to mark the parallel code regions and learn
how parallel code will impact Intel Advisor tool reports.

See Also

Build Target Application

Create a Project

Use Partially Parallel Programs with Intel Advisor

s Choose a Small, Representative Data Set

When you run an analysis, the Intel® Advisor executes the target against the supplied data set. Data set size
and workload have a direct impact on application execution time and analysis speed

For example, it takes longer to process a 1000x1000 pixel image than a 100x100 pixel image. A possible
reason: You may have loops with an iteration space of 1...1000 for the larger image, but only 1...100 for the
smaller image. The exact same code paths may be executed in both cases. The difference is the number of
times these code paths are repeated.

You can control analysis cost without sacrificing completeness by minimizing this kind of unnecessary
repetition from your target's execution.

Instead of choosing large, repetitive data sets, choose small, representative data sets that fully create tasks
with minimal to moderate work per task. Minimal to moderate means just enough work to demonstrate all
the different behaviors a task can perform.

Your objective: In as short a runtime period as possible, execute as many paths and the maximum number
of tasks (parallel activities) as you can afford, while minimizing the repetitive computation within each task
to the bare minimum needed for good code coverage.

30

Intel® Advisor User Guide 1

Data sets that run in about ten seconds or less are ideal. You can always create additional data sets to
ensure all your code is checked.

To modify the input data set using the Intel® Advisor GUI, do one of the following

e Specify the project properties for the target. For example:

1.
Either click File > Project properties... or the icon on the Intel® Advisor toolbar. This displays
the Project Properties dialog box.

2.If needed, click the Analysis Target tab.

3.In the Target type drop-down list, choose Dependencies Analysis.

4.1n the Application parameters, if your target's main entry point accepts command-line arguments,
specify a value in this field. Either type a value, or click the Modify... button.

5. When done, click OK.

¢ Modify the program's sources (perhaps using #ifdef directives) and rebuild the target.

On Windows* OS only: To modify the input data set in the Visual Studio IDE, do one of the following:

e Specify Properties for the project or configuration. For example, right-click the startup project's name to
display the context menu:

1.Choose Properties > Configuration properties > Debugging.
2.Select the type of configuration this change will apply to by selecting the type under Configuration,
such as Active(Debug), Debug, Release, or All Configurations. By default, properties for Debug
and Release configuration are maintained separately.
3.Edit the Command Arguments to select the appropriate data set.
4.Click OK.
e Specify a different startup project that already has a reduced data set.
e Modify the program's sources (perhaps using #ifdef directives) and rebuild the target.

Tip

e On Windows* OS only: If you run this configuration often, consider creating a new configuration
perhaps called Dependencies for this small data set.

e For the most current information on optimal C/C++ and Fortran build settings, see Build Target
Application.

Build Target Application

This section contains steps you should do before you begin running analyses on your application with Intel®
Advisor. Do the following:

e Build an optimized binary of your application in release mode using settings designed to produce the
most accurate and complete analysis results.
e \Verify the resulting executable runs before trying to analyze it with the Intel® Advisor.

Important To analyze an application with the Intel® Advisor, the application should take longer than
500 milliseconds to execute on CPU or GPU. If your application execution time is lower, it might cause
inaccurate data sampling or a No data is collected error.

Optimal C/C++ Settings

To Do This For This Optimal C/C++ Settings
Request full debug Vectorization Linux* OS command line: -g
mforr_natmn (compiler anc! Code Windows* OS command line:
and linker). Insights

31

1 Intel® Advisor User Guide

To Do This For This Optimal C/C++ Settings
CPU / o /71
Memory e /DEBUG
Roofline . f Vi -)
Insights Microsoft Visual Studio* IDE:
GPU Roofline e C/C++ > General > De_bug Information Format >
Insights Program Database (/Zi)
¢ Linker > Debugging > Generate Debug Info > Yes (/
Offload DEBUG)
Modeling
Threading
Request moderate Vectorization Linux* OS command line: -02 or higher
optimization. anc! Code Windows* OS command line:
Insights
cPu/ . Jons (Thisading onl
Memory (Threading only)
Roofline Visual Studio* IDE:
Insights e e .
¢ C/C++ > Optimization > Optimization > Maximum
GPU Roofline Optimization (Favor Speed) (/02) or higher
Insights ¢ C/C++ > Optimization > Inline Function Expansion >
Threading Only_inline (/Ob1) (Threading only)
Offload
Modeling
Disable interprocedural Offload Linux* OS command line: -no-ipo
optimizations that may Modeling

inhibit the ability of
Intel® Advisor to collect
performance data.

For Intel® C++ Compiler
Classic / Intel® oneAPI
DPC++/C++ Compiler
only.

Produce compiler
diagnostics (necessary
for version 15.0 of the
Intel® C++ Compiler
Classic; unnecessary for
version 16.0 and
higher).

Enable vectorization.

32

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Vectorization
and Code
Insights

Windows* OS command line: /Qipo-

Linux* OS command line: —qopt-report=>5
Windows* OS command line: /Qopt-report:5

Visual Studio* IDE: C/C++ > Diagnostics [Intel C++] >
Optimization Diagnostic Level > Level 5 (/Qopt-
report:5)

Linux* OS command line: -vec

Windows* OS command line: /Qvec

Intel® Advisor User Guide 1

To Do This For This Optimal C/C++ Settings
CPU /
Memory
Roofline
Insights
GPU Roofline
Insights
Enable SIMD directives. Vectorization Linux command line: -simd
anq Code Windows* OS command line: /Qsimd
Insights
CPU /
Memory
Roofline
Insights
GPU Roofline
Insights
Enable generation of Vectorization Linux* OS command line: —gopenmp
multi-threaded code and Code
based on OpenMP* Insights Windows* OS command line: /Qopenmp
directives. CPU / Visual Studio* IDE: C/C++ > Language [Intel C++] >
Memory OpenMP Support > Generate Parallel Code (/Qopenmp)
Roofline
Insights
GPU Roofline
Insights
Search additional Primarily Linux* OS command line:
directory related to Intel Threading, - I${ADVISOR [product year] DIR}/include
Ad\(|s_o_r annotation but could Windows* OS command
definitions. also be useful . v omn s
for line: /I"$ADVISOR [product year] DIR%$"\include
refinement Visual Studio* IDE: C/C++ > General > Additional Include
analyses Directories > $(ADVISOR_[product_year]_DIR)
\include;% (AdditionalIncludeDirectories)
Search for unresolved Threading Linux* OS command line: -Bdynamic
references in only . % o
multithreaded, Windows* OS command line: /MD or /MDd
dynamically linked Visual Studio* IDE: C/C++ > Code Generation > Runtime
libraries. Library > Mutithread
Enable dynamic loading. Threading Linux* OS command line: -1d1
only

33

1 Intel® Advisor User Guide

Optimal Fortran Settings

To Do This

For This
Tool

Optimal Fortran Settings

Request full debug
information (compiler
and linker).

Request moderate
optimization.

Produce compiler
diagnostics (necessary
for version 15.0 of the
Intel® Fortran Compiler
Classic; unnecessary for
version 16.0 and
higher).

Enable vectorization.

Enable SIMD directives.

34

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Threading

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Threading

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Vectorization
and Code
Insights

Linux* OS command line: -g
Windows* OS command line:

e /debug=full
e /DEBUG

Visual Studio* IDE:

e Fortran > General > Debug Information Format >
Full (/debug=full)

e Linker > Debugging > Generate Debug Info > Yes (/
DEBUG)

Linux* OS command line: -02 or higher

Windows* OS command line:

e /02 or higher
e /Obl (Threading only)

Visual Studio* IDE:

¢ Fortran > Optimization > Optimization > Maximize
Speed or higher

¢ Fortran > Optimization > Inline Function Expansion >
Only INLINE directive (/Ob1) (Threading only)

Linux* OS command line: —qopt-report=>5

Windows* OS command line: /Qopt-report:5

Visual Studio* IDE: Fortran > Diagnostics > Optimization
Diagnostic Level > Level 5 (/Qopt-report:5)

Linux* OS command line: -vec

Windows* OS command line: /Qvec

Linux* OS command line: -simd

Windows* OS command line: /Qsimd

Intel® Advisor User Guide 1

To Do This For This Optimal Fortran Settings
Tool
CPU /
Memory
Roofline
Insights
GPU Roofline
Insights
Enable generation of Vectorization Linux* OS command line: -gqopenmp
Iti-th
E;l;;:jtogegdiihj(;ie ?:5(1 (I::;Se Visual Studio* IDE: Fortran > Language > Process
. . P 9 OpenMP Directives > Generate Parallel Code (/
directives.
CPU / Qopenmp)
Memory
Roofline
Insights
GPU Roofline
Insights
Search additional Primarily Linux* OS command line:
ige_(:tory relatte: to Intel ;h;:‘eadlll‘(ljg, e -IS{ADVISOR [product year] DIR}/include/ia32 or
visor annotation ut cou ~T${ADVISOR [product year] DIR}/include/ia64
definitions. also be useful - - - i
for -L${ADVISOR [product year] DIR}/1ib32 or
refinement -L${ADVISOR [product year] DIR}/1ib64
analyses e -ladvisor
Windows* OS command line:
e /I"SADVISOR [product year] DIR%"\include\ia32
or /I"SADVISOR [product year] DIR%"\include\ia64
e /L"$ADVISOR [product year] DIR%"\1ib32
or /L"SADVISOR [product year] DIR%"\1lib64
e /ladvisor or
Visual Studio* IDE:
¢ Fortran > General > Additional Include Directories >
"$(ADVISOR_[product_year]_DIR)\include\ia32\"
or "$(ADVISOR_[product_year]_DIR)\include
\ia64\"
+ Linker > General > Additional Library Directories >
"$(ADVISOR_[product_year]_DIR)\Iib32" or "$
(ADVISOR_[product_year]_DIR)\Ilib64"
¢ Linker > Input > Additional Dependencies > .lib >
libadvisor
Search for unresolved Threading Linux* OS command line: -shared-intel
references in only

multithreaded,
dynamically linked
libraries.

Windows* OS command line: /MD or /MDd

Visual Studio* IDE: Fortran > Libraries > Runtime
Librarary > Multithread DLL (/libs:dll /threads) or
Debug Multithread DLL (/libs:dll /threads /dbglibs)

35

1 Intel® Advisor User Guide

To Do This For This Optimal Fortran Settings
Tool

Enable dynamic loading. Threading Linux* OS command line: -1d1
only

Create Project

Intel® Advisor is based on a project paradigm and requires that you create or open a project to enable
analysis features. Think of a project as a reusable container for:

e The location of a compiled application
e A collection of configurable properties
e An analysis result

NOTE You can skip this step in the following cases:

e If you use Intel Advisor as a Microsoft Visual Studio* integration, as it creates a new project
automatically when opened.

e If you use Intel Advisor from the command line interface, as it creates a new project automatically

when you run the first analysis

To create an Intel® Advisor project from the GUI:
1. Open the Create a Project dialog box using any of the following options:

e Choose File > New > Project....

[]
.
Click the ! icon on the left-side toolbar.

e C(Click the Welcome page Create Project link.
2. In the Create a Project dialog box, configure the following:

Use This To Do This

Project name field Specify the name of the Intel® Advisorproject. This might be similar to
the target executable name. The project name is used for the project
directory name:

e A project file that identifies the target to be analyzed and a set of
configurable attributes for running the target.
¢ Results that allows you to view the collected data.

Location field and Browse Choose or create a directory to contain the project directory. Click the
button Browse button to browse to and select a directory where the project
directory will be created.

Project files should be located in a different directory than your source
directories, such as a directory above the source directories or in a
separate projects directory. You must have write permission to the
specified directory and its subdirectories.

Create project button After entering the Project name and specifying its Location, click
Create project to create the project and its directory and display the
Analysis Target tab of the Project Properties dialog box.

3. Click Create Project button.

A Project Properties dialog box opens where you can configure your target application and the
project.

36

Intel® Advisor User Guide 1

Continue to select a perspective and run it to analyze your application.

See Also

Launch Intel® Advisor

Run Vectorization and Code Insights Perspective from GUI

Run CPU / Memory Roofline Insights Perspective from GUI

Run Threading Perspective from GUI Steps to run the Threading perspective.
Run Offload Modeling Perspective from GUI

Run GPU Roofline Insights Perspective from GUI

Configure Project

After you create a project, the Project Properties dialog box opens. In the Analysis Target tab, you can
specify the target executable, set important project properties, and review current project properties.

Tip
Always check project property values before analyzing a new target.

For an existing project, you can also access this tab:

¢ From the Intel Advisor GUI, choose File > Project Properties.

[]
Click the . icon on the left-side toolbar.
e From the Visual Studio* menu, choose Project > Intel Advisor [version] Project Properties...

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

Analysis Target Tab Overview

In the Analysis Target tab, select an analysis type from list (on the left) to display and set project
properties.

Analysi | Select an analysis type to configure. Different project properties are available in the Analysis
s Type Properties region depending on the analysis type selected. The following analysis types are
selector | available:

+ Survey Analysis Types

e Survey Hotspots Analysis
e Trip Counts and FLOP analysis
e Suitability Analysis
« Refinement Analysis Types
¢ Memory Access Patterns Analysis

e Dependencies Analysis
« Performance Modeling Analysis

Analysi | Set project properties for the analysis type selected in the Analysis Type region.
s
Proper
ties

37

1 Intel® Advisor User Guide

Analysis Target Tab Controls

The following table covers project properties applicable to all analysis types. To view controls applicable only
to a specific analysis type, use the links immediately below:

e Survey Analysis Controls

e Trip Counts and FLOPS Controls
e Suitability Analysis Controls

e MAP Analysis Controls

e Dependencies Analysis Controls

NOTE To configure a project, it is enough to set only common properties.

Common Controls

The following controls are common for all analysis types. Specify the properties in the Survey Hotspot
Analysis tab and check that the Inherit settings from the Survey Hotspots Analysis Type checkbox is
enabled in other tabs to share the properties for all analyses.

Use This To Do This

Target type drop-down e Analyze an executable or script (choose Launch Application).
e Analyze a process (choose Attach to Process).

If you choose Attach to Process, you can either inherit settings from
the Survey Hotspots Analysis Type or specify the needed settings.

Inherit settings from Inherit Intel Advisor project properties from the Visual Studio* startup
Visual Studio project project (enable).
checkbox and field (Visual

Studio* IDE only) If enabled, the Application, Application parameters, and Working

directory fields are pre-filled and cannot be modified.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the
Intel® oneAPI 2022.1 release, and will be removed in a future release.

Application field and Select an analysis target executable or script.

Browse... button If you specify a script in this field, consider specifying the executable in

the Advanced > Child application field (required for Dependencies

analysis).
Application Specify runtime arguments to use when performing analysis (equivalent
parameters field and to command line arguments).
Modify... button
Use application directory Automatically use the value in the Application directory to pre-fill the
as working directory Working directory value (enable).

checkbox

Working directory field and | Select the working directory.
Browse... button

User-defined environment Specify environment variables to use during analysis.
variables field and Modify...
button

38

Intel® Advisor User Guide 1

Use This

To Do This

Managed code profiling
mode drop-down

+ Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

¢ Collect data for native code and do not attribute data to managed
code (choose Native).

¢ Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

e Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

Child application field

Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

NOTE

For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

e Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

» Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

Use MPI launcher checkbox

Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

e Select MPI Launcher - Intel or another vendor
« Number of ranks - Number of instances of the application
e Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis-Specific Controls

Use This

To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

39

1 Intel® Advisor User Guide

Use This

To Do This

Tip

The corresponding CLI action option is —-resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector

Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Callstack unwinding mode
drop-down list

Set to After collection if:

e Survey analysis runtime overhead exceeds 1.1x.

¢ A large quantity of data is allocated on the stack, which is a common
case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox

Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE

Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
—ax (Linux* OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

40

1

Intel® Advisor User Guide

Use This

To Do This

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
list

* Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

* Keep source code cache within the project (choose Keep cached
files).

Trip Counts and FLOP Analys

is-Specific Controls

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is ——resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Trip Counts / Collect
information about Loop
Trip Counts checkbox

Measure loop invocation and execution (enable).

FLOP / Collect information
about FLOP, L1 memory
traffic, and AVX-512 mask
usage checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Callstacks / Collect
callstacks checkbox

Collect call stack information when performing analysis (enable).

Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Capture metrics for
stripped binaries checkbox

Collect metrics for stripped binaries.

Enabling could increase analysis overhead.

41

1 Intel® Advisor User Guide

Use This

To Do This

Cache Simulation / Enable
Memory-Level Roofline
with cache simulation
checkbox

Model multiple levels of cache for data, such as counts of loaded or
stored bytes for each loop, to plot the Roofline chart for all memory levels
(enable).

Enabling could increase analysis overhead.

Cache simulator
configuration field

Specify a cache hierarchy configuration to model (enable and specify
hierarchy).

The hierarchy configuration template is:

[num_of _levell_caches]:[num_of_ways_levell_connected]:
[levell_cache_size]:[levell_cacheline_size]/

[num_of_level2_caches]:[num_of_ways_level2 _connected]:
[level2_cache_size]:[level2 _cacheline_size]/

[num_of _level3_caches]:[num_of_ways_level3_connected]:
[level3_cache_size]:[level3_cacheline_size]

For example: 4:8w:32k:641/4:4w:256k:641/1:16w:6m:64l is the
hierarchy configuration for:

e Four eight-way 32-KB level 1 caches with line size of 64 bytes
e Four four-way 256-KB level 2 caches with line size of 64 bytes
¢ One sixteen-way 6-MB level 3 cache with line size of 64 bytes

Data Transfer Simulation /
Data transfer simulation
mode drop-down

Select a level of details for data transfer simulation:

e Off - Disable data transfer simulation analysis.

+ Light - Model data transfers between host and device memory.

¢ Full - Model data transfers, attribute memory objects to loops that
accessed the objects, and track accesses to stack memory.

Suitability Analysis-Specific Controls

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is ——resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Sampling Interval selector

Set the wait time between each analysis collection sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

42

Intel® Advisor User Guide 1

Use This

To Do This

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Memory Access Patterns Analysis-Specific Controls

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode group
box

e Report possible memory issues in system modules (choose the Show
problems in system modules radio button).

e Do not report possible memory issues in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Report stack variables
checkbox

Report stack variables for which memory access strides are detected
(enable).

Enabling could increase analysis overhead.

Report heap allocated
variables checkbox

Report heap-allocated variables for which memory access strides are
detected (enable).

Enabling could increase analysis overhead.

Enable CPU cache
simulation checkbox

Model cache misses, cache misses and cache line utilization, or cache
misses and loop footprint (enable and select desired options).

Enabling could increase analysis overhead.

Cache associativity drop-
down list

Set the cache associativity for modeling CPU cache behavior. You can set
the value to the following power-of-two integers: 1, 2, 4, 8, 16.

Cache sets drop-down list

Set the cache set size (in bytes) for modeling CPU cache behavior. You
can set the value to the following power-of-two integers: 256, 512, 1024,
2048, 4096, 8192.

Cache line size drop-down
list

Set the cache line size (in bytes) to model CPU cache behavior. You can
set the value to the following power-of-two integers: 4, 8, 16, 32, ..., up
to 65536.

Cache simulation mode
drop-down list

Set the focus for modeling CPU cache behavior:

¢ Model cache misses only.

43

1 Intel® Advisor User Guide

Use This

To Do This

¢ Model cache misses and memory footprint of a loop. Calculation:
Cache line size x Number of unique cache lines accessed during
simulation.

¢ Model cache misses and cache line utilization.

Dependencies Analysis Controls

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode radio
buttons

¢ Report possible dependencies in system modules (choose the Show
problems in system modules radio button).

¢ Do not report possible dependencies in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Analyze stack variables
checkbox

Analyze parallel data sharing for stack variables (enable).

Enabling could increase analysis overhead.

Filter stack variables by scope
checkbox

Enable to report:

e Variables initiated inside the loop as potential dependencies (warning)
e Variables initialized outside the loop as dependencies (error)

Enabling could increase analysis overhead.

Reduction Detection / Filter
reduction variables checkbox

Mark all potential reductions by a specific diagnostic (enable).

Enabling could increase analysis overhead.

Markup type checkbox

Select loops/functions by pre-defined markup algorithm. Supported
algorithms are:

¢ GPU generic - Select loops executed on a GPU.

e OpenMP - Select OpenMP* loops.

e SYCL - Select SYCL loops.

¢ OpenCL - Select OpenCL™ loops.

¢ DAAL - Select Intel® oneAPI Data Analytics Library loops.

e TBB - Select Intel® oneAPI Threading Building Blocks loops.

NOTE This option is available only from the Analysis Workflow pane for the
Offload Modeling perspective.

44

Intel® Advisor User Guide 1

Performance Modeling Properties

Use This

To Do This

Device configuration

Other parameters

Select a pre-defined hardware configurations from
a drop-down list to model application performance
on.

Enter a space-separated list of command-line
parameters. For a full list of available options, see
Command Option Reference.

Configure Binary/Symbol Search Directories

You need to configure binary/symbol search directories if your target application has non-standard directories
with the supporting files needed to execute and analyze the target. By default, if you do not specify source
search directory, Intel Advisor searches the standard OS directories. See Binary/Symbol Search Locations for

details.

With Visual Studio* on Windows* OS, you can instead use the Visual Studio solution and project capabilities
to search for specific directories.

Tab Location

To access this tab:

e From the Intel Advisor GUI, choose File > Project Properties. Then click the Binary/Symbol Search

tab.

Click the icon on the left-side toolbar.

e From the Visual Studio* menu, choose File > Intel Advisor [version] Project Properties.... Then click
the Binary/Symbol Search tab.

Tab Controls

Use This

To Do This

D button

On a row containing Add new search location, click to browse for directories
to include in the search list. You can also type directly in the row. In addition to
local directories, you can specify a symbol server URL.

and buttons

Change the search order of the selected directory by moving it up or down. To
select multiple rows, use the Ctrl or Shift keys.

@ button

Delete a selected directory row(s).

Search recursively
checkbox

Enable to search the specified location subdirectories. To use recursive search,
the lines must provide only a directory name and omit a file name. Using a
recursive search for multiple directories may slow processing and could lead to
unexpected results.

See Also

e Binary/Symbol Search and Source Search Locations

45

1 Intel® Advisor User Guide

Configure Source Search Directory

You need to configure source search directories to specify the source search locations needed to execute and
analyze your target application. By default, if you do not specify source search directory, Intel Advisor
searches the directories from the collected result. See Source Search Locations for details.

With Visual Studio, some source locations are pre-populated from the Visual Studio startup project into the
internal representation of Intel Advisor project properties, so you may not need to add new row(s).

Tip

For Threading Advisor only: Intel® Advisor does not automatically populate source locations after you
create a project using the Intel® Advisor GUI, so you must specify one or more locations to find
application annotations. View the Annotation Report to verify all project annotations are found.

Tab Location
To access this tab:

e From the Intel® Advisor GUI, choose File > Project Properties. Then click the Source Search tab.

[]
Click the icon on the left-side toolbar.

e From the Visual Studio* menu, choose File > Intel Advisor [version] Project Properties.... Then click
the Source Search tab.

Tab Controls

Use This To Do This
D On a row containing Add new search location, click to browse for directories
button to include in the search list. You can also type directly in the row.

Change the search order of the selected directory by moving it up or down. To
and buttons select multiple rows, use the Ctrl or Shift keys.

@ Delete a selected directory row(s).

button

Search recursively Enable to search the specified location subdirectories. To use recursive search,
checkbox the lines must provide only a directory name and omit a file name. Using a

recursive search for multiple directories may slow processing and could lead to
unexpected results.

Mask text box Specify the file name mask pattern(s) to ignore (skip) using wildcard
characters, such as an asterisk (*). For example, you can skip certain file
suffixes.

File text box Specify the file(s) to ignore (skip) using an absolute path.

To delete a row, use the @ button.

See Also

e Binary/Symbol Search and Source Search Locations

Binary/Symbol Search and Source Search Locations
When using the Intel Advisor Standalone GUI:

46

Intel® Advisor User Guide 1

e If you specify binary and symbol locations to search using the Binary/Symbol Search tab, they will be
searched in addition to the default binary and symbol locations.

e If you specify source locations to search using the Source Search tab, they will be searched in addition
to the default source search locations.

Binary/Symbol Search Locations

Intel Advisor searches binary and symbol files in default locations and in locations specified in the Binary/
Symbol Search tab (if specified).

The following lists describe the order and default locations that are searched. As indicated below, some
directory searches examine the specified directory and its subdirectories, while other searches do not
examine its subdirectories.

The search order on Windows* OS systems is the following:

1. Search for binary and symbol files in the directories specified in the Binary/Symbol Search tab and
their subdirectories (if enabled in the tab).

2. Search for symbol files in the directories near the related (corresponding) binary file(s) just found, such
as a library:

e Check in the directory of the corresponding binary file, using the corresponding name.
e Check in the directory of the corresponding binary file, using a related name. For example, for
app.dll where a file app x86.pdb is present, also search for file app. pdb.

3. When using an integrated Visual Studio project, the directories provided by the Visual Studio project
pre-populate the corresponding directories in the internal representation of the Binary/Symbol
Search tab (for example, Visual Studio binary locations pre-populate the Project Properties binary
locations). So, the Visual Studio project's directories are searched and are specific to the selected
configuration.

For symbol files, also search using symbol server paths specified in the Binary/Symbol Search tab in
the following notation: srv*C:\localsymbols*http://msdl.microsoft.com/download/symbols
and/or provided in Visual Studio Tools > Options > Debugging > Symbols.

4. Search for binary files in this standard Windows OS system directory:

$SYSTEMROOTS%\system32\drivers (subdirectories are not searched)
5. Search for symbol files in these standard Windows OS system directories:

e All directories specified in the environment variable NT SYMBOL PATH (subdirectories are not
searched)

e srv*%SYSTEMROOT%\symbols (symbol downstream or cache path)

e S$SYSTEMROOT%\symbols\dll (subdirectories are not searched)

The search order on Linux* OS systems is the following:

1. Search for binary and symbol files in the directories specified in the Binary/Symbol Search tab and
their subdirectories (if enabled in the tab).

2. Search for binary files in directories from the collected result that provide an absolute path name. If the
file name vmlinux is present, search these directories:

e /usr/lib/debug/lib/modules/ uname -r /vmlinux
e /boot/vmlinuz- uname -r°

3. Search for symbol files in the directories near the related (corresponding) binary file(s) just found, such
as a library:

e Check in the directory of the corresponding binary file, using the corresponding name.
e Check in the directory of the corresponding binary file, using a related name. For example, for
app.dll where a file app x86.pdb is present, also search for file app.pdb.
e Search in the .debug subdirectory.
4. Search for binary files in these standard Linux OS system directories:

47

1 Intel® Advisor User Guide

e /lib/modules (subdirectories are not searched)
e /lib/modules/ uname -r /kernel (subdirectories are searched)
5. Search for symbol files in these standard Linux OS system directories:

e usr/lib/debug(subdirectories are not searched)
e /usr/lib/debug with appended path to the corresponding binary file, such as /usr/1ib/
debug/usr/bin/ls.debug

Source Search Locations

A limited set of default source locations are used in addition to the locations specified in the Source Search
tab. With Intel Advisor, you can use this tab to indicate whether or not the default source locations (listed
below) will be searched.

NOTE
When using the Intel Advisor GUI, you must specify one or more new rows (locations) in the Source
Search tab so Intel Advisor tools can find your application's annotations.

The following list describes the order and default locations that are searched. As indicated below, some
directory searches examine the specified directory and its subdirectories, while other searches do not
examine its subdirectories.

1. Search for source files in the directories specified in the Source Search tab. With Intel Advisor, you
can indicate whether the subdirectories of these directories should be searched.

2. Search for source files in directories from the collected result that provide an absolute path name.

3. When using an integrated Visual Studio project, the source directories provided by the Visual Studio
project pre-populate the corresponding source directories in the internal representation of the Source
Search tab. So, the Visual Studio project's source directories are searched for source files, and they
apply to all configurations.When using Microsoft Visual Studio*: Search for source files in Visual
Studio project directories.

4. On Linux OS systems: Search for source files in these standard Linux locations (does not search
subdirectories):

/usr/src

/usr/src/linux-headers-"uname -r°

See Also
Binary/Symbol Search Tab
Source Search Tab

Analyze Vectorization Perspective

Improve your application performance, get code-
specific recommendations for how to fix vectorization
issues and quick visibility into source code and
assembly code by running the Vectorization and Code
Insights perspective.

The Vectorization and Code Insights perspective can help you to identify:

Where vectorization, or parallelization with threads, will pay off the most
If vectorized loops are providing benefit, and if not, why not

Not vectorized loops and why they are not vectorized

Memory usage issues

Performance insights and problems in general

48

Intel® Advisor User Guide 1

How It Works
The Vectorization and Code Insights perspective includes the following steps:

1. Get integrated compiler report data and performance data by running a Survey analysis.

2. Identify the number of times loops are invoked and execute and the number of floating-point and
integer operations by running the Characterization analysis. It measures the call count/loop count
and iteration count metrics for your application. Enable to make better decisions about your
vectorization strategy for particular loops, as well as optimize already-vectorized loops.

3. Check for various memory issues by running the Memory Access Patterns (MAP) analysis. It can
warn you about non-contiguous memory accesses, unit stride vs. non-unit stride accesses, or other
issues. Enable to identify issues that could lead to significant vector code execution slowdown or block
automatic vectorization by the compiler.

4. Check for data dependencies in loops the compiler did not vectorize by running the Dependencies
analysis. The Dependencies analysis checks for real data dependencies and if real dependencies are
detected, provides additional details to help resolve them. Choose to identify and better characterize
real data dependencies that could make forced vectorization unsafe.

Vectorization Summary

Vectorization and Code Insights perspective collects data about your application performance, including the
following:

e Performance metrics, including vectorization efficiency for the whole application and for each vectorized
loop/function

e Top five time-consuming loops sorted by self time

e Integrated compiler report data and code-specific recommendations for fixing performance issues

@ Vectorization And Code Insights

Vectorization and Code Insights perspective lets you identify loops that will benefit most from vector parallelism, discover performance issues preventing from effective vectorization

v Program Metrics
Elapsed Time 3.18s ~ GFLOPS 520

Vector Insiruction Set AVX2, AVX, SSE GFLOP Count 16.545
Number of CPU Threads 1 FP Arithmetic Intensity 0270
» GINTOPS 176
“» Performance Characteristics
Metrics Tota
Total CPU time 288s I 100%
Time in 3 vectorized loops 2235 77.69
Time in scalar code 0653 I 22.4%
~ Veectorization Gain/Efficiency
Vectorized Loops Gain/Efficiency ~2.03x

Program Approximate Gain| 1.80%

» OP/S And Bandwidth

> Per Program Recommendations

v Top Time-Consuming Loops

Loop Self Time: Total Time: Trip Counts Vector Efficiency

Ioop in matvec at Multiply.c:82 0.880s 0.880s 57 [z ——

loop in matvec at Multiply.c:69 08225 0.822s 11,3 [—
© loop in matvec at Multiply.c:49 0.621s 2.8565 4

loop in matvec at Multiply.c:60 0.533s 0.533s 7.5 5

< loop in main at Driver 155 0.008s 28645 1000000

v

Refinement Analysis Data

v Recommendations

Eorce vectorized remainder loop in matvec at Mutiply.c:82
A0d data padding 1oop in matvec at Muftiply.c-82

Eoree vectorized remainder loop in mat ply.c69
A0d data padding Ioop in matvec

Eoree vectorized remainder loop in mat

See Also
Run Vectorization and Code Insights Perspective from GUI
Run Vectorization and Code Insights Perspective from Command Line

Vectorization Report Navigation Overview Review the controls available in the main report of the
Vectorization and Code Insights perspective of the Intel® Advisor.

49

1 Intel® Advisor User Guide

Run Vectorization and Code Insights Perspective from GUI

Prerequisite:

In the graphical-user interface (GUI): Create a project and specify an analysis target and target options.
To configure and run the Vectorization and Code Insights perspective from the GUI:

1. From the Analysis Workflow tab, configure the perspective and set analysis properties, depending on
desired results:

e Select a collection accuracy level with analysis properties preset for a specific result:

e Low: Get the basic insights about vectorized and un-vectorized loops in your code.
Medium: Identify the number of times loops execute to make better decisions about your
vectorization strategy.

e High: Analyze application memory usage and performance values that help you make better
decisions about your vectorization strategy in details.

e Select the analyses and properties manually to adjust the perspective flow to your needs. The
accuracy level is set to Custom.

The higher accuracy value you choose, the higher runtime overhead is added to your application. The
Overhead indicator shows the overhead for the selected configuration. For the Custom accuracy, the
overhead is calculated automatically for the selected analyses and properties.

By default, accuracy is set to Low. For more information, see Vectorization Accuracy Presets.
2. If you want to limit the Characterization, Memory Access Patterns, and/or Dependencies analyses to
one or more specific loops/functions instead of analyzing the whole application:

e From a Survey report generated: Mark one or more un-vectorized loops by enabling the

corresponding & checkboxes in the report.

>
Click button to run the perspective.

While the perspective is running, you can do the following in the Analysis Workflow tab:
e Control the perspective execution:

Stop data collection and see the already collected data: Click the E button.

Pause data collection: Click the m button.

Cancel data collection and discard the collected data: Click the u button.
Expand an analysis with - to control the analysis execution:

Pause the analysis: Click the |I| button.
Stop the currently running analysis and start the next analysis selected: Click the E button.

[]
Interrupt execution of all selected analyses and see the already collected data: Click the
button.

To run the Vectorization and Code Insights perspective with the Low accuracy from the command
line interface:

advisor --collect=survey --project-dir=./advi results -- ./myApplication

See Run Vectorization and Code Insights Perspective from Command Line for details.

50

Intel® Advisor User Guide 1

NOTE To generate command lines for selected perspective configuration, click the Command

Line button.

Once the data is collected, the Survey report opens showing a Summary tab. Depending on the selected

accuracy level and perspective properties, continue to investigate the results:

e Examine Not-Vectorized and Under-Vectorized Loops

e Examine Loop Call Count
e Investigate Memory Usage and Traffic
e Identify Data Dependencies in Your Application

NOTE

e After you run the Vectorization and Code Insights perspective, the collected Survey data becomes
available for all other perspectives. If you switch to another perspective, you can skip the Survey
step and run only perspective-specific analyses.

o If the Survey analysis does not collect enough data to produce a report, it displays a Target
executed too quickly or does not contain debug symbols message. Increase the target workload or
data to run the analysis for at least a few seconds, check whether debug information is specified as
a build option, or specify a different target application.

Vectorization Accuracy Presets

For each perspective, Intel® Advisor has several levels
of collection accuracy. Each accuracy level is a set of

analyses and properties that control what data is

collected and the level of collection details. The higher

accuracy value you choose, the higher runtime
overhead is added.

The following accuracy levels are available:

Comparison / Low Medium High
Accuracy Level
Overhead 1.1x 5-8x 10 - 40x
Goal Get basic insights Get more insights Get detailed insights about
about how well your about how well your your application performance,
application is application is including performance issues
vectorized and how vectorized and the and detailed optimization
you can improve number of iterations recommendations
vectorization in loops/functions
efficiency
Analyses Survey Survey + Survey + Characterization
Characterization (Trip (Trip Counts, FLOP, Call
Counts) Stacks) + Memory Access
Patterns
Result Basic Survey report Survey report Extended Survey report with
extended with trip trip counts and floating-point
count data and integer operations (FLOP
and INTOP)

51

1 Intel® Advisor User Guide

Comparison / Low Medium High
Accuracy Level

Memory Access Patters with
memory traffic data and
memory usage issues

You can choose custom accuracy and set a custom perspective flow for your application. For more
information, see Customize Vectorization and Code Insights Perspective.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

Customize Vectorization and Code Insights Perspective

Customize the perspective flow to better fit your goal
and your application.

If you change any of the analysis settings from the Analysis Workflow tab, the accuracy level changes to
Custom automatically. With this accuracy level, you can customize the perspective flow and/or analysis
properties.

To change the properties of a specific analysis:

- =
Expand the analysis details on the Analysis Workflow pane with .
2. Select desired settings.

3.
For more detailed customization, click the gear icon. You will see the Project Properties dialog

box open for the selected analysis.
4. Select desired properties and click OK.

For a full set of available properties, click the icon on the left-side pane or go to File > Project
Properties.

The following tables cover project properties applicable to the analyses in the Vectorization and Code Insights
perspective.

Common Properties

Use This To Do This

Target type drop-down e Analyze an executable or script (choose Launch Application).
e Analyze a process (choose Attach to Process).

If you choose Attach to Process, you can either inherit settings from
the Survey Hotspots Analysis Type or specify the needed settings.

Inherit settings from Inherit Intel Advisor project properties from the Visual Studio* startup
Visual Studio project project (enable).
checkbox and field (Visual

Studio* IDE only) If enabled, the Application, Application parameters, and Working

directory fields are pre-filled and cannot be modified.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the
Intel® oneAPI 2022.1 release, and will be removed in a future release.

52

Intel® Advisor User Guide 1

Use This

To Do This

Application field and
Browse... button

Select an analysis target executable or script.

If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application
parameters field and
Modify... button

Specify runtime arguments to use when performing analysis (equivalent
to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment

variables field and Modify...

button

Specify environment variables to use during analysis.

Managed code profiling
mode drop-down

+ Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

e Collect data for native code and do not attribute data to managed
code (choose Native).

¢ Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

¢ Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

Child application field

Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

NOTE

For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

* Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

« Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

53

1 Intel® Advisor User Guide

Use This

To Do This

Use MPI launcher checkbox

Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

e Select MPI Launcher - Intel or another vendor
« Number of ranks - Number of instances of the application
¢ Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis Properties

Use This

To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip

The corresponding CLI action option is —-resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector

Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Callstack unwinding mode
drop-down list

Set to After collection if:

e Survey analysis runtime overhead exceeds 1.1x.

e A large quantity of data is allocated on the stack, which is a common
case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox

Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

54

Intel® Advisor User Guide

Use This

To Do This

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE

Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
—ax (Linux* 0OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
list

e Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

e Keep source code cache within the project (choose Keep cached
files).

Trip Counts and FLOP Analys

is Properties

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Start running your target application with collection paused, then resume

Tip
The corresponding CLI action option is ——resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Collect information about
Loop Trip Counts checkbox

Measure loop invocation and execution (enable).

55

1 Intel® Advisor User Guide

Use This

To Do This

Collect information about
FLOP, L1 memory traffic,
and AVX-512 mask usage
checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Collect stacks checkbox

Collect call stack information when performing analysis (enable).

Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Memory Access Patterns Analysis Properties

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode group
box

e Report possible memory issues in system modules (choose the Show
problems in system modules radio button).

e Do not report possible memory issues in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Report stack variables
checkbox

Report stack variables for which memory access strides are detected
(enable).

Enabling could increase analysis overhead.

Report heap allocated
variables checkbox

Report heap-allocated variables for which memory access strides are
detected (enable).

Enabling could increase analysis overhead.

Enable CPU cache
simulation checkbox

Model cache misses, cache misses and cache line utilization, or cache
misses and loop footprint (enable and select desired options).

Enabling could increase analysis overhead.

Cache associativity drop-
down list

Set the cache associativity for modeling CPU cache behavior. You can set
the value to the following power-of-two integers: 1, 2, 4, 8, 16.

Cache sets drop-down list

Set the cache set size (in bytes) for modeling CPU cache behavior. You
can set the value to the following power-of-two integers: 256, 512, 1024,
2048, 4096, 8192.

56

Intel® Advisor User Guide 1

Use This

To Do This

Cache line size drop-down
list

Set the cache line size (in bytes) to model CPU cache behavior. You can
set the value to the following power-of-two integers: 4, 8, 16, 32, ..., up
to 65536.

Cache simulation mode
drop-down list

Set the focus for modeling CPU cache behavior:

e Model cache misses only.

¢ Model cache misses and memory footprint of a loop. Calculation:
Cache line size x Number of unique cache lines accessed during
simulation.

¢ Model cache misses and cache line utilization.

Dependencies Analysis Properties

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode radio
buttons

e Report possible dependencies in system modules (choose the Show
problems in system modules radio button).

* Do not report possible dependencies in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Analyze stack variables
checkbox

Analyze parallel data sharing for stack variables (enable).

Enabling could increase analysis overhead.

Filter stack variables by scope
checkbox

Enable to report:

e Variables initiated inside the loop as potential dependencies (warning)
e Variables initialized outside the loop as dependencies (error)

Enabling could increase analysis overhead.

Reduction Detection / Filter
reduction variables checkbox

Mark all potential reductions by a specific diagnostic (enable).

Enabling could increase analysis overhead.

Markup type checkbox

Select loops/functions by pre-defined markup algorithm. Supported
algorithms are:

e GPU generic - Select loops executed on a GPU.
e OpenMP - Select OpenMP* |oops.

e SYCL - Select SYCL loops.

¢ OpenCL - Select OpenCL™ loops.

57

1 Intel® Advisor User Guide

Use This To Do This

¢ DAAL - Select Intel® oneAPI Data Analytics Library loops.
e TBB - Select Intel® oneAPI Threading Building Blocks loops.

NOTE This option is available only from the Analysis Workflow pane for the
Offload Modeling perspective.

Run Vectorization and Code Insights Perspective from Command Line

Vectorization and Code Insights perspective includes several analyses that you can run depending on the
desired result. The main analysis is the Survey, which collects performance data for loops and functions in
your application and identifies under-vectorized and non-vectorized loops/functions. The Survey analysis is
enough to get the basic insights about your application performance.

Tip See Intel Advisor cheat sheet for quick reference on command line interface.

Prerequisites

Set Intel Advisor environment variables with an automated script to enable the command line interface (CLI).

Run Vectorization and Code Insights Perspective

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

1. Run the Survey analysis.

advisor --collect=survey --project-dir=./advi results -- ./myApplication
2. Run the Characterization analysis to collect trip counts and FLOP data:

advisor --collect=tripcounts --flop --stacks --project-dir=./advi results -- ./myApplication
3. Optional: Run the Memory Access Patterns analysis for loops/functions with the Possible Inefficient
Memory Access Patter issue.

advisor --collect=map --select=has-issue --project-dir=./advi results -- ./myApplication
4. Optional: Run the Dependencies analysis to check for loop-carried dependencies in loops/functions with
Assumed dependency present issue:

advisor --collect=dependencies --project-dir=./advi results --select=has-issue -- ./myApplication

You can view the results in the Intel Advisor graphical user interface (GUI), print a summary to a command
prompt/terminal, or save to a file. See View the Results below for details.

Analysis Details
The Vectorization and Code Insights workflow includes the following analyses:

1. Survey to collect initial performance data.

2. Characterization with trip counts and FLOP data to collect additional performance details.

3. Memory Access Patterns (optional) to identify memory traffic data and memory usage issues.
4. Dependencies (optional) to identify loop-carried dependencies.

Each analysis has a set of additional options that modify its behavior and collect additional performance data.
The more analyses you run and option you use, the more useful data about your application you get.

58

https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-cheat-sheet.pdf

Intel® Advisor User Guide 1

Consider the following options:
Characterization Options
To run the Characterization analysis, use the following command line action: -—collect=tripcounts.

Recommended action options:

Options Description

--flop Collect data about floating-point and integer
operations, memory traffic, and mask utilization
metrics for AVX-512 platforms.

--stacks Enable advanced collection of call stack data.

--enable-cache-simulation Model CPU cache behavior on your target
application.

--cache-config=<config> Set the cache hierarchy to collect modeling data for

CPU cache behavior. Use with
enable-cache-simulation.

The value should follow the template:
[<num_of_caches>]:
[<num_of_ways_caches_connected>]:
[<cache_size>]:[<cacheline_size>] for each of
three cache levels separated with a /.

--cachesim-associativity=<num> Set the cache associativity for modeling CPU cache
behavior: 1 | 2 | 4 | 8 (default) | 16. Use with
enable-cache-simulation.

--cachesim-mode=<mode> Set the focus for modeling CPU cache behavior:
cache-misses | footprint | utilization. Use
with enable-cache-simulation.

See advisor Command Option Reference for more options.
Memory Access Patterns Options

The Memory Access Patterns analysis is optional because it adds a high overhead. To run the Memory Access
Patterns analysis, use the following command line action: --collect=map.

Recommended action options:

Options Description

--select=<string> Select loops for the analysis by loop IDs, source
locations, or criteria such as scalar, has-issue,
or markup=<markup-mode>. This option is
required.

See select for more selection options.

--enable-cache-simulation Model CPU cache behavior on your target
application.

59

1 Intel® Advisor User Guide

Options Description

--cachesim-cacheline-size=<num> Set the cache line size (in bytes) for modeling CPU
cache behavior: 4 | 8| 16 | 32 | 64 (default) | 128
| 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 |
32768 | 65536. Use with
enable-cache-simulation.

--cachesim-sets=<num> Set the cache set size (in bytes) for modeling CPU
cache behavior: 256 | 512 | 1024 | 2048 | 4096
(default) | 8192. Use with
enable-cache-simulation.

See advisor Command Option Reference for more options.
Dependencies Options

The Dependencies analysis is optional because it adds a high overhead and is mostly necessary if you have
scalar loops/functions in your application. To run the Dependencies analysis, use the following command line
action: --collect=dependencies.

Recommended action options:

Options Description

--select=<string> Select loops for the analysis by loop IDs, source
locations, criteria such as scalar, has-issue, or
markup=<markup-mode>. This option is required.

See select for more selection options.

--filter-reductions Mark all potential reductions with a specific
diagnostic.

See advisor Command Option Reference for more options.

Next Steps

Continue to explore the Vectorization and Code Insights results with a preferred method. For details about
the metrics reported, see CPU and Memory Metrics.
See Also

Analyze Vectorization Perspective Improve your application performance, get code-specific
recommendations for how to fix vectorization issues and quick visibility into source code and
assembly code by running the Vectorization and Code Insights perspective.

Command Line Interface This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.

Minimize Analysis Overhead
Analyze MPI Applications With Intel® Advisor, you can analyze parallel tasks running on a cluster
to examine performance of your MPI application.

Vectorization Accuracy Levels in Command Line

For each perspective, Intel® Advisor has several levels of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is collected and the level of collection details. The higher
accuracy value you choose, the higher runtime overhead is added.

In CLI, each accuracy level corresponds to a set of commands with specific options that you should run one
by one to get a desired result.

The following accuracy levels are available:

60

Intel® Advisor User Guide 1

extended with trip
count data

Comparison / Low Medium High
Accuracy Level
Overhead 1.1x 5 - 8x 10 - 40x
Goal Get basic insights Get more insights Get detailed insights about
about how well your about how well your your application performance,
application is application is including performance issues
vectorized and how vectorized and the and detailed optimization
you can improve number of iterations recommendations
vectorization in loops/functions
efficiency
Analyses Survey Survey + Survey + Characterization
Characterization (Trip (Trip Counts, FLOP, Call
Counts) Stacks) + Memory Access
Patterns
Result Basic Survey report Survey report Extended Survey report with

trip counts and floating-point
and integer operations (FLOP
and INTOP)

Memory Access Patters with
memory traffic data and
memory usage issues

You can generate commands for a desired accuracy level from the Intel Advisor GUI. See Generate Command

Lines from GUI for details.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead .

Consider the following command examples.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Low Accuracy

To run the Vectorization and Code Insights perspective with the low accuracy:

advisor --collect=survey --project-dir=./advi results -- ./myApplication

Medium Accuracy

To run the Vectorization and Code Insights perspective with the medium accuracy:

1. Run the Survey analysis:

advisor --collect=survey --project-dir=./advi results -- ./myApplication
2. Run the Trip Counts analysis:

advisor --collect=tripcounts --enable-data-transfer-analysis --project-dir=./advi results -- ./

myApplication

High Accuracy

To run the Vectorization and Code Insights perspective with the high accuracy:

61

1 Intel® Advisor User Guide

1. Run the Survey analysis:

advisor --collect=survey --project-dir=./advi results -- ./myApplication
2. Run the Trip Counts and FLOP analysis:

advisor --collect=tripcounts --flop --stacks --project-dir=./advi results -- ./myApplication
3. Run the Memory Access Pattern analysis for the loops that have the Possible Inefficient Memory Access
Pattern issue:

advisor --collect=map --select=has issue --project-dir=./advi results -- ./myApplication

You can view the results in the Intel Advisor GUI or generate an interactive HTML report.

