
Intel® Advisor User Guide

Intel Corporation



Contents

Chapter 1: Intel® Advisor User Guide
Introduction .............................................................................................7

What's New in Intel® Advisor...............................................................8
Design and Optimization Methodology................................................ 12
Tutorials and Samples...................................................................... 16
Get Help and Support ...................................................................... 17

Install and Launch Intel® Advisor ............................................................... 17
Install Intel® Advisor........................................................................ 18
Set Up Environment Variables ........................................................... 19
Set Up System to Analyze GPU Kernels .............................................. 21
Set Up Environment to Offload SYCL, OpenMP* target, and OpenCL™

Applications to CPU ..................................................................... 23
Launch Intel® Advisor ...................................................................... 24
GUI Navigation Quick Start............................................................... 27

Set Up Project......................................................................................... 29
Configure Target Application ............................................................. 29

Limit the Number of Threads Used by Parallel Frameworks ........... 30
s Choose a Small, Representative Data Set ................................ 30

Build Target Application.................................................................... 31
Create Project................................................................................. 36

Configure Project .................................................................... 37
Configure Binary/Symbol Search Directories ............................... 45
Configure Source Search Directory ............................................ 46
Binary/Symbol Search and Source Search Locations .................... 46

Analyze Vectorization Perspective .............................................................. 48
Run Vectorization and Code Insights Perspective from GUI.................... 50

Vectorization Accuracy Presets.................................................. 51
Customize Vectorization and Code Insights Perspective ................ 52

Run Vectorization and Code Insights Perspective from Command Line .... 58
Vectorization Accuracy Levels in Command Line ......................... 60

Explore Vectorization and Code Insights Results .................................. 62
Vectorization Report Overview .................................................. 65
Examine Not-Vectorized and Under-Vectorized Loops ................... 67
Analyze Loop Call Count .......................................................... 70
Investigate Memory Usage and Traffic........................................ 71
Find Data Dependencies........................................................... 74

Analyze CPU Roofline ............................................................................... 75
Run CPU / Memory Roofline Insights Perspective from GUI.................... 77

CPU Roofline Accuracy Presets .................................................. 78
Customize CPU / Memory Roofline Insights Perspective ................ 79

Run CPU / Memory Roofline Insights Perspective from Command Line .... 84
CPU Roofline Accuracy Levels in Command Line ......................... 87

Explore CPU/Memory Roofline Results ................................................ 88
CPU Roofline Report Overview .................................................. 91
Examine Bottlenecks on CPU Roofline Chart................................ 97
Examine Relationships Between Memory Levels ........................ 100
Compare CPU Roofline Results ................................................ 105

Model Threading Designs........................................................................ 107

Intel® Advisor User Guide

2



Run Threading Perspective from GUI................................................ 109
Customize Threading Perspective ............................................ 110

Run Threading Perspective from Command Line ................................ 116
Threading Accuracy Levels in Command Line ........................... 118

Annotate Code for Deeper Analysis .................................................. 119
Annotate Code to Model Parallelism ......................................... 120
Annotations ......................................................................... 131
Annotation Report................................................................. 163

Explore Threading Results .............................................................. 169
Model Threading Parallelism............................................................ 172

Suitability Report Overview .................................................... 175
Choose Modeling Parameters in the Suitability Report ................ 179
Fix Annotation-related Errors Detected by the Suitability Tool...... 181
Advanced Modeling Options.................................................... 182
Reduce Parallel Overhead, Lock Contention, and Enable Chunking 183

Check for Dependencies Issues ....................................................... 184
Code Locations Pane ............................................................. 185
Filter Pane (Dependencies Report)........................................... 186
Problems and Messages Pane ................................................. 187
Dependencies Source Window ................................................ 188

Add Parallelism to Your Program...................................................... 192
Before You Add Parallelism: Choose a Parallel Framework ........... 193
Add the Parallel Framework to Your Build Environment............... 196
Annotation Report................................................................. 200
Replace Annotations with Intel® oneAPI Threading Building

Blocks (oneTBB) Code ....................................................... 201
Replace Annotations with OpenMP* Code ................................. 206
Next Steps for the Parallel Program ......................................... 219

Model Offloading to a GPU ...................................................................... 221
Run Offload Modeling Perspective from GUI ...................................... 223

Offload Modeling Accuracy Presets .......................................... 225
Customize Offload Modeling Perspective................................... 226

Run Offload Modeling Perspective from Command Line ....................... 233
Offload Modeling Accuracy Levels in Command Line .................. 245
Run GPU-to-GPU Performance Modeling from Command Line ...... 249

Explore Offload Modeling Results ..................................................... 253
Offload Modeling Report Overview........................................... 257
Examine Regions Recommended for Offloading ......................... 260
Examine Data Transfers for Modeled Regions ............................ 262
Check for Dependency Issues ................................................. 266
Explore Performance Gain from GPU-to-GPU Modeling................ 267
Investigate Non-Offloaded Code Regions .................................. 270

Advanced Modeling Configuration .................................................... 278
Model Application Performance on a Custom Target GPU Device .. 278
Check How Assumed Dependencies Affect Modeling................... 282
Manage Invocation Taxes ....................................................... 284
Enforce Offloading for Specific Loops ....................................... 286

Analyze GPU Roofline ............................................................................. 287
Run GPU Roofline Insights Perspective from GUI................................ 288

GPU Roofline Accuracy Presets ............................................... 289
Customize GPU Roofline Insights Perspective ............................ 290

Run GPU Roofline Insights Perspective from Command Line ................ 295
GPU Roofline Accuracy Levels in Command Line ....................... 298

Explore GPU Roofline Results .......................................................... 300
Examine GPU Roofline Summary ............................................. 303

Contents

3



Examine Bottlenecks on GPU Roofline Chart ............................. 305
Examine Kernel Details .......................................................... 310
Compare GPU Roofline Results................................................ 314

Design and Analyze Flow Graphs ............................................................. 316
Where to Find the Flow Graph Analyzer ............................................ 316
Launching the Flow Graph Analyzer ................................................. 316
Flow Graph Analyzer GUI Overview.................................................. 317

Menus ................................................................................. 319
Toolbars .............................................................................. 321
Tabs.................................................................................... 322
Main Canvas......................................................................... 325
Charts ................................................................................. 325

Flow Graph Analyzer Workflows....................................................... 327
Designer Workflow ........................................................................ 327

Adding Nodes, Edges, and Ports.............................................. 328
Modifying Node Properties...................................................... 329
Viewing Edge Properties......................................................... 331
Validating a Graph ................................................................ 331
Saving a Graph to a File......................................................... 331

Generating C++ Stubs................................................................... 332
Preferences .................................................................................. 335
Scalability Analysis ........................................................................ 338

Activating the Graph.............................................................. 338
Scalability Analysis Prerequisites............................................. 338
Running the Scalability Analysis .............................................. 341
Exploring the Parallelism in a Concurrent Node ......................... 341
Showing Non-Parallel Nature of a Serial Node ........................... 341
Explore Parallelism Provided by the Topology of a Graph............. 342
Understanding Analysis Color Codes ........................................ 344

Collecting Traces from Applications .................................................. 344
Building an Application for Trace Collection ............................... 345
Collecting Trace Files ............................................................. 346

Nested Parallelism in Flow Graph Analyzer ........................................ 352
Analyzer Workflow......................................................................... 353

Find Time Regions of Low Concurrency and Their Cause ............ 353
Finding a Critical Path ........................................................... 354
Finding Tasks with Small Durations.......................................... 355
Reduce Scheduler Overhead using Lightweight Policy................. 356
Identifying Tasks that Operate on Common Input ...................... 358
Support for SYCL .................................................................. 359

Experimental Support for OpenMP* Applications................................ 367
Collecting Traces for OpenMP* Applications............................... 368
OpenMP* Constructs in the Per-Thread Task View...................... 369
OpenMP* Constructs in the Graph Canvas ................................ 370

Sample Trace Files......................................................................... 374
code_generation Samples ...................................................... 375
performance_analysis Samples ............................................... 376

Additional Resources ..................................................................... 380
Minimize Analysis Overhead.................................................................... 380

Collection Controls to Minimize Analysis Overhead ............................. 384
Loop Markup to Minimize Analysis Overhead ..................................... 391
Filtering to Minimize Analysis Overhead............................................ 396
Execution Speed/Duration/Scope Properties to Minimize Analysis

Overhead................................................................................. 397
Miscellaneous Techniques to Minimize Analysis Overhead.................... 400

Intel® Advisor User Guide

4



Analyze MPI Applications ........................................................................ 403
Model MPI Application Performance on GPU ...................................... 408
Control Collection with an MPI_Pcontrol Function ............................... 412

Manage Results..................................................................................... 413
Open a Result ............................................................................... 414
Rename an Existing Result ............................................................. 415
Delete a Result ............................................................................. 415
Save Results to a Custom Location .................................................. 415
Work with Standalone HTML Reports................................................ 416
Create a Read-only Result Snapshot ................................................ 420
Create a Result Snapshot Dialog Box ............................................... 421
Open a Result as a Read-only File in Visual Studio ............................. 422

Command Line Interface ........................................................................ 423
advisor Command Line Interface Reference ...................................... 423

advisor Command Action Reference......................................... 425
advisor Command Option Reference ........................................ 435

Offload Modeling Command Line Reference....................................... 567
run_oa.py Options ................................................................ 569
collect.py Options ................................................................. 575
analyze.py Options................................................................ 580

Generate Pre-configured Command Lines ......................................... 589
Troubleshooting..................................................................................... 591

Error Message: Application Sets Its Own Handler for Signal ................ 593
Error Message: Cannot Collect GPU Hardware Metrics for the Selected

GPU Adapter............................................................................. 594
Error Message: Memory Model Cache Hierarchy Incompatible.............. 594
Error Message: No Annotations Found.............................................. 595
Error Message: No Data Is Collected ................................................ 596
Error Message: Stack Size Is Too Small ............................................ 596
Error Message: Undefined Linker References to dlopen or dlsym.......... 597
Problem: Broken Call Tree .............................................................. 598
Problem: Code Region is not Marked Up ........................................... 599
Problem: Debug Information Not Available ....................................... 600
Problem: No Data ......................................................................... 601
Problem: Source Not Available ........................................................ 602
Problem: Stack in the Top-Down Tree Window Is Incorrect.................. 603
Problem: Survey Tool does not Display Survey Report ........................ 604
Problem: Unexpected C/C++ Compilation Errors After Adding

Annotations.............................................................................. 605
Problem: Unexpected Unmatched Annotations in the Dependencies

Report ..................................................................................... 606
Warning: Analysis of Debug Build .................................................... 607
Warning: Analysis of Release Build .................................................. 607

Reference............................................................................................. 608
Data Reference ............................................................................. 608

CPU Metrics.......................................................................... 608
Accelerator Metrics................................................................ 626

Dependencies Problem and Message Types ....................................... 671
Dangling Lock....................................................................... 673
Data Communication ............................................................. 674
Data Communication, Child Task ............................................. 675
Inconsistent Lock Use............................................................ 676
Lock Hierarchy Violation......................................................... 677
Memory Reuse...................................................................... 679
Memory Reuse, Child Task...................................................... 680

Contents

5



Memory Watch ..................................................................... 681
Missing End Site ................................................................... 682
Missing End Task................................................................... 683
Missing Start Site.................................................................. 683
Missing Start Task ................................................................. 684
No Tasks in Parallel Site ......................................................... 685
One Task Instance in Parallel Site............................................ 685
Orphaned Task ..................................................................... 686
Parallel Site Information ........................................................ 687
Thread Information ............................................................... 688
Unhandled Application Exception............................................. 688

Recommendation Reference............................................................ 689
Vectorization Recommendations for C++.................................. 689
Vectorization Recommendations for Fortran .............................. 716

User Interface Reference................................................................ 737
Dialog Box: Corresponding Command Line ............................... 737
Dialog Box: Create a Project................................................... 738
Dialog Box: Create a Result Snapshot ...................................... 738
Dialog Box: Options - Assembly .............................................. 739
Editor Tab ............................................................................ 740
Dialog Box: Options - General................................................. 741
Dialog Box: Options - Result Location ...................................... 742
Dialog Box: Project Properties - Analysis Target ........................ 743
Dialog Box: Project Properties - Binary/Symbol Search .............. 750
Dialog Box: Project Properties - Source Search ......................... 751
Pane: Advanced View ............................................................ 752
Pane: Analysis Workflow ........................................................ 754
Pane: Roofline Chart.............................................................. 756
Pane: GPU Roofline Chart....................................................... 759
Project Navigator Pane .......................................................... 763
Toolbar: Intel Advisor ............................................................ 764
Annotation Report................................................................. 765
Window: Dependencies Source ............................................... 765
Window: GPU Roofline Regions ............................................... 768
Window: GPU Roofline Insights Summary................................. 771
Window: Memory Access Patterns Source................................. 772
Window: Offload Modeling Summary ....................................... 773
Window: Offload Modeling Report - Accelerated Regions............. 779
Window: Perspective Selector ................................................. 781
Window: Refinement Reports ................................................. 781
Window: Suitability Report ..................................................... 785
Window: Suitability Source..................................................... 786
Window: Survey Report ......................................................... 787
Window: Survey Source......................................................... 790
Window: Threading Summary................................................. 791
Window: Vectorization Summary............................................. 793

Appendix.............................................................................................. 794
Data Sharing Problems .................................................................. 794

Data Sharing Problem Types................................................... 795
Problem Solving Strategies..................................................... 798

Notational Conventions .................................................................. 807
Key Concepts................................................................................ 808

Glossary .............................................................................. 809
Parallelism ........................................................................... 811

Related Information....................................................................... 815

Intel® Advisor User Guide

6



Intel® Advisor User Guide 1
This document provides a detailed overview of the Intel® Advisor functionality, workflows, and instructions.

Intel® Advisor is composed of a set of tools, or perspectives, to help ensure your Fortran, C, C++, SYCL ,
OpenMP*, Intel® oneAPI Level Zero (Level Zero), and OpenCL™ applications realize full performance potential
on modern processors:

• Vectorization and Code Insights: Identify high-impact, under-optimized loops, what is blocking
vectorization, and where it is safe to force vectorization. It also provides code-specific how-can-I-fix-this-
issue recommendations. For details, see Analyze Vectorization Perspective.

• CPU / Memory Roofline Insights and GPU Roofline Insights: Visualize actual performance against
hardware-imposed performance ceilings (rooflines). They provide insights into where the bottlenecks are,
which loops are worth optimizing for performance, what are the likely causes of bottlenecks and what
should be the next optimization steps. For details, see Analyze CPU Roofline or Analyze GPU Roofline.

• Offload Modeling: Identify high-impact opportunities to offload to GPU as well as the areas that are not
advantageous to offload. It provides performance speedup projection on accelerators along with offload
overhead estimation and pinpoints accelerator performance bottlenecks. For details, see the Model
Offloading to a GPU.

• Threading: Analyze, design, tune, and check threading design options without disrupting your normal
development. For details, see Model Threading Designs.

Flow Graph Analyzer is a part of the Intel® Advisor installation. Use it to visualize and analyze performance
for applications that use the Intel® oneAPI Threading Building Blocks (oneTBB) flow graph interfaces. For
details, see Flow Graph Analyzer.

Intel® Advisor is available as a standalone product and as part of the Intel® oneAPI Base Toolkit.

• Standalone Intel® Advisor
• Intel® oneAPI Base Toolkit

Documentation for older versions of Intel® Advisor is available for download only. For a list of available
documentation downloads by product version, see these pages:

• Download Documentation for Intel® Parallel Studio XE
• Download Documentation for Intel® System Studio

Start Here
• Design and Optimization Methodology
• What's New in Intel® Advisor
• Install and Launch Intel® Advisor
• Get Started with Intel Advisor
• Intel Advisor Cookbook

Introduction
This document provides a detailed overview of the
product functionality, workflows, or perspectives, and
instruction to use Intel® Advisor.

Use Intel® Advisor to check that your application realize full performance potential on modern hardware
platforms (CPU, GPU) and get recommendations for where to add optimization.

With the Intel Advisor, you can:

• Model your application performance on an accelerator
• Visualize performance bottlenecks on a CPU or GPU with a Roofline chart
• Check vectorization efficiency

Intel® Advisor User Guide  1  

7

https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/advisor.html
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-parallel-studio-xe-current-previous.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-system-studio-current-previous.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-cookbook/top.html


• Prototype threading designs

What's New in Intel® Advisor
This topic lists new high-level features and improvements in Intel® Advisor. For a full list of new features, see 
Intel Advisor Release Notes.

Intel® Advisor 2023.0
GPU Profiling and Roofline on PVC-XT:

• Get actionable advice to design code that runs optimally on Intel® Data Center GPU MAX Series (formerly
code named Ponte Vecchio).

• Discover GPU application performance characterization, such as bandwidth sensitivity, instruction mix, and
cache-line use.

• Automated Roofline Analysis helps to identify and prioritize memory, cache, or compute bottlenecks and
understand their likely causes.

Intel® Advisor 2022.1
• Usability:

• Performance metrics in GPU Roofline Source view in the Intel Advisor GUI

In the GPU Roofline Insights report, you can switch to Source View and examine the source code of
your application with performance metrics for each kernel, such as elapsed time and memory traffic.

• New panes in an interactive HTML Report: GPU Details in the GPU Roofline Insights
perspective and Data Transfer Estimations in the Offload Modeling perspective

The interactive HTML report, which combines Offload Modeling and GPU Roofline Insights results, now
includes two new panes, which are similar to the panes with the same name in the Intel Advisor GUI
report:

• GPU Roofline Insights perspective includes the GPU Details pane, which reports detailed code
analytics for a selected kernel, such as Roofline guidance with the main limiting roof and estimated
speedup after optimization, compute and memory bandwidth, memory usage metrics.

  1   Intel® Advisor User Guide

8

https://www.intel.com/content/www/us/en/developer/articles/release-notes/advisor-release-notes.html


• Offload Modeling perspective includes the Data Transfer Estimations pane, which reports
estimated data transferred between host and target devices in each direction and a list of offloaded
objects.

You can use the interactive HTML reports to analyze Intel Advisor results on a remote machine using
your web browser or share the results. See Work with Standalone HTML Reports for details.

• Offload Modeling:

• Adjustable hardware parameters in an interactive HTML report and GUI report

Offload Modeling report includes a new Modeling Parameters pane, which shows available target
devices for modeling and hardware configuration parameters for a selected device. Each parameter is a
slider that you can adjust to a desired value to get a custom configuration for remodeling.

Intel® Advisor User Guide  1  

9



The pane is available in the interactive HTML report and Intel Advisor GUI report and has the same
functionality. You can use it to:

• Examine device parameters that the application performance was modeled on to understand how
they affect the estimated performance.

• Change the target device to compare the new configuration with the current modeled device.
• Adjust the parameters and remodel performance for a custom device. You can experiment with

parameters to see how they affect the application performance or adjust the configuration to model
performance for a future or a specific device not listed in the target devices. See the sections below
for a full workflow.

For CPU-to-GPU modeling, you can remodel performance using Intel Advisor CLI only.

See Model Application Performance on a Custom Target GPU Device for more information about how to
work with the pane.

• New recommendation to optimize data transfer costs with data reuse when porting your
application from a CPU to a GPU

Offload Modeling perspective introduces a new actionable recommendation for optimizing data transfer
costs with data reuse before porting your application from a CPU to a GPU. Data reuse can help you
improve the application performance on the GPU by optimizing data transfer efficiency.

The recommendation is reported in a Recommendations pane of the Accelerated Regions tab. The
recommendation includes estimated performance characteristics and data reuse gain, as well as code
snippet examples for applying data reuse techniques.

  1   Intel® Advisor User Guide

10



See Examine Data Transfers for Modeled Regions for details.
• Documentation:

• Sample-based scenario for the Offload Modeling perspective in the Get Started with Intel
Advisor document

Identify High-impact Opportunities to Offload to GPU topic in the get started guide now uses a sample
to introduce the main Offload Modeling features. You can download the sample or use your own
application to follow this topic instructions and understand the basic Offload Modeling workflow with
the Intel Advisor.

The following topics in the get started guide with a sample-based scenario are also available:

• Discover Where Vectorization Pays Off The Most
• Prototype Threading Designs

Intel® Advisor 2022.0
• GPU Roofline:

• New recommendation to optimize GPU general purpose register file (GRF) usage and
improve performance.

The GPU Roofline Insights perspective introduces actionable recommendations for improving your
application performance on GPU by optimizing GRF usage. The recommendations are reported in a
Recommendations pane in the GPU Roofline Regions report. See Get Recommendations for
details.

• New GPU memory and compute metrics.

The GPU pane in the GPU Roofline Regions tab introduces several new metrics. Some of the new
metrics are:

Memory metrics:

• GPU memory usage summary
• L3 shader usage summary
• Shared Local Memory (SLM) usage summary
• Register spilling detection

Compute metrics:

• FLOP operation summary
• INT operation summary

• Documentation:

• Command-line cheat sheet for quick reference

Introduced a new downloadable Intel Advisor command-line cheat sheet, which lists the most useful
command-line interface (CLI) options. You can use this print-friendly PDF for quick reference on the
Intel Advisor CLI.

Intel® Advisor User Guide  1  

11

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top/identify-opportunities-to-offload-to-gpu.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top/discover-where-vectorization-will-pay-off.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top/prototype-threading-designs.html
https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-cheat-sheet.pdf


NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

NOTE

• Download Documentation for Intel® Parallel Studio XE
• Download Documentation for Intel® System Studio

Design and Optimization Methodology
Intel® Advisor helps you to design and optimize high-performing Fortran, C, C++, SYCL, OpenMP*, and
OpenCL™ code to realize full performance potential on modern computer architecture. You can measure your
application performance, collect required data, and look at your code from different perspectives depending
on your goal to dig deeper and get hints for optimization.

Visualize Performance Bottlenecks with Roofline Chart
When optimizing your C, C++, SYCL, or Fortran application, it is useful to know application's current and
potential performance in relation to hardware-imposed limitations like memory bandwidth and compute
capacity of a target platform that it runs on - a CPU or a GPU.

Roofline model of the Intel Advisor visualizes actual performance against hardware-imposed performance
ceilings and helps you determine the main limiting factor (memory bandwidth or compute capacity) to
provide an ideal road map of potential optimization steps. This analysis highlights loops that have the most
headroom for improvement, which allows you to focus on areas that deliver the biggest performance payoff.

To generate a Roofline report, the Intel Advisor:

• Collects loop/function (for CPU) or OpenCL™ kernels (for GPU) timings and memory data.
• Measures the hardware limitations and collects floating-point and integer operations data.

  1   Intel® Advisor User Guide

12

https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-parallel-studio-xe-current-previous.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-system-studio-current-previous.html


The Roofline chart plots an application achieved performance and arithmetic intensity against the hardware
maximum achievable performance:

• Arithmetic intensity (x axis) - measured in number of floating-point operations (FLOPs) and/or integer
operations (INTOPs) per byte, based on the loop/function algorithm, transferred between CPU/VPU/GPU
and memory.

• Performance (y axis) - measured in billions of floating-point operations per second (GFLOPS) and/or
billions of integer operations per second (GINTOPS).

With the data collected, the Intel Advisor plots the Roofline chart:

• Execution time of each loop/function/kernel is reflected in the size and color of each dot. The dots on the
chart correspond to OpenCL kernels for GPU Roofline, while for the CPU Roofline, they correspond to
individual loops/functions.

• Memory bandwidth limitations are plotted as diagonal lines.
• Compute capacity limitations are plotted as horizontal lines.

For details on how to get the Roofline report and read the results, see CPU / Memory Roofline Insights
Perspective or GPU Roofline Insights Perspective.

Model Offloading to Accelerator
When designing your application to offload to an accelerator, you might first want to:

• Estimate the offload benefit and overhead for each loop/function in your original C++ or Fortran code to
make better decisions on which parts of code to offload

• Check performance gain for a SYCL , OpenCL™, or OpenMP* target application if you offload it to a
different accelerator

Offload Modeling perspective of the Intel® Advisor can identify high-impact portions of a code that are
profitable to offload to a target platform (for example, to a GPU) as well as the code regions that are not
advantageous to offload. It can also predict the code performance if run on the target platform and lets you
experiment with accelerator configuration parameters.

Intel® Advisor User Guide  1  

13



Offload Modeling takes measured baseline metrics and application characteristics as an input and applies an
analytical model to estimate execution time and characteristics on a target platform.

Offload Modeling is based on three models:

• Compute throughput model counts arithmetic operations in a region on a baseline platform and
estimates the execution time on a target platform required to achieve the same mix of arithmetic
operations, considering it as bound by compute engines only.

• Memory sub-system throughput model traces memory accesses inside a region on a baseline
platform and estimates the execution time on a target platform needed to transfer the same amount of
memory. Memory traffic is measured using a cache simulator that reflects the target platform's memory
configuration.

• Offload data transfer analysis measures memory accesses that are read from or written to a region
and will need to be sent over a PCIe* if the region is offloaded to a target platform.

For details on how to run the Offload Modeling perspective and read the reports, see Offload Modeling
Perspective.

Check Vectorization Efficiency
Modern Intel® processors have extensions that support SIMD (single instruction, multiple data) parallelism
with Intel® Streaming SIMD Extensions (Intel® SSE), Intel® Advanced Vector Extensions 2 (Intel® AVX2),
Intel® Advanced Vector Extensions 512 (Intel® AVX-512) . To take advantage of SIMD instructions with the
expanded vector width and achieve higher performance, applications need to be vectorized.

You can rely on your desired compiler - Intel® C++ Compiler Classic, Intel® Fortran Compiler Classic, Intel®
oneAPI DPC++/C++ Compiler, GNU Compiler Collection (GCC)* - to auto-vectorize some loops, but serial
constraints of programming languages limit the compiler's ability to vectorize some loops. The need arose for
explicit vector programming methods to extend vectorization capability for supporting reductions,
vectorizing:

• Outer loops
• Loops with user-defined functions
• Loops that the compiler assumes to have data dependencies

To improve the performance of CPU-bound applications on modern processors with vector processing units,
you might use explicit vector programming apply structural changes for thread-level parallelism and SIMD-
level parallelism.

Use the Vectorization and Code Insights perspective of the Intel Advisor to analyze your application run time
behavior and identify application parts that will benefit most from vectorization. Vectorization and Code
Insights perspective helps you to achieve the best performance using vectorization and identify:

• Where vectorization, or parallelization with threads, will pay off the most
• If vectorized loops are providing benefit, and if not, why not
• Un-vectorized loops and why they are not vectorized
• Performance problems in general

  1   Intel® Advisor User Guide

14



For details on how to run the perspective and read the reports, see Vectorization and Code Insights
Perspective.

Prototype Threading Designs
The best performance improvements from adding parallel execution (parallelism) to a program occur when
many cores are busy most of the time doing useful work. Achieving this requires a lot of analysis, knowledge,
and testing.

Because your serial program was not designed to allow parallel execution, as you convert parts of it to use
parallel execution, you may encounter unexpected errors that occur only during parallel execution. Instead of
wasting effort on portions of the program that use almost no CPU time, you should focus on the hotspots,
and the functions between the main entry point and each hotspot.

If you add parallel execution to a program without proper preparation, unpredictable crashes, program
hangs, and wrong answers can result from incorrect parallel task interactions. For example, you may need to
add synchronization to avoid incorrect parallel task interactions, but this must be done carefully because
locking overhead and serial synchronization can reduce the benefits of the parallel execution.

Threading perspective of the Intel Advisor helps you quickly prototype multiple threading options, project
scaling on larger systems, optimize faster, and implement with confidence.

• Identify issues and fix them before implementing parallelism
• Add threading to C, C++, and Fortran code
• Prototype the performance impact of different threaded designs and project scaling on systems with

larger core counts without disrupting development or implementation
• Find and eliminate data-sharing issues during design (when they're less expensive to fix)

The high-level parallel frameworks available for each programming language include:

Language Available High-Level Parallel Frameworks

C OpenMP

C++ Intel® oneAPI Threading Building Blocks (oneTBB)

OpenMP

Fortran OpenMP

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

For details on how to run the perspective and read the reports, see Threading Perspective.

Using Amdahl's Law and Measuring the Program

There are two rules of optimization that apply to parallel programming:

• Focus on the part of the program that uses the most time.
• Do not guess, measure.

Amdahl's Law

In the context of parallel programming, Gene Amdahl formalized a rule called Amdahl's Law, which states
that the speed-up that is possible from parallelizing one part of a program is limited by the portion of the
program that still runs serially.

The consequence may be surprising: parallelizing the part of your program where it spends 80% of its time
cannot speed it up by more than a factor of five, no matter how many cores you run it on.

Intel® Advisor User Guide  1  

15



Therefore, to get maximum benefit from parallelizing your program, you could add parallelism to all parts of
your program as suggested by Amdahl's Law. However, it is more practical to find where it spends most of its
time and focus on areas that can provide the most benefit.

Do Not Guess - Measure

This leads to another rule of optimization: Do Not guess - Measure. Programmers' intuitions about where
their programs are spending time are notoriously inaccurate. Intel® Advisor includes a Survey tool you can
use to profile your running program and measure where it spends it time.

After you add Intel® Advisor annotations to your program to mark the proposed parallel code regions, run the
Suitability tool to predict the approximate maximum performance gain for the program and the annotated
sites. These estimated performance gain values are based on a model of parallel execution that reflects the
impact of Amdahl's law.

Tutorials and Samples

Intel® Advisor provides tutorials with step-by-step instructions on analyzing performance of applications with
sample code.

Discover Where Vectorization Pays Off The Most
Get Started Guide: Discover Where Vectorization Pays Off The Most

Sample: included in the product package

Learning Objective: Use Vectorization report to:

• Identify loops that will benefit most from vectorization.
• Identify what is blocking effective vectorization.
• Increase the confidence that vectorization is safe.
• Explore the benefit of alternative data reorganizations.

Prototype Threading Designs
Get Started Guide: Prototype Threading Designs

Sample: included in the product package

Learning Objective: Demonstrates an end-to-end workflow you can ultimately apply to your own
applications:

1. Survey the target executable to locate the loops and functions where your application spends the most
time.

2. In the target sources, add Intel Advisor annotations to mark possible parallel tasks and their enclosing
parallel sites.

3. Check Suitability to predict the maximum parallel performance speedup of the target based on these
annotations.

4. Check Dependencies to predict parallel data sharing problems in the target based on these annotations.
5. If the predicted maximum speedup benefit is worth the effort to fix the predicted parallel data sharing

problems, fix the problems.
6. Recheck Suitability to see how your fixes impact the predicted maximum speedup.
7. If the predicted maximum speedup benefit is still worth the effort to add parallelism to the target,

replace the annotations with parallel framework code that enables parallel execution.

Use the Automated Roofline Chart to Make Optimization Decisions - C++ Sample
Windows* OS Tutorial: HTML

Sample: Download roofline_demo_samples sample. You can download source code or pre-collected
results to save time.

  1   Intel® Advisor User Guide

16

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top/discover-where-vectorization-will-pay-off.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top/prototype-threading-designs.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-tutorial-roofline/top.html
https://www.intel.com/content/www/us/en/develop/articles/training-sample-intel-advisor-roofline.html


Duration: 20 minutes (with pre-collected results)
Learning Objective: Use the Roofline chart to answer the following questions:

• What is the maximum achievable performance with your current hardware resources?
• Does your application work optimally on current hardware resources?
• If not, what are the best candidates for optimization?
• Is memory bandwidth or compute capacity limiting performance for each optimization candidate?

NOTE

• Sample applications are non-deterministic.
• Sample applications are designed only to illustrate the Intel Advisor features and do not represent

best practices for creating and optimizing code.

Get Help and Support
This topic explain the different options for accessing the Help documentation and technical support for Intel®
Advisor.

Get Help
The documents provided with this release are available in HTML format. You can access the documentation:

• For Windows* OS only: From the Start menu, or Start screen, under the Intel oneAPI [version]
group.

• Help > Intel Advisor [version]
• Access context-sensitive Help on active GUI elements:

• In the Advisor Workflow tab and in the Result tab, click certain links to get specific help related to
the underlined word.

• In the Result tab, you can right-click an element to display its context menu. Certain context menus
display a What Should I Do Next? menu item. Choose this menu item to get help specific to the
active user interface element.

• F1 Help: Press F1 to get help for an active dialog box, property page, pane, or window.

Get Support
The following links provide information and support on Intel® software products, including developer suite
products:

• https://www.intel.com/content/www/us/en/develop/tools.html

At this site, you will find comprehensive product information, including:

• Links to each product, where you will find technical information such as white papers and articles
• Links to user forums
• Links to news and events

• https://www.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html

Intel® oneAPI Base Toolkit product page with links to download, support forums, knowledge base, and
product documentation.

For detailed system requirements and additional support information, see the product Release Notes.

Install and Launch Intel® Advisor
The following sections provide simple steps to quickly configure and run the Intel® Advisor graphical user
interface (GUI) or command line interface (CLI).

Intel® Advisor User Guide  1  

17

https://www.intel.com/content/www/us/en/develop/tools.html
https://www.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://www.intel.com/content/www/us/en/develop/articles/intel-advisor-release-notes.html


• Install Intel Advisor as part of the Intel® oneAPI Base Toolkit or standalone.
• Set up Intel Advisor environment variables to launch Intel Advisor from command line or a terminal.

• Optional: To analyze GPU kernels of your SYCL, OpenMP* target, or OpenCL™ application with the GPU
Roofline Insights or Offload Modeling perspective, configure your system to analyze GPU kernels.

• Optional: To analyze SYCL, OpenMP target, or OpenCL application running on a CPU with the Offload
Modeling perspective, set up your system to offload the application to CPU.

• Launch the Intel Advisor .

Quick steps to ramp up with the Intel Advisor are included in Getting Started with Intel Advisor.

Install Intel® Advisor
Use this topic to download and install Intel® Advisor
using oneAPI Installer and yum/APT package
managers.

Intel® Advisor is available for download as:

• Standalone installation
• Part of Intel® oneAPI Base Toolkit

Depending on your internet connection, choose local or online installer.

To install Intel Advisor as part of Intel® oneAPI Base Toolkit, refer to Installation Guide for Intel® oneAPI
Toolkits.

NOTE Different major versions can co-exist with each other, but on Windows* OS, only one version of
Intel Advisor can be integrated with Visual Studio* IDE.

On Windows* OS
1. Double-click the compressed self-extracting executable file as a user with administrative privileges.
2. To get a complete set of user interfaces (GUI front end and Visual Studio* IDE integration), select the

Recommended Installation option. The default installation path is C:\Program Files
(x86)\Intel\oneAPI. To change the installation path, select the Custom Installation option.

NOTE To perform silent, non-interactive installation, refer to Intel® oneAPI Toolkits Installation Guide
for Windows*.

3. Click the Install button to complete the installation.

On Linux* OS
1. Make sure to have read/write permissions for the /tmp directory and start the installation.

• To install on the local system, run the installer using the following command:

sh <package-name>.sh
• If you want to install Intel Advisor for use by any user, you must do this as a root user. To install

Intel Advisor to a network-mounted drive or shared file systems available for multiple users, run the
following command:

sh <package-name>.sh --SHARED_INSTALL
2. To get a complete set of user interfaces (GUI front end and Eclipse* IDE integration), select the

Recommended Installation option. The default installation path is /opt/intel/oneapi for root
users and $HOME/intel/oneapi for non-root users. To change the installation path, select the Custom
Installation option.

  1   Intel® Advisor User Guide

18

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top.html
https://www.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#advisor
https://www.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit/download.html
https://www.intel.com/content/www/us/en/develop/articles/installation-guide-for-intel-oneapi-toolkits.html
https://www.intel.com/content/www/us/en/develop/articles/installation-guide-for-intel-oneapi-toolkits.html
https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-windows/top/installation/install-with-command-line.html
https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-windows/top/installation/install-with-command-line.html


3. Integrate Intel Advisor with Eclipse IDE by specifying the path to Eclipse IDE executable. Skip this step
if you prefer to install Intel Advisor without integration into Eclipse IDE.

4. Click the Install button to complete the installation.

NOTEIntel Advisor is available for installation via yum and APT package managers.

System Requirements
See the list of System Requirements for more information.

See Also
After installation, consider the following next steps:

• Set Up Environment Variables
• Set Up Environment to Analyze GPU Kernels
• Set Up Environment to Model Performance on GPU-Enabled Applications

Set Up Environment Variables
Use this topic to get guidance on setting up
environment variables for Intel® Advisor.

Set the environment variables if you want to:

• Run Intel Advisor command line interface
• Run Intel Advisor graphical user interface from command line (for example, on Linux OS)
• Compile your application with Intel Advisor annotations using additional include directories, so the

compiler can find the include file that defines annotations

You can set the variables using one of the following methods:

• Recommended: Set up variables using a script.
• Set up variables manually. Use this method to set up variables for a custom Intel Advisor location or to

set the variables permanently.

Default Installation Paths
In the instructions below, be sure to replace any values in brackets, such as <version> or <install-dir>.
<version> is the Intel Advisor year and update version (for example, 2021.1).The default installation path
for the application, <install-dir>, can be one the following:

• On Linux* OS:

• /opt/intel/oneapi for root users
• $HOME/intel/oneapi for non-root users

• On Windows* OS: C:\Program Files (x86)\Intel\oneAPI
For 32-bit systems, the Program Files (x86) folder is Program Files.

• On macOS*: /opt/intel/oneapi

Set Up Environment Variables via Script
This is the recommended method to set up the Intel Advisor environment variables. In particular, use it if you
want to run the Offload Modeling using the dedicated Python* scripts. The script automatically sets up all the
required variables pointing to the Intel Advisor installation directory.

Linux OS and macOS

Run one of the following shell scripts:

Intel® Advisor User Guide  1  

19

https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top/installation/install-using-package-managers/yum-dnf-zypper.html
https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top/installation/install-using-package-managers/apt.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-system-requirements.html


source <install-dir>/setvars.sh
source <install-dir>/setvars.csh
The scripts set up the environment for the latestIntel Advisor version installed on your system.

NOTE If you want to set up environment for a lower version of the Intel Advisor installed on your
system, also run one of the following Intel Advisor-specific scripts:
source <install-dir>/advisor/<version>/env/vars.sh
source <install-dir>/advisor/<version>/env/vars.csh
where <version> is the Intel Advisor version you want to use.

Windows OS

Run the following batch script:

<install-dir>\setvars.bat
The script sets up the environment for the latest Intel Advisor version installed on your system.

NOTE If you want to set up environment for a lower version of the Intel Advisor installed on your
system, also run one of the following Intel Advisor-specific scripts:
source <install-dir>/advisor/<version>/env/vars.sh
source <install-dir>/advisor/<version>/env/vars.csh
where <version> is the Intel Advisor version you want to use.

Set Up Environment Variables Manually
Linux OS and macOS

1. Open a terminal.
2. Check the current definition of the environment variable. For example, with the bash shell, type:

env | grep ADVISOR_<version-year>_DIR
where <version-year> is a major Intel Advisor version installed on your system. For example, 2021.

If the variable is defined and points to the correct Intel Advisor installation directory, skip the steps
below and continue to launch the Intel Advisor.

3. Set the environment variable using the export command. Enter:

export ADVISOR_<version-year>_DIR="<install-dir>"
For example, for the Intel Advisor 2022 in the default installation directory:

export ADVISOR_2022_DIR="/opt/intel/oneapi/advisor/latest"
4. To set this variable permanently on the current system, add this definition to your .login or a similar

shell initialization file.
5. Check the definition of the environment variable set:

env | grep ADVISOR_<version-year>_DIR
You should see the environment variable with its value printed to the terminal.

Windows OS

1. Open a command prompt.
2. Check the current definition of the environment variable. For example, type:

  1   Intel® Advisor User Guide

20



set ADVISOR_<version-year>_DIR
where <version-year> is a major Intel Advisor version installed on your system. For example, 2021.

If the variable is defined and points to the correct Intel Advisor installation directory, skip the steps
below and continue to launch the Intel Advisor.

3. Use a set command to set the environment variable. Type:

set ADVISOR_<version-year>_DIR="<install-dir>"
For example, for the Intel Advisor 2022:

set ADVISOR_2022_DIR="C:\Program Files (x86)\Intel\oneAPI\advisor\latest"
4. To set this variable permanently on the current system, add this definition to your system or user

environment variables using Control Panel > System and Security > System > Advanced system
settings > Environment Variables....

Additional Variables
Consider setting the following environment variables:

• To determine whether evaluation features have been activated, set the ADVISOR_EXPERIMENTAL
environment variable.

• To locate the Intel® oneAPI Threading Building Blocks (oneTBB) include directory when working with
programs that use oneTBB , set the TBBROOT environment variable. See Defining the TBBROOT
Environment Variable.

• On Linux OS and macOS: set the BROWSER environment variable to locate an installed HTML browser.
This enables the display of Get Started, Tutorials or Help from the Intel® Advisor GUI Help menu.

• On Linux OS and macOS: set the VISUAL or EDITOR environment variable to specify an external editor
to launch when you double-click a line in a Source window. VISUAL takes precedence over EDITOR.

Next Steps
Launch Intel Advisor from GUI or from command line interface.

See Also
Set Up System to Analyze GPU Kernels
Set Up Environment to Offload SYCL, OpenMP* target, and OpenCL™ Applications to CPU
Limit the Number of Threads Used by Parallel Frameworks
Intel Advisor Annotation Definitions File

Set Up System to Analyze GPU Kernels
To analyze performance of GPU kernels in your SYCL, OpenMP* target, or OpenCL™ application with the GPU
Roofline Insights or GPU-to-GPU Offload Modeling perspective, you need to configure your system properly:

1. Make sure you have the Intel® Metrics Discovery Application Programming Interface. The library is
included with the Intel® Advisor.

2. Install and configure a graphics processing unit (GPU) driver for your system.
3. For Linux* OS: Set up environment variables.

Important For the Offload Modeling perspective, make sure the kernels run with the oneAPI Level
Zero back end.

Intel® Advisor User Guide  1  

21



Install Intel® Metrics Discovery Application Programming Interface
To collect GPU hardware metrics and GPU utilization data, Intel Advisor uses the Intel Metric Discovery
Application Programming Interface library. This library is delivered with the Intel Advisor. If you already have
the library installed and you want to use your local library, make sure you have the correct version as
explained below.

NOTE If you see the Cannot Collect GPU Hardware Metrics for the Selected GPU Adapter error
message, install the library as follows. The message means the Intel Advisor cannot access the library.

Windows* OS

Intel Metric Discovery Application Programming Interface library is part of a GPU driver package. You should
have a driver version higher than 27.20.100.8280 for your system.

If you have a lower version of the driver, you can download it from https://downloadcenter.intel.com/.

Linux* OS

Intel Metrics Discovery Application Programming Interface library is supported on Linux OS with kernel
version 4.14 or higher. You should have the Intel Metric Discovery Application Programming Interface library
1.6.0 or higher to support the selection of video adapters.

If you have a lower version of the library, you can build and install it from https://github.com/intel/metrics-
discovery.

Install a GPU driver
To collect GPU hardware metrics, install Intel® software packages for general purpose GPU capabilities.

On Windows OS, install a GPU driver for your system from Download Center.

On Linux OS, follows the instructions in the GPGPU Installation Guides to install and configure drivers for
your operating system.

Set Up Environment Variables
On Windows OS, run the Survey step of the perspective as an Administrator.

On Linux OS, run the Survey step of the perspective with root privileges.

If you do not have root permissions on Linux OS, enable collecting GPU hardware metrics for non-privileged
users as follows:

1. Add your username to the video group.

a. To check if you are already in the video group, run:

groups | grep video
b. If you are not part of the video group, add your username to it:

sudo usermod -a -G video <username>
c. Type groups to verify that you successfully added your username to the video group . If video is

not listed, log out and log back in.
2. For Ubuntu* 19.10 and higher: Add your username to the render group.

a. To check if you are already in the render group, run:

groups | grep render
b. If you are not part of the render group, add your username to it:

sudo usermod -a -G render <username>

  1   Intel® Advisor User Guide

22

https://downloadcenter.intel.com/
https://github.com/intel/metrics-discovery
https://github.com/intel/metrics-discovery
https://downloadcenter.intel.com/
https://dgpu-docs.intel.com/installation-guides/index.html


c. Type groups to verify that you successfully added your username to the render group . If
render is not listed, log out and log back in.

3. Set the value of the dev.i915.perf_stream_paranoid sysctl option to 0:

sysctl -w dev.i915.perf_stream_paranoid=0

NOTE This command makes a temporary change that is lost on the next reboot. To change this option
permanently, run:

echo dev.i915.perf_stream_paranoid=0 > /etc/sysctl.d/60-mdapi.conf 

4. Open the grub file in the /etc/default directory.
5. Find GRUB_CMDLINE_LINUX_DEFAULT and type i915.enable_hangcheck=0 between the "" to disable

time limit and run OpenCL™ kernel for a longer period of time. Save the file and close.
6. Run the following command to update the configuration:

sudo update-grub
Next Steps

• Set up environment variables and run the Intel Advisorfrom a command line interface.
• Run the Intel Advisorfrom a graphical user interface and set up a project if you do not have one.

See Also
Model Offloading to a GPU  Find high-impact opportunities to offload/run your code and identify
potential performance bottlenecks on a target graphics processing unit (GPU) by running the
Offload Modeling perspective.
Analyze GPU Roofline  Measure and visualize the actual performance of GPU kernels using
benchmarks and hardware metric profiling against hardware-imposed performance ceilings, as
well as determine the main limiting factor, by running the GPU Roofline Insights perspective.

Set Up Environment to Offload SYCL, OpenMP* target, and OpenCL™ Applications to CPU
If you have an application that contains SYCL, C++/Fortran with OpenMP* target, or OpenCL™ code and
prepared for offloading to a target device, you can analyze and model its potential performance on a different
target device with the it with the Intel® Advisor.

To do this, use CPU offload profiling to offload your code temporarily to a CPU so that you can profile it and
model its performance with the Offload Modeling perspective.

Important Offload your SYCL, C++/Fortran with OpenMP target, or OpenCL code to CPU only to
analyze it with the CPU-to-GPU Offload Modeling workflow. To analyze it with the GPU-to-GPU Offload
Modeling workflow or GPU Roofline workflow, configure your system to analyze GPU kernels instead.

Depending on your operating system, do one of the following:

Linux* OS
1. For SYCL code: Force offloading to a CPU using one of the following:

• Recommended: Set the SYCL_DEVICE_FILTER environment variable as follows:

export SYCL_DEVICE_FILTER=opencl:cpu
• If your application uses a SYCL device selector:

Intel® Advisor User Guide  1  

23



1. In the application source code, add the following to specify the CPU as the target device:

sycl::cpu_selector
For details, see Device selectors in the SYCL Reference.

2. Rebuild the application,
2. For OpenMP code: Force offloading to a CPU with one of the following:

• Recommended: To offload code to CPU, set the following environment variables:

export OMP_TARGET_OFFLOAD=MANDATORY
export LIBOMPTARGET_DEVICETYPE=CPU
export LIBOMPTARGET_PLUGIN=OPENCL

• To run code natively on CPU, set the following variable:

export OMP_TARGET_OFFLOAD=DISABLED
3. If your application uses OpenCL code: Configure your code to be offloaded to a CPU. Refer to the

OpenCL documentation at https://www.khronos.org/registry/OpenCL/ for specific instructions.

Windows* OS
1. Set the following environment variable to use the JIT profiling API:

set INTEL_JIT_BACKWARD_COMPATIBILITY=1
2. For SYCL code: Force offloading to a CPU using one of the following:

• Recommended: Set the SYCL_DEVICE_FILTER environment variable as follows:

set SYCL_DEVICE_FILTER=opencl:cpu
• If your application uses a SYCL device selector:

1. In the application source code, add the following to specify the CPU as the target device:

sycl::cpu_selector
For details, see Device selectors in the SYCL Reference.

2. Rebuild the application,
3. For OpenMP code: Force offloading to a CPU with one of the following:

• Recommended: To offload code to CPU, set the following environment variables:

set OMP_TARGET_OFFLOAD=MANDATORY
set LIBOMPTARGET_DEVICETYPE=CPU
set LIBOMPTARGET_PLUGIN=OPENCL

• To run code natively on CPU, set the following variable:

set OMP_TARGET_OFFLOAD=DISABLED
4. If your application uses OpenCL code: Configure your code to be offloaded to a CPU. Refer to the

OpenCL documentation at https://www.khronos.org/registry/OpenCL/ for specific instructions.

Next Steps
• Set up a project if you do not have one and run the Intel Advisorfrom a graphical user interface.
• Run the Intel Advisorfrom a graphical user interface and set up a project if you do not have one.

Launch Intel® Advisor
This topic provides overview and simple steps for running Intel® Advisor graphical user interface (GUI) and
command line interface (CLI).

  1   Intel® Advisor User Guide

24

https://docs.oneapi.io/versions/latest/iface/device-selector.html
https://www.khronos.org/registry/OpenCL/
https://docs.oneapi.io/versions/latest/iface/device-selector.html
https://www.khronos.org/registry/OpenCL/


Launch the Intel® Advisor GUI
The Intel® Advisor GUI is available:

• On the Microsoft Windows* OS: From the Start menu, choose All Programs > Intel oneAPI
[version] > Intel Advisor [version]

• NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

In the Microsoft Visual Studio*:

• From the Tools menu, choose Intel Advisor [version] > Vectorization and Threading Advisor
Analysis.

•
From the top toolbar: Click Intel Advisor icon.

Important If you do not see the icon, right-click the toolbar and select Intel Advisor from the
context menu.

• From a command line on Windows* or Linux* OS systems.

1.Set up the environment variables to be able to launch the GUI from the command line.
2.Run the advisor-gui command to open the Intel Advisor GUI.

To open a specific project or result, enter:

advisor-gui <path>
where <path> is one of the following:

• Full (absolute) path to a result file (*.advixe)
• Full path to a project file (config.advixeproj)
• Full path to a project directory. If there is no project file in the directory, the Create a Project

dialog box opens and prompts you to create a project in the specified directory.

On Windows systems, if the path contains embedded spaces, enclose it in quotation marks.

NOTE By default, Intel Advisor opens a new graphical user interface (GUI). To switch back to an old
GUI, set ADVISOR_EXPERIMENTAL=advixe-gui variable and re-open the Intel Advisor.

After opening the Intel Advisor, continue to create a project or run a perspective and view the results if you
already have a project.

Launch the Intel Advisor CLI
Prerequisite: Set up environment variables to enable the command line interface.

To run the advisor command line interface, use the following syntax:

advisor <--action> [--action-options] [--global-options] -- <target-application> [target options]
where:

• <--action> is an Intel Advisor action to do, such as collect or report.
• [--action-options] and [--global-options] are options to modify action behavior.
• <target-application> is an application executable to analyze with optional [target-options] to apply to the

target.

The advisor command line interface supports all Intel Advisor perspective and is the recommended method
to run the Intel Advisor from command line.

Intel® Advisor User Guide  1  

25



You can also run the Offload Modeling perspective using Python* scripts as follows:

advisor-python <APM>/<offload-script>.py <project-dir> [--options] [-- <target-application> 
[target-options]]

where:

• <APM> is the environment variable that points to the directory with the Intel Advisor scripts. It is $APM
for Linux* OS and %APM% for Windows* OS.

• <offload-script> is a script to run: run_oa, collect, or analyze.
• <project-dir> is a path to a project directory.
• [--options] is options to modify script behavior.
• <target-application> is an application executable to analyze with optional [target-options] to apply to the

target.

When you run the first Intel Advisor analysis to a target application from the command line, it also creates a
new project for the target.

Review the typical workflows for the Intel Advisor CLI in the dedicated topics for each perspective.

• Run Vectorization and Code Insights Perspective from Command Line
• Run CPU / Memory Roofline Insights Perspective from Command Line
• Run Threading Perspective from Command Line
• Run Offload Modeling Perspective from Command Line
• Run GPU Roofline Insights Perspective from Command Line

For details about the Intel Advisor command line syntax and options, see the advisor Command Line
Interface Reference.

Launch the Intel Advisor from a Docker* Container on Linux* OS
This section contains steps to run Intel® Advisor in a Docker* container. Containers allow you to set up and
configure environments and distribute them using images:

• You can install an image containing an environment pre-configured with all the tools you need, then
develop within that environment.

• You can save an environment and use the image to move that environment to another system without
additional setup.

• You can prepare containers with different sets of compilers, tools, libraries, or other components, as
needed.

Set up the Docker container

1. Pull the Docker image from the oneAPI Containers Repository with the following commands:

image=amr-registry.caas.intel.com/oneapi/oneapi:base-dev-ubuntu18.04
docker pull "$image"

2. Run the Docker container using the following command:

docker run --cap-add=SYS_PTRACE -it "$image"

NOTE

• The --device=/dev/dri option enables the gpu (if available).
• You can specify proxy information using options as follows: -e http_proxy="$http_proxy" -e

https_proxy="$https_proxy"

3. For the rest of the steps in this section, run any commands from the command line prompt inside the
Docker container.

  1   Intel® Advisor User Guide

26

https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers/


For example, to set up the Mandelbrot sample, you can run:

cd /one-api-code-samples/HPC/mandelbrot
make
./main -d1
./main -t gpu # run on gpu
./main -t cpu # run on cpu
make clean

4. Run the following commands to source Intel Advisor variables:

source /opt/intel/oneapi/setvars.sh

NOTE This step is not required, but allows you to run tools from any directory, rather than using
absolute file paths.

5. Now that your Docker container is running, you can run Advisor from the command line as you would
without a container. For example:

advisor --collect=survey /bin/ls
When you run the first Intel Advisor analysis to a target application from the command line, it also creates a
new project for the target.

For details about the Intel Advisor command line syntax and options, see the advisor Command Line
Interface Reference. Review the typical workflows for the Intel Advisor CLI in the dedicated topics for each
perspective.

See Also
Set Up a Project
Analyze Vectorization Perspective Improve your application performance, get code-specific
recommendations for how to fix vectorization issues and quick visibility into source code and
assembly code by running the Vectorization and Code Insights perspective.
Analyze CPU Roofline Visualize actual performance against hardware-imposed performance
ceilings by running the CPU / Memory Roofline Insights perspective. It helps you determine the
main limiting factor (memory bandwidth or compute capacity) and provides an ideal roadmap of
potential optimization steps.
Model Threading Designs Analyze, design, tune, and check threading design options without
disrupting your normal development by running the Threading Perspective.
Model Offloading to a GPU Find high-impact opportunities to offload/run your code and identify
potential performance bottlenecks on a target graphics processing unit (GPU) by running the
Offload Modeling perspective.
Analyze GPU Roofline Measure and visualize the actual performance of GPU kernels using
benchmarks and hardware metric profiling against hardware-imposed performance ceilings, as
well as determine the main limiting factor, by running the GPU Roofline Insights perspective.

GUI Navigation Quick Start
Use Get Started with Intel® Advisor to learn how to run perspectives using code samples and collect your first
results.

Navigation Quick Start
After you launch the Intel® Advisor, a Welcome pane opens with the following controls:

Intel® Advisor User Guide  1  

27

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top.html


Use the left-side toolbar for quick access to Intel
Advisor projects and perspective controls. For
example:

•

 - Open the Perspective Selector window
and select a perspective to run.

•

 - Create a project.
•

 - Open an existing project.

Use the Project Navigator to view your projects
and results based on the directory where the
opened project resides.

Use the menu to create projects and dynamic
analysis results, open projects and results,
configure projects, set various options, open new
panes, and access the Intel Advisor help.

Use the main Welcome window to create/open a
project, configure current project, see recent
projects, open the Get Started page.

See Also
Set Up a Project

  1   Intel® Advisor User Guide

28



Vectorization and Code Insights Perspective Improve your application performance, get code-
specific recommendations for how to fix vectorization issues and quick visibility into source code
and assembly code by running the Vectorization and Code Insights perspective.
CPU / Memory Roofline Insights Perspective Visualize actual performance against hardware-
imposed performance ceilings by running the CPU / Memory Roofline Insights perspective. It helps
you determine the main limiting factor (memory bandwidth or compute capacity) and provides an
ideal roadmap of potential optimization steps.
Threading Perspective Analyze, design, tune, and check threading design options without
disrupting your normal development by running the Threading Perspective.
Offload Modeling Perspective Find high-impact opportunities to offload/run your code and identify
potential performance bottlenecks on a target graphics processing unit (GPU) by running the
Offload Modeling perspective.
GPU Roofline Insights Perspective Measure and visualize the actual performance of GPU kernels
using benchmarks and hardware metric profiling against hardware-imposed performance ceilings,
as well as determine the main limiting factor, by running the GPU Roofline Insights perspective.

Set Up Project
To run Intel® Advisor, you need to create a project with your target executable. The project serves as a
reusable container for:

• The location of a target executable, which is your compiled application
• Target executable sources and binaries
• A collection of configurable properties
• A previously collected analysis result

To set up a project:

1. Optional: Configure your target application to optimize it for analyses
2. Build your target application with optimal build settings
3. Create and configure a project with your target application

Configure Target Application
Intel® Advisor supports targets:

• Developed to run on Windows* or Linux* operating systems using the Intel® oneAPI DPC++/C++
Compiler, Intel® C++ Compiler Classic, Intel® Fortran Compiler Classic, or GNU* gcc compiler
development environment

• That use C/C++, Fortran, or mixed Python* code for the portions that will run in parallel.
• That use SYCL, OpenCL™, or OpenMP* with pragma omp target (for C++) or directive omp target (for

Fortran) code

The target executable must contain source symbol table debug information, so the Intel® Advisor can provide
source line correlation and viewing sources.

Important To analyze an application with the Intel® Advisor, the application should take longer than
500 milliseconds to execute on CPU or GPU. If your application execution time is lower, it might cause
inaccurate data sampling or a No data is collected error.

Before you start profiling your application and applying changes that should increase performance, you can
configure the application as follows to optimize it for analyses:

• Limit the number of threads used by parallel frameworks to configure the application for threading.
• Choose a small, representative data set to reduce analysis overheads by reducing the amount of analyzed

data.

Intel® Advisor User Guide  1  

29



Limit the Number of Threads Used by Parallel Frameworks
Intel® Advisor tools are designed to collect data and analyze serial programs. Before you use the Intel
Advisor to examine a partially parallel program, modify your program so it runs as a serial program with a
single thread within each parallel site.

Run Your Program as a Serial Program
To run the current version of your program as a serial program, you need to limit the number of threads to 1.
To run your program with a single thread:

• With Intel® oneAPI Threading Building Blocks (oneTBB) , in the main thread create a
tbb::task_scheduler_init init(1); object for the lifetime of the program and run the executable
again. For example:

   int main() {
     tbb::task_scheduler_init init(1);
     // ...rest of program...

     return 0;
   }

The effect of task_scheduler_init applies separately to each user-created thread. So if the program
creates threads elsewhere, you need to create a tbb::task_scheduler_init init(1); for that
thread's lifetime as well. Use of certain oneTBB features can prevent the program from running serially.
For more information, see the oneTBB documentation.

• With OpenMP*, do one of the following:

• Set the OpenMP* environment variable OMP_NUM_THREADS to 1 before you run the program.
• Omit the compiler option that enables recognition of OpenMP pragmas and directives. On Windows*

OS, omit /Qopenmp, and on Linux* OS omit -openmp.

For more information, see your compiler documentation.

If you cannot remove the parallelism, you should add annotations to mark the parallel code regions and learn
how parallel code will impact Intel Advisor tool reports.

See Also
Build Target Application
Create a Project
Use Partially Parallel Programs with Intel Advisor

s Choose a Small, Representative Data Set
When you run an analysis, the Intel® Advisor executes the target against the supplied data set. Data set size
and workload have a direct impact on application execution time and analysis speed

For example, it takes longer to process a 1000x1000 pixel image than a 100x100 pixel image. A possible
reason: You may have loops with an iteration space of 1...1000 for the larger image, but only 1...100 for the
smaller image. The exact same code paths may be executed in both cases. The difference is the number of
times these code paths are repeated.

You can control analysis cost without sacrificing completeness by minimizing this kind of unnecessary
repetition from your target's execution.

Instead of choosing large, repetitive data sets, choose small, representative data sets that fully create tasks
with minimal to moderate work per task. Minimal to moderate means just enough work to demonstrate all
the different behaviors a task can perform.

Your objective: In as short a runtime period as possible, execute as many paths and the maximum number
of tasks (parallel activities) as you can afford, while minimizing the repetitive computation within each task
to the bare minimum needed for good code coverage.

  1   Intel® Advisor User Guide

30



Data sets that run in about ten seconds or less are ideal. You can always create additional data sets to
ensure all your code is checked.

To modify the input data set using the Intel® Advisor GUI, do one of the following

• Specify the project properties for the target. For example:

1.

Either click File > Project properties... or the  icon on the Intel® Advisor toolbar. This displays
the Project Properties dialog box.

2. If needed, click the Analysis Target tab.
3. In the Target type drop-down list, choose Dependencies Analysis.
4. In the Application parameters, if your target's main entry point accepts command-line arguments,

specify a value in this field. Either type a value, or click the Modify... button.
5.When done, click OK.

• Modify the program's sources (perhaps using #ifdef directives) and rebuild the target.

On Windows* OS only: To modify the input data set in the Visual Studio IDE, do one of the following:

• Specify Properties for the project or configuration. For example, right-click the startup project's name to
display the context menu:

1.Choose Properties > Configuration properties > Debugging.
2.Select the type of configuration this change will apply to by selecting the type under Configuration,

such as Active(Debug), Debug, Release, or All Configurations. By default, properties for Debug
and Release configuration are maintained separately.

3.Edit the Command Arguments to select the appropriate data set.
4.Click OK.

• Specify a different startup project that already has a reduced data set.
• Modify the program's sources (perhaps using #ifdef directives) and rebuild the target.

Tip

• On Windows* OS only: If you run this configuration often, consider creating a new configuration
perhaps called Dependencies for this small data set.

• For the most current information on optimal C/C++ and Fortran build settings, see Build Target
Application.

Build Target Application
This section contains steps you should do before you begin running analyses on your application with Intel®
Advisor. Do the following:

• Build an optimized binary of your application in release mode using settings designed to produce the
most accurate and complete analysis results.

• Verify the resulting executable runs before trying to analyze it with the Intel® Advisor.

Important To analyze an application with the Intel® Advisor, the application should take longer than
500 milliseconds to execute on CPU or GPU. If your application execution time is lower, it might cause
inaccurate data sampling or a No data is collected error.

Optimal C/C++ Settings

To Do This For This Optimal C/C++ Settings

Request full debug
information (compiler
and linker).

Vectorization
and Code
Insights

Linux* OS command line: -g
Windows* OS command line:

Intel® Advisor User Guide  1  

31



To Do This For This Optimal C/C++ Settings

CPU /
Memory
Roofline
Insights

GPU Roofline
Insights

Offload
Modeling

Threading

• /ZI
• /DEBUG
Microsoft Visual Studio* IDE:

• C/C++ > General > Debug Information Format >
Program Database (/Zi)

• Linker > Debugging > Generate Debug Info > Yes (/
DEBUG)

Request moderate
optimization.

Vectorization
and Code
Insights

CPU /
Memory
Roofline
Insights

GPU Roofline
Insights

Threading

Offload
Modeling

Linux* OS command line: -O2 or higher

Windows* OS command line:

• /O2 or higher
• /Ob1 (Threading only)

Visual Studio* IDE:

• C/C++ > Optimization > Optimization > Maximum
Optimization (Favor Speed) (/O2) or higher

• C/C++ > Optimization > Inline Function Expansion >
Only_inline (/Ob1) (Threading only)

Disable interprocedural
optimizations that may
inhibit the ability of
Intel® Advisor to collect
performance data.

For Intel® C++ Compiler
Classic / Intel® oneAPI
DPC++/C++ Compiler
only.

Offload
Modeling

Linux* OS command line: -no-ipo
Windows* OS command line: /Qipo-

Produce compiler
diagnostics (necessary
for version 15.0 of the
Intel® C++ Compiler
Classic; unnecessary for
version 16.0 and
higher).

Vectorization
and Code
Insights

CPU /
Memory
Roofline
Insights

GPU Roofline
Insights

Linux* OS command line: -qopt-report=5
Windows* OS command line: /Qopt-report:5
Visual Studio* IDE: C/C++ > Diagnostics [Intel C++] >
Optimization Diagnostic Level > Level 5 (/Qopt-
report:5)

Enable vectorization. Vectorization
and Code
Insights

Linux* OS command line: -vec
Windows* OS command line: /Qvec

  1   Intel® Advisor User Guide

32



To Do This For This Optimal C/C++ Settings

CPU /
Memory
Roofline
Insights

GPU Roofline
Insights

Enable SIMD directives. Vectorization
and Code
Insights

CPU /
Memory
Roofline
Insights

GPU Roofline
Insights

Linux command line: -simd
Windows* OS command line: /Qsimd

Enable generation of
multi-threaded code
based on OpenMP*
directives.

Vectorization
and Code
Insights

CPU /
Memory
Roofline
Insights

GPU Roofline
Insights

Linux* OS command line: -qopenmp
Windows* OS command line: /Qopenmp
Visual Studio* IDE: C/C++ > Language [Intel C++] >
OpenMP Support > Generate Parallel Code (/Qopenmp)

Search additional
directory related to Intel
Advisor annotation
definitions.

Primarily
Threading,
but could
also be useful
for
refinement
analyses

Linux* OS command line:
- I${ADVISOR_[product_year]_DIR}/include
Windows* OS command
line: /I"%ADVISOR_[product_year]_DIR%"\include
Visual Studio* IDE: C/C++ > General > Additional Include
Directories > $(ADVISOR_[product_year]_DIR)
\include;%(AdditionalIncludeDirectories)

Search for unresolved
references in
multithreaded,
dynamically linked
libraries.

Threading
only

Linux* OS command line: -Bdynamic
Windows* OS command line: /MD or /MDd
Visual Studio* IDE: C/C++ > Code Generation > Runtime
Library > Mutithread

Enable dynamic loading. Threading
only

Linux* OS command line: -ldl

Intel® Advisor User Guide  1  

33



Optimal Fortran Settings

To Do This For This
Tool

Optimal Fortran Settings

Request full debug
information (compiler
and linker).

Vectorization
and Code
Insights

CPU /
Memory
Roofline
Insights

GPU Roofline
Insights

Threading

Linux* OS command line: -g
Windows* OS command line:

• /debug=full
• /DEBUG
Visual Studio* IDE:

• Fortran > General > Debug Information Format  >
Full (/debug=full)

• Linker > Debugging > Generate Debug Info > Yes (/
DEBUG)

Request moderate
optimization.

Vectorization
and Code
Insights

CPU /
Memory
Roofline
Insights

GPU Roofline
Insights

Threading

Linux* OS command line: -O2 or higher

Windows* OS command line:

• /O2 or higher
• /Ob1 (Threading only)

Visual Studio* IDE:

• Fortran > Optimization > Optimization > Maximize
Speed or higher

• Fortran > Optimization > Inline Function Expansion >
Only INLINE directive (/Ob1) (Threading only)

Produce compiler
diagnostics (necessary
for version 15.0 of the
Intel® Fortran Compiler
Classic; unnecessary for
version 16.0 and
higher).

Vectorization
and Code
Insights

CPU /
Memory
Roofline
Insights

GPU Roofline
Insights

Linux* OS command line: -qopt-report=5
Windows* OS command line: /Qopt-report:5
Visual Studio* IDE: Fortran > Diagnostics > Optimization
Diagnostic Level > Level 5 (/Qopt-report:5)

Enable vectorization. Vectorization
and Code
Insights

CPU /
Memory
Roofline
Insights

GPU Roofline
Insights

Linux* OS command line: -vec
Windows* OS command line: /Qvec

Enable SIMD directives. Vectorization
and Code
Insights

Linux* OS command line: -simd
Windows* OS command line: /Qsimd

  1   Intel® Advisor User Guide

34



To Do This For This
Tool

Optimal Fortran Settings

CPU /
Memory
Roofline
Insights

GPU Roofline
Insights

Enable generation of
multi-threaded code
based on OpenMP*
directives.

Vectorization
and Code
Insights

CPU /
Memory
Roofline
Insights

GPU Roofline
Insights

Linux* OS command line: -qopenmp
Visual Studio* IDE: Fortran > Language  > Process
OpenMP Directives > Generate Parallel Code (/
Qopenmp)

Search additional
directory related to Intel
Advisor annotation
definitions.

Primarily
Threading,
but could
also be useful
for
refinement
analyses

Linux* OS command line:

• -I${ADVISOR_[product_year]_DIR}/include/ia32 or
-I${ADVISOR_[product_year]_DIR}/include/ia64

• -L${ADVISOR_[product_year]_DIR}/lib32 or
-L${ADVISOR_[product_year]_DIR}/lib64

• -ladvisor
Windows* OS command line:

• /I"%ADVISOR_[product_year]_DIR%"\include\ia32
or /I"%ADVISOR_[product_year]_DIR%"\include\ia64

• /L"%ADVISOR_[product_year]_DIR%"\lib32
or /L"%ADVISOR_[product_year]_DIR%"\lib64

• /ladvisor or

Visual Studio* IDE:

• Fortran > General > Additional Include Directories >
"$(ADVISOR_[product_year]_DIR)\include\ia32\"
or "$(ADVISOR_[product_year]_DIR)\include
\ia64\"

• Linker > General > Additional Library Directories >
"$(ADVISOR_[product_year]_DIR)\lib32" or "$
(ADVISOR_[product_year]_DIR)\lib64"

• Linker > Input > Additional Dependencies > .lib >
libadvisor

Search for unresolved
references in
multithreaded,
dynamically linked
libraries.

Threading
only

Linux* OS command line: -shared-intel
Windows* OS command line: /MD or /MDd
Visual Studio* IDE: Fortran > Libraries > Runtime
Librarary > Multithread DLL (/libs:dll /threads) or
Debug Multithread DLL (/libs:dll /threads /dbglibs)

Intel® Advisor User Guide  1  

35



To Do This For This
Tool

Optimal Fortran Settings

Enable dynamic loading. Threading
only

Linux* OS command line: -ldl

Create Project
Intel® Advisor is based on a project paradigm and requires that you create or open a project to enable
analysis features. Think of a project as a reusable container for:

• The location of a compiled application
• A collection of configurable properties
• An analysis result

NOTE You can skip this step in the following cases:

• If you use Intel Advisor as a Microsoft Visual Studio* integration, as it creates a new project
automatically when opened.

• If you use Intel Advisor from the command line interface, as it creates a new project automatically
when you run the first analysis

To create an Intel® Advisor project from the GUI:

1. Open the Create a Project dialog box using any of the following options:

• Choose File > New > Project....
•

Click the  icon on the left-side toolbar.
• Click the Welcome page Create Project link.

2. In the Create a Project dialog box, configure the following:

Use This To Do This

Project name field Specify the name of the Intel® Advisorproject. This might be similar to
the target executable name. The project name is used for the project
directory name:

• A project file that identifies the target to be analyzed and a set of
configurable attributes for running the target.

• Results that allows you to view the collected data.

Location field and Browse
button

Choose or create a directory to contain the project directory. Click the
Browse button to browse to and select a directory where the project
directory will be created.

Project files should be located in a different directory than your source
directories, such as a directory above the source directories or in a
separate projects directory. You must have write permission to the
specified directory and its subdirectories.

Create project button After entering the Project name and specifying its Location, click
Create project to create the project and its directory and display the 
Analysis Target tab of the Project Properties dialog box.

3. Click Create Project button.

A Project Properties dialog box opens where you can configure your target application and the
project.

  1   Intel® Advisor User Guide

36



Continue to select a perspective and run it to analyze your application.

See Also
Launch Intel® Advisor
Run Vectorization and Code Insights Perspective from GUI
Run CPU / Memory Roofline Insights Perspective from GUI
Run Threading Perspective from GUI  Steps to run the Threading perspective.
Run Offload Modeling Perspective from GUI
Run GPU Roofline Insights Perspective from GUI

Configure Project

After you create a project, the Project Properties dialog box opens. In the Analysis Target tab, you can
specify the target executable, set important project properties, and review current project properties.

Tip
Always check project property values before analyzing a new target.

For an existing project, you can also access this tab:

• From the Intel Advisor GUI, choose File > Project Properties.
•

Click the  icon on the left-side toolbar.
• From the Visual Studio* menu, choose Project > Intel Advisor [version] Project Properties...

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

Analysis Target Tab Overview
In the Analysis Target tab, select an analysis type from list (on the left) to display and set project
properties.

Analysi
s Type
selector

Select an analysis type to configure. Different project properties are available in the Analysis
Properties region depending on the analysis type selected. The following analysis types are
available:

• Survey Analysis Types

• Survey Hotspots Analysis
• Trip Counts and FLOP analysis
• Suitability Analysis

• Refinement Analysis Types

• Memory Access Patterns Analysis
• Dependencies Analysis

• Performance Modeling Analysis

Analysi
s
Proper
ties

Set project properties for the analysis type selected in the Analysis Type region.

Intel® Advisor User Guide  1  

37



Analysis Target Tab Controls
The following table covers project properties applicable to all analysis types. To view controls applicable only
to a specific analysis type, use the links immediately below:

• Survey Analysis Controls
• Trip Counts and FLOPS Controls
• Suitability Analysis Controls
• MAP Analysis Controls
• Dependencies Analysis Controls

NOTE To configure a project, it is enough to set only common properties.

Common Controls
The following controls are common for all analysis types. Specify the properties in the Survey Hotspot
Analysis tab and check that the Inherit settings from the Survey Hotspots Analysis Type checkbox is
enabled in other tabs to share the properties for all analyses.

Use This To Do This

Target type drop-down • Analyze an executable or script (choose Launch Application).
• Analyze a process (choose Attach to Process).

If you choose Attach to Process, you can either inherit settings from
the Survey Hotspots Analysis Type or specify the needed settings.

Inherit settings from
Visual Studio project
checkbox and field (Visual
Studio* IDE only)

Inherit Intel Advisor project properties from the Visual Studio* startup
project (enable).

If enabled, the Application, Application parameters, and Working
directory fields are pre-filled and cannot be modified.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the
Intel® oneAPI 2022.1 release, and will be removed in a future release.

Application field and
Browse... button

Select an analysis target executable or script.

If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application
parameters field and
Modify... button

Specify runtime arguments to use when performing analysis (equivalent
to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment
variables field and Modify...
button

Specify environment variables to use during analysis.

  1   Intel® Advisor User Guide

38



Use This To Do This

Managed code profiling
mode drop-down

• Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

• Collect data for native code and do not attribute data to managed
code (choose Native).

• Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

• Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

Child application field Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

NOTE
For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

• Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

• Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

Use MPI launcher checkbox Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

• Select MPI Launcher - Intel or another vendor
• Number of ranks - Number of instances of the application
• Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis-Specific Controls

Use This To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Intel® Advisor User Guide  1  

39



Use This To Do This

Tip
The corresponding CLI action option is --resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Callstack unwinding mode
drop-down list

Set to After collection if:

• Survey analysis runtime overhead exceeds 1.1x.
• A large quantity of data is allocated on the stack, which is a common

case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE
Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
-ax (Linux* OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

  1   Intel® Advisor User Guide

40



Use This To Do This

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
list

• Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

• Keep source code cache within the project (choose Keep cached
files).

Trip Counts and FLOP Analysis-Specific Controls

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Trip Counts / Collect
information about Loop
Trip Counts checkbox

Measure loop invocation and execution (enable).

FLOP / Collect information
about FLOP, L1 memory
traffic, and AVX-512 mask
usage checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Callstacks / Collect
callstacks checkbox

Collect call stack information when performing analysis (enable).

Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Capture metrics for
stripped binaries checkbox

Collect metrics for stripped binaries.

Enabling could increase analysis overhead.

Intel® Advisor User Guide  1  

41



Use This To Do This

Cache Simulation / Enable
Memory-Level Roofline
with cache simulation
checkbox

Model multiple levels of cache for data, such as counts of loaded or
stored bytes for each loop, to plot the Roofline chart for all memory levels
(enable).

Enabling could increase analysis overhead.

Cache simulator
configuration field

Specify a cache hierarchy configuration to model (enable and specify
hierarchy).

The hierarchy configuration template is:

[num_of_level1_caches]:[num_of_ways_level1_connected]:
[level1_cache_size]:[level1_cacheline_size]/

[num_of_level2_caches]:[num_of_ways_level2_connected]:
[level2_cache_size]:[level2_cacheline_size]/

[num_of_level3_caches]:[num_of_ways_level3_connected]:
[level3_cache_size]:[level3_cacheline_size]

For example: 4:8w:32k:64l/4:4w:256k:64l/1:16w:6m:64l is the
hierarchy configuration for:

• Four eight-way 32-KB level 1 caches with line size of 64 bytes
• Four four-way 256-KB level 2 caches with line size of 64 bytes
• One sixteen-way 6-MB level 3 cache with line size of 64 bytes

Data Transfer Simulation /
Data transfer simulation
mode drop-down

Select a level of details for data transfer simulation:

• Off - Disable data transfer simulation analysis.
• Light - Model data transfers between host and device memory.
• Full - Model data transfers, attribute memory objects to loops that

accessed the objects, and track accesses to stack memory.

Suitability Analysis-Specific Controls

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Sampling Interval selector Set the wait time between each analysis collection sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

  1   Intel® Advisor User Guide

42



Use This To Do This

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Memory Access Patterns Analysis-Specific Controls

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode group
box

• Report possible memory issues in system modules (choose the Show
problems in system modules radio button).

• Do not report possible memory issues in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Report stack variables
checkbox

Report stack variables for which memory access strides are detected
(enable).

Enabling could increase analysis overhead.

Report heap allocated
variables checkbox

Report heap-allocated variables for which memory access strides are
detected (enable).

Enabling could increase analysis overhead.

Enable CPU cache
simulation checkbox

Model cache misses, cache misses and cache line utilization, or cache
misses and loop footprint (enable and select desired options).

Enabling could increase analysis overhead.

Cache associativity drop-
down list

Set the cache associativity for modeling CPU cache behavior. You can set
the value to the following power-of-two integers: 1, 2, 4, 8, 16.

Cache sets drop-down list Set the cache set size (in bytes) for modeling CPU cache behavior. You
can set the value to the following power-of-two integers: 256, 512, 1024,
2048, 4096, 8192.

Cache line size drop-down
list

Set the cache line size (in bytes) to model CPU cache behavior. You can
set the value to the following power-of-two integers: 4, 8, 16, 32, …, up
to 65536.

Cache simulation mode
drop-down list

Set the focus for modeling CPU cache behavior:

• Model cache misses only.

Intel® Advisor User Guide  1  

43



Use This To Do This

• Model cache misses and memory footprint of a loop. Calculation:
Cache line size x Number of unique cache lines accessed during
simulation.

• Model cache misses and cache line utilization.

Dependencies Analysis Controls

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode radio
buttons

• Report possible dependencies in system modules (choose the Show
problems in system modules radio button).

• Do not report possible dependencies in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Analyze stack variables
checkbox

Analyze parallel data sharing for stack variables (enable).

Enabling could increase analysis overhead.

Filter stack variables by scope
checkbox

Enable to report:

• Variables initiated inside the loop as potential dependencies (warning)
• Variables initialized outside the loop as dependencies (error)

Enabling could increase analysis overhead.

Reduction Detection / Filter
reduction variables checkbox

Mark all potential reductions by a specific diagnostic (enable).

Enabling could increase analysis overhead.

Markup type checkbox Select loops/functions by pre-defined markup algorithm. Supported
algorithms are:

• GPU generic - Select loops executed on a GPU.
• OpenMP - Select OpenMP* loops.
• SYCL - Select SYCL loops.
• OpenCL - Select OpenCL™ loops.
• DAAL - Select Intel® oneAPI Data Analytics Library loops.
• TBB - Select Intel® oneAPI Threading Building Blocks loops.

NOTE This option is available only from the Analysis Workflow pane for the
Offload Modeling perspective.

  1   Intel® Advisor User Guide

44



Performance Modeling Properties

Use This To Do This

Device configuration Select a pre-defined hardware configurations from
a drop-down list to model application performance
on.

Other parameters Enter a space-separated list of command-line
parameters. For a full list of available options, see 
Command Option Reference.

Configure Binary/Symbol Search Directories

You need to configure binary/symbol search directories if your target application has non-standard directories
with the supporting files needed to execute and analyze the target. By default, if you do not specify source
search directory, Intel Advisor searches the standard OS directories. See Binary/Symbol Search Locations for
details.

With Visual Studio* on Windows* OS, you can instead use the Visual Studio solution and project capabilities
to search for specific directories.

Tab Location
To access this tab:

• From the Intel Advisor GUI, choose File > Project Properties. Then click the Binary/Symbol Search
tab.

•
Click the  icon on the left-side toolbar.

• From the Visual Studio* menu, choose File > Intel Advisor [version] Project Properties.... Then click
the Binary/Symbol Search tab.

Tab Controls

Use This To Do This

 button
On a row containing Add new search location, click to browse for directories
to include in the search list. You can also type directly in the row. In addition to
local directories, you can specify a symbol server URL.

 and  buttons
Change the search order of the selected directory by moving it up or down. To
select multiple rows, use the Ctrl or Shift keys.

 button
Delete a selected directory row(s).

Search recursively
checkbox

Enable to search the specified location subdirectories. To use recursive search,
the lines must provide only a directory name and omit a file name. Using a
recursive search for multiple directories may slow processing and could lead to
unexpected results.

See Also
• Binary/Symbol Search and Source Search Locations

Intel® Advisor User Guide  1  

45



Configure Source Search Directory

You need to configure source search directories to specify the source search locations needed to execute and
analyze your target application. By default, if you do not specify source search directory, Intel Advisor
searches the directories from the collected result. See Source Search Locations for details.

With Visual Studio, some source locations are pre-populated from the Visual Studio startup project into the
internal representation of Intel Advisor project properties, so you may not need to add new row(s).

Tip
For Threading Advisor only: Intel® Advisor does not automatically populate source locations after you
create a project using the Intel® Advisor GUI, so you must specify one or more locations to find
application annotations. View the Annotation Report to verify all project annotations are found.

Tab Location
To access this tab:

• From the Intel® Advisor GUI, choose File > Project Properties. Then click the Source Search tab.
•

Click the  icon on the left-side toolbar.
• From the Visual Studio* menu, choose File > Intel Advisor [version] Project Properties.... Then click

the Source Search tab.

Tab Controls

Use This To Do This

 button
On a row containing Add new search location, click to browse for directories
to include in the search list. You can also type directly in the row.

 and  buttons
Change the search order of the selected directory by moving it up or down. To
select multiple rows, use the Ctrl or Shift keys.

 button
Delete a selected directory row(s).

Search recursively
checkbox

Enable to search the specified location subdirectories. To use recursive search,
the lines must provide only a directory name and omit a file name. Using a
recursive search for multiple directories may slow processing and could lead to
unexpected results.

Mask text box Specify the file name mask pattern(s) to ignore (skip) using wildcard
characters, such as an asterisk (*). For example, you can skip certain file
suffixes.

File text box Specify the file(s) to ignore (skip) using an absolute path.

To delete a row, use the  button.

See Also
• Binary/Symbol Search and Source Search Locations

Binary/Symbol Search and Source Search Locations
When using the Intel Advisor Standalone GUI:

  1   Intel® Advisor User Guide

46



• If you specify binary and symbol locations to search using the Binary/Symbol Search tab, they will be
searched in addition to the default binary and symbol locations.

• If you specify source locations to search using the Source Search tab, they will be searched in addition
to the default source search locations.

Binary/Symbol Search Locations
Intel Advisor searches binary and symbol files in default locations and in locations specified in the Binary/
Symbol Search tab (if specified).

The following lists describe the order and default locations that are searched. As indicated below, some
directory searches examine the specified directory and its subdirectories, while other searches do not
examine its subdirectories.

The search order on Windows* OS systems is the following:

1. Search for binary and symbol files in the directories specified in the Binary/Symbol Search tab and
their subdirectories (if enabled in the tab).

2. Search for symbol files in the directories near the related (corresponding) binary file(s) just found, such
as a library:

• Check in the directory of the corresponding binary file, using the corresponding name.
• Check in the directory of the corresponding binary file, using a related name. For example, for

app.dll where a file app_x86.pdb is present, also search for file app.pdb.
3. When using an integrated Visual Studio project, the directories provided by the Visual Studio project

pre-populate the corresponding directories in the internal representation of the Binary/Symbol
Search tab (for example, Visual Studio binary locations pre-populate the Project Properties binary
locations). So, the Visual Studio project's directories are searched and are specific to the selected
configuration.

For symbol files, also search using symbol server paths specified in the Binary/Symbol Search tab in
the following notation: srv*C:\localsymbols*http://msdl.microsoft.com/download/symbols
and/or provided in Visual Studio Tools > Options > Debugging > Symbols.

4. Search for binary files in this standard Windows OS system directory:

%SYSTEMROOT%\system32\drivers (subdirectories are not searched)
5. Search for symbol files in these standard Windows OS system directories:

• All directories specified in the environment variable_NT_SYMBOL_PATH (subdirectories are not
searched)

• srv*%SYSTEMROOT%\symbols (symbol downstream or cache path)
• %SYSTEMROOT%\symbols\dll (subdirectories are not searched)

The search order on Linux* OS systems is the following:

1. Search for binary and symbol files in the directories specified in the Binary/Symbol Search tab and
their subdirectories (if enabled in the tab).

2. Search for binary files in directories from the collected result that provide an absolute path name. If the
file name vmlinux is present, search these directories:

• /usr/lib/debug/lib/modules/`uname -r`/vmlinux
• /boot/vmlinuz-`uname -r`

3. Search for symbol files in the directories near the related (corresponding) binary file(s) just found, such
as a library:

• Check in the directory of the corresponding binary file, using the corresponding name.
• Check in the directory of the corresponding binary file, using a related name. For example, for

app.dll where a file app_x86.pdb is present, also search for file app.pdb.
• Search in the .debug subdirectory.

4. Search for binary files in these standard Linux OS system directories:

Intel® Advisor User Guide  1  

47



• /lib/modules (subdirectories are not searched)
• /lib/modules/`uname -r`/kernel (subdirectories are searched)

5. Search for symbol files in these standard Linux OS system directories:

• usr/lib/debug(subdirectories are not searched)
• /usr/lib/debug with appended path to the corresponding binary file, such as /usr/lib/

debug/usr/bin/ls.debug

Source Search Locations
A limited set of default source locations are used in addition to the locations specified in the Source Search
tab. With Intel Advisor, you can use this tab to indicate whether or not the default source locations (listed
below) will be searched.

NOTE
When using the Intel Advisor GUI, you must specify one or more new rows (locations) in the Source
Search tab so Intel Advisor tools can find your application's annotations.

The following list describes the order and default locations that are searched. As indicated below, some
directory searches examine the specified directory and its subdirectories, while other searches do not
examine its subdirectories.

1. Search for source files in the directories specified in the Source Search tab. With Intel Advisor, you
can indicate whether the subdirectories of these directories should be searched.

2. Search for source files in directories from the collected result that provide an absolute path name.
3. When using an integrated Visual Studio project, the source directories provided by the Visual Studio

project pre-populate the corresponding source directories in the internal representation of the Source
Search tab. So, the Visual Studio project's source directories are searched for source files, and they
apply to all configurations.When using Microsoft Visual Studio*: Search for source files in Visual
Studio project directories.

4. On Linux OS systems: Search for source files in these standard Linux locations (does not search
subdirectories):

/usr/src
/usr/src/linux-headers-`uname -r`

See Also
Binary/Symbol Search Tab
Source Search Tab

Analyze Vectorization Perspective
Improve your application performance, get code-
specific recommendations for how to fix vectorization
issues and quick visibility into source code and
assembly code by running the Vectorization and Code
Insights perspective.

The Vectorization and Code Insights perspective can help you to identify:

• Where vectorization, or parallelization with threads, will pay off the most
• If vectorized loops are providing benefit, and if not, why not
• Not vectorized loops and why they are not vectorized
• Memory usage issues
• Performance insights and problems in general

  1   Intel® Advisor User Guide

48



How It Works
The Vectorization and Code Insights perspective includes the following steps:

1. Get integrated compiler report data and performance data by running a Survey analysis.
2. Identify the number of times loops are invoked and execute and the number of floating-point and

integer operations by running the Characterization analysis. It measures the call count/loop count
and iteration count metrics for your application. Enable to make better decisions about your
vectorization strategy for particular loops, as well as optimize already-vectorized loops.

3. Check for various memory issues by running the Memory Access Patterns (MAP) analysis. It can
warn you about non-contiguous memory accesses, unit stride vs. non-unit stride accesses, or other
issues. Enable to identify issues that could lead to significant vector code execution slowdown or block
automatic vectorization by the compiler.

4. Check for data dependencies in loops the compiler did not vectorize by running the Dependencies
analysis. The Dependencies analysis checks for real data dependencies and if real dependencies are
detected, provides additional details to help resolve them. Choose to identify and better characterize
real data dependencies that could make forced vectorization unsafe.

Vectorization Summary
Vectorization and Code Insights perspective collects data about your application performance, including the
following:

• Performance metrics, including vectorization efficiency for the whole application and for each vectorized
loop/function

• Top five time-consuming loops sorted by self time
• Integrated compiler report data and code-specific recommendations for fixing performance issues

See Also
Run Vectorization and Code Insights Perspective from GUI
Run Vectorization and Code Insights Perspective from Command Line
Vectorization Report Navigation Overview Review the controls available in the main report of the
Vectorization and Code Insights perspective of the Intel® Advisor.

Intel® Advisor User Guide  1  

49



Run Vectorization and Code Insights Perspective from GUI
Prerequisite:

In the graphical-user interface (GUI): Create a project and specify an analysis target and target options.

To configure and run the Vectorization and Code Insights perspective from the GUI:

1. From the Analysis Workflow tab, configure the perspective and set analysis properties, depending on
desired results:

• Select a collection accuracy level with analysis properties preset for a specific result:

• Low: Get the basic insights about vectorized and un-vectorized loops in your code.
• Medium: Identify the number of times loops execute to make better decisions about your

vectorization strategy.
• High: Analyze application memory usage and performance values that help you make better

decisions about your vectorization strategy in details.
• Select the analyses and properties manually to adjust the perspective flow to your needs. The

accuracy level is set to Custom.

The higher accuracy value you choose, the higher runtime overhead is added to your application. The
Overhead indicator shows the overhead for the selected configuration. For the Custom accuracy, the
overhead is calculated automatically for the selected analyses and properties.

By default, accuracy is set to Low. For more information, see Vectorization Accuracy Presets.
2. If you want to limit the Characterization, Memory Access Patterns, and/or Dependencies analyses to

one or more specific loops/functions instead of analyzing the whole application:

• From a Survey report generated: Mark one or more un-vectorized loops by enabling the

corresponding  checkboxes in the report.
3.

Click  button to run the perspective.

While the perspective is running, you can do the following in the Analysis Workflow tab:

• Control the perspective execution:

•
Stop data collection and see the already collected data: Click the  button.

•
Pause data collection: Click the  button.

•
Cancel data collection and discard the collected data: Click the  button.

• Expand an analysis with  to control the analysis execution:

• Pause the analysis: Click the  button.
• Stop the currently running analysis and start the next analysis selected: Click the  button.
• Interrupt execution of all selected analyses and see the already collected data: Click the 

button.

To run the Vectorization and Code Insights perspective with the Low accuracy from the command
line interface:

advisor --collect=survey --project-dir=./advi_results  -- ./myApplication
See Run Vectorization and Code Insights Perspective from Command Line for details.

  1   Intel® Advisor User Guide

50



NOTE To generate command lines for selected perspective configuration, click the Command
Line button.

Once the data is collected, the Survey report opens showing a Summary tab. Depending on the selected
accuracy level and perspective properties, continue to investigate the results:

• Examine Not-Vectorized and Under-Vectorized Loops
• Examine Loop Call Count
• Investigate Memory Usage and Traffic
• Identify Data Dependencies in Your Application

NOTE

• After you run the Vectorization and Code Insights perspective, the collected Survey data becomes
available for all other perspectives. If you switch to another perspective, you can skip the Survey
step and run only perspective-specific analyses.

• If the Survey analysis does not collect enough data to produce a report, it displays a Target
executed too quickly or does not contain debug symbols message. Increase the target workload or
data to run the analysis for at least a few seconds, check whether debug information is specified as
a build option, or specify a different target application.

Vectorization Accuracy Presets
For each perspective, Intel® Advisor has several levels
of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is
collected and the level of collection details. The higher
accuracy value you choose, the higher runtime
overhead is added.

The following accuracy levels are available:

Comparison /
Accuracy Level

Low Medium High

Overhead 1.1x 5 - 8x 10 - 40x

Goal Get basic insights
about how well your
application is
vectorized and how
you can improve
vectorization
efficiency

Get more insights
about how well your
application is
vectorized and the
number of iterations
in loops/functions

Get detailed insights about
your application performance,
including performance issues
and detailed optimization
recommendations

Analyses Survey Survey +
Characterization (Trip
Counts)

Survey + Characterization
(Trip Counts, FLOP, Call
Stacks) + Memory Access
Patterns

Result Basic Survey report Survey report
extended with trip
count data

Extended Survey report with
trip counts and floating-point
and integer operations (FLOP
and INTOP)

Intel® Advisor User Guide  1  

51



Comparison /
Accuracy Level

Low Medium High

Memory Access Patters with
memory traffic data and
memory usage issues

You can choose custom accuracy and set a custom perspective flow for your application. For more
information, see Customize Vectorization and Code Insights Perspective.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

Customize Vectorization and Code Insights Perspective
Customize the perspective flow to better fit your goal
and your application.

If you change any of the analysis settings from the Analysis Workflow tab, the accuracy level changes to
Custom automatically. With this accuracy level, you can customize the perspective flow and/or analysis
properties.

To change the properties of a specific analysis:

1.
Expand the analysis details on the Analysis Workflow pane with .

2. Select desired settings.
3.

For more detailed customization, click the gear  icon. You will see the Project Properties dialog
box open for the selected analysis.

4. Select desired properties and click OK.

For a full set of available properties, click the  icon on the left-side pane or go to File > Project
Properties.

The following tables cover project properties applicable to the analyses in the Vectorization and Code Insights
perspective.

Common Properties

Use This To Do This

Target type drop-down • Analyze an executable or script (choose Launch Application).
• Analyze a process (choose Attach to Process).

If you choose Attach to Process, you can either inherit settings from
the Survey Hotspots Analysis Type or specify the needed settings.

Inherit settings from
Visual Studio project
checkbox and field (Visual
Studio* IDE only)

Inherit Intel Advisor project properties from the Visual Studio* startup
project (enable).

If enabled, the Application, Application parameters, and Working
directory fields are pre-filled and cannot be modified.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the
Intel® oneAPI 2022.1 release, and will be removed in a future release.

  1   Intel® Advisor User Guide

52



Use This To Do This

Application field and
Browse... button

Select an analysis target executable or script.

If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application
parameters field and
Modify... button

Specify runtime arguments to use when performing analysis (equivalent
to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment
variables field and Modify...
button

Specify environment variables to use during analysis.

Managed code profiling
mode drop-down

• Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

• Collect data for native code and do not attribute data to managed
code (choose Native).

• Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

• Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

Child application field Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

NOTE
For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

• Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

• Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

Intel® Advisor User Guide  1  

53



Use This To Do This

Use MPI launcher checkbox Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

• Select MPI Launcher - Intel or another vendor
• Number of ranks - Number of instances of the application
• Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis Properties

Use This To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Callstack unwinding mode
drop-down list

Set to After collection if:

• Survey analysis runtime overhead exceeds 1.1x.
• A large quantity of data is allocated on the stack, which is a common

case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

  1   Intel® Advisor User Guide

54



Use This To Do This

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE
Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
-ax (Linux* OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
list

• Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

• Keep source code cache within the project (choose Keep cached
files).

Trip Counts and FLOP Analysis Properties

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Collect information about
Loop Trip Counts checkbox

Measure loop invocation and execution (enable).

Intel® Advisor User Guide  1  

55



Use This To Do This

Collect information about
FLOP, L1 memory traffic,
and AVX-512 mask usage
checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Collect stacks checkbox Collect call stack information when performing analysis (enable).

Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Memory Access Patterns Analysis Properties

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode group
box

• Report possible memory issues in system modules (choose the Show
problems in system modules radio button).

• Do not report possible memory issues in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Report stack variables
checkbox

Report stack variables for which memory access strides are detected
(enable).

Enabling could increase analysis overhead.

Report heap allocated
variables checkbox

Report heap-allocated variables for which memory access strides are
detected (enable).

Enabling could increase analysis overhead.

Enable CPU cache
simulation checkbox

Model cache misses, cache misses and cache line utilization, or cache
misses and loop footprint (enable and select desired options).

Enabling could increase analysis overhead.

Cache associativity drop-
down list

Set the cache associativity for modeling CPU cache behavior. You can set
the value to the following power-of-two integers: 1, 2, 4, 8, 16.

Cache sets drop-down list Set the cache set size (in bytes) for modeling CPU cache behavior. You
can set the value to the following power-of-two integers: 256, 512, 1024,
2048, 4096, 8192.

  1   Intel® Advisor User Guide

56



Use This To Do This

Cache line size drop-down
list

Set the cache line size (in bytes) to model CPU cache behavior. You can
set the value to the following power-of-two integers: 4, 8, 16, 32, …, up
to 65536.

Cache simulation mode
drop-down list

Set the focus for modeling CPU cache behavior:

• Model cache misses only.
• Model cache misses and memory footprint of a loop. Calculation:

Cache line size x Number of unique cache lines accessed during
simulation.

• Model cache misses and cache line utilization.

Dependencies Analysis Properties

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode radio
buttons

• Report possible dependencies in system modules (choose the Show
problems in system modules radio button).

• Do not report possible dependencies in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Analyze stack variables
checkbox

Analyze parallel data sharing for stack variables (enable).

Enabling could increase analysis overhead.

Filter stack variables by scope
checkbox

Enable to report:

• Variables initiated inside the loop as potential dependencies (warning)
• Variables initialized outside the loop as dependencies (error)

Enabling could increase analysis overhead.

Reduction Detection / Filter
reduction variables checkbox

Mark all potential reductions by a specific diagnostic (enable).

Enabling could increase analysis overhead.

Markup type checkbox Select loops/functions by pre-defined markup algorithm. Supported
algorithms are:

• GPU generic - Select loops executed on a GPU.
• OpenMP - Select OpenMP* loops.
• SYCL - Select SYCL loops.
• OpenCL - Select OpenCL™ loops.

Intel® Advisor User Guide  1  

57



Use This To Do This

• DAAL - Select Intel® oneAPI Data Analytics Library loops.
• TBB - Select Intel® oneAPI Threading Building Blocks loops.

NOTE This option is available only from the Analysis Workflow pane for the
Offload Modeling perspective.

Run Vectorization and Code Insights Perspective from Command Line
Vectorization and Code Insights perspective includes several analyses that you can run depending on the
desired result. The main analysis is the Survey, which collects performance data for loops and functions in
your application and identifies under-vectorized and non-vectorized loops/functions. The Survey analysis is
enough to get the basic insights about your application performance.

Tip See Intel Advisor cheat sheet for quick reference on command line interface.

Prerequisites
Set Intel Advisor environment variables with an automated script to enable the command line interface (CLI).

Run Vectorization and Code Insights Perspective
Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

1. Run the Survey analysis.

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
2. Run the Characterization analysis to collect trip counts and FLOP data:

advisor --collect=tripcounts --flop --stacks --project-dir=./advi_results -- ./myApplication
3. Optional: Run the Memory Access Patterns analysis for loops/functions with the Possible Inefficient

Memory Access Patter issue.

advisor --collect=map --select=has-issue --project-dir=./advi_results -- ./myApplication
4. Optional: Run the Dependencies analysis to check for loop-carried dependencies in loops/functions with

Assumed dependency present issue:

advisor --collect=dependencies --project-dir=./advi_results --select=has-issue -- ./myApplication
You can view the results in the Intel Advisor graphical user interface (GUI), print a summary to a command
prompt/terminal, or save to a file. See View the Results below for details.

Analysis Details

The Vectorization and Code Insights workflow includes the following analyses:

1. Survey to collect initial performance data.
2. Characterization with trip counts and FLOP data to collect additional performance details.
3. Memory Access Patterns (optional) to identify memory traffic data and memory usage issues.
4. Dependencies (optional) to identify loop-carried dependencies.

Each analysis has a set of additional options that modify its behavior and collect additional performance data.
The more analyses you run and option you use, the more useful data about your application you get.

  1   Intel® Advisor User Guide

58

https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-cheat-sheet.pdf


Consider the following options:

Characterization Options

To run the Characterization analysis, use the following command line action: --collect=tripcounts.

Recommended action options:

Options Description

--flop Collect data about floating-point and integer
operations, memory traffic, and mask utilization
metrics for AVX-512 platforms.

--stacks Enable advanced collection of call stack data.

--enable-cache-simulation Model CPU cache behavior on your target
application.

--cache-config=<config> Set the cache hierarchy to collect modeling data for
CPU cache behavior. Use with
enable-cache-simulation.

The value should follow the template:
[<num_of_caches>]:
[<num_of_ways_caches_connected> ]:
[<cache_size>]:[<cacheline_size>] for each of
three cache levels separated with a /.

--cachesim-associativity=<num> Set the cache associativity for modeling CPU cache
behavior: 1 | 2 | 4 | 8 (default) | 16. Use with
enable-cache-simulation.

--cachesim-mode=<mode> Set the focus for modeling CPU cache behavior:
cache-misses | footprint | utilization. Use
with enable-cache-simulation.

See advisor Command Option Reference for more options.

Memory Access Patterns Options

The Memory Access Patterns analysis is optional because it adds a high overhead. To run the Memory Access
Patterns analysis, use the following command line action: --collect=map.

Recommended action options:

Options Description

--select=<string> Select loops for the analysis by loop IDs, source
locations, or criteria such as scalar, has-issue,
or markup=<markup-mode>. This option is
required.

See select for more selection options.

--enable-cache-simulation Model CPU cache behavior on your target
application.

Intel® Advisor User Guide  1  

59



Options Description

--cachesim-cacheline-size=<num> Set the cache line size (in bytes) for modeling CPU
cache behavior: 4 | 8 | 16 | 32 | 64 (default) | 128
| 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 |
32768 | 65536. Use with
enable-cache-simulation.

--cachesim-sets=<num> Set the cache set size (in bytes) for modeling CPU
cache behavior: 256 | 512 | 1024 | 2048 | 4096
(default) | 8192. Use with
enable-cache-simulation.

See advisor Command Option Reference for more options.

Dependencies Options

The Dependencies analysis is optional because it adds a high overhead and is mostly necessary if you have
scalar loops/functions in your application. To run the Dependencies analysis, use the following command line
action: --collect=dependencies.

Recommended action options:

Options Description

--select=<string> Select loops for the analysis by loop IDs, source
locations, criteria such as scalar, has-issue, or
markup=<markup-mode>. This option is required.

See select for more selection options.

--filter-reductions Mark all potential reductions with a specific
diagnostic.

See advisor Command Option Reference for more options.

Next Steps
Continue to explore the Vectorization and Code Insights results with a preferred method. For details about
the metrics reported, see CPU and Memory Metrics.

See Also
Analyze Vectorization Perspective  Improve your application performance, get code-specific
recommendations for how to fix vectorization issues and quick visibility into source code and
assembly code by running the Vectorization and Code Insights perspective.
Command Line Interface  This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.
Minimize Analysis Overhead
Analyze MPI Applications  With Intel® Advisor, you can analyze parallel tasks running on a cluster
to examine performance of your MPI application.

Vectorization Accuracy Levels in Command Line
For each perspective, Intel® Advisor has several levels of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is collected and the level of collection details. The higher
accuracy value you choose, the higher runtime overhead is added.

In CLI, each accuracy level corresponds to a set of commands with specific options that you should run one
by one to get a desired result.

The following accuracy levels are available:

  1   Intel® Advisor User Guide

60



Comparison /
Accuracy Level

Low Medium High

Overhead 1.1x 5 - 8x 10 - 40x

Goal Get basic insights
about how well your
application is
vectorized and how
you can improve
vectorization
efficiency

Get more insights
about how well your
application is
vectorized and the
number of iterations
in loops/functions

Get detailed insights about
your application performance,
including performance issues
and detailed optimization
recommendations

Analyses Survey Survey +
Characterization (Trip
Counts)

Survey + Characterization
(Trip Counts, FLOP, Call
Stacks) + Memory Access
Patterns

Result Basic Survey report Survey report
extended with trip
count data

Extended Survey report with
trip counts and floating-point
and integer operations (FLOP
and INTOP)

Memory Access Patters with
memory traffic data and
memory usage issues

You can generate commands for a desired accuracy level from the Intel Advisor GUI. See Generate Command
Lines from GUI for details.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead .

Consider the following command examples.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Low Accuracy
To run the Vectorization and Code Insights perspective with the low accuracy:

advisor --collect=survey --project-dir=./advi_results -- ./myApplication

Medium Accuracy
To run the Vectorization and Code Insights perspective with the medium accuracy:

1. Run the Survey analysis:

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
2. Run the Trip Counts analysis:

advisor --collect=tripcounts --enable-data-transfer-analysis --project-dir=./advi_results -- ./
myApplication

High Accuracy
To run the Vectorization and Code Insights perspective with the high accuracy:

Intel® Advisor User Guide  1  

61



1. Run the Survey analysis:

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
2. Run the Trip Counts and FLOP analysis:

advisor --collect=tripcounts --flop --stacks --project-dir=./advi_results -- ./myApplication
3. Run the Memory Access Pattern analysis for the loops that have the Possible Inefficient Memory Access

Pattern issue:

advisor --collect=map --select=has_issue --project-dir=./advi_results -- ./myApplication
You can view the results in the Intel Advisor GUI or generate an interactive HTML report.

See Also
advisor Command Option Reference
Command Line Interface Reference This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].
Run Vectorization and Code Insights Perspective from Command Line
Minimize Analysis Overhead

Explore Vectorization and Code Insights Results
Intel® Advisor provides several ways to view the Vectorization and Code Insights results.

View Result in CLI
If you run the Vectorization and Code Insights perspective from command line, you can print the results to a
terminal or a command prompt and save them to a .txt, .csv, or .xml file.

For example, to generate the Survey report:

advisor --report=survey --project-dir=./advi_results
You should see a similar result:

 ID  Function Call Sites                   Total   Self                  
Type                            Why No Vectorization ...   
               and Loops                   Time    
Time                                                                       ...
_________________________________________________________________________________________________
____________________________ ...
14  [loop in main at mmult_serial.cpp:79]  0.495s  0.495s  Vectorized Versions 1 vectorization 
possible but seems inefficient ...
 6  -[loop in main at mmult_serial.cpp:79] 0.275s  0.275s    Vectorized 
(Body)                                                ...
 3  -[loop in main at mmult_serial.cpp:79] 0.205s  0.205s    Vectorized 
(Body)                                                ...
 7  -[loop in main at mmult_serial.cpp:79] 0.015s  0.015s               
Peeled                                                ...
11  -[loop in main at mmult_serial.cpp:79]     0s      0s            Remainder   vectorization 
possible but seems inefficient ...
 4  [loop in main at mmult_serial.cpp:79]  0.510s  0.015s               Scalar   inner loop was 
already vectorized            ...
12  [loop in main at mmult_serial.cpp:79]  0.510s      0s      Scalar Versions   1 inner loop 
was already vectorized          ...
 5  -[loop in main at mmult_serial.cpp:79] 0.510s      0s               Scalar   inner loop was 
already vectorized            ...

The result is also saved into a text file advisor-survey.txt located at ./advi_results/eNNN/hsNNN.

  1   Intel® Advisor User Guide

62



You can generate a report for any analysis you run. The generic report command looks as follows:

advisor --report=<analysis-type> --project-dir=<project-dir> --format=<format>
where:

• <analysis-type> is the analysis you want to generate the results for. For example, survey for the Survey
report, top-down for the Survey report in a top-down view, map for the Memory Access Patterns, or
dependencies for the Dependencies report.

• --format=<format> is a file format to save the results to. <format> is text (default), csv, xml.

You can also generate a report with the data from all analyses run and save it to a CSV file with the --
report=joined action as follows:

advisor --report=joined --report-output=<path-to-csv>
where --report-output=<path-to-csv> is a path and a name for a .csv file to save the report to. For
example, /home/report.csv. This option is required to generate a joined report.

See advisor Command Line Interface Reference for more options.

View Result in GUI
If you run the Vectorization and Code Insights perspective from command line, a project is created
automatically in the directory specified with --project-dir. All the collected results and analysis
configurations are stored in the .advixeproj project, that you can view in the Intel Advisor.

To open the project in GUI, you can run the following command:

advisor-gui <project-dir>

NOTE If the report does not open, click Show Result on the Welcome pane.

If you run the Vectorization and Code Insights perspective from GUI, the result is opened automatically after
the collection finishes.

You first see a Vectorization Summary report that includes the overall information about vectorized and not
vectorized loops/functions in your code and the vectorization efficiency, including:

• Performance metrics of your program and the speedup for the vectorized loops/functions
• Top five time-consuming loops and top five optimization recommendations with the highest confidence

Intel® Advisor User Guide  1  

63



Save a Read-only Snapshot
A snapshot is a read-only copy of a project result, which you can view at any time using the Intel Advisor
GUI. You can save a snapshot for a project using Intel Advisor GUI or CLI.

To save an active project result as a read-only snapshot from GUI: Click the  button in the top ribbon
of the report. In the Create a Result Snapshot dialog box, enter the snapshot details and save it.

To save an active project result as a read-only snapshot from CLI:

advisor --snapshot --project-dir=<project-dir> [--cache-sources] [--cache-binaries] --
<snapshot-path>

where:

• --cache-sources is an option to add application source code to the snapshot.
• --cache-binaries is an option to add application binaries to the snapshot.
• <snapshot-path is a path and a name for the snapshot. For example, if you specify /tmp/new_snapshot,

a snapshot is saved in a tmp directory as new_snapshot.advixeexpz. You can skip this and save the
snapshot to a current directory as snapshotXXX.advixeexpz.

To open the result snapshot in the Intel Advisor GUI, you can run the following command:

advisor-gui <snapshot-path>
You can visually compare the saved snapshot against the current active result or other snapshot results.

  1   Intel® Advisor User Guide

64



See Create a Read-only Result Snapshot for details.

Result Interpretation
When you run the Vectorization and Code Insights perspective, depending on a configuration chosen, the
report can show different levels of details:

•
• Examine Not-Vectorized and Under-Vectorized Loops
• Analyze Loop Call Count
• Investigate Memory Usage and Traffic
• Find Data Dependencies

For a general overview of the report, see Vectorization Report Overview.

See Also
Run Vectorization and Code Insights Perspective from GUI
Run Vectorization and Code Insights Perspective from Command Line
CPU Metrics  This reference section describes the contents of data columns in Survey and
Refinement Reports of the Vectorization and Code Insights, CPU / Memory Roofline Insights,
and Threading perspectives.

Vectorization Report Overview
Review the controls available in the main report of the
Vectorization and Code Insights perspective of the
Intel® Advisor.

There are many controls available to help you focus on the data most important to you, including the
following:

1 Click the control to save a read-only result snapshot you can view any time.

Intel Advisor stores only the most recent analysis result. Visually comparing one or more snapshots
to each other or to the most recent analysis result can be an effective way to judge performance
improvement progress.

To open a snapshot, choose File > Open > Result...

2 Click the various Filter controls to temporarily limit displayed data based on your criteria.

3 Click the control to view loops in non-executed code paths for various instruction set architectures
(ISAs). Prerequisites:
• Compile the target application for multiple code paths using the Intel compiler.

Intel® Advisor User Guide  1  

65



• Enable the Analyze loops in not executed code path checkbox in Project Properties >
Analysis Target > Survey Hotspots Analysis.

4 This toggle control currently combines two features: The View
Configurator and the Smart Mode filter.
• View Configurator - Toggle on the Customize View control to

choose the view layout to display: Default, Smart Mode, or a
customized view layout. To create a customized view layout you can
apply to this and other projects:

1.Click the Settings control next to the View Layout drop-down list to
open the Configure Columns dialog box.

2.Choose an existing view layout in the Configuration drop-down list.
3.Enable/disable columns to show/hide.

Outcome: Copy n is added to the name of the selected view layout in
the Configuration drop-down list.

4.Click the Rename button and supply an appropriate name for the
customized view layout.

5.Click OK to save the customized view layout.
• Smart Mode Filter - Toggle on the Customize View control to

temporarily limit displayed data to the top potential candidates for
optimization based on Total CPU Time (the time your application
spends actively executing a function/loop and its callees). In the Top
drop-down list, choose one of the following:

• The Number of top loops/functions to display
• The Percent of Total CPU Time the displayed loops/functions

must equal or exceed

5 Click the button to search for specific data.

6 Click the tab to open various Intel Advisor reports or views.

7 Right-click a column header to:
• Hide the associated report column.
• Resume showing all available report columns.
• Open the Configure Columns dialog box (see #4 for more information).

8 Click the toggle to show all available columns in a column set, and resume showing a limited number
of preset columns in a column set.

9 Click the control to:
• Show options for customizing data in a column or column set.
• Open the Configure Columns dialog box (see #4 for more information).

For example, click the control in the Compute Performance column set to:
• Show data for floating-point operations only, for integer operations only, or for the sum of

floating-point and integer operations.
• Determine what is counted as an integer operation in integer calculations:

• Choose Show Pure Compute Integer Operations to count only ADD, MUL, IDIV, and SUB
operations.

• Choose Show All Operations Processing Integer Data to count ADD, ADC, SUB, MUL,
IMUL, DIV, IDIV, INC/DEC, shift, and rotate operations.

10 Click the control to show/hide a chart that helps you visualize actual performance against hardware-
imposed performance ceilings, as well as determine the main limiting factor (memory bandwidth or
compute capacity), thereby providing an ideal roadmap of potential optimization steps.

  1   Intel® Advisor User Guide

66



11 Click a data row in the top of the Survey Report to display more data specific to that row in the
bottom of the Survey Report. Double-click a loop data row to display a Survey Source window. To
more easily identify data rows of interest:
•  = Vectorized function
•  = Vectorized loop
•  = Scalar function
•  = Scalar loop

12 Click a checkbox to mark a loop for deeper analysis.

13 If present, click the image to display code-specific how-can-I-fix-this-issue? information in the
Recommendations pane.

14 If present, click the image to view the reason automatic compiler vectorization failed in the Why No
Vectorization? pane.

15 Click the control to show/hide the Workflow pane.

Examine Not-Vectorized and Under-Vectorized Loops

Accuracy Level
Low

Enabled Analyses
Survey

Result Interpretation
After running the Vectorization and Code Insights perspective with Low accuracy, you get a basic
vectorization report, which shows not-vectorized and under-vectorized loops, and other performance issues.

In the Survey report:

1. Sort by the Self-Time and/or Total-Time column to find top time-consuming loops.

2. Check whether your target loop or function is vector or scalar. Intel Advisor helps you to differentiate
vector and scalar using the following icons:

•  - vectorized function
•  - vectorized loop
•  - scalar function
•  - scalar loop

3.
Use filters to hide the code sides that you do not want to tweak now:  and

4. Decide what loops or functions to investigate:

• If loop/function is scalar
• If loop/function is vectorized

Intel® Advisor User Guide  1  

67



If Loop/Function is Scalar

If the target loop/function is scalar (  or ), you need to understand why the compiler did not vectorize the
loop/function.

Several reasons are possible:

NOTE
See OpenMP* Pragmas Summary in the Intel® oneAPI DPC++/C++ Compiler Developer Guide and
Reference for more information about the directives mentioned below.

Possible Reason To Confirm To Do

Assumed dependency Refer to Why No Vectorization?
column. Search for Vector
dependence prevents
vectorization issue.

Run the Dependencies analysis.

• If no dependencies are found,
force vectorization with the
omp simd directive or provide
other vectorization
recommendations to compiler.

• If dependencies are
confirmed, resolve them, or
move to the next loop.

Function call in the loop Refer to Why No Vectorization?
column. Search for issues:

• Function call present
• Indirect function call present
• Serialized user function call

present

For issue: Function call present,
do one of the following:

• Inline function into the loop.
• Vectorize the function with the

omp declare simd directive.

For issues Indirect function call
present or Serialized user
function call present, refer to
guidelines in the
Recommendations tab.

Compiler-assumed inefficient
vectorization

Refer to Why No Vectorization?
column. Search for the Loop
vectorization possible but seems
inefficient issue.

Try forcing vectorization with the
omp simd directive.

If forcing vectorization doesn't
provide tangible results, consider
experimenting with other
directives.

To better understand
performance implications and
potential speed-up, consider
running additional analyses:

• Trip Counts
• Memory Access Patterns

Other Refer to

• Why No Vectorization?
column

• Vector Issues column

Study the Compiler Diagnostic
Details and Advisor
Recommendations to resolve the
issues.

  1   Intel® Advisor User Guide

68

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html


If Loop/Function is Vectorized

If the target loop is vectorized (  or ), ensure vector efficiency is above 90%.

If efficiency is below 90%, consider the following:

Possible Reason To Confirm To Do

ISA Refer to Vectorized Loops/
Vector ISA column to check the
ISA version used in the
application.

Change the target ISA by
specifying corresponding
compiler flags.

Inefficient peel/remainder Refer to Vector Issues column.
Search for the Inefficient Peel/
Reminder issue. Or check if the
time spent in peel/reminder is
significant.

Resolve the issues:

• Check Recommendations
tab.

• Run the Trip Counts analysis.

Possible inefficient memory
access

Refer to Vector Issues column.
Search for the Possible Inefficient
Memory Access issue.

Refer to Instruction Set
Analysis/Traits column. Search
for the following traits:

• extracts
• inserts
• gather
• scatter

Run the Memory Access Patterns
analysis.

Type conversions present Refer to Instruction Set
Analysis/Traits column. Search
for the Type Conversions metric.

Remove redundant type
conversions from float to double
that might lead to smaller vector
length and reduced vectorization
efficiency.

Unaligned vector access in loop Refer to Advanced/
Vectorization Details column.
Search for the Unaligned access
in vector loop metric.

Align data.

Register pressure Refer to Vector Issues column.
Search for the Vector register
spilling possible issue.

Resolve the issue by doing one of
the following:

• Decrease loop unroll factor.
• Split the loop into smaller

parts.

Potential underutilization of FMA
instructions

Refer to Vector Issues column.
Search for the Potential
underutilization of FMA
instructions issue.

Resolve the issue by doing one of
the following:

• Change the target ISA.
• Explicitly enable FMA

generation and vectorization.

Other Refer to Vector Issues column. Follow the Intel Advisor
recommendations to resolve the
issues.

Intel® Advisor User Guide  1  

69



Next Steps
• Investigate Memory Usage and Traffic
• Find Data Dependencies

Analyze Loop Call Count

Accuracy Level
Medium

Enabled Analyses
Survey + Trip Counts (Characterization)

NOTE Collecting additional data may substantially increase report generation time. There is a variety
of techniques available to minimize data collection, result size, and execution time. Check Minimize
Analysis Overhead.

Result Interpretation
After you run the Vectorization and Code Insights perspective with medium accuracy and Trip Counts
collection enabled, Intel® Advisor dynamically identifies the number of times loops are invoked and execute
and extends the basic vectorization report with the Trip Counts data. Use Trip Counts data to analyze
parallelism granularity more deeply and fine-tune vector efficiency and capability.

By default, the Trip Counts column shows only Average and Call Count metrics. Look for the following to
find good candidates for optimization:

• Detect loops with too-small trip counts and trip counts that are not a multiple of vector length.
• A high number in the Call Count column means there is an outer loop in the selected loop call chain with

high trip count values.
• If the loop has a low trip count value, the outer loop could be a better candidate for parallelization

(threading/vectorization).

To optimize such loops, follow the Intel® Advisor Recommendations for the loop/function, for example, use
specific recommended pragmas to provide the information about loop trip counts to a compiler.

Next Steps
For further investigation, you can run the Vectorization and Code Insights perspective with a higher accuracy
level or with different configurations:

• Examine Not-Vectorized and Under-Vectorized Loops
• Investigate Memory Usage and Traffic
• Find Data Dependencies

  1   Intel® Advisor User Guide

70



Investigate Memory Usage and Traffic

Accuracy Level
High

Enabled Analyses
Survey with register spill/fill analysis + Trip Counts, FLOP, Call Stacks (Characterization) + Memory Access
Patterns

NOTE Collecting additional data may substantially increase report generation time. There is a variety
of techniques available to minimize data collection, result size, and execution time. Check Minimize
Analysis Overhead.

Result Interpretation
After you run the Vectorization and Code Insights perspective with high accuracy and full Characterization
and Memory Access Patterns steps enabled, Intel® Advisor:

• Extends the Survey report with the Compute Performance and Memory metrics.
• Adds Memory Access Patterns data to the Refinement Report tab.

In the Survey report

Use the FLOP data to analyze application memory usage and performance values that help you make better
decisions about your vectorization strategy.

Compute Performance column

You can configure this column to show only metrics for a specific type of operations used in your application.
Click the  control in the Compute Performance column set header and choose the desired drop-down
option to:

• Show data for floating-point operations only, for integer operations only, or for both floating-point and
integer operations.

• Determine what is counted as an integer operation in integer calculations:

• Choose Show Pure Compute Integer Operations to count only ADD, MUL, IDIV, and SUB
operations.

• Choose Show All Operations Processing Integer Data to count ADD, ADC, SUB, MUL, IMUL, DIV,
IDIV, INC/DEC, shift, and rotate operations.

Select a specific loop/function to see the details about FLOP and/or integer operation utilization in the Code
Analytics tab:

Intel® Advisor User Guide  1  

71



Memory column

You can configure this column to show only metrics for one or more specific memory levels and specific types
of operations. Click the gear icon in the Memory column set header and choose the desired drop-down
option to determine which columns to display in the grid:

NOTE This data is only available if cache simulation is enabled. By default, Intel® Advisor collects only
L1 traffic, so you will not be able to select memory levels or loads/stores.

• Show data for L1, L2, L3, or DRAM memory metrics, or show a Customized Column Layout.
• Show data for memory load operations only, store operations only, or the sum of both.

You can choose to hide the current column, Show All Columns, or customize the columns displayed in the
grid by choosing Configure Column Layouts.

You can use the traffic and AI data reported in the Compute Performance and Memory columns to find the
best candidates to examine the memory usage for in the Memory Access Patterns tab. For example, bad
access pattern has stronger impact on loops/functions with higher AI value suggesting that you start with
optimizing their memory usage.

In the Refinement report

Important Before running the Memory Access Patterns analysis, select loops/functions from the 
column in the Survey report.

Get information about types of memory access in selected loops/functions, how you traverse your data, and
how it affects your vector efficiency and cache bandwidth usage by running the Memory Access Patterns
analysis.

Memory access patterns affect how data is loaded into and stored from the vector registers.

  1   Intel® Advisor User Guide

72



To analyze how the data structure layout affects performance, pay attention to the following:

• Look for loops/functions that do not have "All Unit Strides" in the Access Pattern column to find
optimization candidates.

• Strides Distribution column reports the ratio of stride types for a selected loop/function and is color-
coded:

• Blue is unite/uniform stride, which means that the instruction access memory sequentially or within
the distance of one element.

• Yellow is constant stride, which means that the instructions access memory with the constant step of
more than one element.

• Red is irregular stride, which means that the instructions access memory addresses that change by an
unpredictable number of elements from iteration to iteration.

For vectorization, unit stride is the preferred distribution. Your goal is to eliminate irregular strides and
minimize the constant stride to optimize memory usage.

• Click a loop in the top pane to see a detailed report for this loop below in the Memory Access Patterns
Report tab.

• Review details for each stride type that contributes to the loop/function with corresponding source
locations.

• Review the size of the strides, variables accessed, and source locations and modules.
• To optimize memory access patterns, follow the Intel® AdvisorRecommendations for specific loops/

functions.

In the Memory Analysis Patterns Report tab at the bottom of the Refinement Reportsdouble-click a line
to view the selected operation's source code.

Associated Memory Access Patterns Source window, from top left to bottom right:

• View Activation pane - Enable or disable views shown in the Source view.
• Source View pane - View source code of the selected loop/function.
• Assembly View pane - View assembly source of the selected loop/function.
• Details View pane - View details of the selected site.

Next Steps
• Run CPU / Memory Roofline Insights perspective to get a detailed view about your application

performance.
• Cookbook: Optimize Memory Access Patterns Using Loop Intercharge and Cache Blocking Technique

Intel® Advisor User Guide  1  

73

https://www.intel.com/content/www/us/en/develop/documentation/advisor-cookbook/top/optimize-memory-access-patterns-using-loop-interchange-and-cache-blocking-techniques.html


Find Data Dependencies

Prerequisites

Collect Survey data and select loops for the analysis from the  column in the Survey report.

Accuracy Level
Custom

Enabled Analyses
Dependencies

NOTE Collecting Dependencies data may substantially increase report generation time. There are a
variety of techniques available to minimize data collection, result size, and execution time. Check 
Minimize Analysis Overhead.

Result Interpretation
For safety purposes, compiler is often conservative when assuming data dependencies. The Dependencies
analysis checks for real data dependencies in loops the compiler did not vectorize because of assumed
dependencies and provides recommendations to help resolve the dependencies if detected.

NOTE The Dependencies analysis is not enabled in any of the accuracy presets by default. Select it
manually from the Analysis Workflow tab before executing the perspective.

  1   Intel® Advisor User Guide

74



• Click a loop in the top pane to see a detailed report for each dependency found in this loop below in the
Dependencies Report tab.

• Use the Dependencies Report to view each reported problem and its associated code locations.

• If no dependencies found, it is safe to force vectorization.
• For loops/functions with real dependencies, Intel Advisor reports dependency type and severity in the

Loop-Carried Dependency column in the top pane.
• Use the Dependencies Source window to view the focus and related source code regions to help you

understand the cause of the reported problem.
• Use the Code Locations window to view the focus and related source code regions to help you

understand the cause of the reported problem.
• To learn about a reported problem, right-click its name in the Dependencies Report, Problems and

Messages pane and select What Should I Do Next?. This displays the help topic for that problem type
with recommendations on how to resolve the dependency.

• Double-click a problem in the Dependencies Report, Problems and Messages pane to open the
Dependencies Source tab and examine the problem in more detail.

Dependencies Report Overview
In the Dependencies Report tab at the bottom of the Refinement Report, review the following panes:

• Problems and Messages pane - Select the problems that you want to analyze by viewing their
associated observations.

• Code Locations pane - View details about the code locations for the selected problem in the

Dependencies Report window. Icons identify the focus code location  and related code location .
• Filters pane - Filter contents of the report tab.

Associated Dependencies Source window, from top left to bottom right:

• Focus Code Location pane - Use this pane to explore source code associated with focus code location in
the Dependencies Source window.

• Focus Code Location Call Stack pane - Use this pane to select which source code appears in the Focus
Code Location pane in the Dependencies Source window.

• Related Code Locations pane - Use this pane to explore source code associated with related code
locations (related to the focus code location) in the Dependencies Source window.

• Related Code Location Call Stack pane - Use this pane to select which source code appears in the
Related Code Location pane.

• Code Locations pane - Use this pane to view the details about the code location for the selected problem
in the Dependencies Report window.

• Relationship Diagram pane - Use this pane to view the relationships among code locations for the
selected problem.

Next Steps
Dependencies Problem and Message Types Reference

Analyze CPU Roofline
Visualize actual performance against hardware-
imposed performance ceilings by running the CPU /
Memory Roofline Insights perspective. It helps you
determine the main limiting factor (memory
bandwidth or compute capacity) and provides an ideal
roadmap of potential optimization steps.

Use the Roofline chart to answer the following questions:

• What is the maximum achievable performance with your current hardware resources?
• Does your application work optimally on current hardware resources?
• If not, what are the best candidates for optimization?

Intel® Advisor User Guide  1  

75



• Is memory bandwidth or compute capacity limiting performance for each optimization candidate?

How It Works
The CPU / Memory Roofline Insights perspective includes the following steps:

1. Collect loop/function timings using the Survey analysis.
2. Collect floating-point and/or integer operations data, memory traffic data, and measure the hardware

limitations of your hardware using the FLOP analysis in the Characterization step.

At this step, Intel® Advisor collects:

• Compute operations (floating-point operations (FLOP) and integer operations (INTOP)):

• FLOP is calculated as a sum of the following classes of instructions multiplied by their iteration
count: FMA, ADD, SUB, DIV, DP, MUL, ATAN, FPREM, TAN, SIN, COS, SQRT, SUB, RCP, RSQRT,
EXP, VSCALE, MAX, MIN, ABS, IMUL, IDIV, FIDIVR, CMP, VREDUCE, VRND

• INTOP is calculated by default as a sum of the following classes of instructions multiplied by
their iteration count:ADD, ADC, SUB, MUL, IMUL, DIV, IDIV, INC/DEC, shifts, rotates.

• Memory traffic data that is calculated as a product of memory operations and the amount of bytes
in the register accessed by the function/loop. For memory traffic calculation, Intel Advisor counts the
following classes of memory instructions:

• scalar and vector MOV instructions
• GATHER/SCATTER instructions
• VBMI2 compress/expand instructions

NOTE This collection can take three to four times longer than the Survey analysis.

CPU Roofline Report
The Roofline chart plots an application's achieved performance and arithmetic intensity against the
hardware maximum achievable performance:

• Arithmetic intensity (x axis) - measured in number of floating-point operations (FLOPs) and/or integer
operations (INTOPs) per byte, based on the loop/function algorithm, transferred between CPU/VPU and
memory

• Performance (y axis) - measured in billions of floating-point operations per second (GFLOPS) and/or
billions of integer operations per second (GINTOPS)

  1   Intel® Advisor User Guide

76



See Also
Run CPU / Memory Roofline Insights Perspective from GUI
Run CPU / Memory Roofline Insights Perspective from Command Line
CPU Roofline Report Overview  Review the controls available in the main report of the CPU /
Memory Roofline Insights perspective of the Intel® Advisor.

Run CPU / Memory Roofline Insights Perspective from GUI
Prerequisite: In the graphical-user interface (GUI): Create a project and specify an analysis target and
target options.

To run the CPU / Memory Roofline Insights perspective from the GUI:

1. Configure the perspective and set analysis properties, depending on desired results:

• Select a collection accuracy level with analysis properties preset for a specific result:

• Low: Get the basic CPU Cache-Aware Roofline chart with self data metrics.
• Medium: Get the detailed Memory-Level Roofline chart with total data metrics and an additional

memory usage report.
• Select the analyses and properties manually to adjust the perspective flow to your needs. The

accuracy level is set to Custom.

Intel® Advisor User Guide  1  

77



The higher accuracy value you choose, the higher runtime overhead is added to your application. The
Overhead indicator shows the overhead for the selected configuration. For the Custom accuracy, the
overhead is calculated automatically for the selected analyses and properties.

By default, accuracy is set to Low. For more information, see CPU Roofline Accuracy Presets.
2. Optional: If you want check for loop-carried dependency, select the Dependencies analysis. For more

information about the Dependencies analysis and report, see Find Data Dependencies.
3.

Run the perspective: click  button.

While the perspective is running, you can do the following in the Analysis Workflow tab:

• Control the perspective execution:

•
Stop data collection and see the already collected data: Click the  button.

•
Pause data collection: Click the  button.

•
Cancel data collection and discard the collected data: Click the  button.

• Expand an analysis with  to control the analysis execution:

• Pause the analysis: Click the  button.
• Stop the currently running analysis and start the next analysis selected: Click the  button.
• Interrupt execution of all selected analyses and see the already collected data: Click the 

button.

To run the CPU / Memory Roofline Insights perspective with the Low accuracy from the command
line interface:

advisor --collect=roofline --project-dir=./advi_results -- ./myApplication
See Run CPU / Memory Roofline Insights from Command Line for details.

NOTE To generate command lines for selected perspective configuration, click the Command
Line button.

Once the CPU / Memory Roofline Insights perspective collects data, the report opens showing a Summary
tab. Continue to investigate the results:

• Examine Bottlenecks on CPU Roofline Chart
• Examine Relationships Between Memory Levels

NOTE After you run the CPU / Memory Roofline Insights perspective, the collected Survey data
becomes available for all other perspectives. If you switch to another perspective, you can skip the
Survey step and run only perspective-specific analyses.

CPU Roofline Accuracy Presets
For each perspective, Intel® Advisor has several levels
of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is
collected and the level of collection details. The higher
accuracy value you choose, the higher runtime
overhead is added.

The following accuracy levels are available:

  1   Intel® Advisor User Guide

78



Comparison / Accuracy Level Low Medium

Overhead 5 - 10x 15 - 50x

Goal Analyze how well your application
uses memory and compute
resources of a CPU and
determine the main limiting
factor (memory bandwidth or
compute capacity)

Analyze how well your application
uses CPU memory at different
cache levels in more details

Analyses Survey + Characterization (FLOP) Survey + Characterization (Trip
Counts and FLOP with call stacks
for all memory levels) + Memory
Access Patterns

Result Cache-aware CPU Roofline for L1
cache

Memory-level CPU Roofline with
call stacks (for L1, L2, L3, DRAM)

Memory Access Patterns

You can choose custom accuracy and set a custom perspective flow for your application. For more
information, see Customize CPU / Memory Roofline Insights Perspective.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

Customize CPU / Memory Roofline Insights Perspective
Customize the perspective flow to better fit your goal
and your application.

If you change any of the analysis settings from the Analysis Workflow tab, the accuracy level changes to
Custom automatically. With this accuracy level, you can customize the perspective flow and/or analysis
properties.

To change the properties of a specific analysis:

1.
Expand the analysis details on the Analysis Workflow pane with .

2. Select desired settings.
3.

For more detailed customization, click the gear  icon. You will see the Project Properties dialog
box open for the selected analysis.

4. Select desired properties and click OK.

For a full set of available properties, click the  icon on the left-side pane or go to File > Project
Properties.

The following tables cover project properties applicable to the analyses in the CPU / Memory Roofline Insights
perspective.

Common Properties

Use This To Do This

Target type drop-down • Analyze an executable or script (choose Launch Application).
• Analyze a process (choose Attach to Process).

Intel® Advisor User Guide  1  

79



Use This To Do This

If you choose Attach to Process, you can either inherit settings from
the Survey Hotspots Analysis Type or specify the needed settings.

Inherit settings from
Visual Studio project
checkbox and field (Visual
Studio* IDE only)

Inherit Intel Advisor project properties from the Visual Studio* startup
project (enable).

If enabled, the Application, Application parameters, and Working
directory fields are pre-filled and cannot be modified.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the
Intel® oneAPI 2022.1 release, and will be removed in a future release.

Application field and
Browse... button

Select an analysis target executable or script.

If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application
parameters field and
Modify... button

Specify runtime arguments to use when performing analysis (equivalent
to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment
variables field and Modify...
button

Specify environment variables to use during analysis.

Managed code profiling
mode drop-down

• Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

• Collect data for native code and do not attribute data to managed
code (choose Native).

• Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

• Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

Child application field Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

  1   Intel® Advisor User Guide

80



Use This To Do This

NOTE
For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

• Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

• Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

Use MPI launcher checkbox Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

• Select MPI Launcher - Intel or another vendor
• Number of ranks - Number of instances of the application
• Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis Properties

Use This To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Intel® Advisor User Guide  1  

81



Use This To Do This

Callstack unwinding mode
drop-down list

Set to After collection if:

• Survey analysis runtime overhead exceeds 1.1x.
• A large quantity of data is allocated on the stack, which is a common

case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE
Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
-ax (Linux* OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
list

• Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

• Keep source code cache within the project (choose Keep cached
files).

  1   Intel® Advisor User Guide

82



Trip Counts and FLOP Analysis Properties

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Trip Counts / Collect
information about Loop
Trip Counts checkbox

Measure loop invocation and execution (enable).

FLOP / Collect information
about FLOP, L1 memory
traffic, and AVX-512 mask
usage checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Callstacks / Collect
callstacks checkbox

Collect call stack information when performing analysis (enable).

Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Capture metrics for
stripped binaries checkbox

Collect metrics for stripped binaries.

Enabling could increase analysis overhead.

Cache Simulation / Enable
Memory-Level Roofline
with cache simulation
checkbox

Model multiple levels of cache for data, such as counts of loaded or
stored bytes for each loop, to plot the Roofline chart for all memory levels
(enable).

Enabling could increase analysis overhead.

Cache simulator
configuration field

Specify a cache hierarchy configuration to model (enable and specify
hierarchy).

The hierarchy configuration template is:

[num_of_level1_caches]:[num_of_ways_level1_connected]:
[level1_cache_size]:[level1_cacheline_size]/

[num_of_level2_caches]:[num_of_ways_level2_connected]:
[level2_cache_size]:[level2_cacheline_size]/

[num_of_level3_caches]:[num_of_ways_level3_connected]:
[level3_cache_size]:[level3_cacheline_size]

For example: 4:8w:32k:64l/4:4w:256k:64l/1:16w:6m:64l is the
hierarchy configuration for:

• Four eight-way 32-KB level 1 caches with line size of 64 bytes
• Four four-way 256-KB level 2 caches with line size of 64 bytes
• One sixteen-way 6-MB level 3 cache with line size of 64 bytes

Intel® Advisor User Guide  1  

83



Use This To Do This

Data Transfer Simulation /
Data transfer simulation
mode drop-down

Select a level of details for data transfer simulation:
• Off - Disable data transfer simulation analysis.
• Light - Model data transfers between host and device memory.
• Full - Model data transfers, attribute memory objects to loops that

accessed the objects, and track accesses to stack memory.

Run CPU / Memory Roofline Insights Perspective from Command Line
To plot a Roofline chart, the Intel® Advisor does the following:

1. Collect OpenCL™ kernels timings and memory data using the Survey analysis with GPU profiling.
2. Measure the hardware limitations and collect floating-point and integer operations data using the

Characterization analysis with GPU profiling.

Intel® Advisor calculates compute operations (FLOP and INTOP) as a weighted sum of the following
groups of instructions: BASIC COMPUTE, FMA, BIT, DIV, POW, MATH.

Intel Advisor automatically determines data type in the collected operations using the dst register.

Tip See Intel Advisor cheat sheet for quick reference on command line interface.

Prerequisites
Set Intel Advisor environment variables with an automated script to enable the advisor command line
interface (CLI).

Plot a CPU Roofline Chart
There are two methods to run the CPU Roofline. Use one of the following:

• Run the shortcut --collect=roofline command line action to execute the Survey and Characterization
analyses with a single command. This method is recommended to run the CPU / Memory Roofline Insights
perspective, but it does not support MPI applications.

• Run the Survey and Characterization analyses with the --collect=survey and --collect=tripcounts
command actions separately one by one. This method is recommended if you want to analyze an MPI
application.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Method 1. Run the Shortcut Command

To collect data for a CPU Roofline chart with a shortcut, run the following command:

advisor --collect=roofline --project-dir=./advi_results -- ./myApplication
This command collects data for a basic CPU Roofline chart based on the Cache-Aware Roofline model. You
can add other option to the command to collect more data. See Analysis Details below for more options.

Method 2. Run the Analyses Separately

Use this method if you want to analyze an MPI application.

1. Run the Survey analysis.

advisor --collect=survey --project-dir=./advi_results -- ./myApplication

  1   Intel® Advisor User Guide

84

https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-cheat-sheet.pdf


2. Run the Characterization analysis to collect trip counts and FLOP data:

advisor --collect=tripcounts --flop --project-dir=./advi_results -- ./myApplication
These commands collect data for a basic CPU Roofline chart based on the Cache-Aware Roofline model. You
can add other option to the command to collect more data. See Analysis Details below for more options.

You can view the results in the Intel Advisor graphical user interface (GUI), or generate an interactive HTML
report. See View the Results below for details.

Analysis Details

The CPU / Memory Roofline Insights workflow includes the following analyses:

1. Roofline to plot a Roofline chart. This step sequentially runs the Survey and Characterization (trip
counts and FLOP) analyses.

2. Memory Access Patterns (optional) to identify memory traffic data and memory usage issues.
3. Dependencies (optional) to identify loop-carried dependencies that might limit offloading.

Each analysis has a set of additional options that modify its behavior and collect additional performance data.
The more analyses you run and option you use, the more useful data about your application you get.

Consider the following options:

Roofline Options

To run the Roofline analysis, use the following command line action: --collect=roofline.

NOTE You can also use this options with --collect=tripcounts if you want to run the analyses
separately.

Recommended action options:

Options Description

--stacks Enable advanced collection of call stack data. Use
this option to get a CPU Roofline with callstacks.

--enable-cache-simulation Model CPU cache behavior on your target
application. Use this option to get a Memory-level
CPU Roofline that shows data for all memory levels.

--cache-config=<config> Set the cache hierarchy to collect modeling data for
CPU cache behavior. Use with
enable-cache-simulation.

The value should follow the template:
[<num_of_caches>]:
[<num_of_ways_caches_connected> ]:
[<cache_size>]:[<cacheline_size>] for each of
three cache levels separated with a /.

--cachesim-associativity=<num> Set the cache associativity for modeling CPU cache
behavior: 1 | 2 | 4 | 8 (default) | 16. Use with
enable-cache-simulation.

--cachesim-mode=<mode> Set the focus for modeling CPU cache behavior:
cache-misses | footprint | utilization. Use
with enable-cache-simulation.

See advisor Command Option Reference for more options.

Intel® Advisor User Guide  1  

85



Memory Access Patterns Options

The Memory Access Patterns analysis is optional because it adds a high overhead. This analysis does not add
more information to the CPU Roofline chart. The results are added to the Refinement report, which you can
view from GUI or from CLI. Use it to understand the Memory-Level Roofline chart better and get more
detailed optimization recommendations.

To run the Memory Access Patterns analysis, use the following command line action: --collect=map.

Recommended action options:

Options Description

--select=<string> Select loops for the analysis by loop IDs, source
locations, or criteria such as scalar, has-issue,
or markup=<markup-mode>. This option is
required.

See select for more selection options.

--enable-cache-simulation Model CPU cache behavior on your target
application.

--cachesim-cacheline-size=<num> Set the cache line size (in bytes) for modeling CPU
cache behavior: 4 | 8 | 16 | 32 | 64 (default) | 128
| 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 |
32768 | 65536. Use with
enable-cache-simulation.

--cachesim-sets=<num> Set the cache set size (in bytes) for modeling CPU
cache behavior: 256 | 512 | 1024 | 2048 | 4096
(default) | 8192. Use with
enable-cache-simulation.

See advisor Command Option Reference for more options.

Dependencies Options

The Dependencies analysis is optional because it adds a high overhead and is mostly necessary if you have
scalar loops/functions in your application. This analysis does not add more information to the CPU Roofline
chart. The results are added to the Refinement report, which you can view from GUI or from CLI. Use it to
get more detailed optimization recommendations.

To run the Dependencies analysis, use the following command line action: --collect=dependencies.

Recommended action options:

Options Description

--select=<string> Select loops for the analysis by loop IDs, source
locations, criteria such as scalar, has-issue, or
markup=<markup-mode>. This option is required.

See select for more selection options.

--filter-reductions Mark all potential reductions with a specific
diagnostic.

See advisor Command Option Reference for more options.

  1   Intel® Advisor User Guide

86



Next Steps
Continue to explore the CPU / Memory Roofline Insights results with a preferred method. For details about
the metrics reported, see CPU and Memory Metrics.

See Also
CPU / Memory Roofline Insights Perspective Visualize actual performance against hardware-
imposed performance ceilings by running the CPU / Memory Roofline Insights perspective. It helps
you determine the main limiting factor (memory bandwidth or compute capacity) and provides an
ideal roadmap of potential optimization steps.
Command Line Interface This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.
Minimize Analysis Overhead
Analyze MPI Applications  With Intel® Advisor, you can analyze parallel tasks running on a cluster
to examine performance of your MPI application.

CPU Roofline Accuracy Levels in Command Line
For each perspective, Intel® Advisor has several levels of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is collected and the level of collection details. The higher
accuracy value you choose, the higher runtime overhead is added.

In CLI, each accuracy level corresponds to a set of commands with specific options that you should run one
by one to get a desired result.

The following accuracy levels are available:

Comparison / Accuracy Level Low Medium

Overhead 5 - 10x 15 - 50x

Goal Analyze how well your application
uses memory and compute
resources of a CPU and
determine the main limiting
factor (memory bandwidth or
compute capacity)

Analyze how well your application
uses CPU memory at different
cache levels in more details

Analyses Survey + Characterization (FLOP) Survey + Characterization (Trip
Counts and FLOP with call stacks
for all memory levels) + Memory
Access Patterns

Result Cache-aware CPU Roofline for L1
cache

Memory-level CPU Roofline with
call stacks (for L1, L2, L3, DRAM)

Memory Access Patterns

You can generate commands for a desired accuracy level from the Intel Advisor GUI. See Generate Command
Lines from GUI for details.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

Consider the following command examples.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Intel® Advisor User Guide  1  

87



Low Accuracy
To run the CPU / Memory Roofline Insights perspective with the low accuracy:

advisor --collect=roofline --project-dir=./advi_results -- ./myApplication

Medium Accuracy
To run the CPU / Memory Roofline Insights perspective with the medium accuracy:

1. Generate the Memory-level Roofline report with call stacks:

advisor --collect=roofline --stacks --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication

2. Run the Memory Access Pattern analysis for the loops that have the Possible Inefficient Memory Access
Pattern issue:

advisor --collect=map --select=has-issue --project-dir=./advi_results -- ./myApplication
You can view the results in the Intel Advisor GUI or generate an interactive HTML report.

See Also
advisor Command Option Reference
Command Line Interface Reference This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].
Run CPU / Memory Roofline Insights from Command Line
Minimize Analysis Overhead

Explore CPU/Memory Roofline Results
Intel® Advisor provides several ways to view the CPU / Memory Roofline Insights results.

View Results in GUI
If you run the CPU / Memory Roofline Insights perspective from command line, a project is created
automatically in the directory specified with --project-dir. All the collected results and analysis
configurations are stored in the .advixeproj project, which you can view in the Intel Advisor.

To open the project in GUI, run the following command:

advisor-gui <project-dir>

NOTE If the report does not open, click Show Result on the Welcome pane.

If you run the CPU / Memory Roofline Insights perspective from GUI, the result is opened automatically after
the collection finishes.

You will see the CPU Roofline report that includes:

• Roofline chart that plots an application's achieved performance and arithmetic intensity against the CPU
maximum achievable performance

• Additional information about your application in the Advanced View pane under the chart, including
source code, detailed code analytics for trip counts and FLOP/INTOP data, optimization recommendations,
and compiler diagnostics

Select a dot on the Roofline chart to see details for the selected loop in all tabs of the Advanced View
pane

  1   Intel® Advisor User Guide

88



View an Interactive HTML Report
Intel Advisor enables you to export an interactive HTML report for the CPU Roofline chart, which you can
open in your preferred browser and share.

When you open the report, you see the CPU Roofline chart with the selected configuration. In this report, you
can:

• Expand the Performance Metrics Summary drop-down to view the summary performance
characteristics for your application.

• Double-click a dot on the chart to see a roof ruler that point to exact roofs that bound the dot.
• Hover over a dot to see a detailed tooltip with performance metrics.

If you have a Memory-level Roofline report, you can also:

• Select memory levels to show dots for from the filter drop-down list on the chart.
• Double-click a dot on the chart to expand it for other memory levels and see roof rulers.

Intel® Advisor User Guide  1  

89



For details on exporting HTML reports, see Work with Standalone HTML Reports.

Save a Read-only Snapshot
A snapshot is a read-only copy of a project result, which you can view at any time using the Intel Advisor
GUI. You can save a snapshot for a project using Intel Advisor GUI or CLI.

To save an active project result as a read-only snapshot from GUI: Click the  button in the top ribbon
of the report. In the Create a Result Snapshot dialog box, enter the snapshot details and save it.

To save an active project result as a read-only snapshot from CLI:

advisor --snapshot --project-dir=<project-dir> [--cache-sources] [--cache-binaries] --
<snapshot-path>

where:

• --cache-sources is an option to add application source code to the snapshot.
• --cache-binaries is an option to add application binaries to the snapshot.
• <snapshot-path is a path and a name for the snapshot. For example, if you specify /tmp/new_snapshot,

a snapshot is saved in a tmp directory as new_snapshot.advixeexpz. You can skip this and save the
snapshot to a current directory as snapshotXXX.advixeexpz.

To open the result snapshot in the Intel Advisor GUI, you can run the following command:

advisor-gui <snapshot-path>
You can visually compare the saved snapshot against the current active result or other snapshot results.

See Create a Read-only Result Snapshot for details.

Result Interpretation
When you run the CPU / Memory Roofline Insights perspective from GUI, depending on a configuration
chosen, the chart shows a different level of details:

• Examine Bottlenecks on CPU Roofline Chart
• Examine Relationships Between Memory Levels

  1   Intel® Advisor User Guide

90



For a general overview of the report, see CPU Roofline Report Overview.

See Also
Run CPU / Memory Roofline Insights Perspective from GUI
Run CPU / Memory Roofline Insights Perspective from Command Line
Compare CPU Roofline Results  Use the Roofline Compare functionality to display Roofline chart
data from other Intel® Advisor results or non-archived snapshots for comparison purposes to track
optimization progress.
CPU Metrics  This reference section describes the contents of data columns in Survey and
Refinement Reports of the Vectorization and Code Insights, CPU / Memory Roofline Insights,
and Threading perspectives.

CPU Roofline Report Overview
Review the controls available in the main report of the
CPU / Memory Roofline Insights perspective of the
Intel® Advisor.

Basic Roofline Chart (Low Accuracy)
There are several controls to help you focus on the Roofline chart data most important to you, including the
following.

1 • Select Loops by Mouse Rect: Select one or more loops/functions by tracing a rectangle
with your mouse.

• Zoom by Mouse Rect: Zoom in and out by tracing a rectangle with your mouse. You can
also zoom in and out using your mouse wheel.

• Move View By Mouse: Move the chart left, right, up, and down.
• Undo or Redo: Undo or redo the previous zoom action.
• Cancel Zoom: Reset to the default zoom level.
• Export as x: Export the chart as a dynamic and interactive HTML or SVG file that does not

require the Intel Advisor viewer for display. Use the arrow to toggle between the options.

2 Use the Cores drop-down toolbar to:

• Adjust rooflines to see practical performance limits for your code on the host system.

Intel® Advisor User Guide  1  

91



• Build roofs for single-threaded applications (or for multi-threaded applications configured to
run single threaded, such as one thread-per-rank for MPI applications. (You can use Intel
Advisor filters to control the loops displayed in the Roofline chart; however, the Roofline
chart does not support the Threads filter.)

Choose the appropriate number of CPU cores to scale roof values up or down:

• 1 – if your code is single-threaded
• Number of cores equal or close to the number of threads – if your code has fewer threads

than available CPU cores
• Maximum number of cores – if your code has more threads than available CPU cores

By default, the number of cores is set to the number of threads used by the application (even
values only).

You’ll see the following options if your code is running on a multisocket PC:

• Choose Bind cores to 1 socket (default) if your application binds memory to one socket. For
example, choose this option for MPI applications structured as one rank per socket.

NOTE This option may be disabled if you choose a number of CPU cores exceeding the
maximum number of cores available on one socket.