See Also

advisor Command Option Reference

Command Line Interface Reference This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

Run Vectorization and Code Insights Perspective from Command Line

Minimize Analysis Overhead

Explore Vectorization and Code Insights Results

Intel® Advisor provides several ways to view the Vectorization and Code Insights results.

View Result in CLI

If you run the Vectorization and Code Insights perspective from command line, you can print the results to a
terminal or a command prompt and save them to a .txt, .csv, or .xml file.

For example, to generate the Survey report:
advisor --report=survey --project-dir=./advi results

You should see a similar result:

ID Function Call Sites Total Self
Type Why No Vectorization ...
and Loops Time
Time

14 [loop in main at mmult serial.cpp:79] 0.495s 0.495s Vectorized Versions 1 vectorization
possible but seems inefficient ...
6 -[loop in main at mmult serial.cpp:79] 0.275s 0.275s Vectorized

(Body) c.

3 -[loop in main at mmult serial.cpp:79] 0.205s 0.205s Vectorized

(Body) ooo

7 -[loop in main at mmult serial.cpp:79] 0.015s 0.015s
Peeled 50

11 -[loop in main at mmult serial.cpp:79] Os Os Remainder vectorization
possible but seems inefficient ...

4 [loop in main at mmult serial.cpp:79] 0.510s 0.015s Scalar inner loop was
already vectorized e

12 [loop in main at mmult serial.cpp:79] 0.510s Os Scalar Versions 1 inner loop
was already vectorized e

5 -[loop in main at mmult serial.cpp:79] 0.510s Os Scalar inner loop was

already vectorized

The result is also saved into a text file advisor-survey. txt located at . /advi results/eNNN/hsNNN.

62

Intel® Advisor User Guide 1

You can generate a report for any analysis you run. The generic report command looks as follows:
advisor --report=<analysis-type> --project-dir=<project-dir> --format=<format>
where:

e <analysis-type> is the analysis you want to generate the results for. For example, survey for the Survey
report, top-down for the Survey report in a top-down view, map for the Memory Access Patterns, or
dependencies for the Dependencies report.

e -——format=<format> is a file format to save the results to. <format> is text (default), csv, xml.

You can also generate a report with the data from all analyses run and save it to a CSV file with the --
report=joined action as follows:

advisor --report=joined --report-output=<path-to-csv>

where —-report-output=<path-to-csv> is a path and a name for a . csv file to save the report to. For
example, /home/report.csv. This option is required to generate a joined report.

See advisor Command Line Interface Reference for more options.

View Result in GUI

If you run the Vectorization and Code Insights perspective from command line, a project is created
automatically in the directory specified with --project-dir. All the collected results and analysis
configurations are stored in the .advixeproj project, that you can view in the Intel Advisor.

To open the project in GUI, you can run the following command:

advisor-gui <project-dir>

NOTE If the report does not open, click Show Result on the Welcome pane.

If you run the Vectorization and Code Insights perspective from GUI, the result is opened automatically after
the collection finishes.

You first see a Vectorization Summary report that includes the overall information about vectorized and not
vectorized loops/functions in your code and the vectorization efficiency, including:

e Performance metrics of your program and the speedup for the vectorized loops/functions
e Top five time-consuming loops and top five optimization recommendations with the highest confidence

63

1 Intel® Advisor User Guide

@ Vectorization And Code Insights

Vectorization and Code Insights perspective lets you idenfify loops that will benefit most from vector parallelism, discover performance issues preventing from effective vectorization

~ Program Metrics

Elapsed Time 3188

= GFLOPS 520
Vector Instruction Set AVX2, AVX, SSE GFLOP Count 16.545
Number of CPU Threads 1 FP Arthmetic Intensity 0270
» GINTOPS 176

~ Performance Characteristics

Metrics Total
Total CPU time 2.88s
Time in 3 vectorized loops 223s
Time in scalar code 0653
~ Vectorization Gain/Efficiency
Vectorized Loops Gain/Efficiency =~ 2.03x [ISASg
Program Approximate Gain 1.80%

> OP/S And Bandwidth

> Per Program Recommendations

v Top Time-Consuming Loops

Loop Self Time' Total Time! Trip Counts'
loop in matvec at Multiphy c:82 0.880s 0.880s 57
loop in matvec at Multiphy c: 08225 0.822s 1.3

S loop in matvec at Multiphy.c:49 0.621s 2.856s 47
loop in matvec at Multiphy c:60 0533s 0.533s 7.5

3 loop in main at Driver.c.155 0.008s 2.884s 1000000

~

Refinement Analysis Data

v Recommendations

Force vectorized remainder loop in matvec at Multiply.c-8:
Add data padding loop in matvec at Multiphy.c:82

Force vectorized remainder loop in matvec at Multiply.c-69
Add data padding loop in matvec at Multiph.c:89

Force vectorized remainder loop in matvec at Multiply.c:60

o

Save a Read-only Snapshot

A snapshot is a read-only copy of a project result, which you can view at any time using the Intel Advisor
GUI. You can save a snapshot for a project using Intel Advisor GUI or CLI.

To save an active project result as a read-only snapshot from GUI: Click the button in the top ribbon
of the report. In the Create a Result Snapshot dialog box, enter the snapshot details and save it.

To save an active project result as a read-only snapshot from CLI:

advisor --snapshot --project-dir=<project-dir>
<snapshot-path>

[--cache-sources] [--cache-binaries] --

where:
e -—cache-sources is an option to add application source code to the snapshot.
e -—-cache-binaries is an option to add application binaries to the snapshot.

e <snapshot-path is a path and a name for the snapshot. For example, if you specify /tmp/new snapshot,
a snapshot is saved in a tmp directory as new_snapshot.advixeexpz. You can skip this and save the
snapshot to a current directory as snapshotXXX.advixeexpz.

To open the result snapshot in the Intel Advisor GUI, you can run the following command:

advisor-gui <snapshot-path>

You can visually compare the saved snapshot against the current active result or other snapshot results.

64

Vector Efficiency
e
[L —

I

Intel® Advisor User Guide

1

See Create a Read-only Result Snapshot for details.

Result Interpretation

When you run the Vectorization and Code Insights perspective, depending on a configuration chosen, the

report can show different levels of details:

e Examine Not-Vectorized and Under-Vectorized Loops

e Analyze Loop Call Count

e Investigate Memory Usage and Traffic

e Find Data Dependencies

For a general overview of the report, see Vectorization Report Overview.

See Also

Run Vectorization and Code Insights Perspective from GUI

Run Vectorization and Code Insights Perspective from Command Line
CPU Metrics This reference section describes the contents of data columns in Survey and
Refinement Reports of the Vectorization and Code Insights, CPU / Memory Roofline Insights,
and Threading perspectives.

Vectorization Report Overview

Review the controls available in the main report of the
Vectorization and Code Insights perspective of the

Intel® Advisor.

1 2
W | Elpacd e 255 [RRETIERRYY IETETTONNR) - | FUTER| & Lo - |

] Somemary i terons & Rociirs |9) Aafinmmant Rapori=

#7 oop n mukbeec o Multiply ctd] |

= Function Call e sndioops | (804 | ¥ i

Cugure F efiemmiae
Gain [rtimaby | VL {¥nchon Lany 8 it GILORS. Totsl GFL
AT TH 1T
[ET] M
MASE T8

Sull B
[+

There are many controls available to help you focus on the data most important to you, including the

following:

1 Click the control to save a read-only result snapshot you can view any time.

Intel Advisor stores only the most recent analysis result. Visually comparing one or more snapshots

to each other or to the most recent analysis result can be an effective way to judge performance

improvement progress.

To open a snapshot, choose File > Open > Resulit...

2 Click the various Filter controls to temporarily limit displayed data based on your criteria.

3 Click the control to view loops in nhon-executed code paths for various instruction set architectures
(ISAs). Prerequisites:

e Compile the target application for multiple code paths using the Intel compiler.

65

1

Intel® Advisor User Guide

4

10

66

e Enable the Analyze loops in not executed code path checkbox in Project Properties >
Analysis Target > Survey Hotspots Analysis.

This toggle control currently combines two features: The View
Configurator and the Smart Mode filter.

* View Configurator - Toggle on the Customize View control to
choose the view layout to display: Default, Smart Mode, or a
customized view layout. To create a customized view layout you can
apply to this and other projects:

1Click the Settings control next to the View Layout drop-down list to
open the Configure Columns dialog box.

2Choose an existing view layout in the Configuration drop-down list.

3Enable/disable columns to show/hide.

Outcome: Copy n is added to the name of the selected view layout in
the Configuration drop-down list.

4Click the Rename button and supply an appropriate name for the
customized view layout.

B5Click OK to save the customized view layout.

* Smart Mode Filter - Toggle on the Customize View control to
temporarily limit displayed data to the top potential candidates for
optimization based on Total CPU Time (the time your application
spends actively executing a function/loop and its callees). In the Top
drop-down list, choose one of the following:

e The Number of top loops/functions to display
e The Percent of Total CPU Time the displayed loops/functions
must equal or exceed

Click the button to search for specific data.
Click the tab to open various Intel Advisor reports or views.

Right-click a column header to:

* Hide the associated report column.
e Resume showing all available report columns.
¢ Open the Configure Columns dialog box (see #4 for more information).

Click the toggle to show all available columns in a column set, and resume showing a limited humber
of preset columns in a column set.

Click the control to:

e Show options for customizing data in a column or column set.
* Open the Configure Columns dialog box (see #4 for more information).

For example, click the control in the Compute Performance column set to:

e Show data for floating-point operations only, for integer operations only, or for the sum of
floating-point and integer operations.
e Determine what is counted as an integer operation in integer calculations:

e Choose Show Pure Compute Integer Operations to count only ADD, MUL, IDIV, and SUB
operations.

e Choose Show All Operations Processing Integer Data to count ADD, ADC, SUB, MUL,
IMUL, DIV, ID1V, INC/DEC, shift, and rotate operations.

Click the control to show/hide a chart that helps you visualize actual performance against hardware-
imposed performance ceilings, as well as determine the main limiting factor (memory bandwidth or
compute capacity), thereby providing an ideal roadmap of potential optimization steps.

Intel® Advisor User Guide 1

11

12
13

14

15

Click a data row in the top of the Survey Report to display more data specific to that row in the
bottom of the Survey Report. Double-click a loop data row to display a Survey Source window. To
more easily identify data rows of interest:

° = Vectorized function

* = Vectorized loop

* f = Scalar function

* O = Scalar loop

Click a checkbox to mark a loop for deeper analysis.

If present, click the image to display code-specific how-can-I-fix-this-issue? information in the
Recommendations pane.

If present, click the image to view the reason automatic compiler vectorization failed in the Why No
Vectorization? pane.

Click the control to show/hide the Workflow pane.

Examine Not-Vectorized and Under-Vectorized Loops

Accuracy Level

Low

Enabled Analyses

Survey

Result Interpretation

After running the Vectorization and Code Insights perspective with Low accuracy, you get a basic
vectorization report, which shows not-vectorized and under-vectorized loops, and other performance issues.

In the Survey report:

1.

Sort by the Self-Time and/or Total-Time column to find top time-consuming loops.

Self Timew

0,291 [IRISEE

0,281 0D
0,266< BB

Check whether your target loop or function is vector or scalar. Intel Advisor helps you to differentiate
vector and scalar using the following icons:

- vectorized function
vectorized loop
* { - scalar function

- scalar loop

Use filters to hide the code sides that you do not want to tweak now: and

" Mot Vectorized

Decide what loops or functions to investigate:

e If loop/function is scalar
e If loop/function is vectorized

67

1 Intel® Advisor User Guide

If Loop/Function is Scalar

If the target loop/function is scalar (' or f), you need to understand why the compiler did not vectorize the

loop/function.

Several reasons are possible:

NOTE

See OpenMP* Pragmas Summary in the Intel® oneAPI DPC++/C++ Compiler Developer Guide and
Reference for more information about the directives mentioned below.

Possible Reason

To Confirm

To Do

Assumed dependency

Function call in the loop

Compiler-assumed inefficient
vectorization

Other

Refer to Why No Vectorization?
column. Search for Vector
dependence prevents
vectorization issue.

Refer to Why No Vectorization?
column. Search for issues:

e Function call present

e Indirect function call present

e Serialized user function call
present

Refer to Why No Vectorization?
column. Search for the Loop
vectorization possible but seems
inefficient issue.

Refer to

¢ Why No Vectorization?
column
e Vector Issues column

Run the Dependencies analysis.

« If no dependencies are found,
force vectorization with the
omp simd directive or provide
other vectorization
recommendations to compiler.

« If dependencies are
confirmed, resolve them, or
move to the next loop.

For issue: Function call present,
do one of the following:

¢ Inline function into the loop.
¢ \ectorize the function with the
omp declare simd directive.

For issues Indirect function call
present or Serialized user
function call present, refer to
guidelines in the
Recommendations tab.

Try forcing vectorization with the
omp simd directive.

If forcing vectorization doesn't
provide tangible results, consider
experimenting with other
directives.

To better understand
performance implications and
potential speed-up, consider
running additional analyses:

e Trip Counts
¢ Memory Access Patterns

Study the Compiler Diagnostic
Details and Advisor
Recommendations to resolve the
issues.

68

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html

Intel® Advisor User Guide 1

If Loop/Function is Vectorized

If the target loop is vectorized (

), ensure vector efficiency is above 90%.

If efficiency is below 90%, consider the following:

Possible Reason

To Confirm

To Do

ISA

Inefficient peel/remainder

Possible inefficient memory
access

Type conversions present

Unaligned vector access in loop

Register pressure

Potential underutilization of FMA
instructions

Other

Refer to Vectorized Loops/
Vector ISA column to check the
ISA version used in the
application.

Refer to Vector Issues column.
Search for the Inefficient Peel/
Reminder issue. Or check if the
time spent in peel/reminder is
significant.

Refer to Vector Issues column.
Search for the Possible Inefficient
Memory Access issue.

Refer to Instruction Set
Analysis/Traits column. Search
for the following traits:

e extracts
e inserts
e gather
e scatter

Refer to Instruction Set
Analysis/Traits column. Search
for the Type Conversions metric.

Refer to Advanced/
Vectorization Details column.
Search for the Unaligned access
in vector loop metric.

Refer to Vector Issues column.
Search for the Vector register
spilling possible issue.

Refer to Vector Issues column.
Search for the Potential
underutilization of FMA
instructions issue.

Refer to Vector Issues column.

Change the target ISA by
specifying corresponding
compiler flags.

Resolve the issues:

¢ Check Recommendations
tab.
¢ Run the Trip Counts analysis.

Run the Memory Access Patterns
analysis.

Remove redundant type
conversions from float to double
that might lead to smaller vector
length and reduced vectorization
efficiency.

Align data.

Resolve the issue by doing one of
the following:

¢ Decrease loop unroll factor.
e Split the loop into smaller
parts.

Resolve the issue by doing one of
the following:

¢ Change the target ISA.
¢ Explicitly enable FMA
generation and vectorization.

Follow the Intel Advisor
recommendations to resolve the
issues.

69

1 Intel® Advisor User Guide

Next Steps

e Investigate Memory Usage and Traffic
e Find Data Dependencies

Analyze Loop Call Count

Accuracy Level

Medium

Enabled Analyses
Survey + Trip Counts (Characterization)

NOTE Collecting additional data may substantially increase report generation time. There is a variety
of techniques available to minimize data collection, result size, and execution time. Check Minimize
Analysis Overhead.

Result Interpretation

After you run the Vectorization and Code Insights perspective with medium accuracy and Trip Counts
collection enabled, Intel® Advisor dynamically identifies the humber of times loops are invoked and execute
and extends the basic vectorization report with the Trip Counts data. Use Trip Counts data to analyze
parallelism granularity more deeply and fine-tune vector efficiency and capability.

Trip Counts
[=] Function Call Sites and Loops i i -
o | Average Min Max Call Count | Iteration D...| Loop Instance Total Time
_ [loop in main at Driver.c:171] 6 6 6 AT000000 < 0.001s < 0.001s
3| [loop in main at Driver.c:164] B B] 47000000 < 0.001s < 0.001s
=|t0 [loop in main at Driver.c:158] 47 47 47 1000000 < 0.001s < 0.001s
x| f main 1 0.763s
2|t5 [loop in main at Driver.c:135] 1000000 1000000 1000000 1 < 0.001s 0.763s

By default, the Trip Counts column shows only Average and Call Count metrics. Look for the following to
find good candidates for optimization:

e Detect loops with too-small trip counts and trip counts that are not a multiple of vector length.

¢ A high number in the Call Count column means there is an outer loop in the selected loop call chain with
high trip count values.

e If the loop has a low trip count value, the outer loop could be a better candidate for parallelization
(threading/vectorization).

To optimize such loops, follow the Intel® Advisor Recommendations for the loop/function, for example, use
specific recommended pragmas to provide the information about loop trip counts to a compiler.

Next Steps

For further investigation, you can run the Vectorization and Code Insights perspective with a higher accuracy
level or with different configurations:

e Examine Not-Vectorized and Under-Vectorized Loops
e Investigate Memory Usage and Traffic
e Find Data Dependencies

70

Intel® Advisor User Guide 1

Investigate Memory Usage and Traffic
Accuracy Level
High

Enabled Analyses

Survey with register spill/fill analysis + Trip Counts, FLOP, Call Stacks (Characterization) + Memory Access
Patterns

NOTE Collecting additional data may substantially increase report generation time. There is a variety
of techniques available to minimize data collection, result size, and execution time. Check Minimize

Analysis Overhead.

Result Interpretation

After you run the Vectorization and Code Insights perspective with high accuracy and full Characterization
and Memory Access Patterns steps enabled, Intel® Advisor:

e Extends the Survey report with the Compute Performance and Memory metrics.
e Adds Memory Access Patterns data to the Refinement Report tab.

In the Survey report

1| Compute Performance 2

+| |=| Function Call Sites and Locps Memory ¥
L | Self GFLOPS Self Al Self GINTOPS Self INT Al Self Giga OPS Self Overall Al

4 [loop in main at Driver.c:171] 93850 0.444 2933 0.139 1231803 0.583 10.152

510 [loop in main at Driver.c:164] 36.732 1 0,373 4,59 0.047 41,323 T 0422 18.0438

40 [loop in main at Driver.c:158] 6.930@ 2375 1.084 @ 0.375 804 @ 2.750 0.376

u| f main 0.063 0.036 0.098 < 0,001

4/ [loop in main at Driver.c:155] 0.083 0.167 0.250 0.012

Use the FLOP data to analyze application memory usage and performance values that help you make better
decisions about your vectorization strategy.

Compute Performance column

You can configure this column to show only metrics for a specific type of operations used in your application.

Click the # control in the Compute Performance column set header and choose the desired drop-down

option to:

e Show data for floating-point operations only, for integer operations only, or for both floating-point and
integer operations.

e Determine what is counted as an integer operation in integer calculations:

e Choose Show Pure Compute Integer Operations to count only ADD, MUL, IDIV, and SUB

operations.
e Choose Show All Operations Processing Integer Data to count ADD, ADC, SUB, MUL, IMUL, D1V,

IDI1V, INC/DEC, shift, and rotate operations.

Select a specific loop/function to see the details about FLOP and/or integer operation utilization in the Code
Analytics tab:

71

1 Intel® Advisor User Guide

Statistics for FLOP ~ @

And Data Transfers Self Total
. Per loop Per lteration Per Instance

GrLOP™ 6.77 2.40e-08 1.44e-07

GFLOPS "~ 3673

ar _ 0.38

Mask Utilization = -

1166~ 18.05 6.40e-08 3.84e-07

L16GbisY 97.95

Elapsed Time i 0.18s 6.53e-10s 3.92e-09s

Memory column

You can configure this column to show only metrics for one or more specific memory levels and specific types
of operations. Click the gear icon in the Memory column set header and choose the desired drop-down
option to determine which columns to display in the grid:

NOTE This data is only available if cache simulation is enabled. By default, Intel® Advisor collects only
L1 traffic, so you will not be able to select memory levels or loads/stores.

e Show data for L1, L2, L3, or DRAM memory metrics, or show a Customized Column Layout.
e Show data for memory load operations only, store operations only, or the sum of both.

You can choose to hide the current column, Show All Columns, or customize the columns displayed in the
grid by choosing Configure Column Layouts.

You can use the traffic and Al data reported in the Compute Performance and Memory columns to find the
best candidates to examine the memory usage for in the Memory Access Patterns tab. For example, bad
access pattern has stronger impact on loops/functions with higher Al value suggesting that you start with
optimizing their memory usage.

In the Refinement report

Important Before running the Memory Access Patterns analysis, select loops/functions from the &
column in the Survey report.

Get information about types of memory access in selected loops/functions, how you traverse your data, and
how it affects your vector efficiency and cache bandwidth usage by running the Memory Access Patterns
analysis.

Memory access patterns affect how data is loaded into and stored from the vector registers.

72

Intel® Advisor User Guide 1

Footprint Estimate
Site Location Loop-Carried Dependencies Strides Distribution Access Pattern - . . - - -
Max. Per-Instruction Addr. Range First Instance Site Footprint Simulated Memory Footprint
J[leep in main at Driver.c:... Mo Information Available 75% /0% /258 Mixed Strides SKB 10KE 0B 14
2 [loop in main at Driver.c:.., @ Raw: A waw2 Mo Information Available Mo Information Available Mo Information Available Mo Information Available Mo Information Available Ic
No Information Available | (EBTSG/TEE/IN | Mioed Stides |

156 #ifdef NOFUNCCALL

157 int i, j, 1, m, sumx;
153 for (i = 07 i < sizel; i++) {
158 bli] = 0;

160 fifdef ALIGNED

) [loop in main at Driver.c: ... @ No Dependencies Found No Information Available Mo Information Available Ne Information Available Mo Information Available Mo Information Available lc
[loep in main at Driver.c:... Mo Information Available 100% /0% / 0% All Unit Strides 160B 320B 0B lc
[loop in main at Driver.c: ... Mo Information Available 50% / 0%/ 30% Mixed Strides TKB TKB 0B Ic

Memony Access Patterns Report | Dependencies Report | &' Rec dati

D Stride Type Source Mested Function Variable references Max. Per-Instruction Addr. Range Modules Site Name Access Type
=Pl @ 6 Constant stride Driver.c: 165 a 9KE vec_samples.exe loop_site_2 Read

#P3 [} Gather stride Driver.c:172 9KB vec_samples.exe loop_site 2 Read

P& [H] Parallel site information Driver.c:158 vec_samples.exe loop_site_2

P14 @ 0 Uniform stride Driver.c:163 x 1928 vec_samples.exe loop_site 2 Read

P16 E@B 0 Uniform stride Driver.c:172 x 1928 vec_samples.exe loop_site_2 Read

=P @ Unit stride Driver.c:165 wr 1408 vec_samples.exe loop_site_2 Read

EP21 @ 1 Unit stride Driver.c:172 b 1848 vec_samples.exe loop_site 2 WWrite

To analyze how the data structure layout affects performance, pay attention to the following:

e Look for loops/functions that do not have "All Unit Strides" in the Access Pattern column to find
optimization candidates.

e Strides Distribution column reports the ratio of stride types for a selected loop/function and is color-
coded:

¢ Blue is unite/uniform stride, which means that the instruction access memory sequentially or within
the distance of one element.

e Yellow is constant stride, which means that the instructions access memory with the constant step of
more than one element.

e Raed is irregular stride, which means that the instructions access memory addresses that change by an
unpredictable number of elements from iteration to iteration.

For vectorization, unit stride is the preferred distribution. Your goal is to eliminate irregular strides and
minimize the constant stride to optimize memory usage.

¢ Click a loop in the top pane to see a detailed report for this loop below in the Memory Access Patterns
Report tab.

e Review details for each stride type that contributes to the loop/function with corresponding source
locations.
e Review the size of the strides, variables accessed, and source locations and modules.
e To optimize memory access patterns, follow the Intel® AdvisorRecommendations for specific loops/
functions.

In the Memory Analysis Patterns Report tab at the bottom of the Refinement Reportsdouble-click a line
to view the selected operation's source code.

Associated Memory Access Patterns Source window, from top left to bottom right:

¢ View Activation pane - Enable or disable views shown in the Source view.
e Source View pane - View source code of the selected loop/function.

e Assembly View pane - View assembly source of the selected loop/function.
e Details View pane - View details of the selected site.

Next Steps
e Run CPU / Memory Roofline Insights perspective to get a detailed view about your application
performance.

e Cookbook: Optimize Memory Access Patterns Using Loop Intercharge and Cache Blocking Technique

73

https://www.intel.com/content/www/us/en/develop/documentation/advisor-cookbook/top/optimize-memory-access-patterns-using-loop-interchange-and-cache-blocking-techniques.html

1 Intel® Advisor User Guide

Find Data Dependencies

Prerequisites

Collect Survey data and select loops for the analysis from the & column in the Survey report.

Accuracy Level

Custom

Enabled Analyses

Dependencies

NOTE Collecting Dependencies data may substantially increase report generation time. There are a
variety of techniques available to minimize data collection, result size, and execution time. Check
Minimize Analysis Overhead.

Result Interpretation

For safety purposes, compiler is often conservative when assuming data dependencies. The Dependencies
analysis checks for real data dependencies in loops the compiler did not vectorize because of assumed
dependencies and provides recommendations to help resolve the dependencies if detected.

NOTE The Dependencies analysis is not enabled in any of the accuracy presets by default. Select it
manually from the Analysis Workflow tab before executing the perspective.

Site Location Loop-Carried Dependencies Strides Distribution Access Pattern
(O [loop in main at Driver.c: ... No Information Available 5% /0% /250 Mixed Strides
= O [loop in main at Driver.c: ... @ RAW:1 A WAW:2 Mo Information Available Mo Infermation Available
153 S/atart timing the matrix mumltiply code
154 startTime = clock it():
155 for (k = 0;k < REPEATNTIMES;k++) |
156 #ifdef NOFUNCCALL
157 int i, j, 1, m, sumx;
(O [loop in main at Driver.c: ... Mo Information Available B7% /17%/ 17% Mixed Strides
<

Memory Access Patterns Report | Dependencies Report | %' Recommendations

0] & | Type Site Mame Sources Modules State
P B Parallel site information loop_site 77 Driver.c ver_samples.exe « Mot a problem
P5 @ Read after write dependency loop_site 77 Driver.c vec_samples.exe | Bk Mew
PE @ Write after write dependency loop_site 77 Driver.c vec_samples.exe B Mew
P7 @ Write after write dependency loop_site_77 Driver.c vec_samples.exe | Bk Mew

74

Intel® Advisor User Guide 1

Click a loop in the top pane to see a detailed report for each dependency found in this loop below in the
Dependencies Report tab.
Use the Dependencies Report to view each reported problem and its associated code locations.

e If no dependencies found, it is safe to force vectorization.

e For loops/functions with real dependencies, Intel Advisor reports dependency type and severity in the
Loop-Carried Dependency column in the top pane.

Use the Dependencies Source window to view the focus and related source code regions to help you

understand the cause of the reported problem.

Use the Code Locations window to view the focus and related source code regions to help you

understand the cause of the reported problem.

To learn about a reported problem, right-click its name in the Dependencies Report, Problems and

Messages pane and select What Should I Do Next?. This displays the help topic for that problem type

with recommendations on how to resolve the dependency.

Double-click a problem in the Dependencies Report, Problems and Messages pane to open the

Dependencies Source tab and examine the problem in more detail.

Dependencies Report Overview

In the Dependencies Report tab at the bottom of the Refinement Report, review the following panes:

Problems and Messages pane - Select the problems that you want to analyze by viewing their
associated observations.
Code Locations pane - View details about the code locations for the selected problem in the

Dependencies Report window. Icons identify the focus code location and related code location .
Filters pane - Filter contents of the report tab.

Associated Dependencies Source window, from top left to bottom right:

Focus Code Location pane - Use this pane to explore source code associated with focus code location in
the Dependencies Source window.

Focus Code Location Call Stack pane - Use this pane to select which source code appears in the Focus
Code Location pane in the Dependencies Source window.

Related Code Locations pane - Use this pane to explore source code associated with related code
locations (related to the focus code location) in the Dependencies Source window.

Related Code Location Call Stack pane - Use this pane to select which source code appears in the
Related Code Location pane.

Code Locations pane - Use this pane to view the details about the code location for the selected problem
in the Dependencies Report window.

Relationship Diagram pane - Use this pane to view the relationships among code locations for the
selected problem.

Next Steps

Dependencies Problem and Message Types Reference

Analyze CPU Roofline

Visualize actual performance against hardware-
imposed performance ceilings by running the CPU /
Memory Roofline Insights perspective. It helps you
determine the main limiting factor (memory
bandwidth or compute capacity) and provides an ideal
roadmap of potential optimization steps.

Use the Roofline chart to answer the following questions:

What is the maximum achievable performance with your current hardware resources?
Does your application work optimally on current hardware resources?
If not, what are the best candidates for optimization?

75

1 Intel® Advisor User Guide

e Is memory bandwidth or compute capacity limiting performance for each optimization candidate?

How It Works
The CPU / Memory Roofline Insights perspective includes the following steps:

1. Collect loop/function timings using the Survey analysis.
2. Collect floating-point and/or integer operations data, memory traffic data, and measure the hardware
limitations of your hardware using the FLOP analysis in the Characterization step.

At this step, Intel® Advisor collects:
e Compute operations (floating-point operations (FLOP) and integer operations (INTOP)):

e FLOP is calculated as a sum of the following classes of instructions multiplied by their iteration
count: FMA, ADD, SUB, DIV, DP, MUL, ATAN, FPREM, TAN, SIN, COS, SQRT, SUB, RCP, RSQRT,
EXP, VSCALE, MAX, MIN, ABS, IMUL, ID1V, FIDIVR, CMP, VREDUCE, VRND

e INTOP is calculated by default as a sum of the following classes of instructions multiplied by
their iteration count:ADD, ADC, SUB, MUL, IMUL, D1V, IDIV, INC/DEC, shifts, rotates.

e Memory traffic data that is calculated as a product of memory operations and the amount of bytes
in the register accessed by the function/loop. For memory traffic calculation, Intel Advisor counts the
following classes of memory instructions:

e scalar and vector MOV instructions
e GATHER/SCATTER instructions
e VBMI2 compress/expand instructions

NOTE This collection can take three to four times longer than the Survey analysis.

CPU Roofline Report

The Roofline chart plots an application's achieved performance and arithmetic intensity against the
hardware maximum achievable performance:

e Arithmetic intensity (x axis) - measured in number of floating-point operations (FLOPs) and/or integer
operations (INTOPs) per byte, based on the loop/function algorithm, transferred between CPU/VPU and
memory

e Performance (y axis) - measured in billions of floating-point operations per second (GFLOPS) and/or
billions of integer operations per second (GINTOPS)

76

1

Intel® Advisor User Guide

Summary &5 Survey & Roofline ™ Refinement Reports
x[Q ey v [Coes 1 9 «|[¥ Defaut FLOAT CARM (L1+NTS) « |[<: Compare « || # Guidance
100

SdOT49

INTEL ADVISOR BETA

DP Vector Add Peak: 30.63 GFLOPS

Scalar Add Peal

>
k- 7.57 GFLOPS

r
i iy
Compute bound
FLOP/Byte {Arithmetic Intensity)
T T T T T T T T T T T
0.001 . 0.01 X 01 1 10 100 1000 10000 1.00e+5 1.00e+6
Physical Cores: 4 @ App Threads' 1 © Self Elapsed Time: 2127 5 Total Elapsed Time: 2.685 5
Source | Top Down | Code Analytics | A bly | & Rec dati & Why No Vectorization?
Loop in main t sfrice.cop:99 Average Trip Counts: © 9000 () Data Transfers and Bandwidth
Self Total
2 6858 - Per Loop Per Instance Per lterafion Float Al
Scalar Total time) L1, GB 250 2.3%e-04 320008 0.09375
Roofling” @ 12,68 2073 230803 256e-07 00117245
2127s Mesmory Level CARM L3 68" 259 288e-04 320e-08 0093798
Self time DRAM, GB
= Intager Seaar A Peak @ 2.60 28804 321e08 0.0035060
= L LT Seif bancwidn, GBS Utiizstion, 5 _Herdwmsra
Mix Summa & o - S Sel incwidth, s lization, Peak, GBIs
» Memory 38% (405000000, 5) (D Lt 1218 - -
» Compute 23% (243000000, 3) (@ Lz 9743 -
Other 39% (405000000, 5) D L3 1218 -
DRAM 1220 -
CPU Total Time
331536e-08s | 0 00030s e
Per lteration | Per Instance ’ GFLOPS- 011 @
GINTOPS: 015

DRAM

CARNI (LT + HNT5)
255 G 2

2591 GB

INTOP/Byte (Arithemesc Iniereity)

0.016

This loop is mostly memory bound
The performance of the loop is bounded by the L2 bandwidth

You can switch to the Recommendations tab o see optimization
recommendafions in the Roofline Conclusions section

See Also
Run CPU / Memory Roofline Insights Perspective from GUI

Code Optimizations

Compiler: Intel{R) C++ Intel(R) 64 Compiler for applications
on Intel{R} 64,

Version: 19.0.0.117 Build 20180804
Vectorization/Optimization report by Compiler: no messages

Run CPU / Memory Roofline Insights Perspective from Command Line
CPU Roofline Report Overview Review the controls available in the main report of the CPU /

Memory Roofline Insights perspective of the Intel® Advisor.

Run CPU / Memory Roofline Insights Perspective from GUI

Prerequisite: In the graphical-user interface (GUI): Create a project and specify an analysis target and

target options.

To run the CPU / Memory Roofline Insights perspective from the GUI:

running

1. Configure the perspective and set analysis properties, depending on desired results:
e Select a collection accuracy level with analysis properties preset for a specific result:
e Low: Get the basic CPU Cache-Aware Roofline chart with self data metrics.
¢ Medium: Get the detailed Memory-Level Roofline chart with total data metrics and an additional
memory usage report.
e Select the analyses and properties manually to adjust the perspective flow to your needs. The

accuracy level is set to Custom.

77

1 Intel® Advisor User Guide

The higher accuracy value you choose, the higher runtime overhead is added to your application. The
Overhead indicator shows the overhead for the selected configuration. For the Custom accuracy, the
overhead is calculated automatically for the selected analyses and properties.

By default, accuracy is set to Low. For more information, see CPU Roofline Accuracy Presets.
2. Optional: If you want check for loop-carried dependency, select the Dependencies analysis. For more
information about the Dependencies analysis and report, see Find Data Dependencies.

> >
Run the perspective: click button.

While the perspective is running, you can do the following in the Analysis Workflow tab:
e Control the perspective execution:
[]

Stop data collection and see the already collected data: Click the E button.

Pause data collection: Click the m button.

Cancel data collection and discard the collected data: Click the “ button.
Expand an analysis with - to control the analysis execution:

Pause the analysis: Click the |I| button.

* Stop the currently running analysis and start the next analysis selected: Click the E button.

* Interrupt execution of all selected analyses and see the already collected data: Click the
button.

To run the CPU / Memory Roofline Insights perspective with the Low accuracy from the command
line interface:

advisor --collect=roofline --project-dir=./advi results -- ./myApplication

See Run CPU / Memory Roofline Insights from Command Line for details.

NOTE To generate command lines for selected perspective configuration, click the Command
Line button.

Once the CPU / Memory Roofline Insights perspective collects data, the report opens showing a Summary
tab. Continue to investigate the results:

e Examine Bottlenecks on CPU Roofline Chart
¢ Examine Relationships Between Memory Levels

NOTE After you run the CPU / Memory Roofline Insights perspective, the collected Survey data
becomes available for all other perspectives. If you switch to another perspective, you can skip the
Survey step and run only perspective-specific analyses.

CPU Roofline Accuracy Presets

For each perspective, Intel® Advisor has several levels
of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is
collected and the level of collection details. The higher
accuracy value you choose, the higher runtime
overhead is added.

The following accuracy levels are available:

78

1

Intel® Advisor User Guide

cache

Comparison / Accuracy Level Low Medium

Overhead 5-10x 15 - 50x

Goal Analyze how well your application Analyze how well your application

uses memory and compute uses CPU memory at different
resources of a CPU and cache levels in more details
determine the main limiting

factor (memory bandwidth or

compute capacity)

Analyses Survey + Characterization (FLOP) Survey + Characterization (Trip
Counts and FLOP with call stacks
for all memory levels) + Memory
Access Patterns

Result Cache-aware CPU Roofline for L1 Memory-level CPU Roofline with

call stacks (for L1, L2, L3, DRAM)

Memory Access Patterns

You can choose custom accuracy and set a custom perspective flow for your application. For more

information, see Customize CPU / Memory Roofline Insights Perspective.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

Customize CPU / Memory Roofline Insights Perspective
Customize the perspective flow to better fit your goal

and your application.

If you change any of the analysis settings from the Analysis Workflow tab, the accuracy level changes to
Custom automatically. With this accuracy level, you can customize the perspective flow and/or analysis

properties.

To change the properties of a specific analysis:

1.

2. Select desired settings.
3.

box open for the selected analysis.
4. Select desired properties and click OK.

Expand the analysis details on the Analysis Workflow pane with -

For more detailed customization, click the gear icon. You will see the Project Properties dialog

For a full set of available properties, click the icon on the left-side pane or go to File > Project

Properties.

The following tables cover project properties applicable to the analyses in the CPU / Memory Roofline Insights

perspective.

Common Properties

Use This

To Do This

Target type drop-down

Analyze an executable or script (choose Launch Application).
Analyze a process (choose Attach to Process).

79

1 Intel® Advisor User Guide

Use This

To Do This

If you choose Attach to Process, you can either inherit settings from
the Survey Hotspots Analysis Type or specify the needed settings.

Inherit settings from
Visual Studio project
checkbox and field (Visual
Studio* IDE only)

Inherit Intel Advisor project properties from the Visual Studio* startup
project (enable).

If enabled, the Application, Application parameters, and Working
directory fields are pre-filled and cannot be modified.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the
Intel® oneAPI 2022.1 release, and will be removed in a future release.

Application field and
Browse... button

Select an analysis target executable or script.

If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application
parameters field and
Modify... button

Specify runtime arguments to use when performing analysis (equivalent
to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment
variables field and Modify...
button

Specify environment variables to use during analysis.

Managed code profiling
mode drop-down

e Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

e Collect data for native code and do not attribute data to managed
code (choose Native).

¢ Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

e Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

Child application field

Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

80

Intel® Advisor User Guide 1

Use This

To Do This

NOTE

For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

* Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

e Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

Use MPI launcher checkbox

Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

¢ Select MPI Launcher - Intel or another vendor
¢ Number of ranks - Number of instances of the application
+ Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis Properties

Use This

To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip

The corresponding CLI action option is -—resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector

Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

81

1 Intel® Advisor User Guide

Use This

To Do This

Callstack unwinding mode
drop-down list

Set to After collection if:

e Survey analysis runtime overhead exceeds 1.1x.

¢ A large quantity of data is allocated on the stack, which is a common
case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox

Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE

Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
—ax (Linux* 0OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
list

e Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

+ Keep source code cache within the project (choose Keep cached
files).

82

Intel® Advisor User Guide 1

Trip Counts and FLOP Analysis Properties

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is ——resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Trip Counts / Collect
information about Loop
Trip Counts checkbox

Measure loop invocation and execution (enable).

FLOP / Collect information
about FLOP, L1 memory
traffic, and AVX-512 mask
usage checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Callstacks / Collect
callstacks checkbox

Collect call stack information when performing analysis (enable).

Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Capture metrics for
stripped binaries checkbox

Collect metrics for stripped binaries.

Enabling could increase analysis overhead.

Cache Simulation / Enable
Memory-Level Roofline
with cache simulation
checkbox

Model multiple levels of cache for data, such as counts of loaded or
stored bytes for each loop, to plot the Roofline chart for all memory levels
(enable).

Enabling could increase analysis overhead.

Cache simulator
configuration field

Specify a cache hierarchy configuration to model (enable and specify
hierarchy).

The hierarchy configuration template is:

[num_of_levell_caches]:[num_of_ways_levell_connected]:
[levell_cache_size]:[levell_cacheline_size]/

[num_of _level2_caches]:[num_of_ways_level2_connected]:
[level2_cache_size]:[level2_cacheline_size]/

[num_of_level3_caches]:[num_of_ways_level3_connected]:
[level3_cache_size]:[level3_cacheline_size]

For example: 4:8w:32k:641/4:4w:256k:641/1:16w:6m:64l is the
hierarchy configuration for:

e Four eight-way 32-KB level 1 caches with line size of 64 bytes
e Four four-way 256-KB level 2 caches with line size of 64 bytes
¢ One sixteen-way 6-MB level 3 cache with line size of 64 bytes

83

1 Intel® Advisor User Guide

Use This To Do This

Data Transfer Simulation / | Select a level of details for data transfer simulation:
Data transfer simulation

e Off - Disable data transfer simulation analysis.
mode drop-down

* Light - Model data transfers between host and device memory.
* Full - Model data transfers, attribute memory objects to loops that
accessed the objects, and track accesses to stack memory.

Run CPU / Memory Roofline Insights Perspective from Command Line
To plot a Roofline chart, the Intel® Advisor does the following:

1. Collect OpenCL™ kernels timings and memory data using the Survey analysis with GPU profiling.
2. Measure the hardware limitations and collect floating-point and integer operations data using the
Characterization analysis with GPU profiling.

Intel® Advisor calculates compute operations (FLOP and INTOP) as a weighted sum of the following
groups of instructions: BASIC COMPUTE, FMA, BIT, DIV, POW, MATH.

Intel Advisor automatically determines data type in the collected operations using the dst register.

Tip See Intel Advisor cheat sheet for quick reference on command line interface.

Prerequisites

Set Intel Advisor environment variables with an automated script to enable the advisor command line
interface (CLI).

Plot a CPU Roofline Chart
There are two methods to run the CPU Roofline. Use one of the following:

e Run the shortcut —--collect=roofline command line action to execute the Survey and Characterization
analyses with a single command. This method is recommended to run the CPU / Memory Roofline Insights
perspective, but it does not support MPI applications.

e Run the Survey and Characterization analyses with the —-collect=survey and --collect=tripcounts
command actions separately one by one. This method is recommended if you want to analyze an MPI
application.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Method 1. Run the Shortcut Command
To collect data for a CPU Roofline chart with a shortcut, run the following command:
advisor --collect=roofline --project-dir=./advi results -- ./myApplication

This command collects data for a basic CPU Roofline chart based on the Cache-Aware Roofline model. You
can add other option to the command to collect more data. See Analysis Details below for more options.

Method 2. Run the Analyses Separately
Use this method if you want to analyze an MPI application.
1. Run the Survey analysis.

advisor --collect=survey --project-dir=./advi results -- ./myApplication

84

https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-cheat-sheet.pdf

Intel® Advisor User Guide 1

2. Run the Characterization analysis to collect trip counts and FLOP data:
advisor --collect=tripcounts --flop --project-dir=./advi results -- ./myApplication

These commands collect data for a basic CPU Roofline chart based on the Cache-Aware Roofline model. You
can add other option to the command to collect more data. See Analysis Details below for more options.

You can view the results in the Intel Advisor graphical user interface (GUI), or generate an interactive HTML
report. See View the Results below for details.

Analysis Details
The CPU / Memory Roofline Insights workflow includes the following analyses:

1. Roofline to plot a Roofline chart. This step sequentially runs the Survey and Characterization (trip
counts and FLOP) analyses.

2. Memory Access Patterns (optional) to identify memory traffic data and memory usage issues.

3. Dependencies (optional) to identify loop-carried dependencies that might limit offloading.

Each analysis has a set of additional options that modify its behavior and collect additional performance data.
The more analyses you run and option you use, the more useful data about your application you get.

Consider the following options:
Roofline Options

To run the Roofline analysis, use the following command line action: --collect=roofline.

NOTE You can also use this options with --collect=tripcounts if you want to run the analyses
separately.

Recommended action options:

Options Description

--stacks Enable advanced collection of call stack data. Use
this option to get a CPU Roofline with callstacks.

--enable-cache-simulation Model CPU cache behavior on your target
application. Use this option to get a Memory-level
CPU Roofline that shows data for all memory levels.

--cache-config=<config> Set the cache hierarchy to collect modeling data for
CPU cache behavior. Use with
enable-cache-simulation.

The value should follow the template:
[<num_of_caches>]:
[<num_of_ways_caches_connected>]:
[<cache_size>]:[<cacheline_size>] for each of
three cache levels separated with a /.

--cachesim-associativity=<num> Set the cache associativity for modeling CPU cache
behavior: 1 | 2 | 4 | 8 (default) | 16. Use with
enable-cache-simulation.

--cachesim-mode=<mode> Set the focus for modeling CPU cache behavior:
cache-misses | footprint | utilization. Use
with enable-cache-simulation.

See advisor Command Option Reference for more options.

85

1 Intel® Advisor User Guide

Memory Access Patterns Options

The Memory Access Patterns analysis is optional because it adds a high overhead. This analysis does not add
more information to the CPU Roofline chart. The results are added to the Refinement report, which you can
view from GUI or from CLI. Use it to understand the Memory-Level Roofline chart better and get more
detailed optimization recommendations.

To run the Memory Access Patterns analysis, use the following command line action: --collect=map.

Recommended action options:

Options Description

--select=<string> Select loops for the analysis by loop IDs, source
locations, or criteria such as scalar, has-issue,
or markup=<markup-mode>. This option is
required.

See select for more selection options.

--enable-cache-simulation Model CPU cache behavior on your target
application.
--cachesim-cacheline-size=<num> Set the cache line size (in bytes) for modeling CPU

cache behavior: 4 | 8| 16 | 32 | 64 (default) | 128
| 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 |
32768 | 65536. Use with
enable-cache-simulation.

--cachesim-sets=<num> Set the cache set size (in bytes) for modeling CPU
cache behavior: 256 | 512 | 1024 | 2048 | 4096
(default) | 8192. Use with
enable-cache-simulation.

See advisor Command Option Reference for more options.
Dependencies Options

The Dependencies analysis is optional because it adds a high overhead and is mostly necessary if you have
scalar loops/functions in your application. This analysis does not add more information to the CPU Roofline
chart. The results are added to the Refinement report, which you can view from GUI or from CLI. Use it to
get more detailed optimization recommendations.

To run the Dependencies analysis, use the following command line action: --collect=dependencies.

Recommended action options:

Options Description

--select=<string> Select loops for the analysis by loop IDs, source
locations, criteria such as scalar, has-issue, or
markup=<markup-mode>. This option is required.

See select for more selection options.

--filter-reductions Mark all potential reductions with a specific
diagnostic.

See advisor Command Option Reference for more options.

86

Intel® Advisor User Guide 1

Next Steps

Continue to explore the CPU / Memory Roofline Insights results with a preferred method. For details about
the metrics reported, see CPU and Memory Metrics.

See Also

CPU / Memory Roofline Insights Perspective Visualize actual performance against hardware-
imposed performance ceilings by running the CPU / Memory Roofline Insights perspective. It helps
you determine the main limiting factor (memory bandwidth or compute capacity) and provides an
ideal roadmap of potential optimization steps.

Command Line Interface This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.

Minimize Analysis Overhead

Analyze MPI Applications With Intel® Advisor, you can analyze parallel tasks running on a cluster
to examine performance of your MPI application.

CPU Roofline Accuracy Levels in Command Line

For each perspective, Intel® Advisor has several levels of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is collected and the level of collection details. The higher
accuracy value you choose, the higher runtime overhead is added.