• Choose Spread cores between all n sockets if your application binds memory to all
sockets. For example, choose this option for non-MPI applications.

3 • Toggle the display between floating-point (FLOP), integer (INT) operations, and mixed
operations (floating-point and integer).

• If you collected Roofline with Calltacks: Enable the display of Roofline with Callstacks
additions to the Roofline chart.

4 Display Roofline chart data from other Intel Advisor results or non-archived snapshots for
comparison purposes.

Use the drop-down toolbar to:

• Load a result/snapshot and display the corresponding filename in the Compared Results
region.

• Clear a selected result/snapshot and move the corresponding filename to the Ready for
comparison region.

Note: Click a filename in the Ready for comparison region to reload the result/snapshot.
• Save the comparison itself to a file.

NOTE The arrowed lines showing the relationship among loops/functions do not reappear if
you upload the comparison file.

Click a loop/function dot in the current result to show the relationship (arrowed lines) between it
and the corresponding loop/function dots in loaded results/snapshots.

  1   Intel® Advisor User Guide

92



5 Add visual indicators to the Roofline chart to make the interpretation of data easier, including
performance limits and whether loops/functions are memory bound, compute bound, or both.

Use the drop-down toolbar to:

• Show a vertical line from a loop/function to the nearest and topmost performance ceilings by
enabling the Display roof rulers checkbox. To view the ruler, hover the cursor over a loop/
function. Where the line intersects with each roof, labels display hardware performance limits
for the loop/function.

• If you collected Roofline for All Memory Levels: Visually emphasize the relationships among
displayed memory levels and roofs and for a selected loop/function dot by enabling the Show
memory level relationships checkbox.

• Color the roofline zones to make it easier to see if enclosed loops/functions are fundamentally
memory bound, compute bound, or bound by compute and memory roofs by enabling the
Show Roofline boundaries checkbox.

The preview picture is updated as you select guidance options, allowing you to see how changes
will affect the Roofline chart’s appearance. Click Apply to apply your changes, or Default to
return the Roofline chart to its original appearance.

Once you have a loop/function's dots highlighted, you can zoom and fit the Roofline chart to the
dots for the selected loop/function by once again double-clicking the loop/function or pressing
SPACE or ENTER with the loop/function selected. Repeat this action to return to the original
Roofline chart view.

To hide the labeled dots, select another loop/function, or double-click an empty space in the
Roofline chart.

6 • Roofline View Settings: Adjust the default scale setting to show:

• The optimal scale for each Roofline chart view
• A scale that accommodates all Roofline chart views

• Roofs Settings: Change the visibility and appearance of roofline representations (lines):

Intel® Advisor User Guide  1  

93



• Enable calculating roof values based on single-threaded benchmark results instead of
multi-threaded.

• Click a Visible checkbox to show/hide a roofline.
• Click a Selected checkbox to change roofline appearance: display a roofline as a solid or a

dashed line.
• Manually fine-tune roof values in the Value column to set hardware limits specific to your

code.
• Loop Weight Representation: Change the appearance of loop/function weight

representations (dots):

• Point Weight Calculation: Change the Base Value for a loop/function weight
calculation.

• Point Weight Ranges: Change the Size, Color, and weight Range (R) of a loop/
function dot. Click the + button to split a loop weight range in two. Click the - button to
merge a loop weight range with the range below.

• Point Colorization: color loop/function dots by weight ranges or by type (vectorized or
scalar). You can also change the color of loop with no self time.

You can save your Roofs Settings or Point Weight Representation configuration to a JSON file or
load a custom configuration.

7 Zoom in and out using numerical values.

8 Click a loop/function dot to:

• Outline it in black.
• Display metrics for it.
• Display corresponding data in other window tabs.

Right-click a loop/function dot or a blank area in the Roofline chart to perform more functions,
such as:

• Further simplify the Roofline chart by filtering out (temporarily hiding a dot), filtering in
(temporarily hiding all other dots), and clearing filters (showing all originally displayed dots).

• Copy data to the clipboard.

9 Show/hide the metrics pane:

• Review the basic performance metrics in the Point Info pane.
• If you collected the Roofline for All Memory Levels: Review how efficiently the loop/function

uses cache and what memory level bounds the loop/function in the Memory Metrics pane.

10 Display the number and percentage of loops in each loop weight representation category.

  1   Intel® Advisor User Guide

94



Roofline with Callstacks Chart (Medium Accuracy)

1 Enable the display of Roofline with Callstacks additions to the Roofline chart.

2 Show/hide loop/function descendants:

• Click a loop/function dot  control to collapse descendant dots into the parent dot.
• Click a loop/function dot  control to show descendant dots and their relationship via visual

indicators to the parent dot.

You can also right-click a loop/function dot to open the context menu and expand/collapse the
loop/function subtree.

3 Show/hide the Callstack and other panes.

4 • Click an item in the Callstack pane to flash the corresponding loop/function dot in the
Roofline chart.

• Right-click an item in the Callstack pane to open the context menu and expand/collapse the
item subtree.

You can also click an item in the Callstack pane to flash the corresponding loop/function dot in
the Roofline chart.

Intel® Advisor User Guide  1  

95



Memory-Level Roofline Chart (Medium Accuracy)

1 Visually emphasize the relationships among displayed memory levels and roofs for a selected
loop/function dot by enabling the Show memory level relationships checkbox.

NOTE This checkbox is enabled by default.

2 Use the drop-down toolbar to:

• Select the Memory Level(s) to show for each loop/function in the chart (L1, L2, L3, DRAM).
• Select which Memory Operation Types(s) to display data for in the Roofline chart: Loads,

Stores, or Loads and Stores.

3 Double-click a dot or select a dot and press SPACE or ENTER to examine how the relationships
between displayed memory levels and roofs:

• Labeled dots are displayed, representing memory levels for the selected loop/function. Lines
connect the dots to indicate that they correspond to the selected loop/function.

NOTE If you have chosen to display only some memory levels in the chart using the
Memory Level option, unselected memory levels are displayed with X marks.

• An arrowed line is displayed, pointing to the memory level roofline that bounds the selected
loop. If the arrowed line cannot be displayed, a message will pop up with instructions on how
to fix it.

4 Show/hide the Memory Metrics and other panes.

In the Memory Metrics pane:

• Review the time spent processing requests for each memory level reported in the Impacts
histogram. A big value indicates a memory level that bounds the selected loop.

• Review an amount of data that passes through each memory level reported in the Shares
histogram.

  1   Intel® Advisor User Guide

96



Examine Bottlenecks on CPU Roofline Chart

Accuracy Level
Low

Enabled Analyses
Survey + FLOP (Characterization)

Result Interpretation
The farther a dot is from the topmost roofs, the more room for improvement there is. In accordance with
Amdahl's Law, optimizing the loops that take the largest portion of the program's total run time will lead to
greater speedups than optimizing the loops that take a smaller portion of the run time.

NOTE This topic describes data as it is shown in the CPU Roofline report in the Intel Advisor GUI. You
can also view the result in an HTML report, but data arrangement and panes may vary.

• By dot size and color, identify loops that take most of total program time and/or located very low in the
chart. For example:

• Small, green dots take up relatively little time, so are likely not worth optimizing.
• Large, red dots take up the most time, so the best candidates for optimization are the large, red dots

with a large amount of space between them and the topmost roofs.

NOTE You can switch between coloring the dots by execution time and coloring the dots by type
(scalar or vectorized) in the roof view menu on the right.

• Depending on the dots position, identify what the loops are bounded by. Intel® Advisor marks the roofline
zones on the chart to help you identify what roofs bound the loop:

• Loop is bounded by memory roofs.

Intel® Advisor User Guide  1  

97



• Loop is bounded by compute roofs.
• Loop is bounded by both memory and compute roofs.

• In the Recommendations tab, scroll down to the Roofline Guidance section that provides you hints on
next optimization steps for a selected loop/function.

The roofs above a dot represent the restrictions preventing it from achieving a higher performance, although
the roofs below can contribute somewhat. Each roof represents the maximum performance achievable
without taking advantage of a particular optimization, which is associated with the next roof up. Depending
on a dot position, you can try the following optimizations.

NOTE For more precise optimization recommendations, see the Roofline Guidance in Code Analytics
and Roofline Conclusions in Recommendations tabs.

Dot Position Reason To Optimize

Below a memory roof (DRAM
Bandwidth, L1 Bandwidth, so on)

The loop/function uses memory
inefficiently.

Run a Memory Access Patterns
analysis for this loop.

• If MAP analysis suggests
cache optimization, make any
appropriate optimizations.

• If cache optimization is
impossible, try reworking the
algorithm to have a higher AI.

Below Vector Add Peak The loop/function under-utilizes
available instruction sets.

Check Traits column in the
Survey report to see if FMAs are
used.

• If FMA is not used, try altering
your code or compiler flags to
induce FMA usage.

Just above Scalar Add Peak The loop/function is
undervectorized.

Check vectorization efficiency
and performance issues in the
Survey. Follow the
recommendations to improve it if
it's low.

Below Scalar Add Peak The loop/function is scalar. Check the Survey report to see if
the loop vectorized. If not, try to
get it to vectorize if possible. This
may involve running
Dependencies to see if it's safe to
force it.

In the following Roofline chart representation, loops A and G (large red dots), and to a lesser extent B
(yellow dot far below the roofs), are the best candidates for optimization. Loops C, D, and E (small green
dots) and H (yellow dot) are poor candidates because they do not have much room to improve or are too
small to have significant impact on performance.

  1   Intel® Advisor User Guide

98



Some algorithms are incapable of breaking certain roofs. For instance, if Loop A in the example above cannot
be vectorized due to dependencies, it cannot break the Scalar Add Peak.

Tip If you cannot break a memory roof, try to rework your algorithm for higher arithmetic intensity.
This will move you to the right and give you more room to increase performance before hitting the
memory bandwidth roof. This would be the appropriate approach to optimizing loop F in the example,
as well as loop G if its cache usage cannot be improved.

Analyze Specific Loops
Select a dot on the chart, open the Code Analytics tab to view detailed information about the selected loop:

• Refer to Loop Information pane to examine total time, self time, instruction sets used, and instruction
mix for the selected loop. Intel Advisor provides:

• Static instruction mix data that is based on static assembly code analysis within a call stack. Use static
instruction mix to examine instruction sets in the inner-most functions/loops.

• Dynamic instruction mix that is based on dynamic assembly code analysis. This metric represents the
total count of instructions executed by your function/loop. Use dynamic instruction mix to examine
instruction sets in the outer loops and in complex loop-nests.

Intel Advisor automatically determines the data type used in operations. View the classes of instructions
grouped by categories in instruction mix:

Category Instruction Types

Compute (FLOP and INTOP) ADD, MUL, SUB, DIV, SAD, MIN, AVG, MAX, ABS, SIN,
SQRT, FMA, RCCP, SCALE, FCOM, V4FMA, V4VNNI

Memory • scalar and vector MOV instructions
• GATHER/SCATTER instructions
• VBMI2 compress/expand instructions

Mixed Compute instructions with memory operands

Other MOVE, CONTROL FLOW, SYNC, OTHER

NOTEIntel Advisor counts FMA and VNNI instructions as more than 1 operation depending on the size
of the data type and/or the type of vector registers used.

• Refer to Roofline pane for more details about a specific roof that bounds the loop:

Intel® Advisor User Guide  1  

99



• View roofs with number of threads, data types, and instructions mix used in the loop
• Identify what exactly bounds the selected loop - memory, compute, or both memory and compute
• Determine the exact roof that bounds the loop and estimates a potential speedup for the loop in the

callout if you optimize it for this roof
• Refer to Statistics for operations pane to view the count of operations collected during Characterization

analysis. Depending on the operations you need, use a drop-down list to choose FLOP, INTOP, FLOP
+INTOP or All Operations. Switch between Self and Total data using the toggle in the top right-hand
corner of the pane.

Intel Advisor calculates floating-point operations (FLOP) as a sum of the following classes of
instructions multiplied by their iteration count: FMA, ADD, SUB, DIV, DP, MUL, ATAN, FPREM, TAN, SIN,
COS, SQRT, SUB, RCP, RSQRT, EXP, VSCALE, MAX, MIN, ABS, IMUL, IDIV, FIDIVR, CMP, VREDUCE, VRND

Integer operations (INTOP) are calculated in two modes:

• Potential INT operations (default) that include loop counter operations that are not strictly
calculations (for example, INC/DEC, shift, rotate operations). In this case, INTOP is a sum of the
following instructions multiplied by their iteration count: ADD, ADC, SUB, MUL, IMUL, DIV, IDIV, INC/
DEC, shifts, rotates

• Strict INT operations (available in Python* API only) that include only calculation operations. In
this case, INTOP is a sum of the following instructions multiplied by their iteration count: ADD, MUL,
IDIV, SUB

Next Steps
• Identify Bottlenecks Iteratively: Cache-Aware Roofline

Examine Relationships Between Memory Levels

Accuracy Level
Medium

Enabled Analyses
Survey + Characterization (Trip Counts and FLOP, Call Stacks, Memory-Level) + Memory Access Patterns

Result Interpretation
In the Medium accuracy preset, the Intel® Advisor extends the basic Roofline capability and collects metrics
for all memory levels and the callstack data, which allows you to analyze your application in more detail.
Roofline chart uses the results of Memory Access Patterns analysis to understand what bounds the loop and
build recommendations in Roofline Guidance.

For information about Memory Access Patterns data interpretation, refer to Investigate Memory Usage and
Traffic.

NOTE This topic describes data as it is shown in the CPU Roofline report in the Intel Advisor GUI. You
can also view the result in an HTML report, but data arrangement and panes may vary.

Memory-Level Roofline
The Memory-Level Roofline allows you to examine each loop at different cache levels and arithmetic
intensities and provides precise insights into which cache level causes the performance bottlenecks.

The Memory-Level Roofline can help you to:

• Determine which loops are limited by cache

  1   Intel® Advisor User Guide

100

https://www.intel.com/content/www/us/en/develop/documentation/advisor-cookbook/top/identify-bottlenecks-iteratively-cache-aware-roofline.html


• Find inefficient access patterns
• Locate loops that can benefit from vectorization or threading optimizations

To configure the Memory-Level Roofline chart:

1. Expand the filter pane in the Roofline chart toolbar.
2. In the Memory Level section, select the memory levels you want to see metrics for.

3. Click Apply.
4. In the Roofline chart, double-click a loop to examine how the relationships between displayed memory

levels and roofs. Labeled dots are displayed, representing memory levels with arithmetic intensity for
the selected loop/function; lines connect the dots to indicate that they correspond to the selected loop/
function.

Intel® Advisor User Guide  1  

101



Tip By default, the Memory-Level Roofline chart is generated for the system cache configuration. You
can also generate the chart for a custom cache configuration:

1. Go to Project Properties > Trip Count and FLOP.
2. In the Cache simulator field, click Modify.
3. Click Add and enter/select the desired cache configurations.
4. Re-run the Roofline with the Medium accuracy.

Memory-Level Roofline Data

Intel® Advisor collects integrated traffic data for all traffic types between a CPU and different memory
subsystem using cache simulation. With this data, Intel® Advisor counts the number of data transfers for a
given cache level and computes AI for each loop and each memory level.

Review the changes in the traffic from one memory level to another and compare it to respective to identify
the memory hierarchy bottleneck for the kernel and determine optimization steps based on this information.

• The vertical distance between memory dots and their respective roofline shows how much you are limited
by a given memory subsystem. If a dot is close to its roof line, it means that the kernel is limited by the
performance of this memory level.

• The horizontal distance between memory dots indicates how efficiently the loop/function uses cache. For
example, if L3 and DRAM dots are very close on the horizontal axis for a single loop, the loop/function
uses L3 and DRAM similarly. This mean that it does not use L3 and DRAM efficiently. You can try to
improve re-usage of data in the code to change arithmetic intensity for all loops/functions and improve
application performance. For more precise advice, see the Roofline Guidance in the Code Analytics
tab.

• Arithmetic intensity determines the order in which dots are plotted, which can provide some insight into
your code's performance. For example, the L1 dot should be the largest and first plotted dot on the chart
from left to right. However, memory access type, latency, or technical issues can change the order of the
dots. Continue to run the Memory Access Pattern analysis to investigate this issue.

To examine a specific loop in more details, select a dot on the chart and open the Code Analytics tab below
the chart:

• Review the amount of data transferred for the selected loop/function and a specific roof that bounds the
loop in the Roofline pane. Use this pane to analyze deeper a selected loop/function:

• It shows only roofs with number of threads, data types, and instructions mix used in the loop.
• It identifies what exactly bounds the selected loop - memory, compute, or both memory and compute.

  1   Intel® Advisor User Guide

102



• It determines exact roof that bounds the loop and estimates a potential speedup for the loop in the
callout if you optimize it for this roof.

• Review the memory metrics for different memory levels (L1, L2, L3 and DRAM) and the number of
operations transferred (FLOP and INTOP) in the Data transfers and Bandwidth table. This indicates the
amount of self data (excluding data from inner loops/functions) or total data (including data from inner
loops/functions) transferred, memory level bandwidth, and percentage of memory used at each memory
level.

NOTE Total data transfers are available only if you collect Roofline with Callstacks.

• Review the amount of data processed at different memory levels for the selected loop in the Memory
Metrics pane. The pane shows two histograms:

• Review the time spent processing requests for each memory level reported in the Impacts histogram.
A big value indicates a memory level that bounds the selected loop. Examine the difference between
the two largest bars to see how much throughput you can gain if you reduce the impact on your main
bottleneck. It also gives you a long-time plan to reduce your memory bound limitations as once you
will solve the problems coming from the widest bar, your next issue will come from the second biggest
bar and so on. Ideally, a developer would like to see the L1 as the most impactful memory in the
application for each loop.

• Review an amount of data that passes through each memory level reported in the Shares histogram.

NOTE Metrics in the Memory Metrics pane calculated for a dominant operation type in the selected
loop (FLOAT or INT) and based on the total data aggregating all callctacks. Hover over the ? icon for
the whole pane to see the tooltip that indicates the dominant type.

Roofline with Callstacks
Intel® Advisor basic Roofline model, the Cache-Aware Roofline Model (CARM), offers self data capability.
Intel® Advisor Roofline with Callstacks feature extends the basic model with total data capability:

• Self data = Memory access, FLOPs, and duration related only to the loop/function itself and excludes data
originating in other loops/functions called by it

Intel® Advisor User Guide  1  

103



• Total data = Data from the loop/function itself and its inner loops/functions

The total-data capability in the Roofline with Callstacks feature can help you:

• Investigate the source of loops/functions instead of just the loops/functions themselves.
• Get a more accurate view of loops/functions that behave differently when called under different

circumstances.
• Uncover design inefficiencies higher up the call chain that could be the root cause of poor performance by

smaller loops/functions.

To view the callstacks, enable the With Callstacks checkbox in the Roofline chart.

To show/hide dot descendants:

• Click a loop/function dot  control to collapse descendant dots into the parent dot.
• Click a loop/function dot  control to show descendant dots and their relationship with visual indicators

to the parent dot.

Roofline with Callstacks Chart Data

The following Roofline chart representation shows some of the added benefits of the Roofline with Callstacks
feature, including:

• A navigable, color-coded Callstack pane that shows the entire call chain for the selected loop/function,
but excludes its callees

• Visual indicators (caller and callee arrows) that show the relationship among loops and functions
• The ability to simplify dot-heavy charts by collapsing several small loops into one overall representation

  1   Intel® Advisor User Guide

104



Loops/functions with no self data are grayed out when expanded and in color when collapsed. Loops/
functions with self data display at the coordinates, size, and color appropriate to the data when expanded,
but have a gray halo of the size associated with their total time. When such loops/functions are collapsed,
they change to the size and color appropriate to their total time and, if applicable, move to reflect the
total performance and total arithmetic intensity.

See Also
Examine Bottlenecks on CPU Roofline Chart
Compare CPU Roofline Results  Use the Roofline Compare functionality to display Roofline chart
data from other Intel® Advisor results or non-archived snapshots for comparison purposes to track
optimization progress.

Compare CPU Roofline Results
Use the Roofline Compare functionality to display
Roofline chart data from other Intel® Advisor results or
non-archived snapshots for comparison purposes to
track optimization progress.

Prerequisites

To compare the GPU Roofline results, make sure to get the following:

• A baseline GPU Roofline result or snapshot
• One or more GPU Roofline results or snapshots of the same application with an optimization applied

To compare the results:

1. Open a baseline GPU Roofline result/snapshot.
2. From the Compare drop-down toolbar, click + to load a comparison result/snapshot. You can load

multiple results/snapshots for comparison one by one.

Intel® Advisor User Guide  1  

105



When the comparison is uploaded:

• The filenames for uploaded results/snapshots are displayed in the Compared Results region.
• Similar loops/functions from all compared results are recognized automatically. They are connected with a

dashed arrow line. The performance improvement between the loops/functions is shown above the line, in
per cent. The improvement is calculated as the difference in FLOPS, INTOPS, or OPS and Total Time.

NOTE The arrows showing the relationship among loops/functions do not reappear if you upload a new
comparison file.

• Loops from different snapshots are shown as different icons on the chart. For example, on the picture
below, the baseline loops are shown as circles and comparison loops are triangles and diamonds.

  1   Intel® Advisor User Guide

106



• To highlight all dots from a specific compared result, open the Compare drop-down and hover over the
result name.

• Each time you change the Roofline configuration or filter the dots on the chart, the comparison is updated
automatically.

• You can remove a selected result from Compared Results by hovering over it and clicking the X icon.
The result is removed from the chart and appears in the Ready for comparison region. Click a name in
the Ready for comparison region to reload the result back to the chart.

• You can save the comparison itself to a file using the export feature.

NOTE To find the same loops/functions among the results, Intel Advisor compares several loop/
function features, such as their type, nesting level, source code file name and line, and function name.
When a certain threshold of similar or equal features is reached, the two loops/functions are
considered a match and connected with a dashed line.
However, this method still has few limitations. Sometimes, there can be no match for the same loop/
function if one is optimized, parallelized, or moved in the source code to four or more lines from the
original place. Intel Advisor tries to ensure some balance between matching source code changes and
false positives.

Model Threading Designs
Analyze, design, tune, and check threading design
options without disrupting your normal development
by running the Threading Perspective.

The Threading Perspective can help you to:

• Model different threading designs for your application
• Prototype project scaling on systems with larger core counts
• Find performance issues and fix them before implementing parallelism
• Find and eliminate data-sharing issues during design

How It Works
The Threading perspective includes the following steps:

Intel® Advisor User Guide  1  

107



1. Run the Survey analysis to find candidates for parallelizing.
2. Add parallel site and task annotations to your code and re-build your application.
3. Run Suitability analysis to view proposed parallel design options.
4. Run Dependencies analysis to identify stoppers for adding parallel code.

Threading Summary
Threading perspective reports information about your application performance recommends you loops/
functions to parallelize with the highest gain:

• View the main performance metrics of your program with execution time details.
• View optimization recommendations that help you to improve the overall performance of your application

and separate loops/functions.
• Examine how different parallel design options affect performance of annotated loops/functions and view

estimated gain for each option. Check if annotated loops have dependencies that can be show-stoppers
while parallelizing your code.

See Also
Run Threading Perspective from GUI Steps to run the Threading perspective.
Run Threading Perspective from Command Line
Annotate Code for Deeper Analysis
Model Threading Parallelism

  1   Intel® Advisor User Guide

108



Run Threading Perspective from GUI
Steps to run the Threading perspective.

In the Analysis Workflow pane, select the Threading perspective. The perspective can be executed at the
following collection accuracy levels:

• Low - Find candidates for parallelizing.
• Medium - Model parallel design options and determine whether there are dependencies limiting

parallelizing.
• Custom - Customize the perspective flow and properties.

In the Threading perspective, collection accuracy levels match the steps you should take. By default,
accuracy is set to Low.

NOTE The higher accuracy value you choose, the higher runtime overhead is added to your
application. The Overhead indicator shows the overhead for the selected configuration.

Prerequisites: In the graphical-user interface (GUI): Create a project and specify an analysis target and
target options.

To configure and run the Threading perspective from GUI, do the following:

1.
Select Low accuracy level to enable the Survey analysis and run the perspective by clicking 
button.
You will get a Survey report that shows the execution times of your functions and loops.

2. Sort the report data by Total Time to identify functions and loops with the longest execution time.
These loops/functions are the best candidates to apply parallelization for.

3. In your source code, annotate sites and tasks to model threading for and re-build your application. For
more information on annotations and how to apply them, see Annotate Code for Deeper Analysis
section.

4.
Select Medium accuracy level and run the Threading perspective by clicking  button.

While the perspective is running, you can do the following in the Analysis Workflow tab:

• Control the perspective execution:

•
Stop data collection and see the already collected data: Click the  button.

•
Pause data collection: Click the  button.

•
Cancel data collection and discard the collected data: Click the  button.

• Expand an analysis with  to control the analysis execution:

• Pause the analysis: Click the  button.
• Stop the currently running analysis and start the next analysis selected: Click the  button.
• Interrupt execution of all selected analyses and see the already collected data: Click the 

button.

NOTE To generate command lines for selected perspective configuration, click the Command
Line button.

Intel® Advisor User Guide  1  

109



To run the Threading perspective with the Medium accuracy from the command line interface:

1. Run the Survey analysis:

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
2. Collect trip count data:

advisor --collect=tripcounts --project-dir=./advi_results -- ./myApplication
3. Run the Suitability analysis for annotated loops:

advisor --collect=suitability --project-dir=./advi_results -- ./myApplication
4. Run the Dependencies analysis:

advisor --collect=dependencies --project-dir=./advi_results -- ./myApplication
See Run Threading Perspective from Command Line for details.

After running the perspective as describes above, you get a Suitability report showing predicted options for
parallelizing and a Dependencies report showing whether you can implement parallel design without
disrupting your code.

Customize Threading Perspective
Customize the perspective flow to better fit your goal
and your application.

If you change any of the analysis settings from the Analysis Workflow tab, the accuracy level changes to
Custom automatically. With this accuracy level, you can customize the perspective flow and/or analysis
properties.

To change the properties of a specific analysis:

1.
Expand the analysis details on the Analysis Workflow pane with .

2. Select desired settings.
3.

For more detailed customization, click the gear  icon. You will see the Project Properties dialog
box open for the selected analysis.

4. Select desired properties and click OK.

The following tables cover project properties applicable to analyses in the Threading perspective.

Common Properties

Use This To Do This

Target type drop-down • Analyze an executable or script (choose Launch Application).
• Analyze a process (choose Attach to Process).

If you choose Attach to Process, you can either inherit settings from
the Survey Hotspots Analysis Type or specify the needed settings.

Inherit settings from
Visual Studio project
checkbox and field (Visual
Studio* IDE only)

Inherit Intel Advisor project properties from the Visual Studio* startup
project (enable).

If enabled, the Application, Application parameters, and Working
directory fields are pre-filled and cannot be modified.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the
Intel® oneAPI 2022.1 release, and will be removed in a future release.

Application field and
Browse... button

Select an analysis target executable or script.

  1   Intel® Advisor User Guide

110



Use This To Do This

If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application
parameters field and
Modify... button

Specify runtime arguments to use when performing analysis (equivalent
to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment
variables field and Modify...
button

Specify environment variables to use during analysis.

Managed code profiling
mode drop-down

• Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

• Collect data for native code and do not attribute data to managed
code (choose Native).

• Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

• Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

Child application field Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

NOTE
For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

• Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

• Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

Intel® Advisor User Guide  1  

111



Use This To Do This

Use MPI launcher checkbox Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

• Select MPI Launcher - Intel or another vendor
• Number of ranks - Number of instances of the application
• Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis Properties

Use This To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Callstack unwinding mode
drop-down list

Set to After collection if:

• Survey analysis runtime overhead exceeds 1.1x.
• A large quantity of data is allocated on the stack, which is a common

case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

  1   Intel® Advisor User Guide

112



Use This To Do This

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE
Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
-ax (Linux* OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
list

• Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

• Keep source code cache within the project (choose Keep cached
files).

Suitability Analysis Properties

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Sampling Interval selector Set the wait time between each analysis collection sample while your
target application is running.

Intel® Advisor User Guide  1  

113



Use This To Do This

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Dependencies Analysis Properties

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode radio
buttons

• Report possible dependencies in system modules (choose the Show
problems in system modules radio button).

• Do not report possible dependencies in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Analyze stack variables
checkbox

Analyze parallel data sharing for stack variables (enable).

Enabling could increase analysis overhead.

Filter stack variables by scope
checkbox

Enable to report:

• Variables initiated inside the loop as potential dependencies (warning)
• Variables initialized outside the loop as dependencies (error)

Enabling could increase analysis overhead.

Reduction Detection / Filter
reduction variables checkbox

Mark all potential reductions by a specific diagnostic (enable).

Enabling could increase analysis overhead.

Markup type checkbox Select loops/functions by pre-defined markup algorithm. Supported
algorithms are:

• GPU generic - Select loops executed on a GPU.
• OpenMP - Select OpenMP* loops.
• SYCL - Select SYCL loops.
• OpenCL - Select OpenCL™ loops.
• DAAL - Select Intel® oneAPI Data Analytics Library loops.
• TBB - Select Intel® oneAPI Threading Building Blocks loops.

  1   Intel® Advisor User Guide

114



Use This To Do This

NOTE This option is available only from the Analysis Workflow pane for the
Offload Modeling perspective.

Trip Counts and FLOPs Analysis Properties

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Trip Counts / Collect
information about Loop
Trip Counts checkbox

Measure loop invocation and execution (enable).

FLOP / Collect information
about FLOP, L1 memory
traffic, and AVX-512 mask
usage checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Callstacks / Collect
callstacks checkbox

Collect call stack information when performing analysis (enable).

Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Capture metrics for
stripped binaries checkbox

Collect metrics for stripped binaries.

Enabling could increase analysis overhead.

Cache Simulation / Enable
Memory-Level Roofline
with cache simulation
checkbox

Model multiple levels of cache for data, such as counts of loaded or
stored bytes for each loop, to plot the Roofline chart for all memory levels
(enable).

Enabling could increase analysis overhead.

Cache simulator
configuration field

Specify a cache hierarchy configuration to model (enable and specify
hierarchy).

The hierarchy configuration template is:

Intel® Advisor User Guide  1  

115



Use This To Do This

[num_of_level1_caches]:[num_of_ways_level1_connected]:
[level1_cache_size]:[level1_cacheline_size]/

[num_of_level2_caches]:[num_of_ways_level2_connected]:
[level2_cache_size]:[level2_cacheline_size]/

[num_of_level3_caches]:[num_of_ways_level3_connected]:
[level3_cache_size]:[level3_cacheline_size]

For example: 4:8w:32k:64l/4:4w:256k:64l/1:16w:6m:64l is the
hierarchy configuration for:

• Four eight-way 32-KB level 1 caches with line size of 64 bytes
• Four four-way 256-KB level 2 caches with line size of 64 bytes
• One sixteen-way 6-MB level 3 cache with line size of 64 bytes

Data Transfer Simulation /
Data transfer simulation
mode drop-down

Select a level of details for data transfer simulation:

• Off - Disable data transfer simulation analysis.
• Light - Model data transfers between host and device memory.
• Full - Model data transfers, attribute memory objects to loops that

accessed the objects, and track accesses to stack memory.

Run Threading Perspective from Command Line
Threading perspective includes several steps that you are recommended to run one by one:

1. Collect performance metrics and find candidates for parallelizing using a Survey analysis.
2. Annotate manually loops/functions to model parallelization for.
3. Model parallel design options and estimate speedup for the annotated loops using a Suitability

analysis.
4. Check for loop-carried dependencies to make sure the loops/functions are safe to parallelize.

Tip See Intel Advisor cheat sheet for quick reference on command line interface.

Prerequisites
Set Intel Advisor environment variables with an automated script to enable the advisor command line
interface (CLI).

Run Threading Perspective
Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

1. Run the Survey analysis.

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
2. Run the Characterization analysis to collect trip counts and FLOP data.

advisor --collect=tripcounts --project-dir=./advi_results --flop -- ./myApplication
3. View the Survey report to identify candidates for parallelization. For example, run the following

command to print the report in command line:

advisor --report=survey --project-dir=<project-dir>

  1   Intel® Advisor User Guide

116

https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-cheat-sheet.pdf


Consider analyzing loops/functions with high total time.
4. In the application source code, annotate loops/functions of interest to model parallelization for.

Rebuild the application as usual to make the annotations available for the Intel Advisor.
5. Run the Suitability analysis to model threading for the annotated loops/functions:

advisor --collect=suitability --project-dir=./advi_results -- ./myApplication
6. Run the Dependencies analysis to check for loop-carried dependencies in the annotated loops:

advisor --collect=dependencies --project-dir=./advi_results -- ./myApplication
You can view the results in the Intel Advisor graphical user interface (GUI), print a summary to a command
prompt/terminal, or save to a file. See View the Results below for details.

Analysis Details

Each analysis in the Threading perspective has a set of additional options that modify its behavior and collect
additional performance data.

Consider the following options:

Characterization Options

To run the Characterization analysis, use the following command line action: --collect=tripcounts.

Recommended action options:

Options Description

--flop Collect data about floating-point and integer
operations, memory traffic, and mask utilization
metrics for AVX-512 platforms.

--stacks Enable advanced collection of call stack data.

Dependencies Options

To run the Dependencies analysis, use the following command line action: --collect=dependencies.

Recommended action options:

Options Description

--filter-reductions Mark all potential reductions with a specific
diagnostic.

See advisor Command Option Reference for more options.

Next Steps
Continue to explore threading results. For details about the metrics reported, see CPU and Memory Metrics.

See Also
Threading Perspective Analyze, design, tune, and check threading design options without
disrupting your normal development by running the Threading Perspective.
Command Line Interface This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.
Minimize Analysis Overhead
Analyze MPI Applications  With Intel® Advisor, you can analyze parallel tasks running on a cluster
to examine performance of your MPI application.

Intel® Advisor User Guide  1  

117



Threading Accuracy Levels in Command Line
For each perspective, Intel® Advisor has several levels of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is collected and the level of collection details. The higher
accuracy value you choose, the higher runtime overhead is added.

In CLI, each accuracy level corresponds to a set of commands with specific options that you should run one
by one to get a desired result.

For the Threading perspective, you are recommended to run the accuracy levels one by one to get a
Threading report.

The following accuracy levels are available:

Comparison / Accuracy Level Low Medium

Overhead 1.1x 5 - 8x

Goal Find candidates for parallelization Model threading parallelism and
check for loop-carried
dependencies

Analyses Survey Survey + Characterization (Trip
Counts) + Suitability +
Dependencies

Result Basic Survey report Survey report extended with trip
count data

Dependencies report

Suitability report with parallel
performance modeled for
annotated loops

You can generate commands for a desired accuracy level from the Intel Advisor GUI. See Generate Command
Lines from GUI for details.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

Consider the following command examples.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Low Accuracy
First, run the Threading perspective with low accuracy to find candidates for parallelizing based on Survey
analysis results.

Run the analysis as follows:

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
You can view the generated results in the Intel Advisor GUI or in the CLI. The loops/functions with high total
time are the best candidates for parallelization. Annotate the loops/functions of interest to model parallelism.

Medium Accuracy
Prerequisite: Annotate loops/functions to model parallelization for. Rebuild the application.

  1   Intel® Advisor User Guide

118



Run the commands as follows:

1. Run the Survey analysis:

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
2. Collect trip count data:

advisor --collect=tripcounts --project-dir=./advi_results -- ./myApplication
3. Run the Suitability analysis to model threading parallelism for the annotated loops:

advisor --collect=suitability --project-dir=./advi_results -- ./myApplication
4. Run the Dependencies analysis for the annotated loops:

advisor --collect=dependencies --project-dir=./advi_results -- ./myApplication
You can view the generated results in the Intel Advisor GUI or in the CLI.

See Also
advisor Command Option Reference
Command Line Interface Reference This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].
Run Threading from Command Line
Minimize Analysis Overhead

Annotate Code for Deeper Analysis
Before you can mark the best parallel opportunities by adding Intel® Advisor annotations, you need to choose
likely places to add parallelism. This section provides a series of topics that explain factors to consider as you
examine the candidate code regions and their execution and choose candidate places.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

The operations of a serial program execute one after another in a well-defined order, starting at the
beginning, continuing to the end, and then stopping. A parallel program, on the other hand, is made up of
tasks - portions of the program that may execute independently on separate cores. Tasks can either be
implemented in separate functions or in iterations of a loop.

You mark your proposed code regions by adding Intel® Advisor annotations that identify the:

• Parallel site: A code region that contains one or more parallel tasks. Execution of a parallel site constrains
the time during which the tasks that it contains can execute. Although execution of a parallel site begins
when its execution reaches its beginning, tits execution terminates only after all tasks that started within
it have completed. In parallel frameworks, this corresponds to the join location in the code where all tasks
have completed.

• Parallel tasks: Task code regions run independently, at the same time as other tasks within the parallel
site and the enclosing parallel site itself. Also, each task can have multiple instances of its code executing.
As shown in the table below, there are two forms of task annotations:

• For a loop with only a single task, add a single iteration task annotation within the two site
annotations.

• For other code, add a task annotation pair to mark the task region's begin and end within the two site
annotations.

Intel® Advisor User Guide  1  

119



Characteristics of Parallel Site
Code

Parallel Site and Task
Annotations

Comments and Limitations

A loop that requires only a single
task. For simple loops, begin with
the type of task annotation,
unless the task does not include
the entire loop body.

Example code:
nqueens_Advisor C/C++
sample and nqueens Fortran and
C# samples

Add three annotations to mark:
• The parallel site region by

adding site begin and site end
annotations.

• The parallel task loop by
adding a single iteration task
annotation at the start of the
loop body.

Based on the Suitability tool
performance predictions, you
may want to try using multiple
tasks. In this case, remove the
single iteration task annotation
and replace it with task begin
and task end annotations for
each task (see the next row).

If the loop structure is complex,
you may need to mark the task
begin and task end region by
using the task annotations in the
next row.

Complex loop, code that allows
multiple tasks, or non-loop code

Example code: stats C++
sample

Add four annotations to mark:
• The parallel site region by

adding site begin and site end
annotations.

• Each parallel task region by
adding task begin and task
end annotations.

After you choose several places to add parallelism, view the data displayed in the Survey Report window.
Use this data and your code editor to add annotations to mark the candidate parallel sites and their task(s).
Make sure that these annotations are executed by the selected target executable.

The site and task annotations enable the Intel® Advisor Suitability and Dependencies tools to predict your
serial program's execution as a parallel program. These tools perform extensive analysis of your running
serial program to provide data needed to help you decide the best place(s) to add parallelism.

To take advantage of the Intel® Advisor parallel design capabilities, experiment with different possible parallel
code regions by modifying the site and task annotations and their locations, rebuilding your application's
target, and running the Suitability and Dependencies tools again.

The following figure illustrates the nqueens_Advisor C/C++ sample code to show the task (blue
background) and its enclosing parallel site (orange background).

Before you convert your serial program into a parallel program, you need to:

• Understand where your program is spending its time.
• Decide how to divide that work up into tasks that can execute in parallel.

Annotate Code to Model Parallelism
After identifying candidates for parallelizing, mark up serial parts of your code where you plan to add
parallelism using Intel® Advisor annotations.
Before Annotating Code for Deeper Analysis

Before you can mark the best parallel opportunities by adding annotations, you need to choose likely places
to add parallelism. This section introduces several topics that explain factors you should consider as you
closely examine the candidate code regions and their execution.

  1   Intel® Advisor User Guide

120



Each code region where you might add parallelism consists of a single parallel site and one or more parallel
tasks enclosed within the parallel site. Each parallel site defines the scope of parallel execution. You can have
multiple parallel sites in a program.

No matter how much you improve one part of your program, the program cannot complete any faster than
the part that you did not speed up. So, focus your efforts on the parts of your program that use the most
time.

Use the Survey Report provided by the Survey tool to help you understand where your program spends it
time.

Use Amdahl's Law and Measure the Program

There are two rules of optimization that apply to parallel programming:

• Focus on the part of the program that uses the most time.
• Do not guess, measure.

Amdahl's Law
In the context of parallel programming, Gene Amdahl formalized a rule called Amdahl's Law, which states
that the speed-up that is possible from parallelizing one part of a program is limited by the portion of the
program that still runs serially.

The consequence may be surprising: parallelizing the part of your program where it spends 80% of its time
cannot speed it up by more than a factor of five, no matter how many cores you run it on.

Therefore, to get maximum benefit from parallelizing your program, you could add parallelism to all parts of
your program as suggested by Amdahl's Law. However, it is more practical to find where it spends most of its
time and focus on areas that can provide the most benefit.

Do Not Guess - Measure
This leads to another rule of optimization: Do Not guess - Measure. Programmers' intuitions about where
their programs are spending time are notoriously inaccurate. Intel® Advisor includes a Survey tool you can
use to profile your running program and measure where it spends it time.

After you add Intel® Advisor annotations to your program to mark the proposed parallel code regions, run the
Suitability tool to predict the approximate maximum performance gain for the program and the annotated
sites. These estimated performance gain values are based on a model of parallel execution that reflects the
impact of Amdahl's law.

See Also
Task Organization and Annotations

Task Organization and Annotations

You will choose a region of code to execute as a task. This region is the static extent of the task. The task
includes not just its static extent, but also any other code that is called from the static extent when it
executes - this is the dynamic extent.

In addition to choosing tasks, you will also decide which tasks can execute in parallel with one another. To do
this, you will choose parallel sites. A parallel site, like a task, has a static extent which is a block of code and
a dynamic extent which includes all the code that is called from it.

NOTE
If you have a loop with a single task and the task includes the entire loop body, you can use the
simplified parallel site with one iteration task annotation. The remainder of this topic and this group of
topics describe the more complex case where multiple tasks are needed within a parallel site.

The execution of tasks with the serial execution done by Intel® Advisor works like this:

Intel® Advisor User Guide  1  

121



1. A parallel site begins when execution reaches the begin-site annotation.
2. A task is created when execution reaches the begin-task annotation. The task executes independently,

in parallel with any other tasks that are already executing, including the parallel site itself.
3. When the execution of a task reaches an end-task annotation, the task terminates. Intel® Advisor end-

task annotations do not allow or require an end-task label, so be aware that in some cases the task's
execution could reach a task-end annotation for a different task, which can impact the predicted parallel
performance.

4. When execution reaches the end-site annotation for the parallel site, Intel® Advisor predicts that
execution suspends (waits) until all tasks that were created within it have terminated, after which
execution exits the parallel site.

With C/C++ code, note that goto, break, continue, return, and throw statements must not bypass the
end of the static extent of a task or parallel site! With Fortran code, such statements include goto and
return. You may need to add extra end annotations before these operations so the Intel® Advisor tools will
correctly model the end of a site or task.

Because you will later add parallel framework code after you no longer need the Intel® Advisor annotations,
you need to be aware of the requirements of the parallel framework. For example, some parallel frameworks
might not allow a branch out of a task, such as a loop task. Whenever possible, plan your tasks to suit the
needs of the parallel framework code. The annotations are present only while you need Intel® Advisor to help
you predict the proposed parallel behavior and make decisions about the best locations for your tasks.

After you decide where the parallel sites and tasks are in your program, add source annotations.

See Also
Annotate Parallel Sites and Tasks
Site and Task Annotations for Simple Loops with One Task
Copy Annotations and Build Settings Using the Annotation Assistant Pane

Annotate Parallel Sites and Tasks

You add annotations into your program to mark the tasks and parallel sites. The annotations are one-line
macro uses or function calls that have no effect on the behavior of your program.

Annotations allow you to mark your tentative decisions about your program's task structure before you
modify the program to use parallel execution. Annotations are used by the Intel® Advisor Suitability and
Dependencies tools.

After you decide on the parallel site(s) and task(s), add the annotations into your source code.

To simplify adding Intel® Advisor annotations:

• When using the Microsoft Visual Studio* code editor, you can use the Annotation Wizard.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

• With any editor, use the annotation assistant in the Survey Report window, Survey Source window, or
the No Data message to copy example annotation code and build settings.

Code examples throughout this group of topics illustrate the use of these annotations.

As you use Intel® Advisor to investigate possible code regions for adding parallel execution, you will find
some areas are not feasible. Adding a comment to explain why that site (or task) was not chosen may help
later. For example, with C/C++ code:

...
// Investigated the following function call as a parallel task and dismissed 
// June 2014. Need to first re-write the function to improve parallel 
// performance and fix the data race. 
//
//  ANNOTATE_TASK_BEGIN(func1);

  1   Intel® Advisor User Guide

122



.

.

.

See Also
Task Patterns
Intel Advisor Annotation Definitions File
Annotation Types Summary
Copy Annotations and Build Settings Using the Annotation Assistant Pane
Add Annotations Using the Annotation Wizard
Add Parallelism

Task Patterns

To summarize:

• You choose parallel sites in your program.
• You choose tasks in your parallel sites.
• Tasks in a parallel site can execute in parallel with one another and with tasks in an outer parallel site, but

not in parallel with tasks in unrelated parallel sites.

You are free to arrange your sites and tasks any way that you want, but there are several simple, common
patterns that you will probably want to use.

The following sections describe the process of identifying task patterns, as well as information about data
parallelism and task parallelism.
Multiple Parallel Sites

You may be able to introduce parallelism independently in more than one place in a program.

For example, consider a C/C++ program with the general structure:

initialize(data);
while (!done) {
    display_on_screen(data);
    update(data);
}

You might be able to parallelize the display and update operations independently:

display_on_screen(data)
{
    ANNOTATE_SITE_BEGIN(site_display);
    for (each block of data) {
        ANNOTATE_ITERATION_TASK(task_display);
        display the block of data;
    }
    ANNOTATE_SITE_END();
}
update(data)
{
    ANNOTATE_SITE_BEGIN(site_update);
    for (each block of data) {
        ANNOTATE_ITERATION_TASK(task_update);
        update the block of data;
    }
    ANNOTATE_SITE_END();
}

Each iteration of the main loop would still do the display and then the update, but the display and update
operations could be performed much faster.

Intel® Advisor User Guide  1  

123



Depending on your program, you need to decide whether to implement multiple parallel sites at the same or
at different times:

• When two parallel sites are truly disjoint or have overlapping functions that are purely functional and do
not show problems reported by the Dependencies tool, you can consider parallelizing those sites
separately at different times.

• When considering multiple parallel sites that overlap on the same call trees - such as multiple sites that
call the same (common) utility functions - consider parallelizing or not parallelizing the entire set of
parallel sites at the same time.

You need to determine the cause of each dependency and fix it. If you have multiple parallel sites that
overlap on the same call trees - such as multiple sites that call the same utility functions (common code) -
read the help topic Fixing Problems in Code Used by Multiple Parallel Sites.

See Also
Data and Task Parallelism
Using Partially Parallel Programs with Intel Advisor Tools
Data Sharing Problems
Fixing Problems in Code Used by Multiple Parallel Sites

Data and Task Parallelism

This topic describes two fundamental types of program execution - data parallelism and task parallelism -
and the task patterns of each.

Data Parallelism
In many programs, most of the work is done processing items in a collection of data, often in a loop. The
data parallelism pattern is designed for this situation. The idea is to process each data item or a subset of the
data items in separate task instances. In general, the parallel site contains the code that invokes the
processing of each data item, and the processing is done in a task.

In the most common version of this pattern, the serial program has a loop that iterates over the data items,
and the loop body processes each item in turn. The data parallelism pattern makes the whole loop a parallel
site, and the loop body is a task. Consider this C/C++ simple loop:

ANNOTATE_SITE_BEGIN(sitename);
for (int I = 0; I != n; ++I) {
    ANNOTATE_ITERATION_TASK(task_process);
    process(a[i]);
}
ANNOTATE_SITE_END();

The following C/C++ code shows a situation where the data items to be processed are in the nodes of a tree.
The recursive tree walk is part of the serial execution of the parallel site - only the process_node calls are
executed in separate tasks.

ANNOTATE_SITE_BEGIN(sitename);
process_subtree(root);
ANNOTATE_SITE_END(sitename);
. . .
void process_subtree(node) // in the dynamic extent of the parallel site
{
    ANNOTATE_TASK_BEGIN(task_process);
    process_node(node);
    ANNOTATE_TASK_END();
    for (child = first_child(node);
         child;
         child = next_child(child) )
    {

  1   Intel® Advisor User Guide

124



        process_subtree(child);
    }
}

In the data parallelism pattern, the parallel site usually contains a single task.

The sample tachyon_Advisor demonstrates data parallelism.

Task Parallelism
When work is divided into several activities which you cannot parallelize individually, you may be able to take
advantage of the task parallelism pattern.

NOTE
The word task in task parallelism is used in the general sense of an activity or job. It is just a
coincidence that we use the same word to refer to "a body of code that is executed independently of
other bodies of code".

In this pattern, you have multiple distinct task bodies in a parallel site performing different activities at the
same time.

Suppose that neither the display nor the update operation from the previous example can be parallelized
individually. You still might be able to do the display and the update simultaneously. Consider this C/C++
code:

initialize(data);
while (!done) {
    old_data = data;
    ANNOTATE_SITE_BEGIN(sitename);
    ANNOTATE_TASK_BEGIN(task_display);
    display_on_screen(old_data);
    ANNOTATE_TASK_END();
    ANNOTATE_TASK_BEGIN(task_updatedata);
    update(data);
    ANNOTATE_TASK_END();
    ANNOTATE_SITE_END();
}

The most obvious shortcoming of the task-parallel pattern is that it cannot take advantage of more cores
than the number of distinct tasks. In this example, any more than two cores would be wasted. On the other
hand, the task parallel pattern may be applicable to programs that simply do not fit the data parallel pattern
- some parallelism may be better than none.

The tasks used in task parallelism are not limited to called functions. For example, consider this C/C++ code
that creates two tasks that separately increment variables X and Y:

main() {
ANNOTATE_SITE_BEGIN(sitename);
  ANNOTATE_TASK_BEGIN(task_x);     
     X++;
  ANNOTATE_TASK_END();

  ANNOTATE_TASK_BEGIN(task_y);
     Y++;
  ANNOTATE_TASK_END();
ANNOTATE_SITE_END(); 
}

The sample stats demonstrates task parallelism.

Intel® Advisor User Guide  1  

125



See Also
Mixing and Matching Tasks
Annotations

Mix and Match Tasks

You can combine the data parallel and task parallel patterns. Continuing with the display/update example,
suppose that you can parallelize the update operation, but not the display operation. Then you could execute
the display operation in parallel with multiple tasks from the update operation. Consider this C/C++ code:

initialize(data);
while (!done) {
    old_data = data;
    ANNOTATE_SITE_BEGIN(sitename);
    ANNOTATE_TASK_BEGIN(task_display);
    display_on_screen(old_data);
    ANNOTATE_TASK_END();
    update(data);
    ANNOTATE_SITE_END();
}
display_on_screen(data)
{
    . . .
}
update(data)
{
    for (each block of data) {
        ANNOTATE_TASK_BEGIN(task_update);
        update the block of data;
        ANNOTATE_TASK_END();
    }
}

See Also
Choosing the Tasks
Annotations

Choose the Tasks

When choosing tasks, you should consider task interactions and the factors that influence how large a task
should be. The following sections describe the process of choosing the tasks.
Task Interactions and Suitability

If your tasks access the same memory locations, then, left to themselves, they will tend to trip over each
other. You can solve this by adding synchronization code to make sure the tasks are well-behaved when they
access shared memory locations, but synchronization code can be tedious to add and hard to get right, and it
is easy to end up with tasks that spend more time doing synchronization than doing work.

You can use the Suitability tool to provide performance data that helps you choose your tasks wisely.

It is better to minimize data access conflicts in the first place by choosing your tasks wisely. It can be hard to
tell, just by looking at your code, where all the sharing problems will be, which is why you will learn how to
automate the process by using the Dependencies tool.

However, you can make a good guess whether two proposed tasks are mostly independent of each other or
are completely intertwined.

See Also
How Big Should a Task Be?
Model Threading Parallelism
Dependencies Analysis

  1   Intel® Advisor User Guide

126



How Big Should a Task Be?

The ideal task size is very dependent on the details of your program. Here are a few general considerations
to keep in mind.

Task Overhead
In general, if your program can keep most of the cores on your system busy doing useful work, then it will be
using the system about as efficiently as possible. There are two parts to this: keeping the cores busy, and
doing useful work.

It takes time to start a new task. If your tasks are too small, then your program may spend more time
creating tasks than it saves by running them in parallel - the cores are kept busy, but not doing useful work.

Load Balance
On the other hand, very large tasks can reduce parallelism: your parallel program cannot finish any more
quickly than the longest-running task. A rule of thumb is to try to have the number of tasks in a parallel site
be at least several times larger than the number of cores available, so that there will always be some work to
do when a core is free.

Choosing the Right Level
You will often have the opportunity to create tasks at different loop nesting levels or function call depths. This
may provide an easy way to choose your task size. For example, consider the C/C++ code:

 for (i = 0; i != N; ++i) {
    for (j = 0; j != N; ++j) {
        x[i, j] = y[i, j] * z[j, i];
    }
 }

The inner loop body is too small to be a useful task. You can view the Suitability Report for a task's Average
Instance Time. The entire inner loop might be more suitable:

ANNOTATE_SITE_BEGIN(sitename);
for (i = 0; i < N; ++i) {
    ANNOTATE_ITERATION_TASK(task_process_array);
    for (j = 0; j < N; ++j) {
        x[i, j] = y[i, j] * z[j, i];
    }
}
ANNOTATE_SITE_END();

Blocking
If you have a loop which seems like an obvious place to introduce parallelism, but the loop body is too small
to make a good task, consider grouping several iterations together. When you specify a loop body as a
parallel construct,Intel® oneAPI Threading Building Blocks and OpenMP* will automatically group multiple
loop iterations together to create tasks of an appropriate size. Therefore, given a simple loop, the question is
not whether the loop body is the right size for a good task, but whether the total loop execution time can be
divided up into chunks of the right size.

For example, there is only one loop level here, and its body looks too small to be a good task:

 for (i = 0; i < 100000; ++i) {
    a[i] = b[i] * c[i];
}

Intel® Advisor User Guide  1  

127



Go ahead and choose it, and it may run as though you had written it as:

ANNOTATE_SITE_BEGIN(sitename);
for (i = 0; i < 100000; i += 1000) {
    ANNOTATE_ITERATION_TASK(task_calculate_a);
    for (j = i; j < i + 1000; ++j) {
        a[j] = b[j] * c[j];
    }
}
ANNOTATE_SITE_END();

Sizing to Avoid Interactions
It is not uncommon for loop iterations or other potential task bodies to be almost independent at one level,
but have many interactions at other levels. In this case, it may be worth accepting a less than perfect
program gain in exchange for simpler programming and cleaner code.

The outer loop of the Sudoku problem generator repeatedly calls the generate() function to generate
problems. There are opportunities for introducing parallelism at many different levels in the problem
generation function, but the individual calls to generate() are almost perfectly independent, and each call
to generate() takes less than a second. Parallelizing the outermost loop would be a trivial project. No user
is likely to care if it takes 0.8 seconds instead of 0.2 seconds to generate a single problem, and the speedup
for generating more than a handful of problems should be nearly perfect.

Using the Survey Report
Ultimately, choosing your tasks is more of an art than a science. Locations close to the root of the call tree
tend to form larger tasks, but may have more conflicts on shared variables; locations toward the leaves of
the call tree tend to be smaller, causing problems with task overhead, but typically have fewer conflicts. We
can offer some rules of thumb. Start by looking at a function F that uses a significant portion of the time of
the program part you are trying to improve - remember Amdahl's law!

• If almost all of the time spent in F is spent in a block of code that is executed many times in a loop, then
that block of code may be a prime candidate for a data-parallel task.

• If F is basically just a wrapper around a call to a function G, then look at G instead.
• If almost all of the time in F is spent in multiple calls to a function G that is too large to be a good task,

then you may want to enclose the calls to G in a parallel site, but introduce the actual tasks inside G or
another function that is called from G.

• If the time spent in F is distributed across a number of distinct activities, you should consider whether it is
better to apply the task parallelism pattern to F, or to use the multiple parallel sites pattern to look for
parallelism in each of the activities.

Recursion
Recursive algorithms can present a special challenge. The problem occurs when you have a large amount of
time spent in a function that only does a small amount of work in any one invocation, but that is called
recursively a great many times. The actual work may be data-parallel, but the function body is too small to
be a useful task by itself, and the blocking strategy (see Blocking above) is harder to apply to a recursive
algorithm.

The general solution is to use a threshold to control recursive parallelism. For example, a recursive sort might
solve sub-problems in parallel only if they are above a certain threshold size.

See Also
Using Partially Parallel Programs with Intel Advisor Tools
Data and Task Parallelism

  1   Intel® Advisor User Guide

128



Use Partially Parallel Programs with Intel® Advisor

Intel® Advisor tools are designed to collect data and analyze serial programs. If you have a partially parallel
program, before you use the Intel® Advisor Suitability and Dependencies tools to examine it to add more
parallelism, read the guidelines in this topic and modify your program so it runs as a serial program with a
single thread within each parallel site.

Run Your Program as a Serial Program
To run the current version of your program as a serial program, you need to limit the number of threads to 1.
To run your program with a single thread:

• With Intel® oneAPI Threading Building Blocks (oneTBB) , in the main thread create a
tbb::task_scheduler_init init(1); object for the lifetime of the program and run the executable
again. For example:

   int main() {
     tbb::task_scheduler_init init(1);
     // ...rest of program...

     return 0;
   }

The effect of task_scheduler_init applies separately to each user-created thread. So if the program
creates threads elsewhere, you need to create a tbb::task_scheduler_init init(1); for that
thread's lifetime as well. Use of certain oneTBB features can prevent the program from running serially.
For more information, see the oneTBB documentation.

• With OpenMP*, do one of the following:

• Set the OpenMP* environment variable OMP_NUM_THREADS to 1 before you run the program.
• Omit the compiler option that enables recognition of OpenMP pragmas and directives. On Windows*

OS, omit /Qopenmp, and on Linux* OS omit -openmp.

For more information, see your compiler documentation.

Add or Remove Intel® Advisor Annotations
Intel® Advisor site, task, and lock annotations are used by the Suitability and Dependencies tools. You can
add Intel® Advisor parallel site and task annotations to mark the already parallel code regions. For example,
the nqueens_Advisor sample nqueens_cilk.cpp:

...
 ANNOTATE_SITE_BEGIN(solve);
  cilk_for(int i=0; i<size; i++) {
  // try all positions in first row using separate array for each recursion
  ANNOTATE_ITERATION_TASK(setQueen);
    int * queens = new int[size]; 
    setQueen(queens, 0, i);
  }
 ANNOTATE_SITE_END();

If needed, you can comment out annotations, or add preprocessor directives by using conditional
compilation. For example, use the #ifdef, #ifndef, and #endif preprocessor directives:

...
// Comment out the next line to hide the annotations. 
#define ANNOTATE_ON   
.
.
.

Intel® Advisor User Guide  1  

129



#ifdef ANNOTATE_ON
  ANNOTATE_SITE_BEGIN(solve);
#endif
#ifndef ANNOTATE_ON
// add parallel code here
.
.
.
#ifdef ANNOTATE_ON
  ANNOTATE_SITE_END();
#endif
... 

After you add the parallel framework code and test it, you can remove the annotations.

Effect of Parallel Code on Intel® Advisor Tools' Reports
Because Intel® Advisor tools are designed to collect data and analyze serial program targets.

Parallel code that creates one or more threads within any annotated parallel site usually cause the Suitability
or Dependencies tool reports to contain unreliable data. To use these two tools, there must be only a single
thread within each parallel site. Also, when using parallel frameworks that use dynamic scheduling or work
stealing at run-time, execution times can be assigned to the wrong source code.

If you use the Survey tool to profile your program, the Self Time in the Survey Report shows the sum of the
CPU time for all threads. However, because Intel® Advisor's purpose is to analyze serial code, some of the
time used by parallel code may be added to the wrong places. For example, Self Time may be added to the
parallel framework run-time system entry points instead of the caller(s) in the thread that entered the
parallel region. Also in the Survey Report, when examining parallel code, some entry points may be parallel
framework run-time system entry points instead of the expected functions or loops. Similarly, in the Survey
Source window, for a parallel code region the Total Time (and Loop Time) shows the sum of the CPU time
for all threads.

Because Intel® Advisor's purpose is to analyze serial code, in the Suitability Report:

• Intel® Advisor assumes there is only a single thread (no parallelism) within any annotated parallel site,
including its task(s) and lock(s). When only a single thread executes within a parallel site (as expected),
the results for that site may be correct. If the application has multiple parallel sites, and one or more sites
were executed by multiple threads, the next two items apply.

• If multiple threads execute within any parallel site, the reported Maximum Program Gain and that site's
Impact on Program Gain values are not reliable. To obtain correct values, ensure that only a single
thread executes for all parallel sites (see Run Your Program as a Serial Program above).

• If multiple threads execute within a parallel site, the results for that site will be unpredictable and its
values will not be reliable. Also, if one thread executes the parallel site annotations and a second thread
executes the task annotation(s), the site may appear to not have any tasks and the tasks may appear to
not execute within a site. To obtain correct values, ensure that only a single thread executes within each
parallel site (see Run Your Program as a Serial Program above).

• Any work-stealing constructs within the site will cause extra time to be added to the suspended site
and/or task. All Suitability Report times are approximate.

Similarly in the Dependencies Report, if any parallel site uses multiple threads, this may prevent certain
problems from being detected and reported by the Dependencies tool. To obtain correct values, ensure that
only a single thread executes within each parallel site (see Run Your Program as a Serial Program above).

See Also
Model Threading Parallelism
Using Intel® Inspector and Intel® VTune™Profiler

  1   Intel® Advisor User Guide

130



Annotations
You add Intel® Advisor annotations to mark the places in serial parts of your program where Intel® Advisor
tools should assume your program's parallel execution and synchronization will occur. Later, after you modify
your program to prepare it for parallel execution, you replace these annotations with parallel framework code
that enables parts of your program to execute in parallel.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

Annotations are either subroutine calls or macro uses, depending on which language you are using, so they
can be processed by your current compiler. The annotations do not change the computations of your
program, so your application runs normally.

The three main types of annotations mark the location of:

• A parallel site. A parallel site encloses one or more tasks and defines the scope of parallel execution.
When converted to a parallel code, a parallel site executes initially using a single thread.

• One or more parallel tasks within the parallel site. Each task encountered during execution of a parallel
site is modeled as being possibly executed in parallel with the other tasks and the remaining code in the
parallel site. When converted to parallel code, the tasks will run in parallel. That is, each instance of a
task's code may run in parallel on separate cores, and the multiple instances of that task's code also runs
in parallel with multiple instances of any other tasks within the same parallel site.

• Locking synchronization, where mutual exclusion of data access must occur in the parallel program.

In addition, there are:

• Annotations that stop and resume data collection. Data collection occurs while the target executes. These
annotations allow you to skip uninteresting parts of the target program's execution.

• Special-purpose annotations used in less common cases.

The three Intel Advisor tools recognize the three main types of annotations and the Stop and Resume
Collection annotations. Only the Dependencies tool processes the special-purpose annotations.

Use the parallel site and task annotations to mark the code regions that are candidates for adding
parallelism. These annotations enable the Intel® Advisor Suitability and Dependencies tools to predict your
serial program's parallel behavior. For example:

• The Suitability tool runs your program and uses parallel site and task boundaries to predict your parallel
program's approximate performance characteristics.

• The Dependencies tool runs your program and uses parallel site and task boundaries to check for data
races and other data synchronization problems.

One common use of sites and tasks is to enclose an entire loop within a parallel site, and to enclose the body
of the loop in a task. For example, the following C/C++ code shows a simple loop that uses two parallel site
annotations and one task annotation from the nqueens_Advisor sample. The three added annotations and
the line that includes the annotation definitions appear in a bold font below.

#include "advisor-annotate.h"
 ...
 void solve() {
 int * queens = new int[size]; //array representing queens placed on a chess board...
  ANNOTATE_SITE_BEGIN(solve);
  for(int i=0; i<size; i++) {
     // try all positions in first row
    ANNOTATE_ITERATION_TASK(setQueen);
    setQueen(queens, 0, i);
  }

Intel® Advisor User Guide  1  

131



  ANNOTATE_SITE_END();
 ...
}

The following code from the Fortran nqueens sample shows the use of parallel site and task Fortran
annotations, such as call annotate_site_begin("label"). The three added annotations and the line
that references the annotation definitions module (the use statement) appear in a bold font below.

use advisor_annotate
...
! Main solver routine
subroutine solve (queens)
  implicit none
  integer, intent(inout) :: queens(:)
  integer :: i
  call annotate_site_begin("solve")
  do i=1,size
    ! try all positions in first row
    call annotate_iteration_task("setQueen")
    call SetQueen (queens, 1, i)
  end do
  call annotate_site_end

end subroutine solve
The following code from the C# nqueens sample on Windows* OS systems shows the use of parallel site and
task C# annotations, such as Annotate.SiteBegin("label");. The three added annotations and the line
that allows use of the annotation definitions (using directive) appear in a bold font below.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

using AdvisorAnnotate;
...
 public void Solve()
 {
   int[] queens = new int[size]; //array representing queens on a chess board. Index is row 
position, value is column.
   Annotate.SiteBegin("solve");
   for (int i = 0; i < size; i++)
   {
     Annotate.IterationTask("setQueen");
     // try all positions in first row
     SetQueen(ref queens, 0, i);
   }
   Annotate.SiteEnd();
 ...
 }

To simplify adding annotations:

• When using the Microsoft Visual Studio* code editor, you can use the Annotation Wizard.
• With any editor, use the annotation assistant in the Survey windows or the No Data message. The

annotation assistant displays example annotated code and build settings that you can copy to your
application's code.

If you manually type annotations, you should place each annotation on a separate line and use the correct
data type for annotation arguments. With C/C++ code, do not place annotations in macros so that references
go to the correct source location.

  1   Intel® Advisor User Guide

132



You can experiment by modifying annotations and running the tools again to locate the best places to add
parallelism.

For each source compilation module that contains annotations, in addition to adding the annotations, you
need to:

• In files where you add annotations, add a source line to reference the Intel Advisor file that defines the
annotations:

• For C/C++ modules, include the advisor-annotate.h header file by adding either #include
"advisor-annotate.h" or #include <advisor-annotate.h>.

• For Fortran compilation units, add the use advisor_annotate statement.
• For C# modules (on Windows* OS), add the using AdvisorAnnotate; directive.

• Specify the Intel Advisor include directory when you build your C/C++ or Fortran application, so the
compiler can find this include file. Similarly, you need to add the C# annotations definition file to your C#
project.

• For native applications, add the build (compiler and linker) settings.

Annotation Types
Annotation Types Summary

You can use different kinds of Intel® Advisor annotations to mark where you propose to have parallel sites,
tasks, locks, or perform special actions. These annotations are:

• Parallel site annotations
• Parallel task annotations
• Parallel lock annotations
• Annotations that let you pause and resume data collection
• Special-purpose annotations

To be useful, a parallel site must contain at least one task. Code within a parallel task can be executed by
multiple threads independently of other instances of itself and also other parallel tasks. Many tasks are code
within a loop, or they could be a single statement that does an iterative operation. After you use the Survey
or similar profiling tool to locate where your program spends its time, you will see two general types of
parallel code regions (parallel sites):

• A simple loop that requires only a single task. For the common case where the Survey tool identifies
a simple loop structure whose iterations consume much of an application's CPU time and the entire loop
body should be a task, you may only need a single task within a parallel site. Unless your time-consuming
code is not in a loop or has task(s) in a complex loop, start with this simple form. Add annotations to
mark the beginning and end of the parallel site around the loop, and add one task-iteration annotation at
the start of the loop body. This annotation form is the easiest to convert to parallel code.

• Code whose characteristics require multiple tasks. Depending on the application code
characteristics, you may need multiple tasks. For example, you may have statements that can each
become separate tasks, or complex or nested loop structures where you need multiple tasks to meet
scalability requirements. In this case, add site annotations to mark the beginning and end of the parallel
site region and also task annotations that mark the beginning and end of each task.

The two task annotation types use the same parallel site annotations. The following table lists the
annotations by category type, including the syntax for the C/C++, Fortran, and C# languages. Each has a
link to its detailed description.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Optional arguments are identified using square brackets, such as annotation([int expr]).

NOTE
To help you add annotations, use the Intel Advisorannotation assistant in the Survey windows or the
No Data message to copy and add code snippets or the Annotation Wizard if you use the Microsoft
Visual Studio* code editor (see Inserting Annotations Using the Annotation Wizard). You also need to
add the reference to the annotations definitions file.

Intel® Advisor User Guide  1  

133



Brief Description Name

Site and task annotations for a parallel site that contains a loop with a single task:

Start a parallel site that
contains a single task in a
loop.

C/C++: ANNOTATE_SITE_BEGIN(sitename);

Fortran: call annotate_site_begin(sitename)

C#: Annotate.SiteBegin(sitename);

Mark an iterative parallel
task in a loop. Place this
annotation near the start of
the loop body within the
parallel site's execution.

C/C++: ANNOTATE_ITERATION_TASK(taskname);

Fortran: call annotate_iteration_task(taskname)

C#: Annotate.IterationTask(taskname);

End a parallel site. The
parallel site terminates only
after all tasks that started
within it have completed.

C/C++: ANNOTATE_SITE_END([sitename]); // sitename is
optional

Fortran: call annotate_site_end

C#: Annotate.SiteEnd();

Site and task annotations for parallel site code that contains multiple tasks (all other situations):

Start a parallel site that
contains multiple tasks, or
task(s) within non-loop code
or complex loop code.

C/C++: ANNOTATE_SITE_BEGIN(sitename);

Fortran: call annotate_site_begin(sitename)

C#: Annotate.SiteBegin(sitename);

Start a parallel task. Must
execute within a parallel site
that contains multiple tasks,
or task(s) within non-loop
code or complex loop code.

C/C++: ANNOTATE_TASK_BEGIN(taskname);

Fortran: call annotate_task_begin(taskname)

C#: Annotate.TaskBegin(taskname);

End a parallel task. Must
execute within a parallel site
that contains multiple tasks,
or task(s) within non-loop
code or complex loop code.

C/C++: ANNOTATE_TASK_END([taskname]); //taskname is
optional

Fortran: call annotate_task_end

C#: Annotate.TaskEnd();

End a parallel site. The
parallel site terminates only
after all tasks that started
within it have completed.

C/C++: ANNOTATE_SITE_END([sitename]); // sitename is
optional

Fortran: call annotate_site_end

C#: Annotate.SiteEnd();

Lock Annotations: describe synchronization locations.

Acquire a lock (0 is a valid
address). Must occur within a
parallel site.

C/C++: ANNOTATE_LOCK_ACQUIRE(pointer-expression);

Fortran: call annotate_lock_acquire(address)

  1   Intel® Advisor User Guide

134



Brief Description Name

C#: Annotate.LockAcquire([int expr]);
// this C# argument is optional

Release a lock. Must occur
within a parallel site. C/C++: ANNOTATE_LOCK_RELEASE(pointer-expression);

Fortran: call annotate_lock_release(address)

C#: Annotate.LockRelease([int expr]);
// this C# argument is optional

Pause Collection and Resume Collection Annotations: lets you pause data collection to skip uninteresting
code.

Pause Collection. The target
program continues to
execute.

C/C++: ANNOTATE_DISABLE_COLLECTION_PUSH;

Fortran: call annotate_disable_collection_push()

C#: Annotate.DisableCollectionPush();

Resume Collection after it
was stopped by a Pause
Collection annotation.

C/C++: ANNOTATE_DISABLE_COLLECTION_POP;

Fortran: call annotate_disable_collection_pop()

C#: Annotate.DisableCollectionPop();

Special-purpose Annotations:
describe certain memory
allocations to avoid false
conflicts, disable reporting of
problems or analysis, or
enable reporting more detail
for memory accesses. These
apply only to the
Dependencies tool. For their
syntax, see the Special-
purpose Annotations help
topic.

See Also
Intel Advisor Annotation Definitions File
Site and Task Annotations for Simple Loops With One Task
Site and Task Annotations for Loops with Multiple Tasks
Adding Annotations in Your Source Code
Lock Annotations
Pause Collection and Resume Collection Annotations
Special-purpose Annotations
Annotating Code for Deeper Analysis
Copying Annotations and Build Settings Using the Annotation Assistant Pane
Inserting Annotations Using the Annotation Wizard

Intel® Advisor User Guide  1  

135



Annotation General Characteristics

Usage
Annotations typically expand to calls to one or more functions, with minimal additional code. When you run
the Suitability or Dependencies tools, the calls are instrumented during data collection.

Most annotations must be used in pairs that will execute in a begin-end sequence, such as the parallel site
annotations for a site with a single task:

• For C/C++: ANNOTATE_SITE_BEGIN(sitename); and ANNOTATE_SITE_END();
• For Fortran: call annotate_site_begin(sitename) and call annotate_site_end
• For C#: Annotate.SiteBegin(sitename); and Annotate.SiteEnd();

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Any mismatched annotations show up as error during data collection.

For example, if your C/C++ code has an ANNOTATE_SITE_BEGIN(); that is executed, but no corresponding
ANNOTATE_SITE_END();, you will see a message, such as: Error: Missing end site when you run the
Suitability or Dependencies tool.

You can also use annotations when they are dynamically paired. This lets you annotate code regions that
might have more than one exit point. For example, consider this parallel site with multiple tasks:

//Show that an end task annotation should be repeated for a jump out of a loop
ANNOTATE_SITE_BEGIN(for_site1);
  ANNOTATE_TASK_BEGIN(for_taskA);
  for ()
    {
     if()
       ANNOTATE_TASK_END();
       break;
       ANNOTATE_TASK_END();  // unreachable!
    }
       ANNOTATE_TASK_BEGIN(for_taskB);
       ... 
       ANNOTATE_TASK_END();
ANNOTATE_SITE_END();

With C/C++, when you add annotations after a loop that executes only one statement without opening and
closing braces ({ and }), add opening and closing braces to allow multi-statement execution of both the
original statement and the added annotation statement.

From a program source perspective, the annotation macros expand as a single executable statement (or to
nothing if null expansion is used). This allows annotations to be used in locations requiring a single statement
safely, as in this example:

  ...
    if (!initialized)
        ANNOTATE_RECORD_ALLOCATION(my_buffer, my_buffer_size);
  ...

Guidelines for Placing Annotations in Source Code
Intel Advisor guidelines for placing annotations in source code are similar to debugger breakpoint limitations.
The rules include:

  1   Intel® Advisor User Guide

136



• Place each annotation on a separate statement line. That is, do not place multiple annotations in a single
statement line.

• With C/C++ code, do not place annotations inside preprocessor macros.

The following shows correct coding using one annotation per statement line:

ANNOTATE_TASK_BEGIN(foo);
 call xyz();
ANNOTATE_TASK_END();

If you do not follow these guidelines, you may see unexpected Unmatched annotations in the Dependencies
Report window (see the Troubleshooting topic below) or annotation-related errors in the Suitability Report
window.

Semantics
When you run the Suitability or Dependencies tool to collect interactions between your tasks, the execution
of annotations and their implications for other operations are tracked by the tool during serial execution, and
the results of analysis are displayed in the corresponding Report.

When you run the Dependencies tool, the primary problems of interest are the data interactions that need
attention. However, some semantic errors in the use of the annotations in your program may also be
reported.

See Also
Site and Task Annotations for Simple Loops With One Task...
Dependencies Analysis
Copying Annotations and Build Settings Using the Annotation Assistant Pane
Troubleshooting Unexpected Unmatched Annotations in the Dependencies Report
Fixing Annotation-related Errors Detected by the Suitability Tool
Inserting Annotations Using the Annotation Wizard
Data Sharing Problems

Site and Task Annotations for Simple Loops With One Task

Parallel site annotations mark the beginning and end of the parallel site. In contrast, to mark an entire simple
loop body as a task, you only need a single iteration task annotation in the common case where the Survey
tool identifies a single simple loop that consumes much of an application's time. In many cases, a single
time-consuming simple loop structure may be the only task needed within a parallel site. This annotation
form is also the easiest to convert to parallel code.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

NOTE
If the task's code does not include the entire loop body, or if you need multiple tasks in one parallel
site or for complex loops, use the task begin-end annotation pair to mark each task.

Use the general site/task annotation form for time-consuming code not in a loop, for complex loops
containing task(s), or cases that require multiple tasks within a parallel site.

Syntax: Simple Loops With One Task
Parallel site annotations mark the parallel site that wraps the loop:

C/C++: ANNOTATE_SITE_BEGIN(sitename); and ANNOTATE_SITE_END();

Intel® Advisor User Guide  1  

137



Fortran: call annotate_site_begin(sitename) and call annotate_site_end

C#: Annotate.SiteBegin(sitename); and Annotate.SiteEnd();

The iteration task annotation occurs within the parallel site. Place this annotation near the start of the loop
body to mark an entire simple loop body as a task:

C/C++: ANNOTATE_ITERATION_TASK(taskname);

Fortran: call annotate_iteration_task(taskname)

C#: Annotate.IterationTask(taskname);

For the C/C++ ANNOTATE_SITE_END(); annotation, the sitename argument is optional.

The sitename and taskname must follow the rules for annotation name arguments:

• For C/C++ code, the sitename must be an ASCII C++ identifier. This should be a name you will
recognize when it appears in Intel Advisor tool reports.

• For Fortran code, the sitename must be a character constant. This should be a name you will recognize
when it appears in Intel Advisor tool reports.

• For C# code, the sitename must be a string. This name should be a string that you will easily remember
when it appears in Intel Advisor tool reports.

Examples: Simple Loops With One Task
The following C/C++ code fragment shows a parallel site for a loop with a single task, where the task
includes the entire simple loop body:

 ...
   ANNOTATE_SITE_BEGIN(sitename);
   for (i=0; i<N; i++) {
     ANNOTATE_ITERATION_TASK(taskname);
     func(i);
   }
   ANNOTATE_SITE_END();
 ...

The following Fortran code fragment shows a parallel site for a loop with a single task, where the task
includes the entire simple loop body:

 ...
 call annotate_site_begin("sitename")
   do i=1,size
     call annotate_iteration_task("taskname")
     call func(i)
   end do
 call annotate_site_end
 ...

The following C# code fragment shows a parallel site for a loop with a single task, where the task includes
the entire simple loop body:

 ...
 Annotate.SiteBegin("sitename");
 for (int i = 0; i < N; i++) {
    Annotate.IterationTask("taskname"); 
    func(i);

  1   Intel® Advisor User Guide

138



  }
 Annotate.SiteEnd();
  ...

With Visual Studio projects, parallel sites may span project boundaries, but the parallel sites and their related
annotations should be placed within the set of projects that the startup project depends on. You may need to
use the Visual Studio* Project Dependencies context menu item to add appropriate dependencies - see the
help topic Troubleshooting Unexpected Unmatched Annotations.

The nqueens_Advisor C++ sample and the nqueens_Fortran Fortran sample demonstrate this form of
site/task annotations. For example, the C++ annotated code in nqueens_annotated.cpp:

ANNOTATE_SITE_BEGIN(solve);
for(int i=0; i<size; i++) {
  // try all positions in first row
  // create separate array for each recursion
   ANNOTATE_ITERATION_TASK(setQueen);
   // int * queens = new int[size]; //array representing queens placed on a chess ...
   // ADVISOR COMMENT: This is incidental sharing because all the tasks are using ...
   setQueen(queens, 0, i);
}
ANNOTATE_SITE_END();

The help topic Annotating Parallel Sites and Tasks describes adding parallel sites and tasks.

See Also
Site and Task Annotations with Multiple Tasks
Annotating Parallel Sites and Tasks
Dependencies Analysis
Annotation General Characteristics
Inserting Annotations Using the Annotation Wizard
Copying Annotations and Build Settings Using the Annotation Assistant Pane
Troubleshooting Unexpected Unmatched Annotations

Site and Task Annotations for Parallel Sites with Multiple Tasks

Parallel site annotations mark the beginning and end of the parallel site. Similarly, begin-end parallel task
annotations mark the start and end of each task region. Use this begin-end task annotation pair if there are
multiple tasks in a parallel site, if the task code does not include all of the loop body, or for complex loops or
code that requires specific task begin-end boundaries, including multiple task end annotations.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Syntax: Parallel Sites with Multiple Tasks
Parallel site annotations that mark the parallel site:

C/C++: ANNOTATE_SITE_BEGIN(sitename); and ANNOTATE_SITE_END();

Fortran: call annotate_site_begin(sitename) and call annotate_site_end

C#: Annotate.SiteBegin(sitename); and Annotate.SiteEnd();

Parallel task annotations that mark each task within the parallel site:

C/C++: ANNOTATE_TASK_BEGIN(taskname); and ANNOTATE_TASK_END();

Intel® Advisor User Guide  1  

139



Fortran: call annotate_task_begin(taskname) and call annotate_task_end

C#: Annotate.TaskBegin(taskname); and Annotate.TaskEnd();

For the C/C++ ANNOTATE_TASK_END(); annotation, the taskname argument is optional.

The taskname must follow the rules for annotation name arguments:

• For C/C++ code, the taskname must be an ASCII C++ identifier. This should be a name you will
recognize when it appears in Intel Advisor tool reports.

• For Fortran code, the taskname must be a character constant. This should be a name you will recognize
when it appears in Intel Advisor tool reports.

• For C# code, the taskname must be a string. This name should be a string that you will easily remember
when it appears in Intel Advisor tool reports.

If you previously used site and task annotations for simple loops with one task and need to convert the task
to this general, multiple task form, replace the single iteration loop annotation with a pair of task begin and
task end annotations that mark the task region. Both forms use the same parallel site annotations.

Examples: Parallel Site, Multiple Tasks Not in a Loop
The stats C++ sample application shows task parallelism with multiple tasks that are in a parallel site but
not in a loop. In this case, several related statements do a lot of computation work and each can be a
separate task:

ANNOTATE_SITE_BEGIN(MySite1);
  cout << "Start calculating running average..."<<endl;
  ANNNOTATE_TASK_BEGIN(MyTask1); 
  runningAvg(vals, SIZE, rnAvg);
  ANNOTATE_TASK_END(MyTask1);
    
  cout << "Start calculating running standard deviation..."<<endl;
  ANNOTATE_TASK_BEGIN(MyTask2);
  runningStdDev(vals, SIZE, rnStdDev);
  ANNOTATE_TASK_END(MyTask2);
ANNOTATE_SITE_END(MySite1);

In addition to calling functions that perform the computations, there are other cases where the Survey tool
may indicate that a single statement consumes a lot of CPU time. For example, a Fortran array assignment
for a very large array.

Examples: Parallel Site, Multiple Tasks Within a Loop
The annotations in the following C/C++ code fragment specify that each iteration of the loop can be two
separate tasks, potentially running in parallel with any other iteration and the other task.

 ...
 ANNOTATE_SITE_BEGIN(sitename);
 for (I=0; i<N; I++) {
    ANNOTATE_TASK_BEGIN(task1);
    func1(I);
    ANNOTATE_TASK_END();
    ANNOTATE_TASK_BEGIN(task2);
    func2(I);
    ANNOTATE_TASK_END();
 }
 ANNOTATE_SITE_END();
 ...

  1   Intel® Advisor User Guide

140



The following Fortran code fragment also shows the Fortran site and task annotations, where each iteration of
the loop can be two separate tasks, potentially running in parallel with any other iteration and the other task.

 ...
 call annotate_site_begin("sitename ")
   do i=1,size 
      call annotate_task_begin("task1")
      call func1(i)
      call annotate_task_end
      call annotate_task_begin("task2")
      call func2(i)
      call annotate_task_end
   end do
 call annotate_site_end
 ...

The following C# code fragment also shows the C# site and task annotations, where each iteration of the
loop can be two separate tasks, potentially running in parallel with any other iteration and the other task.

 ...
 Annotate.SiteBegin("sitename");
 for (int i = 0; i < N; i++) {
   Annotate.TaskBegin("task1");    
   func1(i);
   Annotate.TaskEnd(); 
   Annotate.TaskBegin("task2");    
   func2(i);
   Annotate.TaskEnd();
 }
 Annotate.SiteEnd();
 ...

The code for each task will be marked between task begin and task end annotation pairs inside a parallel
site. Code that is not executed in any task is executed by the thread entering the site, which may run in
parallel with the identified tasks. In this example, the loop control code that increments i and the compares
i with N is assumed to be executed separately from the explicitly specified tasks. This means that you may
see conflicts between tasks, and the code outside of any task.

When you use the Dependencies tool on the above code, the tool would report data conflicts on global data
accessed by either func1 or func2 on a later loop iteration.

The help topic Annotating Parallel Sites and Tasks describes adding parallel sites and tasks.

Parallel Site and Task Placement
Consider the following C/C++ code:

 ...
 ANNOTATE_SITE_BEGIN(sitename);
 for (i=0; i<N; i++) {
     ANNOTATE_ITERATION_TASK(taskname);
     func(i);
 }
 ANNOTATE_SITE_END();
 ...

 ...
  for (i=0; i<N; i++) {
     ANNOTATE_SITE_BEGIN(sitename);
     ANNOTATE_TASK_BEGIN(taskfunc1);
     func1(i);
     ANNOTATE_TASK_END();
     ANNOTATE_TASK_BEGIN(taskfunc2);
     func2(i);
     ANNOTATE_TASK_END();
     ANNOTATE_SITE_END();
  }
 ...

Intel® Advisor User Guide  1  

141



In the simple case on the left, the single annotated site encapsulates the entire loop. This causes all of the
iterations of the loop to potentially run all at the same time. Use this simple form of loop annotations (two
site annotations and one iteration task annotation) for loops whenever possible.

In the case on the right, you are not specifying that all of the loop iterations will run in parallel, but rather
that the opportunities for parallelism are only within a single iteration of the loop. In this case, only the
invocations of func1 and func2 from one loop iteration at a time are considered as sources of potential
parallelism. So, in the case on the right, you will never see conflicts between successive invocations of
func1, because you are specifying that you do not intend to run them in parallel.

Graphically comparing what the model considers to be in parallel for these two cases, with time progressing
from left to right for each case:

The boxes shown overlapping vertically above are modeled as being executed in parallel.

The execution of ANNOTATE_TASK_BEGIN(taskname) and ANNOTATE_TASK_END() pair delimits the dynamic
extent of a task. Each time the annotations are executed during Intel Advisor Dependencies or Suitability
analysis to collect interactions between tasks, a dynamic extent is identified that is associated with the most
closely containing dynamic site. Each task is assumed to be independent and able to be run in parallel with
all other tasks inside the containing sites.

Task annotations in a multiple-task parallel site must use the following rules:

• According to execution paths, each begin task annotation must be terminated by an end task annotation.
• Task boundaries must be within parallel site boundaries.
• The argument to the task annotations follow the rules for annotation name arguments.

The only times tasks are not modeled to be executing in parallel are:

1. When tasks are using synchronization, the specific code inside the synchronized region will not be
modeled to be in parallel with other code synchronized using the same lock addresses.

2. When one task creates another task, the code of the parent task executed before the second task is
created is assumed to execute before the task creation. However, any code executed after the task
creation is assumed to be in parallel with the nested task. For example:

  ...
  ANNOTATE_SITE_BEGIN(sitename);
  for (I=0; i<N; I++) {
      ANNOTATE_TASK_BEGIN(taskfunc1a);
      func1a(I);
      ANNOTATE_TASK_BEGIN(taskfunc1a);

  1   Intel® Advisor User Guide

142



      func2(I);
      ANNOTATE_TASK_END();
      func1b(I);
      ANNOTATE_TASK_END();
  }
  ANNOTATE_SITE_END();
  ...

In this example, func1a(I) is not in parallel with either func2(I) or func1b(I). However, func2(I) and
func1b(I) are modeled as being executed in parallel. This semantic interpretation allows modeling of
recursion where nested calls create tasks that execute in parallel. In this example, note that while this
parallel relationship holds for tasks inside one iteration, tasks from different loop iterations will all be in
parallel because they have no special relationship. For example, func1a(I) from one loop iteration may be
executed concurrently with func2(I) in a different iteration.

While you are checking Dependencies, the Dependencies tool assumes that all tasks in a given site may
execute in parallel unless there is explicit synchronization. For example, in this case all N iterations of func1
and func2 will execute in parallel.

  ...
  ANNOTATE_SITE_BEGIN(sitename);
  for (I=0; i<N; I++) {
      ANNOTATE_TASK_BEGIN(taskfunc1);
      func1(I);
      ANNOTATE_TASK_END();
      ANNOTATE_TASK_BEGIN(taskfunc2);
      func2(I);
      ANNOTATE_TASK_END();
  }
  ANNOTATE_SITE_END();
  ...

If you want to model other kinds of relationships, for example func2 invocations will have some form of
serialization, that constraint needs to be expressed using lock annotations that mark a lock that is acquired
and released for the duration of that task's execution.

To select where to add task annotations may take some experimentation, considering factors such as average
instance time and number of iterations (provided in the Suitability Report). If your parallel site has nested
loops and the computation time used by the innermost loop is small, consider adding task annotations
around the next outermost loop. See help topics such as How Big Should a Task Be?.

See Also
Lock Annotations
Inserting Annotations Using the Annotation Wizard
Copying Annotations and Build Settings Using the Annotation Assistant Pane
Annotating Parallel Sites and Tasks
How Big Should a Task Be?
Dependencies Analysis
Fixing Sharing Problems

Lock Annotations

Lock annotations mark where you expect you will be adding explicit synchronization.

Intel® Advisor User Guide  1  

143



Syntax

C/C++: ANNOTATE_LOCK_ACQUIRE(pointer-expression); and
ANNOTATE_LOCK_RELEASE(pointer-expression);

Fortran: call annotate_lock_acquire(address) and call
annotate_lock_release(address)

C#: Annotate.LockAcquire([int expr]); and Annotate.LockRelease([int expr]);
(for each annotation, its argument is optional)

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

With C/C++ and Fortran programs, all of the lock annotations use an address value to represent distinct
locks in your final program. You can use the address value 0 to represent a global “lock” that is the same
across the entire program. With C# programs, the argument is an int with a default value of 0 (zero).

Intel recommends that you start by using a default lock, unless you need additional locks for performance
scaling.

The modeling step is aware of the standard locking routines in the Windows* OS API, as well as Intel®
oneAPI Threading Building Blocks (oneTBB) and OpenMP*, so there is no need to annotate existing locking.
Lock annotations are only required for cases where you are not already using synchronization.

The lock-acquire and lock-release annotations denote points in your program where you intend to acquire
and release locks. These annotations take a single parameter, which is an address that you choose.

For example, if you decided you would have a lock used only for glob_variable, you specify the same memory
address for all cases where you are protecting access to glob_variable, to represent that specific lock. The
sample below uses the variable's address to represent the lock that will be associated with glob_variable.

You typically can use one of the following four values, using a finer granularity of synchronization when
necessary:

• The value of 0 (zero) to represent a single unspecified lock that is the same across the entire program.
• The address of a data structure or other aggregation of data. This represents using a single lock for the

collection of data.
• The address of a member of the data collection. This represents finer-grained locking than the previous

value and provides better performance.
• A variable representing a lock as you move toward final parallel code.

This C/C++ example shows the intent for the parallel program to acquire and release a lock around the
access to the global variable glob_variable in each task:

    ...
    extern int glob_variable = 0;
    ...
    ANNOTATE_SITE_BEGIN(sitename);
    for (I=0; i<N; I++) {
        ANNOTATE_TASK_BEGIN(taskfunc1);
        func1(I);
        ANNOTATE_LOCK_ACQUIRE(&glob_variable);
        glob_variable++;
        ANNOTATE_LOCK_RELEASE(&glob_variable);
        func2(I);
        ANNOTATE_TASK_END();
    }
    ANNOTATE_SITE_END();
    ...

  1   Intel® Advisor User Guide

144



This Fortran example also shows the intent to acquire and release a lock around the access to the global
variable glob_variable in each task:

 ...
 integer :: glob_variable = 0 

 call annotate_site_begin("sitename")
   do i=1,size
      call annotate_task_begin("taskfunc1")
      call func1(i)
      call annotate_lock_acquire(0)
      glob_variable = glob_variable + 1
      call annotate_lock_release(0)
      call func2(i)
      call annotate_task_end
   end do
 call annotate_site_end
 ...

This C# example also shows the intent to acquire and release a lock around the access to the global variable
glob_variable in each task:

 ...
 public int glob_variable {
    get{return nrOfSolutions;}
    set{nrOfSolutions = value;}
 }

 Annotate.SiteBegin("sitename");
 for (int i = 0; i < N; i++) {
      Annotate.TaskBegin("taskfunc1");    
      func1(i);
      Annotate.LockAcquire();
      glob_variable++;  
      Annotate.LockRelease();  
      func2(i);
      Annotate.TaskEnd();
 }
 Annotate.SiteEnd();
  ...

The following C/C++ example is a typical use of a data item's address. It shows the use of an Entity
address, where there is a vector of integers that are each going to have an associated lock, because the
program is counting random elements of the array that will be accessed by different tasks, some of which
may occasionally have the same random value. The text from adding annotations appears in bold below.

   struct Entity {
       int val;
   };
   ...
   std::vector<Entity> v;
   ...

   for (int I=0; i<v.size()*10000; I++) {
       int random_int = random_n();
       ANNOTATE_LOCK_ACQUIRE(&v[random_int]);
          v[random_int].val++;
       ANNOTATE_LOCK_RELEASE(&v[random_int]);
   }
   ...

Intel® Advisor User Guide  1  

145



Use Lock Annotations
Lock addresses are the basis of lock annotations, and each lock address corresponds to the intent to create a
unique lock, or other synchronization mechanism, in the final program. Tasks sharing a parallel site are
modeled as executing in parallel unless you describe synchronization using lock addresses, or known locking
mechanisms.

See Also
Special-purpose Annotations
Synchronize Independent Updates
Data Sharing Problems
Insert Annotations Using the Annotation Wizard
Copy Annotations and Build Settings Using the Annotation Assistant Pane

Pause Collection and Resume Collection Annotations

The Pause Collection and Resume Collection annotations let you stop and resume data collection to skip
uninteresting parts of the target program's execution. If you pause data collection, the target executable
continues to execute until you resume data collection. Pausing data collection minimizes the amount of data
collected and speeds up the analysis of large applications.

In addition to these annotations, you can click certain buttons on the side command toolbar to pause or
resume data collection:

• You can start the Survey and Suitability tools with data collection either paused or enabled. For example,
the Start Paused button starts executing the target being analyzed with data collection (analysis)
disabled. Also, once the tool is started, you can pause and resume data collection by using the Pause or
Resume buttons or by executing the equivalent Pause Collection and Resume Collection annotations.

• You start the Dependencies tool with data collection enabled, but you can pause data collection either by
using the Pause button or by executing the equivalent Pause Collection annotation. You can add Pause
Collection and Resume Collection annotations as described below.

Pause Collection
This annotation completely stops the analysis of your program until the matching Resume Collection (disable-
collection-pop) annotation is executed. Use this annotation to reduce the analysis overhead for certain
uninteresting parts of your program. This annotation is recognized by the Dependencies, Survey, and
Suitability tools. Because this annotation completely disables monitoring of most annotations, add it carefully
in your source code, such as outside a parallel site. If there are multiple pushes, all have to be popped before
re-enabling collection.

Syntax:

C/C++: ANNOTATE_DISABLE_COLLECTION_PUSH;

Fortran: call annotate_disable_collection_push()

C#: Annotate.DisableCollectionPush();

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

This annotation takes no arguments.

NOTE
For C/C++, this annotation does not have an argument list.

  1   Intel® Advisor User Guide

146



Resume Collection
This annotation resumes the analysis previously stopped by a Pause Collection (disable-collection-push)
annotation. This annotation is recognized by the Dependencies, Survey, and Suitability tools. Because the
Pause Collection annotation completely disables monitoring of most annotations, add this Resume Collection
annotation carefully in your source code, such as outside a parallel site.

Syntax:

C/C++: ANNOTATE_DISABLE_COLLECTION_POP;

Fortran: call annotate_disable_collection_pop()

C#: Annotate.DisableCollectionPop();

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

This annotation takes no arguments.

Special-purpose Annotations

All Intel Advisor special-purpose annotations are recognized by the Dependencies tool, which observes
memory accesses in great detail. Some of these annotations prevent the Dependencies tool from reporting
all or specific data sharing problems, while one (Observe Uses of Storage) provides more detail about
memory accesses.

NOTE
In the C/C++ syntax descriptions below, addresses and sizes are C++ expressions. Similarly, the
Fortran var is a Fortran integer address.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

This topic describes the following special-purpose annotations:

• Inductive Expressions Uses
• Reduction Uses
• Observe Uses of Storage
• Clear Uses of Storage
• Disable Observation Annotations
• Enable Observation Annotations
• Memory Allocation Annotations

Inductive Expressions Uses
Induction variables (such as ++i) can often be eliminated when you add parallel framework code. Use this
annotation to disable reporting data sharing problems for the specified memory region. This annotation is
only recognized by the Dependencies tool.

Terminate this annotation with a Clear Uses of Storage annotation.

Syntax:

C/C++: ANNOTATE_INDUCTION_USES(address, size);

Fortran: call annotate_induction_uses(var)

C#: Not supported

Intel® Advisor User Guide  1  

147



• address is a C++ identifier or expression that provides information about the memory region for this
annotation.

• size is a C++ identifier or expression that provides information about the memory region for this
annotation.

• var is a Fortran integer address that provides information about the memory region for this annotation.

Reduction Uses
Reduction variables (such as sum += data[i]) can often be replaced with reduction operations when you
add parallel framework code. Use this annotation to disable reporting data sharing problems for the specified
memory region. This annotation is only recognized by the Dependencies tool.

Terminate this annotation with a Clear Uses of Storage annotation. For example, with C/C++ code:

 ANNOTATE_REDUCTION_USES(&sum, 4); 
    sum += a[i];
 ANNOTATE_CLEAR_USES(&sum); 

Syntax:

C/C++: ANNOTATE_REDUCTION_USES(address, size);

Fortran: call annotate_reduction_uses(var)

C#: Not supported

• address is a C++ identifier or expression that provides information about the memory region location for
this annotation.

• size is a C++ identifier or expression that provides information about the memory region location for this
annotation.

• var is a Fortran integer address that provides information about the memory region for this annotation.

Observe Uses of Storage
Use this annotation to report all accesses to the specified memory region. For example, this can help you find
all of the uses of a variable to determine how you should refactor your code. This annotation gets reported as
a Memory watch remark message in the Dependencies Report. This annotation is only recognized by the
Dependencies tool.

NOTE
For performance reasons, this annotation may not report memory access for variables stored on the
stack.

To terminate this annotation, add a Clear Uses of Storage annotation.

Syntax:

C/C++: ANNOTATE_OBSERVE_USES(address, size);

Fortran: call annotate_observe_uses(var)

C#: Not supported

• address is a C++ expression that provides information about the memory region location for this
annotation.

• size is a C++ expression that provides information about the memory region location for this annotation.

  1   Intel® Advisor User Guide

148



• var is a Fortran integer address that provides information about the memory region for this annotation.

Clear Uses of Storage
Use this annotation to terminate these annotations: Inductive Expressions Uses, Reduction Uses, and
Observe Uses of Storage. For example, when the C/C++ ANNOTATE_CLEAR_USES(); annotation terminates
ANNOTATE_OBSERVE_USES();, the Dependencies tool stops reporting all uses of the specified variable. This
annotation is only recognized by the Dependencies tool.

Syntax:

C/C++: ANNOTATE_CLEAR_USES(address);

Fortran: call annotate_clear_uses(var)

C#: Not supported

• address is a C++ identifier or expression that provides information about the memory region location for
this annotation.

• var is a Fortran integer address that provides information about the memory region for this annotation.

Disable Observation Annotations
This annotation disables the reporting of problems until the matching Enable Observation Annotation is
executed. After executing this annotation, the Dependencies tool does not report problems but continues to
monitor other annotations so it can resume reporting problems if a matching Enable Observation Annotation
is executed. This can be useful to suppress Dependencies problems that are false-positives or not useful in
your program. Unlike ANNOTATE_CLEAR_USES; - which applies to a specific memory area - this annotation
remains active until a disable-observation-pop annotation is executed to enable annotations. This annotation
is only recognized by the Dependencies tool.

Syntax:

C/C++: ANNOTATE_DISABLE_OBSERVATION_PUSH;

Fortran: call annotate_disable_observation_push()

C#: DisableObservationPush();

This annotation takes no arguments.

Enable Observation Annotations
This annotation enables the reporting of Dependencies stopped by a previous Disable Observation Annotation
was executed to disable observation annotations. This annotation is only recognized by the Dependencies
tool.

Syntax:

C/C++: ANNOTATE_DISABLE_OBSERVATION_POP;

Fortran: call annotate_disable_observation_pop()

C#: Annotate.DisableObservationPop();

This annotation takes no arguments.

Intel® Advisor User Guide  1  

149



Memory Allocation Annotations
Memory allocation annotations apply only to C/C++ programs. They describe non-standard or user-defined
memory allocations to avoid false conflicts reported by the Dependencies tool. Only use these Memory
allocation annotations if you see false conflicts related to memory allocation in the Dependencies tool. This
annotation is only recognized by the Dependencies tool.

Heap-allocated memory can be freed and then reused. If the same memory region is allocated during one
task, then freed, and then re-allocated for use by a second task, this can confuse Dependencies tool analysis,
because it appears as if two threads were accessing the same parallel memory region without
synchronization. When the program runs in parallel runs in parallel, each thread could allocate different
memory, so there is not really a data race.

The Dependencies tool understands the standard library memory allocation routines, such as malloc and
free, operator new, and so on. However, if you have a user-defined memory allocator, the Dependencies tool
may not accurately understand the memory relationships between different tasks. If your application utilizes
a user-defined memory allocator, you may need to use these annotations to help the Dependencies tool
understand the relationships. You place:

• ANNOTATE_RECORD_ALLOCATION after a call to your non-standard or user-defined allocator.
• ANNOTATE_RECORD_DEALLOCATION before the call to your non-standard or user-defined deallocator.

If you do not have such an allocator you can skip these annotations.

If you do have a user-defined memory allocator and you omit these annotations, you may see the effects as
Memory reuse problems for the storage that is actually allocated by your allocator, and Data
communication problems for the control information used by the allocator.

Syntax:

C/C++: ANNOTATE_RECORD_ALLOCATION(address, size); and
ANNOTATE_RECORD_DEALLOCATION(address);

Fortran: Not supported

C#: Not supported

ANNOTATE_RECORD_ALLOCATION(address, size); specifies the storage allocated by a user-memory
allocator with a specific address and size:

1. The address is a C++ expression that provides information about the memory region location for this
annotation.

2. The size is a C++ expression that provides information about the memory region size for this
annotation.

Use ANNOTATE_RECORD_DEALLOCATION(address); each time your deallocator is freeing memory.

Static Loop Scheduling Annotations
Loop scheduling annotation inform the Suitability tool that the following loop will be divided into equal-sized
(or as equal as possible) chunks. By default, chunk size is loop_count/number_of_threads.

Syntax:

C/C++: ANNOTATE_AGGREGATE_TASK;

Fortran: Not supported

C#: Not supported

See Also
Tips for Annotation Use with C/C++ Programs

  1   Intel® Advisor User Guide

150



Pause Collection and Resume Collection Annotations
Annotation General Characteristics
Annotation Types Summary
Inserting Annotations Using the Annotation Wizard
Copying Annotations and Build Settings Using the Annotation Assistant Pane

Annotation Definitions Files

Intel® Advisor provides macro or routine definitions that enable use of its annotations for each language:

• For C/C++, the advisor-annotate.h header file defines macros that begin with ANNOTATE_, so you can
use annotations such as ANNOTATE_SITE_BEGIN();.

• For Fortran, the advisor_annotate module declares subroutines starting with annotate_, so you can
call annotations such as annotate_site_begin().

• For C# on Windows* OS systems, the AdvisorAnnotate header declares an Annotate class containing
member routines, so you can use annotations such as Annotate.SiteBegin();.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Reference the Annotation Definitions from Your Source Files

Before you add Intel® Advisor annotations into your source files, you need to reference the definitions for the
Intel® Advisor annotations:

• For C/C++, add: #include "advisor-annotate.h" or #include <advisor-annotate.h> (see
Including the Annotations Header File in C/C++ Sources).

• For Fortran, add: use advisor_annotate
• For C#, add: using AdvisorAnnotate; (Windows OS systems only)

Where to Add USE Statements in Fortran Programs
Fortran does not have file scope declarations, so the USE statement needs to be inside the subroutine,
function or main program where the annotation(s) appear. For example:

program F_example

! The main program does not contain annotations, do not add use advisor_annotate here!
! some code . . .
!
subroutine F_sub 
! This subroutine contains annotations, so add the use advisor_annotate statement
use advisor_annotate
! some code . . .
! add Intel Advisor site and task annotations around compute intensive code
! For example, begin a parallel site: call annotate_site_begin(site1) 
!
end subroutine F_sub
! some code . . .
end program F_example

If the call is in a module procedure, the USE statement can be at the module level. For more details about
placing USE statements, see your Fortran compiler documentation.

Intel® Advisor User Guide  1  

151



Specify Build Settings
Specific build settings are needed for each language. Certain build settings are needed for each module that
contains Intel® Advisor annotations, such as specifying the directory where the annotations definitions are
located. For C/C++ and Fortran applications, other build (compiler and linker) settings are needed for all
modules in an application, such as full debug information. Read the Build Settings... topics by clicking the
links below under See Also for your language.

Redistribute the Annotations Definition File(s)
You only need annotations in your code when you are using the Intel® Advisor Suitability and Dependencies
tools to predict your serial program's parallel behavior. Before you distribute your application, you will
typically replace these annotations when you add the parallel framework code. However, because the
annotations do not change how your applications runs unless you use Intel® Advisor tools, you can distribute
your application with the annotations still present.

For information about redistributing the annotation definition files, see the installed End User License
Agreement (EULA.rtf or EULA.txt) and the redist.txt file installed in the Intel® Advisor.../
documentation/<locale> directory.

Special Considerations for C/C++ Applications
With C/C++ programs:

• If your program encounters errors when you include the advisor-annotate.h file, see Handling
Compilation Issues that Appear After Adding advisor-annotate.h (primarily for Windows systems).

• On Windows OS systems: If you do need to modify the advisor-annotate.h file, you can add a copy
of it for a specific project or solution. If the version of advisor-annotate.h changes, you will need to
update your copies of the file. See Adding a Copy of the Annotations Include File to Your Visual Studio
Project.

If you do not need to modify this file, you can reference the same installed advisor-annotate.h from
multiple projects or solutions as a read-only file. If you use the Intel® Advisor environment variable and
the version of Intel® Advisoradvisor-annotate.h changes, you only need to change this reference if the
environment variable name changes, such as for a major version. Thus, using a read-only version can
minimize future maintenance.

• On Linux* OS systems: Except in very rare circumstances, you can reference the same installed
advisor-annotate.h from multiple projects or solutions as a read-only file.

• Since the annotations do not change the values computed by your program, you can change the
expansions of the macro, or suppress expansion altogether, as described in Controlling the Expansions in
advisor-annotate.h.

Reference the Annotations Definitions Directory

You need to specify the directory containing the Intel® Advisor definition file as an additional include directory
when you compile your program. Intel® Advisor installs its annotation definition files into a default directory
on your system. For example:

• With a Visual Studio project or solution for a C/C++ or Fortran application, you need to specify the
property Additional Include path. You can use the environment variable ADVISOR_<version>_DIR
followed by the include directory.

• With the C/C++ or Fortran command line, use the compiler option -Idir (Linux* OS) or /Idir (Windows*
OS), where dir is the directory containing the annotation definition files. You can use the environment
variable ADVISOR_<version>_DIR followed by the include directory.

• With Fortran modules, you also need to specify the library name and directory of the annotations
definitions to the linker.

• With a Visual Studio project or solution for a C# program, you need to specify Properties > Add >
Existing Item and browse to and select the annotations definitions file.

  1   Intel® Advisor User Guide

152



NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Tip
For the most current information on optimal C/C++ and Fortran build settings, see Build Your Target
Application.

Add a Copy of the C/C++ Annotation Definition File to Your Visual Studio* Project

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

If you do not want to refer to the installed C/C++ annotation include header file, you can reference a
solution- or project-specific copy of it.

To add a project-specific annotations include file to your Visual Studio project:

1. In Solution Explorer, right-click the project where you want to create the Intel® Advisor annotation
header file.

2. Click Add > New Item... The Add New Item dialog box opens.
3. Under Installed Templates, click Intel Advisor [version].

4. In the middle column, click advisor-annotate.

5. Type a file name for this include file, such as advisor-annotate.h for the C/C++ header file.

6. Verify the directory containing the solution- or project-specific header file and click Add.

In Solution Explorer, a copy of the header file appears as a file under the project folder.

See Also
Including the Annotations Header File in C/C++ Sources
Inserting Annotations Using the Annotation Wizard

Include the Annotations Header File in C/C++ Sources

When you add annotations to your C/C++ source files, you also need to include the Intel® Advisor annotation
header file advisor-annotate.h in those files. Use the code editor to type the line or use the context menu
item to add a #include directive.

To include the annotations C/C++ header file, specify one of the following forms listed below:

Use the quoted form to have the preprocessor first
search for the header file in the same directory as
the source file that contains the #include
directive, and then other directories (see your
compiler documentation for details).

#include "advisor-annotate.h"

Use the angle bracket form to have the
preprocessor first search for the header file in the
directory specified by the /I option (Additional
Include Directories), and then other directories (see
your compiler documentation for details).

#include <advisor-annotate.h>

To use the include file with Fortran sources, see Intel® Advisor Annotation Definitions File.

Intel® Advisor User Guide  1  

153



See Also
Insert Annotations Using the Annotation Wizard
Set Intel Advisor Environment Variables Use this topic to get guidance on setting up environment
variables for Intel® Advisor.

Add Annotations into Your Source Code

You can add Intel® Advisor annotations in your source code by:

• Copying annotations with the annotation assistant in the Survey Report window, Survey Source
window, or the No Data message. Use the annotation assistant to copy the main annotations for parallel
sites, tasks, and locks. For example, the annotation assistant appears in the lower part of the Survey
Report window in the Assistance tab.

• On Windows* OS only: When using the Visual Studio* code editor, you can use the Annotation Wizard
to select an annotation type and add the annotations and their arguments into your code. You can use the
Annotation Wizard to add parallel site, task, lock, pause/resume data collection, and special-purpose
annotations.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

NOTE
If your sources include huge source files that contain annotations, be aware that only the first 8 MB of
each file will be parsed for annotations. If not all of your annotations are being parsed in such huge
source files, consider breaking each huge source file into several source files.

Insert Annotations Using the Annotation Wizard

Adding annotations requires you to reference the annotation definitions include file as well as include it from
each source file that contains Intel® Advisor annotations.

NOTE
The Annotation Wizard is supported only in the Microsoft Visual Studio* code editor. Alternatively, you
can copy annotation code snippets using any editor.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

Use the annotation wizard to add Intel® Advisor annotations to your program.

1. In the Visual Studio* editor, select the code section that you wish to annotate.
2. Right-click to open the context menu and select Intel Advisor [version]> Annotation Wizard...

The Annotation Wizard opens with the default Annotate Site – select task annotations below
annotation selected:

  1   Intel® Advisor User Guide

154



3. From the Choose the Annotation Type drop-down, choose the appropriate annotation type. For
example, if you want to add the parallel site (parallel code region) annotations and a single task
annotation within that site, start by selecting the site code block and choose Site and Iteration Task
Snippet, single iteration task in loop. In other cases, you may need to add two separate
annotations - one for the site and one for the task(s). In this case, after adding them, move individual
annotation lines around your existing site and task(s) code.
Your code appears in the Example section of the dialog, with the annotation line(s) highlighted in red
font.

4. Click Next to configure the parameters of the opening annotation line.
For Annotation types that include parameters, page 2 of the wizard appears. Site, task, and other
annotations take name arguments. You should replace the added name with a name that helps you
quickly identify its source location. For example, if MySite1 is the argument to a site annotation,
replace it with a meaningful function or loop name. The added name must be unique amongst the
annotations in this project. For Annotation types that do not include parameters, go to step 8.

5. Specify the parameter values for the first parameter in the Annotation type, or use the default text that
appears in the wizard.
The highlighted annotation line now has your specified parameter value entered in the annotation line.

6. Click Next to configure, or keep the default text for the next parameter. Repeat for all the parameters.
The highlighted annotation line now has all parameters filled in with values entered in the annotation
line.

7. Click Next to go to page 3 of the wizard and review the annotation line(s) before adding it to you code.
8. Click Finish to add the annotation line with your specified parameters to your code.

The Wizard closes and the editor shows the annotation lines added to the code.

The annotation line(s) are added in the code editor.

If a loop only executes a single statement and does not contain an opening brace ({) to allow multi-
statement execution, add braces ({ and }) around the existing statement and the annotation.

Code After Adding a Pair of Parallel Site Annotations
The following screen capture shows the C/C++ annotation lines for an annotation of type Annotate Site,
where the site name MySiten parameter was replaced by typing a meaningful name queens:

Intel® Advisor User Guide  1  

155



Annotation Wizard - Page 1

To access this dialog box: in the Visual Studio code editor, right-click to open the context menu, and select >
Annotation Wizard.

The Annotation Wizard helps you add annotations into your code. After you are done adding annotations,
rebuild your program.

Use page 1 of the wizard to select the type of annotation from the Choose the annotation type drop down
list.

The wizard shows the annotation line(s) that will be added into your code, in red font.

• For annotations that have start and end lines, it adds them around your selected code lines with
placeholders for the parameters.

• For annotations that have only one line, it adds that annotation line before your selected code line, with
placeholders for the parameters.

After choosing the annotation type, click Next to go to the next wizard page and fill in the parameters for the
annotation.

See Also
Annotation Wizard - Page 2
Annotation Wizard - Page 3

Annotation Wizard - Page 2

The Annotation Wizard helps you add annotations into your code. After you are done adding annotations,
rebuild your target executable.

Use page 2 of the wizard to define the annotation parameters. Replace the placeholder text in the Specify
annotation parameter field with the parameters you want to define for the annotation, or keep the default
text. For example, for an Annotation Site annotation, replace the <site_name> placeholder text with a
meaningful site name.

The wizard shows your parameters within the annotation line(s).

See Also
• Annotation Wizard - Page 1
• Annotation Wizard - Page 3

Annotation Wizard - Page 3

  1   Intel® Advisor User Guide

156



The Annotation Wizard helps you add annotations into your code. After you are done adding annotations,
rebuild your program.

Use page 3 of the wizard to check the annotation line(s) that you defined using the wizard and verify that the
line(s) and insertion location(s) are correct:

• If you are satisfied with the annotation line(s), click Finish to add the line(s) to your code.
• To revise the annotation, click Back and revise the annotation type, or the parameters defining the

annotation.
• To change the location of the added lines, click Cancel, select a different range of code lines and right-

click and choose Intel Advisor [version]> Annotation Wizard to add annotation lines around the new
selection.

Copy Annotations and Build Settings Using the Annotation Assistant Pane

The Intel® Advisor provides an annotation assistant near the bottom of the Survey Report and Survey
Source windows, as well as with the No Data message. Use this assistant to view and copy selected
annotated code snippets and build setting information into a code editor.

The assistant provides a drop-down list under Example: from which you select one of the following:

Select This To Do This

Iteration Loop,
Single Task

View and copy an annotation code snippet for a simple loop structure, where the
task's code includes the entire loop body. Use this common task structure when
only a single task is needed within a parallel site. For example code, see the help
topic Site and Task Annotations for Simple Loops With One Task.

Click the  button to copy the selected snippet to the
clipboard.

Loop, One or More
Tasks (bounded)

View and copy an annotation code snippet for a loops where the task code does
not include all of the loop body, or for complex loops or code that requires
specific task begin-end boundaries, including multiple task end annotations. Also
use this structure when multiple tasks are needed within a parallel site. For
example code, see the help topic Site and Task Annotations for Parallel Sites
with Multiple Tasks.

Click the  button to copy the selected snippet to the
clipboard.

Function, One or
More Tasks
(bounded)

View and copy an annotation code snippet for code that calls multiple functions
(task parallelism). Use this structure when multiple tasks are needed within a
parallel site. For example code, see the help topic Site and Task Annotations for
Parallel Sites with Multiple Tasks.

Click the  button to copy the selected snippet to the
clipboard.

Pause/Resume
Collection

View and copy an annotation code snippet whose annotations temporarily pause
data collection and later resume it. This lets you skip uninteresting parts of the
target program's execution to minimize the data collected and speed up the
analysis of large applications. Add these annotations outside a parallel site.

Click the  button to copy the selected snippet to the
clipboard.

Build Settings View and copy build settings. The Build Settings are specific to the language in
use.

Click the  button to copy the selected snippet to the
clipboard.

Intel® Advisor User Guide  1  

157



Site, task, and other annotations take name arguments. You should replace the placeholder name with a
name that helps you quickly identify its source location. For example, in place of MySite5 in the argument to
a site annotation, replace it with a meaningful function or loop name. The name you add must be unique
amongst the annotations in this project.
Insert Annotations in the Visual Studio* Code Editor

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

To add Intel® Advisor annotations into your source files, you can use the Visual Studio* code editor. Intel®
Advisor simplifies the process of adding annotations so you do not need to type the annotation names.
Alternatively, you can use the annotation assistant in the Survey Report or Survey Source windows, or when
using the Visual Studio code editor, the Annotation Wizard (on Windows* OS systems). Alternatively, you can
type the exact macro name and its arguments manually.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

To add Intel® Advisor annotations:

1. Open the source file into which you want to add Intel® Advisor annotations in your code editor. You
should start with the outermost code regions, such as a parallel site, and then add the tasks within the
boundaries of the enclosing site.

2. Select the code region around which you will add your first annotation, such as a parallel site. Carefully
include the correct group of lines, including any opening and closing braces ({ and }) needed. For
example:

3. Within the highlighted code region, right-click the mouse to display the context menu. Select Intel
Advisor [version] and the type of annotation to be added, such as Intel Advisor [version]>
Annotate Site. For example:

4. This adds the selected type of annotations. For the begin site annotation, Intel® Advisor adds a unique
annotation identifier as an argument.

  1   Intel® Advisor User Guide

158



You should replace the added name with a name that helps you quickly identify its source location. For
example, in place of MySite1 in the argument to ANNOTATE_SITE_BEGIN() and
ANNOTATE_SITE_END() shown above, you might instead type the word solve (the function name). The
added name must be unique amongst the annotations in this project. Annotation name arguments for:

• C/C++ code use an ASCII C++ identifier.
• Fortran code use a character constant.
• C# code use a string (Windows OS only)

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Choose a string that you will easily remember when it appears in Intel Advisor tool reports. Other
annotations use address or size arguments.

5. To add more annotations in the same file, repeat this process from step 2. To add annotations in a
different file, repeat this process from step 1.

This enables you to quickly add annotations into the appropriate source files.

This wizard provides only the more frequently used annotations, so some annotations are not available in this
wizard. Either use the Survey windows' annotation assistant to copy other annotations or type the
annotations into your code editor.

If a C/C++ loop only executes a single statement and does not contain an opening brace ({) to allow multi-
statement execution, add braces ({ and }) around the existing statement and the annotation.

See Also
Annotation General Characteristics
Inserting Annotations Using the Annotation Wizard
Copying Annotations and Build Settings Using the Annotation Assistant Pane
Annotation Types Summary

Insert Annotations in a Text Editor

To add Intel® Advisor annotations into your source files on a Linux* system, you can use any text editor.
Intel® Advisor simplifies the process of locating where to add annotations.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

To add Intel® Advisor annotations:

1. Open the Intel® Advisor GUI and the relevant project.
2. In the File menu, select Options.
3. Select Editor to display the Options - Editor dialog box. Follow the instructions to associate an editor

with your source language(s).

Intel® Advisor User Guide  1  

159



4. For your project, open the Survey Source window.
5. Double-click a source line to display the specified editor opened to the corresponding source location.
6. Use the annotation assistant pane in the lower part of the Survey Source window to select the type of

annotation you want to add.
7.

Copy the selected annotations from the annotation assistant pane by clicking the 
button.

8. Paste the copied annotations into your editor.
9. You may need to move some annotation lines around.
10. Repeat as needed for other annotations from step 4.

This enables you to quickly add annotations into the appropriate source files.

See Also
Annotation General Characteristics
Annotation Types Summary
Copying Annotations and Build Settings Using the Annotation Assistant Pane

Tips for Annotation Use with C/C++ Programs

The following topics provide tips related to using annotations with C/C++ programs:

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

• Depending on your particular environment, you may want to control the expansion of macros in advisor-
annotate.h by using the ANNOTATE_EXPAND_NULL environment variable. See the help topic Controlling
the Expansion of advisor-annotate.h.

• Tips for Windows* OS only:

• Because the advisor-annotate.h header file includes windows.h, including advisor-annotate.h
may cause type and symbols conflicts, which result in unexpected compiler messages. See the help
topic Handling Compilation Issues that Appear After Adding advisor-annotate.h.

• If you run into certain unexpected problems, you need to learn how advisor-annotate.h and
libittnotify.dll interact. See the help topic advisor-annotate.h and libittnotify.dll.

Control the Expansion of advisor-annotate.h

Depending on your particular environment, you may want to control the expansion of C/C++ macros in
advisor-annotate.h at the inclusion site.

Defining ANNOTATE_EXPAND_NULL before you include advisor-annotate.h causes the annotation macros to
have a null expansion, which will remove the actions from your code. If you have a project where some
configurations, or some users, want to have annotations, while others should not have them present, this
control may be helpful.

    #define ANNOTATE_EXPAND_NULL
    #include "advisor-annotate.h"

You can also do this by defining the value as part of your compilation command using the /D option. For
example:

/DANNOTATE_EXPAND_NULL

See Also
Handling Compilation Issues that Appear After Adding advisor-annotate.h
Set Up Project
Including the Annotations Header File in C/C++ Sources

  1   Intel® Advisor User Guide

160



Handle Compilation Issues that Appear After Adding advisor-annotate.h

NOTE
This topic primarily applies to Windows systems. It is possible for similar errors to occur on Linux
systems.

Symptoms
On Windows* systems, the advisor-annotate.h header file includes windows.h to define some types and
functions. As a result, in some cases including advisor-annotate.h may cause compilation errors. For
example, the following conflict for the type UINT:

error C2371: ‘UINT' : redefinition; different basic types
On Linux systems, something similar could occur under certain very specific conditions when using a different
header file for operating system threading software.

Possible Correction Strategies
To fix this problem, you can use a declaration/definition approach, where all uses of advisor-annotate.h
other than one generate a set of declarations, and windows.h is only needed in a single implementation
module. In all cases, you #define either ANNOTATE_DECLARE or ANNOTATE_DEFINE just before the
#include "advisor-annotate.h" as follows:

1. In nearly all modules that contain annotations, insert #define ANNOTATE_DECLARE just before
#include "advisor-annotate.h". This causes advisor-annotate.h to declare an external
function, and not include windows.h (or Linux equivalent), which avoids the type/symbol conflicts with
the operating system threading header file, such as windows.h.

2. In a single module that either does not include annotations or does not have type/symbol conflicts with
windows.h, you insert #define ANNOTATE_DEFINE just before #include "advisor-annotate.h".
This causes advisor-annotate.h to define the global function to resolve the external reference and
the #include "advisor-annotate.h" is the only one that uses the operating system threading
header file windows.h (or Linux equivalent). These two lines can be placed in an otherwise empty .cpp
file.

One way to do this is to add an empty .cpp to your project with two lines in it, shown as empty.cpp
below.

For example, on Windows systems:

//File foo.cpp/.h:
...
  // Insert #define ANNOTATE_DECLARE in all modules that contain annotations just before the
  // #include "advisor-annotate.h". This prevents inclusion of windows.h to avoid the 
  // type/symbol conflicts.

  #define ANNOTATE_DECLARE
  #include "advisor-annotate.h"
  ...
     // annotation uses
     ANNOTATE_SITE_BEGIN(MySite1)

Intel® Advisor User Guide  1  

161



     ...
     ANNOTATE_SITE_END()
  ...
//File empty.cpp:
  // Insert #define ANNOTATE_DEFINE just before the #include "advisor-annotate.h" in only one 
module.
  // This single implementation file (.cpp/.cxx) causes windows.h to be included, and the 
support 
  // routine is defined as a global routine called from the various annotation uses.
  #define ANNOTATE_DEFINE
  #include "advisor-annotate.h"
  ...

If the problem persists, please request support, such as by using the support forum.
advisor-annotate.h and libittnotify.dll

NOTE
This topic is provided for reference, but it should not be needed. If you read this because you believe
you need it to understand a problem, please provide feedback (see the release notes for support
information).

Code using advisor-annotate.h should work when running your application regardless of whether or not
you are running your application under Visual Studio using Intel® Advisor on Windows* OS. However, should
you run into problems, this topic provides a few implementation details that might be helpful to understand
issues.

Each compilation unit that includes advisor-annotate.h, and that has one or more annotations in it, will
have a global inline routine named __AnnotateRoutine. This routine is called from the various locations
where you have used the ANNOTATE* macros, and will be used to invoke one or more routines in
libittnotify.dll (on Windows OS) or libittnotify.so (on Linux* OS).

__AnnotateRoutine is an inline function that will have only one copy per executable in your program. So, if
you are only working on modeling semantic behavior in a single Dynamic Link Library (DLL), you will only
have one copy of it in that one library. If you have multiple executables where you have annotations, there
will be a single copy of __AnnotateRoutine for each executable.

When the ANNOTATE macros are used, the first one executed in a given executable attempts to load
libittnotify.dll from the current path.

Once the library is loaded, calls from the annotations will go to the __itt_model* routines in the library. If
an expected routine is not found, the code asserts.

The following figure shows what happens when you have a main executable and a DLL that both have
annotations:

  1   Intel® Advisor User Guide

162



Finally, the annotation routines -__itt_model* in the .dll - by themselves are only markers for a tool that
interprets the calls. Unless the program is run under the tool, these routines will not do anything. The intent
is that the application will run normally when it is not run under the tool.

See Also
Set Up Project

Annotation Report
To access this window, in the Result tab, click the Annotation Report button. Alternatively, if you are using

the Advisor Workflow tab, click the  button below 2. Annotate Sources or 5. Add Parallel
Framework.

The Annotation Report window lists all annotations found during source scanning or running the Suitability
and Dependencies tools. It lists the annotation type, source location, and annotations label in a table-like
grid format, where each annotation appears on a separate row. Intel® Advisor updates the listed annotations
when changes occur to the specified source directories. For example, when you save a source file with a code
editor.

Annotation Report Layout 1. Analysis Workflow Tab
2. Result Tab
3. Annotation Report window grid

Intel® Advisor User Guide  1  

163



Use This To Do This

Analysis Workflow tab Run a tool of your choice and see results in the Result tab.

Result Tab Select between available reports.

Annotation Report window
grid

View a summary of the annotations found as well as data collected by
the Suitability and Dependencies tools. Each annotation's data appears
on a separate row in the grid. The columns are explained below.

Right-click a row in the
Annotation Report window
grid

Displays a context menu that lets you expand or collapse code snippets,
edit corresponding source code using a code editor, copy data to the
clipboard, or display context-sensitive help.

To sort the grid using a column's values, click on the column's heading. The columns of the grid are:

Use This Column To Do This

Annotation View the type of annotation, such as Site, Task, or Lock.

To show or hide a code snippet showing the annotation, click the  icon next to
its name.

For information about each annotation type, see the help topic Summary of
Annotation Types.

To view the source associated with an annotation in your code editor, double-click
its name or a line in the code snippet (or right-click and select Edit Source from
the context menu) in this column.
• On Windows* OS:

• When using Visual Studio, the Visual Studio code editor appears with the
file open at the corresponding location.

• When using the Intel® Advisor GUI, the file type association (or Open With
dialog box) determines the editor used.

• On Linux* OS: When using the Intel® Advisor GUI, the editor defined by the
Options > Editor dialog box appears with the file open at the corresponding
location.

Source Location View the name of the source file that contains the annotation and the line number.

Icons indicate where source is available  or not available .

To view the source, double-click its name (or right-click and select Edit Source) in
this column. The code editor appears.

Annotation Label View the annotation's label (name).

  1   Intel® Advisor User Guide

164



Use This Column To Do This

To view the source associated with an annotation, double-click its name (or right-
click and select Edit Source) in this column. The code editor appears.

When to View the Annotation Report
Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

• Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

• When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Clear Description of Storage Row

Use this special-purpose annotation to stop tracking references to a memory location by the Dependencies
tool. This information can help you understand what code accesses a memory location. When you have
learned enough, simply remove this annotation.

To view the source code for this annotation, click the  icon.

When to View the Annotation Report
Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

• Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

• When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Disable Observations in Region Row

This special-purpose annotation disables the reporting of problems until the matching enable annotation
ANNOTATE_DISABLE_OBSERVATION_POP; is executed. Use this annotation to suppress reported problems
that are false-positives, or not useful in you.

To view the source code for this annotation, click the  icon.

When to View the Annotation Report
Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

• Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

• When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Pause Collection Row

This special-purpose annotation temporarily stops (pauses) the analysis of your program's execution until the
matching Resume Collection annotation (disable-collection-pop) is executed. Use this annotation to reduce
the tool analysis overhead and reported data for certain parts of your program while running the
Dependencies, Survey, and Suitability tools.

To view the source code for this annotation, click the  icon.

Intel® Advisor User Guide  1  

165



When to View the Annotation Report
Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

• Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

• When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Inductive Expression Row

This special-purpose annotation marks a line that updates an expression that is inductive in a loop.

To view the source code for this annotation, click the  icon.

Inductive expressions cause dependence cycles which normally prevent parallelizing a loop, but it is possible
to compute the value of the expression if you know the iteration number. You may have to re-write the
inductive expression to compute the value based on the iteration number when the loop is translated to
parallel code.

For example, if i++ is the iteration variable of your loop, the parallel framework that you use may
automatically fix this for you. For example, by using cilk_for. Otherwise, you may need to fix it manually.
A common example is with j+=3, and i++. If i is your loop index (assuming 0 based), you can replace j+=3
with j = i*3. That is, the value of j actually is a function of the value of i.

When to View the Annotation Report
Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

• Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

• When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Lock Row

A lock row shows the source location of the lock annotation and its argument value.

To view the source code for this lock annotation, click the  icon.

When to View the Annotation Report
Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

• Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

• When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Observe Uses Row

Use this special-purpose annotation to report the access operations to a memory location in the
Dependencies Report. This information can help you understand what code accesses a memory location.
When you have learned enough, remove the annotation from your source code.

To view the source code for this annotation, click the  icon.

  1   Intel® Advisor User Guide

166



When to View the Annotation Report
Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

• Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

• When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Reduction Row

This special-purpose annotation marks a line that computes a reduction in a loop. Marking the line as a
reduction causes the Dependencies tool to ignore the data race.

To view the source code for this annotation, click the  icon.

Reductions require special treatment when translating to parallel code (see the help topics Special-purpose
Annotations and About Replacing Annotations ... for your parallel framework below).

When to View the Annotation Report
Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

• Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

• When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Re-enable Observations at End of Region Row

This special-purpose annotation enables reporting problems stopped by a previous
ANNOTATE_DISABLE_OBSERVATION_PUSH; annotation.

To view the source code for this annotation, click the  icon.

When to View the Annotation Report
Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

• Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

• When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Resume Collection Row

This special-purpose annotation resumes the analysis previously stopped by a previous Pause Collection
(disable-collection-push) annotation. This annotation is recognized by the Dependencies, Survey, and
Suitability tools.

To view the source code for this annotation, click the  icon.

When to View the Annotation Report
Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

Intel® Advisor User Guide  1  

167



• Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

• When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Site Row

A site row shows the source location of the site annotation and the label of the site.

To view the source code for this site annotation, click the  icon.

When converting annotations to parallel code:

• For Intel® oneAPI Threading Building Blocks (oneTBB), you need to add a scheduler initialization call in
each thread before you create any tasks.

• For OpenMP*, it depends on the pragmas/directives used.

When to View the Annotation Report
Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

• Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

• When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Task Row

A task row shows the source location of the task annotation and the label of the task. A task identifies time-
consuming code whose work can be efficiently done by multiple cores.

To view the source code for this task annotation, click the  icon.

When the task is translated to parallel code and you remove or comment out the task annotation(s), this
entry is removed from the table.

There are two types of task annotations. If the loop code changes, you can modify the type of task
annotation.

When to View the Annotation Report
Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

• Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

• When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, User Memory Allocator Use Row

This row shows a source location where memory is being allocated using a non-standard or user-defined
memory deallocation. The Dependencies tool uses this as a hint about the lifetime of memory accesses, so
memory that is allocated will not cause conflicts to be reported if the non-standard or user-defined memory
allocation occurs with the span this annotation's execution.

To view the source code for this annotation, click the  icon.

When translating annotations to parallel code, this special-purpose record_allocation annotation can be
removed or commented out.

  1   Intel® Advisor User Guide

168



When to View the Annotation Report
Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

• Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

• When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, User Memory Deallocator Use Row

This row shows a source location where memory is being freed using a non-standard or user-defined memory
deallocation. The Dependencies tool uses this as a hint about the lifetime of memory accesses, so memory
that is freed and then allocated again will not cause conflicts to be reported if the non-standard or user-
defined memory free occurs with the span of this annotation's execution.

To view the source code for this annotation, click the  icon.

When translating annotations to parallel code, this special-purpose record_deallocation annotation can be
removed or commented out.

When to View the Annotation Report
Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

• Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

• When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Explore Threading Results
Intel® Advisor provides several ways to work with the Threading results.

View Results in CLI
If you run the Threading perspective from command line, you can print the results collected in the CLI and
save them to a .txt, .csv, or .xml file.

For example, to generate the Suitability report for the OpenMP* threading model:

advisor --report=suitability --project-dir=./advi_results --threading-model=openmp
You should see a similar result:

Target CPU Count: 8     Threading Model: OpenMP*
Maximum gain for all sites: 6.10998

All Sites
Site Label      Source Location       Impact to    Total Serial Time   Total Parallel Time   
Site Gain   Average Serial Time ...
                                      Program 
Gain                                                                           ...
_________________________________________________________________________________________________
____________________________...
     solve   nqueens_serial.cpp:154          6.11x            4.080s                0.631s       
6.47x                4.080s ...

Intel® Advisor User Guide  1  

169



Site Details
Annotation     Annotation Label      Source Location       Number of Instances   Maximum 
Instance   Average Serial           ...
                                                                                 
Time               Time                     ...          
_________________________________________________________________________________________________
____________________________...
Selected Site             solve   nqueens_serial.cpp:154                     1             
4.080s           4.080s           ...
         Task          setQueen   nqueens_serial.cpp:156                    14             
0.477s           0.267s           ...
         Lock                                           ?                365596            < 
0.001s         < 0.001s         ...

Site Options
                                         Benefit   Loss If
Site            Option           Done?   If Done   Not Done   Recommended
_________________________________________________________________________
solve     Reduce Site Overhead                                      No
solve     Reduce Task Overhead                                      No
solve     Reduce Lock Overhead                                      No
solve   Reduce Lock Contention             0.16x                    No
solve     Enable Task Chunking                                      No

The result is also saved into a text file advisor-suitability.txt located at ./advi_results/e<NNN>/
st<NNN>.

You can generate a report for any analysis you run. The generic report command looks as follows:

advisor --report=<analysis-type> --project-dir=<project-dir> --format=<format>
where:

• <analysis-type> is the analysis you want to generate the results for. For example, survey for the Survey
report, suitability for the Suitability report, or dependencies for the Dependencies report.

• --format=<format> is a file format to save the results to. <format> is text (default), csv, xml.

If you generate the Suitability report, you can use additional options to control the result view:

• --target-system=[cpu | xeon-phi | offload-to-xeon-phi] is a platform to model parallelization
on.

• --threading-model=[tbb | cilk | openmp | tpl | other] is a threading model to use.
• --reduce-site-overhead=<string> is a list of annotated loops/functions to check if you can reduce

overhead.

You can also generate a report with the data from all analyses run and save it to a CSV file with the --
report=joined action as follows:

advisor --report=joined --report-output=<path-to-csv>
where --report-output=<path-to-csv> is a path and a name for a .csv file to save the report to. For
example, /home/report.csv. This option is required to generate a joined report.

See advisor Command Option Reference for more options.

  1   Intel® Advisor User Guide

170



View Results in GUI
If you run the Threading perspective from command line, a project is created automatically in the directory
specified with --project-dir. All the collected results and analysis configurations are stored in
the .advixeproj project, that you can view in the Intel Advisor.

To open the project in GUI, you can run the following command:

advisor-gui <project-dir>

NOTE If the report does not open, click Show Result on the Welcome pane.

If you run the Threading perspective from GUI, the result is opened automatically after the collection
finishes.

You first see a Summary report that includes the overall information about loops/functions performance in
your code and the annotated parallel sites:

• Performance metrics of your program and top five time-consuming loops/functions
• Optimization recommendations for the whole application
• Estimated performance gain for annotated loops/functions when parallelized

Intel® Advisor User Guide  1  

171



Save a Read-only Snapshot
A snapshot is a read-only copy of a project result, which you can view at any time using the Intel Advisor
GUI. You can save a snapshot for a project using Intel Advisor GUI or CLI.

To save an active project result as a read-only snapshot from GUI: Click the  button in the top ribbon
of the report. In the Create a Result Snapshot dialog box, enter the snapshot details and save it.

To save an active project result as a read-only snapshot from CLI:

advisor --snapshot --project-dir=<project-dir> [--cache-sources] [--cache-binaries] --
<snapshot-path>

where:

• --cache-sources is an option to add application source code to the snapshot.
• --cache-binaries is an option to add application binaries to the snapshot.
• <snapshot-path is a path and a name for the snapshot. For example, if you specify /tmp/new_snapshot,

a snapshot is saved in a tmp directory as new_snapshot.advixeexpz. You can skip this and save the
snapshot to a current directory as snapshotXXX.advixeexpz.

To open the result snapshot in the Intel Advisor GUI, you can run the following command:

advisor-gui <snapshot-path>
You can visually compare the saved snapshot against the current active result or other snapshot results.

See Create a Read-only Result Snapshot for details.

Result Interpretation
When you run the Threading perspective from GUI, you can examine the results and try different threading
designs:

•
• Model Threading Parallelism
• Check for Dependencies Issues
• Add Parallelism to Your Program

See Also
Run Threading Perspective from GUI  Steps to run the Threading perspective.
Run Threading Perspective from Command Line
CPU Metrics  This reference section describes the contents of data columns in Survey and
Refinement Reports of the Vectorization and Code Insights, CPU / Memory Roofline Insights,
and Threading perspectives.

Model Threading Parallelism
The Suitability analysis examines your running serial program to provide approximate estimated performance
characteristics of your annotated parallel sites. This shows you both the performance gain from running your
parallel program on multiple CPUs and the likely impact of parallel overhead.

To choose the best places to add parallelism, locate the parallel sites that contribute the most to the overall
program's gain. Because of the overhead of parallel execution - such as starting threads - certain parallel
sites and tasks may not contribute to the overall program's gain, or may slow down its performance. After
you identify such parallel sites or tasks that do not improve performance, either modify or eliminate their
annotations.

  1   Intel® Advisor User Guide

172



Use the Suitability Report Window
After you run the Suitability tool, view its data in the Suitability Report window. This window contains
multiple areas:

Location in
Window

Description

Upper Any annotation-related error the Suitability tool detects appears at the top of the Suitability Report
window. If you see such errors, the displayed Suitability data may not be reliable. To view the source

location associated with an error, click the  button. To fix the error, read the displayed
error message, modify your source code to fix the problem, rebuild your target executable, and run
Suitability tool analysis again.

Upper-left The upper-left area shows the Maximum Program Gain for All Sites in the program. Your
overall goal of adding parallelism is to increase the Maximum Program Gain for All Sites
so the parallel program will execute as fast as possible. The measured serial execution
runtime, predicted parallel runtime, and any measured paused time are displayed below
Maximum Program Gain for All Sites. Use the predicted Suitability gain values to help
you make informed decisions about where to add parallelism.

Upper-right Use the upper-right row of modeling parameters to model performance. Choose a hardware
configuration and threading model (parallel framework) values from the drop-down lists. If
you select a Target System for Intel® Xeon Phi™ processors, an additional value for total
Coprocessor Threads appears.

Below this row is a grid of data that shows the estimated performance of each parallel site
detected during program execution. The Site Label shows the argument to the site
annotation. Examine the predicted Site Gain and Impact to Program Gain (higher values
are better) to estimate how much each site contributes to the Maximum Program Gain
for All Sites for all sites (described above). To expand the data under Combined Site
Metrics or Site Instance Metrics, click the  icon to the right of that heading; to collapse
data, click  to the right of that heading.

To show or hide the side command toolbar, click the  or  icon.

Middle-left If you choose a Target System of CPU, to view detailed characteristics of the selected site
as well as its tasks and locks, click the Site Details tab.

The Scalability of Maximum Site Gain graph summarizes performance for the selected
site. The number of CPU processors or total number of coprocessor threads appears on the
horizontal X axis and the target's predicted performance gain appears on the Y axis. To
change the default CPU Count and the Maximum CPU Count, set the Options value.

Lower-left Below the graph is a list of issues that might be preventing better predicted performance
gains as well as a summary of serial and predicted parallel time. To expand a line, click the
down arrow to the right of the item's name. Most issues are related to the Runtime
Modelingmodeling parameters. Later, you can use other Analyzer tools like Intel®
VTune™Profiler to measure actual performance of your parallel program.

Lower-
middle

Use the Loop Iterations (Tasks) Modeling (or Tasks Modeling) modeling parameters to
experiment with different loop structures, iteration counts, and instance durations that
might improve the predicted parallel performance.

Click Apply to view the impact on the predicted performance.

Intel® Advisor User Guide  1  

173



Location in
Window

Description

Lower-right Use the Runtime Modelingmodeling parameters to learn which parallel overhead
categories might have an impact on parallel overhead. If you agree to address a category
later by using the chosen parallel framework's capabilities or by tuning the parallel code
after you have implemented parallelism, check that category.

Bottom-
right

If the chosen Target System is Intel Xeon Phi or Offload to Intel Xeon Phi, additional
Intel® Xeon Phi™ Advanced Modeling options appear below the Runtime Modeling area. To
expand this area, click the down arrow to the right of Intel Xeon Phi Advanced
Modeling.

Lower,
after
clicking
Site
Details tab

If you chose a Target System of CPU, the Site Details tab shows details about the
selected parallel site, as well as details for each task and lock executed in that site.

When using an active result (not a read-only result), you can change the modeling parameters. Changing
modeling parameters updates the displayed data, except for Loop Iterations (Tasks) Modeling or Tasks
Modeling (click Apply). These modeling parameters help you understand the sensitivity of your annotation
choices so you can choose the best places to add parallelism, but the displayed data summary is not an
accurate estimate of final execution time on any specific parallel hardware (general processor characteristics
are used).

Later, before you add parallel code, you must choose one parallel framework (threading model) for your
application.

To view the source code associated with a site, locate the list of sites (upper-right area ) and either:

• Double-click a row (or right-click and select View Source from the context menu) to display the
Suitability Source window. Later, to return to the Suitability Report window, click Suitability Report.

• Right-click a row and select Edit Source from the context menu to display the corresponding source file
in a code editor. When using the Intel® Advisor GUI on Linux* OS, the editor defined by the Options >
Editor dialog boxOptions > Editor dialog box appears with the file open at the corresponding location.
When using the Intel® Advisor GUI on Windows* OS, the file type association (or Open With dialog box)
determines the editor used. When using Microsoft Visual Studio*, the Visual Studio code editor appears
with the file open at the corresponding location. Later, to return to the Suitability Report or Suitability
Source window:

1.Click the Result tab.
2.Click either Suitability Report or Suitability Source.

Use the Suitability Source Window
Within the Suitability Source window, you can:

• Use the Call Stack pane to view different source locations in the call stack.
• Double-click a line (or right-click and select Edit Source) to open the corresponding source file in a code

editor. When using the Intel® Advisor GUI on Linux* OS, the editor defined by the Options > Editor
dialog boxOptions > Editor dialog box appears with the file open at the corresponding location. When
using the Intel Advisor GUI on Windows* OS, the file type association (or Open With dialog box)
determines the editor used. When using Microsoft Visual Studio*, the Visual Studio code editor appears
with the file open at the corresponding location. Later, to return to the Result tab, click Result.

• Return to the Suitability Report window by clicking Suitability Report.

The Suitability Report, Suitability Source, and other Intel Advisor windows appear within the Result tab.
There is one Result tab for each project.

  1   Intel® Advisor User Guide

174



Understand the Scalability Graph in the Suitability Report
One of two different graphs appear depending on the chosen Target System. For an explanation of the
Scalability Graph, see Suitability Report Overview.

Tips on Understanding the Performance Data
In the Suitability Report window, you start at the top, select a site, look at its details in the Suitability
Report window, and examine its source code. You repeat this process to investigate each annotated site.
View this information, and if needed, modify the annotations by using your code editor.

Use the following guidelines to evaluate the feasibility of each site:

• If the Site Gain values for the selected site shows an estimated performance gain of 1.0 or less, the
overhead of parallel thread execution exceeds the potential performance gains. Modify or remove the
annotations for the task(s) and its enclosing site. Repeat this for each parallel site.

• If the Site Gain values for the selected site shows a performance gain greater than 1.0, look at the site's
contribution to the Maximum Program Gain for All Sites, which applies to all parallel sites. For sites
that do not contribute significantly to the Maximum Program Gain for All Sites, modify or remove the
annotations for the task(s) and its enclosing site. For sites that only contribute slightly to the Maximum
Program Gain for All Sites, examine more closely the annotations and the assumptions about fixing the
various overhead costs of parallel thread execution. In some cases, you may be able to adjust the
annotations to improve the performance gain or reduce the overhead. Repeat this for each parallel site.

• When the Maximum Program Gain for All Sites for all sites and the Site Gain values for all the sites
show a moderate or significant performance gain, proceed to the next workflow step that uses the
Dependencies tool to check your remaining annotated sites for data sharing problems.

Suitability Report Overview

After the Suitability tool runs your program's target executable to collect data, the Suitability Report
window appears. It displays the approximate predicted performance based on its analysis of the annotated
parallel sites and tasks.

This screen shows data based on a Target System of CPU. The screen shown on your system will differ.

The upper-left area shows the Maximum Program Gain for All Sites in the program. Your overall
goal of adding parallelism is to increase the Maximum Program Gain for All Sites so the parallel
program will execute as fast as possible. The measured serial execution runtime, predicted parallel

Intel® Advisor User Guide  1  

175



runtime, and any measured paused time are displayed below Maximum Program Gain for All
Sites. Use the predicted Suitability gain values to help you make informed decisions about where
to add parallelism.

If the Suitability tool detects any annotation-related errors, they appear at the top of the
Suitability Report window. If you see this type of error, the displayed Suitability data may not be
reliable. Annotation-related errors may be caused when the correct sequence of annotations do not
occur because of missing annotations, when unexpected execution paths occur, or if Suitability data
collection was paused while the target was executing.

Use the upper-right row of modeling parameters to model performance. Choose a hardware
configuration and threading model (parallel framework) values from the drop-down lists. If you
select a Target System for Intel® Xeon Phi™ processors, an additional value for total Coprocessor
Threads appears.

Below this row is a grid of data that shows the estimated performance of each parallel site detected
during program execution. The Site Label shows the argument to the site annotation. Examine the
predicted Site Gain and Impact to Program Gain (higher values are better) to estimate how
much each site contributes to the Maximum Program Gain for All Sites for all sites (described
above). To expand the data under Combined Site Metrics or Site Instance Metrics, click the 
icon to the right of that heading; to collapse data, click  to the right of that heading.

To view source code for a selected parallel site, click its row to display the Suitability Source
window.

To show or hide the side command toolbar, click the  or  icon.

The Scalability of Maximum Site Gain graph summarizes performance for the selected site. The
number of CPU processors or total number of coprocessor threads appears on the horizontal X axis
and the target's predicted performance gain appears on the Y axis. To change the default CPU
Count and the Maximum CPU Count, set the Options value.

If you choose a Target System of CPU, to view detailed characteristics of the selected site as well
as its tasks and locks, click the Site Details tab.

Use the Loop Iterations (Tasks) Modeling (or Tasks Modeling) modeling parameters to
experiment with different loop structures, iteration counts, and instance durations that might
improve the predicted parallel performance.

For example, you might want to see the impact of modifying your nested change loop structure,
modify the loop body code, or change number of iterations.

If the task annotations indicate likely task parallelism, the title will appear as Task Modeling
(instead of Loop Iterations (Task) Modeling for data parallelism).

Use the Runtime Modelingmodeling parameters to learn which parallel overhead categories might
have an impact on parallel overhead. If you agree to address a category later by using the chosen
parallel framework's capabilities or by tuning the parallel code after you have implemented
parallelism, check that category.

If the chosen Target System is Intel Xeon Phi or Offload to Intel Xeon Phi, additional Intel®
Xeon Phi™ Advanced Modeling options appear below the Runtime Modeling area. To expand this
area, click the down arrow to the right of Intel Xeon Phi Advanced Modeling.

  1   Intel® Advisor User Guide

176



Below the graph is a list of issues that might be preventing better predicted performance gains as
well as a summary of serial and predicted parallel time. To expand a line, click the down arrow to
the right of the item's name. Most issues are related to the Runtime Modelingmodeling
parameters. Later, you can use other Analyzer tools like Intel® VTune™Profiler to measure actual
performance of your parallel program.

Target System Hardware Configurations
The Target System lets you select the type of hardware configuration to be analyzed. From this drop-down
list, you can check each type to learn the likely predicted performance characteristics for each:

• CPU shows the predicted performance of only the CPU. Choose this item for Intel® Xeon® or similar
processors that do not have significant parallel coprocessors. For an Intel® Xeon Phi™ processor, choose
this setting to only model the host processor, such as an Intel Xeon processor. If you choose this
configuration, you can specify the CPU Count modeling parameter.

• Intel Xeon Phi shows the predicted performance when using only the Intel Xeon Phi coprocessor cores,
and not the host processor. This parameter does not account for data exchange amongst Intel Xeon Phi
coprocessor cores and the host CPU. If you choose this configuration, you can specify the Coprocessor
Threads modeling parameter.

• Offload to Intel Xeon Phi shows the predicted performance when using Intel Xeon Phi coprocessor
manycores to execute parallel code after the host CPU starts the program and before execution resumes
on the host CPU for program completion. If you choose this configuration, you can specify the
Coprocessor Threads and CPU Count modeling parameters.

Data Displayed When the Target System is Intel® Xeon Phi™
A sample screen below shows changes in orange boxes when the Target System is Intel Xeon Phi (instead
of CPU).

• The displayed data changes, such as the Maximum Program Gain for All Sites and the serial and
predicted parallel time.

Intel® Advisor User Guide  1  

177



• The graph's appearance changes to a gray-green color and the X axis displays Coprocesser Threads
(instead of CPU Count) to represent the predicted performance of the manycore parallel coprocessor.
This graph shows the predicted parallel performance of the manycore parallel coprocessor without
accounting for data exchange amongst Intel Xeon Phii coprocessor cores and the host CPU. For many
applications, the number of task instances does not scale enough to fully utilize the many cores of the
parallel coprocessor, as indicated by a hover tip. Applications that are not appropriate for a Intel Xeon Phi
processing system have values that appears in the gray part of the graph; in this case, try modeling other
types of the Target System.