In CLI, each accuracy level corresponds to a set of commands with specific options that you should run one
by one to get a desired result.

The following accuracy levels are available:

Comparison / Accuracy Level Low Medium

Overhead 5-10x 15 - 50x

Goal Analyze how well your application Analyze how well your application
uses memory and compute uses CPU memory at different
resources of a CPU and cache levels in more details

determine the main limiting
factor (memory bandwidth or
compute capacity)

Analyses Survey + Characterization (FLOP) Survey + Characterization (Trip
Counts and FLOP with call stacks
for all memory levels) + Memory
Access Patterns

Result Cache-aware CPU Roofline for L1 Memory-level CPU Roofline with
cache call stacks (for L1, L2, L3, DRAM)

Memory Access Patterns

You can generate commands for a desired accuracy level from the Intel Advisor GUI. See Generate Command
Lines from GUI for details.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

Consider the following command examples.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

87

1 Intel® Advisor User Guide

Low Accuracy
To run the CPU / Memory Roofline Insights perspective with the low accuracy:

advisor --collect=roofline --project-dir=./advi results -- ./myApplication

Medium Accuracy
To run the CPU / Memory Roofline Insights perspective with the medium accuracy:

1. Generate the Memory-level Roofline report with call stacks:

advisor --collect=roofline --stacks --enable-data-transfer-analysis --project-dir=./advi results
-- ./myApplication
2. Run the Memory Access Pattern analysis for the loops that have the Possible Inefficient Memory Access
Pattern issue:

advisor --collect=map --select=has-issue --project-dir=./advi results -- ./myApplication

You can view the results in the Intel Advisor GUI or generate an interactive HTML report.

See Also

advisor Command Option Reference

Command Line Interface Reference This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

Run CPU / Memory Roofline Insights from Command Line

Minimize Analysis Overhead

Explore CPU/Memory Roofline Results

Intel® Advisor provides several ways to view the CPU / Memory Roofline Insights results.

View Results in GUI

If you run the CPU / Memory Roofline Insights perspective from command line, a project is created
automatically in the directory specified with --project-dir. All the collected results and analysis
configurations are stored in the .advixeproj project, which you can view in the Intel Advisor.

To open the project in GUI, run the following command:

advisor-gui <project-dir>

NOTE If the report does not open, click Show Result on the Welcome pane.

If you run the CPU / Memory Roofline Insights perspective from GUI, the result is opened automatically after
the collection finishes.

You will see the CPU Roofline report that includes:

e Roofline chart that plots an application's achieved performance and arithmetic intensity against the CPU
maximum achievable performance

e Additional information about your application in the Advanced View pane under the chart, including
source code, detailed code analytics for trip counts and FLOP/INTOP data, optimization recommendations,
and compiler diagnostics

Select a dot on the Roofline chart to see details for the selected loop in all tabs of the Advanced View
pane

88

Intel® Advisor User Guide 1

Surmmary % Survey & Roofline "7 Refinement Reports

¥ (& Some target modules are compiled with inline debug information disabled
Suggestion: rebuild the modules with the /debug:inline-debug-info option enabled.

x[Q ¢y v | Cores 1€ + || ¥ Default FLOAT ~ | [Compare

|?’. Guidance =

100

240040
'

DP Vector FMA Peak:

DF Vector Add Peak:

Scalar Add Peak

Bound by comput
0.1 Memory :."CL"C’. w and memory roo"3? Compute b
FLOP/Byte (2
T T T Z T T T T T T
0.04 0.07 01 04 [1 4 7 10
Physical Cores: 4 e App Threads: 1 8 gerf Elapsed Time: 0.880 s Total Elapsed Time: 0.880 s

Top Down Code Analytics Assembly % Recommendations & Why Mo Vectorization?
Line Source TDtE|TII'I'IE‘ % |Loop.-"Function Time| %
69 for (1 = 0:1 < size2; 1++) {
70 bli] += a[l][i] * =[1];
71
72 }
73 /* The following loop will not vectorize because of a reducticn dependency caused by the addition in sumx. *
74 /% By running survey you can see the "Assumed dependency™, select this loop in the survey and then run a dependency */
75 /Y analysis to verify that the dependency is real. Then you can apply the reduction clause by setting the REDUCTION v/
76 /% define. The compiler will then generate correctly vectorized code. Note: if you just specify a simd clause without*/
7 /% specifying the reduction then the code generated will not be correct. *y
78 #pragma nounrcll
79 #ifdef REDUCTION
20 #pragma omp simd reduction (+:sum:x)
a1 #endif
82 B for (k= 0:k < size2: kt+) | 578.363ms 879.928ms H

[6] [loop in matvec at Multiply.c:82]
Scalar remainder loop
No loop transformations applied
[loop in matvec at Multiply.c:82]
Vectorized AVE loop processes Float32 data type(s)
No loop transformations applied
[loop in matvec at Multiply.c:82]

Sralar neeled loon [nat_averntadl
Selected (Total Time): | 578.363ms
< >

View an Interactive HTML Report

Intel Advisor enables you to export an interactive HTML report for the CPU Roofline chart, which you can
open in your preferred browser and share.

When you open the report, you see the CPU Roofline chart with the selected configuration. In this report, you
can:

e Expand the Performance Metrics Summary drop-down to view the summary performance
characteristics for your application.

e Double-click a dot on the chart to see a roof ruler that point to exact roofs that bound the dot.

e Hover over a dot to see a detailed tooltip with performance metrics.

If you have a Memory-level Roofline report, you can also:

e Select memory levels to show dots for from the filter drop-down list on the chart.
e Double-click a dot on the chart to expand it for other memory levels and see roof rulers.

89

1 Intel® Advisor User Guide

Performance Metrics Summary v

[NY cores' 1 @+ | ¥ Default: FLOAT GARM (L1+NTS) v |[% Guidance v
o} v Point Info
é [loop in matvec at Multiply.c:60]
@ Scalar, processes Float32 data type(s)
1000 Performance: 3.937 GFLOPS

Bounded by: Scalar Add Peak
Self Time: 1.683 s
ol Self Elapsed Time: 1.683 s
= Total Time: 1.683 s
. Total Elapsed Time: 1.683 s
Self Memory Traffic: 35.344 GB
Total Memory Traffic: 35.344 GB

tor FIMA Peak: 111

100

2
DP Vector Add Peak: 28 34 GFLOPS

10+ 7 Scalar Add Peak: 6.98 GFLOPS

[loop in matvec at Multiply.c:60]
Scalar; processes Float32 data type(s)

Performance: 3.937 GFLOPS

CARM (L1 + NTS) Arithmetic Intensity” 0.187 FLOP/Byte
Bounded by: Scalar Add Peak £ Memory Metrics @
Self Time: 1.683 s
Self Elapsed Time- 1.683 s Impacts ©
Total Time: 1.683 s L1 «{_ 100%
Total Elapsed Time: 1.683 s
Self Memory Traffic: 35.344 GB
Total Memory Traffic: 35.344 GB L1 i_ 35.344GB

Shares &

L2

0.001 4

0.0001 {
1 "o

Compute bound?

FLOP/Byte (Arithmetic Intensity)

1.00e-5 0.0001 0.001 00 100 1000 10000 100e+5 1.00e+6 1.00e+7 1.00e+8

1 01" 1 10
Physical Cores: 4 ® App Threads: 1 © Self Elapsed Time: 1.683 s Total Elapsed Time: 1.683 s

For details on exporting HTML reports, see Work with Standalone HTML Reports.

Save a Read-only Snapshot

A snapshot is a read-only copy of a project result, which you can view at any time using the Intel Advisor
GUI. You can save a snhapshot for a project using Intel Advisor GUI or CLI.

=
To save an active project result as a read-only snapshot from GUI: Click the button in the top ribbon

of the report. In the Create a Result Snapshot dialog box, enter the snapshot details and save it.

To save an active project result as a read-only snapshot from CLI:

advisor --snapshot --project-dir=<project-dir> [--cache-sources] [--cache-binaries] --
<snapshot-path>

where:
e --—cache-sources is an option to add application source code to the snapshot.
e -—-cache-binaries is an option to add application binaries to the snapshot.

e <snapshot-path is a path and a name for the snapshot. For example, if you specify /tmp/new snapshot,
a snapshot is saved in a tmp directory as new_snapshot.advixeexpz. You can skip this and save the
snapshot to a current directory as snapshotXXX.advixeexpz.

To open the result snapshot in the Intel Advisor GUI, you can run the following command:
advisor-gui <snapshot-path>
You can visually compare the saved snapshot against the current active result or other snapshot results.

See Create a Read-only Result Snapshot for details.

Result Interpretation

When you run the CPU / Memory Roofline Insights perspective from GUI, depending on a configuration
chosen, the chart shows a different level of details:

e Examine Bottlenecks on CPU Roofline Chart
¢ Examine Relationships Between Memory Levels

90

CARM (L1 + NTS) Arithmetic Intensity: 0.187 FLOP/E

——47.T66GB

Intel® Advisor User Guide 1

For a general overview of the report, see CPU Roofline Report Overview.

See Also

Run CPU / Memory Roofline Insights Perspective from GUI

Run CPU / Memory Roofline Insights Perspective from Command Line

Compare CPU Roofline Results Use the Roofline Compare functionality to display Roofline chart
data from other Intel® Advisor results or non-archived snapshots for comparison purposes to track
optimization progress.

CPU Metrics This reference section describes the contents of data columns in Survey and
Refinement Reports of the Vectorization and Code Insights, CPU / Memory Roofline Insights,
and Threading perspectives.

CPU Roofline Report Overview

Review the controls available in the main report of the
CPU / Memory Roofline Insights perspective of the
Intel® Advisor.

Basic Roofline Chart (Low Accuracy)

There are several controls to help you focus on the Roofline chart data most important to you, including the
following.

h[Q oy v|[cores: 19 j|v FLOAT; No Callstacks + || ! Compare -]|/+ Guidance ~ 6
2 4 5

-

= ‘egtpr FMA Peak: 113.26 GFLOPS ™ Point Info
— - [loop in matvec at Multiply.c:82]
- Scalar; processes Fleat32 data type(s)
Performance: 2.422 GFLOPS
L1 Arithmetic Intensity: 0.167 FLOP/Byte
Self Time: 1.824 5
Self Elapsed Time: 1.824 5
Total Time: 1.824 5
Total Elapsed Time: 1.824 s
Self Memory Traffic: 26.508 GB

100

%)
L
=
=]
el
@«

70

40

S
Scalar Add Peak: 6.79 GFLOPS

- a | Cepy To Clipboard |

5 Memory Metrics

[loop in matvec at Multiply.c:82]

Scalar; processes Float32 data type(s)

Performance: 2.422 GFLOPS 10

L1 Arithmetic Intensity: 0.167 FLOP/Byte r

Self Time: 1.824 =

Self Elapsed Time: 1.824 s

Total Time: 1.824 s ; L

Total Elapsed Time: 1.824 5 FLOP/Eyte (Arthmetic intensity)

T 0.04 007 041 | Self Memory Traffic: 26.508 GB 4 7
Physical Cores: 4 ® App Threads: 1 ¥ Self Elapsed Time. 1.824 5 Total Elapsed Time: 1.824 5

1 ¢ Select Loops by Mouse Rect: Select one or more loops/functions by tracing a rectangle

with your mouse.

¢ Zoom by Mouse Rect: Zoom in and out by tracing a rectangle with your mouse. You can
also zoom in and out using your mouse wheel.

¢ Move View By Mouse: Move the chart left, right, up, and down.

¢ Undo or Redo: Undo or redo the previous zoom action.

e Cancel Zoom: Reset to the default zoom level.

 Export as x: Export the chart as a dynamic and interactive HTML or SVG file that does not
require the Intel Advisor viewer for display. Use the arrow to toggle between the options.

2 Use the Cores drop-down toolbar to:

¢ Adjust rooflines to see practical performance limits for your code on the host system.

91

1 Intel® Advisor User Guide

92

Build roofs for single-threaded applications (or for multi-threaded applications configured to
run single threaded, such as one thread-per-rank for MPI applications. (You can use Intel
Advisor filters to control the loops displayed in the Roofline chart; however, the Roofline
chart does not support the Threads filter.)

Choose the appropriate number of CPU cores to scale roof values up or down:

1 - if your code is single-threaded

Number of cores equal or close to the number of threads - if your code has fewer threads
than available CPU cores

Maximum number of cores - if your code has more threads than available CPU cores

By default, the number of cores is set to the number of threads used by the application (even
values only).

You'll see the following options if your code is running on a multisocket PC:

Choose Bind cores to 1 socket (default) if your application binds memory to one socket. For
example, choose this option for MPI applications structured as one rank per socket.

NOTE This option may be disabled if you choose a number of CPU cores exceeding the
maximum number of cores available on one socket.

Choose Spread cores between all n sockets if your application binds memory to all
sockets. For example, choose this option for non-MPI applications.

Toggle the display between floating-point (FLOP), integer (INT) operations, and mixed
operations (floating-point and integer).

If you collected Roofline with Calltacks: Enable the display of Roofline with Callstacks
additions to the Roofline chart.

Display Roofline chart data from other Intel Advisor results or non-archived snapshots for
comparison purposes.

Use the drop-down toolbar to:

Load a result/snapshot and display the corresponding filename in the Compared Results
region.

Clear a selected result/snapshot and move the corresponding filename to the Ready for
comparison region.

Note: Click a filename in the Ready for comparison region to reload the result/snapshot.
Save the comparison itself to a file.

NOTE The arrowed lines showing the relationship among loops/functions do not reappear if
you upload the comparison file.

Click a loop/function dot in the current result to show the relationship (arrowed lines) between it
and the corresponding loop/function dots in loaded results/snapshots.

Intel® Advisor User Guide 1

T+FLOAT: Mo Calsincis = || '[' 3 Compared Flesulls = | &D .
+
Cormpared reduli =

ﬂ. rooflee_demao_samplas novecios 02
{} rooline_demoe_samples pragma_gsamd 02
Blamdy for companson
resslonin_clarven_shimglan feogd
ressling_dema_eamples pragma_send 0F
teeline_dera_gamrgles der_change
rosoleng_derma_pamgdes novector O
» v roifsne_demo_sampdes pragma_semd
roeiferes_dermn_sampstes changsd_ s
resollanes_dermo_samgles 0F

-G

i
Ird Scaler Add Peaic: 363 GINTOFS

Add visual indicators to the Roofline chart to make the interpretation of data easier, including
performance limits and whether loops/functions are memory bound, compute bound, or both.

Use the drop-down toolbar to:

e Show a vertical line from a loop/function to the nearest and topmost performance ceilings by
enabling the Display roof rulers checkbox. To view the ruler, hover the cursor over a loop/
function. Where the line intersects with each roof, labels display hardware performance limits
for the loop/function.

e If you collected Roofline for All Memory Levels: Visually emphasize the relationships among
displayed memory levels and roofs and for a selected loop/function dot by enabling the Show
memory level relationships checkbox.

* Color the roofline zones to make it easier to see if enclosed loops/functions are fundamentally
memory bound, compute bound, or bound by compute and memory roofs by enabling the
Show Roofline boundaries checkbox.

The preview picture is updated as you select guidance options, allowing you to see how changes
will affect the Roofline chart’s appearance. Click Apply to apply your changes, or Default to
return the Roofline chart to its original appearance.

Once you have a loop/function's dots highlighted, you can zoom and fit the Roofline chart to the
dots for the selected loop/function by once again double-clicking the loop/function or pressing
SPACE or ENTER with the loop/function selected. Repeat this action to return to the original
Roofline chart view.

To hide the labeled dots, select another loop/function, or double-click an empty space in the
Roofline chart.

+ Roofline View Settings: Adjust the default scale setting to show:

e The optimal scale for each Roofline chart view
e A scale that accommodates all Roofline chart views
+ Roofs Settings: Change the visibility and appearance of roofline representations (lines):

93

1 Intel® Advisor User Guide

10

e Enable calculating roof values based on single-threaded benchmark results instead of
multi-threaded.

e C(Click a Visible checkbox to show/hide a roofline.

e C(Click a Selected checkbox to change roofline appearance: display a roofline as a solid or a

dashed line.
e Manually fine-tune roof values in the Value column to set hardware limits specific to your
code.

« Loop Weight Representation: Change the appearance of loop/function weight
representations (dots):

e Point Weight Calculation: Change the Base Value for a loop/function weight
calculation.

o Point Weight Ranges: Change the Size, Color, and weight Range (R) of a loop/
function dot. Click the + button to split a loop weight range in two. Click the - button to
merge a loop weight range with the range below.

* Point Colorization: color loop/function dots by weight ranges or by type (vectorized or
scalar). You can also change the color of loop with no self time.

You can save your Roofs Settings or Point Weight Representation configuration to a JSON file or
load a custom configuration.

Zoom in and out using numerical values.

Click a loop/function dot to:

¢ Qutline it in black.
¢ Display metrics for it.
¢ Display corresponding data in other window tabs.

Right-click a loop/function dot or a blank area in the Roofline chart to perform more functions,
such as:

e Further simplify the Roofline chart by filtering out (temporarily hiding a dot), filtering in
(temporarily hiding all other dots), and clearing filters (showing all originally displayed dots).
¢ Copy data to the clipboard.

Show/hide the metrics pane:

* Review the basic performance metrics in the Point Info pane.
e If you collected the Roofline for All Memory Levels: Review how efficiently the loop/function
uses cache and what memory level bounds the loop/function in the Memory Metrics pane.

Display the number and percentage of loops in each loop weight representation category.

94

Intel® Advisor User Guide

1

Roofline with Callstacks Chart (Medium Accuracy)

k(Q" 4 4 x (I, + [cores: 19 - |[¥ FLOAT, With Callstacks = |52 Compare ~ |[* Guidance ~ | =
05 a e e Ur veoon rlul—.‘r-"t::ﬂf SsenLrLUES v Callstack: 4
. =l - o
2 ® FLOAT INT INT+FLOAT eI () func@0x4b2e5692
@ T Galsiacks Rt CE LR R () Tunc@0xdb2es6ae
a6 GBI _ ° O BaseTnreadinitThunk
Bam.\\-“f“‘f"' = | With Callstacks (O _scri_common_main_seh at exe_comm. ..
i - 1 Defautt | [Apply | [Gancel T =" () main at Driver.c:133
. == ? O [loop in main at Driver.c:155]
7 = Add Peak T126FLOPS) matvec at Multiply.c:45
() Noop in matvec at Multiply.c:49]
4
3 « Point Info
L [loop in matvec at Multiply.c:49]
Scalar; processes Float32 data type(s)
- N Total Performance: 2.468 GFLOPS
[loop in matvec at Multiply.c:49] Total L1 Arithmetic Intensity: 0.17 FLOP/Byte
1 Scalar; processes Float32 data type(s) Seff Time: 0.096 ¢
Total Performance: 2.468 GFLOPS Self Elapsed Time: 0.096 s
07 Total L1 Arithmetic Intensity: 0.17 FLOP/Byte Total Time: 6.266 5
Seljinpunans r Total Elapsed Time: 6.266 s .
Self Elapsed Time: 0.096 s [Salf Mamary Traffic 7 27 (3R
0.4 Total Time: 6.266 s 3
Total Elapsed Time: 6.266 = B metic Intensity) Cooy To O d
| ! | | Self Memory Traffic: 2.82 GB - | =0y 1o Mpheare |
0.044 0.07 0.1 Total Memory Traffic. 91.18 GB 0.59 » Memory Metrics

Physical Cores: 4 @ App Threads' 1 @ Self Elapsed Time- 0.096 5 ToOtal EIapEed TIMe" 6.766 &

1 Enable the display of Roofline with Callstacks additions to the Roofline chart.
2 Show/hide loop/function descendants:
* Click a loop/function dot = control to collapse descendant dots into the parent dot.
* Click a loop/function dot = control to show descendant dots and their relationship via visual
indicators to the parent dot.
You can also right-click a loop/function dot to open the context menu and expand/collapse the
loop/function subtree.
3 Show/hide the Callstack and other panes.
4 e Click an item in the Callstack pane to flash the corresponding loop/function dot in the

Roofline chart.
¢ Right-click an item in the Callstack pane to open the context menu and expand/collapse the

item subtree.

You can also click an item in the Callstack pane to flash the corresponding loop/function dot in
the Roofline chart.

95

1 Intel® Advisor User Guide

Memory-Level Roofline Chart (Medium Accuracy)

k|Q - ® oy v | Cores: 1 9 || T FLOAT, Mo Callstacks; CARM (L1 + NTS); LZ; L3; DRAM; Loads+Stores « ||~';= Compare v || * Guidance «
51 3 g g 5P Vetor ¥ Display roof rulers & 1
10045 PR ¥ Show memory level relationships & it mmult_seri
o -7 . e ions SSE2; pr
et #| Show Roofline boundaries € 506 GFLOPS
70 IS} Arithmetic
e HAM Bandwic
_ - 25
T L me: 0.612 =
40 T T e 125
G- =TT ime: 0.612 5
BT — 0P erter affic: 25.77 GE
L T raffic: <0.001
’,,--”" -l | Default || Apply || Cancel
- e ===~ [El~ Memory Metrics &
10 . o Impacts &
- ooz gpoo77 0 ScalarAdd Pesk 7.01 GFLOPS L1 -
=" L2 - —
pant L3 | —
Wl 3 DRAM - —
e — — . . Shares ©
CARM (L1+ NTS) L2 L3 DRAM L1 - ——
2577 GB K _ - 5544 GB s3z7ge ¥ il L2
omleat -~ |
Bl L3 - —
1787 - __ o Band
| DREES FLOP/Byte (Aritmetc Intensity) DTe 1 [

AT T T T
0.083

L
0.55

01 0.25
Physical Cores: 4 @ App Threads: 1 © Self Elapsed Time: 0.612 5 Total Elapsed Time: 0.612 5

Visually emphasize the relationships among displayed memory levels and roofs for a selected
loop/function dot by enabling the Show memory level relationships checkbox.

NOTE This checkbox is enabled by default.

Use the drop-down toolbar to:

¢ Select the Memory Level(s) to show for each loop/function in the chart (L1, L2, L3, DRAM).
e Select which Memory Operation Types(s) to display data for in the Roofline chart: Loads,
Stores, or Loads and Stores.

Double-click a dot or select a dot and press SPACE or ENTER to examine how the relationships
between displayed memory levels and roofs:

+ Labeled dots are displayed, representing memory levels for the selected loop/function. Lines
connect the dots to indicate that they correspond to the selected loop/function.

NOTE If you have chosen to display only some memory levels in the chart using the
Memory Level option, unselected memory levels are displayed with X marks.

e An arrowed line is displayed, pointing to the memory level roofline that bounds the selected
loop. If the arrowed line cannot be displayed, a message will pop up with instructions on how
to fix it.

Show/hide the Memory Metrics and other panes.

In the Memory Metrics pane:

¢ Review the time spent processing requests for each memory level reported in the Impacts
histogram. A big value indicates a memory level that bounds the selected loop.

¢ Review an amount of data that passes through each memory level reported in the Shares
histogram.

96

Intel® Advisor User Guide 1

Examine Bottlenecks on CPU Roofline Chart

Accuracy Level

Low

Enabled Analyses
Survey + FLOP (Characterization)

Result Interpretation

The farther a dot is from the topmost roofs, the more room for improvement there is. In accordance with
Amdahl's Law, optimizing the loops that take the largest portion of the program'’s total run time will lead to
greater speedups than optimizing the loops that take a smaller portion of the run time.

|T Default FLOAT CARM (L1+NTS) » | |1 Compare » ||;+ Guidance = |

kQl i « xi,r|0c:-res:1§v

121.714

SdO4D

10

01
[loop in main at stride.cpp:73]
Vectorized (Body) AVX2; processes Float64; Int32 data type(s)
Performance: 0.115 GFLOPS
0.01 CARM (L1 + NTS) Arithmetic Intensity: 0.125 FLOF/Byte
Bounded by: L2 Bandwidth v
o] Self Time: 2112 s
0.002 . J =97 self Elapsed Time: 2.112 5 |
viemory bound and M4 Total Time: 2.314 5
| Total Etapsed Time: 2314 5 frmetic Intensity)
" | Self Memory Traffic: 1.944 GB

T T T T T
0.0016 0.004 0007 0.04 007 04
Physical Cores: 4 © App Threads: 1 © Self Elapsed Time: 2127 5 Total E1f 1018l Memory Traffic: 16.848 GB

NOTE This topic describes data as it is shown in the CPU Roofline report in the Intel Advisor GUI. You
can also view the result in an HTML report, but data arrangement and panes may vary.

e By dot size and color, identify loops that take most of total program time and/or located very low in the
chart. For example:
e Small, green dots take up relatively little time, so are likely not worth optimizing.
e Large, red dots take up the most time, so the best candidates for optimization are the large, red dots
with a large amount of space between them and the topmost roofs.

NOTE You can switch between coloring the dots by execution time and coloring the dots by type
(scalar or vectorized) in the roof view menu on the right.

e Depending on the dots position, identify what the loops are bounded by. Intel® Advisor marks the roofline
zones on the chart to help you identify what roofs bound the loop:

e Loop is bounded by memory roofs.

97

1 Intel® Advisor User Guide

e Loop is bounded by compute roofs.

e Loop is bounded by both memory and compute roofs.
e In the Recommendations tab, scroll down to the Roofline Guidance section that provides you hints on

next optimization steps for a selected loop/function.

The roofs above a dot represent the restrictions preventing it from achieving a higher performance, although
the roofs below can contribute somewhat. Each roof represents the maximum performance achievable
without taking advantage of a particular optimization, which is associated with the next roof up. Depending
on a dot position, you can try the following optimizations.

NOTE For more precise optimization recommendations, see the Roofline Guidance in Code Analytics
and Roofline Conclusions in Recommendations tabs.

Dot Position

Reason

To Optimize

Below a memory roof (DRAM
Bandwidth, L1 Bandwidth, so on)

Below Vector Add Peak

Just above Scalar Add Peak

Below Scalar Add Peak

The loop/function uses memory
inefficiently.

The loop/function under-utilizes
available instruction sets.

The loop/function is
undervectorized.

The loop/function is scalar.

Run a Memory Access Patterns
analysis for this loop.

« If MAP analysis suggests
cache optimization, make any
appropriate optimizations.

o If cache optimization is
impossible, try reworking the
algorithm to have a higher Al

Check Traits column in the
Survey report to see if FMAs are
used.

e If FMA is not used, try altering
your code or compiler flags to
induce FMA usage.

Check vectorization efficiency
and performance issues in the
Survey. Follow the
recommendations to improve it if
it's low.

Check the Survey report to see if
the loop vectorized. If not, try to
get it to vectorize if possible. This
may involve running
Dependencies to see if it's safe to
force it.

In the following Roofline chart representation, loops A and G (large red dots), and to a lesser extent B

(yellow dot far below the roofs), are the best candidates for optimization. Loops C, D, and E (small green
dots) and H (yellow dot) are poor candidates because they do not have much room to improve or are too
small to have significant impact on performance.

98

Intel® Advisor User Guide 1

GFLOPs/S AN A A2
'™ C?‘Q. A ¥

CPU Cap: FMAs

CPU Cap: Vector Add

O@cpu Cap: Scalar Add

@@ .&

¢

Arithmetic Intensity (FLOPs/Byte) N

Some algorithms are incapable of breaking certain roofs. For instance, if Loop A in the example above cannot
be vectorized due to dependencies, it cannot break the Scalar Add Peak.

Tip If you cannot break a memory roof, try to rework your algorithm for higher arithmetic intensity.
This will move you to the right and give you more room to increase performance before hitting the
memory bandwidth roof. This would be the appropriate approach to optimizing loop F in the example,
as well as loop G if its cache usage cannot be improved.

Analyze Specific Loops
Select a dot on the chart, open the Code Analytics tab to view detailed information about the selected loop:

e Refer to Loop Information pane to examine total time, self time, instruction sets used, and instruction
mix for the selected loop. Intel Advisor provides:

e Static instruction mix data that is based on static assembly code analysis within a call stack. Use static
instruction mix to examine instruction sets in the inner-most functions/loops.

e Dynamic instruction mix that is based on dynamic assembly code analysis. This metric represents the
total count of instructions executed by your function/loop. Use dynamic instruction mix to examine
instruction sets in the outer loops and in complex loop-nests.

Intel Advisor automatically determines the data type used in operations. View the classes of instructions
grouped by categories in instruction mix:

Category Instruction Types

Compute (FLOP and INTOP) ADD, MUL, SUB, DIV, SAD, MIN, AVG, MAX, ABS, SIN,
SQRT, FMA, RCCP, SCALE, FCOM, V4FMA, V4VNNI

Memory scalar and vector MOV instructions

e GATHER/SCATTER instructions

e VBMI2 compress/expand instructions
Mixed Compute instructions with memory operands
Other MOVE, CONTROL FLOW, SYNC, OTHER

NOTEIntel Advisor counts FMA and VNNI instructions as more than 1 operation depending on the size
of the data type and/or the type of vector registers used.

o Refer to Roofline pane for more details about a specific roof that bounds the loop:

99

1 Intel® Advisor User Guide

e View roofs with number of threads, data types, and instructions mix used in the loop
o Identify what exactly bounds the selected loop - memory, compute, or both memory and compute
e Determine the exact roof that bounds the loop and estimates a potential speedup for the loop in the
callout if you optimize it for this roof

e Refer to Statistics for operations pane to view the count of operations collected during Characterization
analysis. Depending on the operations you need, use a drop-down list to choose FLOP, INTOP, FLOP
+INTOP or All Operations. Switch between Self and Total data using the toggle in the top right-hand
corner of the pane.

Intel Advisor calculates floating-point operations (FLOP) as a sum of the following classes of
instructions multiplied by their iteration count: FMA, ADD, SUB, DIV, DP, MUL, ATAN, FPREM, TAN, SIN,
COS, SQRT, SUB, RCP, RSQRT, EXP, VSCALE, MAX, MIN, ABS, IMUL, ID1V, FIDIVR, CMP, VREDUCE, VRND

Integer operations (INTOP) are calculated in two modes:

o Potential INT operations (default) that include loop counter operations that are not strictly
calculations (for example, INC/DEC, shift, rotate operations). In this case, INTOP is a sum of the
following instructions multiplied by their iteration count: ADD, ADC, SUB, MUL, IMUL, D1V, IDIV, INC/
DEC, shifts, rotates

e Strict INT operations (available in Python* API only) that include only calculation operations. In
this case, INTOP is a sum of the following instructions multiplied by their iteration count: ADD, MUL,
IDIV, SUB

Next Steps

e Identify Bottlenecks Iteratively: Cache-Aware Roofline

Examine Relationships Between Memory Levels

Accuracy Level

Medium

Enabled Analyses

Survey + Characterization (Trip Counts and FLOP, Call Stacks, Memory-Level) + Memory Access Patterns

Result Interpretation

In the Medium accuracy preset, the Intel® Advisor extends the basic Roofline capability and collects metrics
for all memory levels and the callstack data, which allows you to analyze your application in more detail.
Roofline chart uses the results of Memory Access Patterns analysis to understand what bounds the loop and
build recommendations in Roofline Guidance.

For information about Memory Access Patterns data interpretation, refer to Investigate Memory Usage and
Traffic.

NOTE This topic describes data as it is shown in the CPU Roofline report in the Intel Advisor GUI. You
can also view the result in an HTML report, but data arrangement and panes may vary.

Memory-Level Roofline

The Memory-Level Roofline allows you to examine each loop at different cache levels and arithmetic
intensities and provides precise insights into which cache level causes the performance bottlenecks.

The Memory-Level Roofline can help you to:

e Determine which loops are limited by cache

100

https://www.intel.com/content/www/us/en/develop/documentation/advisor-cookbook/top/identify-bottlenecks-iteratively-cache-aware-roofline.html

Intel® Advisor User Guide

1

e Find inefficient access patterns

e Locate loops that can benefit from vectorization or threading optimizations

h[Q ™ & o x dy v [cores 19+ |[Y FLOAT, No Calistacks; CARM (L1 + NTS); L2; L3; DRAM; Loads+Stores ~ | [1I* Compare ~ || * Guidance =
[+] vec| ¥ Display roof rulers @ 5
110.729 4 & AL play) ! ;
9: 1= - ¥ Show memory level relationships @ pin at mmult_serial.cpp:79]
@ P ¥ Show Roofline boundaries © Jersions SSE2; processes Floal
- — ow Roofline boundaries o 1.587 GFLOPS
_E____—_’_'_'_________________________________pE' (= NTS) Arithmetic Intensity: 0.0€
P___-——"' SP Ve - DRAM Bandwidth
40 ¥ - 3535
e . _,65- A= == == = = d Time: 1.353 ¢
ity 30 — - 1353 5
L1 B bd Time: 1.353 5
I SRS v Traffic: 25.77 GB
I e T ry Traffic: <0.001 GB
. emome T /_,..«*"”_)_ Default || Apply || Cancel D
10 S
| e Sealar Add Peak: 7.12 GFLOPS. | (L Cory To Ciphoard |
L po=oT Scalar A eak: 712G -
7 = 515 # v Memory Metrics @
- I Impacis &
1 L1 8%
SO L2 1 10%
L3 15%
L PR DRAN - GE%
- — EE Lt . . Shares &
CARM (L1+ NTS) % GE'S%C---”"_"_ Lz L2 DRAM L1 - 15 770GE
1 BITCE profe==- | 100s7GE | | ssescE || 7.553GE d L2 | — 10.057GE
DRAEEE= Bound by com tE‘é L3 2. 506BGE
072 andm r
FLOP/Byte (Arithmetic Intensity) DRAM -ju— 7.553GB
iy T T T T TT

T
0.083 0.09 0.1 02 0.3
Physical Cores: 4 @ App Threads: 1 ¥ Self Elapsed Time: 1.353 5 Total Elapsed Time: 1.353 5

To configure the Memory-Level Roofline chart:

1. Expand the filter pane in the Roofline chart toolbar.
2.

¥ Default FLOAT CARM (L1+NTS) « || :[* Compare

Operations
= FLOAT INT INT+FLOAT
Callstacks
With Callstacks @
Memory Level
+ CARM (L1 + NTS) L2 L3 DRAM

Memory Cperations Type

Loads Stores e Loads+Stores

| Default || Apply || Cancel |

Click Apply.

In the Memory Level section, select the memory levels you want to

0.4 05

see metrics for.

In the Roofline chart, double-click a loop to examine how the relationships between displayed memory

levels and roofs. Labeled dots are displayed, representing memory levels with arithmetic intensity for
the selected loop/function; lines connect the dots to indicate that they correspond to the selected loop/

function.

101

1 Intel® Advisor User Guide

|Y FLOAT; No Callstacks; CARM (L1 + NTS); L2; L3; DRAM; Loads+Stores ~ || Compare ~ || Guidance =
= } 1
.-—"''_.-'_F-F'_-r
-.__.____,.,—'-"-'_-.—'-‘-
‘___.__,_;—'—"'_'-_F'_
CARM (L1 + NTS) z U 3

16.206 GB __---1B437GB || 6.105GB

Tip By default, the Memory-Level Roofline chart is generated for the system cache configuration. You
can also generate the chart for a custom cache configuration:

Go to Project Properties > Trip Count and FLOP.

In the Cache simulator field, click Modify.

Click Add and enter/select the desired cache configurations.
Re-run the Roofline with the Medium accuracy.

o

Memory-Level Roofline Data

Intel® Advisor collects integrated traffic data for all traffic types between a CPU and different memory
subsystem using cache simulation. With this data, Intel® Advisor counts the number of data transfers for a
given cache level and computes Al for each loop and each memory level.

Review the changes in the traffic from one memory level to another and compare it to respective to identify
the memory hierarchy bottleneck for the kernel and determine optimization steps based on this information.

The vertical distance between memory dots and their respective roofline shows how much you are limited
by a given memory subsystem. If a dot is close to its roof line, it means that the kernel is limited by the
performance of this memory level.

The horizontal distance between memory dots indicates how efficiently the loop/function uses cache. For
example, if L3 and DRAM dots are very close on the horizontal axis for a single loop, the loop/function
uses L3 and DRAM similarly. This mean that it does not use L3 and DRAM efficiently. You can try to
improve re-usage of data in the code to change arithmetic intensity for all loops/functions and improve
application performance. For more precise advice, see the Roofline Guidance in the Code Analytics
tab.

Arithmetic intensity determines the order in which dots are plotted, which can provide some insight into
your code's performance. For example, the L1 dot should be the largest and first plotted dot on the chart
from left to right. However, memory access type, latency, or technical issues can change the order of the
dots. Continue to run the Memory Access Pattern analysis to investigate this issue.

To examine a specific loop in more details, select a dot on the chart and open the Code Analytics tab below
the chart:

Review the amount of data transferred for the selected loop/function and a specific roof that bounds the
loop in the Roofline pane. Use this pane to analyze deeper a selected loop/function:

e It shows only roofs with number of threads, data types, and instructions mix used in the loop.
e It identifies what exactly bounds the selected loop - memory, compute, or both memory and compute.

102

Intel® Advisor User Guide 1

e It determines exact roof that bounds the loop and estimates a potential speedup for the loop in the
callout if you optimize it for this roof.

Roofline” @

Memary Level CARM

DF Vector Add Peak

FLOP/Byte {Arither i il

0.47

This loop is mostly memory bound
The performance of the loop is bounded by the DRAM bandwidth.

fou can switch to the Recommendations tab to see oplimization recemmendations in the
Roofline Conclusicns seclion

e Review the memory metrics for different memory levels (L1, L2, L3 and DRAM) and the number of
operations transferred (FLOP and INTOP) in the Data transfers and Bandwidth table. This indicates the
amount of self data (excluding data from inner loops/functions) or total data (including data from inner
loops/functions) transferred, memory level bandwidth, and percentage of memory used at each memory
level.

NOTE Total data transfers are available only if you collect Roofline with Callstacks.

e Review the amount of data processed at different memory levels for the selected loop in the Memory
Metrics pane. The pane shows two histograms:

e Review the time spent processing requests for each memory level reported in the Impacts histogram.
A big value indicates a memory level that bounds the selected loop. Examine the difference between
the two largest bars to see how much throughput you can gain if you reduce the impact on your main
bottleneck. It also gives you a long-time plan to reduce your memory bound limitations as once you
will solve the problems coming from the widest bar, your next issue will come from the second biggest
bar and so on. Ideally, a developer would like to see the L1 as the most impactful memory in the
application for each loop.

e Review an amount of data that passes through each memory level reported in the Shares histogram.

NOTE Metrics in the Memory Metrics pane calculated for a dominant operation type in the selected
loop (FLOAT or INT) and based on the total data aggregating all callctacks. Hover over the ? icon for
the whole pane to see the tooltip that indicates the dominant type.

Roofline with Callstacks

Intel® Advisor basic Roofline model, the Cache-Aware Roofline Model (CARM), offers self data capability.
Intel® Advisor Roofline with Callstacks feature extends the basic model with total data capability:

e Self data = Memory access, FLOPs, and duration related only to the loop/function itself and excludes data
originating in other loops/functions called by it

103

1 Intel® Advisor User Guide

e Total data = Data from the loop/function itself and its inner loops/functions
The total-data capability in the Roofline with Callstacks feature can help you:

e Investigate the source of loops/functions instead of just the loops/functions themselves.

e Get a more accurate view of loops/functions that behave differently when called under different
circumstances.

e Uncover design inefficiencies higher up the call chain that could be the root cause of poor performance by
smaller loops/functions.

To view the callstacks, enable the With Callstacks checkbox in the Roofline chart.

k[Q " « 4 x Iy v [coes: 1@ «|[¥ FLOAT. With Calistacks |[4* Compare ~ || # Guidance ~
o Operations P '
3956 4 E
9 # FLOAT INT INT+FLOAT
m I:"" "‘.-":'
Callstacks et
¥ With Callstacks @
Default || Apply || Cancel
a
10 |
a3 F
o 19T
- tiﬁﬂdw 25 Scalar A

0.4
0.34 - Memo

FLOI

0.023 - 0.04 . 0.07 01 0.4
Physical Cores: 4 © App Threads: 1 @ Self Elapsed Time: 1.727 s Total Elapsed Time: 1.727

To show/hide dot descendants:

Click a loop/function dot =l control to collapse descendant dots into the parent dot.

Click a loop/function dot control to show descendant dots and their relationship with visual indicators
to the parent dot.

Roofline with Callstacks Chart Data

The following Roofline chart representation shows some of the added benefits of the Roofline with Callstacks

feature, including:

e A navigable, color-coded Callstack pane that shows the entire call chain for the selected loop/function,
but excludes its callees

e Visual indicators (caller and callee arrows) that show the relationship among loops and functions

e The ability to simplify dot-heavy charts by collapsing several small loops into one overall representation

104

Intel® Advisor User Guide 1

Loops/functions with no self data are grayed out when expanded and in color when collapsed. Loops/
functions with self data display at the coordinates, size, and color appropriate to the data when expanded,
but have a gray halo of the size associated with their total time. When such loops/functions are collapsed,
they change to the size and color appropriate to their total time and, if applicable, move to reflect the
total performance and total arithmetic intensity.

Performance (GFLOPS) =
% -EOEE - - s *-=~1 Galistack:
- = = -7 O RtlUserThread..
O BaseThreadinit.
O _scrt_common..
(O main at slbe.cp..
O fsBGKShanCh...
O [loopin fsBGK..
O fCalePotential_.
= O [loop in fCalcP...
- i O [OpenMP fork]
" O _kmp_fork_call.
(O fCalcPotential ..

15

@ [loop in fCalcP...
a7 r
a ®
0.08
©
- - .
0.014 127
Self Elapsed Time: 2.050s Total Elapsed Time: 9.710 s Arithmetic Intensity (FLOP/Byte)

See Also

Examine Bottlenecks on CPU Roofline Chart

Compare CPU Roofline Results Use the Roofline Compare functionality to display Roofline chart
data from other Intel® Advisor results or non-archived snapshots for comparison purposes to track
optimization progress.

Compare CPU Roofline Results

Use the Roofline Compare functionality to display
Roofline chart data from other Intel® Advisor results or
non-archived snapshots for comparison purposes to
track optimization progress.

Prerequisites
To compare the GPU Roofline results, make sure to get the following:

e A baseline GPU Roofline result or snapshot
e One or more GPU Roofline results or snapshots of the same application with an optimization applied

To compare the results:

1. Open a baseline GPU Roofline result/snapshot.
2. From the Compare drop-down toolbar, click + to load a comparison result/snapshot. You can load
multiple results/snapshots for comparison one by one.

105

1 Intel® Advisor User Guide

k[Q I; v | Cores: 1 @ + ||'Y Default: FLOAT ||l 3 Compared Results || #* Guidance ~ =
2 + 2
100 42 SPVector FMA Peak: 90.66 GFLOPS
% [Compared results X |g-=---"---- EEEER R 5 R
W o L7
70 (O Current e
[Resultz 5
. DP Veclor FMA Pegk: 46.23 GFLOPS-
o0 A A\ Resut3 ™" "7 5P Vector Adj Pbakc 362 GFLOPS
- Ready for comparison L
¢ : :

e 2
P Vector Add Peak: 20.32 GFLOPS

?
Scalar Add Peak: 5.38 GFLOPS

Compute bound”
FLOP/Byte [/

T £ T T T T T T

atic Intensity)

T T
0.04 0.07 01 0.4 07 1 4 7 10
Physical Cores: 4 ® App Threads: 1 @ sl Elapsed Time: 18.157 s Total Elapsed Time: 18.157 s

When the comparison is uploaded:

e The filenames for uploaded results/snapshots are displayed in the Compared Results region.

e Similar loops/functions from all compared results are recognized automatically. They are connected with a
dashed arrow line. The performance improvement between the loops/functions is shown above the line, in
per cent. The improvement is calculated as the difference in FLOPS, INTOPS, or OPS and Total Time.

NOTE The arrows showing the relationship among loops/functions do not reappear if you upload a new
comparison file.

e Loops from different snapshots are shown as different icons on the chart. For example, on the picture
below, the baseline loops are shown as circles and comparison loops are triangles and diamonds.

106

Intel® Advisor User Guide 1

T+FLOAT. Mo Calstncks = || ‘' 3 Compared Resul = | B =
+
Crparrd sesuifs =

ﬂ. rooflane_dema_samplaa novecior 02
{} ropllre_derne_samples pragrma_simsd 02
Bty for companscn
1ol e _der_snimgen nesge
redling_damo_pamples pragma_send OF
redieg_derma_samples del_change
roolfine_dera_amples novecton 07
» E reofline_demo_samples pragma_semd
reofine_demo_samples. changed_ s
reeilaneg_dema_samgdes 0F

- gERO

i
4] Sealy i Peaic 3063 GINTOFS

To highlight all dots from a specific compared result, open the Compare drop-down and hover over the
result name.

Each time you change the Roofline configuration or filter the dots on the chart, the comparison is updated
automatically.

You can remove a selected result from Compared Results by hovering over it and clicking the X icon.
The result is removed from the chart and appears in the Ready for comparison region. Click a name in
the Ready for comparison region to reload the result back to the chart.

You can save the comparison itself to a file using the export feature.

NOTE To find the same loops/functions among the results, Intel Advisor compares several loop/
function features, such as their type, nesting level, source code file name and line, and function name.
When a certain threshold of similar or equal features is reached, the two loops/functions are
considered a match and connected with a dashed line.

However, this method still has few limitations. Sometimes, there can be no match for the same loop/
function if one is optimized, parallelized, or moved in the source code to four or more lines from the

original place. Intel Advisor tries to ensure some balance between matching source code changes and
false positives.

Model Threading Designs

Analyze, design, tune, and check threading design
options without disrupting your normal development
by running the Threading Perspective.

The Threading Perspective can help you to:

Model different threading designs for your application

Prototype project scaling on systems with larger core counts

Find performance issues and fix them before implementing parallelism
Find and eliminate data-sharing issues during design

How It Works

The Threading perspective includes the following steps:

107

1 Intel® Advisor User Guide

. Run the Survey analysis to find candidates for parallelizing.

. Add parallel site and task annotations to your code and re-build your application.

1
2
3. Run Suitability analysis to view proposed parallel design options.
4

. Run Dependencies analysis to identify stoppers for adding parallel code.

Threading Summary

Threading perspective reports information about your application performance recommends you loops/

functions to parallelize with the highest gain:

¢ View the main performance metrics of your program with execution time details.
e View optimization recommendations that help you to improve the overall performance of your application

and separate loops/functions.

e Examine how different parallel design options affect performance of annotated loops/functions and view
estimated gain for each option. Check if annotated loops have dependencies that can be show-stoppers

while parallelizing your code.

Summary ?{_‘; Survey & Roofline !:El Refinement Reports O Annotation Report] Suitability Report

@ Threading Perspective

Threading Perspective lets you analyze, design, une, and check threading options without disrupting your development.

v Program Metrics

Elapsed Time 5.38s
Vector Instruction Set ™ None

~ Performance Characteristics

Metrics Total
Total CPU time 5.008 I, 1 00 %
Time in scalar code 5.008 I 1 00%

> Vectorization Gain/Efficiency (Not Available)

v Per Program Recommendations

™ Higher instruction set architecture {ISA) available
Consider recompiling your application using a higher ISA. Show more

~ Top Time-Consuming Loops

Consider adding paraliel site and task annotations around these time-consuming loops found during Survey analysis

Loop Self Time
O loop in setQueen at nqueens serial.cpp:132 0.449s
O loop in solve at ngueens serial.cpp 156 =0.001s
O loop in setQueen at nqueens serial.cpp:103 1.934s

v Suitability And Dependencies Analysis Data

These annotated parallel sites were detected:
Site Location Maximum Site Gain

Mumber of CPU Threads 1

Total Time
4 0965
4. 0065
1.9345

O loop in solve at ngueens serial.cpp:. 154 5.4585634666754614

v Recommendations

align loop title loop in seiQueen at ngueens serial.cpp:103

alion loop title loop in setQueen at ngueens serial.cpp:132

See Also

Run Threading Perspective from GUI Steps to run the Threading perspective.