• The lines between the graph's gray and green areas is a reference baseline, where the reference CPU
chosen to calculate the Intel Xeon processor peak baseline is a dual-socket 8-core Intel Xeon processor
E5-26xx product family (2.7 GHz, 16 cores total). When the Maximum Site Gain exceeds this baseline,
you might consider using an Intel Xeon Phi coprocessor rather than an Intel Xeon or similar processor.

When the Target System is either Intel Xeon Phi or Offload to Intel Xeon Phi, the Intel Xeon Phi
Advanced Modeling options appear. See Intel® Xeon Phi™ Advanced Modeling.

Data and Modeling Parameters When the Target System is Offload to Intel Xeon Phi
A sample screen below shows changes in orange boxes when the Target System is Offload to Intel Xeon
Phi (instead of CPU) and the Offload to Intel Xeon Phi column is selected.

When you select a Target System of Offload to Intel Xeon Phi coprocessor:

• The displayed data changes, such as the Maximum Program Gain for All Sites and the serial and
predicted parallel time.

• An additional modeling parameter appears as a new column for each site named Offload to Intel Xeon
Phi. If selected, the Scalability of Maximum Site Gain graph displays Coprocessor Threads on the X
axis. If unselected, the graph displays CPU Count on the X axis.

  1   Intel® Advisor User Guide

178



• In the upper-right corner, an additional modeling parameter appears. That is, both the total number of
Coprocessor Threads and the CPU Count appear because both the number of CPUs and the
coprocessor's total number of hardware threads should be considered to predict parallel execution.

• Additional modeling parameters appear below Runtime Modeling area under Intel Xeon Phi Advanced
Modeling - see Intel® Xeon Phi™ Advanced Modeling.

• When the column named Offload to Intel Xeon Phi is selected, the graph's appearance changes to a
gray-green color and the X axis displays Coprocessor Threads instead of CPU Count. This graph shows
the predicted performance of the manycore parallel coprocessor and its host CPUs. For many applications,
the number of task instances does not scale enough to fully utilize the many cores of the parallel
coprocessor, as indicated by a hover tip. Applications that are not appropriate for an Intel Xeon Phi
processing system have values that appear in the gray part of the graph; in this case, try modeling other
types of the Target System. Applications that are appropriate for offload to an Intel Xeon Phi processing
system have values that appear in the green part of the graph.

The lines between the graph's gray and green areas is a reference baseline, where the reference CPU
chosen to calculate the Intel Xeon processor peak baseline is a dual-socket 8-core Intel Xeon processor
E5-26xx product family (2.7 GHz, 16 cores total). When the Maximum Site Gain exceeds this baseline,
you might consider using an Intel Xeon Phi coprocessor rather than an Intel Xeon or similar processor.

Site Details Tab
If you chose a Target System of CPU, after you click the Site Details tab (next to Site Performance
Scalability), the lower part of the Suitability Report shows details about the selected site, as well as details
about each task and lock within that site.

Choose Modeling Parameters in the Suitability Report
The Suitability Report lets you adust modeling parameters based on possible application needs. When using
an active result, you can adjust modeling parameters and quickly view the likely impact on the predicted
performance interactively.

Intel® Advisor User Guide  1  

179



NOTE
This screen shows data based on a Target System of CPU. The screen shown on your system may
differ. If you use other Target System values for the Intel® Xeon Phi™ processor, additional modeling
values appear. See Suitability Report Overview.

The top row of modeling parameters provides drop-down lists that let you define the likely hardware
configuration of target systems as well as the high-level parallel framework. These values let you
predict the likely performance characteristics for the selected parallel site.
• Use the Target System to select the type of hardware configuration to be analyzed: CPU, Intel

Xeon Phi, or Offload to Intel Xeon Phi. The latter two apply to the Intel Xeon Phi processor
system.

• Use the Threading Model to choose the high-level parallel framework to be used, such as
OpenMP* or Intel® oneAPI Threading Building Blocks (oneTBB).

• Use CPU Count to specify the number of CPUs to model. To specify the default CPU count by
setting the Options value.

• If you choose a Target System of Intel Xeon Phi, or Offload to Intel Xeon Phi, use the
Coprocessor Threads to choose the number of Intel Xeon Phi coprocessor threads.

As you modify these modeling parameters, the predicted performance estimates are updated
automatically. Repeat as needed.

If your target app contains multiple parallel sites, select each parallel site you wish to examine.
When you select a different parallel site, the predicted performance estimates for that site are
updated automatically. Repeat as needed for each site.

Use the Loop Iterations (Tasks) Modeling or Tasks Modeling area to view the impact of
changing the number of iterations and the iteration duration on the predicted performance for the
selected parallel site (the label displayed depends on whether iteration loop annotations or general
task annotations were detected). For example, you might want to see the impact of modifying your
nested change loop structure, modify the loop body code, or change number of iterations. After you
slide the Avg. Number of Iterations (Tasks): or Avg. Number of Tasks: and the Avg.
Duration values, click the Apply button to view the predicted performance estimates. Repeat as
needed.

  1   Intel® Advisor User Guide

180



Use the Runtime Modeling area to view the predicted impact of adjusting run-time parallel
characteristics after you add parallelism for the selected parallel site, including using parallel
framework capabilities to minimize parallel overhead or tuning your parallel code.

If you agree to later check and modify runtime performance aspects for a category, check the box to
the left of that category name. For example, you can also examine and tune actual parallel code
performance characteristics using tools like Intel® VTune™Profiler and implement the runtime
capabilities of high-level parallel frameworks to limit parallel overhead, such as task chunking. As
you check or uncheck different categories, the predicted performance estimates are updated
automatically. Repeat as needed.

If you choose Target System as Intel Xeon Phi or Offload to Intel Xeon Phi, additional Intel
Xeon Phi Advanced Modeling options (not shown) appear below Runtime Modeling (see 
Advanced Modeling).

NOTE
The Intel® Advisor Suitability tool predicts the general performance characteristics of CPUs. For
example, it does not consider CPU clock frequency, cache characteristics, versions of processors, and
so on.

See Also
Suitability Tool Overview
Suitability Report Overview
Advanced Modeling
Fixing Annotation-related Errors Detected by the Suitability Tool

Fix Annotation-related Errors Detected by the Suitability Tool
As the Suitability tool executes your target executable, it scans for a proper sequence of Intel® Advisor
annotations. If it detects an annotation-related or an error related to very small task sizes, it displays a
message at the top of the Suitability Report window.

If you see such messages, investigate the cause and fix the error. The messages displayed are generally self-
explanatory.

After you modify your source code and rebuild your application, run the Suitability tool again. When no errors
appear near the top of the Suitability Report window, you can carefully examine the Suitability data to help
you make decisions about the proposed parallel sites and tasks.

Tools to Help You Fix Annotation Errors
Use the Suitability Source window to view source code related to a specific site or task. You can also use
the Annotation Report window to view a list of your annotations and display their code snippets.

When resolving annotation-related errors, consider the execution paths your program follows. If necessary,
investigate the execution paths using a debugger.

In addition to annotation sequence messages, messages about task size may also appear. For example, if the
CPU time used by a task per loop cycle is so small that it does not exceed the task overhead time, consider
modifying the task annotation(s) after you examine the loop structure. In some cases, the message may
suggest that you use a different type of task annotation (see the help topics under See Also below).

Proper Sequence of Annotations
The rules about a proper sequence of Intel® Advisor annotations include the following:

• Sites: A site-begin annotation is followed by annotations that mark one or more tasks. It is eventually
terminated by a site-end annotation. For example, if a site-begin annotation is not followed by a task
annotation or is not terminated by a site-end annotation, an error occurs.

Intel® Advisor User Guide  1  

181



• Tasks: A task may be marked either with one iterative-task annotation or a pair of task-begin and task-
end annotations. When used, an iterative-task annotation must be the only task within a site. Only a task-
begin and task-end pair allows task nesting.

• Locks: A lock-acquire annotation must be immediately followed by a lock-release annotation, and must
occur within a task.

See Also
Reducing Parallel Overhead, Lock Contention, and Enabling Chunking
Annotation Types Summary
Task Organization and Annotations
Troubleshooting Sources Not Available
Troubleshooting Debug Information Not Available
Site and Task Annotations for Simple Loops With One Task
Site and Task Annotations for Loops with Multiple Tasks

Advanced Modeling Options
When you select a Target System of Intel® Xeon Phi™ or Offload to Intel Xeon Phi coprocessor,
additional modeling parameters appear below Runtime Modeling area under Intel Xeon Phi Advanced
Modeling:

• Select Consider Code Vectorization if you agree to modify your parallel code later to improve vector
parallel execution. If checked, you can specify:

• Reference CPU Vectorization Speedup you expect can be achieved. This value indicates the
speedup multiplier gain for the current site by using vectorization techniques with the reference CPU.
When providing this estimate, base your estimates on target device characteristics and your expertise
of how much and how well this part of code can be vectorized.

• Intel Xeon Phi Vectorization Speedup you expect can be achieved. This value indicates the
speedup multiplier gain for current site by using vectorization techniques with an Intel® Xeon Phi™
processor. When providing this estimate, base your estimates on target device characteristics and your
expertise of how much and how well this part of code can be vectorized.

• When you choose Target System as Offload to Intel Xeon Phi, you can select the Offload Transfer
Data Size to specify data transfer size value you expect can be achieved (unit is KB).

• Click Apply after modifying any of these values.

In some cases, you can restructure your code to enable more efficient vector operations. Loop vectorization
allows hardware to process data independently in smaller units (usually 64-byte), such as operations on data
arrays.

One way to enable more efficient vector operations is to modify a single loop to create a new outer loop
where the two loops cover the same iteration space. A technique called strip-mining allows the innermost
loop to use vector operations in small chunks.

Other ways to enable more efficient vector operations include examining outermost loops where threading
parallelism might already be used, and consider vectorizing its innermost loops and/or callee functions.

Certain innermost loops may benefit from OpenMP 4 constructs. That is, under certain conditions you can use
both an omp parallel for threading pragma and a omp simd (or similar) simd vectorization pragma (see
the compiler vectorization report and descriptions at http://openmp.org).

The processor microarchitecture determines the type of vector instructions that will be supported and thus
the size of data the hardware can process efficiently.

See Also
Dependencies Analysis
Suitability Tool Overview
Suitability Report Overview

  1   Intel® Advisor User Guide

182



Reduce Parallel Overhead, Lock Contention, and Enable Chunking
The data collected and analyzed in the Suitability Report window shows data for the selected site. The text
that appears below Runtime impact for this site (lower-right area) may recommend that you consider
reducing several types of parallel overhead, lock contention, and enable chunking in your parallel program,
as explained in Suitability Report Overview. If you agree to address a category later by using the chosen
parallel framework's capabilities or by tuning the parallel code after you have implemented parallelism, check
that category.

This group of topics explain site, task, and lock overhead, lock contention, and task chunking.
Reduce Site Overhead

Site overhead is the time spent starting up (and shutting down) parallel execution. This overhead includes
creating threads, scheduling those threads onto cores, and waiting for the threads to begin executing. In
some parallel framework implementations, real threads are only created once - rather than destroying them
at the end of a parallel site; the implementation suspends the threads. In this case, the full site overhead will
be experienced only the first time a site is entered.

Site overhead is proportional to the number of times a site is executed. If you have a site that is executed
too frequently or where the average time per instance is too small, you should choose a location for your site
that encloses a larger amount of computation.

If the Suitability tool recommends that you reduce site overhead, the parallel site is probably too small.

To reduce Site overhead, have the site do more work during its execution. You might be able to combine
multiple site executions into one. For example, consider putting a site outside a loop instead of inside a loop.
Reduce Task Overhead

Task overhead is the time spent creating a task and getting it assigned to a thread, and also the time spent
stopping or pausing the thread when the task is complete.

Task overhead is proportional to the number of times a task is executed. If you have a task that is executed
too frequently or where the average time per task instance is too small, modify your task so it encloses a
larger amount of computation. Alternatively, consider using the task chunking feature, which is supported by
several parallel frameworks. In this case, the parallel framework groups multiple task executions at run-time.

If the Suitability analysis recommends that you reduce task overhead, the parallel task is probably too small.
Often this is because you have chosen an inner loop in a leaf function as the location of your parallel site,
where you instead should have chosen a function farther up the call tree.

There are two ways to reduce task overhead:

• Restructure your program to reduce the number of tasks you create. For example, restructure your task
annotations and/or code to increase the amount of work that occurs during each task's execution.

• If available for the selected parallel framework, enable the task chunking feature.

You can reduce task overhead by combining multiple task executions into a single task execution. For
example, by merging two tasks into one.
Reduce Lock Overhead

Lock overhead is the time spent in creating, destroying, acquiring, and releasing locks. Lock overhead does
not include the time spent waiting for a lock held by another task - that is called lock contention. You can
think of lock overhead as the cost of the lock operations themselves assuming the lock is always available.

If possible, restructure you code to reduce Lock overhead by creating a private copy of an object for each
task to avoid the need to acquire a lock - see the help topic Problem Solving Strategies.
Reduce Lock Contention

Lock contention is the time spent waiting in one thread for a lock to be released while another thread is
holding that lock.

You can reduce Lock contention by using different locks for unrelated data when you convert to a parallel
framework.

Intel® Advisor User Guide  1  

183



Enable Task Chunking

Chunking means that the parallel framework will merge several tasks into a single task, with little or no
overhead between them. For instance, if tasks are loop iterations, chunking would mean that several
iterations are executed together (as a chunk) before heavyweight task control is performed.

Chunking is typically implemented when you convert to a parallel framework:

• With Intel® oneAPI Threading Building Blocks, by using a parallel_for() instance.
• With OpenMP*, by using the C/C++ pragma #pragma omp parallel for or the Fortran directive !$omp

parallel do.

You can also restructure your code to enable chunking. This can be done by modifying a single loop to create
a new outer loop where the two loops cover the same iteration space. A technique called strip-mining allows
the inner loop to use vector operations in small chunks. Loop vectorization allows hardware to process data
independently in smaller units (usually 64-byte), such as operations on data arrays.

Once these two loops exist, move the inner loop inside the task annotations so the task begin and end
annotations encapsulate the inner loop. The outer loop strides by some chunk size, and the inner loop
iterates sequentially through each chunk.

In cases where the CPU time and the elapsed time are about the same, the Suitability Report window
under Runtime impact for this site may recommend that you enable task chunking.

If you check an item under to the right of the Scalability of Maximum Site Gain graph (such as Enable
Task Chunking), its value will be added to the Site Gain and possibly the Maximum Site Gain for All
Sites values.

See Also
Dependencies Analysis
Parallelize Functions - Intel® oneAPI Threading Building Blocks Tasks
Suitability Tool Overview
Reducing Task Overhead
Suitability Report Overview

Check for Dependencies Issues

Purpose
View any predicted data sharing problems and informational remark messages.

Report Regions and Purpose
In the Dependencies Report tab at the bottom of the Refinement Report:

• Problems and Messages pane - Select the problems that you want to analyze by viewing their associated
observations.

• Code Locations pane - View details about the code locations for the selected problem in the

Dependencies Report window. Icons identify the focus code location  and related code location .
• Filters pane - Filter contents of the report tab.

Associated Dependencies Source window, from top left to bottom right:

• Focus Code Location pane - Use this pane to explore source code associated with focus code location in
the Dependencies Source window.

• Focus Code Location Call Stack pane - Use this pane to select which source code appears in the Focus
Code Location pane in the Dependencies Source window.

• Related Code Locations pane - Use this pane to explore source code associated with related code locations
(related to the focus code location) in the Dependencies Source window.

• Related Code Location Call Stack pane - Use this pane to select which source code appears in the Related
Code Location pane.

  1   Intel® Advisor User Guide

184



• Code Locations pane - Use this pane to view the details about the code location for the selected problem
in the Dependencies Report window.

• Relationship Diagram pane - Use this pane to view the relationships among code locations for the selected
problem.

Use Dependencies Data
Use the Dependencies Report to view each reported problem and its associated code locations. Use the
Dependencies Source window to view the focus and related source code regions to help you understand
the cause of the reported problem.

To learn about a reported problem, right-click its name in the Dependencies Report, Problems and
Messages pane and select What Should I Do Next?. This displays the help topic for that problem type.

See Also
• Dependencies Problem and Message Types

Code Locations Pane

Purpose
View details about the code locations for the selected problem in the Dependencies Report window. Icons

identify the focus code location  and related code location .

Location
Bottom of Dependencies Report tab

Controls

Use This To Do This

Title bar View the problem type.

Code Location data
row(s)

Review related code locations:

• ID - Code location identifier
• Description - What happens at this code location.
• Source - The source file for this code location.
• Function - Function name.
• Modules - The executable associated with this problem.
• State - Indicates whether the problem has been fixed or not. To change the

state, use the context menu.

Click  to the left
of a code location
name

Display a code snippet associated with the selected code location.

 icon,  icon, or
no icon in the
Source column

Shows:

• Whether this is a related code location.
• If code location source code is available for viewing and editing.

 icon,  icon, or
no icon in the
Source column

Shows:

• Whether this is the focus code location.
• If code location source code is available for viewing and editing.

Intel® Advisor User Guide  1  

185



Use This To Do This

 icon,  icon, or
no icon in the
Source column

Shows if code location source code is available for viewing and editing.

Double-click a code
location data row or
source line, or
right-click and
select the View
Source context
menu item

Display the Dependencies Source window.

Right-click and
select the Edit
Source context
menu item

Display a code editor with the corresponding source file.

• On Windows* OS:

• When using Visual Studio, the Visual Studio code editor appears with the file
open at the corresponding location.

• When using the Intel Advisor GUI, the file type association (or Open With
dialog box) determines the editor used.

• On Linux* OS: When using the Intel Advisor GUI, the editor defined by the
Options > Editor dialog box appears with the file open at the corresponding
location.

Column labels Click a column heading to sort the data grid rows in either ascending or descending
order.

Pane border Resize the pane (drag).

Right click a row to
display a context
menu

Display a context menu to: expand or collapse all code snippets, open the
Dependencies Source window, edit sources in the code editor, copy the selected
data row(s) to the clipboard, mark the state as fixed or not fixed, or display
context-sensitive help.

Filter Pane (Dependencies Report)

Purpose
Filter contents of the report tab.

Location
Right side of Dependencies Report tab

Controls

Use This To Do This

Category column Review categories that you can filter, such as Severity, Type, Site
Name, Source, and so on.

  1   Intel® Advisor User Guide

186



Use This To Do This

NOTE
You can apply only one filter criterion per category; however, you can
filter the listed problems and messages by multiple categories
simultaneously.

Click a filter criterion, such as:

• Error under the Severity
category

• Memory Reuse under the
Type category

View only problems and messages of a specific type, and hide other
types of problems and messages in the same category.

All button to the right of the
category's name

To deselect all filter criteria and display all problems and messages in
that category.

 button
To deselect all filter criteria in all categories.

See Also
• Dependencies Problem and Message Types

Problems and Messages Pane

Purpose
Select the problems that you want to analyze by viewing their associated observations.

Location
Top of Dependencies Report tab.

Controls

Use This To Do This

Column labels Click a column label to sort the data grid data rows in either ascending or
descending order.

Selected data row Review the characteristics of each data row in the grid. The columns are:

• ID - Identifier for the problem.
•

(severity) - The severity of the problem, such as error , warning ,

or an informational remark message . For example, the location of

parallel sites executed are indicated by the message Parallel Site.
• Type - The problem type or message type. For more information about a

problem, right click to display the context menu.
• Site Name- The name of the site associated with this problem.
• Sources - The source file associated with this problem.
• Modules - The modules (executable) associated with this problem.
• State - Indicates whether the problem has been fixed or not. To change the

state, use the context menu in this pane.

Intel® Advisor User Guide  1  

187



Use This To Do This

Pane border Resize the pane (drag).

Right click a row to
display a context menu

Display a context menu to: open the code editor to the corresponding source
line, display the Dependencies Source window, copy the selected data
row(s) to the clipboard, or display context-sensitive help for that problem or
message.

Dependencies Source Window

Purpose
Use this window to examine the source code for a selected Problem, Message, or Code Location. To
modify your source code, double-click a source line or use the Edit Source context menu item to display
that file in a code editor.

• On Windows* OS:

• When using Visual Studio, the Visual Studio code editor appears with that file open at the
corresponding location.

• When using the Intel Advisor GUI, the file type association (or Open With dialog box) determines the
editor used.

• On Linux* OS: When using the Intel Advisor GUI, the editor defined by the Options > Editor dialog box
appears with the file open at the corresponding location.

Use This To Do This

Workflow Tab Run a tool of your choice and see results in the Result tab.

Result Tab Select between available reports.

Focus Code Location pane Explore the source code associated with the focus code location.

Focus Code Location Call Stack
pane

Select the source code to appear in the Focus Code Location pane.

Related Code Location pane Explore source code associated with the code locations. This pane
does not appear if the Focus Code Location does not have a Related
Code Location.

Related Code Location Call
Stack pane

Select the source code to appear in the Related Code Location
pane. This pane does not appear if the Focus Code Location does not
have a Related Code Location.

Code Locations pane View details about the code locations for the selected problem in the
Dependencies Source window.

Relationship Diagram pane View the relationships among code locations for the selected
problem.

Access
To access this window in the Refinement Reports, double-click a data row or use the corresponding context
menu item to view the source code associated with a Problem, Message, or Code Location.

  1   Intel® Advisor User Guide

188



Regions
From top left to bottom right:

• Focus Code Location pane - Use this pane to explore source code associated with focus code location in
the Dependencies Source window.

• Focus Code Location Call Stack pane - Use this pane to select which source code appears in the Focus
Code Location pane in the Dependencies Source window.

• Related Code Locations pane - Use this pane to explore source code associated with related code locations
(related to the focus code location) in the Dependencies Source window.

• Related Code Location Call Stack pane - Use this pane to select which source code appears in the Related
Code Location pane.

• Code Locations pane - Use this pane to view the details about the code location for the selected problem
in the Dependencies Report window.

• Relationship Diagram pane - Use this pane to view the relationships among code locations for the selected
problem.

Code Locations Pane (Dependencies Source Window)

Purpose
Use this pane to view the details about the code location for the selected problem in the Dependencies
Report window.

Location
Bottom left of Dependencies Source window

Controls

Use This To Do This

Title bar View the problem type.

Code location data
row(s)

Review related code locations:

• ID - Code location identifier
• Description - What happens at this code location
• Source - The source file associated with this code location.
• Function - Function name.
• Modules - The executable associated with this problem.
• State - Indicates whether the problem has been fixed or not. To change the

state, use the context menu.

 icon,  icon, or
no icon in the
Source column

Shows:

• Whether this is a related code location.
• If code location source code is available for viewing and editing.

 icon,  icon, or
no icon in the
Source column

Shows:

• Whether this is the focus code location.
• If code location source code is available for viewing and editing.

 icon,  icon, or
no icon in the
Source column

Shows if code location source code is available for viewing and editing.

Column labels Click a column heading to sort the data grid rows in either ascending or descending
order.

Intel® Advisor User Guide  1  

189



Use This To Do This

Pane border Resize the pane (drag).

Right click a row to
display a context
menu

Display a context menu to: set this code location as the focus or related code
location, copy the selected data row(s) to the clipboard, mark the state as fixed or
not fixed, or display context-sensitive help.

Focus Code Location Pane

Purpose
Use this pane to explore source code associated with focus code location in the Dependencies Source
window.

Location
Top left of Dependencies Source window

Controls

Use This To Do This

 icon,  icon, or no
icon in the Source
column

Shows:

• Whether this is the focus code location.
• If code location source code is available for viewing and editing.

Pane border Resize the pane (drag).

Source code • Explore source code associated with the focus code location
• Display the code editor at the corresponding source file by double-clicking

a data row or by using the corresponding context menu item.

Right click a row to
display a context menu

Display a context menu to: open the code editor to the corresponding source
line, copy the selected data row(s) to the clipboard, or display context-
sensitive help.

Focus Code Location Call Stack Pane

Purpose
Use this pane to select which source code appears in the Focus Code Location pane in the Dependencies
Source window.

Location
Top right of Dependencies Source window

Controls

Use This To Do This

 or  icon View whether:

• Source code is available for viewing and editing. An  icon indicates that
source code is not available.

  1   Intel® Advisor User Guide

190



Use This To Do This

Click a row in the Call
Stack pane

Displays source code for the specified call stack entry.

Pane border Resize the pane (drag).

Right click a row in the
Call Stack pane

Customize the call stack presentation by using the Call Stack context menu.

Related Code Locations Pane

Purpose
Use this pane to explore source code associated with related code locations (related to the focus code
location) in the Dependencies Source window.

Location
Middle left of Dependencies Source window

Controls

Use This To Do This

 icon,  icon, or no
icon in the Source
column

View:

• Whether this is a related code location.
• If code location source code is available for viewing and editing.

Pane border Resize the pane (drag).

Source code • Explore source code associated with the focus code location
• Display the code editor at the corresponding source file by double-clicking

a data row or by using the corresponding context menu item.

Right click a line to
display a context menu

Display a context menu to: open the code editor to the corresponding source
line, copy the selected data row(s) to the clipboard, or display context-
sensitive help.

Related Code Location Call Stack Pane

Purpose
Use this pane to select which source code appears in the Related Code Location pane.

Location
Middle right of Dependencies Source window

Controls

Use This To Do This

 or  icon
View whether:

• Source code is available for viewing and editing. An  icon indicates that
source code is not available.

Intel® Advisor User Guide  1  

191



Use This To Do This

Click a row in the Call
Stack pane

Displays source code for the specified call stack entry.

Pane border Resize the pane (drag).

Right click a row in the
Call Stack pane

Customize the all stack presentation by using the Call Stack context menu.

Relationship Diagram Pane

Purpose
Use this pane to view the relationships among code locations for the selected problem.

Location
Bottom right of Dependencies Source window

Controls

Use This To Do This

Title bar View the problem type.

 icon,  icon, or
no icon in the
Source column

View:

• Whether this is a related code location.
• If code location source code is available for viewing and editing.

 icon,  icon, or
no icon in the
Source column

View:

• Whether this is the focus code location.
• If code location source code is available for viewing and editing.

 icon,  icon, or
no icon in the
Source column

View if code location source code is available for viewing and editing.

Pane border Resize the pane (drag).

Diagram View the relationship among code locations in a problem:

• Each box in a diagram represents a code location in a problem.
• A diagram with a single box is a trivial problem with no related code locations.
• Boxes arranged left-to-right with connecting arrows indicate a time ordering.
• Boxes with connecting lines indicate association.

Add Parallelism to Your Program
Once you have completed the previous steps in the Threading perspective workflow and have tested and
approved a serial version of your application program, you can add parallelism to a selected parallel site.
Before you add parallel framework code, complete developer/architect design and code reviews about the
proposed parallel changes.

To add parallelism to your program, perform the following steps:

  1   Intel® Advisor User Guide

192



1. Choose one parallel programming framework (threading model) for your application, such as Intel®
oneAPI Threading Building Blocks (oneTBB) , OpenMP*, Microsoft Task Parallel Library* (TPL) (on
Windows* OS systems only), or some other parallel framework. To learn about the parallel
framework(s) available for your application's language, see the help topic Parallel Frameworks.

2. Add the parallel framework to your build environment.
3. Add parallel framework code to synchronize access to the shared data resources, such as oneTBB or

OpenMP locks.
4. Add parallel framework code to create the parallel tasks.

In the last two steps, as you add the appropriate parallel code from the chosen parallel framework, you can
keep, comment out, or replace the Intel Advisor annotations.

You should add the synchronization code - such as oneTBB or OpenMP locks or mutexes - before adding the
parallelism. Synchronized code without parallelism works correctly. In contrast, parallel code without
synchronization works incorrectly.

With the synchronization in place, introduce the parallelism. This will cause the operations of multiple tasks
to execute in parallel. If you have any remaining bugs caused by data sharing and synchronization problems,
they will begin to appear and must be debugged.

Before You Add Parallelism: Choose a Parallel Framework
After you decide on parallel sites and tasks, select a parallel framework so you can replace Intel® Advisor
annotations with parallel framework code.

The available high-level parallel frameworks depend on the language whose code you will add parallelism to:

• For C/C++ native code, there are several choices as explained in Parallel Frameworks
• For Fortran native code, use OpenMP.
• For managed code such as C#, use the Microsoft Task Parallel Library* (TPL).

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

If you are not familiar with high-level parallel frameworks, read Parallel Frameworks

To use a different framework, read Other Parallel Frameworks.
Parallel Frameworks

Before you can add parallel code, you must first choose a parallel framework.

There are two popular mechanisms for using threads - either use high-level parallel frameworks or explicit
threading APIs. Intel recommends using parallel frameworks for both ease of use and their ability to optimize
for different situations.

For managed code such as C#, use the Microsoft Task Parallel Library* (TPL).

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

This document shows how to use the widely-used parallel frameworks for native code, which are included
with Intel® oneAPI Toolkits and may be included with other compilers:

• Intel® oneAPI Threading Building Blocks (oneTBB)
• OpenMP*

Intel® oneAPI Threading Building Blocks (oneTBB) is a parallel programming framework for C++ code.
oneTBB is structured as a traditional C++ library, consisting of header files and a run-time library, so it can
be used with any C++ compiler. Intel recommends that you consider using oneTBB for introducing parallelism
into C++ programs. oneTBB programs can be run on any platform (OS/architecture pair) to which the
oneTBB library has been ported. For example, the Intel® oneAPI DPC++/C++ Compiler includes oneTBB .

OpenMP is a high-level framework that supports C, C++, and Fortran. OpenMP is provided by compiler
support, so you modify your sources by using compiler directives rather than using types, variables, and
calls. An OpenMP program can often be changed from parallel execution to serial execution by setting an

Intel® Advisor User Guide  1  

193



environment variable or omitting a compiler option so the compiler ignores the directives. OpenMP 2 is
supported by the Microsoft, the Intel, and the GNU* C, C++ and Fortran compilers. The OpenMP 3.0
standard adds TASK support and is supported by the Intel compilers, which also support parts of OpenMP
4.0. For Microsoft and GNU compilers, consult your compiler documentation for the current level of OpenMP
support.

You can also use a different parallel framework.

Windows* OS: Support for Parallel Frameworks by Microsoft and Intel Compilers
With a Fortran program, the only high-level parallel framework available is OpenMP. The following table
summarizes the support by Microsoft and Intel Compilers for the recommended parallel frameworks for C/C+
+ programs on Windows OS systems.

Language and Compiler oneTBB OpenMP

C programs, Intel® C++ Compiler Classic Supported

C++ programs, Intel® C++ Compiler Classic Supported Supported

C programs, Microsoft Visual C++* Compiler Supported

C++ programs, Microsoft Visual C++ Compiler Supported Supported

For more information about oneTBB and OpenMP, see the corresponding sections in this Intel Advisor help
system.

Linux* OS: Support for Parallel Frameworks by GNU* and Intel Compilers
With a Fortran program, the only high-level parallel framework available is OpenMP. The following table
summarizes the support by GNU gcc* and Intel compilers for the recommended parallel frameworks for C/C+
+ programs on Linux OS systems.

Language and Compiler oneTBB OpenMP

C programs, Intel® C++ Compiler Classic (icc) Supported

C++ programs, Intel® C++ Compiler Classicicc) Supported Supported

C programs, GNU gcc Compiler (gcc) Supported

C++ programs, GNU gcc Compiler (gxx) Supported Supported

For more information about oneTBB and OpenMP, see the following sections in this Intel Advisor help system.
For detailed instructions, see your compiler documentation and the resources listed in Related Information.
Intel® oneAPI Threading Building Blocks (oneTBB)

Intel® oneAPI Threading Building Blocks (oneTBB) is a high-level parallel programming framework for C++
code that uses a template-based runtime library to help you harness the performance of multi-core
processors. oneTBB lets you specify logical parallelism instead of threads. You specify potential parallelism -
what can be run in parallel. The library decides the actual parallelism at run-time, matching it to the available
hardware. The library has templates that simplify using high level parallel patterns such as parallel loops.
oneTBB programs are implemented by a library that has been ported to multiple C++ compilers.

Use oneTBB to write scalable programs that:

• Specify parallel work instead of managing threads.
• Emphasize data parallel programming.
• Take advantage of high-level parallel patterns.

oneTBB consists of header files and shared libraries, so it can be used with any C++ compiler.

  1   Intel® Advisor User Guide

194



Intel recommends that you consider using oneTBB for introducing parallelism into C++ programs. It has a
small cost of entry and provides excellent initial performance with a lot of additional capabilities that can be
used for future refinements.

It also has many powerful features that can make it possible to easily parallelize more places in your
application. These features include:

• Parallel algorithmic patterns
• Concurrency-friendly containers
• Scalable memory allocation
• Synchronization primitives
• Timing

OpenMP*

OpenMP* is a parallel programming framework for C, C++, or Fortran code. Using OpenMP requires few
source changes and is supported by multiple compilers. Because OpenMP is supported by OpenMP libraries,
you modify your source code with compiler directives rather than using types, variables, and calls. An
OpenMP program can often be changed from parallel execution to serial execution by omitting a compiler
option so the compiler ignores the OpenMP directives.

OpenMP 2 is very good at using several cores on loops that process arrays, but does not support irregular
parallelism through general tasking. It is supported by the Microsoft, the Intel, and the GNU* C, C++ and
Fortran compilers. It is difficult to use OpenMP version 2 for situations other than simple divisions of
statement sequences or complete loop bodies.

The OpenMP 3.0 specification adds TASK support. The TASK directives enable performing arbitrary pieces of
an algorithm in parallel. The Intel® C++ Compiler Classic and Intel® Fortran Compiler Classic support OpenMP
3.0 and some parts of OpenMP 4.0. For Intel, Microsoft, and GNU* compilers, consult your compiler
documentation for the level of OpenMP support.

If your application is written in Fortran, OpenMP is the only high-level parallel framework available.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

Microsoft Task Parallel Library* (TPL)

Microsoft Task Parallel Library* (TPL) in the Microsoft .NET* Framework is a combination of public types and
APIs that allow addition of parallelism and concurrency on Windows* OS systems. For Intel Advisor users,
use Microsoft TPL for C# and managed C++ libraries.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Microsoft TPL is a high-level parallel programming framework for .NET code to help you harness the
performance of multi-core processors. It lets you specify logical parallelism instead of threads. That is, you
specify potential parallelism - what can be run in parallel. The library decides the actual parallelism at run-
time, matching it to the available hardware.

Microsoft TPL provides two main classes:

• System.Threading.Tasks.Parallel: includes For and ForEach loops.
• System.Threading.Tasks.Task: is the preferred way to express asynchronous operations.

Other classes are also available. For example, System.Collections.Concurrent provides for concurrent
collections that do not require external locking.

You can use Microsoft TPL for introducing parallelism into either C# programs or managed C++ code.

Please refer to your Microsoft MSDN* help documentation for information about this parallel framework. For
example: MSDN Library > .NET Development > .NET Framework 4 > .NET Framework Advanced
Development > Parallel Programming > Task Parallel Library

Intel® Advisor User Guide  1  

195



Other Parallel Frameworks

Intel Advisor helps you prepare your program for adding parallelism, regardless of the parallel framework you
choose. Intel Advisor provides the ability to predict the parallel behavior of your serial program and lets you
determine the feasibility of possible parallel regions before you actually add parallelism.

Intel Advisor does not perform analysis of your parallel program, so you can use any parallel framework. You
can use Intel Advisor with high-level parallel frameworks that use a fork-join model, or with low-level APIs
that provide explicit thread control.

Intel recommends using the parallel frameworks Intel® oneAPI Threading Building Blocks (oneTBB) or
OpenMP*, which are included with Intel® oneAPI Toolkits. These high-level frameworks provide parallel
features well-suited for most multi-core computer systems.

If you decide to use a different parallel framework or a low-level threading API, please be aware of the
following considerations:

• Some parallel frameworks have limited abilities to scale with different number of cores, handle load
balancing, and handle loop scalability (chunking), and so on.

• As part of your planning, you might create a mapping of at least Intel Advisor Site, Task, and Lock
annotations to the equivalent code constructs in the chosen parallel framework. That is, create a list that
maps the Intel Advisor annotations to your parallel framework's features. Thus, you need to be aware of
all annotations. For example, all Intel Advisor programs need to use parallel site and task annotations.
Most programs will also use lock annotations. For a complete list of annotations, see the help topic
Summary of Annotation Types.

• Some parallel frameworks require that you use certain compilers that recognize the parallel framework's
keywords, while others are libraries that can be used with multiple compilers.

• Some parallel frameworks may not correctly handle multi-program workloads.

In all cases, you need to learn how to use the parallel framework that you select. The current Add Parallelism
workflow step involves replacing annotations with chosen parallel framework code.

Add the Parallel Framework to Your Build Environment
After you choose the parallel framework, you need to add the parallel framework to your build environment.

Adding the parallel framework to your build environment can require installing additional www, as well as
modifying build scripts, modifying project properties or Microsoft Visual Studio* project properties (on
Windows* OS systems), and so on.

Later, after you add the parallel framework to your build environment, you can begin to make source code
changes that use the parallel framework to add synchronization (such as locks) or parallelism to your
program.

The following sections describe adding the Intel® oneAPI Threading Building Blocks (oneTBB) and OpenMP*
parallel frameworks to your build environment, including adding C++11 (formerly C++0x) Lambda
Expression Support that simplifies the use of oneTBB .

Enable Intel® oneAPI Threading Building Blocks (oneTBB) in your Build Environment

If you use the Intel® C++ Compiler Classic or Intel® oneAPI DPC++/C++ Compiler from the command line,
specify the following option when you build your program:

• For Windows* OS: /Qtbb
• For Linux* OS: -tbb
This option tells the compiler to link with the Intel® oneAPI Threading Building Blocks (oneTBB) libraries. If
you use other compilers, please see your oneTBB or compiler documentation.

NOTE
With Intel Advisor samples, to use the oneTBB project (_tbb), you might need to define the TBBROOT
environment variable (see the help topic Define the TBBROOT Environment Variable) and specify the
TBBROOT/include directory as an additional include path when compiling (in build properties on
Windows OS).

  1   Intel® Advisor User Guide

196



The following instructions are for using the Visual Studio* development environment on a Windows OS
system.

Modify the project properties for each of your Visual Studio project build configurations (debug, release, and
so on). You can set multiple properties by using the Configuration Properties with Visual Studio:

1. In Solution Explorer, select (click) the name of one or more projects. To select multiple projects, hold
down the Ctrl key.

2. With Visual Studio:

• Right-click the project name(s) and select Configuration Properties > Intel Performance
Libraries > Intel oneAPI Threading Building Blocks.

• On the Use oneTBB line, specify Yes.

NOTE
If you change the version of oneTBB or the Visual Studio version installed on your system, you may
see build errors related to oneTBB libraries. In this case, reset the integration by repeating the above
steps to uncheck, and then check, the Use oneTBB box. See the Intel Advisor release notes for more
information.

3. Click OK to save the specified properties.
4. Repeat the steps above for other configurations.

This procedure defines multiple properties to set up your build environment to use oneTBB .

See Also
Define the TBBROOT Environment Variable
Parallel Frameworks Overview

Define the TBBROOT Environment Variable

With Intel® Advisor samples, to build the Intel® oneAPI Threading Building Blocks (oneTBB) project (_tbb),
you need to define the TBBROOT environment variable.

To define this environment variable:

On Linux* OS:

1. Open a command line window.
2. Use the export command to set the TBBROOT environment variable, type: export TBBROOT=<tbb-

install-dir>. If you used the default path during installation, the <tbb-install-dir> is inside:

• For root users:
/opt/intel/

• For non-root users:
$HOME/intel/

For example, if you installed the Intel® oneAPI Threading Building Blocks as a part of Intel® oneAPI Base
Toolkit, the <tbb-install-dir> may be /opt/intel/oneapi/tbb/<version>.

3. To always set this variable on the current system, add this definition to your .login or similar shell
initialization file.

On Windows* OS:

1. Open the control panel and access: Control Panel > System and Security > System > Advanced
system settings > Environment Variables....

2. Locate any existing definition of the TBBROOT user or system environment variable. If present, verify
that it value is correct if you encountered build errors and either click Cancel or OK as needed to exit
the dialog box.

Intel® Advisor User Guide  1  

197



3. If it is not present, under System variables or User variables, click New.
4. Specify the Variable name as: TBBROOT.
5. Specify the Variable value as the path of the installed Intel® oneAPI Base Toolkit files, including the

\tbb directory.

If you installed the product as part of a Intel® oneAPI Base Toolkit and used the default path, files are
installed below: C:\Program Files (x86)\Intel\oneAPI\, for example C:\Program Files
(x86)\Intel\oneAPI\tbb\<version>.

6. Click OK several times.
7. For the change to take effect:

• If using Microsoft Visual Studio*: close and reopen Visual Studio.
• If using command window: close and reopen your command window.

In some cases, you may need to log off and log on for this change to take effect.
8. If needed, you can test the definition by opening a command window and typing set TBBROOT.

You have defined the TBBROOT environment variable.

See Also
Enable C++11 Lambda Expression Support with Intel® oneAPI Threading Building Blocks (oneTBB)
Parallel Frameworks Overview

Enable C++11 Lambda Expression Support with Intel® oneAPI Threading Building Blocks (oneTBB)

The C++11 (new standard for the C++ language, formerly C++0x) lambda expression support makes many
Intel® oneAPI Threading Building Blocks (oneTBB) constructs easier to program because it avoids the need to
introduce extra classes to encapsulate code as functions. If you decide to use this feature, you need a
compiler that supports it, such as the Intel® C++ Compiler Classic or Intel® oneAPI DPC++/C++ Compiler.
For more information about C++11 lambda expression support in the other compilers, please see your
compiler documentation (online help).

When using the command line with the Intel® C++ Compiler Classic or Intel® oneAPI DPC++/C++ Compiler,
specify the following option to enable lambda expression support:

• For Windows* OS: /Qstd=c++0x
• For Linux* OS: -std=c++0x
To enable the C++11 support in Visual Studio on a Windows* OS system:

1. In Solution Explorer, select (click) the name of one or more projects. To select multiple projects, hold
down the Ctrl key.

2. Right-click the project name and select Intel Compiler > Use Intel C++ from the context menu.
3. Select Project > Properties, or right-click the project name and select Properties from the context

menu.

4. Specify the following Configuration Properties:

C++ > Language  Under Intel Specific, select Enable C++0x Support as Yes
5. Click OK to save the specified properties.

6. Repeat the steps above for other configurations.

You have set up your environment to use the C++11 lambda expression support.

See Also
Adding Intel® oneAPI Threading Building Blocks (oneTBB) to your Build Environment

  1   Intel® Advisor User Guide

198



Enable OpenMP* in your Build Environment

OpenMP* is supported by certain versions of the Microsoft Visual C++* compiler, the GNU* compilers, the
Intel® C++ Compiler Classic, Intel® Fortran Compiler Classic, and Intel® oneAPI DPC++/C++ Compiler:

• Most recent versions of the Microsoft Visual C++* compiler include OpenMP support.
• Certain editions of the Intel® C++ Compiler Classic and the Intel® Fortran Compiler Classic support the

TASK feature introduced with OpenMP 3.0.

For information about OpenMP support for the Microsoft compilers, see your Microsoft Visual Studio help. For
information about OpenMP support for the GNU compilers, see your compiler help or the appropriate man
page, such as gcc(1).

To enable OpenMP on the command line, specify the appropriate compiler option (see your compiler
documentation), such as the -openmp (for Linux* OS) or /Qopenmp (for Windows* OS) option when using
the Intel compilers.

To enable OpenMP on a Windows OS system using Microsoft Visual Studio*:

1. In Solution Explorer, select (click) the name of one or more projects. To select multiple projects, hold
down the Ctrl key.

2. Select Project > Properties or right-click the project name and select Properties from the pop-up
menu.

3. Specify the Configuration Properties for your C/C++ or Fortran project(s):

C/C++ >
Language

Specify OpenMP Support as Yes

Fortran >
Language

Specify OpenMP Support as Yes

4. Click OK to save the specified properties.
5. Repeat the steps above for other configurations.
6. You should check your startup project properties before starting a build.

You have set up your environment for OpenMP support on a Windows OS system.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

NOTE
Even if you are only using the #pragma omp pragmas within your source, Visual C++ sources
compiled with the Microsoft compilers need to #include <omp.h>. Otherwise, running the application
will be missing a .dll at load time.

To include the appropriate OpenMP environment when using the Intel® Fortran Compiler Classic, specify the
use omp_lib statement.

See Also
Annotation Report Overview

Intel® Advisor User Guide  1  

199



Annotation Report
Annotation Report Overview

The Annotation Report window displays the annotations for your program. Intel Advisor updates the listed
annotations when changes occur to the specified source directories. For example, when you save a source file
with a code editor.

The first three columns show the Annotation type, the source location, and the annotation label. To view or
hide a source code snippet, click the  icon in the Annotation column (as shown for the Site annotation).
To display the source code associated with each annotation, either double-click in these columns or right-click
and select View Source or Edit Source.

See Also
Locating Annotations with the Annotation Report
Troubleshooting No Annotations Found
Troubleshooting Sources Not Available
Troubleshooting Debug Information Not Available

Locate Annotations with the Annotation Report

The Annotation Report window lists all the Intel Advisor annotations found in your project and their types.
Each annotation appears as a separate row in a table-like grid.

To use the list of annotations in the Annotation Report window to find annotations as you replace
annotations with parallel framework code:

1. To display the Annotation Report window, click the Annotation Report tab or - if you are using the

Advisor Workflow tab - click the  (View Annotations) button below 2. Annotate Sources or 5.
Add Parallel Framework. The annotations associated with the selected start-up project appear. If you
have run the Suitability and Dependencies tools for this start-up project, the most recent relevant data
also appears in their respective columns.

2. To sort the annotations by type, click the column heading Annotations. The suggested way to replace
annotations is to replace lock annotations first, and then site and task annotations (this is because
synchronized code without parallelism works correctly, but parallel code without synchronization works
incorrectly). To show or hide a code snippet showing an annotation, click the  icon next to its name in
the Annotations column.

3. To open the code editor with the corresponding source file, double-click an annotation type (data row)
in the Annotations column or a line in its code snippet (or use the Edit Source context menu item).
When using the Intel Advisor GUI on Linux* OS, the editor defined by the Options > Editor dialog box
appears with the file open at the corresponding location. When using the Intel Advisor GUI on
Windows* OS, the file type association (or Open With dialog box) determines the editor used. When
using Visual Studio*, the Visual Studio code editor appears with the file open at the corresponding
location.

  1   Intel® Advisor User Guide

200



NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

4. Read the documentation associated with the parallel framework as well as the relevant information in
Intel Advisor help so you understand what parallel framework code to insert. In many cases, you need
to insert parallel framework declarations at the start of the source file, as well as parallel framework
code that replaces the annotations.

5. Repeat the steps above for each lock annotation.
6. Repeat the steps above for each site and task annotation.

You have used the Annotation Report window to help you locate and replace the Intel Advisor annotations
with parallel framework code.

Replace Annotations with Intel® oneAPI Threading Building Blocks (oneTBB) Code
This topic explains the steps needed to implement parallelism proposed by the Intel Advisor annotations by
adding Intel® oneAPI Threading Building Blocks (oneTBB) parallel framework code.

• Add oneTBB code to add appropriate synchronization of shared resources, using the LOCK annotations as
a guide. The following topics cover the oneTBB synchronization options:

• Intel® oneAPI Threading Building Blocks (oneTBB) Mutexes
• Intel® oneAPI Threading Building Blocks (oneTBB) Mutex - Example

• Add code to create oneTBB tasks, using the SITE/TASK annotations as a guide. The following topics cover
the oneTBB task creation options:

• Parallelize Functions - Intel® oneAPI Threading Building Blocks (oneTBB) Tasks
• Parallelize Data - Intel® oneAPI Threading Building Blocks (oneTBB) Counted Loops
• Parallelize Data - Intel® oneAPI Threading Building Blocks (oneTBB) Loops with Complex Iteration

Control

This is the recommended order of tasks for replacing the annotations with oneTBB code:

1. Add appropriate synchronization of shared resources, using LOCK annotations as a guide.
2. Test to verify you did not break anything, before adding the possibility of non-deterministic behavior

with parallel tasks.
3. Add code to create oneTBB tasks or loops, using the SITE/TASK annotations as a guide.
4. Test with one thread, to verify that your program still works correctly.
5. Test with more than one thread to see that the multithreading works as expected.

The oneTBB parallel framework creates worker threads automatically. In general, you should concern yourself
only with the tasks, and leave it to the framework to create and destroy the worker threads.

If you do need some control over creation and destruction of worker threads, read about
task_scheduler_init in the oneTBB Reference manual.

The table below shows the serial, annotated program code in the left column and the equivalent oneTBB
parallel code in the right column for some typical code to which parallelism can be applied.

Serial Code with Intel Advisor Annotations Parallel Code using oneTBB

// Locking
ANNOTATE_LOCK_ACQUIRE();
  Body();
ANNOTATE_LOCK_RELEASE():

// Locking can use various mutex types provided 
// by oneTBB. For example:
#include <tbb/tbb.h>
 ...
 tbb::mutex g_Mutex;
 ...
{
    tbb::mutex::scoped_lock lock(g_Mutex);
    Body();
}

Intel® Advisor User Guide  1  

201



Serial Code with Intel Advisor Annotations Parallel Code using oneTBB

// Do-All Counted loops, one task
ANNOTATE_SITE_BEGIN(site);
  For (I = 0; I < N; ++) {
    ANNOTATE_ITERATION_TASK(task);
      {statement;}
  }
ANNOTATE_SITE_END();

// Do-All Counted loops, using lambda 
// expressions
#include <tbb/tbb.h>
  ...
  tbb::parallel_for(0,N,[&](int I) { 
    statement;
  });

// Create Multiple Tasks
ANNOTATE_SITE_BEGIN(site);
  ANNOTATE_TASK_BEGIN(task1);
    statement-or-task1;
  ANNOTATE_TASK_END();
  ANNOTATE_TASK_BEGIN(task2);
    statement-or-task2;
  ANNOTATE_TASK_END();
ANNOTATE_SITE_END();

// Create Multiple tasks, using lambda 
// expressions
#include <tbb/tbb.h>

  ...
  tbb::parallel_invoke(
    [&]{statement-or-task1;},
    [&]{statement-or-task2;}
  );

For information about common parallel programming patterns and how to implement them in oneTBB, see
the oneTBB help topic Design Patterns.

Intel® oneAPI Threading Building Blocks (oneTBB) Mutexes

With Intel® oneAPI Threading Building Blocks (oneTBB) , you can associate a mutex with a shared object to
enforce mutually exclusive access to that object. A mutex is either locked or unlocked. For a thread to safely
access the object:

• The thread acquires a lock on the mutex.
• The thread accesses the associated shared object.
• The thread releases its lock on the mutex.

When a mutex is locked, if another thread tries to also acquire a lock on it, this second thread is stalled until
the first thread releases its lock on the mutex. This functionality provided by a mutex is exactly the semantic
function intended by the Intel Advisor annotations ANNOTATE_LOCK_ACQUIRE() and
ANNOTATE_LOCK_RELEASE().

With oneTBB , the annotation lock address becomes the mutex object. The ANNOTATE_LOCK_ACQUIRE() and
ANNOTATE_LOCK_RELEASE() annotations become operations on this mutex.

oneTBB provides several classes for locking, each with different properties. For more information, refer to the
oneTBB documentation. If you are not sure what type of a mutex is most appropriate, consider using
tbb::mutex as your initial choice.

See Also
Intel® oneAPI Threading Building Blocks (oneTBB) Simple Mutex - Example

Intel® oneAPI Threading Building Blocks (oneTBB) Simple Mutex - Example

The following examples shows basic usage of a Intel® oneAPI Threading Building Blocks (oneTBB) mutex to
protect a shared variable named count using simple mutexes and scoped locks:

Simple Mutex Example

#include <tbb/mutex.h>

int count;

  1   Intel® Advisor User Guide

202



tbb::mutex countMutex;

int IncrementCount() {
    int result;
    // Add oneTBB mutex       
    countMutex.lock();     // Implements ANNOTATE_LOCK_ACQUIRE()
    result = count++;      // Save result until after unlock
    countMutex.unlock();   // Implements ANNOTATE_LOCK_RELEASE()
    return result;
}

The semantics of countMutex.lock() and unlock() on countMutex correspond directly to the annotations
ANNOTATE_LOCK_ACQUIRE() and ANNOTATE_LOCK_RELEASE(). However, it is generally better to use the
scoped locking pattern.

Scoped Lock Example
With a scoped lock, you construct a temporary scoped_lock object that represents acquisition of a lock.
Destruction of the scoped_lock object releases the lock on the mutex.

The following code shows the previous example rewritten using scoped locking:

#include <tbb/mutex.h>
int          count;
tbb::mutex   countMutex;

int IncrementCount() {
    int result;
    {
       // Add oneTBB scoped lock at location of ANNOTATE_LOCK annotations
       tbb::mutex::scoped_lock lock(countMutex);  // Implements ANNOTATE_LOCK_ACQUIRE()
       result = count++;
          // Implicit ANNOTATE_LOCK_RELEASE() when leaving the scope below. 
    }  // scoped lock is automatically released here
    return result;
}

The scoped_lock pattern is preferred because it releases the lock no matter how control leaves the block.
The scoped lock is released when destruction of the scoped_lock object occurs. In particular, it releases the
lock even when control leaves because an exception was thrown.

oneTBB also has a tbb::atomic template class that can be used in simple cases such as managing a shared
integer variable. Check the Related Information for details.

See Also
Testing the Intel® oneAPI Threading Building Blocks (oneTBB) Synchronization Code
Related Information

Test the Intel® oneAPI Threading Building Blocks (oneTBB) Synchronization Code

After you add Intel® oneAPI Threading Building Blocks (oneTBB) synchronization code (such as mutexes), but
before adding the constructs that cause the program to use parallel execution, you should test your serial
program. The synchronization code may introduce problems if you have inadvertently used a non-recursive
mutex in a recursive context, or if your edits accidentally changed some other piece of program behavior.

It is much easier to find these problems in the serial version of your program than it will be in the parallel
version.

See Also
Parallelize Functions - Intel® oneAPI Threading Building Blocks (oneTBB) Tasks

Intel® Advisor User Guide  1  

203



Parallelize Functions - Intel® oneAPI Threading Building Blocks (oneTBB) Tasks

The following sections describe various alternatives, depending on how the tasks fit within the surrounding
parallel site.

Two or More Parallel Statements
When the outermost statements in the annotation site have been placed into tasks, as shown in this serial
example, it is easy to execute them in parallel.

    ANNOTATE_SITE_BEGIN(sitename);
        ANNOTATE_TASK_BEGIN(task1);
            statement_1
        ANNOTATE_TASK_END();
        ANNOTATE_TASK_BEGIN(task2);
            statement_2
        ANNOTATE_TASK_END();
    ANNOTATE_SITE_END();

Two or More Parallel Statements - Intel® oneAPI Threading Building Blocks (oneTBB)
The easiest way to cause several sequential statements to be executed as independent tasks is to change
your program as follows using parallel_invoke.

Both of the following examples use the C++11 lambda expression feature - you need to use the Intel® C++
Compiler Classic or Intel® oneAPI DPC++/C++ Compiler and enable the C++11 support to compile it.

  #include <tbb/tbb.h>

  ...
  tbb::parallel_invoke(
     [&]{statement_1;},
     [&]{statement_2;}
}

A variable used inside a lambda expression but declared outside it is said to be captured. The [&] in the
example specifies capture by reference. It is also possible to capture by value [=], or even capture different
variables different ways. See the compiler documentation on lambda expressions for details.

Using C++ structs Instead of Lambda Expressions
Any code that can be written with a lambda expression can be written without one - it is just more work. All
a lambda expression does is:

1. Define a class with operator() defined to execute the body of the lambda expression.
2. Define a class constructor that captures variables into fields of the class.
3. Construct an instance of that class.

The constructor can capture any of the surrounding locals that are needed and save them in data members.

{ struct S1 { void operator()() { statement_1 }};
  struct S2 { void operator()() { statement_2 }};
  tbb::parallel_invoke(S1(),S2());
}

See Also
Parallelize Data - Intel® oneAPI Threading Building Blocks (oneTBB) Counted Loops

  1   Intel® Advisor User Guide

204



Parallelize Data - Intel® oneAPI Threading Building Blocks (oneTBB) Counted Loops

When tasks are loop iterations, and the iterations are over a range of values that are known before the loop
starts, the loop is easily expressed in Intel® oneAPI Threading Building Blocks (oneTBB) .

Consider the following serial code and the need to add parallelism to this loop:

    ANNOTATE_SITE_BEGIN(sitename);
        for (int i = lo; i < hi; ++i) {
            ANNOTATE__ITERATION_TASK(taskname);
                statement;
        }
    ANNOTATE_SITE_END();

Here is the serial example converted to use oneTBB , after you remove the Intel Advisor annotations:

#include <tbb/tbb.h>
    ...
    tbb::parallel_for( lo, hi, 
        [&](int i) {statement;}
    );

The first two parameters are the loop bounds. As is typical in C++ (especially STL) programming, the lower
bound is inclusive and the upper bound is exclusive. The third parameter is the loop body, wrapped in a
lambda expression. The loop body will be called in parallel by threads created by oneTBB . As described
before in Create the Tasks, Using C++ structs Instead of Lambda Expressions, the lambda expressions can
be replaced with instances of explicitly defined class objects.

See Also
Parallelize Data - Intel® oneAPI Threading Building Blocks (oneTBB) Loops with Complex Iteration
Control
Parallelize Functions - Intel® oneAPI Threading Building Blocks (oneTBB) Tasks for information on
using C++ structs instead of lambda functions

Parallelize Data - Intel® oneAPI Threading Building Blocks (oneTBB) Loops with Complex Iteration Control

Sometimes the loop control is spread across complex control flow. Using Intel® oneAPI Threading Building
Blocks (oneTBB) in this situation requires more features than the simple loops. Note that the task body must
not access any of the auto variables defined within the annotation site, because they may have been
destroyed before or while the task is running. Consider this serial code:

 extern char a[];
 int previousEnd = -1;
  ANNOTATE_SITE_BEGIN(sitename);
    for (int i=0; i<=100; i++) {
       if (!a[i] || i==100) {
          ANNOTATE_TASK_BEGIN(do_something);
              DoSomething(previousEnd+1,i);
          ANNOTATE_TASK_END();
          previousEnd=i;
       }
    }
 ANNOTATE_SITE_END();

In general, counted loops have better scalability than loops with complex iteration control, because the
complex control is inherently sequential. Consider reformulating your code as a counted loop if possible.

The prior example is easily converted to parallelism by using the task_group feature of oneTBB :

 
 #include <tbb/tbb.h>
 ...
 extern char a[]; 

Intel® Advisor User Guide  1  

205



 int previousEnd = -1; 
 task_group g;
    for (int i=0; i<=100; i++) {
        if (!a[i] || i==100) {
            g.run([=]{DoSomething(previousEnd+1,i);}
            previousEnd=i;
        }
    }
  g.wait(); // Wait until all tasks in the group finish
 

Here the lambda expression uses capture by value [=] because it is important for it to grab the values of i
and previousEnd when the expression constructs its functor, because afterwards the value of
previousEnd and i change.

For more information on tbb::task_group, see the oneTBB documentation.

See Also
Using Intel® Inspector and Intel® VTune™Profiler

Replace Annotations with OpenMP* Code
This topic explains the steps needed to implement parallelism proposed by the Intel Advisor annotations by
adding OpenMP* parallel framework code.

• Add OpenMP code to provide appropriate synchronization of shared resources, using the LOCK
annotations as a guide.

• Add code to create OpenMP tasks, using the SITE/TASK annotations as a guide.

The recommended order for replacing the annotations with OpenMP code:

1. Add appropriate synchronization of shared resources, using LOCK annotations as a guide.
2. Test to verify you did not break anything, before adding the possibility of non-deterministic behavior

with parallel tasks.
3. Add code to create OpenMP parallel sections or equivalent, using the SITE/TASK annotations as a guide.
4. Test with one thread to verify that your program still works correctly. For example, set the environment

variable OMP_NUM_THREADS to 1 before you run your program.
5. Test with more than one thread to see that the multithreading works as expected.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

OpenMP creates worker threads automatically. In general, you should concern yourself only with the tasks,
and leave it to the parallel frameworks to create and destroy the worker threads.

If you do need some control over creation and destruction of worker threads, see the compiler
documentation. For example, to limit the number of threads, set the OMP_THREAD_LIMIT or the
OMP_NUM_THREADS environment variable.

The table below shows the serial, annotated program code in the left column and the equivalent OpenMP C/C
++ and Fortran parallel code in the right column for some typical code to which parallelism can be applied.

Serial C/C++ and Fortran Code with Intel
Advisor Annotations

Parallel C/C++ and Fortran Code using OpenMP

// Synchronization, C/C++
ANNOTATE_LOCK_ACQUIRE(0);
  Body();
ANNOTATE_LOCK_RELEASE(0);

// Synchronization can use OpenMP 
// critical sections, atomic operations, locks, 
// and reduction operations (shown later)

  1   Intel® Advisor User Guide

206



Serial C/C++ and Fortran Code with Intel
Advisor Annotations

Parallel C/C++ and Fortran Code using OpenMP

! Synchronization, Fortran
call annotate_lock_acquire(0)
    body
call annotate_lock_release(0)

// Synchronization can use OpenMP 
// critical sections, atomic operations, locks, 
// and reduction operations (shown later)

// Parallelize data - one task within a
// C/C++ counted loop
ANNOTATE_SITE_BEGIN(site);
  for (i = lo; i < n; ++i) {
    ANNOTATE_ITERATION_TASK(task);
      statement;
  }
ANNOTATE_SITE_END();

// Parallelize data - one task, C/C++ counted 
loops 
  #pragma omp parallel for
     for (int i = lo; i < n; ++i) {
      statement;
      }

! Parallelize data - one task within a 
    ! Fortran counted loop
    call annotate_site_begin("site1")
    do i = 1, N
    call annotate_iteration_task("task1")
        statement
    end do
    call annotate_site_end

! Parallelize data - one task with a  
    ! Fortran counted loop 
    !$omp parallel do
      do i = 1, N
        statement
      end do
    !$omp end parallel do

// Parallelize C/C++ functions
ANNOTATE_SITE_BEGIN(site);
  ANNOTATE_TASK_BEGIN(task1);
    function_1();
  ANNOTATE_TASK_END();
  ANNOTATE_TASK_BEGIN(task2);
    function_2();
  ANNOTATE_TASK_END();
ANNOTATE_SITE_END();

// Parallelize C/C++ functions 
#pragma omp parallel //start parallel region
{
 #pragma omp sections 
   {
   #pragma omp section 
      function_1();
   #pragma omp section 
      function_2();
   }
} // end parallel region

! Parallelize Fortran functions 
call annotate_site_begin("site1")
call annotate_task_begin("task1")
   call subroutine_1
call annotate_task_end
call annotate_task_begin("task2")
   call subroutine_2
call annotate_task_end
call annotate_site_end

! Parallelize Fortran functions 
!$omp parallel ! start parallel region
  !$omp sections
   !$omp section
    call subroutine_1
   !$omp section
    call subroutine_2
  !$omp end sections
!$omp end parallel ! end parallel region

Add OpenMP Code to Synchronize the Shared Resources

OpenMP provides several forms of synchronization:

• A critical section prevents multiple threads from accessing the critical section's code at the same time,
thus only one active thread can update the data referenced by the code. A critical section may consist of
one or more statements. To implement a critical section:

• With C/C++: #pragma omp critical
• With Fortran: !$omp critical and !$omp end critical

Intel® Advisor User Guide  1  

207



Use the optional named form for a non-nested mutex, such as (C/C++) #pragma omp critical(name)
or (Fortran) !$omp critical(name) and !$omp end critical(name). If the optional (name) is
omitted, it locks a single unnamed global mutex. The easiest approach is to use the unnamed form unless
performance measurement shows this shared mutex is causing unacceptable delays.

• An atomic operation allows multiple threads to safely update a shared numeric variable on hardware
platforms that support its use. An atomic operation applies to only one assignment statement that
immediately follows it. To implement an atomic operation:

• With C/C++: insert a #pragma omp atomic before the statement to be protected.
• With Fortran: insert a !$omp atomic before the statement to be protected.

The statement to be protected must meet certain criteria (see your compiler or OpenMP documentation).
• Locks provide a low-level means of general-purpose locking. To implement a lock, use the OpenMP types,

variables, and functions to provide more flexible and powerful use of locks. For example, use the
omp_lock_t type in C/C++ or the type=omp_lock_kind in Fortran. These types and functions are easy
to use and usually directly replace Intel Advisor lock annotations.

• Reduction operations can be used for simple cases, such as incrementing a shared numeric variable or
summing an array into a shared numeric variable. To implement a reduction operation, add the
reduction clause within a parallel region to instruct the compiler to perform the summation operation in
parallel using the specified operation and variable.

• OpenMP provides other synchronization techniques, including specifying a barrier construct where threads
will wait for each other, an ordered construct that ensures sequential execution of a structured block
within a parallel loop, and master regions that can only be executed by the master thread. For more
information, see your compiler or OpenMP documentation.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

The following topics briefly describe these forms of synchronization. Check your compiler documentation for
details.

See Also
Testing the OpenMP Synchronization Code

OpenMP Critical Sections

Use OpenMP critical sections to prevent multiple threads from accessing the critical section's code at the
same time, thus only one active thread can update the data referenced by the code. Critical sections are
useful for a non-nested mutex.

Unlike OpenMP atomic operations that provide fine-grain synchronization for a single operation, critical
sections can provide course-grain synchronization for multiple operations.

Use:

• #pragma omp critical with C/C++.
• !$omp critical and !$omp end critical with Fortran.

If the optional (name) is omitted, it locks an unnamed global mutex. The easiest approach is to use the
unnamed form unless this shared mutex is causing unacceptable performance delays.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

  1   Intel® Advisor User Guide

208



For example, consider this annotated C/C++ serial program:

  int count;
   void Tick() {
     ANNOTATE_LOCK_ACQUIRE(0);
        count++;
     ANNOTATE_LOCK_RELEASE(0);
  }
. . .

The parallel C/C++ code after adding #include <omp.h> and #pragma omp critical:

  #include <omp.h>  //prevents a load-time problem with a .dll not being found
  int count;
   void Tick() {
     // Replace Lock annotations
     #pragma omp critical
        count++;
  }
. . .

Consider this annotated Fortran serial code:

program ABC
   integer(kind=4) :: count = 0
 . . .
contains
subroutine Tick
  call annotate_lock_acquire(0)
    count = count + 1
  call annotate_lock_release(0)
end subroutine Tick
 . . .
end program ABC

The parallel Fortran code after adding use omp_lib, !$omp critical, and !$omp end critical:

program ABC
  use omp_lib
  integer(kind=4) :: count = 0
  . . .
  contains
   subroutine Tick
     !$omp critical
       count = count + 1
     !$omp end critical
   end subroutine Tick
 . . .
end program ABC

See Also
Testing the OpenMP Synchronization Code
Related Information

Intel® Advisor User Guide  1  

209



Basic OpenMP Atomic Operations

Use OpenMP atomic operations to allow multiple threads to safely update a shared numeric variable, such as
on hardware platforms that support atomic operation use. An atomic operation applies only to the single
assignment statement that immediately follows it, so atomic operations are useful for code that requires fine-
grain synchronization.

Before the statement to be protected, use:

• #pragma omp atomic for C/C++.
• !$omp atomic for Fortran.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

For example, consider this annotated C/C++ serial code:

  int count;
   void Tick() {
     ANNOTATE_LOCK_ACQUIRE(0);
        count = count+1;
     ANNOTATE_LOCK_RELEASE(0);
  }
. . .

The parallel C/C++ code after adding #include <omp.h> and #pragma omp atomic:

#include <omp.h>  //prevents a load-time problem with a .dll not being found
  int count;
   void Tick() {
   // Replace lock annotations
     #pragma omp atomic
        count = count+1;
  }
. . .

Consider this annotated Fortran serial code:

program ABC
   integer(kind=4) :: count = 0
 . . .
contains
subroutine Tick
  call annotate_lock_acquire(0)
    count = count + 1
  call annotate_lock_release(0)
end subroutine Tick
 . . .
end program ABC

The parallel Fortran code after adding use omp_lib and the !$omp atomic directive:

 
program ABC
  use omp_lib
  integer(kind=4) :: count = 0
  . . .
  contains

  1   Intel® Advisor User Guide

210



   subroutine Tick
      !$omp atomic
       count = count + 1
   end subroutine Tick
 . . .
end program ABC

The Intel Advisor Fortran sample nqueens.f90 demonstrates the use of an atomic operation.

This topic introduces basic OpenMP atomic operations. For advanced atomic operations that use clauses after
the atomic construct, see Advanced OpenMP Atomic Operations.

See Also
Advanced OpenMP Atomic Operations
Testing the OpenMP Synchronization Code 
Related Information

Advanced OpenMP Atomic Operations

This topic provides advanced examples of OpenMP* atomic operations.

These advanced atomic operations use clauses after the atomic construct, such as read, write, update,
capture, and seq_cst. If you do not add a clause after atomic, the default is update.

Because these clauses are part of OpenMP 3.1 and 4.0 specification, you need a compiler that supports these
advanced atomic clauses, such as the Intel® C++ Compiler Classic or the Intel® Fortran Compiler Classic.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

Example Using the read and write Clauses
The following C/C++ example uses separate read and write clauses:

int atomic_read(const int *x)
{
  int value;
  /* Ensure that the entire value of *x is read atomically. */ 
  /* No part of *x can change during the read operation. */
#pragma omp atomic read
  value = *x;
  return value;
}
void atomic_write(int *x, int value)
{
  /* Ensure that value is stored atomically into *x.   */
  /* No part of *x can change until after the entire write operation has completed. */
  #pragma omp atomic write
  *x = value;
}

The following Fortran example uses the read and write clauses:

function atomic_read(x)
   integer :: atomic_read
   integer, intent(in) :: x
! Ensure that the entire value of x is read atomically. No part of x can change during 
! the read operation.

Intel® Advisor User Guide  1  

211



!$omp atomic read
   atomic_read = x
   return
end function atomic_read
subroutine atomic_write(x, value)
  integer, intent(out) :: x
  integer, intent(in) :: value
  ! Ensure that value is stored atomically into x. No part of x can change
  ! until after the entire write operation has completed.
  !$omp atomic write
  x = value
end subroutine atomic_write

Example Using the Basic capture Clause
The following C/C++ example uses the capture clause:

#pragma omp parallel for shared (pos)
     for (int i=0; i < size; i++) {
          
          if (isValid(data[i])) {
                int tmpPos;
                // Using omp atomic capture pragma 
                #pragma omp atomic capture
                {
                     tmpPos = pos;
                     pos =  pos+1;
                }
                //Pack all selected element' indices in index; exact order of indices values is 
not important.
                index[tmpPos] = i;
          }
     }

Example Using the Swap Form of the capture Clause
The capture clause example above might be modified to use the following code snippet:

//with introduction of “atomic swap” you can also use forms like:
                     newPos = foo();
       .
       .
       .
#pragma omp atomic capture
                {
                     tmpPos = pos;
                     pos =  newPos;
                }

See Also
Testing the OpenMP Synchronization Code
Basic OpenMP Atomic Operations
Related Information

  1   Intel® Advisor User Guide

212



OpenMP Reduction Operations

OpenMP reduction operations can be used for simple cases, such as incrementing a shared numeric variable
or the summation of an array into a shared numeric variable. To implement a reduction operation, add the
reduction clause within a parallel region to instruct the compiler to perform the summation operation in
parallel using the specified operation and variable.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

Consider this annotated C/C++ serial code:

  int  i, n=500000; 
  float *array, total=0.0;
     ...
      for (i=0; i <n ; ++i  
      {
        ANNOTATE_LOCK_ACQUIRE(0);
        total+ = array[i];
        ANNOTATE_LOCK_RELEASE(0);
      }
. . .

The parallel C/C++ code after adding #include <omp.h> and #pragma omp parallel for reduction:

#include <omp.h>  //prevents a load-time problem with a .dll not being found
  int  i, n=500000; 
  float *array, total=0.0;
     ...
     #pragma omp parallel for reduction(+:total)
        for (i=0; i <n ; ++i  
        {
          total+ = array[i];
        }
. . .

Consider this annotated Fortran serial code:

  integer(4) n
  real(4) array(50000), total = 0.0
  n = 500000
  ...
     do i=1, n
     call annotate_lock_acquire(0)
        total = total + array(i)
     call annotate_lock_release(0)
 . . .
     end do

Consider this parallel Fortran code after adding use omp_lib, !$omp parallel do reduction(+:total),
and !$omp end parallel do:

  use omp_lib
  integer(4) n
  real(4) array(50000), total = 0.0

Intel® Advisor User Guide  1  

213



  n = 500000
  ...

  !$omp parallel do reduction(+:total)
     do i=1, n
        total = total + array(i)
  !$omp end parallel do
 . . .
     end do

See Also
Testing the OpenMP Synchronization Code
Related Information

OpenMP Locks

Consider the following annotated C/C++ serial code:

  int count;
  void Tick() {
    ANNOTATE_LOCK_ACQUIRE(0);   
       count++; 
    ANNOTATE_LOCK_RELEASE(0);

To implement a lock, use the OpenMP types, variables, and functions to provide more flexible and powerful
use of locks. For example, for simple locks, use the omp_lock_t type in C/C++ or the type=omp_lock_kind
in Fortran.

Locks can be wrapped inside C++ classes, as shown in the following parallel C/C++ code:

#include <omp.h>
  int count;
  omp_lock_t countMutex;
 
struct CountMutexInit {
     CountMutexInit() { omp_init_nest_lock   (&countMutex);   }
    ~CountMutexInit() { omp_destroy_nest_lock(&countMutex); }
} countMutexInit;     

// The declaration of the above object causes countMutex to
// be initialized on program startup, and to be destroyed when
// the program completes, via the constructor and destructor.

struct CountMutexHold {
     CountMutexHold() { omp_set_nest_lock    (&countMutex); }
    ~CountMutexHold() { omp_unset_nest_lock  (&countMutex); }
};

void Tick() {
    // unlocks on scope exit
    CountMutexHold releaseAtEndOfScope;
      count++; 
    }
    ...

  1   Intel® Advisor User Guide

214



Consider the following annotated Fortran serial code:

program BBB
   integer(kind=4) :: count = 0
 . . .
contains
subroutine Tick
  call annotate_lock_acquire(0)
    count = count + 1
  call annotate_lock_release(0)
end subroutine Tick
 . . .
end program BBB

For simple locks with Fortran code, use the type=omp_lock_kind. The parallel Fortran code follows after
adding use omp_lib and the integer declaration for count:

program BBB
  use omp_lib
  integer(kind=4) :: count = 0
  integer (kind=omp_lock_kind) countMutex
  call omp_nest_lock_init(countMutex)
  . . .

  contains
   subroutine Tick
   call omp_set_nest_lock(countMutex)
       count = count + 1
   call omp_unset_nest_lock(countMutex)
   end subroutine Tick
 . . .
end program BBB

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

See Also
Testing the OpenMP Synchronization Code
Related Information

Test the OpenMP Synchronization Code

After you have added OpenMP synchronization code (such as locks, critical sections, or atomic operations),
but before adding the constructs that cause the program to use parallel execution, you should test your serial
program. The synchronization code may introduce problems if you have inadvertently used a non-recursive
mutex in a recursive context, or if your edits accidentally changed some other piece of program behavior.

It is much easier to find these problems in the serial version of your program than it will be in the parallel
version.

See Also
Parallelize Functions - OpenMP Tasks

Intel® Advisor User Guide  1  

215



Parallelize Functions - OpenMP Tasks

You can enable multiple function calls to run in parallel as two or more tasks. This is useful for functions in
library code for which the source is not available. The statements to run in parallel are not limited to function
calls (see the help topic Data and Task Parallelism).

When the outermost statements in the annotation site have been placed into tasks, as shown in the following
serial example, it is easy to execute them in parallel.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

Consider the C/C++ annotated code:

    ANNOTATE_SITE_BEGIN(sitename);
        ANNOTATE_TASK_BEGIN(task1);
            statement-1;
        ANNOTATE_TASK_END();
        ANNOTATE_TASK_BEGIN(task2);
            statement-2;
        ANNOTATE_TASK_END();
        ANNOTATE_TASK_BEGIN(task3);
            statement-3;
        ANNOTATE_TASK_END();
    ANNOTATE_SITE_END();

For the C/C++ parallel code, OpenMP provides explicit support using #pragma omp parallel sections
and related pragmas within a parallel code region:

 #pragma omp parallel sections
 {
     #pragma omp section
     {
         statement-1;
     }
     #pragma omp section
     {
         statement-2;
     }
      . . .
 }

Consider the annotated Fortran code:

call annotate_site_begin("sitename")
   call annotate_task_begin("task_1")
     call subroutine_1
   call annotate_task_end

   call annotate_task_begin("task_2")
     call subroutine_2
   call annotate_task_end
call annotate_site_end
...

  1   Intel® Advisor User Guide

216



For the parallelized Fortran code, OpenMP provides the !$omp sections and related directives that can
often replace the corresponding annotations within a parallel code region:

!$omp parallel
 !$omp sections 
 !$omp section
   call subroutine_1 
 !$omp section
   call subroutine_2 
 !$omp end sections 
!$omp end parallel
...

See Also
Parallelize Data - OpenMP Counted Loops
Data and Task Parallelism

Parallelize Data - OpenMP Counted Loops

When tasks are loop iterations, and the iterations are over a range of values that are known before the loop
starts, the loop is easily expressed in OpenMP.

Consider the following annotated serial C/C++ loop:

    ANNOTATE_SITE_BEGIN(sitename);
        for (int i = lo; i < hi; ++i) {
            ANNOTATE_ITERATION_TASK(taskname);
                statement;
        }
    ANNOTATE_SITE_END();

OpenMP makes it easy to introduce parallelism into loops. With C or C++ programs, add the omp parallel
for pragma immediately before the C/C++ for statement:

...
  #pragma omp parallel for
     for (int i = lo; i < hi; ++i) {
      statement;
  }

Consider the following annotated Fortran serial loop:

 call annotate_site_begin("sitename")

     do i = 1, N
     call annotate_iteration_task("taskname")
          statement
     end do
 
call annotate_site_end

With Fortran programs, add the !$omp parallel do directive immediately before the Fortran do statement:

...
   !$omp parallel do
      do i = 1, N
        statement
      end do
   !$omp end parallel do

Intel® Advisor User Guide  1  

217



Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

The OpenMP compiler support encapsulates the parallel construct. The rules for capturing the locals can be
defaulted or specified as part of the pragma or directive. The loop control variable defaults to being private
so each iteration sees its allotted value.

See Also
Parallelize Data - OpenMP Loops with Complex Iteration Control
Parallelize Functions - OpenMP Tasks

Parallelize Data - OpenMP Loops with Complex Iteration Control

Sometimes the loop control is spread across complex control flow. Using OpenMP in this situation requires
more features than the simple loops. The task body must not access any of the auto variables defined within
the annotation site, because they may have been destroyed before or while the task is running. Also, note
that variables referenced within the task construct default to firstprivate.

Consider this serial C/C++ code:

extern char a[];
int previousEnd = -1;
 ANNOTATE_SITE_BEGIN(sitename);
   for (int i=0; i<=100; i++) {
      if (!a[i] || i==100) {
         ANNOTATE_TASK_BEGIN(do_something);
             DoSomething(previousEnd+1,i);
         ANNOTATE_TASK_END();
         previousEnd=i;
      }
   }
ANNOTATE_SITE_END();

This is done using the OpenMP task pragma. Without using this feature, such loops are extremely difficult to
parallelize. One approach to the adding parallelism to the loop is to simply spawn each call to
DoSomething():

 
extern char a[]; 
int previousEnd = -1;
#pragma omp parallel
 {
#pragma omp single
  {
... 
   for (int i=0; i<=100; i++) {
   
     if (!a[i] || i==100) 
     {
     #pragma omp task 
          DoSomething(previousEnd+1,i);
     }
   }
 }
}

  1   Intel® Advisor User Guide

218



It is important that the parameters to DoSomething be passed by value, not by reference, because
previousEnd and i can change before or while the spawned task runs.

Consider this serial Fortran code:

. . .
logical(1) a(200)
integer(4) i, previousEnd
...
previousEnd=0
call annotate_site_begin(functions)
do i=1,101
  if a(.not. a(i)) .or. (i .eq. 101) then
  call annotate_task_begin(do_something)
    call DoSomething(previousEnd+1, i)
  call annotate_task_end
  endif
end do
call annotate_site_end

This is easily done using the OpenMP task directive. Without using this feature, such loops are extremely
difficult to parallelize. One approach to the parallelize the above loop is simply to spawn each call to
DoSomething():

 
. . .
logical(1) a(200)
integer(4) i, previousEnd
...
previousEnd=0
!$omp parallel
!$omp single
do i=1,101
  if a(.not. a(i)) .or. (i .eq. 101) then
  !$omp task
     call DoSomething(previousEnd+1, i)
  !$omp end task
  endif
end do
!$omp end parallel
   

There is no requirement that the omp task pragma or directive be within the surrounding parallel directive's
static extent.

Tip After you rewrite your code to use OpenMP* parallel framework, you can analyze its performance
with Intel® Advisor perspectives. Use the Vectorization and Code Insights perspective to analyze how
well you OpenMP code is vectorized or use the Offload Modeling perspective to model its performance
on a GPU.

See Also
Using Intel® Inspector and Intel® VTune™Profiler

Next Steps for the Parallel Program
After you add parallel framework code to your program, use the related Intel® www products to check for
parallel thread errors and improve the performance of your parallel program. Tips for debugging parallel code
are also provided.

Intel® Advisor User Guide  1  

219



Use Intel® Inspector and Intel® VTune™Profiler

Intel® Advisor helps you:

• Discover where to add parallelism to your program by identifying where your program spends its time.
You propose parallel code regions when you annotate the parallel sites and tasks.

• Predict the performance you might achieve with the proposed parallel code regions.
• Predict the data sharing problems that could occur in the proposed parallel code regions.

Intel Advisor does not catch all problems, and it cannot ensure that you have correctly implemented the
parallelism. Before deploying your parallel program, you need to test it for Dependencies and verify its
performance. To do this, you can use analyzer tools provided in the Intel® oneAPI Base Toolkit, Intel® oneAPI
IoT Toolkit, and Intel® oneAPI HPC Toolkit.

The thread error analysis provided by the Intel® Inspector and the Dependencies analysis provided by the
Intel Advisor use similar technology. Intel Inspector includes a data race and deadlock detection tool that
works on the parallel code. It can find more errors because it operates on the parallel code instead of
working on the annotated serial code analyzed by the Dependencies tool. Intel Inspector also can find
problems with memory: memory leaks, references to freed storage, references to uninitialized memory, and
so forth. The memory-checking tool works on serial or parallel code.

Similarly, the Intel Advisor Survey and Suitability tools provide features found in the Intel® VTune™Profiler.
The Survey tool profiles your program to find hotspots and the Suitability tool makes predictions of
approximate parallel performance including overhead costs based on the Intel Advisor annotations. When you
have a working parallel program, you should use Intel VTune Profiler to measure the parallel program gain
and core utilization, as well as check whether the parallel framework overhead is acceptable.

Once you have parallel code, you should:

• Measure the speedup.
• Make adjustments if locks are causing excessive delays, or if one task runs much longer than others.

Intel VTune Profiler has many features to help you find and fix performance problems in your parallel code. It
also helps you check:

• Where are the hotspots now?
• Am I missing opportunities for more parallelism?
• Is my program spending a lot of time waiting?
• How does the performance compare to that of prior versions?

Another technique is to use a debugger to debug a serial version of your parallel program with the parallel
constructs in reverse order (see Debug Parallel Programs).

See Also
Maintain Results

Debug Parallel Programs

Your program might have bugs that are now being exposed during parallel execution because of changes in
order, memory allocation, uninitialized memory contents, and so on.

Such bugs are debugged in the same way as a serial (single-threaded) application, with the following
challenges:

1. The program does not run in exactly the same order each time. Possible causes include:

• Locks may be acquired first by different threads.
• Pointers returned by new and malloc may differ from one run to the next.
• Random number sequences observed by a thread may differ from those observed in the serial

version, and from run to run.
• Items removed from a shared list by a thread may differ from run to run

2. The debugger can interact in strange manners with the threads.

• Breakpoints can appear to be hit multiple times by a thread, even though the thread only make
progress through the breakpoint on last hit of the series.

3. Thread local storage can be difficult to examine.

  1   Intel® Advisor User Guide

220

https://www.intel.com/content/www/us/en/develop/tools/inspector.html
https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html


To determine whether you can reproduce the bug with a single thread, run the parallel version of your
program as a serial program by limiting the number of threads to 1. Use such methods as setting an
environment variable before you run your program or by using the Intel® oneAPI Threading Building Blocks
(oneTBB) tbb::task_scheduler_init init(1); object.

Before spending a significant amount of time debugging the parallel code, you should try running the parallel
loops and other parallel constructs as serial code but in reverse order. This may expose the bugs caused by
your program depending on the order of execution of these statements, without requiring you to debug a
parallel program.

Debug the Remaining Sharing Problems
After your program works in serial mode, and in serial mode with the parallel constructs in reverse order, use
the Intel® Inspector tool to find any remaining conflicts.

See Also
Use Intel Inspector and Intel® VTune™Profiler
Use Partially Parallel Programs with Intel Advisor Tools

Model Offloading to a GPU
Find high-impact opportunities to offload/run your
code and identify potential performance bottlenecks
on a target graphics processing unit (GPU) by running
the Offload Modeling perspective.

The Offload Modeling perspective can help you to do the following:

• For code running on a CPU, determine if you should offload it to a target device and estimate a potential
speedup before getting a hardware.

• For code running on a GPU, estimate a potential speedup from running it on a different target device
before getting a hardware.

• Identify loops that are recommended for offloading from a baseline CPU to a target GPU.
• Pinpoint potential performance bottlenecks on the target device to decide on optimization directions.
• Check how effectively data can be transferred between host and target devices.

With the Offload Modeling perspective, the following workflows are available:

• CPU-to-GPU offload modeling:

• For C, C++, and Fortran applications: Analyze an application and model its performance on a target
GPU device. Use this workflow to find offload opportunities and prepare your code for efficient offload
to the GPU.

• For SYCL, OpenMP* target, and OpenCL™ applications: Analyze an application offloaded to a CPU and
model its performance on a target GPU device. Use this workflow to understand how you can improve
performance of your application on the target GPU and check if your code has other offload
opportunities. This workflow analyzes parts of your application running on host and offloaded to a CPU.

• GPU-to-GPU offload modeling for SYCL, OpenMP target, and OpenCL applications: Analyze an application
that runs on a GPU and model its performance on a different GPU device. Use this workflow to understand
how you can improve your application performance and check if you can get a higher speedup if you
offload the application to a different GPU device.

NOTE You can model application performance only on Intel® GPUs.

How It Works
The Offload Modeling perspective runs the following steps:

1. Get the baseline performance data for your application by running a Survey analysis.

Intel® Advisor User Guide  1  

221



2. Identify the number of times kernels are invoked and executed and the number of floating-point and
integer operations, estimate cache and memory traffics on target device memory subsystem by running
the Characterization analysis.

3. Mark up loops of interest and identify loop-carried dependencies that might block parallel execution by
running the Dependencies analysis (CPU-to-GPU modeling only).

4. Estimate the total program speedup on a target device and other performance metrics according to
Amdahl's law, considering speedup from the most profitable regions by running Performance
Modeling. A region is profitable if its execution time on the target is less than on a host.

The CPU-to-GPU and GPU-to-GPU modeling workflows are based on different hardware configurations,
compilers code-generation principles, and software implementation aspects to provide an accurate modeling
results specific to the baseline device for your application. Review the following features of the workflows:

CPU-to-GPU modeling GPU-to-GPU modeling

Only loops/functions executed or offloaded to a CPU
are analyzed.

Only GPU compute kernels are analyzed.

Loop/function characteristics are measured using
the CPU profiling capabilities.

Compute kernel characteristics are measured using
the GPU profiling capabilities.

Only profitable loops/functions are recommended
for offloading to a target GPU. Profitability is based
on the estimated speedup.

All kernels executed on GPU are modeled one to
one, even if they have low speedup estimated.

High-overhead features, such as call stack
handling, cache and data transfer simulation,
dependencies analysis, can be enabled. You might
need to run the Dependencies analysis to check if
loop-carried dependencies affect performance on a
GPU.

High-overhead features, such as call stack
handling, cache and data transfer simulation,
dependencies analysis, are disabled. You do not
need to run the Dependencies analysis.

Data transfer between baseline and target devices
can be simulated in two different modes: footprint-
based and memory object-based.

Memory objects transferred between host and
device memory are traced.

Offload Modeling Summary
Offload Modeling perspective measures performance of your application and compares it with its modeled
performance on a selected target GPU so that you can decide what parts of your application you can execute
on the GPU and how you can optimize it to get a better performance after offloading.

• Main metrics for the modeled performance of your program indicating if you should offload your
application hotspots to a target device or not

• Specific factors that prevent your code from achieving a better performance if executed on a target device
(the factors that your code is bounded by)

• Top offloaded loops/functions that provide the highest benefit (up to five)
• For the CPU-to-GPU modeling: Top non-offloaded loops/functions (up to five) with reasons why a loop is

not offloaded

  1   Intel® Advisor User Guide

222



See Also
Run Offload Modeling Perspective from GUI
Run Offload Modeling Perspective from Command Line
Run GPU-to-GPU Performance Modeling from Command Line  With Intel® Advisor, you can model
performance of SYCL, OpenCL™, or OpenMP* target application running on a graphics processing
unit (GPU) for a different GPU device without its CPU version. For this, run the GPU-to-GPU
modeling workflow of the Offload Modeling perspective.
Offload Modeling Report Overview
Optimize Your GPU Application with Intel® oneAPI Base Toolkit

Run Offload Modeling Perspective from GUI
Prerequisites:

• For a SYCL, OpenMP* target, or OpenCL™ application, do one of the following:

• To analyze the application running on a GPU: Configure your system to analyze GPU kernels.
• To analyze the application running on a CPU: Set up environment variables to offload it temporarily to

a CPU.
• In the graphical-user interface (GUI): Create a project and specify an analysis target and target options.

To configure and run the Offload Modeling perspective from the GUI:

1. Select a baseline device from the drop-down. This is the device that your application runs on for the
Intel® Advisor to collect performance data.

• To analyze an application running on a CPU (for example, C, C++, or Fortran), make sure CPU is
selected.

Intel® Advisor User Guide  1  

223

https://www.intel.com/content/www/us/en/develop/articles/optimize-gpu-application-with-oneapi-base-toolkit.html


• To analyze an application running on a GPU (for example, SYCL, OpenMP target, OpenCL), select the
GPU baseline device.

NOTE If you select GPU, make sure the GPU Profiling checkbox is enabled under Survey,
Characterization, and Performance Modeling analyses.

2. Configure the perspective and set analysis properties, depending on desired results.

• Select a collection accuracy level with analysis properties preset for a specific result:

• Low: Model your application performance for a target device and get the basic low-confidence
information about potential speed-up and performance.

• Medium: Model your application performance and data transfers between host and target
devices.

• High: Model your application performance, data transfers, and memory objects attribution to
improve offload modeling accuracy. For application running on CPU, analyze loop-carried
dependencies.

• Select the analyses and properties manually to adjust the perspective flow to your needs. The
accuracy level is set to Custom.

The higher accuracy value you choose, the higher runtime overhead is added to your application. The
Overhead indicator shows the overhead for the selected configuration. For the Custom accuracy, the
overhead is calculated automatically for the selected analyses and properties.

The Dependencies analysis (included in the high accuracy for CPU baseline device) adds the highest
overhead and is not required if your application is highly parallelized or vectorized on a CPU or if you
know that key hotspots in your application do not have loop-carried dependencies. You may need to run
it for a CPU application if it has scalar loops/functions or you are not sure about dependencies in your
code. See Check How Assumed Dependencies Affect Modeling for a workflow to learn about potential
dependencies in your code.

By default, accuracy is set to Low. See Offload Modeling Accuracy Presets for more details.
3. Select a target platform from the Target Platform Model drop-down. This is a platform that the Intel

Advisor models your application performance on. The following target platforms are available:

Platform Device

pvc_xt_448xve (default) Intel® Data Center GPU Max 448

pvc_xt_512xve Intel® Data Center GPU Max 512

XeHPG 512 Intel® Arc™ Graphics with 512 vector engines

XeHPG 256 Intel® Arc™ Graphics with 256 vector engines

Gen11 GT2 Intel® Iris® Plus Graphics

XeLP Max 96 Intel® Iris® Xe MAX Graphics

XeLP GT2 Intel® Iris® Xe Graphics

Gen9 GT2 Intel® HD Graphics 530

Gen9 GT3e Intel® Iris® Graphics 550

Gen9 GT4e Intel® Iris® Pro Graphics 580

NOTE Multi-tile and multi-GPU analysis for pvc_xt_448xve and pvc_xt_512xve platforms is not
supported at the moment.

4.
Click  Run to run the perspective.

  1   Intel® Advisor User Guide

224



While the perspective is running, you can do the following in the Analysis Workflow tab:

• Control the perspective execution:

•
Stop data collection and see the already collected data: Click the  button.

•
Pause data collection: Click the  button.

•
Cancel data collection and discard the collected data: Click the  button.

• Expand an analysis with  to control the analysis execution:

• Pause the analysis: Click the  button.
• Stop the currently running analysis and start the next analysis selected: Click the  button.
• Interrupt execution of all selected analyses and see the already collected data: Click the 

button.

After you run the Offload Modeling perspective, the collected Survey data becomes available for all
other perspectives. If you switch to another perspective, you can skip the Survey step and run only
perspective-specific analyses.

To run the CPU-to-GPU Offload Modeling perspective with the Medium accuracy from the
command line interface:

advisor --collect=offload --project-dir=./advi_results -- ./myApplication
To run the GPU-to-GPU Offload Modeling perspective with the Medium accuracy from the
command line interface:

advisor --collect=offload --gpu --project-dir=./advi_results -- ./myApplication
See Run Offload Modeling Perspective from Command Line for details. See Run GPU-to-GPU Performance
Modeling from Command Line for details about the GPU-to-GPU Offload Modeling.

NOTE To generate command lines for selected perspective configuration, click the Command
Line button.

Once the Offload Modeling perspective collects data, the report opens showing a Summary tab with
performance metrics estimated for the selected target platform, such as estimated speedup, potential
performance bottlenecks, and top offloaded loops. Depending on the selected accuracy level and perspective
properties, continue to investigate the results. See Explore Offload Modeling Results

Offload Modeling Accuracy Presets
For each perspective, Intel® Advisor has several levels
of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is
collected and the level of collection details. The higher
accuracy value you choose, the higher runtime
overhead is added.

The following accuracy levels are available:

Comparison /
Accuracy Level

Low Medium High

Overhead 5 - 10x 15 - 50x 50 - 80x

Intel® Advisor User Guide  1  

225



Comparison /
Accuracy Level

Low Medium High

Goal Model performance of
an application that is
mostly compute
bound and does not
have dependencies

Model application
performance
considering memory
traffic for all cache
and memory levels

Model application performance
with all potential limitations
for offload candidates

Analyses Survey +
Characterization (Trip
Counts and FLOP) +
Performance Modeling
with no assumed
dependencies

Survey +
Characterization (Trip
Counts and FLOP with
cache simulation for
the selected target
device, callstacks, and
light data transfer
simulation) +
Performance Modeling
with no assumed
dependencies

Survey + Characterization
(Trip Counts and FLOP with
cache simulation for the
selected target device,
callstacks, and medium data
transfer simulation) +
Dependencies + Performance
Modeling with assumed
dependencies

Result Basic Offload Modeling
report that shows
potential speedup and
performance metrics
estimated on a target
considering memory
traffic from execution
units to L1 cache only.
The result might be
inaccurate for
memory-bound
applications.

Offload Modeling
report extended with
data transfers
estimated between
host and device
platforms considering
memory traffic for all
cache and memory
levels

Offload Modeling report with
detailed data transfer
estimations and automated
check for loop-carried
dependencies for more
accurate search for the most
profitable regions to offload

You can choose custom accuracy and set a custom perspective flow for your application. For more
information, see Customize Offload Modeling Perspective.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see 
GPU Architecture Terminology for Intel® Xe Graphics.

Customize Offload Modeling Perspective
Customize the perspective flow to better fit your goal
and your application.

If you change any of the analysis settings from the Analysis Workflow tab, the accuracy level changes to
Custom automatically. With this accuracy level, you can customize the perspective flow and/or analysis
properties.

To change the properties of a specific analysis:

1.
Expand the analysis details on the Analysis Workflow pane with .

2. Select desired settings.

  1   Intel® Advisor User Guide

226

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html


3.
For more detailed customization, click the gear  icon. You will see the Project Properties dialog
box open for the selected analysis.

4. Select desired properties and click OK.

For a full set of available properties, click the  icon on the left-side pane or go to File > Project
Properties.

The following tables cover project properties applicable to the analyses in the Offload Modeling perspective.

Common Properties

Use This To Do This

Inherit settings from
Visual Studio project
checkbox and field (Visual
Studio* IDE only)

Inherit Intel Advisor project properties from the Visual Studio* startup
project (enable).

If enabled, the Application, Application parameters, and Working
directory fields are pre-filled and cannot be modified.

Application field and
Browse... button

Select an analysis target executable or script.

If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application
parameters field and
Modify... button

Specify runtime arguments to use when performing analysis (equivalent
to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment
variables field and Modify...
button

Specify environment variables to use during analysis.

Managed code profiling
mode drop-down

• Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

• Collect data for native code and do not attribute data to managed
code (choose Native).

• Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

• Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

Child application field Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

Intel® Advisor User Guide  1  

227



Use This To Do This

NOTE
For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

• Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

• Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

Use MPI launcher checkbox Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

• Select MPI Launcher - Intel or another vendor
• Number of ranks - Number of instances of the application
• Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis Properties

Use This To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

  1   Intel® Advisor User Guide

228



Use This To Do This

Callstack unwinding mode
drop-down list

Set to After collection if:

• Survey analysis runtime overhead exceeds 1.1x.
• A large quantity of data is allocated on the stack, which is a common

case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE
Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
-ax (Linux* OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
list

• Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

• Keep source code cache within the project (choose Keep cached
files).

Intel® Advisor User Guide  1  

229



Trip Counts and FLOP Analysis Properties

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Trip Counts / Collect
information about Loop
Trip Counts checkbox

Measure loop invocation and execution (enable).

FLOP / Collect information
about FLOP, L1 memory
traffic, and AVX-512 mask
usage checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Callstacks / Collect
callstacks checkbox

Collect call stack information when performing analysis (enable).

Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Capture metrics for
stripped binaries checkbox

Collect metrics for stripped binaries.

Enabling could increase analysis overhead.

Cache Simulation / Enable
Memory-Level Roofline
with cache simulation
checkbox

Model multiple levels of cache for data, such as counts of loaded or
stored bytes for each loop, to plot the Roofline chart for all memory levels
(enable).

Enabling could increase analysis overhead.

Cache simulator
configuration field

Specify a cache hierarchy configuration to model (enable and specify
hierarchy).

The hierarchy configuration template is:

[num_of_level1_caches]:[num_of_ways_level1_connected]:
[level1_cache_size]:[level1_cacheline_size]/

[num_of_level2_caches]:[num_of_ways_level2_connected]:
[level2_cache_size]:[level2_cacheline_size]/

[num_of_level3_caches]:[num_of_ways_level3_connected]:
[level3_cache_size]:[level3_cacheline_size]

  1   Intel® Advisor User Guide

230



Use This To Do This

For example: 4:8w:32k:64l/4:4w:256k:64l/1:16w:6m:64l is the
hierarchy configuration for:

• Four eight-way 32-KB level 1 caches with line size of 64 bytes
• Four four-way 256-KB level 2 caches with line size of 64 bytes
• One sixteen-way 6-MB level 3 cache with line size of 64 bytes

Data Transfer Simulation /
Data transfer simulation
mode drop-down

Select a level of details for data transfer simulation:

• Off - Disable data transfer simulation analysis.
• Light - Model data transfers between host and device memory.
• Medium - Model data transfers, attribute memory objects to loops

that accessed the objects, and track accesses to stack memory.
• Full - Model data transfers, attribute memory objects, track accesses

to stack memory, and identify where data can be potentially reused if
transferred between host and target.

Dependencies Analysis Properties

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode radio
buttons

• Report possible dependencies in system modules (choose the Show
problems in system modules radio button).

• Do not report possible dependencies in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Analyze stack variables
checkbox

Analyze parallel data sharing for stack variables (enable).

Enabling could increase analysis overhead.

Filter stack variables by scope
checkbox

Enable to report:

• Variables initiated inside the loop as potential dependencies (warning)
• Variables initialized outside the loop as dependencies (error)

Enabling could increase analysis overhead.

Reduction Detection / Filter
reduction variables checkbox

Mark all potential reductions by a specific diagnostic (enable).

Enabling could increase analysis overhead.

Markup type checkbox Select loops/functions by pre-defined markup algorithm. Supported
algorithms are:

Intel® Advisor User Guide  1  

231



Use This To Do This

• GPU generic - Select loops executed on a GPU.
• OpenMP - Select OpenMP* loops.
• SYCL - Select SYCL loops.
• OpenCL - Select OpenCL™ loops.
• DAAL - Select Intel® oneAPI Data Analytics Library loops.
• TBB - Select Intel® oneAPI Threading Building Blocks loops.

NOTE This option is available only from the Analysis Workflow pane for the
Offload Modeling perspective.

Performance Modeling Properties

Use This To Do This

Assume Dependencies checkbox Assume that loops have dependencies if their
dependency type is unknown.

NOTE This option is available only from the Analysis
Workflow pane.

Single Kernel Launch Tax checkbox Assume the invocation tax is paid only for the first
kernel launch when estimating invocation taxes.

NOTE This option is available only from the Analysis
Workflow pane.

Data Reuse Analysis checkbox Analyze potential data reuse between code regions
for the data transferred between host and target
platforms.

NOTE This option is available only from the Analysis
Workflow pane.

NOTE Make sure to set the Data Transfer Analysis
to the Full mode in the Characterization step to
analyze data reuse.

Target Config drop-down Select a pre-defined hardware configurations from
a drop-down list to model application performance
on.

Other parameters field Enter a space-separated list of command-line
parameters. See Command Option Reference for
available parameters.

  1   Intel® Advisor User Guide

232



Use This To Do This

Baseline Device drop-down Select a baseline device that your application runs
on for the Intel® Advisor to collect performance
data.

Custom Device Configuration field Specify the absolute path or name for a custom
TOML configuration file with additional modeling
parameters.

Run Offload Modeling Perspective from Command Line
Intel® Advisor provides several methods to run the Offload Modeling perspective from command line. Use one
of the following:

• Method 1. Run Offload Modeling with a command line collection presets. Use this method if you want to
use basic Intel Advisor analysis and modeling functionality, especially for the first-run analysis. This
simple method allows you to run multiple analyses with a single command and control the modeling
accuracy.

• Method 2. Run Offload Modeling analyses separately. Use this method if you want to analyze an MPI
application or need more advanced analysis customization. This method allows you to select what
performance data you want to collect for your application and configure each analysis separately.

• Method 3. Run Offload Modeling with Python* scripts. Use this method if you need more analysis
customization. This method is moderately flexible and allows you to customize data collection and
performance modeling steps.

Tip See Intel Advisor cheat sheet for quick reference on command line interface.

After you run the Offload Modeling with any method above, you can view the results in Intel Advisor
graphical user interface (GUI), command line interface (CLI), or an interactive HTML report. For example, the
interactive HTML report is similar to the following:

Prerequisites
1. Set Intel Advisor environment variables with an automated script.

Intel® Advisor User Guide  1  

233

https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-cheat-sheet.pdf


The script enables the advisor command line interface (CLI), advisor-python command line tool,
and the APM environment variable, which points to the directory with Offload Modeling scripts and
simplifies their use.

2. For SYCL, OpenMP* target, OpenCL™ applications: Set Intel Advisor environment variables to offload
temporarily your application to a CPU for the analysis.

NOTE You are recommended to run the GPU-to-GPU performance modeling to analyze SYCL, OpenMP
target, and OpenCL application because it provides more accurate estimations.

Optional: Generate pre-Configured Command Lines
With the Intel Advisor, you can generate pre-configured command lines for your application and hardware.
Use this feature if you want to:

• Analyze an MPI application
• Customize pre-set Offload Modeling commands

Offload Modeling perspective consists of multiple analysis steps executed for the same application and
project. You can configure each step from scratch or use pre-configured command lines that do not require
you to provide the paths to project directory and an application executable manually.

Option 1. Generate pre-configured command lines with --collect=offload and the --dry-run option.
The option generates:

• Commands for the Intel Advisor CLI collection workflow
• Commands that correspond to a specified accuracy level
• Commands not configured to analyze an MPI application. You need to manually adjust the commands for

MPI.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

The workflow includes the following steps:

1. Generate the command using the --collect=offload action with the --dry-run option. Specify
accuracy level and paths to your project directory and application executable.

For example, to generate the low-accuracy commands for the myApplication application, run the
following command:

• On Linux* OS:

advisor --collect=offload --accuracy=low --dry-run --project-dir=./advi_results -- ./
myApplication

• On Windows* OS:

advisor --collect=offload --accuracy=low --dry-run --project-dir=.\advi_results 
-- .\myApplication.exe

You should see a list of commands for each analysis step to get the Offload Modeling result with the
specified accuracy level (for the commands above, it is low).

2. If you analyze an MPI application: Copy the generated commands to your preferred text editor and
modify each command to use an MPI tool. For details about the syntax, see Analyze MPI Applications.

3. Run the generated commands one by one from a command prompt or a terminal.

Option 2. If you have an Intel Advisor graphical user interface (GUI) available on your system and you want
to analyze an MPI application from command line, you can generate the pre-configured command lines from
GUI.

  1   Intel® Advisor User Guide

234



The GUI generates:

• Commands for the Intel Advisor CLI collection workflow
• Commands for a selected accuracy level if you want to run a pre-defined accuracy level or commands for

a custom project configuration if you want to enable/disable additional analysis options
• Command configured for MPI application with Intel® MPI Library. You do not need to manually modify the

commands for the MPI application syntax.

For detailed instructions, see Generate Pre-configured Command Lines.

Method 1. Use Collection Presets
For the Offload Modeling perspective, Intel Advisor has a special collection mode --collect=offload that
allows you to run several analyses using only oneIntel Advisor CLI command. When you run the collection, it
sequentially runs data collection and performance modeling steps. The specific analyses and options depend
on the accuracy level you specify for the collection.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

For example, to run the Offload Modeling perspective with the default (medium) accuracy level:

• On Linux* OS:

advisor --collect=offload --project-dir=./advi_results -- ./myApplication 
• On Windows* OS:

advisor --collect=offload --project-dir=.\advi_results -- .\myApplication.exe
The collection progress and commands for each analysis executed will be printed to a terminal or a command
prompt. By default, the performance is modeled for the Intel® Arc™ graphics code-named Alchemist
(xehpg_512xve configuration). When the collection is finished, you will see the result summary.

Analysis Details

To change the analyses to run and their option, you can specify a different accuracy level with the --
accuracy=<level> option. The default accuracy level is medium.

The following accuracy levels are available:

• low accuracy includes Survey, Characterization with Trip Counts and FLOP collections, and Performance
Modeling analyses.

• medium (default) accuracy includes Survey, Characterization with Trip Counts and FLOP collections, cache
and data transfer simulation, and Performance Modeling analyses.

• high accuracy includes Survey, Characterization with Trip Counts and FLOP collections, cache, data
transfer, and memory object attribution simulation, and Performance Modeling analyses. For CPU
applications, also includes the Dependencies analysis.

For CPU applications, this accuracy level adds a high collection overhead because it includes the
Dependencies analysis. This analysis is not required if your application is highly parallelized or vectorized
on a CPU or if you know that key hotspots in your application do not have loop-carried dependencies.
Otherwise, to learn how dependencies might affect your application performance on a GPU, see Check
How Assumed Dependencies Affect Modeling.

For example, to run the low accuracy level:

advisor --collect=offload --accuracy=low --project-dir=./advi_results -- ./myApplication
To run the high accuracy level:

advisor --collect=offload --accuracy=high --project-dir=./advi_results -- ./myApplication

Intel® Advisor User Guide  1  

235



If you want to see the commands that are executed at each accuracy level, you can run the collection with
the --dry-run option. The commands will be printed to a terminal or a command prompt.

For details about each accuracy level, see Offload Modeling Accuracy Levels in Command Line .

Customize Collection

You can also specify additional options if you want to run the Offload Modeling with custom configuration.
This collection accepts most options of the Performance Modeling analysis (--collect=projection) and
some options of the Survey, Trip Counts, and Dependencies analyses that can be useful for the Offload
Modeling.

Important Make sure to specify the additional options after the --accuracy option to make sure
they take precedence over the accuracy level configurations.

Consider the following action options:

Option Description

--accuracy=<level> Set an accuracy level for a collection preset.
Available accuracy levels:

• low
• medium (default)
• high
For details, see Offload Modeling Accuracy Levels in
Command Line .

--config Select a target GPU configuration to model
performance for. For example, xehpg_512xve
(default), gen12_dg1, or gen9_gt3.

See config for a full list of possible values and
mapping to device names.

--gpu Analyze a SYCL, OpenCL™, or OpenMP* target
application on a graphics processing unit (GPU)
device. This option automatically adds all related
options to each analysis included in the preset.

If you use this option, the high accuracy does not
include the Dependencies analysis.

For details about this workflow, see Run GPU-to-
GPU Performance Modeling from Command Line.

--data-reuse-analysis Analyze potential data reuse between code regions.
This option automatically adds all related options to
each analysis included in the preset.

--enforce-fallback Emulate data distribution over stacks if stacks
collection is disabled. This option automatically
adds all related options to each analysis included in
the preset.

For details about other available options, see collect.

  1   Intel® Advisor User Guide

236



Method 2. Use per-Analysis Collection
You can collect data and model performance for your application by running each Offload Modeling analysis in
a separate command using Intel Advisor CLI. This option allows you to:

• Control what analyses you want to run to profile your application and what data you want to collect
• Modify behavior of each analysis you run with an extensive set of options
• Remodel application performance without re-collecting performance data. This can save time if you want

to see how the performance of your application might change with different modeling parameters using
the same performance data as baseline

• Profile and model performance of an MPI application

Consider the following workflow example. Using this example, you can run the Survey, Trip Counts, and FLOP
analyses to profile an application and the Performance Modeling to model its performance on a selected
target device.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

On Linux OS:

1. Run the Survey analysis.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
2. Run the Trip Counts and FLOP analyses with data transfer simulation for the default Intel® Arc™ graphics

code-named Alchemist (xehpg_512xve configuration).

advisor --collect=tripcounts --flop --stacks --cache-simulation=single --target-
device=xehpg_512xve --data-transfer=light --project-dir=./advi_results -- ./myApplication

3. Optional: Run the Dependencies analysis to check for loop-carried dependencies.

advisor -collect=dependencies --loop-call-count-limit=16 --select markup=gpu_generic --filter-
reductions --project-dir=./advi_results -- ./myApplication

The Dependencies analysis adds a high collection overhead. You can skip it if your application is highly
parallelized or vectorized on a CPU or if you know that key hotspots in your application do not have
loop-carried dependencies.. If you are not sure, see Check How Assumed Dependencies Affect Modeling
to learn how dependencies affect your application performance on a GPU.

4. Run the Performance Modeling analysis to model application performance on the default Intel® Arc™
graphics code-named Alchemist(xehpg_512xve configuration).

advisor --collect=projection --project-dir=./advi_results
You will see the result summary printed to the command prompt.

Tip: If you already have an analysis result saved as a snapshot or a result for an MPI rank, you can use
the exp-dir option instead of project-dir to model performance for the result.

On Windows OS:

1. Run the Survey analysis.

advisor --collect=survey --static-instruction-mix --project-dir=.\advi_results 
-- .\myApplication.exe

2. Run the Trip Counts and FLOP analyses with cache simulation for the default Intel® Arc™ graphics code-
named Alchemist (xehpg_512xve configuration).

advisor --collect=tripcounts --flop --stacks --cache-simulation=single --target-
device=xehpg_512xve --data-transfer=light --project-dir=.\advi_results -- .\myApplication.exe

3. Optional: Run the Dependencies analysis to check for loop-carried dependencies.

advisor -collect=dependencies --loop-call-count-limit=16 --select markup=gpu_generic --filter-
reductions --project-dir=.\advi_results -- myApplication.exe

Intel® Advisor User Guide  1  

237



The Dependencies analysis adds a high collection overhead. You can skip it if your application is highly
parallelized or vectorized on a CPU or if you know that key hotspots in your application do not have
loop-carried dependencies.. If you are not sure, see Check How Assumed Dependencies Affect Modeling
to learn how dependencies affect your application performance on a GPU.

4. Run the Performance Modeling analysis to model application performance on the default Intel® Arc™
graphics code-named Alchemist (xehpg_512xve configuration).

advisor --collect=projection --project-dir=.\advi_results
You will see the result summary printed to the command prompt.

Tip: If you already have a collected analysis result saved as a snapshot or result for an MPI rank, you
can use the exp-dir option instead of project-dir to model performance for the result.

For more useful options, see the Analysis Details section below.

Analysis Details

The Offload Modeling workflow includes the following analyses:

1. Survey to collect initial performance data.
2. Characterization with trip counts and FLOP to collect performance details.
3. Dependencies (optional) to identify loop-carried dependencies that might limit offloading.
4. Performance Modeling to model performance on a selected target device.

Each analysis has a set of additional options that modify its behavior and collect additional performance data.
The more analyses you run and option you use, the higher the modeling accuracy.

Consider the following options:

Survey Options

To run the Survey analysis, use the following command line action: --collect=survey.

Recommended action options:

Options Description

--static-instruction-mix Collect static instruction mix data. This option is
recommended for the Offload Modeling perspective.

--profile-gpu Analyze a SYCL, OpenCL, or OpenMP target
application on a GPU device.

If you use this option, skip the Dependencies
analysis.

For details about this workflow, see Run GPU-to-
GPU Performance Modeling from Command Line.

Characterization Options

To run the Characterization analysis, use the following command line action: --collect=tripcounts.

Recommended action options:

Options Description

--flop Collect data about floating-point and integer
operations, memory traffic, and mask utilization
metrics for AVX-512 platforms.

--stacks Enable advanced collection of call stack data.

  1   Intel® Advisor User Guide

238



Options Description

--cache-simulation=<mode> Simulate cache behavior for a target device.
Available modes:

• off - disable cache simulation.
• single - simulate cache behavior only for the

selected target device. Make sure to use with
the --target-device=<target> option.

• multi - simulate cache behavior for all available
target devices to enable performance
remodeling without running the Characterization
analysis.

--target-device=<target> Specify a target graphics processing unit (GPU) to
model cache for. For example, xehpg_512xve
(default), gen12_dg1, or gen9_gt3. See target-
device for a full list of possible values and mapping
to device names.

Use with the --cache-simulation=single
option.

Important Make sure to specify the same target
device as for the --collect=projection --
config=<config>.

--data-transfer=<mode> Enable modeling data transfers between host and
target devices. The following modes are available:

• Use off (default) to disable data transfer
modeling.

• Use light to model only data transfers.
• Use medium to model data transfers, attributes

memory objects, and tracks accesses to stack
memory.

• Use full to model data transfers, attributes
memory objects, tracks accesses to stack
memory, and enables data reuse analysis as
well.

--profile-gpu Analyze a SYCL, OpenCL, or OpenMP target
application on a GPU device.

If you use this option, skip the Dependencies
analysis.

For details about this workflow, see Run GPU-to-
GPU Performance Modeling from Command Line.

Dependencies Options

The Dependencies analysis is optional because it adds a high overhead and is mostly necessary if you have
scalar loops/functions in your application or if you do not know about loop-carried dependencies in key
hotspots. For details about when you need to run the Dependencies analysis, see Check How Assumed
Dependencies Affect Modeling.

Intel® Advisor User Guide  1  

239



To run the Dependencies analysis, use the following command line action: --collect=dependencies.

Recommended action options:

Options Description

--select=<string> Select loops to run the analysis for.

For the Offload Modeling, the recommended value
is --select markup=gpu_generic, which selects
only loops/functions profitable for offloading to a
target device to reduce the analysis overhead.

For more information about markup options, see 
Loop Markup to Minimize Analysis Overhead.

NOTE The generic markup strategy is recommended if
you want to run the Dependencies analysis for an
application that does not use SYCL, C++/Fortran with
OpenMP target, or OpenCL.

--loop-call-count-limit=<num> Set the maximum number of call instances to
analyze assuming similar runtime properties over
different call instances.

The recommended value is 16.

--filter-reductions Mark all potential reductions with a specific
diagnostic.

Performance Modeling Options

To run the Performance Modeling analysis, use the following command line action: --collect=projection.

Recommended action options:

Options Description

--exp-dir=<path> Specify a path to an unpacked result snapshot or
an MPI rank result to model performance. Use this
option instead of project-dir if you already have
an analysis result ready.

--config=<config> Select a target GPU configuration to model
performance for. For example, xehpg_512xve
(default), gen12_dg1, or gen9_gt3.

Important Make sure to specify the same target
device as for the --collect=tripcounts --
target-device=<target>.

For details about configuration files, see config.

--no-assume-dependencies Assume that a loop does not have dependencies if a
loop dependency type is unknown.

  1   Intel® Advisor User Guide

240



Options Description

Use this option if your application contains parallel
and/or vectorized loops and you did not run the
Dependencies analysis.

--data-reuse-analysis Analyze potential data reuse between code regions
when offloaded to a target GPU.

Important Make sure to use
--data-transfer=full with
--collect=tripcounts for this option to work
correctly.

--assume-hide-taxes Assume that an invocation tax is paid only for the
first time a kernel is launched.

--set-parameter Specify a single-line configuration parameter to
modify in a format "<group>.<parameter>=<new-
value>". For example,
"min_required_speed_up=0".

For details about the option, see set-parameter. For
details about some of the possible modifications,
see Advanced Modeling Configuration.

--profile-gpu Analyze a SYCL, OpenCL, or OpenMP target
application on a GPU device.

If you use this option, skip the Dependencies
analysis.

For details about this workflow, see Run GPU-to-
GPU Performance Modeling from Command Line.

See advisor Command Option Reference for more options.

Method 3. Use Python* Scripts
Intel Advisor has three scripts that use the Intel Advisor Python* API to run the Offload Modeling. You can
run the scripts with the advisor-python command line tool or with your local Python 3.6 or 3.7.

The scripts vary in functionality and run different sets of Intel Advisor analyses. Depending on what you want
to run, use one or several of the following scripts:

• run_oa.py is the simplest script with limited modification flexibility. Use this script to run the collection
and modeling steps with a single command. This script is the equivalent of the Intel Advisor command line
collection preset.

• collect.py is a moderately flexible script that runs only the collection step.
• analyze.py is a moderately flexible script that runs only the performance modeling step.

NOTE The scripts do not support the analysis of MPI applications. For an MPI application, use the per-
analysis collection with the Intel Advisor CLI.

Intel® Advisor User Guide  1  

241



You can run the Offload Modeling using different combinations of the scripts and/or the Intel Advisor CLI. For
example:

• Run run_oa.py to profile application and model its performance.
• Run the collect.py to profile application and analyze.py to model its performance. Re-run

analyze.py to remodel with a different configuration.
• Run the Intel Advisor CLI to collect performance data and analyze.py to model performance. Re-run

analyze.py to remodel with a different configuration.
• Run run_oa.py to collect data and model performance for the first time and run analyze.py to remodel

with a different configuration.

Consider the following examples of some typical scenarios with Python scripts.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Example 1. Run the run_oa.py script to profile an application and model its performance for the Intel®™
graphics code-named Alchemist (xehpg_512xve configuration).

• On Linux OS:

advisor-python $APM/run_oa.py ./advi_results --collect=basic --config=xehpg_512xve -- ./
myApplication

• On Windows OS:

advisor-python %APM%\run_oa.py .\advi_results --collect=basic --config=xehpg_512xve 
-- .\myApplication.exe

You will see the result summary printed to the command prompt.

For more useful options, see the Analysis Details section below.

Example 2. Run the collect.py to profile an application and run the analyze.py to model its performance
for the Intel® Arc™ graphics code-named Alchemist (xehpg_512xve configuration).

• On Linux OS:

1.Collect performance data.

advisor-python $APM/collect.py ./advi_results --collect=basic --config=xehpg_512xve -- ./
myApplication

2.Model application performance.

advisor-python $APM/analyze.py ./advi_results --config=xehpg_512xve
You will see the result summary printed to the command prompt.

• On Windows OS:

1.Collect performance data.

advisor-python %APM%\collect.py .\advi_results --collect=basic --config=xehpg_512xve 
-- .\myApplication.exe

2.Model application performance.

advisor-python %APM%\analyze.py .\advi_results --config=xehpg_512xve
For more useful options, see the Analysis Details section below.

Analysis Details

Each script has a set of additional options that modify its behavior and collect additional performance data.
The more analyses you run and options you use, the higher the modeling accuracy.

Collection Options

  1   Intel® Advisor User Guide

242



The following options are applicable to the run_oa.py and collect.py scripts.

Option Description

--collect=<mode> Specify data to collect for your application:

• Use basic to run only Survey, Trip Counts and
FLOP analyses, analyze data transfer between
host and device memory, attribute memory
objects to loops, and track accesses to stack
memory. This value corresponds to the Medium
accuracy.

• Use refinement to run only Dependencies
analysis. Do not analyze data transfers.

• Use full (default) to run Survey, Trip Counts,
FLOP, and Dependencies analyses, analyze data
transfer between host and device memory and
potential data reuse, attribute memory objects
to loops, and track accesses to stack memory.
This value corresponds to the High accuracy.

See Check How Assumed Dependencies Affect
Modeling to learn when you need to collect
dependency data.

--config=<config> Select a target GPU configuration to model
performance for. For example, xehpg_512xve
(default), gen12_dg1, or gen9_gt3.

Important For collect.py, make sure to specify
the same value of the --config option for the
analyze.py.

For details about configuration files, see config.

--markup=<markup-mode> Select loops to collect Trip Counts and FLOP and/or
Dependencies data for with a pre-defined markup
algorithm. This option decreases collection
overhead.

By default, it is set to generic to analyze all loops
profitable for offloading.

--gpu Analyze a SYCL, OpenCL, or OpenMP target
application on a GPU device.

For details about this workflow, see Run GPU-to-
GPU Performance Modeling from Command Line.

For a full list of available options, see:

• run_oa.py Options
• collect.py Options

Performance Modeling Options

The following options are applicable to the run_oa.py and analyze.py scripts.

Intel® Advisor User Guide  1  

243



Option Description

--config=<config> Select a target GPU configuration to model
performance for. For example, xehpg_512xve
(default), gen12_dg1, or gen9_gt3.

Important For analyze.py, make sure to specify
the same value of the --config option for the
collect.py.

For details about configuration files, see config.

--assume-parallel Assume that a loop does not have dependencies if
there is no information about the loop dependency
type and you did not run the Dependencies
analysis.

--data-reuse-analysis Analyze potential data reuse between code regions
when offloaded to a target GPU.

Important Make sure to use --collect=full
when running the analyses with collect.py or use
the --data-transfer=full when running the Trip
Counts analysis with Intel Advisor CLI.

--gpu Analyze a SYCL, OpenCL, or OpenMP target
application on a GPU device.

For details about this workflow, see Run GPU-to-
GPU Performance Modeling from Command Line.

For a full list of available options, see:

• run_oa.py Options
• analyze.py Options

Next Steps
Continue to explore the Offload Modeling results with a preferred method. For details about the metrics
reported, see Accelerator Metrics.

See Also
Model Offloading to a GPU  Find high-impact opportunities to offload/run your code and identify
potential performance bottlenecks on a target graphics processing unit (GPU) by running the
Offload Modeling perspective.
Command Line Interface  This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.
Minimize Analysis Overhead
Model MPI Application Performance on GPU  You can model your MPI application performance on a
target graphics processing unit (GPU) device to determine whether you can get a performance
speedup from offloading the application to the GPU.

  1   Intel® Advisor User Guide

244



Offload Modeling Accuracy Levels in Command Line
For each perspective, Intel® Advisor has several levels of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is collected and the level of collection details. The higher
accuracy value you choose, the higher runtime overhead is added.

You can generate commands for a desired accuracy level from the Intel Advisor GUI. See Generate Command
Lines from GUI for details.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

CPU-to-GPU Modeling
For the CPU-to-GPU modeling, the following accuracy levels are available:

Comparison /
Accuracy Level

Low Medium High

Overhead 5 - 10x 15 - 50x 50 - 80x

Goal Model performance of
an application that is
mostly compute
bound and does not
have dependencies

Model application
performance
considering memory
traffic for all cache
and memory levels

Model application performance
with all potential limitations
for offload candidates

Analyses Survey +
Characterization (Trip
Counts and FLOP) +
Performance Modeling
with no assumed
dependencies

Survey +
Characterization (Trip
Counts and FLOP with
cache simulation for
the selected target
device, callstacks, and
light data transfer
simulation) +
Performance Modeling
with no assumed
dependencies

Survey + Characterization
(Trip Counts and FLOP with
cache simulation for the
selected target device,
callstacks, and medium data
transfer simulation) +
Dependencies + Performance
Modeling with assumed
dependencies

Result Basic Offload Modeling
report that shows
potential speedup and
performance metrics
estimated on a target
considering memory
traffic from execution
units to L1 cache only.
The result might be
inaccurate for
memory-bound
applications.

Offload Modeling
report extended with
data transfers
estimated between
host and device
platforms considering
memory traffic for all
cache and memory
levels

Offload Modeling report with
detailed data transfer
estimations and automated
check for loop-carried
dependencies for more
accurate search for the most
profitable regions to offload

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Intel® Advisor User Guide  1  

245



NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see 
GPU Architecture Terminology for Intel® Xe Graphics.

Low Accuracy

To model application performance for with low accuracy for a default target device, run the following
command:

advisor --collect=offload --accuracy=low --project-dir=./advi_results -- ./myApplication
This command runs the following analyses one by one:

1. Survey analysis:

advisor --collect=survey --auto-finalize --static-instruction-mix --project-dir=./advi_results 
-- ./myApplication 

2. Characterization analysis to collect trip count and FLOP data

advisor --collect=tripcounts --flop --auto-finalize --target-device=xehpg_512xve --project-dir=./
advi_results -- ./myApplication

3. Performance modeling:

advisor --collect=projection --no-assume-dependencies --config=xehpg_512xve --project-dir=./
advi_results

Medium Accuracy

This accuracy is set by default. To model application performance with medium accuracy for a default target
device, run the following command:

advisor --collect=offload --project-dir=./advi_results -- ./myApplication
This command runs the following analyses one by one:

1. Survey analysis:

advisor --collect=survey --auto-finalize --static-instruction-mix --project-dir=./advi_results 
-- ./myApplication

2. Characterization analysis to collect trip count and FLOP data

advisor --collect=tripcounts --flop --stacks --auto-finalize --cache-simulation=single --data-
transfer=light --target-device=xehpg_512xve --project-dir=./advi_results -- ./myApplication

3. Performance modeling:

advisor --collect=projection --no-assume-dependencies --config=xehpg_512xve --project-dir=./
advi_results

High Accuracy

To model application performance with high accuracy for a default target device, run the following command:

advisor --collect=offload --accuracy=high --project-dir=./advi_results -- ./myApplication
This command runs the following analyses one by one:

1. Survey analysis:

advisor --collect=survey --auto-finalize --static-instruction-mix --project-dir=./advi_results 
-- ./myApplication

2. Characterization analysis to collect trip count and FLOP data

advisor --collect=tripcounts --flop --stacks --auto-finalize --cache-simulation=single --target-
device=xehpg_512xve --data-transfer=medium --project-dir=./advi_results -- ./myApplication

  1   Intel® Advisor User Guide

246

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html


3. Dependencies analysis:

advisor --collect=dependencies --filter-reductions --loop-call-count-limit=16 --select 
markup=gpu_generic --project-dir=./advi_results -- ./myApplication

4. Performance modeling:

advisor --collect=projection --config=xehpg_512xve --project-dir=./advi_results
See Check How Dependencies Affect Modeling for a recommended strategy to check for loop-carried
dependencies.

GPU-to-GPU Modeling
For the GPU-to-GPU modeling, the following accuracy levels are available:

Comparison /
Accuracy Level

Low Medium High

Overhead 5 - 10x 15 - 50x 15 - 50x

Goal Model performance of
an application that is
mostly compute
bound

Model application
performance
considering memory
traffic for all cache
and memory levels

Model application performance
with all potential limitations
for offload candidates

Analyses Survey +
Characterization (Trip
Counts and FLOP) +
Performance Modeling

Survey +
Characterization (Trip
Counts and FLOP with
light data transfer
simulation) +
Performance Modeling

Survey + Characterization
(Trip Counts and FLOP with
medium data transfer
simulation) + Performance
Modeling

Result Basic Offload Modeling
report that shows
potential speedup and
performance metrics
estimated on a target
considering memory
traffic from execution
units to L1 cache only.
The result might be
inaccurate for
memory-bound
applications.

Offload Modeling
report extended with
data transfers
estimated between
host and device
platforms

Offload Modeling report with
detailed data transfer
estimations for more accurate
search for the most profitable
regions to offload

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Low Accuracy

To model application performance for with low accuracy for a default target device, run the following
command:

advisor --collect=offload --accuracy=low --gpu --project-dir=./advi_results -- ./myApplication
This command runs the following analyses one by one:

Intel® Advisor User Guide  1  

247



1. Survey analysis:

advisor --collect=survey --auto-finalize --static-instruction-mix --profile-gpu --project-dir=./
advi_results -- ./myApplication 

2. Characterization analysis to collect trip count and FLOP data

advisor --collect=tripcounts --flop --auto-finalize --target-device=xehpg_512xve --profile-gpu --
project-dir=./advi_results -- ./myApplication

3. Performance modeling:

advisor --collect=projection --no-assume-dependencies --config=xehpg_512xve --profile-gpu --
project-dir=./advi_results

Medium Accuracy

This accuracy is set by default. To model application performance with medium accuracy for a default target
device, run the following command:

advisor --collect=offload --gpu --project-dir=./advi_results -- ./myApplication
This command runs the following analyses one by one:

1. Survey analysis:

advisor --collect=survey --auto-finalize --static-instruction-mix --profile-gpu --project-dir=./
advi_results -- ./myApplication

2. Characterization analysis to collect trip count and FLOP data

advisor --collect=tripcounts --flop --auto-finalize --data-transfer=light --target-
device=xehpg_512xve --profile-gpu --project-dir=./advi_results -- ./myApplication

3. Performance modeling:

advisor --collect=projection --no-assume-dependencies --config=xehpg_512xve --profile-gpu --
project-dir=./advi_results

High Accuracy

To model application performance with high accuracy for a default target device, run the following command:

advisor --collect=offload --accuracy=high --gpu --project-dir=./advi_results -- ./myApplication
This command runs the following analyses one by one:

1. Survey analysis:

advisor --collect=survey --auto-finalize --static-instruction-mix --profile-gpu --project-dir=./
advi_results -- ./myApplication

2. Characterization analysis to collect trip count and FLOP data

advisor --collect=tripcounts --flop --auto-finalize --target-device=xehpg_512xve --profile-gpu --
data-transfer=medium --project-dir=./advi_results -- ./myApplication

3. Performance modeling:

advisor --collect=projection --config=xehpg_512xve --profile-gpu --project-dir=./advi_results
After you run the perspective, you can view the results in the Intel Advisor GUI, in CLI, or an interactive
HTML report.

See Also
Run Offload Modeling Perspective from Command Line
advisor Command Option Reference
Command Line Interface Reference This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

  1   Intel® Advisor User Guide

248



Run GPU-to-GPU Performance Modeling from Command Line
With Intel® Advisor, you can model performance of
SYCL, OpenCL™, or OpenMP* target application
running on a graphics processing unit (GPU) for a
different GPU device without its CPU version. For this,
run the GPU-to-GPU modeling workflow of the Offload
Modeling perspective.

The GPU-to-GPU modeling analyzes only GPU compute kernels and ignores the application parts executed on
a CPU. As a result, there are several changes in the modeling flow:

• Compute kernels characteristics are collected with the Intel Advisor GPU profiling capabilities.
• High-overhead features, such as call stack handling, cache simulation, data transfer simulation,

dependencies analysis, are disabled.
• Instead of CPU-to-GPU data transfer simulation, memory objects transferred between host and device

memory are traced.

Workflow
The GPU-to-GPU performance modeling workflow is similar to the CPU-to-GPU modeling and includes the
following steps:

1. Survey analysis measures execution time, cache, and GTI traffic using hardware counters for GPU-
enabled kernels running on an Intel® Graphics.

2. Characterization analysis measures the number of compute operations counting different GPU
instructions separately for kernels running on a Intel Graphics. For example, it implements separate
counters for hardware-implemented 32-bit math functions, such as SQRT, EXP, DIV.

3. Performance Modeling analysis models performance of all kernels on a target GPU device, whether they
are profitable or not.

NOTE For correct memory object tracing, GPU kernels should run with the oneAPI Level Zero back
end.

Prerequisites
1. Configure your system to analyze GPU kernels.
2. Set Intel Advisor environment variables with an automated script to enable Intel Advisor command line

interface.

Run the GPU-to-GPU Performance Modeling
To run the GPU-to-GPU performance modeling from command line, you can use one of the following
methods:

• Method 1. Run a collection preset using Intel Advisor command line interface (CLI) to execute multiple
analyses with a single command and control modeling accuracy.

• Method 2. Run analyses separately using Intel Advisor CLI if you need more advanced customization for
each analysis.

• Method 3. Run Python* scripts if you need more customization for collection and modeling steps.

You can also run the GPU-to-GPU Offload Modeling from Intel Advisor graphical user interface (GUI). See Run
Offload Modeling Perspective from GUI.

After you run the Offload Modeling with any method above, you can view the results in Intel Advisor
graphical user interface (GUI), command line interface (CLI), or an interactive HTML report. For example, the
interactive HTML report is similar to the following:

Intel® Advisor User Guide  1  

249



Tip If you want to analyze an MPI application, you can generate pre-configured command lines, copy
them, and run one by one. For details, see Generate Pre-configured Command Lines.

Method 1. Use Collection Preset
To run the collection preset for the GPU-to-GPU modeling, use the --gpu option with the
--collect=offload action. When you run the collection, it sequentially runs data collection on a GPU and
performance modeling steps. The specific analyses and options depend on the accuracy level you specify for
the collection.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

For example, to run the GPU-to-GPU modeling with the default (medium) accuracy level:

• On Linux* OS:

advisor --collect=offload --gpu --project-dir=./advi_results -- ./myApplication
• On Windows* OS:

advisor --collect=offload --gpu --project-dir=.\advi_results -- myApplication.exe
The collection progress and commands for each analysis executed will be printed to a terminal or a command
prompt. When the collection is finished, you will see the result summary.

You can also specify a different accuracy level to change analyses to run and their options. Available accuracy
levels are low, medium (default), and high.

For example, run the high accuracy level:

advisor --collect=offload --accuracy=high --gpu --project-dir=./advi_results -- ./myApplication
If you want to see the commands that are executed at each accuracy level, you can run the collection with
the --dry-run and --gpu options. The commands will be printed to a terminal or a command prompt.

For details about each accuracy level, see Offload Modeling Accuracy Levels in Command Line .

  1   Intel® Advisor User Guide

250



Method 2. Use per-Analysis Collection
You can collect data and model performance for your application by running each Offload Modeling analysis in
a separate command for more advanced customization. To enable the GPU-to-GPU modeling, use the
--profile-gpu option for each analysis you run.

Consider the following workflow example. Using this example, you can run the Survey, Trip Counts, and FLOP
analyses to profile an application running on a GPU and the Performance Modeling to model its performance
on Intel® Iris® Xe MAX graphics (gen12_dg1 configuration).

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

On Linux OS:

1. Run the Survey analysis.

advisor --collect=survey --profile-gpu --project-dir=./advi_results -- ./myApplication
2. Run the Trip Counts and FLOP analyses with data transfer estimation.

advisor --collect=tripcounts --profile-gpu --flop --target-device=gen12_dg1 --data-
transfer=light --project-dir=./advi_results -- ./myApplication

3. Run the Performance Modeling analysis.

advisor --collect=projection --profile-gpu --config=gen12_dg1 --project-dir=./advi_results
You will see the result summary printed to the command prompt.

On Windows OS:

1. Run the Survey analysis.

advisor --collect=survey --project-dir=.\advi_results -- myApplication.exe
2. Run the Trip Counts and FLOP analyses with data transfer.

advisor --collect=tripcounts --profile-gpu --flop --stacks --target-device=gen12_dg1 --data-
transfer=light --project-dir=.\advi_results -- myApplication.exe

3. Run the Performance Modeling analysis.

advisor --collect=projection --profile-gpu --config=gen12_dg1 --project-dir=.\advi_results
You will see the result summary printed to the command prompt.

Method 3. Use Python* Scripts
Intel Advisor has three scripts that use the Intel Advisor Python* API to run the Offload Modeling -
run_oa.py, collect.py, analyze.py. You can run the scripts with the advisor-python command line
interface of the Intel Advisor or with your local Python 3.6 or 3.7.

To enable the GPU-to-GPU modeling, use the --gpu option for each script you run.

NOTE The scripts do not support MPI applications. To analyze an MPI application, use the per-analysis
collection with the Intel Advisor CLI.

You can run the Offload Modeling using different combinations of the scripts and/or the Intel Advisor CLI. For
example:

• Run run_oa.py to profile application and model its performance.
• Run the collect.py to profile application and analyze.py to model its performance. Re-run

analyze.py to remodel with a different configuration.

Intel® Advisor User Guide  1  

251



• Run the Intel Advisor CLI to collect performance data and analyze.py to model performance. Re-run
analyze.py to remodel with a different configuration.

• Run run_oa.py to collect data and model performance for the first time and run analyze.py to remodel
with a different configuration.

Consider the following examples of some typical scenarios with Python scripts.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Example 1. Run the run_oa.py script to profile an application on GPU and model its performance for Intel®
Iris® Xe MAX graphics (gen12_dg1 configuration).

• On Linux OS:

advisor-python $APM/run_oa.py ./advi_results --gpu --config=gen12_dg1 -- ./myApplication
• On Windows OS:

advisor-python %APM%\run_oa.py .\advi_results --gpu --config=gen12_dg1 -- myApplication.exe
You will see the result summary printed to the command prompt.

Example 2. Run the collect.py to profile an application on GPU and run the analyze.py to model its
performance for Intel® Iris® Xe MAX graphics (gen12_dg1 configuration).

• On Linux OS:

1.Collect performance data.

advisor-python $APM/collect.py ./advi_results --gpu --config=gen12_dg1 -- ./myApplication
2.Model application performance.

advisor-python $APM/analyze.py ./advi --gpu --config=gen12_dg1
You will see the result summary printed to the command prompt.

• On Windows OS:

1.Collect performance data.

advisor-python %APM%\collect.py .\advi_results --collect=basic --gpu --config=gen12_dg1 -- 
myApplication.exe

2.Model application performance.

advisor-python %APM%\analyze.py .\advi_results --gpu --config=gen12_dg1
You will see the result summary printed to the command prompt.

View the Results
Once the Intel Advisor finishes the analyses, the result is available in the following formats:

• Review the result summary and a result file location printed to a command prompt or a terminal.
• Review the project result in the Intel Advisor GUI generated to the project directory.
• Review HTML reports generated to the <project-dir>/e<NNN>/report directory. View the detailed

information about HTML reports in Work with Standalone HTML Reports.
• Review a set of reports generated to the <project-dir>/e<NNN>/pp<NNN>/data.0 directory. The

directory includes the main report in HTML format named as report.html and a set of CSV files with
detailed metric tables.

For example, the result in the Intel Advisor GUI looks as follows:

  1   Intel® Advisor User Guide

252



To explore the interactive HTML report, you can download precollected Offload Modeling reports and examine
the results and structure.

See Explore Offload Modeling Results for details about available result formats and Explore Performance Gain
from GPU-to-GPU Modeling for details about the GPU-to-GPU modeling result.

See Also
advisor Command Option Reference
Offload Modeling Command Line Reference  This reference section describes the command line
options available for each of the Python* scripts that you can use to run the Offload Modeling
perspective.

Explore Offload Modeling Results
Intel® Advisor provides several ways to work with the Offload Modeling results generated from the command
line.

View Results in CLI
When you run the Offload Modeling perspective from command line,, the result summary is printed in a
terminal or a command prompt. In this summary report, you can view:

• Description of a baseline device where application performance was measured and a target device for
which the application performance was modeled

• Executive binary name
• Top metrics for measured and estimated (accelerated) application performance
• Top regions recommended for offloading to the target and performance metrics per region

For example:

Info: Selected accelerator to analyze: Intel(R) Gen11 Integrated Graphics Accelerator 64EU.
Info: Baseline Host: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz, GPU: Intel (R) .
Info: Binary Name: 'CFD'.
Info: An unknown atomic access pattern is specified: partial_sums_16. Possible values are same, 
sequential. sequential will be used.

Measured CPU Time: 44.858s    Accelerated CPU+GPU Time: 16.265s

Intel® Advisor User Guide  1  

253

https://cdrdv2.intel.com/v1/dl/getContent/724626


Speedup for Accelerated Code: 3.5x    Number of Offloads: 7    Fraction of Accelerated Code: 60%

Top Offloaded Regions
-------------------------------------------------------------------------------------------------
--------------------------------
 Location                                               | CPU      | GPU      | Estimated 
Speedup | Bounded By | Data Transferred
-------------------------------------------------------------------------------------------------
--------------------------------
 [loop in compute_flux_ser at euler3d_cpu_ser.cpp:226]  |  36.576s |   9.340s |             
3.92x | L3_BW      |         12.091MB
 [loop in compute_step_factor_ser at euler3d_cpu_ser....|   0.844s |   0.101s |             
8.37x | LLC_BW     |          4.682MB
 [loop in time_step_ser at euler3d_cpu_ser.cpp:361]     |   0.516s |   0.278s |             
1.86x | L3_BW      |         10.506MB
 [loop in time_step_ser at euler3d_cpu_ser.cpp:361]     |   0.456s |   0.278s |             
1.64x | L3_BW      |         10.506MB
 [loop in time_step_ser at euler3d_cpu_ser.cpp:361]     |   0.432s |   0.278s |             
1.55x | L3_BW      |         10.506MB
-------------------------------------------------------------------------------------------------
--------------------------------

See Accelerator Metrics reference for more information about the metrics reported.

View Results in GUI
If you run the Offload Modeling perspective from command line, an .advixeproj project is created
automatically in the directory specified with --project-dir. This project is interactive and stores all the
collected results and analysis configurations. You can view it in the Intel Advisor GUI.

To open the project in GUI, you can run the following command from a command prompt:

advisor-gui <project-dir>

NOTE If the report does not open, click Show Result on the Welcome pane.

If you run the Offload Modeling perspective from GUI, the result is opened automatically after the collection
finishes.

You first see a Summary report that includes the most important information about measured performance
on a baseline device and modeled performance on a target device, including:

• Main metrics for the modeled performance of your program that indicates if you should offload your
application to a target device.

• Specific factors that prevent your code from achieving a better performance if executed on a target device
in the Offload Bounded by.

• Top five offloaded loops/functions that provide the highest benefit and top five not offloaded loops/
functions with the reason why they were not offloaded.

  1   Intel® Advisor User Guide

254



View an Interactive HTML Report
When you execute Offload Modeling from CLI, Intel Advisor automatically saves two types of HTML reports in
the <project-dir>/e<NNN>/report directory:

• Interactive HTML report that represents results in the similar way as GUI and enables you to view key
estimated metrics for your application: advisor-report.html

Tip Collect GPU Roofline data to view results for Offload Modeling and GPU Roofline Insights
perspectives in a single interactive HTML report.

• Legacy HTML report that enables you to get the detailed information about functions in a call tree,
download a configuration file for a target accelerator, and view perspective execution logs: report.html.

Intel® Advisor User Guide  1  

255



For details about HTML reports and instructions on exporting them if you run the Offload Modeling from GUI,
see Work with Standalone HTML Reports.

To explore the interactive HTML report, you can download precollected Offload Modeling reports and examine
the results and structure.

An additional set of reports is generated in the <project-dir>/e<NNN>/pp<NNN>/data0 directory,
including:

• Multiple CSV reports for different metric groups, such as report.csv, whole_app_metrics.csv,
bounded_by_times.csv, latencies.csv.

• A graphical representation of the call tree showing the offloadable and accelerated regions named as
program_tree.dot.

• A graphical representation of the call tree named as program_tree.pdf, which is generated if a DOT*
utility is installed on your system.

• LOG files, which can be used for debugging and reporting bugs and issues.

These reports are light-weighted and can be easily shared as they do not require Intel Advisor GUI.

Save a Read-only Result Snapshot
A snapshot is a read-only copy of a project result, which you can view at any time using the Intel Advisor
GUI. You can save a snapshot for a project using Intel Advisor GUI or CLI.

To save an active project result as a read-only snapshot from GUI: Click the  button in the top ribbon
of the report. In the Create a Result Snapshot dialog box, enter the snapshot details and save it.

To save an active project result as a read-only snapshot from CLI:

advisor --snapshot --project-dir=<project-dir> [--cache-sources] [--cache-binaries] --
<snapshot-path>

where:

• --cache-sources is an option to add application source code to the snapshot.
• --cache-binaries is an option to add application binaries to the snapshot.
• <snapshot-path is a path and a name for the snapshot. For example, if you specify /tmp/new_snapshot,

a snapshot is saved in a tmp directory as new_snapshot.advixeexpz. You can skip this and save the
snapshot to a current directory as snapshotXXX.advixeexpz.

  1   Intel® Advisor User Guide

256

https://cdrdv2.intel.com/v1/dl/getContent/724626


To open the result snapshot in the Intel Advisor GUI, you can run the following command:

advisor-gui <snapshot-path>
You can visually compare the saved snapshot against the current active result or other snapshot results.

See Create a Read-only Result Snapshot for details.

Result Interpretation
When you run the Offload Modeling perspective, depending on a configuration chosen, the report shows a
different level of details:

• Examine regions recommended for offloading and view estimated performance of your application after
offloading to a target platform assuming it is mostly bounded by compute limitations. You need to run at
least the Survey, Trip Counts and FLOP (Characterization), and Performance Modeling analyses (Low
accuracy) to collect this data.

• Examine data transfers estimated for modeled regions and view estimated performance with data transfer
estimations between host and target platforms for all memory levels and total data for loop/function. You
need to run at least the Survey, Trip Counts and FLOP with callstacks, light data transfer simulation, and
cache simulation (Characterization), and Performance Modeling analyses (Medium accuracy) to collect
this data.

• Check for dependencies issues and view a more accurate performance estimated considering loop/function
dependencies. You need to run at least the Survey, Trip Counts and FLOP with callstacks, cache
simulation, and medium data transfer simulation (Characterization), Dependencies, and Performance
Modeling analyses (High accuracy) to collect this data.

• Explore performance gain from GPU-to-GPU modeling to see how your SYCL, OpenMP* target, or OpenCL™
application can have a better performance if you run it on a different graphics processing unit (GPU)
device.

• Investigate non-offloaded code regions and understand why they are not profitable to run on a target
platform. The higher accuracy level you run, the more accurate offload recommendations and non-
offloaded reasons are.

For a general overview of the report, see Offload Modeling Report Overview.

See Also
Run Offload Modeling Perspective from GUI
Run Offload Modeling Perspective from Command Line
Accelerator Metrics  This reference section describes the contents of data columns in reports of
the Offload Modeling and GPU Roofline Insights perspectives.

Offload Modeling Report Overview
Review the controls available in the main report of the Offload Modeling perspective. You can view the
interactive HTML report or a graphical user interface.

In the Accelerated Regions and Summary reports, you can drag and drop, close/open, collapse/expand
panes to change the report layout.

Intel® Advisor User Guide  1  

257



Switch between perspectives or different Offload
Modeling report tabs.

Review the summary of estimated offload
characteristics for your application. The pane
highlights total speedup, number of loops and
functions offloaded, and a fraction of code
accelerated.

Select code regions to show in the report based on
offload type:
• Show all code regions in your code.
• Show only code regions recommended for

offloading.
• Show only code regions not recommended for

offloading.

•

Click the  button to show per-program
recommendations, which you can collapse/
expand.

•

Click the  button to see the collection log
including featured events separated by analyses,
full collection log, and application output.

  1   Intel® Advisor User Guide

258



• Create a snapshot for the current project
results. For details, see Create a Read-only
Result Snapshot.

• Click a + button to open previously closed
panes.

Review application performance measured on a
host platform and its performance modeled on a
target platform. For details about metrics reported,
see Accelerator Metrics.

Depending on a perspective configuration and
accuracy level, you might see different metrics
reported and some metrics might be not accurate.
Refer to the following topics for interpretation
details:
• Low accuracy: Examine Regions Recommended

for Offloading
• Medium accuracy: Examine Data Transfers for

Modeled Regions
• High accuracy: Check for Dependency Issues

Switch between Data Transfer Estimations and
Details tabs for more information about loops
selected in Code Regions:
• Examine details about estimated data transfers

in the loop and memory objects tracked and
review data transfer recommendations. For
details about how to read this pane, see 
Examine Data Transfers for Modeled Regions.

NOTE You need to enable light or full data
transfer analysis before running the perspective
to see metrics in this pane,

• Examine offload details about the loop, such as
loop type, measured and estimated execution
time, estimated offload speed-up (for offloaded
loops), and reason for not offloading, time for
several bounded-by factors. If the loop is not
recommended for offloading, this tab also
reports the reason for it. For details, see 
Investigate Non-Offloaded Code Regions.

Switch between Source and Top-Down tabs for
more information about loops selected in Code
Regions:
• Examine the source code and offload details for

each source line. Select a loop in the Code
Regions table to focus on the corresponding
part of the source code.

• View the loop/function hierarchy in a stack and
its metrics.

Intel® Advisor User Guide  1  

259



Examine Regions Recommended for Offloading

Accuracy Level
Low

Enabled Analyses
Survey + Characterization (Trip Counts and FLOP) + Performance Modeling with no assumed dependencies

Result Interpretation
After running the Offload Modeling perspective with Low accuracy, you get a basic Offload Modeling report,
which shows you estimated performance of your application after offloading to a target platform assuming it
is mostly bounded by compute limitations.

Offload Modeling with Low accuracy assumes that:

• There is no tax for transferring data between baseline and target platforms.
• All data goes to L1/L3 cache level only. L1/L3 cache traffic estimation might be inaccurate.
• A loop is parallel if the loop dependency type in unknown (Assume Dependencies checkbox is disabled).