Run Threading Perspective from Command Line
Annotate Code for Deeper Analysis
Model Threading Parallelism

108

Trip Counts
14

14

4

Dependencies
WAR:1 WAW: 1

Intel® Advisor User Guide 1

Run Threading Perspective from GUI
Steps to run the Threading perspective.

In the Analysis Workflow pane, select the Threading perspective. The perspective can be executed at the
following collection accuracy levels:

¢ Low - Find candidates for parallelizing.

e Medium - Model parallel design options and determine whether there are dependencies limiting
parallelizing.

e Custom - Customize the perspective flow and properties.

In the Threading perspective, collection accuracy levels match the steps you should take. By default,
accuracy is set to Low.

NOTE The higher accuracy value you choose, the higher runtime overhead is added to your
application. The Overhead indicator shows the overhead for the selected configuration.

Prerequisites: In the graphical-user interface (GUI): Create a project and specify an analysis target and
target options.

To configure and run the Threading perspective from GUI, do the following:

1.

Select Low accuracy level to enable the Survey analysis and run the perspective by clicking “

button.

You will get a Survey report that shows the execution times of your functions and loops.

2. Sort the report data by Total Time to identify functions and loops with the longest execution time.
These loops/functions are the best candidates to apply parallelization for.

3. In your source code, annotate sites and tasks to model threading for and re-build your application. For
more information on annotations and how to apply them, see Annotate Code for Deeper Analysis
section.

Select Medium accuracy level and run the Threading perspective by clicking “ button.
While the perspective is running, you can do the following in the Analysis Workflow tab:
e Control the perspective execution:

Stop data collection and see the already collected data: Click the E button.

Pause data collection: Click the m button.

Cancel data collection and discard the collected data: Click the n button.
Expand an analysis with - to control the analysis execution:

Pause the analysis: Click the |I| button.
Stop the currently running analysis and start the next analysis selected: Click the E button.

* Interrupt execution of all selected analyses and see the already collected data: Click the

button.

NOTE To generate command lines for selected perspective configuration, click the Command
Line button.

109

1 Intel® Advisor User Guide

To run the Threading perspective with the Medium accuracy from the command line interface:
1. Run the Survey analysis:

advisor --collect=survey --project-dir=./advi results -- ./myApplication
2. Collect trip count data:

advisor --collect=tripcounts --project-dir=./advi results -- ./myApplication
3. Run the Suitability analysis for annotated loops:

advisor --collect=suitability --project-dir=./advi results -- ./myApplication
4. Run the Dependencies analysis:

advisor --collect=dependencies --project-dir=./advi results -- ./myApplication
See Run Threading Perspective from Command Line for details.

After running the perspective as describes above, you get a Suitability report showing predicted options for
parallelizing and a Dependencies report showing whether you can implement parallel design without
disrupting your code.

Customize Threading Perspective

Customize the perspective flow to better fit your goal
and your application.

If you change any of the analysis settings from the Analysis Workflow tab, the accuracy level changes to
Custom automatically. With this accuracy level, you can customize the perspective flow and/or analysis
properties.

To change the properties of a specific analysis:

: -
Expand the analysis details on the Analysis Workflow pane with .
2. Select desired settings.

3.
For more detailed customization, click the gear icon. You will see the Project Properties dialog

box open for the selected analysis.
4. Select desired properties and click OK.

The following tables cover project properties applicable to analyses in the Threading perspective.

Common Properties

Use This To Do This

Target type drop-down e Analyze an executable or script (choose Launch Application).
e Analyze a process (choose Attach to Process).

If you choose Attach to Process, you can either inherit settings from
the Survey Hotspots Analysis Type or specify the needed settings.

Inherit settings from Inherit Intel Advisor project properties from the Visual Studio* startup
Visual Studio project project (enable).
checkbox and field (Visual

Studio* IDE only) If enabled, the Application, Application parameters, and Working

directory fields are pre-filled and cannot be modified.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the
Intel® oneAPI 2022.1 release, and will be removed in a future release.

Application field and Select an analysis target executable or script.
Browse... button

110

Intel® Advisor User Guide 1

Use This To Do This
If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application Specify runtime arguments to use when performing analysis (equivalent

parameters field and
Modify... button

to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment

variables field and Modify...

button

Specify environment variables to use during analysis.

Managed code profiling
mode drop-down

+ Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

¢ Collect data for native code and do not attribute data to managed
code (choose Native).

e Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

¢ Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

Child application field

Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

NOTE

For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

e Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

+ Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

1 Intel® Advisor User Guide

Use This

To Do This

Use MPI launcher checkbox

Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

e Select MPI Launcher - Intel or another vendor
« Number of ranks - Number of instances of the application
¢ Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis Properties

Use This

To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip

The corresponding CLI action option is —-resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector

Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Callstack unwinding mode
drop-down list

Set to After collection if:

e Survey analysis runtime overhead exceeds 1.1x.

e A large quantity of data is allocated on the stack, which is a common
case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox

Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

112

Intel® Advisor User Guide

Use This

To Do This

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE

Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
—ax (Linux* 0OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
list

e Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

e Keep source code cache within the project (choose Keep cached
files).

Suitability Analysis Propertie

(7]

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Start running your target application with collection paused, then resume

Tip
The corresponding CLI action option is ——resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Sampling Interval selector

Set the wait time between each analysis collection sample while your
target application is running.

113

1 Intel® Advisor User Guide

Use This

To Do This

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Dependencies Analysis Properties

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode radio
buttons

¢ Report possible dependencies in system modules (choose the Show
problems in system modules radio button).

e Do not report possible dependencies in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Analyze stack variables
checkbox

Analyze parallel data sharing for stack variables (enable).

Enabling could increase analysis overhead.

Filter stack variables by scope
checkbox

Enable to report:

e Variables initiated inside the loop as potential dependencies (warning)
e Variables initialized outside the loop as dependencies (error)

Enabling could increase analysis overhead.

Reduction Detection / Filter
reduction variables checkbox

Mark all potential reductions by a specific diagnostic (enable).

Enabling could increase analysis overhead.

Markup type checkbox

114

Select loops/functions by pre-defined markup algorithm. Supported
algorithms are:

e GPU generic - Select loops executed on a GPU.

¢ OpenMP - Select OpenMP* loops.

e SYCL - Select SYCL loops.

¢ OpenCL - Select OpenCL™ loops.

¢ DAAL - Select Intel® oneAPI Data Analytics Library loops.

e TBB - Select Intel® oneAPI Threading Building Blocks loops.

Intel® Advisor User Guide 1

Use This

To Do This

NOTE This option is available only from the Analysis Workflow pane for the
Offload Modeling perspective.

Trip Counts and FLOPs Analysis Properties

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is ——resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Trip Counts / Collect
information about Loop
Trip Counts checkbox

Measure loop invocation and execution (enable).

FLOP / Collect information
about FLOP, L1 memory
traffic, and AVX-512 mask
usage checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Callstacks / Collect
callstacks checkbox

Collect call stack information when performing analysis (enable).

Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Capture metrics for
stripped binaries checkbox

Collect metrics for stripped binaries.

Enabling could increase analysis overhead.

Cache Simulation / Enable
Memory-Level Roofline
with cache simulation
checkbox

Model multiple levels of cache for data, such as counts of loaded or
stored bytes for each loop, to plot the Roofline chart for all memory levels
(enable).

Enabling could increase analysis overhead.

Cache simulator
configuration field

Specify a cache hierarchy configuration to model (enable and specify
hierarchy).

The hierarchy configuration template is:

1 Intel® Advisor User Guide

Use This To Do This

[num_of _levell_caches]:[num_of _ways_levell_connected]:
[levell_cache_size]:[levell_cacheline_size]/

[num_of_level2_caches]:[num_of_ways_level2_connected]:
[level2_cache_size]:[level2_cacheline_size]/

[num_of _level3_caches]:[num_of _ways_level3_connected]:
[level3_cache_size]:[level3_cacheline_size]

For example: 4:8w:32k:64l/4:4w:256k:641/1:16w:6m:64l is the
hierarchy configuration for:

e Four eight-way 32-KB level 1 caches with line size of 64 bytes
e Four four-way 256-KB level 2 caches with line size of 64 bytes
¢ One sixteen-way 6-MB level 3 cache with line size of 64 bytes

Data Transfer Simulation / | Select a level of details for data transfer simulation:
Data transfer simulation

e Off - Disable data transfer simulation analysis.
mode drop-down

e Light - Model data transfers between host and device memory.
* Full - Model data transfers, attribute memory objects to loops that
accessed the objects, and track accesses to stack memory.

Run Threading Perspective from Command Line
Threading perspective includes several steps that you are recommended to run one by one:

1. Collect performance metrics and find candidates for parallelizing using a Survey analysis.

2. Annotate manually loops/functions to model parallelization for.

3. Model parallel design options and estimate speedup for the annotated loops using a Suitability
analysis.

4. Check for loop-carried dependencies to make sure the loops/functions are safe to parallelize.

Tip See Intel Advisor cheat sheet for quick reference on command line interface.

Prerequisites

Set Intel Advisor environment variables with an automated script to enable the advisor command line
interface (CLI).

Run Threading Perspective

Note: In the commands below, make sure to replace the myApplication with your application executable

path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

1. Run the Survey analysis.

advisor --collect=survey --project-dir=./advi results -- ./myApplication
2. Run the Characterization analysis to collect trip counts and FLOP data.

advisor --collect=tripcounts --project-dir=./advi results --flop -- ./myApplication
3. View the Survey report to identify candidates for parallelization. For example, run the following
command to print the report in command line:

advisor --report=survey --project-dir=<project-dir>

116

https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-cheat-sheet.pdf

Intel® Advisor User Guide 1

Consider analyzing loops/functions with high total time.
4. In the application source code, annotate loops/functions of interest to model parallelization for.

Rebuild the application as usual to make the annotations available for the Intel Advisor.
5. Run the Suitability analysis to model threading for the annotated loops/functions:

advisor --collect=suitability --project-dir=./advi results -- ./myApplication
6. Run the Dependencies analysis to check for loop-carried dependencies in the annotated loops:

advisor --collect=dependencies --project-dir=./advi results -- ./myApplication

You can view the results in the Intel Advisor graphical user interface (GUI), print a summary to a command
prompt/terminal, or save to a file. See View the Results below for details.

Analysis Details

Each analysis in the Threading perspective has a set of additional options that modify its behavior and collect
additional performance data.

Consider the following options:
Characterization Options
To run the Characterization analysis, use the following command line action: --collect=tripcounts.

Recommended action options:

Options Description

--flop Collect data about floating-point and integer
operations, memory traffic, and mask utilization
metrics for AVX-512 platforms.

--stacks Enable advanced collection of call stack data.

Dependencies Options
To run the Dependencies analysis, use the following command line action: --collect=dependencies.

Recommended action options:

Options Description
--filter-reductions Mark all potential reductions with a specific
diagnostic.

See advisor Command Option Reference for more options.

Next Steps
Continue to explore threading results. For details about the metrics reported, see CPU and Memory Metrics.

See Also

Threading Perspective Analyze, design, tune, and check threading design options without
disrupting your normal development by running the Threading Perspective.

Command Line Interface This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.

Minimize Analysis Overhead

Analyze MPI Applications With Intel® Advisor, you can analyze parallel tasks running on a cluster
to examine performance of your MPI application.

117

1 Intel® Advisor User Guide

Threading Accuracy Levels in Command Line

For each perspective, Intel® Advisor has several levels of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is collected and the level of collection details. The higher
accuracy value you choose, the higher runtime overhead is added.

In CLI, each accuracy level corresponds to a set of commands with specific options that you should run one
by one to get a desired result.

For the Threading perspective, you are recommended to run the accuracy levels one by one to get a
Threading report.

The following accuracy levels are available:

Comparison / Accuracy Level Low Medium
Overhead 1.1x 5-8x
Goal Find candidates for parallelization = Model threading parallelism and

check for loop-carried
dependencies

Analyses Survey Survey + Characterization (Trip
Counts) + Suitability +
Dependencies

Result Basic Survey report Survey report extended with trip
count data

Dependencies report

Suitability report with parallel
performance modeled for
annotated loops

You can generate commands for a desired accuracy level from the Intel Advisor GUI. See Generate Command
Lines from GUI for details.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

Consider the following command examples.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Low Accuracy

First, run the Threading perspective with low accuracy to find candidates for parallelizing based on Survey
analysis results.

Run the analysis as follows:
advisor --collect=survey --project-dir=./advi results -- ./myApplication

You can view the generated results in the Intel Advisor GUI or in the CLI. The loops/functions with high total
time are the best candidates for parallelization. Annotate the loops/functions of interest to model parallelism.

Medium Accuracy

Prerequisite: Annotate loops/functions to model parallelization for. Rebuild the application.

118

Intel® Advisor User Guide 1

Run the commands as follows:
1. Run the Survey analysis:

advisor --collect=survey --project-dir=./advi results -- ./myApplication
2. Collect trip count data:

advisor --collect=tripcounts --project-dir=./advi results -- ./myApplication
3. Run the Suitability analysis to model threading parallelism for the annotated loops:

advisor --collect=suitability --project-dir=./advi results -- ./myApplication
4. Run the Dependencies analysis for the annotated loops:

advisor --collect=dependencies --project-dir=./advi results -- ./myApplication

You can view the generated results in the Intel Advisor GUI or in the CLI.

See Also
advisor Command Option Reference

Command Line Interface Reference This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

Run Threading from Command Line

Minimize Analysis Overhead

Annotate Code for Deeper Analysis

Before you can mark the best parallel opportunities by adding Intel® Advisor annotations, you need to choose
likely places to add parallelism. This section provides a series of topics that explain factors to consider as you
examine the candidate code regions and their execution and choose candidate places.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

The operations of a serial program execute one after another in a well-defined order, starting at the
beginning, continuing to the end, and then stopping. A parallel program, on the other hand, is made up of
tasks - portions of the program that may execute independently on separate cores. Tasks can either be
implemented in separate functions or in iterations of a loop.

You mark your proposed code regions by adding Intel® Advisor annotations that identify the:

e Parallel site: A code region that contains one or more parallel tasks. Execution of a parallel site constrains
the time during which the tasks that it contains can execute. Although execution of a parallel site begins
when its execution reaches its beginning, tits execution terminates only after all tasks that started within
it have completed. In parallel frameworks, this corresponds to the join location in the code where all tasks
have completed.

e Parallel tasks: Task code regions run independently, at the same time as other tasks within the parallel
site and the enclosing parallel site itself. Also, each task can have multiple instances of its code executing.
As shown in the table below, there are two forms of task annotations:

e For a loop with only a single task, add a single iteration task annotation within the two site
annotations.

e For other code, add a task annotation pair to mark the task region's begin and end within the two site
annotations.

119

1 Intel® Advisor User Guide

Characteristics of Parallel Site
Code

Parallel Site and Task
Annotations

Comments and Limitations

A loop that requires only a single
task. For simple loops, begin with
the type of task annotation,
unless the task does not include
the entire loop body.

Example code:
nqueens Advisor C/C++
sample and nqueens Fortran and

Add three annotations to mark:

e The parallel site region by
adding site begin and site end
annotations.

* The parallel task loop by
adding a single iteration task
annotation at the start of the
loop body.

Based on the Suitability tool
performance predictions, you
may want to try using multiple
tasks. In this case, remove the
single iteration task annotation
and replace it with task begin
and task end annotations for
each task (see the next row).

If the loop structure is complex,
you may need to mark the task
begin and task end region by
using the task annotations in the
next row.

C# samples

Complex loop, code that allows Add four annotations to mark:

multiple tasks, or non-loop code « The parallel site region by

adding site begin and site end
annotations.

e Each parallel task region by
adding task begin and task
end annotations.

Example code: stats C++
sample

After you choose several places to add parallelism, view the data displayed in the Survey Report window.
Use this data and your code editor to add annotations to mark the candidate parallel sites and their task(s).
Make sure that these annotations are executed by the selected target executable.

The site and task annotations enable the Intel® Advisor Suitability and Dependencies tools to predict your
serial program's execution as a parallel program. These tools perform extensive analysis of your running
serial program to provide data needed to help you decide the best place(s) to add parallelism.

To take advantage of the Intel® Advisor parallel design capabilities, experiment with different possible parallel
code regions by modifying the site and task annotations and their locations, rebuilding your application's
target, and running the Suitability and Dependencies tools again.

The following figure illustrates the nqueens Advisor C/C++ sample code to show the task (blue
background) and its enclosing parallel site (orange background).

Before you convert your serial program into a parallel program, you need to:
e Understand where your program is spending its time.

e Decide how to divide that work up into tasks that can execute in parallel.
Annotate Code to Model Parallelism

After identifying candidates for parallelizing, mark up serial parts of your code where you plan to add
parallelism using Intel® Advisor annotations.

Before Annotating Code for Deeper Analysis

Before you can mark the best parallel opportunities by adding annotations, you need to choose likely places
to add parallelism. This section introduces several topics that explain factors you should consider as you
closely examine the candidate code regions and their execution.

120

Intel® Advisor User Guide 1

Each code region where you might add parallelism consists of a single parallel site and one or more parallel
tasks enclosed within the parallel site. Each parallel site defines the scope of parallel execution. You can have
multiple parallel sites in a program.

No matter how much you improve one part of your program, the program cannot complete any faster than
the part that you did not speed up. So, focus your efforts on the parts of your program that use the most
time.

Use the Survey Report provided by the Survey tool to help you understand where your program spends it
time.

Use Amdahl's Law and Measure the Program
There are two rules of optimization that apply to parallel programming:

e Focus on the part of the program that uses the most time.
e Do not guess, measure.

Amdahl's Law

In the context of parallel programming, Gene Amdahl formalized a rule called Amdahl's Law, which states
that the speed-up that is possible from parallelizing one part of a program is limited by the portion of the
program that still runs serially.

The consequence may be surprising: parallelizing the part of your program where it spends 80% of its time
cannot speed it up by more than a factor of five, no matter how many cores you run it on.

Therefore, to get maximum benefit from parallelizing your program, you could add parallelism to all parts of
your program as suggested by Amdahl's Law. However, it is more practical to find where it spends most of its
time and focus on areas that can provide the most benefit.

Do Not Guess - Measure

This leads to another rule of optimization: Do Not guess - Measure. Programmers' intuitions about where
their programs are spending time are notoriously inaccurate. Intel® Advisor includes a Survey tool you can
use to profile your running program and measure where it spends it time.

After you add Intel® Advisor annotations to your program to mark the proposed parallel code regions, run the
Suitability tool to predict the approximate maximum performance gain for the program and the annotated
sites. These estimated performance gain values are based on a model of parallel execution that reflects the
impact of Amdahl's law.

See Also
Task Organization and Annotations

Task Organization and Annotations

You will choose a region of code to execute as a task. This region is the static extent of the task. The task
includes not just its static extent, but also any other code that is called from the static extent when it
executes - this is the dynamic extent.

In addition to choosing tasks, you will also decide which tasks can execute in parallel with one another. To do
this, you will choose parallel sites. A parallel site, like a task, has a static extent which is a block of code and
a dynamic extent which includes all the code that is called from it.

NOTE

If you have a loop with a single task and the task includes the entire loop body, you can use the
simplified parallel site with one iteration task annotation. The remainder of this topic and this group of
topics describe the more complex case where multiple tasks are needed within a parallel site.

The execution of tasks with the serial execution done by Intel® Advisor works like this:

121

1 Intel® Advisor User Guide

1. A parallel site begins when execution reaches the begin-site annotation.

2. Atask is created when execution reaches the begin-task annotation. The task executes independently,
in parallel with any other tasks that are already executing, including the parallel site itself.

3. When the execution of a task reaches an end-task annotation, the task terminates. Intel® Advisor end-
task annotations do not allow or require an end-task label, so be aware that in some cases the task's
execution could reach a task-end annotation for a different task, which can impact the predicted parallel
performance.

4. When execution reaches the end-site annotation for the parallel site, Intel® Advisor predicts that
execution suspends (waits) until all tasks that were created within it have terminated, after which
execution exits the parallel site.

With C/C++ code, note that goto, break, continue, return, and throw statements must not bypass the
end of the static extent of a task or parallel site! With Fortran code, such statements include goto and
return. You may need to add extra end annotations before these operations so the Intel® Advisor tools will
correctly model the end of a site or task.

Because you will later add parallel framework code after you no longer need the Intel® Advisor annotations,
you need to be aware of the requirements of the parallel framework. For example, some parallel frameworks
might not allow a branch out of a task, such as a loop task. Whenever possible, plan your tasks to suit the
needs of the parallel framework code. The annotations are present only while you need Intel® Advisor to help
you predict the proposed parallel behavior and make decisions about the best locations for your tasks.

After you decide where the parallel sites and tasks are in your program, add source annotations.

See Also

Annotate Parallel Sites and Tasks

Site and Task Annotations for Simple Loops with One Task

Copy Annotations and Build Settings Using the Annotation Assistant Pane

Annotate Parallel Sites and Tasks

You add annotations into your program to mark the tasks and parallel sites. The annotations are one-line
macro uses or function calls that have no effect on the behavior of your program.

Annotations allow you to mark your tentative decisions about your program's task structure before you
modify the program to use parallel execution. Annotations are used by the Intel® Advisor Suitability and
Dependencies tools.

After you decide on the parallel site(s) and task(s), add the annotations into your source code.
To simplify adding Intel® Advisor annotations:

e When using the Microsoft Visual Studio* code editor, you can use the Annotation Wizard.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

e With any editor, use the annotation assistant in the Survey Report window, Survey Source window, or
the No Data message to copy example annotation code and build settings.

Code examples throughout this group of topics illustrate the use of these annotations.

As you use Intel® Advisor to investigate possible code regions for adding parallel execution, you will find
some areas are not feasible. Adding a comment to explain why that site (or task) was not chosen may help
later. For example, with C/C++ code:

// Investigated the following function call as a parallel task and dismissed
// June 2014. Need to first re-write the function to improve parallel

// performance and fix the data race.

//

// ANNOTATE TASK BEGIN (funcl);

122

Intel® Advisor User Guide 1

See Also

Task Patterns

Intel Advisor Annotation Definitions File

Annotation Types Summary

Copy Annotations and Build Settings Using the Annotation Assistant Pane
Add Annotations Using the Annotation Wizard

Add Parallelism

Task Patterns
To summarize:

e You choose parallel sites in your program.

e You choose tasks in your parallel sites.

e Tasks in a parallel site can execute in parallel with one another and with tasks in an outer parallel site, but
not in parallel with tasks in unrelated parallel sites.

You are free to arrange your sites and tasks any way that you want, but there are several simple, common
patterns that you will probably want to use.

The following sections describe the process of identifying task patterns, as well as information about data
parallelism and task parallelism.

Multiple Parallel Sites
You may be able to introduce parallelism independently in more than one place in a program.

For example, consider a C/C++ program with the general structure:

initialize(data);

while (!done) {
display on screen(data);
update (data) ;

}

You might be able to parallelize the display and update operations independently:

display on screen(data)
{
ANNOTATE SITE BEGIN(site display);
for (each block of data) {
ANNOTATE ITERATION TASK (task display);
display the block of data;
}
ANNOTATE SITE END();
}
update (data)
{
ANNOTATE SITE BEGIN (site update);
for (each block of data) {
ANNOTATE ITERATION TASK (task update);
update the block of data;
}
ANNOTATE SITE END (s
}

Each iteration of the main loop would still do the display and then the update, but the display and update
operations could be performed much faster.

123

1 Intel® Advisor User Guide

Depending on your program, you need to decide whether to implement multiple parallel sites at the same or
at different times:

e When two parallel sites are truly disjoint or have overlapping functions that are purely functional and do
not show problems reported by the Dependencies tool, you can consider parallelizing those sites
separately at different times.

e When considering multiple parallel sites that overlap on the same call trees - such as multiple sites that
call the same (common) utility functions - consider parallelizing or not parallelizing the entire set of
parallel sites at the same time.

You need to determine the cause of each dependency and fix it. If you have multiple parallel sites that
overlap on the same call trees - such as multiple sites that call the same utility functions (common code) -
read the help topic Fixing Problems in Code Used by Multiple Parallel Sites.

See Also

Data and Task Parallelism

Using Partially Parallel Programs with Intel Advisor Tools
Data Sharing Problems

Fixing Problems in Code Used by Multiple Parallel Sites

Data and Task Parallelism

This topic describes two fundamental types of program execution - data parallelism and task parallelism -
and the task patterns of each.

Data Parallelism

In many programs, most of the work is done processing items in a collection of data, often in a loop. The
data parallelism pattern is designed for this situation. The idea is to process each data item or a subset of the
data items in separate task instances. In general, the parallel site contains the code that invokes the
processing of each data item, and the processing is done in a task.

In the most common version of this pattern, the serial program has a loop that iterates over the data items,
and the loop body processes each item in turn. The data parallelism pattern makes the whole loop a parallel
site, and the loop body is a task. Consider this C/C++ simple loop:

ANNOTATE SITE BEGIN (sitename);

for (int I = 0; I != n; +4+4I) {
ANNOTATE ITERATION TASK (task process);
process(al[il);

}

ANNOTATE SITE END();

The following C/C++ code shows a situation where the data items to be processed are in the nodes of a tree.
The recursive tree walk is part of the serial execution of the parallel site - only the process node calls are
executed in separate tasks.

ANNOTATE SITE BEGIN(sitename);
process_subtree (root);
ANNOTATE SITE END(sitename);

void process subtree(node) // in the dynamic extent of the parallel site
{
ANNOTATE TASK BEGIN (task process);
process_node (node) ;
ANNOTATEiTASKiEND();
for (child = first child(node);
child;
child = next child(child))

124

Intel® Advisor User Guide 1

process_subtree(child);

}
In the data parallelism pattern, the parallel site usually contains a single task.

The sample tachyon Advisor demonstrates data parallelism.

Task Parallelism

When work is divided into several activities which you cannot parallelize individually, you may be able to take
advantage of the task parallelism pattern.

NOTE

The word task in task parallelism is used in the general sense of an activity or job. It is just a
coincidence that we use the same word to refer to "a body of code that is executed independently of
other bodies of code".

In this pattern, you have multiple distinct task bodies in a parallel site performing different activities at the
same time.

Suppose that neither the display nor the update operation from the previous example can be parallelized
individually. You still might be able to do the display and the update simultaneously. Consider this C/C++
code:

initialize(data);

while (!done) {
old data = data;
ANNOTATE SITE BEGIN (sitename);
ANNOTATE TASK BEGIN (task display);
display on screen(old data);
ANNOTATE TASK END ()
ANNOTATE TASK BEGIN (task updatedata);
update (data) ;
ANNOTATE TASK END (s
ANNOTATE SITE END();

}

The most obvious shortcoming of the task-parallel pattern is that it cannot take advantage of more cores
than the number of distinct tasks. In this example, any more than two cores would be wasted. On the other
hand, the task parallel pattern may be applicable to programs that simply do not fit the data parallel pattern
- some parallelism may be better than none.

The tasks used in task parallelism are not limited to called functions. For example, consider this C/C++ code
that creates two tasks that separately increment variables X and v:

main() {
ANNOTATE SITE BEGIN (sitename);
ANNOTATE TASK BEGIN(task x);
X++; B B a
ANNOTATEiTASKiEND () e

ANNOTATE TASK BEGIN(task y);
Y++; a a -
ANNOTATE TASK END() ;
ANNOTATE SITE END();
}

The sample stats demonstrates task parallelism.

125

1 Intel® Advisor User Guide

See Also
Mixing and Matching Tasks
Annotations

Mix and Match Tasks

You can combine the data parallel and task parallel patterns. Continuing with the display/update example,
suppose that you can parallelize the update operation, but not the display operation. Then you could execute
the display operation in parallel with multiple tasks from the update operation. Consider this C/C++ code:

initialize(data);

while (!done) {
old data = data;
ANNOTATE SITE BEGIN (sitename);
ANNOTATE TASK BEGIN(task display);
display on screen(old data);
ANNOTATE TASK END () ;
update (data) ;
ANNOTATE SITE END();

}

display on screen(data)

{

}
update (data)

{
for (each block of data) {
ANNOTATE TASK BEGIN (task update);
update the block of data;
ANNOTATE TASK END () ;

}

See Also
Choosing the Tasks
Annotations

Choose the Tasks

When choosing tasks, you should consider task interactions and the factors that influence how large a task
should be. The following sections describe the process of choosing the tasks.

Task Interactions and Suitability

If your tasks access the same memory locations, then, left to themselves, they will tend to trip over each
other. You can solve this by adding synchronization code to make sure the tasks are well-behaved when they

access shared memory locations, but synchronization code can be tedious to add and hard to get right, and it
is easy to end up with tasks that spend more time doing synchronization than doing work.

You can use the Suitability tool to provide performance data that helps you choose your tasks wisely.

It is better to minimize data access conflicts in the first place by choosing your tasks wisely. It can be hard to
tell, just by looking at your code, where all the sharing problems will be, which is why you will learn how to
automate the process by using the Dependencies tool.

However, you can make a good guess whether two proposed tasks are mostly independent of each other or
are completely intertwined.

See Also

How Big Should a Task Be?
Model Threading Parallelism
Dependencies Analysis

126

Intel® Advisor User Guide 1

How Big Should a Task Be?

The ideal task size is very dependent on the details of your program. Here are a few general considerations
to keep in mind.

Task Overhead

In general, if your program can keep most of the cores on your system busy doing useful work, then it will be
using the system about as efficiently as possible. There are two parts to this: keeping the cores busy, and
doing useful work.

It takes time to start a new task. If your tasks are too small, then your program may spend more time
creating tasks than it saves by running them in parallel - the cores are kept busy, but not doing useful work.

Load Balance

On the other hand, very large tasks can reduce parallelism: your parallel program cannot finish any more
quickly than the longest-running task. A rule of thumb is to try to have the number of tasks in a parallel site
be at least several times larger than the number of cores available, so that there will always be some work to
do when a core is free.

Choosing the Right Level

You will often have the opportunity to create tasks at different loop nesting levels or function call depths. This
may provide an easy way to choose your task size. For example, consider the C/C++ code:

for (i = 0; i !'= N; ++i) {
for (j = 0; j !'= N; +4+3) {
x[i, j] = yli, 31 * z[3, il;

The inner loop body is too small to be a useful task. You can view the Suitability Report for a task's Average
Instance Time. The entire inner loop might be more suitable:

ANNOTATE SITE BEGIN (sitename);
for (1 = 0; i < N; ++1i) {
ANNOTATE ITERATION TASK (task process array);
for (3 = 0; J < N; ++3) {
x[i, 3] = yli, 31 * z[3, il;
}
}
ANNOTATE SITE END();

Blocking

If you have a loop which seems like an obvious place to introduce parallelism, but the loop body is too small
to make a good task, consider grouping several iterations together. When you specify a loop body as a
parallel construct,Intel® oneAPI Threading Building Blocks and OpenMP* will automatically group multiple
loop iterations together to create tasks of an appropriate size. Therefore, given a simple loop, the question is
not whether the loop body is the right size for a good task, but whether the total loop execution time can be
divided up into chunks of the right size.

For example, there is only one loop level here, and its body looks too small to be a good task:

for (1 = 0; 1 < 100000; ++i) {
ali] = b[i] * c[i];

127

1 Intel® Advisor User Guide

Go ahead and choose it, and it may run as though you had written it as:

ANNOTATE SITE BEGIN (sitename) ;
for (i = 0; i < 100000; 1 += 1000) {
ANNOTATE ITERATION TASK (task calculate a);
for (J = 1; j < i + 1000; ++3) {
aljl = bl * cljl;
}
}
ANNOTATE_SITE_END() ;

Sizing to Avoid Interactions

It is not uncommon for loop iterations or other potential task bodies to be almost independent at one level,
but have many interactions at other levels. In this case, it may be worth accepting a less than perfect
program gain in exchange for simpler programming and cleaner code.

The outer loop of the Sudoku problem generator repeatedly calls the generate () function to generate
problems. There are opportunities for introducing parallelism at many different levels in the problem
generation function, but the individual calls to generate () are almost perfectly independent, and each call
to generate () takes less than a second. Parallelizing the outermost loop would be a trivial project. No user
is likely to care if it takes 0.8 seconds instead of 0.2 seconds to generate a single problem, and the speedup
for generating more than a handful of problems should be nearly perfect.

Using the Survey Report

Ultimately, choosing your tasks is more of an art than a science. Locations close to the root of the call tree
tend to form larger tasks, but may have more conflicts on shared variables; locations toward the leaves of
the call tree tend to be smaller, causing problems with task overhead, but typically have fewer conflicts. We
can offer some rules of thumb. Start by looking at a function F that uses a significant portion of the time of
the program part you are trying to improve - remember Amdahl's law!

e If almost all of the time spent in F is spent in a block of code that is executed many times in a loop, then
that block of code may be a prime candidate for a data-parallel task.

e If F is basically just a wrapper around a call to a function G, then look at G instead.

e If almost all of the time in F is spent in multiple calls to a function G that is too large to be a good task,
then you may want to enclose the calls to G in a parallel site, but introduce the actual tasks inside G or
another function that is called from G.

e If the time spent in F is distributed across a number of distinct activities, you should consider whether it is
better to apply the task parallelism pattern to F, or to use the multiple parallel sites pattern to look for
parallelism in each of the activities.

Recursion

Recursive algorithms can present a special challenge. The problem occurs when you have a large amount of
time spent in a function that only does a small amount of work in any one invocation, but that is called
recursively a great many times. The actual work may be data-parallel, but the function body is too small to
be a useful task by itself, and the blocking strategy (see Blocking above) is harder to apply to a recursive
algorithm.

The general solution is to use a threshold to control recursive parallelism. For example, a recursive sort might
solve sub-problems in parallel only if they are above a certain threshold size.

See Also
Using Partially Parallel Programs with Intel Advisor Tools
Data and Task Parallelism

128

Intel® Advisor User Guide 1

Use Partially Parallel Programs with Intel® Advisor

Intel® Advisor tools are designed to collect data and analyze serial programs. If you have a partially parallel
program, before you use the Intel® Advisor Suitability and Dependencies tools to examine it to add more

parallelism, read the guidelines in this topic and modify your program so it runs as a serial program with a
single thread within each parallel site.

Run Your Program as a Serial Program

To run the current version of your program as a serial program, you need to limit the number of threads to 1.
To run your program with a single thread:

e With Intel® oneAPI Threading Building Blocks (oneTBB) , in the main thread create a
tbb::task scheduler init init(1); object for the lifetime of the program and run the executable
again. For example:

int main() {
tbb::task scheduler init init(1);
// ...rest of program...

return 0;

}

The effect of task scheduler init applies separately to each user-created thread. So if the program
creates threads elsewhere, you need to create a tbb: :task scheduler init init(1); for that
thread's lifetime as well. Use of certain oneTBB features can prevent the program from running serially.
For more information, see the oneTBB documentation.

e With OpenMP*, do one of the following:

e Set the OpenMP* environment variable OMP_NUM THREADS to 1 before you run the program.
e Omit the compiler option that enables recognition of OpenMP pragmas and directives. On Windows*
0S, omit /Qopenmp, and on Linux* OS omit -openmp.

For more information, see your compiler documentation.

Add or Remove Intel® Advisor Annotations

Intel® Advisor site, task, and lock annotations are used by the Suitability and Dependencies tools. You can
add Intel® Advisor parallel site and task annotations to mark the already parallel code regions. For example,
the nqueens_Advisor sample nqueens cilk.cpp:

ANNOTATE SITE BEGIN (solve);
cilk for(int 1=0; i<size; i++) {
// try all positions in first row using separate array for each recursion
ANNOTATE ITERATION TASK (setQueen);
int * queens = new int[size];
setQueen (queens, 0, 1);
}
ANNOTATE SITE END();

If needed, you can comment out annotations, or add preprocessor directives by using conditional
compilation. For example, use the #ifdef, #ifndef, and #endif preprocessor directives:

// Comment out the next line to hide the annotations.
#define ANNOTATE ON

129

1 Intel® Advisor User Guide

#ifdef ANNOTATE ON
ANNOTATE_SITE_BEGIN(Solve);

#endif

#ifndef ANNOTATE ON

// add parallel code here

#ifdef ANNOTATE ON
ANNOTATEisITEiEND();
#endif

After you add the parallel framework code and test it, you can remove the annotations.

Effect of Parallel Code on Intel® Advisor Tools' Reports
Because Intel® Advisor tools are designed to collect data and analyze serial program targets.

Parallel code that creates one or more threads within any annotated parallel site usually cause the Suitability
or Dependencies tool reports to contain unreliable data. To use these two tools, there must be only a single
thread within each parallel site. Also, when using parallel frameworks that use dynamic scheduling or work
stealing at run-time, execution times can be assigned to the wrong source code.

If you use the Survey tool to profile your program, the Self Time in the Survey Report shows the sum of the
CPU time for all threads. However, because Intel® Advisor's purpose is to analyze serial code, some of the
time used by parallel code may be added to the wrong places. For example, Self Time may be added to the
parallel framework run-time system entry points instead of the caller(s) in the thread that entered the
parallel region. Also in the Survey Report, when examining parallel code, some entry points may be parallel
framework run-time system entry points instead of the expected functions or loops. Similarly, in the Survey
Source window, for a parallel code region the Total Time (and Loop Time) shows the sum of the CPU time
for all threads.

Because Intel® Advisor's purpose is to analyze serial code, in the Suitability Report:

e Intel® Advisor assumes there is only a single thread (no parallelism) within any annotated parallel site,
including its task(s) and lock(s). When only a single thread executes within a parallel site (as expected),
the results for that site may be correct. If the application has multiple parallel sites, and one or more sites
were executed by multiple threads, the next two items apply.

e If multiple threads execute within any parallel site, the reported Maximum Program Gain and that site's
Impact on Program Gain values are not reliable. To obtain correct values, ensure that only a single
thread executes for all parallel sites (see Run Your Program as a Serial Program above).

e If multiple threads execute within a parallel site, the results for that site will be unpredictable and its
values will not be reliable. Also, if one thread executes the parallel site annotations and a second thread
executes the task annotation(s), the site may appear to not have any tasks and the tasks may appear to
not execute within a site. To obtain correct values, ensure that only a single thread executes within each
parallel site (see Run Your Program as a Serial Program above).

¢ Any work-stealing constructs within the site will cause extra time to be added to the suspended site
and/or task. All Suitability Report times are approximate.

Similarly in the Dependencies Report, if any parallel site uses multiple threads, this may prevent certain
problems from being detected and reported by the Dependencies tool. To obtain correct values, ensure that
only a single thread executes within each parallel site (see Run Your Program as a Serial Program above).

See Also
Model Threading Parallelism
Using Intel® Inspector and Intel® VTune™Profiler

130

Intel® Advisor User Guide 1

Annotations

You add Intel® Advisor annotations to mark the places in serial parts of your program where Intel® Advisor
tools should assume your program's parallel execution and synchronization will occur. Later, after you modify
your program to prepare it for parallel execution, you replace these annotations with parallel framework code
that enables parts of your program to execute in parallel.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

Annotations are either subroutine calls or macro uses, depending on which language you are using, so they
can be processed by your current compiler. The annotations do not change the computations of your
program, so your application runs normally.

The three main types of annotations mark the location of:

e A parallel site. A parallel site encloses one or more tasks and defines the scope of parallel execution.
When converted to a parallel code, a parallel site executes initially using a single thread.

e One or more parallel tasks within the parallel site. Each task encountered during execution of a parallel
site is modeled as being possibly executed in parallel with the other tasks and the remaining code in the
parallel site. When converted to parallel code, the tasks will run in parallel. That is, each instance of a
task's code may run in parallel on separate cores, and the multiple instances of that task's code also runs
in parallel with multiple instances of any other tasks within the same parallel site.

e Locking synchronization, where mutual exclusion of data access must occur in the parallel program.

In addition, there are:

e Annotations that stop and resume data collection. Data collection occurs while the target executes. These
annotations allow you to skip uninteresting parts of the target program's execution.
e Special-purpose annotations used in less common cases.

The three Intel Advisor tools recognize the three main types of annotations and the Stop and Resume
Collection annotations. Only the Dependencies tool processes the special-purpose annotations.

Use the parallel site and task annotations to mark the code regions that are candidates for adding
parallelism. These annotations enable the Intel® Advisor Suitability and Dependencies tools to predict your
serial program's parallel behavior. For example:

e The Suitability tool runs your program and uses parallel site and task boundaries to predict your parallel
program's approximate performance characteristics.

e The Dependencies tool runs your program and uses parallel site and task boundaries to check for data
races and other data synchronization problems.

One common use of sites and tasks is to enclose an entire loop within a parallel site, and to enclose the body
of the loop in a task. For example, the following C/C++ code shows a simple loop that uses two parallel site
annotations and one task annotation from the nqueens Advisor sample. The three added annotations and
the line that includes the annotation definitions appear in a bold font below.

#include "advisor-annotate.h"

void solve() {
int * queens = new int[size]; //array representing queens placed on a chess board...
ANNOTATE SITE BEGIN(solve);
for (int i=0; i<size; i++) {
// try all positions in first row
ANNOTATE ITERATION TASK (setQueen);

setQueen (queens, 0, 1i);

}

131

1 Intel® Advisor User Guide

ANNOTATE_SITE_END () ;

}

The following code from the Fortran nqueens sample shows the use of parallel site and task Fortran
annotations, such as call annotate site begin("label"). The three added annotations and the line
that references the annotation definitions module (the use statement) appear in a bold font below.

use advisor annotate

! Main solver routine
subroutine solve (queens)
implicit none
integer, intent (inout) :: queens(:)
integer :: i
call annotate site_begin("solve")
do i=1,size
! try all positions in first row
call annotate iteration_task("setQueen")
call SetQueen (queens, 1, 1)
end do
call annotate_site_end

end subroutine solve

The following code from the C# nqueens sample on Windows* OS systems shows the use of parallel site and
task C# annotations, such as Annotate.SiteBegin ("label") ;. The three added annotations and the line
that allows use of the annotation definitions (using directive) appear in a bold font below.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

using AdvisorAnnotate;

public void Solve ()
{
int[] queens = new int[size]; //array representing queens on a chess board. Index is row
position, value is column.

Annotate.SiteBegin("solve") ;

for (int 1 = 0; 1 < size; i++)

{
Annotate.IterationTask ("setQueen") ;
// try all positions in first row
SetQueen (ref queens, 0, 1i);

}

Annotate.SiteEnd() ;

}

To simplify adding annotations:

e When using the Microsoft Visual Studio* code editor, you can use the Annotation Wizard.

e With any editor, use the annotation assistant in the Survey windows or the No Data message. The
annotation assistant displays example annotated code and build settings that you can copy to your
application's code.

If you manually type annotations, you should place each annotation on a separate line and use the correct
data type for annotation arguments. With C/C++ code, do not place annotations in macros so that references
go to the correct source location.

132

Intel® Advisor User Guide 1

You can experiment by modifying annotations and running the tools again to locate the best places to add
parallelism.

For each source compilation module that contains annotations, in addition to adding the annotations, you
need to:

e In files where you add annotations, add a source line to reference the Intel Advisor file that defines the
annotations:

e For C/C++ modules, include the advisor-annotate.h header file by adding either #include
"advisor-annotate.h" or #include <advisor-annotate.h>.

e For Fortran compilation units, add the use advisor annotate statement.

e For C# modules (on Windows* 0OS), add the using AdvisorAnnotate; directive.

e Specify the Intel Advisor include directory when you build your C/C++ or Fortran application, so the
compiler can find this include file. Similarly, you need to add the C# annotations definition file to your C#
project.

e For native applications, add the build (compiler and linker) settings.

Annotation Types
Annotation Types Summary

You can use different kinds of Intel® Advisor annotations to mark where you propose to have parallel sites,
tasks, locks, or perform special actions. These annotations are:

Parallel site annotations

Parallel task annotations

Parallel lock annotations

Annotations that let you pause and resume data collection
Special-purpose annotations

To be useful, a parallel site must contain at least one task. Code within a parallel task can be executed by
multiple threads independently of other instances of itself and also other parallel tasks. Many tasks are code
within a loop, or they could be a single statement that does an iterative operation. After you use the Survey
or similar profiling tool to locate where your program spends its time, you will see two general types of
parallel code regions (parallel sites):

e A simple loop that requires only a single task. For the common case where the Survey tool identifies
a simple loop structure whose iterations consume much of an application's CPU time and the entire loop
body should be a task, you may only need a single task within a parallel site. Unless your time-consuming
code is not in a loop or has task(s) in a complex loop, start with this simple form. Add annotations to
mark the beginning and end of the parallel site around the loop, and add one task-iteration annotation at
the start of the loop body. This annotation form is the easiest to convert to parallel code.

e Code whose characteristics require multiple tasks. Depending on the application code
characteristics, you may need multiple tasks. For example, you may have statements that can each
become separate tasks, or complex or nested loop structures where you need multiple tasks to meet
scalability requirements. In this case, add site annotations to mark the beginning and end of the parallel
site region and also task annotations that mark the beginning and end of each task.

The two task annotation types use the same parallel site annotations. The following table lists the
annotations by category type, including the syntax for the C/C++, Fortran, and C# languages. Each has a
link to its detailed description.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Optional arguments are identified using square brackets, such as annotation([int expr]).

NOTE

To help you add annotations, use the Intel Advisorannotation assistant in the Survey windows or the
No Data message to copy and add code snippets or the Annotation Wizard if you use the Microsoft
Visual Studio* code editor (see Inserting Annotations Using the Annotation Wizard). You also need to
add the reference to the annotations definitions file.

133

1 Intel® Advisor User Guide

Brief Description

Name

Site and task annotations for a parallel site that contains a loop with a single task:

Start a parallel site that
contains a single task in a
loop.

Mark an iterative parallel
task in a loop. Place this
annotation near the start of
the loop body within the
parallel site's execution.

End a parallel site. The
parallel site terminates only
after all tasks that started
within it have completed.

C/C++: ANNOTATE SITE BEGIN (sitename) ;

Fortran: call annotate site begin(sitename)

C#: Annotate.SiteBegin (sitename) ;

C/C++: ANNOTATE ITERATION TASK (taskname) ;

Fortran: call annotate iteration task(taskname)

C#: Annotate.IterationTask (taskname) ;

C/C++: ANNOTATE SITE END([sitename]); // sitename is
optional

Fortran: call annotate site end

C#: Annotate.SiteEnd() ;

Site and task annotations for parallel site code that contains multiple tasks (all other situations):

Start a parallel site that
contains multiple tasks, or
task(s) within non-loop code
or complex loop code.

Start a parallel task. Must
execute within a parallel site
that contains multiple tasks,
or task(s) within non-loop
code or complex loop code.

End a parallel task. Must
execute within a parallel site
that contains multiple tasks,
or task(s) within non-loop
code or complex loop code.

End a parallel site. The
parallel site terminates only
after all tasks that started
within it have completed.

Lock Annotations: describe sync

Acquire a lock (0 is a valid
address). Must occur within a
parallel site.

C/C++: ANNOTATE SITE BEGIN (sitename);

Fortran: call annotate site begin(sitename)

C#: Annotate.SiteBegin (sitename) ;

C/C++: ANNOTATE TASK BEGIN (taskname) ;

Fortran: call annotate task begin(taskname)

C#: Annotate.TaskBegin (taskname) ;

C/C++: ANNOTATE TASK END ([taskname]); //taskname is
optional

Fortran: call annotate task end

C#: Annotate.TaskEnd () ;

C/C++: ANNOTATE SITE END([sitename]); // sitename is
optional

Fortran: call annotate site end

C#: Annotate.SiteEnd () ;

hronization locations.

134

C/C++:

Fortran:

ANNOTATE LOCK ACQUIRE (pointer-expression);

call annotate lock acquire (address)

Intel® Advisor User Guide 1

Brief Description Name

C#: Annotate.LockAcquire ([int expr]):;
// this C# argument is optional

Release a lock. Must occur

within a parallel site. C/C++: ANNOTATE LOCK_ RELEASE (pointer-expression);
Fortran: call annotate lock release (address)
C#: Annotate.LockRelease ([int expr]);

// this C# argument is optional

Pause Collection and Resume Collection Annotations: lets you pause data collection to skip uninteresting
code.