This happens when there is no information about a loop dependency type from a compiler or the loop is
not explicitly marked as parallel, for example, with a programming model (OpenMP*, SYCL, Intel® oneAPI
Threading Building Blocks (oneTBB))

NOTE This topic describes data as it is shown in the Offload Modeling report in the Intel Advisor GUI
and an interactive HTML report.

In the Offload Modeling report:

1. Review the metrics for the whole application in the Summary tab.

• Check if your application is profitable to offload to a target device or if it has a better performance
on a baseline platform in the Program Metrics panes.

• See what prevents your code from achieving a better performance if executed on a target device in
the Offload Bounded by pane.

NOTE If you enable Assume Dependencies option for the Performance Modeling analysis, you
might see high percentage of dependency-bound code regions. You are recommended run the
Dependencies analysis and rerun Performance Modeling to get more accurate results.

2. If the estimated speed-up is high enough and other metrics in the Summary pane suggest that your
application can benefit from offloading to a selected target platform, you can start offloading your code.

3. If you want to investigate the results reported for each region in more detail, go to the Accelerated
Regions tab and select a code region:

  1   Intel® Advisor User Guide

260



• Check whether your target code region is recommended for offloading to a selected platform. In the
Basic Estimated Metrics column group, review the Offload Summary column. The code region is
considered profitable for offloading if estimated speed-up is more than 1, that is, estimated time
execution on a target device is smaller that on a host platform.

If your code region of interest is not recommended for offloading, consider re-running the
perspective with a higher accuracy or refer to Investigate Not Offloaded Code Regions for
recommendations on how to model offloading for this code region.

• Examine the Bounded By column of the Estimated Bounded By group in the code region pane to
identify the main bottleneck that limits the performance of the code region (see the Bounded by
section). The metrics show one or more bottleneck(s) in a code region.

• In the Throughput column of the Estimated Bounded By group, review time spent for compute-
and L3 cache bandwidth-bound parts of your code. If the value is high, consider optimizing compute
and/or L3 cache usage in your application.

• Review the metrics in the Compute Estimates column group to see the details about instructions
and number of threads used in each code region.

4. Get guidance for offloading your code to a target device and optimizing it so that your code benefits the
most in the Recommendations tab. If the code region has room for optimization or underutilizes the
capacity of the target device, Intel Advisor provides you with hints and code snippets that may be
helpful to you for further code improvement.

5. View the offload summary and details for the selected code region in the Details pane.

For details about metrics reported, see Accelerator Metrics.

Next Steps
• If you think that the estimated speedup is enough and the application is ready to be offloded, rewrite your

code to offload profitable code regions to a target platform and measure performance of GPU kernels with 
GPU Roofline Insights perspective.

• Consider running the Offload Modeling perspective with a higher accuracy level to get a more detailed
report.

See Also
• Optimize Your GPU Application with the Intel® oneAPI Base Toolkit
• Intel® oneAPI Programming Guide

Intel® Advisor User Guide  1  

261

https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-optimization-workflow.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top.html


Examine Data Transfers for Modeled Regions

Accuracy Level
Medium

Enabled Analyses
Survey + Characterization (Trip Counts and FLOP with cache simulation and light data transfer simulation) +
Performance Modeling with no assumed dependencies

Result Interpretation
After running the Offload Modeling perspective with Medium accuracy, you get an extended Offload Modeling
report, which provides information about memory and cache usage and taxes of your offloaded application.
In addition to the basic data, the result includes:

• More accurate estimations of traffic and time for all cache and memory levels.
• Measured data transfer and estimated data transfer between host and device memory.
• Total data for the loop/function from different callees.

NOTE When profiling a GPU application with Light data transfer simulation mode, you will get
memory traffic estimation only for CPU code.

Offload Modeling perspective assumes a loop is parallel if its dependency type is unknown. It means that
there is no information about a loop from a compiler or the loop is not explicitly marked as parallel, for
example, with a programming model (OpenMP*, SYCL, Intel® oneAPI Threading Building Blocks).

If you had a report generated for a lower accuracy, all offload recommendations, metrics, and speed-up will
be updated to be more precise taking into account new data.

NOTE This topic describes data as it is shown in the Offload Modeling report in the Intel Advisor GUI
and an interactive HTML report.

In the Accelerated Regions tab of the Offload Modeling report, review the metrics about memory usage
and data transfers.

  1   Intel® Advisor User Guide

262



• In the Code Regions metrics table:

• In the Estimated Bounded By column, review how much time is spent to transfer data (data transfer
tax). In the Taxes with Reuse column, see the biggest and total time taxes paid for offloading a code
regions to a target platform.

Expand the Estimated Bounded By group to see a full picture of all time taxes paid for offloading the
region to the target platform.

• In the Estimated Data Transfer with Reuse column, review how much data is transferred per
kernel in different directions (from host to device, from device to host). Expand the column to see data
per memory level.

• In the Memory Estimations column, see how well your application uses resources of all memory
levels. Expand the group to see more detailed and accurate metrics for different memory levels.

Intel® Advisor User Guide  1  

263



• Select a code region from the table and review the details about data transferred between host and device
memory in the Data Transfer Estimations pane.

• In the Transferred Data & Tax histogram, see the distribution of data transferred between the host
and target devices in each direction.

• See hints about optimizing data transfers in the selected code region.

• In the Recommendations tab, get guidance for offloading your code to a target device and optimizing it
so that your code benefits the most. If the code region has room for optimization or underutilizes the
capacity of the target device, Intel Advisor provides you with hints and code snippets that might be
helpful to you for further code improvement.

NOTE For details about metrics reported, see Accelerator Metrics.

Next Steps
To learn more about data transfers estimated between host and target device for your application, run
Offload Modeling with one the following properties:

• Set the data transfer simulation under the characterization analysis to Medium and run the perspective.
The result should have the Data Transfer Estimations pane extended with new data reporting
information about memory objects in each code region.

Offloaded Objects pane shows a list of memory objects with data about each object aggregated
between different instances of one region.

  1   Intel® Advisor User Guide

264



Analytics histogram shows the number of memory objects that the selected region accessed distributed
by their size.

• Set the data transfer simulation under the characterization analysis to High and enable the Data Reuse
Analysis checkbox under the Performance Modeling analysis. With data reuse analysis, Intel Advisor
detects groups of parallel code regions that can reuse memory objects transferred to a target GPU device.
Such memory objects can be transferred to GPU only once and reused, which can improve data transfer
efficiency.

The result should have data transfer metrics in the Code Regions pane estimated with and without data
reuse for each code region. Examine the metrics in the Estimated Bounded By and Estimated Data
Transfer with Reuse columns to check if a code region can benefit from applying data reuse.

For code regions that can benefit from data reuse, you should see Apply Data Reuse guidance in the
Recommendations tab. The guidance shows the data transfer estimated with and without data reuse
and the performance gain from applying the data reuse. It also explains how you can apply the data reuse
technique to your code.

Intel® Advisor User Guide  1  

265



• If you think that the estimated speedup is enough and the application is ready to be offloaded, rewrite
your code to offload profitable code regions to a target platform and measure performance of GPU kernels
with GPU Roofline Insights perspective.

See Also
• Optimize Your GPU Application with the Intel® oneAPI Base Toolkit
• Intel® oneAPI Programming Guide

Check for Dependency Issues

Accuracy Level
High

Enabled Analyses
Survey + Characterization (Trip Counts and FLOP with cache simulation and medium data transfer
simulation) + Dependencies + Performance Modeling

Result Interpretation
Without the Dependencies analysis, if a loop is not explicitly marked as parallel with pragmas or if a compiler
assumes dependencies present, Intel® Advisor assumes the loop is not recommended for offloading because
they have high compute time. In this case, you can see high percentage of dependency-bound code regions.
To get accurate information about dependencies, run the Dependencies analysis.

After running the Offload Modeling perspective with High accuracy, you will get a complete Offload Modeling
report extended with detailed information about loops that have and do not have dependencies and a full
data transfer report.

If you had a report generated for a lower accuracy, all offload recommendations, metrics, and speedup will
be updated to be more precise taking into account new data.

NOTE This topic describes data as it is shown in the Offload Modeling report in the Intel Advisor GUI
and an interactive HTML report.

In the metrics table of the Accelerated Regions tab:

• Expand the Measured column group and see the Dependency Type column. It indicates if the loop has
dependencies and if yes, reports dependency types.

  1   Intel® Advisor User Guide

266

https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-optimization-workflow.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top.html


In the Details tab, see an icon indicating loop dependency type:

•

 - code region is parallel or can be parallelized.
•

- code region has dependencies.
• In the Throughput column of the Estimated Bound-by group, review time spent for dependencies-

bound parts of your code. If the value is high, fix the dependencies.
• Intel Advisor might detect that some of the loops do not have dependencies and can be offload

candidates, even though they were previously assumed as having dependencies. Review the list of loops/
functions considered profitable for offloading for new candidates.

Review the Data Transfer Estimations pane with detailed information about data transferred between host
and device and memory objects. In addition to basic data transfer report, it includes:

• Offloaded memory objects with size and transfer direction.
• The histogram distribution of objects that the selected region accessed by size.

Get guidance for offloading your code to a target device and optimizing it so that your code benefits the most
in the Recommendations tab. If the code region has room for optimization or underutilizes the capacity of
the target device, Intel Advisor provides you with hints and code snippets that may be helpful to you for
further code improvement.

Next Steps
If you think that the estimated speedup is enough and the application is ready to be offloded, rewrite your
code to offload profitable code regions to a target platform and measure performance of GPU kernels with 
GPU Roofline Insights perspective.

See Also
• Optimize Your GPU Application with the Intel® oneAPI Base Toolkit
• Intel® oneAPI Programming Guide

Explore Performance Gain from GPU-to-GPU Modeling

Enabled Analyses
Performance collection for GPU kernels only (Survey, Characterization) + Performance modeling for GPU
kernels only

Result Interpretation
You can view the result generated in the following:

• Review the result summary and a result file location printed to a command prompt or a terminal.
• Review the project result in Intel® Advisor graphical user interface (GUI) generated to the project

directory.
• Review HTML reports generated to the <project-dir>/e<NNN>/report directory.
• Review a set of CSV reports with detailed metric tables generated to the <project-dir>/e<NNN>/

pp<NNN>/data.0 directory.

This topic describes data as it is shown in the Offload Modeling report in the Intel Advisor GUI. You can also
view the results using an HTML report, but data arrangement and some metric names may vary.

The structure and controls of the GPU-to-GPU performance modeling report generated for the are similar to
the CPU-to-GPU offload modeling report, but the content is different because for the GPU-to-GPU modeling,
Intel Advisor models performance only for GPU-enabled parts of your application.

Intel® Advisor User Guide  1  

267

https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-optimization-workflow.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top.html


When you open the report, it first shows the Summary tab. In this tab, you can review the summary of the
modeling results and estimated performance metrics for some GPU kernels in your application.

• In the Program Metrics pane, compare the Time on Baseline GPU and Time on Target GPU and
examine the Speedup for Accelerated Code to understand if the GPU kernels in your application have a
better performance on a target GPU. Time on Baseline GPU includes only execution time of the GPU
kernels and ignores the CPU parts of your application. Time on Target GPU includes estimated execution
time for GPU kernels on the target GPU and offload taxes.

In the pie chart, review ratio of GPU execution time and offload taxes (kernel launch tax and data transfer
tax) and see where the GPU kernels spend most of the time.

• In the Offloads Bounded by pane, examine what the GPU kernels are potentially bounded by on the
target GPU. The parameters with the highest percentage mean that this is where the GPU kernels spend
the most time. Review the detailed metrics for these parameters in other tabs to understand if you need
to optimize your application for this.

• In the Top offloaded pane, review the top five GPU kernels with the highest absolute offload gain (in
seconds) estimated on the target GPU. The gain is calculated as (Time measured on the baseline GPU -
Time estimated on the target GPU).

For each kernel in the pane, you can review the speedup, time on the baseline and the target GPUs, main
bounded-by parameters, and estimated amount of data transferred. Intel Advisor models kernels one-to-
one and does not filter out kernels with estimated speedup less than 1.

NOTE The Top non offloaded pane shows only GPU kernels that cannot be modeled. If all kernels
are modeled, the pane is empty. For the GPU-to-GPU modeling, estimated speedup lower than 1 is not
a reason for not offloading a kernel.

To see the details about GPU kernel performance, go to the Accelerated Regions tab.

  1   Intel® Advisor User Guide

268



• In the Code Regions table, examine the detailed performance metrics for the GPU kernels. The
Measured column group shows metrics measured on the baseline GPU. Other column groups show
metrics estimated for the target GPU. You can expand column groups to see more metrics.

You can also select a kernel in the table and examine the highlight measured and estimated metrics for it
in the Details tab of the right-side pane to identify what you need to focus on.

For example, to find a potential bottleneck:

1.Examine the Estimated Bounded by column group focusing on the Bounded by and Throughput
columns. In the Bounded by column, you can see the main bottleneck and secondary bottlenecks. The
Throughput expands the bottlenecks with time by compute or memory throughput, latencies, and
offload taxes shown as a chart. See Bounded By for bottleneck details.

2.For details about the bounding factors, expand the column group and find the columns corresponding to
these bounding factors, for example, L3 Cache BW, DRAM BW, or LLC BW.

3.Scroll to the right, expand the Memory Estimations column group, and examine the columns
corresponding to the bottleneck identified. For example, the bandwidth utilization is calculated as a
relation of average memory level bandwidth to its peak bandwidth. High value means that the kernel
does not use well this memory level and it is the potential bottleneck.

You can also review the following data to find bottlenecks:

• If you see high cache or memory bandwidth utilization (for example, in the L3 Cache, SLM, LLC
column groups), consider optimizing cache/memory traffic to improve performance.

• If you see high latency in the Estimated Bounded By column group, consider optimizing cache/
memory latency by scheduling enough parallel work for this kernel to increase thread occupancy.

• If you see high data transfer tax in the Estimated Data Transfer with Reuse, consider optimizing
data transfer taxes or using unified shared memory (USM).

• If you see a high data transfer tax for a kernel, select the kernel in the Code Regions table and examine
the details about memory objects transferred between the host device and a target GPU for a kernel in
the right-side Data Transfer Estimations pane. Review the following data:

• The histogram for the transferred data that shows amount of data transferred in each direction and the
corresponding offload taxes.

• The memory object table that lists all memory objects accessed by the kernel with details about each
object, such as size, transfer direction (only to the host, only to the target, from the host to the target
and back), object type. If you see a lot of small-sized objects, this may result in high latency for the
kernel. High latency might cause a high data transfer tax.

• Hints about optimizing data transfers in the selected code region.

Intel Advisor uses this data to estimate data transfer traffic and data transfers for each kernel.

Next Steps
• Based on collected data, rewrite your code to offload it to a different target GPU to improve performance

and measure its performance with the GPU Roofline Insights perspective.
• See optimization tips for oneAPI applications running on GPU in the oneAPI GPU Optimization Guide.

Intel® Advisor User Guide  1  

269

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top/introduction.html


See Also
Run GPU-to-GPU Performance Modeling from Command Line  With Intel® Advisor, you can model
performance of SYCL, OpenCL™, or OpenMP* target application running on a graphics processing
unit (GPU) for a different GPU device without its CPU version. For this, run the GPU-to-GPU
modeling workflow of the Offload Modeling perspective.
Work with Standalone HTML Reports  Export the interactive Intel® Advisor HTML reports that you
can share or open on a remote machine using your web browser.

Investigate Non-Offloaded Code Regions
The modeling step analyzes code regions profitability for offloading to a target device. Some regions might
be not profitable for offloading or cannot be modeled.

If you view a result in the Intel® Advisor GUI: To see details why your code region of interest is reported as
not recommended for offloading, select a loop in a Code Regions pane and see the Details tab in the right-
side pane for detailed loop information, including the reason why the loop is not recommended for offloading.

By default, the report shows all code regions. You can apply filters to see only regions recommended or not

recommended for offloading: open the  drop-down list and select the desired filter
option.

If you view the result in an Offload Modeling HTML report: Go to the Non-Offloaded Regions tab and
examine the Why Not Offloaded column in the Offload Information group to the reason why a code
region is not recommended for offloading to a selected target platform.

Tip For each region not recommended for offloading, you can force offload modeling. See the Enforce
Offloading for Specific Loops.

Cannot Be Modeled

Message Cause and Details Solution

Cannot be modeled: Outside of
Marked Region

Intel® Advisor cannot model
performance for a code region
because it is not marked up for
analysis.

Make sure a code region satisfies
all markup rules or use a
different markup strategy:

• It is not a system module or a
system function.

• It has instruction mixes.
• It is executed.
• Its execution time is not less

than 0.02 seconds.

Cannot be modeled: Not
Executed

A code region is in the call tree,
but the Intel Advisor detected no
calls to it for a dataset used
during Survey.

This can happen if execution time
of the loop is very small and
close to the sampling interval of
the Intel Advisor. Such loops can
have significant inaccuracies in
time measurement. By default,
the sampling interval for Survey
is 0.01 seconds.

You can try to decrease the
sampling interval of the Intel
Advisor:

  1   Intel® Advisor User Guide

270



Message Cause and Details Solution

• From GUI:

1.Go to Project Properties >
Survey Hotspots
Analysis > Advanced.

2.Set the Sampling Interval
to less than 10ms.

3.Re-run Offload Modeling.
• From CLI: Use the

--interval option when
running the --
collect=survey.

Cannot be modeled: Internal
Error

Internal Error means incorrect
data or lack of data because the
Intel Advisor encountered issues
when collecting or processing
data.

Try to re-run the Offload
Modeling perspective to fix the
metrics attribution problem. If
this does not help, use the 
Analyzers Community forum for
technical support.

Cannot be modeled: System
Module

This code region is a system
function/loop.

This is not an issue. If this code
region is inside an offload region,
or a runtime call, its execution
time is added to execution time
of offloaded regions.

Cannot be modeled: No
Execution Count

The Intel Advisor detected no
calls to a loop during Trip Count
step of the Characterization
analysis and no information
about execution counts is
available for this loop.

Check what loop is executed at
this branch.

If you see a wrong loop, try re-
running the Offload Modeling to
fix the metrics attribution
problem.

Less or Equally Profitable Than Children/Parent Offload
This message is not an issue. It means that Intel Advisor has found a more profitable code region to offload.
If you still want to see offload estimations for the original code region, use the solutions described in the
table below.

Message Cause and Details Solution

Less or equally profitable than
children offloads

Offloading child loops/functions of
this code region is more
profitable than offloading the
whole region with all its children.
This means that the execution
Time estimated on a target
platform for the region of interest
is greater than or equal to the
sum of Time values estimated on
a target platform for its child
regions profitable for offloading.

Model offloading for specific code
regions even if they are not
profitable. See Enforce Offloading
for Specific Loops for details.

Intel® Advisor User Guide  1  

271

https://community.intel.com/t5/Analyzers/bd-p/analyzers


Message Cause and Details Solution

The following reasons might
prevent offloading: total
execution time, taxes, trip
counts, dependencies.

Less or equally profitable than
parent offload

Offloading a whole parent code
region of the region of interest is
more profitable than offloading
any of its child regions
separately. This means that the
Time estimated on a target
platform for the region of interest
is greater than or equal to the
Time estimated on the target
platform for its parent region.

Offloading a child code region
might be limited by high offload
taxes.

Solution 1

If you assume the kernel
execution should overlap offload
taxes, use the
--assume-hide-taxes option
with --collect=projection
action option or the analyze.py
script. See Manage Invocation
Taxes for details.

Solution 2

Model offloading for only specific
code regions even if they are not
profitable. See Enforce Offloading
for Specific Loops for details.

Not Profitable

Message Cause and Details Solution

Not profitable: Parallel execution
efficiency is limited due to
Dependencies

Dependencies limit parallel
execution and the code region
cannot benefit from offloading to
a target device. The estimated
execution time after acceleration
is greater than or equal to the
original execution time.

Solution 1

Ignore assumed dependencies
and model offloading for all or
selected code regions:

• From GUI:

1.Go to Project Properties >
Performance Modeling.

2.Enter one of the options in
the Other Parameters field:

• --no-assume-dependencies
to assume all code
regions that do not have
information about their
dependency are parallel

• --set-parallel=[<loop-IDs/source-locations>]
to ignore dependencies
for specified code regions

3.Re-run Performance
Modeling.

• From CLI: When running
--collect=projection or
analyze.py, use one of the
following:

  1   Intel® Advisor User Guide

272



Message Cause and Details Solution

• --no-assume-dependencies
to ignore dependencies for
all code regions

• --set-parallel=[<loop-IDs/source-locations>]
to ignore dependencies for
specified code regions

For details, see Check How
Dependencies Affect Modeling.

Solution 2

If you did not enable the 
Dependencies analysis when
collecting data, run the analysis
as follows to get detailed
information about real
dependencies in your code:

• From GUI: Enable the
Dependencies and
Performance Modeling
analyses from the Analysis
Workflow pane and re-run
the perspective.

• From CLI: Run the
Dependencies analysis with --
collect=dependencies and
re-run the Performance
Modeling with --
collect=projection or
analyze.py.

See Dependency Type metric
description for details.

Not profitable: The Number of
Loop Iterations is not enough to
fully utilize Target Platform
capabilities

The loop cannot benefit from
offloading to a target platform as
it has a low number of iterations.

In most cases, such code regions
cannot benefit from offloading. If
you assume that during code
migration, the amount of parallel
work grows and a loop is broken
down into several chunks by a
compiler or a program model,
use the following workaround:

• From GUI:

1.Go to Project Properties >
Performance Modeling.

2.Enter --batching or
--threads=<target-threads>
in the Other Parameters
field. <target-threads> is the

Intel® Advisor User Guide  1  

273



Message Cause and Details Solution

number of parallel threads
equal to the target device
capacity.

3.Re-run Performance
Modeling.

• From CLI: When running --
collect=projection or
analyze.py, use one of the
following:

• --batching to model
batching-like techniques

• --threads=<target-
threads>, where <target-
threads> is the number of
parallel threads equal to
the target device capacity

If you enable batching, the kernel
invocation tax might grow. You
can use the
--assume-hide-taxes option to
reduce the task. See Manage
Invocation Taxes for details.

Not profitable: Data Transfer Tax
is greater than Computation Time
and Memory Bandwidth Time

Time spent on transferring data
to a target device is greater than
compute time and memory
bandwidth time. The resulting
time estimated on a target
platform with data transfer tax is
greater than or equal to the time
measured on a host platform.

Check the Bounded By and
Data Transfer Tax columns in
the Estimated Bounded By
column group and the Estimated
Data Transfer with Reuse
column group. Large value
means that this code region
cannot benefit from offloading.

See Bounded By for details about
metric interpretation.

If you still want to offload such
regions, disable data transfer
analysis with the --data-
transfer=off to use only
estimated execution time for
speedup and profitability
calculation.

NOTE This option disables data
transfer analysis for all loops.
You might get different
performance modeling results
for all loops.

  1   Intel® Advisor User Guide

274



Message Cause and Details Solution

If you already collected data
transfer metrics, you can turn off
modeling data transfer tax with
the command line option
--hide-data-transfer-tax.

Not profitable: Computation Time
is high despite the full use of
Target Platform capabilities

The code region uses full target
platform capabilities, but time
spent for compute operations is
still high. As a result, the
execution time estimated on a
target platform is greater than or
equal to the time measured on a
host platform.

Check the value in the Compute
column in the Estimated Bound-
by column group. Unexpectedly
high value means one of the
following:

• There is a problem with a
programming model used.

• Target GPU compute
capabilities are lower than
baseline CPU compute
capabilities.

• Internal Intel Advisor error
happened caused by incorrect
compute time estimation.

Not profitable: Cache/Memory
Bandwidth Time is greater than
other execution time components
on Target Device

The time spent in cache or
memory bandwidth takes a big
part of the time estimated on a
target platform. As a result, it is
greater than or equal to the time
measured on a host platform.

In the report, the Cache/Memory
is replaced with a specific cache
or memory level that prevents
offloading, for example, L3 or
LLC. See the Throughput
column for details about the
highest bandwidth time.

1. Examine code region children
to identify which part takes
most of the time and
prevents offloading.

2. Optimize the part of your
code that takes most of the
time measured on a baseline
platform and rerun the
perspective.

Not profitable because of offload
overhead (taxes)

Total time of offload taxes, which
includes Kernel Launch Tax,
Data Transfer Tax, takes a big
part of the time estimated on a
target platform. As a result, it is
greater than or equal to the time
measured on a host platform.

Examine the Taxes with Reuse
column in the Estimated
Bounded by group for the
biggest and total time taxes paid
for offloading the code region to
a target platform. Expand the
Estimated Bounded by group to
see a full picture of time taxes
paid for offloading the region to
the target platform. Big value in
any of the columns means that
this code region cannot benefit
from offloading because the cost
of offloading is high.

Intel® Advisor User Guide  1  

275



Message Cause and Details Solution

If kernel launch tax is large and
you assume the kernel execution
should overlap the launch tax,
model hiding the launch taxes as
follows:

• From GUI: Enabled the Single
Kernel Launch Tax option
from the Analysis Workflow
pane and rerun the
Performance Modeling
analysis.

• From CLI: Use the
--assume-hide-taxes
option with the
--collect=projection or
analyze.py

See Manage Invocation Taxes for
details.

Not profitable: Kernel Launch Tax
is greater than Kernel Execution
Time and Data Transfer Time

Time spent on launching a kernel
is greater than execution time
estimated on a target platform
and estimated data transfer time.
The resulting time estimated on
the target platform with data
transfer tax is greater than or
equal to the time measured on a
host platform.

Examine the Bounded By and
Kernel Launch Tax columns in
the Estimated Bounded By
column group.

See Bounded By for details about
metric interpretation.

High value in Kernel Launch
Tax means that the Intel Advisor
detects high call count for a
potentially profitable code region
and assumes that the kernel
invocation tax is paid as many
times as the kernel is launched.
For this reason, it assumes that
the code region cannot benefit
from offloading.

If you assume the kernel
execution should overlap the
launch tax, model hiding the
launch taxes as follows:

• From GUI: Select the Single
Kernel Launch Tax checkbox
for the Performance Modeling
analysis.

• From CLI: Use the --assume-
hide-taxes option with the
--collect=projection
action option or analyze.py.

For details, see Manage
Invocation Taxes.

  1   Intel® Advisor User Guide

276



Message Cause and Details Solution

Not profitable: Atomic
Throughput Time is greater than
other execution time components
on a Target Device

Atomic operations include
loading, changing, and storing
data to make sure it is not
affected by other threads
between the calls.

When modeling atomic
operations, Intel Advisor assumes
that all threads wait for each
other, so Atomic Throughput
time might be high and can be
one of the main hotspots.

Go to the Analyzers Community
forum for technical support and
advice.

Not profitable: Instruction
Latency is greater than Compute
Time and Memory Bandwidth
Time

Each memory read instruction
produces a GPU thread stall. The
stall is called a memory latency.
Usually, execution of other
threads can overlap it.

However, sometimes the amount
of non-overlapped latency has a
big impact on performance. Intel
Advisor can estimate the non-
overlapped memory latency and
add it to the kernel estimated
execution time.

If you reduce thread occupancy,
it can increase the amount of
non-overlapped memory latency

Examine the Latency column to
see how much time spent for
load latency and the Thread
Occupancy column to
understand the reason for this.
Low occupancy means that this is
the reason for a high load
latency. In this case, when
offloading the code, increase the
kernel parallelism or cover
latency with other instructions.

If you are sure that the load
latency is overlapped with
compute instructions in your
code, you can enable latency
hiding mode with the following:

• From GUI:

1.Go to Project Properties >
Performance Modeling.

2.Enter
--count-send-latency=first
in the Other Parameters
field.

3.Re-run Performance
Modeling.

• From CLI: Use the
--count-send-latency=first
option with the --
collect=projection action
option or analyze.py.

N/A - Part of Offload
This means that offloading a code region is less profitable than offloading its outer loop.

This is not an issue. The code region of interest is located inside of an offloaded loop.

Intel® Advisor User Guide  1  

277

https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://community.intel.com/t5/Analyzers/bd-p/analyzers


Total Time Is Too Small for Reliable Modeling
This means the execution time of a code region or a whole loop nest is less than 0.02 seconds. In this case,
Intel Advisor cannot estimate the speedup correctly and say if it is worth to offload the code regions because
its execution time is close to the sampling interval of the Intel Advisor.

Possible Solution

If you want to check the profitability of offloading code regions with total time less than 0.02 seconds:

• From GUI:

1.Go to Project Properties > Performance Modeling.
2.Enter the --loop-filter-threshold=0 option to the Other parameters field to model such small

offloads.
3.Re-run Performance Modeling.

• From CLI: Use the --loop-filter-threshold=0 option with the --collect=projection or
analyze.py.

Advanced Modeling Configuration
In some cases, pre-configured accuracy levels of the Intel Advisor are not enough to accurately model
performance of your application. You might want to use some advanced custom modeling strategies or fine-
tune offload modeling parameters to better adjust the model to your application and for your goal.

• Model performance for a custom target GPU with configuration parameters adjusted using the remodeling
pane.

• Check how assumed dependencies affect modeling to decide if you need to run the Dependencies analysis
to get more accurate modeling results.

• Manage invocation taxes to control how to model kernel launch for your application,
• Enforce offloading for specific loops to get modeled performance results on a target for specific loops even

if the estimated speedup for them is low.

Model Application Performance on a Custom Target GPU Device
You can change GPU parameters to model
performance of future or custom graphics processing
units (GPU) and see how your application performance
changes.

Intel® Advisor has several predefined GPU device configurations that you can use to model application
performance. If you want to estimate performance on a future GPU device or experiment with hardware
parameters to see how they can change application performance, you can modify target hardware
parameters for the Offload Modeling perspective in one of the following ways:

• Customize hardware parameters using sliders in an interactive remodeling pane in the Intel Advisor
graphical user interface (GUI) or an interactive HTML report and remodel performance. This is currently
available for GPU-to-GPU modeling only.

• Generate a TOML configuration file that defines customized hardware parameters and use the file to
remodel performance with Intel Advisor command line interface (CLI). You can generate the file using the
interactive modeling pane in the Intel Advisor GUI or the interactive HTML report. You can reuse the file
for multiple analysis executions.

• Provide a command-line option with one or more modified target hardware parameters when running the
analysis with Intel Advisor CLI. This is a one-time change.

Use the Modeling Parameters Pane
When you open the Summary tab of the Offload Modeling report in the Intel Advisor GUI or the interactive
HTML report, you should see the Modeling Parameters pane, which shows the current modeled device and
its parameters. Each parameter is a slider you can move to change its value.

  1   Intel® Advisor User Guide

278



You can use this pane to:

• Examine device parameters that the application performance was modeled on to understand how they
affect the estimated performance.

• Change the target device to compare the new configuration with the current modeled device.
• Adjust the parameters and remodel performance for a custom device. You can experiment with

parameters to see how they affect the application performance or adjust the configuration to model
performance for a future or a specific device not listed in the target devices. See the sections below for a
full workflow.

For CPU-to-GPU modeling, you can remodel performance using Intel Advisor CLI only.

For details about pane controls. see Window: Offload Modeling Summary.

NOTE The parameter list might change depending on the target device selected. This might be due to
differences between GPU architecture or terminology specifics. For example, the Gen11 GT2
configuration has the LLC bandwidth and LLC size parameters, while the XeLP Max 96 does not
because of architecture differences.

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see 
GPU Architecture Terminology for Intel® Xe Graphics.

Intel® Advisor User Guide  1  

279

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html


Remodel Performance from GUI
This workflow is currently available for remodeling from a baseline GPU to a different target GPU device using
Intel Advisor GUI. You can remodel application performance for the custom device from the Offload Modeling
report.

Prerequisites:

1. Set up system to analyze GPU kernels.
2. Run Offload Modeling with your preferred method: from graphical user interface or from command line

interface.
3. Open the result in the Intel Advisor GUI.

To customize the hardware parameters and remodel application performance:

1. In the Analysis Workflow pane, make sure GPU device is selected in the Baseline Device drop-
down.

2. Optional: In the Modeling Parameters pane of the Summary report, select a device from the Target
Device drop-down to use as a baseline for further changes.

If you do not change the device, the current modeled target device will be used a baseline.
3. Move the sliders under Hardware Parameters to the desired values. The black line indicates the

baseline parameter value, and the blue line indicates the difference between the new value and the
baseline value.

For example, you can increase the number of execution units EU Count to enable more compute
operations to be executed at once. This can be useful for compute-bound applications, which is
indicated in the Offload Bounded By pane.

4.

Click  button at the top of the pane to run the Performance Modeling analysis for your
target device configuration.

When the analysis execution completes, the result estimated for the custom device configuration opens.
5. Examine the performance changes for the new target GPU.

For example, if you increased the EU count value, you may see the compute time and compute bound
percentage decreased and compute estimate metrics changed.

Remodel Performance Using a Configuration File
This workflow is currently available for remodeling performance:

  1   Intel® Advisor User Guide

280



• From a baseline CPU to a custom GPU using Intel Advisor GUI or an interactive HTML report
• From a baseline GPU to a custom GPU using an interactive HTML report

For these cases, you can modify the parameters using Offload Modeling report and remodel performance
using Intel Advisor CLI only.

Prerequisites:

1. Set up environment variables.
2. Run Offload Modeling with your preferred method: from graphical user interface or from command line

interface.
3. Open the result in the Intel Advisor GUI on an interactive HTML report.

To customize the hardware parameters and remodel application performance:

1. Optional: In the Modeling Parameters pane of the Summary report, select a device from the Target
Device drop-down to use as a baseline for further changes.

If you do not change the device, the current modeled target device will be used a baseline.
2. Move the sliders under Hardware Parameters to the desired values. The black line indicates the

baseline parameter value, and the blue line indicates the difference between the new value and the
baseline value.

For example, you can increase the number of execution units EU Count to enable more compute
operations to be executed at once. This can be useful for compute-bound applications, which is
indicated in the Offload Bounded By pane.

After you move a slider, the Save to Remodel button activates, enabling you to save your custom
configuration.

NOTE Currently, for the CPU-to-GPU modeling, if you change the memory-related parameters, such as
bandwidth or size, run the Characterization analysis first with Trip Counts and multi-device cache
simulation (for CLI, run Trip Counts collection with --cache-simulation=multi option) before
running the Performance Modeling with the custom configuration. Otherwise, the results may not be
accurate because they require updating cache simulation for the new device.

3. Click Save to Remodel to save the generated configuration file.

The Save Configuration dialog box opens.

Intel® Advisor User Guide  1  

281



4. In the opened dialog box, navigate to a location to save the TOML file, change the file name if needed,
and click Save. By default, the file is saved as config.toml.

After you save the custom configuration file, a command line for the Performance Modeling analysis
appears under the hardware parameter sliders in the Modeling Parameters pane.

5.
Click  to copy the command line generated under the hardware parameters to a clipboard.

Notice that the command line has a --custom-config option with a full path to the custom
configuration file you saved. The command line has all required options, and you can copy and paste it
without modifications.

6. Paste the copied command to a terminal or a command prompt and run it.

After the analysis execution completes, the result in your project directory will be updated for the new
target device configuration.

7. Open the updated results with your preferred method and examine the performance changes for the
new target GPU.

For example, if you increased the EU count value, it you may see the compute time and compute bound
percentage decreased and compute estimate metrics changed.

Remodel Performance Using a Command Line Option
When you run the Offload Modeling perspective from the command line, you can use the --set-
parameter=<parameter-to-change> option to change target parameters. You can use this option with the
Offload Modeling collection preset or the Performance Modeling analysis. This is a one-time change applied
only for the current execution. You can specify more than one parameter as a comma-separated list.

For example, you can model performance for a target device with 1.4 GHz frequency, 224 execution units,
and other parameters corresponding to the gen12_tgl device configuration as following:

advisor --collect=offload --config=gen12_tgl --set-parameter="EU_count=224,Frequency=1.4e+9" --
project-dir=./advi_results -- ./myApplication

You can open the generated results with your preferred method and examine the performance changes for
the new target GPU.

To see what parameters you can change, you can save a configuration file for a selected device from Intel
Advisor GUI or HTML report and examine the parameters listed.

Run Offload Modeling Perspective from GUI
Run Offload Modeling Perspective from Command Line
Explore Offload Modeling Results
advisor Command Option Reference

Check How Assumed Dependencies Affect Modeling
If a loop has dependencies, it cannot be run in parallel and in most cases cannot be offloaded to the GPU.
Intel Advisor can get the information about loop-carried dependencies from the following resources:

• Using Intel® Compiler diagnostics. The dependencies are found at the compile time for some loops and the
diagnostics are passed to the Intel Advisor using the integration with Intel Compilers.

• Parsing the application call stack tree. If a loop is parallelized or vectorized on a CPU or is already
offloaded to a GPU but executed on a CPU, Intel Advisor assumes that you resolved the loop-carried
dependencies before parallelizing or offloading the loop.

  1   Intel® Advisor User Guide

282



• Using the Dependencies analysis results. This analysis detects dependencies for most loops at run time,
but a result might depend on an application workload. It also adds a high overhead making the application
execute 5 - 100 times slower during the analysis. To reduce overhead, you can use various techniques, for
example, mark up loops of interest.

For the Offload Modeling perspective. the Dependencies analysis is optional, but it might add important
information about loop-carried dependencies Intel® Advisor to decide if a loop can be profitable to run on a
graphics processing unit (GPU).

This topic describes a workflow that you can follow to understand if there are potential loop-carried
dependencies in your code that might affect its performance on a target GPU.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Verify Assumed Dependencies
If you do not know what dependency types there are present in your application, run the Offload Modeling
without the Dependencies analysis first to check if potential dependencies affect modeling results and to
decide if you need to run the Dependencies analysis:

1. Run the Offload Modeling without the Dependencies analysis.

• From GUI: Select Medium accuracy level and enable the Assume Dependencies option for the
Performance Modeling in the Analysis Workflow tab. Run the perspective.

• From CLI: Run the following analyses, for example, using the advisor command line interface:

advisor --collect=survey --project-dir=./advi_results --static-instruction-mix -- ./myApplication
advisor --collect=tripcounts --project-dir=./advi_results --flop --stacks --enable-cache-
simulation --target-device=xehpg_512xve --data-transfer=light -- ./myApplication
advisor --collect=projection --project-dir=./advi_results

2. Open the generated report and go to the Accelerated Regions tab.
3. In the Code Regions pane, expand the Measured column group and examine the Dependency Type

column.

• You do not need to run the Dependencies analysis for loops with the following dependency types:

• Parallel: Programming Model dependency type means that the loop is uses SYCL, OpenCL™ or
OpenMP* target programming model.

• Parallel: Explicit dependency type means that the loop is threaded and vectorized on CPU (for
example, with OpenMP parallel for or Intel® oneAPI Threading Building Blocks parallel
for).

• Parallel: Proven dependency type means that an Intel Compiler found no dependencies at the
compile time.

• You might need to run the Dependencies analysis for loops that have the Dependency: Assumed
dependency type. It means that the Intel Advisor does not have information about loop-carried
dependencies for these loops and do not consider them as offload candidates.

4. If you see many Dependency: Assumed types, rerun the performance modeling with assumed
dependencies ignored, as follows:

• From GUI: Select only the Performance Modeling step in the Analysis Workflow tab and disable
the Assume Dependencies option. Run the perspective.

• From CLI: Run the Performance Modeling with one of the following options

• Use --no-assume-dependencies to ignore assumed dependencies for all loops/functions. For
example:

advisor --collect=projection --project-dir=./advi_results --no-assume-dependencies

Intel® Advisor User Guide  1  

283



• Use --set-parallel=[<loop-ID1>|<file-name1>:<line1>,<loop-ID2>|<file-
name2>:<line2>,...] to ignore assumed dependencies for specific loops/functions only. Use
this option if you know that some loops/functions have dependencies and you do not want to
model them as parallel. For example:

advisor --collect=projection --project-dir=./advi_results --set-parallel=foo.cpp:34,bar.cpp:192
5. Review the results generated to check if the potential dependencies might block offloading to GPU.

Loops that previously had Dependency: Assumed dependency type are now marked as Parallel:
Assumed. Intel Advisor models their performance on the target GPU and checks potential offload
profitability and speedup.

6. Compare the program metrics calculated with and without assumed dependencies, such as speedup,
number of offloads, and estimated accelerated time.

• If the difference is small, for example, 1.5x speedup with assumed dependencies and 1.6x speedup
without assumed dependencies, you can skip the Dependencies analysis and rely on the current
estimations. In this case, most loops with potential dependencies are not profitable to be offloaded
and do not add much speedup to the application on the target GPU.

• If the difference is big, for example, 2x speedup with assumed dependencies and 40x speedup
without assumed dependencies, you should run the Dependencies analysis. In this case, the
information about loop-carried dependencies is critical for correct performance estimation.

Run the Dependencies Analysis
To check for real dependencies in your code, run the Dependencies analysis and rerun the Performance
Modeling to get more accurate estimations of your application performance on GPU:

• From GUI:

1.Enable only the Dependencies and Performance Modeling analyses in the Analysis Workflow tab.

By default, the generic markup strategy is applied to select only potentially profitable loops to run the
Dependencies analysis.

2.Rerun the perspective with only these two analyses enabled.
• From CLI:

1.Run the Dependencies analysis for potentially profitable loops only:

advisor --collect=dependencies --select markup=gpu_generic --loop-call-count-limit=16 --filter-
reductions --project-dir=./advi_results --    ./myApplication

2.Run the Performance Modeling analysis:

advisor --collect=projection --project-dir=./advi_results 
Open the result in the Intel Advisor, view the interactive HTML report, or print it to the command line.
Continue to investigate the results and identify code regions to offload.

See Also
Run Offload Modeling Perspective from GUI
Run Offload Modeling from Command Line
Loop Markup to Minimize Analysis Overhead

Manage Invocation Taxes
You can control how to model invocation taxes for
your application.

When Intel® Advisor detects high call count value for a potentially profitable code region, it assumes that the
kernel invocation tax is paid as many times as the kernel is launched. The result is high invocation tax and
cost of offloading, which means that this code region cannot benefit from offloading. This is a pessimistic
assumption.

  1   Intel® Advisor User Guide

284



However, for simple applications where there is no need to wait for a kernel instance to finish, this cost can
be hidden every time except the very first one.

In the Offload Modeling report, the kernel invocation tax is reported in the Estimated Bounded By >
Kernel Launch Tax column. This metric includes time spent for kernel configuration (first launch), each
kernel launch, and kernel code transfers.

You can tell Intel Advisor how to handle invocation taxes for your application when modeling its performance
on a target device.

NOTE In the commands below, <APM> is the environment variable that points to script directory.
Replace it with $APM on Linux* OS or %APM% on Windows* OS.

Hide All Taxes
For simple applications, you are recommended to enable the optimistic approach for estimating invocation
taxes. In this approach, Offload Modeling assumes the invocation tax is paid only for the first time the kernel
executes.

To enable this approach:

• From GUI: Enable Single Kernel Launch Tax checkbox from the Analysis Workflow and re-run the
Performance Modeling analysis.

• From command line: Run Performance Modeling with the --assume-hide-taxes option:

advisor --collect=projection --assume-hide-taxes --project-dir=./advi_results
where ./advi_results is a path to your project directory. Make sure to replace it with your actual
project directory where you collected results to before running the command.

NOTE You can specify a comma-separated list of loop IDs and source locations to the 
--assume-hide-taxes option to hide taxes only for those loops/functions. If you do not provide a
list, taxes are hidden for all loops.

Check how the Kernel Launch Tax column value changed with the option used.

Do Not Hide Taxes
By default, Offload Modeling estimates invocation taxes using the pessimistic approach and assumes the
invocation tax is paid each time the kernel is launched.

• From GUI: Disable Single Kernel Launch Tax checkbox from the Analysis Workflow and re-run the
Performance Modeling.

• From command line: Run Performance Modeling with the --no-assume-hide-taxes option (default):

advisor --collect=projection --no-assume-hide-taxes --project-dir=./advi_results
where ./advi_results is a path to your project directory. Make sure to replace it with your actual
project directory where you collected results to before running the command.

Check how the Kernel Launch Tax column value changed with the option used.

Fine-Tune the Number of Hidden Taxes
You can fine-tune the number of invocation taxes to hide by specifying the Invoke_tax_ratio parameter
and a fraction of invocation taxes to hide in a TOML configuration file.

Intel® Advisor User Guide  1  

285



1. Create a TOML file, for example, my_config.toml. Copy and paste the following text there:

[scale]
# Fraction of invocation taxes to hide.
# Note: The invocation tax of the first kernel instance is not scaled.
# Possible values: 0.0--1.0
# Default value: 0.0
Invoke_tax_hidden_ratio = <float>

where <float> is a fraction of invocation taxes to hide, for example, Invoke_tax_hidden_ratio =
0.95, which means that 95% of invocation taxes will be hidden and only 5% of the taxes will be
estimated.

2. Save and close the file.
3. Run the performance projection with the new TOML file as additional custom configuration:

advisor --collect=projection --custom-config=my_config.toml --project-dir=./advi_results
where ./advi_results is a path to your project directory. Make sure to replace it with your actual
project directory where you collected results to before running the command.

Important If you use the configuration parameter to control the number of taxes to hide, do not use
the --assume-hide-taxes or --assume-never-hide-taxes option. These options overwrite the
value of the configuration parameter.

You can also use the --set-parameter="scale.Invoke_tax_hidden_ratio = <float>" for the
Performance Modeling to set the number of invocation taxes to hide only for the current execution. In this
case, you do not need to create a custom configuration file.

Check how the Kernel Launch Tax column value changed with the parameter modified.

Run Offload Modeling Perspective from Command Line

Enforce Offloading for Specific Loops
Model performance on a target device for specific
loops only even if they are not profitable.

If you want to check offload profitability only for specific loops or if your loop of interest is reported as not
recommended for offloading to an accelerator, you can model performance only for these loops and ignore all
other loops.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

To do this:

1. Collect baseline performance data. For example, run the Survey and Characterization analyses:

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --stacks --enable-cache-simulation --target-
device=xehpg_512xve --project-dir=./advi_results -- ./myApplication

2. Rerun performance modeling for selected loops/functions only. For example:

advisor --collect=projection --select=foo.cpp:34,bar.cpp:192 --enforce-offload --project-dir=./
advi_results

where:

• --select lists loops/functions to analyze by file and line number, loop/function ID, or criteria.
• --enforce-offloadsmodels performance for all selected loops/functions even if offloading their

child loops/functions is more profitable.

  1   Intel® Advisor User Guide

286



View the Offload Modeling results in the Intel® Advisor GUI or view an HTML report. The results will show
performance estimated for the selected loops/functions only.

Run Offload Modeling Perspective from Command Line
advisor Command Option Reference
Offload Modeling Command Line Reference  This reference section describes the command line
options available for each of the Python* scripts that you can use to run the Offload Modeling
perspective.

Analyze GPU Roofline
Measure and visualize the actual performance of GPU
kernels using benchmarks and hardware metric
profiling against hardware-imposed performance
ceilings, as well as determine the main limiting factor,
by running the GPU Roofline Insights perspective.

Use the Roofline chart to answer the following questions:

• What is the maximum achievable performance with your current hardware resources?
• Does your application work optimally on current hardware resources?
• If not, what are the best candidates for optimization?
• Is memory bandwidth or compute capacity limiting performance for each optimization candidate?

Run the GPU Roofline Insights to measure performance of SYCL, C++/Fortran with OpenMP* pragmas, Intel®
oneAPI Level Zero (Level Zero), or OpenCL™ applications enabled to run on a GPU.

How It Works
The GPU Roofline Insights perspective includes the following steps:

1. Collect OpenCL™ kernels timings and memory data using the Survey analysis with GPU profiling.
2. Measure the hardware limitations and collect floating-point and integer operations data using the

Characterization analysis with GPU profiling.

Intel® Advisor calculates compute operations (FLOP and INTOP) as a weighted sum of the following
groups of instructions: BASIC COMPUTE, FMA, BIT, DIV, POW, MATH.

Intel Advisor automatically determines data type in the collected operations using the dst register.

GPU Roofline Summary
GPU Roofline Insights perspective measures performance of kernels executed on GPU and loops/functions
executed on CPU and shows what you should optimize your application for. Examine the following
performance data:

• See application execution time on GPU and CPU, time spent to transfer data between the CPU and GPU,
and how well your application uses the GPU resources.

• Review the Roofline charts for CPU and GPU parts of your application.
• View the execution time details and various performance metrics on GPU- and CPU-executed parts of your

application.
• View top five time-consuming loops on GPU and on CPU sorted by self time with performance metrics. You

are recommended to start with these loops when checking for performance issues.

Intel® Advisor User Guide  1  

287



See the Summary section to examine the performance summary of your application, and continue to GPU
Roofline Insights Regions tab to examine the performance in more detail.

See Also
Run GPU Roofline Insights Perspective from GUI
Run GPU Roofline Insights Perspective from Command Line
Optimize Your GPU Application with Intel® oneAPI Base Toolkit

Run GPU Roofline Insights Perspective from GUI
Prerequisites:

1. Configure system to analyze GPU kernels.
2. In the graphical-user interface (GUI): Create a project and specify an analysis target and target

options.

To configure and run the GPU Roofline Insights perspective from the GUI:

1. Configure the perspective and set analysis properties, depending on desired results:

• Select a collection accuracy level with analysis properties preset for a specific result:

• Low: Analyze performance of kernels executed on GPU and plot a GPU Roofline chart for all
memory levels. Plot a basic CPU Roofline chart for loops/functions executed on CPU.

• Medium: Analyze performance of kernels executed on GPU, plot a GPU Roofline chart for all
memory levels, and model the application performance to get more optimization
recommendations. Plot a basic CPU Roofline chart for loops/functions executed on CPU.

• High: Analyze performance of kernels executed on GPU, plot a GPU Roofline chart for all memory
levels, and model the application performance to get more optimization recommendations. Plot
an extended CPU Roofline chart for loops/functions executed on CPU for all memory levels.

• Select the analyses and properties manually to adjust the perspective flow to your needs. The
accuracy level is set to Custom.

  1   Intel® Advisor User Guide

288

https://www.intel.com/content/www/us/en/develop/articles/optimize-gpu-application-with-oneapi-base-toolkit.html


By default, accuracy is set to Low. The higher accuracy value you choose, the higher runtime overhead
is added to your application. The Overhead indicator shows the overhead for the selected
configuration. For the Custom accuracy, the overhead is calculated automatically for the selected
analyses and properties.

For more information, see GPU Roofline Accuracy Presets.

NOTE If you want to analyze only code regions executed on GPU, select the Low or Medium
accuracy. This decreases analysis overhead. For the GPU Roofline Insights perspective, the High
accuracy level controls the complexity of the CPU Roofline chart generated for loops/functions in your
code executed on CPU.

2. If you have multiple GPUs connected to your system, select a target GPU to collect data for from the
Target GPU drop-down.
The drop-down shows an adapter address and a name for each GPU available. The address is in the
format <domain>:<bus>:<device-number>.<function-number>.

3.
Run the perspective: click  button.

While the perspective is running, you can do the following in the Analysis Workflow tab:

• Control the perspective execution:

•
Stop data collection and see the already collected data: Click the  button.

•
Pause data collection: Click the  button.

•
Cancel data collection and discard the collected data: Click the  button.

• Expand an analysis with  to control the analysis execution:

• Pause the analysis: Click the  button.
• Stop the currently running analysis and start the next analysis selected: Click the  button.
• Interrupt execution of all selected analyses and see the already collected data: Click the 

button.

To run the GPU Roofline Insights perspective with the Low accuracy from the command line
interface:

advisor --collect=roofline --profile-gpu --project-dir=./advi_results -- ./myApplication
See Run GPU Roofline Insights from Command Line for details.

NOTE To generate command lines for selected perspective configuration, click the Command
Line button.

Once the GPU Roofline Insights perspective collects data, the report opens showing a Summary with
performance metrics measured for CPU- and GPU-executed parts of your application and preview Roofline
charts. Continue to examine GPU bottlenecks on the Roofline chart to investigate the results.

GPU Roofline Accuracy Presets
For each perspective, Intel® Advisor has several levels of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is collected and the level of collection details. The higher
accuracy value you choose, the higher runtime overhead is added.

The following accuracy levels are available:

Intel® Advisor User Guide  1  

289



Comparison /
Accuracy Level

Low Medium High

Overhead 5 - 10x 15 - 20x 20 - 50x

Goal Analyze kernels in
your application
running on GPU

Analyze kernels
running on GPU and
loops/functions
running on CPU in
more details

Analyze kernels running on
GPU and loops/functions
running on CPU in more
details

Analyses Survey with GPU
profiling +
Characterization
(FLOP)

Survey with GPU
profiling +
Characterization
(FLOP, memory object
analysis with light
data transfer
simulation between
host and target device
memory) +
Performance Modeling
for a baseline GPU

Survey with GPU profiling +
Characterization (Trip Counts
and FLOP with call stacks for
CPU, CPU cache simulation,
memory object analysis with
medium data transfer
simulation between host and
target device memory) +
Performance Modeling for a
baseline GPU

Result for kernels
on GPU

Memory-level GPU
Roofline (for CARM,
L3, SLM, GTI) with
basic set of
recommendations for
performance
optimization

Memory-level GPU
Roofline (for CARM,
L3, SLM, GTI) with
extended set of
recommendations for
performance
optimization

Memory-level GPU Roofline
(for CARM, L3, SLM, GTI) with
extended set of
recommendations for
performance optimization

Result for loops/
functions on CPU

Cache-aware CPU
Roofline for L1 cache

Memory-level Roofline
with call stacks (for
L1, L2, L3, DRAM)

Memory-level Roofline with
call stacks (for L1, L2, L3,
DRAM)

You can choose custom accuracy and set a custom perspective flow for your application. For more
information, see Customize GPU Roofline Insights Perspective.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead .

Customize GPU Roofline Insights Perspective
Customize the perspective flow to better fit your goal
and your application.

If you change any of the analysis settings from the Analysis Workflow tab, the accuracy level changes to
Custom automatically. With this accuracy level, you can customize the perspective flow and/or analysis
properties.

To change the properties of a specific analysis:

1.
Expand the analysis details on the Analysis Workflow pane with .

2. Select desired settings.
3.

For more detailed customization, click the gear  icon. You will see the Project Properties dialog
box open for the selected analysis.

4. Select desired properties and click OK.

  1   Intel® Advisor User Guide

290



For a full set of available properties, click the  icon on the left-side pane or go to File > Project
Properties.

The following tables cover project properties applicable to the analyses in the GPU Roofline Insights
perspective.

Common Properties

Use This To Do This

Target type drop-down • Analyze an executable or script (choose Launch Application).
• Analyze a process (choose Attach to Process).

If you choose Attach to Process, you can either inherit settings from
the Survey Hotspots Analysis Type or specify the needed settings.

Inherit settings from
Visual Studio project
checkbox and field (Visual
Studio* IDE only)

Inherit Intel Advisor project properties from the Visual Studio* startup
project (enable).

If enabled, the Application, Application parameters, and Working
directory fields are pre-filled and cannot be modified.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the
Intel® oneAPI 2022.1 release, and will be removed in a future release.

Application field and
Browse... button

Select an analysis target executable or script.

If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application
parameters field and
Modify... button

Specify runtime arguments to use when performing analysis (equivalent
to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment
variables field and Modify...
button

Specify environment variables to use during analysis.

Managed code profiling
mode drop-down

• Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

• Collect data for native code and do not attribute data to managed
code (choose Native).

• Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

Intel® Advisor User Guide  1  

291



Use This To Do This

• Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

Child application field Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

NOTE
For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

• Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

• Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

Use MPI launcher checkbox Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

• Select MPI Launcher - Intel or another vendor
• Number of ranks - Number of instances of the application
• Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis Properties

Use This To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

  1   Intel® Advisor User Guide

292



Use This To Do This

Sampling Interval selector Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Callstack unwinding mode
drop-down list

Set to After collection if:

• Survey analysis runtime overhead exceeds 1.1x.
• A large quantity of data is allocated on the stack, which is a common

case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE
Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
-ax (Linux* OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Intel® Advisor User Guide  1  

293



Use This To Do This

Source caching drop-down
list

• Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

• Keep source code cache within the project (choose Keep cached
files).

Trip Counts and FLOP Analysis Properties

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Collect information about
Loop Trip Counts checkbox

Measure loop invocation and execution (enable).

Collect information about
FLOP, L1 memory traffic,
and AVX-512 mask usage
checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Collect stacks checkbox Collect call stack information when performing analysis (enable).

Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Enable Memory-Level
Roofline with cache
simulation checkbox

Model multiple levels of cache for data, such as counts of loaded or
stored bytes for each loop, to plot the Roofline chart for all memory levels
(enable).

Enabling could increase analysis overhead.

NOTE This option is applicable to CPU Roofline only.

Cache simulator
configuration field

Specify a cache hierarchy configuration to model (enable and specify
hierarchy).

NOTE This option is applicable to CPU Roofline only.

The hierarchy configuration template is:

  1   Intel® Advisor User Guide

294



Use This To Do This

[num_of_level1_caches]:[num_of_ways_level1_connected]:
[level1_cache_size]:[level1_cacheline_size]/

[num_of_level2_caches]:[num_of_ways_level2_connected]:
[level2_cache_size]:[level2_cacheline_size]/

[num_of_level3_caches]:[num_of_ways_level3_connected]:
[level3_cache_size]:[level3_cacheline_size]

For example: 4:8w:32k:64l/4:4w:256k:64l/1:16w:6m:64l is the
hierarchy configuration for:

• Four eight-way 32-KB level 1 caches with line size of 64 bytes
• Four four-way 256-KB level 2 caches with line size of 64 bytes
• One sixteen-way 6-MB level 3 cache with line size of 64 bytes

Run GPU Roofline Insights Perspective from Command Line
To plot a Roofline chart, the Intel® Advisor runs two steps:

1. Collect OpenCL™ kernels timings and memory data using the Survey analysis with GPU profiling.
2. Measure the hardware limitations and collect floating-point and integer operations data using the

Characterization analysis with GPU profiling.

Intel® Advisor calculates compute operations (FLOP and INTOP) as a weighted sum of the following
groups of instructions: BASIC COMPUTE, FMA, BIT, DIV, POW, MATH.

Intel Advisor automatically determines data type in the collected operations using the dst register.

For convenience, Intel Advisor has the shortcut --collect=roofline command line action, which you can
use to run both Survey and Characterization analyses with a single command. This shortcut command is
recommended to run the GPU Roofline Insights perspective.

Tip See Intel Advisor cheat sheet for quick reference on command line interface.

Prerequisites
1. Configure your system to analyze GPU kernels.
2. Set Intel Advisor environment variables with an automated script to enable the advisor command line

interface (CLI).

Run the GPU Roofline Insights Perspective
There are two methods to run the GPU Roofline analysis. Use one of the following:

• Run the shortcut --collect=roofline command line action to execute the Survey and Characterization
analyses for GPU kernels with a single command. This method is recommended to run the CPU / Memory
Roofline Insights perspective, but it does not support MPI applications.

• Run the Survey and Characterization analyses for GPU kernels with the --collect=survey and
--collect=tripcounts command actions separately one by one. This method is recommended if you
want to analyze an MPI application.

Optionally, you can also run the Performance Modeling analysis as part of the GPU Roofline Insights
perspective. If you select this analysis, it models your application performance on a baseline GPU device as a
target to compare it with the actual application performance. This data is used to suggest more
recommendations for performance optimization.

Intel® Advisor User Guide  1  

295

https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-cheat-sheet.pdf


Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Method 1. Run the Shortcut Command

1. Collect data for a GPU Roofline chart with a shortcut.

advisor --collect=roofline --profile-gpu --project-dir=./advi_results -- ./myApplication
This command collects data both for GPU kernels and CPU loops/functions in your application. For
kernels running on GPU, it generates a Memory-Level Roofline.

2. Run Performance Modeling for the GPU that the application runs on.

advisor --collect=projection --profile-gpu --model-baseline-gpu --project-dir=./advi_results

Important Make sure to use the --model-baseline-gpu option for Performance Modeling to work
correctly.

This command models your application potential performance on a baseline GPU as a target to
determine additional optimization recommendations.

Method 2. Run the Analyses Separately

Use this method if you want to analyze an MPI application.

1. Run the Survey analysis.

advisor --collect=survey --profile-gpu --project-dir=./advi_results -- ./myApplication
2. Run the Characterization analysis to collect trip counts and FLOP data:

advisor --collect=tripcounts --flop --profile-gpu --project-dir=./advi_results -- ./myApplication
These commands collect data both for GPU kernels and CPU loops/functions in your application. For
kernels running on GPU, it generates a Memory-Level Roofline.

3. Run Performance Modeling for the GPU that the application runs on.

advisor --collect=projection --profile-gpu --model-baseline-gpu --project-dir=./advi_results

Important Make sure to use the --model-baseline-gpu option for Performance Modeling to work
correctly.

This command models your application potential performance on a baseline GPU as a target to
determine additional optimization recommendations.

You can view the results in the Intel Advisor graphical user interface (GUI) or in CLI, or generate an
interactive HTML report. See View the Results below for details.

Analysis Details

The CPU / Memory Roofline Insights workflow includes only the Roofline analysis, which sequentially runs the
Survey and Characterization (trip counts and FLOP) analyses.

The analysis has a set of additional options that modify its behavior and collect additional performance data.

Consider the following options:

Roofline Options

To run the Roofline analysis, use the following command line action: --collect=roofline.

  1   Intel® Advisor User Guide

296



NOTE You can also use these options with --collect=survey and --collect=tripcounts if you
want to run the analyses separately.

Recommended action options:

Options Description

--profile-gpu Analyze GPU kernels. This option is required for
each command.

--target-gpu Select a target GPU adapter to collect profiling
data. The adapter configuration should be in the
following format <domain>:<bus>:<device-
number>.<function-number>. Only decimal
numbers are accepted. Use this option if you have
more than one GPU adapter on your system. The
default is the latest GPU architecture version found
on your system.

Tip To see a list of GPU adapters available on your
system, run advisor --help target-gpu and
see the option description.

--gpu-sampling-interval=<double> Set an interval (in milliseconds) between GPU
samples. By default, it is set to 1.

--enable-data-transfer-analysis Model data transfer between host memory and
device memory. Use this option if you want to run
the Performance Modeling analysis.

--track-memory-objects Attribute memory objects to the analyzed loops
that accessed the objects. Use this option if you
want to run the Performance Modeling analysis.

--data-transfer=<level> Set the level of details for modeling data transfers
during Characterization. Use this option if you want
to run the Performance Modeling analysis.

Use one of the following values:

• Use light to model only data transfer between
host and device memory.

• Use medium to model data transfers, attribute
memory object, and track accesses to stack
memory.

• Use high to model data transfers, attribute
memory objects, track accesses to stack
memory, and identify where data can be reused.

See advisor Command Option Reference for more options.

Performance Modeling Options

To run the Performance Modeling analysis, use the following command line action: --collect=projection.

Intel® Advisor User Guide  1  

297



The action options in the table below are required to use when you run the Performance Modeling analysis as
part of the GPU Roofline Insights perspective:

Options Description

--profile-gpu Analyze GPU kernels. This option is required for
each command.

--enforce-baseline-decomposition Use the same local size and SIMD width as
measured on the baseline. This option is required.

--model-baseline-gpu Use the baseline GPU configuration as a target
device for modeling. This option is required.

This option automatically enables the
--enforce-baseline-decomposition option, so
you can use only --model-baseline-gpu.

See advisor Command Option Reference for more options.

Next Steps
Continue to explore GPU Roofline results. For details about the metrics reported, see Accelerator Metrics.

See Also
GPU Roofline Insights Perspective Measure and visualize the actual performance of GPU kernels
using benchmarks and hardware metric profiling against hardware-imposed performance ceilings,
as well as determine the main limiting factor, by running the GPU Roofline Insights perspective.
Command Line Interface This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.
Minimize Analysis Overhead

GPU Roofline Accuracy Levels in Command Line
For each perspective, Intel® Advisor has several levels of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is collected and the level of collection details. The higher
accuracy value you choose, the higher runtime overhead is added.

In CLI, each accuracy level corresponds to a set of commands with specific options that you should run one
by one to get a desired result.

The following accuracy levels are available:

Comparison /
Accuracy Level

Low Medium High

Overhead 5 - 10x 15 - 20x 20 - 50x

Goal Analyze kernels in
your application
running on GPU

Analyze kernels
running on GPU and
loops/functions
running on CPU in
more details

Analyze kernels running on
GPU and loops/functions
running on CPU in more
details

Analyses Survey with GPU
profiling +
Characterization
(FLOP)

Survey with GPU
profiling +
Characterization
(FLOP, memory object
analysis with light
data transfer

Survey with GPU profiling +
Characterization (Trip Counts
and FLOP with call stacks for
CPU, CPU cache simulation,
memory object analysis with
medium data transfer

  1   Intel® Advisor User Guide

298



Comparison /
Accuracy Level

Low Medium High

simulation between
host and target device
memory) +
Performance Modeling
for a baseline GPU

simulation between host and
target device memory) +
Performance Modeling for a
baseline GPU

Result for kernels
on GPU

Memory-level GPU
Roofline (for CARM,
L3, SLM, GTI) with
basic set of
recommendations for
performance
optimization

Memory-level GPU
Roofline (for CARM,
L3, SLM, GTI) with
extended set of
recommendations for
performance
optimization

Memory-level GPU Roofline
(for CARM, L3, SLM, GTI) with
extended set of
recommendations for
performance optimization

Result for loops/
functions on CPU

Cache-aware CPU
Roofline for L1 cache

Memory-level Roofline
with call stacks (for
L1, L2, L3, DRAM)

Memory-level Roofline with
call stacks (for L1, L2, L3,
DRAM)

You can generate commands for a desired accuracy level from the Intel Advisor GUI. See Generate Command
Lines from GUI for details.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

Consider the following command examples.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Low Accuracy
To run the GPU Roofline Insights perspective with the low accuracy:

advisor --collect=roofline --profile-gpu --enable-data-transfer-analysis --project-dir=./
advi_results -- ./myApplication

Medium Accuracy
1. Run the GPU Roofline.

advisor --collect=roofline --profile-gpu --enable-data-transfer-analysis --track-memory-objects 
--data-transfer=light --project-dir=./advi_results -- ./myApplication

2. Run Performance Modeling for the GPU that the application runs on.

advisor --collect=projection --profile-gpu --enforce-baseline-decomposition --model-baseline-gpu 
--project-dir=./advi_results

NOTE The --model-baseline-gpu option automatically enables
--enforce-baseline-decomposition. To simplify the command, you can skip the
--enforce-baseline-decomposition option and use only --model-baseline-gpu.

Intel® Advisor User Guide  1  

299



High Accuracy
1. Run the GPU Roofline.

advisor --collect=roofline --profile-gpu --stacks --enable-cache-simulation --enable-data-
transfer-analysis --track-memory-objects --data-transfer=medium --project-dir=./advi_results 
-- ./myApplication

2. Run Performance Modeling for the GPU that the application runs on.

advisor --collect=projection --profile-gpu --enforce-baseline-decomposition --model-baseline-gpu 
--project-dir=./advi_results

NOTE The --model-baseline-gpu option automatically enables
--enforce-baseline-decomposition. To simplify the command, you can skip the
--enforce-baseline-decomposition option and use only --model-baseline-gpu.

You can view the results in the Intel Advisor GUI or generate an interactive HTML report.

See Also
advisor Command Option Reference
Command Line Interface Reference This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].
Run GPU Roofline Insights Perspective from Command Line
Minimize Analysis Overhead

Explore GPU Roofline Results
Intel® Advisor provides several ways to work with the GPU Roofline results.

View Results in GUI
If you run the GPU Roofline Insights perspective from command line, a project is created automatically in the
directory specified with --project-dir. All the collected results and analysis configurations are stored in
the .advixeproj project, that you can view in the Intel Advisor.

To open the project in GUI, you can run the following command:

advisor-gui <project-dir>

NOTE If the report does not open, click Show Result on the Welcome pane.

If you run the GPU Roofline Insights perspective from GUI, the result is opened automatically after the
collection finishes.

You first see a Summary report that includes performance characteristics for code regions in your code. The
left side of the report shows metrics for code regions that run on a GPU, the right side of the report shows
metrics for code regions that run on a CPU. The report shows the following data:

• Program metrics for all code regions executed on the GPU and loops/functions executed on the CPU,
including total execution time, GPU usage effectiveness, and the number of executed operations.

• Preview Roofline charts for CPU and GPU parts of your code. The charts plot an application's achieved
performance and arithmetic intensity against the maximum achievable performance for top three dots and
total dot, which combines all loops/functions (for CPU) and kernels (for GPU). By default, it shows Roofline
for a dominating operations data type (INT or FLOAT). You can switch to a different data type using the
FLOAT/INT toggle.

  1   Intel® Advisor User Guide

300



This pane also reports the number of operations transferred per second, bandwidth for different memory
levels, and an instruction mix histogram (for GPU only).

• Top five hotspots on CPU and GPU sorted by elapsed time.
• Performance characteristics of how well the application uses hardware resources.
• Information about the analyses executed and platforms that the data was collected on.

View an Interactive HTML Report
Intel Advisor enables you to export two types of HTML reports, which you can open in your preferred browser
and share:

• Interactive HTML report that represents results in the similar way as in GUI and comprises GPU metrics,
operations and memory information, a roofline chart, a source view, and grid data.

Tip Collect offload modeling data to view results for Offload Modeling and GPU Roofline Insights
perspectives in a single interactive HTML report.

• HTML Roofline report that contains a GPU Roofline chart and enables you to customize your hardware
configuration to view how your application executes with given compute and memory parameters.

Intel® Advisor User Guide  1  

301



For details on exporting the HTML reports, see Work with Standalone HTML Reports.

To explore the interactive HTML report, you can download a precollected GPU Roofline report and examine
the results and structure.

Save a Read-only Snapshot
A snapshot is a read-only copy of a project result, which you can view at any time using the Intel Advisor
GUI. You can save a snapshot for a project using Intel Advisor GUI or CLI.

To save an active project result as a read-only snapshot from GUI: Click the  button in the top ribbon
of the report. In the Create a Result Snapshot dialog box, enter the snapshot details and save it.

To save an active project result as a read-only snapshot from CLI:

advisor --snapshot --project-dir=<project-dir> [--cache-sources] [--cache-binaries] --
<snapshot-path>

where:

• --cache-sources is an option to add application source code to the snapshot.
• --cache-binaries is an option to add application binaries to the snapshot.
• <snapshot-path is a path and a name for the snapshot. For example, if you specify /tmp/new_snapshot,

a snapshot is saved in a tmp directory as new_snapshot.advixeexpz. You can skip this and save the
snapshot to a current directory as snapshotXXX.advixeexpz.

To open the result snapshot in the Intel Advisor GUI, you can run the following command:

advisor-gui <snapshot-path>
You can visually compare the saved snapshot against the current active result or other snapshot results.

See Create a Read-only Result Snapshot for details.

Result Interpretation
When you run the GPU Roofline Insights perspective, analyze performance of your application running on
GPU and identify headroom for optimization:

  1   Intel® Advisor User Guide

302

https://cdrdv2.intel.com/v1/dl/getContent/724628


• Explore the basic performance metrics and identify top hotspots for optimization using the GPU Roofline
Summary

• Visualize performance of your kernels against hardware-imposed performance ceilings and explore the
relationships between your kernels and different memory levels using the GPU Roofline chart

• Analyze performance and memory metrics for specific kernels, identify headroom for optimization, and get
actionable recommendations helping you optimize your application performance using the GPU Details tab

• Compare results of different optimization iterations using Roofline Compare functionality

See Also
Run GPU Roofline Insights Perspective from GUI
Run GPU Roofline Insights Perspective from Command Line
Accelerator Metrics  This reference section describes the contents of data columns in reports of
the Offload Modeling and GPU Roofline Insights perspectives.

Examine GPU Roofline Summary
Explore the overview of program metrics and
operations and memory data for your application
using the Summary report of GPU Roofline Insights.

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see 
GPU Architecture Terminology for Intel® Xe Graphics.

Explore Program Metrics for Code Regions Executed on GPU
Get the insight into performance of your entire application and evaluate the following using the Program
Metrics pane:

• How much time your application spends on CPU and on GPU in relation to the total time of the application
to understand if your application is CPU-bound or GPU-bound

• How much time your application spends on transferring data between CPU and GPU
• How well your application utilizes the floating-point units (FPUs) for parallel execution of operations
• How many threads in each execution unit your application occupies to execute compute operations
• How your application utilizes FPU pipelines and how many instructions it executes per cycle

NOTE For discrete GPUs, FPU Utilization and EU IPC Rate metrics are unavailable.

Identify Dominating Data Types and Hotspots
Intel Advisor profiles your application during its execution and identifies the dominating data type in
operations and top hotspots for optimization.

Intel® Advisor User Guide  1  

303

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html


• Explore the operations and identify the dominating data type in the OP/S and Bandwidth pane. Use this
data to see if the compiler generates integer operations (INTOP) or floating-point operations (FLOP) that
are not obvious.

• View the list of top hotspots on the GPU in the Top Hotspots pane and examine their performance in
relation to compute performance and memory bandwidth using the Roofline chart in the OP/S and
Bandwidth pane. These hotspots are the best candidates for optimization as they have the greatest
impact on the application total time. To view detailed information about the performance of each kernel
and visualize it against hardware limitations, double-click a hotspot in the pane or a dot on a roofline
chart.

Other analyses and properties are for a CPU Roofline part of the result, which shows metrics for loops/
functions executed on CPU. For details about CPU Roofline data, see CPU / Memory Roofline Insights.

Next Steps
Examine Bottlenecks on GPU Roofline Chart.

See Also
• Accelerator Metrics
• oneAPI GPU Optimization Guide
• Optimize Your GPU Application with the Intel® oneAPI Base Toolkit

  1   Intel® Advisor User Guide

304

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-optimization-workflow.html


Examine Bottlenecks on GPU Roofline Chart
GPU Roofline Insights perspective enables you to view
your application performance in relation to the
maximum capabilities of your hardware plotted on a
Roofline chart, which is available in the GPU Roofline
Regions view.

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see 
GPU Architecture Terminology for Intel® Xe Graphics.

Explore Performance-Limiting Factors
Intel® Advisor visualizes the maximum compute capacity and maximum memory bandwidth of your hardware
on a Roofline chart:

• Horizontal lines indicate compute capacity limitations preventing kernels from achieving better
performance without some form of optimization.

• Diagonal lines indicate memory bandwidth limitations preventing kernels from achieving better
performance without some form of optimization:

• L3 cache roof: Represents the maximal bandwidth of the L3 cache for your current graphics
hardware. Measured using an optimized sequence of load operations, iterating over an array that fits
entirely into L3 cache.

• SLM cache roof: Shared local memory (SLM). Represents the maximal bandwidth of the SLM for your
current graphics hardware. Measured using an optimized sequence of load and store operations that
work only with SLM.

• GTI roof: Graphics technology interface (GTI). Represents the maximum bandwidth between the GPU
and the rest of the system on a chip (SoC). This estimate is calculated via analytical formula based on
the maximum frequency of your current graphics hardware.

• DRAM roof: Dynamic random-access memory (DRAM). Represents the maximal bandwidth of the
DRAM memory available to your current graphics hardware. Measured using an optimized sequence of
load operations, iterating over an array that does not fit in GPU caches.

• HBM roof: High bandwidth memory (HBM). Represents the maximum bandwidth of HBM memory
available to your current graphics hardware. Measured using an optimized sequence of load operations
iterating over an array that does not fit in discrete GPU caches.

Identify Hotspots and Estimate Room for Optimization
According to Amdahl’s law, optimizing kernels that take the largest portion of the total program time leads to
greater speedups than optimizing kernels that take the smaller portion of the total time. Intel Advisor
enables you to identify kernels taking the largest portion of the total time as hotspots. To find the best
candidates for optimization, notice the dots on the Roofline chart. The dots on the chart correspond to
kernels running on GPU. Size and color of the dots depends on a dot, or point weight, which is the
percentage of the dot time to the program total time and is calculated as dot self-elapsed time / program
total elapsed time * 100. By default, the size and color of dots is the following:

• Small green dots represent kernels with relatively small execution time (0-1% of the total time).
• Medium-sized yellow dots represent kernels with medium-range execution time (1-20% of the total time).
• Large red dots represent kernels with the largest execution time (20-100% of the total time).

Intel® Advisor User Guide  1  

305

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html


NOTE To customize the dot execution time range, size and color, click the  button on the Roofline
chart to open the Loop Weight Representation menu.

The best candidates for optimization are the largest dots (red ones by default) located far below the topmost
rooflines because:

• Their size clearly shows that improving self elapsed time for these kernels has a significant impact on the
total time of the program.

• Their location shows that there is a significant headroom for optimization.

To identify optimization headroom for a specific kernel, double-click a dot on the chart to highlight the roof
that limits its performance. The roofs above the dot represent the restrictions preventing it from achieving a
higher performance. The dot cannot exceed the topmost rooflines, as they represent the maximum
capabilities of the hardware. The farther the dot is from the topmost roofs, the more room for improvement
there is.

Hover over the selected dot to view its projection on the limiting roof and the estimated speedup that can be
achieved by optimizing this kernel.

Explore Kernel Performance at Different Memory Levels
By default, Intel Advisor collects data for all memory levels. This enables you to examine each kernel at
different cache levels and arithmetic intensities and provides precise insights into which cache level causes
the performance bottlenecks.

Configure Memory-Level Roofline Chart

1. Expand the filter pane in the GPU Roofline chart toolbar.
2. In the Memory Level section, select the memory levels you want to see metrics for.

  1   Intel® Advisor User Guide

306



NOTE By default, GPU Roofline reports data for GTI memory level (for integrated graphics) and HBM/
DRAM memory level (for discrete graphics).

3. Click Apply.

Interpret Memory-Level GPU Roofline Data

Double-click a dot on the chart to review and compare the changes in traffic between the memory levels
displayed, identify a memory hierarchy bottleneck, and highlight the roof that limits your kernel performance
the most. You can use this information to determine optimization steps. Labeled dots and/or X marks are
displayed, representing memory levels with arithmetic intensity for the selected kernel at the following
memory levels:

• CARM: Memory traffic generated by all execution units (EUs). Includes traffic between EUs and
corresponding GPU cache or direct traffic to main memory. For each retired instruction with memory
arguments, the size of each memory operand in bytes is added to this metric.

• L3: Data transferred directly between execution units and L3 cache.
• SLM: Memory access to/from Shared Local Memory (SLM), a dedicated structure within the L3 cache.
• HBM: the maximum bandwidth of HBM memory available to your current graphics hardware. The HBM

roof is measured using an optimized sequence of load operations iterating over an array that does not fit
in discrete GPU caches.

• GTI: GPU memory read bandwidth, which is the accesses between the GPU, chip uncore (LLC), and main
memory on integrated GPUs. Use this to understand external memory traffic.

• DRAM: Maximum DRAM memory bandwidth available to your current GPU. The DRAM roof is measured
using an optimized sequence of load operations iterating over an array that does not fit in GPU caches.
This roof represents the maximum bandwidth between the GPU, chip uncore (LLC), and main memory on
discrete GPUs.

The vertical distance between memory dots and their respective roofline shows how much you are limited by
a given memory subsystem. If a dot is close to its roof line, it means that the kernel is limited by the
bandwidth of this memory level.

Intel® Advisor User Guide  1  

307



The horizontal distance between memory dots indicates how efficiently the kernel uses cache. For example, if
L3 and GTI dots are very close on the horizontal axis for a single kernel, the kernel uses L3 and GTI similarly.
This means that it does not use L3 and GTI efficiently. Improve re-usage of data in the code to improve
application performance.

Arithmetic intensity on the x axis determines the order in which dots are plotted, which can provide some
insight into your code's performance. For example, the CARM dot is typically far to the right of the L3 dot, as
read/write access by cache lines and CARM traffic is the sum of actual bytes used in operations. To identify
room for optimization, check L3 cache line utilization metric for a given kernel. If the L3 cache line is not
utilized well enough, check memory access patterns in your kernel to improve its elapsed time.

Ideally, the CARM and the L3 dots should be located close to each other, and the GTI dot should be far to the
right from them. In this case, the kernel has good memory access patterns and mostly utilizes the L3 cache.
If the kernel utilizes the L3 cache line well, it:

• Spends less time on transferring data between L3 and CARM memory levels
• Uses as much data as possible for actual calculations
• Enhances the elapsed time of the kernel and of the entire application

Determine If Your Kernel Is Compute or Memory Bound
To determine if your selected kernel is compute or memory bound, examine the Roofline chart for the
selected kernel with the following data in the Roofline Guidance section in the GPU Details tab:

• Guidance on possible optimization steps depending on the factor limiting performance. Click the bounding
factor to expand the hint.

• Amount of data transferred for each cache memory level.
• The exact roof that limits the kernel performance. The arrow points to what you should optimize the

kernel for and shows the potential speedup after the optimization in the callout.

If the arrow points to a diagonal line, the kernel is mostly memory bound. If the arrow points to a
horizontal line, the kernel is mostly compute bound. Intel® Advisor displays a compute roof limiting the
performance of your kernel based on the instruction mix used.

The chart is plotted for a dominant type of operations in a code (FLOAT or INT) and shows only roofs with
cache memory levels, data types, and instructions mix used in the kernel. If there is no FLOP or INTOP in the
kernel, the single-kernel Roofline chart is not shown.

For example, in the screenshot below, the kernel is memory bound. Its performance is limited by the L3
Bandwidth because the kernel uses this memory level to transfer the largest amount of data (6.88 GB)
compared to other memory levels. If you optimize the memory access patterns in the kernel, it gets up to
5.1x speedup.

  1   Intel® Advisor User Guide

308



Investigate Performance of Compute Tasks
Initialization of the same kernel with different global and local work size is called a compute task. For kernels
initialized with different global and local work size, you can review and compare the performance of its
compute tasks.

• In the GPU Roofline chart:

1.Click a dot on a Roofline chart and click the + button that appears next to the dot. The dot expands into
several dots representing the corresponding compute tasks.

2.Click a dot representing a compute task and view details about its global and local work size in the GPU
Details pane.

3.Hover over a dot representing a compute task to review and compare its performance metrics. Double-
click the dot to highlight a roofline limiting the performance of a given instance.

Intel® Advisor User Guide  1  

309



• In the GPU pane grid:

1.Expand a kernel in the Kernels column.
2.View the information about the work size of a compute task by expanding the Work Size column in the

grid. To view the number of compute tasks with a given global/local size, expand the Kernel Details
column in the grid and examine the Instances metric.

3.Compare performance metrics for different compute tasks using the grid and the GPU Details pane.

Selecting a dot on a chart automatically highlights the respective kernel in the grid and vice versa.

NOTE You can add the CPU Roofline panes to the main view using the  button on the top pane.
For details about CPU Roofline data, see CPU / Memory Roofline Insights Perspective

Next Steps
Explore detailed information about each kernel and get actionable recommendations for optimization of the
kernel code using the GPU Details tab of the GPU Roofline Insights report.

See Also
• Accelerator Metrics
• oneAPI GPU Optimization Guide
• Optimize Your GPU Application with the Intel® oneAPI Base Toolkit

Examine Kernel Details
After identifying hotspots, use the GPU Roofline
Insights perspective to analyze their performance
deeper. Select a dot on the chart and use GPU
Details and Recommendations tabs in the right-
side pane to examine code analytics for a specific
kernel in more details and view actionable
recommendations for code optimization.

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see 
GPU Architecture Terminology for Intel® Xe Graphics.

Get Recommendations
Check the Performance Issues column of the GPU pane to see if Intel® Advisor identifies any
recommendations for a kernel.

  1   Intel® Advisor User Guide

310

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-optimization-workflow.html
https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html


Select a kernel on a Roofline chart and switch to Recommendations tab to view actionable
recommendations helping you optimize your code for compute and memory bound applications running on
GPU. Expand a recommendation to access a full description and a code sample containing a possible solution
of the problem.

Review Compute and Memory Bandwidth Utilization
Review how well your kernel uses the compute and memory bandwidth of your hardware in the OP/S and
Bandwidth pane. It indicates the following metrics:

• The total number of floating-point and integer operations transferred by the kernel per second as a
percentage of the maximum compute capacity of your hardware. The red bar represents the dominant
operation data type used in the kernel.

• The amount of data transferred by the kernel at each cache memory level per second as a percentage of
the memory level bandwidth. Cache memory level bandwidth utilization (in per cent) is a ratio of effective
bandwidth and maximum bandwidth of a given memory level. This metric shows how well the kernel uses
the capability of your hardware and can help you identify bottlenecks for your kernel.

For example, in the screenshot below, the dominating data type is FLOP. The kernel utilizes 19% of L3
Bandwidth. Considering these data and compared to utilization metrics for other memory levels and compute
capacity, the Roofline chart displays the L3 Bandwidth as the main factor limiting the performance of the
kernel.

Intel® Advisor User Guide  1  

311



Review how your application uses memory levels using the Memory Metrics pane:

• Review how much time the kernel spends processing requests for each memory level in relation to the
total time, in perspective, reported in the Impacts histogram.

A big value indicates a memory level that bounds the selected kernel. Examine the difference between the
two largest bars to see how much throughput you can gain if you reduce the impact on your main
bottleneck. It also gives you a long-time plan to reduce your memory bound limitations as once you will
solve the problems coming from the widest bar, your next issue will come from the second biggest bar
and so on.

Ideally, you should see the L3 or SLM as the most impactful memory.
• Review an amount of data that passes through each memory level reported in the Shares histogram.

NOTE Data in the Memory Metrics pane is based on a dominant type of operations in your code
(FLOAT or INT).

Explore Operation Types Used During Application Execution
Examine instruction types that the kernel executes in the Instruction Mix pane. For example, in a
screenshot below, the kernel mostly executes compute instructions with integer operations, which means
that the kernel is mostly compute bound.

Intel Advisor automatically determines the data type used in operations and groups the instructions collected
during Characterization analysis by the following categories:

Category Instruction Types

Compute (FLOP and INTOP) • BASIC COMPUTE: add, addc, mul, rndu,
rndd, rnde, rndz, subb, avg, frc, lzd,
fbh, fbl, cbit

  1   Intel® Advisor User Guide

312



Category Instruction Types

• BIT: and, not, or, xor, asr, shr, shl,
bfrev, bfe, bfi1, bfi2, ror, rol

• FMA: mac, mach, mad, madm (weight 2)
• DIV: INT_DIV_BOTH, INT_DIV_QUOTIENT,

INT_DIV_REMAINDER, and FDIV types of
extended math function

• POW extended math function
• MATH: other function types performed by math

instruction
• VECTOR: add3 (weight 2), line (weight 2),

sad2 (weight 3), dp2 (weight 3), sada2 (weight
4), lrp (weight 4), pln (weight 4), dp3 (weight
5), dph (weight 6), dp4 (weight 7), dp4a
(weight 8)

Memory LOAD, STORE, SLM_LOAD, SLM_STORE types
depending on the argument: send, sendc,
sends, sendsc

Other • MOVE: mov, sel, movi, smov, csel
• CONTROL FLOW: if, else, endif, while,

break, cont, call, calla, ret, goto,
jmpi, brd, brc, join, halt

• SYNC: wait, sync
• OTHER: cmp, cmpn, nop, f32to16,

f16to32, dim

Atomic SEND

Get more insights about instructions used in your kernel using Instruction Mix Details pane:

• Examine instruction count for each category as well as its percentage in overall instruction mix to
determine the dominating category of instructions in the kernel.

• Examine instruction count for each type of compute, memory, atomics, and other instructions.
• For compute instructions, view the dominating data type for each type of instructions.

NOTE The data type dominating in the entire kernel is highlighted blue.

Intel® Advisor User Guide  1  

313



In the Performance Characteristics, review how effectively the kernel uses the GPU resources: activity of
all execution units, percentage of time when both FPUs are used, percentage of cycles with a thread
scheduled. Ideally, you should see a higher percentage of active execution units and other effectiveness
metrics to use more GPU resources.

See Also
• Accelerator Metrics
• Cookbook: Identify Code Regions to Offload to GPU and Visualize GPU Usage
• oneAPI GPU Optimization Guide
• Optimize Your GPU Application with the Intel® oneAPI Base Toolkit

Compare GPU Roofline Results
Use the Roofline Compare functionality to display Roofline chart data from other Intel® Advisor results or
non-archived snapshots for comparison purposes to track optimization progress.

Prerequisites

  1   Intel® Advisor User Guide

314

https://www.intel.com/content/www/us/en/develop/documentation/advisor-cookbook/top/identify-code-regions-to-offload-to-gpu.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-optimization-workflow.html


To compare the GPU Roofline results, make sure to get the following:

• A baseline GPU Roofline result or snapshot
• One or more GPU Roofline results or snapshots of the same application with an optimization applied

Important You can only compare Roofline results of the same type: CPU Roofline or GPU Roofline.

To compare the results:

1. Open a baseline GPU Roofline result/snapshot.
2. From the Compare drop-down toolbar, click + to load a comparison result/snapshot. You can load

multiple results/snapshots for comparison one by one.

When the comparison is uploaded:

• The filenames for uploaded results/snapshots are displayed in the Compared Results region.
• Similar kernels from all compared results are recognized automatically. They are connected with a dashed

arrow line. The performance improvement between the kernels is shown above the line, in per cent. The
improvement is calculated as the difference in FLOPS, INTOPS, or OPS and Total Time.

Intel® Advisor User Guide  1  

315



NOTE The arrows showing the relationship among kernels do not reappear if you upload a new
comparison file.

• Kernels from different compared results are shown as different icons on the chart. For example, for three ,
the baseline kernels can be shown as circles and comparison kernels can be triangles and diamonds.

• To highlight all dots from a specific compared result, open the Compare drop-down and hover over the
result name.

• Each time you change the Roofline configuration or filter the dots on the chart, the comparison is updated
automatically.

• You can remove a selected result from Compared Results by hovering over it and clicking the X icon.
The result is removed from the chart and appears in the Ready for comparison region. Click a name in
the Ready for comparison region to reload the result back to the chart.

• You can save the comparison itself to a file using the export feature.

NOTE To find the same kernels among the results, Intel Advisor compares several kernel features,
such as their type, nesting level, source code file name and line, and function name. When a certain
threshold of similar or equal features is reached, the two kernels are considered a match and
connected with a dashed line.
However, this method still has few limitations. Sometimes, there can be no match for the same kernel
if one is optimized or moved in the source code to four or more lines from the original place. Intel
Advisor tries to ensure some balance between matching source code changes and false positives.

Design and Analyze Flow Graphs
This section explains how to use Intel® Advisor – Flow Graph Analyzer (FGA), a graphical tool for
constructing, analyzing, and visualizing applications that use the Intel® oneAPI Threading Building Blocks flow
graph interfaces. Through a graphical interface, the Flow Graph Analyzer lets you:

• Start with a blank canvas and construct a flow graph application by interactively adding nodes and edges.
• Collect events during the execution of an existing application. These events allow you to explore the

topology and performance of the flow graphs used by that application.

Where to Find the Flow Graph Analyzer
The Flow Graph Analyzer package consist of a Flow Graph Analyzer tool and an associated collector to
capture traces from Intel® oneAPI Threading Building Blocks flow graph and OpenMP* applications.

This package is part of Intel® Advisor and is installed in the following directory when the Intel® Advisor is
installed: <advisor-install-dir>/fga
Under this directory, you can find the Flow Graph Analyzer tool, the collector, and supporting documentation.

• Flow Graph Analyzer: <advisor-install-dir>/fga/fga
• Flow Graph Collector: <advisor-install-dir>/fga/fgt
• Documentation: <advisor-install-dir>/fga/doc
• Samples: <advisor-install-dir>/fga/samples
• License: <advisor-install-dir>/fga/EULA.pdf

Launching the Flow Graph Analyzer
The Flow Graph Analyzer executable and all its supporting files are located in the directory <advisor-
install-dir>/fga/fga. To launch it, go to this directory and do the following:

Operating System To run from an executable To run from command line

Windows* OS Double-click fga.exe.

  1   Intel® Advisor User Guide

316



Operating System To run from an executable To run from command line

Linux* platforms 1. Add . to your
LD_LIBRARY_PATH
environment variable.

2. Double-click fga in the
<advisor-install-
dir>/fga/fga.

1. Open a command prompt
application from <advisor-
install-dir>/fga/fga.

2. Run the run_fga.sh from
the command line, which
automatically sets the
LD_LIBRARY_PATH and then
starts the executable.

macOS* 1. Add . to your
DYLD_LIBRARY_PATH
environment variable.

2. Add ./Frameworks to the
DYLD_FRAMEWORK_PATH
environment variable.

3. Run the fga executable in
the <advisor-install-
dir>/fga/fga.

1. Open a command prompt
application from <advisor-
install-dir>/fga/fga.

2. Run run_fga.sh from the
command line.

Warning
Moving the executable to a different location may cause the application to fail.

On Windows* OS without the Microsoft Visual Studio* runtime components, you may encounter the following
error when launching the Flow Graph Analyzer application:

Solution: Download the Microsoft Visual Studio* runtime components and install them before running the
application.

Flow Graph Collector
The Flow Graph Collector allows you to capture a topology and execution trace information of a running flow
graph application. You can load this captured data to the Flow Graph Analyzer for closer inspection of the
graph described by the application and the performance data for the graph. See the Scalability Analysis
section for the steps to build your application with enabled traces and to capture the trace information. See
the Collecting Traces from Applications for instructions on how to use the Flow Graph Analyzer for analyzing
the performance of flow graph applications after a trace has been collected.

Flow Graph Analyzer GUI Overview
This section describes the Flow Graph Analyzer tool and the various features it offers to speed up the
development of new flow graph applications. There are two main tools represented by corresponding
workflows:

Intel® Advisor User Guide  1  

317



• A designer workflow enhances productivity during development.
• An analyzer workflow supports performance-tuning tasks.

Basic GUI Layout
The Flow Graph Analyzer GUI allows you to create new graphs visually and load previously created or
application-generated graphs.

The following figure describes the basic GUI layout and the key elements necessary for constructing graphs
visually. These graphs can be saved for later use and, as described in the Generating C++ Stubs section,
used to generate C++ framework code.

1 Toolbar supporting basic file and editing
operations, visualization and analytics that
operate on the graph or performance traces.

2 Canvas for visualizing and drawing flow graphs.

3 Output generated by custom analytics. You can
interact with the output.

4 Palette of supported Intel® oneAPI Threading
Building Blocks node types organized in groups.

GUI Layout with Trace Data
When analyzing an existing application’s performance, the graph topology and performance data are
captured from a running application and saved for a post-mortem analysis. If performance traces are
available when the graph is loaded, they are displayed in a timeline window below the canvas area. You can
interact with the trace data in many ways, from cursory inspection of the trace data to detailed inspection of
specific tasks and the nodes they map to. The following figure shows the timeline charts created when trace
data is available.

  1   Intel® Advisor User Guide

318



1 Selection on the timeline highlights the nodes
executing at that point in time.

2 The concurrency histogram shows the
parallelism achieved by the graph over time.
You can interact with this chart by zooming in to
a region of time, for example, during low
concurrency.

The concurrency histogram remains at the initial
zoom level, and the zoomed-in region is
displayed below it.

3 The per-thread task view shows the tasks
executed by each thread, along with the task
durations.

4 Treemap view provides the general health of the
graph’s performance, along with the ability to
dive to the node level.

Menus
The menus in the menu bar have fixed components such as File, Edit and Help, and dynamic components
such as Layouts, Analytics, and Trace Data Collection. The fixed components are always available, and
the dynamic components may change depending on the plugins registered with the tool.

• File menu: Allows you to create a new graph, load an existing graph, save the current graph on the
canvas to a GraphML* file, or export it as C++ source files.

Intel® Advisor User Guide  1  

319



The menu also keeps a list of recently used files for quick access. Print support is currently unavailable.
The Generate Image option enables printing the graph displayed in the canvas as a PNG file.

• Edit menu: Allows you to edit the graph displayed on the canvas and supports common edit actions, such
as Cut, Copy, Paste, Delete, Group, Ungroup, and Preferences. These actions support the common
keyboard shortcuts.

• Help menu: Allows you to switch to the What’s This? mode, which provides help information for various
GUI elements. In this mode, you can click any GUI element that has supporting help information to view
more information about the element and what it helps you accomplish.

You can also get into the What’s This? mode using the keyboard shortcut Shift+F1.
• Layout menu: Allows you to visualize a graph on the canvas in different ways. Currently supported layout

types are Hierarchical, Radial, Force-Directed, New Hierarchical, and Circular. For most graphs,
the Hierarchical Layout is enough and is set as the default layout. If the Hierarchical Layout does not
work properly for a graph model, you can use the New Hierarchical Layout.

NOTE The New Hierarchical Layout is 3x slower than the default Hierarchical Layout.

If you cannot get a visually pleasing layout using the hierarchical layouts, use the Radial, Circular, or
Force-Directed layout. The Circular Layout and Force-Directed Layout use the Boost* Graph library.
The cost of running the Force-Directed Layout is high compared to other layouts, but it provides better
graph layout visuals.

  1   Intel® Advisor User Guide

320



• Analytics menu: Allows you to choose an analytical algorithm from available plugins. This menu changes
as new plugins are added.

These analytical algorithms are available for Intel® oneAPI Threading Building Blocks flow graphs. More
algorithms may be added in the future.

• Compute Critical Path computes one or more critical paths for a graph and lists them in the Analytics
Report tab. You can interact with these critical paths to see which nodes are part of them.

• Graph Rule-check performs basic rule checks on a graph and highlights potential performance and
correctness problems.

• Compute Modeling Projection projects the speedup of a graph with varying numbers of threads.
The speedup with the corresponding number of threads is shown in the Analytics Reports window,
while a chart showing the ideal versus actual speedup is shown in the chart area.

Toolbars
The menu items are shown in the toolbar area as shortcuts to frequently used operations. Hover the mouse
over an icon on a toolbar to see a tooltip with description.

• File toolbar: Provides access to the functionality from the File menu.

• Edit toolbar: Provides access to the editing operations from the Edit menu.

• Window toolbar: Provides the show/hide toggle capability for configurable GUI elements. From left to
right, these icons represent the Toolbox, Reports, and Charts tabs.

• Hide the Toolbox tab, which contains the Designer Mode, Analysis Mode, and Hierarchical View
tabs to increase available screen space for large graphs.

• Hide the Reports tab, which shows information such as node properties or output of analytics
algorithms, to get more screen space for visualizing large graphs.

• By default, the Charts tab is hidden if the graph does not have associated execution trace data. When
the trace data is available, the Charts tab is displayed.

• Analytics toolbar: Provides a subset of plugins from the Analytics menu. A plugin can be hidden in the
toolbar, but it is always registered in the Analytics menu.

Intel® Advisor User Guide  1  

321



The analytics supported for Intel® oneAPI Threading Building Blocks (oneTBB) flow graphs are, from left to
right in the toolbar, Compute Critical Path, Graph Rule-Check, and Compute Modeling Projection.
Use these algorithms to design new and tune existing graphs.

• Layout toolbar: Provides a subset of the layouts from the Layout menu.

• Zoom toolbar: Allows you to zoom in or out the canvas area that displays the graph. The reset-zoom
button resets the zoom factor, so the entire graph is visible in the canvas area.

NOTE You can also zoom in or out using the mouse-wheel when the mouse is in the canvas area.

• Trace Data Collector toolbar: Opens a dialog box to configure a data collection run on a oneTBB flow
graph application. This dialog box also allows you to configure the environment before launching the
application.

• What’s This? toolbar: Switches to the What's This? mode.

NOTE You can also switch to this mode using the Shift+F1 keyboard shortcut.

Tabs
• Properties tab: Displays information about a selected graph in the Graph tab, a node in the Node tab,

and an edge in the Edge tab.

  1   Intel® Advisor User Guide

322



The Node tab displays all properties supported for a given node type and allows you to interactively edit
them. Some properties might be tied to the node type and are marked as read-only. See the Designer
Workflow section for instructions on editing the properties of a node.

• Analytics Report tab: Displays the output generated by any invoked analytics algorithms. Because
analytics algorithms generate different outputs, this view changes when depending on an algorithm you
run on the graph. The screenshot below shows a sample output for Compute Critical Path. The columns
in this tab are sortable and enable efficient data manipulation during the performance tuning workflow.

• Designer Mode tab: Shows the available node types you can use to construct a graph. This tab might
change when new nodes are added to a Intel® oneAPI Threading Building Blocks (oneTBB) flow graph
interface. For more information about each node type, use the What’s This? functionality on the node-
type buttons.

After you select a node type to insert into the graph, the mouse cursor takes the shape of the selected
node type. You may add as many nodes of the same type as you want to by placing the cursor at a
location on the canvas and clicking a mouse. To switch to a different node type, select the node type of
interest in the tab.

To exit the Insert Node mode, press the ESC key if the mouse is placed in the canvas area, or select the
Insert Edge or Move Node modes from the Toolbar menu.

Intel® Advisor User Guide  1  

323



• Debug Output tab: Displays messages output by the tool. Most of the messages are informational, but
warning or error messages may appear. Warning messages are green, and Error messages are yellow.

• Source View tab: Displays the source mapping of a selected node if symbol resolution information has
been captured during the collection.

NOTE Currently, this feature is only supported on Linux* OS. To enable data collection with symbol
resolution information, please refer to Building on a Linux* Operating System and Collecting Trace
Files with an fgtrun.sh Script.

  1   Intel® Advisor User Guide

324



Main Canvas
The main canvas shows created or loaded graphs.

The following controls are available in this area:

• Zoom in or zoom out of this area using the mouse wheel or the zoom buttons in the toolbar.
• Open a context menu with node-specific options by right-clicking a node.
• Select and move a node by dragging it when in the Move Node mode.
• Insert new edges between two nodes when in the Insert Edge mode.

Charts
This area displays the task execution trace data available for a graph. You can zoom in or zoom out of all
charts in this area to inspect them at various resolutions. Use the mouse wheel or the buttons in the Zoom
toolbar above the charts to zoom in or zoom out.

The execution traces are displayed in two different forms:

• Node Concurrency display: This form includes two charts.

• The top chart shows the concurrency for the entire length of the application run.
• The bottom chart shows the details of the zoomed region in the top chart.

Both charts plot the node concurrency over time. The maximum node concurrency is limited to the
maximum number of threads in the Intel® oneAPI Threading Building Blocks (oneTBB) thread pool.

Intel® Advisor User Guide  1  

325



• Per-Thread Task display: This chart shows tasks executed by each thread and their duration. To see
tasks associated with a particular node, enable the Show/Hide Selected tasks button.

You can zoom in or out the data in both views using the specific buttons in the chart toolbar or a mouse
wheel. Use the drop-down box in the toolbar to switch between a Thread View and a Node View.

• In the Thread View, the vertical axis is a set of threads that participated in executing the flow graph,
and the horizontal axis is time. Tasks with short durations are displayed with a lighter color than those
with a longer duration. The lighter color highlights tasks that are small relative to the cost of
scheduling the task.

• In the Node View, a set of thread timelines is created for each node in the graph. In each set, the
vertical axis is a set of threads that participated in executing the flow graph, and the horizontal axis is
time.

NOTE
In the Node View, a node’s set of timelines only displays tasks related to that node, while in the
Thread View, a single set of timelines shows the tasks related to all nodes.

  1   Intel® Advisor User Guide

326



In some cases, the trace data can contain additional information about the logical core on which a task
executes and the data ID it is processing with the help of user-APIs supported by oneTBB and the Flow
Graph Analyzer. When this information is available, you can visualize the Thread View data and color it
by core information or by the data being processed.

Flow Graph Analyzer Workflows
To design flow graph applications using the Intel® oneAPI Threading Building Blocks (oneTBB) library, you
need to understand the various node types supported, how to map them to end-user concepts or
computational entities, and link them all together to form the flow graph. However, it is difficult to visualize
and map such computational blocks when the count of such blocks goes beyond a handful.

To help you solve this visualization problem, the Flow Graph Analyzer tool supports two workflows:

• Designer workflow – Enables expressing the relationships between nodes using oneTBB flow graph node
types.

• Analyzer workflow – Enables capturing and viewing graph topologies and related performance data
captured from executed applications.

Designer Workflow
The Flow Graph Analyzer designer workflow allows you to describe your graphs visually, set meaningful
properties, and generate the flow graph framework code in C++. Before generating the framework code, you
can also perform rule-checks to make sure the described graph does not have any potential issues that could
lead to incorrect execution or a poorly performing graph. The generated code can be compiled and run
without modification in many cases. Sometimes, the generated code may have to be modified to provide
meaningful inputs or outputs.

Specifically, the tool supports the following capabilities necessary for visual design of graphs:

• Choose from a variety of available node types to build a graph.
• Express the explicit relationships with edges.
• Edit properties of these nodes.
• Perform common editing operations.
• Save the described graph and reload it later.

In addition to these basic capabilities, the tool provides the means to:

• Validate each node to ensure that flow graph rules are not broken.
• Perform basic rule checks on a graph to identify potential performance problems.

Intel® Advisor User Guide  1  

327



• Export the graph as a C++ framework code that uses the Intel® oneAPI Threading Building Blocks
(oneTBB) flow graph API.

• Export the graph as a PNG image.

This section walks through the design workflow and the capabilities that support it. The following figure
shows the simple flow of the design process.

Adding Nodes, Edges, and Ports
When the tool starts up, you are presented with a blank canvas to which you can add nodes from the list of
nodes under Designer Mode pane on the left side of the tool.

  1   Intel® Advisor User Guide

328



To add new nodes:

1. Expand a required node group in the Designer Mode pane.
2. Drag the required nodes to the canvas.
3. Add the dependencies, or edges, between the nodes by clicking an output port of a node and dragging

to an input port of another node.

To add new ports to a node or delete ports:

1. Right-click a node to open a context menu.
2. Choose Add an Input/Output Port or Delete an Input/Output Port.

You also can add or remove ports from the Port Information tab in the Reports area:

New ports are added to the end of a port list and deleted from the end of the list.

Modifying Node Properties

After you add nodes to a graph and connect them with edges, inspect the nodes to ensure the data flowing
through the graph has correct types. Some data types are dictated by the Intel® oneAPI Threading Building
Blocks (oneTBB) flow graph node types themselves or by the logic the graph represents. Because the data
flows through nodes and edges are connected to ports, the data types are managed at the port level. The
default node data types are int for most ports and continue_msg for nodes that expect this type of data.

Intel® Advisor User Guide  1  

329



To edit node properties:

1. Select a node.
2. In the Port Information pane of the Node tab, change the Data Type of a port by selecting its type

and editing the field.

For certain nodes, such as a join_node, only the input port data types can be modified, and the output
data type is automatically generated when you update the input port data types.

3. Select a node on the canvas to see its properties in the Node tab. This property pane displays all
properties for a given node type. The properties that are not set for the selected node type are shown
in a darker color. In the figure below, you can see that the Description property is not set for the
join_node.

Some of the properties for the nodes are set automatically and tied to the node type. Such properties
are not available for editing and the Node Properties tab enforces these rules. For example, you
cannot change the Node Type, but you can edit the Node Weight and the Node Name.

  1   Intel® Advisor User Guide

330



• The Node Weight is a placeholder that indicates the computational complexity of a node. The larger
the number, the more computationally intensive the node is with respect to the other nodes in the
graph. This number is also used by the C++ code generator to create a busy loop in the empty body
that is created for each node. See the Generating C++ Stubs section for more details.

• The Node Name is a unique name automatically assigned to each new node. You can change it to
something meaningful. This name is a variable name of the object generated for the node by the C+
+ code generator.

Viewing Edge Properties

Select an edge on the canvas to see the edge properties. This opens the edge properties in the Edge tab, as
shown below.

Validating a Graph

After you add nodes to a graph, connect them with edges, and set their properties, you can validate the
graph to identify data type mismatches between source and target nodes and highlight other possible issues
that may manifest within the described graph topology.

To start a sequence of rule checks on the graph to test various aspects of the graph construction, click the

Graph Rule-Check Analytics icon ( ) on the toolbar. The results are reported in the Analytics Report
tab in the Reports tab. The following figure shows sample output for a graph.

Click a reported diagnostic to highlight the node that needs to be inspected again. In the case of data
mismatches, both the source and target nodes for a given edge are highlighted. Review the Node tab in the
Properties pane to address any changes that are needed.

Saving a Graph to a File

When a graph is in a consistent state and all the major issues are addressed, save it to a file:

• Save the graph to a GraphML* file by clicking the Save icon on the toolbar. GraphML format is an open-
standard file format for representing graphs.

You can return to the graph later time to modify its topology and data types.

See the Generating C++ Stubs section for details on how to save the graph to C++ code form.

Intel® Advisor User Guide  1  

331



• Save the graph to a PNG image by clicking the Generate Image icon on the toolbar. The image is saved
to the same directory where the corresponding GraphML file is saved.

When you load a .graphml file for the first time, the tool computes many pieces of information such as
performance metrics and graph layout positions. This information computation can be expensive, and it is
recommended that you save the graph after this first load. This information is saved in a .metaxml file and
provides caching benefits that enable the tool to exhibit better performance on subsequent loads of the
same .graphml file.

NOTE You may be asked if you wish to save the .graphml files after load even if no interaction or
modification took place. This is due to the tool running the layout algorithm on the graph to display it
in an intuitive manner.

Generating C++ Stubs
To generate stubs for a working C++ application:

1. Create a graph in the canvas as described in the Adding Nodes, Edges, and Ports section.
2. Save the graph as described in the Saving a Graph to a File section.
3. Click the Generate C++ icon on the toolbar to create C++ files.

Generate C++ Stubs for a Hello World Sample
For example, below is a three-node graph you can use to create a Hello World sample. This graph consists of
a source_node followed by two continue_node objects. The first node is named s0 and the next two nodes
are named c0 and c1. All nodes have continue_msg objects as their input and/or output types. The body of
each node is defined by its C++ Function Object field, as shown below.

To generate C++ stubs from this Hello World sample graph:

1. Create the sample graph by adding a source_node followed by two continue_node objects and
connect them with edges. Modify the node names in the Node Properties: name the source_node as
s0 and the next two continue_node objects as c0 and c1.

2. Set the following properties to the nodes:

  1   Intel® Advisor User Guide

332



Node
Name

N
o
d
e
T
y
p
e

Input Port Type Output Port Type C++ Function
Object

s0 s
o
u
r
c
e
_
n
o
d
e

None continue_msg
[](continue_msg 
&c) -> bool {
static bool done 
= false;
if (!done) {
done = true;
return true;
} else {
return false;
}
}
            

c0 c
o
n
t
i
n
u
e
_
n
o
d
e

continue_msg continue_msg
[](const 
continue_msg &m) 
-> continue_msg {
printf("Hello");
return m;
}
            

c1 c
o
n
t
i
n
u
e
_
n
o
d
e

continue_msg continue_msg
[](const 
continue_msg &m) 
-> continue_msg {
printf(" World!
\n");
return m;
}
            

3. Click the Save icon on the toolbar to save this graph as HelloWorld.graphml.
4. Click the Generate C++ icon on the toolbar to generate the C++ stubs.

The generation of the stub files should be reported as successful:

Intel® Advisor User Guide  1  

333



The result of C++ code generation is one file located in the same directory where the GraphML* file is last
saved. The file name generated is HelloWorld_stubs.cpp. It should contain the following code:

//
// Automatically generated by Flow Graph Analyzer: 
// C++ Code Generator Plugin version XYZ
//

#define TBB_PREVIEW_FLOW_GRAPH_NODES 1
#include "tbb/flow_graph.h"
#include "tbb/tick_count.h"
#include "tbb/atomic.h"
#include <cstdlib>

using namespace std;
using namespace tbb;
using namespace tbb::flow;

size_t key_from_message(char *k) {
    return reinterpret_cast<size_t>(k);
}
      
template<typename T>
size_t key_from_message(const T &k) {
    return static_cast<size_t>(k);
}
          
static void spin_for( double weight = 0.0 ) {
    if ( weight > 0.0 ) {
      tick_count t1, t0 = tick_count::now();
      const double weight_multiple = 1e-6;
      const double end_time = weight_multiple * weight;
      do {
        t1 = tick_count::now();
      } while ( (t1-t0).seconds() < end_time );
    }
}
          
int build_and_run_HelloWorld_g0() {
    graph HelloWorld_g0;

    source_node< continue_msg > s0( HelloWorld_g0,  
    [](continue_msg &c) -> bool {
      static bool done = false;
      if (!done) {
        done = true;
        return true;
      } else {
        return false;

  1   Intel® Advisor User Guide

334



      }
    }, false);
          
    continue_node< continue_msg > c0( HelloWorld_g0, 0,
    [](const continue_msg &m) -> continue_msg {
      printf("Hello");
      return m;
    });
          
    continue_node< continue_msg > c1( HelloWorld_g0, 0,
    [](const continue_msg &m) -> continue_msg {
      printf(" World!\n");
      return m;
    });
          
    #if TBB_PREVIEW_FLOW_GRAPH_TRACE
    HelloWorld_g0.set_name("HelloWorld_g0");
    s0.set_name("s0");
    c0.set_name("c0");
    c1.set_name("c1");
    #endif
          
    make_edge( s0, c0 );
    make_edge( c0, c1 );
          
    s0.activate();    
    HelloWorld_g0.wait_for_all();
    return 0;
}
          
int main(int argc, char *argv[]) {
 return build_and_run_HelloWorld_g0();
}

In the code above, note the s0, c0, and c1 nodes reflect the properties described in the previous table.

If you have the paths to the Intel® oneAPI Threading Building Blocks (oneTBB) library set up in your
environment, you can build this application from a command prompt:

• On a Windows* system, run the following command from a Microsoft Visual Studio* command prompt:

cl /EHsc HelloWorld_stubs.cpp tbb.lib
• On a Linux* system, run the following command:

g++ -std=c++11 HelloWorld_stubs.cpp -ltbb
In addition, Flow Graph Analyzer allows you to control execution policies for nodes, such as setting
lightweight for computational nodes and asynchronous nodes. If you set lightweight policies for any node,
the current code generator generates stubs for oneTBB.

See more samples demonstrating this feature in the samples/code_generation directory.

Preferences
Use the Preferences dialog box to set your preferred global values for certain properties.

Go to the Edit > Preferences or click  on the toolbar. You should see the Preferences window:

Intel® Advisor User Guide  1  

335



To set a preference, click a property value and change it. The Flow Graph Analyzer applies your preferences
to the entire session and restores the preferences after shutdown and restart.

To get more information about a preference property, hover your mouse over the property to enable a tooltip
that contains more information on the property:

Some of the configurable preferences are:

Property Description

Node Shape This is a global preference in the Style group of the
GUI tab. Possible values are box, circle, basic,
uml, and custom. The default is the custom node
shape.

GUI Theme This is a global preference in the Theme group of
the GUI tab. Possible themes are dark and light.
The default is dark.

NOTE
The Flow Graph Analyzer applies a theme change only
after restart.

  1   Intel® Advisor User Guide

336



Property Description

Disable inter-graph edges This is a global preference in the GraphML group
of the File tab. The Flow Graph Analyzer 2019
Update 4 or higher supports viewing GraphML* files
with inter-graph edges. This is disabled by default
(set to true).

NOTE
Even though cross-graph edges are strongly
discouraged in Intel® oneAPI Threading Building Blocks
(oneTBB) documentation, some use-cases may require
them.

Fast Hierarchical (preferences group) This is a global preferences group in the File tab.
The new fast hierarchical layout algorithm has been
introduced in Flow Graph Analyzer 2019 Update 5.
It allows you to set the following preferences:

• Render graphs with semi-accurate edge
placement.

• Render graphs with different node placement
with respective to its children such as Median,
Average, or Minimum distance.

• Choose an algorithm type. There are three
different algorithms for this layout that can be
applied, and each has its own performance
characteristics:

• Simple algorithm type sacrifices accuracy for
speed.

• Hash-based type honors node placement
and hash-based depth-first search (DFS)
helps with better visual quality.

Topological Sort Algorithm This is a global preference in the General group of
the Layout tab. Choose between two different DFS
algorithms for a topological sort of a graph:

Intel® Advisor User Guide  1  

337



Property Description

• Custom sort algorithm is optimized for
topologies that are frequently encountered in
oneTBB and OpenMP*.

• Boost library implementation of DFS.

Scalability Analysis
When designing a parallel application, you need to know if the application performance continues to increase
when you add more threads or tapers off. However, in a complex application, it is often not obvious what the
overall parallelism of the application is.

Use the scalability analysis plugin to:

• Estimate the application parallelism provided by the topology of the graph.
• Estimate the inherent application parallelism provided within nodes that have unlimited concurrency.
• Identify contributing factors to overall parallelism.

The scalability analysis plugin allows you to run a graph with a varying number of threads and provides
speedup information of the graph with respect to running the graph serially. You can specify any
configuration of the graph to help design and analyze the graph.

Activating the Graph

To run the analysis, the graph must contain at least one source_node for activation. Thesource_node pushes
the data items through the graph.

The plugin internally ensures that valid data types flow through the graph, so even if a rule check on the data
types fails, the scalability analysis still runs. Therefore, selecting and connecting nodes on the canvas should
be enough; there is no further need to edit the input and output data types to ensure they match.

NOTE
You may need to ensure input or output types for other plugins, like the code generator, to ensure
accurate code generation.

Scalability Analysis Prerequisites

Before running the scalability analysis, set the following:

• A concurrency specification
• A data count value
• Node weights

Setting Concurrency Specification

The concurrency specification is a list of the number of threads on which the graph is run. To set the
concurrency:

1. Open the Preferences window.

  1   Intel® Advisor User Guide

338



2. Go to the Scalability > TBB category.
3. Set the list in the Concurrency Specification field in the 1,a-b:n format, where:

• 1 is the serial run. Because the speedup is estimated with respect to a serial run of a graph, by
default, all graphs are first run serially before running on multiple threads. The addition of 1 is
merely symbolic and informational, as its omission has no effect on the list.

• a is the starting number of multiple threads.
• b is the ending number of multiple threads.
• n is the step size.

The default end value is the number of cores on the system and the default step size is a quarter of this
value. The end value is always included in the list, even if it is not a direct multiple of the step size.

As an example, on a 32-core system, the default is 1,8-32:8. This results in the list 1,8,16,24,32, as
shown below.

Other supported formats are a,b,c or only a if you want to see the speedup for only one set of threads.

You can also combine formats. The following shows some valid concurrency specifications:

• Range without a step size: 16-64 yields 1,16,32,48,64
• Range with a step size: 16-64:8 yields 1,16,24,32,40,48,56,64
• Single value: 16 yields 1,16
• List of values: 16,32,64 yields 1,16,32,64
• Mix of range and list: 16-64,40,48,56 yields 1,16,32,40,48,56,64
Setting Data Count

Data Count is the number of data items generated and pushed through a graph.

For graphs where potential parallelism is apparent from topology, pushing a single item through the graph is
enough to explore the parallelism of the graph.

Intel® Advisor User Guide  1  

339



However, for cases where the parallelism is not readily apparent, as with a node with an unlimited
concurrency, pushing a single item through the node is not enough to explore parallelism. Therefore, to
ensure the graph is saturated, you need to set data count:

1. Open the Preferences windows.
2. Go to the TBB category, Scalability tab.
3. Change the default number of data items to the number of cores available on the system in the Data

Count field, based on the topology of the graph and the type of nodes in the graph.

Setting Node Weight

The weight determines the simulated amount of time the node spins or does active work per data item
passed to the node. The default unit for the weight is microseconds. For example, per the default unit of
microseconds, a weight value of 1000 makes a node spin for half a second.

NOTE

• If the specified weight is high relatively to the unit, the computation might run for a longer time.
• If the graph has an associated trace, the unit of the weight is overwritten by the unit specified in

the trace.

To edit a node weight:

1. Select a node in the canvas.
2. Click the Node Weight field value in the Node tab of the Properties pane and enter your value.

The weight value matters only for nodes with a body, such as source_node, continue_node, function_node,
multifunction_node, async_node, and tag_matching join_node. Other nodes that simply assist in the
topology of the graph do not use the weight value. For example, specifying a weight value for a
broadcast_node has no effect on the node.

Consider the following:

• To prevent long runtimes, the scalability analysis scales all runs with total serial times beyond a certain
threshold. The current default threshold is 5 seconds. To modify this value:

1.Go to the Edit > Preferences.
2.Open the TBB category, Scalability tab.
3.Modify a value in the Serial Run Time(s) field.

The total serial runtime also considers the number of data items passed through the graph. For example,
a graph with a serial runtime of 10 seconds and 4 data items has a total serial runtime of 40 seconds.

• To ensure node weights are not scaled into regions that make the overhead dominant, the analysis uses
original weights and does not implement scaling if no node has a weight of 100 microseconds after
scaling.

  1   Intel® Advisor User Guide

340



• If a graph contains nodes with performance that could benefit from the use of the Intel® oneAPI Threading
Building Blocks lightweight policy, the analysis activates the lightweight policy for the recommended nodes
and lists the possible improvement in the results.

Running the Scalability Analysis

After you set the concurrency specification, data count, and node weights, you can run the scalability

analysis. To run the analysis, click the Scalability icon on the toolbar: 

Exploring the Parallelism in a Concurrent Node

This example explores the parallelism inherent in a node with unlimited concurrency. The node used is a
function_node. A source_node is connected to the function_node, as shown below, and eight items are
pushed through to the function_node from the source_node. The function_node has a weight of 1s (weight =
1e6). To ensure there are only timing results from the function_node, the source_node has a comparatively
negligible weight of 1e-6s (weight=1). The concurrency specification used is 1, 2, 4, 8.

The results are the following:

• For a serial execution with only 1 thread, the total time is 8s as the same thread evaluates the tasks one
after the other.

• With 2 threads and 2 overlapping tasks, the total time is 4s.
• With 4 threads and 8 tasks, the total time is 2s.
• With 8 threads and 8 tasks, all tasks overlap, giving a total time of 1s.

Showing Non-Parallel Nature of a Serial Node

You can use the Scalability analysis plugin to identify nodes that have no parallelism or to tell when an
unlimited node is running serially.

For this example, use a source_node and a function_node connected to it. Set the following:

1. Select the function_node.
2. in the Node Concurrency field, enter 1 or serial. This makes the node run serially.
3. In the Node Weight field, enter 1.
4. Select the source_node.
5. In the Node Weight field, enter 1e-6.

Intel® Advisor User Guide  1  

341



6. Go to the Edit > Properties > TBB.
7. Set the concurrency specification to 1,2,4,8 and click OK.
8. Run the scalability analysis.

You will get the following results:

As expected, time is 8s, regardless of the number of threads used.

You can get the same results if you set the weight of the source_node to 1s and the weight to the
function_node to a relatively negligible value. This is because a source_node executes its body serially.

Explore Parallelism Provided by the Topology of a Graph

This example explores the parallelism provided by the topology of a graph. To make the results as
predictable as possible, use a graph that is explicitly parallel, as shown below:

  1   Intel® Advisor User Guide

342



Because the source_node is serial, there is no parallelism provided from within the node. This ensures all
parallelism observed is provided by the topology of the graph. Eight source_nodes are connected to a
join_node and then to a queue_node. In this graph, only the source_nodes do useful work. Because the
parallelism is solely from the topology of the graph, one item per source_node is enough to through the
graph. Each source_node has a weight of 1s(1e6). The results of scalability analysis of the graph are shown
below.

Intel® Advisor User Guide  1  

343



The speedup is directly proportional to the number of threads.

Understanding Analysis Color Codes
The results from the scalability analysis runs are color-coded:

• Green dots are results with the number of threads either equal to or less than the number of cores on the
system.

• Blue dots are results with the number of threads greater than the number of cores.

For example, the following image shows the result for a concurrency specification of 1,4,8,32,48,64 on a
32-core system.

Results for runs with less than 32 threads are coded in green, while those with more than 32 threads are
coded in blue.

Collecting Traces from Applications
This section explains how to collect traces from an application that uses the Intel® oneAPI Threading Building
Blocks (oneTBB) flow graph interfaces.

Prerequisites
You need the following to collect traces from an application:

• An application that uses the oneTBB library flow graph interface
• The Flow Graph Collector library

Check the links in the Additional Resources section if you are missing any of these prerequisites.

Simple Sample Application
This section uses the sample code below as a running example. Assume this code is contained in a file
example.cpp. You can also use your own application or sample instead of this simple example.

#include "tbb/flow_graph.h"
#include <iostream>
using namespace std;
using namespace tbb::flow;
int main() {

  1   Intel® Advisor User Guide

344



  graph g;
  continue_node< continue_msg> hello( g, 
    []( const continue_msg &) {
      cout << "Hello";
    }
  );
  continue_node< continue_msg> world( g, 
    []( const continue_msg &) {
      cout << " World\n";
    }
  );
  make_edge(hello, world);
  hello.try_put(continue_msg());
  g.wait_for_all();
  return 0;
}

Building an Application for Trace Collection

To build an application enabled for trace collection:

1. Define the TBB_USE_THREADING_TOOLS macro and link against the tbb library. This macro activates
the required instrumentations in the flow_graph.h header. The Intel® oneAPI Threading Building
Blocks (oneTBB) library supports flow graph and algorithm profiling. All features other than set_name
extensions are available as non-preview features.

2. Compile using oneTBB.

Refer to the OS-specific topics for instructions on how to build an application depending on your operating
system.
Building an Application on Windows* OS

Building from a Microsoft Visual Studio* Command Prompt

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

After you open a Microsoft Visual Studio* command prompt and set up the proper paths for using the Intel®
oneAPI Threading Building Blocks (oneTBB) library, use the following command line to build a Release
executable for a running example:

cl /EHsc /DTBB_USE_THREADING_TOOLS example.cpp tbb.lib
This command defines the required macro and link the application against the appropriate tbb library, based
on the oneTBB version you use.

Building from a Microsoft Visual Studio* IDE
To build a Release configuration of your application within a Microsoft Visual Studio* IDE, you must change
your project to define the TBB_PREVIEW_FLOW_GRAPH_TRACE/TBB_USE_THREADING_TOOLS macro and link
against the tbb_preview.lib/tbb.lib, as shown below for the Microsoft Visual Studio* 2015 IDE based on
the oneTBB version you use.

1. Open the Project Properties dialog box, and select Configuration Properties > C/C++ >
Command Line. In the Additional Options textbox, enter /DTBB_USE_THREADING_TOOLS.

2. Select Configuration Properties > Linker > Input.
3. In the Additional Dependencies field:

Intel® Advisor User Guide  1  

345



• For a Release build: Enter tbb.lib.
• For a Debug build: Enter tbb_debug.lib.

Building an Application on Linux* OS

Use the following command line to build an executable for the running example:

icpc -std=c++11 -DTBB_USE_THREADING_TOOLS example.cpp -ltbb
These command lines define the TBB_USE_THREADING_TOOLS macro and also link the application against the
tbb.lib library. -std=c++11 is present because the running example uses lambda expressions, which are a
C++11 feature.

To map nodes to source code, use -g, -DTBB_PREVIEW_FLOW_GRAPH_TRACE, and
-DTBB_USE_THREADING_TOOLS flags when building the application:

icpc -g -std=c++11 -DTBB_USE_THREADING_TOOLS -DTBB_PREVIEW_FLOW_GRAPH_TRACE example.cpp -
ltbb_preview

Building an Application on macOS*

Use the following command line to build an executable for the running example:

clang++ -std=c++11 -DTBB_USE_THREADING_TOOLS example.cpp -ltbb
The command line define the TBB_USE_THREADING_TOOLS macro and also link the application against
tbb.lib library of Intel® oneAPI Threading Building Blocks. -std=c++11 is present because the running
example uses lambda expressions, which are a C++11 feature.

Collecting Trace Files

While executing, your application collects trace files only if there is an appropriate collector library at the
locations specified by the INTEL_LIBITTNOTIFY32 or INTEL_LIBITTNOTIFY64 environment variables. The
INTEL_LIBITTNOTIFY32 path is searched by 32-bit executables and the INTEL_LIBITTNOTIFY64 path is
searched by 64-bit executables.

To collect and convert trace files to use them with the Flow Graph Analyzer, chose one of the following
options:

• Collect traces by starting your application from the Flow Graph Analyzer GUI.
• Set up your environment so a trace is collected when the application is started outside of the GUI.

NOTE
Both approaches require you to build the application following the steps from Building an Application
section for your operating system.

Collect Traces In the Flow Graph Analyzer GUI

To run an existing Intel® oneAPI Threading Building Blocks (oneTBB) application and collect execution trace
information for analysis, you can launch the TBB trace collector feature from the Flow Graph Analyzer GUI as
follows, assuming the paths for the oneTBB libraries are set up (see Release Notes and Known Issues for
limitations):

1. Run the trace collector using one of the following options:

• Go to the Offload Actions > Run and collect traces menu option.
•

Click the Run and Collect Traces  icon on the toolbar.

The collector Preferences window opens, which lets you specify the application to run:

  1   Intel® Advisor User Guide

346



2. In the collector Preferences window:

• Specify an application to run in the Application field.
• Optional: Change the Working Directory value if required. The default is the Flow Graph Analyzer

directory.
• View and set other environment variables, including INTEL_LIBITTNOTIFY32 and

INTEL_LIBITTNOTIFY64, using the Environment Variables pane of the dialog box.

The environment variables for running trace collection have default settings if you did not change
their values in the environment from which the Flow Graph Analyzer is launched. The inherited
values are used if the environment variables are set in the environment.

OS Environment
Variable

Default Value Description

Windows* INTEL_LIBITTNOTIFY
32

..\fgt\windows\bin
\ia32\vc14.1\fgt.d
ll

32-bit collector library

INTEL_LIBITTNOTIFY
64

..\fgt \windows
\bin
\intel64\vc14.1\fg
t.dll

64-bit collector library

INTEL_ITTNOTIFY_GR
OUPS

all; Trace events from all
groups

Intel® Advisor User Guide  1  

347



OS Environment
Variable

Default Value Description

Linux* INTEL_LIBITTNOTIFY
32

../fgt/linux/lib/
ia32/
cc4.8_libc2.19_ker
nel3.13.0/
libfgt.so

32-bit collector library

INTEL_LIBITTNOTIFY
64

../fgt/linux/lib/
intel64/
cc4.8_libc2.19_ker
nel3.13.0/
libfgt.so

64-bit collector library

INTEL_ITTNOTIFY_GR
OUPS

all; Trace events from all
groups

macOS* INTEL_LIBITTNOTIFY
32

../fgt/macos/lib/
ia32/
osx10.12.6_kernel1
6.7.0/libfgt.dylib

32-bit collector library

INTEL_LIBITTNOTIFY
64

../fgt/macos/lib/
intel64/
osx10.12.6_kernel1
6.7.0/libfgt.dylib

64-bit collector library

INTEL_ITTNOTIFY_GR
OUPS

all; Trace events from all
groups

3. Click the Accept Run collection button. If the application is executed correctly, the trace files are
converted to a GraphML* format. The output file is stored in the working directory with a name based
on the executable name and the time of the trace collection run.

4. To examine the trace file, load the GraphML* file into the Flow Graph Analyzer GUI manually.

Collect Traces Outside the Flow Graph Analyzer GUI

To collect traces outside the Flow Graph Analyzer GUI:

• If you launch your application from a Windows* command prompt or a Linux* terminal, the simplest
approach is using the fgtrun script to run your application.

• If you cannot launch your application from a prompt or terminal or you want to launch it from within an
IDE, you must manually perform the steps performed by the fgtrun script.

In either case, you must update your PATH environment variable to add the paths to essential tools, as
described below, and set the FGT_ROOT variable.

This section assumes the full path to your Flow Graph Analyzer installation is <advisor-install-dir>\fga.
The version of your Visual Studio* compiler is <vc_version> with possible values of vc12, vc14, and
vc14.1.

OS Environment Variable Value Description

Windows* FGT_ROOT <advisor-install-
dir>\fga\fgt

The path to the Flow
Graph Collector
installation

  1   Intel® Advisor User Guide

348



OS Environment Variable Value Description

PATH %FGT_ROOT%\windows
\bin;%FGT_ROOT%
\windows\bin
\ia32\<vc
version>;%FGT_ROOT%
\windows\bin
\intel64\<vc
version>;%PATH%

The path must include
paths to fgtrun.bat
and fgt2xml.exe.

Linux* FGT_ROOT <advisor-install-
dir>/fga/fgt

The path to the Flow
Graph Collector
installation

PATH ${FGT_ROOT}/linux/
bin:${FGT_ROOT}/
linux/bin/ia32/
cc4.8_libc2.19_kern
el3.13.0:$
{FGT_ROOT}/
linux/bin/intel64/
cc4.8_libc2.19_kern
el3.13.0:${PATH}

The path must include
paths to fgtrun.sh,
fgtrun.csh, and
fgt2xml.

macOS* FGT_ROOT <advisor-install-
dir>/fga/fgt

The path to the Flow
Graph Collector
installation

PATH ${FGT_ROOT}/macos/
bin:${FGT_ROOT}/
macos/bin/ia32/
osx10.12.6_kernel16
.7.0:${FGT_ROOT}/
macos/bin/intel64/
osx10.12.6_kernel16
.7.0:${PATH}

The path must include
paths to fgtrun.sh,
fgtrun.csh, and
fgt2xml.

Collecting Trace Files with fgtrun Script

Use the fgtrun script to collect the trace information from your application.

Before running the script, you must set the FGT_ROOT variable to <advisor-install-dir>\fga\fgt as
described in the Collecting Traces Outside the Flow Graph Analyzer GUI. The fgtrun script sets the paths
necessary to execute your application and generate the GraphML* and TraceML* files that can be loaded into
the Flow Graph Analyzer for visualization.

The following table lists the directories in which the scripts are located on a given system.

Operating System Version Location Example Use

Windows* fgtrun.bat %FGT_ROOT%\windows
\bin

fgtrun.bat <app-
binary-name>
[<binary-args>] [--

Intel® Advisor User Guide  1  

349



Operating System Version Location Example Use

ia32/ --intel64]
[--vc12/ --vc14/ --
vc14.1] [--xml]

Linux* fgtrun.sh ${FGT_ROOT}/
linux/bin

fgtrun.sh <app-
binary-name>
[<binary-args>] [--
ia32/ --intel64]
[--omp] [--xml]

macOS* fgtrun.sh ${FGT_ROOT}/
macos/bin

fgtrun.sh <app-
binary-name>
[<binary-args>] [--
ia32/ --intel64]
[--omp] [--xml]

The fgtrun script tries to automatically detect the architecture and C/C++ runtime version (Windows* OS
only) of the executable used to collect the traces and requires the presence of helper tools. If the helper tools
are not available or fail to identify the required information, fgtrun scripts sets default values and runs the
collection. Optionally you can override these default values by setting architecture and C/C++ runtime
version information (Windows* OS only) using command line arguments when the script is invoked.

The fgtrun has the following options:

--omp Enable OpenMP* trace collection for applications
linked with -qopenmp.

The OpenMP* runtime environment must be set
correctly before the script is launched.

NOTE This OpenMP* trace collection capability is
currently not supported on the Windows* OS.

--xml Collect traces in XML format.

By default, the collector generates binary traces. If
trace collection fails, you can switch to XML trace
generation mode to debug the cause of the failure.

--sym Get mapping between nodes and source code.

NOTE The symbol resolution feature is currently only
supported on Linux* OS.

Collecting Trace Files without fgtrun Script

You can choose to collect traces without the fgtrun script if you do not want to launch your application from
a Visual Studio* command prompt or Linux* terminal. In this case, follow the steps below to collect and
convert trace files manually.

  1   Intel® Advisor User Guide

350



NOTE
These steps do not outline steps required to capture symbol resolution information.

1. Set paths to the collector libraries.

Set up or update the environment variables shown below. For Windows* systems, specify also the
proper version of the Microsoft Visual Studio* compiler (vc12, vc14, or vc14.1).

Operating System Environment
Variable

Default Value Description

Windows* INTEL_LIBITTNOTIFY
32

..\fgt\windows\bin
\ia32\<vc version>
\fgt.dll

32-bit collector library

INTEL_LIBITTNOTIFY
64

..\fgt\windows\bin
\intel64\<vc
version>\fgt.dll

64-bit collector library

INTEL_ITTNOTIFY_GR
OUPS

all; Trace events from all
groups

Linux* INTEL_LIBITTNOTIFY
32

../fgt/linux/lib/
ia32/
cc4.8_libc2.19_ker
nel3.13.0/
libfgt.so

32-bit collector library

INTEL_LIBITTNOTIFY
64

../fgt/linux/lib/
intel64/
cc4.8_libc2.19_ker
nel3.13.0/
libfgt.so

64-bit collector library

INTEL_ITTNOTIFY_GR
OUPS

all; Trace events from all
groups

macOS* INTEL_LIBITTNOTIFY
32

../fgt/macos/lib/
ia32/
osx10.12.6_kernel1
6.7.0/libfgt.dylib

32-bit collector library

INTEL_LIBITTNOTIFY
64

../fgt/macos/lib/
intel64/
osx10.12.6_kernel1
6.7.0/libfgt.dylib

64-bit collector library

INTEL_ITTNOTIFY_GR
OUPS

all; Trace events from all
groups

If you want the Microsoft Visual Studio* IDE to use the environment variables set in a Microsoft Visual
Studio command prompt, you can launch the Visual Studio* IDE from the command prompt using the
following command:

devenv /useenv
2. Run the application.

Intel® Advisor User Guide  1  

351



If your paths are set up correctly, the application generates one or more files that start with _fgt.
There is one file per thread that participates in executing the parallelism in the application. So, for
example, if two threads participate in the execution of the flow graph, your run generates two files:
_fgt.0 and _fgt.1, with an autogenerated folder in the format _fga_YYYYMMDD_HHMMSS according to
its creation (for example, 20191111_1111).

3. Convert the trace files to GraphML* and TraceML* format.

Convert the _fgt binary files to the XML format understood by the Flow Graph Analyzer tool using the
fgt2xml.exe converter in the directory containing the folder with the trace files:

fgt2xml.exe <desired_name>
This converter scans the current directory for all _fgt files within the most recent folder according to its
name and generates two output files: desired_name.graphml and desired_name.traceml.

Nested Parallelism in Flow Graph Analyzer
The Flow Graph Analyzer supports visualization of applications that contain multiple levels of parallelism,
such as nested Intel® oneAPI Threading Building Blocks (oneTBB) algorithms and OpenMP* parallel regions.
This feature requires additional support from the parallel runtime libraries and can be used in combination
with a oneTBB flow graph.

The sample code below is an example of nested parallelism that combines a oneTBB flow graph, a
oneTBBparallel_for algorithm, and an OpenMP* parallel region.

#include "tbb/tbb.h"
#include "tbb/flow_graph.h"
#include <omp.h>
#include <iostream>

using namespace tbb;
using namespace tbb::flow;
int main() {
  graph g;
  const int size = 20;
  continue_node< continue_msg> hello( g,
    []( const continue_msg &) {
      std::cout << "Hello\n";
      tbb::parallel_for(0, size, 1, [=](int k) {
        std::cout << k << "\n";  });
      });
  continue_node< continue_msg> world( g,
    []( const continue_msg &) 
      std::cout << " World\n";
      #pragma omp parallel for 
        for (int i=0; i<20; i++) {
          std::cout << i <<"\n"; } }
  );
  make_edge(hello, world);
  hello.try_put(continue_msg());
  g.wait_for_all();
  return 0;  
}   
    

  1   Intel® Advisor User Guide

352



Tracing Nested Intel® oneAPI Threading Building Blocks (oneTBB) Algorithms
oneTBB enables general tracing of parallel algorithms, which is enabled by default and activated by the Flow
Graph Analyzer trace collector.

As a result, Flow Graph Analyzer can display oneTBB library activity in nested and non-nested algorithms.
Therefore, task context switches are captured and can be visualized in the Flow Graph Analyzer GUI. This
work is similar to tasks in the timeline and is named according to its algorithm (for example,
parallel_for).

NOTE
This information might not be available for user-defined task groups.

Tracing Nested OpenMP* Algorithms
For detailed information on Flow Graph Analyzer support for OpenMP* technology, see Experimental Support
for OpenMP* Applications.

Analyzer Workflow

NOTE
This section describes a recommended workflow to identify performance issues in the executed graph.
This workflow may change as more analytics plugins are added. However, the fundamental principle
should not change, as the goal is to maximize the throughput of the graph in a streaming case, and
provide the best scaling performance with respect to the serial run.

The Flow Graph Analyzer provides the following capabilities for analyzing flow graph performance:

• Display the graph for which the execution trace is captured. See the Preferences section for details on
how to enable loading .graphml files that contain graphs with cross-graph edges.

• Display the trace information and highlight parallel performance issues.
• Map poorly scaling time regions to nodes executing at that time.
• Compute the critical path of the graph.
• View compute statistics for the computational nodes based on the execution traces.
• View prioritized diagnostics.

Follow the steps in this section to analyze performance.

Find Time Regions of Low Concurrency and Their Cause

1. Run the trace collector.
2. In the Execution Trace Views tab, inspect the node concurrency histogram for regions in red, which

indicate low concurrency.

3. Zoom in to a red region to inspect the data at a higher resolution and provide a better idea as to how
concurrency varies over time.

Intel® Advisor User Guide  1  

353



4. Select a point in the chart where the concurrency is low to highlight the relevant node(s). Hover the
mouse over the highlighted node to identify the node name.

Because the analysis tool does not have built-in symbol resolution, the determination of the C++ class of the
body executed by a node must be explicitly encoded into the application. Explicit encoding affects the Name
and/or object_name fields in the Node Properties tab. For example:

  tbb::flow::graph g;
  . . .
  tbb::flow::source_node<int> s_node (g, source_node_body(),                   
  false);
  #if TBB_PREVIEW_FLOW_GRAPH_TRACE
  s_node.set_name(“My Source Node”);
  #endif

This coding enables node annotation with the specified string during trace collection, and the annotation
appears when you hover the mouse over the node.

NOTE
The set_name functions are only available when the TBB_PREVIEW_FLOW_GRAPH_TRACE macro is
defined at compile-time.

Finding a Critical Path

The critical path from a node N to a node M is the longest (in time) path from N to M. Its length is a lower-
bound on the execution time of a compuation that begins at N and ends at M.

The Critical Path Analytic in the Flow Graph Analyzer computes a critical path for each source node/sink
node pair. A given graph has as many critical paths as the product of the number of source nodes and the
number of sink nodes. Source nodes are the nodes in the graph without any predecessors, or nodes with an
in-degree of zero. Sink nodes are the nodes in the graph without any successors, or nodes with an out-
degree of zero.

Click the Compute Critical Path icon on the toolbar to calculate the critical paths in the graph. These critical
paths are displayed in descending order by cost. Inspect the topmost critical path first because, as the
longest critical path, it sets the lower bound on the execution time for the whole graph.

The screenshot below shows a sample critical path report.

  1   Intel® Advisor User Guide

354



Selecting a critical path in the Analytics Report window highlights all the nodes on the critical path.

Finding Tasks with Small Durations

Tasks executed by a flow graph are spawned as Intel® oneAPI Threading Building Blocks (oneTBB) tasks, so
the task duration must be large enough to amortize the cost of a task spawn.

Finding Tasks with Small Durations using Statistics

1. Open the Statistics tab in the bottom pane.
2. Open the Graph tab to see execution time metrics. The metrics are computed as the mean and

standard deviation for each node based on the execution traces.
3. Sort the resulting data by the Avg Task Duration column to identify the nodes with the smallest

average durations.

Any node with an average duration of a few microseconds requires that you additionally inspect it, because
any concurrency gained by its parallel execution may be overwhelmed by its scheduling costs.

The screenshot above shows a sample graph that executed 250 times. Notice the Count column, which is the
number of times a node executes, is 250 for all functional nodes. Inspect the Avg Task Duration column for
nodes that execute in a few microseconds.

NOTE Times are provided in milliseconds.

Finding Tasks with Small Durations using Treemap

Another way to visualize task durations and the average concurrencies of each node is the Treemap view in
the Analysis Mode tab. If multiple graphs are present in the application run, you see a high-level treemap
showing the health of all the graphs in the run.

The Treemap view organizes the nodes in the graph by node durations. The larger the area of the square, the
more time the node spent on the CPU. The node color is determined by the average observed concurrency of
the graph while the node was running, and the colors use the same scale as in the active thread chart. A red
node indicates poor concurrency when the node is executed on the system.

Hover a mouse over the Treemap to see the details about nodes in the graph. Double-click the graph in the
Treemap view to keep the node treemap visible.

Intel® Advisor User Guide  1  

355



When a graph has nested subgraphs, the treemap presents this information by embedding the nested
subgraph in the node which spawned the subgraph. This is visually represented by increasing the width of
the border surrounding each node that contain subgraphs.

• Hover the mouse over a node that has embedded subgraphs to see the hidden subgraph.
• Double-click the node to zoom to the child-node level and see the contents of the embedded subgraph as

a treemap.

Click any node in the Treemap view to highlight that node in the graph view on the canvas. If you select the
default zoom factor or reset the zoom factor, clicking a node in the Treemap view zooms in and centers on
the node in the graph view. The smaller the node size, the smaller the tasks executed by that node.

The Treemap view supports three different layouts for visualizing the treemap: squarified layout, alternating
layout, and snake layout. All three layouts use:

• The node CPU time to determine the size of each node in the treemap
• The average concurrency observed in the graph while a node was active to determine the color

To switch between layouts:

1. Open the Preferences window.
2. Go to the GUI  > General.
3. Change the value of the Default Treemap Rendering option in the Analysis View group.

Reduce Scheduler Overhead using Lightweight Policy

The Flow Graph API allows you to apply lightweight policy for computational nodes such as function node,
multifunction node, continue node, and async node. Enabling the lightweight policy helps reduce scheduling
overhead. It can limit parallel execution of tasks, so apply this policy on a per-node basis after careful
evaluation.

The lightweight policy indicates that the body of a node contains a small amount of work and, if possible,
should be executed without the overhead of scheduling a task. By default, the async node has the lightweight
policy enabled because it has small computation weight. All other computational nodes do not have the
lightweight policy enabled when they are dragged and dropped into the canvas.

  1   Intel® Advisor User Guide

356



Use the lightweight policy in the following cases:

• Node weight is less than 1 microsecond when no trace information is available.
• Node average time is less than 1 microsecond if the graph is loaded into context with trace data.

When validating a graph, the graph rule check automatically identifies nodes that can use the lightweight
policy. If the above conditions are not met but the lightweight policy is set, the graph rule check recommends
removing the lightweight policy for the corresponding node.

To display recommendations for applying the lightweight policy:

1. Click the graph rule check icon on the toolbar to run the check.
2. Go to the Analytics Report tab to see the results.
3. Based on the results, set or disable the lightweight policy for certain nodes.

• To set or disable the lightweight execution policy for a single node:

1.Click the node to display the node properties on the right pane.
2.Set the Execution policy property to none to disable lightweight policy or to lightweight to enable

lightweight policy.
• To set or disable the lightweight execution policy for all the nodes listed by graph rule check:

1.Multi-select the report lines that say Consider enabling lightweight policy for small
computational or async node or Consider disabling lightweight policy for small computational
or async node to highlight all nodes in the canvas and display the common properties for all the
selected nodes.

2.Set the Execution policy property to none to disable lightweight policy or to lightweight to enable
lightweight policy.

For example, to enable the lightweight policy for multiple nodes:

Another important attribute related to node execution policy is a buffer policy:

• If you set the buffer policy to queueing when lightweight policy is enabled, the Flow Graph Analyzer adds
queueing_lightweight to the policy parameter of the node declaration during C++ code generation.

• If you set buffer policy to rejecting, the Flow Graph Analyzer adds rejecting_lightweight to the
policy parameter of the node declaration during C++ code generation.

For example, by default, the async node is set to queueing_lightweight, and the Flow Graph Analyzer
does not add any policy during code generation for async node. Setting buffer policy to rejecting for the
async node adds rejecting_lightweight to the policy parameter of async node declaration during code
generations.

Intel® Advisor User Guide  1  

357



Identifying Tasks that Operate on Common Input

Intel® oneAPI Threading Building Blocks (oneTBB) adds additional meta information to trace data, such as a
frame number that a current task is working on. You can use this metadata to track different pipeline stages
in execution, for example to identify an unbalanced pipeline. The following demonstrates how to use the user
event tracing interface to enable the Flow Graph Analyzer color-by-data feature.

Highlighted in bold is code that enables the Flow Graph Analyzer to add a unique ID (frame ID) to group
tasks.

#include "tbb/flow_graph.h"
#include "tbb/tbb_profiling.h"
#include <string>
#include <vector>
int main() {
  tbb::flow::graph g;
  const int max_frames = 20;
  std::vector<tbb::profiling::event*> e;for(int i=0; i<nbr_of_frames;++i)e.push_back(new 
tbb::profiling::event(std::to_string(i)));
  tbb::flow::source_node<int> source( g,
    [&]( int &v) -> bool {
      static int i = 0;  
      if( i < max_frames ) {
        e[i]->emit();v = i++; 
        return true;
      }
      return false;
    }, false);
  tbb::flow::function_node<int> foo( g, tbb::flow::unlimited,
    []( const int &input1) -> int {
      tbb::profiling::event::emit(std::to_string(input1));
      return input1;
    });
  tbb::flow::function_node<int> bar( g, tbb::flow::unlimited,TBB
    []( const int &input1) -> int {
      tbb::profiling::event::emit(std::to_string(input1));
      return input1;
    });
  make_edge(source, foo);
  make_edge(source, bar);
  source.activate();
  g.wait_for_all();
  return 0;  
}

Compile the code with the TBB_USE_THREADING_TOOLS macro and link against the tbb library.

To enable the Flow Graph Analyzer color-by-data feature:

1. Assign IDs to events doing one of the following:

• Option 1:

1. Create an event object or a collection of events upfront, where the only argument is a string
(data ID) that identifies the event.

2. Call the emit function of the object to tag a task with a data ID.
• Option 2: Call a static function inline (inside a task body).

2. In the Execution Trace Views tab in the bottom pane, choose Color By Data from the drop-down
list.

  1   Intel® Advisor User Guide

358



Result: The Flow Graph Analyzer groups tasks that share the same data ID and displays them in a common
color:

Support for SYCL
Flow Graph Analyzer is a feature of Intel® Advisor that allows you to explore, debug, and analyze graph
computation problems. Since the SYCL* runtime constructs an asynchronous task graph from submitted
work, Flow Graph Analyzer allows you to visualize and interact with the asynchronous task graph, and its
execution traces. The tool introduces the following features:

• For a CPU device: Execution trace-based analytics.
• For CPU and GPU devices: Graph-related analytics.

NOTE
The data collection support for SYCL applications is currently supported only on Linux* OS.

The code sample below illustrates a simple example of a SYCL application that adds two vectors. The
subsequent sections will use it as an example.