Pause Collection. The target C/C++: ANNOTATE DISABLE COLLECTION PUSH;

program continues to ’ — - — !

execute. Fortran: call annotate disable collection push ()
C#: Annotate.DisableCollectionPush{() ;

Resume Collection after it C/C++: ANNOTATE DISABLE COLLECTION POP;

was stopped by a Pause : — — — !

Collection annotation. Fortran: call annotate disable collection pop ()
C#: Annotate.DisableCollectionPop () ;

Special-purpose Annotations:
describe certain memory
allocations to avoid false
conflicts, disable reporting of
problems or analysis, or
enable reporting more detail
for memory accesses. These
apply only to the
Dependencies tool. For their
syntax, see the Special-
purpose Annotations help
topic.

See Also

Intel Advisor Annotation Definitions File

Site and Task Annotations for Simple Loops With One Task
Site and Task Annotations for Loops with Multiple Tasks
Adding Annotations in Your Source Code

Lock Annotations

Pause Collection and Resume Collection Annotations
Special-purpose Annotations

Annotating Code for Deeper Analysis

Copying Annotations and Build Settings Using the Annotation Assistant Pane
Inserting Annotations Using the Annotation Wizard

135

1 Intel® Advisor User Guide

Annotation General Characteristics

Usage

Annotations typically expand to calls to one or more functions, with minimal additional code. When you run
the Suitability or Dependencies tools, the calls are instrumented during data collection.

Most annotations must be used in pairs that will execute in a begin-end sequence, such as the parallel site
annotations for a site with a single task:

e For C/C++: ANNOTATE SITE BEGIN (sitename); and ANNOTATE SITE END() ;
e For Fortran: call annotate site begin(sitename) and call annotate site end
e For C#: Annotate.SiteBegin (sitename); and Annotate.SiteEnd() ;

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Any mismatched annotations show up as error during data collection.

For example, if your C/C++ code has an ANNOTATE SITE BEGIN(); that is executed, but no corresponding
ANNOTATE SITE END();, you will see a message, such as: Error: Missing end site when you run the
Suitability or Dependencies tool.

You can also use annotations when they are dynamically paired. This lets you annotate code regions that
might have more than one exit point. For example, consider this parallel site with multiple tasks:

//Show that an end task annotation should be repeated for a jump out of a loop
ANNOTATE_SITE BEGIN (for sitel);
ANNOTATE_TASK BEGIN (for taskA);
for ()
{
if()
ANNOTATE TASK END();
break;
ANNOTATE_TASK END(); // unreachable!

ANNOTATE TASK BEGIN (for taskB);
ANNOTATE_TASK END() ;
ANNOTATE SITE END();

With C/C++, when you add annotations after a loop that executes only one statement without opening and
closing braces ({ and }), add opening and closing braces to allow multi-statement execution of both the
original statement and the added annotation statement.

From a program source perspective, the annotation macros expand as a single executable statement (or to
nothing if null expansion is used). This allows annotations to be used in locations requiring a single statement
safely, as in this example:

if (!initialized)
ANNOTATE RECORD ALLOCATION (my buffer, my buffer size);

Guidelines for Placing Annotations in Source Code

Intel Advisor guidelines for placing annotations in source code are similar to debugger breakpoint limitations.
The rules include:

136

Intel® Advisor User Guide 1

e Place each annotation on a separate statement line. That is, do not place multiple annotations in a single
statement line.
e With C/C++ code, do not place annotations inside preprocessor macros.

The following shows correct coding using one annotation per statement line:

ANNOTATE TASK BEGIN (foo);
call xyz();
ANNOTATE TASK END () ;

If you do not follow these guidelines, you may see unexpected Unmatched annotations in the Dependencies
Report window (see the Troubleshooting topic below) or annotation-related errors in the Suitability Report
window.

Semantics

When you run the Suitability or Dependencies tool to collect interactions between your tasks, the execution
of annotations and their implications for other operations are tracked by the tool during serial execution, and
the results of analysis are displayed in the corresponding Report.

When you run the Dependencies tool, the primary problems of interest are the data interactions that need
attention. However, some semantic errors in the use of the annotations in your program may also be
reported.

See Also

Site and Task Annotations for Simple Loops With One Task...

Dependencies Analysis

Copying Annotations and Build Settings Using the Annotation Assistant Pane
Troubleshooting Unexpected Unmatched Annotations in the Dependencies Report
Fixing Annotation-related Errors Detected by the Suitability Tool

Inserting Annotations Using the Annotation Wizard

Data Sharing Problems

Site and Task Annotations for Simple Loops With One Task

Parallel site annotations mark the beginning and end of the parallel site. In contrast, to mark an entire simple
loop body as a task, you only need a single iteration task annotation in the common case where the Survey
tool identifies a single simple loop that consumes much of an application's time. In many cases, a single
time-consuming simple loop structure may be the only task needed within a parallel site. This annotation
form is also the easiest to convert to parallel code.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

NOTE
If the task's code does not include the entire loop body, or if you need multiple tasks in one parallel
site or for complex loops, use the task begin-end annotation pair to mark each task.

Use the general site/task annotation form for time-consuming code not in a loop, for complex loops
containing task(s), or cases that require multiple tasks within a parallel site.

Syntax: Simple Loops With One Task

Parallel site annotations mark the parallel site that wraps the loop:

C/C++: ANNOTATE SITE BEGIN (sitename); and ANNOTATE SITE END() ;

137

1 Intel® Advisor User Guide

Fortran: call annotate site begin(sitename) and call annotate site end

C#: Annotate.SiteBegin (sitename); and Annotate.SiteEnd () ;

The iteration task annotation occurs within the parallel site. Place this annotation near the start of the loop
body to mark an entire simple loop body as a task:

C/C++: ANNOTATE_ITERATION_TASK(taskname);
Fortran: call annotate iteration_ task(taskname)
C#: Annotate.IterationTask (taskname) ;

For the C/C++ ANNOTATE SITE END(); annotation, the sitename argument is optional.
The sitename and taskname must follow the rules for annotation name arguments:

e For C/C++ code, the sitename must be an ASCII C++ identifier. This should be a name you will
recognize when it appears in Intel Advisor tool reports.

e For Fortran code, the sitename must be a character constant. This should be a name you will recognize
when it appears in Intel Advisor tool reports.

e For C# code, the sitename must be a string. This name should be a string that you will easily remember
when it appears in Intel Advisor tool reports.

Examples: Simple Loops With One Task

The following C/C++ code fragment shows a parallel site for a loop with a single task, where the task
includes the entire simple loop body:

ANNOTATE SITE BEGIN (sitename);

for (i=0; i<N; i++) {
ANNOTATE_ITERATION_TASK(taskname);
func (i) ;

}

ANNOTATE_SITE_END();

The following Fortran code fragment shows a parallel site for a loop with a single task, where the task
includes the entire simple loop body:

call annotate site begin("sitename")
do i=1,size
call annotate iteration task("taskname")
call func(i)
end do
call annotate site end

The following C# code fragment shows a parallel site for a loop with a single task, where the task includes
the entire simple loop body:

Annotate.SiteBegin ("sitename") ;

for (int 1 = 0; 1 < N; i++4) {
Annotate.IterationTask ("taskname");
func (i) ;

138

Intel® Advisor User Guide 1

}
Annotate.SiteEnd() ;

With Visual Studio projects, parallel sites may span project boundaries, but the parallel sites and their related
annotations should be placed within the set of projects that the startup project depends on. You may need to
use the Visual Studio* Project Dependencies context menu item to add appropriate dependencies - see the
help topic Troubleshooting Unexpected Unmatched Annotations.

The nqueens Advisor C++ sample and the nqueens Fortran Fortran sample demonstrate this form of
site/task annotations. For example, the C++ annotated code in nqueens_annotated.cpp:

ANNOTATE SITE BEGIN (solve);

for(int i=0; i<size; 1i++) {
// try all positions in first row
// create separate array for each recursion
ANNOTATE ITERATION TASK (setQueen);
// int * queens = new int[size]; //array representing queens placed on a chess ...
// ADVISOR COMMENT: This is incidental sharing because all the tasks are using ...
setQueen (queens, 0, 1i);

}

ANNOTATE SITE END();

The help topic Annotating Parallel Sites and Tasks describes adding parallel sites and tasks.

See Also

Site and Task Annotations with Multiple Tasks

Annotating Parallel Sites and Tasks

Dependencies Analysis

Annotation General Characteristics

Inserting Annotations Using the Annotation Wizard

Copying Annotations and Build Settings Using the Annotation Assistant Pane
Troubleshooting Unexpected Unmatched Annotations

Site and Task Annotations for Parallel Sites with Multiple Tasks

Parallel site annotations mark the beginning and end of the parallel site. Similarly, begin-end parallel task
annotations mark the start and end of each task region. Use this begin-end task annotation pair if there are
multiple tasks in a parallel site, if the task code does not include all of the loop body, or for complex loops or
code that requires specific task begin-end boundaries, including multiple task end annotations.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Syntax: Parallel Sites with Multiple Tasks

Parallel site annotations that mark the parallel site:

C/C++: ANNOTATE SITE BEGIN (sitename); and ANNOTATE SITE END();
Fortran: call annotate site begin(sitename) and call annotate site end
C#: Annotate.SiteBegin (sitename); and Annotate.SiteEnd () ;

Parallel task annotations that mark each task within the parallel site:

C/C++: ANNOTATE TASK BEGIN (taskname); and ANNOTATE TASK END() ;

139

1 Intel® Advisor User Guide

Fortran: call annotate task begin(taskname) and call annotate task end

C#: Annotate.TaskBegin (taskname); and Annotate.TaskEnd () ;

For the C/C++ ANNOTATE TASK END () ; annotation, the taskname argument is optional.
The taskname must follow the rules for annotation name arguments:

e For C/C++ code, the taskname must be an ASCII C++ identifier. This should be a name you will
recognize when it appears in Intel Advisor tool reports.

e For Fortran code, the taskname must be a character constant. This should be a name you will recognize
when it appears in Intel Advisor tool reports.

e For C# code, the taskname must be a string. This name should be a string that you will easily remember
when it appears in Intel Advisor tool reports.

If you previously used site and task annotations for simple loops with one task and need to convert the task
to this general, multiple task form, replace the single iteration loop annotation with a pair of task begin and
task end annotations that mark the task region. Both forms use the same parallel site annotations.

Examples: Parallel Site, Multiple Tasks Not in a Loop

The stats C++ sample application shows task parallelism with multiple tasks that are in a parallel site but
not in a loop. In this case, several related statements do a lot of computation work and each can be a
separate task:

ANNOTATE SITE BEGIN (MySitel);
cout << "Start calculating running average..."<<endl;
ANNNOTATE TASK BEGIN (MyTaskl);
runningAvg(vals, SIZE, rnAvg);
ANNOTATE TASK END (MyTaskl);

cout << "Start calculating running standard deviation..."<<endl;
ANNOTATE TASK BEGIN (MyTask2);
runningStdDev (vals, SIZE, rnStdDev);
ANNOTATE_TASK_END(MyTaSkZ);
ANNOTATE SITE END(MySitel);

In addition to calling functions that perform the computations, there are other cases where the Survey tool
may indicate that a single statement consumes a lot of CPU time. For example, a Fortran array assignment
for a very large array.

Examples: Parallel Site, Multiple Tasks Within a Loop

The annotations in the following C/C++ code fragment specify that each iteration of the loop can be two
separate tasks, potentially running in parallel with any other iteration and the other task.

ANNOTATE SITE BEGIN (sitename);

for (I=0; i<N; I++) {
ANNOTATE TASK BEGIN (taskl);
funcl (I);
ANNOTATE TASK END () ;
ANNOTATE TASK BEGIN (task2);
func2 (I);
ANNOTATE TASK END () ;

}

ANNOTATE SITE END();

140

Intel® Advisor User Guide 1

The following Fortran code fragment also shows the Fortran site and task annotations, where each iteration of
the loop can be two separate tasks, potentially running in parallel with any other iteration and the other task.

call annotate site begin("sitename ")
do i=1,size
call annotate task begin("taskl")
call funcl (i)
call annotate task end
call annotate task begin("task2")
call func2 (i)
call annotate task end
end do
call annotate site end

The following C# code fragment also shows the C# site and task annotations, where each iteration of the
loop can be two separate tasks, potentially running in parallel with any other iteration and the other task.

Annotate.SiteBegin ("sitename") ;
for (int 1 = 0; 1 < N; i++) {
Annotate.TaskBegin ("taskl");
funcl (1) ;
Annotate.TaskEnd() ;
Annotate.TaskBegin ("task2");
func2 (1) ;
Annotate.TaskEnd() ;

}
Annotate.SiteEnd() ;

The code for each task will be marked between task begin and task end annotation pairs inside a parallel
site. Code that is not executed in any task is executed by the thread entering the site, which may run in
parallel with the identified tasks. In this example, the loop control code that increments i and the compares
i with N is assumed to be executed separately from the explicitly specified tasks. This means that you may
see conflicts between tasks, and the code outside of any task.

When you use the Dependencies tool on the above code, the tool would report data conflicts on global data
accessed by either funcl or func2 on a later loop iteration.

The help topic Annotating Parallel Sites and Tasks describes adding parallel sites and tasks.

Parallel Site and Task Placement
Consider the following C/C++ code:

ANNOTATE SITE BEGIN (sitename); for (i=0; i<N; i++) {

for (i=0; i<N; i++) { ANNOTATE SITE BEGIN (sitename);
ANNOTATE_ITERATION_TASK(taskname); ANNOTATE_TASK_BEGIN(taskfuncl);
func (i) ; funcl (i) ;
} ANNOTATE_TASK_END();
ANNOTATE_SITE_END(); ANNOTATE_TASK_BEGIN(taSkfuncZ);
func2 (i) ;

ANNOTATE TASK END();
ANNOTATE SITE END();

141

1 Intel® Advisor User Guide

In the simple case on the left, the single annotated site encapsulates the entire loop. This causes all of the
iterations of the loop to potentially run all at the same time. Use this simple form of loop annotations (two
site annotations and one iteration task annotation) for loops whenever possible.

In the case on the right, you are not specifying that all of the loop iterations will run in parallel, but rather
that the opportunities for parallelism are only within a single iteration of the loop. In this case, only the
invocations of funcl and func?2 from one loop iteration at a time are considered as sources of potential
parallelism. So, in the case on the right, you will never see conflicts between successive invocations of
funcl, because you are specifying that you do not intend to run them in parallel.

Graphically comparing what the model considers to be in parallel for these two cases, with time progressing
from left to right for each case:

Visual contrast of execution for previous examples

|func2, i=0 | |func2, i=1 | |fu.nc2, i=H-1 |

| func?, i=0

func?2, i=1
|

func?2, i=H-1
|

Each iteration as a separate parallel site — only
the beginning to the end of the site and the two
tasks modeled as bheing in parallel.

YWhole loop as site — all
tasks in loop modeled
as being in parallel.

Time ——ifin TlmE e

The boxes shown overlapping vertically above are modeled as being executed in parallel.

The execution of ANNOTATE TASK BEGIN (taskname) and ANNOTATE TASK END() pair delimits the dynamic
extent of a task. Each time the annotations are executed during Intel Advisor Dependencies or Suitability
analysis to collect interactions between tasks, a dynamic extent is identified that is associated with the most
closely containing dynamic site. Each task is assumed to be independent and able to be run in parallel with
all other tasks inside the containing sites.

Task annotations in a multiple-task parallel site must use the following rules:

e According to execution paths, each begin task annotation must be terminated by an end task annotation.
e Task boundaries must be within parallel site boundaries.
e The argument to the task annotations follow the rules for annotation name arguments.

The only times tasks are not modeled to be executing in parallel are:

1. When tasks are using synchronization, the specific code inside the synchronized region will not be
modeled to be in parallel with other code synchronized using the same lock addresses.

2. When one task creates another task, the code of the parent task executed before the second task is
created is assumed to execute before the task creation. However, any code executed after the task
creation is assumed to be in parallel with the nested task. For example:

ANNOTATE SITE BEGIN (sitename);

for (I=0; i<N; I++) {
ANNOTATE_TASK_BEGIN (taskfuncla);
funcla(I);
ANNOTATE TASK BEGIN (taskfuncla) ;

142

Intel® Advisor User Guide 1

func2 (I);
ANNOTATE_TASK_END();
funclb (I);
ANNOTATE_TASK_END();

}
ANNOTATE SITE END();

In this example, funcla (I) is not in parallel with either func2 (I) or funclb (I). However, func2 (I) and
funclb (I) are modeled as being executed in parallel. This semantic interpretation allows modeling of
recursion where nested calls create tasks that execute in parallel. In this example, note that while this
parallel relationship holds for tasks inside one iteration, tasks from different loop iterations will all be in
parallel because they have no special relationship. For example, funcla (I) from one loop iteration may be
executed concurrently with func2 (I) in a different iteration.

While you are checking Dependencies, the Dependencies tool assumes that all tasks in a given site may
execute in parallel unless there is explicit synchronization. For example, in this case all N iterations of funcl
and func2 will execute in parallel.

ANNOTATEislTEiBEGIN(sitename);

for (I=0; i<N; I++) {
ANNOTATE_TASK_BEGIN(taskfuncl);
funcl (I);
ANNOTATE_TASK_END();
ANNOTATE_TASK_BEGIN(taskfunc2);
func2 (I);
ANNOTATE_TASK_END();

}
ANNOTATE SITE END();

If you want to model other kinds of relationships, for example func?2 invocations will have some form of
serialization, that constraint needs to be expressed using lock annotations that mark a lock that is acquired
and released for the duration of that task's execution.

To select where to add task annotations may take some experimentation, considering factors such as average
instance time and number of iterations (provided in the Suitability Report). If your parallel site has nested
loops and the computation time used by the innermost loop is small, consider adding task annotations
around the next outermost loop. See help topics such as How Big Should a Task Be?.

See Also

Lock Annotations

Inserting Annotations Using the Annotation Wizard

Copying Annotations and Build Settings Using the Annotation Assistant Pane
Annotating Parallel Sites and Tasks

How Big Should a Task Be?

Dependencies Analysis

Fixing Sharing Problems

Lock Annotations

Lock annotations mark where you expect you will be adding explicit synchronization.

143

1 Intel® Advisor User Guide

Syntax
C/C++: ANNOTATE LOCK ACQUIRE (pointer-expression); and
ANNOTATE LOCK RELEASE (pointer-expression);
Fortran: call annotate lock acquire (address) and call
annotate lock release (address)
C#: Annotate.LockAcquire ([int expr]); and Annotate.LockRelease ([int expr]);
(for each annotation, its argument is optional)

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

With C/C++ and Fortran programs, all of the lock annotations use an address value to represent distinct
locks in your final program. You can use the address value 0 to represent a global “lock” that is the same
across the entire program. With C# programs, the argument is an int with a default value of 0 (zero).

Intel recommends that you start by using a default lock, unless you need additional locks for performance
scaling.

The modeling step is aware of the standard locking routines in the Windows* OS API, as well as Intel®
oneAPI Threading Building Blocks (oneTBB) and OpenMP*, so there is no need to annotate existing locking.
Lock annotations are only required for cases where you are not already using synchronization.

The lock-acquire and lock-release annotations denote points in your program where you intend to acquire
and release locks. These annotations take a single parameter, which is an address that you choose.

For example, if you decided you would have a lock used only for glob_variable, you specify the same memory
address for all cases where you are protecting access to glob_variable, to represent that specific lock. The
sample below uses the variable's address to represent the lock that will be associated with glob_variable.

You typically can use one of the following four values, using a finer granularity of synchronization when
necessary:

e The value of 0 (zero) to represent a single unspecified lock that is the same across the entire program.

e The address of a data structure or other aggregation of data. This represents using a single lock for the
collection of data.

e The address of a member of the data collection. This represents finer-grained locking than the previous
value and provides better performance.

e A variable representing a lock as you move toward final parallel code.

This C/C++ example shows the intent for the parallel program to acquire and release a lock around the
access to the global variable glob_variable in each task:

extern int glob variable = 0;

ANNOTATE SITE BEGIN (sitename);
for (I=0; i<N; I++) {
ANNOTATE TASK BEGIN (taskfuncl);
funcl (I);
ANNOTATE LOCK ACQUIRE (&glob variable);
glob _variablet+;
ANNOTATE LOCK RELEASE (&glob variable);
func2 (I);
ANNOTATE TASK END () ;
}
ANNOTATE SITE END();

144

Intel® Advisor User Guide 1

This Fortran example also shows the intent to acquire and release a lock around the access to the global
variable glob_variable in each task:

integer :: glob variable = 0

call annotate site begin("sitename")
do i=1,size
call annotate task begin("taskfuncl")
call funcl (1)
call annotate lock acquire (0)
glob variable = glob variable + 1
call annotate lock release(0)
call func2 (i)
call annotate task end
end do
call annotate site end

This C# example also shows the intent to acquire and release a lock around the access to the global variable
glob_variable in each task:

public int glob variable {
get{return nrOfSolutions;}
set{nrOfSolutions = value;}

Annotate.SiteBegin ("sitename");

for (int 1 = 0; i < N; i++) {
Annotate.TaskBegin ("taskfuncl");
funcl (i) ;
Annotate.LockAcquire();
glob variable++;
Annotate.LockRelease () ;
func2 (i) ;
Annotate.TaskEnd() ;

}

Annotate.SiteEnd () ;

The following C/C++ example is a typical use of a data item's address. It shows the use of an Entity
address, where there is a vector of integers that are each going to have an associated lock, because the
program is counting random elements of the array that will be accessed by different tasks, some of which
may occasionally have the same random value. The text from adding annotations appears in bold below.

struct Entity {
int val;

}i

std::vector<Entity> v;

for (int I=0; i<v.size()*10000; I++) {
int random int = random n();
ANNOTATE LOCK ACQUIRE (&v[random int]);
v[random int].val++;
ANNOTATE LOCK RELEASE (&v[random_int]);

145

1 Intel® Advisor User Guide

Use Lock Annotations

Lock addresses are the basis of lock annotations, and each lock address corresponds to the intent to create a
unique lock, or other synchronization mechanism, in the final program. Tasks sharing a parallel site are
modeled as executing in parallel unless you describe synchronization using lock addresses, or known locking
mechanisms.

See Also

Special-purpose Annotations

Synchronize Independent Updates

Data Sharing Problems

Insert Annotations Using the Annotation Wizard

Copy Annotations and Build Settings Using the Annotation Assistant Pane

Pause Collection and Resume Collection Annotations

The Pause Collection and Resume Collection annotations let you stop and resume data collection to skip
uninteresting parts of the target program's execution. If you pause data collection, the target executable
continues to execute until you resume data collection. Pausing data collection minimizes the amount of data
collected and speeds up the analysis of large applications.

In addition to these annotations, you can click certain buttons on the side command toolbar to pause or
resume data collection:

e You can start the Survey and Suitability tools with data collection either paused or enabled. For example,
the Start Paused button starts executing the target being analyzed with data collection (analysis)
disabled. Also, once the tool is started, you can pause and resume data collection by using the Pause or
Resume buttons or by executing the equivalent Pause Collection and Resume Collection annotations.

e You start the Dependencies tool with data collection enabled, but you can pause data collection either by
using the Pause button or by executing the equivalent Pause Collection annotation. You can add Pause
Collection and Resume Collection annotations as described below.

Pause Collection

This annotation completely stops the analysis of your program until the matching Resume Collection (disable-
collection-pop) annotation is executed. Use this annotation to reduce the analysis overhead for certain
uninteresting parts of your program. This annotation is recognized by the Dependencies, Survey, and
Suitability tools. Because this annotation completely disables monitoring of most annotations, add it carefully
in your source code, such as outside a parallel site. If there are multiple pushes, all have to be popped before
re-enabling collection.

Syntax:
C/C++: ANNOTATE DISABLE COLLECTION PUSH;
Fortran: call annotate_disable collection push ()
C#: Annotate.DisableCollectionPush () ;

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

This annotation takes no arguments.

NOTE
For C/C++, this annotation does not have an argument list.

146

Intel® Advisor User Guide 1

Resume Collection

This annotation resumes the analysis previously stopped by a Pause Collection (disable-collection-push)
annotation. This annotation is recognized by the Dependencies, Survey, and Suitability tools. Because the
Pause Collection annotation completely disables monitoring of most annotations, add this Resume Collection
annotation carefully in your source code, such as outside a parallel site.

Syntax:
C/C++: ANNOTATE DISABLE COLLECTION POP;
Fortran: call annotate disable collection pop ()
C#: Annotate.DisableCollectionPop () ;

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

This annotation takes no arguments.
Special-purpose Annotations

All Intel Advisor special-purpose annotations are recognized by the Dependencies tool, which observes
memory accesses in great detail. Some of these annotations prevent the Dependencies tool from reporting
all or specific data sharing problems, while one (Observe Uses of Storage) provides more detail about
memory accesses.

NOTE
In the C/C++ syntax descriptions below, addresses and sizes are C++ expressions. Similarly, the
Fortran var is a Fortran integer address.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

This topic describes the following special-purpose annotations:

Inductive Expressions Uses
Reduction Uses

Observe Uses of Storage

Clear Uses of Storage

Disable Observation Annotations
Enable Observation Annotations
Memory Allocation Annotations

Inductive Expressions Uses

Induction variables (such as ++i) can often be eliminated when you add parallel framework code. Use this
annotation to disable reporting data sharing problems for the specified memory region. This annotation is
only recognized by the Dependencies tool.

Terminate this annotation with a Clear Uses of Storage annotation.

Syntax:
C/C++: ANNOTATE INDUCTION USES (address, size);
Fortran: call annotate induction uses(var)
C#: Not supported

147

1 Intel® Advisor User Guide

e address is a C++ identifier or expression that provides information about the memory region for this
annotation.

e size is a C++ identifier or expression that provides information about the memory region for this
annotation.

e var is a Fortran integer address that provides information about the memory region for this annotation.

Reduction Uses

Reduction variables (such as sum += data[i]) can often be replaced with reduction operations when you
add parallel framework code. Use this annotation to disable reporting data sharing problems for the specified
memory region. This annotation is only recognized by the Dependencies tool.

Terminate this annotation with a Clear Uses of Storage annotation. For example, with C/C++ code:

ANNOTATE REDUCTION USES (&sum, 4);
sum += a[i];
ANNOTATE CLEAR USES (&sum) ;

Syntax:
C/C++: ANNOTATE REDUCTION USES (address, size);
Fortran: call annotate reduction uses(var)
C#: Not supported

e address is a C++ identifier or expression that provides information about the memory region location for
this annotation.

e size is a C++ identifier or expression that provides information about the memory region location for this
annotation.

e var is a Fortran integer address that provides information about the memory region for this annotation.

Observe Uses of Storage

Use this annotation to report all accesses to the specified memory region. For example, this can help you find
all of the uses of a variable to determine how you should refactor your code. This annotation gets reported as
a Memory watch remark message in the Dependencies Report. This annotation is only recognized by the
Dependencies tool.

NOTE
For performance reasons, this annotation may not report memory access for variables stored on the
stack.

To terminate this annotation, add a Clear Uses of Storage annotation.

Syntax:
C/C++: ANNOTATE OBSERVE USES (address, size);
Fortran: call annotate observe uses(var)
C#: Not supported

e address is a C++ expression that provides information about the memory region location for this
annotation.
e size is a C++ expression that provides information about the memory region location for this annotation.

148

Intel® Advisor User Guide 1

e var is a Fortran integer address that provides information about the memory region for this annotation.

Clear Uses of Storage

Use this annotation to terminate these annotations: Inductive Expressions Uses, Reduction Uses, and
Observe Uses of Storage. For example, when the C/C++ ANNOTATE CLEAR USES () ; annotation terminates
ANNOTATE OBSERVE USES () ;, the Dependencies tool stops reporting all uses of the specified variable. This
annotation is only recognized by the Dependencies tool.

Syntax:
C/C++: ANNOTATE CLEAR USES (address) ;
Fortran: call annotate clear uses(var)
C#: Not supported

e address is a C++ identifier or expression that provides information about the memory region location for
this annotation.
e var is a Fortran integer address that provides information about the memory region for this annotation.

Disable Observation Annotations

This annotation disables the reporting of problems until the matching Enable Observation Annotation is
executed. After executing this annotation, the Dependencies tool does not report problems but continues to
monitor other annotations so it can resume reporting problems if a matching Enable Observation Annotation
is executed. This can be useful to suppress Dependencies problems that are false-positives or not useful in
your program. Unlike ANNOTATE CLEAR_USES; - which applies to a specific memory area - this annotation
remains active until a disable-observation-pop annotation is executed to enable annotations. This annotation
is only recognized by the Dependencies tool.

Syntax:
C/C++: ANNOTATE DISABLE OBSERVATION PUSH;
Fortran: call annotate disable observation push()
C#: DisableObservationPush () ;

This annotation takes no arguments.

Enable Observation Annotations

This annotation enables the reporting of Dependencies stopped by a previous Disable Observation Annotation
was executed to disable observation annotations. This annotation is only recognized by the Dependencies
tool.

Syntax:
C/C++: ANNOTATE DISABLE OBSERVATION POP;
Fortran: call annotate disable observation pop ()
C#: Annotate.DisableObservationPop () ;

This annotation takes no arguments.

149

1 Intel® Advisor User Guide

Memory Allocation Annotations

Memory allocation annotations apply only to C/C++ programs. They describe non-standard or user-defined
memory allocations to avoid false conflicts reported by the Dependencies tool. Only use these Memory
allocation annotations if you see false conflicts related to memory allocation in the Dependencies tool. This
annotation is only recognized by the Dependencies tool.

Heap-allocated memory can be freed and then reused. If the same memory region is allocated during one
task, then freed, and then re-allocated for use by a second task, this can confuse Dependencies tool analysis,
because it appears as if two threads were accessing the same parallel memory region without
synchronization. When the program runs in parallel runs in parallel, each thread could allocate different
memory, so there is not really a data race.

The Dependencies tool understands the standard library memory allocation routines, such as malloc and
free, operator new, and so on. However, if you have a user-defined memory allocator, the Dependencies tool
may not accurately understand the memory relationships between different tasks. If your application utilizes
a user-defined memory allocator, you may need to use these annotations to help the Dependencies tool
understand the relationships. You place:

e ANNOTATE RECORD ALLOCATION after a call to your non-standard or user-defined allocator.
e ANNOTATE RECORD DEALLOCATION before the call to your non-standard or user-defined deallocator.

If you do not have such an allocator you can skip these annotations.

If you do have a user-defined memory allocator and you omit these annotations, you may see the effects as
Memory reuse problems for the storage that is actually allocated by your allocator, and Data
communication problems for the control information used by the allocator.

Syntax:
C/C++: ANNOTATE RECORD ALLOCATION (address, size); and
ANNOTATE RECORD DEALLOCATION (address) ;
Fortran: Not supported
C#: Not supported

ANNOTATE RECORD ALLOCATION (address, size); specifies the storage allocated by a user-memory
allocator with a specific address and size:

1. The address is a C++ expression that provides information about the memory region location for this
annotation.

2. The size is a C++ expression that provides information about the memory region size for this
annotation.

Use ANNOTATE RECORD DEALLOCATION (address) ; each time your deallocator is freeing memory.

Static Loop Scheduling Annotations

Loop scheduling annotation inform the Suitability tool that the following loop will be divided into equal-sized
(or as equal as possible) chunks. By default, chunk size is loop_count/number_of_threads.

Syntax:
C/C++: ANNOTATE AGGREGATE TASK;
Fortran: Not supported
C#: Not supported

See Also

Tips for Annotation Use with C/C++ Programs

150

Intel® Advisor User Guide 1

Pause Collection and Resume Collection Annotations

Annotation General Characteristics

Annotation Types Summary

Inserting Annotations Using the Annotation Wizard

Copying Annotations and Build Settings Using the Annotation Assistant Pane

Annotation Definitions Files
Intel® Advisor provides macro or routine definitions that enable use of its annotations for each language:

e For C/C++, the advisor-annotate.h header file defines macros that begin with ANNOTATE , so you can
use annotations such as ANNOTATE SITE BEGIN() ;.

e For Fortran, the advisor annotate module declares subroutines starting with annotate , so you can
call annotations such as annotate site begin().

e For C# on Windows* OS systems, the AdvisorAnnotate header declares an Annotate class containing
member routines, so you can use annotations such as Annotate.SiteBegin() ;.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Reference the Annotation Definitions from Your Source Files

Before you add Intel® Advisor annotations into your source files, you need to reference the definitions for the
Intel® Advisor annotations:

e For C/C++, add: #include "advisor-annotate.h" or #include <advisor-annotate.h> (see
Including the Annotations Header File in C/C++ Sources).

e For Fortran, add: use advisor annotate

e For C#, add: using AdvisorAnnotate; (Windows OS systems only)

Where to Add USE Statements in Fortran Programs

Fortran does not have file scope declarations, so the USE statement needs to be inside the subroutine,
function or main program where the annotation(s) appear. For example:

program F_example

! The main program does not contain annotations, do not add use advisor annotate here!
! some code .

|

subroutine F_sub

! This subroutine contains annotations, so add the use advisor annotate statement

use advisor annotate

! some code .

! add Intel Advisor site and task annotations around compute intensive code

! For example, begin a parallel site: call annotate site begin(sitel)
|

end subroutine F sub
! some code .
end program F example

If the call is in @ module procedure, the USE statement can be at the module level. For more details about
placing USE statements, see your Fortran compiler documentation.

151

1 Intel® Advisor User Guide

Specify Build Settings

Specific build settings are needed for each language. Certain build settings are needed for each module that
contains Intel® Advisor annotations, such as specifying the directory where the annotations definitions are
located. For C/C++ and Fortran applications, other build (compiler and linker) settings are needed for all
modules in an application, such as full debug information. Read the Build Settings... topics by clicking the
links below under See Also for your language.

Redistribute the Annotations Definition File(s)

You only need annotations in your code when you are using the Intel® Advisor Suitability and Dependencies
tools to predict your serial program's parallel behavior. Before you distribute your application, you will
typically replace these annotations when you add the parallel framework code. However, because the
annotations do not change how your applications runs unless you use Intel® Advisor tools, you can distribute
your application with the annotations still present.

For information about redistributing the annotation definition files, see the installed End User License
Agreement (EULA.rtf or EULA. txt) and the redist. txt file installed in the Intel® Advisor. ../
documentation/<locale> directory.

Special Considerations for C/C++ Applications
With C/C++ programs:

e If your program encounters errors when you include the advisor-annotate.h file, see Handling
Compilation Issues that Appear After Adding advisor-annotate.h (primarily for Windows systems).

e On Windows OS systems: If you do need to modify the advisor-annotate.h file, you can add a copy
of it for a specific project or solution. If the version of advisor-annotate.h changes, you will need to
update your copies of the file. See Adding a Copy of the Annotations Include File to Your Visual Studio
Project.

If you do not need to modify this file, you can reference the same installed advisor-annotate.h from
multiple projects or solutions as a read-only file. If you use the Intel® Advisor environment variable and
the version of Intel® Advisoradvisor-annotate.h changes, you only need to change this reference if the
environment variable name changes, such as for a major version. Thus, using a read-only version can
minimize future maintenance.

¢ On Linux* OS systems: Except in very rare circumstances, you can reference the same installed
advisor—-annotate.h from multiple projects or solutions as a read-only file.

e Since the annotations do not change the values computed by your program, you can change the
expansions of the macro, or suppress expansion altogether, as described in Controlling the Expansions in
advisor-annotate.h.

Reference the Annotations Definitions Directory

You need to specify the directory containing the Intel® Advisor definition file as an additional include directory
when you compile your program. Intel® Advisor installs its annotation definition files into a default directory
on your system. For example:

e With a Visual Studio project or solution for a C/C++ or Fortran application, you need to specify the
property Additional Include path. You can use the environment variable ADVISOR <version> DIR
followed by the include directory.

e With the C/C++ or Fortran command line, use the compiler option -Idir (Linux* OS) or /1dir (Windows*
0S), where dir is the directory containing the annotation definition files. You can use the environment
variable ADVISOR <version> DIR followed by the include directory.

e With Fortran modules, you also need to specify the library name and directory of the annotations
definitions to the linker.

e With a Visual Studio project or solution for a C# program, you need to specify Properties > Add >
Existing Item and browse to and select the annotations definitions file.

152

Intel® Advisor User Guide 1

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Tip
For the most current information on optimal C/C++ and Fortran build settings, see Build Your Target
Application.

Add a Copy of the C/C++ Annotation Definition File to Your Visual Studio* Project

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

If you do not want to refer to the installed C/C++ annotation include header file, you can reference a
solution- or project-specific copy of it.

To add a project-specific annotations include file to your Visual Studio project:

1. In Solution Explorer, right-click the project where you want to create the Intel® Advisor annotation
header file.

Click Add > New Item... The Add New Item dialog box opens.
Under Installed Templates, click Intel Advisor [version].

In the middle column, click advisor-annotate.

Type a file name for this include file, such as advisor-annotate.h for the C/C++ header file.

S n ok WN

Verify the directory containing the solution- or project-specific header file and click Add.

In Solution Explorer, a copy of the header file appears as a file under the project folder.

See Also
Including the Annotations Header File in C/C++ Sources
Inserting Annotations Using the Annotation Wizard

Include the Annotations Header File in C/C++ Sources

When you add annotations to your C/C++ source files, you also need to include the Intel® Advisor annotation
header file advisor-annotate.h in those files. Use the code editor to type the line or use the context menu
item to add a #include directive.

To include the annotations C/C++ header file, specify one of the following forms listed below:

Use the quoted form to have the preprocessor first #include "advisor-annotate.h"
search for the header file in the same directory as
the source file that contains the #include
directive, and then other directories (see your
compiler documentation for details).

Use the angle bracket form to have the #include <advisor-annotate.h>
preprocessor first search for the header file in the
directory specified by the /I option (Additional
Include Directories), and then other directories (see
your compiler documentation for details).

To use the include file with Fortran sources, see Intel® Advisor Annotation Definitions File.

153

1 Intel® Advisor User Guide

See Also
Insert Annotations Using the Annotation Wizard

Set Intel Advisor Environment Variables Use this topic to get guidance on setting up environment
variables for Intel® Advisor.

Add Annotations into Your Source Code
You can add Intel® Advisor annotations in your source code by:

e Copying annotations with the annotation assistant in the Survey Report window, Survey Source
window, or the No Data message. Use the annotation assistant to copy the main annotations for parallel
sites, tasks, and locks. For example, the annotation assistant appears in the lower part of the Survey
Report window in the Assistance tab.

e On Windows* OS only: When using the Visual Studio* code editor, you can use the Annotation Wizard
to select an annotation type and add the annotations and their arguments into your code. You can use the
Annotation Wizard to add parallel site, task, lock, pause/resume data collection, and special-purpose
annotations.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

NOTE

If your sources include huge source files that contain annotations, be aware that only the first 8 MB of
each file will be parsed for annotations. If not all of your annotations are being parsed in such huge
source files, consider breaking each huge source file into several source files.

Insert Annotations Using the Annotation Wizard

Adding annotations requires you to reference the annotation definitions include file as well as include it from
each source file that contains Intel® Advisor annotations.

NOTE
The Annotation Wizard is supported only in the Microsoft Visual Studio* code editor. Alternatively, you
can copy annotation code snippets using any editor.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

Use the annotation wizard to add Intel® Advisor annotations to your program.

1. In the Visual Studio* editor, select the code section that you wish to annotate.

2. Right-click to open the context menu and select Intel Advisor [version]> Annotation Wizard...
The Annotation Wizard opens with the default Annotate Site - select task annotations below
annotation selected:

154

Intel® Advisor User Guide 1

7.
8.

Annotation Wizard [7 =]
Choose the annotation type: [Amouhe Site only - select task srnotabons below x|
otate Site onh task annotations belo
Example: Annotate Task, smple iteration task definition
- Annotate Task, complex or multiple task definition

Annotate Lock
Site and Iteration Task Snippet, single iteration task in loop
te_.Site and Tasks Snippet, code with multiple tasks
ize -Annotate Colection Pause
Annotate Collection Resume
= Annotate Inductive Expressions
P EEY 8ll Iasngtate Reductions
call SetQuiAnnotate Lises of Storage
end do Annotate Clear Uses of Storage
anotate /Annotate Observations Disable
"~ —|Annotate Observations Enable
Insert & reference to the annotation definitons
ubroutine solve

do i=1,
call annot.

166 d program nQueens

Marks the start and end of a loop parallel site that contains multiple tasks.

#An effective parallel site typically containg a hotspot that consumes much of your program's
CPU time. To distribute these frequently executed instructions to different tasks that can run
at the same time, your parallel site is not usually located at the hotspot, but higher in the call
graph.

next | [concel |

From the Choose the Annotation Type drop-down, choose the appropriate annotation type. For
example, if you want to add the parallel site (parallel code region) annotations and a single task
annotation within that site, start by selecting the site code block and choose Site and Iteration Task
Snippet, single iteration task in loop. In other cases, you may need to add two separate
annotations - one for the site and one for the task(s). In this case, after adding them, move individual
annotation lines around your existing site and task(s) code.

Your code appears in the Example section of the dialog, with the annotation line(s) highlighted in red
font.

Click Next to configure the parameters of the opening annotation line.

For Annotation types that include parameters, page 2 of the wizard appears. Site, task, and other
annotations take name arguments. You should replace the added name with a name that helps you
quickly identify its source location. For example, if MySitel is the argument to a site annotation,
replace it with a meaningful function or loop name. The added name must be unique amongst the
annotations in this project. For Annotation types that do not include parameters, go to step 8.

Specify the parameter values for the first parameter in the Annotation type, or use the default text that
appears in the wizard.

The highlighted annotation line now has your specified parameter value entered in the annotation line.
Click Next to configure, or keep the default text for the next parameter. Repeat for all the parameters.
The highlighted annotation line now has all parameters filled in with values entered in the annotation
line.

Click Next to go to page 3 of the wizard and review the annotation line(s) before adding it to you code.
Click Finish to add the annotation line with your specified parameters to your code.

The Wizard closes and the editor shows the annotation lines added to the code.

The annotation line(s) are added in the code editor.

If a loop only executes a single statement and does not contain an opening brace ({) to allow multi-
statement execution, add braces ({ and }) around the existing statement and the annotation.

Code After Adding a Pair of Parallel Site Annotations

The following screen capture shows the C/C++ annotation lines for an annotation of type Annotate Site,
where the site name MySiten parameter was replaced by typing a meaningful name queens:

155

1 Intel® Advisor User Guide

Fwoid setgueen(int gqueens[], int row, int col) |
-? /fcheck all previously placed rows for attacks

FFADVISOR COMMENT: The accesses to the "gueens™ array in this function create an
SFADVISOR COMMENT: Each task should hawve its own copy of the "gquesns" array
J/ADVISOR COMMENT: Look at the solve() function to see how to fix this issue
EANNOTATE_SITE_BEGIN[queens]ﬂ
“Eor(int 1=0; i<rows i+46 1

S wertical attacks

if [(gueens[i]==col)] {

return;

i
J4 diagonal attacks
if (absigueens[i] -col) == (row-1i) | {
return;
i
i
| EANNOTATE_SITE_END[J:E
B J4 coluwmn i= ok, =Set the queen
J/ADVISOR COMMENT: See comment at top of function
gqueens[row] =col;

Annotation Wizard - Page 1

To access this dialog box: in the Visual Studio code editor, right-click to open the context menu, and select >
Annotation Wizard.

The Annotation Wizard helps you add annotations into your code. After you are done adding annotations,
rebuild your program.

Use page 1 of the wizard to select the type of annotation from the Choose the annotation type drop down
list.

The wizard shows the annotation line(s) that will be added into your code, in red font.

e For annotations that have start and end lines, it adds them around your selected code lines with
placeholders for the parameters.

e For annotations that have only one ling, it adds that annotation line before your selected code line, with
placeholders for the parameters.

After choosing the annotation type, click Next to go to the next wizard page and fill in the parameters for the
annotation.

See Also
Annotation Wizard - Page 2
Annotation Wizard - Page 3

Annotation Wizard - Page 2

The Annotation Wizard helps you add annotations into your code. After you are done adding annotations,
rebuild your target executable.

Use page 2 of the wizard to define the annotation parameters. Replace the placeholder text in the Specify
annotation parameter field with the parameters you want to define for the annotation, or keep the default
text. For example, for an Annotation Site annotation, replace the <site name> placeholder text with a
meaningful site name.

The wizard shows your parameters within the annotation line(s).

See Also

e Annotation Wizard - Page 1
e Annotation Wizard - Page 3

Annotation Wizard - Page 3

156

Intel® Advisor User Guide 1

The Annotation Wizard helps you add annotations into your code. After you are done adding annotations,
rebuild your program.

Use page 3 of the wizard to check the annotation line(s) that you defined using the wizard and verify that the
line(s) and insertion location(s) are correct:

e If you are satisfied with the annotation line(s), click Finish to add the line(s) to your code.

e To revise the annotation, click Back and revise the annotation type, or the parameters defining the
annotation.

e To change the location of the added lines, click Cancel, select a different range of code lines and right-
click and choose Intel Advisor [version]> Annotation Wizard to add annotation lines around the new
selection.

Copy Annotations and Build Settings Using the Annotation Assistant Pane

The Intel® Advisor provides an annotation assistant near the bottom of the Survey Report and Survey
Source windows, as well as with the No Data message. Use this assistant to view and copy selected
annotated code snippets and build setting information into a code editor.

The assistant provides a drop-down list under Example: from which you select one of the following:

Select This To Do This
Iteration Loop, View and copy an annotation code snippet for a simple loop structure, where the
Single Task task's code includes the entire loop body. Use this common task structure when

only a single task is needed within a parallel site. For example code, see the help
topic Site and Task Annotations for Simple Loops With One Task.

23 Copy to Clipboard

Click the button to copy the selected snippet to the
clipboard.
Loop, One or More View and copy an annotation code snippet for a loops where the task code does
Tasks (bounded) not include all of the loop body, or for complex loops or code that requires

specific task begin-end boundaries, including multiple task end annotations. Also
use this structure when multiple tasks are needed within a parallel site. For
example code, see the help topic Site and Task Annotations for Parallel Sites
with Multiple Tasks.

=3 Copy to Clipboard

Click the button to copy the selected snippet to the
clipboard.
Function, One or View and copy an annotation code snippet for code that calls multiple functions
More Tasks (task parallelism). Use this structure when multiple tasks are needed within a
(bounded) parallel site. For example code, see the help topic Site and Task Annotations for

Parallel Sites with Multiple Tasks.

=3 Copyto Clipboard

Click the button to copy the selected snippet to the
clipboard.
Pause/Resume View and copy an annotation code snippet whose annotations temporarily pause
Collection data collection and later resume it. This lets you skip uninteresting parts of the

target program's execution to minimize the data collected and speed up the
analysis of large applications. Add these annotations outside a parallel site.

23 Copy to Clipboard

Click the button to copy the selected snippet to the
clipboard.

Build Settings View and copy build settings. The Build Settings are specific to the language in
use.

Click the 53 Copy to Clipboard

clipboard.

button to copy the selected snippet to the

157

1 Intel® Advisor User Guide

Site, task, and other annotations take name arguments. You should replace the placeholder name with a
name that helps you quickly identify its source location. For example, in place of MySite5 in the argument to
a site annotation, replace it with a meaningful function or loop name. The name you add must be unique
amongst the annotations in this project.

Insert Annotations in the Visual Studio* Code Editor

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

To add Intel® Advisor annotations into your source files, you can use the Visual Studio* code editor. Intel®
Advisor simplifies the process of adding annotations so you do not need to type the annotation names.
Alternatively, you can use the annotation assistant in the Survey Report or Survey Source windows, or when
using the Visual Studio code editor, the Annotation Wizard (on Windows* OS systems). Alternatively, you can
type the exact macro name and its arguments manually.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

To add Intel® Advisor annotations:

1. Open the source file into which you want to add Intel® Advisor annotations in your code editor. You
should start with the outermost code regions, such as a parallel site, and then add the tasks within the
boundaries of the enclosing site.

2. Select the code region around which you will add your first annotation, such as a parallel site. Carefully

include the correct group of lines, including any opening and closing braces ({ and }) needed. For
example:

Fwoid solwel(] {
int * gueens = new int[size]; /Sarray repre

AOADVISOR COMMENT: When surveying this is t©
= AOADVISOR COMMENT: Uncomment the four annot
o AOADVISOR COMMENT: Don't forget to uncorhnen

i) o
tions in first row

@, al) g

3. Within the highlighted code region, right-click the mouse to display the context menu. Select Intel
Advisor [version] and the type of annotation to be added, such as Intel Advisor [version]>
Annotate Site. For example:

4. This adds the selected type of annotations. For the begin site annotation, Intel® Advisor adds a unique
annotation identifier as an argument.

158

Intel® Advisor User Guide 1

MINOTATE 3ITE BEGIN (My3itel):
for(int i=0; i<size; i++) {1

L
f/ try all positions in first row

o,

LT
i
ZetQueen (queens, i):

ANNOTATE SITE END (MySitel)

You should replace the added name with a name that helps you quickly identify its source location. For
example, in place of MySitel in the argument to ANNOTATE SITE BEGIN () and

ANNOTATE SITE END() shown above, you might instead type the word solve (the function name). The
added name must be unique amongst the annotations in this project. Annotation nhame arguments for:

e C/C++ code use an ASCII C++ identifier.
e Fortran code use a character constant.
e C# code use a string (Windows OS only)

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Choose a string that you will easily remember when it appears in Intel Advisor tool reports. Other
annotations use address or size arguments.

5. To add more annotations in the same file, repeat this process from step 2. To add annotations in a
different file, repeat this process from step 1.

This enables you to quickly add annotations into the appropriate source files.

This wizard provides only the more frequently used annotations, so some annotations are not available in this
wizard. Either use the Survey windows' annotation assistant to copy other annotations or type the
annotations into your code editor.

If a C/C++ loop only executes a single statement and does not contain an opening brace ({) to allow multi-
statement execution, add braces ({ and }) around the existing statement and the annotation.

See Also

Annotation General Characteristics

Inserting Annotations Using the Annotation Wizard

Copying Annotations and Build Settings Using the Annotation Assistant Pane
Annotation Types Summary

Insert Annotations in a Text Editor

To add Intel® Advisor annotations into your source files on a Linux* system, you can use any text editor.
Intel® Advisor simplifies the process of locating where to add annotations.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

To add Intel® Advisor annotations:

1. Open the Intel® Advisor GUI and the relevant project.

2. In the File menu, select Options.

3. Select Editor to display the Options - Editor dialog box. Follow the instructions to associate an editor
with your source language(s).

159

1 Intel® Advisor User Guide

4. For your project, open the Survey Source window.

5. Double-click a source line to display the specified editor opened to the corresponding source location.

6. Use the annotation assistant pane in the lower part of the Survey Source window to select the type of
annotation you want to add.

7.

Copy the selected annotations from the annotation assistant pane by clicking the =2 Copy te Clipboard

button.
8. Paste the copied annotations into your editor.
9. You may need to move some annotation lines around.
10. Repeat as needed for other annotations from step 4.

This enables you to quickly add annotations into the appropriate source files.
See Also
Annotation General Characteristics

Annotation Types Summary
Copying Annotations and Build Settings Using the Annotation Assistant Pane

Tips for Annotation Use with C/C++ Programs

The following topics provide tips related to using annotations with C/C++ programs:

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

e Depending on your particular environment, you may want to control the expansion of macros in advisor-
annotate.h by using the ANNOTATE EXPAND NULL environment variable. See the help topic Controlling
the Expansion of advisor-annotate.h.

e Tips for Windows* OS only:

e Because the advisor-annotate.h header file includes windows.h, including advisor-annotate.h
may cause type and symbols conflicts, which result in unexpected compiler messages. See the help
topic Handling Compilation Issues that Appear After Adding advisor-annotate.h.

e If you run into certain unexpected problems, you need to learn how advisor-annotate.h and
libittnotify.dll interact. See the help topic advisor-annotate.h and libittnotify.dll.

Control the Expansion of advisor-annotate.h

Depending on your particular environment, you may want to control the expansion of C/C++ macros in
advisor-annotate.h at the inclusion site.

Defining ANNOTATE EXPAND NULL before you include advisor-annotate.h causes the annotation macros to
have a null expansion, which will remove the actions from your code. If you have a project where some
configurations, or some users, want to have annotations, while others should not have them present, this
control may be helpful.

#define ANNOTATE EXPAND NULL
#include "advisor-annotate.h"

You can also do this by defining the value as part of your compilation command using the /D option. For
example:

/DANNOTATE EXPAND NULL
See Also
Handling Compilation Issues that Appear After Adding advisor-annotate.h

Set Up Project
Including the Annotations Header File in C/C++ Sources

160

Intel® Advisor User Guide 1

Handle Compilation Issues that Appear After Adding advisor-annotate.h

NOTE
This topic primarily applies to Windows systems. It is possible for similar errors to occur on Linux
systems.

Symptoms

On Windows* systems, the advisor-annotate.h header file includes windows.h to define some types and
functions. As a result, in some cases including advisor-annotate.h may cause compilation errors. For
example, the following conflict for the type UINT:

error C2371: ‘UINT' : redefinition; different basic types

On Linux systems, something similar could occur under certain very specific conditions when using a different
header file for operating system threading software.

Possible Correction Strategies

To fix this problem, you can use a declaration/definition approach, where all uses of advisor-annotate.h
other than one generate a set of declarations, and windows.h is only needed in a single implementation
module. In all cases, you #define either ANNOTATE DECLARE or ANNOTATE DEFINE just before the
#include "advisor-annotate.h" as follows:

1. In nearly all modules that contain annotations, insert #define ANNOTATE DECLARE just before
#include "advisor-annotate.h". This causes advisor-annotate.h to declare an external
function, and not include windows.h (or Linux equivalent), which avoids the type/symbol conflicts with
the operating system threading header file, such as windows.h.

2. In a single module that either does not include annotations or does not have type/symbol conflicts with
windows.h, you insert #define ANNOTATE DEFINE just before #include "advisor-annotate.h".
This causes advisor-annotate.h to define the global function to resolve the external reference and
the #include "advisor-annotate.h" is the only one that uses the operating system threading
header file windows.h (or Linux equivalent). These two lines can be placed in an otherwise empty . cpp
file.

One way to do this is to add an empty .cpp to your project with two lines in it, shown as empty.cpp
below.

For example, on Windows systems:

//File foo.cpp/.h:
// Insert #define ANNOTATE DECLARE in all modules that contain annotations just before the
// #include "advisor-annotate.h". This prevents inclusion of windows.h to avoid the

// type/symbol conflicts.

#define ANNOTATE_DECLARE
#include "advisor-annotate.h"

// annotation uses
ANNOTATE_SITE_BEGIN(MySitel)

161

1 Intel® Advisor User Guide

ANNOTATE SITE END ()

//File empty.cpp:

// Insert #define ANNOTATE DEFINE just before the #include "advisor-annotate.h" in only one
module.

// This single implementation file (.cpp/.cxx) causes windows.h to be included, and the
support

// routine is defined as a global routine called from the various annotation uses.

#define ANNOTATE DEFINE

#include "advisor-annotate.h"

If the problem persists, please request support, such as by using the support forum.
advisor-annotate.h and libittnotify.dll

NOTE

This topic is provided for reference, but it should not be needed. If you read this because you believe
you need it to understand a problem, please provide feedback (see the release notes for support
information).

Code using advisor-annotate.h should work when running your application regardless of whether or not

you are running your application under Visual Studio using Intel® Advisor on Windows* OS. However, should
you run into problems, this topic provides a few implementation details that might be helpful to understand

issues.

Each compilation unit that includes advisor-annotate.h, and that has one or more annotations in it, will
have a global inline routine named AnnotateRoutine. This routine is called from the various locations
where you have used the ANNOTATE* macros, and will be used to invoke one or more routines in
libittnotify.dll (on Windows OS) or libittnotify.so (on Linux* OS).

__AnnotateRoutine is an inline function that will have only one copy per executable in your program. So, if
you are only working on modeling semantic behavior in a single Dynamic Link Library (DLL), you will only
have one copy of it in that one library. If you have multiple executables where you have annotations, there
will be a single copy of AnnotateRoutine for each executable.

When the ANNOTATE macros are used, the first one executed in a given executable attempts to load
libittnotify.dll from the current path.

Once the library is loaded, calls from the annotations will go to the itt model* routines in the library. If
an expected routine is not found, the code asserts.

The following figure shows what happens when you have a main executable and a DLL that both have
annotations:

162

Intel® Advisor User Guide 1

Implementation relationship hetween images, AHHNOT ATE *
macros, AnnnotateRoutine and __itt_model® routines

Modeling tool runs program

Correctness modeling tool

Application, with small annotations support
routines built into the image(s)

E 3 . oF .
main image small routines in image Dynamically loaded
_ AnnotateRoutine () without heing linked in
{1}
Source: macro implementation: libittmotify.dll (located
ANNOTATE TASE BEGIN | AnnctatsRoutine () ; via PATH)
indirect cal 1'--.________ __itt_model_task_hegin
H’
dll #1 small routines in image 2
___AnnotateRoutine () é
N i}
SOUrce: macro implementation;
ANNOTATE TASE BEGIN | AnnotateRou®ine (]
indirect call
Other dlls
=P

Finally, the annotation routines - itt model* in the .d11 - by themselves are only markers for a tool that
interprets the calls. Unless the program is run under the tool, these routines will not do anything. The intent
is that the application will run normally when it is not run under the tool.

See Also
Set Up Project

Annotation Report
To access this window, in the Result tab, click the Annotation Report button. Alternatively, if you are using

the Advisor Workflow tab, click the button below 2. Annotate Sources or 5. Add Parallel
Framework.

The Annotation Report window lists all annotations found during source scanning or running the Suitability
and Dependencies tools. It lists the annotation type, source location, and annotations label in a table-like
grid format, where each annotation appears on a separate row. Intel® Advisor updates the listed annotations
when changes occur to the specified source directories. For example, when you save a source file with a code
editor.

Annotation Report Layout 1. Analysis Workflow Tab
2. Result Tab

3. Annotation Report window grid

163

1 Intel® Advisor User Guide

Use This To Do This

Analysis Workflow tab Run a tool of your choice and see results in the Result tab.

Result Tab Select between available reports.

Annotation Report window View a summary of the annotations found as well as data collected by

grid the Suitability and Dependencies tools. Each annotation's data appears
on a separate row in the grid. The columns are explained below.

Right-click a row in the Displays a context menu that lets you expand or collapse code snippets,

Annotation Report window edit corresponding source code using a code editor, copy data to the

grid clipboard, or display context-sensitive help.

To sort the grid using a column's values, click on the column's heading. The columns of the grid are:

Use This Column To Do This

Annotation View the type of annotation, such as Site, Task, or Lock.

To show or hide a code snippet showing the annotation, click the # icon next to
its name.

For information about each annotation type, see the help topic Summary of
Annotation Types.

To view the source associated with an annotation in your code editor, double-click
its name or a line in the code snippet (or right-click and select Edit Source from
the context menu) in this column.

¢ On Windows* OS:

¢ When using Visual Studio, the Visual Studio code editor appears with the
file open at the corresponding location.
e When using the Intel® Advisor GUI, the file type association (or Open With
dialog box) determines the editor used.
* On Linux* OS: When using the Intel® Advisor GUI, the editor defined by the
Options > Editor dialog box appears with the file open at the corresponding
location.

Source Location View the name of the source file that contains the annotation and the line number.
Chy
Icons indicate where source is available & or not available =,

To view the source, double-click its name (or right-click and select Edit Source) in
this column. The code editor appears.

Annotation Label View the annotation's label (name).

164

Intel® Advisor User Guide 1

Use This Column To Do This

To view the source associated with an annotation, double-click its name (or right-
click and select Edit Source) in this column. The code editor appears.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Clear Description of Storage Row

Use this special-purpose annotation to stop tracking references to a memory location by the Dependencies
tool. This information can help you understand what code accesses a memory location. When you have
learned enough, simply remove this annotation.

To view the source code for this annotation, click the # icon.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Disable Observations in Region Row

This special-purpose annotation disables the reporting of problems until the matching enable annotation
ANNOTATE DISABLE OBSERVATION POP; is executed. Use this annotation to suppress reported problems
that are false-positives, or not useful in you.

To view the source code for this annotation, click the # icon.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Pause Collection Row

This special-purpose annotation temporarily stops (pauses) the analysis of your program's execution until the
matching Resume Collection annotation (disable-collection-pop) is executed. Use this annotation to reduce
the tool analysis overhead and reported data for certain parts of your program while running the
Dependencies, Survey, and Suitability tools.

To view the source code for this annotation, click the # icon.

165

1 Intel® Advisor User Guide

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Inductive Expression Row

This special-purpose annotation marks a line that updates an expression that is inductive in a loop.

To view the source code for this annotation, click the # icon.

Inductive expressions cause dependence cycles which normally prevent parallelizing a loop, but it is possible
to compute the value of the expression if you know the iteration number. You may have to re-write the
inductive expression to compute the value based on the iteration humber when the loop is translated to
parallel code.

For example, if i++ is the iteration variable of your loop, the parallel framework that you use may
automatically fix this for you. For example, by using cilk for. Otherwise, you may need to fix it manually.
A common example is with j+=3, and i++. If i is your loop index (assuming 0 based), you can replace j+=3
with § = i*3. That is, the value of j actually is a function of the value of i.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Lock Row

A lock row shows the source location of the lock annotation and its argument value.

To view the source code for this lock annotation, click the # icon.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Observe Uses Row

Use this special-purpose annotation to report the access operations to a memory location in the
Dependencies Report. This information can help you understand what code accesses a memory location.
When you have learned enough, remove the annotation from your source code.

To view the source code for this annotation, click the # icon.

166

Intel® Advisor User Guide 1

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Reduction Row

This special-purpose annotation marks a line that computes a reduction in a loop. Marking the line as a
reduction causes the Dependencies tool to ignore the data race.

To view the source code for this annotation, click the # icon.

Reductions require special treatment when translating to parallel code (see the help topics Special-purpose
Annotations and About Replacing Annotations ... for your parallel framework below).

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Re-enable Observations at End of Region Row

This special-purpose annotation enables reporting problems stopped by a previous
ANNOTATE DISABLE OBSERVATION PUSH; annotation.

To view the source code for this annotation, click the # icon.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Resume Collection Row

This special-purpose annotation resumes the analysis previously stopped by a previous Pause Collection
(disable-collection-push) annotation. This annotation is recognized by the Dependencies, Survey, and
Suitability tools.

To view the source code for this annotation, click the # icon.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

167

1 Intel® Advisor User Guide

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Site Row

A site row shows the source location of the site annotation and the label of the site.

To view the source code for this site annotation, click the # icon.
When converting annotations to parallel code:

e For Intel® oneAPI Threading Building Blocks (oneTBB), you need to add a scheduler initialization call in
each thread before you create any tasks.
e For OpenMP*, it depends on the pragmas/directives used.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Task Row

A task row shows the source location of the task annotation and the label of the task. A task identifies time-
consuming code whose work can be efficiently done by multiple cores.

To view the source code for this task annotation, click the # icon.

When the task is translated to parallel code and you remove or comment out the task annotation(s), this
entry is removed from the table.

There are two types of task annotations. If the loop code changes, you can modify the type of task
annotation.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, User Memory Allocator Use Row

This row shows a source location where memory is being allocated using a non-standard or user-defined
memory deallocation. The Dependencies tool uses this as a hint about the lifetime of memory accesses, so
memory that is allocated will not cause conflicts to be reported if the non-standard or user-defined memory
allocation occurs with the span this annotation's execution.

To view the source code for this annotation, click the # icon.

When translating annotations to parallel code, this special-purpose record_allocation annotation can be
removed or commented out.

168

Intel® Advisor User Guide 1

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, User Memory Deallocator Use Row

This row shows a source location where memory is being freed using a non-standard or user-defined memory
deallocation. The Dependencies tool uses this as a hint about the lifetime of memory accesses, so memory
that is freed and then allocated again will not cause conflicts to be reported if the non-standard or user-
defined memory free occurs with the span of this annotation's execution.

To view the source code for this annotation, click the # icon.

When translating annotations to parallel code, this special-purpose record_deallocation annotation can be
removed or commented out.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Explore Threading Results

Intel® Advisor provides several ways to work with the Threading results.

View Results in CLI

If you run the Threading perspective from command line, you can print the results collected in the CLI and
save them to a .txt, .csv, or .xml file.

For example, to generate the Suitability report for the OpenMP* threading model:
advisor --report=suitability --project-dir=./advi results --threading-model=openmp
You should see a similar result:

Target CPU Count: 8 Threading Model: OpenMP*
Maximum gain for all sites: 6.10998

All Sites
Site Label Source Location Impact to Total Serial Time Total Parallel Time
Site Gain Average Serial Time ...
Program
Gain
solve nqueens_serial.cpp:154 6.11x 4.080s 0.631s
6.47x 4.080s ...

169

1 Intel® Advisor User Guide

Site Details
Annotation Annotation Label Source Location Number of Instances Maximum
Instance Average Serial

Time Time
Selected Site solve nqueens serial.cpp:154 1
4.080s 4.080s c.
Task setQueen nqueens serial.cpp:156 14
0.477s 0.267s s0c
Lock ? 365596 <
0.001s < 0.001s

Site Options
Benefit Loss If

Site Option Done? If Done Not Done Recommended
solve Reduce Site Overhead No
solve Reduce Task Overhead No
solve Reduce Lock Overhead No
solve Reduce Lock Contention 0.16x No
solve Enable Task Chunking No

The result is also saved into a text file advisor-suitability.txt located at ./advi results/e<NNN>/
St<NNN>.,

You can generate a report for any analysis you run. The generic report command looks as follows:
advisor --report=<analysis-type> --project-dir=<project-dir> --format=<format>
where:

e <analysis-type> is the analysis you want to generate the results for. For example, survey for the Survey
report, suitability for the Suitability report, or dependencies for the Dependencies report.
e -—-format=<format> is a file format to save the results to. <format> is text (default), csv, xml.

If you generate the Suitability report, you can use additional options to control the result view:

e -—-target-system=[cpu | xeon-phi | offload-to-xeon-phi] is a platform to model parallelization
on.

e -—-threading-model=[tbb | cilk | openmp | tpl | other] is a threading model to use

e -—-reduce-site-overhead=<string> is a list of annotated loops/functions to check if you can reduce
overhead.

You can also generate a report with the data from all analyses run and save it to a CSV file with the --
report=joined action as follows:

advisor --report=joined --report-output=<path-to-csv>

where --report-output=<path-to-csv> is a path and a name for a .csv file to save the report to. For
example, /home/report.csv. This option is required to generate a joined report.

See advisor Command Option Reference for more options.

170

Intel® Advisor User Guide 1

View Results in GUI

If you run the Threading perspective from command line, a project is created automatically in the directory
specified with --project-dir. All the collected results and analysis configurations are stored in
the .advixeproj project, that you can view in the Intel Advisor.

To open the project in GUI, you can run the following command:

advisor-gui <project-dir>

NOTE If the report does not open, click Show Result on the Welcome pane.

If you run the Threading perspective from GUI, the result is opened automatically after the collection
finishes.

You first see a Summary report that includes the overall information about loops/functions performance in
your code and the annotated parallel sites:

e Performance metrics of your program and top five time-consuming loops/functions
e Optimization recommendations for the whole application
e Estimated performance gain for annotated loops/functions when parallelized

Summary @ Survey & Roofline ™ Refinement Reports ¢ Annotation Report 3 Suitability Report

@ Threading Perspective

Threading Perspective lets you analyze, design, tune, and check threading options without disrupting your development.

v Program Metrics

Elapsed Time 5.30s MNumber of CPU Threads 1
Vector Instruction Set ™ None

~ Performance Characteristics

Metrics Total
Total CPU fime 500 IE—100%
Time in scalar code 5.00s I, 1 00%

» Vectorization Gain/Efficiency (Not Available)

v Per Program Recommendations

™ Higher instruction set architecture (1SA) available
Consider recompiling your application using a higher ISA. Show more

v Top Time-Consuming Loops

Consider adding parallel site and task annotafions around these fime-consuming loops found during Survey analysis.

Loop Self Time: Total Time Trip Counts
0.449s 4.996s 14
=0.001s 4.996s 14
1.934s 1.934s 4

v Suitability And Dependencies Analysis Data

These annotated parallel sites were detected:

Site Location Maximum Site Gain Dependencies

D) loop in solve at ngueens serial.cpp:15 §.4685634666754614 WAR: AW

v Recommendations

171

1 Intel® Advisor User Guide

Save a Read-only Snapshot

A snapshot is a read-only copy of a project result, which you can view at any time using the Intel Advisor
GUI. You can save a snapshot for a project using Intel Advisor GUI or CLI.

=
To save an active project result as a read-only snapshot from GUI: Click the button in the top ribbon

of the report. In the Create a Result Snapshot dialog box, enter the snapshot details and save it.

To save an active project result as a read-only snapshot from CLI:

advisor --snapshot --project-dir=<project-dir> [--cache-sources] [--cache-binaries] --
<snapshot-path>

where:
e --cache-sources is an option to add application source code to the snapshot.
e -—-cache-binaries is an option to add application binaries to the snapshot.

e <snapshot-path is a path and a name for the snapshot. For example, if you specify /tmp/new snapshot,
a snapshot is saved in a tmp directory as new_snapshot.advixeexpz. You can skip this and save the
snapshot to a current directory as snapshotXXX.advixeexpz.

To open the result snapshot in the Intel Advisor GUI, you can run the following command:
advisor-gui <snapshot-path>
You can visually compare the saved snapshot against the current active result or other snapshot results.

See Create a Read-only Result Snapshot for details.

Result Interpretation

When you run the Threading perspective from GUI, you can examine the results and try different threading
designs:

[]

¢ Model Threading Parallelism

e Check for Dependencies Issues
e Add Parallelism to Your Program

See Also

Run Threading Perspective from GUI Steps to run the Threading perspective.

Run Threading Perspective from Command Line

CPU Metrics This reference section describes the contents of data columns in Survey and

Refinement Reports of the Vectorization and Code Insights, CPU / Memory Roofline Insights,
and Threading perspectives.

Model Threading Parallelism

The Suitability analysis examines your running serial program to provide approximate estimated performance
characteristics of your annotated parallel sites. This shows you both the performance gain from running your
parallel program on multiple CPUs and the likely impact of parallel overhead.

To choose the best places to add parallelism, locate the parallel sites that contribute the most to the overall
program's gain. Because of the overhead of parallel execution - such as starting threads - certain parallel
sites and tasks may not contribute to the overall program's gain, or may slow down its performance. After
you identify such parallel sites or tasks that do not improve performance, either modify or eliminate their
annotations.

172

Intel® Advisor User Guide 1

Use the Suitability Report Window

After you run the Suitability tool, view its data in the Suitability Report window. This window contains

multiple areas:

Location in
Window

Description

Upper

Upper-left

Upper-right

Middle-left

Lower-left

Lower-
middle

Any annotation-related error the Suitability tool detects appears at the top of the Suitability Report
window. If you see such errors, the displayed Suitability data may not be reliable. To view the source

location associated with an error, click the i Soaca button. To fix the error, read the displayed

error message, modify your source code to fix the problem, rebuild your target executable, and run
Suitability tool analysis again.

The upper-left area shows the Maximum Program Gain for All Sites in the program. Your
overall goal of adding parallelism is to increase the Maximum Program Gain for All Sites
so the parallel program will execute as fast as possible. The measured serial execution
runtime, predicted parallel runtime, and any measured paused time are displayed below
Maximum Program Gain for All Sites. Use the predicted Suitability gain values to help
you make informed decisions about where to add parallelism.

Use the upper-right row of modeling parameters to model performance. Choose a hardware
configuration and threading model (parallel framework) values from the drop-down lists. If
you select a Target System for Intel® Xeon Phi™ processors, an additional value for total
Coprocessor Threads appears.

Below this row is a grid of data that shows the estimated performance of each parallel site
detected during program execution. The Site Label shows the argument to the site
annotation. Examine the predicted Site Gain and Impact to Program Gain (higher values
are better) to estimate how much each site contributes to the Maximum Program Gain
for All Sites for all sites (described above). To expand the data under Combined Site

Metrics or Site Instance Metrics, click the [#l icon to the right of that heading; to collapse
data, click [# to the right of that heading.

To show or hide the side command toolbar, click the L--i or LI icon.

If you choose a Target System of CPU, to view detailed characteristics of the selected site
as well as its tasks and locks, click the Site Details tab.

The Scalability of Maximum Site Gain graph summarizes performance for the selected
site. The number of CPU processors or total number of coprocessor threads appears on the
horizontal X axis and the target's predicted performance gain appears on the Y axis. To
change the default CPU Count and the Maximum CPU Count, set the Options value.

Below the graph is a list of issues that might be preventing better predicted performance
gains as well as a summary of serial and predicted parallel time. To expand a line, click the
down arrow to the right of the item's name. Most issues are related to the Runtime
Modelingmodeling parameters. Later, you can use other Analyzer tools like Intel®
VTune™Profiler to measure actual performance of your parallel program.

Use the Loop Iterations (Tasks) Modeling (or Tasks Modeling) modeling parameters to
experiment with different loop structures, iteration counts, and instance durations that
might improve the predicted parallel performance.

Click Apply to view the impact on the predicted performance.

173

1 Intel® Advisor User Guide

Location in Description
Window

Lower-right Use the Runtime Modelingmodeling parameters to learn which parallel overhead
categories might have an impact on parallel overhead. If you agree to address a category
later by using the chosen parallel framework's capabilities or by tuning the parallel code
after you have implemented parallelism, check that category.

Bottom- If the chosen Target System is Intel Xeon Phi or Offload to Intel Xeon Phi, additional

right Intel® Xeon Phi™ Advanced Modeling options appear below the Runtime Modeling area. To
expand this area, click the down arrow to the right of Intel Xeon Phi Advanced
Modeling.

Lower, If you chose a Target System of CPU, the Site Details tab shows details about the

after selected parallel site, as well as details for each task and lock executed in that site.

clicking

Site

Details tab

When using an active result (not a read-only result), you can change the modeling parameters. Changing
modeling parameters updates the displayed data, except for Loop Iterations (Tasks) Modeling or Tasks
Modeling (click Apply). These modeling parameters help you understand the sensitivity of your annotation
choices so you can choose the best places to add parallelism, but the displayed data summary is not an
accurate estimate of final execution time on any specific parallel hardware (general processor characteristics
are used).

Later, before you add parallel code, you must choose one parallel framework (threading model) for your
application.

To view the source code associated with a site, locate the list of sites (upper-right area) and either:

e Double-click a row (or right-click and select View Source from the context menu) to display the
Suitability Source window. Later, to return to the Suitability Report window, click Suitability Report.

e Right-click a row and select Edit Source from the context menu to display the corresponding source file
in a code editor. When using the Intel® Advisor GUI on Linux* OS, the editor defined by the Options >
Editor dialog boxOptions > Editor dialog box appears with the file open at the corresponding location.
When using the Intel® Advisor GUI on Windows* OS, the file type association (or Open With dialog box)
determines the editor used. When using Microsoft Visual Studio*, the Visual Studio code editor appears
with the file open at the corresponding location. Later, to return to the Suitability Report or Suitability
Source window:

1.Click the Result tab.
2.Click either Suitability Report or Suitability Source.

Use the Suitability Source Window
Within the Suitability Source window, you can:

e Use the Call Stack pane to view different source locations in the call stack.

e Double-click a line (or right-click and select Edit Source) to open the corresponding source file in a code
editor. When using the Intel® Advisor GUI on Linux* OS, the editor defined by the Options > Editor
dialog boxOptions > Editor dialog box appears with the file open at the corresponding location. When
using the Intel Advisor GUI on Windows* OS, the file type association (or Open With dialog box)
determines the editor used. When using Microsoft Visual Studio*, the Visual Studio code editor appears
with the file open at the corresponding location. Later, to return to the Result tab, click Result.

e Return to the Suitability Report window by clicking Suitability Report.

The Suitability Report, Suitability Source, and other Intel Advisor windows appear within the Result tab.
There is one Result tab for each project.

174

Intel® Advisor User Guide 1

Understand the Scalability Graph in the Suitability Report

One of two different graphs appear depending on the chosen Target System. For an explanation of the
Scalability Graph, see Suitability Report Overview.

Tips on Understanding the Performance Data

In the Suitability Report window, you start at the top, select a site, look at its details in the Suitability
Report window, and examine its source code. You repeat this process to investigate each annotated site.
View this information, and if needed, modify the annotations by using your code editor.

Use the following guidelines to evaluate the feasibility of each site:

o If the Site Gain values for the selected site shows an estimated performance gain of 1.0 or less, the
overhead of parallel thread execution exceeds the potential performance gains. Modify or remove the
annotations for the task(s) and its enclosing site. Repeat this for each parallel site.

o If the Site Gain values for the selected site shows a performance gain greater than 1.0, look at the site's
contribution to the Maximum Program Gain for All Sites, which applies to all parallel sites. For sites
that do not contribute significantly to the Maximum Program Gain for All Sites, modify or remove the
annotations for the task(s) and its enclosing site. For sites that only contribute slightly to the Maximum
Program Gain for All Sites, examine more closely the annotations and the assumptions about fixing the
various overhead costs of parallel thread execution. In some cases, you may be able to adjust the
annotations to improve the performance gain or reduce the overhead. Repeat this for each parallel site.

e When the Maximum Program Gain for All Sites for all sites and the Site Gain values for all the sites
show a moderate or significant performance gain, proceed to the next workflow step that uses the
Dependencies tool to check your remaining annotated sites for data sharing problems.

Suitability Report Overview

After the Suitability tool runs your program's target executable to collect data, the Suitability Report
window appears. It displays the approximate predicted performance based on its analysis of the annotated
parallel sites and tasks.

’ Summary 5 Survey Report Q Refinement Reports a Annotation Report {*ﬂ Suitability Report

Maximum Program Target System: [CPU »| Threading Modek [Opentp = CPUCount 32 - @
if All Sites: 11,]
Gain For Sites: 11.91x Combined Site Metnics, All Instances L 2
SiteLabel Source Location Impact to Program Gain s ¥ Site Instance Metrics, Parallel Time
Serial time: 14507 Total Sesial Time Total Parallel Time Site Gain

Predicted Paralled time: L1445
redicted Parallel time 5 ok) rqatens. 56..11 91x 14805 122213 1211x 1.20:

Site Performance Scalability

Scalability of Maximum Site Gain Loop lterations (Tasks) Modeling Tuntime Mode ing -
Avg. Number of Iterations Avg. Iteration (Task) Type of Change 5
k1 (Tasks): Dusration: i

1 @ 10571c Reduce Site Cverhead
el S0 Reduce Tagk Overhead +0.05x
0.040h 0,040
0200 02000 Reduce Lock Ovarhead

—11x(14) ——1 1x (1.05715)
Sx T Reduce Lock Contention +0.55

25x 25x

Enable Tagk Chunking
125¢ 125

I 15.40% Load Imbalance: 0.1795s v
I 0.19% Runtime Overhead: 0.0023s ¥y

5.23% Lock Contention: 0.0639s =

This screen shows data based on a Target System of CPU. The screen shown on your system will differ.

The upper-left area shows the Maximum Program Gain for All Sites in the program. Your overall
goal of adding parallelism is to increase the Maximum Program Gain for All Sites so the parallel
program will execute as fast as possible. The measured serial execution runtime, predicted parallel

175

Intel® Advisor User Guide

runtime, and any measured paused time are displayed below Maximum Program Gain for All
Sites. Use the predicted Suitability gain values to help you make informed decisions about where
to add parallelism.

If the Suitability tool detects any annotation-related errors, they appear at the top of the
Suitability Report window. If you see this type of error, the displayed Suitability data may not be
reliable. Annotation-related errors may be caused when the correct sequence of annotations do not
occur because of missing annotations, when unexpected execution paths occur, or if Suitability data
collection was paused while the target was executing.

Use the upper-right row of modeling parameters to model performance. Choose a hardware
configuration and threading model (parallel framework) values from the drop-down lists. If you
select a Target System for Intel® Xeon Phi™ processors, an additional value for total Coprocessor
Threads appears.

Below this row is a grid of data that shows the estimated performance of each parallel site detected
during program execution. The Site Label shows the argument to the site annotation. Examine the
predicted Site Gain and Impact to Program Gain (higher values are better) to estimate how
much each site contributes to the Maximum Program Gain for All Sites for all sites (described
above). To expand the data under Combined Site Metrics or Site Instance Metrics, click the

icon to the right of that heading; to collapse data, click l#l to the right of that heading.

To view source code for a selected parallel site, click its row to display the Suitability Source
window.

To show or hide the side command toolbar, click the L= or

The Scalability of Maximum Site Gain graph summarizes performance for the selected site. The
number of CPU processors or total humber of coprocessor threads appears on the horizontal X axis
and the target's predicted performance gain appears on the Y axis. To change the default CPU
Count and the Maximum CPU Count, set the Options value.

If you choose a Target System of CPU, to view detailed characteristics of the selected site as well
as its tasks and locks, click the Site Details tab.

Use the Loop Iterations (Tasks) Modeling (or Tasks Modeling) modeling parameters to
experiment with different loop structures, iteration counts, and instance durations that might
improve the predicted parallel performance.

For example, you might want to see the impact of modifying your nested change loop structure,
modify the loop body code, or change number of iterations.

If the task annotations indicate likely task parallelism, the title will appear as Task Modeling
(instead of Loop Iterations (Task) Modeling for data parallelism).

Use the Runtime Modelingmodeling parameters to learn which parallel overhead categories might
have an impact on parallel overhead. If you agree to address a category later by using the chosen
parallel framework's capabilities or by tuning the parallel code after you have implemented
parallelism, check that category.

If the chosen Target System is Intel Xeon Phi or Offload to Intel Xeon Phi, additional Intel®
Xeon Phi™ Advanced Modeling options appear below the Runtime Modeling area. To expand this
area, click the down arrow to the right of Intel Xeon Phi Advanced Modeling.

176

Intel® Advisor User Guide 1

& Below the graph is a list of issues that might be preventing better predicted performance gains as

well as a summary of serial and predicted parallel time. To expand a line, click the down arrow to
the right of the item's name. Most issues are related to the Runtime Modelingmodeling
parameters. Later, you can use other Analyzer tools like Intel® VTune™Profiler to measure actual
performance of your parallel program.

Target System Hardware Configurations

The Target System lets you select the type of hardware configuration to be analyzed. From this drop-down
list, you can check each type to learn the likely predicted performance characteristics for each:

CPU shows the predicted performance of only the CPU. Choose this item for Intel® Xeon® or similar
processors that do not have significant parallel coprocessors. For an Intel® Xeon Phi™ processor, choose
this setting to only model the host processor, such as an Intel Xeon processor. If you choose this
configuration, you can specify the CPU Count modeling parameter.

Intel Xeon Phi shows the predicted performance when using only the Intel Xeon Phi coprocessor cores,
and not the host processor. This parameter does not account for data exchange amongst Intel Xeon Phi
coprocessor cores and the host CPU. If you choose this configuration, you can specify the Coprocessor
Threads modeling parameter.

Offload to Intel Xeon Phi shows the predicted performance when using Intel Xeon Phi coprocessor
manycores to execute parallel code after the host CPU starts the program and before execution resumes
on the host CPU for program completion. If you choose this configuration, you can specify the
Coprocessor Threads and CPU Count modeling parameters.

Data Displayed When the Target System is Intel® Xeon Phi™

A sample screen below shows changes in orange boxes when the Target System is Intel Xeon Phi (instead

of CPU).
,‘ Summary ‘E Survey Report @ Refinement Reports é Annotation Report '*ﬂ Suitability Report
Maximum Program I Target System: [Intel Xeon PHi - I Thresding Model: :'a,mmp v_; Coprocessor ThrudS:f_)_SS vl
Gain For All Sites: 345.24x 5 5 Impact to Combined Site Metrics, All Instances E e Instance Metrics,
Serial time: 132.32705 AL LR Program Gain TotalSerial Time Total Paralled Time SiteGain Parallel Time
P Parallel time: . =
redicted Parallel time: 0.33335 anatri ruttiply | B menult_sanotated.cpp - 345.21x 132115 0.16042 779,65 0.1654s
Site Performance Scalability
Scalability of Maximum Site Gain Loop lterations (Tasks) Modeling Runtime Modeling
A -!'_g': Awvg. Number of [terations Avg. Iteration (Task) Type of Change Gain Benefit f Checked
This site Is readigfor E;?“k ;);;;m | Reduce Site Overhead 0
atal x;‘ 0.008 0008
- 2 £ % Reduce Task Overhead +2.76x
- . 0.040x 0.040x
= 0.200x 0.200x Reduce Lock Oyerhead
— 1 1x (1024) — 1 0.1.2905)
<x 5 | Reduce Lock Contention
25x 25c) Enabl ;
Thit| site is n s rejidy |or 125x 125x e
litel leon Phi
| 12.96% Load Imbalance: 0.0302s v Intel Xeon Phi Advanced Modeling e
= #| Consider Code Vectorization
| 11.95% Runtime Overhead: 0.0202s hd
= Reference CPU Vectorization Speedup: 200«
1 l 0.00% Lock Contention: 05 Intel Xeon Phi Vectorization Speedup: 400 x
Intel Xeen Phi Maximum Vectorization Speedup
Total Parallel Time: 0.1694s g it 164 (fer double-precision FMA
eomputations)

The displayed data changes, such as the Maximum Program Gain for All Sites and the serial and
predicted parallel time.

177

1 Intel® Advisor User Guide

e The graph's appearance changes to a gray-green color and the X axis displays Coprocesser Threads
(instead of CPU Count) to represent the predicted performance of the manycore parallel coprocessor.
This graph shows the predicted parallel performance of the manycore parallel coprocessor without
accounting for data exchange amongst Intel Xeon Phii coprocessor cores and the host CPU. For many
applications, the number of task instances does not scale enough to fully utilize the many cores of the
parallel coprocessor, as indicated by a hover tip. Applications that are not appropriate for a Intel Xeon Phi
processing system have values that appears in the gray part of the graph; in this case, try modeling other
types of the Target System.

e The lines between the graph's gray and green areas is a reference baseline, where the reference CPU
chosen to calculate the Intel Xeon processor peak baseline is a dual-socket 8-core Intel Xeon processor
E5-26xx product family (2.7 GHz, 16 cores total). When the Maximum Site Gain exceeds this baseline,
you might consider using an Intel Xeon Phi coprocessor rather than an Intel Xeon or similar processor.

When the Target System is either Intel Xeon Phi or Offload to Intel Xeon Phi, the Intel Xeon Phi
Advanced Modeling options appear. See Intel® Xeon Phi™ Advanced Modeling.

Data and Modeling Parameters When the Target System is Offload to Intel Xeon Phi

A sample screen below shows changes in orange boxes when the Target System is Offload to Intel Xeon
Phi (instead of CPU) and the Offload to Intel Xeon Phi column is selected.

,’ Summary ¥ Survey Report @ Refinement Reports {3 Annotation Report *’*ﬂ Suitability Report

Maximum Program I'Iarget System: Offload to Intel Xeon Phi -]l Threading Modet: [OpenhP = CPU Count: [16. =
Gain For All Sites: §9.35x

Cupmceswﬂhteadg;}_r,s -]

Serial time: 13.2327:

Predicted Parallel time: 019085 Site Label Sourcle 'Dﬁloadt_u Intel § Impact to i Combined Sete Metrics, All Instances ® Sarteinstafu:e Metrics,
Location Keon Phi Program Gain Total Serial Time Total Parallel Time Site Gain Parallel Time
matre_mul .. [mmult_an... 7l 69.34x 13211 016545 T79.68x 016945
Site Performance Scalability
ik Scalability of Maximum Site Gain Loop lterations (Tasks) Modeling Runtime Modeling
Avg. Number of [terations Avq. Iteration (Task) Type of Change Gain Benefit it Checked
This site is readw for :‘;-2:&.:1: 3:'5;?"] Reduce Site Overhead
Intel Xgon I*hi 0,008 ;i 0,008
- E» 3 " [Reduce Task Overhead
E-L 0,040 10040
3 0200 0.200% Reduce Lock Crverhead
3 1 1x(1024) —1 1x (0.12905)
W Reducelgck Contenticn
=5 5x S
o 25 25% F
z 7] Enable Task Chunking
. This site is nt ready lor 125 125x s SR

litel ileon Phi

Coprocessor Threads

| 18.96% Load Imbalance: 0.0302s v Intel Xeon Phi Advanced Modeling al

¥ Consider Code Vectorization

11.95% Runtime Overhead: 0.0202s ¥

Reference CPU Vectonzation Speedup: 200 x
| 0.00% Lock Contention: 0s

Intel Xean Phi Vectodization Speedup: 400 x

Intel Xeon Phi Maximurm Vectorzation Speedup
Total Parallel Time: 0.1694s oot i5 16x (for double-precision FMA

computations)

Offload Data Transfer Size | 0 KB=0s

When you select a Target System of Offload to Intel Xeon Phi coprocessor:

e The displayed data changes, such as the Maximum Program Gain for All Sites and the serial and
predicted parallel time.

e An additional modeling parameter appears as a new column for each site named Offload to Intel Xeon
Phi. If selected, the Scalability of Maximum Site Gain graph displays Coprocessor Threads on the X
axis. If unselected, the graph displays CPU Count on the X axis.

178

Intel® Advisor User Guide 1

e In the upper-right corner, an additional modeling parameter appears. That is, both the total number of
Coprocessor Threads and the CPU Count appear because both the number of CPUs and the
coprocessor's total number of hardware threads should be considered to predict parallel execution.

e Additional modeling parameters appear below Runtime Modeling area under Intel Xeon Phi Advanced
Modeling - see Intel® Xeon Phi™ Advanced Modeling.

e When the column named Offload to Intel Xeon Phi is selected, the graph's appearance changes to a
gray-green color and the X axis displays Coprocessor Threads instead of CPU Count. This graph shows
the predicted performance of the manycore parallel coprocessor and its host CPUs. For many applications,
the number of task instances does not scale enough to fully utilize the many cores of the parallel
coprocessor, as indicated by a hover tip. Applications that are not appropriate for an Intel Xeon Phi
processing system have values that appear in the gray part of the graph; in this case, try modeling other
types of the Target System. Applications that are appropriate for offload to an Intel Xeon Phi processing
system have values that appear in the green part of the graph.

The lines between the graph's gray and green areas is a reference baseline, where the reference CPU
chosen to calculate the Intel Xeon processor peak baseline is a dual-socket 8-core Intel Xeon processor
E5-26xx product family (2.7 GHz, 16 cores total). When the Maximum Site Gain exceeds this baseline,
you might consider using an Intel Xeon Phi coprocessor rather than an Intel Xeon or similar processor.

Site Details Tab

If you chose a Target System of CPU, after you click the Site Details tab (next to Site Performance
Scalability), the lower part of the Suitability Report shows details about the selected site, as well as details
about each task and lock within that site.

9 Summary m Survey Report ¥ Refinement Reports é Annotation Report ‘?El Suitability Report

Maximum Program Target System: | CPU | Threading Modek .OpenMP »| CPUCount: |8 >
Gain For All Sites: 7.89x —
SiteLabel 0UTce Impact to Combined Site Metrics, All Instances = Site Instance Metrics, =
Serial time: 1938315 Location Program Gain Total Serial Time Total Parallel Time Site Gain Pavallel Time
Predicted Parallel time: 245635
matrx_m ... mmult_... 7.85% 19.35s 2421s 790 2421s
Site Details

Annotation Annotationl.. Sourcelocation MNumber of Instances Maxamum Instance Time Average Senal Time Minimum Instance Time Total Serial Time
Selected 5... miatrx_multiply [mmult_snn.. 1 19.35s 19.355 19.355 19.355
Task multiphy_task mmult_ann.. 1024 0.0209s 0.0189s 0.0179s 19.35s

Choose Modeling Parameters in the Suitability Report

The Suitability Report lets you adust modeling parameters based on possible application needs. When using
an active result, you can adjust modeling parameters and quickly view the likely impact on the predicted
performance interactively.

179

1 Intel® Advisor User Guide

, Sumrmary m Survey Report ¥ Refinement Reports Q Annotation Report ‘?El Suitability Report
1

Maximum pmgmm Target System: lcpu =) Threading Model: .lOpmMP = CPU Count: -32)
Gain For All Sites: 30.06x : _ : =
. " : Site Label 5 i T B a Combined Site Metrics, All Instances B g Instance Metrics
- ite Label ource Location Impact to Program Gain *
Ef":[t“"':;, - éiﬁgh 2 Total Serial Time Total Parallel Time Site Gain Parallel Time
I . H :
fededFaniatime matr_multi .. mmult_ann... 30.06x 19.35s 060965 31.74x 10,6056
2
Site Performance Scalability
Scalability of Maximum Site Gain Loop Iterations (Tasks) Modeling Runtime Modeling -
1 Avg. Number of Iterations Avg. Iteration (Task) ypeot change (@l GainB
8 (Taslal: B thoni Reduce Site Crverhead
1024 0.0189s B
0.008x 3 0.008x
Reduce Task Overhead
0080 0.040x%
0200 0.200x Reduce Logk Overhead
__11x(1024) __11x(0.0189s)

S 5 Reduce Lock Contentign £
25 25x EnableT Chnkiny
125x 125

Target CPU Count

I 0.80% Load Imbalance: 0.0049s »

NOTE

This screen shows data based on a Target System of CPU. The screen shown on your system may
differ. If you use other Target System values for the Intel® Xeon Phi™ processor, additional modeling
values appear. See Suitability Report Overview.

1 The top row of modeling parameters provides drop-down lists that let you define the likely hardware
configuration of target systems as well as the high-level parallel framework. These values let you
predict the likely performance characteristics for the selected parallel site.

* Use the Target System to select the type of hardware configuration to be analyzed: CPU, Intel
Xeon Phi, or Offload to Intel Xeon Phi. The latter two apply to the Intel Xeon Phi processor
system.

* Use the Threading Model to choose the high-level parallel framework to be used, such as
OpenMP* or Intel® oneAPI Threading Building Blocks (oneTBB).

¢ Use CPU Count to specify the number of CPUs to model. To specify the default CPU count by
setting the Options value.

e If you choose a Target System of Intel Xeon Phi, or Offload to Intel Xeon Phi, use the
Coprocessor Threads to choose the number of Intel Xeon Phi coprocessor threads.

As you modify these modeling parameters, the predicted performance estimates are updated
automatically. Repeat as needed.

2 If your target app contains multiple parallel sites, select each parallel site you wish to examine.
When you select a different parallel site, the predicted performance estimates for that site are
updated automatically. Repeat as needed for each site.

Use the Loop Iterations (Tasks) Modeling or Tasks Modeling area to view the impact of

3 changing the number of iterations and the iteration duration on the predicted performance for the
selected parallel site (the label displayed depends on whether iteration loop annotations or general
task annotations were detected). For example, you might want to see the impact of modifying your
nested change loop structure, modify the loop body code, or change number of iterations. After you
slide the Avg. Number of Iterations (Tasks): or Avg. Number of Tasks: and the Avg.
Duration values, click the Apply button to view the predicted performance estimates. Repeat as
needed.