#include <CL/sycl.hpp>
#include <iostream>

#define VECTOR_SIZE 16384

using namespace cl::sycl;

void vec_add(queue &q, const float A[], const float B[], float C[],
             const int size) {
  // Create the buffers
  buffer<float, 1> bufA(A, range<1>(VECTOR_SIZE));
  buffer<float, 1> bufB(B, range<1>(VECTOR_SIZE));
  buffer<float, 1> bufC(C, range<1>(VECTOR_SIZE));

  q.submit([&](handler &cgh) {
    auto Acc = bufA.get_access<access::mode::read>(cgh);

Intel® Advisor User Guide  1  

359



    auto Bcc = bufB.get_access<access::mode::read>(cgh);
    auto Ccc = bufC.get_access<access::mode::write>(cgh);
    cgh.parallel_for<class saxpy_kernel>(range<1>(size), [=](id<1> idx) {
      Ccc[idx[0]] = Acc[idx[0]] + Bcc[idx[0]];
    });
  });
}

int main(int argc, char **argv) {
  if (argc < 2) {
    std::cout << "Usage:- " << argv[0] << " [cpu, gpu]\n";
    return 1;
  }

  float A[VECTOR_SIZE], B[VECTOR_SIZE], C[VECTOR_SIZE];

  if (std::string("cpu") == argv[1]) {
    cpu_selector device;
    queue q(device);
    vec_add(q, A, B, C, VECTOR_SIZE);

  } else if (std::string("gpu") == argv[1]) {
    gpu_selector device;
    queue q(device);
    vec_add(q, A, B, C, VECTOR_SIZE);
  }

  return 0;
}

Collect SYCL Application Traces

NOTE SYCL trace collection is currently supported only on Linux* OS.

The command line collector for Flow Graph Analyzer enables you to capture trace data from SYCL
applications. To collect SYCL traces, you will need trace-enabled SYCL run-times. Use the code from Analyze
Data Parallel C++ Application as a sample application. To build it:

1. Copy the code snippet from Analyze Data Parallel C++ Application and save it as va_const.cpp.
2. Run the following command to build it:

icpx -fsycl -o vac ./va_const.cpp
To collect traces for the SYCL application using the built sample and create the XML files to view with Flow
Graph Analyzer:

1. Set the environment variable FGT_ROOT to point to <fga-install-dir>/fgt:

export FGT_ROOT=<advisor-install-dir>/fga/fgt
2. Set the back end for the SYCL run-time to OpenCL™ by setting the following environment variable:

export SYCL_BE=PI_OPENCL

NOTE Current version of Flow Graph Collector does not support Level0.

3. Run the application using the Flow Graph Analyzer collector:

$FGT_ROOT/linux/bin/fgtrun.sh ./vac gpu

  1   Intel® Advisor User Guide

360



This command will generate two files: vac.graphml, which contains the semantic information of what
was executed, as in the asynchronous task-graph, and vac.traceml, which contains the execution
traces of the application. Open the files in the Flow Graph Analyzer on the current system or copy them
to another system with Flow Graph Analyzer installed to investigate.

To launch the Flow Graph Analyzer graphical user interface, use the following command:

<fga-install-dir>/fga/run_fga.sh &
Examine a SYCL Application Graph

The visualization of SYCL applications is similar to data from other run-times, such as Intel® oneAPI
Threading Building Blocks (oneTBB) or OpenMP*. The graph in SYCL represents the asynchronous task graph
created from the end-user construct such as buffer accessors, command group handler, and data parallel
constructs such as parallel_for.

The data from the sample viewed in Flow Graph Analyzer is shown above. As with other runtimes, the graph
view is correlated with the execution trace views. The workflows will provide similar information for SYCL. To
better visualize the overlapping tasks in the execution trace view, select the Stacked View attribute from
the pull-down menu as shown below:

This will change the view to an icicle chart that displays everything in detail, and you can see the calls to the
OpenCL™ stack.

Intel® Advisor User Guide  1  

361



Clicking on a task in the timeline views will highlight a node in the graph if that task belongs to the graph. If
you want to highlight all the tasks that belong to a graph node, you should enable task highlighting button
and select a node on the graph to see the associations.

The screenshot below shows the tasks that belong to the memory_transfer_node are highlighted in a
different color. Using the correlation features, one can debug the execution profile of the application to get a
better understanding of the execution. Flow Graph Analyzer also includes features that target specific
performance-related issues and the other sections go into detail for each one of these potential performance
problems.

Hotspot View

Flow Graph Analyzer supports hot-spot views, but the data is limited to the objects in the graph. The data
collection for Flow Graph Analyzer-based collectors is currently limited to time-based traces. To obtain the
hotspot view, select the Statistics tab, and click the Graph pane for the data.

  1   Intel® Advisor User Guide

362



View Performance Inefficiencies of Data-parallel Constructs

The Statistics Tab also contains the efficiency information for each parallel construct if they are employed
by the algorithm. This data will show up under the Parallel Efficiency tab in the Statistics group.

The data parallel construct efficiency for each instance of a kernel. The column provides information that is
useful for understanding the execution, and makes inferences to improve performance.

• The parallel algorithms are nested under the kernel name when the kernel name can be demangled
correctly.

• The Efficiency column indicates the efficiency of the algorithm, when associated with the algorithm name.
For the participating worker threads, the efficiency column indicates the efficiency of the thread while
participating in the execution. This data is typically derived from the total time spent on the parallel
construct and the time the thread spent participating in other parallel constructs.

• Task Count column indicates the number of tasks executed by the participating thread.
• Duration indicates the time the participating thread spends executing tasks from the parallel construct.
• CPU time is the Duration column data expressed as a percentage of the wall clock time of the parallel

construct.

Intel® Advisor User Guide  1  

363



• Other Time will be 0 if the thread fully participates in the execution of tasks from the parallel construct.
However, in runtimes such as Intel® oneAPI Threading Building Blocks, the participating threads may steal
tasks from other parallel constructs submitted to the device to provide better dynamic load balancing and
throughput. In such cases, the Other Time column will indicate the percentage of the total wall clock
time the participating thread spends executing tasks from other parallel constructs.

• Fork Imbalance indicates the penalty for waking up threads to participate in the execution of tasks from
the parallel construct. For more information, see Startup Penalty.

• Join Imbalance indicates the degree of imbalanced execution of tasks from the parallel constructs by the
participating worker threads. For more information, see Data Parallel Efficiency.

Find Issues Using Static Rule-check Engine

The Rule-check engine in Flow Graph Analyzer includes SYCL specific analysis that can be invoked by clicking
on the Rule-check button in the toolbar. Run it to check for issues.

NOTE In the sample code, the kernel name demangling has an issue. This is the current limitation of
the demangling mechanism available in the runtime. For correct demangling of kernel names, use the
open-source version of the Clang++ compiler.

The Rule-Check Engine currently identifies the following types of issues that may be present in an
application:

• Use of const reference to a host pointer to initialize a buffer
• Use of host pointer accessor in a loop
• Data parallel construct inefficiency

Issue: Const Reference to a Host Pointer Used to Initialize a Buffer

When porting applications from C++ to SYCL, these issues may be implicitly present. The convention for
passing arguments to a function is defined in C++. If a function requires read-only parameters, they are sent
in as const references and any parameter that has to be used for read-write will be without a const. This
causes a secondary issue in SYCL algorithms if these const references are used by the algorithm to construct
buffers. Since the type of access required to use this data is not known at the time of construction of the

  1   Intel® Advisor User Guide

364



buffer, the Intel® oneAPI DPC++/C++ Compiler is conservative and creates copies of const references while
creating the buffers. If these are large arrays, the cost incurred is not trivial. This issue only affects the CPU
device as everything is communicated through shared memory and the copying of data pointer to the host
pointer is not necessary.

The va_const.cpp example demonstrates such an issue and indicates buffer copy in the application that
needs to be looked at.

To eliminate this copy, you should change the code sample in the following way:

// Old code:
// The function prototype passed in the read-only buffers as const, which is the
// recommended practive in C++
//
// void vec_add(queue &q, const float A[], const float B[], ...) {

void vec_add(queue &q, float A[], float B[], float C[],
             const int size) {
  ...
}

NOTE The recommended practice in C++ is to pass in read-only parameters as const values. However,
this causes the Intel® oneAPI DPC++/C++ Compiler to be conservative and create a copy. If you are
porting C++ code to SYCL, the static rule-check should help you identify such issues in your
application.

Issue: Host Pointer Accessor Used in a Loop

In many algorithms, it is likely that a lot of operations are performed on the device memory and some
operations on the host memory. This is particularly true in simulation code where the host memory is
updated using a host accessor. This causes many things to happen within the SYCL run-time where the locks
the buffer the accessor points to and updates the copy of this buffer memory on the host device. This pattern
of access could cause a lot of memory copies from the device to the host and back in order to keep the data
coherent.

Flow Graph Analyzer reports such issues in the following way:

Click the issue to highlight the loop in the graph that consists of a host pointer accessor.

Intel® Advisor User Guide  1  

365



If the buffer pointed by the host pointer accessor is large, the costs incurred due to this access can be a
significant portion of each loop.

Issue: Data Parallel Construct Inefficiency

The SYCL language allows to use data parallel constructs within each command group. This feature of rule-
check analysis tries to capture the efficiency of a data parallel construct. The inefficiencies in the data parallel
construct are broken down into two parts:

• Startup costs for kicking off the data parallel algorithm on the worker threads.
• Imbalance costs encountered during the execution of the algorithm.

The combination of these parts affects the overall efficiency of the data parallel algorithm. The data and
screenshots shown in this section are from the Nbody sample that is available with Intel® oneAPI Toolkits.

Startup Penalty

The startup costs are primarily related to the worker threads participating in the parallel algorithm starting
up slowly. If your application exhibits a lot of inefficiencies due to startup costs, the Linux* kernel maybe
biased towards power. You can use the following command to ensure that it is set to performance:

echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

NOTE
You will need sudo privileges to run this command and this setting is reset after system reboot.

Imbalance Penalty

Imbalance penalties are usually due to static partitioning of a data parallel workload that have varying costs
per iteration of the loop or when the granularity of the block size is too large when dynamic partitioning is
used. Many times, addressing the startup penalties will improve the amount of imbalance in the algorithm,
but if they are retained, the following options maybe tried to improve performance:

• If the algorithm usesrange, the runtime is automatically picking the block size and may be causing the
imbalance. You can override this by using nd_range and specifying a block size that would eliminate the
imbalance.

  1   Intel® Advisor User Guide

366



• If nd_range is used, this issue may be caused by using a block_size that is larger than optimal.
Reducing the block size may improve performance or using range and letting the runtime decide may also
be an option.

Experimental Support for OpenMP* Applications
You can now trace, visualize, and analyze OpenMP* parallel regions, tasks, and task dependencies in your
application with the Flow Graph Analyzer.

The Flow Graph Analyzer support for OpenMP technology is experimental and currently covers two basic
scenarios:

• OpenMP parallel regions are nested inside a Intel® oneAPI Threading Building Blocks (oneTBB) flow graph.
For this case, the Flow Graph Analyzer shows the execution of the parallel regions in the per-thread task
execution timelines.

The sample code below, omp_nested.cpp, is an example of an OpenMP construct nested inside a oneTBB
flow graph:

#include "tbb/tbb.h"
#include "tbb/flow_graph.h"
#include<omp.h>
#include <iostream>
using namespace tbb;
using namespace tbb::flow;
int main() {
  graph g;
  const int size = 20;
  continue_node< continue_msg> hello( g,
    []( const continue_msg &) {
      std::cout << "Hello\n";
      tbb::parallel_for(0, size, 1, [=](int k) {
        std::cout << k << "\n";  });
      });
  continue_node< continue_msg> world( g,
    []( const continue_msg &) 
      std::cout << " World\n";
      #pragma omp parallel forfor (int i=0; i<20; i++) {std::cout << i <<"\n";} 
    }
  );
  make_edge(hello, world);
  hello.try_put(continue_msg());
  g.wait_for_all();
  return 0;  
}

• OpenMP tasks that use depends clauses. In this, the Flow Graph Analyzer shows task execution in the
timelines and provides experimental support that lets you see the dependency relationships between
OpenMP tasks as a graph in the graph canvas.

The sample code below, omp_depend.cpp, is a hello-world example of OpenMP task dependencies:

#include <omp.h>
#include<iostream>

int main() {
  #pragma omp parallel
   {
    std::string s = "";
    #prgma omp single

Intel® Advisor User Guide  1  

367



    {
      #pragma omp task depend( out: i)
        {      s = "hello";
               printf("%s", s);
        }
      #pragma omp task depend( out: s )
        {      s = "world";
               printf("%s",s);
        }
    }
   }
     return 0;
}

Collecting Traces for OpenMP* Applications

NOTE
OpenMP* trace collection is currently supported only on Linux* and macOS* operating systems.

To collect OpenMP traces for an application, you need an OMPT-enabled OpenMP* version 5.0 library, such as 
LLVM-OpenMP.

To build a sample code (for example, the omp_depend.cpp described in the Experimental Support for
OpenMP* Applications) on a Linux OS with the Intel® C++ Compiler Classic, use the following command:

icpc -std=c++11 -qopenmp omp_depend.cpp -o example

NOTE Please use -g compiler flag to enable symbol resolution information.

To collect traces for OpenMP applications and create XML files, follow these steps:

1. Set the FGT_ROOT variable and update your PATH environment variable as shown in the table below.

OS Environment
Variable

Value Description

Linux* FGT_ROOT <advisor-install-
dir>/
fga<version>/fgt

The path to the Flow
Graph Collector
installation

PATH ${FGT_ROOT}/linux/
bin:${FGT_ROOT}/
linux/bin/ia32/
cc4.8_libc2.19_ker
nel3.13.0:$
{FGT_ROOT}/
linux/bin/intel64/
cc4.8_libc2.19_ker
nel3.13.0:${PATH}

The path must include
paths to fgtrun.sh,
fgtrun.csh, and
fgt2xml.exe.

2. To enable tracing from OMPT, set the following variables:

  1   Intel® Advisor User Guide

368

https://github.com/OpenMPToolsInterface/LLVM-openmp


OS Environment
Variable

Value Description

Linux* OMP_TOOL Enabled OMPT tool support
enabler.

OMP_TOOL_LIBRARIES ${FGT_ROOT}/
linux/lib/intel64/
cc4.8_libc2.19_ker
nel3.13.0/
libfgt.so

Path to OpenMP
collector library.

3. Run the application.

If your paths are set up correctly, the application generates one or more files that start with _fgt.
There is one file per thread that participates in executing the parallelism in the application. So, for
example, if two threads participate in the execution of the flow graph, running the application generates
two files, _fgt.0 and _fgt.1, in an autogenerated folder in the format _fga_YYYYMMDD_HHMMSS
according to its creation (for example, _fga_20191111_1111 ).

4. Convert the trace files to GraphML* and TraceML* format.

Convert the _fgt binary files to the XML format understood by the Flow Graph Analyzer using the
fgt2xml.exe converter in the directory containing the folder with the trace files:

fgt2xml.exe <desired_name> --omp_experimental
or

fgt2xml.exe --omp_experimental <desired_name>
or

fgt2xml.exe --omp_experimental
This converter scans the current directory for all _fgt files within the most recent folder according to its
name and generates two output files: <desired_name>.graphml and <desired_name>.traceml. If
you do not provide a <desired_name>, the converter creates unknown.graphml and
unknown.traceml.

The omp_experimental flag enables displaying a subgraph and tasks dependence graph. By default,
display support is disabled and you see only information related to OpenMP constructs in the per-thread
traces.

OpenMP* Constructs in the Per-Thread Task View
After you run the steps from the Collecting Traces for OpenMP* Applications section, you can see the
execution of the OpenMP* tasks in the per-thread timelines. A display example for the omp_depend.cpp
sample is shown below. The OpenMP region names are prefixed with omp.

Intel® Advisor User Guide  1  

369



OpenMP* Constructs in the Graph Canvas
To map OpenMP* parallel regions and task constructs to a graph, run the fgt2xml converter with the --
omp_experimental flag. In such graph, nodes represent parallel regions and tasks, and edges represent
task dependencies

Parallel Regions
All OpenMP-related parallelism is contained within OpenMP parallel regions. In the Flow Graph Analyzer, a
parallel region is mapped to a subgraph node in the graph canvas. Inside the subgraph node are at least two
nodes:

• A node that represents the start of the parallel region.
• A node that represents the implicit barrier at the end of the region.

For example, for an empty parallel region like the following, the Flow Graph Analyzer creates a subgraph
node, such as omp0::n0, in the graph canvas.

#pragma omp parallel
{
}

When you double-click the subgraph node, you see the following, where omp0::n0::n1 is the start of the
parallel region and omp0::n0::n2 is the implicit barrier at the end of the node.

  1   Intel® Advisor User Guide

370



OpenMP* Tasks
An OpenMP* task is a block of code contained in a parallel region that can be executed simultaneously with
other tasks in the same region. In the Flow Graph Analyzer, an OpenMP task is mapped to a generic node.
For example, in the code below, there are two tasks: one prints hello and the other prints world. The order
in which these tasks execute is not specified, so they can execute in any order. However, the two tasks
always start after the enclosing parallel region begins, and they complete before the enclosing parallel region
ends.

#pragma omp parallel
{
  #pragma omp task
    {  printf("hello "); }
  #pragma omp task
    {  printf("world "); }
}

When you visualize this program in the Flow Graph Analyzer, it looks like this:

When you double-click this subgraph, you see the following, where omp0::n0::n1 is the start of the parallel
region, omp0::n0::n4 is the implicit barrier at the end of the region, omp0::n0::n2 is the "hello" task and
omp0::n0::n3 is the "world" task.

OpenMP* Task Dependencies
In the OpenMP* specification, a partial ordering of tasks can be expressed with depend clauses. The task
dependence is fulfilled when the predecessor task completes. There are three dependency types supported
by the OpenMP API: in, out, and in-out:

• in dependency type: The generated task is a dependent task of all previously generated sibling tasks that
reference at least one of the list items in an out or in-out clause.

• out and in-out dependency types: The generated task is a dependent task of all previously generated
sibling tasks that reference at least one of the list items in an in, out, or in-out clause.

In the Flow Graph Analyzer, task dependencies are represented by edges between the nodes that represent
OpenMP tasks.

It is important to understand what dependencies are visualized in the Flow Graph Analyzer.

Intel® Advisor User Guide  1  

371



• The task dependency graph represents the partial order set by the depend clauses for the OpenMP tasks
executed by the application. The nodes in the graphs are OpenMP tasks and the edges represent the
partial order.

• To reduce the complexity of the graph, the Flow Graph Analyzer omits some transitive dependencies. A
transitive dependence is a dependency between three tasks, such that if it holds between the first and the
second tasks and between the second and the third tasks, it must hold between the first and the third
tasks. In the figure below, the node a must execute before the node b in the partial order due to a
dependency on the location x as a <x b.

• Part (a) of the figure shows an example that only includes dependencies due to a single location x.
Because a <x b and b <x d, the Flow Graph Analyzer does not show the transitive edge a <x d.

• Part (b) of the figure shows two locations x and y that determine the partial order. There are two
potential dependency edges from a to d: a <x d and a <y d. The Flow Graph Analyzer includes an
edge from a to d because a is the direct source of y for d, but it excludes a <x d.

NOTE If there are parallel edges between two nodes and at least one of them can be omitted due to
transitivity, they all can be omitted without changing the partial order. The Flow Graph Analyzer
includes edges like a <y d in the graph topology because including edges to satisfy all required data
dependencies is the most natural representation.

For example:

#pragma omp parallel
  {
    std::string s = "";
    #prgma omp single
    {
      #pragma omp task depend( out: s)
        {      s = "hello";
               printf("%s", s);
        }
      #pragma omp task depend( out: s )
        {      s = "world";
               printf("%s",s);
        }
    }
}

This application, when visualized with the Flow Graph Analyzer, has a single top-level subgraph node
representing the OpenMP parallel region.

  1   Intel® Advisor User Guide

372



When you double-click this subgraph, you see the following:

The edge between omp0::n0::n2 and omp0::n0::n3 represents task dependency due to the variable s.

The main components of the Flow Graph Analyzer include the treemap view, the graph-topology canvas, the
timeline and concurrency histogram view, and the critical-path report. OpenMP task traces map naturally to
these views:

• The treemap view shows the time spent in each OpenMP parallel region, colored according to the average
application concurrency during the time it was executing.

• The graph topology canvas shows the partial ordering of the tasks.
• The timeline and concurrency histogram view show the execution of each task on the OpenMP runtime

threads and the application concurrency over time.
• The critical report shows the most time-consuming path from each source to each sink in the graph,

sorted with the longest critical path at the top.

For more examples, see https://link.springer.com/chapter/10.1007/978-3-319-98521-3_12.

OpenMP* Nodes to Source Code Mapping:
In addition to the graphical view of OpenMP* task dependency graphs, the Flow Graph Analyzer also shows
nodes mapping to corresponding source code. To get this information, you must build an OpenMP application
with the -g flag.

For example, source code mapping with subgraph nodes in a parallel region looks as follows:

Intel® Advisor User Guide  1  

373



Sample Trace Files
The Flow Graph Analyzer includes five sample traces you can explore to get familiar with the features of the
tool. These traces are in the <advisor_installation>/fga/samples directory. Whenever you launch the
Flow Graph Analyzer, the File dialog box defaults to the samples directory.

The samples subdirectories contain samples you can load. The samples are described in the table below and
explained in more detail in the sections that follow.

Location XML files Notes

samples/code_generation dining_like.graphml Generates a Dining
Philosophers sample.

feature_like.graphml Generates a Features
Detection sample.

samples/
performance_analysis

feature_detection.graphml
feature_detection.traceml

Provides a runtime trace of
a feature detection sample.

forward_substitution.graphml
forward_substitution.traceml

Provides a runtime trace of
a forward substitution
sample.

computer_vision.graphml
computer_vision.traceml

Provides a runtime trace of
a computer vision sample.

  1   Intel® Advisor User Guide

374



NOTE The performance_analysis samples were captured by runtime tracing. Because runtime
tracing cannot infer all types and cannot capture the user bodies of nodes, these samples do not
contain complete descriptions of applications and cannot be used to regenerate the applications. You
can generate a C++ code from these samples, but it will be incomplete and will need modification
before compilation and execution. In contrast, the code_generation samples were completely
described from within Flow Graph Analyzer. When you generate a C++ code from the
code_generation samples, no modifications are necessary before compilation and execution.

code_generation Samples

Dining Philosophers
The dining_like.graphml sample provides a complete description of a Intel® oneAPI Threading Building
Blocks (oneTBB) flow graph application that implements a version of the dining philosophers problem. You
can generate a complete oneTBB flow graph by loading this file in to the Flow Graph Analyzer and then
following the instructions provided in the Generating C++ Stubs section.

Feature Detection
The feature_like.graphml sample provides a complete description of a feature detection application
based on the example described in the blog posting at https://software.intel.com/content/www/us/en/
develop/blogs/a-feature-detection-example-using-the-intel-threading-building-blocks-flow-graph.html. You
can generate a complete oneTBB flow graph by loading this file into the Flow Graph Analyzer and then
following the instructions provided in the Generating C++ Stubs section.

Intel® Advisor User Guide  1  

375

https://software.intel.com/content/www/us/en/develop/blogs/a-feature-detection-example-using-the-intel-threading-building-blocks-flow-graph.html
https://software.intel.com/content/www/us/en/develop/blogs/a-feature-detection-example-using-the-intel-threading-building-blocks-flow-graph.html


performance_analysis Samples

Forward Substitution with Trace
The forward_substitution.graphml sample shows the topology and behavior of a Intel® oneAPI
Threading Building Blocks (oneTBB) flow graph application that provides an implementation of forward
substitution on a lower-triangular matrix. The trace is for a single execution of the graph, using 4 threads for
a 8192x8192 matrix with a block size of 128. The runtime trace of the application is contained in the
matching forward_substitution.traceml file. This matching file is loaded automatically by the Flow
Graph Analyzer.

  1   Intel® Advisor User Guide

376



Feature Detection with Trace
The feature_detection.graphml sample shows the topology and behavior of a oneTBB flow graph
application.

This trace was collected using 8 threads and 32 buffers provided to the buffer queue. The concurrency varies
over time, but is limited to 8 threads at most.

Intel® Advisor User Guide  1  

377



Computer Vision with Trace
The computer_vision.graphml sample shows the topology and behavior of a oneTBB flow graph
application that represents a classic example of data flow parallelism. It is composed of three different
computer vision (CV) algorithms that process the same input data. The data is a video input stream, and you
can observe a resulting regular pattern in the timeline chart (the trace contains around 20 frames).

Notice the following:

  1   Intel® Advisor User Guide

378



Red outlined area #1 You can use the critical path calculation
functionality (turquoise box) to identify bottlenecks
in the data flow. As a result of this feature, all
nodes on the critical path are highlighted.

White box in the #2 area Zoom in the timeline to analyze a single frame
execution in detail. The frame execution flow is the
following:

1. The source node spawns a task. This is the first
stage of the image processing pipeline.

2. A limiter node is used to balance the pipeline.
It forwards the frame only if the number of
frames that are currently executed is below a
user-specified threshold.

3. Three different algorithms are executed in
parallel. Concurrency changes during the
algorithm stage because less work is available.
In the timeline, a high concurrency is colored in
green.

Lower part of red outlined area #2 For a oneTBB flow graph, an external activity can
be encapsulated in a predefined async node. This
activity represents offloading work to an
Accelerator (for example, FPGA, GPU). The
beginning and end of this activity are displayed as
green vertical lines in the timeline. You can find a
single execution within a single frame for each CV
algorithm (represented by the nodes CV serial, CV
nested, CV async). CV nested represents a node
with a nested oneTBB parallel for algorithm that
consumes most of the CPU time on average.

Intel® Advisor User Guide  1  

379



Red outlined area #3 The Treemap shows the average node weight.
CV_nested includes a oneTBBparallel_for
algorithm and consumes most of the CPU time.

Additional Resources
• Flow Graph Analyzer is delivered with the Intel® Advisor. You can find out more information about Intel®

Advisor and instructions on how to obtain it and its components at https://software.intel.com/en-us/
oneapi/advisor.

• You can download or find out more about the Intel® oneAPI Threading Building Blocks library at https://
software.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html or https://
github.com/oneapi-src/oneTBB.

Minimize Analysis Overhead
Running your target application with the Intel® Advisor can take substantially longer than running your target
application without the Intel® Advisor. Depending on an accuracy level and analyses you choose for a
perspective, different overhead is added to your application execution time. For example:

Runtime Overhead / Analysis Survey Characteri
zation

Dependen
cies

MAP

Target application runtime with Intel® Advisor
compared to runtime without Intel® Advisor

1.1x longer 2 - 55x
longer

5 - 100x
longer

5 - 20x
longer

The following tables summarize how to minimize overhead while collecting and finalizing Intel® Advisor
analysis data.

Collection Controls
The following table is a summary. For more information, see Collection Controls to Minimize Analysis
Overhead.

Minimizatio
n Technique

Impacted
Analyses

Summary

Pause
collection/
Resume
collection
using API
methods

• Survey
• Characterizatio

n

Pause collection:

• C++: __itt_pause
• Fortran: Use ITTNOTIFY statement to call ITT_PAUSE()

subroutine

Resume collection:

• C++: __itt_resume
• Fortran: Use ITTNOTIFY statement to call ITT_RESUME()

subroutine

Pause
collection/
Resume
collection
using
annotations

• Survey
• Dependencies

Some analysis
types recognize
the structural
annotations
typically used in

Pause collection:

• C++: ANNOTATE_DISABLE_COLLECTION_PUSH
• Fortran: call annotate_disable_collection_push()
• C#: Annotate.DisableCollectionPush();

Resume collection:

• C++: ANNOTATE_DISABLE_COLLECTION_POP
• Fortran: call annotate_disable_collection_pop()
• C#: Annotate.DisableCollectionPop();

  1   Intel® Advisor User Guide

380

https://software.intel.com/en-us/oneapi/advisor
https://software.intel.com/en-us/oneapi/advisor
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html
https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB


Minimizatio
n Technique

Impacted
Analyses

Summary

the Threading
perspective
workflow.

NOTE C# and .NET support is deprecated starting Intel® Advisor
2021.1.

Start target
application
with
collection
paused

• Survey
• Characterizatio

n

Start target application with collection paused:

• GUI control: Workflow pane > Start paused control
• advisor CLI action option: -start-paused

NOTE
You can use different techniques to resume collection. The most
common is __itt_resume

Start target
application
with
collection
paused/
Resume
collection
after N
seconds

• Survey
• Characterizatio

n

GUI control: Project Properties > Analysis Target > [Name]
Analysis > Advanced > Automatically resume collection after
(sec) checkbox

advisor CLI action option: -resume-after=<integer>

Stop
collection
after N
seconds

All GUI control: Project Properties > Analysis Target > [Name]
Analysis > Advanced > Automatically stop collection after
(sec) checkbox and field

advisor CLI action: -stop-after=<integer>

Stop
collection

All GUI control: Workflow pane > Stop current analysis control and
Site Coverage widget

advisor CLI: action option: -command=stop

Manually
pause
collection/
Manually
resume
collection

• Survey
• Characterizatio

n

Pause collection:

• GUI control: Workflow pane > Pause control
• advisor CLI action: -command=pause
Resume collection:

• GUI control: Workflow pane > Resume control
• advisor CLI action: -command=resume

Attach to
process/
Detach from
process

• Survey
• Characterizatio

n

Attach to process:

• GUI control: Project Properties > Analysis Target > [Name]
Analysis> Launch Application drop-down list > Attach to
Process

• advisor CLI action options: -target-pid=<unsigned
integer> and -target-process=<string>

Detach from process:

Intel® Advisor User Guide  1  

381



Minimizatio
n Technique

Impacted
Analyses

Summary

• GUI control: Workflow pane > Stop current analysis control
• advisor CLI action: -command=detach

Loop Markup
The following table is a summary. For more information, see Loop Markup to Minimize Analysis Overhead.

Minimizatio
n Technique

Impacted Intel
Advisor Analyses

Summary

Select loops
by ID

• Characterizatio
n

• Dependencies
• Memory Access

Patterns

GUI control: Survey Report  checkbox(es)

advisor CLI action option: -mark-up-list=<string>

Select loops
by source
file/line

• Characterizatio
n

• Dependencies
• Memory Access

Patterns

GUI control: Survey Report  checkbox(es)

advisor CLI action: -mark-up-loops with action option -
select=<string>

Select loops
by criteria

• Dependencies
• Memory Access

Patterns

advisor CLI: action -mark-up-loops or -collect with action
option -loops=<string>

Filtering
The following table is a summary. For more information, see Filtering to Minimize Analysis Overhead.

Minimizatio
n Technique

Impacted Intel
Advisor Analyses

Summary

Filter
modules

• Survey
• Characterizatio

n

GUI control: Project Properties > Analysis Target > [Name]
Analysis > Modules options and field

advisor CLI: action option: -module-filter-mode=include |
exclude and -module-filter=<string>

Execution Speed/Duration/Scope Properties
The following table is a summary. For more information, see Execution Speed/Duration/Scope Properties to
Minimize Analysis Overhead.

Minimizatio
n Technique

Impacted Intel
Advisor Analyses

Summary

Change
stackwalk
mode from
offline (after
collection) to

Survey GUI control: Project Properties > Analysis Target > Survey
Hotspots Analysis > Advanced > Stack unwinding mode >
During collection

advisor CLI action option: -stackwalk-mode=online

  1   Intel® Advisor User Guide

382



Minimizatio
n Technique

Impacted Intel
Advisor Analyses

Summary

online
(during
collection)

Disable
stacks
collection

• Characterizatio
n

GUI controls:

• Vectorization Workflow pane > Enable Roofline with
Callstacks checkbox

• Project Properties > Analysis Target > Trip Counts and
FLOP Analysis > Advanced > Collect stacks checkbox

advisor CLI action option: -no-stacks (or just ensure the CLI
action option -stacks is omitted from the advisor command line)

Disable stitch
stacks

Survey GUI control: Project Properties > Analysis Target > Survey
Hotspots Analysis > Advanced > Stitch stacks checkbox

advisorCLI action option: -no-stack-stitching

Increase
sampling
interval

Survey GUI control: Project Properties > Analysis Target > Survey
Hotspots Analysis > Advanced > Sampling interval field

advisor CLI action option: interval=<integer>

Limit
collected
analysis data

Survey GUI control: Project Properties > Analysis Target > Survey
Hotspots Analysis > Advanced > Collection data limit, MB
field

advisor CLI action option: -data-limit=<integer>

Limit loop
call count

• Dependencies
• Memory Access

Patterns

GUI control: Project Properties > Analysis Target > [Name]
Analysis > Advanced > Loop Call Count Limit field

advisor CLI action option: -loop-call-count-limit=<integer>

Disable
additional
analysis

Survey GUI controls: Project Properties > Analysis Target > Survey
Hotspots Analysis > Advanced...

• Analyze MKL loops and functions checkbox
• Analyze Python loops and functions checkbox
• Analyze loops that reside in non-executed code paths

checkbox
• Enable register spill/fill analysis checkbox
• Enable static instruction mix analysis checkbox

advisor CLI action options:

• -no-mkl-user-mode
• -no-profile-python
• -no-support-multi-isa-binaries
• -no-spill-analysis
• -no-static-instruction-mix

Miscellaneous Techniques
The following table is a summary. For more information, see Miscellaneous Techniques to Minimize Analysis
Overhead.

Intel® Advisor User Guide  1  

383



Minimizatio
n Technique

Impacted Intel
Advisor Analyses

Summary

Disable
cache
simulation

• Characterizatio
n

• Memory Access
Patterns

GUI controls:

• Project Properties > Analysis Target > Memory Access
Patterns Analysis > Advanced > Enable cache simulation
checkbox

• Project Properties > Analysis Target > Trip Counts and
FLOP Analysis > Advanced > Enable cache simulation
checkbox

advisor CLI action option: -no-enable-cache-simulation

Limit
reported data

Memory Access
Patterns

GUI controls:

• Project Properties > Analysis Target > Memory Access
Patterns Analysis > Advanced > Report stack variables
checkbox

• Project Properties > Analysis Target > Memory Access
Patterns Analysis > Advanced > Report heap allocated
variables checkbox

advisor CLI action options:

• -no-record-stack-frame
• -no-record-mem-allocations

Minimize
data set

All, but especially:

• Dependencies
• Memory Access

Patterns

Minimize number of instructions executed within a loop while
thoroughly exercising target application control flow paths

Temporarily
disable
finalization
until opening
result in GUI

• Survey
• Characterizatio

n

GUI control: Workflow pane > Cancel current analysis control
during finalization

advisor CLI action option: -no-auto-finalize

Collection Controls to Minimize Analysis Overhead

Issue
Running your target application with the Intel® Advisor can take substantially longer than running your target
application without the Intel Advisor. Depending on an accuracy level and analyses you choose for a
perspective, different overhead is added to your application execution time. For example:

Runtime Overhead / Analysis Survey Characteri
zation

Dependen
cies

MAP

Target application runtime with Intel® Advisor
compared to runtime without Intel® Advisor

1.1x longer 2 - 55x
longer

5 - 100x
longer

5 - 20x
longer

Solutions
Use the following techniques to skip uninteresting parts of your target application, such as the initialization
phase, and analyze only interesting parts.

  1   Intel® Advisor User Guide

384



Pause Collection/Resume Collection Using Annotations
Minimize collection overhead.

Applicable analyses: Survey, Dependencies.

Some analysis types recognize the structural annotations typically used in the Threading perspective
workflow.

Use when:

• Modifying/recompiling your target application is not an issue.
• You do not want to analyze one or more uninteresting parts of your target application.
• The interesting parts of your target application involve large workloads (because Pause/Resume API call

frequency is about 1 Hz, and the operations pause and resume data collection in all processes in the
analysis run, with the corresponding collection state notification to the GUI).

To pause collection, add the following annotation to your code:

• C++: ANNOTATE_DISABLE_COLLECTION_PUSH
• Fortran: call annotate_disable_collection_push()
• C#: Annotate.DisableCollectionPush();

To resume collection, add the following annotation to your code:

• C++: ANNOTATE_DISABLE_COLLECTION_POP
• Fortran: call annotate_disable_collection_pop()
• C#: Annotate.DisableCollectionPop();

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

See Pause Collection and Resume Collection Annotations for more information.

Pause Collection/Resume Collection Using API Methods
Minimize collection overhead using the Intel® Instrumentation and Tracing Technology (ITT) API.

Tip For MPI applications, you can also use a standard MPI-specific function MPI_Pcontrol(<N>) to
pause and resume data collection. This function requires no changes in the application building
process, unlike the ITT API calls, which require linking of a static ITT API library. See Control Collection
with an MPI_Pcontrol Function.

Applicable analyses: Survey, Characterization with Trip Counts or FLOP collection enabled.

Use when:

• Modifying/recompiling your target application is not an issue.
• You do not want to analyze one or more uninteresting parts of your target application.
• The interesting parts of your target application involve large workloads (because Pause/Resume API call

frequency is about 1 Hz, and the operations pause and resume data collection in all processes in the
analysis run, with the corresponding collection state notification to the GUI).

Prerequisites:

• Add the following statements to every source file you want to instrument:

• C/C++: ittnotify.h
• Fortran: USE ITTNOTIFY

Intel® Advisor User Guide  1  

385



NOTE

• The ittnotify header file contains definitions of ITT API routines and important macros that
provide the correct logic of API invocation from an application.

• The ITT API is designed to incur almost zero overhead when tracing is disabled. If you need
completely zero overhead, you can compile out all ITT API calls from an application by defining the
INTEL_NO_ITTNOTIFY_API macro in your project at compile time, either on the compiler command
line or in your source file prior to including the ittnotify header file.

• Configure your build system to reach ITT API header file and libraries, where <install-dir> is the Intel
Advisor installation directory.

• Add the appropriate entry to your INCLUDE path:

• C++: <install-dir>/sdk/include
• Fortran: <install-dir>/sdk/include/lib32 or <install-dir>/sdk/include/lib64
• Microsoft Visual Studio* IDE: Project Properties > C/C++ | Fortran > General > Additional

Include Directories.
• Add <install-dir>/sdk/lib32 or <install-dir>/sdk/lib64 to your LIBRARIES path.

Visual Studio IDE: Project Properties > C/C++ | Fortran > General > Additional Include
Libraries.

NOTE The ITT API headers, static libraries, and Fortran modules previously located at <install-
dir>/include and <install-dir>/[lib32 | lib64] folders were moved to the <install-
dir>/sdk/include and <install-dir>/sdk/[lib32 | lib64] folder. Copies of these files are
retained at their old locations for backward compatibility and these copies should not be used for new
projects.

• Link your target application to the static library libittnotify.a (Linux* OS) or libittnotify.lib
(Windows* OS) by passing -littnotify to your compiler. If tracing is enabled, this static library loads
the ITT API implementation and forwards ITT API instrument data to the Intel Advisor. If tracing is
disabled, the static library ignores ITT API calls, providing nearly zero instrumentation overhead.

Visual Studio IDE: Project Properties > Linker > Input > Additional Dependencies
• Insert _itt_pause (C/C++) or CALL ITT_PAUSE (Fortran) before uninteresting parts of your target

application and the _itt_resume (C/C++) or CALL ITT_RESUME (Fortran) before interesting parts of
your target application.

Example 1: The following snippet plus the standard run control collects analysis data twice - at the
beginning and the middle of the snippet:

#include <ittnotify.h>
int main(int argc, char* argv[])
{
// Do work here
__itt_pause();
// Do uninteresting work here
__itt_resume();
// Do work here
__itt_pause();
// Do uninteresting work here
return 0;
}

  1   Intel® Advisor User Guide

386



Example 2: The following snippet plus the standard run control collects analysis data only once - in the
middle of the snippet:

#include <ittnotify.h>
int main(int argc, char* argv[])
{
__itt_pause();
// Do uninteresting work here
__itt_resume();
// Do work here
__itt_pause();
// Do uninteresting work here
return 0;
}

Example 3: The following snippet plus the standard run control collects analysis data only once - at the
end of the snippet:

#include <ittnotify.h>
int main(int argc, char* argv[])
{
__itt_pause();
// Do uninteresting work here
__itt_resume();
// Do work here
return 0;
}

Example 4: The following snippet plus the Start Paused control collects analysis data only once -
at the end of the snippet:

#include <ittnotify.h>
int main(int argc, char* argv[])
{
// Do uninteresting work here
__itt_resume();
// Do work here
return 0;
}

After performing the prerequisites and recompiling, do one of the following:

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

•

Click the standard run control or the  Start Paused control on the Analysis Workflow pane to
run the desired analysis.

• Use the advisor CLI action --collect with or without the CLI action option --start-paused to run the
desired analysis. For example:

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
To attach ITT APIs to a launched application, that is, to collect API data on an application that is already
launched, point the target application to the ittnotify_collector library using an environment variable:

• Windows* OS:

Intel® Advisor User Guide  1  

387



set INTEL_LIBITTNOTIFY32=<install_dir>\bin32\runtime\ittnotify_collector.dll
set INTEL_LIBITTNOTIFY64=<install_dir>\bin64\runtime\ittnotify_collector.dll

• Linux* OS:

export INTEL_LIBITTNOTIFY32=<install_dir>/lib32/runtime/libittnotify_collector.so
export INTEL_LIBITTNOTIFY64=<install_dir>/lib64/runtime/libittnotify_collector.so

NOTE
Use the full path to the library without quotations marks.

After you complete configuration, start the instrumented application in the correct environment. Intel®
Advisor collects API data even if the application is launched before the Intel® Advisor is launched.

You can find the ITT API documentation at https://github.com/intel/ittapi.

Start Target Application With Collection Paused
Minimize collection overhead.

Applicable analyses: Survey, Characterization with Trip Counts and FLOP collection enabled.

Use when you do not want to analyze the early phase(s) of your target application, such as the initialization
phase, but you want analysis in ready mode.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

To implement, do one of the following:

•

Click the associated  control on the Analysis Workflow pane to run the desired analysis.
• Use the advisor CLI action option --start-paused when you run the desired analysis. For example:

advisor --collect=survey --start-paused --project-dir=./advi_results -- ./myApplication

NOTE
You can use different techniques to resume collection. The most common is __itt_resume.

Start Target Application With Collection Paused/Resume Collection After N Seconds
Minimize collection overhead.

Applicable analyses: Survey, Characterization with Trip Counts and FLOP collection enabled.

Use when...

• You do not want to modify/recompile your target application.
• You do not want to analyze the initialization phase of your target application.
• You have a good idea of the time interval of interest, but pinpointing the exact beginning of the

interesting part of your target application is not important.
• The interesting part of your target application is more than a few loops.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

  1   Intel® Advisor User Guide

388

https://github.com/intel/ittapi


To implement, do one of the following:

• Enable the Project Properties > Analysis Target > [Name] Analysis > Advanced > Automatically
resume collection after (sec) checkbox and supply the desired value, where [Name] is Survey or Trip
Counts and FLOP.

Click the standard run control on the Analysis Workflow pane to run the desired analysis. (Collection
automatically starts in the paused state.)

• Use the advisor CLI action option --resume-after=<integer> when your run the desired analysis. For
example:

advisor --collect=survey --resume-after=30 --project-dir=./advi_results -- ./myApplication

NOTE
Use a value representing seconds in the GUI field and milliseconds in the integer argument.

Stop Collection After N Seconds
Minimize collection overhead.

Applicable analyses: Survey, Characterization with Trip Counts and FLOP collection enabled, Dependencies,
Memory Access Patterns.

This is the flip side of the Start target application with collection paused technique. Use when...

• You do not want to modify/recompile your target application.
• You do not want to analyze the end of your target application.
• You have a good idea of the time interval of interest, but pinpointing the exact end of the interesting part

of your target application is not important.
• The interesting part of your target application is more than a few loops.

To implement, enable Project Properties > Analysis Target > [Name] Analysis > Advanced >
Automatically stop collection after (sec) checkbox and supply the desired value, where [Name] is
Survey or Trip Counts and FLOP.

Click the standard run control on the Analysis Workflow pane to run the desired analysis.

NOTE
Use a value representing seconds in both the GUI field and integer argument.

Stop Collection
Minimize collection overhead.

Applicable analyses: Survey, Characterization with Trip Counts and FLOP collection enabled, Dependencies,
Memory Access Patterns.

Use when...

• You do not want to modify/recompile your target application.
• You do not want to analyze the end of your target application.
• You can detect the time interval of interest based on target application output.
• The interesting part of your target application is more than a few loops.

To implement, do one of the following:

•

Click the associated  control on the Analysis Workflow pane when running the desired analysis.

Intel® Advisor User Guide  1  

389



NOTE
If running a Dependencies or Memory Access Patterns analysis, use the Site Coverage bar to
determine when all marked loops are analyzed at least once:

• Use the advisor CLI action --command=stop when you run the desired analysis. For example:

advisor --command=stop --result-dir=./myAdvisorResult  

Manually Pause Collection/Manually Resume Collection
Minimize collection overhead.

Applicable analyses: Survey, Characterization with Trip Counts and FLOP collection enabled.

Use when...

• You can detect the time interval of interest based on target application output.
• Your need to pause or resume is unplanned and spontaneous.

To implement, do one of the following to pause analysis data collection (the target application continues
running, but analysis data collection stops):

•

Click the associated  control on the Analysis Workflow pane when running the desired analysis.
• Use the advisor CLI action --command=pause when you run the desired analysis. For example:

advisor --command=pause --result-dir=./myAdvisorResult  
Do one of the following to resume analysis data collection:

•

Click the associated  control on the Analysis Workflow pane.
• Use the advisor CLI action --command=resume. For example:

advisor --command=resume --result-dir=./myAdvisorResult  

Attach to Process/Detach from Process
Minimize collection overhead.

Applicable analyses: Survey, Characterization with Trip Counts and FLOP collection enabled without call
stacks.

This technique is similar to the Start target application with collection paused technique, except you can
attach to an already running process. This is particularly beneficial if:

• The process is a service that runs forever.
• The launching infrastructure is relatively complicated, such as a sequence of scripts that must be modified

to embed a launch collection command.

GUI:

  1   Intel® Advisor User Guide

390



1. Choose Project Properties > Analysis Target > [Name] Analysis> Launch Application drop-
down list > Attach to Process, where [Name] is Survey or Trip Counts and FLOP.

2. Disable the Inherit settings from Survey Hotspots Analysis Type checkbox.
3. Choose the Process name or PID option and identify a process.
4. Supply other information as desired and close the Project Properties dialog box.
5. Click the standard run control on the Analysis Workflow pane to run the desired analysis.

CLI: Use the advisor CLI action option --target-pid=<unsigned integer> or --target-
process=<string> to attach to a process when running the desired analysis. For example:

advisor --collect=survey --project-dir=./advi_results --result-dir=./myAdvisorResult --target-
process=myProcess 

Do one of the following to stop collecting analysis data on a process (the process continues running but
analysis data collection stops):

•

Click the associated  control on the Analysis Workflow pane.
• Use the advisor CLI action --command=detach. For example:

advisor --command=detach --result-dir=./myAdvisorResult 

NOTE

• Ensure call stacks are disabled (which is the default setting) if you run the Characterization with
Trip Counts and FLOP collection enabled analysis:

• Disable the Project Properties > Analysis Target > Trip Counts and FLOP Analysis >
Advanced > Collect stacks checkbox.

• Add the advisor CLI action option --no-stacks to the --collect command, or simply omit a
--stacks action option on the --collect command.

• Using the advisor CLI action --command=stop kills the process (which also stops analysis data
collection).

See Also
Loop Markup to Minimize Analysis Overhead
Filtering to Minimize Analysis Overhead
Execution Speed/Duration/Scope Properties to Minimize Analysis Overhead
Miscellaneous Techniques to Minimize Analysis Overhead

Loop Markup to Minimize Analysis Overhead

Issue
Running your target application with the Intel® Advisor can take substantially longer than running your target
application without the Intel® Advisor. Depending on an accuracy level and analyses you choose for a
perspective, different overhead is added to your application execution time. For example:

Runtime Overhead / Analysis Survey Characteri
zation

Dependen
cies

MAP

Target application runtime with Intel® Advisor
compared to runtime without Intel® Advisor

1.1x longer 2 - 55x
longer

5 - 100x
longer

5 - 20x
longer

Intel® Advisor User Guide  1  

391



Solutions
Use the following techniques to skip uninteresting loops and analyze only interesting loops.

Select Loops by ID
Goal: Minimize collection overhead.

Applicable analyses: Characterization with Trip Counts and FLOP collection enabled, Dependencies, Memory
Access Patterns.

Use when...

• You want to perform a deeper analysis on only a few loops.
• CLI environment: You cannot identify source file/line numbers, such as when you are analyzing a target

application for which you do not have access to source code.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Prerequisites:

1. Run a Survey analysis.
2. advisor CLI environment: Identify the loop IDs for the loops of interest.

advisor --report=survey --project-dir=./advi_results -- ./myApplication
In the report, the first column is the loop IDs.

Tip
Intel® Advisor reports tend to be very wide. Do one of the following to generate readable reports:

• Set your console width appropriately to avoid line wrapping.
• Pipe your report using the appropriate truncation command if you care only about the first few

report columns.

After performing the prerequisites, do one of the following:

• For Vectorization and CPU Roofline: Mark the loop(s) of interest by enabling the associated  checkbox on
the Survey Report.

Then run a Characterization with Trip Counts and FLOP collection enabled, Dependencies, or Memory
Access Patterns analysis.

• For Offload Modeling: Go to Project Properties > Performance Modeling and enter the CLI action
option --select=<string> in the Other parameters field. For example, --select=5,10,12.

• Mark the loop(s) of interest using the CLI action option --select=<string> (recommended) or --mark-
up-list=<string> when running a Characterization with Trip Counts and FLOP collection enabled,
Dependencies, or Memory Access Patterns analysis. For example, with the --select option:

advisor --collect=tripcounts --flop --project-dir=./advi_results --select=5,10,12 -- ./
myApplication

Then run a Characterization with Trip Counts and FLOP collections enabled, Dependencies, or Memory
Access Patterns analysis.

  1   Intel® Advisor User Guide

392



NOTE
There are different ways to select loops is in the CLI environment:

• The advisor CLI action options --mark-up-list=<string> and --select=<string> merely

simulate enabling a GUI  checkbox when used within -collect action. They are active only for the
duration of the --collect command.

• The same options used with advisor CLI action --mark-up-loops actually enable a GUI 
checkbox. They are active beyond the duration of the -mark-up-loops command and applies to all
downstream analyses, such as Characterization with Trip Counts and FLOP collection enabled,
Dependencies, Memory Access Patterns.

Select Loops by Source File/Line Number
Minimize collection overhead.

Applicable analyses: Characterization with Trip Counts and FLOP collection enabled, Dependencies, Memory
Access Patterns.

Use when...

• You want to perform a deeper analysis on only a few loops.
• CLI environment: You are analyzing a target application for which you have access to source code and can

identify source file/line numbers.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Prerequisites:

1. Run a Survey analysis.
2. advisor CLI environment: If necessary, identify the source file and line number for the loops of

interest.

advisor --report=survey --project-dir=./advi_results -- ./myApplication
After performing the prerequisites, do one of the following:

• For Vectorization and CPU Roofline: Mark the loop(s) of interest by enabling the associated  checkbox on
the Survey report.

Then run a Characterization with Trip Counts and FLOP collection enabled, Dependencies, or Memory
Access Patterns analysis.

• For Offload Modeling: Go to Project Properties > Performance Modeling and enter the CLI action
option --select=<string> in the Other parameters field. For example, --
select=foo.cpp:34,bar.cpp:192.

• Mark the loop(s) of interest using the CLI action option --select=<string> (recommended) or --mark-
up-list=<string> for a Characterization with Trip Counts and FLOP collection enabled, Dependencies, or
Memory Access Patterns analysis. For example, with the -select option:

advisor --collect=tripcounts --flop --project-dir=./advi_results --select=foo.cpp:34,bar.cpp:192 
-- ./bin/myApplication

• Mark the loop(s) of interest by enabling the associated  checkbox on the Survey Report.

Then run a Characterization with Trip Counts and FLOP collection enabled, Dependencies, or Memory
Access Patterns analysis.

Intel® Advisor User Guide  1  

393



• Mark the loop(s) of interest using the advisor CLI action --mark-up-loops and action option --
select=<string>. For example:

advisor --mark-up-loops --select=foo.cpp:34,bar.cpp:192 --project-dir=./advi_results -- ./
myApplication

Then run a Characterization with Trip Counts and FLOP collection enabled, Dependencies, or Memory
Access Patterns analysis.

NOTE

• There is essentially no difference between selecting loops by ID and selecting loops by source file/
line in the GUI environment. The difference is in the advisor CLI environment:

• The advisor CLI action option--mark-up-list=<string> merely simulates enabling a GUI 
checkbox; therefore it persists only for the duration of the --collect command.

• The advisor CLI action--mark-up-loops and action option --select=<string> actually

enables a GUI  checkbox; therefore it persists beyond the duration of the --mark-up-loops
command and applies to downstream analyses, such as Characterization with Trip Counts and
FLOP collection enabled, Dependencies, and Memory Access Patterns.

• If you use the --mark-up-loops CLI action to mark up loops, you can append and remove source
file/line numbers for an analysis run after it using the advisor CLI action option --
append=<string> and --remove=<string> respectively.

Select Loops by Criteria
Goal: Minimize collection overhead.

Applicable analyses: Dependencies, Memory Access Patterns.

Use when you want to perform a deeper analysis on loops chosen by criteria instead of by human input, such
as when you are running the Intel® Advisor with a collection preset or using automated scripts.

To implement in the advisor CLI environment, run the commands similar to the following one by one from
the command line or create a script similar to the following examples and run it to execute the commands
automatically. Use the --select (recommended) or --loops option to select loops by criteria.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

For example, to analyze loop-carried dependencies in loops/functions that have the Assumes dependency
present issue, use one of the following:

• Example 1:

advisor --collect=survey --project-dir=./advi_results -- ./bin/myApplication
advisor --collect=dependencies --project-dir=./advi_results  -- ./myApplicaton

• Example 2:

advisor --collect=survey --project-dir=./advi_results -- ./bin/myApplication
advisor --collect=dependencies select="scalar,has-issue" --project-dir=./advi_results  -- ./
myApplicaton

Select Loops by Markup Algorithm
Goal: Minimize collection overhead.

  1   Intel® Advisor User Guide

394



Applicable analyses: Characterization with Trip Counts and FLOP collection enabled, Dependencies, Memory
Access Patterns.

NOTE This is only applicable to the Offload Modeling perspective.

Use --select=r:markup=<algorithm> when you want to perform a deeper analysis on loops chosen by a
pre-defined markup algorithm based on a programming model used and/or estimated offload profitability.

If you analyze an application that runs on a CPU, use the gpu_generic algorithm. This algorithm selects all
potentially profitable loops/functions for additional analyses to collect more data and make sure they can be
safely offloaded.

If you analyze code regions that are already offloaded and use a specific programming model, use one of the
following algorithms:

• omp - Select OpenMP* loops.
• icpx -fsycl - Select SYCL loops.
• ocl - Select OpenCL™ loops.
• daal - Select Intel® oneAPI Data Analytics Library loops.
• tbb - Select Intel® oneAPI Threading Building Blocks loops.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

For example, to run the Offload Modeling and analyze potentially profitable code regions in details:

• Example 1. Use the --select=r:markup=<algorithm> option with the --collect action option to
select loops only for the specific analysis.

advisor --collect=survey --project-dir=./advi_results --static-instruction-mix -- ./myApplication
advisor --collect=tripcounts --project-dir=./advi_results --flop --cache-simulation=single  --
target-device=xehpg_512xve --stacks --data-transfer=light  -- ./myApplication
advisor --collect=dependencies --filter-reductions --loop-call-count-limit=16 --select 
markup=gpu_generic --project-dir=./advi_results -- ./myApplication
advisor --collect=projection --project-dir=./advi_results

• Example 2. Use the --select=r:markup=<algorithm> option with the --mark-up-loops action option
in a separate step to select loops for all analysis executed after this command.

advisor --collect=survey --project-dir=./advi_results --static-instruction-mix -- ./myApplication
advisor --collect=tripcounts --project-dir=./advi_results --flop --cache-simulation=single  --
target-device=xehpg_512xve --stacks --data-transfer=light  -- ./myApplication
advisor --mark-up-loops --project-dir=./advi_results --select markup=gpu_generic -- ./
myApplication
advisor --collect=dependencies --filter-reductions --loop-call-count-limit=16 --project-dir=./
advi_results -- ./myApplication
advisor --collect=projection --project-dir=./advi_results

NOTE Currently, there is no GUI equivalent of the markup strategies. The gpu_generic strategy is
used by default.

Intel® Advisor User Guide  1  

395



See Also
Collection Controls to Minimize Analysis Overhead
Filtering to Minimize Analysis Overhead
Execution Speed/Duration/Scope Properties to Minimize Analysis Overhead
Miscellaneous Techniques to Minimize Analysis Overhead

Filtering to Minimize Analysis Overhead

Issue
Running your target application with the Intel® Advisor can take substantially longer than running your target
application without the Intel Advisor. Depending on an accuracy level and analyses you choose for a
perspective, different overhead is added to your application execution time. For example:

Runtime Overhead / Analysis Survey Characteri
zation

Dependen
cies

MAP

Target application runtime with Intel® Advisor
compared to runtime without Intel® Advisor

1.1x longer 2 - 55x
longer

5 - 100x
longer

5 - 20x
longer

Solution
Use the following techniques to skip uninteresting modules and/or analyze only interesting modules.

Filter Modules
Minimize collection and finalization overhead.

Applicable analyses: Survey, Characterization with Trip Counts and FLOP collection enabled.

Use to...

• Exclude modules you cannot optimize, such as third-party code.
• Include a small number of modules of interest.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

To implement, do one of the following before/while running the desired analysis:

• Set Project Properties > Analysis Target > [Name] Analysis > Modules > Exclude the following
module(s) and identify the modules, where [Name] is Survey or Trip Counts and FLOP.

• Use the advisor CLI action options --module-filter-mode=exclude and --module-
filter=<string>. For example:

advisor --collect=survey --project-dir=./advi_results --module-filter-mode=exclude --module-
filter=foo1.so,foo2.so -- ./myApplication

• Set Project Properties > Analysis Target > [Name] Analysis > Modules > Include only the
following module(s) and identify the modules.

• Use the advisor CLI action options --module-filter-mode=include and --module-
filter=<string>. For example:

advisor --collect=survey --project-dir=./advi_results --module-filter-mode=include --module-
filter=foo1.so,foo2.so -- ./myApplication

See Also
Collection Controls to Minimize Analysis Overhead
Loop Markup to Minimize Analysis Overhead
Execution Speed/Duration/Scope Properties to Minimize Analysis Overhead

  1   Intel® Advisor User Guide

396



Miscellaneous Techniques to Minimize Analysis Overhead

Execution Speed/Duration/Scope Properties to Minimize Analysis Overhead

Issue
Running your target application with the Intel® Advisor can take substantially longer than running your target
application without the Intel Advisor. Depending on an accuracy level and analyses you choose for a
perspective, different overhead is added to your application execution time. For example:

Runtime Overhead / Analysis Survey Characteri
zation

Dependen
cies

MAP

Target application runtime with Intel® Advisor
compared to runtime without Intel® Advisor

1.1x longer 2 - 55x
longer

5 - 100x
longer

5 - 20x
longer

Solutions
Use the following techniques to minimize overhead while collecting Intel Advisor analysis data. The Disabling
additional analysis technique also minimizes finalization overhead.

Change Stackwalk Mode from Offline (After collection) to Online (During Collection)
Minimize collection overhead.

Applicable analysis: Survey.

Set to offline/after collection when:

• Survey analysis runtime overhead exceeds 1.1x.
• A large quantity of data is allocated on the stack, which is a common case for Fortran applications or

applications with a large number of small, parallel, OpenMP* regions

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

To implement, do one of the following before/while running a Survey analysis:

• Set Project Properties > Analysis Target > Survey Hotspots Analysis > Advanced > Stack
unwinding mode  > During collection.

• Use the advisor CLI action option --stackwalk-mode=online. For example:

advisor --collect=survey --project-dir=./advi_results --stackwalk-mode=online -- ./myApplication

Disable Stacks Collection
Minimize collection overhead.

Applicable analyses: Characterization with Trip Counts and FLOP collections enabled.

To implement, do one of the following before/while running the analysis:

• Disable the Analysis Workflow pane > Characterization Collect call stacks checkbox.
• Disable the Project Properties > Analysis Target > Trip Counts and FLOP Analysis > Advanced >

Collect stacks checkbox.
• Ensure the CLI action option --stacks is omitted from the command line. Alternative: Use the CLI action

option --no-stacks.

Intel® Advisor User Guide  1  

397



NOTE If you collected callstack-attributed data with collect.py or advisor (with
--collect=tripcounts), but callstack attribution went wrong, disable using callstacks data for
analysis with analyze.py to avoid using the wrong data. This is a possible fallback when data with
stacks is broken. Notice that this reduces modeling accuracy.

Disable Stitch Stacks
Minimize collection overhead.

Applicable analysis: Survey.

The stitch stacks option restores a logical call tree for Intel® oneAPI Threading Building Blocks (oneTBB) or
OpenMP* applications by catching notifications from the runtime and attaching stacks to a point introducing a
parallel workload.

Disable when Survey analysis runtime overhead exceeds 1.1x.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

To implement, do one of the following before/while running the analysis:

• Disable the Project Properties > Analysis Target > Survey Hotspots Analysis > Advanced >
Stitch stacks checkbox.

• Use the advisor CLI action option --no-stack-stitching. For example:

advisor --collect=survey --project-dir=./advi_results --no-stack-stitching -- ./myApplication

NOTE
Disabling stack stitching may decrease the overhead for applications using oneTBB.

Increase Sampling Interval
Minimize collection overhead.

Applicable analysis: Survey.

Increase the wait time between each analysis collection sample when your target application runtime is long.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

To implement, do one of the following before/while running the analysis:

• Increase the value in the Project Properties > Analysis Target > Survey Hotspots Analysis >
Advanced > Sampling interval checkbox.

• Use the advisor CLI action option --interval=<integer> when running a Survey analysis. For
example:

advisor --collect=survey --project-dir=./advi_results --interval=20 -- ./myApplication

Limit Collected Analysis Data
Minimize collection overhead.

Applicable analysis: Survey.

  1   Intel® Advisor User Guide

398



Decrease the amount of collected raw data when exceeding a size threshold could cause issues. For example:
You have storage space limitations.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

To implement, do one of the following before/while running the analysis:

• Decrease the value in the Project Properties > Analysis Target > Survey Hotspots Analysis >
Advanced > Collection data limit, MB field.

• Decrease the value in the advisor CLI action option --data-limit=<integer>. For example:

advisor --collect=survey --project-dir=./advi_results --data-limit=250 -- ./myApplication

Limit Loop Call Count
Minimize collection overhead.

Applicable analysis: Dependencies, Memory Access Patterns.

Decrease the maximum number of instances each marked loop is analyzed.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

To implement, do one of the following before/while running the analysis:

• Supply a non-zero value in the Project Properties > Analysis Target > [Name] Analysis >
Advanced > Loop Call Count Limit field.

• Supply a non-zero value in the advisor CLI action option --loop-call-count-limit=<integer>. For
example:

advisor --collect=dependencies --project-dir=./advi_results --loop-call-count-limit=10 -- ./
myApplication

Disable Additional Analysis
Minimize finalization overhead.

Applicable analysis: Survey.

Implement these techniques when the additional data is not important to you.

NOTE
The default setting for all the properties/options in the table below is disabled.

Path: Project Properties >
Analysis Target > Survey
Hotspots Analysis >
Advanced

CLI Action Options Description

Disable the Analyze MKL
loops and functions
checkbox.

--no-mkl-user-mode Do not show Intel® oneAPI Math Kernel
Library loops and functions in Intel Advisor
reports.

Disable the Analyze Python
loops and functions
checkbox.

--no-profile-python Do shot show Python* loops and functions in
Intel Advisor reports.

Intel® Advisor User Guide  1  

399



Path: Project Properties >
Analysis Target > Survey
Hotspots Analysis >
Advanced

CLI Action Options Description

Disable the Analyze loops
that reside in non-
executed code paths
checkbox.

--no-support-multi-
isa-binaries

Do not collect a variety of data for loops that
reside in non-executed code paths, including:

• Loop assembly code
• Instruction set architecture (ISA)
• Vector length

NOTE
This capability is available only for binaries
compiled using the -ax (Linux* OS)/Qax
(Windows* OS) option with an Intel® compiler.

Disable the Enable register
spill/fill analysis checkbox.

--no-spill-analysis Do not calculate the number of consecutive
load/store operations in registers and related
memory traffic.

Disable the Enable static
instruction mix analysis
checkbox.

--no-static-
instruction-mix

Do not statically calculate the number of
specific instructions present in the binary.

See Also
Collection Controls to Minimize Analysis Overhead
Loop Markup to Minimize Analysis Overhead
Filtering to Minimize Analysis Overhead
Miscellaneous Techniques to Minimize Analysis Overhead

Miscellaneous Techniques to Minimize Analysis Overhead

Issue
Running your target application with the Intel® Advisor can take substantially longer than running your target
application without the Intel® Advisor. Depending on an accuracy level and analyses you choose for a
perspective, different overhead is added to your application execution time. For example:

Runtime Overhead / Analysis Survey Characteri
zation

Dependen
cies

MAP

Target application runtime with Intel® Advisor
compared to runtime without Intel® Advisor

1.1x longer 2 - 55x
longer

5 - 100x
longer

5 - 20x
longer

Solutions
The following techniques may help minimize overhead without limiting collection scope.

Disable Cache Simulation
Minimize collection overhead.

Applicable analyses:

  1   Intel® Advisor User Guide

400



• Memory Access Patterns (base simulation functionality)
• Characterization with Trip Counts and FLOP collection enabled (enhanced simulation functionality)

Implement these techniques when cache modeling information is not important to you:

NOTE
The default setting for all the properties/options in the table below is disabled.

From the Analysis Workflow pane, disable Characterization > Enable CPU cache simulation for the
Characterization analysis.

From the Project Properties:

Path: Project Properties >
Analysis Target...

CLI Action Options Description

Disable the Memory Access
Patterns Analysis >
Advanced > Enable
Memory-Level Roofline
with cache simulation
checkbox.

--no-enable-cache-
simulation

Do not model cache misses, cache misses and
cache line utilization, or cache misses and
loop footprint.

Disable the Trip Counts and
FLOP Analysis >
Advanced > Enable CPU
cache simulation checkbox.

--no-enable-cache-
simulation

Do not:

• Model multiple levels of cache for data,
such as counts of loaded of stored bytes
for each loop.

• Create simulations for specific cache
hierarchy configurations.

Limit Reported Data
Applicable analysis: Memory Access Patterns.

Implement these techniques when the additional data is not important to you.

NOTE
The default setting for all the properties/options in the table below is enabled.

Project Properties >
Analysis Target > Memory
Access Patterns Analysis >
Advanced

CLI Action Options Description

Disable the Report stack
variables checkbox.

--no-record-stack-
frame

Do not report stack variables for which
memory access strides are detected.

Disable the Report heap
allocated variables
checkbox.

--no-record-stack-
frame

Do not report heap-allocated variables for
which memory access strides are detected.

Minimize Data Set
Minimize collection overhead.

Intel® Advisor User Guide  1  

401



Applicable analyses: All, but especially Dependencies, Memory Access Patterns.

When you run an analysis, the Intel® Advisor executes the target against the supplied data set. Data set size
and workload have a direct impact on target application execution time and analysis speed

For example, it takes longer to process a 1000x1000 pixel image than a 100x100 pixel image. A possible
reason: You may have loops with an iteration space of 1...1000 for the larger image, but only 1...100 for the
smaller image. The exact same code paths may be executed in both cases. The difference is the number of
times these code paths are repeated.

You can control analysis cost without sacrificing completeness by minimizing this kind of unnecessary
repetition from target application execution.

Instead of choosing large, repetitive data sets, choose small, representative data sets that minimize the
number of instructions executed within a loop while thoroughly exercising target application control flow
paths.

Your objective: In as short a runtime period as possible, execute as many paths as you can afford, while
minimizing the repetitive computation within each task to the bare minimum needed for good code coverage.

Data sets that run in about ten seconds or less are ideal. You can always create additional data sets to
ensure all your code is checked.

Temporarily Disable Finalization
Minimize finalization overhead.

Applicable analyses: Survey, Characterization with Trip Counts and FLOP collection enabled.

Use when you plan to view collected analysis data on a different machine. Finalization automatically occurs
when a result is opened in the GUI or a report is generated from the result.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

To implement, do one of the following while running an analysis:

• When the analysis Finalizing data... phase begins, click the associated Cancel button.

• Use the advisor CLI action option --no-auto-finalize when you run the desired analysis. For
example:

advisor --collect=survey --project-dir=./advi_results --no-auto-finalize -- ./myApplication
When you open the result in GUI next time, the result is refinalized automatically.

To refinalize the result when running the analysis from CLI, use the refinalize-survey option with --
report action. For example:

advisor --report=survey --search-dir src:=./src bin:=./bin --refinalize-survey --project-dir=./
advi_results -- ./myApplication

See Also
Collection Controls to Minimize Analysis Overhead
Loop Markup to Minimize Analysis Overhead
Filtering to Minimize Analysis Overhead
Execution Speed/Duration/Scope Properties to Minimize Analysis Overhead

  1   Intel® Advisor User Guide

402



Analyze MPI Applications
With Intel® Advisor, you can analyze parallel tasks
running on a cluster to examine performance of your
MPI application.

To start MPI jobs, use an MPI launcher such as mpirun, mpiexec, srun, aprun. You can use the Intel
Advisor with the Intel® MPI Library or other MPI implementations only through the command line interface,
but you can view the result using the standalone GUI, as well as the command line. The examples provided
in this section use mpirun with the advisor command line interface (CLI) to spawn processes across the
cluster and collect data about the application.

NOTE Use the MPI implementation that passes communication information using environment
variables. The implementation needs to operate with the Intel Advisor process (advisor) being
between the launcher process and the application process. Intel Advisor does not work on an MPI
implementation that tries to pass communication information from its immediate parent process.

To analyze your MPI application:

1. Prerequisite: Set up environment variables to enable Intel Advisor CLI.
2. Optional: Get pre-configured command lines.
3. Run Intel Advisor analyses with one of the following:

• Analyze a single rank of the MPI application with the Intel MPI Library
• Analyze multiple or all ranks of the MPI application with Intel MPI Library
• Analyze all ranks of the MPI application with non-Intel MPI library

4. View the results.

You can analyze your application as one of the following:

• If you have a directory shared between remote and local systems: Collect data remotely to the shared
directory. In this case, you do not need to move a project between the systems.

• If you do not have a shared directory: Collect data to a directory on a remote system (for example, on a
cluster), generate a snapshot (optionally), and copy the snapshot or a project to your local system to view
the result. If you generate a snapshot, you do not need to configure the search paths for a project.

Get Preconfigured Command Lines
You can generate pre-configured command lines for collecting results for the Intel MPI Library launcher or a
custom launcher using Intel Advisor graphical user interface (GUI). In this case, you do not need to type
each command with all options and paths to a project directory and an application executable manually.

See Generate Command Lines for details.

Use Intel® MPI Library
With the Intel MPI Library, you can analyze a single MPI rank or several ranks of your MPI application with
the Intel Advisor. This can help you to decrease analysis overhead.

Recommended MPI ranks to analyze are rank 1 and higher, because rank 0 might include time for
configuration and not be a good representative for the general MPI application performance.

MPI Command Syntax

To collect performance data for an MPI application with Intel Advisor using the mpirun launcher of the Intel
MPI Library, use the following command syntax:

mpirun -gtool "advisor --collect=<analysis-type> --search-dir src:r=<source-dir> [--no-
auto-finalize] --project-dir=<project-dir>:<rank-set>" -n <N><application-name>
[<application-options>]

Intel® Advisor User Guide  1  

403



where:

• -gtool allows you to run Intel Advisor analyses for the specified MPI ranks only. This option is available
for Intel MPI Library 5.0.2 or higher.

• <analysis-type> is an Intel Advisor analysis to run: survey, tripcounts, map. dependencies,
projection.

• <source-dir> is the path to the directory where application sources are stored. Specify it if you disabled
autofinalization.

• <project-dir> is the path/name of the project directory where the analysis results are saved. Specify the
same project directory when running various Intel Advisor collections for the selected process.

• <ranks-set> is a set of MPI ranks to analyze. Each rank corresponds to an MPI process and is used to
identify the result data. Separate ranks with a comma or use a dash " - " to set a range of ranks. Use
with -gtool option only. Do not specify if you want to analyze all ranks.

• <N> is the number of MPI processes to launch.
• --no-auto-finalize disables result finalization on the target system to decrease overhead. The results

are finalized when you import them or open in Intel Advisor GUI. Do not use this option if you do not use
a shared directory and plan to copy results from cluster with snapshot. See Temporarily Disable
Finalization for details.

Analyze a Single Rank of MPI Application with Intel MPI Library
Prerequisite: Set up environment variables to enable Intel Advisor CLI.

In the commands below:

• Data is collected remotely to a shared directory.
• The analyses are performed for an application running in four processes.
• Path to an application executable is ./mpi_sample.

Note: In the commands below, make sure to replace the application path and name before executing a
command. If your application requires additional command line options, add them after the executable
name.

• Path to an Intel Advisor project directory is ./advi_results.

This example shows how to run a Survey, Trip Counts, and Roofline analyses for the rank 1 of the MPI
application with the gtool option of the Intel MPI Library.

1. Collect survey data for rank 1 into the shared ./advi_results project directory on a target system.

mpirun -gtool "advisor --collect=survey --project-dir=./advi_results:1" -n 4 ./mpi_sample
2. Run the Trip Counts analysis with FLOP collection for rank 1 on the target system.

mpirun -gtool "advisor --collect=tripcounts --flop --project-dir=./advi_results:1" -n 4 ./
mpi_sample

After you collect the Survey, Trip Counts, and FLOP data, you also get the Roofline report for your
application.

3. If you did not collect data to a shared location and need to copy the data to the local system to view
the results, do it now.

4. On the local system, view the results with your preferred method. You can view only one process data
at a time.

Analyze Multiple Ranks of MPI Application with Intel MPI Library
Prerequisite: Set up environment variables to enable Intel Advisor CLI.

In the commands below:

• Data is collected remotely to a shared directory.
• The analyses are performed for an application running in four processes.

  1   Intel® Advisor User Guide

404



• Path to an application executable is ./mpi_sample.

Note: In the commands below, make sure to replace the application path and name before executing a
command. If your application requires additional command line options, add them after the executable
name.

• Path to an Intel Advisor project directory is ./advi_results.

Analyze a Set of Ranks

This example shows how to run a Survey, Trip Counts, and Roofline analyses for a set of ranks of the MPI
application with the gtool option of the Intel MPI Library.

1. Collect survey data for ranks 1, 2, and 4 into the shared ./advi_results project directory on a target
system.

mpirun -gtool "advisor --collect=survey --project-dir=./advi_results:1-2,4" -n 4 ./mpi_sample
2. Run the Trip Counts analysis with FLOP collection for ranks 1, 2, and 4 on a target system.

mpirun -gtool "advisor --collect=tripcounts --flop --project-dir=./advi_results:1-2,4" -n 4./
mpi_sample

After you collect the Survey, Trip Counts, and FLOP data, you also get the Roofline report for your
application.

3. If you did not collect data to a shared location and need to copy the data to the local system to view
the results, do it now.

4. On the local system, view the results with your preferred method. You can view only one process data
at a time.

Analyze All Ranks

This example shows how to run a Survey, Trip Counts, and Roofline analyses for all ranks of the MPI
application with the gtool option of the Intel MPI Library.

1. Collect survey data for all ranks into the shared ./advi_results project directory on a target system.

mpirun -gtool "advisor --collect=survey --project-dir=./advi_results" -n 4 ./mpi_sample
2. Run the Trip Counts analysis with FLOP collection for all ranks on a target system.

mpirun -gtool "advisor --collect=tripcounts --flop --project-dir=./advi_results" -n 4./mpi_sample
After you collect the Survey, Trip Counts, and FLOP data, you also get the Roofline report for your
application.

3. If you did not collect data to a shared location and need to copy the data to the local system to view
the results, do it now.

4. On the local system, view the results with your preferred method. You can view only one process data
at a time.

Use Non-Intel MPI Library
With non-Intel MPI library implementation, you can only analyze all ranks of your MPI application with Intel
Advisor. This might increase analysis overhead.

MPI Command Syntax

To collect performance data for an MPI application with Intel Advisor using the mpirun launcher, use the
following command syntax:

mpirun -n <N> "advisor --collect=<analysis-type> --search-dir src:r=<source-dir>--
trace-mpi [--no-auto-finalize] --project-dir=<project-dir>" <application-name>
[<application-options>]
where:

Intel® Advisor User Guide  1  

405



• <N> is the number of MPI processes to launch.
• <analysis-type> is an Intel Advisor analysis to run: survey, tripcounts, map. dependencies,

projection.
• <source-dir> is the path to the directory where application sources are stored. Specify it if you disabled

autofinalization.
• <project-dir> is the path/name of the project directory where the analysis results are saved. Specify the

same project directory when running various Intel Advisor collections for the selected process.
• --trace-mpi enables analyzing non-Intel MPI library implementations. This option is required for non-

Intel MPI implementation.
• --no-auto-finalize disables result finalization on the target system to decrease overhead. The results

are finalized when you import them or open in Intel Advisor GUI. Do not use this option if you do not use
a shared directory and plan to copy results from cluster with snapshot. See Temporarily Disable
Finalization for details.

Analyze an MPI Application with Non-Intel MPI Library
Prerequisite: Set up environment variables to enable Intel Advisor CLI.

In the commands below:

• Data is collected remotely to a shared directory.
• The analyses are performed for an application running in four processes.
• Path to an application executable is ./mpi_sample.

Note: In the commands below, make sure to replace the application path and name before executing a
command. If your application requires additional command line options, add them after the executable
name.

• Path to an Intel Advisor project directory is ./advi_results.

This example shows how to run a Survey, Trip Counts, and Roofline analyses for all 4 ranks of the MPI
application.

1. Collect survey data for all ranks into the shared ./advi_results project directory on a target system.

mpirun -n 4 "advisor --collect=survey --project-dir=./advi_results"./mpi_sample
2. Run the Trip Counts analysis with FLOP collection on the target system.

mpirun -n 4 "advisor --collect=tripcounts --flop --project-dir=./advi_results" ./mpi_sample
After you collect the Survey, Trip Counts, and FLOP data, you also get the Roofline report for your
application.

3. If you did not collect data to a shared location and need to copy the data to the local system to view
the results, do it now.

4. On the local system, view the results with your preferred method. You can view only one process data
at a time.

  1   Intel® Advisor User Guide

406



NOTE For all analysis types and MPI libraries: When using a shared partition on Windows* OS, specify
the network paths to the project and executable location or use the MPI options mapall or map to
specify these locations on the network drive.
For example:

mpiexec -gwdir \\<host1>\mpi -hosts 2 <host1> 1 <host2> 1 advisor --collect=survey
--project-dir=\\<host1>\mpi\advi_results -- \\<host1>\mpi\mpi_sample.exe
advisor --import-dir=\\<host1>\mpi\advi_results --project-dir=\\<host1>\mpi
\new_advi_results --search-dir src:=\\<host1>\mpi --mpi-rank=1

advisor --report=survey --project-dir=\\<host1>\mpi\new_advi_results
or:

mpiexec -mapall -gwdir z:\ -hosts 2 <host1> 1 <host2> 1 advisor --collect=survey
--project-dir=z:\advi_results -- z:\mpi_sample.exe
or:

mpiexec -map z:\\<host1>\mpi -gwdir z:\ -hosts 2 <host1> 1 <host2> 1 advisor --
collect=survey --project-dir=z:\advi_results -- z:\mpi_sample.exe

View Results
Intel Advisor saves collection results into subdirectories for each rank analyzed under the project directory
specified with --project-dir. The subdirectories are named as rank.<n> , where the numeric suffix <n>
corresponds to an MPI rank analyzed. You can only view results for one rank at a time.

To view the performance results collected for a specific rank, you can do one of the following.

View Results in GUI

From the Intel Advisor GUI, open a result project file *.advixeproj that resides in the <project-dir> /
rank.<n> directory.

You can also open the GUI from command line:

advisor-gui ./advi_results/rank.1

NOTE If you used --no-auto-finalize when collecting data, make sure to set paths to application
binaries and sources before viewing the result so that Intel Advisor can finalize it properly.

View Results in Command Line

Run the Intel Advisor --report action to print the result summary in a terminal:

advisor --report=<analysis-type> --project-dir=<project-dir> --mpi-rank=<n>
where:

• <analysis-type> is the Intel Advisor analysis you want to print the results for.
• <project-dir> is the same project directory as you used for data collection.
• <n> is the number of MPI rank you want to view results for.

View Results in a File

You can save results for a specified rank to a TXT, CSV, or a XML file. For example, save the results to a
advisor_result.csv file, run the following command:

Intel® Advisor User Guide  1  

407



advisor --report=<analysis-type> --format=csv --report-output=advisor_result.csv --
project-dir=<project-dir> --mpi-rank=<n>
where:

• <analysis-type> is the Intel Advisor analysis you want to print the results for.
• <project-dir> is the same project directory as you used for data collection.
• <n> is the number of MPI rank you want to view results for.
• --format specified the file format to save the results to. In the command above, it is CSV.

Additional MPI Resources
For more details on analyzing MPI applications, see the Intel MPI Library and online MPI documentation on
the Intel® Developer Zone at https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-
library.html

For detailed syntax, refer to the Intel® MPI Library Developer Reference for Linux* OS or Intel® MPI Library
Developer Reference for Windows* OS.

Hybrid applications: Intel MPI Library and OpenMP* on the Intel Developer Zone at https://www.intel.com/
content/www/us/en/developer/articles/technical/hybrid-applications-mpi-openmp.html

See Also
Model MPI Application Performance on GPU  You can model your MPI application performance on a
target graphics processing unit (GPU) device to determine whether you can get a performance
speedup from offloading the application to the GPU.
Control Collection with an MPI_Pcontrol Function

Model MPI Application Performance on GPU
You can model your MPI application performance on a
target graphics processing unit (GPU) device to
determine whether you can get a performance
speedup from offloading the application to the GPU.

Offload Modeling perspective of the Intel® Advisor includes the following stages:

1. Collecting the baseline performance data on a host device with the Survey, Characterization (Trip
Counts, FLOP), and/or Dependencies analyses. You can collect data for one or more MPI ranks, where
each rank corresponds to an MPI process.

2. Modeling application performance on a target device with the Performance Modeling analysis. You can
model performance only for one rank at a time. You can run performance modeling several times for
different ranks analyzed to examine the potential performance difference between them, but the topic
does not cover this case.

Model Performance of MPI Application
Prerequisite: Set up environment variables to enable Intel Advisor CLI.

In the commands below:

• Data is collected remotely to a shared directory.
• The analyses are performed for an application running in four processes.
• Path to an application executable is ./mpi_sample.

Note: In the commands below, make sure to replace the application path and name before executing a
command. If your application requires additional command line options, add them after the executable
name.

• Path to an Intel Advisor project directory is ./advi_results.
• Performance is modeled for the default Intel® Arc™ graphics code-named Alchemist (xehpg_512xve

configuration).

  1   Intel® Advisor User Guide

408

https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-applications-mpi-openmp.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-applications-mpi-openmp.html


This example shows how to run Offload Modeling to model performance for the rank 1 of the MPI application.
It uses the gtool option of the Intel MPI Library to collect performance data on a baseline CPU. For other
collection options, see Analyze MPI Applications.

1. Optional, but recommended: Generate preconfigured command lines for your application using the --
dry-run option. For example, generate the command lines using Intel Advisor CLI:

advisor --collect=offload --dry-run --project-dir=./advi_results -- ./mpi_sample
After you run it, a list of analysis commands to run the Offload Modeling for the specified accuracy level
is printed to the terminal/command prompt. For the command above, the commands are printed for the
default medium accuracy:

advisor --collect=survey --auto-finalize --static-instruction-mix --project-dir=./advi_results 
-- ./mpi_sample
 advisor --collect=tripcounts --flop --stacks --auto-finalize --enable-cache-simulation --data-
transfer=light --target-device=xehpg_512xve --project-dir=./advi_results -- ./mpi_sample
 advisor --collect=projection --no-assume-dependencies --config=xehpg_512xve --project-dir=./
advi_results

You need to modify the printed commands for the MPI syntax to use an MPI launcher. See Analyze MPI
Applications for syntax details.

2. Collect survey data for the rank 1 into the shared ./advi_results project directory.

mpirun -gtool "advisor --collect=survey --auto-finalize --static-instruction-mix --project-dir=./
advi_results:1" -n 4 ./mpi_sample

3. Collect trip counts and FLOP data for the rank 1.

mpirun -gtool "advisor --collect=tripcounts --flop --stacks --auto-finalize --enable-cache-
simulation --data-transfer=light --target-device=xehpg_512xve --project-dir=./advi_results:1” -n 
4 ./mpi_sample

4. If you did not collect data to a shared location and need to copy the data to the local system to view
the results, do it now.

5. Model performance for the analyzed rank 1 of the MPI application that you ran the analyses for.

advisor --collect=projection --config=xehpg_512xve --mpi-rank=1 --project-dir=./advi_results
You can only model performance for one rank at a time. The results are generated for the rank specified
in a corresponding ./advi_results/rank.1 directory.

6. If you did not collect data to a shared location and need to copy the data to the local system to view
the results, do it now.

7. On a local system, view the results with your preferred method.

Configure Performance Modeling for MPI Application
By default, Offload Modeling is optimized to model performance for a single-rank MPI application. For multi-
rank MPI applications, you can apply additional configuration and settings to adjust the performance model
for a specific hardware or application. You can adjust the number of MPI ranks to run per GPU tile and/or
exclude MPI time from the report.

In the commands below:

• Data is collected remotely to a shared directory.
• The analyses are performed for an application running in four processes.
• Path to an application executable is ./mpi_sample.

Note: In the commands below, make sure to replace the application path and name before executing a
command. If your application requires additional command line options, add them after the executable
name.

• Path to an Intel Advisor project directory is ./advi_results.
• Performance is modeled for Intel® Arc™ graphics code-named Alchemist (xehpg_512xve configuration).

Intel® Advisor User Guide  1  

409



Change the Number of MPI Processes per GPU Tile
Prerequisite: Set up environment variables to enable Intel Advisor CLI.

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see 
GPU Architecture Terminology for Intel® Xe Graphics.

By default, Offload Modeling assumes that one MPI process, or rank, is mapped to one GPU tile. You can
configure the performance model to adjust the number of MPI ranks to run per GPU tile to match your target
device configuration.

To do this, you need to set the number of tiles per MPI process by scaling the Tiles_per_process target
device parameter in a command line or a TOML configuration file. If you want to model performance for the
Intel® Arc™ graphics code-named Alchemist, which is XeHPG 256 or XeHPG 512 configuration in Offload
Modeling targets, use the Stack_per_process parameter. The parameter sets a fraction of a GPU tile that
runs a single MPI process. For example, if you want to offload your MPI application with 8 processes to a
target GPU device with 4 tiles, you need to adjust the performance model to run 2 MPI processes per tile, or
to use 0.5 tile per process.

The number of tiles per process you set automatically adjusts:

• the number of execution units (EU)
• SLM, L1, L3 sizes and bandwidth
• memory bandwidth
• PCIe* bandwidth

The parameter accepts values from 0.01 to 12.0. Consider the following value examples:

Tiles_per_process/Stack_per_process Value Number of MPI Ranks per Tile

1.0 (default) 1

12.0 (maximum) 1/12

0.25 4

0.125 8

To run the Offload Modeling with a custom tile-per-process parameter, you need to scale the parameter
during the analysis. This change is one time and is applied only to the analysis you run it with. The
commands below use the Tiles_per_process parameter for scaling. Replace it with Stack_per_process if
needed.

1. Generate pre-configured command lines for your application with the --set-parameter option to
change the number of tiles per process. Use the --dry-run option of the collect.py script to
generate commands to adjust cache configuration to the scaled parameter.

For example, to generate commands for the ./advi_results project and model performance with
0.25 tiles per process, which corresponds to four MPI ranks per tile:

advisor-python $APM/collect.py ./advi_results --set-parameter scale.Tiles_per_process=0.25 --dry-
run -- ./mpi_sample

  1   Intel® Advisor User Guide

410

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html


After you run it, a list of analysis commands to run the Offload Modeling with the specified accuracy
level is printed to the terminal/command prompt similar to the following:

advisor --collect=survey --project-dir=./advi_results --static-instruction-mix -- ./mpi_sample
advisor --collect=tripcounts --project-dir=./advi_results --flop --ignore-checksums --data-
transfer=medium --stacks --profile-jit --cache-sources --enable-cache-simulation --cache-
config=8:64w:4k/1:192w:768k/1:4w:2m -- ./mpi_sample
python $APM/collect.py ./advi_results  -m generic
advisor --collect=dependencies --project-dir=./advi_results --filter-reductions --loop-call-
count-limit=16 --ignore-checksums -- ./mpi_sample

2. Copy the generated commands to your preferred text editor and modify them for the MPI-specific
syntax. You need to add the following:

• MPI launcher name and (optionally) gtool option for Intel® MPI Library
• Number of MPI processes to launch
• If you use gtool: MPI ranks to analyze

See Analyze MPI Applications for syntax details.

NOTE You can skip the mark-up and Dependencies analysis step (the last two commands) because
they add high overhead. See Check How Assumed Dependencies Affect Modeling for details.

3. Run the modified commands for Survey, Trip Counts, and (optionally) Dependensies analyses one by
one. For example, to run Survey and Trip Counts for the rank 1:

mpirun -gtool "advisor --collect=survey --static-instruction-mix -- ./mpi_sample --project-dir=./
advi_results:1" -n 4 ./mpi_sample
mpirun  -gtool “advisor --collect=tripcounts --flop --ignore-checksums --data-transfer=medium --
stacks --profile-jit --cache-sources --enable-cache-simulation --cache-config=8:64w:4k/
1:192w:768k/1:4w:2m --project-dir=./advi_results:1” -n 4 ./mpi_sample

4. Run the performance modeling with the number of tiles per MPI processes specified using the --set-
parameters option. For example, to model performance for the rank 1:

advisor --collect=projection --project-dir=./advi_results --set-parameter 
scale.Tiles_per_process=0.25 --mpi-rank=1

NOTE Make sure to specify the same value for the --set-parameter scale.Tiles_per_process as
for the dry-run step.

The result is generated for the rank specified in a corresponding ./advi_results/rank.1 directory.
You can transfer them to the development system, if needed, and view the results.

When you open the result in the Intel Advisor GUI or an interactive HTML report, you should see the tiles per
process or stack per process parameter in the Modeling Parameters pane with the value you set. The
parameter is in a read-only format. Notice that tiles per process or stack per process parameter shows the
value per process, while other parameters in the pane show the value per device.

Ignore MPI Time
Prerequisite: Set up environment variables to enable Intel Advisor CLI.

For multi-rank MPI workloads, time spent in MPI runtime can differ from rank to rank, which may cause
significant performance imbalance. Because of this, the whole application time and Offload Modeling results
may be different from rank to rank. If MPI time is large and differs between ranks, and the MPI code does
not include many computations, you can exclude time spent in MPI routines from the analysis so that it does
not affect modeling results.

Intel® Advisor User Guide  1  

411



1. Collect Survey, Trip Counts, and (optionally) Dependencies data for your application. See Analyze MPI
Applications for details.

2. Run the performance modeling with time in MPI calls ignored using the --ignore=MPI option.

advisor --collect=projection --project-dir=./advi_results --ignore=MPI --mpi-rank=1
The results are generated in a ./advi_results/rank.1 directory. You can transfer them to the
development system and view the results.

In the report generated, all per-application performance modeling metrics are calculated based on application
self-time with time spent in MPI calls excluded from the analysis. This should improve modeling across ranks.

NOTE This option affects only metrics for the whole program in the Summary tab. Metrics for
individual regions are not recalculated.

View Results
Intel Advisor saves collection results into subdirectories for each rank analyzed under the project directory
specified with --project-dir. The modeling results are available only for the ranks that you ran the
Performance Modeling for, for example, as specified with the --mpi-rank option.

To view the performance or dependency results collected for a specific rank, you can do one of the following.

View Results in GUI

From the Intel Advisor GUI, open a result project file *.advixeproj that resides in the <project-dir> /
rank.<n> directory.

You can also open the GUI from command line:

advisor-gui ./advi_results/rank.1

NOTE If you used --no-auto-finalize when collecting data, make sure to set paths to application
binaries and sources before viewing the result so that Intel Advisor can finalize it properly.

View Results in Command Line

After you run the Performance Modeling analysis, the summary result of the modeling is printed to a
terminal/command prompt. Examine the data to learn the estimated speedup and top five offloaded regions.

View Results in an Interactive HTML Report

Open an interactive advisor-report HTML report generated in the respective rank directory at <project-
dir>/rank.<n>/e<NNN>/report and a set of CSV reports in the respective rank directory at <project-
dir>/rank.<n>/p<NNN>/data.0.

See Also
Analyze MPI Applications  With Intel® Advisor, you can analyze parallel tasks running on a cluster
to examine performance of your MPI application.
Explore Offload Modeling Results

Control Collection with an MPI_Pcontrol Function
By default, Intel® Advisor analyzes performance of a whole application. In some cases, you may want to
focus on the most time-consuming section or disable collection for the initialization or finalization phases.
This can decrease collection overhead.

  1   Intel® Advisor User Guide

412



Intel Advisor supports the MPI region control with the MPI_Pcontrol() function. This function allows you to
enable and disable collection for specific application regions in the source code. The region control affects
only MPI and OpenMP* metrics, while other metrics are collected for the entire application.

To use the function, add it to your application source code as follows:

• To pause data collection, add MPI_Pcontrol(0)before the code region that you want to disable the
collection for.

• To resume data collection, add MPI_Pcontrol(1) where you want the collection to start again.
• To skip the initialization phase:

1.Add the MPI_Pcontrol(1) function right after initialization.
2.Build the application.
3.Run Intel Advisor analyses with the --start-paused option. For example, to run the Survey analysis:

advisor --collect=survey --start-paused --project-dir=./advi_results -- ./mpi_sample

NOTEIntel Advisor accepts only 0 and 1 arguments for the MPI_Pcontrol() function. You can use
other numbers to mark code regions, but Intel Advisor ignores them.

For code snippet examples, see Region Control with MPI_Pcontrol.

See Also
Analyze MPI Applications  With Intel® Advisor, you can analyze parallel tasks running on a cluster
to examine performance of your MPI application.
Model MPI Application Performance on GPU  You can model your MPI application performance on a
target graphics processing unit (GPU) device to determine whether you can get a performance
speedup from offloading the application to the GPU.
Minimize Analysis Overhead

Manage Results
Data collected by running Intel® Advisor tools is stored in a result. When you run one of its tools, the Intel®
Advisor executes a target, identifies issues that may need handling, collects the results and shows it in the
Results subdirectory in the Solution Explorer in Microsoft Visual Studio* or in the Project Navigator in the
Intel® Advisor Standalone GUI.

View the data in the Result tab to help you choose the best places to add parallelism. There is one result for
each project or each project in the Solution (on Windows* OS). If you run an Intel® Advisor tool on the same
project, any previously collected results are overwritten.

Result Locations
The Intel® Advisor saves results in the Results directory in a solution directory on Windows OS (the default
Microsoft Visual Studio* location) or a subdirectory of the specified Intel® Advisor project location in the
Project Navigator on Linux* OS. You can specify a custom location for saving results.

Results and the Solution Explorer
You can view results associated with a project in the Solution Explorer in Visual Studio or the Project
Navigator in the Intel® Advisor GUI. However, sometimes other considerations outweigh accessibility. For
example, in Visual Studio, do not display results in the Solution Explorer if you use a source code control
system and you do not want to check in your Solution Explorer with embedded results.

Intel® Advisor User Guide  1  

413

https://www.intel.com/content/www/us/en/develop/documentation/application-snapshot-user-guide/top/detailed-analyses/mpi-analyses/region-control-with-mpi-pcontrol.html


Open a Result

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

There is one result for each project. To open a previously collected result for one project:
To Do This Do This

After opening its
Solution, open a result
from the Microsoft
Visual Studio* IDE or
the Intel® Advisor GUI.

After you open the Visual Studio solution or the Intel Advisor GUI project, do
one of the following:

• From the Microsoft Visual Studio* Solution Explorer, double-click the
result in the Results program folder.

• From the Microsoft Visual Studio* menu:

1.Choose Open > File.
2.In the Open File dialog box, browse to and double-click the result. By
default the ennn.advixe file in project name folder in the solution or
project directory.

• From the Intel® Advisor GUI menu:

1.Choose either File > Open > Result... or File > Recent Results.
2.In the Project Navigator, browse to and double-click the result. By
default the ennn.advixe file in project name folder in the solution or
project directory.

NOTE You can open multiple results from the same project only,

Open a result from the
Solution Explorer or the
Intel® Advisor product
GUI or its Project
Navigator.

After you open the Visual Studio solution, browse to and double-click the
result. By default, the results are in the Advisor Result directory in the
Solution Explorer.

From the product GUI, click File > Open > Result... or File > Recent
Results > name.

When using the Project Navigator in the product GUI, navigate to the project
and click its result name, such as ennn.

NOTE You can open multiple results from the same project only,

View a specific result If you have opened multiple results for different projects and you would like to
view a result that is not displayed, click its tab to view that result. The result
appears showing the last report that you viewed.

To view a specific result, click its tab name:

NOTE You can open multiple results from the same project only,

To rearrange the order of the displayed tabs, drag a tab to the desired location.

  1   Intel® Advisor User Guide

414



You can create a snapshot of the active result and save as a read-only result (see the help topic Create a
Read-only Result Snapshot).

See Also
Rename Existing Results
Create a Read-only Result Snapshot
Open a Result as a Read-only File

Rename an Existing Result

NOTE

• If you rename results using the file system or Windows* Explorer software instead of the Intel®
Advisor Standalone GUI or the Microsoft Visual Studio* IDE, you may create an error condition.

• If you change the .advixe extension, you will not be able to open the result file in Intel® Advisor.

To rename an existing result

1. Right-click the result folder in the Solution Exploreror the result in the Intel® Advisor GUI to display a
context menu, then choose Rename.

2. Type the new name.
3. Press the Enter key.

The result is renamed in the project and on your system.

See Also
Delete a Result
Save Results to a Custom Location

Delete a Result
To delete a result:

1. Right-click the result in the Solution Explorer in Visual Studio or the Project Navigator in the Intel®
Advisor GUI to display a context menu.

2. When using Visual Studio, choose Remove. In the resulting dialog box, click the Delete button.
3. When using the Intel® Advisor GUI Project Navigator, click Delete.

The result is removed from the project and deleted from your system.

See Also
Create a Read-only Result Snapshot
Save Results to a Custom Location

Save Results to a Custom Location
The Intel® Advisor saves a result in a subdirectory of each project's directory. The project directory is in the
default Visual Studio location or the directory specified when creating the Intel® Advisor Standalone GUI
project. Instead of saving results within each project's directory, you can specify a custom, central location
for saving all new results.

To save results to a custom location when using the Microsoft Visual Studio* or Intel® Advisor GUI:

1. From the Microsoft Visual Studio menu, choose Tools > Options...
2. From the Intel® Advisor GUI menu, choose File > Options...
3. In the Options dialog box, expand the Intel Advisor program folder and choose the Result Location

page.

Intel® Advisor User Guide  1  

415



4. Select Save all results in this directory:.
5. Click Browse to select the custom location.
6. Click OK.

The Intel® Advisor saves future results to the custom location. The subdirectory name is the result name,
such as e000.

See Also
Open a Result as a Read-only File

Work with Standalone HTML Reports
Export the interactive Intel® Advisor HTML reports that
you can share or open on a remote machine using
your web browser.

Offload Modeling HTML Reports
For the Offload Modeling perspective, you can export two types of HTML reports:

• An interactive HTML report that represents results in the same structure as in graphical user interface
(GUI) and enables you to switch between Offload Modeling and Intel Advisor perspective results if you
collect your data for an application running on GPU.

• A legacy HTML report that enables you to view an extended set of metrics for your offloaded and non-
offloaded code regions

Export Offload Modeling HTML Reports

If you run Offload Modeling perspective from command line interface (CLI)Intel Advisor automatically saves
both types of HTML reports. Once the execution is complete, you can find the reports stored in the following
directories:

• <project-dir>/e<NNN>/report/advisor-report.html for interactive HTML report
• <project-dir>/e<NNN>/report/report.html for legacy HTML report

If you run Offload Modeling perspective from GUI, Intel Advisor automatically saves only the legacy report
into the <project-dir>/e<NNN>/pp000/data.0 directory.

To get an interactive HTML report for results collected in the GUI, you can export the report using CLI. For
example, to export an interactive HTML report as offload_modeling_report.html from the
advi_results project, run the following command:

advisor --report=all --project-dir=./advi_results --report-output=./offload_modeling_report.html
where:

• --project-dir option specifies the path to your project directory where you collected the results.
• --report-output option specifies the directory to save the HTML report to and a file name. This option

is required.

View Offload Modeling Interactive HTML Report

The structure of results in Offload Modeling interactive HTML report is similar to a GUI report with the
following controls available:

• If you run both GPU-to-GPU Offload Modeling and GPU Roofline Insights perspectives or the GPU Roofline
Insights perspective with the Performance Modeling analysis enabled, you can switch between the results
using the Perspective drop-down menu in the top left corner of the report.

• Switch between report tabs to view estimated performance on a target accelerator. The Summary tab
shows data for the whole application, the Accelerated Regions tab shows data per code region or kernel
in detail.

• Use the sliders in the Modeling Parameters pane to change the hardware parameter values and use the
updated target device configuration for remodeling. See the section below for details.

  1   Intel® Advisor User Guide

416



To explore the interactive HTML report, you can download precollected Offload Modeling reports and examine
the results and structure.

For details about results interpretation, see Explore Offload Modeling Results.

Remodel Performance for a Custom Target Device

The interactive HTML report includes a Modeling Parameter pane, which you can use to examine the target
device characteristics and modify the parameters as needed to model application performance for the future
or a custom target:

1. Change the parameter values using the sliders.
2. Click Save to Remodel to save the custom device configuration.
3. Copy the command line generated under the hardware parameter list.
4. Paste the command to a terminal or command prompt and run it to model your application performance

on a custom device.
5. View the updated interactive HTML report generated as <project-dir>/e<NNN>/report/advisor-

report.html.

See Model Application Performance on a Custom Target GPU Device for a full workflow and pane description.

View Offload Modeling Legacy HTML Report

You can switch between the tabs to explore metrics for offloaded and non-offloaded code regions, estimate
data transfer taxes, view or download configuration file for the selected target accelerator and examine
execution logs.

GPU Roofline HTML Reports
Intel Advisor enables you to export two types of HTML reports:

• An interactive HTML report that represents results in the same structure as in GUI and enables you to
switch between Offload Modeling and GPU Roofline Insights perspective results if you collect your data for
an application running on GPU. This report contains grid data with GPU metrics, a GPU Roofline chart, GPU
Details tab containing per-kernel compute and memory metrics, and a source view.

• An HTML Roofline chart that enables you to visualize your application performance on an interactive
Roofline chart and view your platform information.

Export HTML GPU Roofline Chart using GUI

To export an interactive HTML GPU Roofline chart using GUI, do the following:

1. Run GPU Roofline Insights perspective.
2. Select FLOAT or INT data type using the filter pane at the top of the Roofline chart. You cannot change

the data type after the report is generated.
3.

Export the project results by clicking the  button and selecting Export as HTML option. To
share your result as an image, consider selecting Export as SVG option and setting up the resolution.

4. Save the HTML report and open it in your browser.

Intel® Advisor User Guide  1  

417

https://cdrdv2.intel.com/v1/dl/getContent/724626


Export GPU Roofline Report using CLI

Once the perspective executes, you can export both types of HTML reports using CLI.

To export an interactive HTML report as gpu_roofline_report.html from the ./advi_results project,
run the following command:

advisor --report=all --project-dir=./advi_results --report-output=./gpu_roofline_report.html
where:

• --project-dir option specifies the path to your project directory where you collected the results.
• --report-output option specifies the directory to save the HTML report to and a file name. This option

is required.

To export an HTML GPU Roofline chart for floating-point operations data as gpu_roofline.html, make
sure that the value of the --project-dir option specifies the path to your project directory and run the
following command:

advisor --report=roofline --gpu --project-dir=./advi_results --report-output=./gpu_roofline.html 
--data-type=float

where:

• --project-dir option specifies the path to your project directory where you collected the results.
• --report-output option specifies the directory to save the HTML report to and a file name. This option

is required.
• --gpu option generates a Roofline chart for GPU kernels. This option is required.
• --data-type=<type> option specifies the data type to show in the Roofline chart. Available types are

float (default) or int. You cannot change the data type after the report is generated.

Once report generation is complete, open it in your preferred web browser.

View Interactive HTML Report for GPU Roofline

You can switch between the Summary and GPU Roofline Regions tabs to examine how your application
executes on a GPU, identify top hotspots, and define room for their optimization using a Roofline chart and
GPU grid metrics.

To explore the interactive HTML report, you can download a precollected GPU Roofline report and examine
the results and structure.

  1   Intel® Advisor User Guide

418

https://cdrdv2.intel.com/v1/dl/getContent/724628


For details about result interpretation, see Explore GPU Roofline Results.

View HTML GPU Roofline Chart

Identify top hotspots and room for optimization of your application running on GPU using a Roofline chart and
view the application execution and performance details in the Performance Metrics Summary drop-down
section.

For details on results interpretation, see Examine Bottlenecks on a GPU Roofline Chart.

HTML Roofline Chart for CPU Roofline
Export an interactive Roofline chart for CPU / Memory Roofline Insights perspective to share it or open on a
remote machine using your web browser. This report enables you to visualize performance of your application
running on CPU, identify factors limiting your application performance, and define headroom for optimization
at different memory levels.

Export HTML CPU Roofline Chart Using GUI

To export an interactive HTML CPU Roofline chart using GUI, do the following:

1. Run CPU / Memory Roofline Insights perspective.
2. Select FLOAT or INT data type using the filter pane at the top of the Roofline chart. You cannot change

the data type after the report is generated.
3.

Export the project results by clicking the  button and selecting Export as HTML option. To
share your result as an image, consider selecting Export as SVG option and setting up the resolution.

4. Save the HTML report and open it in your browser.

Export HTML CPU Roofline Chart Using CLI

Intel Advisor enables you to export an HTML CPU Roofline chart using CLI. For example, to export an
interactive CPU Roofline chart for floating-point operations data as roofline.html, make sure that the value
of the --project-dir option specifies the path to your project directory and run the following command:

advisor --report=roofline --project-dir=./advi_results --report-output=./roofline.html
where:

• --project-dir option specifies the path to your project directory where you collected the results.
• --report-output option specifies the directory to save the HTML report to and a file name. This option

is required.

Intel® Advisor User Guide  1  

419



In addition to the options used in the example command, you can use the following additional options to
extend the report with more data:

• Use the --with-stack option to enable call stack data in the HTML report. Use it if you collected CPU
Roofline with call stack data using the --stacks option.

• Use the --data-type=<type> option to specify the data type to show in the Roofline chart. Available
types are float (default), int, mixed. You cannot change the data type after the report in generated.

• Use the --memory-level=<string> option to show specific memory levels in the HTML report by default.
Available memory levels are L1 (default), L2, L3, and DRAM. You can combine several memory levels with
an underscore (for example, L1_L2). Use this if you generated the Memory-level CPU Roofline with
--enable-cache-simulation.

Once report generation is complete, open it in your preferred web browser.

View CPU HTML Roofline Chart

Identify hotspots for optimization and room for improvement of your application running on CPU and view
the application execution and performance details in the Performance Metrics Summary drop-down
section.

For more information on interpretation of Roofline charts, see Examine Bottlenecks on CPU Roofline Chart.

See Also
• Roofline Resources
• Offload Modeling Resources

Create a Read-only Result Snapshot
Only the active result for a project can be modified by collecting new data. You can create a read-only result
snapshot after you collect data from one or more Intel® Advisor tools. To create a snapshot of a result and
save its data in a read-only result:

1. Open the active result (not a read-only result snapshot).
2.

Click the  /  button next the window caption. The Create a Result Snapshot dialog box
appears.

3. Type the Result name of the Intel® Advisor read-only result. Provide a unique name, perhaps by
adding an identifying suffix within the result name.

4. Click OK. With a large result, you may need to wait as the read-only result gets created.

  1   Intel® Advisor User Guide

420

https://www.intel.com/content/www/us/en/develop/articles/advisor-roofline-resources.html
https://www.intel.com/content/www/us/en/develop/articles/offload-modeling-resources-for-intel-advisor-users.html


You can visually compare saved read-only results against the current active result or other read-only results.
The read-only result appears in the Intel® Advisor GUI Project Navigator and the Visual Studio Solution
Explorer (for Windows* OS only). The words (read-only) appear after the name of a read-only result in the
result tab. The icon of a read-only result differs from that of the active result.

Although you can only collect data to update the active project, you can update your sources regardless of
what type of result (or project) you have open.

See Also
Save Results to a Custom Location

Create a Result Snapshot Dialog Box

Purpose
Intel® Advisor stores only the most recent analysis result. Use this dialog box to save a read-only result
snapshot you can view any time.

Tip

• Visually comparing one or more snapshots to each other or to the most recent analysis result can
be an effective way to judge performance improvement progress.

• To view a snapshot, choose File > Open > Result...
• Snapshots are identified by a different icon in the Visual Studio* Solution Explorer and theIntel®

AdvisorProject Navigator. The words (read-only) appear after the snapshot name in a result
tab.

Access
1. Display an active result (not a snapshot).
2.

Click the  /  button.

Controls

Use This To Do This

Result name field Specify the name of the read-only result snapshot. Provide a unique
name, perhaps by adding an identifying suffix within the result name.

Cache sources checkbox Enable source code availability in the resulting snapshot.

Cache binaries checkbox Enable binary availability in the resulting snapshot.

Pack into archive checkbox Create a one-file archive with all snapshot data inside.

Result path text box Specify the path to the resulting snapshot archive. Use the Browse...
button to specify the address.

Disabled by default. Enable by selecting the Pack into archive
checkbox.

Intel® Advisor User Guide  1  

421



Open a Result as a Read-only File in Visual Studio

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

To open a previously collected result file as a read-only file when its corresponding Visual Studio* Solution is
not open:

To Do This Do This

Open a result from the
Microsoft Visual Studio*
IDE.

Before opening the Solution, from the Microsoft Visual Studio* File menu:

1. Choose Open > File.
2. In the Open File dialog box, browse to and double-click the Intel® Advisor

result file (file suffix .advixe). By default, Intel® Advisor results are saved
in the ennn.advixe file in project name directory in the solution or
project directory.

NOTE
This action launches the Microsoft Visual Studio* IDE if it is not already open.

Open a result from the
Windows* Explorer (or
comparable)
environment.

From the Windows* Explorer (or comparable) environment:

1. Open the Windows* Explorer (or comparable) environment.
2. Browse to and double-click the result. By default, Intel® Advisor results are

saved in the ennn.advixe file in project name folder in the solution or
project directory.

NOTE
This action launches the Microsoft Visual Studio* IDE if it is not already open.

Verify that the result is
open as a read-only file.

A result opened as a read-only file contains (read-only) after its result name.

View a specific report
for the result

Each result contains several different reports. To view a specific report, click
the button for the report you want to view, such as Survey Report,
Suitability Report, or Dependencies Report.

When opening a result as a read-only file, you are only viewing the previously
collected data as a read-only file. The following limitations apply:
• The Annotation Report window does not contain any data. To view the

Annotation Report, you need to open a result after opening its Solution.
• The Suitability Report window shows data, but you cannot change the 

modeling parameters, such as the Target System or the Threading
Model.

• If you modify your sources or Intel® Advisor annotations, you need to open
the solution to collect data and perform analysis (see Opening a Result) to
update the result and view Annotation Report data.

See Also
Create a Read-only Result Snapshot
Open a Result (after opening a solution)

  1   Intel® Advisor User Guide

422



Command Line Interface
This reference section describes the Intel® Advisor
command line interface (CLI) used to run the analysis.

• Use the advisor Command Line Interface to run any perspective: Vectorization and Code Insights, CPU /
Memory Roofline Insights, Threading, Offload Modeling, GPU Roofline Insights.

• Use Python* scripts to run the Offload Modeling perspective.

Tip See Intel Advisor cheat sheet for quick reference on command line interface.

advisor Command Line Interface Reference
This reference section describes the CLI actions and
options used in the command syntax: advisor <--
action> [--action-options] [--global-
options] [[--] target [target options]].

The main advantage of using the Intel® Advisor command line interface, advisor, instead of the GUI is you
can collect data as part of an automated or background task, and then view the result in a command line
interface (CLI) report or in the GUI at your convenience.

Prerequisite: Set Intel® Advisor environment variables to start using the command line interface.

Tip
You can generate command lines from Intel® Advisor for selected configuration. In the Analysis
Workflow pane:

•

To generate a set of commands for the whole perspective, click .
• To generate a command for a specific analysis, expand the analysis you want to get a command for

and click .

advisor Command Syntax
The advisor command syntax is:

advisor <--action> [--action-options] [--global-options] [[--] target [target options]]
where:

advisor The name of the Intel® Advisor command line tool.

<--action> The action to perform, such as collect or report. Each command
has exactly one action. For example, you cannot use both the
collect and report actions in the same command.

[--action-options] Action options modify behavior specific to the action. You can have
multiple action options per command. Using an action option that
does not apply to the action results in a usage error.

[--global-options] Global options modify behavior in the same manner for all actions.
You can have multiple global options per action.

target The target (application executable) to analyze.

Intel® Advisor User Guide  1  

423

https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-cheat-sheet.pdf


[target-options] Options that apply to the target.

Action option/Global option rules:

• If opposing action options are used on the same command line the last specified action option applies.
• An action option that is redundant or has no meaning in the context of the specified action is ignored.
• Attempted use of an inappropriate action option that might lead to unexpected behavior returns a usage

error

Syntax Alternatives
An action option or global option can be preceded by one or two dashes. This chapter uses one dash before
the short form of an action option/global option, and two dashes before the long form of an action option/
global option. For example: The following are equivalent:

advisor --help
advisor -help
An option-value pair can be separated by an equal sign (=) or by a space. This chapter uses an equal sign.
For example: The following are equivalent:

advisor --report=survey
advisor --report survey
The target executable must be preceded by two dashes and a space. For example:

advisor --collect=survey -- ./myApplication
Some action options accept multiple arguments. Most of the time, you can pass these arguments in a
comma-separated string (with no spaces), or by repeating the action option. For example: The following are
equivalent.

advisor --collect=survey --project-dir=./advi_results --exclude-files=./src/
foo,./src/bar -- ./myApplication
advisor --collect=survey --project-dir=./advi_results --exclude-files=./src/foo --
exclude-files=./src/bar -- ./myApplication

Directories
Project Directory

By default, the project directory is your current working directory. Use the project-dir action option to
write a result to a different directory. For example:

Survey the application for hotspots and write the result to the ./advi project directory.

advisor --collect=survey --project-dir=./advi_results --search-dir all:=./src -- ./
myApplication
Generate a Survey report from the Survey result and write it to the ./advi project directory.

advisor --report=survey --project-dir=./advi_results --format=text --report-
output=./out/survey.txt
Search Directory

Use the search-dir action option to specify the directories containing the source, symbol, and binary files
that support analysis.

You can specify multiple search directories. For example:

  1   Intel® Advisor User Guide

424



advisor --collect=survey --project-dir=./advi_results --search-dir src:=./src1,./src2
-- ./myApplication

Tip
Always specify your search directories when using collect action.

User Data Directory

Use the user-data-dir action option to write result files to a directory other than project-dir, such as a
remote directory or simply another directory when there is not enough space in project-dir.

For example: Collect Suitability data and write the result to a remote directory.

advisor --collect=suitability --project-dir=./advi_results --user-data-dir=./remote_dir
--search-dir src:=./src -- ./myApplication

advisor Command Action Reference
The advisor command currently supports the actions shown below.

Action Description

collect Run the specified type of analysis and collect data.

command Control the Intel® Advisor while running analyses.

create-project Create an empty project, if it does not already
exist.

help Explain command line actions with corresponding
options.

import-dir Import and finalize data collected on an MPI cluster.

mark-up-loops After running a Survey analysis and identifying
loops of interest, select loops (by file and line
number or criteria) for deeper analysis.

report Generate a report from data collected during a
previous analysis.

snapshot Create a read-only result snapshot you can view
any time.

version Display product version information.

workflow Explain typical Intel® Advisor user scenarios, with
corresponding command lines.

collect
Run the specified type of analysis and collect data.

GUI Equivalent

Analysis Workflow

File > New > Start [Name] Analysis

Syntax

-c=<string> [--action-options] [--global-options] [[--] <target> [<target options>]]

Intel® Advisor User Guide  1  

425



--collect=<string> [--action-options] [--global-options] [[--] <target> [<target
options>]]

Arguments

<string> is the type of analysis:

Argument Description

survey Survey the target (your executable application) and collect data about code that may
benefit from (more) parallelism.

dependenci
es

Collect dependencies data to predict and eliminate data sharing problems.

map Collect memory access patterns data.

offload Run the Offload Modeling perspective analyses with a single command.

projection Project performance on a target device.

roofline Run the Survey analysis immediately followed by the Trip Counts & FLOP analysis to
visualize actual performance against hardware-imposed performance ceilings.

suitability Collect suitability data by executing annotated code to analyze the proposed threading
parallelism opportunities and estimate where performance gains are most likely.

tripcounts Collect the following data and add it to the Survey report: loop iteration, floating-point and
integer operation, and memory traffic statistics, and more.

Default

No default argument

Modifiers

accuracy, app-working-dir, assume-dependencies, assume-hide-taxes, assume-ndim-dependency, assume-
single-data-transfer, auto-finalize, batching, benchmarks-sync, cache-config, cache-simulation, cache-
sources, cachesim, cachesim-associativity, cachesim-cacheline-size, cachesim-mode, cachesim-sampling-
factor, cachesim-sets, check-profitability, config, count-logical-instructions, count-memory-instructions, 
count-memory-objects-accesses, count-mov-instructions, count-send-latency, cpu-scale-factor,custom-
config, data-limit, data-reuse-analysis, data-transfer, data-transfer-histogram, data-transfer-page-size, 
delete-tripcounts, disable-fp64-math-optimization, dry-run, duration, enable-cache-simulation, enable-data-
transfer-analysis, enforce-baseline-decomposition, enforce-fallback, enforce-offloads. estimate-max-speedup, 
evaluate-min-speedup, exclude-files, executable-of-interest, exp-dir, filter-by-scope, filter-reductions, flop, 
force-32bit-arithmetics, force-64bit-arithmetics, gpu, gpu-carm, gpu-sampling-interval, hide-data-transfer-
tax, ignore, ignore-app-mismatch, ignore-checksums, instance-of-interest, integrated, interval, loop-call-
count-limit, loop-filter-threshold, loops, mark-up, mark-up-list, mkl-user-mode, model-baseline-gpu, model-
children, model-extended-math, model-system-calls, module-filter, module-filter-mode, mpi-rank, mrte-
mode, ndim-depth-limit, option-file, overlap-taxes, profile-gpu, profile-intel-perf-libs, profile-jit, profile-
python, profile-stripped-binariesproject-dir, quiet, record-mem-allocations, record-stack-frame, refinalize-
survey, resume-after, return-app-exitcode, search-dir, search-n-dim, select, set-dependency, set-parallel, 
set-parameter, show-report, small-node-filter, spill-analysis, stack-access-granularity, stack-stitching, stack-
unwind-limit, stacks, stackwalk-mode, start-paused, static-instruction-mix, strategy, support-multi-isa-
binaries, target-device, target-gpu, target-pid, target-process, threads, trace-mode, trace-mpi, track-
memory-objects, track-stack-accesses, track-stack-variables, trip-counts, verbose

  1   Intel® Advisor User Guide

426



Example
Survey the application to find candidates for code that may benefit from (more) parallelism.

advisor --collect=survey --search-dir src:r=./src --project-dir=./advi_results -- ./bin/
myApplication

Collect memory access patterns data on the specified loops.

advisor --collect=map --mark-up-list=5,10,12 --search-dir src:r=./src --project-dir=./
advi_results -- ./bin/myApplication

Collect survey data on four nodes of an MPI cluster into the shared ./advi project directory.

mpirun -n 4 "advisor --collect=survey --project-dir=./advi_results" -- <PATH>/mpi-sample/
1_mpi_sample_serial

Collect dependencies data for all innermost loops that account for over 2% of the total CPU time.

advisor --collect=dependencies --loops="loop-height=0,total-time>2 --project-dir=./advi_results" 
-- ./bin/myApplication

Run the Offload Modeling perspective with low accuracy.

advisor --collect=offload --accuracy=low --config=xehpg_512xve --search-dir src:r=./src --
project-dir=./advi_results -- ./bin/myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

command
Control the Intel Advisor while running analyses.

GUI Equivalent

Analysis Workflow

Syntax

--C=<string> [--action-options] [--global-options] [[--] <target> [<target options>]]
--command=<string> [--action-options] [--global-options] [[--] <target> [<target
options>]]

Arguments

<string> is one of the following:

Argument Description

cancel Interrupt data collection without saving results.

detach Similar to pause, except you can attach to an already running process.

pause Pause data collection while the target application continues running.

resume Resume paused data collection.

stop Stop data collection.

Intel® Advisor User Guide  1  

427



Argument Description

status Print collection status.

Default

No default argument

Modifiers

quiet, result-dir, verbose

Usage

Usage can decrease collection overhead.

Example
Pause the analysis run that is currently collecting data into result directory r000hs.

advisor --command=pause -r=<PATH>/r000hs

See Also
Minimize Analysis Overhead

advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

create-project
Create an empty project, if it does not already exist.

GUI Equivalent

File > New > Project...

Syntax

--create-project [--action-options] [--global-options] [[--] <target> [target options]]

Modifiers

project-dir, quiet, search-dir, verbose

Usage

Use the --project-dir action option to:

• Specify a project name.
• Create a project somewhere other than the current working directory.

Example
Create a new advi project in the current working directory.

advisor --create-project --project-dir=./advi_result -- ./bin/myApplication

See Also
advisor Command Option Reference

  1   Intel® Advisor User Guide

428



Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

help
Explain command line actions with corresponding
options.

Syntax

-h
--help
-h <action>
--help <action>

Arguments

<action> is one of the following: collect, command, create-project, import-dir, mark-up-loops, report, 
snapshot, version, workflow

Description

Explain command line actions with corresponding options.

Examples
Display overall help.

advisor --help
Display help for the collect action.

advisor -h collect

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

import-dir
Import and finalize data collected on an MPI cluster.

Syntax

--import-dir=<PATH> [--action-options] [--global-options] [[--] <target> [<target
options>]]

Arguments

<PATH> is the full path to a directory where previously collected data resides.

Default

No default argument

Modifiers

mpi-rank, project-dir, quiet, search-dir, verbose

Intel® Advisor User Guide  1  

429



Usage

For best results, specify the location of the source application files using the search-dir action option. Use
the mpi-rank action option to specify the process data to import.

For MPI workloads:

1. Copy the data from the rank node to the home node.
2. Import the data.
3. View the data.

Example
Import data collected on rank 2 of the MPI cluster to the new project.

advisor --import-dir-./advi --mpi-rank-2 --search-dir src:r=./src --project-dir-./
advi_results

See Also
Analyze MPI Workloads  With Intel® Advisor, you can analyze parallel tasks running on a cluster to
examine performance of your MPI application.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

mark-up-loops
After running a Survey analysis and identifying loops
of interest, select loops (by file and line number or
criteria) for deeper analysis.

GUI Equivalent

Survey > 

Syntax

--mark-up-loops [--action-options] [--global-options] [[--] target [target options]]

Modifiers

append, clear, loops, mpi-rank, project-dir, quiet, remove, select, verbose

Usage

Do not confuse the mark-up-loops action with the mark-up-list action option. The mark-up-loops action

coupled with the select action option enables a GUI  checkbox; therefore loop selection persists beyond
the duration of the mark-up-loops action and applies to downstream analyses, such as Dependencies and
Memory Access Patterns analyses. The collect action coupled with the mark-up-list action option

simulates enabling a GUI  checkbox; therefore loop selection persists only for the duration of the collect
action.

Example
Select loops for downstream analysis based on file and line number.

advisor --mark-up-loops --select=foo.cpp:34,bar.cpp:192 --project-dir=./advi_results -- ./bin/
myApplication

  1   Intel® Advisor User Guide

430



Select loops for downstream analysis based on criteria.

advisor --mark-up-loops --loops="scalar,has-issue" --project-dir=./advi_results -- ./bin/
myApplication

See Also
mark-up-list After running a Survey analysis and identifying loops of interest, select loops (by file
and line number or ID) for deeper analysis.
Minimize Analysis Overhead

advisor Command Option Reference
Command Line Interface Reference

report
Generate a report from data collected during a
previous analysis.

GUI Equivalent

File  > Open > Results

File  > Recent Results

Syntax

--report=<string> [--action-options] [--global-options] [[--] target [target options]]
-R=<string> [--action-options] [--global-options] [[--] target [target options]]

Arguments

<string> is the list of available reports:

Argument Description

annotations Report the annotations in the source code.

all Generate a combined HTML report for Offload Modeling and GPU Roofline Insights
perspectives.

custom Generate a custom report.

dependenci
es

Report results of a Dependencies analysis.

joined Combine results for several analyses into a single report.

map Report results of a Memory Access Patterns analysis.

projection Report results for Offload Modeling.

roofline Report results of a Roofline analysis.

roofs Report roof values.

suitability Report results of a Suitability analysis.

summary Report the analysis summary.

survey Report results of a Survey analysis.

Intel® Advisor User Guide  1  

431



Argument Description

threads Report on threads.

top-down Report results of a Survey analysis in top-down view.

tripcounts Add trip counts data to a Survey report.

Default

No default argument

Modifiers

bottom-up, csv-delimiter, data-type, display-callstack, dynamic, enable-task-chunking, filter, gpu, format, 
limit, memory-level, memory-operation-type, mix, mpi-rank, option-file, project-dir, quiet, recalculate-time, 
reduce-lock-contention, reduce-lock-overhead, reduce-site-overhead, reduce-task-overhead, refinalize-
survey, report-output, report-template, search-dir, show-all-columns, show-all-rows, show-functions, show-
loops, show-not-executed, sort-asc, sort-desc, target-system, threading-model, top-down, verbose, with-
stack

Usage

Suitability reports are the most configurable.

Generate a report from data collected during a previous analysis.

Example
Generate a Suitability report.

advisor --report=suitability --search-dir src:r=./src --format=text --report-output=./out/
suitability.txt --project-dir=./advi_results

Generate a Dependencies report for data collected on rank 3 of MPI cluster:

advisor --report=dependencies --mpi-rank=3 --search-dir src:r=./src  --project-dir=./advi_results

See Also
collect Run the specified type of analysis and collect data.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

snapshot
Create a read-only result snapshot you can view any
time.

GUI Equivalent

File  > Create Data Snapshot

Syntax

--snapshot [--action-options] [--global-options] [[--] target [target options]]

Default

Save the current analysis result.

  1   Intel® Advisor User Guide

432



Modifiers

cache-binaries, cache-binaries-mode, cache-sources, mpi-rank, pack, project-dir, quiet, search-dir, verbose

Usage

Intel® Advisor stores only the most recent analysis result. Visually comparing one or more snapshots to each
other or to the most recent analysis result can be an effective way to judge performance improvement
progress.

Example
Create a new snapshot in the project directory. Name it snapshotXXX (default name).

advisor --snapshot --no-pack --project-dir=./advi_results
Create a new snapshot in the project directory. Name it new_snapshot.

advisor --snapshot --no-pack --project-dir=./advi_result -- new_snapshot
Create a new snapshot. Pack it into an archive. Put it in the current directory. Name it
snapshotXXX.advixeexpz (default name).

advisor --snapshot --pack --project-dir=./advi_results
Create a new snapshot. Include sources and binaries. Pack it into an archive. Name it /tmp/
new_snapshot.advixeexpz.

advisor --snapshot --pack --cache-sources --cache-binaries --project-dir=./advi_results -- /tmp/
new_snapshot

See Also
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].
advisor Command Option Reference

version
Display product version information.

Syntax

-v
--version

Example
Write product version information to stdout.

advisor --version

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

workflow
Explain typical Intel® Advisor user scenarios, with
corresponding command lines.

Intel® Advisor User Guide  1  

433



Syntax

--workflow

Usage

Explain typical Intel Advisor user scenarios, with corresponding command lines.
Add SIMD Parallelism:

1. Find hotspots.

advisor --collect=survey --search-dir src:r=./src --project-dir=./advi_results -- ./bin/
myApplication
advisor --report=survey --project-dir=./advi_results --search-dir src:r=./src --format=text --
report-output=./out/survey.txt

2. Determine the number of loop iterations.

advisor --collect=survey --search-dir src:r=./src --project-dir=./advi_results -- ./bin/
myApplication
advisor --report=survey --search-dir src:r=./src --format=text --report-output=./out/survey.txt 
--project-dir=./advi_results

3. Check for possible dependencies.

advisor --collect=dependencies --search-dir src:r=./src --project-dir=./advi_results -- ./bin/
myApplication
advisor --report=dependencies --search-dir src:r=./src --format=text --report-output=./out/
dependencies.txt --project-dir=./advi_results

4. Check memory access patterns.

advisor --collect=map --search-dir src:r=./src --project-dir=./advi_results -- ./bin/
myApplication
advisor --report=map --search-dir src:r=./src --format=text --report-output=./out/map.txt --
project-dir=./advi_results

5. Update the application to enable automatic compiler vectorization, or explicitly mark the loops you need to
vectorize. Rebuild the application and test.
Add Threading Parallelism

1. Find hotspots. This step is similar to the first step in the SIMD-parallel workflow (above).

2. Determine the number of loop iterations. This step is similar to the second step in the SIMD parallel
workflow (above).

3. Add annotations to the application source code and rebuild the application.

4. Collect suitability data. Note: Annotations must be present in the source code for this collection to be
successful.

advisor --collect=suitability --search-dir src:r=./src --project-dir=./advi_results -- ./bin/
myApplication
advisor --report=suitability --search-dir src:r=./src --format=text --report-output=./out/
suitability.txt --project-dir=./advi_results

5. Check for the possible dependencies.

advisor --collect=dependencies --search-dir src:r=./src --project-dir=./advi_results -- ./bin/
myApplication
advisor --report=dependencies --search-dir src:r=./src --format=text --report-output=./out/
dependencies.txt --project-dir=./advi_results

  1   Intel® Advisor User Guide

434



6. Display a list of currently used annotations.

advisor --report=annotations --search-dir src:r=./src --format=text --report-output=./out/
annotations.txt --project-dir=./advi_results

7. Update the application using the chosen parallel coding constructs. Rebuild the application and test.

Tip
Use an option file for efficiency. Enter one option on each line. No spaces are allowed in the
option entry; use a new line. The option file must be in UTF-8 format.

advisor --report=annotations --option-file=./advi/option.txt
with an option.txt file that looks like this:

 --project-dir
./advi_results  
--search-dir
src:r=./src
--format=text
--report-output
./out/annotations.txt

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

advisor Command Option Reference
The advisor command currently supports the options shown below.

Option Description

accuracy Set an accuracy level for the Offload Modeling
collection preset.

append Add loops (by file and line number) to the loops
selected for deeper analysis.

app-working-dir Specify the directory where the target application
runs during analysis, if it is different from the
current working directory.

assume-dependencies Assume that a loop has dependencies if the loop
dependency type is unknown.

assume-hide-taxes Estimate invocation taxes assuming the invocation
tax is paid only for the first kernel launch.

assume-ndim-dependency When searching for an optimal N-dimensional
offload, assume there are dependencies between
inner and outer loops.

assume-single-data-transfer Assume data is only transferred once for each
offload, and all instances share that data.

auto-finalize Finalize Survey and Trip Counts & FLOP analysis
data after collection is complete.

Intel® Advisor User Guide  1  

435



Option Description

batching Emulate the execution of more than one instance
simultaneously for a top-level offload.

benchmarks-sync Run benchmarks on only one concurrently
executing Intel Advisor instance to avoid
concurrency issues with regard to platform limits.

bottom-up Generate a Survey report in bottom-up view.

cache-binaries Enable binary visibility in a read-only snapshot you
can view any time.

cache-binaries-mode Select what binary files will be added to a read-only
snapshot.

cache-config Set the cache hierarchy to collect modeling data for
CPU cache behavior during Trip Counts & FLOP
analysis.

cache-simulation Simulate device cache behavior for your
application.

cache-sources Enable source code visibility in a read-only
snapshot you can view any time (with the
--snapshot action). Enable keeping source code
cache within a project (with the --collect action).

cachesim Enable cache simulation for Performance Modeling.

cachesim-associativity Set the cache associativity for modeling CPU cache
behavior during the Memory Access Patterns
analysis.

cachesim-cacheline-size Set the cache line size (in bytes) for modeling CPU
cache behavior during Memory Access Patterns
analysis.

cachesim-mode Set the focus for modeling CPU cache behavior
during Memory Access Patterns analysis.

cachesim-sampling-factor Specify what percentage of total memory accesses
should be processed during cache simulation.

cachesim-sets Set the cache set size (in bytes) for modeling CPU
cache behavior during Memory Access Patterns
analysis.

check-profitability Check the profitability of offload regions and add
only profitable regions to a report.

clear Clear all loops previously selected for deeper
analysis.

config Specify a device configuration to model your
application performance for.

count-logical-instructions Use the projection of x86 logical instructions to GPU
logical instructions.

count-memory-instructions Project x86 memory instructions to GPU SEND/
SENDS instructions.

  1   Intel® Advisor User Guide

436



Option Description

count-memory-objects-accesses Count the number of accesses to memory objects
created by code regions.

count-mov-instructions Project x86 MOV instructions to GPU MOV
instructions.

count-send-latency Select how to model SEND instruction latency.

cpu-scale-factor Specify a scale factor to approximate a host CPU
that is faster than the baseline CPU by this factor.

csv-delimiter Set the delimiter for a report in CSV format.

custom-config Specify the ablosute path or name for a custom
TOML configuration file with additional modeling
parameters.

data-limit Limit the maximum amount (in MB) of raw data
collected during Survey analysis.

data-reuse-analysis Analyze potential data reuse between code regions.

data-transfer Set the level of details for modeling data transfers
during Characterization.

data-transfer-histogram Estimate data transfers in details and latencies for
each transferred object.

data-transfer-page-size Specify memory page size to set the traffic
measurement granularity for the data transfer
simulator.

data-type Show only floating-point data, only integer data, or
data for the sum of both data types in a Roofline
interactive HTML report.

delete-tripcounts Remove previously collected trip counts data when
re-running a Survey analysis with changed binaries.

disable-fp64-math-optimization Do not account for optimized traffic for
transcendentals on a GPU.

display-callstack Show a callstack for each loop/function call in a
report.

dry-run List all steps included in Offload Modeling batch
collection at a specified accuracy level without
running them.

duration Specify the maximum amount of time (in seconds)
an analysis runs.

dynamic Show (in a Survey report) how many instructions of
a given type actually executed during Trip Counts &
FLOP analysis.

enable-batching Deprecated.

enable-cache-simulation Model CPU cache behavior on your target
application.

Intel® Advisor User Guide  1  

437



Option Description

enable-data-transfer-analysis Model data transfer between host memory and
device memory.

enable-grf-simulation Enable a simulator to model GRF.

enable-slm Deprecated. SLM is modeled by default if available.

enable-task-chunking Examine specified annotated sites for opportunities
to perform task-chunking modeling in a Suitability
report.

enforce-baseline-decomposition Use the same local size and SIMD width as
measured on a baseline device.

enforce-fallback Emulate data distribution over stacks if stacks
collection is disabled.

enforce-offloads Offload all selected code regions even if offloading
their child loops/functions is more profitable.

estimate-max-speedup Estimate region speedup with relaxed constraints.

evaluate-min-speedup Consider loops recommended for offloading only if
they reach the minimum estimated speedup
specified in a configuration file.

exclude-files Exclude the specified files or directories from
annotation scanning during analysis.

executable-of-interest Specify an application for analysis that is not the
starting application.

exp-dir Specify a path to an unpacked result snapshot or
an MPI rank result to generate a report or model
performance.

filter Filter data by the specified column name and value
in a Survey and Trips Counts & FLOP report.

filter-by-scope Enable filtering detected stack variables by scope
(warning vs. error) in a Dependencies analysis.

filter-reductions Mark all potential reductions by specific diagnostic
during Dependencies analysis.

flex-cachesim Enable flexible cache simulation to change cache
configuration without re-running collection.

flop Collect data about floating-point and integer
operations, memory traffic, and mask utilization
metrics for AVX-512 platforms during Trip Counts &
FLOP analysis.

force-32bit-arithmetics Consider all arithmetic operations as single-
precision floating-point or int32 operations.

force-64bit-arithmetics Consider all arithmetic operations as double-
precision floating-point or int64 operations.

format Set a report output format.

  1   Intel® Advisor User Guide

438



Option Description

gpu With Offload Modeling perspective, analyze
OpenCL™ and oneAPI Level Zero programs running
on Intel® Graphics. With GPU Roofline Insights
perspective. create a Roofline interactive HTML
report for data collected on GPUs.

gpu-carm Collect memory traffic generated by OpenCL™ and
Intel® Media SDK programs executed on Intel®
Processor Graphics.

gpu-kernels Deprecated. Use --profile-gpu or --gpu instead.

gpu-sampling-intervals Specify time interval, in milliseconds, between GPU
samples during Survey analysis.

hide-data-transfer-tax Disable data transfer tax estimation.

ignore Specify runtimes or libraries to ignore time spent in
these regions when calculating per-program
speedup.

ignore-app-mismatch Ignore mismatched target or application parameter
errors before starting analysis.

ignore-checksums Ignore mismatched module checksums before
starting analysis.

instance-of-interest Analyze the Nth child process during Memory
Access Patterns and Dependencies analysis.

integrated Model traffic on all levels of the memory hierarchy
for a Roofline report.

interval Set the length of time (in milliseconds) to wait
before collecting each sample during Survey
analysis.

limit Set the maximum number of top items to show in a
report.

loop-call-count-limit Set the maximum number of instances to analyze
for all marked loops.

loop-filter-threshold Specify total time, in milliseconds, to filter out loops
that fall below this value.

loops Select loops (by criteria instead of human input) for
deeper analysis.

mark-up Enable/disable user selection as a way to control
loops/functions identified for deeper analysis.

mark-up-list After running a Survey analysis and identifying
loops of interest, select loops (by file and line
number or ID) for deeper analysis.

memory-level Model specific memory level(s) in a Roofline
interactive HTML report, including L1, L2, L3, and
DRAM.

Intel® Advisor User Guide  1  

439



Option Description

memory-operation-type Model only load memory operations, store memory
operations, or both, in a Roofline interactive HTML
report.

mix Show dynamic or static instruction mix data in a
Survey report.

mkl-user-mode Collect Intel® oneAPI Math Kernel Library (oneMKL)
loops and functions data during the Survey
analysis.

model-baseline-gpu Use the baseline GPU configuration as a target
device for modeling.

model-children Analyze child loops of the region head to find if
some of the child loops provide more profitable
offload.

model-extended-math Model calls to math functions such as EXP, LOG,
SIN, and COS as extended math instructions, if
possible.

model-system-calls Analyze code regions with system calls considering
they are separated from offload code and executed
on a host device.

module-filter Specify application (or child application) module(s)
to include in or exclude from analysis.

module-filter-mode Limit, by inclusion or exclusion, application (or child
application) module(s) for analysis.

mpi-rank Specify MPI process data to import.

mrte-mode Set the Microsoft* runtime environment mode for
analysis.

ndim-depth-limit When searching for an optimal N-dimensional
offload, limit the maximum loop depth that can be
converted to one offload.

option-file Specify a text file containing command line
arguments.

overlap-taxes Enable asynchronous execution to overlap offload
overhead with execution time.

pack Pack a snapshot into an archive.

profile-gpu Analyze OpenCL™ and oneAPI Level Zero programs
running on Intel® Processor Graphics.

profile-intel-perf-libs Show Intel® performance libraries loops and
functions in Intel® Advisor reports.

profile-jit Collect metrics about Just-In-Time (JIT) generated
code regions during the Trip Counts and FLOP
analysis.

profile-python Collect Python* loop and function data during
Survey analysis.

  1   Intel® Advisor User Guide

440



Option Description

profile-stripped-binaries Collect metrics for stripped binaries.

project-dir Specify the top-level directory where a result is
saved if you want to save the collection somewhere
other than the current working directory.

quiet Minimize status messages during command
execution.

recalculate-time Recalculate total time after filtering a report.

record-mem-allocations Enable heap allocation tracking to identify heap-
allocated variables for which access strides are
detected during Memory Access Patterns analysis.

record-stack-frame Capture stack frame pointers to identify stack
variables for which access strides are detected
during Memory Access Patterns analysis.

reduce-lock-contention Examine specified annotated sites for opportunities
to reduce lock contention or find deadlocks in a
Suitability report.

reduce-lock-overhead Examine specified annotated sites for opportunities
to reduce lock overhead in a Suitability report.

reduce-site-overhead Examine specified annotated sites for opportunities
to reduce site overhead in a Suitability report.

reduce-task-overhead Examine specified annotated sites for opportunities
to reduce task overhead in a Suitability report.

refinalize-survey Refinalize a survey result collected with a previous
Intel® Advisor version or if you need to correct or
update source and binary search paths.

remove Remove loops (by file and line number) from the
loops selected for deeper analysis.

report-output Redirect report output from stdout to another
location.

report-template Specify the PATH/name of a custom report template
file.

result-dir Specify a directory to identify the running analysis.

resume-after Resume collection after the specified number of
milliseconds.

return-app-exitcode Return the target exit code instead of the command
line interface exit code.

search-dir Specify the location(s) for finding target support
files.

search-n-dim Enable searching for an optimal N-dimensional
offload.

select Select loops (by file and line number, ID, or criteria)
for deeper analysis.

Intel® Advisor User Guide  1  

441



Option Description

set-dependency Assume loops with specified IDs or source locations
have a dependency.

set-parallel Assume loops with specified IDs or source locations
are parallel.

set-parameter Specify a single-line parameter to modify in a
target device configuration.

show-all-columns Show data for all available columns in a Survey
report.

show-all-rows Show data for all available rows, including data for
child loops, in a Survey report.

show-functions Show only functions in a report.

show-loops Show only loops in a report.

show-not-executed Show not-executed child loops in a Survey report.

show-report Generate a Survey report for data collected for GPU
kernels.

small-node-filter Specify the total time threshold, in milliseconds, to
filter out nodes that fall below this value from PDF
and DOT Offload Modeling reports.

sort-asc Sort data in ascending order (by specified column
name) in a report.

sort-desc Sort data in descending order (by specified column
name) in a report.

spill-analysis Register flow analysis to calculate the number of
consecutive load/store operations in registers and
related memory traffic in bytes during Survey
analysis.

stack-access-granularity Specify stack access size to set stack memory
access measurement granularity for the data
transfer simulation.

stack-stitching Restructure the call flow during Survey analysis to
attach stacks to a point introducing a parallel
workload.

stack-unwind-limit Set stack size limit for analyzing stacks after
collection.

stacks Perform advanced collection of callstack data during
Roofline and Trip Counts & FLOP analysis.

stackwalk-mode Choose between online and offline modes to
analyze stacks during Survey analysis.

start-paused Start executing the target application for analysis
purposes, but delay data collection.

static-instruction-mix Statically calculate the number of specific
instructions present in the binary during Survey
analysis.

  1   Intel® Advisor User Guide

442



Option Description

strategy Specify processes and/or children for
instrumentation during Survey analysis.

support-multi-isa-binaries Collect a variety of data during Survey analysis for
loops that reside in non-executed code paths.

target-device Specify a device configuration to model cache for
during Trip Counts collection.

target-gpu Specify a target GPU to collect data for if you have
multiple GPUs connected to your system.

target-pid Attach Survey or Trip Counts & FLOP collection to a
running process specified by the process ID.

target-process Attach Survey or Trip Counts & FLOP collection to a
running process specified by the process name.

target-system Specify the hardware configuration to use for
modeling purposes in a Suitability report.

threading-model Specify the threading model to use for modeling
purposes in a Suitability report.

threads Specify the number of parallel threads to use for
offload heads.

top-down Generate a Survey report in top-down view.

trace-mode Set how to trace loop iterations during Memory
Access Patterns analysis.

trace-mpi Configure collectors to trace MPI code and
determine MPI rank IDs for non-Intel® MPI library
implementations.

track-memory-objects Attribute memory objects to the analyzed loops
that accessed the objects.

track-stack-accesses Track accesses to stack memory.

track-stack-variables Enable parallel data sharing analysis for stack
variables during Dependencies analysis.

trip-counts Collect loop trip counts data during Trip Counts &
FLOP analysis.

use-collect-configs Deprecated.

user-data-dir Deprecated.

verbose Maximize status messages during command
execution.

with-stack Show call stack data in a Roofline interactive HTML
report (if call stack data is collected).

accuracy
Set an accuracy level for the Offload Modeling
collection preset.

Intel® Advisor User Guide  1  

443



GUI Equivalent

Analysis Workflow > Accuracy

Syntax

--accuracy=<string>

Arguments

Argument Description

low Run Offload Modeling with low accuracy: enable Survey, Characterization (Trip Counts and
FLOP), and Performance Modeling analyses.

medium Run Offload Modeling with medium accuracy: enable Survey, Characterization (Trip Counts
and FLOP with cache simulation, callstacks, and light data transfer simulation), and
Performance Modeling analyses.

high Run Offload Modeling with high accuracy: enable Survey, Characterization (Trip Counts and
FLOP with cache simulation, callstacks, and medium data transfer simulation),
Dependencies, and Performance Modeling analyses.

Default

medium

Actions Modified

collect=offload

Usage

The higher accuracy value you choose, the higher modeling accuracy and runtime overhead.

Example
Run the Offload Modeling collection preset with high accuracy.

advisor --collect=offload --accuracy=high --project-dir=./advi_results

See Also
Offload Modeling Accuracy Levels in Command Line
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

append
Add loops (by file and line number) to the loops
selected for deeper analysis.

GUI Equivalent

Survey > 

Syntax

--append=<string>

  1   Intel® Advisor User Guide

444



Arguments

<string> is a comma-separated list of files/line numbers in the following format: file1:line1.

Default

No default argument

Actions Modified

mark-up-loops

Usage

Do not confuse the mark-up-loops action with the mark-up-list action option. The mark-up-loops action

coupled with the select action option enables a GUI  checkbox; therefore loop selection persists beyond
the duration of the mark-up-loops action and applies to downstream analyses, such as Dependencies and
Memory Access Patterns analyses. The collect action coupled with the mark-up-list action option

simulates enabling a GUI  checkbox; therefore loop selection persists only for the duration of the collect
action.

Example
1. Run a Survey analysis.
2. Select a loop for deeper analysis.
3. Add bar.cpp:192 to the selection list.
4. Run a Dependencies analysis on both loops.

advisor --collect=survey --project-dir=./advi_results -- ./bin/myApplication
advisor --mark-up-loops --select=foo.cpp:34 --project-dir=./advi_results -- ./bin/myApplication
advisor --mark-up-loops --append=bar.cpp:192 --project-dir=./advi_results -- ./bin/myApplication
advisor --collect=dependencies --project-dir=./advi_results -- ./bin/myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

app-working-dir
Specify the directory where the target application runs
during analysis, if it is different from the current
working directory.

GUI Equivalent

Project Properties > Analysis Target > [Analysis Type] > Working directory

Syntax

--app-working-dir=<PATH>

Arguments

<PATH> is a string containing the PATH/name.

Default

Default is the current working directory.

Intel® Advisor User Guide  1  

445



Actions Modified

collect

Usage

If your data files are saved in a separate location from the target application, use the app-working-dir
option to specify the target application working directory.

Example
Run a Survey analysis on myApplication. Use work-dir to launch myApplication.

advisor --collect=survey --app-working-dir=./work_dir --project-dir=./advi_results -- ./
myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

assume-dependencies
Assume that a loop has dependencies if the loop
dependency type is unknown.

GUI Equivalent

Analysis Workflow > Offload Modeling > Perfprmance Modeling > Assume Dependencies

Syntax

--assume-dependencies
--no-assume-dependencies

Default

On (assume-dependencies)

NOTE The GUI equivalent is disable by default.

Actions Modified

collect=projection

collect=offload

Usage

Use the no-assume-dependencies option if you want to minimize the estimated time when your code is
bounded by assumed dependencies without running the Dependencies analysis. In this case, if there is no
information about a loop from a compiler or the loop is not explicitly marked as parallel, for example, with a
programming model (OpenMP*, SYCL, Intel® oneAPI Threading Building Blocks), Intel® Advisor assumes it is
parallel and does not have dependencies.

Example
1. Run a Survey analysis.

  1   Intel® Advisor User Guide

446



2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Project application performance assuming loops with an unknown dependency type do not have

dependencies.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --no-assume-dependencies --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

assume-hide-taxes
Estimate invocation taxes assuming the invocation tax
is paid only for the first kernel launch.

GUI Equivalent

Analysis Properties > Offload Modeling > Performance Modeling > Single Kernel Launch Tax

Syntax

--assume-hide-taxes
--no-assume-hide-taxes

Default

Off (no-assume-hide-taxes)

Actions Modified

collect=projection

collect=offload

Usage

You can control how to model kernel invocation taxes for your application. When a high call count value is
detected for a potentially profitable code region, Intel® Advisor assumes that the kernel invocation tax is paid
as many times as the kernel is launched. This results in high invocation tax and cost of offloading, which
means that this code region cannot benefit from offloading.

For simple applications where there is no need to wait for a kernel instance to finish, use the
assume-hide-taxes to hide this cost every time except the very first one and minimize the invocation tax.

Enable the assume-hide-taxes option to analyze oneAPI applications (SYCL or OpenMP* target) running on
CPU.

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.

Intel® Advisor User Guide  1  

447



3. Model your application performance on a target device assuming the invocation tax is paid only when
the kernel is launched for the first time.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --assume-hide-taxes --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

assume-ndim-dependency
When searching for an optimal N-dimensional offload,
assume there are dependencies between inner and
outer loops.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--assume-ndim-dependency
--no-assume-ndim-dependency

Default

On (assume-ndim-dependency)

Actions Modified

collect=projection

collect=offload

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Model your application performance on a target device assuming there are no dependencies between

inner and outer loops when searching for an optimal N-dimensional offload.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --no-assume-ndim-dependency --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

  1   Intel® Advisor User Guide

448



assume-single-data-transfer
Assume data is transferred only once for each offload,
and all instances share that data.

Syntax

--assume-single-data-transfer
--no-assume-single-data-transfer

Default

Off (no-assume-single-data-transfer)

Actions Modified

collect=projection

collect=offload

Usage

When the option is disabled, use an optimistic approach to estimate data transfer taxes: assume data is only
transferred once for each offload, and all instances share that data.

When the option is enabled, use a pessimistic approach to estimate data transfer taxes: assume each data
object is transferred for every instance of an offload that uses it. This method assumes no data re-use
between calls to the same kernel. SYCL, OpenMP* target, and OpenCL™ kernels running on a CPU are still
counted only once because the call count for these kernels is usually inflated.

NOTE Make sure to enable the data transfer analysis during the Trip Counts collection with
--data-transfer=[light | medium |full] or --enable-data-transfer-analysis.

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage with the light data transfer.
3. Model your application performance assuming data is transferred only once.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --data-transfer=light --project-dir=./advi_results -- ./
myApplication
advisor --collect=projection --assume-single-data-transfer --project-dir=./advi_results

See Also
data-transfer Set the level of details for modeling data transfers during Characterization.
enable-data-transfer-analysis Model data transfer between host memory and device memory.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

auto-finalize
Finalize Survey and Trip Counts & FLOP analysis data
after collection is complete.

Intel® Advisor User Guide  1  

449



Syntax

--assume-single-data-transfer
--no-assume-single-data-transfer

Default

On (auto-finalize)

Actions Modified

collect=survey

collect=tripcounts

collect=roofline

collect=offload

Usage

Use the no-auto-finalize option in situations where you want to suppress finalization, such as when you
want to view collected data on a different machine. If finalization is suppressed during data collection and
analysis, it occurs automatically when you open the result in the GUI or generate a report from the result.

Disabling temporarily decreases overhead.

Example
Run a Survey analysis. Search recursively for source files in the ./src search directory. Suppress finalization
and write the unfinalized results to the ./advi project directory instead of the default working directory.

advisor --collect=survey --no-auto-finalize --project-dir=./advi_results --search-dir src:=./src 
-- ./bin/myApplication

See Also
Minimize Analysis Overhead

advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

batching
Emulate the execution of more than one instance
simultaneously for a top-level offload.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--batching
--no-batching

Default

Off (no-batching)

  1   Intel® Advisor User Guide

450



Actions Modified

collect=projection

collect=offload

Usage

Use the batching option to enable job batching for a top-level offload and emulate the execution of more
than one instance simultaneously. This option is equivalent to
--threads=total_EU_count*threads_per_EU.

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly
DG2) and newer generations feature GPU architecture terminology that shifts from legacy
terms. For more information on the terminology changes and to understand their mapping
with legacy content, see GPU Architecture Terminology for Intel® Xe Graphics.

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Model your application performance on a target device and emulate the execution of several instances

simultaneously for a top-level offload.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --batching --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

benchmarks-sync
Run benchmarks on only one concurrently executing
Intel Advisor instance to avoid concurrency issues with
regard to platform limits.

Syntax

--benchmarks-sync
--no-benchmarks-sync

Default

On (benchmarks-sync)

Actions Modified

collect

Usage

Analyze a multi-process application running more than one process on the same host system.

Intel® Advisor User Guide  1  

451

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html


Example
Run a Trip Counts & FLOP analysis for the MPI application myApplication. Disable benchmark
synchronization to get platform limits corresponding to concurrent runs of multiple processes on the same
host system.

mpirun -n 4 --gtool=“advisor --collect=tripcounts --flop --no-benchmarks-sync --project-dir=./
advi_results:0-3” ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference

bottom-up
Generate a Survey report in bottom-up view.

GUI Equivalent

Survey > Loop Information

Syntax

--bottom-up
--no-bottom-up

Default

On (bottom-up)

Actions Modified

report=survey

Example
1. Run a Survey analysis.
2. Generate a Survey report. Show a bottom-up list of target loops/functions.

advisor --collect=survey --project-dir=./advi_results -- ./myAplication 
advisor --report=survey --bottom-up --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

cache-binaries
Enable binary visibility in a read-only snapshot you
can view any time.

GUI Equivalent

File > Create Data Snapshot > Cache Binaries

Syntax

--cache-binaries
--no-cache-binaries

  1   Intel® Advisor User Guide

452



Default

Off (no-cache-binaries)

Actions Modified

snapshot

Example
1. Run a Survey analysis.
2. Create a snapshot. Include binaries.

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
advisor --snapshot --cache-binaries --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

cache-binaries-mode
Select what binary files will be added to a read-only
snapshot.

Syntax

--cache-binaries-mode=<string>

Arguments

<string> is one of the following:

Argument Description

full Add all binary files to a read-only snapshot.

light Add only essential binary files to a read-only snapshot.

off Do not add binary files to a read-only snapshot.

Default

light

Actions Modified

snapshot

Usage

Use full mode to add all binary files. This can increase the snapshot size.

If you only need minimal information in a snapshot, for example, only timings to compare them with other
results, you can set the mode to off or light to reduce snapshot size.

Intel® Advisor User Guide  1  

453



Example
Create a snapshot new_snapshot and add all binary files.

advisor --snapshot --cache-binaries --cache-binaries-mode=full --project-dir=./advi_result -- 
new_snapshot

See Also
advisor Command Line Interface  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].
advisor Command Action Reference

cache-config
Set the cache hierarchy to collect modeling data for
CPU cache behavior during Trip Counts & FLOP
analysis.

GUI Equivalent

Project Properties > Analysis Target > Trip Counts and FLOP Analysis > Cache simulator
configuration

Syntax

--cache-config=<string>

Arguments

<string> follows this template:

[num_of_level1_caches]:[num_of_ways_level1_connected]:[level1_cache_size]:[level1_cacheline_size]/

[num_of_level2_caches]:[num_of_ways_level2_connected]:[level2_cache_size]:[level2_cacheline_size]/

[num_of_level3_caches]:[num_of_ways_level3_connected]:[level3_cache_size]:[level3_cacheline_size]

For example: 4:8w:32k:64l/4:4w:256k:64l/1:16w:6m:64l

Actions Modified

collect=tripcounts --enable-cache-simulation

collect=roofline --enable-cache-simulation

Usage

When no specific configuration is set, the Intel Advisor uses system cache hierarchy for modeling.

NOTE
Cache simulation modeling applies to the following:

• Memory Access Patterns analysis - This basic simulation functionality models accurate memory
footprints, miss information, and cache line utilization for a downstream Memory Access Patterns
report.

• CPU / Memory Roofline Insights perspective - This enhanced simulation functionality models
multiple levels of cache for a downstream Memory-Level Roofline chart or Roofline interactive HTML
report.

This option is applicable only to Trip Counts and FLOP and Roofline analyses.

  1   Intel® Advisor User Guide

454



Example
1. Run a Survey analysis.
2. Run a Trip Counts & FLOP analysis. Model cache behavior for the specified configuration.

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-cache-simulation --cache-
config=4:8w:32k:64l/4:4w:256k:64l/1:16w:6m:64l --project-dir=./advi_results -- ./
myApplication
Run Roofline analysis for all memory levels (Memory-Level Roofline) for the specified cache configuration.

advisor --collect=roofline --enable-cache-simulation --cache-config=4:8w:32k:64l/
4:4w:256k:64l/1:16w:6m:64l --project-dir=./advi_results -- ./myApplication

See Also
cachesim-associativity Set the cache associativity for modeling CPU cache behavior during
Memory Access Patterns analysis.
cachesim-cacheline_size Set the cache line size (in bytes) for modeling CPU cache behavior during
Memory Access Patterns analysis.
cachesim-mode Set the focus for modeling CPU cache behavior during Memory Access Patterns
analysis.
cachesim-sets  Set the cache set size (in bytes) for modeling CPU cache behavior during Memory
Access Patterns analysis.
enable-cache-simulation  Model CPU cache behavior on your target application.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

cache-simulation
Simulate device cache behavior for your application.

GUI Equivalent

Analysis Workflow > Characterization > Cache Simulation Mode

Syntax

--cache-simulation=<string>

Arguments

<string> is one of the following:

Argument Description

off Disable cache simulation.

single Simulate GPU memory hierarchy behavior only for the selected target device or CPU cache
behavior if no target device is selected.

multi Simulate cache behavior for all available target devices to remodel performance without re-
running the collection.

grf Simulate general register file (GRF) behavior.

Intel® Advisor User Guide  1  

455



Default

off

Actions Modified

collect=tripcounts

collect=roofline

collect=offload

Usage

Enabling cache simulation can increase analysis overhead.

• Use off to decrease overhead.
• Use single with Offload Modeling if you want to model performance for a single target device. You can

use this mode for the CPU Roofline collection. This option is equivalent to enable-cache-simulation.
• Use multi with Offload Modeling if you want to model performance for several devices or with modified

memory parameters without rerunning the Characterization (Trip Count and FLOP) analysis. This option is
equivalent to the flex-cachesim option (deprecated).

• Use grf to ... This option is equivalent to the enable-grf-simulation option (deprecated).

Example
Run Characterization analysis with cache simulation enabled to model performance for all available devices.

advisor --collect=tripcounts --flop --cache-simulation=multi --target-device=xehpg_512xve --
project-dir=./advi_results -- ./myApplication

See Also
advisor Command Line Interface  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].
advisor Command Action Reference

cache-sources
Enable source code visibility in a read-only snapshot
you can view any time (with --snapshot action).
Enable keeping source code cache within a project
(with --collect action).

GUI Equivalent

To add source to a snapshot: File > Create Data Snapshot > Cache Sources

To keep cached source during data collection: Project Properties  > Analysis Target  > Survey Hotspots
Analysis  > Source caching

Syntax

--cache-sources
--no-cache-sources

Default

Off (no-cache-sources)

Actions Modified

snapshot

  1   Intel® Advisor User Guide

456



collect

Usage

When used with collect action, report is supplied with source code folded like a snapshot. Once set, this
option triggers a flag in project configuration that prevents deleting cache with each analysis run unless you
manually disable it.

Example
Create a read-only snapshot. Include performance data, sources, and binaries. Save the snapshot to the tmp
directory. Name the snapshot myAdvisorProjSnapshot.advixeexpz.

advisor --snapshot --project-dir=./advi_results --pack --cache-sources --cache-binaries -- ./bin/
myApplication

Run a Survey analysis and keep source cache.

advisor --collect=survey --cache-sources --project-dir=./advi_results -- ./bin/myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

cachesim
Enable cache simulation for Performance Modeling.

Syntax

--cachesim
--no-cachesim

Default

On (cachesim)

Actions Modified

collect=projection

Usage

Cache simulation data might be unavailable for some loops. Performance Modeling result may be incorrect.
Use this option to enable the cache simulation data for the Performance Modeling.

NOTE Make sure to use the --enable-cache-simulation and --cache-config command line
arguments when collection Trip Counts data to improve projection accuracy.

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage with cache simulation for a specific

cache configuration.

Intel® Advisor User Guide  1  

457



3. Model your application performance and explicitly enable cache simulation .

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-cache-simulation --cache-config=4:8w:32k:64l/
4:4w:256k:64l/1:16w:6m:64l --project-dir=./advi_results -- ./myApplication
advisor --collect=projection --cachesim --project-dir=./advi_results

See Also
enable-cache-simulation  Model CPU cache behavior on your target application.
cache-config Set the cache hierarchy to collect modeling data for CPU cache behavior during Trip
Counts & FLOP analysis.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

cachesim-associativity
Set the cache associativity for modeling CPU cache
behavior during Memory Access Patterns analysis.

GUI Equivalent

Project Properties > Analysis Target > Memory Access Patterns Analysis > Advanced > Cache
associativity

Syntax

--cachesim-associativity=<integer>

Arguments

<integer> is the number of cache locations where one memory entry can be placed: 1 | 2 | 4 | 8 | 16

Default

8

Actions Modified

collect=map --enable cache-simulation

Usage

1 stands for a direct mapped cache, where a memory entry can occupy only one cache line.

NOTE
Cache simulation modeling applies to the following:

• Memory Access Patterns analysis - This basic simulation functionality models accurate memory
footprints, miss information, and cache line utilization for a downstream Memory Access Patterns
report.

• CPU / Memory Roofline Insights perspective - This enhanced simulation functionality models
multiple levels of cache for a downstream Memory-Level Roofline chart or Roofline interactive HTML
report.

This option is applicable only to Memory Access Patterns analysis.

  1   Intel® Advisor User Guide

458



Example
Run a Memory Access Patterns analysis. Model four-way associative cache with default cache line and cache
set size.

advisor --collect=map --enable-cache-simulation --cachesim-associativity=4 --cachesim-
mode=utilization --project-dir=./advi_results -- ./myApplication

See Also
cache-config Set the cache hierarchy to collect modeling data for CPU cache behavior during Trip
Counts & FLOP analysis.
cachesim-cacheline_size Set the cache line size (in bytes) for modeling CPU cache behavior during
Memory Access Patterns analysis.
cachesim-mode Set the focus for modeling CPU cache behavior during Memory Access Patterns
analysis.
cachesim-sets  Set the cache set size (in bytes) for modeling CPU cache behavior during Memory
Access Patterns analysis.
enable-cache-simulation  Model CPU cache behavior on your target application.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

cachesim-cacheline-size
Set the cache line size (in bytes) for modeling CPU
cache behavior during Memory Access Patterns
analysis.

GUI Equivalent

Project Properties > Analysis Target > Memory Access Patterns > Advanced > Cache line size

Syntax

--cachesim-cacheline-size=<integer>

Arguments

<integer> is in bytes: 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768 |
65536

Default

64

Actions Modified

collect=map --enable cache-simulation

Intel® Advisor User Guide  1  

459



Usage

NOTE
Cache simulation modeling applies to the following:

• Memory Access Patterns analysis - This basic simulation functionality models accurate memory
footprints, miss information, and cache line utilization for a downstream Memory Access Patterns
report.

• CPU / Memory Roofline Insights perspective - This enhanced simulation functionality models
multiple levels of cache for a downstream Memory-Level Roofline chart or Roofline interactive HTML
report.

This option is applicable only to Memory Access Patterns analysis.

Example
Run a Memory Access Patterns analysis. Model four-way associative cache with 64-byte cache line size and
default cache set size.

advisor --collect=map --enable-cache-simulation --cachesim-cacheline-size=64 --
cachesim-associativity=4 --cachesim-mode=utilization --project-dir=./advi_results -- ./
myApplication

See Also
cache-config Set the cache hierarchy to collect modeling data for CPU cache behavior during Trip
Counts & FLOP analysis.
cachesim-associativity Set the cache associativity for modeling CPU cache behavior during
Memory Access Patterns analysis.
cachesim-mode Set the focus for modeling CPU cache behavior during Memory Access Patterns
analysis.
cachesim-sets  Set the cache set size (in bytes) for modeling CPU cache behavior during Memory
Access Patterns analysis.
enable-cache-simulation  Model CPU cache behavior on your target application.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

cachesim-mode
Set the focus for modeling CPU cache behavior during
Memory Access Patterns analysis.

GUI Equivalent

Project Properties > Analysis Target > Memory Access Patterns Analysis > Advanced > Cache
simulation mode

Syntax

--cachesim-mode=<string>

Arguments

<string> is one of the following:

  1   Intel® Advisor User Guide

460



Argument Description

cache-
misses

Model cache misses only.

footprint Model cache misses and memory footprint of a loop. Calculation: Cache line size x Number
of unique cache lines accessed during simulation.

utilization Model cache misses and cache lines utilization.

Default

utilization

Actions Modified

collect=map --enable cache-simulation

Usage

For memory footprint simulation, the Intel Advisor tracks only a subset of accesses and cache lines, and
scales it up to the total size of cache to calculate the final footprint value.

NOTE
Cache simulation modeling applies to the following:

• Memory Access Patterns analysis - This basic simulation functionality models accurate memory
footprints, miss information, and cache line utilization for a downstream Memory Access Patterns
report.

• CPU / Memory Roofline Insights perspective - This enhanced simulation functionality models
multiple levels of cache for a downstream Memory-Level Roofline chart or Roofline interactive HTML
report.

This option is applicable only to Memory Access Patterns analysis.

Tip
Usage can increase analysis overhead.

Example
Run a Memory Access Patterns analysis. Model cache misses for a default cache configuration.

advisor collect=map --enable-cache-simulation --cachesim-mode=cache-misses --project-dir=./
advi_results -- ./myApplication

Run a Memory Access Patterns analysis. Model cache miss and memory footprint data for 1024-byte cache
set size, default cache associativity and cache line size.

advisor collect=map --enable-cache-simulation --cachesim-sets=1024 --cachesim-mode=footprint --
project-dir=./advi_results -- ./myApplication

See Also
cache-config Set the cache hierarchy to collect modeling data for CPU cache behavior during Trip
Counts & FLOP analysis.
cachesim-associativity Set the cache associativity for modeling CPU cache behavior during
Memory Access Patterns analysis.

Intel® Advisor User Guide  1  

461



cachesim-cacheline_size Set the cache line size (in bytes) for modeling CPU cache behavior during
Memory Access Patterns analysis.
cachesim-sets  Set the cache set size (in bytes) for modeling CPU cache behavior during Memory
Access Patterns analysis.
enable-cache-simulation  Model CPU cache behavior on your target application.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

cachesim-sampling-factor
Specify what percentage of total memory accesses
should be processed during cache simulation.

Syntax

--cachesim-sampling-factor=<integer>

Arguments

<integer> is the percentage of total number of memory accesses to process: 10 | 20 | 30 | 40 | 50 | 60 | 70
| 80 | 90 | 100

Default

10

Actions Modified

collect=tripcounts --enable-cache-simulation

collect=roofline --enable-cache-simulation

Usage

If loops in your application have mixed memory access patterns, Intel® Advisor might not be able to capture
actual cache behavior when analyzing only the default 10% of memory accesses, which may decrease cache
simulation accuracy. Increase the sampling factor to improve accuracy. This option also increases collection
overhead.

NOTE Use with the --enable-cache-simulation option.

Example
Run the Trip Counts analysis with cache simulation processing 50% of memory accesses.

advisor --collect=tripcounts --enable-cache-simulation --cachesim-sampling-factor=50 --project-
dir=./advi_results -- ./myApplication

See Also
enable-cache-simulation  Model CPU cache behavior on your target application.
advisor Command Line Interface  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].
advisor Command Action Reference
Minimize Analysis Overhead

  1   Intel® Advisor User Guide

462



cachesim-sets
Set the cache set size (in bytes) for modeling CPU
cache behavior during Memory Access Patterns
analysis.

GUI Equivalent

Project Properties > Analysis Target > Memory Access Patterns Analysis > Advanced > Cache sets

Syntax

--cachesim-sets=<integer>

Arguments

<integer> is in bytes: 256 | 512 | 1024 | 2048 | 4096 | 8192

Default

4096

Actions Modified

collect=map --enable cache-simulation

Usage

NOTE
Cache simulation modeling applies to the following:

• Memory Access Patterns analysis - This basic simulation functionality models accurate memory
footprints, miss information, and cache line utilization for a downstream Memory Access Patterns
report.

• CPU / Memory Roofline Insights perspective - This enhanced simulation functionality models
multiple levels of cache for a downstream Memory-Level Roofline chart or Roofline interactive HTML
report.

This option is applicable only to Memory Access Patterns analysis.

Example
Run a Memory Access Patterns analysis. Model cache misses for 2048-byte cache set size, default cache
associativity and cache line size.

advisor collect=map --enable-cache-simulation --cachesim-sets=2048 --cachesim-mode=cache-misses 
--project-dir=./advi_results -- ./myApplication

See Also
cache-config Set the cache hierarchy to collect modeling data for CPU cache behavior during Trip
Counts & FLOP analysis.
cachesim-associativity Set the cache associativity for modeling CPU cache behavior during
Memory Access Patterns analysis.
cachesim-cacheline_size Set the cache line size (in bytes) for modeling CPU cache behavior during
Memory Access Patterns analysis.
cachesim-mode Set the focus for modeling CPU cache behavior during Memory Access Patterns
analysis.
enable-cache-simulation  Model CPU cache behavior on your target application.
advisor Command Option Reference

Intel® Advisor User Guide  1  

463



Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

check-profitability
Check the profitability of offload regions and add only
profitable regions to a report.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--check-profitability
--no-check-profitability

Default

On (check-profitability)

Actions Modified

collect=projection

collect=offload

Usage

Use the no-check-profitability option to add all offloadable regions to a report even if they do not
benefit from the increased speed after offloading.

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Model your application performance on a target device and do not check loop profitability.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --no-check-profitability --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

clear
Clear all loops previously selected for deeper analysis.

GUI Equivalent

Survey >  (deselect)

Syntax

--clear

  1   Intel® Advisor User Guide

464



--no-clear

Default

Off (no-clear)

Actions Modified

mark-up-loops

Example
Clear loops previously selected for analysis.

advisor --mark-up-loops --clear --project-dir=./advi_results -- ./bin/myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

config
Specify a device configuration to model cache
configuration/your application performance for.

GUI Equivalent

Analysis Workflow > Offload Modeling > Target Platform Model

Project Properties > Analysis Target > Performance Modeling > Target Config

Syntax

--config=<string>

Arguments

<string> is one of the following device configurations:

Argument Description

xehpg_256x
ve

Intel® Arc™ graphics with 256 vector engines

xehpg_512x
ve

Intel® Arc™ graphics with 512 vector engines

gen12_tgl Intel® Iris® Xe graphics

gen12_dg1 Intel® Iris® Xe MAX graphics

gen11_icl Intel® Iris® Plus graphics

gen9_gt2 Intel® HD Graphics 530

gen9_gt3 Intel® Iris® Graphics 550

gen9_gt4 Intel® Iris® Pro Graphics 580

Intel® Advisor User Guide  1  

465



Default

xehpg_512xve

Actions Modified

collect=projection

collect=tripcounts

collect=offload

Usage

Important
Make sure to specify the same configuration argument as for the target-device option
during Trip Counts collection (collect=tripcounts).

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Model your application performance for the gen12_dg1 configuration.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --target-device=gen12_dg1 --
project-dir=./advi_results -- ./myApplication
advisor --collect=projection --config=gen12_dg1 --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

count-logical-instructions
Use the projection of x86 logical instructions to GPU
logical instructions.

Syntax

--count-logical-instructions
--no-count-logical-instructions

Default

On (count-logical-instructions)

Actions Modified

collect=projection

collect=offload

  1   Intel® Advisor User Guide

466



Example
Model your application performance on a target device and do not project x86 logical instructions to GPU
logical instructions.

advisor --collect=projection --no-count-logical-instructions --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

count-memory-instructions
Project x86 memory instructions to GPU SEND/SENDS
instructions.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--count-memory-instructions
--no-count-memory-instructions

Default

On (count-memory-instructions)

Actions Modified

collect=projection

collect=offload

Example
Model your application performance on a target device and disable projecting x86 instructions with memory.

advisor --collect=projection --no-count-memory-instructions --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

count-memory-objects-accesses
Count the number of accesses to memory objects
created by code regions.

Syntax

--count-memory-objects-accesses
--no-count-memory-objects-accesses

Default

Off (no-count-memory-objects-accesses)

Intel® Advisor User Guide  1  

467



Actions Modified

collect=projection --data-reuse-analysis

Usage

Use as one of the following:

• Use the full data transfer with collect=tripcounts:

advisor --collect=tripcounts --flop --data-transfer=full --project-dir=<project-dir>
-- <target-application>
advisor --collect=projection --data-reuse-analysis --count-memory-objects-accesses
--project-dir=<project-dir>

• Enable the basic data transfer analysis and data-reuse-analysis with collect=tripcounts:

advisor --collect=tripcounts --flop --enable-data-transfer-analysis--data-reuse-
analysis --project-dir=<project-dir> -- <target-application>
advisor --collect=projection --data-reuse-analysis --count-memory-objects-accesses
--project-dir=<project-dir>

Example
With the full data transfer analysis:

1. Run the Survey analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage with the full data transfer analysis.
3. Analyze data reuse and count the number of accesses to memory objects when modeling your

application performance.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --data-transfer=full --project-dir=./advi_results -- ./
myApplication
advisor --collect=projection --data-reuse-analysis --count-memory-objects-accesses --project-
dir=./advi_results

See Also
data-reuse-analysis Analyze potential data reuse between code regions.
data-transfer Set the level of details for modeling data transfers during Characterization.
enable-data-transfer-analysis Model data transfer between host memory and device memory.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

count-mov-instructions
Project x86 MOV instructions to GPU MOV instructions.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--count-mov-instructions
--no-count-mov-instructions

  1   Intel® Advisor User Guide

468



Default

Off (no-count-mov-instructions)

Actions Modified

collect=projection

collect=offload

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Model your application performance on a target device and projecting x86 MOV instructions to GPU

MOV.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --count-mov-instructions --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

count-send-latency
Select how to model SEND instruction latency.

Syntax

--count-send-latency=<string>

Arguments

<string> is one of the following:

Argument Description

all Assume each SEND instruction has an uncovered latency.

first Assume only the first SEND instruction in a thread has an uncovered latency.

off Do not model SEND instruction latency.

Default

off

Actions Modified

collect=projection

collect=offload

Usage

Use first for CPU-to-GPU offload modeling.

Intel® Advisor User Guide  1  

469



Use all for GPU-to-GPU offload modeling.

Example
Model performance of your application on a target device assuming only the first send instruction has an
uncovered latency.

advisor --collect=projection --count-send-latency=first --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

cpu-scale-factor
Specify a scale factor to approximate a host CPU that
is faster than the baseline CPU by this factor.

Syntax

--cpu-scale-factor=<double>

Actions Modified

collect=projection

collect=offload

Usage

With this option, all original CPU times are divided by the factor specified.

Example
Model your application performance on a target device and approximate a host CPU that in 3 times faster
than the original CPU.

advisor --collect=projection --cpu-scale-factor=3 --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

csv-delimiter
Set the delimiter for a report in CSV format.

Syntax

--csv-delimiter=<string>

Arguments

<string> is one of the following: comma | semicolon | tab

Default

comma

  1   Intel® Advisor User Guide

470



Actions Modified

report=[report type] --format=csv

Example
Generate a Dependencies report. Output in CSV format with tab delimiters.

advisor --report=dependencies --format=csv --csv-delimiter=tab --report-output=./out/advisor-
Dependencies.csv --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

custom-config
Specify the absolute path or name for a custom TOML
configuration file with additional modeling parameters.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Custom Device Configuration

Syntax

--custom-config=<path>

Arguments

<path> is the absolute path or a name of a custom TOML configuration file.

Actions Modified

collect=projection

collect=offload

Usage

If you specify the configuration file name, the configuration directory will be searched first, then the current
directory. See Advanced Modeling Configuration for details about modeling parameters available.

You can specify this option more than once to provide multiple custom configuration files for the Performance
Modeling. For example, you can provide a scalers.toml file generated from an Offload Modeling HTML
report and a manually created configuration file with additional parameters.

When used with --collect=offload, the custom configuration file is checked for a memory structure
description at the Trip Counts analysis step. This description is used to generate cache configuration for
cache simulation. If you specify several configurations, Intel Advisor only uses the last configuration with
memory structure parameters for Trip Counts and ignores other files. For example, if you specified a target
device configuration with config and additional parameters with custom-config, Intel Advisor only uses
the target device configuration for the Trip Counts analysis and ignores the custom configuration, but for the
Performance Modeling, it uses both configuration files.

NOTEtarget-device, config, and cache-config options take precedence over memory
structure parameters specified with custom-config.

Intel® Advisor User Guide  1  

471



Example
1. Create a TOML configuration file and specify additional parameters.
2. Run Survey Analysis.
3. Run Trip Counts and FLOP analyses of the Characterization stage.
4. Model your application performance on a target device with the custom myConfig.toml file.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --custom-config=./myConfig.toml --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

data-limit
Limit the maximum amount (in MB) of raw data
collected during Survey analysis.

GUI Equivalent

Project Properties > Analysis Target > Survey Hotspots Analysis > Advanced > Collection data
limit

Syntax

--data-limit=<integer>

Arguments

<integer> is the maximum collection size, in MB.

Default

500

Actions Modified

collect=survey

Usage

This option is useful if you have storage space limitations. A smaller value can also decrease collection
overhead.

Example
Run a Survey analysis. Stop data collection when a 250-MB limit is reached or upon normal completion.

advisor --collect=survey --data-limit=250 --project-dir=./advi_results -- ./myApplication

See Also
Minimizing Analysis Overhead
advisor Command Option Reference

  1   Intel® Advisor User Guide

472



Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

data-reuse-analysis
Analyze potential data reuse between code regions.

GUI Equivalent

Analysis Workflow > Offload Modeling > Performance Modeling > Data Reuse Analysis

Syntax

--data-reuse-analysis
--no-data-reuse-analysis

Default

Off (no-data-reuse-analysis)

Actions Modified

collect=offload

collect=tripcounts --enable-data-transfer-analysis

collect=projection

Usage

With collect=offload, this option automatically applies the data-reuse-analysis option to all analyses
it runs.

With collect=tripcounts and collect=projeciton, use as one of the following:

• Use the full data transfer with collect=tripcounts and specify data-reuse-analysis only for
collect=projection:

advisor --collect=tripcounts --flop --data-transfer=full --project-dir=<project-dir>
-- <target-application>
advisor --collect=projection --data-reuse-analysis --project-dir=<project-dir>

• Enable the basic data transfer analysis with collect=tripcounts and specify data-reuse-analysis
for both collect=tripcounts and collect=projection:

advisor --collect=tripcounts --flop --enable-data-transfer-analysis--data-reuse-
analysis --project-dir=<project-dir> -- <target-application>
advisor --collect=projection --data-reuse-analysis --project-dir=<project-dir>

Example
Run the Offload Modeling with data reuse analysis using a collection preset.

advisor --collect=offload --data-reuse-analysis --project-dir=./advi_results
With the full data transfer analysis:

1. Run the Survey analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage with the full data transfer analysis.

Intel® Advisor User Guide  1  

473



3. Analyze data reuse when modeling your application performance.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --data-transfer=full --project-dir=./advi_results -- ./
myApplication
advisor --collect=projection --data-reuse-analysis --project-dir=./advi_results

See Also
data-transfer Set the level of details for modeling data transfers during Characterization.
enable-data-transfer-analysis Model data transfer between host memory and device memory.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

data-transfer
Set the level of details for modeling data transfers
during Characterization.

GUI Equivalent

Analysis Workflow > Offload Modeling > Characterization > Data Transfer Simulation

Project Properties > Analysis Target > Survey Analysis Types > Trip Counts and FLOP analysis >
Advanced > Data transfer simulation mode

Syntax

--data-transfer=off | light | medium | full

Arguments

Argument Description

off Disable data transfer simulation.

light Model data transfer between host and device memory.

medium Model data transfer between host and device memory, attribute memory objects to the
analyzed loops that accessed the objects, and track accesses to stack memory.

full Model data transfers, attribute memory objects, track accesses to stack memory, and
identify where data can be potentially reused if transferred between host and target.

Default

off

Actions Modified

collect=tripcounts

collect=offload

Usage

Usage can increase analysis overhead.

  1   Intel® Advisor User Guide

474



NOTE
data-transfer option takes precedence over the enable-data-transfer-analysis option
and its modifications. So if you specify both, data-transfer rewrites all
enable-data-transfer-analysis modifications used.

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage with full data transfer simulation.
3. Model your application performance on a target device.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --data-transfer=full --project-dir=./advi_results -- ./
myApplication
advisor --collect=projection --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

data-transfer-histogram
Estimate data transfers in details and latencies for
each transferred object.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--data-transfer-histogram
--no-data-transfer-histogram

Default

Off (no-data-transfer-histogram)

Actions Modified

collect=projection

Usage

Use as one of the following:

• Use the medium or full data transfer with collect=tripcounts and specify only
data-transfer-histogram for collect=projection. For example:

advisor --collect=tripcounts --flop --data-transfer=medium --project-dir=<project-
dir> -- <target-application>
advisor --collect=projection --data-transfer-histogram --project-dir=<project-dir>

• Enable the basic data transfer analysis and track-memory-objects with collect=tripcounts and
specify track-memory-objects and data-transfer-histogram for collect=projection:

Intel® Advisor User Guide  1  

475



advisor --collect=tripcounts --flop --enable-data-transfer-analysis--track-memory-
objects --project-dir=<project-dir> -- <target-application>
advisor --collect=projection --track-memory-objects--data-transfer-histogram --
project-dir=<project-dir>

Example
With the medium data transfer analysis:

1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Model your application performance on a target device and enable data transfer histogram.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --data-transfer=medium --project-dir=./advi_results -- ./
myApplication
advisor --collect=projection --data-transfer-histogram --project-dir=./advi_results

See Also
data-transfer Set the level of details for modeling data transfers during Characterization.
enable-data-transfer-analysis Model data transfer between host memory and device memory.
track-memory-objects Attribute memory objects to the analyzed loops that accessed the objects.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

data-transfer-page-size
Specify memory page size to set the traffic
measurement granularity for the data transfer
simulator.

Syntax

--data-transfer-page-size=<integer>

Arguments

<integer> is a power-of-two value in range of 4 to 8192: 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 |
2048 | 4096 | 8192

Default

4096

Actions Modified

collect=tripcounts --enable-data-transfer-analysis

collect=tripcounts --data-transfer=<mode>

Example
Run a Trip Counts and FLOP analysis. Enable data transfer simulation with 512-bites memory page size.

advisor --collect=tripcounts --flop --enable-data-transfer-analysis --data-transfer-
page-size=512 --project-dir=./advi_results -- ./myApplication

  1   Intel® Advisor User Guide

476



See Also
data-transfer Set the level of details for modeling data transfers during Characterization.
enable-data-transfer-analysis Model data transfer between host memory and device memory.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

data-type
Show only floating-point data, only integer data, or
data for the sum of both data types in a Roofline
interactive HTML report.

GUI Equivalent

Roofline > Default: FLOAT > Operations

Syntax

--data-type=<string>

Arguments

<string> is one of the following: float | int | mixed

Default

float

Actions Modified

report=roofline

Example
Generate a Roofline interactive HTML report. Include floating-point data; exclude integer data.

advisor --report=roofline --data-type=float --project-dir=./advi_results

See Also
Command Line Interface Reference
advisor Command Action Reference

delete-tripcounts
Remove previously collected trip counts data when re-
running a Survey analysis with changed binaries.

GUI Equivalent

Warning message

Syntax

--delete-tripcounts
--no-delete-tripcounts

Default

On (delete-tripcounts)

Intel® Advisor User Guide  1  

477



Actions Modified

collect=survey

Usage

Enable to eliminate the risk of including out-of-date data in a new Survey analysis if you:

• Change binaries.
• Have previously collected trip counts/FLOP data.

In other cases, this option is ignored.

Example
Run a Survey analysis. Remove previously collected trip counts data during analysis.

advisor --collect=survey --search-dir src:=./src bin:=./bin --delete-tripcounts --project-dir=./
advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

disable-fp64-math-optimization
Do not account for optimized traffic for
transcendentals on a GPU.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--disable-fp64-math-optimization
--no-disable-fp64-math-optimization

Default

Off (no-disable-fp64-math-optimization)

Actions Modified

collect=projection

collect=offload

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Model your application performance on a target device and disable accounting for optimized traffic for

transcendentals .

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --disable-fp64-math-optimization --project-dir=./advi_results

  1   Intel® Advisor User Guide

478



See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

display-callstack
Show a callstack for each loop/function call in a
report.

Syntax

--display-callstack

Actions Modified

report

Example
Generate a Suitability report. Include callstack data.

advisor --report=suitability --display-callstack --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

dry-run
List all steps included in Offload Modeling collection
preset at a specified accuracy level without running
them.

Syntax

--dry-run
--no-dry-run

Default

no-dry-run

Actions Modified

collect=offload

Example
List all steps for the high accuracy level of the Offload Modeling.

advisor --collect=offload --accuacy=high --config=xehpg_512xve --project-dir=./advi_results -- ./
myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

Intel® Advisor User Guide  1  

479



duration
Specify the maximum amount of time (in seconds) an
analysis runs.

GUI Equivalent

Project Properties > Analysis Target > [Analysis Type] > Advanced > Automatically stop
collection after (sec)

Syntax

-d=<string>
--duration=<string>

Arguments

<string> is maximum number of seconds or unlimited.

Default

unlimited

Actions Modified

collect

Usage

The target application also stops executing when the analysis stops running.

Example
Stop a Survey analysis after 60 seconds.

advisor --collect=survey --duration=60 --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

dynamic
Show (in a Survey report) how many instructions of a
given type actually executed during Trip Counts &
FLOP analysis.

GUI Equivalent

Code Analytics

Syntax

--dynamic
--no-dynamic

Default

On (dynamic)

  1   Intel® Advisor User Guide

480



Actions Modified

report=survey

Usage

Dynamic instruction mix is counted for the entire execution of the application; static instruction mix is
counted per iteration. The static-instruction-mix, dynamic, and mix options work together in the
following manner:

• Collect static instruction mix data: --collect=survey --static-instruction-mix
(In the GUI: Static instruction mix data is calculated on demand.)

• Collect dynamic instruction mix data (and static instruction mix data, from which dynamic mix data is
calculated): --collect=tripcounts --flop

• Show static instruction mix data in a Survey report: --report=survey --mix --no-dynamic
• Show dynamic mix instruction data in a Survey report: --report=survey --mix --dynamic
• A Survey report cannot show both static and dynamic mix instruction data.

(In the GUI: Code Analytics can show both static and dynamic instruction mix data.)

Example
1. Run a Survey analysis.
2. Run a Trip Counts & FLOP analysis. Collect dynamic instruction mix data (and static instruction mix

data, from which dynamic mix data is calculated).
3. Generate a Survey report. Show dynamic instruction mix data. (dynamic is on, by default).

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --project-dir=./advi_results -- ./myApplication
advisor --report=survey --mix --project-dir=./advi_results

1. Run a Survey analysis. Collect static instruction mix data.
2. Generate a Survey report. Show static instruction mix data.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --report=survey --mix --no-dynamic --project-dir=./advi_results

See Also
mix  Show dynamic or static instruction mix data in a Survey report.
static-instruction-mix  Statically calculate the number of specific instructions present in the binary
during Survey analysis.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

enable-cache-simulation
Model CPU cache behavior on your target application.

GUI Equivalent

For basic modeling functionality: Project Properties > Analysis Target > Memory Access Patterns
Analysis > Advanced > Enable CPU cache simulation

For enhanced modeling functionality:

Project Properties > Analysis Target > Trip Counts and FLOP Analysis > Enable CPU cache
simulation or

Analysis Workflow > [CPU | GPU] Roofline > Characterization > Enable CPU cache simulation

Intel® Advisor User Guide  1  

481



Syntax

--enable-cache-simulation
--no-enable-cache-simulation

Default

Off (no-enable-cache-simulation)

Actions Modified

collect=map

collect=tripcounts

collect=roofline

collect=offload

Usage

Enabling can increase collection overhead.

NOTE
Cache simulation modeling applies to the following:

• Memory Access Patterns analysis - This basic simulation functionality models accurate memory
footprints, miss information, and cache line utilization for a downstream Memory Access Patterns
report.

• CPU / Memory Roofline Insights perspective - This enhanced simulation functionality models
multiple levels of cache for a downstream Memory-Level Roofline chart or Roofline interactive HTML
report.

Example
Run a Memory Access Patterns analysis. Enable cache simulation with basic functionality and default cache
parameters to collect cache modeling data for a downstream Memory Access Patterns report.

advisor --collect=map --enable-cache-simulation --project-dir=./advi_results -- ./myApplication
Run a Roofline analysis for all memory levels.

advisor --collect=roofline --enable-cache-simulation --project-dir=./advi_results -- ./
myApplication

See Also
cache-config Set the cache hierarchy to collect modeling data for CPU cache behavior during Trip
Counts & FLOP analysis.
cachesim-associativity Set the cache associativity for modeling CPU cache behavior during
Memory Access Patterns analysis.
cachesim-cacheline_size Set the cache line size (in bytes) for modeling CPU cache behavior during
Memory Access Patterns analysis.
cachesim-mode Set the focus for modeling CPU cache behavior during Memory Access Patterns
analysis.
cachesim-sets  Set the cache set size (in bytes) for modeling CPU cache behavior during Memory
Access Patterns analysis.
advisor Command Option Reference

  1   Intel® Advisor User Guide

482



Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

enable-data-transfer-analysis
Model data transfer between host memory and device
memory.

Syntax

--enable-data-transfer-analysis--no-enable-data-transfer-analysis

Default

Off (no-enable-data-transfer-analysis)

Actions Modified

collect=tripcounts

Usage

NOTE
data-transfer option takes precedence over the enable-data-transfer-analysis option
and its modifications. So if you specify both, data-transfer rewrites all
enable-data-transfer-analysis modifications used.

enable-data-transfer-analysis with no modifications corresponds to data-transfer=light.

Example
Run a Trip Counts and FLOP analysis. Enable data transfer simulation.

advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./
advi_results -- ./myApplication

See Also
data-transfer-page-size Specify memory page size to set the traffic measurement granularity for
the data transfer simulator.
track-memory-objects Attribute memory objects to the analyzed loops that accessed the objects.
track-stack-accesses Track accesses to stack memory.
data-reuse-analysis Analyze potential data reuse between code regions.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

enable-task-chunking
Examine specified annotated sites for opportunities to
perform task-chunking modeling in a Suitability
report.

GUI Equivalent

Suitability > Enable Task Chunking

Intel® Advisor User Guide  1  

483



Syntax

--enable-task-chunking=<string>

Arguments

<string> is a comma-separated list of annotated sites (no spaces).

Default

No default argument

Actions Modified

report=suitability

Example
Generate a Suitability report. Include task-chunking analysis for the annotated sites myAnnotatedSiteJ and
myAnnotatedSiteX.

advisor --report=suitability --enable-task-chunking=myAnnotatedSiteJ,myAnnotatedSiteX --project-
dir=./advi_results

See Also
Enable Task Chunking
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

enforce-baseline-decomposition
Use the same local size and SIMD width as measured on a baseline device.

Syntax

--enforce-baseline-decomposition
--no-enforce-baseline-decomposition

Default

Off (no-enforce-baseline-decomposition)

Actions Modified

collect=projection --profile-gpu

Usage

This option is applicable only to the GPU-to-GPU performance modeling workflow.

When used with the Performance Modeling (collect=projection) as part of the GPU Roofline Insights
perspective for an application executed on a GPU, your application performance is modeled for a baseline
GPU device as a target. The estimated performance is compared with the actual application performance to
add more recommendations for performance optimization.

This option is recommended to be used with the model-baseline-gpu option.

  1   Intel® Advisor User Guide

484



Example
Run the GPU-to-GPU Performance Modeling for the baseline GPU using the same local size and SIMD width as
on the baseline device.

advisor --collect=projection --profile-gpu --model-baseline-gpu --enforce-baseline-decomposition 
--project-dir=./advi_results -- ./myApplication

See Also
advisor Command Line Interface  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].
advisor Command Action Reference

enforce-fallback
Emulate data distribution over stacks if stacks
collection is disabled.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--enforce-fallback
--no-enforce-fallback

Default

Off (no-enforce-fallback)

Actions Modified

collect=offload

collect=projection

Usage

Use the enforce-fallback option to emulate data distribution over stacks after reducing collection
overhead by removing --stacks option from Trip Counts collection (--no-stacks is default).

With collect=offload, this option automatically disables the stack collection and enables the fallback.

NOTE
This may reduce analysis accuracy.

Example
Run the Offload Modeling with enforced fallback using batch collection.

advisor --collect=offload --enforce-fallback --project-dir=./advi_results
Model your application performance emulating data distribution over stacks.

advisor --collect=projection --enforce-fallback --project-dir=./advi_results

See Also
advisor Command Option Reference

Intel® Advisor User Guide  1  

485



Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

enforce-offloads
Offload all selected code regions even if offloading
their child loops/functions is more profitable.

Syntax

--enforce-offloads
--no-enforce-offloads

Default

Off (no-enforce-offloads)

Actions Modified

collect=protection

Usage

Use this option if you want to check offload profitability for all selected loops or if your loop of interest is
reported as not recommended for offloading to a target device. This option may be useful for remodeling
when you run the Performance Projection several times with different modeling parameters or for different
targets without rerunning the collection. This option skips the profitability check, disables analyzing child
loops and functions to make sure the loops selected for offload are offloaded even if offloading child loops is
more profitable.

You can use it with the select to specify code regions to offload by their source location, ID, selection
criteria or using a pre-defined mark-up strategy.

Example
Run the Performance Modeling and offload all code regions.

advisor --collect=projection --enforce-offload --project-dir=./advi_results

See Also
advisor Command Line Interface  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].
advisor Command Action Reference

estimate-max-speedup
Estimate region speedup with relaxed constraints.

Syntax

--estimate-max-speedup
--no-estimate-max-speedup

Default

On (estimate-max-speedup)

Actions Modified

collect=projection

  1   Intel® Advisor User Guide

486



Usage

Disabling can decrease collection overhead.

Example
Model your application performance on a target device and explicitly enable estimations with relaxed
constraints.

advisor --collect=projection --estimate-max-speedup --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

evaluate-min-speedup
Consider loops recommended for offloading only if
they reach the minimum estimated speedup specified
in a configuration file.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--evaluate-min-speedup
--no-evaluate-min-speedup

Default

Off (no-evaluate-min-speedup)

Actions Modified

collect=projection

Usage

You need to specify a minimum speedup for a region to be estimated as recommended for offloading in a
custom TOML configuration file with a min_required_speed_up parameter. By default, the minimum
speedup is set to 1.

Example
1. Create a custom configuration file with min_required_speed_up set to 2.
2. Run Survey Analysis.
3. Run Trip Counts and FLOP analyses of the Characterization stage.
4. Model your application performance on a target device with a minimum speedup set to 2.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --custom-config=myConfig.toml --evaluate-min-speedup --project-
dir=./advi_results

Intel® Advisor User Guide  1  

487



See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

exclude-files
Exclude the specified files or directories from
annotation scanning during analysis.

GUI Equivalent

Project Properties > Source Search > Exclude the following files

Syntax

--exclude-files=<PATH>

Arguments

<PATH> is a comma-separated list of file paths or directories to exclude during data collection (no spaces).

Default

No default argument

Actions Modified

collect

Example
Run a Suitability analysis. Exclude all files in the two specified source directories from annotation scanning
during analysis.

advisor --collect=suitability --exclude-files=./src1,./src2 --project-dir=./advi_results -- ./
myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

executable-of-interest
Specify an application for analysis that is not the
starting application.

GUI Equivalent

Project Properties > Analysis Target > [Analysis Type] > Child Application

Syntax

--executable-of-interest=<PATH>

Arguments

<PATH> is a string specifying the PATH/name of the executable to be analyzed.

  1   Intel® Advisor User Guide

488



Actions Modified

collect

Usage

Specify an executable child process to analyze, instead of the script or application that spawns the child
process.

Example
Run a Survey analysis launched from myScript. Specify myApplication as the executable of interest.

advisor --collect=survey --project-dir=./advi_results --executable-of-interest=./
myApplication.exe -- ./myScript

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

exp-dir
Specify a path to an unpacked result snapshot or an
MPI rank result to generate a report or model
performance.

Syntax

--exp-dir=<path>

Arguments

<path> is the path or a name of a directory to an unpacked snapshot or an MPI rank result.

Default

Current working directory

Actions Modified

collect=projection

report

Usage

If you specify the --exp-dir option, you do not need to specify a project directory.

With --collect=projection, if you have a result snapshot, you can run Performance Modeling without an
original project or application source/executable.

NOTE If you have a packed snapshot, unpack it first using the import-dir action.

Example
Model performance for a mySnapshot snapshot.

advisor --collect=projection --exp-dir=./mySnapshot

Intel® Advisor User Guide  1  

489



Generate a Survey report from the result in the advi_result directory for the MPI rank 2. Output the report
in text format as mpi_survey.txt.

advisor --report=survey --format=text --report-output=./out/mpi_survey.txt --exp-dir=./
advi_results/rank.2

See Also
advisor Command Line Interface  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].
advisor Command Action Reference
Create a Read-only Result Snapshot

filter
Filter data by the specified column name and value in
a Survey and Trips Counts & FLOP report.

GUI Equivalent

Filters

Syntax

--filter=<string>

Arguments

<string> is in the following format: "[column name]"="[value]".

Default

No default argument

Actions Modified

report=survey

report=tripcounts

Example
Generate a Survey report. Show the top five self-time hotspots that were not vectorized because of a not
inner loop msg id.

advisor --report=survey --limit=5 --filter="Vectorization Message(s)"="loop was not vectorized: 
not inner loop" --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

filter-by-scope
Enable filtering detected stack variables by scope
(warning vs. error) in a Dependencies analysis.

GUI Equivalent

Project Properties > Analysis Target > Dependencies Analysis > Advanced > Filter stack variables
by scope

  1   Intel® Advisor User Guide

490



Syntax

--filter-by-scope
--no-filter-by-scope

Default

Off (no-filter-by-scope)

Actions Modified

collect=dependencies

Usage

Variables initiated inside the specified loop(s) are considered potential dependencies (warning). Variables
initiated outside the specified loop(s) are considered dependencies (error).

Disabling can decrease collection overhead.

Example
Run a Dependencies analysis. Analyze innermost scalar loops. Filter detected stack variables by scope.

advisor --collect=dependencies --loops="scalar,loop-height=0" --filter-by-scope --project-dir=./
advi_results -- ./myApplication 

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

filter-reductions
Mark all potential reductions by specific diagnostic
during Dependencies analysis.

GUI Equivalent

Project Properties > Analysis Target > Dependencies Analysis > Advanced > Filter reduction
variables

Syntax

--filter-reductions
--no-filter-reductions

Default

Off (no-filter-reductions)

Actions Modified

collect=dependencies

collect=offload

Usage

Enabling can increase collection overhead.

Intel® Advisor User Guide  1  

491



Example
Run a Dependencies analysis. Analyze innermost scalar loops. Mark all potential reductions by specific
diagnostic.

advisor --collect=dependencies --loops=scalar,loop-height=0" --filter-reductions --project-dir=./
advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

flop
Collect data about floating-point and integer
operations, memory traffic, and mask utilization
metrics for AVX-512 platforms during Trip Counts &
FLOP analysis.

GUI Equivalent

Analysis Workflow > Characterization > Collect FLOP data

Project Properties > Trip Counts and FLOP Analysis > Advanced > Collect information about FLOP,
L1 memory traffic, and AVX-512 mask usage

Syntax

--flop
--no-flop

Default

Off (no-flop)

On (flop) for --collect=offload

Actions Modified

collect=tripcounts

collect=offload

Usage

Enabling can increase analysis overhead.

Example
Run the Trip Counts & FLOP analysis. Collect both Trip Counts and FLOP data. (Default for the trip-counts
option is on, so it is not explicitly stated in the command line.)

advisor -collect=tripcounts --flop --project-dir=./advi_results -- ./myApplication 

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

  1   Intel® Advisor User Guide

492



force-32bit-arithmetics
Consider all arithmetic operations as single-precision
floating-point or int32 operations.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--force-32bit-arithmetics
--no-force-32bit-arithmetics

Default

Off (no-force-32bit-arithmetics)

Actions Modified

collect=projection

collect=offload

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Force 32-bit arithmetics when modeling your application performance on a target device.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./
myApplication 
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication 
advisor --collect=projection --force-32bit-arithmetics --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

force-64bit-arithmetics
Consider all arithmetic operations as double-precision
floating-point or int64 operations.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--force-64bit-arithmetics
--no-force-64bit-arithmetics

Default

Off (no-force-64bit-arithmetics)

Intel® Advisor User Guide  1  

493



Actions Modified

collect=projection

collect=offload

Example
Force 64-bit arithmetics when modeling your application performance on a target device.

advisor --collect=projection --force-64bit-arithmetics --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

format
Set a report output format.

Syntax

--format=<string>

Arguments

<string> is one of the following:

Argument Description

csv Tabular (.csv) file format

text .txt file format

xml .xml file format

Default

text

Actions Modified

report

Usage

By default, the advisor writes a report to standard output in text format; however, it provides a number of
options for generating a report:

• Use the report-output option to write a report to a file.
• Use the csv-delimiter option to set a delimiter other than a comma.

Example
Generate a Dependencies report. Output in XML format. Save it as advisor-Dependencies.xml.

advisor --report=dependencies --format=xml --report-output=./out/advisor-Dependencies.xml --
project-dir=./advi_results

  1   Intel® Advisor User Guide

494



Generate a Dependencies report. Output in CSV format with tab delimiters. Save it as advisor-
Dependencies.csv.

advisor --report=dependencies --format=csv --csv-delimiter=tab --report-output=./out/advisor-
Dependencies.csv --project-dir=./advi_results

See Also
csv-delimiter  Set the delimiter for a report in CSV format.
report-output  Redirect report output from stdout to another location.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

gpu
With Offload Modeling perspective, analyze OpenCL™
and oneAPI Level Zero programs running on Intel®
Graphics. With GPU Roofline perspective. create a
Roofline interactive HTML report for data collected on
GPUs.

GUI Equivalent

For Offload Modeling perspective: Analysis Workflow > Baseline Device > GPU

For Offload Modeling perspective: Project Properties > Analysis Target > Performance Modeling >
GPU

Syntax

--gpu
--no-gpu

Default

Off (no-gpu)

Actions Modified

collect=offload

report=roofline

Usage

For Offload Modeling perspective:

Use this option if you want to run GPU-to-GPU modeling using the collection presets. This option
automatically applies the --profile-gpu option to all analyses it runs.

For GPU Roofline perspective:

Prerequisites: Collect Roofline data with --profile-gpu option enabled.

The default Roofline interactive HTML report is created for data collected on CPUs. To create a report for data
collected on GPUs, use this option.

Example
Run the GPU-to-GPU Offload Modeling with collection preset.

advisor --collect=offload --gpu --project-dir=./advi_results

Intel® Advisor User Guide  1  

495



Generate a Roofline interactive HTML report for data collected on GPUs.

advisor --report=roofline --report-output=./out/roofline.html --gpu --project-dir=./advi_results

See Also
advisor Command Action Reference
Run GPU-to-GPU Performance Modeling from Command Line  With Intel® Advisor, you can model
performance of SYCL, OpenCL™, or OpenMP* target application running on a graphics processing
unit (GPU) for a different GPU device without its CPU version. For this, run the GPU-to-GPU
modeling workflow of the Offload Modeling perspective.

gpu-carm
Collect memory traffic generated by OpenCL™ and
Intel® Media SDK programs executed on Intel®
Processor Graphics.

Syntax

--gpu-carm--no-gpu-carm

Default

On (gpu-carm)

Actions Modified

collect=tripcounts --profile-gpu

collect=roofline --profile-gpu

Usage

Important
GPU profiling is applicable only to Intel® Processor Graphics.

This option may affect the performance of your application on the CPU side.

Example
1. Run a Survey analysis with GPU profiling enabled.

advisor --collect=survey --profile-gpu --project-dir=./advi_resuls -- ./
myApplication

2. Run a Trip Count and FLOP analysis, enable GPU profiling and explicitly enable CARM traffic metrics
collection.

advisor --collect=tripcounts --flop --profile-gpu --gpu-carm --project-dir=./
advi_resuls -- ./myApplication

See Also
Command Line Interface Reference 
advisor Command Action Reference

gpu-sampling-interval
Specify time interval, in milliseconds, between GPU
samples during Survey analysis.

  1   Intel® Advisor User Guide

496



GUI Equivalent

Project Properties > Analysis Target > Survey Hotspots Analysis > Advanced > GPU sampling
interval

Syntax

--gpu-sampling-interval=<double>

Arguments

<double> is the number from 0.1 to 10 milliseconds between GPU samples.

Default

1

Actions Modified

collect=survey --profile-gpu

collect=roofline --profile-gpu

Usage

Important
GPU profiling is applicable only to Intel® Processor Graphics.

This option may affect the performance of your application on the CPU side. Increasing the wait time
between samples can decrease collection overhead.

Example
Run a Survey analysis. Enable GPU profiling and increase the GPU sampling interval to 3 ms.

advisor --collect=survey --profile-gpu --gpu-sampling-interval=3 --project-dir=./
advi_results -- ./myApplication
See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

hide-data-transfer-tax
Disable data transfer tax estimation.

Syntax

--hide-data-transfer-tax
--no-hide-data-transfer-tax

Default

no-hide-data-transfer-tax (Off)

Actions Modified

collect=projection

collect=offload

Intel® Advisor User Guide  1  

497



Usage

When you use this option, data transfer tax is ignored when potential speedup is estimated.

Example
Run the Performance Modeling analysis and disable data transfer tax estimation.

advisor --collect=projeciton --hide-data-transfer-tax --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

ignore
Specify runtimes or libraries to ignore time spent in
these regions when calculating per-program speedup.

Syntax

--ignore=<string>

Arguments

<string> is a comma-separated list of runtimes and libraries to ignore:

Argument Description

OMP Ignore time spent in OpenMP* code regions.

MPI Ignore time spent in MPI code regions.

TBB Ignore time spent in Intel® oneAPI Threading Building Blocks code regions.

MKL Ignore time spent in Intel® Math Kernel Library code regions.

DAAL Ignore time spent in Intel® Data Analytics Acceleration Library code regions.

OMPTARGET Ignore time spent in code regions with OpenMP target construct.

OCL Ignore time spent in OpenCL™ code regions.

L0 Ignore time spent in Intel® oneAPI Level Zero code regions.

SVML Ignore time spent in Short Vector Math Library (SVML) code regions.

NOTE This option is not case sensitive.

Actions Modified

collect=projection

collect=offload

Usage

This option does not affect individual offloads, only the per-program metrics.

  1   Intel® Advisor User Guide

498



Example
Model your application performance on a target device and ignore time spent in OpenMP and Intel oneAPI
Threading Building Blocks regions.

advisor --collect=projection --ignore=OMP,TBB --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

ignore-app-mismatch
Ignore mismatched target or application parameter
errors before starting analysis.

GUI Equivalent

Survey > Your Project Properties changed since the last analysis run error

(Click Continue or Cancel)

Syntax

--ignore-app-mismatch
--no-ignore-app-mismatch

Default

Off (no-ignore-app-mismatch)

Actions Modified

collect

Usage

If you continue collection, trip counts data might become unreliable. To synchronize trip counts and survey
data:

1. Run a Survey analysis for the updated parameters using delete-tripcounts.
2. Run a Trip Counts analysis.

Example
Run a Survey analysis. Ignore mismatched target or application parameter errors before starting analysis.

advisor --collect=survey --ignore-app-mismatch --project-dir=./advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

ignore-checksums
Ignore mismatched module checksums before starting
analysis.

Intel® Advisor User Guide  1  

499



GUI Equivalent

Survey > Target binaries changed since the last analysis run error

(Click Continue or Cancel)

Syntax

--ignore-checksums
--no-ignore-checksums

Default

Off (no-ignore-checksums)

Actions Modified

collect

Usage

If you continue collection, trip counts data might become unreliable. To synchronize trip counts and survey
data:

1. Run a Survey analysis for the updated binaries using delete-tripcounts.
2. Run a Trip Counts analysis.

Example
Run a Survey analysis. Ignore mismatched module checksums before starting analysis.

advisor --collect=survey --ignore-checksums --project-dir=./advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

instance-of-interest
Analyze the Nth child process during Memory Access
Patterns and Dependencies analysis.

GUI Equivalent

Project Properties > [Analysis Type] > Advanced > Instance of interest

Syntax

--instance-of-interest=<integer>

Arguments

Argument Description

0 Analyze all processes.

1 Analyze first process of the specified name in the application process tree.

<integer> Analyze subsequent process of the specified name in the application process tree.

  1   Intel® Advisor User Guide

500



Default

0

Actions Modified

collect=map

collect=dependencies

Example
Run a Memory Access Patterns analysis. Analyze the first process of the specified name in the application
process tree.

advisor --collect=map --instance-of-interest=1 --project-dir=./advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

integrated
Model traffic on all levels of the memory hierarchy for
a Roofline report.

GUI Equivalent

Analysis Workflow > CPU Roofline > Characterization > Enable CPU cache simulation

Syntax

--integrated
--no-integrated

Default

Off (no-integrated)

Actions Modified

collect=roofline

Example
Run a Roofline analysis. Model traffic on all levels of the memory hierarchy.

advisor --collect=roofline --integrated --project-dir=./advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

interval
Set the length of time (in milliseconds) to wait before
collecting each sample during Survey analysis.

Intel® Advisor User Guide  1  

501



GUI Equivalent

Project Properties > Analysis Target > Survey Hotspots Analysis > Advanced > Sampling interval

Syntax

--interval=<integer>

Arguments

<integer> is the number of milliseconds between sampling (sampling interval).

Default

10

Actions Modified

collect=survey

Usage

Increasing the wait time between each analysis collection sample can decrease collection overhead.

Example
Run a Survey analysis. Increase the sampling interval to 20 milliseconds.

advisor --collect=survey --interval=20 --project-dir=./advi_results -- ./myApplication

See Also
Minimize Analysis Overhead
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

limit
Set the maximum number of top items to show in a
report.

GUI Equivalent

Survey > Customize View > Top

Syntax

--limit=<integer>

Arguments

<integer> is the maximum number of top items.

Default

Off (unlimited lines in output report)

Actions Modified

report

  1   Intel® Advisor User Guide

502



Example
Generate a Survey report. Show the top five self-time hotspots that were not vectorized because of a not
inner loop msg id.

advisor --report=survey --limit=5 --filter="Vectorization Message(s)"="loop was not vectorized: 
not inner loop" --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

loop-call-count-limit
Set the maximum number of instances to analyze for
all marked loops.

GUI Equivalent

Project Properties > Analysis Target > [Analysis Type] > Advanced > Loop Call Count Limit

Syntax

--loop-call-count-limit=<integer>

Arguments

Argument Description

0 Analyze all instances of all marked loops.

<integer> Analyze up to n number of instances for all marked loops.

Default

0 (analyze all instances of all marked loops)

Actions Modified

collect=dependencies

collect=map

collect=offload

Usage

Assumes similar runtime properties, such as the same memory access patterns, over different call instances.
If this is not true, using this option may produce skewed results.

A smaller, non-zero value can minimize collection overhead.

Example
Run a Memory Access Patterns analysis. Limit analysis to the first ten invocations of marked loops.

advisor --collect=map --loop-call-count-limit=10 --project-dir=./advi_results -- ./myApplication

See Also
Minimizing Analysis Overhead

Intel® Advisor User Guide  1  

503



advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

loop-filter-threshold
Specify total time, in milliseconds, to filter out loops
that fall below this value.

Syntax

--loop-filter-threshold=<integer>

Arguments

<integer> is a total execution time threshold, in milliseconds.

Default

20

Actions Modified

collect=projection

collect=offload

Usage

Use to ignore loop nests with total time less than the threshold.

Example
Ignore loops with total time less than 50 milliseconds when modeling your application performance on a
target device.

advisor --collect=projection --loop-filter-threshold=50 --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

loops
Select loops (by criteria instead of human input) for
deeper analysis.

Syntax

--loops=<string>

Arguments

<string> is a double-quote-enclosed, comma-separated list of criteria (no spaces):

Arguments for
Dependencies
Analysis

Description

scalar Include only scalar serial loops.

  1   Intel® Advisor User Guide

504



Arguments for
Dependencies
Analysis

Description

total-time>n Include only loops above n% of total CPU time.

has-source Exclude only loops without source location.

has-issue Include only loops with Vector Dependence Prevents Vectorization issue.

loop-height=n Include only loops by specific hierarchical position. 0 = Innermost loops.

For example: Use the following criteria to include specific loops in the following
scenario:

• loop-height=0 selects only innermost loop 3
• loop-height=1 selects only loop 2 and loop 3
• loop-height=2 selects all three loops

main
   | -> loop 1
      | -> loop 2
         | -> loop 3

top=n Include only loops with the largest self-time.

Arguments for
Memory Access
Patterns
Analysis

Description

total-time>n Include only loops above n% of total CPU time.

has-source Exclude only loops without source location.

has-issue Include only loops with Possible Inefficient Memory Access Pattern issue.

loop-height=n Include only loops by specific hierarchical position. 0 = Innermost loops.

For example: Use the following criteria to include specific loops in the following
scenario:

• loop-height=0 selects only innermost loop 3
• loop-height=1 selects only loop 2 and loop 3
• loop-height=2 selects all three loops

main
   | -> loop 1
      | -> loop 2
         | -> loop 3

top=n Include only loops with the largest self-time.

Default

For Memory Access Patterns analysis: "loop-height=0,total-time>0.1"

For Dependencies analysis: "scalar,loop-height=0,total-time>0.1"

Intel® Advisor User Guide  1  

505



Actions Modified

collect=map

collect=dependencies

mark-up-loops

Usage

All criteria must be met to select loops for analysis.

This option is particularly useful when you are using automated scripts.

You can accomplish the same objective using the mark-up-loops action followed by a collect action for a
Dependencies or Memory Access Patterns analysis.

Usage can decrease collection overhead.

Example
Run a Dependencies analysis. Analyze only innermost loops with sources.

advisor --collect=dependencies --loops=”loop-height=0,has-source” --search-dir src:=./src --
project-dir=./advi_results -- ./myApplication

See Also
mark-up-loops  After running a Survey analysis and identifying loops of interest, select loops (by
file and line number or criteria) for deeper analysis.
Minimize Analysis Overhead

advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

mark-up
Enable/disable user selection as a way to control
loops/functions identified for deeper analysis.

Syntax

--mark-up
--no-mark-up

Default

On (mark-up)

Actions Modified

collect=dependencies

collect=map

Usage

Intel Advisor offers two ways to identify loops/functions for deeper analysis:

• Source annotations - Via code that pinpoints the start and end of loops and iterations

This is the only identification method for the Suitability analysis.

  1   Intel® Advisor User Guide

506



• User selection - In the CLI via mark-up-loops and mark-up-list, and in the GUI via Survey > 

This is the primary identification method for Vectorization Advisor analyses.

User selection via mark-up-loops and Survey >  persists for downstream analyses. User selection via
mark-up-list persists only for the duration of a collect action.

Use mark-up to use both ways to identify loops/functions for deeper analysis. Use no-mark-up to use only
source annotations.

NOTE
There is no clear selection option in the Intel Advisor CLI. no-mark-up is the closest
equivalent if user-selected loops/functions persist but you want to use only source
annotations to identify loops/functions for deeper analysis.

Example
Run a Memory Access Patterns analysis. Analyze only loops/functions identified by source annotations.

advisor --collect=map --no-mark-up --project-dir=./advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

mark-up-list
After running a Survey analysis and identifying loops
of interest, select loops (by file and line number or ID)
for deeper analysis.

GUI Equivalent

Survey > 

Syntax

--mark-up-list=<string>

Arguments

<string> is a comma-separated list (no spaces) of loop IDs, file/line numbers in the format file1:line1, or
both.

Default

The existing selection in Survey > , which is persistent.

If there is no GUI selection:

• For Trip Counts & FLOP and Roofline analyses: all loops
• loops default

• For Memory Access Patterns analysis: "loop-height=0,total-time>0.1"
• For Dependencies analysis: "scalar,loop-height=0,total-time>0.1"

Intel® Advisor User Guide  1  

507



Actions Modified

collect=tripcounts

collect=map

collect=dependencies

collect=roofline

Usage

Do not confuse the mark-up-loops action with the mark-up-list action option. The mark-up-loops action

coupled with the select action option enables a GUI  checkbox; therefore loop selection persists beyond
the duration of the mark-up-loops action and applies to downstream analyses, such as Dependencies and
Memory Access Patterns analyses. The collect action coupled with the mark-up-list action option

simulates enabling a GUI  checkbox; therefore loop selection persists only for the duration of the collect
action.

Example
1. Run a Survey analysis.
2. Run a Trip Counts & FLOP analysis on Survey analysis loops 1 and 3; and source location

my_source.cpp:132.

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --mark-up-list=1,my_source.cpp:132,3 --search-dir src:=./src --
project-dir=./advi_results -- ./myApplication

See Also
loops  Select loops (by criteria instead of human input) for deeper analysis.
mark-up-loops  After running a Survey analysis and identifying loops of interest, select loops (by
file and line number or criteria) for deeper analysis.
Minimize Analysis Overhead
advisor Command Option Reference
Command Line Interface Reference

memory-level
Model specific memory level(s) in a Roofline
interactive HTML report, including L1, L2, L3, and
DRAM.

GUI Equivalent

Roofline > Default: FLOAT CARM (L1+NTS) > Memory Level

Syntax

--memory-level=<string>

Arguments

<string> is an underscore-separated list of memory levels (no spaces).

Default

L1 (subject to change)

Actions Modified

report=roofline

  1   Intel® Advisor User Guide

508



Usage

Enable pinpointing memory bandwidth bottlenecks by specific memory layer.

Example
Generate a Roofline interactive HTML report. Show data for L2 and L3 memory.

advisor --report=roofline --memory-level=L2_L3 --project-dir=./advi_results

See Also
integrated  Model traffic on all levels of the memory hierarchy for a Roofline report.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

memory-operation-type
Model only load memory operations, store memory
operations, or both, in a Roofline interactive HTML
report.

GUI Equivalent

Roofline > Default: FLOAT  > Memory Operation Type

Syntax

--memory-operation-type=<string>

Arguments

<string> is one of the following: load | store | all

Default

all

Actions Modified

report=roofline

Example
Generate a Roofline interactive HTML report. Show only load memory operations.

advisor --report=roofline --memory-operation-type=load --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

mix
Show dynamic or static instruction mix data in a
Survey report.

GUI Equivalent

Code Analytics

Intel® Advisor User Guide  1  

509



Syntax

--mix
--no-mix

Default

Off (no-mix)

Actions Modified

report=survey

Usage

Dynamic instruction mix is counted for the entire execution of the application; static instruction mix is
counted per iteration. The static-instruction-mix, dynamic, and mix options work together in the
following manner:

• Collect static instruction mix data: --collect=survey --static-instruction-mix
(In the GUI: Static instruction mix data is calculated on demand.)

• Collect dynamic instruction mix data (and static instruction mix data, from which dynamic mix data is
calculated): --collect=tripcounts --flop

• Show static instruction mix data in a Survey report: --report=survey --mix --no-dynamic
• Show dynamic mix instruction data in a Survey report: --report=survey --mix --dynamic
• A Survey report cannot show both static and dynamic mix instruction data.

(In the GUI: Code Analytics can show both static and dynamic instruction mix data.)

Example
1. Run a Survey analysis.
2. Run a Trip Counts & FLOP analysis. Collect dynamic instruction mix data (and static instruction mix

data, from which dynamic mix data is calculated).
3. Generate a Survey report. Show dynamic instruction mix data. (dynamic is on, by default).

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --project-dir=./advi_results -- ./myApplication
advisor --report=survey --mix --project-dir=./advi_results

1. Run a Survey analysis. Collect static instruction mix data.
2. Generate a Survey report. Show static instruction mix data.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --report=survey --mix --no-dynamic --project-dir=./advi_results

See Also
dynamic  Show (in a Survey report) how many instructions of a given type actually executed
during Trip Counts & FLOP analysis.
static-instruction-mix  Statically calculate the number of specific instructions present in the binary
during Survey analysis.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

  1   Intel® Advisor User Guide

510



mkl-user-mode
Collect Intel® oneAPI Math Kernel Library (oneMKL)
loops and functions data during the Survey analysis

GUI Equivalent

Project Properties > Analysis Target > Survey Analysis > Advanced > Analyze MKL loops and
functions

Syntax

--mkl-user-mode
--no-mkl-user-mode

Default

On (mkl-user-mode)

Actions Modified

collect=survey

Usage

Disabling can decrease finalization overhead.

Example
Run a Survey analysis. Disable collecting oneMKL loops and functions data.

advisor --collect=survey --no-mkl-user-mode --project-dir=./advi_results -- ./myApplication

See Also
Minimize Analysis Overhead

advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

model-baseline-gpu
Use the baseline GPU configuration as a target device
for modeling.

Syntax

--model-baseline-gpu
--no-model-baseline-gpu

Default

Off (no-model-baseline-gpu)

Actions Modified

collect=projection --profile-gpu

Usage

This option is applicable only to the GPU-to-GPU performance modeling workflow.

Intel® Advisor User Guide  1  

511



Use this option when you run the Performance Modeling (collect=projection) as part of the GPU Roofline
Insights perspective for an application executed on a GPU. With this analysis executed, your application
performance is modeled for a baseline GPU device as a target. The estimated performance is compared with
the actual application performance to add more recommendations for performance optimization.

This option automatically enables the enforce-baseline-decomposition option. You can use only
model-baseline-gpu to simplify a command.

Example
Run the GPU-to-GPU Performance Modeling for the baseline GPU.

advisor --collect=projection --profile-gpu --model-baseline-gpu--project-dir=./advi_results -- ./
myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

model-children
Analyze child loops of the region head to find if some
of the child loops provide more profitable offload.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--model-children
--no-model-children

Default

On (model-children)

Actions Modified

collect=projection

collect=offload

Usage

Use the model-children option to:

• Minimize overhead
• Estimate offload speedup of a not-offloaded region head that has a Less or equally profitable than children

offloads message

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.

  1   Intel® Advisor User Guide

512



3. Model only offloading of loop heads when modeling your application performance on a target device.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --no-model-children --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

model-extended-math
Model calls to math functions such as EXP, LOG, SIN,
and COS as extended math instructions, if possible.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--model-extended-math
--no-model-extended-math

Default

On (model-extended-math)

Actions Modified

collect=projection

collect=offload

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Do not model calls to math functions as extended math instructions when modeling your application

performance on a target device.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --no-model-extended-math --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

Intel® Advisor User Guide  1  

513



model-system-calls
Analyze code regions with system calls considering
they are separated from offload code and executed on
a host device.

Syntax

--model-system-calls
--no-model-system-calls

Default

On (model-system-calls)

Actions Modified

collect=projection

collect=offload

Usage

NOTE
The presence of system calls inside a region may reduce model accuracy.

Example
Model your application performance on a target device and disable analyzing system calls.

advisor --collect=projection --model-system-calls --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

module-filter
Specify application (or child application) module(s) to
include in or exclude from analysis.

GUI Equivalent

Modules

Syntax

--module-filter=<string>

Arguments

<string> is a comma-separated list of module names (no spaces).

Default

None - so when coupled with module-filter-mode default (exclude), the Intel Advisor analyzes all
modules.

  1   Intel® Advisor User Guide

514



Actions Modified

collect=[analysis type] --module-filter-mode

Usage

Usage can decrease collection and finalization overhead.

Example
Run a Survey analysis. Exclude modules foo1.so and foo2.so.

advisor --collect=survey --module-filter-mode=exclude --module-filter=foo1.so,foo2.so --project-
dir=./advi_results -- ./myApplication

See Also
module-filter-mode  Limit, by inclusion or exclusion, application (or child application) module(s)
for analysis.
Minimize Analysis Overhead

advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

module-filter-mode
Limit, by inclusion or exclusion, application (or child
application) module(s) for analysis.

GUI Equivalent

Modules

Syntax

--module-filter-mode=<string>

Arguments

Argument Description

include Include the modules specified in module-filter.

exclude Exclude the modules specified in module-filter.

Default

Exclude - so when coupled with module-filter default (empty), the Intel Advisor analyzes all modules.

Actions Modified

collect=[analysis type] --module-filter

Usage

Usage can decrease collection and finalization overhead.

Intel® Advisor User Guide  1  

515



Example
Run a Survey analysis. Exclude modules foo1.so and foo2.so.

advisor --collect=survey --module-filter-mode=exclude --module-filter=foo1.so,foo2.so --project-
dir=./advi_results -- ./myApplication

See Also
module-filter  Specify application (or child application) module(s) to include in or exclude from
analysis.
Minimize Analysis Overhead

advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

mpi-rank
Specify MPI process data to import.

Syntax

--mpi-rank=<integer>

Arguments

<integer> is the rank of the process with data to import.

Default

If an MPI rank is not specified, and there is more than one result directory in the project because the result
partition is shared, a rank is chosen at random. Recommendation: Specify a rank.

Actions Modified

import-dir, mark-up-loops, report

Usage

When you collect analysis data on a cluster, the data is stored in unique subdirectories under the project
directory, named rank.#. Use this option to specify the process with data to import for viewing. You can
import data from only one process at a time.

Example
Import MPI analysis data from the rank.3 cluster. Read source files from the specified search directory. Write
the result to the advi_results project directory.

advisor --import-dir=./advi --mpi-rank=3 --project-dir=./advi_results -- ./myApplication

See Also
Analyze MPI Workloads  With Intel® Advisor, you can analyze parallel tasks running on a cluster to
examine performance of your MPI application.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

  1   Intel® Advisor User Guide

516



mrte-mode
Set the Microsoft* runtime environment mode for
analysis.

GUI Equivalent

Project Properties  > Analysis Target > [Analysis Types] > Managed code profiling mode

Syntax

--mrte-mode=<string>

Arguments

<string> is the mode type:

Argument Description

auto Automatically detect the type of target executable and switch to that mode.

native Collect data for native code and do not attribute data to managed code.

mixed Collect data for both native and managed code, and attribute data to managed code as
appropriate. Consider using this option when analyzing a native executable that makes
calls to the managed code.

managed Collect data for both native and managed code, resolve samples attributed to native code,
attribute data to managed source only. The call stack in the analysis result displays data
for managed code only.

Default

auto

Actions Modified

collect

Usage

Applies to Windows* OS only.

Example
Run a Suitability analysis. Set a native runtime environment mode.

advisor --collect=suitability --mrte-mode=native --project-dir=./advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

ndim-depth-limit
When searching for an optimal N-dimensional offload,
limit the maximum loop depth that can be converted
to one offload.

Syntax

--ndim-depth-limit=<integer>

Intel® Advisor User Guide  1  

517



Arguments

<integer> is a number in the range 1 <= <integer> <= 6.

Default

3

Actions Modified

collect=projection --search-n-dim

collect=offload

NOTE You can skip the --search-n-dim option because it is enabled by default.

Example
Model your application performance on a target device and limit the maximum depth of an offload to 5.

advisor --collect=projection --ndim-depth-limit=5 --project-dir=./advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

option-file
Specify a text file containing command line
arguments.

Syntax

--option-file=<PATH>

Arguments

<PATH> is the PATH/name of a text file containing command line arguments.

Actions Modified

collect, report

Usage

Put commonly used options in a UTF-8 text file to shorten the command line and create a reusable invocation
syntax. Enter one option on each line. No spaces are allowed in the option entry; use a new line instead.

Arguments specified in an option file are processed before any arguments specified on the command line;
therefore, options specified on the command line can override options in an option file.

Example
Create a reusable option file you can use whenever you want to generate a report that specifies the project
directory, directory to search for source files, and PATH/name of the output text file.

--project-dir=./advi_results
--search-dir 

  1   Intel® Advisor User Guide

518



src:=./src
--format=text
--report-output=./out/annotations.txt

Generate a Suitability report. Use an option file named my_suitability_analysis.txt.

advisor --report=suitability --option-file=../my_suitability_analysis.txt

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

overlap-taxes
Enable asynchronous execution to overlap offload
overhead with execution time.

Syntax

--overlap-taxes
--no-overlap-taxes

Default

Off (no-overlap-taxes)

Actions Modified

collect=projection

collect=offload

Example
Model your application performance on a target device and enable asynchronous execution.

advisor --collect=projection --overlap-taxes --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

pack
Pack a snapshot into an archive.

GUI Equivalent

File > Create Data Snapshot > Pack into archive

Syntax

--pack
--no-pack

Default

On (pack)

Intel® Advisor User Guide  1  

519



Actions Modified

snapshot

Usage

By default, the archive is saved to the current directory with the default snapshotXXX.advixeexpz name.

Example
Create a new snapshot in the project directory. Do not pack it into an archive.

advisor --snapshot --no-pack --project-dir=./advi_results
Create a new snapshot. Pack it into an archive. Save it in the current directory with the default name.

advisor --snapshot --pack --project-dir=./advi_results
Create a new snapshot. Pack it into an archive named new_snapshot.advixeexpz.

advisor --snapshot --pack --project-dir=./advi_results -- ./new_snapshot

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

profile-gpu
Analyze OpenCL™ and oneAPI Level Zero programs
running on Intel® Graphics.

GUI Equivalent

Analysis Workflow > Baseline Device > GPU

Project Properties > Analysis Target > Performance Modeling > GPU

Syntax

--profile-gpu
--no-profile-gpu

Default

Off (no-profile-gpu)

Actions Modified

collect=survey

collect=tripcounts

collect=roofline

collect=projection

Usage

Prerequisite: Set up system environment to enable GPU kernel profiling.

Use this option to analyze a GPU-enabled application that uses SYCL, OpenMP* target, or OpenCL™
programming model.

  1   Intel® Advisor User Guide

520



• For the GPU Roofline Insights, use this option to analyze code regions running on a CPU and code regions
running on a GPU. This option may affect the performance of your application on the CPU side.

• For the Offload Modeling, use this option to analyze only code regions running on a GPU. This is a preview
feature.

NOTE Make sure to use this option with the Survey, Trip Counts, and Performance Modeling analyses.

NOTE GPU profiling is applicable only to Intel® Graphics.

Example
Run the Roofline analysis and enable GPU profiling to analyze OpenCL™ and oneAPI Level Zero programs
running on Intel® Graphics.

advisor --collect=roofline --profile-gpu --project-dir=./advi_results -- ./myApplication
1. Run the Survey analysis with the GPU kernel profiling enabled.
2. Run the Trip Counts and FLOP analysis with the GPU kernel profiling enabled.
3. Run the Performance Modeling with the GPU kernel profiling enabled.

advisor --collect=survey --static-instruction-mix --profile-gpu --project-dir=./advi_results 
-- ./myApplication
advisor --collect=tripcounts --flop --profile-gpu --project-dir=./advi_results -- ./myApplication
advisor --collect=projection --profile-gpu --project-dir=./advi_results -- ./myApplication

See Also
Run GPU-to-GPU Performance Modeling from Command Line  With Intel® Advisor, you can model
performance of SYCL, OpenCL™, or OpenMP* target application running on a graphics processing
unit (GPU) for a different GPU device without its CPU version. For this, run the GPU-to-GPU
modeling workflow of the Offload Modeling perspective.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

profile-intel-perf-libs
Show Intel® performance libraries loops and functions
in Intel® Advisor reports.

Syntax

--profile-intel-perf-libs
--no-profile-intel-perf-libs

Default

On (profile-intel-perf-libs)

Actions Modified

collect

Intel® Advisor User Guide  1  

521



Example
Run a Survey analysis and disable showing Intel® performance libraries in the report.

advisor --collect=survey --no-profile-intel-perf-libs --project-dir=./advi_results
-- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

profile-jit
Collect metrics about Just-In-Time (JIT) generated
code regions during the Trip Counts and FLOP
analysis.

GUI Equivalent

Project Properties > Analysis Target > Trip Counts and FLOP Analysis > Advanced  > Capture
metrics for dynamic loops and functions

Syntax

--profile-jit
--no-profile-jit

Default

On (profile-jit)

Actions Modified

collect=tripcounts

Usage

Enabling can increase collection overhead.

Example
1. Run a Survey analysis.
2. Run a Trip Counts and FLOP analysis. Explicitly enable collecting metrics for JIT generated code.

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --profile-jit --project-dir=./advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

profile-python
Collect Python loop and function data during Survey
analysis.

  1   Intel® Advisor User Guide

522



GUI Equivalent

Project Properties > Analysis Target > Survey Analysis > Advanced > Analyze Python loops and
functions

Syntax

--profile-python
--no-profile-python

Default

Off (no-profile-python)

Actions Modified

collect=survey

Usage

Enabling can increase collection overhead.

Example
Run a Survey analysis. Explicitly disable collecting Python loop and function data.

advisor --collect=survey --no-profile-python --project-dir=./advi_results -- ./myApplication

See Also
Minimizing Analysis Overhead

advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

profile-stripped-binaries
Collect metrics for stripped binaries.

GUI Equivalent

Project Properties > Analysis Target > Survey Analysis Types > Trip Counts and FLOP analysis >
Advances > Capture metrics for stripped binaries

Syntax

--profile-stripped-binaries
--no-profile-stripped-binaries

Default

Off (no-profile-stripped-binaries)

Actions Modified

collect=tripcounts

Intel® Advisor User Guide  1  

523



Usage

Tip Enabling can increase overhead.

Example
Collect Trip Counts for stripped binaries.

advisor --collect=tripcounts --profile-stripped-binaries --project-dir=./advi_results -- ./
myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

project-dir
Specify the top-level directory where a result is saved
if you want to save the collection somewhere other
than the current working directory.

Syntax

--project-dir=<PATH>

Arguments

<PATH> is the PATH/name of a directory.

Default

Current working directory

Actions Modified

collect, create-project, import-dir, mark-up-loops, report, snapshot

Usage

Recommendation: Specify the project directory when you:

• Generate a report from a collection.
• Import MPI collections.

Examples
Run a Survey analysis on myApplication. Search the src directory for all source, binary, and symbol files.
Write the result to advi_results.

advisor --collect=survey --search-dir all:=./src --project-dir=./advi_results -- ./myApplication
Generate a Survey report from the result in the advi directory. Output the report in text format as
survey.txt.

advisor --report=survey --format=text --report-output=./out/survey.txt --project-dir=./
advi_results

See Also
Command Line Interface Reference

  1   Intel® Advisor User Guide

524



advisor Command Action Reference

quiet
Minimize status messages during command execution.

Syntax

-q
--quiet

Default

Off

Actions Modified

collect, command, import-dir, mark-up-loops, report, snapshot

Example
Generate a Suitability report. Output to stderr. Show warnings, errors, and fatal errors.

advisor --report=suitability --quiet --project-dir=./advi_results

See Also
verbose Maximize status messages during command execution.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

recalculate-time
Recalculate total time after filtering a report.

GUI Equivalent

Filters

Syntax

--recalculate-time
--no-recalculate-time

Default

On (recalculate-time)

Actions Modified

report=survey --filter

report=tripcounts --filter

Example
Generate a Survey report. Show data only for scalar loops. Do not recalculate total time.

advisor --report=survey --filter=”Type”=”Scalar” --no-recalculate-time --project-dir=./
advi_results

Intel® Advisor User Guide  1  

525



Generate a Survey report. Show data only for loops/functions from my_module1. Explicitly recalculate total
time.

advisor --report=survey --filter=”Module”=”my_module1” --recalculate-time --project-dir=./
advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

record-mem-allocations
Enable heap allocation tracking to identify heap-
allocated variables for which access strides are
detected during Memory Access Patterns analysis.

GUI Equivalent

Project Properties > Analysis Target > Memory Access Patterns Analysis > Advanced > Report
heap allocated variables

Syntax

--record-mem-allocations
--no-record-mem-allocations

Default

On (record-mem-allocations)

Actions Modified

collect=map

Usage

Disabling can decrease collection overhead.

Example
Run a Memory Access Patterns analysis. Disable heap allocation tracking.

advisor --collect=map --no-record-mem-allocations --project-dir=./advi_results -- ./myApplication

See Also
Minimize Analysis Overhead

advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

record-stack-frame
Capture stack frame pointers to identify stack
variables for which access strides are detected during
Memory Access Patterns analysis.

  1   Intel® Advisor User Guide

526



GUI Equivalent

Project Properties > Analysis Target > Memory Access Patterns Analysis > Advanced > Report
stack variables

Syntax

--record-stack-frame
--no-record-stack-frame

Default

On (record-stack-frame)

Actions Modified

collect=map

Usage

Disabling can decrease collection overhead.

Example
Run a Memory Access Patterns analysis. Disable capturing stack frame pointers.

advisor --collect=map --no-record-stack-frame --project-dir=./advi_results -- ./myApplication

See Also
Minimize Analysis Overhead
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

reduce-lock-contention
Examine specified annotated sites for opportunities to
reduce lock contention or find deadlocks in a
Suitability report.

GUI Equivalent

Suitability > Lock Contention

Syntax

--reduce-lock-contention=<string>

Arguments

<string> is a comma-separated list of annotated sites (no spaces).

Default

No default argument

Actions Modified

report=suitability

Intel® Advisor User Guide  1  

527



Usage

Lock contention is the time one thread spends waiting for a lock to be released while another thread holds
that lock (as opposed to lock overhead, which is the time spent creating, destroying, acquiring, and releasing
locks). You can reduce lock contention by using different locks for unrelated data when you convert to a
parallel framework.

Usage of this option simulates parallel execution with the assumption that lock contention is zero for a
specified site.

Example
Generate a Suitability report. Examine the annotated sites myAnnotatedSiteJ and myAnnotatedSiteX for
opportunities to reduce lock contention. Write the report to stdout.

advisor --report=suitability --reduce-lock-contention=myAnnotatedSiteJ,myAnnotatedSiteX --
project-dir=./advi_results

See Also
Reducing Lock Contention
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

reduce-lock-overhead
Examine specified annotated sites for opportunities to
reduce lock overhead in a Suitability report.

GUI Equivalent

Suitability > Lock Overhead

Syntax

--reduce-lock-overhead=<string>

Arguments

<string> is a comma-separated list of annotated sites (no spaces).

Default

No default argument

Actions Modified

report=suitability

Usage

Lock overhead is the time spent creating, destroying, acquiring, and releasing locks (as opposed to lock
contention, which is the time spent waiting for a lock held by another task). Think of lock overhead as the
cost of lock operations, assuming the lock is always available.

Usage of this option simulates parallel execution with the assumption that lock overhead is zero for a
specified site.

  1   Intel® Advisor User Guide

528



Example
Generate a Suitability report. Examine the annotated sites myAnnotatedSiteJ and myAnnotatedSiteX for
opportunities to reduce lock overhead. Write the report to stdout.
advisor --report=suitability --reduce-lock-overhead=myAnnotatedSiteJ,myAnnotatedSiteX --project-
dir=./advi_results

See Also
Reduce Lock Overhead
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

reduce-site-overhead
Examine specified annotated sites for opportunities to
reduce site overhead in a Suitability report.

GUI Equivalent

Suitability > Site Overhead

Syntax

--reduce-site-overhead=<string>

Arguments

<string> is a comma-separated list of sites (no spaces).

Default

No default argument

Actions Modified

report=suitability

Usage

Site overhead is the time spent starting up (and shutting down) parallel execution. It includes creating
threads, scheduling those threads onto cores, and waiting for the threads to begin executing.

Usage of this option simulates parallel execution with the assumption that site overhead is zero for a
specified site.

Example
Generate a Suitability report. Examine the annotated sites myAnnotatedSiteJ and myAnnotatedSiteX for
opportunities to reduce site overhead. Write the report to stdout.
advisor --report=suitability --reduce-site-overhead=myAnnotatedSiteJ,myAnnotatedSiteX --project-
dir=./advi_results

See Also
Reduce Site Overhead
advisor Command Option Reference
Command Line Interface Reference

Intel® Advisor User Guide  1  

529



reduce-task-overhead
Examine specified annotated sites for opportunities to
reduce task overhead in a Suitability report.

GUI Equivalent

Suitability  > Task Overhead

Syntax

--reduce-task-overhead=<string>

Arguments

<string> is a comma-separated list of sites (no spaces).

Default

No default argument

Actions Modified

report=suitability

Usage

Task overhead is the time spent creating a task, assigning it to a thread, and stopping or pausing the thread
when the task is complete.

Usage of this option simulates parallel execution with the assumption that task overhead is zero for a
specified site.

Example
Generate a Suitability report. Examine the annotated sites myAnnotatedSiteJ and myAnnotatedSiteX for
opportunities to reduce task overhead. Write the report to stdout.
advisor --report=suitability --reduce-task-overhead=myAnnotatedSiteJ,myAnnotatedSiteX --project-
dir=./advi_results

See Also
Reducing Task Overhead
Command Line Interface Reference
advisor Command Action Reference

refinalize-survey
Refinalize a survey result collected with a previous
Intel® Advisor version or if you need to correct or
update source and binary search paths.

Syntax

--refinalize-survey
--no-refinalize-survey

Default

Off (no-refinalize-survey)

Actions Modified

report=survey

  1   Intel® Advisor User Guide

530



Usage

Typical usage scenarios:

• Source files were moved after compilation.
• You open remotely collected results on a viewing system before setting the search paths appropriately.

Example
Refinalize the result of the Survey analysis. Search recursively for source files in the ./src search directory
and for binary files in the ./bin search directory. Write the refinalized results to the ./advi_results
project directory instead of the default working directory.

advisor --report=survey --search-dir src:=./src bin:=./bin --refinalize-survey --project-dir=./
advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

remove
Remove loops (by file and line number) from the loops
selected for deeper analysis.

GUI Equivalent

Survey > 

Syntax

--remove=<string>

Arguments

<string> is a comma-separated list of files/line numbers in the following format: file1:line1

Default

No default string

Actions Modified

mark-up-loops

Usage

Removing loops that are not of interest can decrease collection overhead.

Do not confuse the mark-up-loops action with the mark-up-list action option. The mark-up-loops action

coupled with the select action option enables a GUI  checkbox; therefore loop selection persists beyond
the duration of the mark-up-loops action and applies to downstream analyses, such as Dependencies and
Memory Access Patterns analyses. The collect action coupled with the mark-up-list action option

simulates enabling a GUI  checkbox; therefore loop selection persists only for the duration of the collect
action.

Example
1. Select two loops for deeper analysis.

Intel® Advisor User Guide  1  

531



2. Remove one loop from the selection list.

advisor --mark-up-loops --select=foo.cpp:34,bar.cpp:192 --project-dir=./advi_results -- ./
myApplication
advisor --mark-up-loops --remove=bar.cpp:192 --project-dir=./advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

report-output
Redirect report output from stdout to another location.

Syntax

--report-output=<PATH>

Arguments

<PATH> is the directory PATH/filename.

Default

stdout

Actions Modified

report

Example
Generate a Suitability report. Output the report in text format. Save it as suitability.txt in the out
output directory.

advisor --report=suitability --format=text --report-output=./out/suitability.txt --project-dir=./
advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

report-template
Specify the PATH/name of a custom report template
file.

Syntax

--report-template=<PATH>

Arguments

<PATH> is the directory PATH/name.

Default

No default argument

  1   Intel® Advisor User Guide

532



Actions Modified

report

Example
Generate a custom report. Use the ./template/suitability.template file.

advisor --report=custom --report-template=./template/suitability.template --project-dir=./
advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

result-dir
Specify a directory to identify the running analysis.

Syntax

--r=<PATH>
--result-dir=<PATH>

Arguments

<PATH> is the directory PATH.

Default

No default argument

Actions Modified

command

Example
Pause the analysis running in the r000hs directory.

advisor --command=pause -r=./r000hs 

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

resume-after
Resume collection after the specified number of
milliseconds.

GUI Equivalent

Project Properties > Analysis Target > [Analysis Type] > Advanced > Automatically resume
collection after (sec)

Syntax

--resume-after=<integer>

Intel® Advisor User Guide  1  

533



--resume-after=<double>

Arguments

You can specify the option value as one of the following:

<integer> is the number of milliseconds to wait before resuming data collection.

<double> is the number of seconds or fraction or seconds to wait before resuming data collection. For
example, 1.56 is 1 sec 560 ms.

Default

Off

Actions Modified

collect

Usage

Skip uninteresting parts of your target application, such as the initialization phase, and analyze only
interesting parts.

Collection automatically starts in the paused state.

Usage can decrease collection overhead.

NOTE The value in the corresponding GUI property is only in seconds.

Example
Run a Survey analysis. Launch the application with collection paused. Start collection after 30 milliseconds.

advisor --collect=survey --resume-after=30 --project-dir=./advi_results -- ./myApplication

See Also
Minimize Analysis Overhead
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

return-app-exitcode
Return the target exit code instead of the command
line interface exit code.

Syntax

--return-app-exitcode
--no-return-app-exitcode

Default

Off (no-return-app-exitcode)

Actions Modified

collect

  1   Intel® Advisor User Guide

534



Example
advisor --collect=survey --return-app-exitcode --project-dir=./advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

search-dir
Specify the location(s) for finding target support files.

GUI Equivalent

Project Properties > Binary/Symbol Search

Project Properties > Source Search

Syntax

--search-dir <keyword>=<PATH>

Arguments

Combine keywords with arguments in the following syntax: <all | bin | src | sym[:<p | r>]>=<PATH>

<PATH> is the PATH/name of the search directory, and can include environment paths and absolute paths.

Keyword Description

all Search all types of directories.

bin Search binary directories.

src Search source directories. This is used for most collect actions.

sym Search symbol directories.

:r Perform a recursive search of all subdirectories.

:p Specify the highest priority search (directories to search prior to others, including environment paths
and absolute paths).

:rp Combine :r and :p.

Actions Modified

collect, create-project, import-dir, report

Usage

Use -search-dir src:=<PATH> when performing collect actions.

To exclude files from analysis, use the exclude-files option.

Example
Run a Suitability analysis on myApplication. Search for source files in the specified search directory. Write
the result to the specified project directory.

advisor --collect=suitability --search-dir src:=./src1 --project-dir=./advi_results -- ./
myApplication

Intel® Advisor User Guide  1  

535



The following two commands are equivalent. Each runs a Suitability analysis on myApplication and
searches for source files in the two specified search directories.

advisor --collect=suitability --search-dir src:=./src1 --search-dir src:=./src2 --project-dir=./
advi_results -- ./myApplication
advisor --collect=suitability --search-dir src:=./src1,./src2 --project-dir=./advi_results -- ./
myApplication

See Also
exclude-files  Exclude the specified files or directories from annotation scanning during analysis.
Binary/Symbol Search Tab
Source Search Tab
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

search-n-dim
Enable searching for an optimal N-dimensional offload.

Syntax

--search-n-dim
--no-search-n-dim

Default

On (search-n-dim)

Actions Modified

collect=projection

collect=offload

Usage

search-n-dim enables combining up to three nested parallel loops into an N-dimensional offload. This can
reduce estimated execution time on GPU and Time by Compute. Use no-search-n-dim to estimate
offloading for each loop separately.

NOTE Only loops with no dependencies can be combined into an N-dimensional offload.

Do not use this option with --threads or --enable-batching.

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Do not search for an optimal N-dimensional offload when modeling your application performance on a

target device.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --no-search-n-dim --project-dir=./advi_results

  1   Intel® Advisor User Guide

536



See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

select
Select loops (by file and line number, ID, or criteria)
for deeper analysis.

GUI Equivalent

To select individual loops/functions: Vectorization and Code Insights > Survey & Roofline > 

To select loops/functions with markup strategy for Offload Modeling: Offload Modeling > Analysis
Workflow > Dependencies > Markup type

Syntax

--select=<string>

Arguments

<string> is a comma-separated list of file name and line number, loop ID, and/or criteria in the [(r|
recursive):]<id>|<file>:<line>|<criteria>[,<id>|<file>:<line>|<criteria>,..] format. Add r: (or
recursive:) prefix to select all loops in call trees starting from heads selected by criteria, source location or
ID. <criteria> can be one of the following:

Criteria Description

scalar Include scalar serial loops.

total-time>N Include loops above N% of total CPU time.

has-source Exclude loops without source location.

has-issue Include loops with Vector Dependence Prevent
Vectorization or Possible Inefficient Memory Access
Pattern issue.

loop-height=N Include loops at a specific hierarchical position. 0 =
Innermost loops.

markup=name Select loops using a pre-defined mark-up algorithm.
Supported algorithms are:

• gpu_generic - Select loops executed on a GPU.
• omp - Select OpenMP* loops.
• icpx -fsycl - Select SYCL loops.
• ocl - Select OpenCL™ loops.
• daal - Select Intel® oneAPI Data Analytics

Library loops.
• tbb - Select Intel® oneAPI Threading Building

Blocks loops.

Default

No default argument

Intel® Advisor User Guide  1  

537



Actions Modified

collect
mark-up-loops

NOTE With the --collect=projection action, the select option accepts only loop/function IDs and
source locations (in the <file-name>:<line> format).

Usage

Use + to combine criteria with AND logic. For example, use --select=scalar+has-source to select all
scalar loops that have source location.

NOTE Selecting loops of interest can decrease collection overhead.

Do not confuse the mark-up-loops action with the mark-up-list action option. The mark-up-loops action

coupled with the select action option enables a GUI  checkbox; therefore loop selection persists beyond
the duration of the mark-up-loops action and applies to downstream analyses, such as Dependencies and
Memory Access Patterns analyses. The collect action coupled with the mark-up-list action option

simulates enabling a GUI  checkbox; therefore loop selection persists only for the duration of the collect
action.

Example
1. Run a Survey analysis to identify loops of interest.
2. Select those loops for deeper analysis.

advisor --collect=survey --project-dir=./advi_results -- ./myApplication
advisor --mark-up-loops --select=foo.cpp:34,bar.cpp:192 --project-dir=./advi_results -- ./
myApplication

See Also
Minimize Analysis Overhead

advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

set-dependency
Assume loops with specified IDs or source locations
have a dependency.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--set-dependency=<string>

Arguments

<string> is a comma-separated list of loop IDs or source locations.

  1   Intel® Advisor User Guide

538



Actions Modified

collect=projection

collect=offload

Usage

If the list is empty, assume all loops have a dependency.

NOTE
--set-dependency option takes precedence over --set-parallel, so if the loop is listed in
both, it is considered as having a dependency.

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Model your application performance on a target device assuming loops at source locations

my_source.cpp:132 and my_source.cpp:155 have dependencies.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --set-dependency=my_source.cpp:132,my_source.cpp:155 --project-
dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

set-parallel
Assume loops with specified IDs or source locations
are parallel.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--set-parallel=<string>

Arguments

<string> is a comma-separated list of loop IDs or source locations.

Actions Modified

collect=projection

collect=offload

Usage

If the list is empty, assume all loops are parallel.

Intel® Advisor User Guide  1  

539



NOTE
--set-dependency option takes precedence over --set-parallel, so if the loop is listed in
both, it is considered as having a dependency.

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Model your application performance on a target device assuming loops at source locations

my_source.cpp:132 and my_source.cpp:155 do not have dependencies.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --set-parallel=my_source.cpp:132,my_source.cpp:155 --project-dir=./
advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

set-parameter
Specify a single-line parameter to modify in a target
device configuration.

Syntax

--set-parameter=<string>

Arguments

<string> is a parameter to modify and its new value in the following format:
"<group>.<parameter>=<new-value>". You can specify a comma-separated list of parameters to modify.

Actions Modified

collect=projection

collect=offload

Usage

You can specify a comma-separated list of parameters or specify this option more than once to change
several parameters.

Example
Run the Performance Modeling and change the minimum speedup from 1 (default) to 2:

advisor --collect=projection --set-parameter="min_required_speed_up=2" --project-dir=./
advi_results

See Also
Advanced Modeling Configuration
advisor Command Option Reference

  1   Intel® Advisor User Guide

540



Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

show-all-columns
Show data for all available columns in a Survey
report.

GUI Equivalent

Survey > Customize View > Settings > Configure Columns

Syntax

--show-all-columns
--no-show-all-columns

Default

Off (no-show-all-columns)

Actions Modified

report=survey

report=top-down

Example
Generate a Survey report. Output in CSV format. Show data for all available columns.

advisor --report=survey --show-all-columns --format=csv --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

show-all-rows
Show data for all available rows, including data for
child loops, in a Survey report.

GUI Equivalent

Survey > Function Calls Sites and Loops > +

Syntax

--show-all-rows
--no-show-all-rows

Default

On (show-all-rows)

Actions Modified

report=survey

Intel® Advisor User Guide  1  

541



Example
Generate a default Survey report. Output in CSV format. Show data for present child loops.

advisor --report=survey --format=csv --report-output=./out/survey.csv --project-dir=./
advi_results

Generate a default Survey report. Output in CSV format. Do not show data for present child loops.

advisor --report=survey --format=csv --no-show-all-rows --report-output=./out/survey.csv --
project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

show-functions
Show only functions in a report.

GUI Equivalent

Filters

Syntax

--show-functions
--no-show-functions

Default

Off (no-show-functions)

Actions Modified

report

Usage

The show-loops option, which shows only loops in generated reports, is switched on by default. The
show-functions option, which shows only functions in generated reports, is switched off by default.

Example
Generate a Survey report showing both loops and functions.

advisor --report=survey --show-functions --project-dir=./advi --format=text --report-
output=./out/survey.txt --project-dir=./advi_results

Generate a Survey report showing functions only.

advisor --report=survey --no-show-loops --show-functions --format=text --report-output=./out/
survey.txt --project-dir=./advi_results

Generate a default Survey report showing loops only.

advisor --report=survey --format=text --report-output=./out/survey.txt --project-dir=./
advi_results

  1   Intel® Advisor User Guide

542



Generate an empty Survey report - you disabled showing information about loops, and showing information
about functions is off by default.

advisor --report=survey --no-show-loops --format=text --report-output=./out/survey.txt --project-
dir=./advi_results

See Also
show-loops  Show only loops in a report.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

show-loops
Show only loops in a report.

GUI Equivalent

Filters

Syntax

--show-loops
--no-show-loops

Default

On (show-loops)

Actions Modified

report

Usage

The show-loops option, which shows only loops in generated reports, is switched on by default. The
show-functions option, which shows only functions in generated reports, is switched off by default.

Example
Generate a Survey report showing both loops and functions.

advisor --report=survey --show-functions --format=text --report-output=./out/survey.txt --
project-dir=./advi_results

Generate a Survey report showing functions only.

advisor --report=survey --no-show-loops --show-functions --format=text --report-output=./out/
survey.txt --project-dir=./advi_results

Generate a default Survey report showing loops only.

advisor --report=survey --format=text --report-output=./out/survey.txt --project-dir=./
advi_results

Generate an empty Survey report - you disabled showing information about loops, and showing information
about functions is off by default.

advisor --report=survey --no-show-loops --format=text --report-output=./out/survey.txt --project-
dir=./advi_results

Intel® Advisor User Guide  1  

543



See Also
show-functions Show only functions in a report.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

show-not-executed
Show not-executed child loops in a Survey report.

GUI Equivalent

Survey > Show all loops (with zero and non-zero time)

Syntax

--show-not-executed
--no-show-not-executed

Default

Off (no-show-not-executed)

Actions Modified

report=survey

report=top-down

Example
Generate a top-down Survey report. Output in text format. Show data for not-executed child loops.

advisor --report=top-down --show-not-executed --format=text --report-output=./out/topdown.txt --
project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

show-report
Generate a Survey report for data collected for GPU
kernels.

Syntax

--show-report
--no-show-report

Default

On (show-report)

Actions Modified

collect=survey --profile-gpu

  1   Intel® Advisor User Guide

544



Example
Run the Survey analysis for the GPU kernels and explicitly enable adding the collected data to a report.

advisor --collect=survey --profile-gpu --show-report --project-dir=./advi_results

See Also
profile-gpu Analyze OpenCL™ and oneAPI Level Zero programs running on Intel® Graphics.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

small-node-filter
Specify the total time threshold, in milliseconds, to
filter out nodes that fall below this value from PDF and
DOT reports.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--small-node-filter=<integer>

Arguments

<integer> is total time threshold, in milliseconds.

Default

0

Actions Modified

collect=projection

collect=offload

Usage

This option affects only PDF and DOT reports, which is a graphical representation of an application call tree.

Important
The PDF and DOT reports are available only on Linux* OS if the DOT* tool is installed.

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Model your application performance on a target device and filter out loops with total time less that 5

milliseconds from the PDF report.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --small-node-filter=5 --project-dir=./advi_results

Intel® Advisor User Guide  1  

545



See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

sort-asc
Sort data in ascending order (by specified column
name) in a report.

GUI Equivalent

Sort Survey by column

Syntax

--sort-asc=<string>

Arguments

<string> is column name.

Actions Modified

report

Usage

Data in string format is sorted lexicographically.

Example
Generate a Survey report. Sort data in ascending order by Total Time.

advisor --report=survey --sort-asc=”Total Time” --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

sort-desc
Sort data in descending order (by specified column
name) in a report.

GUI Equivalent

Sort Survey by column

Syntax

--sort-desc=<string>

Arguments

<string> is column name.

Actions Modified

report

  1   Intel® Advisor User Guide

546



Usage

Data in string format is sorted lexicographically.

Example
Generate a Survey report. Sort data in descending order by Total Time.

advisor --report=survey --sort-desc=”Total Time” --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

spill-analysis
Register flow analysis to calculate the number of
consecutive load/store operations in registers and
related memory traffic in bytes during Survey
analysis.

GUI Equivalent

Project Properties > Analysis Target > Survey Analysis > Advanced > Enable register spill/fill
analysis

Syntax

--spill-analysis
--no-spill-analysis

Default

Off (no-spill-analysis)

Actions Modified

collect=survey

collect=offload

Usage

Enabling can increase finalization overhead.

Example
Run a Survey analysis. Enable spill/fill analysis.

advisor --collect=survey --spill-analysis --project-dir=./advi_results -- ./myApplication

See Also
Minimize Analysis Overhead
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

Intel® Advisor User Guide  1  

547



stack-access-granularity
Specify stack access size to set stack memory access
measurement granularity for the data transfer
simulation.

Syntax

--stack-access-granularity=<integer>

Arguments

<integer> is a power-of-two value from 16 to 1048576.

Default

1048576

Actions Modified

collect=tripcounts --data-transfer=[medium | full]

collect=tripcounts --enable-data-transfer-analysis --track-stack-accesses

Usage

Decrease the stack access granularity if your application has multiple small objects on a stack to improve
analysis accuracy. Decreasing the granularity increases collection overhead.

Example
Run the Trip Counts analysis with medium data transfer and decrease the stack access size to 32:

advisor --collect=tripcounts --data-transfer=medium --stack-access-granularity=16 --project-
dir=./advi_results -- ./myApplication

See Also
data-transfer Set the level of details for modeling data transfers during Characterization.
enable-data-transfer-analysis Model data transfer between host memory and device memory.
track-stack-accesses Track accesses to stack memory.
advisor Command Line Interface  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].
advisor Command Action Reference
Minimize Analysis Overhead

stack-stitching
Restructure the call flow during Survey analysis to
attach stacks to a point introducing a parallel
workload.

GUI Equivalent

Project Properties > Analysis Target > Survey Hotspots Analysis > Advanced > Stitch stacks

Syntax

--stack-stitching
--no-stack-stitching

  1   Intel® Advisor User Guide

548



Default

On (stack-stitching)

Actions Modified

collect=survey

Usage

The option restores a logical call tree for Intel® oneAPI Threading Building Blocks (oneTBB) or OpenMP*
applications by catching notifications from the runtime and attaching stacks to a point introducing a parallel
workload.

Disable when Survey analysis runtime overhead exceeds 1.1x

Disabling can decrease collection overhead and significantly decrease finalization overhead depending on
workload.

Example
Run a Survey analysis. Disable stack stitching.

advisor --collect=survey --no-stack-stitching --project-dir=./advi_results -- ./myApplication

See Also
Minimize Analysis Overhead
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

stack-unwind-limit
Set stack size limit when analyzing stacks after
collection.

Syntax

--stack-unwind-limit=<integer>

Arguments

<integer> is the maximum stack size to analyze.

Default

8388608

Actions Modified

collect=survey --stackwalk-mode=offline

Usage

Use to set the stack size limit when analyzing stacks after collection, which is the offline callstack unwinding
mode. The offline mode is default, so you can skip the --stackwalk-mode=offline option.

Example
Run the Survey analysis and set the stack size limit to 10000.

advisor --collect=survey --stack-unwind-limit=10000 --project-dir=./advi_results -- ./
myApplication

Intel® Advisor User Guide  1  

549



See Also
advisor Command Line Interface  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].
advisor Command Action Reference

stacks
Perform advanced collection of callstack data during
Roofline and Trip Counts & FLOP analysis.

GUI Equivalent

Project Properties > Analysis Target > Trip Counts & FLOP Analysis > Advanced > Collect stacks

Analysis Workflow > [CPU | GPU] Roofline > Characterization > Collect stacks

Syntax

--stacks
--no-stacks

Default

Off (no-stacks)

Actions Modified

collect=roofline

collect=tripcounts

collect=offload

Usage

Enabling can increase collection overhead.

Example
Run a Roofline analysis. Collect advanced callstack data.

advisor --collect=roofline --stacks --project-dir=./advi_results -- ./myApplication

See Also
Minimizing Analysis Overhead
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

stackwalk-mode
Choose between online and offline modes to analyze
stacks during Survey analysis.

GUI Equivalent

Project Properties > Analysis Target > Survey Hotspots Analysis > Advanced > Stack unwinding
mode

  1   Intel® Advisor User Guide

550



Syntax

--stackwalk-mode=<string>

Arguments

Argument Description

online Analyze stacks during collection.

offline Analyze stacks after collection.

Default

offline

Actions Modified

collect=survey

Usage

Set to offline in the following cases:

• Survey analysis overhead exceeds 1.1x
• A large quantity of data is allocated on the stack, which is a common case for Fortran applications or

applications with a large number of small, parallel, OpenMP* regions

Otherwise, set to online. This mode improves stack accuracy but increases overhead.

Example
Run a Survey analysis. Analyze stacks during collection.

advisor --collect=survey --stackwalk-mode=online --project-dir=./advi_results -- ./myApplication

See Also
Minimize Analysis Overhead

advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

start-paused
Start executing the target application for analysis
purposes, but delay data collection.

GUI Equivalent

Analysis Workflow  > 

To resume data collection: Analysis Workflow  > 

Syntax

--start-paused

Intel® Advisor User Guide  1  

551



Default

Off

Actions Modified

collect

Usage

Skip uninteresting parts of your target application, such as the initialization phase, and analyze only
interesting parts.

You can use different techniques to resume collection, such as __itt_resume.

Usage can decrease analysis overhead.

Example
Launch the sample application with Suitability data collection paused.

advisor --collect=suitability --start-paused --project-dir=./advi_results -- ./myApplication

See Also
Minimize Analysis Overhead
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

static-instruction-mix
Statically calculate the number of specific instructions
present in the binary during Survey analysis.

GUI Equivalent

Project Properties > Analysis Target > Survey Analysis > Advanced > Enable static instruction mix
analysis

Syntax

--static-instruction-mix
--no-static-instruction-mix

Default

Off (no-static-instruction-mix)

Actions Modified

collect=survey

collect=offload

Usage

Dynamic instruction mix is counted for the entire execution of the application; static instruction mix is
counted per iteration. The static-instruction-mix, dynamic, and mix options work together in the
following manner:

• Collect static instruction mix data: --collect=survey --static-instruction-mix
(In the GUI: Static instruction mix data is calculated on demand.)

  1   Intel® Advisor User Guide

552



• Collect dynamic instruction mix data (and static instruction mix data, from which dynamic mix data is
calculated): --collect=tripcounts --flop

• Show static instruction mix data in a Survey report: --report=survey --mix --no-dynamic
• Show dynamic mix instruction data in a Survey report: --report=survey --mix --dynamic
• A Survey report cannot show both static and dynamic mix instruction data.

(In the GUI: Code Analytics can show both static and dynamic instruction mix data.)

Enabling static-instruction-mix:

• Is necessary in scenarios involving the Python* API.
• Can increase finalization overhead.

Example
1. Run a Survey analysis. Collect static instruction mix data.
2. Generate a Survey report. Show static instruction mix data.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --report=survey --mix --no-dynamic --project-dir=./advi_results

See Also
dynamic  Show (in a Survey report) how many instructions of a given type actually executed
during Trip Counts & FLOP analysis.
mix  Show dynamic or static instruction mix data in a Survey report.
Minimize Analysis Overhead
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

strategy
Specify processes and/or children for instrumentation
during Survey analysis.

Syntax

--strategy=<string>

Arguments

<string> is a comma-separated list (no spaces) in the format [process1 | child1:]profiling mode.

Available profiling modes include the following:

Argument Description

trace:trace Instrument process and all children.

trace:notrac
e

Instrument process but not children.

notrace:trac
e

Instrument children but not process.

notrace:not
race

Do not instrument process or children.

Default

Instrument all processes and children (strategy=trace:trace)

Intel® Advisor User Guide  1  

553



Actions Modified

collect=survey

Example
Process_A starts several processes:

Root >
   Process_A >
      Child_of_A_1
      Child_of_A_2
   Process_B >
      Child_of_B

Run a Survey analysis. Instrument Child_of_A_2 and all children of Process_B.

advisor --collect=survey --
strategy=Root:notrace:notrace,Child_of_A_2:trace:notrace,Process_B:notrace:trace --project-dir=./
advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

support-multi-isa-binaries
Collect a variety of data during Survey analysis for
loops that reside in non-executed code paths.

GUI Equivalent

Project Properties > Analysis Target > Survey Hotspots Analysis > Advanced > Analyze loops that
reside in non-executed code paths

Syntax

--support-multi-isa-binaries
--no-support-multi-isa-binaries

Default

Off (no-support-multi-isa-binaries)

Actions Modified

collect=survey for binaries compiled using the ax (Linux* OS)/Qax (Windows* OS) option with an Intel
compiler

Usage

Disabling can decrease finalization overhead.

Example
Run a Survey analysis. Explicitly disable collecting data for loops that reside in non-executed code paths.

advisor --collect=survey --no-support-multi-user-binaries --project-dir=./advi_results -- ./
myApplication

  1   Intel® Advisor User Guide

554



See Also
Minimize Analysis Overhead

advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

target-device
Specify a device configuration to model cache for
during Trip Counts collection.

GUI Equivalent

Analysis Workflow > Offload Modeling > Target Platform Model

Syntax

--target-device=<string>

Arguments

<string> is one of the following device configurations:

Argument Description

pvc_xt_448
xve

Intel® Data Center GPU Max 448

pvc_xt_512
xve

Intel® Data Center GPU Max 512

xehpg_256x
ve

Intel® Arc™ graphics with 256 vector engines

xehpg_512x
ve

Intel® Arc™ graphics with 512 vector engines

gen12_tgl Intel® Iris® Xe graphics

gen12_dg1 Intel® Iris® Xe MAX graphics

gen11_icl Intel® Iris® Plus graphics

gen9_gt2 Intel® HD Graphics 530

gen9_gt3 Intel® Iris® Graphics 550

gen9_gt4 Intel® Iris® Pro Graphics 580

Default

No default

Actions Modified

collect=tripcounts --enable-cache-simulation

collect=offload

Intel® Advisor User Guide  1  

555



Usage

Important
Make sure to specify the same configuration argument as for the config option during
Performance Modeling (collect=projection).

Do not confuse the target gpu option with the target-device option. The target-device option
modifies only the --collect=tripcounts action and is used to simulate memory cache of a specific GPU
platform for Offload Modeling. The --target-gpu modifies the --collect=roofline, --collect=survey,
and --collect=tripcounts and is used to select a target GPU to collect data and plot a GPU Roofline for if
you have several GPUs.

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Model your application performance for the gen9_gt2 configuration.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-cache-simulation --target-device=gen9_gt2 --project-
dir=./advi_results -- ./myApplication
advisor --collect=projection --config=gen9_gt2 --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

target-gpu
Specify a target GPU to collect data for if you have
multiple GPUs connected to your system.

Syntax

--target-gpu=<string>

Arguments

<string> is a bus/device/function of a GPU adapter with decimal numbers in the following format:
<domain>:<bus>:<device-number>.<function-number>

Default

The most recent GPU device family that Intel® Advisor detects. If you have several such GPUs, the first
device on a PCI bus is the default.

Actions Modified

collect=survey --profile-gpu

collect=tripcounts --profile-gpu

collect=roofline --profile-gpu

Usage

Make sure to specify the same device configuration for both Survey and Trip Counts & FLOP analyses..

  1   Intel® Advisor User Guide

556



To see the list of option arguments for your system, run advisor --help target-gpu and see the option
description.

For a list of GPUs with their bus/device/function adapters:

• On Windows* OS, see Task Manager.
• On Linux* OS, run lspci -D.

Important
--target-gpu option accepts only decimal numbers in a GPU address, and the option help
lists the available arguments in the acceptable format. If you use a different way to get the
GPU adapter list, for example, the lspci -D command, and get the GPU address with
numbers in a hexadecimal format, you should convert it to the decimal format before
passing to the --target-gpu option.

For example, if you have the address 0:4d:0.0, you should convert it to the decimal format first and
pass it to the Intel Advisor as 0:77:0.0.

Do not confuse the target gpu option with the target-device option. The target-device option
modifies only the --collect=tripcounts action and is used to simulate memory cache of a specific GPU
platform for Offload Modeling. The --target-gpu modifies the --collect=roofline, --collect=survey,
and --collect=tripcounts and is used to select a target GPU to collect data and plot a GPU Roofline for if
you have several GPUs.

Example
1. Run Survey analysis for the GPU adapter 0:0:2.0.
2. Run Trip Counts and FLOP analyses of the Characterization stage for the same device.

advisor --collect=survey --profile-gpu --target-gpu=0:0:2.0 --project-dir=./advi_results -- ./
myApplication
advisor --collect=tripcounts --flop --profile-gpu --target-gpu=0:0:2.0 --project-dir=./
advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

target-pid
Attach Survey or Trip Counts & FLOP collection to a
running process specified by the process ID.

GUI Equivalent

Project Properties > Analysis Target > [Analysis Type] > Attach to Process > PID

Syntax

--target-pid=<integer>

Arguments

<integer> is a process ID.

Intel® Advisor User Guide  1  

557



Default

No default argument

Actions Modified

collect=survey - with call stacks disabled (default)

collect=tripcounts - with call stacks disabled (default)

Usage

The usage scenario is similar to starting a target application with collection paused, except you can attach to
an already running process.

Usage can decrease collection overhead.

Use the command action with the arguments shown below to:

• detach - the process continues running but analysis data collection stops.
• stop - kill the process, which also stops analysis data collection.

Example
Attach Survey collection to the running process with the process ID 5.

advisor --collect=survey --target-pid=5 --project-dir=./advi_results -- ./myApplication
See Also
command  Control the Intel Advisor while running analyses.
stacks  Perform advanced collection of callstack data during Roofline and Trip Counts & FLOP
analysis.
start-paused  Start executing the target application for analysis purposes, but delay data
collection.
Minimize Analysis Overhead
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

target-process
Attach Survey or Trip Counts & FLOP collection to a
running process specified by the process name.

GUI Equivalent

Project Properties > Analysis Target > [Analysis Type] > Attach to Process > Process name

Syntax

--target-process=<string>

Arguments

<string> is a process name.

Default

No default argument

Actions Modified

collect=survey - with call stacks disabled (default)

  1   Intel® Advisor User Guide

558



collect=tripcounts - with call stacks disabled (default)

Usage

The usage scenario is similar to starting a target application with collection paused, except you can attach to
an already running process.

Usage can decrease collection overhead.

Use the command action with the arguments shown below to:

• detach - the process continues running but analysis data collection stops.
• stop - kill the process, which also stops analysis data collection.

Example
Attach Survey collection to the running process MyProcess.

advisor --collect=survey --target-process=MyProcess --project-dir=./advi_results -- ./
myApplication

See Also
command  Control the Intel Advisor while running analyses.
stacks  Perform advanced collection of callstack data during Roofline and Trip Counts & FLOP
analysis.
start-paused  Start executing the target application for analysis purposes, but delay data
collection.
Minimize Analysis Overhead
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

target-system
Specify the hardware configuration to use for
modeling purposes in a Suitability report.

GUI Equivalent

Suitability > Target System

Syntax

--target-system=<string>

Arguments

<string> is one of the following: cpu | xeon-phi | offload-to-xeon-phi

Default

cpu

Actions Modified

report=suitability

Example
Generate a Suitability report. Use Intel® Xeon Phi™ as the target configuration

advisor --report=suitability --target-system=xeon-phi --project-dir=./advi_results

Intel® Advisor User Guide  1  

559



See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

threading-model
Specify the threading model to use for modeling
purposes in a Suitability report.

GUI Equivalent

Suitability > Threading Model

Syntax

--threading-model=<string>

Arguments

<string> is one of the following: tbb | openmp | tpl (Windows* OS only) | other

Default

tbb

Actions Modified

report=suitability

Usage

Use only one threading model. Mixing threading models is not supported.

Example
Generate a Suitability report for the OpenMP* parallel framework.

advisor --report=suitability --threading-model=openmp --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

threads
Specify the number of parallel threads to use for
offload heads.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--threads=<integer>

Arguments

<integer> is a number of parallel threads. Specify 0 to let the model decide based on a selected target
device configuration.

  1   Intel® Advisor User Guide

560



Default

0

Actions Modified

collect=projection

collect=offload

Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses of the Characterization stage.
3. Model your application performance on a target device using 3 parallel threads for each offload head.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --enable-data-transfer-analysis --project-dir=./advi_results 
-- ./myApplication
advisor --collect=projection --threads=3 --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

top-down
Generate a Survey report in top-down view.

GUI Equivalent

Survey > Top Down

Syntax

--top-down

Default

Off

Actions Modified

report=survey

Usage

Equivalent to report=top-down

Example
Generate a Survey report in top-down view.

advisor --report=survey --top-down --project-dir=./advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

Intel® Advisor User Guide  1  

561



trace-mode
Set how to trace loop iterations during Memory Access
Patterns analysis.

Syntax

--trace-mode=<string>

Arguments

<string> is one of the following:

Argument Description

full Trace all loop iterations.

linear Trace loop iterations using linear step.

fibo Trace loop iterations in Fibonacci sequence.

Default

fibo

Actions Modified

collect=map

Usage

Specifying a less extensive tracing method can decrease collection overhead.

Example
Run a Memory Access Patterns analysis on the specified loops. Trace all loop iterations.

advisor --collect=map --mark-up-list=3,4,5 --trace-mode=full --project-dir=./advi_results -- ./
myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

trace-mpi
Configure collectors to trace MPI code and determine
MPI rank IDs for non-Intel® MPI library
implementations.

Syntax

--trace-mpi
--no-trace-mpi

Default

Off (no-trace-mpi)

Actions Modified

collect

  1   Intel® Advisor User Guide

562



Example
Run a Survey analysis. Use a non-Intel MPI library on a Windows* OS.

mpiexec -n 4 "advisor --collect=survey --trace-mpi --no-auto-finalize --project-dir=./
advi_results" ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

track-memory-objects
Attribute memory objects to the analyzed loops that
accessed the objects.

GUI Equivalent

Project Properties > Analysis Target > Performance Modeling > Other parameters

Syntax

--track-memory-objects
--no-track-memory-objects

Default

Off (no-track-memory-objects)

Actions Modified

collect=tripcounts --enable-data-transfer-analysis

collect=projection

Usage

Use as one of the following:

• Use the medium or full data transfer with collect=tripcounts and specify track-memory-objects
only for collect=projection. For example:

advisor --collect=tripcounts --flop --data-transfer=full --project-dir=<project-dir>
-- <target-application>
advisor --collect=projection --track-memory-objects --project-dir=<project-dir>

• Enable the basic data transfer analysis with collect=tripcounts and specify track-memory-objects
for both collect=tripcounts and collect=projection:

advisor --collect=tripcounts --flop --enable-data-transfer-analysis--track-memory-
objects --project-dir=<project-dir> -- <target-application>
advisor --collect=projection --track-memory-objects --project-dir=<project-dir>

NOTE Enabling can increase overhead.

Intel® Advisor User Guide  1  

563



Example
1. Run Survey Analysis.
2. Run Trip Counts and FLOP analyses and track memory objects.
3. Model your application performance on a target device and track memory objects.

advisor --collect=survey --static-instruction-mix --project-dir=./advi_results -- ./myApplication
advisor --collect=tripcounts --flop --data-transfer=medium --target-device=xehpg_512xve --
project-dir=./advi_results -- ./myApplication
advisor --collect=projection --track-memory-objects --project-dir=./advi_results

See Also
data-transfer Set the level of details for modeling data transfers during Characterization.
enable-data-transfer-analysis Model data transfer between host memory and device memory.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

track-stack-accesses
Track accesses to stack memory.

Syntax

--track-stack-accesses
--no-track-stack-accesses

Default

Off (no-track-stack-accesses)

Actions Modified

collect=tripcounts --enable-data-transfer-analysis

Usage

By default, the Intel® Advisor filters out all accesses to stack memory. When you enable this option, all
accesses to stack memory are included in data transfer calculations.

This corresponds with data-transfer=medium or data-transfer=full. Do not use the
data-transfer=<mode> with the track-stack-accesses option because data-transfer=<mode>
overrides the enable-data-transfer-analysis and track-stack-accesses.

Tip Enabling can increase overhead.

Example
Run a Trip Counts and FLOP analysis. Enable data transfer simulation and analyze accesses to stack memory.

advisor --collect=tripcounts --flop --enable-data-transfer-analysis --track-stack-
accesses --project-dir=./advi_results -- ./myApplication

See Also
enable-data-transfer-analysis Model data transfer between host memory and device memory.
advisor Command Option Reference

  1   Intel® Advisor User Guide

564



Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

track-stack-variables
Enable parallel data sharing analysis for stack
variables during Dependencies analysis.

GUI Equivalent

Project Properties > Analysis Target > Dependencies Analysis > Analyze stack variables

Syntax

--track-stack-variables
--no-track-stack-variables

Default

On (track-stack-variables)

Actions Modified

collect=dependencies

Usage

Disabling can decrease collection overhead.

Example
Run a Dependencies analysis. Disable parallel data sharing analysis for stack variables.

advisor --collect=dependencies --no-track-stack-variables --search-dir src:=./src --project-
dir=./advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

trip-counts
Collect loop trip counts data during Trip Counts &
FLOP analysis.

GUI Equivalent

Analysis Workflow > Characterizatoin > Collect trip counts

Project Properties> Analysis Target> Trip Counts and FLOP Analysis> Collect information about
loop trip counts

Syntax

--trip-counts
--no-trip-counts

Default

On (trip-counts)

Intel® Advisor User Guide  1  

565



Actions Modified

collect=tripcounts

Usage

Use the option, which allows you to dynamically identify the number of times loops are invoked and
executed, to:

• Detect loops with too-small trip counts and trip counts that are not a multiple of vector length.
• Analyze parallelism granularity more deeply.

Disabling can decrease analysis overhead.

Example
Run a Trip Counts & FLOP analysis. Collect trip counts, FLOP, and call stack data.

advisor --collect=tripcounts --flop --stacks --project-dir=./advi_results -- ./myApplication
Run a Trip Counts & FLOP analysis. Collect only FLOP data.

advisor --collect=tripcounts --no-trip-counts --search-dir src:=./src --project-dir=./
advi_results -- ./myApplication

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

verbose
Maximize status messages during command
execution.

Syntax

-v
--verbose

Default

Off

Actions Modified

collect, command, import-dir, mark-up-loops, report, snapshot,

Example
Generate a Suitability report. Output to stderr. Show additional status output.

advisor --report=suitability --verbose --project-dir=./advi_results

See Also
quiet Minimize status messages during command execution.
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

  1   Intel® Advisor User Guide

566



with-stack
Show call stack data in a Roofline interactive HTML
report (if call stack data is collected).

GUI Equivalent

Roofline> Default: FLOAT > With Callstacks

Syntax

--with-stack
--no-with-stack

Default

Off (no-with-stack)

Actions Modified

report=roofline

Example
Generate a Roofline interactive HTML report. Show call stack data.

advisor --report=roofline --report-output=./out/roofline.html --with-stacks --project-dir=./
advi_results

See Also
advisor Command Option Reference
Command Line Interface Reference  This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

Offload Modeling Command Line Reference
This reference section describes the command line
options available for each of the Python* scripts that
you can use to run the Offload Modeling perspective.

To use the Offload Modeling, run one or two of the following scripts, depending on a method you chose:

• Use run_oa.py script to collect performance data and model performance on a target device using a single
command with a set of default recommended settings.

• Use collect.py to collect baseline performance data for your application on a host device.
• Use analyze.py to model your application performance on a target device.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Command Syntax
The syntax for Offload Modeling commands is as follows:

advisor-python <APM>/<script-name>.py <project-dir> [--options] [-- <target> [target-options]]
where:

advisor-python A call to the Intel® Advisor Python* command line
tool.

Intel® Advisor User Guide  1  

567



advisor-python is recommended to run the
scripts. The main advantage of using this command
line tool is that it does not require you to install a
specific Python version on your system because it
calls to an internal Python version of the Intel
Advisor.

<APM> The environment variable that points to the
directory with the scripts. Replace it with:

• $APM on Linux* OS
• %APM% on Windows* OS

<script-name> A script name to run: run_oa.py, collect.py, or
analyze.py.

<project-dir> The path to a project directory to save collection
results.

<--options> Options to modify behavior specific to the script.
You can specify several options per script. Using an
option not supported by the script causes a usage
error.

<target> A target application to analyze.

Important
You do not need to specify a target executable
and target options when running the
analyze.py script.

[target-options] Options to modify target application behavior.

Syntax Rules and Alternatives
• An option can be preceded by one or two dashes. This section uses two dashes before long version of

options and one dash before short version of options. For example, the following commands are
equivalent:

advisor-python $APM/run_oa.py -h
advisor-python $APM/run_oa.py --help

• The path to a project directory must always follow after a script name. For example:

advisor-python $APM/analyze.py ./advi_results
• If an option accepts values, they can be separated by a space or by an equal sign (=). This document

uses space for all such options. For example, the following are equivalent:

advisor-python $APM/analyze.py ./advi_results --out-dir ./report
advisor-python $APM/analyze.py ./advi_results --out-dir=./report

• The target executable must be preceded by two dashes and a space. For example:

advisor-python $APM/analyze.py ./advi_results --out-dir=./report
advisor-python $APM/collect.py ./advi_results -- myApplication

  1   Intel® Advisor User Guide

568



• If you have Python 3.6 or 3.7 installed and it is the default Python version on your system, you can run
Offload Modeling with your system Python instead of the advisor-python tool:

python $APM/run_oa.py ./advi_results -- ./myApplication
python3.6 $APM/run_oa.py ./advi_results -- ./myApplication
python3.7 $APM/run_oa.py ./advi_results -- ./myApplication

run_oa.py Options

Collect basic data, do markup, and collect refinement data. Then proceed to run analysis on profiling data.
This script combines the separate scripts collect.py and analyze.py.

Usage
advisor-python <APM>/run_oa.py <project-dir> [--options] -- <target> [target-options]

NOTE Replace <APM> with $APM on Linux* OS or %APM% on Windows* OS.

Options
The following table describes options that you can use with the run_oa.py script. The target application to
analyze and application options, if any, must be preceded by two dashes and a space and placed at the end
of a command.

Option Description

<project-dir> Required. Specify the path to the Intel® Advisor
project directory.

-h
--help

Show all script options.

-v <verbose>

--verbose <verbose>

Specify output verbosity level:

• 1 - Show only error messages. This is the least
verbose level.

• 2 - Show warning and error messages.
• 3 (default) - Show information, warning, and

error messages.
• 4 - Show debug, information, warning, and error

messages. This is the most verbose level.

NOTE This option affects the console output,
but does not affect logs and report results.

--assume-dependencies (default) | --no-
assume-dependencies

Assume that a loop has a dependency if the loop
type is not known. When disabled, assume that a
loop does not have dependencies if the loop
dependency type is unknown.

--assume-hide-taxes [<loop-id> | <file-
name>:<line-number>]

Use an optimistic approach to estimate invocation
taxes: hide all invocation taxes except the first one.

Intel® Advisor User Guide  1  

569



Option Description

You can provide a comma-separated list of loop IDs
and source locations to hide taxes for. If you do not
provide a list, taxes are hidden for all loops.

--assume-never-hide-taxes (default) Use a pessimistic approach to estimate invocation
taxes: do not hide invocation taxes.

--assume-parallel | --no-assume-parallel
(default)

Assume that a loop is parallel if the loop type is not
known.

--check-profitability (default) | --no-check-
profitability

Check the profitability of offloading regions. Only
regions that can benefit from the increased speed
are added to a report.

When disabled, add all evaluated regions to a
report, regardless of the profitability of offloading
specific regions.

-c {basic, refinement, full}

--collect {basic, refinement, full}

Specify the type of data to collect for the
application:

• basic - Collect basic performance data (Survey,
Trip Counts, FLOP), analyze data transfer
between host and device memory, attribute
memory objects to loops, and track accesses to
stack memory.

• refinement - Collect refined data
(Dependencies) for marked loops only. Do not
analyze data transfers.

• full (default) - Collect both basic data for
application and refined data for marked loops,
analyze data transfer between host and device
memory and potential data reuse, attribute
memory objects to loops, and track accesses to
stack memory.

NOTE For --collect full, make sure to use --
data-reuse-analysis and --track-memory-
objects.
For --collect basic, make sure to use the --
track-memory-objects.

--config <config> Specify a configuration file by absolute path or
name. If you choose the latter, the model
configuration directory is searched for the file first,
then the current directory.

The following device configurations are available:
xehpg_512xve (default), xehpg_256xve ,
gen11_icl, gen12_tgl, gen12_dg1, gen9_gt4,
gen9_gt3, gen9_gt2.

  1   Intel® Advisor User Guide

570



Option Description

NOTE You can specify several configurations by using
the option more than once.

--cpu-scale-factor <integer> Assume a host CPU that is faster than the original
CPU by the specified value.

All original CPU times are divided by the scale
factor.

--data-reuse-analysis (default) | --no-data-
reuse-analysis

Estimate data reuse between offloaded regions.
Disabling can decrease analysis overhead.

Important Use with --collect full.

--data-transfer (default) | --no-data-
transfer

Analyze data transfer.

NOTE Disabling can decrease analysis overhead.

--dry-run Show the Intel® Advisor CLI commands for
advisor appropriate for the specified configuration.
No actual collection is performed.

--enable-batching | --disable-batching
(default)

Enable job batching for top-level offloads. Emulate
the execution of more than one instance
simultaneously.

--enable-edram Enable eDRAM modeling in the memory hierarchy
model.

--enable-slm Enable SLM modeling in the memory hierarchy
model. Use both with collect.py and
analyze.py.

--exclude-from-report <items-to-exclude> Specify items to exclude from a report. Available
items: memory_objects, sources, call_graph,
dependencies, strides.

By default, you can exclude the following items
from the report:

• For the CPU-to-GPU modeling:

• memory objects
• sources
• call graph
• dependencies

• For the GPU-to-GPU modeling:

• memory objects
• sources

Intel® Advisor User Guide  1  

571



Option Description

Use this option if your report is heavy weight, for
example, due to containing a lot of memory objects
or sources, which slows down opening in a browser.

NOTE This option affects only data shown in the HTML
report and does not affect data collection.

--executable-of-interest <executable-name> Specify an executable process name to profile if it is
not the same as the application to run. Use this
option if you run your application via script or other
binary.

NOTE Specify the name only, not the full path.

--flex-cachesim <cache-configuration> Use flexible cache simulation to model cache data
for several target devices. The flexible cache
simulation allows you to change a device for an
analysis without recollecting data. By default, when
no configuration is set, cache data is simulated for
all supported target platforms.

You can also specify a list of cache configurations
separated with a forward slash in the format
<size_of_level1>:<size_of_level2>:<size_of_level
3>. For each memory level size, specify a unit of
measure as b - bytes, k- kilobytes, or m -
megabytes.

For example, 8k:512k:8m/24k:1m:8m/
32k:1536k:8m.

--gpu (recommended) | --profile-gpu | --
analyze-gpu-kernels-only

Model performance only for code regions running
on a GPU. Use one of the three options.

NOTE This is a preview feature. --analyze-gpu-
kernels-only is deprecated and will be removed in
futire releases.

--ignore <list> Specify a comma-separated list of runtimes or
libraries to ignores time spent in regions from these
runtimes and libraries when calculating per-
program speedup.

NOTE This does not affect estimated speedup of
individual offloads.

  1   Intel® Advisor User Guide

572



Option Description

--include-to-report <items-to-include> Specify items to include to a report. Available
items: memory_objects, sources, call_graph,
dependencies, strides.

By default, you can add the following items from
the report:

• For the CPU-to-GPU modeling: strides
• For the GPU-to-GPU modeling:

• call graph
• dependencies
• strides

Use this option if you want to add more data to the
report or see that some data, for example, sources
or memory objects, are missing from the report,
though you collected this data.

NOTE This option affects only data shown in the HTML
report and does not affect data collection.

-m [{all, generic, regions, omp, icpx -fsycl, daal,
tbb}]

--markup [{all, generic, regions, omp, icpx -fsycl,
daal, tbb}]

Mark up loops after survey or other data collection.
Use this option to limit the scope of further
collections by selecting loops according to a
provided parameter:

• all - Get lists of loop IDs to pass as the option
for further collections.

• generic (default) - Mark up all regions and
select the most profitable ones.

• regions - Select already existing parallel
regions.

• omp - Select outermost loops in OpenMP*
regions.

• icpx -fsycl - Select outermost loops in SYCL
regions.

• daal - Select outermost loops in Intel® oneAPI
Data Analytics Library regions.

• tbb - Select outermost loops in Intel® oneAPI
Threading Building Blocks (oneTBB) regions.

omp, icpx -fsycl, or generic selects loops in the
project so that the corresponding collection can be
run without loop selection options.

You can specify several parameters in a comma-
separated list. Loops are selected if they fit any of
specified parameters.

--model-system-calls (default) | --no-model-
system-calls

Analyze regions with system calls inside. The actual
presence of system calls inside a region may reduce
model accuracy.

Intel® Advisor User Guide  1  

573



Option Description

--mpi-rank <mpi-rank> Specify a MPI rank to analyze if multiple ranks are
analyzed.

--no-cache-sources Disable keeping source code cache within a project.

--no-cachesim Disable cache simulation during collection. The
model assumes 100% hit rate for cache.

NOTE Usage decreases analysis overhead.

--no-profile-jit Disable JIT function analysis.

--no-stacks Run data collection without collecting data
distribution over stacks. You can use this option to
reduce overhead at the potential expense of
accuracy.

-o <output-dir>

--out-dir <output-dir>

Specify the directory to put all generated files into.
By default, results are saved in <advisor-
project>/e<NNN>/pp<MMM>/data.0. If you
specify an existing directory or absolute path,
results are saved in specified directory. The new
directory is created if it does not exist.

If you only specify the directory <name>, results are
stored in <advisor-project>/e<NNN>/pp<MMM>/
<name>.

NOTE If you use this options, you might not be able
to open the analysis results in the Intel Advisor GUI.

-p <output-name-prefix>

--out-name-prefix <output-name-prefix>

Specify a string to add to the beginning output
result filenames.

NOTE If you use this options, you might not be able
to open the analysis results in the Intel Advisor GUI.

--set-parameter <CLI-config> Specify a single-line configuration parameter to
modify in a format "<group>.<parameter>=<new-
value>". For example:
"min_required_speed_up=0",
"scale.Tiles_per_process=0.5". You can use
this option more than once to modify several
parameters.

--track-heap-objects (default) | --no-track-
heap-objects

Deprecated. Use --track-memory-objects.

  1   Intel® Advisor User Guide

574



Option Description

--track-memory-objects (default) | --no-
track-memory-objects

Attribute heap-allocated objects to the analyzed
loops that accessed the objects. Disable to
decrease analysis overhead.

Important Currently, this option affects only
the analysis step.

--track-stack-accesses (default) | --no-
track-stack-accesses

Track accesses to stack memory.

Important Currently, this option does not affect
the collection.

Examples
• Collect full data on myApplication, run analysis with default configuration, and save the project to

the ./advi directory. The generated output is saved to the default advi/perfmodels/mNNNN directory.

advisor-python $APM/run_oa.py ./advi_results -- ./myApplication
• Collect full data on myApplication, run analysis with default configuration, save the project to the ./

advi directory, and save the generated output to the advi/perf_models/report directory.

advisor-python $APM/run_oa.py ./advi_results --out-dir report -- ./myApplication
• Collect refinement data for SYCL code regions on myApplication, run analysis with a custom

configuration file config.toml, and save the project to the ./advi directory. The generated output is
saved to the default advi/perf_models/mNNNN directory.

advisor-python $APM/run_oa.py ./advi_results --collect refinement --markup icpx -fsycl --
config ./config.toml -- ./myApplication

collect.py Options

Depending on options specified, collect basic data, do markup, and collect refinement data. By default,
execute all steps. For any step besides markup, you must specify an application argument.

Usage
advisor-python <APM>/collect.py <project-dir> [--options] -- <target> [target-options]

NOTE Replace <APM> with $APM on Linux* OS or %APM% on Windows* OS.

Options
The following table describes options that you can use with the collect.py script. The target application to
analyze and application options, if any, must be preceded by two dashes and a space.

Option Description

<project-dir> Required. Specify the path to the Intel® Advisor
project directory.

Intel® Advisor User Guide  1  

575



Option Description

-h
--help

Show all script options.

-v <verbose>

--verbose <verbose>

Specify output verbosity level:

• 1 - Show only error messages. This is the least
verbose level.

• 2 - Show warning and error messages.
• 3 (default) - Show information, warning, and

error messages.
• 4 - Show debug, information, warning, and error

messages. This is the most verbose level.

NOTE This option affects the console output,
but does not affect logs and report results.

-c {basic, refinement, full}

--collect {basic, refinement, full}

Specify the type of data to collect for an
application:

• basic - Collect basic performance data (Survey,
Trip Counts, FLOP), analyze data transfer
between host and device memory, attribute
memory objects to loops, and track accesses to
stack memory.

• refinement - Collect refined data
(Dependencies) for marked loops only. Do not
analyze data transfers.

• full (default) - Collect both basic data for
application and refined data for marked loops,
analyze data transfer between host and device
memory and potential data reuse, attribute
memory objects to loops, and track accesses to
stack memory.

NOTE For --collect full, make sure to use --
data-reuse-analysis and --track-memory-
objects for the Performance modeling with
analyze.py or advisor --
collect=projection.
For --collect basic, make sure to use the --
track-memory-objects for the Performance
modeling with analyze.py or advisor --
collect=projection.

--config <config> Specify a configuration file by absolute path or
name. If you choose the latter, the model
configuration directory is searched for the file first,
then the current directory.

  1   Intel® Advisor User Guide

576



Option Description

You can specify several configurations by using the
option more than once.

--data-reuse-analysis | --no-data-reuse-
analysis (default)

Estimate data reuse between offloaded regions.
Disabling can decrease analysis overhead.

Important--collect basic and --collect
full overwrite this option. To add the data reuse
analysis results to the Offload Modeling report, make
sure to use the --data-reuse-analysis option
for the Performance modeling with analyze.py or
advisor --collect=projection.

--data-transfer (default) | --no-data-
transfer

Analyze data transfer.

NOTE Disabling can decrease analysis overhead.

--dry-run Show the Intel® Advisor CLI commands for
advisor appropriate for the specified configuration.
No actual collection is performed.

--enable-edram Enable eDRAM modeling in the memory hierarchy
model.

Important Make sure to use this option with both
collect.py and analyze.py.

--enable-slm Enable SLM modeling in the memory hierarchy
model.

Important Make sure to use this option with both
collect.py and analyze.py.

--executable-of-interest <executable-name> Specify the executable process name to profile if it
is not the same as the application to run. Use this
option if you run your application via script or other
binary.

NOTE Specify the name only, not the full path.

--flex-cachesim <cache-configuration> Use flexible cache simulation to model cache data
for several target devices. The flexible cache
simulation allows you to change a device for an

Intel® Advisor User Guide  1  

577



Option Description

analysis without recollecting data. By default, when
no configuration is set, cache data is simulated for
all supported target platforms.

You can also specify a list of cache configurations
separated with a forward slash in the format
<size_of_level1>:<size_of_level2>:<size_of_level
3>. For each memory level size, specify a unit of
measure as b - bytes, k- kilobytes, or m -
megabytes.

For example, 8k:512k:8m/24k:1m:8m/
32k:1536k:8m.

--gpu (recommended) | --profile-gpu | --
analyze-gpu-kernels-only

Model performance only for code regions running
on a GPU. Use one of the three options.

Important Make sure to specify this option for both
collect.py and analyze.py.

NOTE This is a preview feature. --analyze-gpu-
kernels-only is deprecated and will be removed in
futire releases.

--no-profile-jit (default) Disable JIT function analysis.

-m [{all, generic, regions, omp, icpx -fsycl, daal,
tbb}]

--markup [{all, generic, regions, omp, icpx -fsycl,
daal, tbb}]

Mark up loops after survey or other data collection.
Use this option to limit the scope of further
collections by selecting loops according to a
provided parameter:

• all - Get lists of loop IDs to pass as the option
for further collections.

• generic (default) - Mark up all regions and
select the most profitable ones.

• regions - Select already existing parallel
regions.

• omp - Select outermost loops in OpenMP*
regions.

• icpx -fsycl - Select outermost loops in SYCL
regions.

• daal - Select outermost loops in Intel® oneAPI
Data Analytics Library regions.

• tbb - Select outermost loops in Intel® oneAPI
Threading Building Blocks (oneTBB) regions.

omp, icpx -fsycl, or generic selects loops in the
project so that the corresponding collection can be
run without loop selection options.

  1   Intel® Advisor User Guide

578



Option Description

You can specify several parameters in a comma-
separated list. Loops are selected if they fit any of
specified parameters.

--model-system-calls (default) | --no-model-
system-calls

Analyze regions with system calls inside. The actual
presence of system calls inside a region may reduce
model accuracy.

--mpi-rank <mpi-rank> Specify a MPI rank to analyze if multiple ranks are
analyzed.

--no-cache-sources Disable keeping source code cache within a project.

--no-cachesim Disable cache simulation during collection. The
model assumes 100% hit rate for cache.

NOTE Usage decreases analysis overhead.

--no-stacks Run data collection without collecting data
distribution over stacks. You can use this option to
reduce overhead at the potential expense of
accuracy.

-o <output-dir>

--out-dir <output-dir>

Specify the directory to put all generated files into.
By default, results are saved in <advisor-
project>/e<NNN>/pp<MMM>/data.0. If you
specify an existing directory or absolute path,
results are saved in specified directory. The new
directory is created if it does not exist.

If you only specify the directory <name>, results are
stored in <advisor-project>/e<NNN>/pp<MMM>/
<name>.

NOTE If you use this options, you might not be able
to open the analysis results in the Intel Advisor GUI.

-p <output-name-prefix>

--out-name-prefix <output-name-prefix>

Specify a string to add to the beginning output
result filenames.

NOTE If you use this options, you might not be able
to open the analysis results in the Intel Advisor GUI.

--set-parameter <CLI-config> Specify a single-line configuration parameter to
modify in a format "<group>.<parameter>=<new-
value>". For example:
"min_required_speed_up=0",
"scale.Tiles_per_process=0.5". You can use
this option more than once to modify several
parameters.

Intel® Advisor User Guide  1  

579



Option Description

Important Make sure to use this option for both
collect.py and analyze.py with the same value.

--track-heap-objects | --no-track-heap-
objects

Deprecated. Use --track-memory-objects.

--track-memory-objects (default) | --no-
track-memory-objects

Attribute heap-allocated objects to the analyzed
loops that accessed the objects.

Important This option is always enabled with --
collect basic and --collect full. To add
the data reuse analysis results to the Offload Modeling
report, make sure to use also the
--track-memory-objects option for the
Performance modeling with analyze.py or
advisor --collect=projection.

--track-stack-accesses (default) | --no-
track-stack-accesses

Track accesses to stack memory.

Important This option is always enabled with --
collect basic and --collect full. To add
the data reuse analysis results to the Offload Modeling
report, make sure to use also the
--track-memory-objects option for the
Performance modeling with analyze.py or
advisor --collect=projection.