180

Intel® Advisor User Guide 1

4 | Use the Runtime Modeling area to view the predicted impact of adjusting run-time parallel
characteristics after you add parallelism for the selected parallel site, including using parallel
framework capabilities to minimize parallel overhead or tuning your parallel code.

If you agree to later check and modify runtime performance aspects for a category, check the box to
the left of that category name. For example, you can also examine and tune actual parallel code
performance characteristics using tools like Intel® VTune™Profiler and implement the runtime
capabilities of high-level parallel frameworks to limit parallel overhead, such as task chunking. As
you check or uncheck different categories, the predicted performance estimates are updated
automatically. Repeat as needed.

If you choose Target System as Intel Xeon Phi or Offload to Intel Xeon Phi, additional Intel
Xeon Phi Advanced Modeling options (not shown) appear below Runtime Modeling (see
Advanced Modeling).

NOTE

The Intel® Advisor Suitability tool predicts the general performance characteristics of CPUs. For
example, it does not consider CPU clock frequency, cache characteristics, versions of processors, and
SO on.

See Also

Suitability Tool Overview

Suitability Report Overview

Advanced Modeling

Fixing Annotation-related Errors Detected by the Suitability Tool

Fix Annotation-related Errors Detected by the Suitability Tool

As the Suitability tool executes your target executable, it scans for a proper sequence of Intel® Advisor
annotations. If it detects an annotation-related or an error related to very small task sizes, it displays a
message at the top of the Suitability Report window.

If you see such messages, investigate the cause and fix the error. The messages displayed are generally self-
explanatory.

After you modify your source code and rebuild your application, run the Suitability tool again. When no errors
appear near the top of the Suitability Report window, you can carefully examine the Suitability data to help
you make decisions about the proposed parallel sites and tasks.

Tools to Help You Fix Annotation Errors

Use the Suitability Source window to view source code related to a specific site or task. You can also use
the Annotation Report window to view a list of your annotations and display their code snippets.

When resolving annotation-related errors, consider the execution paths your program follows. If necessary,
investigate the execution paths using a debugger.

In addition to annotation sequence messages, messages about task size may also appear. For example, if the
CPU time used by a task per loop cycle is so small that it does not exceed the task overhead time, consider
modifying the task annotation(s) after you examine the loop structure. In some cases, the message may
suggest that you use a different type of task annotation (see the help topics under See Also below).

Proper Sequence of Annotations
The rules about a proper sequence of Intel® Advisor annotations include the following:

e Sites: A site-begin annotation is followed by annotations that mark one or more tasks. It is eventually
terminated by a site-end annotation. For example, if a site-begin annotation is not followed by a task
annotation or is not terminated by a site-end annotation, an error occurs.

181

1 Intel® Advisor User Guide

e Tasks: A task may be marked either with one iterative-task annotation or a pair of task-begin and task-
end annotations. When used, an iterative-task annotation must be the only task within a site. Only a task-
begin and task-end pair allows task nesting.

e Locks: A lock-acquire annotation must be immediately followed by a lock-release annotation, and must
occur within a task.

See Also

Reducing Parallel Overhead, Lock Contention, and Enabling Chunking
Annotation Types Summary

Task Organization and Annotations

Troubleshooting Sources Not Available

Troubleshooting Debug Information Not Available

Site and Task Annotations for Simple Loops With One Task

Site and Task Annotations for Loops with Multiple Tasks

Advanced Modeling Options

When you select a Target System of Intel® Xeon Phi™ or Offload to Intel Xeon Phi coprocessor,
additional modeling parameters appear below Runtime Modeling area under Intel Xeon Phi Advanced
Modeling:

e Select Consider Code Vectorization if you agree to modify your parallel code later to improve vector
parallel execution. If checked, you can specify:

e Reference CPU Vectorization Speedup you expect can be achieved. This value indicates the
speedup multiplier gain for the current site by using vectorization techniques with the reference CPU.
When providing this estimate, base your estimates on target device characteristics and your expertise
of how much and how well this part of code can be vectorized.

o Intel Xeon Phi Vectorization Speedup you expect can be achieved. This value indicates the
speedup multiplier gain for current site by using vectorization techniques with an Intel® Xeon Phi™
processor. When providing this estimate, base your estimates on target device characteristics and your
expertise of how much and how well this part of code can be vectorized.

e When you choose Target System as Offload to Intel Xeon Phi, you can select the Offload Transfer

Data Size to specify data transfer size value you expect can be achieved (unit is KB).

e Click Apply after modifying any of these values.

In some cases, you can restructure your code to enable more efficient vector operations. Loop vectorization
allows hardware to process data independently in smaller units (usually 64-byte), such as operations on data
arrays.

One way to enable more efficient vector operations is to modify a single loop to create a new outer loop
where the two loops cover the same iteration space. A technique called strip-mining allows the innermost
loop to use vector operations in small chunks.

Other ways to enable more efficient vector operations include examining outermost loops where threading
parallelism might already be used, and consider vectorizing its innermost loops and/or callee functions.

Certain innermost loops may benefit from OpenMP 4 constructs. That is, under certain conditions you can use
both an omp parallel for threading pragma and a omp simd (or similar) simd vectorization pragma (see
the compiler vectorization report and descriptions at http://openmp.org).

The processor microarchitecture determines the type of vector instructions that will be supported and thus
the size of data the hardware can process efficiently.

See Also

Dependencies Analysis
Suitability Tool Overview
Suitability Report Overview

182

Intel® Advisor User Guide 1

Reduce Parallel Overhead, Lock Contention, and Enable Chunking

The data collected and analyzed in the Suitability Report window shows data for the selected site. The text
that appears below Runtime impact for this site (lower-right area) may recommend that you consider
reducing several types of parallel overhead, lock contention, and enable chunking in your parallel program,
as explained in Suitability Report Overview. If you agree to address a category later by using the chosen
parallel framework's capabilities or by tuning the parallel code after you have implemented parallelism, check
that category.

This group of topics explain site, task, and lock overhead, lock contention, and task chunking.
Reduce Site Overhead

Site overhead is the time spent starting up (and shutting down) parallel execution. This overhead includes
creating threads, scheduling those threads onto cores, and waiting for the threads to begin executing. In
some parallel framework implementations, real threads are only created once - rather than destroying them
at the end of a parallel site; the implementation suspends the threads. In this case, the full site overhead will
be experienced only the first time a site is entered.

Site overhead is proportional to the number of times a site is executed. If you have a site that is executed
too frequently or where the average time per instance is too small, you should choose a location for your site
that encloses a larger amount of computation.

If the Suitability tool recommends that you reduce site overhead, the parallel site is probably too small.

To reduce Site overhead, have the site do more work during its execution. You might be able to combine
multiple site executions into one. For example, consider putting a site outside a loop instead of inside a loop.

Reduce Task Overhead

Task overhead is the time spent creating a task and getting it assigned to a thread, and also the time spent
stopping or pausing the thread when the task is complete.

Task overhead is proportional to the number of times a task is executed. If you have a task that is executed
too frequently or where the average time per task instance is too small, modify your task so it encloses a
larger amount of computation. Alternatively, consider using the task chunking feature, which is supported by
several parallel frameworks. In this case, the parallel framework groups multiple task executions at run-time.

If the Suitability analysis recommends that you reduce task overhead, the parallel task is probably too small.
Often this is because you have chosen an inner loop in a leaf function as the location of your parallel site,
where you instead should have chosen a function farther up the call tree.

There are two ways to reduce task overhead:

e Restructure your program to reduce the number of tasks you create. For example, restructure your task
annotations and/or code to increase the amount of work that occurs during each task's execution.
e If available for the selected parallel framework, enable the task chunking feature.

You can reduce task overhead by combining multiple task executions into a single task execution. For
example, by merging two tasks into one.

Reduce Lock Overhead

Lock overhead is the time spent in creating, destroying, acquiring, and releasing locks. Lock overhead does
not include the time spent waiting for a lock held by another task - that is called lock contention. You can
think of lock overhead as the cost of the lock operations themselves assuming the lock is always available.

If possible, restructure you code to reduce Lock overhead by creating a private copy of an object for each
task to avoid the need to acquire a lock - see the help topic Problem Solving Strategies.

Reduce Lock Contention

Lock contention is the time spent waiting in one thread for a lock to be released while another thread is
holding that lock.

You can reduce Lock contention by using different locks for unrelated data when you convert to a parallel
framework.

183

1 Intel® Advisor User Guide

Enable Task Chunking

Chunking means that the parallel framework will merge several tasks into a single task, with little or no
overhead between them. For instance, if tasks are loop iterations, chunking would mean that several
iterations are executed together (as a chunk) before heavyweight task control is performed.

Chunking is typically implemented when you convert to a parallel framework:

e With Intel® oneAPI Threading Building Blocks, by using a parallel for () instance.
e With OpenMP*, by using the C/C++ pragma #pragma omp parallel for or the Fortran directive ! Somp
parallel do.

You can also restructure your code to enable chunking. This can be done by modifying a single loop to create
a new outer loop where the two loops cover the same iteration space. A technique called strip-mining allows
the inner loop to use vector operations in small chunks. Loop vectorization allows hardware to process data
independently in smaller units (usually 64-byte), such as operations on data arrays.

Once these two loops exist, move the inner loop inside the task annotations so the task begin and end
annotations encapsulate the inner loop. The outer loop strides by some chunk size, and the inner loop
iterates sequentially through each chunk.

In cases where the CPU time and the elapsed time are about the same, the Suitability Report window
under Runtime impact for this site may recommend that you enable task chunking.

If you check an item under to the right of the Scalability of Maximum Site Gain graph (such as Enable
Task Chunking), its value will be added to the Site Gain and possibly the Maximum Site Gain for All
Sites values.

See Also

Dependencies Analysis

Parallelize Functions - Intel® oneAPI Threading Building Blocks Tasks
Suitability Tool Overview

Reducing Task Overhead

Suitability Report Overview

Check for Dependencies Issues

Purpose

View any predicted data sharing problems and informational remark messages.

Report Regions and Purpose
In the Dependencies Report tab at the bottom of the Refinement Report:

e Problems and Messages pane - Select the problems that you want to analyze by viewing their associated
observations.
e Code Locations pane - View details about the code locations for the selected problem in the

Dependencies Report window. Icons identify the focus code location B and related code location .
¢ Filters pane - Filter contents of the report tab.

Associated Dependencies Source window, from top left to bottom right:

e Focus Code Location pane - Use this pane to explore source code associated with focus code location in
the Dependencies Source window.

e Focus Code Location Call Stack pane - Use this pane to select which source code appears in the Focus
Code Location pane in the Dependencies Source window.

e Related Code Locations pane - Use this pane to explore source code associated with related code locations
(related to the focus code location) in the Dependencies Source window.

e Related Code Location Call Stack pane - Use this pane to select which source code appears in the Related
Code Location pane.

184

Intel® Advisor User Guide 1

e Code Locations pane - Use this pane to view the details about the code location for the selected problem
in the Dependencies Report window.

e Relationship Diagram pane - Use this pane to view the relationships among code locations for the selected
problem.

Use Dependencies Data

Use the Dependencies Report to view each reported problem and its associated code locations. Use the
Dependencies Source window to view the focus and related source code regions to help you understand
the cause of the reported problem.

To learn about a reported problem, right-click its name in the Dependencies Report, Problems and
Messages pane and select What Should I Do Next?. This displays the help topic for that problem type.

See Also

e Dependencies Problem and Message Types
Code Locations Pane

Purpose

View details about the code locations for the selected problem in the Dependencies Report window. Icons

identify the focus code location and related code location .

Location

Bottom of Dependencies Report tab

Controls
Use This To Do This
Title bar View the problem type.
Code Location data Review related code locations:
row(s) e ID - Code location identifier
e Description - What happens at this code location.
e Source - The source file for this code location.
e Function - Function name.
¢ Modules - The executable associated with this problem.
* State - Indicates whether the problem has been fixed or not. To change the
state, use the context menu.
Click ® to the left Display a code snippet associated with the selected code location.
of a code location
name
icon, B icon, or | Shows:
no icon in the * Whether this is a related code location.
Source column * If code location source code is available for viewing and editing.
P icon, & icon, or Shows:
no icon in the e Whether this is the focus code location.
Source column « If code location source code is available for viewing and editing.

185

1 Intel® Advisor User Guide

Use This

To Do This

Ch
icon, £ icon, or
no icon in the
Source column

Shows if code location source code is available for viewing and editing.

Double-click a code
location data row or
source line, or
right-click and
select the View
Source context
menu item

Display the Dependencies Source window.

Right-click and
select the Edit
Source context
menu item

Display a code editor with the corresponding source file.
¢ On Windows* OS:

e When using Visual Studio, the Visual Studio code editor appears with the file
open at the corresponding location.
e When using the Intel Advisor GUI, the file type association (or Open With
dialog box) determines the editor used.
e On Linux* OS: When using the Intel Advisor GUI, the editor defined by the
Options > Editor dialog box appears with the file open at the corresponding
location.

Column labels

Click a column heading to sort the data grid rows in either ascending or descending
order.

Pane border

Resize the pane (drag).

Right click a row to
display a context
menu

Display a context menu to: expand or collapse all code snippets, open the
Dependencies Source window, edit sources in the code editor, copy the selected
data row(s) to the clipboard, mark the state as fixed or not fixed, or display
context-sensitive help.

Filter Pane (Dependencies Report)

Purpose

Filter contents of the report tab.

Location

Right side of Dependencies Report tab

Controls

Use This

To Do This

Category column

Review categories that you can filter, such as Severity, Type, Site
Name, Source, and so on.

186

Intel® Advisor User Guide 1

Use This

To Do This

NOTE

You can apply only one filter criterion per category; however, you can
filter the listed problems and messages by multiple categories
simultaneously.

e Error under the Severity
category

e Memory Reuse under the
Type category

Click a filter criterion, such as:

View only problems and messages of a specific type, and hide other
types of problems and messages in the same category.

All button to the right of the
category's name

To deselect all filter criteria and display all problems and messages in
that category.

’f’ button

To deselect all filter criteria in all categories.

See Also

e Dependencies Problem and Message Types

Problems and Messages Pane

Purpose

Select the problems that you want to analyze by viewing their associated observations.

Location

Top of Dependencies Report tab.

Controls
Use This To Do This
Column labels Click a column label to sort the data grid data rows in either ascending or
descending order.
Selected data row Review the characteristics of each data row in the grid. The columns are:

ID - Identifier for the problem.

@ (severity) - The severity of the problem, such as error @ , warning &
or an informational remark message @ For example, the location of

parallel sites executed are indicated by the message D parallel Site.

Type - The problem type or message type. For more information about a
problem, right click to display the context menu.

Site Name- The name of the site associated with this problem.

Sources - The source file associated with this problem.

Modules - The modules (executable) associated with this problem.

State - Indicates whether the problem has been fixed or not. To change the
state, use the context menu in this pane.

187

1 Intel® Advisor User Guide

Use This To Do This

Pane border Resize the pane (drag).

Right click a row to Display a context menu to: open the code editor to the corresponding source

display a context menu line, display the Dependencies Source window, copy the selected data
row(s) to the clipboard, or display context-sensitive help for that problem or
message.

Dependencies Source Window

Purpose

Use this window to examine the source code for a selected Problem, Message, or Code Location. To
modify your source code, double-click a source line or use the Edit Source context menu item to display
that file in a code editor.

e On Windows* OS:

e When using Visual Studio, the Visual Studio code editor appears with that file open at the
corresponding location.
e When using the Intel Advisor GUI, the file type association (or Open With dialog box) determines the

editor used.
e On Linux* OS: When using the Intel Advisor GUI, the editor defined by the Options > Editor dialog box
appears with the file open at the corresponding location.

Use This To Do This

Workflow Tab Run a tool of your choice and see results in the Result tab.
Result Tab Select between available reports.

Focus Code Location pane Explore the source code associated with the focus code location.

Focus Code Location Call Stack | Select the source code to appear in the Focus Code Location pane.
pane

Related Code Location pane Explore source code associated with the code locations. This pane
does not appear if the Focus Code Location does not have a Related
Code Location.

Related Code Location Call Select the source code to appear in the Related Code Location
Stack pane pane. This pane does not appear if the Focus Code Location does not
have a Related Code Location.

Code Locations pane View details about the code locations for the selected problem in the
Dependencies Source window.

Relationship Diagram pane View the relationships among code locations for the selected
problem.

Access

To access this window in the Refinement Reports, double-click a data row or use the corresponding context
menu item to view the source code associated with a Problem, Message, or Code Location.

188

Intel® Advisor User Guide 1

Regions

From top left to bottom right:

Focus Code Location pane - Use this pane to explore source code associated with focus code location in
the Dependencies Source window.

Focus Code Location Call Stack pane - Use this pane to select which source code appears in the Focus
Code Location pane in the Dependencies Source window.

Related Code Locations pane - Use this pane to explore source code associated with related code locations
(related to the focus code location) in the Dependencies Source window.

Related Code Location Call Stack pane - Use this pane to select which source code appears in the Related
Code Location pane.

Code Locations pane - Use this pane to view the details about the code location for the selected problem
in the Dependencies Report window.

Relationship Diagram pane - Use this pane to view the relationships among code locations for the selected

problem.

Code Locations Pane (Dependencies Source Window)

Purpose

Use this pane to view the details about the code location for the selected problem in the Dependencies

Report window.

Location

Bottom left of Dependencies Source window

Controls
Use This To Do This
Title bar View the problem type.

Code location data
row(s)

Review related code locations:

e ID - Code location identifier

¢ Description - What happens at this code location

e Source - The source file associated with this code location.

¢ Function - Function name.

¢ Modules - The executable associated with this problem.

¢ State - Indicates whether the problem has been fixed or not. To change the
state, use the context menu.

. o
icon, Es icon, or
no icon in the
Source column

Shows:

¢ Whether this is a related code location.
+ If code location source code is available for viewing and editing.

' . . I

icon, Es icon, or
no icon in the
Source column

Shows:

* Whether this is the focus code location.
+ If code location source code is available for viewing and editing.

CLy
icon, E1 icon, or
no icon in the
Source column

Shows if code location source code is available for viewing and editing.

Column labels

Click a column heading to sort the data grid rows in either ascending or descending
order.

189

1 Intel® Advisor User Guide

Use This To Do This

Pane border Resize the pane (drag).

Right click a row to Display a context menu to: set this code location as the focus or related code
display a context location, copy the selected data row(s) to the clipboard, mark the state as fixed or
menu not fixed, or display context-sensitive help.

Focus Code Location Pane

Purpose

Use this pane to explore source code associated with focus code location in the Dependencies Source
window.

Location

Top left of Dependencies Source window

Controls
Use This To Do This
P icon, & icon, or no Shows:
icon in the Source o Whether this is the focus code location.
column » If code location source code is available for viewing and editing.
Pane border Resize the pane (drag).
Source code + Explore source code associated with the focus code location

+ Display the code editor at the corresponding source file by double-clicking
a data row or by using the corresponding context menu item.

Right click a row to Display a context menu to: open the code editor to the corresponding source
display a context menu line, copy the selected data row(s) to the clipboard, or display context-
sensitive help.

Focus Code Location Call Stack Pane

Purpose

Use this pane to select which source code appears in the Focus Code Location pane in the Dependencies
Source window.

Location

Top right of Dependencies Source window

Controls

Use This To Do This

P or &: icon View whether:

® Source code is available for viewing and editing. An Es icon indicates that
source code is not available.

190

Intel® Advisor User Guide 1

Use This

To Do This

Click a row in the Call
Stack pane

Displays source code for the specified call stack entry.

Pane border

Resize the pane (drag).

Right click a row in the
Call Stack pane

Customize the call stack presentation by using the Call Stack context menu.

Related Code Locations Pane

Purpose

Use this pane to explore source code associated with related code locations (related to the focus code
location) in the Dependencies Source window.

Location

Middle left of Dependencies Source window

Controls

Use This

To Do This

. -
icon, Es icon, or no
icon in the Source
column

View:

e Whether this is a related code location.
+ If code location source code is available for viewing and editing.

Pane border

Resize the pane (drag).

Source code

+ Explore source code associated with the focus code location
+ Display the code editor at the corresponding source file by double-clicking
a data row or by using the corresponding context menu item.

Right click a line to
display a context menu

Display a context menu to: open the code editor to the corresponding source
line, copy the selected data row(s) to the clipboard, or display context-
sensitive help.

Related Code Location Call Stack Pane

Purpose

Use this pane to select which source code appears in the Related Code Location pane.

Location

Middle right of Dependencies Source window

Controls

Use This

To Do This

3 - I
or Es |con

View whether:

Source code is available for viewing and editing. An B icon indicates that
source code is not available.

191

1 Intel® Advisor User Guide

Use This

To Do This

Click a row in the Call
Stack pane

Displays source code for the specified call stack entry.

Pane border

Resize the pane (drag).

Right click a row in the
Call Stack pane

Customize the all stack presentation by using the Call Stack context menu.

Relationship Diagram Pane

Purpose

Use this pane to view the relationships among code locations for the selected problem.

Location

Bottom right of Dependencies Source window

Controls
Use This To Do This
Title bar View the problem type.

. T
B icon, & icon, or
no icon in the
Source column

View:

¢ Whether this is a related code location.
« If code location source code is available for viewing and editing.

' . L. I

icon, Es icon, or
no icon in the
Source column

View:

e Whether this is the focus code location.
« If code location source code is available for viewing and editing.

Chy
icon, B2 icon, or
no icon in the
Source column

View if code location source code is available for viewing and editing.

Pane border

Resize the pane (drag).

Diagram

View the relationship among code locations in a problem:

¢ Each box in a diagram represents a code location in a problem.

¢ A diagram with a single box is a trivial problem with no related code locations.
* Boxes arranged left-to-right with connecting arrows indicate a time ordering.
* Boxes with connecting lines indicate association.

Add Parallelism to Your Program

Once you have completed the previous steps in the Threading perspective workflow and have tested and
approved a serial version of your application program, you can add parallelism to a selected parallel site.
Before you add parallel framework code, complete developer/architect design and code reviews about the
proposed parallel changes.

To add parallelism to your program, perform the following steps:

192

Intel® Advisor User Guide 1

1. Choose one parallel programming framework (threading model) for your application, such as Intel®
oneAPI Threading Building Blocks (oneTBB) , OpenMP*, Microsoft Task Parallel Library* (TPL) (on
Windows* OS systems only), or some other parallel framework. To learn about the parallel
framework(s) available for your application's language, see the help topic Parallel Frameworks.

2. Add the parallel framework to your build environment.

3. Add parallel framework code to synchronize access to the shared data resources, such as oneTBB or
OpenMP locks.

4. Add parallel framework code to create the parallel tasks.

In the last two steps, as you add the appropriate parallel code from the chosen parallel framework, you can
keep, comment out, or replace the Intel Advisor annotations.

You should add the synchronization code - such as oneTBB or OpenMP locks or mutexes - before adding the
parallelism. Synchronized code without parallelism works correctly. In contrast, parallel code without
synchronization works incorrectly.

With the synchronization in place, introduce the parallelism. This will cause the operations of multiple tasks
to execute in parallel. If you have any remaining bugs caused by data sharing and synchronization problems,
they will begin to appear and must be debugged.

Before You Add Parallelism: Choose a Parallel Framework

After you decide on parallel sites and tasks, select a parallel framework so you can replace Intel® Advisor
annotations with parallel framework code.

The available high-level parallel frameworks depend on the language whose code you will add parallelism to:

e For C/C++ native code, there are several choices as explained in Parallel Frameworks
e For Fortran native code, use OpenMP.
e For managed code such as C#, use the Microsoft Task Parallel Library* (TPL).

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

If you are not familiar with high-level parallel frameworks, read Parallel Frameworks
To use a different framework, read Other Parallel Frameworks.

Parallel Frameworks

Before you can add parallel code, you must first choose a parallel framework.

There are two popular mechanisms for using threads - either use high-level parallel frameworks or explicit
threading APIs. Intel recommends using parallel frameworks for both ease of use and their ability to optimize
for different situations.

For managed code such as C#, use the Microsoft Task Parallel Library* (TPL).

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

This document shows how to use the widely-used parallel frameworks for native code, which are included
with Intel® oneAPI Toolkits and may be included with other compilers:

e Intel® oneAPI Threading Building Blocks (oneTBB)
e OpenMP*

Intel® oneAPI Threading Building Blocks (oneTBB) is a parallel programming framework for C++ code.
oneTBB is structured as a traditional C++ library, consisting of header files and a run-time library, so it can
be used with any C++ compiler. Intel recommends that you consider using oneTBB for introducing parallelism
into C++ programs. oneTBB programs can be run on any platform (OS/architecture pair) to which the
oneTBB library has been ported. For example, the Intel® oneAPI DPC++/C++ Compiler includes oneTBB .

OpenMP is a high-level framework that supports C, C++, and Fortran. OpenMP is provided by compiler
support, so you modify your sources by using compiler directives rather than using types, variables, and
calls. An OpenMP program can often be changed from parallel execution to serial execution by setting an

193

1 Intel® Advisor User Guide

environment variable or omitting a compiler option so the compiler ignores the directives. OpenMP 2 is
supported by the Microsoft, the Intel, and the GNU* C, C++ and Fortran compilers. The OpenMP 3.0
standard adds TASK support and is supported by the Intel compilers, which also support parts of OpenMP
4.0. For Microsoft and GNU compilers, consult your compiler documentation for the current level of OpenMP
support.

You can also use a different parallel framework.

Windows* OS: Support for Parallel Frameworks by Microsoft and Intel Compilers

With a Fortran program, the only high-level parallel framework available is OpenMP. The following table
summarizes the support by Microsoft and Intel Compilers for the recommended parallel frameworks for C/C+
+ programs on Windows OS systems.

Language and Compiler oneTBB OpenMP
C programs, Intel® C++ Compiler Classic Supported
C++ programs, Intel® C++ Compiler Classic Supported Supported
C programs, Microsoft Visual C++* Compiler Supported
C++ programs, Microsoft Visual C++ Compiler Supported Supported

For more information about oneTBB and OpenMP, see the corresponding sections in this Intel Advisor help
system.

Linux* OS: Support for Parallel Frameworks by GNU* and Intel Compilers

With a Fortran program, the only high-level parallel framework available is OpenMP. The following table
summarizes the support by GNU gcc* and Intel compilers for the recommended parallel frameworks for C/C+
+ programs on Linux OS systems.

Language and Compiler oneTBB OpenMP
C programs, Intel® C++ Compiler Classic (icc) Supported
C++ programs, Intel® C++ Compiler Classicicc) Supported Supported
C programs, GNU gcc Compiler (gcc) Supported
C++ programs, GNU gcc Compiler (gxx) Supported Supported

For more information about oneTBB and OpenMP, see the following sections in this Intel Advisor help system.
For detailed instructions, see your compiler documentation and the resources listed in Related Information.

Intel® oneAPI Threading Building Blocks (oneTBB)

Intel® oneAPI Threading Building Blocks (oneTBB) is a high-level parallel programming framework for C++
code that uses a template-based runtime library to help you harness the performance of multi-core
processors. oneTBB lets you specify logical parallelism instead of threads. You specify potential parallelism -
what can be run in parallel. The library decides the actual parallelism at run-time, matching it to the available
hardware. The library has templates that simplify using high level parallel patterns such as parallel loops.
oneTBB programs are implemented by a library that has been ported to multiple C++ compilers.

Use oneTBB to write scalable programs that:

e Specify parallel work instead of managing threads.
e Emphasize data parallel programming.
e Take advantage of high-level parallel patterns.

oneTBB consists of header files and shared libraries, so it can be used with any C++ compiler.

194

Intel® Advisor User Guide 1

Intel recommends that you consider using oneTBB for introducing parallelism into C++ programs. It has a
small cost of entry and provides excellent initial performance with a lot of additional capabilities that can be
used for future refinements.

It also has many powerful features that can make it possible to easily parallelize more places in your
application. These features include:

Parallel algorithmic patterns
Concurrency-friendly containers
Scalable memory allocation
Synchronization primitives
Timing

OpenMP*

OpenMP* is a parallel programming framework for C, C++, or Fortran code. Using OpenMP requires few
source changes and is supported by multiple compilers. Because OpenMP is supported by OpenMP libraries,
you modify your source code with compiler directives rather than using types, variables, and calls. An
OpenMP program can often be changed from parallel execution to serial execution by omitting a compiler
option so the compiler ignores the OpenMP directives.

OpenMP 2 is very good at using several cores on loops that process arrays, but does not support irregular
parallelism through general tasking. It is supported by the Microsoft, the Intel, and the GNU* C, C++ and
Fortran compilers. It is difficult to use OpenMP version 2 for situations other than simple divisions of
statement sequences or complete loop bodies.

The OpenMP 3.0 specification adds TASK support. The TASK directives enable performing arbitrary pieces of
an algorithm in parallel. The Intel® C++ Compiler Classic and Intel® Fortran Compiler Classic support OpenMP
3.0 and some parts of OpenMP 4.0. For Intel, Microsoft, and GNU* compilers, consult your compiler
documentation for the level of OpenMP support.

If your application is written in Fortran, OpenMP is the only high-level parallel framework available.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

Microsoft Task Parallel Library* (TPL)

Microsoft Task Parallel Library* (TPL) in the Microsoft .NET* Framework is a combination of public types and
APIs that allow addition of parallelism and concurrency on Windows* OS systems. For Intel Advisor users,
use Microsoft TPL for C# and managed C++ libraries.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Microsoft TPL is a high-level parallel programming framework for .NET code to help you harness the
performance of multi-core processors. It lets you specify logical parallelism instead of threads. That is, you
specify potential parallelism - what can be run in parallel. The library decides the actual parallelism at run-
time, matching it to the available hardware.

Microsoft TPL provides two main classes:

e System.Threading.Tasks.Parallel: includes For and ForEach loops.
e System.Threading.Tasks.Task: is the preferred way to express asynchronous operations.

Other classes are also available. For example, System.Collections.Concurrent provides for concurrent
collections that do not require external locking.

You can use Microsoft TPL for introducing parallelism into either C# programs or managed C++ code.

Please refer to your Microsoft MSDN* help documentation for information about this parallel framework. For
example: MSDN Library > .NET Development > .NET Framework 4 > .NET Framework Advanced
Development > Parallel Programming > Task Parallel Library

195

1 Intel® Advisor User Guide

Other Parallel Frameworks

Intel Advisor helps you prepare your program for adding parallelism, regardless of the parallel framework you
choose. Intel Advisor provides the ability to predict the parallel behavior of your serial program and lets you
determine the feasibility of possible parallel regions before you actually add parallelism.

Intel Advisor does not perform analysis of your parallel program, so you can use any parallel framework. You
can use Intel Advisor with high-level parallel frameworks that use a fork-join model, or with low-level APIs
that provide explicit thread control.

Intel recommends using the parallel frameworks Intel® oneAPI Threading Building Blocks (oneTBB) or
OpenMP*, which are included with Intel® oneAPI Toolkits. These high-level frameworks provide parallel
features well-suited for most multi-core computer systems.

If you decide to use a different parallel framework or a low-level threading API, please be aware of the
following considerations:

e Some parallel frameworks have limited abilities to scale with different number of cores, handle load
balancing, and handle loop scalability (chunking), and so on.

e As part of your planning, you might create a mapping of at least Intel Advisor Site, Task, and Lock
annotations to the equivalent code constructs in the chosen parallel framework. That is, create a list that
maps the Intel Advisor annotations to your parallel framework's features. Thus, you need to be aware of
all annotations. For example, all Intel Advisor programs need to use parallel site and task annotations.
Most programs will also use lock annotations. For a complete list of annotations, see the help topic
Summary of Annotation Types.

e Some parallel frameworks require that you use certain compilers that recognize the parallel framework's
keywords, while others are libraries that can be used with multiple compilers.

e Some parallel frameworks may not correctly handle multi-program workloads.

In all cases, you need to learn how to use the parallel framework that you select. The current Add Parallelism
workflow step involves replacing annotations with chosen parallel framework code.

Add the Parallel Framework to Your Build Environment

After you choose the parallel framework, you need to add the parallel framework to your build environment.

Adding the parallel framework to your build environment can require installing additional www, as well as
modifying build scripts, modifying project properties or Microsoft Visual Studio* project properties (on
Windows* OS systems), and so on.

Later, after you add the parallel framework to your build environment, you can begin to make source code
changes that use the parallel framework to add synchronization (such as locks) or parallelism to your
program.

The following sections describe adding the Intel® oneAPI Threading Building Blocks (oneTBB) and OpenMP*
parallel frameworks to your build environment, including adding C++11 (formerly C++0x) Lambda
Expression Support that simplifies the use of oneTBB .

Enable Intel® oneAPI Threading Building Blocks (oneTBB) in your Build Environment

If you use the Intel® C++4+ Compiler Classic or Intel® oneAPI DPC++/C++ Compiler from the command line,
specify the following option when you build your program:

e For Windows* OS: /Qtbb
e For Linux* OS: -tbb

This option tells the compiler to link with the Intel® oneAPI Threading Building Blocks (oneTBB) libraries. If
you use other compilers, please see your oneTBB or compiler documentation.

NOTE

With Intel Advisor samples, to use the oneTBB project (_tbb), you might need to define the TBBROOT
environment variable (see the help topic Define the TBBROOT Environment Variable) and specify the
TBBROOT/include directory as an additional include path when compiling (in build properties on
Windows 0OS).

196

Intel® Advisor User Guide 1

The following instructions are for using the Visual Studio* development environment on a Windows OS
system.

Modify the project properties for each of your Visual Studio project build configurations (debug, release, and
so on). You can set multiple properties by using the Configuration Properties with Visual Studio:

1. In Solution Explorer, select (click) the name of one or more projects. To select multiple projects, hold
down the Ctrl key.

2. With Visual Studio:
¢ Right-click the project name(s) and select Configuration Properties > Intel Performance

Libraries > Intel oneAPI Threading Building Blocks.
e On the Use oneTBB line, specify Yes.

NOTE

If you change the version of oneTBB or the Visual Studio version installed on your system, you may
see build errors related to oneTBB libraries. In this case, reset the integration by repeating the above
steps to uncheck, and then check, the Use oneTBB box. See the Intel Advisor release notes for more
information.

3. Click OK to save the specified properties.
4. Repeat the steps above for other configurations.

This procedure defines multiple properties to set up your build environment to use oneTBB .

See Also
Define the TBBROOT Environment Variable
Parallel Frameworks Overview

Define the TBBROOT Environment Variable

With Intel® Advisor samples, to build the Intel® oneAPI Threading Building Blocks (oneTBB) project (_tbb),
you need to define the TBBROOT environment variable.

To define this environment variable:
On Linux* OS:

1. Open a command line window.
2. Use the export command to set the TBBROOT environment variable, type: export TBBROOT=<tbb-
install-dir>. If you used the default path during installation, the <tbb-install-dir> is inside:

e For root users:

/opt/intel/
e For non-root users:

SHOME/intel/

For example, if you installed the Intel® oneAPI Threading Building Blocks as a part of Intel® oneAPI Base
Toolkit, the <tbb-install-dir> may be /opt/intel/oneapi/tbb/<version>.

3. To always set this variable on the current system, add this definition to your .1login or similar shell
initialization file.

On Windows* OS:

1. Open the control panel and access: Control Panel > System and Security > System > Advanced
system settings > Environment Variables....

2. Locate any existing definition of the TBBROOT user or system environment variable. If present, verify
that it value is correct if you encountered build errors and either click Cancel or OK as needed to exit
the dialog box.

197

1 Intel® Advisor User Guide

If it is not present, under System variables or User variables, click New.

Specify the Variable name as: TBBROOT.

5. Specify the Variable value as the path of the installed Intel® oneAPI Base Toolkit files, including the
\tbb directory.

ol

If you installed the product as part of a Intel® oneAPI Base Toolkit and used the default path, files are
installed below: C:\Program Files (x86)\Intel\oneAPTI\, for example C:\Program Files
(x86) \Intel\oneAPI\tbb\<version>.

6. Click OK several times.

7. For the change to take effect:

e If using Microsoft Visual Studio*: close and reopen Visual Studio.
e If using command window: close and reopen your command window.

In some cases, you may need to log off and log on for this change to take effect.
8. If needed, you can test the definition by opening a command window and typing set TBBROOT.

You have defined the TBBROOT environment variable.

See Also
Enable C++11 Lambda Expression Support with Intel® oneAPI Threading Building Blocks (oneTBB)
Parallel Frameworks Overview

Enable C++11 Lambda Expression Support with Intel® oneAPI Threading Building Blocks (oneTBB)

The C++11 (new standard for the C++ language, formerly C++0x) lambda expression support makes many
Intel® oneAPI Threading Building Blocks (oneTBB) constructs easier to program because it avoids the need to
introduce extra classes to encapsulate code as functions. If you decide to use this feature, you need a
compiler that supports it, such as the Intel® C++ Compiler Classic or Intel® oneAPI DPC++/C++ Compiler.
For more information about C++11 lambda expression support in the other compilers, please see your
compiler documentation (online help).

When using the command line with the Intel® C++ Compiler Classic or Intel® oneAPI DPC++/C++ Compiler,
specify the following option to enable lambda expression support:

e For Windows* OS: /Qstd=c++0x
e For Linux* OS: -std=c++0x

To enable the C++11 support in Visual Studio on a Windows* OS system:

1. In Solution Explorer, select (click) the name of one or more projects. To select multiple projects, hold
down the Ctrl key.

2. Right-click the project name and select Intel Compiler > Use Intel C++ from the context menu.
3. Select Project > Properties, or right-click the project name and select Properties from the context
menu.

4. Specify the following Configuration Properties:

| C++ > Language Under Intel Specific, select Enable C++0x Support as Yes

5. Click OK to save the specified properties.
6. Repeat the steps above for other configurations.

You have set up your environment to use the C++11 lambda expression support.

See Also
Adding Intel® oneAPI Threading Building Blocks (oneTBB) to your Build Environment

198

Intel® Advisor User Guide 1

Enable OpenMP* in your Build Environment

OpenMP* is supported by certain versions of the Microsoft Visual C++* compiler, the GNU* compilers, the
Intel® C++ Compiler Classic, Intel® Fortran Compiler Classic, and Intel® oneAPI DPC+4/C++ Compiler:

e Most recent versions of the Microsoft Visual C++* compiler include OpenMP support.
e Certain editions of the Intel® C++ Compiler Classic and the Intel® Fortran Compiler Classic support the
TASK feature introduced with OpenMP 3.0.

For information about OpenMP support for the Microsoft compilers, see your Microsoft Visual Studio help. For
information about OpenMP support for the GNU compilers, see your compiler help or the appropriate man
page, such as gcc (1).

To enable OpenMP on the command line, specify the appropriate compiler option (see your compiler

documentation), such as the -openmp (for Linux* OS) or /Qopenmp (for Windows* 0S) option when using
the Intel compilers.

To enable OpenMP on a Windows OS system using Microsoft Visual Studio*:

1. In Solution Explorer, select (click) the name of one or more projects. To select multiple projects, hold
down the Ctrl key.

2. Select Project > Properties or right-click the project name and select Properties from the pop-up
menu.

3. Specify the Configuration Properties for your C/C++ or Fortran project(s):

C/C++ > Specify OpenMP Support as Yes
Language
Fortran > Specify OpenMP Support as Yes
Language

4. Click OK to save the specified properties.
5. Repeat the steps above for other configurations.
6. You should check your startup project properties before starting a build.

You have set up your environment for OpenMP support on a Windows OS system.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

NOTE

Even if you are only using the #pragma omp pragmas within your source, Visual C++ sources
compiled with the Microsoft compilers need to #include <omp.h>. Otherwise, running the application
will be missing a .d11 at load time.

To include the appropriate OpenMP environment when using the Intel® Fortran Compiler Classic, specify the
use omp_ lib statement.

See Also
Annotation Report Overview

199

1 Intel® Advisor User Guide

Annotation Report
Annotation Report Overview

The Annotation Report window displays the annotations for your program. Intel Advisor updates the listed
annotations when changes occur to the specified source directories. For example, when you save a source file
with a code editor.

? Summary & Survey Report Q Refinement Reports | (& Annotation Report ‘?El Suitability Report

Annotation Source Location Annotation Label

B nqueens annotated.cpp:l13 solve
111 /7 int * gqueens = new int[size]; f/array representing queens placed ¢
112
113 ANNOTATE SITE_BEGIN (solwve):

114 for{int i=0; i<size; i++) {
115 P-_H'I‘IC-IATEiIIERATIC-HiL’l_SKisetgueen';,'
[Site End nqueens_annotated. cpp:l22 -
[Task nqueens_annotated.cpp:lls setQueen
FLock ngueens_annotated.cpp:dd 0
[Lock Release nqueens_annotated.cpp:9l 0

[#Intel Advisor XE annotations defi.. 5 nqueens_annotated.cpp:d? advisor-annotate.h

The first three columns show the Annotation type, the source location, and the annotation label. To view or

hide a source code snippet, click the # icon in the Annotation column (as shown for the Site annotation).
To display the source code associated with each annotation, either double-click in these columns or right-click
and select View Source or Edit Source.

See Also

Locating Annotations with the Annotation Report
Troubleshooting No Annotations Found
Troubleshooting Sources Not Available
Troubleshooting Debug Information Not Available

Locate Annotations with the Annotation Report

The Annotation Report window lists all the Intel Advisor annotations found in your project and their types.
Each annotation appears as a separate row in a table-like grid.

To use the list of annotations in the Annotation Report window to find annotations as you replace
annotations with parallel framework code:

1. To display the Annotation Report window, click the Annotation Report tab or - if you are using the

Advisor Workflow tab - click the (View Annotations) button below 2. Annotate Sources or 5.
Add Parallel Framework. The annotations associated with the selected start-up project appear. If you
have run the Suitability and Dependencies tools for this start-up project, the most recent relevant data
also appears in their respective columns.

2. To sort the annotations by type, click the column heading Annotations. The suggested way to replace
annotations is to replace lock annotations first, and then site and task annotations (this is because
synchronized code without parallelism works correctly, but parallel code without synchronization works

incorrectly). To show or hide a code snippet showing an annotation, click the # icon next to its name in
the Annotations column.

3. To open the code editor with the corresponding source file, double-click an annotation type (data row)
in the Annotations column or a line in its code snippet (or use the Edit Source context menu item).
When using the Intel Advisor GUI on Linux* OS, the editor defined by the Options > Editor dialog box
appears with the file open at the corresponding location. When using the Intel Advisor GUI on
Windows* OS, the file type association (or Open With dialog box) determines the editor used. When
using Visual Studio*, the Visual Studio code editor appears with the file open at the corresponding
location.

200

Intel® Advisor User Guide 1

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

4. Read the documentation associated with the parallel framework as well as the relevant information in
Intel Advisor help so you understand what parallel framework code to insert. In many cases, you need
to insert parallel framework declarations at the start of the source file, as well as parallel framework
code that replaces the annotations.

5. Repeat the steps above for each lock annotation.

6. Repeat the steps above for each site and task annotation.

You have used the Annotation Report window to help you locate and replace the Intel Advisor annotations
with parallel framework code.

Replace Annotations with Intel® oneAPI Threading Building Blocks (oneTBB) Code

This topic explains the steps needed to implement parallelism proposed by the Intel Advisor annotations by
adding Intel® oneAPI Threading Building Blocks (oneTBB) parallel framework code.

e Add oneTBB code to add appropriate synchronization of shared resources, using the LOCK annotations as
a guide. The following topics cover the oneTBB synchronization options:

e Intel® oneAPI Threading Building Blocks (oneTBB) Mutexes
e Intel® oneAPI Threading Building Blocks (oneTBB) Mutex - Example

e Add code to create oneTBB tasks, using the SITE/TASK annotations as a guide. The following topics cover
the oneTBB task creation options:

Parallelize Functions - Intel® oneAPI Threading Building Blocks (oneTBB) Tasks

Parallelize Data - Intel® oneAPI Threading Building Blocks (oneTBB) Counted Loops

Parallelize Data - Intel® oneAPI Threading Building Blocks (oneTBB) Loops with Complex Iteration
Control

This is the recommended order of tasks for replacing the annotations with oneTBB code:

1. Add appropriate synchronization of shared resources, using LOCK annotations as a guide.

2. Test to verify you did not break anything, before adding the possibility of non-deterministic behavior
with parallel tasks.

3. Add code to create oneTBB tasks or loops, using the SITE/TASK annotations as a guide.

4. Test with one thread, to verify that your program still works correctly.

5. Test with more than one thread to see that the multithreading works as expected.

The oneTBB parallel framework creates worker threads automatically. In general, you should concern yourself
only with the tasks, and leave it to the framework to create and destroy the worker threads.

If you do need some control over creation and destruction of worker threads, read about
task_scheduler init in the oneTBB Reference manual.

The table below shows the serial, annotated program code in the left column and the equivalent oneTBB
parallel code in the right column for some typical code to which parallelism can be applied.

Serial Code with Intel Advisor Annotations Parallel Code using oneTBB
// Locking // Locking can use various mutex types provided
ANNOTATE LOCK ACQUIRE () ; // by oneTBB. For example:

Body () ; #include <tbb/tbb.h>

ANNOTATE LOCK RELEASE () : 000
tbb: :mutex g Mutex;

tbhb: :mutex::scoped lock lock(g Mutex);
Body () ;

201

1 Intel® Advisor User Guide

Serial Code with Intel Advisor Annotations Parallel Code using oneTBB
// Do-All Counted loops, one task // Do-All Counted loops, using lambda
ANNOTATE SITE BEGIN(site); // expressions
For (I = 0; I < N; ++) { #include <tbb/tbb.h>
ANNOTATE ITERATION TASK(task); 600
{statement; } tbb::parallel for(0,N, [&] (int I) {
} statement;
ANNOTATE SITE END(); 1)
// Create Multiple Tasks // Create Multiple tasks, using lambda
ANNOTATE SITE BEGIN (site); // expressions
ANNOTATE TASK BEGIN (taskl); #include <tbb/tbb.h>
statement-or-taskl;
ANNOTATE TASK END() ; 000
ANNOTATE TASK BEGIN (task2); tbb::parallel invoke (
statement-or-task2; [&] {statement-or-taskl; },
ANNOTATE TASK END() ; [&] {statement-or-task2;}
ANNOTATE SITE END();)i

For information about common parallel programming patterns and how to implement them in oneTBB, see
the oneTBB help topic Design Patterns.

Intel® oneAPI Threading Building Blocks (oneTBB) Mutexes

With Intel® oneAPI Threading Building Blocks (oneTBB) , you can associate a mutex with a shared object to
enforce mutually exclusive access to that object. A mutex is either locked or unlocked. For a thread to safely
access the object:

e The thread acquires a lock on the mutex.
e The thread accesses the associated shared object.
e The thread releases its lock on the mutex.

When a mutex is locked, if another thread tries to also acquire a lock on it, this second thread is stalled until
the first thread releases its lock on the mutex. This functionality provided by a mutex is exactly the semantic
function intended by the Intel Advisor annotations ANNOTATE LOCK ACQUIRE () and
ANNOTATE LOCK RELEASE ().

With oneTBB , the annotation lock address becomes the mutex object. The ANNOTATE LOCK_ACQUIRE () and
ANNOTATE LOCK_RELEASE () annotations become operations on this mutex.

oneTBB provides several classes for locking, each with different properties. For more information, refer to the
oneTBB documentation. If you are not sure what type of a mutex is most appropriate, consider using
tbb: :mutex as your initial choice.

See Also
Intel® oneAPI Threading Building Blocks (oneTBB) Simple Mutex - Example

Intel® oneAPI Threading Building Blocks (oneTBB) Simple Mutex - Example
The following examples shows basic usage of a Intel® oneAPI Threading Building Blocks (oneTBB) mutex to
protect a shared variable named count using simple mutexes and scoped locks:

Simple Mutex Example

#include <tbb/mutex.h>

int count;

202

Intel® Advisor User Guide 1

tbb: :mutex countMutex;

int IncrementCount () {
int result;
// Add oneTBB mutex

countMutex.lock() ; // Implements ANNOTATE LOCK ACQUIRE ()
result = count++; // Save result until after unlock
countMutex.unlock () ; // Implements ANNOTATE LOCK RELEASE ()

return result;

}

The semantics of countMutex.lock () and unlock () on countMutex correspond directly to the annotations
ANNOTATE LOCK ACQUIRE () and ANNOTATE LOCK RELEASE (). However, it is generally better to use the
scoped locking pattern.