Examples
• Collect full data on myApplication with default configuration and save the project to the ./advi

directory.

advisor-python $APM/collect.py ./advi_results -- ./myApplication
• Collect refinement data for OpenMP* and SYCL loops on myApplication with a custom configuration file

config.toml and save the project to the ./advi directory.

advisor-python $APM/collect.py ./advi_results --collect refinement --markup [omp,icpx -fsycl] --
config ./config.toml -- ./myApplication

• Get commands appropriate for a custom configuration specified in the config.toml file to collect data
separately with advisor. The commands are ready to copy and paste.

advisor-python $APM/collect.py ./advi_results --dry-run --config ./config.toml

analyze.py Options

This script allows you to run an analysis on profiling data and generate report results.

  1   Intel® Advisor User Guide

580



Usage
advisor-python <APM>/analyze.py <project-dir> [--options]

NOTE Replace <APM> with $APM on Linux* OS or %APM% on Windows* OS.

Options
The following table describes options that you can use with the analyze.py script.

Option Description

<project-dir> Required. Specify the path to the Intel® Advisor
project directory.

-h
--help

Show all script options.

--version Display Intel® Advisor version information.

-v <verbose>

--verbose <verbose>

Specify output verbosity level:

• 1 - Show only error messages. This is the least
verbose level.

• 2 - Show warning and error messages.
• 3 (default) - Show information, warning, and

error messages.
• 4 - Show debug, information, warning, and error

messages. This is the most verbose level.

NOTE This option affects the console output,
but does not affect logs and report results.

--assume-dependencies (default) | --no-
assume-dependencies

Assume that a loop has a dependency if the loop
type is not known. When disabled, assume that a
loop does not have dependencies if the loop
dependency type is unknown.

--assume-hide-taxes [<loop-id> | <file-
name>:<line-number>]

Use an optimistic approach to estimate invocation
taxes: hide all invocation taxes except the first one.

You can provide a comma-separated list of loop IDs
and source locations to hide taxes for. If you do not
provide a list, taxes are hidden for all loops.

--assume-never-hide-taxes (default) Use a pessimistic approach to estimate invocation
taxes: do not hide invocation taxes.

--assume-ndim-dependency (default) | --no-
assume-ndim-dependency

When searching for an optimal N-dimensional
offload, assume there are dependencies between
inner and outer loops.

--assume-parallel | --no-assume-parallel
(default)

Assume that a loop is parallel if the loop type is not
known.

Intel® Advisor User Guide  1  

581



Option Description

--assume-single-data-transfer (default) | --
no-assume-single-data-transfer

Assumed data is transferred once for each offload,
and all instances share the data. When disabled,
assume each data object is transferred for every
instance of an offload that uses it.

This method assumes no data re-use between calls
to the same kernel.

Important This option requires you to enable the
following options during the Trip Counts collection:

• With collect.py, use --collect basic or
--collect full.

• With advisor --collect=tripcounts, use
data-transfer=<mode>.

--atomic-access-pattern <pattern> Select an atomic access pattern. Possible options:
sequential, partial_sums_16, same. By default,
it is set to partial_sums_16.

--assume-atomic-optimization-ratio <ratio> Model atomic accesses as a number of parallel
sums. Specify one of the following values: 8, 16,
32, 64, 128 to model a specific number of parallel
sums. Specify 0 value to search for an optimal
number of parallel sums.

Default value: '16'.

--check-profitability (default) | --no-check-
profitability

Check the profitability of offloading regions. Only
regions that can benefit from the increased speed
are added to a report.

When disabled, add all evaluated regions to a
report, regardless of the profitability of offloading
specific regions.

--config <config> Specify a configuration file by absolute path or
name. If you choose the latter, the model
configuration directory is searched for the file first,
then the current directory.

The following device configurations are available:
xehpg_512xve (default), xehpg_256xve ,
gen11_icl, gen12_tgl, gen12_dg1, gen9_gt4,
gen9_gt3, gen9_gt2.

NOTE You can specify several configurations by using
the option more than once.

--count-logical-instructions (default) | --
no-count-logical-instructions

Use the projection of x86 logical instructions to GPU
logical instructions.

  1   Intel® Advisor User Guide

582



Option Description

--count-memory-instructions (default) | --no-
count-memory-instructions

Use the projection of x86 instructions with memory
to GPU SEND/SENDS instructions.

--count-mov-instructions | --no-count-mov-
instructions (default)

Use the projection of x86 MOV instructions to GPU
MOV instructions.

--count-send-latency {all, first, off} Select how to model SEND instruction latency.

• all - Assume each SEND instruction has an
uncovered latency. This is a default value for
GPU-to-GPU modeling with --gpu, --profile-
gpu, or --analyze-gpu-kernels-only.

• first - Assume only the first SEND instruction
in a thread has an uncovered latency. This is a
default value for CPU-to-GPU modeling.

• off - Do not model SEND instruction latency.

--cpu-scale-factor <integer> Assume a host CPU that is faster than the original
CPU by the specified value.

All original CPU times are divided by the scale
factor.

--data-reuse-analysis | --no-data-reuse-
analysis (default)

Estimate data reuse between offloaded regions.
Disabling can decrease analyze overhead.

Important This option requires you to enable the
following options during the Trip Counts collection:

• With collect.py, use --collect full.
• With advisor --collect=tripcounts, use

data-transfer=full.

--data-transfer-histogram (default) | --no-
data-transfer-histogram

Estimate fine-grained data transfer and latencies
for each object transferred and add a memory
object histogram to a report.

Important This option requires you to enable
track-memory-objects or data-
transfer=medium or higher (for advisor CLI
only) during the Trip Counts collection.

--disable-fp64-math-optimization Disable accounting for optimized traffic for
transcendentals on the GPU.

--enable-batching | --disable-batching
(default)

Enable job batching for top-level offloads. Emulate
the execution of more than one instance
simultaneously.

--enable-edram Enable eDRAM modeling in the memory hierarchy
model.

Intel® Advisor User Guide  1  

583



Option Description

NOTE Make sure to use this option with both
collect.py and analyze.py.

--enable-slm Enable SLM modeling in the memory hierarchy
model.

NOTE Make sure to use this option with both
collect.py and analyze.py.

--enforce-baseline-decomposition | --no-
enforce-baseline-decomposition (default)

Use the same local size and SIMD width as
measured on the baseline. When disabled, search
for an optimal local size and SIMD width to optimize
kernel execution time.

Enable the option for the GPU-to-GPU performance
modeling.

-e, --enforce-offloads | --no-enforce-
offloads (default)

Skip the profitability check, disable analyzing child
loops and functions, and ensure that the rows
marked for offload are offloaded even if offloading
child rows is more profitable.

--estimate-max-speedup (default) | --no-
estimate-max-speedup

Estimate region speedup with relaxed constraints.

NOTE Disabling can decrease performance model
overhead.

--evaluate-min-speedup Enable offload fraction estimation that reaches
minimum speedup defined in a configuration file.
Disabled by default.

--exclude-from-report <items-to-exclude> Specify items to exclude from a report. Available
items: memory_objects, sources, call_graph,
dependencies, strides.

By default, you can exclude the following items
from the report:

• For the CPU-to-GPU modeling:

• memory objects
• sources
• call graph
• dependencies

• For the GPU-to-GPU modeling:

• memory objects
• sources

Use this option if your report is heavy weight, for
example, due to containing a lot of memory objects
or sources, which slows down opening in a browser.

  1   Intel® Advisor User Guide

584



Option Description

NOTE This option affects only data shown in the HTML
report and does not affect data collection.

--force-32bit-arithmetics Force all arithmetic operations to be considered
single-precision FPs or int32.

--force-64bit-arithmetics Force all arithmetic operations to be considered
double-precision FPs or int64.

--gpu (recommended) | --profile-gpu | --
analyze-gpu-kernels-only

Model performance only for code regions running
on a GPU. Use one of the three options.

Important Make sure to specify this option for both
collect.py and analyze.py.

NOTE This is a preview feature. --analyze-gpu-
kernels-only is deprecated and will be removed in
futire releases.

--hide-data-transfer-tax | --no-hide-data-
transfer-tax (default)

Disable data transfer tax estimation.

By default, the data transfer tax estimation is
enabled.

--ignore <list> Specify a comma-separated list of runtimes or
libraries to ignores time spent in regions from these
runtimes and libraries when calculating per-
program speedup.

NOTE This does not affect estimated speedup of
individual offloads.

--include-to-report <items-to-include> Specify items to include to a report. Available
items: memory_objects, sources, call_graph,
dependencies, strides.

By default, you can add the following items from
the report:

• For the CPU-to-GPU modeling: strides
• For the GPU-to-GPU modeling:

• call graph
• dependencies
• strides

Intel® Advisor User Guide  1  

585



Option Description

Use this option if you want to add more data to the
report or see that some data, for example, sources
or memory objects, are missing from the report,
though you collected this data.

NOTE This option affects only data shown in the HTML
report and does not affect data collection.

--loop-filter-threshold <threshold> Specify the loop filter threshold in seconds. The
default is 0.02. Loop nests with total time less than
the threshold are ignored.

-m <markup>

--markup <markup>

Select markup_analyze, affecting which regions to
mark up for data collection and analysis.

--model-children (default) | --no-model-
children

Analyze child loops of the region head to find if
some of the loops provide more profitable offload.

--model-extended-math (default) | --no-model-
extended-math

Model calls to math functions such as EXP, LOG,
SIN, and COS as extended math instructions, if
possible.

--model-system-calls (default) | --no-model-
system-calls

Analyze regions with system calls inside. The actual
presence of system calls inside a region may reduce
model accuracy.

--mpi-rank <mpi-rank> Model performance for the specified MPI rank if
multiple ranks were analyzed.

--ndim-depth-limit <N> When searching for an optimal N-dimensional
offload, limit the maximum loop depth that can be
converted to one offload. The limit must be in the
range 1 <= N <= 6. The default value is 3.

--no-cachesim Disable cache simulation during collection. The
model assumes 100% hit rate for cache.

NOTE Usage decreases analysis overhead.

--no-stacks Run data analysis without using callstacks data. You
can use this option to avoid bad callstacks
attributed data at the expense of accuracy.

--non-accel-time-breakdown Provide a detailed breakdown of non-offloaded
parts of offloaded regions.

-o <output-dir>

--out-dir <output-dir>

Specify the directory to put all generated files into.
By default, results are saved in <advisor-
project>/e<NNN>/pp<MMM>/data.0. If you

  1   Intel® Advisor User Guide

586



Option Description

specify an existing directory or absolute path,
results are saved in specified directory. The new
directory is created if it does not exist.

If you only specify the directory <name>, results are
stored in <advisor-project>/e<NNN>/pp<MMM>/
<name>.

NOTE If you use this options, you might not be able
to open the analysis results in the Intel Advisor GUI.

-p <output-name-prefix>

--out-name-prefix <output-name-prefix>

Specify a string to add to the beginning output
result filenames.

NOTE If you use this options, you might not be able
to open the analysis results in the Intel Advisor GUI.

--overlap-taxes | --no-overlap-taxes
(default)

Enable asynchronous execution to overlap offload
overhead with execution time.

When disabled, assume no overlap of execution
time and offload overhead.

--refine-repeated-transfer | --no-refine-
repeated-transfer (default)

Reduce over-estimation of data transfer when --
no-assume-single-data-transfer is used. This
option counts how many times each data object is
modified and limits the number of data transfers
based on that result. For example, constant data
may be used in each call to a loop, but needs to be
transferred to a device only once.

Important This option requires you to enable the
following options during the Trip Counts collection:

• With collect.py, use --collect full.
• With advisor --collect=tripcounts, use

data-transfer=full.

--search-n-dim (default) | --no-search-n-dim Enable search for optimal N-dimensional offload.

-l [<file-name>:<line-number>]

--select-loops [<file-name>:<line-number>]

Limit the analysis to specified loop nests
determined by passing a topmost loop. The
parameter must be a comma-separated list of
source locations in the following format: <file-
name>:<line-number>.

--set-dependency [<IDs/source-locations>] Assume loops have dependencies if they have IDs
or source locations from the specified comma-
separated list. If the list is empty, assume all loops
have dependencies.

Intel® Advisor User Guide  1  

587



Option Description

NOTE--set-dependency option takes precedence
over --set-parallel, so if a loop is listed in both,
it is considered as having a dependency.

--set-parallel [<IDs/source-locations>] Assume loops are parallel if they have IDs or source
locations from a specified comma-separated list. If
the list is empty, assume all loops are parallel.

NOTE--set-dependency option takes precedence
over --set-parallel, so if a loop is listed in both,
it is considered as having a dependency.

--set-parameter <CLI-config> Specify a single-line configuration parameter to
modify in a format "<group>.<parameter>=<new-
value>". For example:
"min_required_speed_up=0",
"scale.Tiles_per_process=0.5". You can use
this option more than once to modify several
parameters.

Important Make sure to use this option for both
collect.py and analyze.py with the same value.

--small-node-filter <threshold> Specify the total time threshold, in seconds, to filter
out nodes in the program_tree.dot and
program_tree.pdf that fall below this value. The
default is 0.0.

--threads <number-of-threads> Specify the number of parallel threads to use for
offload heads.

--track-heap-objects | --no-track-heap-
objects

Deprecated. Use --track-memory-objects.

--track-memory-objects (default) | --no-
track-memory-objects

Attribute heap-allocated objects to the analyzed
loops that accessed the objects. Disabling can
decrease collection overhead.

Important This option requires you to enable the
following options during the Trip Counts collection:

• With collect.py, use --collect basic or
--collect full.

• With advisor --collect=tripcounts, use
data-transfer=medium or
data-transfer=full.

  1   Intel® Advisor User Guide

588



Option Description

--use-collect-configs | --no-use-collect-
configs (default)

Use configuration files from collection phase in
addition to default and custom configuration files.

Examples

• Run analysis with default configuration on the project in the ./advi directory. The generated output is
saved to the default advi/perf_models/mNNNN directory.

advisor-python $APM/analyze.py ./advi_results
• Run analysis using the Intel® Iris® Xe MAX graphics (gen12_dg1 configuration) configuration for the

specific loops of the ./advi project. Add both analyzed loops to the report regardless of their offloading
profitability. The generated output is saved to the default advi/perf_models/mNNNN directory.

advisor-python $APM/analyze.py ./advi_results --config gen12_dg1 --select-loops 
[foo.cpp:34,bar.cpp:192] --no-check-profitability

• Run analysis for a custom configuration on the ./advi project. Mark up regions for analysis and assume a
code region is parallel if its type is unknown. Save the generated output to the advi/perf_models/
report directory.

advisor-python $APM/analyze.py ./advi_results --config ./myConfig.toml --markup --assume-
parallel --out-dir report

Generate Pre-configured Command Lines
You can use Intel® Advisor to generate command lines for perspective or analysis configuration and copy the
lines to a clipboard to run from a terminal/command prompt. If you use pre-configured command lines, you
do not need to provide analysis configuration, project directory, target application, and application options
manually for each analysis you run.

To generate the command lines, you can do one of the following:

• Generate the command lines from Intel Advisor graphical user interface (GUI).
• For the Offload Modeling perspective only: Generate the command lines from Intel Advisor command line

interface (CLI).

Generate Command Lines from GUI
Prerequisite: Set up a project.

1. Select a perspective from a Perspective Selector or a drop-down menu in the Analysis Workflow
pane.

The Analysis Workflow pane opens for a selected perspective.
2. In the Analysis Workflow pane, do one of the following:

• To use a pre-defined set of analyses and properties, select an accuracy level.
• Select analyses and options manually from the Analysis Workflow tab. To set additional options,

go to File > Project Properties and set the properties for desired analyses in the respective left-
side sections. See Dialog Box: Project Properties - Analysis Target for option details.

3. From the Analysis Workflow pane, generate the command lines:

•

For all selected analysis: Click the  Get Command Line button.
•

For a specific analysis: Expand the analysis controls and click the  Command Line button.

Intel® Advisor User Guide  1  

589



The Copy Command Line to Clipboard dialog box opens, which provides commands to launch the
perspective or the analysis with selected configuration. Options with default values are hidden by
default.

4. Click the Copy button to copy the generated command lines to the clipboard.
5. Paste the copied command lines to a terminal/command prompt one by one and run them.

Generate Command Lines from GUI for an MPI Application
Prerequisite: Set up a project.

1. Go to File > Project Properties and select the analysis you want to generate the command line for
from the left-side pane. For example, go to Survey Hotspots Analysis to generate command line for
the Survey analysis.

2. Set properties to configure the analysis, if required. See Dialog Box: Project Properties - Analysis Target
for option details

3. Select the Use MPI Launcher checkbox.
4. Specify MPI run parameters:

• If you select the Intel MPI as the MPI launcher: specify the number of ranks to profile, select
Selective and specify ranks to profile, if required.

• If you select Other as the MPI launcher: specify an MPI launcher executable and the number of
ranks to profile. Make sure the All is selected under Profile ranks.

• Click OK to save the parameters.

Important If you need to generate commands for more than one analysis or for the whole
perspective, specify the MPI run parameters for each analysis you want to run. Otherwise, Intel
Advisor uses default parameters for all analyses you do not configure properly.

5. Open the Analysis Workflow pane and select a perspective to run.
6. Select an accuracy level to preconfigure the perspective or configure it manually using the checkboxes.

Make sure to select only analyses that you have specified the MPI run parameters for.

ImportantDo not change the accuracy level if you specified additional parameters in the Project
Properties. Preconfigured accuracy levels reset your configuration.

7. Generate the command lines:

•

For all selected analysis: Click the  Get Command Line button.
•

For a specific analysis: Expand the analysis controls and click the  Command Line button.

The Copy Command Line to Clipboard dialog box opens, which provides commands to launch the
perspective or the analysis with selected configuration. Options with default values are hidden by
default.

8. In the Copy Command Line to Clipboard dialog box, select the Generate command line for MPI
checkbox to apply the MPI syntax you configured.

9. Click the Copy button to copy the generated command lines to the clipboard.
10. Paste the copied command lines to a terminal/command prompt one by one and run them.

Generate Command Lines for Offload Modeling from CLI
You can generate pre-configured command lines to analyze your application with Offload Modeling. Use this
feature if you want to:

• Analyze an MPI application

  1   Intel® Advisor User Guide

590



• Customize preset Offload Modeling commands

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Prerequisite: Set up environment variables to enable Intel Advisor CLI.

1. Generate pre-configured command lines using the --dry-run option of the --collect=projection
analysis or collect,py script. Specify accuracy level and paths to your project directory and
application executable. For example, to generate commands for the default medium accuracy with --
collect=projection:

advisor --collect=offload --dry-run --project-dir=./advi_results -- ./myApplication
If you want to scale parameters, for example, to change the number of GPU tiles per MPI process,
generate the commands using the collect.py script as follows:

advisor-python $APM/collect.py ./advi_results --set-parameter <parameter-to-modify> --dry-run 
-- ./myApplication

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see 
GPU Architecture Terminology for Intel® Xe Graphics.

After you run the command, a list of analysis commands to run the Offload Modeling with the specified
accuracy level is printed to the terminal/command prompt.

2. If you analyze an MPI application: Copy the generated commands to your preferred text editor and
modify each command to use an MPI launcher: add mpirun or mpiexec and a number of MPI processed
to launch to each command. For details about the syntax, see Analyze MPI Applications.

3. Run the generated commands one by one from a command prompt or a terminal. You can add more
options or modify the commands to better fit your goal. See Command Line Option Reference for
available options.

4. If you generated commands with the script: Run Performance Modeling step with the scaled parameter:

advisor --collect=projection --project-dir=./advi_results --set-parameter <parameter-to-modify>
For details about MPI application analysis with Offload Modeling, see Model MPI Application Performance on
GPU.

See Also
Command Line Interface  This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.
Analyze MPI Applications  With Intel® Advisor, you can analyze parallel tasks running on a cluster
to examine performance of your MPI application.

Troubleshooting
You may encounter unexpected situations while using
Intel® Advisor. This reference section describes
symptoms and possible correction strategies for
several such situations.

Intel® Advisor User Guide  1  

591

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html


Issue Details

Error Message: Application Sets Its Own Handler for
Signal

When you run Survey or Suitability analysis, the
following error message appears: Application sets
its own handler for signal <conflicting_signal> that
is used for internal needs of the tool. Collection
cannot continue.

Error Message: Cannot Collect GPU Hardware
Metrics for the Selected GPU Adapter

When you run GPU Roofline, the following error
message appears: Cannot collect GPU hardware
metrics for the selected GPU adapter.

Error Message: Memory Model Cache Hierarchy
Incompatible

Error: Memory model cache hierarchy incompatible
message appears when you run performance
modeling step of the Offload Modeling perspective
with analyze.py on the results collected with a
previous release of the Intel® Advisor.

Error Message: No Annotations Found No annotations detected in your project sources
message appears when you open the Summary or
Annotation Report after running the Suitability
analysis of the Threading perspective.

Error Message: No Data Is Collected When you open a report, the following error
message appears: Error 0x40000024 (No data) –
No data is collected.

Error Message: Stack Size Is Too Small When you run a Survey or a Suitability analysis, the
following error message appears: Stack size
provided to sigaltstack is too small. Please increase
the stack size to 64K minimum.

Error Message: Undefined Linker References to
dlopen or dlsym

When linking your application program on Linux*
OS, you see linker (ld) messages such as undefined
reference to `dlopen' or undefined reference to
`dlsym'.

Problem: Broken Call Tree After running the Offload Modeling perspective, in
the Accelerated Regions tab, you see unexpected
issues with code regions displayed or measured
data reported, such as incorrect number of trip
counts or code region type.

Problem: Code Region is not Marked up After running the Offload Modeling perspective, you
see that a code region of interest is not analyzed
and has Outside of Marked Region message in the
Details pane of the Accelerated Regions tab.

Problem: Debug Information Not Available After you run any Intel Advisor analysis, the
displayed report contains information about your
target's debug (symbol) information that is
unexpected or does not make sense.

Problem: No Data A No Data message appears when you open a
report.

Problem: Source Not Available After you run the Intel Advisor analysis, the
displayed report may contain information about
your target's source code that is unexpected or
does not make sense.

  1   Intel® Advisor User Guide

592



Issue Details

Problem: Stack in the Top-Down Tree Window Is
Incorrect

After you run any Intel Advisor analysis, the Top-
Down view in the displayed shows application stack
that is unexpected or does not make sense.

Problem: Survey Analysis does not Display Report After you run the Survey analysis in any Intel
Advisor perspective, a message appears instead of
the report saying that your target runs too quickly
or that the target does not contain debug symbol
information.

Problem: Unexpected C/C++ Compilation Errors
After Adding Annotations

After adding Intel Advisor annotations, you see
unexpected compiler messages when building your
C/C++ target executable.

Problem: Unexpected Unmatched Annotations in
the Dependencies Report

After running Intel Advisor Dependencies analysis,
you see unmatched problems reported caused by
unmatched annotations execution that you did not
expect.

Warning: Analysis of Debug Build A message appears when you start the Survey or
Suitability analysis and the current application is
built in a Debug mode.

Warning: Analysis of Release Build A message appears when you start the
Dependencies analysis and the current application
is built in a Release mode.

Error Message: Application Sets Its Own Handler for Signal

Symptoms
When you run a Survey or a Suitability analysis, the following error message appears: Application sets its
own handler for signal <conflicting_signal> that is used for internal needs of the tool. Collection cannot
continue.

NOTE This message is for Linux* OS only.

Cause
Intel® Advisor cannot profile applications that set up a signal handler for a signal used by the tool.

Possible Solution

NOTE This solution is applicable only to the Survey and Suitability analyses.

Do one of the following:

• When collecting data with advisor command line interface (CLI), pass the
--run-pass-thru=--profiling-signal=<not_used_signal> option, where <not_used_signal> is the
signal that should not be used by your application. You need to select the signal from
SIGRTMIN..SIGRTMAX. For example, for the matrix multiply (mmult) application:

advisor --collect=survey --run-pass-thru=--profiling-signal=35 -- ./mmult

Intel® Advisor User Guide  1  

593



• Before collecting data from the Intel Advisor GUI or CLI, set the environment variable
ADVIXE_RUNTOOL_OPTIONS=-- profiling-signal=<not_used_signal>.

Command Line Interface This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.

Error Message: Cannot Collect GPU Hardware Metrics for the Selected GPU Adapter

Symptoms
When you run GPU Roofline, the following error message appears: Cannot collect GPU hardware metrics for
the selected GPU adapter.

Cause
To collect GPU hardware metrics and GPU utilization data on Linux* OS or Windows* OS with a driver
versions higher than 27.20.100.8280, Intel® Advisor uses the Intel® Metric Discovery API library that is
delivered with the product. This error message displays if Intel Advisor cannot access the selected GPU
adapter.

Possible Solution
• If you run Intel Advisor from the command line: Make sure that you have correctly set the target GPU

with the --target-gpu=<address>. The <address> should be in the following format:
<domain>:<bus>:<device>.<function>. The list of GPU adapters available on your system is available
in the option description in the Intel Advisor CLI help.

For example, to run the Survey analysis for the GPU adapter 0:0:2:0:

advisor --collect=survey  --project-dir=./advi_results --profile-gpu --target-gpu=0:0:2.0 -- ./
myApplication

• For Windows systems, update the driver for the selected GPU adapters.
• For Linux systems, install the Intel Metric Discovery API library 1.6.0 or higher to support the selection of

video adapters. To collect metrics from the video card of your choice, disable other adapters in the BIOS
first.

Command Line Interface This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.
GPU Roofline Perspective Measure and visualize the actual performance of GPU kernels using
benchmarks and hardware metric profiling against hardware-imposed performance ceilings, as
well as determine the main limiting factor, by running the GPU Roofline Insights perspective.

Error Message: Memory Model Cache Hierarchy Incompatible

Symptoms
You see the Error: Memory model cache hierarchy incompatible error message when you run performance
modeling with analyze.py on the results collected with a previous release of the Intel® Advisor.

Cause
The cache configuration file from a previous release is incompatible with higher versions of the Intel® Advisor.

Possible Solution
Delete the perf_models directory from the results and re-run analyze.py.

  1   Intel® Advisor User Guide

594



Run Offload Modeling Perspective Find high-impact opportunities to offload/run your code and
identify potential performance bottlenecks on a target graphics processing unit (GPU) by running
the Offload Modeling perspective.

Error Message: No Annotations Found

Symptoms
• A message appears when you click the Annotation Report button and you have not yet added Intel®

Advisor annotations to your program, or you have not yet run the Suitability and Dependencies tools after
adding the annotations.

• When using the Intel® Advisor GUI while viewing the Summary window, you see a message No
annotations detected in your project sources when your sources do contain annotations.

Cause
The Suitability and Dependencies tools use the annotations you added to your program to analyze your
running program and populate the Annotation Report window with data. However, before you run these
tools to collect data about your running program, you need to add annotations and perform related actions.

When using the Intel® Advisor GUI, make sure that the appropriate project properties have been specified so
the Intel® Advisor tools can find the correct source location(s).

Also, if your sources contain huge source files that contain annotations, be aware that only the first 8 MB of
each file will be parsed for annotations (for performance reasons). This could possibly cause mismatched or
no annotations found messages.

Possible Solution
• Do the following:

1.Use the Survey analysis to find where your program spends its time. Choose at least one possible
parallel code region (site) and identify code that might execute independently as a task.

2.Use the code editor to add at least one pair of parallel site annotations that contain task annotation(s)
into your program. You can copy annotation code using the bottom of the Survey Report or Survey
Source windows.

3.Make sure that these annotations are executed by the selected project or the selected startup project
(Windows* OS).

4.Make sure that you reference the annotations definitions file in the source modules where you added
the annotations.

5.Reference the annotations definition directory and provide other build settings.
6. If you are using the Intel® Advisor GUI, check the Project Properties dialog to make sure that source

locations are specified in the Source Search tab.
7. If your sources include huge source files that contain annotations (more than 8 MB per file), consider

breaking each huge source file into several source files.
• Windows OS only: If you selected the wrong startup project, select and build the correct startup

project, run either the Suitability or Dependencies tool, and click the Annotation Report button.

Tip
For the most current information on optimal C/C++ and Fortran build settings, see Build Your Target
ApplicationBuild Your Target Application.

See Also
No Data
Source Search Tab

Intel® Advisor User Guide  1  

595

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/set-up-project/build-target.html


Copying Annotations and Build Settings Using the Annotation Assistant Pane
Annotating Code for Deeper Analysis
Intel Advisor Annotations Definition File
Annotations

Error Message: No Data Is Collected

Symptoms
When you open a report, the following error message appears: Error 0x40000024 (No data) – No data is
collected.

Another possible message: Error 0x4000002a (Database interface error) -- Cannot run data transformation
'Add Fake Loop Data'.

Cause
The possible causes are:

• The data collection period is too short (less than 500 ms on CPU or GPU), and the Intel® Advisor cannot
capture performance data since it uses time sampling to collect CPU or GPU time.

• The application crashed during an Intel Advisor analysis.
• The application could not find required shared libraries, for example, an OpenMP* runtime, if compiler

environment was not sourced.

Possible Solution
Do one of the following:

• Verify that you can run your application without the Intel Advisor.

1.Open a new console window. You can keep the console window where you launch the Intel Advisor.
2.Run the application from a new console window with the same environment set up.
3. If you see an error message reporting problem with loading shared libraries, set up the application

environment. For example, do the following:

• Set the LD_LIBRARY_PATH variable.
• Source an Intel® Compiler environment.

4.Once the application runs successfully, start the Intel Advisor console window with the same
environment set up.

• If the data collection duration is too short, do one of the following:

• Increase the workload for your application.
• Decrease sampling interval to 1ms.

Command Line Interface This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.

Error Message: Stack Size Is Too Small

Symptoms
When you run a Survey or a Suitability analysis, the following error message appears: Stack size provided to
sigaltstack is too small. Please increase the stack size to 64K minimum.

NOTE This message is for Linux* OS only.

  1   Intel® Advisor User Guide

596



Cause
When setting up a SIGPROF signal handler, the Intel® Advisor configures the signals to use the alternative
stack size with the sigaltstack() API. This verifies that its signal handler does not depend on the profiled
application stack size. If the application uses an alternative signal stack, the Intel Advisor requires it to be
not less than 64 KB.

However, if the application uses the SIGSTKSZ constant for the alternative stack size (which is 8192 bytes),
the data collection may terminate with the error message.

Possible Solution

NOTE This solution is applicable only to the Survey and Suitability analyses.

Configure the Intel Advisor so that it does not set up the alternative stack and uses the stack provided by the
application. Do one of the following:

• When collecting data with advisor command line interface (CLI), pass the
--run-pass-thru=--no-altstack option to the tool. For example, for the mmult application:

advisor --collect=survey --run-pass-thru=--no-altstack -- ./mmult
• Before collecting data from the Intel Advisor GUI or CLI, set the environment variable

ADVIXE_RUNTOOL_OPTIONS=--no-altstack.

Command Line Interface This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.

Error Message: Undefined Linker References to dlopen or dlsym

Symptoms
When linking your application program on Linux* OS, you see linker (ld) messages such as:

• undefined reference to `dlopen'
• undefined reference to `dlsym'

Cause

Intel® Advisor uses dynamic loading. After you add the #include (C/C++) line to include the Intel® Advisor
annotation definition file, you must specify the linker option -ldl to enable dynamic loading.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

Possible Solution
• Do the following:

1.Add the linker option -ldl to your command line, script, or make file.
2.Review the options listed in the Build Your Target Application to ensure that you specified all required

compiler and linker options (use the link below under See Also). If omitted, add missing options to your
command line, script, or make file.

Intel® Advisor User Guide  1  

597



3.Rebuild your program.

See Also
Unexpected C/C++ Compilation Errors After Adding Annotations
Intel Advisor Annotations Definition File

Problem: Broken Call Tree

Symptoms
After executing the Offload Modeling perspective, in the Accelerated Regions tab, you see one of the
following:

• A code region is duplicated.
• A code region is located at a wrong place.
• A code region has incorrect number of trip counts reported in any column of the Trip Counts column

group.
• A code region with your code has a System Modulediagnostics message and Cannot be modeled: System

Modulereason for not offloading.

Any of these symptoms mean that the Intel® Advisor detected the application call tree incorrectly during
Survey.

Details
A broken call tree often happens if you use a program model with SYCL or Intel® oneAPI Threading Building
Blocks. These program models run code in many threads using a complicated scheduler, and the Intel Advisor
sometimes cannot correctly detect their call stacks. As a result, some code instances might have no metrics
or incorrect metrics in a report and a call tree is broken.

Cause
This can happen due to the following reasons:

• Call stacks were detected incorrectly.
• A heavy optimization was used.
• Debug information has issues.

Possible Solution

NOTE
This is not an issue if all hotspots and code you are interested in are outside of the broken part of the
call tree. You can ignore it in this case.

To fix a broken call tree, do the following:

• Make sure you compiled binary with -g option.

NOTE
You can recompile it with the -debug inline-debug-info option to get enhanced debug
information.

• Recompile the binary with a lower optimization level: use -O2.
• If you collect performance metrics with advisor CLI: When running the Survey analysis, try the

following:

  1   Intel® Advisor User Guide

598



• Remove --stackwalk-mode=online option if you used it when running the Survey analysis.
• Add --no-stack-stitching option.

• Offload only specific code regions if their estimated execution time on a target device is greater than or
equal to the original execution time. Rerun the performance modeling with --select-loops to specify
loops of interest and --enforce-offloads to make sure all of them are offloaded. For example:

advisor-python <APM>/analyze.py <project-dir> --select-loops=[<file-name1>:<line-number1>,<file-
name1>:<line-number2>,<file-name2>:<line-number3>] --enforce-offloads

NOTE Replace <APM> with $APM on Linux* OS or %APM% on Windows* OS.

For details, see Enforce Offloading for Specific Loops
• If you model a multithreaded code that runs with a complicated scheduler, you might see a code region

with suspiciously low trip counts and multiple instances of the same region loop present in the scheduler.
This means that the Offload Modeling could not correctly detect the call stacks. Use the
--enable-batching option to artificially increase the number of trip counts by using total number of
executions instead of average number trip counts.

See Also
advisor Command Option Reference
analyze.py Options
Command Line Interface Reference This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

Problem: Code Region is not Marked Up

Symptoms
A code region of interest is not analyzed and has Outside of Marked Regionwhy-not-offloaded message in the
Details pane of the Accelerated Regions tab after you execute the Offload Modeling perspective.

Details
To limit the scope of collections, the Intel® Advisor selects loops that match certain criteria and marks them
up for analysis. By default, the Intel Advisor performs a smart region selection using the generic markup.

If a code region does not satisfy the markup criteria, you should see the Outside of Marked Regionwhy-not-
offloaded message or the System Modulediagnostics message in the Details pane of the Accelerated
Regions tab.

Cause
Your code region does not satisfy one or more markup rules for a specified markup mode. If you use the
default generic mark-up strategy, make sure your loop of interest satisfies the following rules:

• It is not a system module or a system function.
• It has instruction mixes.
• It is executed.
• Its execution time is not less than 0.02 seconds, which is a sampling interval of the Intel Advisor. For

more information about execution time limitations, see Total Time is Too Small for Reliable Modeling.

Possible Solution
If a code region does not satisfy the generic markup rules, but you want to analyze it, do one of the
following:

Intel® Advisor User Guide  1  

599



• You can change the markup strategy by using a --markup=<markup_mode> option of analyze.py or
--select markup=<markup-mode> for --collect=performance. The following parameters select only
loops inside regions that are already parallel:

• generic or gpu_generic (default) - Select loops executed on a GPU.
• omp - Select loops only in OpenMP parallel regions.
• icpx -fsycl - Select loops only in SYCL parallel regions.
• daal - Select loops only in Intel® oneAPI Data Analytics Library parallel regions.
• tbb - Select loops only in Intel® oneAPI Threading Building Blocks parallel regions.

NOTE
omp, icpx -fsycl, and generic/gpu_generic select loops in the project so you can run another
collection or performance modeling without markup or loop selection options.

• If your loops of interest are not marked up because they have no static instruction mixes or not executed,
you can limit the analysis to these specific loops by using the --select-loops option with the
analyze.py script. With this option, only the loops specified are analyzed. For example:

advisor-python <APM>/analyze.py <project-dir> --select-loops=[<file-name1>:<line-number1>,<file-
name1>:<line-number2>,<file-name2>:<line-number3>]

NOTE Replace <APM> with $APM on Linux* OS or %APM% on Windows* OS.

With --collect=performance, use --select option to select specific loops to analyze by source
location, ID, or other criteria.

See Also
analyze.py Options

Problem: Debug Information Not Available

Symptoms
After running theIntel® Advisor analysis, the displayed report may contain information about your target's
debug (symbol) information that is unexpected or does not make sense.

Details
When debug information is not available, the ability to use binary-to-source correlation prevents the display
of source code. One or more of the following might occur only for the calls into third-party library routine
code for which library sources are not available to the project:

• After running the Survey tool, a message may appear near the top of the Survey Report window
indicating Some target modules do not contain debug information. After viewing the message and
writing down module names that lack debug information, you can click the red  in the top-right corner
to close it.

• When viewing a Report window, a column that should contain a Source location or a function name
instead contains the target's executable-name in square brackets, [Unknown], a question mark ?, or is

blank. Also, a broken or missing icon can indicate that sources are not available, such as , , , or 
for a Survey loop.

• When viewing a Source window, a column that should contain source code or a source location instead
contains source is not available or Intel Advisor cannot show source code for this location
message instead of the expected data. Also, a broken or missing icon can indicate that sources are not
available (listed above).

  1   Intel® Advisor User Guide

600



• When viewing a Source window, the Call Stack indicates that sources are not available for the starting
(top) line, such as containing a broken icon (listed above).

• In a context menu, the items View Source or Edit Source may appear as dimmed.

However, if your application calls library functions, you should expect to see some symptoms about sources
not being available. For example, the C/C++ sample application stats calls certain library functions to
calculate standard deviation or similar values. Because the source code for the library functions is not
available, you will see that source code is not available within the called library functions, but is available for
the related project source files. In this case, see the help topic Sources Not Available.

Cause
The most common causes are:

• The build option(s) did not request debug information when building the target executable. Debug
information must be present for Intel® Advisor tools to display source information. When building native
code targets, specify the appropriate compiler and linker options to ensure the target executable contains
debug information.

• The appropriate project properties in the Intel® Advisor GUI did not provide the correct binary/symbol or
source locations.

Possible Solution
• Do the following:

1.Check the build settings for the target to ensure they specify debug information option(s).
2.Adjust your makefile, Microsoft Visual Studio* project properties, or build script to specify debug

information option(s).
3.Rebuild the target.
4.Run the Intel® Advisor analysis tool(s) again.

• If you are using the Intel® Advisor GUI, check the Project Properties dialog to make sure that:

• Binary and symbol files are specified in the Binary/Symbol Search tab.
• Source locations are specified in the Source Search tab.

• Investigate other possible causes, such as the compiler not generating debug information for a source line
or the source file, the linker not including debug information in the debug information database, or
whether the debug information database was not being found during the finalization step by an Intel®
Advisor analysis tool. For example, the last issue can occur if the debug information database was not
moved to the location with the target executable.

Tip
For the most current information on optimal C/C++ and Fortran build settings, see Build Your Target
Application.

Binary/Symbol Search Tab
Source Search Tab
No Annotations Found
Sources Not Available

Problem: No Data

Symptoms
A No Data message appears when you click the Survey Report, Suitability Report, or the Dependencies
Report button and you have not yet run these tools for the currently selected project or startup project
(Windows* OS).

Intel® Advisor User Guide  1  

601



This message also appears if Intel® Advisor annotations were not executed by the Suitability or Dependencies
tools. When using the Intel Advisor GUI, this message may appear if the Suitability or Dependencies tools
could not find the source files using the specified project properties.

To help you add annotations to your sources, the No Data message is accompanied by the annotation
assistant pane.

Cause
After you run the Suitability or Dependencies tools, the data collected populates the corresponding
Suitability Report and Dependencies Report window, and the list of annotations displayed in the
Annotation Report window is updated.

• To use the Suitability or Dependencies tools, your project/startup project must execute Intel Advisor
parallel site and task annotations.

• When using the Intel Advisor GUI, this message appears when the specified project properties do not
provide a correct path to the source location(s).

• This message can appear with the Survey tool if your target executes quickly and you clicked the Started
Paused button (or equivalent option or Pause Collection annotation) in the side command toolbar. That is,
you paused data collection so that data collection did not start until after the target's execution
completed, but the target executes too quickly for the Survey tool to analyze.

Possible Solution
• Use the Advisor Workflow tab to guide you through the steps needed to run these tools, which analyze

your running program.
• Windows* OS only: If you selected the wrong startup project, select and build the correct startup project

and run the tool again.
• If your project/startup project did not execute Intel Advisor annotations, make sure you have added

parallel site and task annotations to your program and that they get executed when you run the startup
project (Windows* OS) / target executable (Linux* OS).

• When using the Intel Advisor GUI, open the project and then open Project Properties dialog box. After
checking that the path and target file name of the Application is correct in the Analysis Target tab,
click the Source Search tab. Insert one or more new rows to specify the path to the source location(s).
In this case, you do not need to rebuild your application.

• If your target executes quickly and you clicked the Started Paused button (or used the equivalent option
or Pause Collection annotation) in the side command toolbar, click Collect Survey Data instead.
Otherwise, the Survey tool cannot analyzer your target because it executes too quickly.

Problem: Source Not Available

Symptoms
After running the Intel® Advisor tools to analyze your running application's target, the displayed report may
contain information about your target's source code that is unexpected or does not make sense.

Details

NOTE
When you see that source code is not available, be aware that improper build settings can also cause
this symptom. Missing debug information symbols disable the binary-to-source correlation that allows
the normal display of source code. If the source code for annotations is not displayed in Report and
Source windows, this may indicate missing debug information symbols, as explained in the help topic
Troubleshooting Debug Information Not Available.

  1   Intel® Advisor User Guide

602



One or more of the following might occur only for the calls into third-party library routine code for which
library sources are not available to the project:

• When viewing a Report window, a column that should contain either a source location or a function name
instead contains a question mark (?), [Unknown], the target's executable-name (rather than a source file

name), is blank, or contains a broken icon, such as , , , or  for a Survey loop.
• When viewing a Source window, you may see a message Intel Advisor cannot show source code for

this location instead of the collected data. Also the Call Stack pane or a Function column may
contain ?, [Unknown], or a broken icon (listed above). For example, if the top (starting) function line in a
Call Stack pane contains source information, but calls to library routines lower in the calls stack do not
contain source information.

• When using the Intel Advisor GUI while viewing the Summary window, you see a message No
annotations detected in your project sources when your sources do contain Intel Advisor
annotations.

If your application's target calls libraries for which sources are not found by the project, you may see some
symptoms about source code not being available. For example, the C/C++ sample application stats calls
certain library routines to calculate standard deviation or similar values. Because the library's source code for
those functions is not available, the symptoms like a broken icon or the message Intel Advisor cannot
show source code for this location are expected.

Cause
The most common causes are:

• The target's execution paths called library functions for which sources are not available.
• The cause may be that debug information symbols are not available for the main part of the program and

annotated parallel sites and their tasks.

Possible Solution
• Do the following:

1. If source and debug information symbols are available for the annotated parallel sites and their tasks,
but not for calls into library code for which sources are not available, this is expected and is not a
problem. If you were considering adding annotations to the library code, instead add site/task
annotations to the code that calls the library routines.

2. If source and debug information symbols are not available for the main part of the program and
annotated parallel sites and their tasks, see the help topic Troubleshooting Debug Information Not
Available.

Tip
For the most current information on optimal C/C++ and Fortran build settings, see Build Your Target
Application.

See Also
Survey Tool does not Display Survey Report
Debug Information Not Available

Problem: Stack in the Top-Down Tree Window Is Incorrect

Symptoms
After you run any Intel® Advisor analysis, the Top-Down view in a displayed report shows application stack
that is unexpected or does not make sense.

Intel® Advisor User Guide  1  

603



Cause
The target was built with an optimization level that removed stack information from the binary.

Possible Solution
Do one of the following:

• Change the stackwalk mode from offline (after collection) to online (during collection):

• From the Intel Advisor GUI: Go to Project Properties > Analysis Target > Survey Hotspots
Analysis > Advanced > Stack unwinding mode and select and select During collection drop-
down option.

• From the command line interface (CLI): Use the --stackwalk-mode=online option. For example:

advisor --collect=survey --project-dir=./myAdvisorProj --stackwalk-mode=online -- ./bin/
myTargetApplication

This option increases analysis overhead.
• Decrease the optimization level of your project and rebuild the target. For example, with the Intel® C++

Compiler Classic or the Intel® oneAPI DPC++/C++ Compiler, use the following options:

• Request moderate optimization:

• On Linux* OS and macOS*: use O2 or lower
• On Windows* OS: use /O2 or lower

• Disable compiler inlining:

• On Linux OS and macOS: use -fno-inline
• On Windows OS: use /Ob0

• Disable interprocedural optimization:

• On Linux OS and macOS: use -no-ipo -no-ip
• On Windows OS: use /Qipo- /Qip-

Consider also using the following options:

• Select the maximum level of debug information:

• On Linux OS and macOS: use -g[n]
• On Windows OS: use Zi, Z7, ZI
To generate additional debug information in the object file, use -g3 or ZI.

• Set a maximum number of times to unroll loops:

• On Linux OS and macOS: use -unroll[=n]
• On Windows OS: use /Qunroll[:n]
To tell the compiler not to unroll loops, use -unroll=0 or /Qunroll:0.

Build Target Application

Problem: Survey Tool does not Display Survey Report

Symptoms
After you run the Survey tool, a message appears instead of the Survey Report. The message indicates that
the specified target runs too quickly for the Survey tool to analyze or that the target does not contain debug
symbol information.

  1   Intel® Advisor User Guide

604



Cause
After you run the Intel® Advisor Survey tool, if the specified target runs too quickly for the Survey tool to
analyze using the sampling interval, there is insufficient data collected to provide a complete and meaningful
Survey Report. So a message appears instead.

This message can also appear under certain conditions when the target was built without the required Debug
symbol information.

Possible Solution
If the cause is that the specified target runs too quickly:

• Modify the target to increase its workload or data set so it executes longer, rebuild, and run the Survey
tool again.

• Specify a different target that executes longer, build, and run the Survey tool again.
• When using the Intel® Advisor GUI, if you cannot increase the target's workload or the data set to

increase its execution time, consider specifying the Project Properties in the Analysis Target dialog
box Advanced fields to slightly reduce the Sampling interval for this target. However, if you reduce the
sampling interval so sampling occurs too often, this can cause the sampling activity itself to be measured
(noise), reducing the accuracy of the measurements. The default Sampling interval works for most
targets, but can be modified for specific targets (see Advanced options in the help topic Dialog Box:
Project Properties - Analysis Target).

• Windows* OS only: If you selected the wrong Visual Studio startup project, select and build the correct
startup project and run the tool again.

If you suspect that the target executable does not contain debug symbol information, please check your
target's build settings and compare them with the recommended Build Settings for your language. Source- or
target-related information may be missing from the Intel Advisor tools reports if the target executable does
not contain debug symbol information.

Tip
For the most current information on optimal C/C++ and Fortran build settings, see Build Your Target
Application.

Problem: Unexpected C/C++ Compilation Errors After Adding Annotations

Symptoms
After adding Intel® Advisor annotations, you see unexpected compiler messages when building your C/C++
target executable.

Details

After you add the annotations and the #include line to include the Intel® Advisor annotation definition file,
you see unexpected C/C++ compiler messages.

Cause
Possible causes:

• Type and debug symbol conflicts.
• windows.h file issues.

Intel® Advisor User Guide  1  

605



Possible Solution
Do the following:

1. Read the help topics starting with Tips for Annotation Use with C/C++ Programs to help you decide how
to modify your sources, such as Handling Compilation Issues that Appear After Adding advisor-
annotate.h.

2. Modify sources.
3. Rebuild your target.

Problem: Unexpected Unmatched Annotations in the Dependencies Report

Symptoms
When running Intel® Advisor Dependencies tool analysis, you see unmatched problems reported that are
caused by unmatched annotations execution that you did not expect.

Details
The Dependencies Report window lists the problems and messages reported by Dependencies tool analysis
in the Problems and Messages pane. You may see some unexpected problems related to unmatched
annotations, such as the following problem types: Dangling Lock, Missing Begin Site, Missing Begin Task,
Missing End Site, Missing End Task, or Orphaned Task. For example, within a parallel site, there is no
annotation to mark the end of the parallel site for all possible the code execution paths.

Cause
Possible causes:

• You placed annotations inside macros.
• For Linux* OS: You placed parallel sites and their related annotations outside the project.
• For Windows* OS: You placed parallel sites and their related annotations outside a set of projects that the

startup project depends on.
• Your sources contain huge source files that contain annotations. As only the first 8 MB of each file are

parsed for annotations (for performance reasons), this could possibly cause mismatched annotations
messages.

Possible Solution
Do the following:

1. Use the Dependencies tool to view the code region(s) causing the problem. Investigate whether some
sites or tasks may have multiple exit points and whether end annotations cover all exit points. For
example, code that returns or branches around an end annotation, or throws an exception. If you
suspect the problem is caused by adding annotations inside macros, remove the annotations from the
macros and add them to the final location in the sources - similar to the way breakpoints do not work in
macros. Rebuild your target and run the Dependencies tool again.

2. Windows* OS only: Use the Dependencies tool to investigate by viewing the code region(s) causing
the problem. If you suspect that parallel sites and their related annotations that are placed outside the
set of projects that the startup project depends on, consider using the Visual Studio* Project
Dependencies context menu item to add appropriate dependencies to cause Intel® Advisor to scan
sources in the additional project(s). Rebuild and run the Dependencies tool again.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

  1   Intel® Advisor User Guide

606



3. If your sources include huge source files that contain annotations (more than 8 MB per file), consider
breaking each huge source file into several source files.

See Also
Annotating Code for Deeper Analysis
Annotations
Annotation General Characteristics

Warning: Analysis of Debug Build

Symptoms
A message appears when you start the Survey or Suitability tools and the current build options selected for
the project is a Debug build.

Details
When measuring performance, using a version of the program for analysis that is close to the version that
will be provided to customers provides the most accurate data. If you will provide a Release build for
customers, run the Survey or Suitability tools with a Release build. You can run this tool with a Debug build if
you will run it again with a Release build. To produce the best results, your build settings should specify
debug information and moderate optimization.

When a tool is waiting for your input (click either Continue or Cancel), the result name has a [!] prefix. If
you do not respond within several minutes, the tool implicitly chooses the Cancel button.

Cause
For the Survey or Suitability tools, you should use a Release build of your program, not a Debug build.

Possible Solution
• Before you respond to the message, change to Release build settings and build the target executable.

When it completes, click Continue to run the analysis.
• Click Continue and ignore this message. Later, run this tool again with a target built using a Release

build.
• Click Cancel. Change your build settings to use a Release build and build the target executable. Then run

the Intel® Advisor tool.

Tip
For the most current information on optimal C/C++ and Fortran build settings, see Build Your Target
Application.

Warning: Analysis of Release Build

Symptoms
A message appears when you start the Dependencies tool and the current build options selected for the
project is a Release build.

Details
To produce the best results, your build settings for the Dependencies tool should specify debug information
and no optimization. If possible, use a minimal data set for the Dependencies tool.

Intel® Advisor User Guide  1  

607



When a tool is waiting for your input (click either Continue or Cancel), the result name has a [!] prefix. If
you do not respond within several minutes, the tool implicitly chooses the Cancel button.

Cause
For the Dependencies tool, you should use a Debug build of your program, not a Release build.

Possible Solution
• Before you respond to the message, change to use Debug build settings and build the target executable.

When it completes, click Continue to run the analysis.
• Click Continue and ignore this message. Later, run this tool again with a target built from Debug build

settings.
• Click Cancel. Change to use Debug build settings and build the target executable. Then run the

Dependencies tool.

Tip
For the most current information on optimal C/C++ and Fortran build settings, see Build Your Target
Application.

See Also
Debug Information Not Available
No Annotations Found

Reference

Data Reference
The following sections describe the contents of data
columns in reports for each perspective.

• CPU and Memory Metrics - review the metrics reported in the CPU / Memory Roofline Insights,
Vectorization and Code Insights, and Threading perspectives.

• Accelerator Metrics - review the metrics reported in the Offload Modeling and GPU Roofline Insights
perspectives.

CPU Metrics
This reference section describes the contents of data
columns in Survey and Refinement Reports of the
Vectorization and Code Insights, CPU / Memory
Roofline Insights, and Threading perspectives.

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | XYZ

A
• Access Pattern
• Access Type
• Address Range
• Average

Access Pattern
Description: Summary of access types.

  1   Intel® Advisor User Guide

608



Collected during Memory Access Patterns Analysis and found in Loop Information Pane (Refinement
Reports).

Access Type
Description: Memory access type: Read, Write, Read/Write

Collected during Memory Access Patterns Analysis and found in Memory Access Patterns Report.

Address Range
Description: Instruction address range in memory.

Interpretation: A wide range indicates one or more of the following:

• The application uses too much memory.
• Memory usage is not optimal.

Average
Description: Loop trip count average.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display: Enabled Collect Trip Counts option of the Characterization step
on Analysis Workflow tab or enabled Collect information about Loop Trip Counts on Trip Counts and
FLOP Analysis tab of Project Properties Dialog Box.

B

C
• Cache Line Utilization
• Cache Misses
• Call Count
• Compiler Estimated Gain

Cache Line Utilization
Description: Simulated cache line utilization for data transfer operations.

Collected during Memory Access Patterns Analysis and found in Loop Information Pane (Refinement
Reports).

Cache Misses
Description: Number of memory load operations served by memory subsystem higher than cache.
Calculated for the first instance of the loop (assuming cold CPU cache). Value is a result of virtual cache
modeling, which might not match exact counter reported by hardware for this analysis run.

Collected during Memory Access Patterns Analysis and found in Loop Information Pane (Refinement
Reports).

Call Count
Description: Number of times loop/function was invoked.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report) and Advanced View Pane (Survey Report).

Intel® Advisor User Guide  1  

609



Prerequisites for collection/display: Enabled Collect Trip Counts option of the Characterization step
on Analysis Workflow tab or enabled Collect information about Loop Trip Counts on Trip Counts and
FLOP Analysis tab of Project Properties Dialog Box.

Interpretation: A high number means there is an outer loop in the selected loop call chain with high trip
count values. If the loop has a low trip count value, the outer loop could be a better candidate for
parallelization (threading/vectorization).

Compiler Estimated Gain
Description: Theoretical compiler estimate of relative loop performance speedup achieved or achievable due
to vectorization.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

Comparison with similar metrics: Gain Estimate is Intel Advisor-calculated estimate of relative loop
performance speedup achieved due to vectorization.

D
• Data Types
• Description
• Dirty Evictions

Data Types
Description: Data types provided by binary static analysis.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

Interpretation: Bold indicates primary data type used for vectorization.

Description
Description: Code location classification.

Collected during Dependencies Analysis and found in Dependencies Report.

Dirty Evictions
Description: Number of evicted cache lines with a modified state introducing upstream memory traffic to a
higher memory subsystem.

Collected during Memory Access Patterns Analysis and found in Loop Information Pane (Refinement
Reports).

E
• Efficiency
• Elapsed Time

Efficiency
Description: Intel Advisor-calculated performance estimated gain compared to maximum achievable gain
from vectorization.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report).

Interpretation: Normally means how effectively vectorization was applied, compared to maximum possible
gain (higher is better).

  1   Intel® Advisor User Guide

610



Calculation/Aggregation: (Estimated gain/Vector length) * 100%
Interpretation: Hover mouse over data cell for more information.

Elapsed Time
Description: Elapsed (wall-clock) application time.

Collected during Survey Analysis,  and found in Filters banner.

F
• First Instance Site Footprint
• Function
• Function Call Sites and Loops

First Instance Site Footprint
Description: For each memory access instruction for the first instance of a loop, the Intel Advisor:

• Tracks the minimum and maximum access addresses.
• Displays the maximum range in this metric.

Collected during Memory Access Patterns Analysis and found in Loop Information Pane (Refinement
Reports).

Comparison with similar metrics: This metric is more reliable than the Maximum Per-Instruction
Address Range metric.

Max. Per-
Instruction
Addr. Range

First
Instance
Site
Footprint

Simulated Memory Footprint

Number of threads
analyzed for loop/site

1 1 1

Number of loop
instances analyzed

All instances,
but with
some
memory
access
instruction
filtering

1 Depends on loop call count limit:

• GUI: Project Properties > Analysis
Target > Memory Access Patterns
Analysis > Advanced > Loop call count
limit

• CLI action option: -loop-call-count limit

Awareness of overlap
between address ranges
accessed in loop

No Yes Yes

Suitability for code with
random memory access

No No Yes

Function
Description: Function name.

Collected during Dependencies Analysis and found in Dependencies Report.

Intel® Advisor User Guide  1  

611



Function Call Sites and Loops
Description: Information about parent function, source file, and line where site/loop begins in Loop
Information Pane (Survey Report), and top-down call tree of target functions and loops in Loop
Information Pane (Survey Report)

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

Interpretation:

•  - Scalar function.
•  - Vectorized function.
•  - Scalar loop. Vectorization might be possible.
•  - Vectorized loop. Optimization might be possible.
•  - Scalar inner loop within vectorized outer loop. Optimization might be possible.

G
• Gain Estimate

Gain Estimate
Description: Intel Advisor-calculated estimate of relative loop performance speedup achieved due to
vectorization.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report).

Comparison with similar metrics: Compiler Estimated Gain is the theoretical compiler estimate of
relative loop performance speedup achieved or achievable due to vectorization.

H

I
• Instruction Address
• Instruction Sets
• Iteration Duration

Instruction Address
Description: Instruction address in memory.

Collected during Dependencies Analysis and found in Dependencies Report.

Instruction Sets
Description: Instruction Set Architecture (ISA) usage for individual instructions.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

Iteration Duration
Description: Average loop iteration time.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report) and Advanced View Pane (Survey Report).

  1   Intel® Advisor User Guide

612



Prerequisites for collection/display: Enabled Collect Trip Counts option of the Characterization step
on Analysis Workflow tab or enabled Collect information about Loop Trip Counts on Trip Counts and
FLOP Analysis tab of Project Properties Dialog Box.

J

K

L
• Loop Instance Total Time
• Loop-Carried Dependencies

Loop Instance Total Time
Description: Average loop instance total time.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display: Enabled Collect Trip Counts option of the Characterization step
on Analysis Workflow tab or enabled Collect information about Loop Trip Counts on Trip Counts and
FLOP Analysis tab of Project Properties Dialog Box.

Loop-Carried Dependencies
Description: Dependencies summary across iterations

Collected during Dependencies Analysis and found in Loop Information Pane (Refinement Reports).

Possible values:

• RAW (Read after Write) - Flow dependency
• WAR (Write after Read) - Anti dependency
• WAW (Write after Write) - Output dependency

M
• Max
• Max Site Footprint
• Maximum Per-Instruction Address Range
• Memory Access Footprint
• Memory Loads
• Memory Stores
• Memory, GB
• Min
• Module/Modules
• Multi-Pumping Factor

Max
Description: Loop trip count maximum.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display: Enabled Collect Trip Counts option of the Characterization step
on Analysis Workflow tab or enabled Collect information about Loop Trip Counts on Trip Counts and
FLOP Analysis tab of Project Properties Dialog Box.

Intel® Advisor User Guide  1  

613



Max Site Footprint
Description: Maximum distance (among all instances of the loop) between the minimum and maximum
memory address values.

Maximum Per-Instruction Address Range
Description: For most memory access instructions for all instances of a loop, the Intel Advisor:

• Tracks the minimum and maximum access addresses.
• Displays the maximum range in this metric.

The value may be imprecise because the Intel Advisor filters some memory access instructions while
analyzing all instances of a loop. Unreliable values are displayed in gray.

Collected during Memory Access Patterns Analysis and found in Loop Information Pane (Refinement
Reports) and Memory Access Patterns Report.

Comparison with similar metrics: This metric is less reliable than the First Instance Site Footprint
metric.

Max. Per-
Instruction
Addr. Range

First
Instance
Site
Footprint

Simulated Memory Footprint

Number of threads
analyzed for loop/site

1 1 1

Number of loop
instances analyzed

All instances,
but with
some
memory
access
instruction
filtering

1 Depends on loop call count limit:

• GUI: Project Properties > Analysis
Target > Memory Access Patterns
Analysis > Advanced > Loop call count
limit

• CLI action option: -loop-call-count limit

Awareness of overlap
between address ranges
accessed in loop

No Yes Yes

Suitability for code with
random memory access

No No Yes

Memory Access Footprint
Description: Maximum distance (among all instances of the loop) between minimum and maximum memory
address values, accessed by the instructions, generated from the current source line.

Memory Loads
Description: Number of memory load operations in first instance of the loop.

Collected during Memory Access Patterns Analysis and found in Loop Information Pane (Refinement
Reports)|.

Memory Stores
Description: Number of memory store operations in first instance of the loop.

  1   Intel® Advisor User Guide

614



Collected during Memory Access Patterns Analysis] and found in Loop Information Pane (Refinement
Reports).

Memory, GB
Description: Number of data transfers, in GB, between the CPU and memory subsystem.

Important
This is a core metric that is the basis of the arithmetic intensity (AI) calculation.

Min
Description: Loop trip count minimum.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display: Enabled Collect Trip Counts option of the Characterization step
on Analysis Workflow tab or enabled Collect information about Loop Trip Counts on Trip Counts and
FLOP Analysis tab of Project Properties Dialog Box.

Module/Modules
Description: Executable or library name.

Collected during Survey Analysis, Dependencies Analysis, and Memory Access Patterns Analysis; and found
in Loop Information Pane (Survey Report), Advanced View Pane (Survey Report), Dependencies
Report, and Memory Access Patterns Report.

Multi-Pumping Factor
Description: The number of times the compiler applied a pumping optimization to extend vector length.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

N
• Nested Function

Nested Function
Description: Name of the function (invoked from the site) where the stride diagnostic was detected.

Collected during Memory Access Patterns Analysis and found in Memory Access Patterns Report.

O
• Optimization Details

Optimization Details
Description: Compiler optimization details.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

P
• Performance Issues

Intel® Advisor User Guide  1  

615



• Problem Severity

Performance Issues
Description: Performance issues found.

Collected during Survey Analysis, and Memory Access Patterns Analysis, and found in Loop Information
Pane (Survey Report) and Memory Access Patterns Analysis.

Interpretation: Click to display confidence level about issue root cause and recommended fixes.

Problem Severity
Description: Seriousness of a detected problem.

Collected for during Dependencies Analysis and found in Loop Information Pane (Refinement
Reports).

Possible values:

•  - Error.
•  - Warning.
•  - Informational.

Q

R
• RFO Cache Misses

RFO Cache Misses
Description: Number of cache lines loaded to cache due to a modification request (Request for Ownership).

Collected during Memory Access Patterns Analysis and found in Loop Information Pane (Refinement
Reports).

S
• Self AI
• Self Elapsed Time
• Self GFLOP
• Self GFLOPS
• Self Giga OP
• Self Giga OPS
• Self GINTOP
• Self GINTOPS
• Self INT AI
• Self Memory (GB)
• Self Memory (GB/s)
• Self Overall AI
• Self Time
• Simulated Memory Footprint
• Site Location
• Site Name
• Source/Source Location/Sources
• State
• Stride

  1   Intel® Advisor User Guide

616



• Strides Distribution

Self AI
Description: Ratio of Self GFLOPS to self L1 transferred bytes.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display:

• Enabled Collect FLOP option of the Characterization step on Analysis Workflow tab or enabled Collect
information about FLOP, L1 memory traffic, and AVX-512 mask usage on Trip Counts and FLOP
Analysis tab of Project Properties Dialog Box.

• Selected Show Floating-Point Operation Columns for column setting.

Instruction types counted for FLOP calculation:

• FMA, ADD, SUB, DIV, DP, MUL, ATAN, FPREM, TAN, SIN, COS, SQRT, SUB, RCP, RSQRT, EXP, VSCALE, MAX,
MIN, ABS, IMUL, IDIV, FIDIVR, CMP, VREDUCE, VRND

Self Elapsed Time
Description: Self Time-based wall time from beginning to end of loop/function execution, excluding time
for callees.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

Comparison with similar metrics: Total Elapsed Time is Total Time-based wall time from beginning to
end of loop/function execution, including time for callees.

Interpretation: Same as Self Time for single-threaded applications

Self GFLOP
Description: Giga floating-point operations, excluding GFLOP for callees.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display:

• Enabled Collect FLOP option of the Characterization step on Analysis Workflow tab or enabled Collect
information about FLOP, L1 memory traffic, and AVX-512 mask usage on Trip Counts and FLOP
Analysis tab of Project Properties Dialog Box.

• Selected Show Floating-Point Operation Columns for column setting.

Instruction types counted for FLOP calculation:

• FMA, ADD, SUB, DIV, DP, MUL, ATAN, FPREM, TAN, SIN, COS, SQRT, SUB, RCP, RSQRT, EXP, VSCALE, MAX,
MIN, ABS, IMUL, IDIV, FIDIVR, CMP, VREDUCE, VRND

Self GFLOPS
Description: Ratio of Self GLOP to Self Elapsed Time.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display:

• Enabled Collect FLOP option of the Characterization step on Analysis Workflow tab or enabled Collect
information about FLOP, L1 memory traffic, and AVX-512 mask usage on Trip Counts and FLOP
Analysis tab of Project Properties Dialog Box.

Intel® Advisor User Guide  1  

617



• Selected Show Floating-Point Operation Columns for column setting.

Instruction types counted for FLOP calculation:

• FMA, ADD, SUB, DIV, DP, MUL, ATAN, FPREM, TAN, SIN, COS, SQRT, SUB, RCP, RSQRT, EXP, VSCALE, MAX,
MIN, ABS, IMUL, IDIV, FIDIVR, CMP, VREDUCE, VRND

Self Giga OP
Description: Giga floating-point operations plus giga integer operations, excluding giga floating-point and
integer operations for callees.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display:

• Enabled Collect FLOP option of the Characterization step on Analysis Workflow tab or enabled Collect
information about FLOP, L1 memory traffic, and AVX-512 mask usage on Trip Counts and FLOP
Analysis tab of Project Properties Dialog Box.

• Selected Show Sum of Integer and Floating-Point Operation Columns for column setting.

Instruction types counted for FLOP calculation:

• FMA, ADD, SUB, DIV, DP, MUL, ATAN, FPREM, TAN, SIN, COS, SQRT, SUB, RCP, RSQRT, EXP, VSCALE, MAX,
MIN, ABS, IMUL, IDIV, FIDIVR, CMP, VREDUCE, VRND

Instruction types counted for INTOP calculation (default):

• ADD, ADC, SUB, MUL, IMUL, DIV, IDIV, INC/DEC, shifts, rotates

Self Giga OPS
Description: Ratio of Self GFLOP plus Self GINTOP to Self Elapsed Time.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display:

• Enabled Collect FLOP option of the Characterization step on Analysis Workflow tab or enabled Collect
information about FLOP, L1 memory traffic, and AVX-512 mask usage on Trip Counts and FLOP
Analysis tab of Project Properties Dialog Box.

• Selected Show Sum of Integer and Floating-Point Operation Columns for column setting.

Instruction types counted for FLOP calculation:

• FMA, ADD, SUB, DIV, DP, MUL, ATAN, FPREM, TAN, SIN, COS, SQRT, SUB, RCP, RSQRT, EXP, VSCALE, MAX,
MIN, ABS, IMUL, IDIV, FIDIVR, CMP, VREDUCE, VRND

Instruction types counted for INTOP calculation (default):

• ADD, ADC, SUB, MUL, IMUL, DIV, IDIV, INC/DEC, shifts, rotates

Self GINTOP
Description: Giga integer operations, excluding giga integer operations for callees.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display:

• Enabled Collect FLOP option of the Characterization step on Analysis Workflow tab or enabled Collect
information about FLOP, L1 memory traffic, and AVX-512 mask usage on Trip Counts and FLOP
Analysis tab of Project Properties Dialog Box.

  1   Intel® Advisor User Guide

618



• Selected Show Integer Operation Columns for column setting.

Instruction types counted for INTOP calculation (default):

• ADD, ADC, SUB, MUL, IMUL, DIV, IDIV, INC/DEC, shifts, rotates

Self GINTOPS
Description: Ratio of Self GINTOP to Self Elapsed Time.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display:

• Enabled Collect FLOP option of the Characterization step on Analysis Workflow tab or enabled Collect
information about FLOP, L1 memory traffic, and AVX-512 mask usage on Trip Counts and FLOP
Analysis tab of Project Properties Dialog Box.

• Selected Show Integer Operation Columns for column setting.

Instruction types counted for INTOP calculation (default):

• ADD, ADC, SUB, MUL, IMUL, DIV, IDIV, INC/DEC, shifts, rotates

Self INT AI
Description: Ratio of Self GINTOPS to self L1 transferred bytes.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display:

• Enabled Collect FLOP option of the Characterization step on Analysis Workflow tab or enabled Collect
information about FLOP, L1 memory traffic, and AVX-512 mask usage on Trip Counts and FLOP
Analysis tab of Project Properties Dialog Box.

• Selected Show Integer Operation Columns for column setting.

Instruction types counted for INTOP calculation (default):

• ADD, ADC, SUB, MUL, IMUL, DIV, IDIV, INC/DEC, shifts, rotates

Self Memory (GB)
Description: Data transfers between CPU and memory subsystem (total traffic, including caches and DRAM)
in gigabytes, excluding transfers for callees.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display: Enabled Collect FLOP option of the Characterization step on
Analysis Workflow tab or enabled Collect information about FLOP, L1 memory traffic, and AVX-512
mask usage on Trip Counts and FLOP Analysis tab of Project Properties Dialog Box.

Self Memory (GB/s)
Description: Data transfers between CPU and memory subsystem (total traffic, including caches and DRAM)
in gigabytes per second, excluding transfers for callees.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display: Enabled Collect FLOP option of the Characterization step on
Analysis Workflow tab or enabled Collect information about FLOP, L1 memory traffic, and AVX-512
mask usage on Trip Counts and FLOP Analysis tab of Project Properties Dialog Box.

Intel® Advisor User Guide  1  

619



Calculation/Aggregation: Self GBs / Self Elapsed Time

Self Overall AI
Description: Ratio of Self GFLOPS plus Self GINTOPS to self L1 transferred bytes.

Collected during Trip Counts Analysis (Characterization), and found in Loop Information Pane (Survey
Report).

Prerequisites for collection/display:

• Enabled Collect FLOP option of the Characterization step on Analysis Workflow tab or enabled Collect
information about FLOP, L1 memory traffic, and AVX-512 mask usage on Trip Counts and FLOP
Analysis tab of Project Properties Dialog Box.

• Selected Show Sum of Integer and Floating-Point Operation Columns for column setting.

Instruction types counted for FLOP calculation:

• FMA, ADD, SUB, DIV, DP, MUL, ATAN, FPREM, TAN, SIN, COS, SQRT, SUB, RCP, RSQRT, EXP, VSCALE, MAX,
MIN, ABS, IMUL, IDIV, FIDIVR, CMP, VREDUCE, VRND

Instruction types counted for INTOP calculation (default):

• ADD, ADC, SUB, MUL, IMUL, DIV, IDIV, INC/DEC, shifts, rotates

Self Time
Description: Time actively executing a function/loop, excluding time for callees.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).
Comparison with similar metrics: Total Time is time actively executing a function/loop, including time
for callees.

Simulated Memory Footprint
Description: The summarized and overlap-aware memory footprint across all instances of a loop.

Collected during Memory Access Patterns Analysis and found in Loop Information Pane (Refinement
Reports).

Prerequisites for collection/display:

In the GUI Project Properties Dialog Box:

• Enable Enable CPU cache simulation.
• In the Cache simulation mode drop-down list, choose Model cache misses and loop footprint.
• Tweak other Enable CPU cache simulation parameters as necessary.

CLI example:

advisor -collect map 
-mark-up-list=1,2,7,17,26 
-enable-cache-simulation 
-cachesim-mode=footprint 
-project-dir C:\my_advisor_project 
-- my_application.exe

Comparison with similar metrics:

  1   Intel® Advisor User Guide

620



Max. Per-
Instruction
Addr. Range

First
Instance
Site
Footprint

Simulated Memory Footprint

Number of threads
analyzed for loop/site

1 1 1

Number of loop
instances analyzed

All instances,
but with
some
memory
access
instruction
filtering

1 Depends on loop call count limit:

• GUI: Project Properties > Analysis
Target > Memory Access Patterns
Analysis > Advanced > Loop call count
limit

• CLI action option: -loop-call-count limit

Awareness of overlap
between address ranges
accessed in loop

No Yes Yes

Suitability for code with
random memory access

No No Yes

Calculation/Aggregation: Number of unique cache lines accessed during cache simulation *
Cache line size.

For performance reasons, not all accesses and cache lines are simulated. Instead the Intel Advisor tracks a
subset and then scales up to the whole cache size to determine the final footprint value.

Site Location
Description: Information about parent function, source file, and line where site/loop begins.

Collected during Dependencies Analysis and Memory Access Patterns Analysis, and found in Loop
Information Pane (Refinement Reports).

Site Name
Description: Site name if using source annotations; sequence ID if marking loops for deeper analysis in
Survey Report.

Collected during Dependencies Analysis and Memory Access Patterns Analysis, and found in Loop
Information Pane (Refinement Reports), Dependencies Report, and Memory Access Patterns Report.

Source/Source Location/Sources
Description: Source file name(s) and line number(s).

Collected duringSurvey Analysis, Dependencies Analysis and Memory Access Patterns Analysis; and found
in Loop Information Pane (Survey Report), Advanced View Pane (Survey Report), Dependencies
Report, and Memory Access Report.

State
Description: State of most severe problem in problem set.

Collected during Dependencies Analysis and found in Dependencies Report.

Possible values:

• Regression] - Not investigated. Set by the Intel Advisor.

Intel® Advisor User Guide  1  

621



Issue requires more investigation because it was marked as Fixed in baseline result but still appears.
• New] - Not investigated. Set by the Intel Advisor or user.

Issue did not appear in the baseline result, or there is no older result from which the Intel Advisor can
propagate state information.

• Not Fixed] - Not investigated. Set by user.

Issue appeared in the baseline result and still requires investigation.
• Confirmed] - Investigated. Set by user.

Issue requires fixing but has not yet been fixed.
• Fixed] - Investigated. Set by user.

Issue requires fixing and has been fixed.
• Not a problem] - Investigated. Set by user.

Issue does not require fixing.
• Deferred] - Investigated. Set by user.

You are postponing further investigation on an issue that may or may not require fixing.

Stride
Description: Distance, in elements, between memory accesses in two consequent iterations.

Collected during Memory Access Patterns Analysis and found in Memory Access Patterns Report.

Strides Distribution
Description: Stride ratio in following format: Unit%/Constant%/Variable%

Collected during Memory Access Patterns Analysis and found in Loop Information Pane (Refinement
Reports).

T
• Total Elapsed Time
• Total Time
• Traits
• Transformations
• Type

Total Elapsed Time
Description: Total Time-based wall time from beginning to end of loop/function execution, including time
for callees

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

Comparison with similar metrics: Self Elapsed Time is Self Time-based wall time from beginning to
end of loop/function execution, excluding time for callees.

Interpretation: Same as Total Time for single-threaded applications.

Total Time
Description: Time actively executing a function/loop, including time for callees.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

Comparison with similar metrics: Self Time is time actiely executing a function/loop, not including time
for callees.

  1   Intel® Advisor User Guide

622



Traits
Description: Scalar and vectorization characteristics that may impact performance.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

Possible values:

Trait Detected ASM Instructions

Divisions *DIV*

Square Roots *SQRT*

Type Conversions *CVT*

NT-stores *MOVNT*

Gathers *GATHER*

Scatters *SCATTER*

Shuffles *SHUF*

Permutes *PERM*

Blends *BLEND*

Packs *PACK*

Unpacks *UNPCK*

Inserts *INSERT*

Extracts *EXTRACT*

Masked Stores *MASKMOV*

Shifts *PROR*, *PROL*, *PSLL*, *PSRA*, *PSRL*

FMA *FMADD*, *FMSUB*, *FNMADD*, *FNMSUB*

Mask Manipulations *KADD*, *KTEST*, *KAND*, *KOR*, *KXOR*,
*KXNOR*, *KNOT*, *KUNPCK*, *KMOV*,
*KSHIFT*

Conflict Detections *VPCONFLICT*

Exponent extractions *VGETEXP*

Mantissa extractions *VGETMANT*

Expands *EXPAND*

Compresses *COMPRESS*

VNNI *VNNI*

Transformations
Description: Loop transformations applied by compiler.

Intel® Advisor User Guide  1  

623



Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

Type
Collected during Survey Analysis, Dependencies Analysis, and Memory Access Patterns Analysis; and found
in Loop Information Pane (Survey Report), Advanced View Pane (Survey Report), Dependencies
Report, and Memory Access Patterns Report.

Possible Survey Report values:

• Peeled/Remainder - For loops that have child loops. Appears only when scalar peeled loop and/or
remainder loop executed.

• Threaded - For loops that have child loops. Appears when some parallel framework (OpenMP* or
automatically by Intel compiler) is used in the loop.

• Vectorized (<loop part(s)>) - For vectorized parent and child loops. Appears when a parent loop has
any of the following parts executed: peeled, body, remainder. Also appears for child loops that have one of
the following parts executed: peeled, body, remainder.

• Peeled - For small, (usually) compiler-generated loops created to align the memory accesses inside the
loop body and maximize its efficiency.

• Body - For vectorized loops (compiler-generated from a source loop). Most loop iterations should execute
in body, as body normally processes more data than peeled or remainder loops. Vector length in the body
is usually larger than in peeled and/or remainder loops, which means body is the most efficient place for
performance.

• Remainder - For (usually) compiler-generated loops created to clean up any remaining iterations that do
not fit within the scope of the loop body.

• [Not Executed] - Mark that appears next to any other loop metric when a loop was not executed.
• Scalar - Appears when non-vectorized loops executed.
• Completely Unrolled - Appears when the loop body was copied several times (equal to trip counts

value) by the compiler.
• Inside vectorized - Appears when the inner loop was vectorized in addition to the outer loop.
• Inlined Function - Appears when the function body was inlined into the loop/function body.
• Vector Function - Appears when a SIMD-enabled version of the function executed. (See Intel compiler

documentation for details).
• Function - Appears when a scalar version of the function executed.

Possible Memory Access Patterns Report values:

•  Uniform stride 0 - Instruction accesses the same memory from iteration to iteration.

Represents the ideal situation and does not require any improvements.
•  Unit stride (stride 1) - Instruction accesses memory that consistently changes by one element from

iteration to iteration.

Represents the ideal situation and does not require any improvements.
•  Constant stride (stride N) - Instruction accesses memory that consistently changes by N elements

(N>1) from iteration to iteration.

Code uses more memory than is ideal and requires more cache lines. Consider studying recommendations
on AOS/SOA optimization.

•  Irregular stride - Instruction accesses memory addresses that change by an unpredictable number of
elements from iteration to iteration.

Might limit vectorization or even make vectorization impossible.
•  Gather (irregular) stride - Detected for v(p)gather* instructions on AVX2 Instruction Set

Architecture (ISA).

The compiler vectorized code with an irregular memory access pattern. Consider improving the code to
use a more constant memory access pattern.

  1   Intel® Advisor User Guide

624



Possible Dependencies Report values - See Problem and Message Types.

U
• Unroll Factor

Unroll Factor
Description: Loop unroll factor applied by the compiler.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

V
• Variable References
• Vector ISA
• Vector Widths
• Vectorization Details
• VL (Vector Length)

Variable References
Description: Name of the variable for which the dependency or memory access stride is detected.

Collected during Dependencies Analysis and Memory Access Patterns Analysis, and found in Dependencies
Report and Memory Access Patterns Report.

Vector ISA
Description: The highest vector Instruction Set Architecture used for individual instructions.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

Comparison with similar metrics: An ISA higher than the ISA of your current hardware appears when you
add corresponding codepaths with x, Qx / ax, Qax compiler options. To see the ISA of non-executed
codepaths, enable the Analyze non-executed codepaths option in Project Properties.

Vector Widths
Description: Vector register width in bits.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

Possible values: Combination of values, including 32, 64, 128, 256, 512, delimited by a slash or semi-colon
(/ or ;).

Vectorization Details
Description: Compiler notes on vectorization.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

VL (Vector Length)
Description: The number of elements processed in a single iteration of vector loops, or the number of
elements processed in individual vector instructions.

Intel® Advisor User Guide  1  

625



Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

Calculation/Aggregation: Estimated by binary static analysis or the Intel compiler.

W
• Why No Vectorization?

Why No Vectorization?
Description: The reason the compiler did not vectorize the loop.

Collected during Survey Analysis and found in Loop Information Pane (Survey Report) and Advanced
View Pane (Survey Report).

Interpretation: Click to display the issue root cause and recommended fixes.

X, Y, Z

Accelerator Metrics
This reference section describes the contents of data
columns in reports of the Offload Modeling and GPU
Roofline Insights perspectives.

# | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | XYZ

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see 
GPU Architecture Terminology for Intel® Xe Graphics.

#
• 2 FPUs Active

2 FPUs Active
Description: Average percentage of time when both floating-point units (FPU) are used.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > EU Instructions column group.

A
• Active
• Advanced Diagnostics
• Allocation Time
• Atomic Accesses
• Atomic Throughput
• Atomic Throughput per Cycle
• Average Time (GPU Roofline)
• Average Time (Offload Modeling)
• Average Trip Count

  1   Intel® Advisor User Guide

626

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html


Active
Description: Percentage of cycles actively executing instructions on all execution units (EU) or vector
engines (XVE).

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > EU Array column group or GPU Roofline Regions tab >
GPU Kernels pane > XVE Array column group (for code running on the Intel® Arc™ graphics code-named
Alchemist or newer).

Advanced Diagnostics
Description: Additional information about a code region that might help to understand the achieved
performance.

Collected during the Survey analysis in the Offload Modeling perspective and found in the Accelerated
Regions tab > Code Regions pane.

Allocation Time
Description: Total time spent on memory allocation.

Collected during the Characterization analysis in the GPU Roofline Insights perspective and found in the
GPU Roofline Regions tab > GPU Kernels pane > Data Transferred column group.

Prerequisites for display: Expand the Data Transferred column group.

Atomic Accesses
Description: Total number of atomic memory accesses.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Atomics column group.

Atomic Throughput
Description: Average atomic throughput for a kernel, in operations per seconds.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Atomics column group.

Prerequisites for display: Expand the Atomics column group.

Atomic Throughput per Cycle
Description: Average atomic throughput for a kernel, in operations per cycle.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Atomics column group.

Prerequisites for display: Expand the Atomics column group.

Average Time (GPU Roofline)
Description: Average time spent executing one task instance.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > Kernel Details column group.

Prerequisites for display: Expand the Kernel Details column.

Intel® Advisor User Guide  1  

627



Average Time (Offload Modeling)
Description: Average time spent executing one task instance. This metric is only available for the GPU-to-
GPU modeling.

Collected during the Survey analysis with enabled GPU profiling in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Measured column group.

Prerequisites for display: Expand the Measured column.

Average Trip Count
Description: Average number of times a loop/function is executed.

Collected during the Trip Counts (Characterization) in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Measured column group.

Prerequisites for display: Expand the Measured column group.

B
• Bandwidth, GB/s (GPU Memory)
• Bandwidth, GB/s (L3 Shader)
• Bandwidth, GB/s (SLM)
• Baseline Device
• Bounded By

Bandwidth, GB/s (GPU Memory)
Description: Rate at which data is transferred to and from GPU, chip uncore (LLC), and main memory, in
gigabytes.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > GPU Memory column group.

Prerequisite for display: Expand the GPU Memory column. This metric is also shown in the collapsed
GPU Memory column.

Bandwidth, GB/s (L3 Shader)
Description: Rate at which data is transferred between execution units or vector engines and L3 caches, in
gigabytes per second.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > L3 Shader column group.

Prerequisite for display: Expand the L3 Shader column. This metric is also shown in the collapsed L3
Shader column.

Bandwidth, GB/s (SLM)
Description: Rate at which data is transferred to and from shared local memory (SLM), in gigabytes per
second.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions report > GPU Kernels pane > SLM column group.

Prerequisites for display: Expand the SLM column. This metric is also shown in the collapsed SLM
column.

Baseline Device
Description: Host platform that application is executed on.

  1   Intel® Advisor User Guide

628



Collected during the Survey analysis in the Offload Modeling perspective and found in the Accelerated
Regions tab > Code Regions pane > Measured column group.

Prerequisite for display: Expand the Measured column group.

Bounded By
Description: List of main factors that limit the estimated performance of a code region offloaded to a target
device.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Basic Estimated Metrics column group.

Interpretation: This metric shows one or more bottleneck(s) in a code region.

Category Bottleneck Description

Algorithmic Dependencies Data dependencies limit the
parallel execution efficiency. Fix
the dependencies to offload this
code region.

Kernel Decomposition The workload decomposition
strategy does not allow to
schedule enough parallel threads
to use all execution units or
vector engines on a selected
target device.

Trip Counts The number of loop iterations is
not enough to use all execution
units or vector engines on a
selected target device.

Taxes Data Transfer Data transfer tax is greater than
the sum of the maximum
throughput time and latencies
time.

Launch Tax Kernel launch tax is greater than
the sum of the maximum
throughput time and latencies
time.

Throughput Compute The code region uses full target
device capabilities, but the
compute time is still high. The
time is greater than all other
execution time components on a
target device.

Global Atomics Global atomics bandwidth time is
greater than all other execution
time components on a target
device.

Intel® Advisor User Guide  1  

629



Category Bottleneck Description

Memory Sub-System bandwidth
(BW): for example, L3 BW, LLC
BW, DRAM BW

Memory sub-system bandwidth
time is greater than all other
execution time components on a
target device.

Latencies Latencies Instruction latency is greater
than the maximum throughput
time.

Resulting estimated time is calculated as a sum of the four factors: throughput, latency, and taxes, which
include data transfer taxes and submission tax:

Time = max_throughput_bottleneck_time + non_overlaped_latency + data_transfer_time +
kernel_submission_taxes_time

The model assumes that throughput-defined times are fully "overlapped" and chooses only a "maximum"
throughput bottleneck to show in the column. If the impact of other components is comparable to the
throughput component, top bottlenecks of all four factors (one for throughput, one for latency, and one for
data transfer/submission) are shown in this column. This means the code region is limited by this
combination of factors, which is ordered by the impact on the region performance.

Otherwise, for example, if the relative throughput impact is much higher than the latency and data transfer
ones, only the maximum throughput bottleneck is shown as dominating over others. If the maximum
throughput time is compute, Intel Advisor assumes the algorithmic factors (dependencies, kernel
decomposition, trip counts) limit offloading a code region.

For example, the combined Data Transfer, DRAM BW value means the following:

• The main limiting factor for the code region is data transfer tax. The tax is greater than the sum of the
maximum throughput time and latencies time for this region.

• The second limiting factor for the code region is the DRAM bandwidth time. The time is greater than other
execution time components on a target device.

  1   Intel® Advisor User Guide

630



C
• Cache Line Utilization
• Call Count
• CARM, GB
• Compute
• Computing Threads Started

Cache Line Utilization
Description: Fraction of global memory traffic used by execution units or vector engines.

Collected during the Survey analysis with GPU profiling enabled in the GPU Roofline Insights perspective and
found in the GPU Roofline Regions tab > GPU Kernels pane > L3 Shader column group.

Prerequisites for display: Expand the L3 Shader column group. This metric is also shown in the collapsed
L3 Shader column.

Calculation: Ratio of global memory traffic to the observed cache traffic, where:

Intel® Advisor User Guide  1  

631



• Global memory traffic is traffic between execution units or vector engines and cache data ports, in cache-
line granularity transactions.

• Observed cache traffic is traffic between a data port and caches, in cache-line granularity transactions.

Interpretation: If you see a low value, it may indicate that the kernel has an inefficient or not GPU-friendly
memory access pattern.

Call Count
Description: Number of times a loop/function was invoked.

Collected during the Trip Counts (Characterization) in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Measured column group.

Prerequisites for display: Expand the Measured column group.

CARM, GB
Description: Total data transferred to and from execution units or vector engines, in gigabytes..

Collected during the Characterization analysis with GPU profiling in the GPU Roofline Insights perspective
and found in the GPU Roofline Regions tab > GPU Kernels pane.

Compute
Description: Estimated execution time assuming an offloaded loop is bound only by compute throughput.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Estimated Bounded By column group in the Accelerated Regions tab > Code Regions pane.

Prerequisite for display: Expand the Estimated Bounded By column group.

Computing Threads Started
Description: Total number of threads started across all execution units or vector engines for a computing
task.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane.

D
• Data Transfer Tax
• Data Transfer Tax without Reuse
• Data Reuse Gain
• Dependency Type
• Device-to-Host Size
• Device-to-Host Time
• DRAM
• DRAM BW (Estimated Bounded By)
• DRAM BW (Memory Estimations)
• DRAM BW Utilization
• DRAM Read Traffic
• DRAM Traffic
• DRAM Write Traffic

Data Transfer Tax
Description: Estimated time cost, in milliseconds, for transferring loop data between host and target
platform. If you enabled the data reuse analysis for the Performance Modeling, the metric value is calculated
considering data is reused between code regions on a target platform.

  1   Intel® Advisor User Guide

632



Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Estimated Bounded By column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, set the Data Transfer Simulation to Light, Medium, or Full.
• CLI: Run the --collect=tripcounts action with the --data-transfer=[full | medium | light]

action options.

Prerequisite for display: Expand the Estimated Bounded By column group.

Data Transfer Tax without Reuse
Description: Estimated time cost, in milliseconds, for transferring loop data between host and target
platforms considering data is not reused. This metric is available only if you enabled the data reuse analysis
for the Performance Modeling.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane >
Estimated Bounded By column group.

Prerequisite for collection:

• GUI: From the Analysis Workflow pane, set the Data Transfer Simulation under Characterization to
Full and enable the Data Reuse Analysis checkbox under Performance Modeling.

• CLI: Use the --data-transfer=full action option with the --collect=tripcounts action and the 
--data-reuse-analysis option with the --collect=tripcounts and --collect=projection actions.

Prerequisite for display: Expand the Estimated Bounded By column group.

Data Reuse Gain
Description: Difference between data transfer time estimated with data reuse and without data reuse, in
milliseconds. This option is available only if you enabled the data reuse analysis for the Performance
Modeling.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane >
Estimated Bounded By column group.

Prerequisite for collection:

• GUI: From the Analysis Workflow pane, set the Data Transfer Simulation under Characterization to
Full and enable the Data Reuse Analysis checkbox under Performance Modeling.

• CLI: Use the --data-transfer=full action option with the --collect=tripcounts action and the 
--data-reuse-analysis option with the --collect=tripcounts and --collect=projection actions.

Prerequisite for display: Expand the Estimated Bounded By column group.

Dependency Type
Description: Dependency absence or presence in a loop across iterations.

Collected during the Survey and Dependencies analyses in the Offload Modeling perspective and found in
the Accelerated Regions tab > Code Regions pane > Measured column group.

Prerequisite for display: Expand the Measured column group.

Possible values:

• Parallel: Explicit - The loop does not have dependencies because it is explicitly vectorized or threaded
on CPU.

• Parallel: Proven - A compiler did not detect dependencies in the loop at the compile time but did not
vectorize the loop automatically for a certain reason.

Intel® Advisor User Guide  1  

633



• Parallel: Kernel (GPU-to-GPU modeling only) - The kernel is executed on a GPU.
• Parallel: Programming Model - The loop does not have dependencies because it is parallelized for

execution on a target platform using a performance model (for example, OpenMP*, oneAPI Treading
Building Blocks, Intel® oneAPI Data Analytics Library, SYCL).

• Parallel: Workload - Intel Advisor did not find dependencies in the loop based on the workload analyzed
during the Dependencies analysis.

• Parallel: User - The loop is marked as not having dependencies with the --set-parallel=<string>
option.

• Parallel: Assumed - Intel Advisor does not have information about loop dependencies but it assumed all
such loops are parallel (that is, not having dependencies).

• Dependency: <dependency-type> - Intel Advisor found dependencies of specific types in the loop
during the Dependencies analysis. Possible dependency types are RAW (read after write), WAR (write
after read), WAW (write after read), Reduction.

• Dependency: User - The loop is marked as having dependencies with the --set-dependency=<string>
option.

• Dependency: Assumed - Intel Advisor does not have information about dependencies for this loops but
it assumes all such loops have dependencies.

Prerequisites for collection/display:

Some values in this column can appear only if you select specific options when collecting data or run the
Dependencies analysis:

For Parallel: Workload and Dependency: <dependency-type>:

• GUI: Enable Dependencies analysis in the Analysis Workflow pane.
• CLI: Run advisor --collect=dependencies --project-dir=<project-dir> [<options>] --

<target>. See advisor Command Option Reference for details.

For Parallel: User:

• GUI: Go to Project Properties > Performance Modeling. In the Other parameters field, enter a 
--set-parallel=<string> and a comma-separated list of loop IDs and/or source locations to mark them
as parallel.

• CLI: Specify a comma-separated list of loop IDs and/or source locations with the 
--set-parallel=<string> option when modeling performance with advisor --collect=projection.

For Dependency: User:

• GUI: Go to Project Properties > Performance Modeling. In the Other parameters field, enter a 
--set-dependency=<string> and a comma-separated list of loop IDs and/or source locations to mark
them as having dependencies.

• CLI: Specify a comma-separated list of loop IDs and/or source locations with the 
--set-dependency=<string> option when modeling performance with advisor --
collect=projection.

For Parallel: Assumed:

• GUI: Disable Assume Dependencies under Performance Modeling analysis in the Analysis Workflow
pane.

• CLI: Use the --no-assume-dependencies option when modeling performance with advisor --
collect=projection.

For Dependencies: Assumed:

• GUI: Enable Assume Dependencies under Performance Modeling analysis in the Analysis Workflow
pane.

• CLI: Use the --assume-dependencies option when modeling performance with advisor --
collect=projection.

Interpretation:

  1   Intel® Advisor User Guide

634



• Loops with no real dependencies (Parallel: Explicit, Parallel: Proven, Parallel: Programming Model,
and Parallel: User if you know that marked loops are parallel) can be safely offloaded to a target
platform.

• If many loops have Parallel: Assumed or Dependencies: Assumed value, you are recommended to
run the Dependencies analysis. See Check How Assumed Dependencies Affect Modeling for details.

Device-to-Host Size
Description: Total data transferred from device to host.

Collected during the FLOP analysis (Characterization) in the GPU Roofline Insights perspective and found in
the GPU Roofline Regions tab > GPU Kernels pane > Data Transferred column group.

Prerequisites for display: Expand the Data Transferred column group.

Device-to-Host Time
Description: Total time spent on transferring data from device to host.

Collected during the FLOP analysis (Characterization) in the GPU Roofline Insights perspective and found in
the GPU Roofline Regions tab > GPU Kernels pane > Data Transferred column group.

Prerequisites for display: Expand the Data Transferred column group.

DRAM
Description: Summary of estimated DRAM memory usage, including DRAM bandwidth, in gigabytes per
second, and total DRAM traffic calculated as sum of read and write traffic.

Collected during the Trip Counts (Characterization) and Performance Modeling analyses in the Offload
Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

DRAM BW (Estimated Bounded By)
Description: DRAM Bandwidth. Estimated time, in seconds, spent on reading from DRAM memory and
writing to DRAM memory assuming a maximum DRAM memory bandwidth is achieved.

Collected during the Trip Counts analysis (Characterization) and the Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane >
Estimated Bounded By column group.

Prerequisite for display: Expand the Estimated Bounded By column group.

DRAM BW (Memory Estimations)
Description: DRAM Bandwidth. Estimated rate at which data is transferred to and from the DRAM, in
gigabytes per second.

Collected during the Trip Counts (Characterization) and Performance Modeling analyses in the Offload
Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.

Intel® Advisor User Guide  1  

635



• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-
device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

DRAM BW Utilization
Description: Estimated DRAM bandwidth utilization, in per cent.

Collected during the Trip Counts (Characterization) and Performance Modeling analyses in the Offload
Modeling perspective and found in the Memory Estimations column group in the Code Regions pane of the
Accelerated Regions tab.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

Calculation: Ratio of average bandwidth to a maximum theoretical bandwidth.

DRAM Read Traffic
Description: Total estimated data read from the DRAM memory.

Collected during the Trip Counts (Characterization) and Performance Modeling analyses in the Offload
Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

DRAM Traffic
Description: Estimated sum of data read from and written to the DRAM memory.

Collected during the Trip Counts (Characterization) and Performance Modeling analyses in the Offload
Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

DRAM Write Traffic
Description: Total estimated data written to the DRAM memory.

Collected during the Trip Counts (Characterization) and Performance Modeling analyses in the Offload
Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

  1   Intel® Advisor User Guide

636



• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

E
• Elapsed Time
• EM Active
• Estimated Data Transfer with Reuse
• Estimated Time on Device
• EU Threading Occupancy

Elapsed Time
Description: Wall-clock time from beginning to end of computing task execution.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane.

EM Active
Description: Average percentage of time when an extended math (EM) pipeline is processed. This metric is
available for code running on the Intel® Arc™ graphics code-named Alchemist or newer.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > XVE Instructions column group.

Estimated Data Transfer with Reuse
Description: Summary of data read from a target platform and written to the target platform. If you
enabled the data reuse analysis for the Performance Modeling, the metric value is calculated considering data
reuse between code regions on the target platform.

Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, set the Data Transfer Simulation to Light, Medium, or Full.
• CLI: Run the --collect=tripcounts action with the --data-transfer=[full | medium | light]

action options.

Estimated Time on Device
Description: Estimated elapsed wall-clock time from beginning to end of loop execution estimated on a
target platform after offloading without offload overhead and time for non-offloaded code.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Basic Estimated Metrics column group.

Prerequisite for display: Expand the Basic Estimated Metrics column group.

EU Threading Occupancy
Description: Percentage of cycles on all execution units (EU) and thread slots when a slot has a thread
scheduled.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane.

Intel® Advisor User Guide  1  

637



F
• Fill Count per Thread
• FLOAT Operations
• FLOP AI (Global Memory)
• FP AI
• FPU Active
• FPU and EM Active
• FPU and Matrix Engine Active
• Fraction of Offloads
• From Target

Fill Count per Thread
Description: Number of fill instructions used to read data values spilled from GRF into memory (L3 cache).

Collected during the Characterization analysis with Trip Counts and GPU profiling in the GPU Roofline
Insights perspective and found in the GPU Roofline Regions tab > GPU Kernels pane > Register
Spilling column group.

Prerequisites for display: Expand the Register Spilling column group.

Interpretation: A high number of memory spill/fill (or load/store) operations significantly increases memory
traffic and decreases the performance.

FLOAT Operations
Description: Summary of floating-point operations in a kernel.

Collected during the Characterization analysis with GPU profiling in the GPU Roofline Insights perspective
and found in the GPU Roofline Regions tab > GPU Kernels pane > GPU Compute Performance column
group.

Aggregation:

• GOp - Number of giga floating-point operations.
• GOp/s - Number of giga floating-point operations per second.
• AI - Ratio of floating-point operations to the bytes transferred to GPU memory.

You can hover over each value in the cell to see the value description.

FLOP AI (Global Memory)
Description: Estimated arithmetic intensity for floating-point operations (FLOP), in operations per byte.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated FLOAT Operations column group.

Calculated as ratio of floating-point operations to total bytes transferred to global memory (DRAM, HBM, or
GDDR6).

FP AI
Description: Ratio of floating-point operations to bytes transferred to GPU memory.

Collected during the Characterization analysis with GPU profiling in the GPU Roofline Insights perspective
and found in the GPU Roofline Regions tab > GPU Kernels pane > GPU Compute Performance column
group.

Prerequisites for display: Expand the GPU Compute Performance column group. This metric is also
shown in the collapsed FLOAT Operations column.

  1   Intel® Advisor User Guide

638



FPU Active
Description: Average percentage of time when an floating-point unit (FPU) pipeline is processed. This metric
is available for code running on the Intel® Arc™ graphics code-named Alchemist or newer.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > XVE Instructions column group.

FPU and EM Active
Description: Average percentage of time when floating-point unit (FPU) and extended math (EM) unit
pipelines are processed. This metric is available for code running on the Intel® Arc™ graphics code-named
Alchemist or newer.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > XVE Instructions column group.

FPU and Matrix Engine Active
Description: Average percentage of time when floating-point unit (FPU) and matrix engine pipelines are
processed. This metric is available for code running on the Intel® Arc™ graphics code-named Alchemist or
newer.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > XVE Instructions column group.

Fraction of Offloads
Description: Percentage of time spent in code regions profitable for offloading in relation to the total
execution time of the region.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Basic Estimated Metrics column group.

Prerequisites for display: Expand the Basic Estimated Metrics column group.

Interpretation: 100% means there are no non-offloaded child regions, calls to parallel runtime libraries, or
system calls in the region.

From Target
Description: Estimated data transferred from a target platform to a shared memory by a loop, in
megabytes. If you enabled the data reuse analysis for the Performance Modeling, the metric value is
calculated considering data reuse between code regions on a target platform.

Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Estimated Data Transfer with Reuse
column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, set the Data Transfer Simulation to Light, Medium, or Full.
• CLI: Run the --collect=tripcounts action with the --data-transfer=[full | medium | light]

action options.

Prerequisite for display: Expand the Estimated Data Transfer with Reuse column group.

G
• GFLOP (GPU Roofline)
• GFLOP (Offload Modeling)
• GFLOP32

Intel® Advisor User Guide  1  

639



• GFLOP64
• GFLOPS (GPU Roofline)
• GFLOPS (Offload Modeling)
• GFLOPS32
• GFLOPS64
• GINT32
• GINT64
• GINTOP (GPU Roofline)
• GINTOP (Offload Modeling)
• GINTOPS (GPU Roofline)
• GINTOPS (Offload Modeling)
• GINTOPS32
• GINTOPS64
• Global
• Global Size (Compute Estimates)
• Global Size (Measured)
• GPU Memory
• GPU Shader Atomics
• GPU Shader Barriers
• GTI
• GTI BW (Estimated Bounded By)
• GTI BW (Memory Estimations)
• GTI BW Utilization
• GTI Read Traffic
• GTI Traffic
• GTI Write Traffic

GFLOP (GPU Roofline)
Description: Number of giga floating-point operations.

Collected during the Characterization analysis with GPU profiling in the GPU Roofline Insights perspective
and found in the GPU Roofline Regions tab > GPU Kernels pane > GPU Compute Performance column
group.

Instruction types counted: BASIC COMPUTE, FMA, BIT, DIV, POW, MATH.

Prerequisites for display: Expand the GPU Compute Performance column group. This metric is also
shown in the collapsed FLOAT Operations column.

GFLOP (Offload Modeling)
Description: Estimated number of giga floating-point operations.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated FLOAT Operations column group.

GFLOP32
Description: Estimated number of 32-bit giga floating-point operations.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated FLOAT Operations column group.

Prerequisites for display: Expand the Estimated FLOAT Operations column group.

GFLOP64
Description: Estimated number of 64-bit giga floating-point operations.

  1   Intel® Advisor User Guide

640



Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated FLOAT Operations column group.

Prerequisites for display: Expand the Estimated FLOAT Operations column group.

GFLOPS (GPU Roofline)
Description: Number of giga floating-point operations per second.

Collected during the Characterization analysis with GPU profiling in the GPU Roofline Insights perspective
and found in the GPU Roofline Regions tab > GPU Kernels pane > GPU Compute Performance column
group.

Instruction types counted: BASIC COMPUTE, FMA, BIT, DIV, POW, MATH.

Prerequisites for display: Expand the GPU Compute Performance column group. This metric is also
shown in the collapsed FLOAT Operations column.

GFLOPS (Offload Modeling)
Description: Estimated number of giga floating-point operations per second.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated FLOAT Operations column group.

GFLOPS32
Description: Estimated number of 32-bit giga floating-point operations per second.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated FLOAT Operations column group.

Prerequisites for display: Expand the Estimated FLOAT Operations column group.

GFLOPS64
Description: Estimated number of 64-bit giga floating-point operations per second.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated FLOAT Operations column group.

Prerequisites for display: Expand the Estimated FLOAT Operations column group.

GINT32
Description: Estimated number of 32-bit giga integer operations.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated INT Operations column group.

Prerequisites for display: Expand the Estimated INT Operations column group.

GINT64
Description: Estimated number of 64-bit giga integer operations.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated INT Operations column group.

Prerequisites for display: Expand the Estimated INT Operations column group.

GINTOP (GPU Roofline)
Description: Number of giga integer operations.

Intel® Advisor User Guide  1  

641



Collected during the Characterization analysis with GPU profiling in the GPU Roofline Insights perspective
and found in the GPU Roofline Regions tab > GPU Kernels pane > GPU Compute Performance column
group.

Instruction types counted: BASIC COMPUTE, FMA, BIT, DIV, POW, MATH.

Prerequisites for display: Expand the GPU Compute Performance column group. This metric is also
shown in the collapsed INT Operations column.

GINTOP (Offload Modeling)
Description: Estimated number of giga integer operations.

Collected during the Performance Modeling analysis enabled in the Offload Modeling perspective and found
in the Accelerated Regions tab > Code Regions pane > Estimated INT Operations column group.

GINTOPS (GPU Roofline)
Description: Number of giga integer operations per second.

Collected during the Characterization analysis with GPU profiling in the GPU Roofline Insights perspective
and found in the GPU Roofline Regions tab > GPU Kernels pane > GPU Compute Performance column
group.

Instruction types counted: BASIC COMPUTE, FMA, BIT, DIV, POW, MATH.

Prerequisites for display: Expand the GPU Compute Performance column group. This metric is also
shown in the collapsed INT Operations column.

GINTOPS (Offload Modeling)
Description: Estimated number of giga integer operations per second.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated INT Operations column group.

GINTOPS32
Description: Estimated number of 32-bit giga integer operations per second.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated INT Operations column group.

Prerequisite for display: Expand the Estimated INT Operations column group.

GINTOPS64
Description: Estimated number of 64-bit giga integer operations per second.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated INT Operations column group.

Prerequisite for display: Expand the Estimated INT Operations column group.

Global
Description: Total number of work items in all work groups.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > Work Size column group.

Global Size (Compute Estimates)
Description: Total estimated number of work items in a loop executed after offloaded on a target platform.

  1   Intel® Advisor User Guide

642



Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane >
Compute Estimates column group.

Prerequisite for display: Expand the Compute Estimates column group.

Global Size (Measured)
Description: Total number of work items in a kernel instance on a baseline device. This metric is only
available for the GPU-to-GPU modeling.

Collected during the Survey analysis with enabled GPU profiling in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Measured column group.

Prerequisite for display: Expand the Measured column group.

GPU Memory
Description: Summary of GPU memory usage in a kernel. GPU memory is data transferred to and from
GPU, chip uncore (LLC), and main memory.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane.

Aggregation: The column reports the following metrics:

• Total GPU memory traffic, in gigabytes
• GPU memory bandwidth, in gigabytes per second

You can hover over each value in the cell to see the value description.

GPU Shader Atomics
Description: Total number of shader atomic memory accesses.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane.

GPU Shader Barriers
Description: Total number of shader barrier messages.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane.

GTI
Description: Summary of estimated GTI memory usage, including GTI bandwidth, in gigabytes per second,
and total GTI traffic calculated as sum of read and write traffic.

Collected during the Trip Counts (Characterization) and Performance Modeling analyses in the Offload
Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Intel® Advisor User Guide  1  

643



GTI BW (Estimated Bounded By)
Description: Graphics technology interface (GTI) Bandwidth. Estimated time, in seconds, spent on reading
from and writing to GTI memory assuming a maximum GTI memory bandwidth is achieved.

Collected during the Trip Counts analysis (Characterization) and the Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane >
Estimated Bounded By column group.

Prerequisite for display: Expand the Estimated Bounded By column group.

GTI BW (Memory Estimations)
Description: Graphics technology interface (GTI) Bandwidth. Estimated rate at which data is transferred to
and from the GTI, in gigabytes per second.

Collected during the Trip Counts (Characterization) and Performance Modeling analyses in the Offload
Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

GTI BW Utilization
Description: Graphics technology interface (GTI) bandwidth utilization. Estimated GTI bandwidth utilization,
in per cent.

Collected during the Trip Counts (Characterization) and Performance Modeling analyses in the Offload
Modeling perspective and found in the Memory Estimations column group in the Code Regions pane of the
Accelerated Regions tab.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

Calculation: Ratio of average bandwidth to a maximum theoretical bandwidth.

GTI Read Traffic
Description: Total estimated data read from the GTI memory.

Collected during the Trip Counts (Characterization) and Performance Modeling analyses in the Offload
Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

  1   Intel® Advisor User Guide

644



GTI Traffic
Description: Estimated sum of data read from and written to the GTI memory.

Collected during the Trip Counts (Characterization) and Performance Modeling analyses in the Offload
Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

GTI Write Traffic
Description: Total estimated data written to the GTI memory.

Collected during the Trip Counts (Characterization) and Performance Modeling analyses in the Offload
Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

H
• Hardware Events per SEND
• Host-to-Device Size
• Host-to-Device Time

Hardware Events per SEND
Description: Average number of atomic accesses generated by one atomic SEND instruction.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Atomics column group.

Prerequisites for display: Expand the Atomics column group.

Host-to-Device Size
Description: Total data transferred from host to device.

Collected during the Characterization analysis with FLOP in the GPU Roofline Insights perspective and found
in the GPU Roofline Regions tab > GPU Kernels pane > Data Transferred column group.

Prerequisites for display: Expand the Data Transferred column group.

Host-to-Device Time
Description: Total time spent on transferring data from host to device.

Collected during the Characterization analysis with FLOP in the GPU Roofline Insights perspective and found
in the GPU Roofline Regions tab > GPU Kernels pane > Data Transferred column group.

Prerequisites for display: Expand the Data Transferred column group.

Intel® Advisor User Guide  1  

645



I
• Idle
• Ignored Time
• Instances (GPU Roofline)
• Instances (Offload Modeling - Compute Estimates)
• Instances (Offload Modeling - Measured)
• INT AI (GPU Roofline)
• INT AI (Global Memory)
• INT Operations
• IPC Rate
• Iteration Space

Idle
Description: Percentage of cycles on all execution units (EU) or vector engines (XVE) when no threads are
scheduled on an EU or XVE.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions report > GPU Kernels pane > EU Array column group or GPU Roofline Regions report
> GPU Kernels pane > XVE Array column group (for code running on the Intel® Arc™ graphics code-named
Alchemist or newer).

Ignored Time
Description: Time spent in system calls and calls to ignored modules or parallel runtime libraries in the code
regions recommended for offloading.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Non-User Code Metrics column group.

Prerequisites for collection: From CLI, run the --collect=projection action with the --
ignore=<code-to-ignore> action option. For example, to ignore MPI and OpenMP* calls, use the flag as
follows: --ignore=MPI,OMP.

Prerequisite for display: Expand the Time in Non-User Code column group.

Interpretation: Time in the ignored code parts is not used for the : estimations. It does not affect time
estimated for offloaded code regions.

Instances (GPU Roofline)
Description: Total number of times a task executes on a GPU.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > Kernel Details column group.

Prerequisite for display: Expand the Kernel Details column group.

Instances (Offload Modeling - Compute Estimates)
Description: Total estimated number of times a loop executes on a target platform.

Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Compute Estimates column group.

Prerequisite for display: Expand the Compute Estimates column group.

Instances (Offload Modeling - Measured)
Description: Total number of times a loop executes on a baseline GPU device.

  1   Intel® Advisor User Guide

646



Collected during the \ Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Measured column group.

INT AI (GPU Compute Performance)
Description: Ratio of integer operations to transferred bytes.

Collected during the Characterization with GPU profiling in the GPU Roofline Insights perspective and found
in the GPU Roofline Regions report > GPU Kernels pane > GPU Compute Performance column group.

Instruction types counted: BASIC COMPUTE, FMA, BIT, DIV, POW, MATH.

Prerequisites for display: Expand the GPU Compute Performance column group. This metric is also
shown in the INT Operations column when the group is collapsed.

INT AI (Global Memory)
Description: Estimated arithmetic intensity for integer operations, in operations per byte.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated FLOAT Operations column group.

Calculated as ratio of integer operations to total bytes transferred to global memory (DRAM, HBM, or
GDDR6).

INT Operations
Description: Summary of integer operations used in a kernel.

Collected during the Characterization analysis with GPU profiling in the GPU Roofline Insights perspective
and found in the GPU Roofline Regions tab > GPU Kernels pane > GPU Compute Performance column
group.

Aggregation:

• GOp - Number of giga integer operations.
• GOp/s - Number of giga integer operations per second.
• AI - Ratio of integer operations to the bytes transferred to GPU memory.

You can hover over each value in the cell to see the value description.

IPC Rate
Description: Average rate of instructions per cycle (IPC) calculated for two floating-point unit (FPU)
pipelines. For code running on the Intel® Arc™ graphics code-named Alchemist or newer, IPC rate is calculated
for extended math (EM) unit and floating-point unit (FPU) pipelines.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > EU Instructions column group or GPU Roofline Regions
tab > GPU Kernels pane > XVE Instructions column group (for code running on the Intel® Arc™ graphics
code-named Alchemist or newer).

Iteration Space
Description: Summary of iteration metrics measured on a baseline device.

Collected during the Characterization analysis with Trip Counts (for CPU regions) or the Survey analysis with
GPU profiling (for GPU regions) in the Offload Modeling perspective and found in the Accelerated Regions
tab > Code Regions pane > Measured column group.

Aggregation: For the CPU-to-GPU modeling, this column reports the following metrics:

• Call Count (CC) - The number of times a loop/function was invoked.
• Trip Counts (TC) - The average number of times a loop/function was executed.

Intel® Advisor User Guide  1  

647



For the GPU-to-GPU modeling, this column reports the following metrics:

• Global - Total number of work items in all work groups.
• Local - The number of work items in one work group.

J

K
• Kernel
• Kernel Launch Tax
• Kernel Type

Kernel
Description: Kernel name.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane.

Kernel Launch Tax
Description: Total estimated time cost for invoking a kernel when offloading a loop to a target platform.
Does not include data transfer costs.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated Bounded By column group.

Prerequisite for display: Expand the Estimated Bounded By column group.

Kernel Type
Description: Action that a kernel performs.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane.

Possible values:

• Compute
• Transfer
• Transfer in
• Transfer out
• Synchronization
• Allocate memory

L
• Latencies
• L3 BW
• L3 Cache
• L3 Cache BW
• L3 Cache BW Utilization
• L3 Cache Read Traffic
• L3 Cache Traffic
• L3 Cache Write Traffic
• L3 Shader
• LLC
• LLC BW (Estimated Bounded By)

  1   Intel® Advisor User Guide

648



• LLC BW (Memory Estimations)
• LLC BW Utilization
• LLC Read Traffic
• LLC Traffic
• LLC Write Traffic
• Load Latency
• Local
• Local Memory Size
• Local Size (Compute Estimates)
• Local Size (Measured)
• Loop/Function

Latencies
Description: Top uncovered latency in a loop/function, in milliseconds.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated Bounded By column group.

L3 BW
Description: L3 Bandwidth. Estimated time, in seconds, spent on reading from L3 cache and writing to L3
cache assuming a maximum L3 cache bandwidth is achieved.

Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Estimated Bounded By column group.

Prerequisite for display: Expand the Estimated Bounded By column group.

L3 Cache
Description: Summary of estimated L3 cache usage, including L3 cache bandwidth (in gigabytes per
second) and L3 cache traffic calculated as sum of read and write traffic.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

L3 Cache BW
Description: Average estimated rate at which data is transferred to and from the L3 cache, in gigabytes per
second.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

Intel® Advisor User Guide  1  

649



L3 Cache BW Utilization
Description: Estimated L3 cache bandwidth utilization, in per cent, calculated as ratio of average bandwidth
to a maximum theoretical bandwidth.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

L3 Cache Read Traffic
Description: Total estimated data read from the L3 cache.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

L3 Cache Traffic
Description: Estimated sum of data read from and written to the L3 cache.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

L3 Cache Write Traffic
Description: Total estimated data written to the L3 cache.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

  1   Intel® Advisor User Guide

650



L3 Shader
Description: Summary of L3 cache usage in a kernel.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane.

Aggregation: The column reports the following metrics:

• Total L3 traffic, in gigabytes
• L3 bandwidth, in gigabytes per second
• Cache line utilization, in per cent. This metric is shown only if CARM is collected. If the kernel uses only a

small portion of the transferred bytes, the value is highlighted in red.

You can hover over each value in the cell to see the value description and interpretation hints.

LLC
Description: Estimated last-level cache (LLC) usage, including LLC cache bandwidth (in gigabytes per
second) and total LLC cache traffic, which is a sum of read and write traffic.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

LLC BW (Estimated Bounded By)
Description: Last-level cache (LLC) bandwidth. Estimated time, in seconds, spent on reading from LLC and
writing to LLC assuming a maximum LLC bandwidth is achieved.

Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Estimated Bounded By column group.

Prerequisite for display: Expand the Estimated Bounded By column group.

LLC BW (Memory Estimations)
Description: Estimated rate at which data is transferred to and from the LLC cache, in gigabytes per
second.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

LLC BW Utilization
Description: Estimated LLC cache bandwidth utilization, in per cent.

Intel® Advisor User Guide  1  

651



Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

Calculation: Ratio of average bandwidth to a maximum theoretical bandwidth.

LLC Read Traffic
Description: Total estimated data read from the LLC cache.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

LLC Traffic
Description: Estimated sum of data read from and written to the LLC cache.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

LLC Write Traffic
Description: Total estimated data written to the LLC cache.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

  1   Intel® Advisor User Guide

652



Load Latency
Description: Uncovered cache or memory load latencies uncovered in a code region, in milliseconds.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated Bounded By column group.

Prerequisite for display: Estimated Bounded By column group.

Local
Description: Number of work items in one work group.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions report > GPU Kernels pane > Work Size column group.

Local Memory Size
Description: Local memory size used by each thread group.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > Kernel Details column group.

Prerequisite for display: Expand the Kernel Details column group.

Local Size (Compute Estimates)
Description: Total estimated number of work items in one work group of a loop executed after offloaded on
a target platform.

Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Compute Estimates column group.

Prerequisite for display: Expand the Compute Estimates column group.

Local Size (Measured)
Description: Total number of work items in one work group of a kernel. This metric is only available for the
GPU-to-GPU modeling.

Collected during the Survey analysis with enabled GPU profiling in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Measured column group.

Prerequisite for display: Expand the Measured column group.

Loop/Function
Description: Name and source location of a loop/function in a region, where region is a sub-tree of loops/
functions in a call tree.

Collected during the Survey analysis in the Offload Modeling perspective and found in the Accelerated
Regions tab > Code Regions pane.

M
• Matrix Engine Active
• Memory Footprint, B
• Memory Impact
• Module

Intel® Advisor User Guide  1  

653



Matrix Engine Active
Description: Average percentage of time when a matrix engine pipeline is processed. This metric is
available for code running on the Intel® Arc™ graphics code-named Alchemist or newer.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > XVE Instructions column group.

Memory Footprint, B
Description: Size of unique data (variables) spilled from general register file (GRF) per thread, in bytes.

Collected during the Characterization analysis with Trip Counts and GPU profiling in the GPU Roofline
Insights perspective and found in the GPU Roofline Regions tab > GPU Kernels pane > Register
Spilling column group.

Prerequisites for display: Expand the Register Spilling column group. This metric is also shown in the
collapsed Register Spilling column.

Interpretation: Higher value indicates that register spilling decreases performance.

Memory Impact
Description: Total memory traffic between general register file (GRF) and L3 caused by the register spilling,
in percentage of total traffic.

Collected during the Characterization analysis with Trip Counts and GPU profiling in the GPU Roofline
Insights perspective and found in the GPU Roofline Regions tab > GPU Kernels pane > Register
Spilling column group.

Prerequisites for display: Expand the Register Spilling column group.

Interpretation: The lower the ratio is, the better the kernel is optimized. If you see a high value, it means
that spill/fill traffic takes up a big part of total traffic and may significantly decrease kernel performance.

Calculation: Ratio of total spill/fill traffic to the total observed cache traffic.

Module
Description: Program module name.

Collected during the Survey in the Offload Modeling perspective and found in the Accelerated Regions
tab > Code Regions pane > Location column group.

Prerequisites for display: Expand the Location column group.

N

O
• Offload Tax
• Offload Summary
• Overall Non-Accelerable Time

Offload Tax
Description: Total time spent for transferring data and launching kernel, in milliseconds.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated Bounded By column group.

Prerequisite for display: Expand the Estimated Bounded By column group.

  1   Intel® Advisor User Guide

654



Offload Summary
Description: Conclusion that indicates whether a code region is profitable for offloading to a target platform.
In the Top-Down pane, it also reports the node position, such as offload child loops and child functions.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Basic Estimated Metrics column group.

Overall Non-Accelerable Time
Description: Total estimated time spent in non-offloaded parts of offloaded code regions.

Collected during the Survey and Performance Modeling analysis in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Time in Non-User Code column group.

Calculation: This column is a sum of the following metrics:

• Total Time in DAAL Calls
• Total Time in SYCL Calls
• Total Time in MPI Calls
• Total Time in OpenCL Calls
• Total Time in OpenMP Calls
• Total Time in System Calls
• Total Time in TBB Calls

Interpretation: These code parts are located inside offloaded regions, but the performance model assumes
these parts are executed on a baseline device. Examples of such code parts are OpenMP* code parts, SYCL
runtimes, and system calls.

P
• Parallel Factor
• Parallel Threads
• Performance Issues (GPU Roofline)
• Performance Issues (Offload Modeling)
• Private
• Private Memory Size

Parallel Factor
Description: Number of loop iterations or kernel work items executed in parallel on a target device for a
loop/function.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Compute Estimates column group.

Parallel Threads
Description: Estimated number of threads scheduled simultaneously on all execution units (EU) or vector
engines (XVE).

Collected during the Performance Modeling analysis in the Offload Modeling perspective andfound in the
Accelerated Regions tab > Code Regions pane > Compute Estimates column group.

Prerequisites for display: Expand the Compute Estimates column group.

Performance Issues (GPU Roofline)
Description: Performance issues and recommendations for optimizing code regions executed on a GPU.

Collected during the Survey, Characterization, and Performance Modeling analyses in the GPU Roofline
Insights perspective and found in the GPU Roofline Regions tab > GPU Kernels pane .

Intel® Advisor User Guide  1  

655



Interpretation: Click to view the full recommendation text with code examples and recommended fixes in
the Recommendations pane of the GPU Roofline Regions tab.

Performance Issues (Offload Modeling)
Description: Recommendations for offloading code regions with estimated performance summary and/or
potential issues with optimization hints.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane.

Interpretation: Click to view the full recommendation text with examples of using SYCL and OpenMP*
programming modeling to offload the code regions and/or fix the performance issue in the
Recommendations pane of the Accelerated Regions tab.

Private
Description: Total estimated data transferred to a private memory from a target platform by a loop. If you
enabled the data reuse analysis for the Performance Modeling, the metric value is calculated considering data
reuse between code regions on a target platform.

Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Estimated Data Transfers with Reuse
column group.

Prerequisite for collection:

• GUI: From the Analysis Workflow pane, set the Data Transfer Simulation to Light, Medium, or Full.
• CLI: Run the --collect=tripcounts action with the --data-transfer=[full | medium | light]

action options.

Prerequisite for display: Expand the Estimated Data Transfers with Reuse column group.

Private Memory Size
Description: Private memory size allocated by a compiler to each thread.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > Kernel Details column group.

Prerequisite for display: Expand the Kernel Details column group.

Q

R
• Read
• Read, GB (GPU Memory)
• Read, GB (Register Spilling)
• Read, GB (SLM)
• Read, GB/s (GPU Memory)
• Read, GB/s (SLM)
• Read without Reuse
• Region
• Register Spilling
• Repetitions

  1   Intel® Advisor User Guide

656



Read
Description: Estimated data read from a target platform by an offload region, in megabytes. If you enabled
the data reuse analysis for the Performance Modeling, the metric value is calculated considering data reuse
between code regions on a target platform.

Collected during the Characterization analysis with Trip Counts analysis in the Offload Modeling perspective
and found in the Accelerated Regions tab > Code Regions pane > Estimated Data Transfers with
Reuse column group.

Prerequisite for collection:

• GUI: From the Analysis Workflow pane, set the Data Transfer Simulation to Light, Medium, or Full.
• CLI: Run the --collect=tripcounts action with the --data-transfer=[full | medium | light]

action options.

Prerequisite for display: Expand the Estimated Data Transfers with Reuse column group.

Read, GB (GPU Memory)
Description: Total data read from GPU, chip uncore (LLC), and main memory, in gigabytes.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > GPU Memory column group.

Prerequisites for display: Expand the GPU Memory column group.

Read, GB (Register Spilling)
Description: Total data read, or filled, from L3 memory due to register spilling, in gigabytes.

Collected during the Characterization analysis with Trip Counts and GPU profiling in the GPU Roofline
Insights perspective and found in the GPU Roofline Regions tab > GPU Kernels pane > Register
Spilling column group.

Prerequisites for display: Expand the Register Spilling column group.

Read, GB (SLM)
Description: Total data read from the shared local memory (SLM), in gigabytes.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > SLM column group.

Prerequisites for display: Expand the SLM column group.

Read, GB/s (GPU Memory)
Description: Rate at which data is read from GPU, chip uncore (LLC), and main memory, in gigabytes per
second.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > GPU Memory column group.

Prerequisites for display: Expand the GPU Memory column group.

Read, GB/s (SLM)
Description: Rate at which data is read from shared local memory (SLM), in gigabytes per second.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions report > GPU Kernels pane > SLM column group.

Prerequisites for display: Expand the SLM column group.

Intel® Advisor User Guide  1  

657



Read without Reuse
Description: Estimated data read from a target platform by a code region considering no data is reused
between kernels, in megabytes. This metric is available only if you enabled the data reuse analysis for the
Performance Modeling.

Collected during the Characterization analysis with Trip Counts) and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane >
Estimated Data Transfers with Reuse column group.

Prerequisite for collection:

• GUI: From the Analysis Workflow pane, set the Data Transfer Simulation under Characterization to
Full and enable the Data Reuse Analysis checkbox under Performance Modeling.

• CLI: Use the --data-transfer=full action option with the --collect=tripcounts action and the 
--data-reuse-analysis option with the --collect=tripcounts and --collect=projection actions.

Prerequisite for display: Expand the Estimated Data Transfers with Reuse column group.

Region
Description: Programming model used in a code region.

Collected during the Survey analysis in the Offload Modeling perspective and found in the Accelerated
Regions tab > Code Regions pane > Measured column group.

Register Spilling
Description: Summary of register spilling impact on kernel performance

Collected during the Characterization analysis with Trip Counts and GPU profiling in the GPU Roofline
Insights perspective and found in the GPU Roofline Regions tab > GPU Kernels pane.

Interpretation: Register spilling occurs when a thread block (or work item) needs more space in the
general register file (GRF) than is available, and data is loaded, or spilled, into memory through L3 cache.
Next this data is needed, application has to read, or fill, it from the L3 cache memory, which causes more
memory operation. As a result, when register spilling occurs in a kernel, it decreases its performance.

For the best performance, there should be no spills in the kernel.

Aggregation:

• Footprint - Size of unique data (variables) spilled from GRF per thread, in bytes. Higher value indicates
register spilling decreases performance.

• Traffic - Total size of data spilled to (spill traffic) and filled from (fill traffic) L3 cache memory due to
register spilling, in gigabytes. Higher value indicates register spilling decreases performance.

• Impact (in per cent) - Ratio between total spill/fill traffic and total L3 traffic. It indicates how much traffic
is not caused by data exchanged in the kernel algorithm. Higher value indicates register spilling decreases
performance.

Repetitions
Description: Average repetitions of atomic SEND instructions.

If a GPU does not support an atomic operation, an additional Compare-And-Swap (CAS) atomic is called. It
loads data to a register, operates on it, and compares the result with a previous value. If the values do not
match, it means another thread has changed the value, and the current result is invalid. To recalculate, the
CAS atomic repeats the process: it loads data, operates on it, and compares. The number of such repetitions
on average for atomic SEND instructions is reported in the repetitions metric.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Atomics column group.

  1   Intel® Advisor User Guide

658



Prerequisites for display: Expand the Atomics column group.

Calculated as Shader atomics / Expected atomics, where:

• Shader atomics is the number of atomics called in a kernel as measured on a hardware.
• Expected atomics is the expected number of atomics called in a kernel without repetitions. It is calculated

as Static Atomics * Work Items / Average execution size.

Static atoimcs is the number of atomics defined in a source code. Each static atomic is transformed to an
atomic SEND instruction with a certain average execution size, which is the number of elements that the
instruction can process in parallel (SIMD model). The ratio of work items to the average execution size is
the estimated number of atomic SEND instrictions for one source static atomic.

S
• Send Active
• SIMD Width (GPU Roofline)
• SIMD Width (Offload Modeling - Compute Estimates)
• SIMD Width (Offload Modeling - Measured)
• SLM (GPU Roofline)
• SLM (Offload Modeling)
• SLM BW (Estimated Bounded by)
• SLM BW (Memory Estimations)
• SLM BW Utilization
• SLM Read Traffic
• SLM Traffic
• SLM Write Traffic
• Source Location (GPU Roofline)
• Source Location (Offload Modeling)
• Spill Count per Thread
• Stalled
• SVM Usage Type
• Speed-Up
• Synchronization Time

Send Active
Description: Percentage of cycles on all execution units (EU) or vector engines (XVE) when a send pipeline
is actively processed.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > EU Instructions column group or GPU Roofline Regions
tab > GPU Kernels pane > XVE Instructions column group (for code running on the Intel® Arc™ graphics
code-named Alchemist or newer).

SIMD Width (GPU Roofline)
Description: Number of work items processed by a single GPU thread.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions report > GPU Kernels pane > Kernel Details column group.

Prerequisites for display: Expand the Kernel Details column group.

SIMD Width (Offload Modeling - Compute Estimates)
Description: Estimated number of work items processed by a single thread on a target platform.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Compute Estimates column group.

Intel® Advisor User Guide  1  

659



Prerequisites for display: Expand the Compute Estimates column group.

SIMD Width (Offload Modeling - Measured)
Description: Number of work items processed by a single thread on a baseline device. This metric is only
available for the GPU-to-GPU modeling.

Collected during the Survey analysis with enabled GPU profiling analysis in the Offload Modeling perspective
and found in the Accelerated Regions tab > Code Regions pane > Measured column group.

Prerequisites for display: Expand the Measured column group.

SLM (GPU Roofline)
Description: Summary of shared local memory (SLM) usage in a kernel.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane.

Aggregation: The column reports the following metrics:

• Total SLM traffic, in gigabytes
• SLM bandwidth, in gigabytes per second

You can hover over each value in the cell to see the value description.

SLM (Offload Modeling)
Description: Summary of estimated SLM usage, including SLM bandwidth, in gigabytes per second, and SLM
traffic calculated as sum of read and write traffic.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

SLM BW (Estimated Bounded by)
Description: Shared Local Memory (SLM) bandwidth. Estimated time, in seconds, spent on reading from
SLM and writing to SLM assuming a maximum SLM bandwidth is achieved.

Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Estimated Bounded By column group.

Prerequisite for display: Expand the Estimated Bounded By column group.

SLM BW (Memory Estimations)
Description: Shared Local Memory (SLM) bandwidth. Average estimated rate at which data is transferred to
and from the SLM. This is a dynamic value, and depending on the bandwidth value, it can be measured in
bytes per second, kilobytes per second, megabytes per second, and so on.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for display: Expand the Memory Estimations column group.

SLM BW Utilization
Description: Estimated shared local memory (SLM) bandwidth utilization, in per cent.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

  1   Intel® Advisor User Guide

660



Prerequisites for display: Expand the Memory Estimations column group.

Calculation: Ratio of average bandwidth to a maximum theoretical bandwidth.

SLM Read Traffic
Description: Total estimated data read from the SLM.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for display: Expand the Memory Estimations column group.

SLM Traffic
Description: Estimated sum of data read from and written to the shared local memory (SLM).

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for display: Expand the Memory Estimations column group.

SLM Write Traffic
Description: Total estimated data written to shared local memory (SLM).

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for display: Expand the Memory Estimations column group.

Source Location (Offload Modeling)
Description: Source file name and line number.

Collected during the Survey in the Offload Modeling perspective and found in the Accelerated Regions
tab > Code Regions pane > Location column group.

Interpretation: Use this column to understand where a code region is located.

Source Location (GPU Roofline)
Description: Source file name and line number.

Collected during the Survey in the GPU Roofline Insights perspective and found in the GPU Roofline
Regions tab > GPU Kernels pane.

Interpretation: Use this column to understand where a kernel is located.

Spill Count per Thread
Description: Number of spill instructions used to load data values from general register file (GRF) into
memory (L3 cache).

Collected during the Characterization analysis with Trip Counts and GPU profiling in the GPU Roofline
Insights perspective and found in the GPU Roofline Regions tab > GPU Kernels pane > Register
Spilling column group.

Prerequisites for display: Expand the Register Spilling column group.

Interpretation: A high number of memory spill/fill (or load/store) operations significantly increases memory
traffic and decreases the performance.

Intel® Advisor User Guide  1  

661



Stalled
Description: Percentage of cycles on all execution units (EU) or vector engines (XVE) when at least one
thread is scheduled, but the EU or XVE is stalled.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > EU Array column group or GPU Roofline Regions tab >
GPU Kernels pane > XVE Array column group (for code running on the Intel® Arc™ graphics code-named
Alchemist or newer).

SVM Usage Type
Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > Kernel Details column group.

Prerequisites for display: Expand the Kernel Details column group.

Speed-Up
Description: Estimated speedup for a loop offloaded to a target device, in comparison to the original
elapsed time.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Basic Estimated Metrics column group.

Interpretation: If the speedup is more than 1, the code region is recommended for offloading to a target
device. If the speedup is equal to or less than 1, the code region is not recommended for offloading.

Synchronization Time
Description: Total time spent on synchronization tasks.

Collected during the Characterization analysis in the GPU Roofline Insights perspective and found in the
GPU Roofline Regions tab > GPU Kernels pane > Data Transferred column group.

Prerequisites for display: Expand the Data Transferred column group.

T
• Taxes with Reuse
• Thread Occupancy (Compute Estimates)
• Thread Occupancy (Measured)
• Threads per EU
• Throughput
• Time (Estimated)
• Time (Measured)
• Time by DRAM BW
• Time by GTI BW
• Time by L3 Cache BW
• Time by LLC BW
• Time by SLM BW
• To Target
• ToFrom Target
• Total
• Total, GB (GPU Memory)
• Total, GB (L3 Shader)
• Total, GB (SLM)
• Total, GB/s
• Total Size
• Total Time (Data Transferred)

  1   Intel® Advisor User Guide

662



• Total Time (Kernel Details)
• Total Time in DAAL Calls
• Total Time in SYCL Calls
• Total Time in MPI Calls
• Total Time in OpenCL Calls
• Total Time in OpenMP Calls
• Total Time in System Calls
• Total Time in TBB Calls
• Total Traffic, GB (Register Spilling)
• Total Trip Count
• Total without Reuse

Taxes with Reuse
Description: The highest estimated time cost and a sum of all other costs for offloading a loop from host to
a target platform. If you enabled the data reuse analysis for the Performance Modeling, the metric value is
calculated considering data reuse between code regions on a target platform. A triangle icon in a table cell
indicates that this region reused data.

This decreases the estimates data transfer tax.

Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Estimated Bounded By column group.

Thread Occupancy (Compute Estimates)
Description: Average percentage of thread slots occupied on all execution units or vector engines estimated
on a target device.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Compute Estimates column group.

Prerequisites for display: Expand the Compute Estimates column group.

Thread Occupancy (Measured)
Description: Average percentage of thread slots occupied on all execution units or vector engines measured
on a baseline device. This metric is only available for the GPU-to-GPU modeling.

Collected during the Survey analysis with GPU profiling in the Offload Modeling perspective and found in
the Accelerated Regions tab > Code Regions pane > Measured column group.

Prerequisites for display: Expand the Measured column group.

Threads per EU
Description: Estimated number of threads scheduled simultaneously per execution unit (EU).

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Compute Estimates column group.

Prerequisites for display: Expand the Compute Estimates column group.

Threads per XVE
Description: Estimated number of threads scheduled simultaneously per vector engine (XVE). This metric is
available if you model performance for the Intel® Arc™ graphics code-named Alchemist, which is XeHPG 256
and XeHPG 512 target device configurations in the Intel Advisor, or newer. This metric is equivalent to the
Threads per EU metric for legacy terminology.

Intel® Advisor User Guide  1  

663



Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Compute Estimates column group.

Prerequisites for display: Expand the Compute Estimates column group.

Throughput
Description: Top two factors that a loop/function is bounded by, in milliseconds.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Estimated Bounded By column group.

Time (Estimated)
Description: Estimated elapsed wall-clock time from beginning to end of loop execution estimated on a
target platform after offloading, including offload overhead, with percentage to the total time.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Basic Estimated Metrics column group.

Time (Measured)
Description: Elapsed wall-clock time from beginning to end of loop execution measured on a host platform.

Collected during the Survey analysis in the Offload Modeling perspective and found in the Accelerated
Regions tab > Code Regions pane > Measured column group.

Time by DRAM BW
Description: Estimated time, in seconds, spent on reading from DRAM memory and writing to DRAM
memory assuming a maximum DRAM memory bandwidth is achieved.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

Time by GTI BW
Description: Estimated time, in seconds, spent on reading from graphics technology interface (GTI) and
writing to GTI assuming a maximum GTI bandwidth is achieved.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for display: Expand the Memory Estimations column group.

Time by L3 Cache BW
Description: Estimated time, in seconds, spent on reading from L3 cache and writing to L3 cache assuming
a maximum L3 cache bandwidth is achieved.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

  1   Intel® Advisor User Guide

664



Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

Time by LLC BW
Description: Estimated time, in seconds, spent on reading from last-level cache (LLC) and writing to LLC
assuming a maximum LLC bandwidth is achieved.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, enable the Cache Simulation checkbox.
• CLI: Run the --collect=tripcounts action with the --enable-cache-simulation and --target-

device=<device> action options.

Prerequisites for display: Expand the Memory Estimations column group.

Time by SLM BW
Description: Estimated time, in seconds, spent on reading from shared local memory (SLM) and writing to
SLM assuming a maximum SLM bandwidth is achieved.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane > Memory
Estimations column group.

Prerequisites for display: Expand the Memory Estimations column group.

To Target
Description: Estimated data transferred to a target platform from a shared memory by a loop, in
megabytes. If you enabled the data reuse analysis for the Performance Modeling, the metric value is
calculated considering data reuse between code regions on a target platform.

Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Estimated Data Transfer with Reuse
column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, set the Data Transfer Simulation to Light, Medium, or Full.
• CLI: Run the --collect=tripcounts action with the --data-transfer=[full | medium | light]

action options.

Prerequisite for display: Expand the Estimated Data Transfer with Reuse column group.

ToFrom Target
Description: Sum of estimated data transferred both to/from a shared memory to/from a target platform by
a loop, in megabytes. If you enabled the data reuse analysis for the Performance Modeling, the metric value
is calculated considering data reuse between code regions on a target platform.

Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Estimated Data Transfer with Reuse
column group.

Intel® Advisor User Guide  1  

665



Prerequisites for collection:

• GUI: From the Analysis Workflow pane, set the Data Transfer Simulation to Light, Medium, or Full.
• CLI: Run the --collect=tripcounts action with the --data-transfer=[full | medium | light]

action options.

Prerequisite for display: Expand the Estimated Data Transfer with Reuse column group.

Total
Description: Sum of the total estimated traffic incoming to a target platform and the total estimated traffic
outgoing from the target platform, for an offload loop, in megabytes.

Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Estimated Data Transfer with Reuse
column group.

Prerequisites for collection:

• GUI: From the Analysis Workflow pane, set the Data Transfer Simulation to Light, Medium, or Full.
• CLI: Run the --collect=tripcounts action with the --data-transfer=[full | medium | light]

action options.

Prerequisite for display: Expand the Estimated Data Transfer with Reuse column group.

Calculation: (MappedTo + MappedFrom + 2*MappedToFrom). If you enabled the data reuse analysis for the
Performance Modeling, the metric value is calculated considering data reuse between code regions on a
target platform.

Total, GB (GPU Memory)
Description: Total data transferred to and from GPU, chip uncore (LLC), and main memory, in gigabytes.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > GPU Memory column group.

Prerequisite for display: Expand the GPU Memory column. This metric is also shown in the collapsed
GPU Memory column.

Total, GB (L3 Shader)
Description: Total data transferred between execution units or vector engines and L3 cache, in gigabytes.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > L3 Shader column group.

Prerequisites for display: Expand the L3 Shader column. This metric is also shown in the collapsed L3
Shader column.

Total, GB (SLM)
Description: Total data transferred to and from the shared local memory (SLM).

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > SLM column group.

Prerequisites for display: Expand the SLM column. This metric is also shown in the collapsed SLM
column.

Total, GB/s
Description: Average data transfer bandwidth between CPU and GPU.

  1   Intel® Advisor User Guide

666



Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > Data Transferred column group.

Prerequisites for display: Expand the Data Transferred column group.

Interpretation: In some cases, such as clEnqueueMapBuffer, data transfers might generate high
bandwidth because memory is not copied but shared using L3 cache.

Total Size
Description: Total data processed on a GPU.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > Data Transferred column group.

Total Time (Data Transferred)
Description: Total time for transferring data from host to device and from device to host.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > Data Transferred column group.

Total Time (Kernel Details)
Description: Total time spent executing a task.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > Kernel Details column group.

Prerequisites for display: Expand the Kernel Details column group.

Total Time in DAAL Calls
Description: Total time spent in Intel® Data Analytics Acceleration Library (Intel® DAAL) calls in an offloaded
code region, in seconds.

Collected during the Survey analysis in the Offload Modeling perspective and found in the Accelerated
Regions tab > Code Regions pane > Time in Non-User Code column group.

Prerequisites for display: Expand the Time in Non-User Code column group.

Interpretation: If the value in the column is more than 0, the code region contains Intel DAAL calls.

Total Time in SYCL Calls
Description: Total time spent in SYCL calls in an offloaded code region, in seconds.

Collected during the Survey analysis in the Offload Modeling perspective and found in the Accelerated
Regions tab > Code Regions pane > Time in Non-User Code column group.

Prerequisites for display: Expand the Time in Non-User Code column group.

Interpretation: If the value in the column is more than 0, the code region contains SYCL calls.

Total Time in MPI Calls
Description: Total time spent in MPI calls in an offloaded code region, in seconds.

Collected during the Survey analysis in the Offload Modeling perspective and found in the Accelerated
Regions tab > Code Regions pane > Time in Non-User Code column group.

Interpretation: If the value in the column is more than 0, the code region contains MPI calls.

Intel® Advisor User Guide  1  

667



Total Time in OpenCL Calls
Description: Total time spent in OpenCL™ calls in an offloaded code region, in seconds.

Collected during the Survey analysis in the Offload Modeling perspective and found in the Accelerated
Regions tab > Code Regions pane > Time in Non-User Code column group.

Prerequisites for display: Expand the Time in Non-User Code column group.

Interpretation: If the value in the column is more than 0, the code region contains OpenCL calls.

Total Time in OpenMP Calls
Description: Total time spent in OpenMP* calls in an offloaded code region, in seconds.

Collected during the Survey analysis in the Offload Modeling perspective and found in the Accelerated
Regions tab > Code Regions pane > Time in Non-User Code column group .

Prerequisites for display: Expand the Time in Non-User Code column group.

Interpretation: If the value in the column is more than 0, the code region contains OpenMP calls.

Total Time in System Calls
Description: Total time spent in system calls in an offloaded code region, in seconds.

Collected during the Survey analysis in the Offload Modeling perspective and found in the Accelerated
Regions tab > Code Regions pane > Time in Non-User Code column group.

Prerequisites for display: Expand the Time in Non-User Code column group.

Interpretation: If the value in the column is more than 0, the code region contains system calls.

Total Time in TBB Calls
Description: Total time spent in Intel® oneAPI Threading Building Blocks (oneTBB) calls in an offloaded code
region, in seconds.

Collected during the Survey analysis in the Offload Modeling perspective and found in the Accelerated
Regions tab > Code Regions pane > Time in Non-User Code column group.

Prerequisites for display: Expand the Time in Non-User Code column group.

Interpretation: If the value in the column is more than 0, the code region contains oneTBB calls.

Total Traffic, GB (Register Spilling)
Description: Total data spilled to and filled from L3 memory due to register spilling, in gigabytes.

Collected during the Trip Counts analysis with GPU profiling in the GPU Roofline Insights perspective and
found in the GPU Roofline Regions tab > GPU Kernels pane > Register Spilling column group.

Prerequisites for display: Expand the Register Spilling column group.

Interpretation: High value indicates that spill/fill traffic might take a big part of the total data traffic in the
kernel and decrease its performance. See the Memory Impact column to understand how much of total
traffic it is.

Calculation: A sum of data spilled from general register file (GRF) to L3 and filled from L3 to GRF.

Total Trip Count
Description: Total number of times a loop/function is executed.

Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Measured column group.

  1   Intel® Advisor User Guide

668



Prerequisites for display: Expand the Measured column group.

Total without Reuse
Description: Sum of the total estimated traffic incoming to a target platform and the total estimated traffic
outgoing from the target platform considering no data is reused, in megabytes. This metric is available only if
you enabled the data reuse analysis for the Performance Modeling.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane >
Estimated Data Transfer with Reuse column group.

Prerequisite for collection:

• GUI: From the Analysis Workflow pane, set the Data Transfer Simulation under Characterization to
Full and enable the Data Reuse Analysis checkbox under Performance Modeling.

• CLI: Use the --data-transfer=full action option with the --collect=tripcounts action and the 
--data-reuse-analysis option with the --collect=tripcounts and --collect=projection actions.

Prerequisite for display: Expand the Estimated Data Transfer with Reuse column group.

Calculation: (MappedTo + MappedFrom + 2*MappedToFrom).

U
• Unroll Factor

Unroll Factor
Description: Loop unroll factor applied by the compiler.

Collected during the Survey in the Offload Modeling perspective and found in the Accelerated Regions
tab > Code Regions pane >Measured column group.

Prerequisites for display: Expand the Measured column group.

V
• Vector ISA
• Vector Length

Vector ISA
Description: The highest vector instruction set architecture (ISA) used for individual instructions.

Collected during the Survey in the Offload Modeling perspective and found in the Accelerated Regions
tab > Code Regions pane > Measured column group.

Prerequisites for display: Expand the Measured column group.

Vector Length
Description: Number of elements processed in a single iteration of vector loops or the number of elements
processed in individual vector instructions determined by a binary static analysis or an Intel® Compiler.

Collected during the Survey in the Offload Modeling perspective and found in the Accelerated Regions
tab > Code Regions pane > Measured column group.

Prerequisites for display: Expand the Measured column group.

W
• Why Not Offloaded

Intel® Advisor User Guide  1  

669



• Write
• Write, GB (GPU Memory)
• Write, GB (Register Spilling)
• Write, GB (SLM)
• Write, GB/s (GPU Memory)
• Write, GB/s (SLM)
• Write without Reuse

Why Not Offloaded
Description: Reason why a code region is not recommended for offloading to a target GPU device.

Collected during the Performance Modeling analysis in the Offload Modeling perspective and found in the
Accelerated Regions tab > Code Regions pane > Basic Estimated Metrics column group.

Interpretation: See Investigate Non-Offloaded Code Regions for details about available reasons.

Write
Description: Estimated data written to a target platform by a loop. If you enabled the data reuse analysis
for the Performance Modeling, the metric value is calculated considering data reuse between code regions on
a target platform.

Collected during the Characterization analysis with Trip Counts in the Offload Modeling perspective and
found in the Accelerated Regions tab > Code Regions pane > Estimated Data Transfer with Reuse
column group.

Prerequisite for collection:

• GUI: From the Analysis Workflow pane, set the Data Transfer Simulation under Characterization to
Light, Medium, or Full.

• CLI: Use the --data-transfer=[full | medium | light] option with the --collect=tripcounts
action.

Prerequisite for display: Expand the Estimated Data Transfer with Reuse column group.

Write, GB (GPU Memory)
Description: Total data written to GPU, chip uncore (LLC), and main memory, in gigabytes.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > GPU Memory column group.

Prerequisites for display: Expand the GPU Memory column group.

Write, GB (Register Spilling)
Description: Total data written, or spilled, to L3 memory due to register spilling, in gigabytes.

Collected during the Characterization analysis with Trip Counts and GPU profiling in the GPU Roofline
Insights perspective and found in the GPU Roofline Regions tab > GPU Kernels pane > Register
Spilling column group.

Prerequisites for display: Expand the Register Spilling column group.

Write, GB (SLM)
Description: Total data written to the shared local memory (SLM), in gigabytes.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > SLM column group.

Prerequisites for display: Expand the SLM column group.

  1   Intel® Advisor User Guide

670



Write, GB/s (GPU Memory)
Description: Rate at which data is written to GPU, chip uncore (LLC), and main memory, in gigabytes per
second.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > GPU Memory column group.

Prerequisites for display: Expand the GPU Memory column group.

Write, GB/s (SLM)
Description: Rate at which data is written to shared local memory (SLM), in gigabytes per second.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane > SLM column group.

Prerequisites for display: Expand the SLM column group.

Write without Reuse
Description: Estimated data written to a target platform by a code region considering no data is reused, in
megabytes. This metric is available only if you enabled the data reuse analysis for the Performance Modeling.

Collected during the Characterization analysis with Trip Counts and Performance Modeling analysis in the 
Offload Modeling perspective and found in the Accelerated Regions tab > Code Regions pane >
Estimated Data Transfer with Reuse column group.

Prerequisite for collection:

• GUI: From the Analysis Workflow pane, set the Data Transfer Simulation under Characterization to
Full and enable the Data Reuse Analysis checkbox under Performance Modeling.

• CLI: Use the --data-transfer=full action option with the --collect=tripcounts action and the 
--data-reuse-analysis option with the --collect=tripcounts and --collect=projection actions.

Prerequisite for display: Expand the Estimated Data Transfer with Reuse column group.

X, Y, Z
• XVE Threading Occupancy

XVE Threading Occupancy
Description: Percentage of cycles on all vector engines (XVE) and thread slots when a slot has a thread
scheduled. This metric is available for code running on the Intel® Arc™ graphics code-named Alchemist or
newer. This metric is equivalent to the EU Threading Occupancy metric for legacy terminology.

Collected during the Survey analysis in the GPU Roofline Insights perspective and found in the GPU
Roofline Regions tab > GPU Kernels pane.

Dependencies Problem and Message Types
The Intel® Advisor Dependencies analysis identifies
various data sharing problems and messages. This
reference section describes these problems and
messages, and offers possible correction strategies.

Problem Type Name Severity and Cause

Dangling Lock Error. Occurs when a task does not release a lock before the task
ends.

Intel® Advisor User Guide  1  

671



Problem Type Name Severity and Cause

Data Communication Error. Occurs when a task writes a value that a different task reads.
If not fixed prior to conversion to parallel code, a Data
Communication problem could result in a data race.