Scoped Lock Example

With a scoped lock, you construct a temporary scoped_lock object that represents acquisition of a lock.
Destruction of the scoped_lock object releases the lock on the mutex.

The following code shows the previous example rewritten using scoped locking:

#include <tbb/mutex.h>
int count;
tbb: :mutex countMutex;

int IncrementCount () {
int result;
{
// RAdd oneTBB scoped lock at location of ANNOTATE LOCK annotations
tbb: :mutex::scoped lock lock(countMutex); // Implements ANNOTATE LOCK ACQUIRE ()
result = count++;
// Implicit ANNOTATE LOCK RELEASE () when leaving the scope below.
} // scoped lock is automatically released here
return result;

}

The scoped lock pattern is preferred because it releases the lock no matter how control leaves the block.
The scoped lock is released when destruction of the scoped lock object occurs. In particular, it releases the
lock even when control leaves because an exception was thrown.

oneTBB also has a tbb: :atomic template class that can be used in simple cases such as managing a shared
integer variable. Check the Related Information for details.

See Also
Testing the Intel® oneAPI Threading Building Blocks (oneTBB) Synchronization Code
Related Information

Test the Intel® oneAPI Threading Building Blocks (oneTBB) Synchronization Code

After you add Intel® oneAPI Threading Building Blocks (oneTBB) synchronization code (such as mutexes), but
before adding the constructs that cause the program to use parallel execution, you should test your serial
program. The synchronization code may introduce problems if you have inadvertently used a non-recursive
mutex in a recursive context, or if your edits accidentally changed some other piece of program behavior.

It is much easier to find these problems in the serial version of your program than it will be in the parallel
version.

See Also
Parallelize Functions - Intel® oneAPI Threading Building Blocks (oneTBB) Tasks

203

1 Intel® Advisor User Guide

Parallelize Functions - Intel® oneAPI Threading Building Blocks (oneTBB) Tasks

The following sections describe various alternatives, depending on how the tasks fit within the surrounding
parallel site.

Two or More Parallel Statements

When the outermost statements in the annotation site have been placed into tasks, as shown in this serial
example, it is easy to execute them in parallel.

ANNOTATE SITE BEGIN (sitename);
ANNOTATE TASK BEGIN (taskl);
statement 1
ANNOTATE TASK END () ;
ANNOTATE TASK BEGIN (task2);
statement 2
ANNOTATE TASK END () ;
ANNOTATE SITE END();

Two or More Parallel Statements - Intel® oneAPI Threading Building Blocks (oneTBB)

The easiest way to cause several sequential statements to be executed as independent tasks is to change
your program as follows using parallel invoke.

Both of the following examples use the C++11 lambda expression feature - you need to use the Intel® C++
Compiler Classic or Intel® oneAPI DPC++/C++ Compiler and enable the C++11 support to compile it.

#include <tbb/tbb.h>

tbb::parallel invoke (
[&] {statement 1;},
[&] {statement 2;}
}

A variable used inside a lambda expression but declared outside it is said to be captured. The [&] in the
example specifies capture by reference. It is also possible to capture by value [=], or even capture different
variables different ways. See the compiler documentation on lambda expressions for details.

Using C++ structs Instead of Lambda Expressions
Any code that can be written with a lambda expression can be written without one - it is just more work. All
a lambda expression does is:

1. Define a class with operator() defined to execute the body of the lambda expression.
2. Define a class constructor that captures variables into fields of the class.
3. Construct an instance of that class.

The constructor can capture any of the surrounding locals that are needed and save them in data members.

{ struct S1 { void operator() () { statement 1 }};
struct S2 { void operator() () { statement 2 }};
tbb::parallel invoke(S1(),S2());

}

See Also
Parallelize Data - Intel® oneAPI Threading Building Blocks (oneTBB) Counted Loops

204

Intel® Advisor User Guide 1

Parallelize Data - Intel® oneAPI Threading Building Blocks (oneTBB) Counted Loops

When tasks are loop iterations, and the iterations are over a range of values that are known before the loop
starts, the loop is easily expressed in Intel® oneAPI Threading Building Blocks (oneTBB) .

Consider the following serial code and the need to add parallelism to this loop:

ANNOTATE SITE BEGIN (sitename);
for (int i = lo; i < hi; ++i) {
ANNOTATE__ITERATION_TASK(taskname);
statement;
}
ANNOTATE_SITE_END();

Here is the serial example converted to use oneTBB , after you remove the Intel Advisor annotations:

#include <tbb/tbb.h>

tbb::parallel for(lo, hi,
[&] (int 1) {statement;}
)

The first two parameters are the loop bounds. As is typical in C++ (especially STL) programming, the lower
bound is inclusive and the upper bound is exclusive. The third parameter is the loop body, wrapped in a
lambda expression. The loop body will be called in parallel by threads created by oneTBB . As described
before in Create the Tasks, Using C++ structs Instead of Lambda Expressions, the lambda expressions can
be replaced with instances of explicitly defined class objects.

See Also

Parallelize Data - Intel® oneAPI Threading Building Blocks (oneTBB) Loops with Complex Iteration
Control

Parallelize Functions - Intel® oneAPI Threading Building Blocks (oneTBB) Tasks for information on
using C++ structs instead of lambda functions

Parallelize Data - Intel® oneAPI Threading Building Blocks (oneTBB) Loops with Complex Iteration Control

Sometimes the loop control is spread across complex control flow. Using Intel® oneAPI Threading Building
Blocks (oneTBB) in this situation requires more features than the simple loops. Note that the task body must
not access any of the auto variables defined within the annotation site, because they may have been
destroyed before or while the task is running. Consider this serial code:

extern char al[];
int previousEnd = -1;
ANNOTATE SITE BEGIN (sitename);
for (int 1=0; 1<=100; i++) {
if (lfaf[i] || 1i==100) {
ANNOTATE TASK BEGIN (do something);
DoSomething (previousEnd+1,1) ;
ANNOTATE TASK END() ;
previousEnd=i;
}
}
ANNOTATE SITE END();

In general, counted loops have better scalability than loops with complex iteration control, because the
complex control is inherently sequential. Consider reformulating your code as a counted loop if possible.

The prior example is easily converted to parallelism by using the task group feature of oneTBB :

#include <tbb/tbb.h>

extern char al[];

205

1 Intel® Advisor User Guide

int previousEnd = -1;
task group g;
for (int i1=0; i<=100; i++) {
if (laf[i] || 1==100) {
g.run([=] {DoSomething (previousEnd+1l,1i);}
previousEnd=i;
}
}
g.wait(); // Wait until all tasks in the group finish

Here the lambda expression uses capture by value [=] because it is important for it to grab the values of i
and previousEnd when the expression constructs its functor, because afterwards the value of
previousEnd and i change.

For more information on tbb: :task group, see the oneTBB documentation.

See Also
Using Intel® Inspector and Intel® VTune™Profiler

Replace Annotations with OpenMP* Code

This topic explains the steps needed to implement parallelism proposed by the Intel Advisor annotations by
adding OpenMP* parallel framework code.

e Add OpenMP code to provide appropriate synchronization of shared resources, using the LOCK
annotations as a guide.
e Add code to create OpenMP tasks, using the SITE/TASK annotations as a guide.

The recommended order for replacing the annotations with OpenMP code:

1. Add appropriate synchronization of shared resources, using LOCK annotations as a guide.

2. Test to verify you did not break anything, before adding the possibility of non-deterministic behavior
with parallel tasks.

3. Add code to create OpenMP parallel sections or equivalent, using the SITE/TASK annotations as a guide.

4. Test with one thread to verify that your program still works correctly. For example, set the environment
variable OMP_NUM THREADS to 1 before you run your program.

5. Test with more than one thread to see that the multithreading works as expected.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

OpenMP creates worker threads automatically. In general, you should concern yourself only with the tasks,
and leave it to the parallel frameworks to create and destroy the worker threads.

If you do need some control over creation and destruction of worker threads, see the compiler
documentation. For example, to limit the number of threads, set the OMP THREAD LIMIT or the
OMP_NUM THREADS environment variable.

The table below shows the serial, annotated program code in the left column and the equivalent OpenMP C/C
++ and Fortran parallel code in the right column for some typical code to which parallelism can be applied.

Serial C/C++ and Fortran Code with Intel Parallel C/C++ and Fortran Code using OpenMP
Advisor Annotations

// Synchronization, C/C++ // Synchronization can use OpenMP
ANNOTATE LOCK ACQUIRE (0) ; // critical sections, atomic operations, locks,
Body () ; // and reduction operations (shown later)

ANNOTATE LOCK RELEASE (0) ;

206

Intel® Advisor User Guide

Serial C/C++ and Fortran Code with Intel
Advisor Annotations

Parallel C/C++ and Fortran Code using OpenMP

! Synchronization, Fortran

call annotate lock acquire(0)
body

call annotate lock release(0)

// Synchronization can use OpenMP
// critical sections, atomic operations, locks,
// and reduction operations (shown later)

// Parallelize data - one task within a
// C/C++ counted loop
ANNOTATEislTEiBEGIN(Site);

for (1 = lo; 1 < n; ++i) {
ANNOTATE ITERATION TASK (task);
statement;

}
ANNOTATE SITE END();

// Parallelize data - one task, C/C++ counted

loops
#pragma omp parallel for
for (int 1 = lo; 1 < n; ++i) {
statement;

}

! Parallelize data - one task within a
! Fortran counted loop
call annotate site begin("sitel")
doi=1, N
call annotate iteration task("taskl")
statement
end do
call annotate site end

! Parallelize data - one task with a
! Fortran counted loop
!'Somp parallel do
doi=1, N
statement
end do
!Somp end parallel do

// Parallelize C/C++ functions
ANNOTATEislTEiBEGIN(Site);
ANNOTATE_TASK_BEGIN(taskl);
function 1();
ANNOTATEiTASKiEND();
ANNOTATE_TASK_BEGIN(taSkZ);
function 2();
ANNOTATE_TASK_END();
ANNOTATE_SITE_END();

// Parallelize C/C++ functions
#pragma omp parallel //start parallel region
{
#pragma omp sections
{
#pragma omp section
function 1();
#pragma omp section
function 2();
}
} // end parallel region

! Parallelize Fortran functions

call annotate site begin("sitel")

call annotate task begin("taskl")
call subroutine 1

call annotate task end

call annotate task begin("task2")
call subroutine 2

call annotate task end

call annotate site end

! Parallelize Fortran functions
!Somp parallel ! start parallel region
!Somp sections
!Somp section
call subroutine 1
!Somp section
call subroutine 2
!Somp end sections
!Somp end parallel ! end parallel region

Add OpenMP Code to Synchronize the Shared Resources

OpenMP provides several forms of synchronization:

e A critical section prevents multiple threads from accessing the critical section's code at the same time,

thus only one active thread can update the data referenced by the code. A critical section may consist of

one or more statements. To implement a critical section:

e With C/C++: #pragma omp critical

e With Fortran: !Somp critical and !$omp end critical

207

1 Intel® Advisor User Guide

Use the optional named form for a non-nested mutex, such as (C/C++) #pragma omp critical (name)
or (Fortran) !Somp critical (name) and !$omp end critical (name). If the optional (name) is
omitted, it locks a single unnamed global mutex. The easiest approach is to use the unnamed form unless
performance measurement shows this shared mutex is causing unacceptable delays.

e An atomic operation allows multiple threads to safely update a shared numeric variable on hardware
platforms that support its use. An atomic operation applies to only one assignment statement that
immediately follows it. To implement an atomic operation:

e With C/C++: insert a #pragma omp atomic before the statement to be protected.
e With Fortran: insert a ! Somp atomic before the statement to be protected.

The statement to be protected must meet certain criteria (see your compiler or OpenMP documentation).

e Locks provide a low-level means of general-purpose locking. To implement a lock, use the OpenMP types,
variables, and functions to provide more flexible and powerful use of locks. For example, use the
omp_lock_ t type in C/C++ or the type=omp lock kind in Fortran. These types and functions are easy
to use and usually directly replace Intel Advisor lock annotations.

e Reduction operations can be used for simple cases, such as incrementing a shared numeric variable or
summing an array into a shared numeric variable. To implement a reduction operation, add the
reduction clause within a parallel region to instruct the compiler to perform the summation operation in
parallel using the specified operation and variable.

e OpenMP provides other synchronization techniques, including specifying a barrier construct where threads
will wait for each other, an ordered construct that ensures sequential execution of a structured block
within a parallel loop, and master regions that can only be executed by the master thread. For more
information, see your compiler or OpenMP documentation.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

The following topics briefly describe these forms of synchronization. Check your compiler documentation for
details.

See Also
Testing the OpenMP Synchronization Code

OpenMP Critical Sections

Use OpenMP critical sections to prevent multiple threads from accessing the critical section's code at the
same time, thus only one active thread can update the data referenced by the code. Critical sections are
useful for a non-nested mutex.

Unlike OpenMP atomic operations that provide fine-grain synchronization for a single operation, critical
sections can provide course-grain synchronization for multiple operations.

Use:

e #pragma omp critical with C/C++.
e !Somp critical and !Somp end critical with Fortran.

If the optional (name) is omitted, it locks an unnamed global mutex. The easiest approach is to use the
unnamed form unless this shared mutex is causing unacceptable performance delays.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

208

Intel® Advisor User Guide 1

For example, consider this annotated C/C++ serial program:

int count;
void Tick() {
ANNOTATE_LOCK_ACQUIRE(O);
count++;
ANNOTATE_LOCK_RELEASE(O);

The parallel C/C++ code after adding #include <omp.h> and #pragma omp critical:

#include <omp.h> //prevents a load-time problem with a .dll not being found
int count;
void Tick() {
// Replace Lock annotations
#pragma omp critical
count++;

Consider this annotated Fortran serial code:

program ABC
integer(kind=4) :: count = 0

contains
subroutine Tick
call annotate lock acquire (0)
count = count + 1
call annotate lock release(0)
end subroutine Tick

end program ABC

The parallel Fortran code after adding use omp 1lib, !$omp critical, and !Somp end critical:

program ABC
use omp lib
integer (kind=4) :: count = 0
contains
subroutine Tick
!Somp critical
count = count + 1

!Somp end critical
end subroutine Tick

end program ABC

See Also
Testing the OpenMP Synchronization Code
Related Information

209

1 Intel® Advisor User Guide

Basic OpenMP Atomic Operations

Use OpenMP atomic operations to allow multiple threads to safely update a shared numeric variable, such as
on hardware platforms that support atomic operation use. An atomic operation applies only to the single
assignment statement that immediately follows it, so atomic operations are useful for code that requires fine-
grain synchronization.

Before the statement to be protected, use:

e d#pragma omp atomic for C/C++.
e !Somp atomic for Fortran.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

For example, consider this annotated C/C++ serial code:

int count;
void Tick() {
ANNOTATE_LOCK_ACQUIRE(O);
count = count+l;
ANNOTATEiLOCKiRELEASE(O);

The parallel C/C++ code after adding #include <omp.h> and #pragma omp atomic:

#include <omp.h> //prevents a load-time problem with a .dll not being found
int count;
void Tick() {
// Replace lock annotations
#pragma omp atomic
count = count+l;

Consider this annotated Fortran serial code:

program ABC
integer(kind=4) :: count = 0

contains
subroutine Tick
call annotate lock acquire (0)
count = count + 1
call annotate lock release(0)
end subroutine Tick

end program ABC

The parallel Fortran code after adding use omp 1lib and the !$omp atomic directive:

program ABC
use omp lib
integer (kind=4) :: count = 0

contains

210

Intel® Advisor User Guide 1

subroutine Tick

!Somp atomic

count = count + 1
end subroutine Tick

end program ABC
The Intel Advisor Fortran sample nqueens. £90 demonstrates the use of an atomic operation.

This topic introduces basic OpenMP atomic operations. For advanced atomic operations that use clauses after
the atomic construct, see Advanced OpenMP Atomic Operations.

See Also

Advanced OpenMP Atomic Operations

Testing the OpenMP Synchronization Code

Related Information

Advanced OpenMP Atomic Operations
This topic provides advanced examples of OpenMP* atomic operations.

These advanced atomic operations use clauses after the atomic construct, such as read, write, update,
capture, and seq_cst. If you do not add a clause after atomic, the default is update.

Because these clauses are part of OpenMP 3.1 and 4.0 specification, you need a compiler that supports these
advanced atomic clauses, such as the Intel® C++ Compiler Classic or the Intel® Fortran Compiler Classic.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

Example Using the read and write Clauses

The following C/C++ example uses separate read and write clauses:

int atomic_read(const int *x)
{
int value;
/* Ensure that the entire value of *x is read atomically. */
/* No part of *x can change during the read operation. */
#pragma omp atomic read
value = *x;
return value;
}
void atomic write(int *x, int value)
{
/* Ensure that value is stored atomically into *x. =y
/* No part of *x can change until after the entire write operation has completed. */
#pragma omp atomic write
*x = value;

}

The following Fortran example uses the read and write clauses:

function atomic_read (x)

integer :: atomic read

integer, intent(in) :: x
! Ensure that the entire value of x is read atomically. No part of x can change during
! the read operation.

211

1 Intel® Advisor User Guide

!Somp atomic read
atomic read = x
return
end function atomic_read
subroutine atomic write(x, value)
integer, intent (out) :: x
integer, intent(in) :: value
! Ensure that value is stored atomically into x. No part of x can change

! until after the entire write operation has completed.
!Somp atomic write

x = value
end subroutine atomic write

Example Using the Basic capture Clause

The following C/C++ example uses the capture clause:

#pragma omp parallel for shared (pos)
for (int 1=0; 1 < size; i++) {

if (isValid(data[i])) {
int tmpPos;
// Using omp atomic capture pragma
#pragma omp atomic capture
{
tmpPos = pos;
pos = pos+l;
}

//Pack all selected element'

indices in index; exact order of indices values is
not important.

index [tmpPos] = 1i;

}

Example Using the Swap Form of the capture Clause
The capture clause example above might be modified to use the following code snippet:

//with introduction of “atomic swap” you can also use forms like:
newPos = foo();

#pragma omp atomic capture
{
tmpPos = pos;
pos = newPos;

See Also

Testing the OpenMP Synchronization Code
Basic OpenMP Atomic Operations
Related Information

212

Intel® Advisor User Guide 1

OpenMP Reduction Operations

OpenMP reduction operations can be used for simple cases, such as incrementing a shared numeric variable
or the summation of an array into a shared numeric variable. To implement a reduction operation, add the
reduction clause within a parallel region to instruct the compiler to perform the summation operation in
parallel using the specified operation and variable.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how

well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

Consider this annotated C/C++ serial code:

int 1, n=500000;
float *array, total=0.0;

for (i=0; i <n ; ++1i

{
ANNOTATE LOCK ACQUIRE (0);
total+ = arrayl[i];
ANNOTATE_LOCK_RELEASE (0);

}

The parallel C/C++ code after adding #include <omp.h> and #pragma omp parallel for reduction:

#include <omp.h> //prevents a load-time problem with a .dll not being found
int i, n=500000;
float *array, total=0.0;

#pragma omp parallel for reduction (+:total)
for (i=0; i <n ; ++i
{
total+ = arrayl[il];

}
Consider this annotated Fortran serial code:

integer(4) n
real (4) array(50000), total = 0.0
n = 500000

do i=1, n

call annotate lock acquire (0)
total = total + array (i)

call annotate lock release(0)

end do

Consider this parallel Fortran code after adding use omp_ 1lib, !$omp parallel do reduction(+:total),
and !Somp end parallel do:

use omp lib
integer (4) n
real (4) array(50000), total = 0.0

213

1 Intel® Advisor User Guide

n = 500000

!Somp parallel do reduction (+:total)
do i=1, n
total = total + array (i)
!Somp end parallel do

end do

See Also
Testing the OpenMP Synchronization Code
Related Information

OpenMP Locks

Consider the following annotated C/C++ serial code:

int count;
void Tick() {
ANNOTATE LOCK ACQUIRE (0);
count++;
ANNOTATE_LOCK_RELEASE (0);

To implement a lock, use the OpenMP types, variables, and functions to provide more flexible and powerful
use of locks. For example, for simple locks, use the omp lock t typein C/C++ or the type=omp lock kind
in Fortran.

Locks can be wrapped inside C++ classes, as shown in the following parallel C/C++ code:

#include <omp.h>
int count;
omp lock t countMutex;

struct CountMutexInit ({
CountMutexInit () { omp init nest lock (&countMutex) ; }

~CountMutexInit () { omp destroy nest lock(&countMutex); }
} countMutexInit;

// The declaration of the above object causes countMutex to
// be initialized on program startup, and to be destroyed when
// the program completes, via the constructor and destructor.

struct CountMutexHold {
CountMutexHold () { omp set nest lock (&countMutex); }
~CountMutexHold () { omp unset nest lock (&countMutex); }

)7

void Tick() {
// unlocks on scope exit
CountMutexHold releaseAtEndOfScope;
count++;

}

214

Intel® Advisor User Guide 1

Consider the following annotated Fortran serial code:

program BBB
integer (kind=4) :: count = 0

contains
subroutine Tick
call annotate lock acquire (0)
count = count + 1
call annotate lock release(0)
end subroutine Tick

end program BBB

For simple locks with Fortran code, use the type=omp lock kind. The parallel Fortran code follows after
adding use omp lib and the integer declaration for count:

program BBB
use omp lib
integer (kind=4) :: count = 0
integer (kind=omp lock kind) countMutex
call omp nest lock init (countMutex)

contains

subroutine Tick

call omp set nest lock(countMutex)
count = count + 1

call omp unset nest lock(countMutex)

end subroutine Tick

end program BBB

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

See Also
Testing the OpenMP Synchronization Code
Related Information

Test the OpenMP Synchronization Code

After you have added OpenMP synchronization code (such as locks, critical sections, or atomic operations),
but before adding the constructs that cause the program to use parallel execution, you should test your serial
program. The synchronization code may introduce problems if you have inadvertently used a non-recursive
mutex in a recursive context, or if your edits accidentally changed some other piece of program behavior.

It is much easier to find these problems in the serial version of your program than it will be in the parallel
version.

See Also
Parallelize Functions - OpenMP Tasks

215

1 Intel® Advisor User Guide

Parallelize Functions - OpenMP Tasks

You can enable multiple function calls to run in parallel as two or more tasks. This is useful for functions in
library code for which the source is not available. The statements to run in parallel are not limited to function
calls (see the help topic Data and Task Parallelism).

When the outermost statements in the annotation site have been placed into tasks, as shown in the following
serial example, it is easy to execute them in parallel.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

Consider the C/C++ annotated code:

ANNOTATE SITE BEGIN (sitename);
ANNOTATEiTASKiBEGIN(taskl);
statement-1;
ANNOTATE_TASK_END();
ANNOTATEiTASKiBEGIN(task2);
statement-2;
ANNOTATE_TASK_END();
ANNOTATE_TASK_BEGIN(task3);
statement-3;
ANNOTATE_TASK_END();
ANNOTATE_SITE_END();

For the C/C++ parallel code, OpenMP provides explicit support using #pragma omp parallel sections
and related pragmas within a parallel code region:

#pragma omp parallel sections
{
#pragma omp section
{
statement-1;
}
#pragma omp section

{

statement-2;

}
Consider the annotated Fortran code:

call annotate site begin("sitename")
call annotate task begin("task 1")
call subroutine 1
call annotate task end

call annotate task begin("task 2")
call subroutine 2
call annotate task end
call annotate site end

216

Intel® Advisor User Guide 1

For the parallelized Fortran code, OpenMP provides the ! Somp sections and related directives that can
often replace the corresponding annotations within a parallel code region:

!Somp parallel
!Somp sections
!Somp section
call subroutine 1
!Somp section
call subroutine 2
!Somp end sections
!Somp end parallel

See Also
Parallelize Data - OpenMP Counted Loops
Data and Task Parallelism

Parallelize Data - OpenMP Counted Loops

When tasks are loop iterations, and the iterations are over a range of values that are known before the loop
starts, the loop is easily expressed in OpenMP.

Consider the following annotated serial C/C++ loop:

ANNOTATE SITE BEGIN (sitename);
for (int i = lo; i < hi; ++i) {
ANNOTATE ITERATION TASK (taskname);
statement;

}
ANNOTATE SITE END();

OpenMP makes it easy to introduce parallelism into loops. With C or C++ programs, add the omp parallel
for pragma immediately before the C/C++ for statement:

#pragma omp parallel for
for (int 1 = lo; i < hi; ++i) {
statement;

}

Consider the following annotated Fortran serial loop:

call annotate site begin("sitename")

doi=1, N

call annotate iteration task("taskname")
statement

end do

call annotate site end

With Fortran programs, add the !$Somp parallel do directive immediately before the Fortran do statement:

!Somp parallel do
doi=1, N
statement
end do
!Somp end parallel do

217

1 Intel® Advisor User Guide

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

The OpenMP compiler support encapsulates the parallel construct. The rules for capturing the locals can be
defaulted or specified as part of the pragma or directive. The loop control variable defaults to being private
so each iteration sees its allotted value.

See Also
Parallelize Data - OpenMP Loops with Complex Iteration Control
Parallelize Functions - OpenMP Tasks

Parallelize Data - OpenMP Loops with Complex Iteration Control

Sometimes the loop control is spread across complex control flow. Using OpenMP in this situation requires
more features than the simple loops. The task body must not access any of the auto variables defined within
the annotation site, because they may have been destroyed before or while the task is running. Also, note
that variables referenced within the task construct default to firstprivate.

Consider this serial C/C++ code:

extern char al[];
int previousEnd = -1;
ANNOTATE_SITE_BEGIN(sitename);
for (int 1=0; 1<=100; i++) {
if (la[i] || 1==100) {
ANNOTATE_TASK_BEGIN (do_something);
DoSomething (previousEnd+1,1) ;
ANNOTATE_TASK_END();
previousEnd=i;
}
}
ANNOTATE_SITE_END();

This is done using the OpenMP task pragma. Without using this feature, such loops are extremely difficult to
parallelize. One approach to the adding parallelism to the loop is to simply spawn each call to
DoSomething () :

extern char all;

int previousEnd = -1;

#pragma omp parallel
{

#pragma omp single

{
for (int i=0; i<=100; i++) {

if ('a[i] || 1==100)
{
#pragma omp task
DoSomething (previousEnd+1,1) ;

}

218

Intel® Advisor User Guide 1

It is important that the parameters to DoSomething be passed by value, not by reference, because
previousEnd and i can change before or while the spawned task runs.

Consider this serial Fortran code:

logical (1) a(200)
integer(4) i, previousEnd

previousEnd=0

call annotate site begin(functions)

do i=1,101
if a(.not. a(i)) .or. (i .eq. 101) then
call annotate task begin(do_something)

call DoSomething (previousEnd+l, i)

call annotate task end
endif

end do

call annotate site end

This is easily done using the OpenMP task directive. Without using this feature, such loops are extremely

difficult to parallelize. One approach to the parallelize the above loop is simply to spawn each call to
DoSomething () :

logical(l) a(200)
integer(4) i, previousEnd

previousEnd=0
!Somp parallel
!Somp single
do i=1,101
if a(.not. a(i)) .or. (i .eqg. 101) then
!Somp task
call DoSomething (previousEnd+1l, 1)
!Somp end task
endif
end do
!Somp end parallel

There is no requirement that the omp task pragma or directive be within the surrounding parallel directive's
static extent.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how

well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

See Also
Using Intel® Inspector and Intel® VTune™Profiler
Next Steps for the Parallel Program

After you add parallel framework code to your program, use the related Intel® www products to check for

parallel thread errors and improve the performance of your parallel program. Tips for debugging parallel code
are also provided.

219

1 Intel® Advisor User Guide

Use Intel® Inspector and Intel® VTune™Profiler
Intel® Advisor helps you:

e Discover where to add parallelism to your program by identifying where your program spends its time.
You propose parallel code regions when you annotate the parallel sites and tasks.

e Predict the performance you might achieve with the proposed parallel code regions.

e Predict the data sharing problems that could occur in the proposed parallel code regions.

Intel Advisor does not catch all problems, and it cannot ensure that you have correctly implemented the
parallelism. Before deploying your parallel program, you need to test it for Dependencies and verify its
performance. To do this, you can use analyzer tools provided in the Intel® oneAPI Base Toolkit, Intel® oneAPI
IoT Toolkit, and Intel® oneAPI HPC Toolkit.

The thread error analysis provided by the Intel® Inspector and the Dependencies analysis provided by the
Intel Advisor use similar technology. Intel Inspector includes a data race and deadlock detection tool that
works on the parallel code. It can find more errors because it operates on the parallel code instead of
working on the annotated serial code analyzed by the Dependencies tool. Intel Inspector also can find
problems with memory: memory leaks, references to freed storage, references to uninitialized memory, and
so forth. The memory-checking tool works on serial or parallel code.

Similarly, the Intel Advisor Survey and Suitability tools provide features found in the Intel® VTune™Profiler.
The Survey tool profiles your program to find hotspots and the Suitability tool makes predictions of
approximate parallel performance including overhead costs based on the Intel Advisor annotations. When you
have a working parallel program, you should use Intel VTune Profiler to measure the parallel program gain
and core utilization, as well as check whether the parallel framework overhead is acceptable.

Once you have parallel code, you should:

e Measure the speedup.
e Make adjustments if locks are causing excessive delays, or if one task runs much longer than others.

Intel VTune Profiler has many features to help you find and fix performance problems in your parallel code. It
also helps you check:

Where are the hotspots now?

Am I missing opportunities for more parallelism?

Is my program spending a lot of time waiting?

How does the performance compare to that of prior versions?

Another technique is to use a debugger to debug a serial version of your parallel program with the parallel
constructs in reverse order (see Debug Parallel Programs).

See Also
Maintain Results

Debug Parallel Programs

Your program might have bugs that are now being exposed during parallel execution because of changes in
order, memory allocation, uninitialized memory contents, and so on.

Such bugs are debugged in the same way as a serial (single-threaded) application, with the following
challenges:

1. The program does not run in exactly the same order each time. Possible causes include:

e Locks may be acquired first by different threads.
e Pointers returned by new and malloc may differ from one run to the next.
e Random number sequences observed by a thread may differ from those observed in the serial
version, and from run to run.
e Items removed from a shared list by a thread may differ from run to run
2. The debugger can interact in strange manners with the threads.

e Breakpoints can appear to be hit multiple times by a thread, even though the thread only make
progress through the breakpoint on last hit of the series.
3. Thread local storage can be difficult to examine.

220

https://www.intel.com/content/www/us/en/develop/tools/inspector.html
https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html

Intel® Advisor User Guide 1

To determine whether you can reproduce the bug with a single thread, run the parallel version of your
program as a serial program by limiting the number of threads to 1. Use such methods as setting an
environment variable before you run your program or by using the Intel® oneAPI Threading Building Blocks
(oneTBB) tbb::task scheduler init init(1); object.

Before spending a significant amount of time debugging the parallel code, you should try running the parallel
loops and other parallel constructs as serial code but in reverse order. This may expose the bugs caused by
your program depending on the order of execution of these statements, without requiring you to debug a
parallel program.

Debug the Remaining Sharing Problems

After your program works in serial mode, and in serial mode with the parallel constructs in reverse order, use
the Intel® Inspector tool to find any remaining conflicts.

See Also
Use Intel Inspector and Intel® VTune™Profiler
Use Partially Parallel Programs with Intel Advisor Tools

Model Offloading to a GPU

Find high-impact opportunities to offload/run your
code and identify potential performance bottlenecks
on a target graphics processing unit (GPU) by running
the Offload Modeling perspective.

The Offload Modeling perspective can help you to do the following:

e For code running on a CPU, determine if you should offload it to a target device and estimate a potential
speedup before getting a hardware.

e For code running on a GPU, estimate a potential speedup from running it on a different target device
before getting a hardware.

o Identify loops that are recommended for offloading from a baseline CPU to a target GPU.

e Pinpoint potential performance bottlenecks on the target device to decide on optimization directions.

e Check how effectively data can be transferred between host and target devices.

With the Offload Modeling perspective, the following workflows are available:
e CPU-to-GPU offload modeling:

e For C, C++, and Fortran applications: Analyze an application and model its performance on a target
GPU device. Use this workflow to find offload opportunities and prepare your code for efficient offload
to the GPU.

e For SYCL, OpenMP* target, and OpenCL™ applications: Analyze an application offloaded to a CPU and
model its performance on a target GPU device. Use this workflow to understand how you can improve
performance of your application on the target GPU and check if your code has other offload
opportunities. This workflow analyzes parts of your application running on host and offloaded to a CPU.

e GPU-to-GPU offload modeling for SYCL, OpenMP target, and OpenCL applications: Analyze an application
that runs on a GPU and model its performance on a different GPU device. Use this workflow to understand
how you can improve your application performance and check if you can get a higher speedup if you
offload the application to a different GPU device.

NOTE You can model application performance only on Intel® GPUs.

How It Works
The Offload Modeling perspective runs the following steps:

1. Get the baseline performance data for your application by running a Survey analysis.

221

1 Intel® Advisor User Guide

2. Identify the number of times kernels are invoked and executed and the number of floating-point and
integer operations, estimate cache and memory traffics on target device memory subsystem by running
the Characterization analysis.

3. Mark up loops of interest and identify loop-carried dependencies that might block parallel execution by
running the Dependencies analysis (CPU-to-GPU modeling only).

4.

Estimate the total program speedup on a target device and other performance metrics according to

Amdahl's law, considering speedup from the most profitable regions by running Performance
Modeling. A region is profitable if its execution time on the target is less than on a host.

The CPU-to-GPU and GPU-to-GPU modeling workflows are based on different hardware configurations,
compilers code-generation principles, and software implementation aspects to provide an accurate modeling
results specific to the baseline device for your application. Review the following features of the workflows:

CPU-to-GPU modeling

GPU-to-GPU modeling

Only loops/functions executed or offloaded to a CPU
are analyzed.

Loop/function characteristics are measured using
the CPU profiling capabilities.

Only profitable loops/functions are recommended
for offloading to a target GPU. Profitability is based
on the estimated speedup.

High-overhead features, such as call stack
handling, cache and data transfer simulation,
dependencies analysis, can be enabled. You might
need to run the Dependencies analysis to check if
loop-carried dependencies affect performance on a
GPU.

Data transfer between baseline and target devices
can be simulated in two different modes: footprint-
based and memory object-based.

Only GPU compute kernels are analyzed.

Compute kernel characteristics are measured using
the GPU profiling capabilities.

All kernels executed on GPU are modeled one to
one, even if they have low speedup estimated.

High-overhead features, such as call stack
handling, cache and data transfer simulation,
dependencies analysis, are disabled. You do not
need to run the Dependencies analysis.

Memory objects transferred between host and
device memory are traced.

Offload Modeling Summary

Offload Modeling perspective measures performance of your application and compares it with its modeled
performance on a selected target GPU so that you can decide what parts of your application you can execute
on the GPU and how you can optimize it to get a better performance after offloading.

Main metrics for the modeled performance of your program indicating if you should offload your

application hotspots to a target device or not

Specific factors that prevent your code from achieving a better performance if executed on a target device

(the factors that your code is bounded by)

Top offloaded loops/functions that provide the highest benefit (up to five)
For the CPU-to-GPU modeling: Top non-offloaded loops/functions (up to five) with reasons why a loop is

not offloaded

222

Intel® Advisor User Guide 1

Perspective: Offload Modeling ~

Top Metrics

| 3.422x

Speed-up for Accelerated Code

Program Metrics ~
Original 44.86s
Accelerated 17.21s
Program Time on Host After Accelera. . 5.788s Speed-up for Accelerated Code 3.422%
Time on Target 10.28s Amdahl's Law Speed Up 1.488x
m Time in MPI calls 0s Fraction of Accelerated Code 58%
Non-Accelerable Time 1.08s Number of Offloads 5
Data Transfer Tax 0s CPU Threads 8
Kemel Launch Tax 50.0ms Target Platform Gen11 GT2
Baseline Platform Intel{R) Core(TM) i7-9700K
CPU
Top Offloaded ~
Loop/Function Execution Time Speed-Up Bounded By Data Transfer
[loop in compute flux_ser at CPU 36585 — -
eulerdd cpu_ser.cpp.226] GPU oge3s o1 — L3 BV 12.1M8
[loop in compute step facior serat ———— CPU 844.0ms [.
uler3d cpu_sercon191] GPU 158.0ms 312 E CRAMBW 458N
[loop in time_step ser at ——— CPU 516.0ms ' -
eulerdd cpu ser.cpp.361] GPU 474.1ms 1.088x — DRAM BWY 10.5ME
——— CPU 1.046s .
[leop in main at euler3d.cpp.848] GEU 10158 1.030% ———— DRAM BW 31.9MB
) CPU 88.0ms - -
[loop in dump at euler3d.cpp:285] GPU 76.0ms 1.157% — DRAM BW 12MB

See Also

Run Offload Modeling Perspective from GUI

Source View

» Accelerated Regions =

1.488x

Amdahl's Law Speed Up

58%

Fraction of Accelerated Code

Offload Bounded By

Top Non-Offloaded

LoopiFunction

[loon in TS9comp flux at
eulerdd.cpp.443]

lloop in
TS13comp timestep at
euler3d.cpp]

[loop in TS9comp flux at
eulerdd.cpp.443]

[loop in copy at
euler3d.cpp]

Run Offload Modeling Perspective from Command Line
Run GPU-to-GPU Performance Modeling from Command Line With Intel® Advisor, you can model
performance of SYCL, OpenCL™, or OpenMP* target application running on a graphics processing
unit (GPU) for a different GPU device without its CPU version. For this, run the GPU-to-GPU

modeling workflow of the Offload Modeling perspective.
Offload Modeling Report Overview

Optimize Your GPU Application with Intel® oneAPI Base Toolkit

Run Offload Modeling Perspective from GUI

Prerequisites:

~
Number of Offloads
~ Modeling Parameters ~
u Compute 0% <, Save lo Remodel
m L3 Cache BW 55%
m GTIBW 0% Target Device
LLCBW 0% Genl1 GT2
Memory BW 4%
Atomics 0% ‘Set to Hardware Default
Latencies % Hardware Parameters
Data Transfer 0%
Launch Tax 0% EU Gount @ _ O 84
m Dependency 0%
Trip Count 0% Frequency 1.1 GHz
unknown 0% :
Non Offloaded 42% GTI Bandwidth 704 GBls
L3 Bandwidih . 2816 GBIs
L3 Size . 3MB
~
Execution Time Bounded By Why Not Offloaded Data Transfer
CPU 17545 pssm Trip Counts, Not profitable: Trip 11N
GPU 3014s I Latencies Counts, Latencies
Mot profitable: Latencies
DRAM Bandwidth Time is
CPU 256.0ms Latencies, oreater than other aan
GPU 62.67s DRAM BW execution time
components on a Target
Device
CPU 194.0ms | Trip Counts, ~ Not profitable: Trip 118M
GPU 40425 1 Latencies Counts, Latencies
Mot profitable: Launch
Launch Tax Tax, Latencies, DRAM
CPU 164.0ms " Bandwidth Time is greater
GPU 27.49s Lafencies, than other execution time 5870
o DRAM BW

compeonents on a Target
Device

e For a SYCL, OpenMP* target, or OpenCL™ application, do one of the following:

e To analyze the application running on a GPU: Configure your system to analyze GPU kernels.
e To analyze the application running on a CPU: Set up environment variables to offload it temporarily to

a CPU.

e In the graphical-user interface (GUI): Create a project and specify an analysis target and target options.

To configure and run the Offload Modeling perspective from the GUI:

1. Select a baseline device from the drop-down. This is the device that your application runs on for the

Intel® Advisor to collect performance data.

e To analyze an application running on a CPU (for example, C, C++, or Fortran), make sure CPU is

selected.

223

https://www.intel.com/content/www/us/en/develop/articles/optimize-gpu-application-with-oneapi-base-toolkit.html

1 Intel® Advisor User Guide

e To analyze an application running on a GPU (for example, SYCL, OpenMP target, OpenCL), select the
GPU baseline device.

NOTE If you select GPU, make sure the GPU Profiling checkbox is enabled under Survey,
Characterization, and Performance Modeling analyses.

2. Configure the perspective and set analysis properties, depending on desired results.
e Select a collection accuracy level with analysis properties preset for a specific result:

e Low: Model your application performance for a target device and get the basic low-confidence
information about potential speed-up and performance.

e Medium: Model your application performance and data transfers between host and target
devices.

e High: Model your application performance, data transfers, and memory objects attribution to
improve offload modeling accuracy. For application running on CPU, analyze loop-carried
dependencies.

e Select the analyses and properties manually to adjust the perspective flow to your needs. The
accuracy level is set to Custom.

The higher accuracy value you choose, the higher runtime overhead is added to your application. The
Overhead indicator shows the overhead for the selected configuration. For the Custom accuracy, the
overhead is calculated automatically for the selected analyses and properties.

The Dependencies analysis (included in the high accuracy for CPU baseline device) adds the highest
overhead and is not required if your application is highly parallelized or vectorized on a CPU or if you
know that key hotspots in your application do not have loop-carried dependencies. You may need to run
it for a CPU application if it has scalar loops/functions or you are not sure about dependencies in your
code. See Check How Assumed Dependencies Affect Modeling for a workflow to learn about potential
dependencies in your code.

By default, accuracy is set to Low. See Offload Modeling Accuracy Presets for more details.
3. Select a target platform from the Target Platform Model drop-down. This is a platform that the Intel
Advisor models your application performance on. The following target platforms are available:

Platform Device

pvc_xt_448xve (default) Intel® Data Center GPU Max 448
pvc_xt_512xve Intel® Data Center GPU Max 512

XeHPG 512 Intel® Arc™ Graphics with 512 vector engines
XeHPG 256 Intel® Arc™ Graphics with 256 vector engines
Genll GT2 Intel® Iris® Plus Graphics

XeLP Max 96 Intel® Iris® X® MAX Graphics

XelLP GT2 Intel® Iris® X® Graphics

Gen9 GT2 Intel® HD Graphics 530

Gen9 GT3e Intel® Iris® Graphics 550

Gen9 GT4e Intel® Iris® Pro Graphics 580

NOTE Multi-tile and multi-GPU analysis for pvc_xt_448xve and pvc_xt_512xve platforms is not
supported at the moment.

. >
Click Run to run the perspective.

224

Intel® Advisor User Guide 1

While the perspective is running, you can do the following in the Analysis Workflow tab:
e Control the perspective execution:

Stop data collection and see the already collected data: Click the E button.

Pause data collection: Click the m button.

Cancel data collection and discard the collected data: Click the “ button.

Expand an analysis with ﬂ to control the analysis execution:

Pause the analysis: Click the |I| button.
Stop the currently running analysis and start the next analysis selected: Click the E button.

Interrupt execution of all selected analyses and see the already collected data: Click the
button.

After you run the Offload Modeling perspective, the collected Survey data becomes available for all
other perspectives. If you switch to another perspective, you can skip the Survey step and run only
perspective-specific analyses.

To run the CPU-to-GPU Offload Modeling perspective with the Medium accuracy from the
command line interface:

advisor --collect=offload --project-dir=./advi results -- ./myApplication

To run the GPU-to-GPU Offload Modeling perspective with the Medium accuracy from the
command line interface:

advisor --collect=offload --gpu --project-dir=./advi results -- ./myApplication

See Run Offload Modeling Perspective from Command Line for details. See Run GPU-to-GPU Performance
Modeling from Command Line for details about the GPU-to-GPU Offload Modeling.

NOTE To generate command lines for selected perspective configuration, click the Command
Line button.

Once the Offload Modeling perspective collects data, the report opens showing a Summary tab with
performance metrics estimated for the selected target platform, such as estimated speedup, potential
performance bottlenecks, and top offloaded loops. Depending on the selected accuracy level and perspective
properties, continue to investigate the results. See Explore Offload Modeling Results

Offload Modeling Accuracy Presets

For each perspective, Intel® Advisor has several levels
of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is
collected and the level of collection details. The higher
accuracy value you choose, the higher runtime
overhead is added.

The following accuracy levels are available:

Comparison / Low Medium High
Accuracy Level

Overhead 5-10x 15 - 50x 50 - 80x

225

1 Intel® Advisor User Guide

Comparison /
Accuracy Level

Low

Medium

High

Goal

Analyses

Result

Model performance of
an application that is
mostly compute
bound and does not
have dependencies

Survey +
Characterization (Trip
Counts and FLOP) +
Performance Modeling
with no assumed
dependencies

Basic Offload Modeling
report that shows
potential speedup and
performance metrics
estimated on a target
considering memory
traffic from execution
units to L1 cache only.
The result might be
inaccurate for
memory-bound
applications.

Model application
performance
considering memory
traffic for all cache
and memory levels

Survey +
Characterization (Trip
Counts and FLOP with
cache simulation for
the selected target
device, callstacks, and
light data transfer
simulation) +
Performance Modeling
with no assumed
dependencies

Offload Modeling
report extended with
data transfers
estimated between
host and device
platforms considering
memory traffic for all
cache and memory
levels

Model application performance
with all potential limitations
for offload candidates

Survey + Characterization
(Trip Counts and FLOP with
cache simulation for the
selected target device,
callstacks, and medium data
transfer simulation) +
Dependencies + Performance
Modeling with assumed
dependencies

Offload Modeling report with
detailed data transfer
estimations and automated
check for loop-carried
dependencies for more
accurate search for the most
profitable regions to offload

You can choose custom accuracy and set a custom perspective flow for your application. For more
information, see Customize Offload Modeling Perspective.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

NOTE Families of Intel® X€ graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see
GPU Architecture Terminology for Intel® X® Graphics.

Customize Offload Modeling Perspective
Customize the perspective flow to better fit your goal

and your application.

If you change any of the analysis settings from the Analysis Workflow tab, the accuracy level changes to
Custom automatically. With this accuracy level, you can customize the perspective flow and/or analysis

properties.

To change the properties of a specific analysis:

- =
Expand the analysis details on the Analysis Workflow pane with .
2. Select desired settings.

226

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html

Intel® Advisor User Guide 1

For more detailed customization, click the gear icon. You will see the Project Properties dialog
box open for the selected analysis.
4. Select desired properties and click OK.

For a full set of available properties, click the icon on the left-side pane or go to File > Project

Properties.

The following tables cover project properties applicable to the analyses in the Offload Modeling perspective.

Common Properties

Use This

To Do This

Inherit settings from
Visual Studio project
checkbox and field (Visual
Studio* IDE only)

Inherit Intel Advisor project properties from the Visual Studio* startup
project (enable).

If enabled, the Application, Application parameters, and Working
directory fields are pre-filled and cannot be modified.

Application field and
Browse... button

Select an analysis target executable or script.

If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application
parameters field and
Modify... button

Specify runtime arguments to use when performing analysis (equivalent
to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment

button

variables field and Modify...

Specify environment variables to use during analysis.

Managed code profiling
mode drop-down

e Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

¢ Collect data for native code and do not attribute data to managed
code (choose Native).

¢ Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

¢ Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

Child application field

Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

227

1 Intel® Advisor User Guide

Use This

To Do This

NOTE

For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

* Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

e Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

Use MPI launcher checkbox

Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

¢ Select MPI Launcher - Intel or another vendor
¢ Number of ranks - Number of instances of the application
+ Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis Properties

Use This

To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip

The corresponding CLI action option is -—resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector

Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

228

Intel® Advisor User Guide 1

Use This

To Do This

Callstack unwinding mode
drop-down list

Set to After collection if:

e Survey analysis runtime overhead exceeds 1.1x.

¢ A large quantity of data is allocated on the stack, which is a common
case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox

Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE

Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
—ax (Linux* 0OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
l