Data Communication, Child Task Error. Occurs when a task writes a value that a different (child) task
reads. If not fixed prior to conversion to parallel code, a Data
Communication problem could result in a data race.

Inconsistent Lock Use Warning. Occurs when a task execution accesses a memory location
more than once, under the control of different locks.

Lock Hierarchy Violation Warning. Occurs when two or more locks are acquired in a different
order in two task executions, potentially leading to a deadlock when
the program's tasks execute in parallel.

Memory Reuse Error. Occurs when two tasks write to a shared memory location.
That is, a task writes to a variable with a new value but does not
read the same value generated by a prior task. If not fixed prior to
conversion to parallel code, this Memory Reuse problem could result
in a data race.

Memory Reuse, Child Task Error. Occurs when two tasks write to a shared memory location,
where a parent task overwrites a variable with a new value that was
read by a previously executed child task in the same site. If not
fixed prior to conversion to parallel code, this Memory Reuse, Child
Task problem could result in a data race.

Memory Watch Remark. Occurs when a task accesses a memory location marked by
an ANNOTATE_OBSERVE_USES annotation. In this case, this problem
provides informational feedback only and no action is required. This
is useful for finding uses of specified memory locations while a task
is executing.

Missing End Site Error. Occurs when a site-begin annotation is executed but the
corresponding site-end annotation is not executed before the thread
or application exits.

Missing End Task Error. Occurs when a task-begin annotation is executed but the
corresponding task-end annotation is not executed before the site,
thread, or application exits.

Missing Start Site Error. Occurs when an end-site annotation is executed but there is
no active site.

Missing Start Task Error. Occurs when an end task annotation is executed but there is
no active task.

No tasks in parallel site Warning. Occurs when a parallel site was executed but no task
annotations were executed in the dynamic extent of the active
parallel site.

One task instance in parallel site Warning. Occurs when a parallel site was executed but annotations
for only one task instance were executed in the dynamic extent of
the active parallel site. This may be the expected behavior, or it may
indicate an error in the placement of annotations or a data set that
is not well suited for parallelism.

Orphaned Task Error. Occurs when a task-begin annotation is executed that is not
within an active parallel site.

  1   Intel® Advisor User Guide

672



Problem Type Name Severity and Cause

Parallel Site Information Remark. Occurs when execution enters a parallel site. This confirms
that your program and its data are executing the annotations you
inserted during execution of the Dependencies tool analysis. In this
case, this message provides informational feedback only and no
action is required.

Thread Information Remark. In this case, this message provides informational feedback
and no action is required.

Unhandled Application Exception Error. Occurs when an unhandled exception is detected that causes
the application program to crash.

Dangling Lock
Occurs when a task does not release a lock before the
task ends.

Syntax

ID Code Location Description

1 Allocation site If present, represents the location and associated call stack when the
lock was created.

2 Lock owned If present, represents the location and its associated call stack when
the lock was last acquired.

3 Parallel site If present, represents the location and associated call stack of the
site-begin annotation of the parallel site containing the task that
acquired the lock.

Example
void problem()
{
    ANNOTATE_SITE_BEGIN(dangle_site1);        // Parallel site
        ANNOTATE_TASK_BEGIN(task1);
            ANNOTATE_LOCK_ACQUIRE(&dangle);   // Lock owned
        ANNOTATE_TASK_END();
     // ...
    ANNOTATE_SITE_END();
}

In this example:

• There is a parallel site that contains a task.
• The lock is acquired in the task.
• The lock is not released before the end of the task - the ANNOTATE_LOCK_RELEASE() annotation is

missing.

Intel® Advisor User Guide  1  

673



Possible Correction Strategies

• Make sure that an ANNOTATE_LOCK_RELEASE(address) annotation is executed on every flow path from
an ANNOTATE_LOCK_ACQUIRE(address) annotation to the end of the task. If a code region has multiple
exit flow paths, make sure the lock is released on all the paths.

• Consider putting the lock-acquire and lock-release in the constructor and destructor of a static object, so
that lock release happens automatically.

• Consider putting a lock release in an exception handler if a the locked region might exit from an
exception.

Data Communication
Occurs when a task writes a value that a different task
reads.

Syntax

ID Code Location Description

1 Allocation site If present, represents the location and associated call stack when the
memory block was allocated.

2 Parallel site If present, represents the location and associated call stack of the
parallel site containing the Data Communication problem.

3 Write Represents the instruction and associated call stack where the memory
was written.

4 Read Represents the instruction and associated call stack where the memory
was read in a different task execution.

Example
In this example, the write to the heap variable in task1 might occur either before or after the read in task2.

void problem()
{
    int* pointer = new int;               // Allocation site
    ANNOTATE_SITE_BEGIN(datacomm_site1);  // Begin parallel site
        ANNOTATE_TASK_BEGIN(task1);
            *pointer = 999;               // Write
        ANNOTATE_TASK_END();
        ANNOTATE_TASK_BEGIN(task2);
            assert(*pointer == 999);      // Read
        ANNOTATE_TASK_END();
    ANNOTATE_SITE_END();
}

In this example, each task execution reads the variable communication, adds one to its value, and writes
the result back to the variable. The write in each task execution might occur either before or after the read in
the other task instance execution.

void data_communication()
    {
       ANNOTATE_SITE_BEGIN(site);       // Parallel site

  1   Intel® Advisor User Guide

674



       for (int i = 0; i < 2; i++) {
           ANNOTATE_TASK_BEGIN(task);   // Write and Read in different task execution
           communication++;     /* data communication */  
           ANNOTATE_TASK_END();
       }
       ANNOTATE_SITE_END();
   }

Possible Correction Strategies

• If two accesses to the same memory must occur in a specific order, then the accesses must not be in
different task executions in a single site execution. You will have to change the structure of your sites and
tasks.

• If the order of memory modifications in two task executions is not important, but the executions of the
modifications must not occur simultaneously, use locks to synchronize them.

• Induction and reduction annotations can tell the Dependencies tool about programs where the program
behavior will be correct, regardless of the order of the accesses.

See Also
Data Sharing Problems

Data Communication, Child Task
Occurs when a task writes a value that a different
(child) task reads. A child task is a task nested inside
another task.

Syntax

ID Code Location Description

1 Allocation site If present, represents the location and associated call stack when the
memory block was allocated.

2 Parallel site Represents the location and associated call stack of the parallel site
containing the Data Communication problem.

3 Write Represents the instruction and associated call stack where the
memory was written.

4 Read Represents the instruction and associated call stack where the
memory was read in a different task execution.

Example
void problem()
{
    int* pointer = new int;               // Allocation site
    ANNOTATE_SITE_BEGIN(datacomm_site1);  // Begin parallel site
        ANNOTATE_TASK_BEGIN(task1);
            *pointer = 999;               // Write
        ANNOTATE_TASK_END();
        assert(*pointer == 999);          // Read
    ANNOTATE_SITE_END();
}

Intel® Advisor User Guide  1  

675



In this example, one task writes a heap-allocated int, then an ancestor task reads it.

void data_communication()
{
   ANNOTATE_SITE_BEGIN(data_communication_site);  // Parallel site
   {
     for (int i=0; i<N; i++) {       
       ANNOTATE_TASK_BEGIN(data_communication_task1);
       {
           communication++; /* write in child */  // Write
       }
       ANNOTATE_TASK_END();
       printf(“%d\n”, communication);  /* read in parent */  // Read
   }
   ANNOTATE_SITE_END();
}

In this example, the incremented variable is read after each task. This creates a serial dependence.

Possible Correction Strategies

If you can preserve the application's integrity, consider moving the reads by the parent task into the child
task. In the example above, this would result in non-deterministic output. If moving the read is not possible,
you may need to use a different strategy, such as pipelining the loop.

Inconsistent Lock Use
Occurs when a task execution accesses a memory
location more than once, under the control of different
locks.

Syntax
One of the following has occurred:

ID Code Location Description

1 Allocation site If present, represents the location and associated call stack when the
memory was allocated.

2 Parallel site If present, represents the location and associated call stack of the
parallel site containing the Inconsistent Lock Use problem.

3 Read Represents the location and associated call stack of the first access if
it is a memory read.

4 Write Represents the location and associated call stack of the second access
if it is a memory write.

  1   Intel® Advisor User Guide

676



ID Code Location Description

5 Read Represents the location and associated call stack of the second access
if it is a memory read.

6 Write Represents the location and associated call stack of the first access if
it is a memory write.

Example
// Parallel site
    ANNOTATE_TASK_BEGIN(task);
    for (int i = 0; i < N; i++) {
        ANNOTATE_LOCK_ACQUIRE(1);
        a[i][j0]++;               // Read and/or Write
        ANNOTATE_LOCK_RELEASE(1);
    }
    for (int j = 0; i < N; i++) {
        ANNOTATE_LOCK_ACQUIRE(2);
        a[i0][j]++;               // Read and/or Write
        ANNOTATE_LOCK_RELEASE(2);
    }
    ANNOTATE_TASK_END();

In this example, a[i0][j0] is accessed under lock 1 in the first loop and under lock 2 in the second loop. It
is likely that an access in another task will not have the right combination of locks to avoid conflicting with
both these accesses.

Possible Correction Strategies

Lock all accesses to the same memory location with the same lock.

Lock Hierarchy Violation
Occurs when two or more locks are acquired in a
different order in two task executions, potentially
leading to a deadlock when the program's tasks
execute in parallel.

A Lock hierarchy violation problem indicates the following timeline:

Task 1 1. Acquire lock A.
2. Acquire lock B.
3. Release lock B.
4. Release lock A.

Task 2 1. Acquire lock B.
2. Acquire lock A.
3. Release lock A.
4. Release lock B.

If these time lines are interleaved when the two tasks execute in parallel, a Deadlock occurs:

1. Task 1: Acquire lock A.
2. Task 2: Acquire lock B.
3. Task 1: Try to acquire lock B; wait until task 2 releases it.
4. Task 2: Try to acquire lock A; wait until task 1 releases it.

The Dependencies tool reports a Lock hierarchy violation as multiple problems in a problem set. Each
problem shows a portion of the Lock hierarchy violation from the perspective of a single thread.

Intel® Advisor User Guide  1  

677



Lock hierarchy violation problems are the most common cause of Deadlock problems, and a report of a
Lock hierarchy violation problem indicates a Deadlock problem might occur when the target executes in
parallel.

Syntax

ID Code Location Description

1 Allocation site If present, represents the location and its associated call stack where
the synchronization object acquired by a thread (usually the object
acquired first) was created.

2 Parallel site If present, represents the location and associated call stack of the
parallel site containing the Lock Hierarchy Violation problem.

3 Lock owned Represents the location and associated call stack where a task
acquired a lock.

4 Lock owned Represents the location and associated call stack where a task
acquired a second lock while the task still held the first lock.

Example

// in task 1 ANNOTATE_LOCK_ACQUIRE(&lahv_lock1);
ANNOTATE_LOCK_ACQUIRE(&lahv_lock2); /* lock hierarchy violation */
ANNOTATE_LOCK_RELEASE(&lahv_lock2);
ANNOTATE_LOCK_RELEASE(&lahv_lock1);

// in task 2 ANNOTATE_LOCK_ACQUIRE(&lahv_lock2);
ANNOTATE_LOCK_ACQUIRE(&lahv_lock1); /* lock hierarchy violation */
ANNOTATE_LOCK_RELEASE(&lahv_lock1);
ANNOTATE_LOCK_RELEASE(&lahv_lock2);

Possible Correction Strategies
Determine if interleaving is possible, or whether some other synchronization exists that might prevent
interleaving. If interleaving is possible, consider the following options.

Use a single lock instead of multiple locks:

// in task 1 ANNOTATE_LOCK_ACQUIRE(&lahv_lock1);
a++;
b += a;
ANNOTATE_LOCK_RELEASE(&lahv_lock1);

// in task 2 ANNOTATE_LOCK_ACQUIRE(&lahv_lock2); 
b += x[i];
a -= b;
ANNOTATE_LOCK_RELEASE(&lahv_lock2); 

Try to define a consistent order for your locks, so that any task that acquires the same set of locks, will
acquire them in the same order:

  1   Intel® Advisor User Guide

678



// in task 1 ANNOTATE_LOCK_ACQUIRE(&lahv_lock1);
a++;
b += a;
ANNOTATE_LOCK_RELEASE(&lahv_lock1);

// in task 2 ANNOTATE_LOCK_ACQUIRE(&lahv_lock2); 
b += x[i];
a -= b;
ANNOTATE_LOCK_RELEASE(&lahv_lock2);

When a task acquires multiple locks, make sure that it always releases them in the opposite order that it
acquired them.

Memory Reuse
Occurs when two tasks write to a shared memory
location. That is, a task writes to a variable with a new
value but does not read the same value generated by
a prior task.

Syntax
One of the following has occurred:

ID Code Location Description

1 Allocation site If present, and if the memory involved is heap memory, represents
the location and associated call stack when the memory was
allocated.

2 Parallel site If present, represents the location and associated call stack of the
parallel site containing the Memory Reuse problem.

3 Read Represents the instruction and associated call stack of the first access
if it is a memory read.

4 Write Represents the instruction and associated call stack of the second
access if it is a memory write.

5 Write Represents the instruction and associated call stack of the first access
if it is a memory write.

Example
int global;
void main()
{
    ANNOTATE_SITE_BEGIN(reuse_site);    // Begin parallel site
        ANNOTATE_TASK_BEGIN(task111);

Intel® Advisor User Guide  1  

679



            global = 111;               // Read and/or Write
            assert(global == 111);
        ANNOTATE_TASK_END();
        ANNOTATE_TASK_BEGIN(task222);
            global = 222;               // Write
            assert(global == 222);
        ANNOTATE_TASK_END();
    ANNOTATE_SITE_END();
}

In this example, two tasks use the same global variable. Each task does not read or communicate the value
produced by the other task.

Some Possible Correction Strategies

Change the tasks to have their own private variables rather than sharing a variable.

Memory Reuse, Child Task
Occurs when two tasks write to a shared memory
location, where a parent task overwrites a variable
with a new value that was read by a previously
executed child task. A child task is a task nested
inside another task.

Syntax

ID Code Location Description

1 Allocation site If present, and if the memory involved is heap memory, represents
the location and associated call stack when the memory was
allocated.

2 Parallel site If present, represents the location and associated call stack of the
parallel site containing the Memory Reuse, Child Task problem.

3 Read Represents the instruction and associated call stack of the first access
if it is a memory read.

4 Write Represents the instruction and associated call stack of the second
access if it is a memory write.

Example
int global;
void main()
{
    ANNOTATE_SITE_BEGIN(reuse_site);   // Begin parallel site
        ANNOTATE_TASK_BEGIN(task111);
            assert(global == 111);     // Read 
        ANNOTATE_TASK_END();
        global = 222;                  // Write
    ANNOTATE_SITE_END();
}

  1   Intel® Advisor User Guide

680



In this example, a parent task is writing to a shared variable after a task that reads that same variable.

Some Possible Correction Strategies

Create a private copy of the variable before executing the child task. Use the private copy in the child task.

Memory Watch
Occurs when a task accesses a memory location
marked by an ANNOTATE_OBSERVE_USES annotation.
In this case, this problem provides informational
feedback only and no action is required. This is useful
for finding uses of specified memory locations while a
task is executing.

Syntax
One of the following has occurred:

ID Code Location Description

1 Parallel site If present, represents the location and associated call stack of the
parallel site containing the Memory Watch problem.

2 Watch start Represents the location and its associated call stack where an
ANNOTATE_OBSERVE_USES() annotation marks a memory location.

3 Read Represents the location and associated call stack where a task read
the watched memory location.

4 Write Represents the location and associated call stack where a task wrote
the watched memory location.

5 Update Represents the location and associated call stack where a task read
and wrote the watched memory location.

Example
void watch_memory()
{
   ANNOTATE_OBSERVE_USES(&watch, sizeof(watch));  // Watch start
   ANNOTATE_SITE_BEGIN(watch_site);               // Parallel site
   {
       ANNOTATE_TASK_BEGIN(watch_task1);

Intel® Advisor User Guide  1  

681



       {
           ANNOTATE_LOCK_ACQUIRE(&watch);
           watch++; /* watch memory */            // Read and/or Write
           ANNOTATE_LOCK_RELEASE(&watch);
       }
       ANNOTATE_TASK_END();
       ANNOTATE_TASK_BEGIN(watch_task2);
       {
           ANNOTATE_LOCK_ACQUIRE(&watch);
           watch++; /* watch memory */            // Read and/or Write
           ANNOTATE_LOCK_RELEASE(&watch);
       }
       ANNOTATE_TASK_END();
   }
   ANNOTATE_SITE_END();
   ANNOTATE_CLEAR_USES(&watch);
}

This example reports all places that use the memory location referenced by watch during the call to
watch_memory().

Possible Correction Strategies

To use ANNOTATE_OBSERVE_USES to help you correct an incidental sharing problem, do the following to mark
places where you may be able replace uses of a shared memory location with uses of a non-shared memory
location:

1. Add an ANNOTATE_OBSERVE_USES annotation to the task.
2. Find all uses of the shared memory location in the dynamic extent of the task.

Missing End Site
Occurs when a site-begin annotation is executed but
the corresponding site-end annotation is not executed
before the thread or application exits.

Syntax

ID Code Location Description

1 Start site Represents the location and the associated call stack when the parallel
site execution began.

Example
void main()
{
    ANNOTATE_SITE_BEGIN(site1);  // Begin parallel site
        return;
    ANNOTATE_SITE_END();         
}

This example's execution skips the end-site annotation, ANNOTATE_SITE_END().

  1   Intel® Advisor User Guide

682



Possible Correction Strategies

Always execute an ANNOTATE_SITE_END() annotation after executing an
ANNOTATE_SITE_BEGIN(sitename) annotation. This omission can be caused by throw exceptions, return,
break, continue, and goto statements or keywords. All control flow paths out of a site need to use the
ANNOTATE_SITE_END() annotations.

Missing End Task
Occurs when a task-begin annotation is executed but
the corresponding task-end annotation is not executed
before the site, thread, or application exits.

Syntax

ID Code Location Description

1 Task start Represents the location and associated call stack when the task began
execution.

2 Parallel site If present, represents the location and associated call stack of the
beginning of the parallel site that contained the task.

Example
void main()
{
    ANNOTATE_SITE_BEGIN(site_name);
        ANNOTATE_TASK_BEGIN(taskname1);
    ANNOTATE_SITE_END();
}

This example lacks an end-task annotation, ANNOTATE_TASK_END().

NOTE
An error also occurs if your code branches around a single ANNOTATE_TASK_END() annotation.

Possible Correction Strategies

Always execute an ANNOTATE_TASK_BEGIN(taskname) annotation before executing an
ANNOTATE_SITE_END() annotation. This omission can be caused by throw exceptions, return, break,
continue, and goto statements or keywords. All control flow paths out of a site need to use the
ANNOTATE_TASK_END() annotations.

Missing Start Site
Occurs when an end-site annotation is executed but
there is no active site.

Intel® Advisor User Guide  1  

683



Syntax

ID Code Location Description

1 End site Represents the location and associated call stack when the end site
annotation was executed.

Example
void main()
{
    ANNOTATE_SITE_END();  // End parallel site
}

This example executes an ANNOTATE_SITE_END() annotation before executing the corresponding (in this
case, missing) ANNOTATE_SITE_BEGIN(sitename) annotation.

Possible Correction Strategies

Always execute an ANNOTATE_SITE_BEGIN() annotation before executing an ANNOTATE_SITE_END()
annotation.

Missing Start Task
Occurs when an end task annotation is executed but
there is no active task.

Syntax

ID Code Location Description

1 Task end Represents the location and associated call stack when the task end
annotation was executed.

2 Parallel site If present, represents the location and associated call stack of the
beginning of the parallel site that contained the task end annotation.

Example
void main()
{
    ANNOTATE_SITE_BEGIN(name_site1);
        ANNOTATE_TASK_END();
    ANNOTATE_SITE_END();

}
This example lacks an ANNOTATE_TASK_BEGIN(taskname) annotation.

  1   Intel® Advisor User Guide

684



NOTE
This error also occurs if your code branches around an ANNOTATE_TASK_BEGIN(taskname)
annotation.

Possible Correction Strategies

Always execute an ANNOTATE_TASK_BEGIN(taskname) annotation before executing an
ANNOTATE_TASK_END() annotation.

No Tasks in Parallel Site
Occurs when a parallel site was executed but no task
annotations were executed in the dynamic extent of
the active parallel site.

Syntax

ID Code Location Description

1 Parallel site Represents the location and associated call stack of the parallel site. No
task annotations were executed in the dynamic extent of the active
parallel site.

Example
int global;
void main()
{
    ANNOTATE_SITE_BEGIN(reuse_site);  // Parallel site
        assert(global == 111);
        global = 222;
    ANNOTATE_SITE_END();
}

In this example, the site begin and site end annotations are present, but the execution paths within the
parallel site do not execute any task annotations.

Some Possible Correction Strategies

Check the execution paths within the parallel site and add task annotations to mark at least one task.

One Task Instance in Parallel Site
Occurs when a parallel site was executed but
annotations for only one task instance were executed
in the dynamic extent of the active parallel site. This
may be the expected behavior, or it may indicate an
error in the placement of annotations or a data set
that is not well suited for parallelism.

Syntax

Intel® Advisor User Guide  1  

685



ID Code Location Description

1 Parallel site Represents the location and associated call stack of the parallel site. Occurs
when a parallel site was executed but annotations for only one instance of a
task's code were executed in the dynamic extent of the active parallel site.
The warning is based on the site and task annotations detected during
program execution. This may be the expected behavior. In other cases, this
warning may indicate an error in the placement of annotations or a data set
that is not well suited for parallelism (a single instance of a task may not
contribute to parallel execution speed-up).

Example
int global;
extern arg_map parse_args(int argc, char ** argv);
void main(int argc, char * argv[])
{
    int x;
    parse_args(argc, argv);
    int y = arg_map.get(“iterations”); //command line specifies 1 iteration

    ANNOTATE_SITE_BEGIN(loopsite);     // Parallel site
        for (x=0; x<y; x++) 
          {
          ANNOTATE_ITERATION_TASK(task);
              …
          }
    ANNOTATE_SITE_END();
}

In this example, the selected data set results in only a single iteration of the loop. No dependencies will be
found between multiple iterations of the loop.

Some Possible Correction Strategies

Check the execution paths within the parallel site and confirm that you intended to have only one task for
this parallel site. If needed, examine the loop structure and its scaling characteristics (reported by the
Suitability tool) to ensure that this parallel site does not need additional tasks. If the problem is caused by
using too small a data set, increase the size of your data set.

Orphaned Task
Occurs when a task-begin annotation is executed that
is not within an active parallel site.

Syntax

ID Code Location Description

1 Task start Represents the location and associated call stack when the task began
execution.

  1   Intel® Advisor User Guide

686



Example
void main()
{
    ANNOTATE_TASK_BEGIN(name_task1); // Begin task
    ANNOTATE_TASK_END();
}

This example does not execute a ANNOTATE_SITE_BEGIN(sitename)/ANNOTATE_SITE_END() annotation
pair required to wrap the execution of a task ANNOTATE_TASK_BEGIN(taskname)/ANNOTATE_TASK_END()
annotation pair.

Possible Correction Strategies

Always execute an ANNOTATE_SITE_BEGIN(sitename) annotation before executing an
ANNOTATE_TASK_BEGIN(taskname) annotation. You may need to add an
ANNOTATE_SITE_BEGIN(sitename) /ANNOTATE_SITE_END() annotation pair in the same function, or in
some calling function.

An orphaned task is effectively ignored by the Suitability and Dependencies tool analysis, so you should fix
the orphaned task code and run the Suitability and Dependencies tools again.

Parallel Site Information
Occurs when execution enters a parallel site. This
confirms that your program and its data are executing
the annotations you inserted during execution of the
Dependencies tool analysis. In this case, this message
provides informational feedback only and no action is
required.

Syntax

ID Code Location Description

1 Parallel site Represents the location and associated call stack of the parallel site.

Example
ANNOTATE_SITE_BEGIN(name_site1);  // Begin parallel site
for (i = 0; i < n; ++i) 
{
    ANNOTATE_ITERATION_TASK(name_task1);
    process(i);

}
ANNOTATE_SITE_END();    // End parallel site

See Also
Dependencies Tool Overview

Intel® Advisor User Guide  1  

687



Thread Information
Occurs when a thread is created. In this case, this
message provides informational feedback and no
action is required.

Expect at least one such message when the main program's thread is created by the operating system. If
you are running the Dependencies tool on a partially parallelized target, expect additional messages for each
thread the program creates.

The creation site of the main program thread is the point where the main() function - or other standard
entry point line _wmain() - is called from the startup initialization code.

Syntax

ID Code Location Description

1 Creation site Represents the location and call stack where a thread was created.

Example
ANNOTATE_SITE_BEGIN(name1);
for (int i = 0; i < n; ++i) 
{
    ANNOTATE_ITERATION_TASK(task_process_array);
    process(array1[i]);
}
ANNOTATE_SITE_END();
. . .
// create thread using parallel framework code or CreateThread() 
for (int i = 0; i < n; ++i) 
{
    process(array2[i]);
}

Unhandled Application Exception
Occurs when an unhandled exception is detected that
causes the application program to crash.

Syntax

ID Code Location Description

1 Exception Represents the instruction that threw the exception.

  1   Intel® Advisor User Guide

688



Example
void problem1(int *y)
{
    *y = 5;
}

void problem2()
{
    int x = new int;
}

In these (simplified) example functions, two exceptions are possible:

• Variable y may not reference a valid memory location and therefore the write may cause an exception to
be thrown. If that exception is not properly handled, the Dependencies Report will show an Unhandled
application exception pointing to the write of y.

• If the process is out of memory, the allocation will throw an exception. If the exception is not handled, the
Dependencies Report will show an Unhandled application exception associated with the allocation.

Because of the abnormal process termination (crash), the Dependencies tool may also report a Missing end
task and Missing end site problem.

Possible Correction Strategies

This problem usually exposes an existing bug in your application that appears when the application is run
with the Dependencies tool.

See Also
Dependencies Tool Overview

Recommendation Reference
Explore Intel® Advisor recommendations to get hints
on how to optimize your application and achieve
better performance.

The following sections describe Intel® Advisor recommendations that you can find in the Recommendations
tab of the result window:

• Recommendations for C++
• Recommendations for Fortran

Vectorization Recommendations for C++

Ineffective Peeled/Remainder Loop(s) Present
All or some source loop iterations are not executing in the loop body. Improve performance by moving source
loop iterations from peeled/remainder loops to the loop body.

Align Data

One of the memory accesses in the source loop does not start at an optimally aligned address boundary. To
fix: Align the data and tell the compiler the data is aligned.

Align dynamic data using a 64-byte boundary and tell the compiler the data is aligned:

float *array;
array = (float *)_mm_malloc(ARRAY_SIZE*sizeof(float), 32);
// Somewhere else
__assume_aligned(array, 32);
// Use array in loop
_mm_free(array);

Intel® Advisor User Guide  1  

689



Align static data using a 64-byte boundary:

__declspec(align(64)) float array[ARRAY_SIZE]
See also:

• align
• Data Alignment to Assist Vectorization and Vectorization Resources for Intel® Advisor Users

Parallelize The Loop with Both Threads and SIMD Instructions

The loop is threaded and auto-vectorized; however, the trip count is not a multiple of vector length. To fix:
Do all of the following:

• Use the #pragma omp parallel for simd directive to parallelize the loop with both threads and SIMD
instructions. Specifically, this directive divides loop iterations into chunks (subsets) and distributes the
chunks among threads, then chunk iterations execute concurrently using SIMD instructions.

• Add the schedule(simd: [kind]) modifier to the directive to guarantee the chunk size (number of
iterations per chunk) is a multiple of vector length.

Original code sample:

void f(int a[], int b[], int c[])
{
    #pragma omp parallel for schedule(static)
    for (int i = 0; i < n; i++)
    {
        a[i] = b[i] + c[i];
    }
}

Revised code sample:

void f(int a[], int b[], int c[])
{
    #pragma omp parallel for simd schedule(simd:static)
    for (int i = 0; i < n; i++)
    {
        a[i] = b[i] + c[i];
    }
}

See also:

• OpenMP Application Programming Interface
• Vectorization Resources for Intel® Advisor Users

Force Scalar Remainder Generation

The compiler generated a masked vectorized remainder loop that contains too few iterations for efficient
vector processing. A scalar loop may be more beneficial. To fix: Force scalar remainder generation using a
directive: #pragma vector novecremainder.

void add_floats(float *a, float *b, float *c, float *d, float *e, int n)
{
    int i;
    // Force the compiler to not vectorize the remainder loop
    #pragma vector novecremainder
    for (i=0; i<n; i++)
    {
        a[i] = a[i] + b[i] + c[i] + d[i] + e[i];
    }
}

  1   Intel® Advisor User Guide

690

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/data-options/align.html
https://www.intel.com/content/www/us/en/develop/articles/data-alignment-to-assist-vectorization.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.openmp.org//wp-content/uploads/openmp-4.5.pdf
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


See also:

• vector
• Vectorization Resources for Intel® Advisor Users

Force Vectorized Remainder

The compiler did not vectorize the remainder loop, even though doing so could improve performance. To fix:
Force vectorization using a directive: #pragma vector vecremainder.

void add_floats(float *a, float *b, float *c, float *d, float *e, int n)
{
    int i;
    // Force the compiler to vectorize the remainder loop
    #pragma vector vecremainder
    for (i=0; i<n; i++)
    {
        a[i] = a[i] + b[i] + c[i] + d[i] + e[i];
    }
}

See also:

• vector
• Vectorization Resources for Intel® Advisor Users

Specify The Expected Loop Trip Count

The compiler cannot detect the trip count statically. To fix: Specify the expected number of iterations using a
directive: #pragma loop_count.

#include <stdio.h>

int mysum(int start, int end, int a)
{
    int iret=0;
    // Iterate through a loop a minimum of three, maximum of ten, and average of five times
    #pragma loop_count min(3), max(10), avg(5)
    for (int i=start;i<=end;i++)
        iret += a;
    return iret;
}

int main()
{
    int t;
    t = mysum(1, 10, 3);
    printf("t1=%d\r\n",t);
    t = mysum(2, 6, 2);
    printf("t2=%d\r\n",t);
    t = mysum(5, 12, 1);
    printf("t3=%d\r\n",t);
}

See also:

• loop_count
• Vectorization Resources for Intel® Advisor Users

Change The Chunk Size

Intel® Advisor User Guide  1  

691

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/vector-1.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/vector-1.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/loop-count.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


The loop is threaded and vectorized using the #pragma omp parallel for simd directive, which
parallelizes the loop with both threads and SIMD instructions. Specifically, the directive divides loop iterations
into chunks (subsets) and distributes the chunks among threads, then chunk iterations execute concurrently
using SIMD instructions. In this case, the chunk size (number of iterations per chunk) is not a multiple of
vector length. To fix: Add a schedule (simd: [kind]) modifier to the #pragma omp parallel for simd
directive.

void f(int a[], int b[], int[c])
{
    // Guarantee a multiple of vector length.
    #pragma omp parallel for simd schedule(simd: static)
    for (int i = 0; i < n; i++)
    {
        a[i] = b[i] + c[i];
    }
}

See also:

• OpenMP Application Programming Interface
• Vectorization Resources for Intel® Advisor Users

Add Data Padding

The trip count is not a multiple of vector length . To fix: Do one of the following:

• Increase the size of objects and add iterations so the trip count is a multiple of vector length.
• Increase the size of static and automatic objects, and use a compiler option to add data padding.

See also:

• loop_count
• Utilizing Full Vectors and Vectorization Resources for Intel® Advisor Users

Collect Trip Counts Data

The Survey Report lacks trip counts data that might generate more precise recommendations.

Disable Unrolling

The trip count after loop unrolling is too small compared to the vector length . To fix: Prevent loop unrolling
or decrease the unroll factor using a directive: #pragma nounroll or #pragma unroll.

void nounroll(int a[], int b[], int c[], int d[])
{
    // Disable automatic loop unrolling using
    #pragma nounroll
    for (int i = 1; i < 100; i++)
    {
        b[i] = a[i] + 1;
        d[i] = c[i] + 1;
    }
}

See also:

• unroll/nounroll
• Vectorization Resources for Intel® Advisor Users

Use A Smaller Vector Length

  1   Intel® Advisor User Guide

692

https://www.openmp.org//wp-content/uploads/openmp-4.5.pdf
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/loop-count.html
https://www.intel.com/content/www/us/en/develop/articles/utilizing-full-vectors.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/unroll-nounroll.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


The compiler chose a vector length of , but the trip count might be smaller than the vector length. To fix:
Specify a smaller vector length using a directive: #pragma omp simd simdlen.

void f(int a[], int b[], int c[], int d[])
{
    // Specify vector length using
    #pragma omp simd simdlen(4)
    for (int i = 1; i < 100; i++)
    {
        b[i] = a[i] + 1;
        d[i] = c[i] + 1;
    }
}

In Intel Compiler version 19.0 and higher, there is a new vector length clause that allows the compiler to
choose the best vector length based on cost: #pragma vector vectorlength(vl1, vl2, ..., vln)
where vl is an integer power of 2.

void f(int a[], int b[], int c[], int d[])
{
    // Specify list of vector lengths
    #pragma vector vectorlength(2, 4, 16)
    for (int i = 1; i < 100; i++)
    {
        b[i] = a[i] + 1;
        d[i] = c[i] + 1;
    }
}

See also:

• omp simd in OpenMP Pragmas Summary, vector
• Vectorization Resources for Intel® Advisor Users

Disable Dynamic Alignment

The compiler automatically peeled iterations from the vector loop into a scalar loop to align the vector loop
with a particular memory reference; however, this optimization may not be ideal. To possibly achieve better
performance, disable automatic peel generation using the directive: #pragma vector nodynamic_align.

...
#pragma vector nodynamic_align
for (int i = 0; i < len; i++)
...
void f(float * a, float * b, float * c, int len)
{
    #pragma vector nodynamic_align
    for (int i = 0; i < len; i++)
    {
        a[i] = b[i] * c[i];
    }
}

See also:

• vector
• Vectorization Resources for Intel® Advisor Users

Serialized User Function Call(s) Present
User-defined functions in the loop body are not vectorized.

Intel® Advisor User Guide  1  

693

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/vector-1.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/vector-1.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


Enable Inline Expansion

Inlining of user-defined functions is disabled by compiler option. To fix: When using the Ob or inline-level
compiler option to control inline expansion, replace the 0 argument with the 1 argument to enable inlining
when an inline keyword or attribute is specified or the 2 argument to enable inlining of any function at
compiler discretion.

See also:

• inline-level, Ob
• Vectorization Resources for Intel® Advisor Users

Vectorize Serialized Function(s) Inside Loop

#pragma omp declare simd
int f (int x)
{
    return x+1;
}
#pragma omp simd
for (int k = 0; k < N; k++)
{
    a[k] = f(k);
}

See also:

• omp simd, omp declare simd in OpenMP Pragmas Summary, vector
• Vectorization Resources for Intel® Advisor Users

Scalar Math Function Call(s) Present
Math functions in the loop body are preventing the compiler from effectively vectorizing the loop. Improve
performance by enabling vectorized math call(s).

Enable Inline Expansion

Inlining is disabled by compiler option. To fix: When using the Ob or inline-level compiler option to
control inline expansion, replace the 0 argument with the 1 argument to enable inlining when an inline
keyword or attribute is specified or the 2 argument to enable inlining of any function at compiler discretion.

Alternatively use #include <mathimf.h> header instead of the standard #include <math.h> header to
call highly optimized and accurate mathematical functions commonly used in applications that rely heaving
on floating point computations.

See also:

• inline-level, Ob
• Vectorization Resources for Intel® Advisor Users

Vectorize Math Function Calls Inside Loops

Your application calls serialized versions of math functions when you use the precise floating point model. To
fix: Do one of the following:

• Add fast-transcendentals compiler option to replace calls to transcendental functions with faster calls.

Caution This may reduce floating point accuracy.

  1   Intel® Advisor User Guide

694

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/inlining-options/inline-level-ob.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/vector-1.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/inlining-options/inline-level-ob.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


• Enforce vectorization of the source loop using a directive: #pragma omp simd
void add_floats(float *a, float *b, float *c, float *d, float *e, int n)
{
    int i;
    #pragma omp simd
    for (i=0; i<n; i++)
    {
        a[i] = a[i] + b[i] + c[i] + d[i] + e[i];
    }
}

See also:

• fast-transcendentals, Qfast-transcendentals; omp simd in OpenMP Pragmas Summary, vector
• Vectorization Resources for Intel® Advisor Users

Change The Floating Point Model

Your application calls serialized versions of math functions when you use the strict floating point model. To
fix: Do one of the following:

• Use the fast floating point model to enable more aggressive optimizations or the precise floating point
model to disable optimizations that are not value-safe on fast transcendental functions.

Caution This may reduce floating point accuracy.

• Use the precise floating point model and enforce vectorization of the source loop using a directive:
#pragma omp simd

gcc program.c -O2 -fopenmp -fp-model precise -fast-transcendentals
#pragma omp simd collapse(2)
for (i=0; i<N; i++)
{
    a[i] = b[i] * c[i];
    for (i=0; i<N; i++)
    {
        d[i] = e[i] * f[i];
    }
}

See also:

• fast-transcendentals, Qfast-transcendentals; omp simd in OpenMP Pragmas Summary, vector
• Vectorization Resources for Intel® Advisor Users

Use a Glibc Library with Vectorized SVML Functions

Your application calls scalar instead of vectorized versions of math functions. To fix: Do all of the following:

• Upgrade the Glibc library to version 2.22 or higher. It supports SIMD directives in OpenMP* 4.0 or higher.
• Upgrade the GNU* gcc compiler to version 4.9 or higher. It supports vectorized math function options.
• Use the -fopenmp and -ffast-math compiler options to enable vector math functions.
• Use appropriate OpenMP SIMD directives to enable vectorization.

Intel® Advisor User Guide  1  

695

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options/fast-transcendentals-qfast-transcendentals.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/vector-1.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options/fast-transcendentals-qfast-transcendentals.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/vector-1.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


NOTE Also use the -I/path/to/glibc/install/include and -L/path/to/glibc/install/lib
compiler options if you have multiple Glibc libraries installed on the host.

gcc program.c -O2 -fopenmp -ffast-math -lrt -lm -mavx2 -I/opt/glibc-2.22/include -L/opt/
glibc-2.22/lib -Wl,--dynamic-linker=/opt/glibc-2.22/lib/ld-linux-x86-64.so.2
#include "math.h"
#include "stdio.h"
#define N 100000

int main()
{
    double angles[N], results[N];
    int i;
    srand(86456);

    for (i = 0; i < N; i++)
    {
        angles[i] = rand();
    }

    #pragma omp simd
    for (i = 0; i < N; i++)
    {
        results[i] = cos(angles[i]);
    }

   return 0;
}

See also:

• Glibc wiki/libmvec
• Vectorization Resources for Intel® Advisor Users

Use The Intel Short Vector Math Library for Vector Intrinsics

Your application calls scalar instead of vectorized versions of math functions. To fix: Do all of the following:

• Use the -mveclibabi=svml compiler option to specify the Intel short vector math library ABI type for
vector instrinsics.

• Use the -ftree-vectorize and -funsafe-math-optimizations compiler options to enable vector
math functions.

• Use the -L/path/to/intel/lib and -lsvml compiler options to specify an SVML ABI-compatible library
at link time.

gcc program.c -O2 -ftree-vectorize -funsafe-math-optimizations -mveclibabi=svml -L/opt/intel/lib/
intel64 -lm -lsvml -Wl,-rpath=/opt/intel/lib/intel64
#include "math.h"
#include "stdio.h"
#define N 100000

int main()
{
    double angles[N], results[N];
    int i;
    srand(86456);

    for (i = 0; i < N; i++)
    {

  1   Intel® Advisor User Guide

696

https://sourceware.org/glibc/wiki/libmvec
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


        angles[i] = rand();
    }

    // the loop will be auto-vectorized
    for (i = 0; i < N; i++)
    {
        results[i] = cos(angles[i]);
    }

   return 0;
}

See also:

• GCC Options
• Vectorization Resources for Intel® Advisor Users

Inefficient Gather/Scatter Instructions Present
The compiler assumes indirect or irregular stride access to data used for vector operations. Improve memory
access by alerting the compiler to detected regular stride access patterns, such as:

Refactor code with detected regular stride access patterns

The Memory Access Patterns Report shows the following regular stride access(es):

See details in the Memory Access Patterns Report Source Details view.

To improve memory access: Refactor your code to alert the compiler to a regular stride access. Sometimes, it
might be beneficial to use the ipo/Qipo compiler option to enable interprocedural optimization (IPO)
between files.

An array is the most common type of data structure containing a contiguous collection of data items that can
be accessed by an ordinal index. You can organize this data as an array of structures (AoS) or as a structure
of arrays (SoA). Detected constant stride might be the result of AoS implementation. While this organization
is excellent for encapsulation, it can hinder effective vector processing. To fix: Rewrite code to organize data
using SoA instead of AoS.

However, the cost of rewriting code to organize data using SoA instead of AoS may outweigh the benefit. To
fix: Use Intel SIMD Data Layout Templates (Intel SDLT), introduced in version 16.1 of the Intel compiler, to
mitigate the cost. Intel SDLT is a C++11 template library that may reduce code rewrites to just a few lines.

Refactor for vertical invariant pattern.

// main.cpp
int a[8] = {1,0,5,7,4,2,6,3};

// gather.cpp
void test_gather(int* a, int* b, int* c, int* d)
{
    int i, k;
// inefficient access
#pragma omp simd
    for (i = 0; i < INNER_COUNT; i++)
        d[i] = b[a[i%8]] + c[i];

   int b_alt[8];
   for (k = 0; k < 8; ++k)
        b_alt[k] = b[a[k]];

// more effective version

Intel® Advisor User Guide  1  

697

https://gcc.gnu.org/onlinedocs/gcc-4.5.3/gcc/i386-and-x86_002d64-Options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


   for (i = 0; i < INNER_COUNT/8; i++)
   {
#pragma omp simd
       for(k = 0; k < 8; ++k)
           d[i*8+k] = b_alt[k] + c[i*8+k];
   }
}

Also make sure vector function clauses match arguments in the calls within the loop (if any).

NOTE You may use several #pragma declare simd directives to tell the compiler to generate several
vector variants of a function.

Compare function calls with their declarations.

// functions.cpp
#pragma omp declare simd
int foo1(int* arr, int idx) { return 2 * arr[idx]; }

#pragma omp declare simd uniform(arr) linear(idx)
int foo2(int* arr, int idx) { return 2 * arr[idx]; }

#pragma omp declare simd linear(arr) uniform(idx)
int foo3(int* arr, int idx) { return 2 * arr[idx]; }

// gather.cpp
void test_gather(int* a, int* b, int* c)
{
    int i, k;

// Loop will be vectorized, for complex access patterns gathers could be used for function call.
#pragma omp simd
    for (i = 0; i < INNER_COUNT; i++) a[i] = b[i] + foo1(c,i);

// Loop will be vectorized with vectorized call
#pragma omp simd
    for (i = 0; i < INNER_COUNT; i++) a[i] = b[i] + foo2(c,i);

// Loop will be vectorized with serialized function call
#pragma omp simd
    for (i = 0; i < INNER_COUNT; i++) a[i] = b[i] + foo3(c,i);
}

See also:

• ipo, Qipo; omp simd, omp declare simd in OpenMP* Pragmas Summary
• Case study: Comparing Arrays of Structures and Structures of Arrays Data Layouts for a Compute-

Intensive Loop
• Introduction to the Intel® SIMD Data Layout Templates (Intel®SDLT)
• Vectorization Resources for Intel® Advisor Users

Vector Register Spinning Possible
Possible register spilling was detected and all vector registers are in use. This may negatively impact
performance, because the spilled variable must be loaded to and unloaded from main memory. Improve
performance by decreasing vector register pressure.

Decrease Unroll Factor

  1   Intel® Advisor User Guide

698

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/interprocedural-optimization-ipo-options/ipo-qipo.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/articles/a-case-study-comparing-aos-arrays-of-structures-and-soa-structures-of-arrays-data-layouts.html
https://www.intel.com/content/www/us/en/develop/articles/a-case-study-comparing-aos-arrays-of-structures-and-soa-structures-of-arrays-data-layouts.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/libraries/introduction-to-the-simd-data-layout-templates.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


The current directive unroll factor increases vector register pressure. To fix: Decrease unroll factor using a
directive: #pragma nounroll or #pragma unroll.

void nounroll(int a[], int b[], int c[], int d[])
{
    #pragma nounroll
    for (int i = 1; i < 100; i++)
    {
        b[i] = a[i] + 1;
        d[i] = c[i] + 1;
    }
}

See also:

• unroll/nounroll
• Vectorization Resources for Intel® Advisor Users

Split Loop into Smaller Loops

Possible register spilling along with high vector register pressure is preventing effective vectorization. To fix:
Use the directive #pragma distribute_point or rewrite your code to distribute the source loop. This can
decrease register pressure as well as enable www pipelining and improve both instruction and data cache
use.

#define NUM 1024
void loop_distribution_pragma2(
       double a[NUM], double b[NUM], double c[NUM],
       double x[NUM], double y[NUM], double z[NUM] )
{
    int i;
    // After distribution or splitting the loop.
    for (i=0; i< NUM; i++)
    {
        a[i] = a[i] +i;
        b[i] = b[i] +i;
        c[i] = c[i] +i;
        #pragma distribute_point
        x[i] = x[i] +i;
        y[i] = y[i] +i;
        z[i] = z[i] +i;
    }
}

See also:

• distribute_point
• Vectorization Resources for Intel® Advisor Users

Assumed Dependency Present
The compiler assumed there is an anti-dependency (Write after read - WAR) or a true dependency (Read
after write - RAW) in the loop. Improve performance by investigating the assumption and handling
accordingly.

Confirm Dependency Is Real

There is no confirmation that a real (proven) dependency is present in the loop. To confirm: Run a 
Dependencies analysis.

Enable Vectorization

Intel® Advisor User Guide  1  

699

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/unroll-nounroll.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/distribute-point.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective/find-loops-that-benefit-from-better-vectorization/find-data-dependencies.html


The Dependencies analysis shows there is no real dependency in the loop for the given workload. Tell the
compiler it is safe to vectorize using the restrict keyword or a directive:

#pragma ivdep
for (i = 0; i < n - 4; i += 4)
{
    // Here another line of comments for demontration of
    // easy to use code sample...
    a[i + 4] = a[i] * c;
}

See also:

• ivdep, omp simd in OpenMP Pragmas Summary
• Vectorization Resources for Intel® Advisor Users

Proven (Real) Dependency Is Present
The compiler assumed there is an anti-dependency (Write after read - WAR) or true dependency (Read after
write - RAW) in the loop. Improve performance by investigating the assumption and handling accordingly.

Resolve Dependency

The Dependencies analysis shows there is a real (proven) dependency in the loop. To fix: Do one of the
following:

• If there is an anti-dependency, enable vectorization using the directive #pragma omp simd
safelen(length) , where length is smaller than the distance between dependent iterations in anti-
dependency.

#pragma omp simd safelen(4)
for (i = 0; i < n - 4; i += 4)
{
    a[i + 4] = a[i] * c;
}

• If there is a reduction pattern dependency in the loop, enable vectorization using the directive #pragma
omp simd reduction(operator:list).

#pragma omp simd reduction(+:sumx)
for (k = 0;k < size2; k++)
{
    sumx += x[k]*b[k];
}

• Rewrite the code to remove the dependency. Use programming techniques such as variable privatization.

See also:

• omp simd in OpenMP Pragmas Summary
• Vectorization Resources for Intel® Advisor Users

Data Type Conversions Present
There are multiple data types within loops. Utilize hardware vectorization support more effectively by
avoiding data type conversion.

Use The Smallest Data Type

The source loop contains data types of different widths. To fix: Use the smallest data type that gives the
needed precision to use the entire vector register width.

Example: If only 16-bits are needed, using a short rather than an int can make the difference between
eight-way or four-way SIMD parallelism, respectively.

  1   Intel® Advisor User Guide

700

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/ivdep.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


User Function Call(s) Present
User-defined functions in the loop body are preventing the compiler from vectorizing the loop.

Enable Inline Expansion

Inlining of user-defined functions is disabled by compiler option. To fix: When using the Ob or inline-level
compiler option to control inline expansion, replace the 0 argument with the 1 argument to enable inlining
when an inline keyword or attribute is specified or the 2 argument to enable inlining of any function at
compiler discretion.

See also:

• inline-level, Ob
• Vectorization Resources for Intel® Advisor Users

Vectorize User Function(s) Inside Loop

These user-defined function(s) are not vectorized or inlined by the compiler: my_calc() To fix: Do one of the
following:

• Enforce vectorization of the source loop by means of SIMD instructions and/or create a SIMD version of
the function(s) using a directive:

Target Directive

Source loop #pragma omp simd

Inner function definition or declaration #pragma omp declare simd

#pragma omp declare simd
int f (int x)
{
    return x+1;
}
#pragma omp simd
for (int k = 0; k < N; k++)
{
    a[k] = f(k);
}

See also:

• omp simd, omp declare simd in OpenMP Pragmas Summary
• Vectorization Resources for Intel® Advisor Users

Compiler Lacks Sufficient Information to Vectorize Loop
Cause: You are using a non-Intel compiler or an outdated Intel compiler. Nevertheless, it appears there are
no issues preventing vectorization and vectorization may be profitable.

Explore Vectorization Opportunities

You compiled with auto-vectorization enabled; however, the compiler did not vectorize the code. Explore
vectorization opportunities:

• Run a Dependencies analysis to identify real data dependencies that could make forced vectorization
unsafe.

• Microsoft Visual C++* compiler: Use the Qvec-report compiler option (i.e. /Qvec-report:2)
• Auto-Vectorizer Reporting Level to output missed optimization opportunities.
• GNU* gcc compiler, do one of the following:

• Use the fopt-info-vec-missed compiler option to output missed optimization opportunities.
• Use the OpenMP* omp simd directive to tell the compiler it is safe to vectorize.
• Use additional auto-vectorization directives.

Intel® Advisor User Guide  1  

701

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/inlining-options/inline-level-ob.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


See also:

• Visual Studio 2015/Visual C++ Compiler Options Listed Alphabetically
• GCC online documentation
• OpenMP Resources

Enable Auto-Vectorization

You compiled with auto-vectorization disabled; enable auto-vectorization:

• Intel compiler 14.x or below: Increase the optimization level to O2 or O3.
• Microsoft Visual C++* compiler: Increase the optimization level to O2 or O3.
• GNU* gcc compiler, do one of the following:

• Increase the optimization level to O2 or O3.
• Use the ftree-vectorize compiler option.

See also:

• Visual Studio 2015/Visual C++ Compiler Options Listed Alphabetically
• GCC online documentation

System Function Call(s) Present
System function call(s) in the loop body are preventing the compiler from vectorizing the loop.

Remove System Function Call(s) Inside Loop

Typically system function or subroutine calls cannot be vectorized; even a print statement is sufficient to
prevent vectorization. To fix: Avoid using system function calls in loops.

OpenMP* Function Call(s) Present
OpenMP* function call(s) in the loop body are preventing the compiler from effectively vectorizing the loop.

Move OpenMP Call(s) Outside The Loop Body

OpenMP calls prevent automatic vectorization when the compiler cannot move the calls outside the loop
body, such as when OpenMP calls are not invariant. To fix:

1. Split the OpenMP parallel loop directive into two directives.
2. Move the OpenMP calls outside the loop when possible.

Original code example:

#pragma omp parallel for private(tid, nthreads)
for (int k = 0; k < N; k++)
{
    tid = omp_get_thread_num(); // this call inside loop prevents vectorization
    nthreads = omp_get_num_threads(); // this call inside loop prevents vectorization
    ...
}

Revised code example:

#pragma omp parallel private(tid, nthreads)
{
    // Move OpenMP calls here
    tid = omp_get_thread_num();
    nthreads = omp_get_num_threads();

    #pragma omp for nowait
    for (int k = 0; k < N; k++)
    {

  1   Intel® Advisor User Guide

702

https://docs.microsoft.com/en-us/previous-versions/fwkeyyhe(v=vs.140)?redirectedfrom=MSDN
https://gcc.gnu.org/onlinedocs/
https://www.openmp.org/
https://docs.microsoft.com/en-us/previous-versions/fwkeyyhe(v=vs.140)?redirectedfrom=MSDN
https://gcc.gnu.org/onlinedocs/


        ...
    }
}

See also:

• omp for, omp parallel recommendations in OpenMP Pragmas Summary
• Vectorization Resources for Intel® Advisor Users

Remove OpenMP Lock Functions

Locking objects slows loop execution. To fix: Rewrite the code without OpenMP lock functions.

Allocating separate arrays for each thread and then merging them after a parallel recommendation may
improve speed (but consume more memory).

Original code example:

int A[n];
list<int> L;
...
omp_lock_t lock_obj;
omp_init_lock(&lock_obj);
#pragma omp parallel for shared(L, A, lock_obj) default(none)
for (int i = 0; i < n; ++i)
{
    // A[i] calculation
    ...
    if (A[i]<1.0)
    {
        omp_set_lock(&(lock_obj));
        L.insert(L.begin(), A[i]);
        omp_unset_lock(&(lock_obj));
    }
}
omp_destroy_lock(&lock_obj);

Revised code example:

int A[n];
list<int> L;
omp_set_num_threads(nthreads_all);
...
vector<list<int>> L_by_thread(nthreads_all); // separate list for each thread
#pragma omp parallel shared(L, L_by_thread, A) default(none)
{
    int k = omp_get_thread_num();
    #pragma omp for nowait
    for (int i = 0; i < n; ++i)
    {
        // A[i] calculation
        ...
        if (A[i]<1.0)
        {
            L_by_thread[k].insert(L_by_thread[k].begin(), A[i]);
        }
   }
}

// merge data into single list
for (int k = 0; k < L_by_thread.size(); k++)

Intel® Advisor User Guide  1  

703

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


{
  L.splice(L.end(), L_by_thread[k]);
}

See also:

• Calling Functions on the CPU to Modify the Coprocessor's Execution Environment; Lock Routines
recommendation in OpenMP Run-time Library Routines;omp for, omp parallel recommendations in 
OpenMP Pragmas Summary

• Vectorization Resources for Intel® Advisor Users

Potential Inefficient Memory Access Patterns Present
Inefficient memory access patterns may result in significant vector code execution slowdown or block
automatic vectorization by the compiler. Improve performance by investigating.

Confirm Inefficient Memory Access Patterns

There is no confirmation inefficient memory access patterns are present. To fix: Run a Memory Access
Patterns analysis.

Inefficient Memory Access Patterns Present
There is a high of percentage memory instructions with irregular (variable or random) stride accesses.
Improve performance by investigating and handling accordingly.

Reorder Loops

This loop has less efficient memory access patterns than a nearby outer loop. To fix: Reorder the loops if
possible.

Original code example:

void matmul(float *a[], float *b[], float *c[], int N) {
    for (int i = 0; i < N; i++)
        for (int j = 0; j < N; j++)
            for (int k = 0; k < N; k++)
                c[i][j] = c[i][j] + a[i][k] * b[k][j];
}

Revised code example:

void matmul(float *a[], float *b[], float *c[], int N) {
    for (int i = 0; i < N; i++)
        for (int k = 0; k < N; k++)
            for (int j = 0; j < N; j++)
                c[i][j] = c[i][j] + a[i][k] * b[k][j];
}

Interchanging is not always possible because of dependencies, which can lead to different results.

Use Intel SDLT

The cost of rewriting code to organize data using SoA instead of AoS may outweigh the benefit. To fix: Use
Intel SIMD Data Layout Templates (Intel SDLT), introduced in version 16.1 of the Intel compiler, to mitigate
the cost. Intel SDLT is a C++11 template library that may reduce code rewrites to just a few lines.

Using SDLT instead of STL containers may improve the memory access pattern for more efficient vector
processing.

  1   Intel® Advisor User Guide

704

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-library-support/openmp-run-time-library-routines.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective/find-loops-that-benefit-from-better-vectorization/investigate-memory-usage-and-traffic.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective/find-loops-that-benefit-from-better-vectorization/investigate-memory-usage-and-traffic.html


Original code example:

struct kValues {
    float Kx;
    float Ky;
    float Kz;
    float PhiMag;
};

std::vector<kValues> dataset(count);

// Initialization step
for(int i=0; i < count; ++i) {
    kValues[i].Kx = kx[i];
    kValues[i].Ky = ky[i];
    kValues[i].Kz = kz[i];
    kValues[i].PhiMag = phiMag[i];
}

// Calculation step
for (indexK = 0; indexK < numK; indexK++) {
    expArg = PIx2 * (kValues[indexK].Kx * x[indexX] +
    kValues[indexK].Ky * y[indexX] +
    kValues[indexK].Kz * z[indexX]);
    cosArg = cosf(expArg);
    sinArg = sinf(expArg);
    float phi = kValues[indexK].PhiMag;
    QrSum += phi * cosArg;
    QiSum += phi * sinArg;
}

Revised code example:

#include <sdlt/sdlt.h>

struct kValues {
    float Kx;
    float Ky;
    float Kz;
    float PhiMag;
};
SDLT_PRIMITIVE(kValues, Kx, Ky, Kz, PhiMag)

sdlt::soa1d_container<kValues> dataset(count);

// Initialization step
auto kValues = dataset.access();
for (k = 0; k < numK; k++) {
    kValues [k].Kx() = kx[k];
    kValues [k].Ky() = ky[k];
    kValues [k].Kz() = kz[k];
    kValues [k].PhiMag() = phiMag[k];
}

// Calculation step
auto kVals = dataset.const_access();
#pragma omp simd private(expArg, cosArg, sinArg) reduction(+:QrSum, QiSum)
for (indexK = 0; indexK < numK; indexK++) {
    expArg = PIx2 * (kVals[indexK].Kx() * x[indexX] +
    kVals[indexK].Ky() * y[indexX] +

Intel® Advisor User Guide  1  

705



    kVals[indexK].Kz() * z[indexX]);
    cosArg = cosf(expArg);
    sinArg = sinf(expArg);
    float phi = kVals[indexK].PhiMag();
    QrSum += phi * cosArg;
    QiSum += phi * sinArg;
}

See also:

• Introduction to the Intel® SIMD Data Layout Templates (Intel® SDLT)
• Vectorization Resources for Intel® Advisor Users

Use SoA Instead of AoS

An array is the most common type of data structure containing a contiguous collection of data items that can
be accessed by an ordinal index. You can organize this data as an array of structures (AoS) or as a structure
of arrays (SoA). While AoS organization is excellent for encapsulation, it can hinder effective vector
processing. To fix: Rewrite code to organize data using SoA instead of AoS.

See also:

• Programming Guidelines for Vectorization
• Case study: Comparing Arrays of Structures and Structures of Arrays Data Layouts for a Compute-

Intensive Loop and Vectorization Resources for Intel® Advisor Users

Potential Underutilization of FMA Instructions
Your current hardware supports the AVX2 instruction set architecture (ISA), which enables the use of fused
multiply-add (FMA) instructions. Improve performance by utilizing FMA instructions.

Force Vectorization If Possible

The loop contains FMA instructions (so vectorization could be beneficial), but is not vectorized. To fix, review:

• Corresponding compiler diagnostic to check if vectorization enforcement is possible and profitable
• The Dependencies analysis to distinguish between compiler-assumed dependencies and real dependencies

See also:

• Vectorization Resources for Intel® Advisor Users

Explicitly Enable FMA Generation When Using The Strict Floating-Point Model

Static analysis presumes the loop may benefit from FMA instructions available with the AVX2 ISA, but the
strict floating-point model disables FMA instruction generation by default. To fix: Override this behavior
using the fma compiler option.

Windows OS Linux OS

/Qfma -fma

See also:

• fma, Qgma
• Floating-point Operations and Code Generation Options
• Vectorization Resources for Intel® Advisor Users

Target The Higher ISA

Although static analysis presumes the loop may benefit from FMA instructions available with the AVX2 or
higher ISA, no FMA instructions executed for this loop. To fix: Use the following compiler options:

• xCORE-AVX2 to compile for machines with and without AVX2 support
• axCORE-AVX2 to compile for machines with AVX2 support only

  1   Intel® Advisor User Guide

706

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/libraries/introduction-to-the-simd-data-layout-templates.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/vectorization/automatic-vectorization/programming-guidelines-for-vectorization.html
https://www.intel.com/content/www/us/en/develop/articles/a-case-study-comparing-aos-arrays-of-structures-and-soa-structures-of-arrays-data-layouts.html
https://www.intel.com/content/www/us/en/develop/articles/a-case-study-comparing-aos-arrays-of-structures-and-soa-structures-of-arrays-data-layouts.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options/fma-qfma.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/floating-point-operations.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


• xCOMMON-AVX512 to compile for machines with AVX-512 support only
• axCOMMON-AVX512 to compile for machines with and without AVX-512 support

NOTE The compiler options may vary depending on the CPU microarchitecture.

See also:

• ax, Qax; x, Qx
• Code Generation Options
• Vectorization Resources for Intel® Advisor Users

Target A Specific ISA Instead of Using The xHost Option

Although static analysis presumes the loop may benefit from FMA instructions available with the AVX2 or
higher ISA, no FMA instructions executed for this loop. To fix: Instead of using the xHost compiler option,
which limits optimization opportunities by the host ISA, use the following compiler options:

• xCORE-AVX2 to compile for machines with and without AVX2 support
• axCORE-AVX2 to compile for machines with AVX2 support only
• xCOMMON-AVX512 to compile for machines with AVX-512 support only
• axCOMMON-AVX512 to compile for machines with and without AVX-512 support

NOTE The compiler options may vary depending on the CPU microarchitecture.

Windows OS Linux OS

/QxCORE-AVX2 or /QaxCORE-AVX2 -xCORE-AVX2 or -axCORE-AVX2

/QxCOMMON-AVX512 or /QaxCOMMON-AVX512 -xCOMMON-AVX512 or -axCOMMON-AVX512

See also:

• ax, Qax; x, Qx
• Code Generation Options
• Vectorization Resources for Intel® Advisor Users

Indirect Function Call(s) Present
Indirect function call(s) in the loop body are preventing the compiler from vectorizing the loop. Indirect calls,
sometimes called indirect jumps, get the callee address from a register or memory; direct calls get the callee
address from an argument. Even if you force loop vectorization, indirect calls remain serialized.

Improve Branch Prediction

For 64-bit applications, branch prediction performance can be negatively impacted when the branch target is
more than 4 GB away from the branch. This is more likely to happen when the application is split into shared
libraries. To fix: Do the following:

• Upgrade the Glibc library to version 2.23 or higher.
• Set environment variable export LD_PREFER_MAP_32BIT_EXEC=1.

See also:

• Glibc 2.23 release notes
• Vectorization Resources for Intel® Advisor Users

Remove Insirect Call(s) Inside The Loop

Indirect function or subroutine calls cannot be vectorized. To fix: Avoid using indirect calls in loops.

Replace Calls to Virtual Methods with Direct Calls

Intel® Advisor User Guide  1  

707

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/ax-qax.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/x-qx.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/ax-qax.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/x-qx.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://sourceware.org/legacy-ml/libc-alpha/2016-02/msg00502.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


Calls to virtual methods are always indirect because the function address is calculated during runtime. Do the
following to fix:

• Force vectorization of the source loop using SIMD instructions and/or create a SIMD version of the
function(s) using a directive:

• Update to Intel Compiler 17.x or higher. Or replace the virtual method with a direct function call.

Original code example:

struct A {
    virtual double foo(double x) { return x+1; }
};

struct B : public A {
    double foo(double x) override { return x-1; }
};

 ...

A* obj = new B();

double sum = 0.0;
#pragma omp simd reduction(+:sum)
for (int k = 0; k < N; ++k) {
    // virtual indirect call
    sum += obj->foo(a[k]);
}
...

Revised code example:

struct A {
    // Intel Compiler 17.x or higher could vectorize call to virtual method
    #pragma omp declare simd
    virtual double foo(double x) { return x+1; }
};

 ...

sum = 0.0;
#pragma omp simd reduction(+:sum)
for (int k = 0; k < N; ++k) {
    // step for Intel Compiler 16.x or lower:
    // if you know the method to be called,
    // replace virtual call with direct one
    sum += ((B*)obj)->B::foo(a[k]);
}
...

See also:

• omp simd, omp declare simd in OpenMP Pragmas Summary
• Vectorization Resources for Intel® Advisor Users

Vectorize Calls to Virtual Method

Force vectorization of the source loop using SIMD instructions and/or generate vector variants of the
function(s) using a directive:

  1   Intel® Advisor User Guide

708

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


Original code example:

struct A {
    virtual double foo(double x) { return x+1; }
};

struct B : public A {
    double foo(double x) override { return x-1; }
};

 ...

A* obj = new B();

double sum = 0.0;
#pragma omp simd reduction(+:sum)
for (int k = 0; k < N; ++k) {
    // indirect call to virtual method
    sum += obj->foo(a[k]);
}
...

Revised code example:

struct A {
    #pragma omp declare simd
    virtual double foo(double x) { return x+1; }
};
 ...

See also:

• omp simd, omp declare simd in OpenMP Pragmas Summary
• Vectorization Resources for Intel® Advisor Users

Inefficient Processing of SIMD-enabled Functions Possible
Vector declaration defaults for your SIMD-enabled functions may result in extra computations or ineffective
memory access patterns. Improve performance by overriding defaults.

Target a Specific Processor Type(s)

The default instruction set architecture (ISA) for SIMD-enabled functions is inefficient for your host processor
because it could result in extra memory operations between registers. To fix: Add one of the following to tell
the compiler to generate an extended set of vector functions.

Windows OS Linux OS

processor(cpuid) to #pragma omp declare simd processor(cpuid) to #pragma omp declare simd

processor(cpuid) to _declspec(vector()) processor(cpuid) to _attribute_(vector())

/Qvecabi:cmdtarget Note: Vector variants are created for
targets specified for targets specified by compiler
options /Qx or /Qax

-vecabi=cmdtarget Note: Vector variants are created for
targets specified for targets specified by compiler options
-x or -ax

See also:

• cpu_specific; SIMD-Enabled Functions; vecabi, Qvecabi; vector; omp declare simd in OpenMP Pragmas
Summary

• Vectorization Resources for Intel® Advisor Users

Enforce the Compiler to Ignore Assumed Vector Dependencies

Intel® Advisor User Guide  1  

709

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/attributes/cpu-dispatch-cpu-specific.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/vectorization/explicit-vector-programming/simd-enabled-functions.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/advanced-optimization-options/vecabi-qvecabi.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/vector-1.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


No real dependencies were detected, so there is no need for conflict-detection instructions. To fix: Tell the
compiler it is safe to vectorize using a directive #pragma ivdep.

NOTE This fix may be unsafe in other scenarios; use with care to avoid incorrect results.

#pragma ivdep
    for (i = 0; i < n; i++)
    {
        a[index[i]] = b[i] * c;
    }

See also:

• ivdep
• Vectorization Resources for Intel® Advisor Users

Opportunity for Outer Loop Vectorization
This is outer (non-innermost) loop. Normally outer loops are not targeted by auto-vectorization. Outer loop
vectorization is also possible and sometimes more profitable, but requires explicit vectorization using
OpenMP* API or Intel® Cilk™ Plus.

Collect Trip Counts Data

The Survey Report lacks trip counts data that might prove profitability for outer loop vectorization. To fix:
Run a Trip Counts analysis.

Check Dependencies for Outer Loop

It is not safe to force vectorization without knowing that there are no dependencies. Disable inner
vectorization before check Dependency. To check: Run a Dependencies analysis.

Check Memory Access Patterns for Outer Loop

To ensure that outer loop has optimal memory access patterns run a Memory Access Patterns analysis.

Consider Outer Loop Vectorization

The compiler never targets loops other than innermost ones, so it vectorized the inner loop while did not
vectorize the outer loop. However outer loop vectorization could be more profitable because of better
Memory Access Pattern, higher Trip Counts or better Dependencies profile.

To enforce outer loop vectorization:
Target Directive

Outer Loop #pragma omp simd

Inner Loop #pragma novector

Given issue is only about opportunity to vectorize outer loop, to prove profitability you need perform deeper
dive analysis (MAP, Trip Counts, Dependencies)

#pragma omp simd
for(i=0; i<N; i++)
{
    #pragma novector
    for(j=0; j<N; j++)
    {
        sum += A[i]*A[j];
    }
}

See also:

  1   Intel® Advisor User Guide

710

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/ivdep.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective/find-loops-that-benefit-from-better-vectorization/analyze-loop-call-count.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective/find-loops-that-benefit-from-better-vectorization/find-data-dependencies.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective/find-loops-that-benefit-from-better-vectorization/investigate-memory-usage-and-traffic.html


• omp simd in OpenMP Pragmas Summary, novector
• Outer Loop Vectorization, Vectorization Resources for Intel® Advisor Users

Consider Outer Loop Vectorization.

The compiler did not vectorize the loop as the code exceeds the compilers complexity criteria. You might get
higher performance if you enforce the loop vectorization. Use a directive right before your loop block in the
source code.

ICL/ICC/ICPC Directive

#pragma omp simd

See also:

• omp simd in OpenMP Pragmas Summary
• Outer Loop Vectorization, Vectorization Resources for Intel® Advisor Users

Consider Outer Loop Vectorization

The compiler did not vectorize the inner loop due to potential dependencies detected. You might vectorize
outer loop if it has no dependency. Use a directive right before your loop block in the source code.

ICL/ICC/ICPC Directive

#pragma omp simd

See also:

• omp simd in OpenMP Pragmas Summary
• Outer Loop Vectorization, Vectorization Resources for Intel® Advisor Users

STL Algorithms Present
STL algorithms are algorithmically optimized. Improve performance with algorithms that are both
algorithmically and programmatically optimized by using Parallel STL. Parallel STL is an implementation of C+
+ standard library algorithms for the next version of the C++ standard, commonly called C++17, that
supports execution policies and is specifically optimized for Intel® processors. Pass one of the following values
as the first parameter in an algorithm call to specify the desired execution policy.

Execution Policy Meaning

seq Execute sequentially.

unseq Use SIMD. (Requires SIMD-safe functions.)

par Use multithreading. (Requires thread-safe functions.)

par_unseq Use SIMD and multithreading. (Requires SIMD-safe and
thread-safe functions.)

Parallel STL supports SIMD and multithreading execution policies for a subset of algorithms if random access
iterators are provided. Execution remains sequential for all other algorithms.

Use Parallel STL Alternative to std::any_of
The std::any_of algorithm runs sequentially. To run in parallel, use the Parallel STL alternative with the
following execution policy: std::execution::unseq
#include "pstl/execution"
#include "pstl/algorithm"
void foo(float* a, int n)
{
   std::any_of(std::execution::unseq, a, a+n, [](float elem)
   {

Intel® Advisor User Guide  1  

711

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/novector.html
https://www.intel.com/content/www/us/en/develop/articles/outer-loop-vectorization.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/articles/outer-loop-vectorization.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html
https://www.intel.com/content/www/us/en/develop/articles/outer-loop-vectorization.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


       return elem > 100.f;
   });
}

See also:

• Get Started with Parallel STL
• Vectorization Resources for Intel® Advisor Users

Use Parallel STL Alternative to std::copy_if
The std::copy_if algorithm runs sequentially. To run in parallel, use the Parallel STL alternative with one of
the following execution polices:

• std::execution::par
• std::execution::par_unseq
#include "pstl/execution"
#include "pstl/algorithm"
void foo(float* a, float* b, int n)
{
    std::copy_if(std::execution::par_unseq, a, a+n, b, [](float elem)
    {
        return elem  > 10.f;
    });
}

See also:

• Get Started with Parallel STL
• Vectorization Resources for Intel® Advisor Users

Use Parallel STL Alternative to std::for_each
The std::for_each algorithm runs sequentially. To run in parallel, use the Parallel STL alternative with one
of the following execution polices:

• std::execution::par
• std::execution::par_unseq
#include "pstl/execution"
#include "pstl/algorithm"
void foo(float* a, int n)
{
   std::for_each(std::execution::par_unseq, a, a+n, [](float elem)
   {
       ...
   });
}

See also:

• Get Started with Parallel STL
• Vectorization Resources for Intel® Advisor Users

Use Parallel STL Alternative to std::sort
The std::any_of algorithm runs sequentially. To run in parallel, use the Parallel STL alternative with the
following execution policy: std::execution::par
#include "pstl/execution"
#include "pstl/algorithm"
void foo(float* a, int n)

  1   Intel® Advisor User Guide

712

https://www.intel.com/content/www/us/en/develop/articles/get-started-with-parallel-stl.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/articles/get-started-with-parallel-stl.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/articles/get-started-with-parallel-stl.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


{
    std::sort(std::execution::par, a, a+n);
}

See also:

• Get Started with Parallel STL
• Vectorization Resources for Intel® Advisor Users

Potential Underutilization of Approximate Reciprocal Instructions
Your current hardware supports Advanced Vector Extensions 512 (AVX-512) instructions that enable the use
of approximate reciprocal and reciprocal square root instructions both for single- and double-precision
floating-point calculations. Improve performance by utilizing these instructions.

Force Vectorization If Possible

The loop contains SQRT/DIV instructions (so vectorization could be beneficial), but is not vectorized. To fix,
review:

• Corresponding compiler diagnostic to check if vectorization enforcement is possible and profitable
• The Dependencies analysis to distinguish between compiler-assumed dependencies and real dependencies

See also:

• Vectorization Resources for Intel® Advisor Users

Target the AVX-512 ISA

Static analysis presumes the loop may benefit from AVX-512 approximate reciprocal instructions, but these
instructions were not used. To fix: Use one of the following compiler options:

• xCOMMON-AVX512 - tells the compiler which processor features to target, including instructions sets and
optimizations it may generate, including AVX-512.

• axCOMMON-AVX512 - tells the compiler to generate multiple, feature-specific, auto-dispatch code for Intel
processors if there is a performance benefit.

Windows OS Linux OS

/QxCOMMON-AVX512 or /QaxCOMMON-AVX512 -xCOMMON-AVX512 or -axCOMMON-AVX512

See also:

• ax, Qax; x, Qx
• Code Generation Options
• Vectorization Resources for Intel® Advisor Users

Target the AVX-512 Exponential and Reciprocal Instructions ISA

Static analysis presumes the loop may benefit from AVX-512 Exponential and Reciprocal (AVX-512ER)
instructions currently supported only on Intel® Xeon Phi™ processors, but these instructions were not used. To
fix: Use one of the following compiler options:

• xMIC-AVX512 - tells the compiler which processor features to target, including instructions sets and
optimizations it may generate, including AVX-512ER.

• axMIC-AVX512 - tells the compiler to generate multiple, feature-specific, auto-dispatch code for Intel
processors if there is a performance benefit.

Windows OS Linux OS

/QxMIC-AVX512 or /QaxMIC-AVX512 -xMIC-AVX512 or -axMIC-AVX512

See also:

• ax, Qax; x, Qx

Intel® Advisor User Guide  1  

713

https://www.intel.com/content/www/us/en/develop/articles/get-started-with-parallel-stl.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/ax-qax.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/x-qx.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/ax-qax.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/x-qx.html


• Code Generation Options
• Vectorization Resources for Intel® Advisor Users

Enable the Use of Approximate Reciprocal Instructions by Fine-Tuning Precision and Floating-
Point Model Compiler Options

Static analysis presumes the loop may benefit from using approximate reciprocal instructions, but the
precision and floating-point model settings may prevent the compiler from using these instructions. To fix:
Fine-tune your usage of the following compiler options:

Windows OS Linux OS Comment

/fp -fp-model -fp-model=precise prevents the use of approximate reciprocal
instructions.

/Qimf-precision -fimf-precision Consider using -fimf-precision=medium or -fimf-
precision=low.

/Qimf-accuracy-bits -fimf-accuracy-bits Consider decreasing this setting.

/Qimf-max-error -fimf-max-error Consider increasing this setting.

There is a similar option: -fimf-absolute-error. Avoid using
both options at the same time or tune them together.

/Qimf-absolute-error -fimf-absolute-error Consider using -fimf-max-error instead and set -fimf-
absolute-error=0 (default) or increase this setting together with -
fimf-max-error.

/Qimf-domain-
exclusion

-fimf-domain-
exclusion

Consider increasing this setting. More excluded classes enable more
optimized code. USE WITH CAUTION. This option may cause incorrect
behavior if your calculations involve excluded domains.

/Qimf-arch-
consistency

-fimf-arch-
consistency

-fimf-arch-consistency=true may prevent the use of
approximate reciprocal instructions.

/Qprec-div -prec-div -prec-div prevents the use of approximate reciprocal instructions.

/Qprec-sqrt -prec-sqrt -prec-sqrt prevents the use of approximate reciprocal instructions.

See also:

• Floating-point Operations and Floating-point Options
• Vectorization Resources for Intel® Advisor Users

Possible Inefficient Conflict-Detection Instructions Present

Stores with indirect addressing caused the compiler to assume a potential dependency.

This resulted in the use of conflict-detection instructions during SIMD processing, such as the AVX-512
vpconflict instruction, which detects duplicate values within a vector and creates conflict-free subsets.
Improve performance by removing the need for conflict-detection instructions.

Enforce the Compiler to Ignore Assumed Vector Dependencies

No real dependencies were detected, so there is no need for conflict-detection instructions. To fix: Tell the
compiler it is safe to vectorize using a directive #pragma ivdep.

  1   Intel® Advisor User Guide

714

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/floating-point-operations.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


NOTE This fix may be unsafe in other scenarios; use with care to avoid incorrect results.

#pragma ivdep
    for (i = 0; i < n; i++)
    {
        a[index[i]] = b[i] * c;
    }

See also:

• ivdep
• Vectorization Resources for Intel® Advisor Users

Unoptimized Floating-Point Operation Processing Possible
Improve performance by enabling approximate operations instructions.

Enable the Use of Approximate Division Instructions

Static analysis presumes the loop may benefit from using approximate calculations. Independent dividors will
be pre-calculated and replaced with multiplicators. To fix: Fine-tune your usage of the following compiler
option:

Windows OS Linux OS Comment

/Qprec-div -no-prec-div -no-prec-div enables the use of approximate division optimizations.

See also:

• prec-div, Qprec-div
• Floating-point Operations and Floating-point Options
• Vectorization Resources for Intel® Advisor Users

Enable the Use of Approximate sqrt Instructions

Static analysis presumes the loop may benefit from using approximate sqrt instructions, but the precision
and floating-point model settings may prevent the compiler from using these instructions. To fix: Fine-tune
your usage of the following compiler option:

Windows OS Linux OS Comment

/Qprec-sqrt -no-prec-sqrt -no-prec-sqrt enables the use of approximate sqrt optimizations.

See also:

• prec-sqrt, Qprec-sqrt
• Floating-point Operations and Floating-point Options
• Vectorization Resources for Intel® Advisor Users

Potential Excessive Caching Present
Enable Non-Temporal Store

Enable non-temporal store using #pragma vector nontemporal. The nontemporal clause instructs the
compiler to use non-temporal (that is, streaming) stores on systems based on all supported architectures,
unless specified otherwise; optionally takes a comma-separated list of variables.

When this pragma is specified, it is your responsibility to also insert any fences as required to ensure correct
memory ordering within a thread or across threads. One typical way to do this is to insert a _mm_sfence
intrinsic call just after the loops (such as the initialization loop) where the compiler may insert streaming
store instructions.

Intel® Advisor User Guide  1  

715

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/ivdep.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options/prec-div-qprec-div.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/floating-point-operations.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options/prec-sqrt-qprec-sqrt.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/floating-point-operations.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


Streaming stores may cause significant performance improvements over non-streaming stores for large
numbers on certain processors. However, the misuse of streaming stores can significantly degrade
performance.

float a[1000];
void foo(int N)
{
  int i;
  #pragma vector nontemporal
  for (i = 0; i < N; i++)
  {
    a[i] = 1;
  }
}

See also:

• vector
• Vectorization Resources for Intel® Advisor Users

Misaligned Loop Code Present
Current placement of the loop in memory may result in inefficient use of the CPU front-end. Improve
performance by aligning loop code.

Force the Compiler to Align Loop Code

Caution Excessive code alignment may increase application binary size and decrease performance.

Static analysis shows the loop may benefit from code alignment. To fix: Force the compiler to align the loop
to a power-of-two byte boundary using a compiler directive for finer-grained control: #pragma code_align
(n)
Align inner loop to 32-byte boundary:

for (i = 0; i < n; i++)
{
#pragma code_align 32
    for (j = 0; j < m; j++)
    {
        a[i] *= b[i] + c[j];
    }
}

You may also need the following compiler option:
Windows OS Linux OS and Mac OS

/Qalign-loops[:n] -falign-loops[=n]

where n = a power of 2 betwen 1 and 4096, such as 1, 2, 4, 8, 16, 32, etc. n = 1 performs no alignment. If
n is not present, the compiler uses an alignment of 16 bytes. Suggestion: Try 16 and 32 first.

/Qalign-loops- and -fno-align-loops, the default compiler option, disables special loop alignment.

Vectorization Recommendations for Fortran

Ineffective Peeled/Remainder Loop(s) Present
All or some source loop iterations are not executing in the loop body. Improve performance by moving source
loop iterations from peeled/remainder loops to the loop body.

  1   Intel® Advisor User Guide

716

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/vector-1.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


Align Data

One of the memory accesses in the source loop does not start at an optimally aligned address boundary. To
fix: Align the data and tell the compiler the data is aligned. To align data, use __declspec(align()). To tell
the compiler the data is aligned, use __assume_aligned() before the source loop.

See also:

• Data Alignment to Assist Vectorization
• Vectorization Resources for Intel® Advisor Users

Parallelize The Loop with Both Threads and SIMD Instructions

The loop is threaded and auto-vectorized; however, the trip count is not a multiple of vector length. To fix:
Do all of the following:

• Use the !$omp parallel do simd directive to parallelize the loop with both threads and SIMD
instructions. Specifically, this directive divides loop iterations into chunks (subsets) and distributes the
chunks among threads, then chunk iterations execute concurrently using SIMD instructions.

• Add the schedule(simd: [kind]) modifier to the directive to guarantee the chunk size (number of
iterations per chunk) is a multiple of vector length.

Original code sample:

!$omp parallel do schedule(static)
do i = 1,1000
    c(i) = a(i)*b(i)
end do
!$omp end parallel do

Revised code sample:

!$omp parallel do simd schedule(simd: static)
do i = 1,1000
    c(i) = a(i)*b(i)
end do
!$omp end parallel do simd

See also:

• OpenMP Application Programming Interface
• Vectorization Resources for Intel® Advisor Users

Force Scalar Remainder Generation

The compiler generated a masked vectorized remainder loop that contains too few iterations for efficient
vector processing. A scalar loop may be more beneficial. To fix: Force scalar remainder generation using a
directive: !DIR$ VECTOR NOVECREMAINDER.

subroutine add(A, N, X)
    integer N, X
    real    A(N)
    ! Force the compiler to not vectorize the remainder loop
    !DIR$ VECTOR NOVECREMAINDER
    do i=x+1, n
        a(i) = a(i) + a(i-x)
    enddo
end

See also:

• VECTOR and NOVECTOR
• Vectorization Resources for Intel® Advisor Users

Force Vectorized Remainder

Intel® Advisor User Guide  1  

717

https://www.intel.com/content/www/us/en/develop/articles/data-alignment-to-assist-vectorization.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/t-to-z/vector-and-novector.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


The compiler did not vectorize the remainder loop, even though doing so could improve performance. To fix:
Force vectorization using a directive: !DIR$ VECTOR VECREMAINDER.

subroutine add(A, N, X)
    integer N, X
    real    A(N)
    ! Force the compiler to vectorize the remainder
    !DIR$ VECTOR VECREMAINDER
    do i=x+1, n
        a(i) = a(i) + a(i-x)
    enddo
end

See also:

• VECTOR and NOVECTOR
• Vectorization Resources for Intel® Advisor Users

Specify The Expected Loop Trip Count

The compiler cannot detect the trip count statically. To fix: Specify the expected number of iterations using a
directive: !DIR$ LOOP COUNT.

Iterate through a loop a maximum of ten, minimum of three, and average of five times:

!DIR$ LOOP COUNT MAX(10), MIN(3), AVG(5)
do i =1, m
    b(i) = a(i) + 1
    d(i) = c(i) + 1
enddo

See also:

• LOOP COUNT
• Vectorization Resources for Intel® Advisor Users

Change The Chunk Size

The loop is threaded and vectorized using the !$omp parallel for simd directive, which parallelizes the
loop with both threads and SIMD instructions. Specifically, the directive divides loop iterations into chunks
(subsets) and distributes the chunks among threads, then chunk iterations execute concurrently using SIMD
instructions. In this case, the chunk size (number of iterations per chunk) is not a multiple of vector length.
To fix: Add a schedule (simd: [kind]) modifier to the !$omp parallel for simd directive.

Guarantee a maximum vector length.

!$omp parallel do simd schedule(simd: static)
do i = 1,1000
    c(i) = a(i)*b(i)
end do
!$omp end parallel do simd

See also:

• OpenMP Application Programming Interface
• Vectorization Resources for Intel® Advisor Users

Add Data Padding

The trip count is not a multiple of vector length . To fix: Do one of the following:

• Increase the size of objects and add iterations so the trip count is a multiple of vector length.
• Increase the size of static and automatic objects, and use a compiler option to add data padding.

See also:

  1   Intel® Advisor User Guide

718

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/t-to-z/vector-and-novector.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/j-to-l/loop-count.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.openmp.org//wp-content/uploads/openmp-4.5.pdf
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


• LOOP COUNT
• Utilizing Full Vectors and Vectorization Resources for Intel® Advisor Users

Collect Trip Counts Data

The Survey Report lacks trip counts data that might generate more precise recommendations.

Disable Unrolling

The trip count after loop unrolling is too small compared to the vector length . To fix: Prevent loop unrolling
or decrease the unroll factor using a directive: !DIR$ NOUNROLL or !DIR$ UNROLL.

Disable automatic loop unrolling using !DIR$ NOUNROLL.

!DIR$ NOUNROLL
do i = 1, m
    b(i) = a(i) + 1
    d(i) = c(i) + 1
enddo

See also:

• UNROLL and NOUNROLL
• Vectorization Resources for Intel® Advisor Users

Use A Smaller Vector Length

The compiler chose a vector length of , but the trip count might be smaller than the vector length. To fix:
Specify a smaller vector length using a directive: !$OMP SIMD SIMDLEN.

!$OMP SIMD SIMDLEN(4)
do i = 1, m
    b(i) = a(i) + 1
    d(i) = c(i) + 1
enddo

In Intel Compiler version 19.0 and higher, there is a new vector length clause that allows the compiler to
choose the best vector length based on cost: !DIR$ VECTOR VECTORLENGTH (vl1, vl2, ..., vln)
where vl is an integer power of 2.

!DIR$ VECTOR VECTORLENGTH(2, 4, 16)
do i = 1, m
    b(i) = a(i) + 1
    d(i) = c(i) + 1
enddo

See also:

• SIMD Directive (OpenMP* API), VECTOR and NOVECTOR
• Vectorization Resources for Intel® Advisor Users

Disable Dynamic Alignment

The compiler automatically peeled iterations from the vector loop into a scalar loop to align the vector loop
with a particular memory reference; however, this optimization may not be ideal. To possibly achieve better
performance, disable automatic peel generation using the directive: !DIR$ VECTOR NODYNAMIC_ALIGN.

...
!DIR$ VECTOR NODYNAMIC_ALIGN
do i = 1, len
    a(i) = b(i) * c(i)
enddo

See also:

• VECTOR and NOVECTOR

Intel® Advisor User Guide  1  

719

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/j-to-l/loop-count.html
https://www.intel.com/content/www/us/en/develop/articles/utilizing-full-vectors.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/t-to-z/unroll-and-nounroll.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/simd-directive-openmp-api.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/t-to-z/vector-and-novector.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/t-to-z/vector-and-novector.html


• Vectorization Resources for Intel® Advisor Users

Serialized User Function Call(s) Present
User-defined functions in the loop body are not vectorized.

Enable Inline Expansion

Inlining of user-defined functions is disabled by compiler option. To fix: When using the Ob or inline-level
compiler option to control inline expansion, replace the 0 argument with the 1 argument to enable inlining
when an inline keyword or attribute is specified or the 2 argument to enable inlining of any function at
compiler discretion.

See also:

• inline-level, Ob
• Vectorization Resources for Intel® Advisor Users

Vectorize Serialized Function(s) Inside Loop

• Enforce vectorization of the source loop by means of SIMD instructions and/or create a SIMD version of
the function(s) using a directive:

Target Directive

Source Loop !$OMP SIMD

Inner function definition or declaration !$OMP DECLARE SIMD

• If using the Ob or inline-level compiler option to control inline expansion with the 1 argument, use an
inline keyword to enable inlining or replace the 1 argument with 2 to enable inlining of any function at
compiler discretion.

real function f (x)
    !DIR$ OMP DECLARE SIMD
    real, intent(in), value  :: x
    f= x + 1
end function f

!DIR$ OMP SIMD
do k = 1, N
    a(k) = f(k)
enddo

See also:

• DECLARE SIMD, SIMD Directive (OpenMP* API)
• Vectorization Resources for Intel® Advisor Users

Scalar Math Function Call(s) Present
Math functions in the loop body are preventing the compiler from effectively vectorizing the loop. Improve
performance by enabling vectorized math call(s).

Enable Inline Expansion

Inlining is disabled by compiler option. To fix: When using the Ob or inline-level compiler option to
control inline expansion, replace the 0 argument with the 1 argument to enable inlining when an inline
keyword or attribute is specified or the 2 argument to enable inlining of any function at compiler discretion.

Alternatively use #include <mathimf.h> header instead of the standard #include <math.h> header to
call highly optimized and accurate mathematical functions commonly used in applications that rely heaving
on floating point computations.

See also:

  1   Intel® Advisor User Guide

720

https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/inlining-options/inline-level-ob.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/c-to-d/declare-simd.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/simd-directive-openmp-api.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


• inline-level, Ob
• Vectorization Resources for Intel® Advisor Users

Vectorize Math Function Calls Inside Loops

Your application calls serialized versions of math functions when you use the precise floating point model. To
fix: Do one of the following:

• Add fast-transcendentals compiler option to replace calls to transcendental functions with faster calls.

Caution This may reduce floating point accuracy.

• Enforce vectorization of the source loop using a directive: !$OMP SIMD
subroutine add(A, N, X)
    integer N, X
    real    A(N)
    !DIR$ OMP SIMD
    do i=x+1, n
        a(i) = a(i) + a(i-x)
    enddo
end

See also:

• fast-transcendentals, Qfast-transcendentals; SIMD Directive (OpenMP* API)
• Vectorization Resources for Intel® Advisor Users

Change The Floating Point Model

Your application calls serialized versions of math functions when you use the strict floating point model. To
fix: Do one of the following:

• Use the fast floating point model to enable more aggressive optimizations or the precise floating point
model to disable optimizations that are not value-safe on fast transcendental functions.

Caution This may reduce floating point accuracy.

• Use the precise floating point model and enforce vectorization of the source loop using a directive: !
$OMP SIMD

gfortran program.for -O2 -fopenmp -fp-model precise -fast-transcendentals
!DIR$ OMP SIMD COLLAPSE(2)
do i = 1, N
    a(i) = b(i) * c(i)
    do j = 1, N
        d(j) = e(j) * f(j)
    enddo
enddo

See also:

• fast-transcendentals, Qfast-transcendentals; SIMD Directive (OpenMP* API)
• Vectorization Resources for Intel® Advisor Users

Use a Glibc Library with Vectorized SVML Functions

Your application calls scalar instead of vectorized versions of math functions. To fix: Do all of the following:

• Upgrade the Glibc library to version 2.22 or higher. It supports SIMD directives in OpenMP* 4.0 or higher.
• Upgrade the GNU* gcc compiler to version 4.9 or higher. It supports vectorized math function options.

Intel® Advisor User Guide  1  

721

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/inlining-options/inline-level-ob.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options/fast-transcendentals-qfast-transcendentals.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/simd-directive-openmp-api.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options/fast-transcendentals-qfast-transcendentals.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/simd-directive-openmp-api.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


• Use the -fopenmp and -ffast-math compiler options to enable vector math functions.
• Use appropriate OpenMP SIMD directives to enable vectorization.

NOTE Also use the -I/path/to/glibc/install/include and -L/path/to/glibc/install/lib
compiler options if you have multiple Glibc libraries installed on the host.

gfortran PROGRAM.FOR -O2 -fopenmp -ffast-math -lrt -lm -mavx2
program main
    parameter (N=100000000)
    real*8 angles(N), results(N)
    integer i
    call srand(86456)

    do i=1,N
        angles(i) = rand()
    enddo

    !$OMP SIMD
    do i=1,N
        results(i) = cos(angles(i))
    enddo

end
See also:

• Glibc wiki/libmvec
• Vectorization Resources for Intel® Advisor Users

Use The Intel Short Vector Math Library for Vector Intrinsics

Your application calls scalar instead of vectorized versions of math functions. To fix: Do all of the following:

• Use the -mveclibabi=svml compiler option to specify the Intel short vector math library ABI type for
vector instrinsics.

• Use the -ftree-vectorize and -funsafe-math-optimizations compiler options to enable vector
math functions.

• Use the -L/path/to/intel/lib and -lsvml compiler options to specify an SVML ABI-compatible library
at link time.

gfortran PROGRAM.FOR -O2 -ftree-vectorize -funsafe-math-optimizations -mveclibabi=svml -L/opt/
intel/lib/intel64 -lm -lsvml -Wl,-rpath=/opt/intel/lib/intel64
program main
    parameter (N=100000000)
    real*8 angles(N), results(N)
    integer i
    call srand(86456)

    do i=1,N
        angles(i) = rand()
    enddo

    ! the loop will be auto-vectorized
    do i=1,N
        results(i) = cos(angles(i))
    enddo

end

  1   Intel® Advisor User Guide

722

https://sourceware.org/glibc/wiki/libmvec
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


See also:

• The GNU Fortran Compiler
• Vectorization Resources for Intel® Advisor Users

Inefficient Gather/Scatter Instructions Present
The compiler assumes indirect or irregular stride access to data used for vector operations. Improve memory
access by alerting the compiler to detected regular stride access patterns, such as:

Refactor code with detected regular stride access patterns

The Memory Access Patterns Report shows the following regular stride access(es):

See details in the Memory Access Patterns Report Source Details view.

To improve memory access: Refactor your code to alert the compiler to a regular stride access. Sometimes, it
might be beneficial to use the ipo/Qipo compiler option to enable interprocedural optimization (IPO)
between files.

See also:

• ipo, Qipo
• Case study: Comparing Arrays of Structures and Structures of Arrays Data Layouts for a Compute-

Intensive Loop
• Vectorization Resources for Intel® Advisor Users

Vector Register Spinning Possible
Possible register spilling was detected and all vector registers are in use. This may negatively impact
performance, because the spilled variable must be loaded to and unloaded from main memory. Improve
performance by decreasing vector register pressure.

Decrease Unroll Factor

The current directive unroll factor increases vector register pressure. To fix: Decrease unroll factor using a
directive: !DIR$ NOUNROLL or !DIR$ UNROLL.

!DIR$ UNROLL
do i = 1, m
    b(i) = a(i) + 1
    d(i) = c(i) + 1
enddo

See also:

• UNROLL and NOUNROLL
• Vectorization Resources for Intel® Advisor Users

Split Loop into Smaller Loops

Possible register spilling along with high vector register pressure is preventing effective vectorization. To fix:
Use the directive !DIR$ DISTRIBUTE POINT or rewrite your code to distribute the source loop. This can
decrease register pressure as well as enable software pipelining and improve both instruction and data cache
use.

!DIR$ DISTRIBUTE POINT
do i = 1, m
    b(i) = a(i) + 1
    ...
    c(i) = a(i) + b(i) ! Compiler will decide
    ! where to distribute.
    ! Data dependencies are observed

Intel® Advisor User Guide  1  

723

https://gcc.gnu.org/onlinedocs/gfortran/
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/interprocedural-optimization-ipo-options/ipo-qipo.html
https://www.intel.com/content/www/us/en/develop/articles/a-case-study-comparing-aos-arrays-of-structures-and-soa-structures-of-arrays-data-layouts.html
https://www.intel.com/content/www/us/en/develop/articles/a-case-study-comparing-aos-arrays-of-structures-and-soa-structures-of-arrays-data-layouts.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/t-to-z/unroll-and-nounroll.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


    ...
    d(i) = c(i) + 1
enddo
do i =1, m
    b(i) = a(i) + 1
    ...
    !DIR$ DISTRIBUTE POINT
    call sub(a, n)! Distribution will start here,
    ! ignoring all loop-carried depedencies
    c(i) = a(i) + b(i)
    ...
    d(i) = c(i) + 1
enddo

See also:

• DISTRIBUTE POINT
• Vectorization Resources for Intel® Advisor Users

Assumed Dependency Present
The compiler assumed there is an anti-dependency (Write after read - WAR) or a true dependency (Read
after write - RAW) in the loop. Improve performance by investigating the assumption and handling
accordingly.

Confirm Dependency Is Real

There is no confirmation that a real (proven) dependency is present in the loop. To confirm: Run a 
Dependencies analysis.

Enable Vectorization

The Dependencies analysis shows there is no real dependency in the loop for the given workload. Tell the
compiler it is safe to vectorize using the restrict keyword or a directive:

!DIR$ IVDEP
do i = 1, N-4, 4
    a(i+4) = b(i) * c
enddo

See also:

• IVDEP; SIMD Directive (OpenMP* API)
• Vectorization Resources for Intel® Advisor Users

Proven (Real) Dependency Is Present
The compiler assumed there is an anti-dependency (Write after read - WAR) or true dependency (Read after
write - RAW) in the loop. Improve performance by investigating the assumption and handling accordingly.

Resolve Dependency

The Dependencies analysis shows there is a real (proven) dependency in the loop. To fix: Do one of the
following:

• If there is an anti-dependency, enable vectorization using the directive !$OMP SIMD SAFELEN(length) ,
where length is smaller than the distance between dependent iterations in anti-dependency.

!$OMP SIMD SAFELEN(4)
do i = 1, N-4, 4
    a(i+4) = b(i) * c
enddo

  1   Intel® Advisor User Guide

724

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/c-to-d/distribute-point.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective/find-loops-that-benefit-from-better-vectorization/find-data-dependencies.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/h-to-i/ivdep.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/simd-directive-openmp-api.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


• If there is a reduction pattern dependency in the loop, enable vectorization using the directive !$OMP
SIMD REDUCTION(operator:list).

!$OMP SIMD REDUCTION(+:SUMX)
do k = 1, size2
    sumx = sumx + x(k) * b(k)
enddo

• Rewrite the code to remove the dependency. Use programming techniques such as variable privatization.

See also:

• SIMD Directive (OpenMP* API)
• Vectorization Resources for Intel® Advisor Users

Data Type Conversions Present
There are multiple data types within loops. Utilize hardware vectorization support more effectively by
avoiding data type conversion.

Use The Smallest Data Type

The source loop contains data types of different widths. To fix: Use the smallest data type that gives the
needed precision to use the entire vector register width.

Example: If only 16-bits are needed, using a short rather than an int can make the difference between
eight-way or four-way SIMD parallelism, respectively.

User Function Call(s) Present
User-defined functions in the loop body are preventing the compiler from vectorizing the loop.

Enable Inline Expansion

Inlining of user-defined functions is disabled by compiler option. To fix: When using the Ob or inline-level
compiler option to control inline expansion, replace the 0 argument with the 1 argument to enable inlining
when an inline keyword or attribute is specified or the 2 argument to enable inlining of any function at
compiler discretion.

See also:

• inline-level, Ob
• Vectorization Resources for Intel® Advisor Users

Vectorize User Function(s) Inside Loop

These user-defined function(s) are not vectorized or inlined by the compiler: my_calc() To fix: Do one of the
following:

• Enforce vectorization of the source loop by means of SIMD instructions and/or create a SIMD version of
the function(s) using a directive:

Target Directive

Source loop !$OMP SIMD

Inner function definition or declaration !$OMP DECLARE SIMD

real function f (x)
    !DIR$ OMP DECLARE SIMD
    real, intent(in), value  :: x
    f= x + 1
end function f

!DIR$ OMP SIMD

Intel® Advisor User Guide  1  

725

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/simd-directive-openmp-api.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/inlining-options/inline-level-ob.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


do k = 1, N
    a(k) = f(k)
enddo

See also:

• DECLARE SIMD; SIMD Directive (OpenMP* API)
• Vectorization Resources for Intel® Advisor Users

Convert to Fortran SIMD-Enabled Functions

Passing an array/array recommendation to an ELEMENTAL function/subroutine is creating a dependency that
prevents vectorization. To fix:

• Enforce vectorization of the source loop using SIMD instructions and/or create a SIMD version of the
function(s) using a directive:

Target Directive

Source loop !$OMP SIMD

Inner function definition or declaration !$OMP DECLARE SIMD

• Call from a DO loop.

Original code example:

elemental subroutine callee(t,q,r)
    real, intent(in) :: t, q
    real, intent(out) :: r
    r = t + q
end subroutine callee
...
do k = 1,nlev
    call callee(a(:,k), b(:,k), c(:,k))
end do
... 

Revised code example:

subroutine callee(t,q,r)
    !$OMP DECLARE SIMD(callee)
    real, intent(in) :: t, q
    real, intent(out) :: r
    r = t + q
end subroutine callee
...
do k = 1,nlev
    !$OMP SIMD
    do i = 1,n
        call callee(a(i,k), b(i,k), c(i,k))
    end do
end do
... 

See also:

• DECLARE SIMD; SIMD Directive (OpenMP* API)
• Explicit Vector Programming in Fortran; Vectorization Resources for Intel® Advisor Users

Compiler Lacks Sufficient Information to Vectorize Loop
Cause: You are using a non-Intel compiler or an outdated Intel compiler. Nevertheless, it appears there are
no issues preventing vectorization and vectorization may be profitable.

  1   Intel® Advisor User Guide

726

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/c-to-d/declare-simd.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/simd-directive-openmp-api.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/c-to-d/declare-simd.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/simd-directive-openmp-api.html
https://www.intel.com/content/www/us/en/develop/articles/explicit-vector-programming-in-fortran.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


Explore Vectorization Opportunities

You compiled with auto-vectorization enabled; however, the compiler did not vectorize the code. Explore
vectorization opportunities:

• Run a Dependencies analysis to identify real data dependencies that could make forced vectorization
unsafe.

• Auto-Vectorizer Reporting Level to output missed optimization opportunities.
• GNU* Fortran compiler, do one of the following:

• Use the fopt-info-vec-missed compiler option to output missed optimization opportunities.
• Use the OpenMP* omp simd directive to tell the compiler it is safe to vectorize.
• Use additional auto-vectorization directives.

See also:

• GCC online documentation
• OpenMP Resources

Enable Auto-Vectorization

You compiled with auto-vectorization disabled; enable auto-vectorization:

• Intel compiler 14.x or below: Increase the optimization level to O2 or O3.
• GNU* Fortran compiler, do one of the following:

• Increase the optimization level to O2 or O3.
• Use the ftree-vectorize compiler option.

See also:

• GCC online documentation

System Function Call(s) Present
System function call(s) in the loop body are preventing the compiler from vectorizing the loop.

Remove System Function Call(s) Inside Loop

Typically system function or subroutine calls cannot be vectorized; even a print statement is sufficient to
prevent vectorization. To fix: Avoid using system function calls in loops.

OpenMP* Function Call(s) Present
OpenMP* function call(s) in the loop body are preventing the compiler from effectively vectorizing the loop.

Move OpenMP Call(s) Outside The Loop Body

OpenMP calls prevent automatic vectorization when the compiler cannot move the calls outside the loop
body, such as when OpenMP calls are not invariant. To fix:

1. Split the OpenMP parallel loop directive into two directives.
2. Move the OpenMP calls outside the loop when possible.

Original code example:

!$OMP PARALLEL DO PRIVATE(tid, nthreads)
do k = 1, N
    tid = omp_get_thread_num() ! this call inside loop prevents vectorization
    nthreads = omp_get_num_threads() ! this call inside loop prevents vectorization
    ...
enddo

Intel® Advisor User Guide  1  

727

https://gcc.gnu.org/onlinedocs/
https://www.openmp.org/
https://gcc.gnu.org/onlinedocs/


Revised code example:

!$OMP PARALLEL PRIVATE(tid, nthreads)
! Move OpenMP calls here
tid = omp_get_thread_num()
nthreads = omp_get_num_threads()

!$OMP DO NOWAIT
do k = 1, N
    ...
enddo
!$OMP END PARALLEL

See also:

• NOWAIT Clause; PARALLEL SECTIONS
• Vectorization Resources for Intel® Advisor Users

Remove OpenMP Lock Functions

Locking objects slows loop execution. To fix: Rewrite the code without OpenMP lock functions.

Allocating separate arrays for each thread and then merging them after a parallel recommendation may
improve speed (but consume more memory).

See also:

• Lock Routines recommendation in OpenMP Run-time Library Routines;PARALLEL SECTIONS
• Vectorization Resources for Intel® Advisor Users

Potential Inefficient Memory Access Patterns Present
Inefficient memory access patterns may result in significant vector code execution slowdown or block
automatic vectorization by the compiler. Improve performance by investigating.

Confirm Inefficient Memory Access Patterns

There is no confirmation inefficient memory access patterns are present. To fix: Run a Memory Access
Patterns analysis.

Inefficient Memory Access Patterns Present
There is a high of percentage memory instructions with irregular (variable or random) stride accesses.
Improve performance by investigating and handling accordingly.

Reorder Loops

This loop has less efficient memory access patterns than a nearby outer loop. To fix: Reorder the loops if
possible.

Original code example:

subroutine matrix_multiply(arrSize, aMatrix, bMatrix, cMatrix)
  implicit none
  real, intent(inout) :: cMatrix(:,:)
  real, intent(in)    :: aMatrix(:,:), bMatrix(:,:)
  integer, intent(in) :: arrSize
  integer :: i,j,k;

  do j=1,arrSize
    do i=1,arrSize
      do k=1,arrSize
        cMatrix(i,j) = cMatrix(i,j) + aMatrix(i,k) * bMatrix(k,j)
      end do

  1   Intel® Advisor User Guide

728

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/m-to-n/nowait-clause.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/o-to-p/parallel-sections.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-library-support/openmp-run-time-library-routines.html
https://software.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/o-to-p/parallel-sections.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective/find-loops-that-benefit-from-better-vectorization/investigate-memory-usage-and-traffic.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective/find-loops-that-benefit-from-better-vectorization/investigate-memory-usage-and-traffic.html


    end do
  end do

end subroutine matrix_multiply
Revised code example:

subroutine matrix_multiply(arrSize, aMatrix, bMatrix, cMatrix)
  implicit none
  real, intent(inout) :: cMatrix(:,:)
  real, intent(in)    :: aMatrix(:,:), bMatrix(:,:)
  integer, intent(in) :: arrSize
  integer :: i,j,k;

  do j=1,arrSize
    do k=1,arrSize
      do i=1,arrSize
        cMatrix(i,j) = cMatrix(i,j) + aMatrix(i,k) * bMatrix(k,j)
      end do
    end do
  end do

end subroutine matrix_multiply
Interchanging is not always possible because of dependencies, which can lead to different results.

Use the Fortran 2008 CONTIGUOUS Attribute

The loop is multi-versioned for unit and non-unit strides in assumed-shape arrays or pointers, but marked
versions of the loop have unit stride access only. The CONTIGUOUS attribute specifies the target of a pointer
or an assumed-shape array is contiguous. It can make it easier to enable optimizations that rely on the
memory layout of an object occupying a contiguous block of memory.

real, pointer, contiguous :: ptr(:)
real, contiguous :: arrayarg(:, :)

When multiple calling routines are involved, to tell the compiler assumed-shape arrays and/or pointers are
always contiguous in memory, use the following options available in Version 18 and higher of the Intel®
Fortran Compiler:

Type Windows* OS Linux* OS

assumed-shape array /assume:contiguous_assumed_shape -assume contiguous_assumed_shape

pointer /assume:contiguous_pointer -assume contiguous_pointer

NOTE Results are indeterminate and could result in incorrect code and segmentation faults if the user
assertion is wrong and the data is not contiguous at runtime. To check at runtime if targets of
contiguous pointer assignments are indeed contiguous in memory, use the following options available
in Version 18 and higher of the Intel® Fortran Compiler:

Windows OS Linux OS

/check:contiguous -check contiguous

$ ifort -DCONTIG -check contiguous -traceback

forrtl: severe (408): fort: (32): A pointer with the CONTIGUOUS attributes is being made to a 
non-contiguous target.

Intel® Advisor User Guide  1  

729



In this example, the compiler detects the assignment of a contiguous pointer to a non-contiguous target.The
-traceback (Linux* OS)/ /traceback (Windows* OS) option identifies the function and source file line
number at which the incorrect assignment occurs. It is not necessary to compile with the debugging option -
g (Linux* and macOS* OS) / /Zi (Windows* OS) to get this traceback.

See also:

• assume, check, CONTIGUOUS
• Fortran Array Data and Arguments and Vectorization
• Vectorization and Array Contiguity with the Intel® Fortran Compiler
• Contiguity Checking for Pointer Assignments in the Intel® Fortran Compiler
• Vectorization Resources for Intel® Advisor Users

Use SoA Instead of AoS

An array is the most common type of data structure containing a contiguous collection of data items that can
be accessed by an ordinal index. You can organize this data as an array of structures (AoS) or as a structure
of arrays (SoA). While AoS organization is excellent for encapsulation, it can hinder effective vector
processing. To fix: Rewrite code to organize data using SoA instead of AoS.

See also:

• Programming Guidelines for Vectorization
• Case study: Comparing Arrays of Structures and Structures of Arrays Data Layouts for a Compute-

Intensive Loop and Vectorization Resources for Intel® Advisor Users

Potential Underutilization of FMA Instructions
Your current hardware supports the AVX2 instruction set architecture (ISA), which enables the use of fused
multiply-add (FMA) instructions. Improve performance by utilizing FMA instructions.

Force Vectorization If Possible

The loop contains FMA instructions (so vectorization could be beneficial), but is not vectorized. To fix, review:

• Corresponding compiler diagnostic to check if vectorization enforcement is possible and profitable
• The Dependencies analysis to distinguish between compiler-assumed dependencies and real dependencies

See also:

• Vectorization Resources for Intel® Advisor Users

Explicitly Enable FMA Generation When Using The Strict Floating-Point Model

Static analysis presumes the loop may benefit from FMA instructions available with the AVX2 ISA, but the
strict floating-point model disables FMA instruction generation by default. To fix: Override this behavior
using the fma compiler option.

Windows OS Linux OS

/Qfma -fma

See also:

• fma, Qfma
• Floating-point Operations and Code Generation Options
• Vectorization Resources for Intel® Advisor Users

Target The AVX2 ISA

Although static analysis presumes the loop may benefit from FMA instructions available with the AVX2 or
higher ISA, no FMA instructions executed for this loop. To fix: Use the following compiler options:

• xCORE-AVX2 to compile for machines with and without AVX2 support
• axCORE-AVX2 to compile for machines with AVX2 support only

  1   Intel® Advisor User Guide

730

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/language-options/assume.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/language-options/check.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/c-to-d/contiguous.html
https://www.intel.com/content/www/us/en/develop/articles/fortran-array-data-and-arguments-and-vectorization.html
https://www.intel.com/content/www/us/en/develop/articles/vectorization-and-array-contiguity.html
https://www.intel.com/content/www/us/en/develop/articles/contiguity-checking-for-pointer-assignments-in-the-intel-fortran-compiler.html
https://software.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/vectorization/automatic-vectorization/programming-guidelines-for-vectorization.html
https://www.intel.com/content/www/us/en/develop/articles/a-case-study-comparing-aos-arrays-of-structures-and-soa-structures-of-arrays-data-layouts.html
https://www.intel.com/content/www/us/en/develop/articles/a-case-study-comparing-aos-arrays-of-structures-and-soa-structures-of-arrays-data-layouts.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options/fma-qfma.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/floating-point-operations.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


• xCOMMON-AVX512 to compile for machines with AVX-512 support only
• axCOMMON-AVX512 to compile for machines with and without AVX-512 support

NOTE The compiler options may vary depending on the CPU microarchitecture.

Windows OS Linux OS

/QxCORE-AVX2 or /QaxCORE-AVX2 -xCORE-AVX2 or -axCORE-AVX2

/QxCOMMON-AVX512 or /QaxCOMMON-AVX512 -xCOMMON-AVX512 or -axCOMMON-AVX512

See also:

• ax, Qax; x, Qx
• Code Generation Options
• Vectorization Resources for Intel® Advisor Users

Target A Specific ISA Instead of Using The xHost Option

Although static analysis presumes the loop may benefit from FMA instructions available with the AVX2 or
higher ISA, no FMA instructions executed for this loop. To fix: Instead of using the xHost compiler option,
which limits optimization opportunities by the host ISA, use the following compiler options:

• xCORE-AVX2 to compile for machines with and without AVX2 support
• axCORE-AVX2 to compile for machines with AVX2 support only
• xCOMMON-AVX512 to compile for machines with AVX-512 support only
• axCOMMON-AVX512 to compile for machines with and without AVX-512 support

NOTE The compiler options may vary depending on the CPU microarchitecture.

Windows OS Linux OS

/QxCORE-AVX2 or /QaxCORE-AVX2 -xCORE-AVX2 or -axCORE-AVX2

/QxCOMMON-AVX512 or /QaxCOMMON-AVX512 -xCOMMON-AVX512 or -axCOMMON-AVX512

See also:

• ax, Qax; x, Qx
• Code Generation Options
• Vectorization Resources for Intel® Advisor Users

Indirect Function Call(s) Present
Indirect function call(s) in the loop body are preventing the compiler from vectorizing the loop. Indirect calls,
sometimes called indirect jumps, get the callee address from a register or memory; direct calls get the callee
address from an argument. Even if you force loop vectorization, indirect calls remain serialized.

Improve Branch Prediction

For 64-bit applications, branch prediction performance can be negatively impacted when the branch target is
more than 4 GB away from the branch. This is more likely to happen when the application is split into shared
libraries. To fix: Do the following:

• Upgrade the Glibc library to version 2.23 or higher.
• Set environment variable export LD_PREFER_MAP_32BIT_EXEC=1.

See also:

• Glibc 2.23 release notes
• Vectorization Resources for Intel® Advisor Users

Intel® Advisor User Guide  1  

731

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/ax-qax.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/x-qx.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/ax-qax.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/x-qx.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://sourceware.org/legacy-ml/libc-alpha/2016-02/msg00502.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


Remove Insirect Call(s) Inside The Loop

Indirect function or subroutine calls cannot be vectorized. To fix: Avoid using indirect calls in loops.

Inefficient Processing of SIMD-enabled Functions Possible
Vector declaration defaults for your SIMD-enabled functions may result in extra computations or ineffective
memory access patterns. Improve performance by overriding defaults.

Specify the Value of the Underlying Reference as Linear

In Fortran applications, by default, scalar arguments are passed by reference. Therefore, in SIMD-enabled
functions, arguments are passed as a short vector of addresses instead of a single address. The compiler
then gathers data from the vector of addresses to create a short vector of values for use in subsequent
vector arithmetic. This gather activity negatively impacts performance. To fix: Add a LINEAR clause with a
REF modifier (introduced in OpenMP* 4.5) to your vector declaration. Specifically, add LINEAR
(REF(linear-list[: linear-step])) to your !$OMP DECLARE SIMD directive.

See also:

• DECLARE SIMD; LINEAR Clause
• Vectorization Resources for Intel® Advisor Users

Target a Specific Processor Type(s)

The default instruction set architecture (ISA) for SIMD-enabled functions is inefficient for your host processor
because it could result in extra memory operations between registers. To fix: Add one of the following to tell
the compiler to generate an extended set of vector functions.

Windows OS Linux OS

PROCESSOR(cpuid) to !$OMP DECLARE SIMD PROCESSOR(cpuid) to !$OMP DECLARE SIMD

/Qvecabi:cmdtarget Note: Vector variants are created for
targets specified for targets specified by compiler
options /Qx or /Qax

-vecabi=cmdtarget Note: Vector variants are created for
targets specified for targets specified by compiler options
-x or -ax

See also:

• DECLARE SIMD; PROCESSOR Clause; vecabi, Qvecabi
• Vectorization Resources for Intel® Advisor Users

Enforce the Compiler to Ignore Assumed Vector Dependencies

No real dependencies were detected, so there is no need for conflict-detection instructions. To fix: Tell the
compiler it is safe to vectorize using a directive !DIR$ IVDEP.

NOTE This fix may be unsafe in other scenarios; use with care to avoid incorrect results.

!DIR$ IVDEP
do i = 1, N
    a(index(i)) = b(i) * c
enddo

See also:

• IVDEP
• Vectorization Resources for Intel® Advisor Users

  1   Intel® Advisor User Guide

732

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/c-to-d/declare-simd.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/j-to-l/linear-clause.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/c-to-d/declare-simd.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/o-to-p/processor-clause.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/advanced-optimization-options/vecabi-qvecabi.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/h-to-i/ivdep.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


Opportunity for Outer Loop Vectorization
This is outer (non-innermost) loop. Normally outer loops are not targeted by auto-vectorization. Outer loop
vectorization is also possible and sometimes more profitable, but requires explicit vectorization using
OpenMP* API or Intel® Cilk™ Plus.

Collect Trip Counts Data

The Survey Report lacks trip counts data that might prove profitability for outer loop vectorization. To fix:
Run a Trip Counts analysis.

Check Dependencies for Outer Loop

It is not safe to force vectorization without knowing that there are no dependencies. Disable inner
vectorization before check Dependency. To check: Run a Dependencies analysis.

Check Memory Access Patterns for Outer Loop

To ensure that outer loop has optimal memory access patterns run a Memory Access Patterns analysis.

Consider Outer Loop Vectorization

The compiler never targets loops other than innermost ones, so it vectorized the inner loop while did not
vectorize the outer loop. However outer loop vectorization could be more profitable because of better
Memory Access Pattern, higher Trip Counts or better Dependencies profile.

To enforce outer loop vectorization:
Target Directive

Outer Loop !$OMP SIMD

Inner Loop !$OMP NOVECTOR

!$OMP SIMD
DO I=1,N
    !$OMP NOVECTOR
    DO J=1,N
        SUM = SUM + A(i)*A(j)
    ENDDO
ENDDO

See also:

• SIMD Directive (OpenMP* API); VECTOR and NOVECTOR
• Outer Loop Vectorization, Vectorization Resources for Intel® Advisor Users

Consider Outer Loop Vectorization.

The compiler did not vectorize the loop as the code exceeds the compilers complexity criteria. You might get
higher performance if you enforce the loop vectorization. Use a directive right before your loop block in the
source code.

ICL/ICC/ICPC Directive

!$OMP SIMD

See also:

• SIMD Directive (OpenMP* API)
• Outer Loop Vectorization, Vectorization Resources for Intel® Advisor Users

Consider Outer Loop Vectorization

The compiler did not vectorize the inner loop due to potential dependencies detected. You might vectorize
outer loop if it has no dependency. Use a directive right before your loop block in the source code.

ICL/ICC/ICPC Directive

!$OMP SIMD

Intel® Advisor User Guide  1  

733

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective/find-loops-that-benefit-from-better-vectorization/analyze-loop-call-count.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective/find-loops-that-benefit-from-better-vectorization/find-data-dependencies.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective/find-loops-that-benefit-from-better-vectorization/investigate-memory-usage-and-traffic.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/simd-directive-openmp-api.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/t-to-z/vector-and-novector.html
https://www.intel.com/content/www/us/en/develop/articles/outer-loop-vectorization.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/simd-directive-openmp-api.html
https://www.intel.com/content/www/us/en/develop/articles/outer-loop-vectorization.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


See also:

• SIMD Directive (OpenMP* API)
• Outer Loop Vectorization, Vectorization Resources for Intel® Advisor Users

Potential Underutilization of Approximate Reciprocal Instructions
Your current hardware supports Advanced Vector Extensions 512 (AVX-512) instructions that enable the use
of approximate reciprocal and reciprocal square root instructions both for single- and double-precision
floating-point calculations. Improve performance by utilizing these instructions.

Force Vectorization If Possible

The loop contains SQRT/DIV instructions (so vectorization could be beneficial), but is not vectorized. To fix,
review:

• Corresponding compiler diagnostic to check if vectorization enforcement is possible and profitable
• The Dependencies analysis to distinguish between compiler-assumed dependencies and real dependencies

See also:

• Vectorization Resources for Intel® Advisor Users

Target the AVX-512 ISA

Static analysis presumes the loop may benefit from AVX-512 approximate reciprocal instructions, but these
instructions were not used. To fix: Use one of the following compiler options:

• xCOMMON-AVX512 - tells the compiler which processor features to target, including instructions sets and
optimizations it may generate, including AVX-512.

• axCOMMON-AVX512 - tells the compiler to generate multiple, feature-specific, auto-dispatch code for Intel
processors if there is a performance benefit.

Windows OS Linux OS

/QxCOMMON-AVX512 or /QaxCOMMON-AVX512 -xCOMMON-AVX512 or -axCOMMON-AVX512

See also:

• ax, Qax; x, Qx
• Code Generation Options
• Vectorization Resources for Intel® Advisor Users

Target the AVX-512 Exponential and Reciprocal Instructions ISA

Static analysis presumes the loop may benefit from AVX-512 Exponential and Reciprocal (AVX-512ER)
instructions currently supported only on Intel® Xeon Phi™ processors, but these instructions were not used. To
fix: Use one of the following compiler options:

• xMIC-AVX512 - tells the compiler which processor features to target, including instructions sets and
optimizations it may generate, including AVX-512ER.

• axMIC-AVX512 - tells the compiler to generate multiple, feature-specific, auto-dispatch code for Intel
processors if there is a performance benefit.

Windows OS Linux OS

/QxMIC-AVX512 or /QaxMIC-AVX512 -xMIC-AVX512 or -axMIC-AVX512

See also:

• ax, Qax; x, Qx
• Code Generation Options
• Vectorization Resources for Intel® Advisor Users

Enable the Use of Approximate Reciprocal Instructions by Fine-Tuning Precision and Floating-
Point Model Compiler Options

  1   Intel® Advisor User Guide

734

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/simd-directive-openmp-api.html
https://www.intel.com/content/www/us/en/develop/articles/outer-loop-vectorization.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/ax-qax.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/x-qx.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/ax-qax.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/x-qx.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


Static analysis presumes the loop may benefit from using approximate reciprocal instructions, but the
precision and floating-point model settings may prevent the compiler from using these instructions. To fix:
Fine-tune your usage of the following compiler options:

Windows OS Linux OS Comment

/fp -fp-model -fp-model=precise prevents the use of approximate reciprocal
instructions.

/Qimf-precision -fimf-precision Consider using -fimf-precision=medium or -fimf-
precision=low.

/Qimf-accuracy-bits -fimf-accuracy-bits Consider decreasing this setting.

/Qimf-max-error -fimf-max-error Consider increasing this setting.

There is a similar option: -fimf-absolute-error. Avoid using
both options at the same time or tune them together.

/Qimf-absolute-error -fimf-absolute-error Consider using -fimf-max-error instead and set -fimf-
absolute-error=0 (default) or increase this setting together with -
fimf-max-error.

/Qimf-domain-
exclusion

-fimf-domain-
exclusion

Consider increasing this setting. More excluded classes enable more
optimized code. USE WITH CAUTION. This option may cause incorrect
behavior if your calculations involve excluded domains.

/Qimf-arch-
consistency

-fimf-arch-
consistency

-fimf-arch-consistency=true may prevent the use of
approximate reciprocal instructions.

/Qprec-div -prec-div -prec-div prevents the use of approximate reciprocal instructions.

/Qprec-sqrt -prec-sqrt -prec-sqrt prevents the use of approximate reciprocal instructions.

See also:

• Floating-point Operations and Floating-point Options
• Vectorization Resources for Intel® Advisor Users

Possible Inefficient Conflict-Detection Instructions Present
Stores with indirect addressing caused the compiler to assume a potential dependency.

This resulted in the use of conflict-detection instructions during SIMD processing, such as the AVX-512
vpconflict instruction, which detects duplicate values within a vector and creates conflict-free subsets.
Improve performance by removing the need for conflict-detection instructions.

Enforce the Compiler to Ignore Assumed Vector Dependencies

No real dependencies were detected, so there is no need for conflict-detection instructions. To fix: Tell the
compiler it is safe to vectorize using a directive !DIR$ IVDEP.

NOTE This fix may be unsafe in other scenarios; use with care to avoid incorrect results.

!DIR$ IVDEP
do i = 1, N
    a(index(i)) = b(i) * c
enddo

See also:

• IVDEP
• Vectorization Resources for Intel® Advisor Users

Intel® Advisor User Guide  1  

735

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/floating-point-operations.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/h-to-i/ivdep.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


Unoptimized Floating-Point Operation Processing Possible
Improve performance by enabling approximate operations instructions.

Enable the Use of Approximate Division Instructions

Static analysis presumes the loop may benefit from using approximate calculations. Independent dividors will
be pre-calculated and replaced with multiplicators. To fix: Fine-tune your usage of the following compiler
option:

Windows OS Linux OS Comment

/Qprec-div -no-prec-div -no-prec-div enables the use of approximate division optimizations.

See also:

• prec-div, Qprec-div
• Floating-point Operations and Floating-point Options
• Vectorization Resources for Intel® Advisor Users

Enable the Use of Approximate sqrt Instructions

Static analysis presumes the loop may benefit from using approximate sqrt instructions, but the precision
and floating-point model settings may prevent the compiler from using these instructions. To fix: Fine-tune
your usage of the following compiler option:

Windows OS Linux OS Comment

/Qprec-sqrt -no-prec-sqrt -no-prec-sqrt enables the use of approximate sqrt optimizations.

See also:

• prec-sqrt, Qprec-sqrt
• Floating-point Operations and Floating-point Options
• Vectorization Resources for Intel® Advisor Users

Potential Excessive Caching Present
Enable Non-Temporal Store

Enable non-temporal store using !DIR$ vector nontemporal. The nontemporal clause directs the compiler
to use non-temporal (that is, streaming) stores, optionally takes a comma-separated list of variables.

Streaming stores may cause significant performance improvements over non-streaming stores for large
numbers on certain processors. However, the misuse of streaming stores can significantly degrade
performance.

!DIR$ vector nontemporal
do i=1,N
  arr1(i) = 0
end do

See also:

• VECTOR and NOVECTOR
• Vectorization Resources for Intel® Advisor Users

Misaligned Loop Code Present
Current placement of the loop in memory may result in inefficient use of the CPU front-end. Improve
performance by aligning loop code.

Force the Compiler to Align Loop Code

  1   Intel® Advisor User Guide

736

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options/prec-div-qprec-div.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/floating-point-operations.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options/prec-sqrt-qprec-sqrt.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/floating-point-operations.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/floating-point-options.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/t-to-z/vector-and-novector.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-vectorization-resources.html


Caution Excessive code alignment may increase application binary size and decrease performance.

Static analysis shows the loop may benefit from code alignment. To fix: Force the compiler to align the loop
to a power-of-two byte boundary using a compiler directive for finer-grained control: !DIR$ CODE_ALIGN
[:n]
Align inner loop to 32-byte boundary:

!DIR$ CODE_ALIGN :64
do i = 1, n, 1
    do j = 1, m, 1
        a(i) = a(i) * (b(i) + c(j))
    enddo
enddo

You may also need the following compiler option:
Windows OS Linux OS and Mac OS

/Qalign-loops[:n] -falign-loops[=n]

where n = a power of 2 betwen 1 and 4096, such as 1, 2, 4, 8, 16, 32, etc. n = 1 performs no alignment. If
n is not present, the compiler uses an alignment of 16 bytes. Suggestion: Try 16 and 32 first.

/Qalign-loops- and -fno-align-loops, the default compiler option, disables special loop alignment.

User Interface Reference
This section provides context-sensitive reference topics for Intel® Advisor user interface elements, typically

accessed via Learn More link,  Context Help button, or F1 button.

Dialog Box: Corresponding Command Line

Purpose
Use this dialog box to generate command lines for perspective or analysis configuration and copy the lines to
a clipboard to run from a terminal/command prompt. For more information, see Generating Command Lines
from GUI.

Location
To access this dialog box, do one of the following:

•

To generate a command line for the entire perspective, click the  button at the top of the
Analysis Workflow pane.

•
To generate a command line for a specific analysis, click the  button next to an analysis type in the
Analysis Workflow pane.

Controls

Use This To Do This

Command Line text box View the full command line for running the required analysis type with the selected
options.

Copy button Copy the command line into clipboard.

Intel® Advisor User Guide  1  

737

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/command-line-interface/generate-command-lines-from-gui.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/command-line-interface/generate-command-lines-from-gui.html


Use This To Do This

Close button Close the dialog box.

Hide knobs with default
values checkbox

Show/hide default options in the generated command line.

Generate command line for
MPI checkbox

Generate command line for running analysis on an MPI application.

Dialog Box: Create a Project

Purpose
Use the Create a Project dialog box to create and configure your new Intel® Advisor project.

Location
To open the Create a Project dialog box, do one of the following:

•

Click the Create Project button on the Intel Advisor toolbar.
• Click the New Project button on the Welcome pane.
• Click New > Project in the File menu.
• Press Ctrl+Shift+N.

Controls

Use This To Do This

Project name field Specify the name of your Intel Advisor project. This might be similar to
the target executable name. The project name is used for the project
directory name:

• A project file that identifies the target to be analyzed and a set of
configurable attributes for running the target.

• Results that allows you to view the collected data.

Location field and Browse
button

Choose or create a directory to contain the project directory. Click the
Browse button to browse to and select a directory where the project
directory will be created.

Project files should be located in a different directory than your source
directories, such as a directory above the source directories or in a
separate projects directory. You must have write permission to the
specified directory and its subdirectories.

Create project button After entering the Project name and specifying its Location, click
Create project to create the project and its directory and open the
Project Properties dialog box and configure your project.

Dialog Box: Create a Result Snapshot

Purpose
Intel® Advisor stores only the most recent analysis result. Use this dialog box to save a read-only result
snapshot you can view any time.

  1   Intel® Advisor User Guide

738



Tip

• Visually comparing one or more snapshots to each other or to the most recent analysis result can
be an effective way to judge performance improvement progress.

• To view a snapshot, choose File > Open > Result...
• Snapshots are identified by a different icon in the Visual Studio* Solution Explorer and theIntel®

AdvisorProject Navigator. The words (read-only) appear after the snapshot name in a result
tab.

Location
To open the dialog box, do one of the following:

•

Click the /  button in the analysis result.
•

Click the  button in the main toolbar.

Controls

Use This To Do This

Result name field Specify the name of the read-only result snapshot. Provide a unique
name, perhaps by adding an identifying suffix within the result name.

Cache sources checkbox Enable source code availability in the resulting snapshot.

Cache binaries checkbox Enable binary availability in the resulting snapshot.

Pack into archive checkbox Create a one-file archive with all snapshot data inside.

Result path text box Specify the path to the resulting snapshot archive. Use the Browse...
button to specify the address.

Disabled by default. Enable by selecting the Pack into archive
checkbox.

Dialog Box: Options - Assembly

Purpose
Use this tab to set assembly code style.

Location
To access this tab:

• In the Intel® Advisor GUI, choose File > Options.. On the left of the Options dialog box, choose
Assembly property page.

Controls
Use radio buttons on the Assembly property page to set style fo your assembly code. The following options
are available:

• Default Syntax MASM style for Windows*, GAS style for Unix.
• GAS Style Syntax - use strictly GAS syntax.

Intel® Advisor User Guide  1  

739



• MASM Style Syntax - use strictly MASM syntax.

Enable the checkbox under assembly code style radio buttons to enclose the Intel® AVX-512 write mask in
curly braces that omits the k0 register.

Editor Tab

Purpose

NOTE
The Editor tab is available on Linux* OS only.

Use this tab in the Options dialog box to specify the editor in which the Intel® Advisor displays source files
when you double-click a line in an Intel Advisor source region.

Location
To access this tab: From the Intel Advisor GUI, choose File > Options > Editor.

Controls

Use This To Do This

 External editor
for this language:
drop-down menu

Select the language for which you will choose an editor: C/C++, Fortran, or
Other.

  1   Intel® Advisor User Guide

740



Use This To Do This

 list of available
editors on this system

Select the editor (such as gedit) to be associated with the selected language ,
or choose to allow selection using an environment variable with Text editor
set in EDITOR or VISUAL environment variable. Repeat to associate an
editor with each language you use.

For example, if you choose Text editor set in EDITOR or VISUAL
environment variable, you can set the VISUAL environment variable by
typing: export VISUAL="/usr/bin/vi -n"
When done, click OK.

Dialog Box: Options - General

Purpose
Use this tab to configure default behavior, enable/disable warning messages, and set modeling assumptions,
result locations.

Location
To access this tab:

• From the Intel® Advisor GUI, choose File > Options > General.
• From the Visual Studio* menu, choose Tools > Options. In the Options dialog box, expand the Intel

Advisor program folder and choose the General page.

Controls

Use This To Do This

When displaying a
window, show its
explanation tip
checkbox

Determine whether a help snippet explanation for the current window appears
when the Result is opened.

Show the Advisor
Workflow tab when a
new collection starts
checkbox

Control whether the Advisor Workflow tab automatically opens when you run
a tool analysis.

Show build settings
warning before a
new collection starts
checkbox

Control whether a message appears when the build settings do match the
suggested settings for the selected analysis:

• Analysis using the Debug build settings message appears when you run
Survey or Suitability tool analysis with Debug build options.

• Analysis using the Release build settings message appears when you
run Dependencies tool analysis with Release build options.

Show missing debug
information warning
checkbox

Control whether a message appears near the top of the Survey Report window
when the target executable does not contain debug information after running
the Survey tool.

Show incorrect
compiler options
warning checkbox

Control whether a message appears near the top of the Survey Report window
when the current compiler options are incorrect.

Intel® Advisor User Guide  1  

741



Use This To Do This

Show incorrect
compiler version
warning checkbox

Control whether a message appears near the top of the Survey Report window
when a higher compiler version should be installed.

Show higher ISA
available warning
checkbox

Control whether a message appears near the top of the Survey Report window
when a higher Instruction Set Architecture should be used.

Show inline debug
information warning
checkbox

Control whether a message appears near the top of the Survey Report window
when debug information is in the code.

Modeling
Assumptions drop-
down lists

Set the default values for Modeling Assumptions that appear in the Suitability
Report window, such as the scalability graph.

• Maximum CPU Count - specify the maximum number of CPUs to model.
This value limits the size you can set for the CPU Count; it also sets the
size of the scalability graph CPU Count (X axis). You can set values using
power-of-two integers 2, 4, 8, ... up to 8192.

• CPU Count - specify the number of CPUs to model for the target system(s).
Set a value using power-of-two integers from 2 up to the chosen Maximum
CPU Count. This value sets the default for the Suitability Report window.

• Threading Mode - choose either Intel TBB, OpenMP, Microsoft TPL , or
Other.

Application output
destination radio
button

On Windows* OS systems, control whether console output for a program is
displayed in the:

• Separate console window.
• Microsoft Visual Studio Output window.
• Application Output window (in the Intel Advisor result tab). This also

enables application output to be viewed after collection by clicking a link in
the Summary window to display the Application Output window.

The next time you run a tool analysis, the application output appears in the
selected output destination.

On Linux* OS systems, control whether the console output from the target is
displayed in the Intel AdvisorApplication Output window (in the Result tab) or
in a separate command terminal window.

NOTE
If you must interact with the application during execution, choose the separate
console window option or use stdin redirection on the command line.

Font Settings group
box

Select the font size to use in the Intel Advisor Interface. Select the Use
system default to use the same font size your operating system uses.

Dialog Box: Options - Result Location

Purpose
Use this tab to specify the storage directory for future Intel® Advisor result files.

  1   Intel® Advisor User Guide

742



Location
To access this tab, do one of the following:

• From the Intel Advisor GUI, choose File > Options > Result Location.
• From the Visual Studio* menu, choose Tools > Options.... In the Options dialog box, expand the Intel

Advisor program folder and choose the Result Location page.

Controls

Use This To Do This

Result location radio
button

Determine whether new result files are saved in a subdirectory within each
Microsoft Visual Studio* or Intel Advisor GUI project's directory, or in a custom,
central location that you specify. If you select the Save all results in this
directory: option, either type the path or click the Browse button to navigate
to the desired custom directory location. The subdirectory name is the result
name, such as e000.

When done, click OK.

Dialog Box: Project Properties - Analysis Target

Purpose
Use this tab to specify the target executable, set important project properties, and review current project
properties.

Tip
Always check project property values before analyzing a new target.

Location
Analysis Target tab is located in the Project Properties dialog box.

To access the Project Properties dialog box, do one of the following:

•

Click the  button on the main toolbar.
• Choose File > Project Properties....
• Press Ctrl+P.

Controls
In the Analysis Target tab, select an analysis type from list (on the left) to display and configure project
properties.

The following table covers project properties applicable to all analysis types. To view controls applicable only
to a specific analysis type, use the links immediately below:

• Survey Analysis Controls
• Trip Counts and FLOPS Controls
• Suitability Analysis Controls
• MAP Analysis Controls
• Dependencies Analysis Controls

Intel® Advisor User Guide  1  

743



Common Controls
The following controls are common for all analysis types. Specify the properties in the Survey Hotspot
Analysis tab and check that the Inherit Settings from the Survey Hotspots Analysis Type checkbox is
enabled in other tabs to share the properties for all analyses.

Use This To Do This

Target type drop-down • Analyze an executable or script (choose Launch Application).
• Analyze a process (choose Attach to Process).

If you choose Attach to Process, you can either inherit settings from
the Survey Hotspots Analysis Type or specify the needed settings.

Inherit settings from
Visual Studio project
checkbox and field (Visual
Studio* IDE only)

Inherit Intel Advisor project properties from the Visual Studio* startup
project (enable).

If enabled, the Application, Application parameters, and Working
directory fields are pre-filled and cannot be modified.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the
Intel® oneAPI 2022.1 release, and will be removed in a future release.

Application field and
Browse... button

Select an analysis target executable or script.

If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application
parameters field and
Modify... button

Specify runtime arguments to use when performing analysis (equivalent
to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment
variables field and Modify...
button

Specify environment variables to use during analysis.

Managed code profiling
mode drop-down

• Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

• Collect data for native code and do not attribute data to managed
code (choose Native).

• Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

• Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

  1   Intel® Advisor User Guide

744



Use This To Do This

Child application field Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

NOTE
For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

• Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

• Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

Use MPI launcher checkbox Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

• Select MPI Launcher - Intel or another vendor
• Number of ranks - Number of instances of the application
• Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis-Specific Controls

Use This To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Intel® Advisor User Guide  1  

745



Use This To Do This

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Callstack unwinding mode
drop-down list

Set to After collection if:

• Survey analysis runtime overhead exceeds 1.1x.
• A large quantity of data is allocated on the stack, which is a common

case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection.

Stitch stacks checkbox Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library loops and functions in Intel
Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE
Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
-ax (Linux* OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
list

• Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

• Keep source code cache within the project (choose Keep cached
files).

  1   Intel® Advisor User Guide

746



Trip Counts and FLOP Analysis-Specific Controls

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Collect information about
Loop Trip Counts checkbox

Measure loop invocation and execution (enable).

Collect information about
FLOP, L1 memory traffic,
and AVX-512 mask usage
checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Collect callstacks checkbox Collect call stack information when performing analysis (enable).

Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Capture metrics for
stripped binaries checkbox

Collect metrics for stripped binaries.

Enabling could increase analysis overhead.

Enable Memory-Level
Roofline with cache
simulation checkbox

Model multiple levels of cache for data, such as counts of loaded or
stored bytes for each loop, to plot the Roofline chart for all memory levels
(enable).

Enabling could increase analysis overhead.

Cache simulator
configuration field

Specify a cache hierarchy configuration to model (enable and specify
hierarchy).

The hierarchy configuration template is:

[num_of_level1_caches]:[num_of_ways_level1_connected]:
[level1_cache_size]:[level1_cacheline_size]/

[num_of_level2_caches]:[num_of_ways_level2_connected]:
[level2_cache_size]:[level2_cacheline_size]/

[num_of_level3_caches]:[num_of_ways_level3_connected]:
[level3_cache_size]:[level3_cacheline_size]

For example: 4:8w:32k:64l/4:4w:256k:64l/1:16w:6m:64l is the
hierarchy configuration for:

Intel® Advisor User Guide  1  

747



Use This To Do This

• Four eight-way 32-KB level 1 caches with line size of 64 bytes
• Four four-way 256-KB level 2 caches with line size of 64 bytes
• One sixteen-way 6-MB level 3 cache with line size of 64 bytes

Data transfer simulation
mode drop-down

Select a level of details for data transfer simulation:

• Off - Disable data transfer simulation analysis.
• Light - Model data transfers between host and device memory.
• Full - Model data transfers, attribute memory objects to loops that

accessed the objects, and track accesses to stack memory.

Suitability Analysis-Specific Controls

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is --resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Sampling Interval selector Set the wait time between each analysis collection sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Memory Access Patterns Analysis-Specific Controls

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode group
box

• Report possible memory issues in system modules (choose the Show
problems in system modules radio button).

• Do not report possible memory issues in system modules (choose the
Suppress problems in system modules radio button).

  1   Intel® Advisor User Guide

748



Use This To Do This

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Report stack variables
checkbox

Report stack variables for which memory access strides are detected
(enable).

Enabling could increase analysis overhead.

Report heap allocated
variables checkbox

Report heap-allocated variables for which memory access strides are
detected (enable).

Enabling could increase analysis overhead.

Enable CPU cache
simulation checkbox

Model cache misses, cache misses and cache line utilization, or cache
misses and loop footprint (enable and select desired options).

Enabling could increase analysis overhead.

Cache associativity drop-
down list

Set the cache associativity for modeling CPU cache behavior. You can set
the value to the following power-of-two integers: 1, 2, 4, 8, 16.

Cache sets drop-down list Set the cache set size (in bytes) for modeling CPU cache behavior. You
can set the value to the following power-of-two integers: 256, 512, 1024,
2048, 4096, 8192.

Cache line size drop-down
list

Set the cache line size (in bytes) to model CPU cache behavior. You can
set the value to the following power-of-two integers: 4, 8, 16, 32, …, up
to 65536.

Cache simulation mode
drop-down list

Set the focus for modeling CPU cache behavior:

• Model cache misses only.
• Model cache misses and memory footprint of a loop. Calculation:

Cache line size x Number of unique cache lines accessed during
simulation.

• Model cache misses and cache line utilization.

Dependencies Analysis Controls

Use This To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode radio
buttons

• Report possible dependencies in system modules (choose the Show
problems in system modules radio button).

• Do not report possible dependencies in system modules (choose the
Suppress problems in system modules radio button).

Intel® Advisor User Guide  1  

749



Use This To Do This

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Analyze stack variables
checkbox

Analyze parallel data sharing for stack variables (enable).

Enabling could increase analysis overhead.

Filter stack variables by scope
checkbox

Enable to report:

• Variables initiated inside the loop as potential dependencies (warning)
• Variables initialized outside the loop as dependencies (error)

Enabling could increase analysis overhead.

Filter reduction variables
checkbox

Mark all potential reductions by a specific diagnostic (enable).

Enabling could increase analysis overhead.

Performance Modeling-Specific Controls

Use This To Do This

Device configuration Select a pre-defined hardware configurations from
a drop-down list to model application performance
on.

Other parameters Enter a space-separated list of command-line
parameters. For a full list of available options, see 
analyse.py Options.

Dialog Box: Project Properties - Binary/Symbol Search

Purpose
Use this tab to specify non-standard directories for the supporting files needed to execute and analyze the
target. With Visual Studio* on Windows* OS, you can instead use the Visual Studio solution and project
capabilities to search for specific directories.

Location
Binary/Symbol Search tab is located in the Project Properties dialog box.

To access the Project Properties dialog box, do one of the following:

•

Click the  button on the main toolbar.
• Choose File > Project Properties....
• Press Ctrl+P.

  1   Intel® Advisor User Guide

750



Controls

Use This To Do This

 button
On a row containing Add new search location, click to browse for directories
to include in the search list. You can also type directly in the row. In addition to
local directories, you can specify a symbol server URL.

 and  buttons
Change the search order of the selected directory by moving it up or down. To
select multiple rows, use the Ctrl or Shift keys.

 button
Delete a selected directory row(s).

Search recursively
checkbox

Enable to search the specified location subdirectories. To use recursive search,
the lines must provide only a directory name and omit a file name. Using a
recursive search for multiple directories may slow processing and could lead to
unexpected results.

Dialog Box: Project Properties - Source Search

Purpose
Use this tab to specify the source search locations needed to execute and analyze the target. With Visual
Studio*, some source locations are pre-populated from the Visual Studio startup project into the internal
representation of Intel® Advisor project properties, so you may not need to add new row(s).

Tip
For Threading perspective only: Intel® Advisor does not automatically populate source locations after
you create a project using the Intel® Advisor GUI, so you must specify one or more locations to find
application annotations. View the Annotation Report to verify all project annotations are found.

Location
Source Search tab is located in the Project Properties dialog box.

To access the Project Properties dialog box, do one of the following:

•

Click the  button on the main toolbar.
• Choose File > Project Properties....
• Press Ctrl+P.

Controls

Use This To Do This

 button
On a row containing Add new search location, click to browse for directories
to include in the search list. You can also type directly in the row.

 and  buttons
Change the search order of the selected directory by moving it up or down. To
select multiple rows, use the Ctrl or Shift keys.

 button
Delete a selected directory row(s).

Intel® Advisor User Guide  1  

751



Use This To Do This

Search recursively
checkbox

Enable to search the specified location subdirectories. To use recursive search,
the lines must provide only a directory name and omit a file name. Using a
recursive search for multiple directories may slow processing and could lead to
unexpected results.

Mask text box Specify the file name mask pattern(s) to ignore (skip) using wildcard
characters, such as an asterisk (*). For example, you can skip certain file
suffixes.

File text box Specify the file(s) to ignore (skip) using an absolute path.

To delete a row, use the  button.

Pane: Advanced View

Use this pane to get detailed information about a specific function/loop.

Location
View the Advanced view pane at the bottom of the Survey Report and CPU Roofline report windows.

Source Tab
Use this tab to view source code for a selected function/loop.

Double click a code line to open source code in a code editor. Right-click a code line to open a context menu
with the following options:

• Edit Source - open source code in a code editor.
• Copy to Clipboard - copy source code for a selected function/loop.
• What Should I Do Next? - open information about your next steps in a web-browser.

Top Down Tab
Use this tab to view the hierarchy of functions/loops, locate a selected function/loop in call chains, and view
analysis results for a selected function/loop.

View the function/loop hierarchy in a stack, the source code associated with a specific function or loop, and
more. Each function or loop appears on a separate grid line. Loops are identified with an icon and the word
loop, followed by the function or procedure name that executes it and the source location.

There are two main regions in the Top Down tab:

• Function Call Sites and Loops: View a hierarchical listing of functions and loops in your code. You can
expand and collapse entries, or double-click the name of a function or loop to view its source code.

• Table Columns: View additional information about functions and loops in the grid, such as CPU time,
type (function, scalar, etc.), compute performance statistics, the instruction sets and extensions (such as
VNNI) used, and trip counts. See Data Reference for descriptions of the data columns in Survey and
Refinement Reports.

Controls

You can customize the columns shown in the Top Down grid. Click the Customize View button in the upper
right of the application to display the View Layout drop-down list and the Settings control (gear icon) in
the upper-right of the Top Down tab.

Select a column layout from the View Layout drop-down list to change the columns to match an existing
column layout.

  1   Intel® Advisor User Guide

752



You can modify a column layout. Select the Settings control next to the View Layout drop-down list to open
the Configure Columns dialog box, then:

1. Choose an existing view layout in the Configuration drop-down list.
2. Enable/disable columns to show/hide.

Outcome: A new view layout is added to the Configuration drop-down list, with Copy n added to the
name of the original layout.

3. Click the Rename button and supply an appropriate name for the customized view layout.
4. Click OK to save the customized view layout.

You can also right-click the name of a column in the grid to Hide Column, Show All Columns, or
Configure Column Layouts. You can choose to display one layout in the main Survey Report grid, and
choose another layout for the Top Down tab.

NOTE Hiding or showing columns in a column layout will apply your changes to any grid (the Survey
Report grid or the Top Down tab) that is currently using the layout. However, you can rearrange
columns in one grid without affecting another grid.

Code Analytics Tab
Use this tab to view the most important statistics for a selected function/loop.

There are several regions available in the Code Analytics tab:

• Summary: View a quick list of basic information about the loop, such as the code source, whether the
loop is scalar or vector, instruction set (and whether extensions, such as VNNI, are used), total time, self-
time and the static and dynamic instruction mix.

• Traits: View additional scalar and vectorization characteristics that may impact performance. For a list of
possible traits, see the Data Reference.

• Trip Counts: View information about the number of times the loop is invoked (trip count), such as the
minimum and maximum trip count, the average loop iteration time, etc.

• Statistics for <operations type>: Click the drop-down list at the top of this section to choose to
display performance statistics for a specific operation type: FLOP, INTOP, INT + FLOAT, or All
Operations. Click the toggle control to switch between displaying performance statistics using self or
total loop metrics.

• Code Optimizations: View a list of code optimizations applied to the loop by the compiler, as well as
information on which compiler was used and what version. This information is only available for binaries
compiled by the Intel® C, C++, or Fortran Compilers.

• Roofline: View a more detailed roofline chart that summarizes recommendations and information from
the Roofline Conclusions section, such as whether the loop is compute bound, memory bound, or both.
This chart features:

• The labeled distance between the loop and the performance roof limiting it.
• The metrics used to plot the loop on the chart, Giga OPS (operations per second) and AI (arithmetic

intensity).

If you have collected the Roofline for all memory levels, you can use the Memory Level/CARM selector
to switch between Roofline guidance views. When you set the selector to Memory Level, the chart
features X marks representing memory levels for the loop and an arrowed line indicating the memory
level that bounds the loop.

Assembly Tab
Use this tab to view assembly representation for a selected loop.

Intel® Advisor User Guide  1  

753



Assistance Tab (Threading Perspective Only)
Use this tab to get recommendations on making annotations in your source code.

Controls

Use a drop-down menu on the top right of this pane to view examples of annotated source code for different
task code structures and recommended build settings for the language in use. The following options are
available:

• Iteration Loop, Single Task - View and copy an annotation code snippet for a simple loop structure,
where the task's code includes the entire loop body. Use this common task structure when only a single
task is needed within a parallel site.

• Loop, One or More Tasks - View and copy an annotation code snippet for a loops where the task code
does not include all of the loop body, or for complex loops or code that requires specific task begin-end
boundaries, including multiple task end annotations. Also use this structure when multiple tasks are
needed within a parallel site.

• Function, One or More Tasks - View and copy an annotation code snippet for code that calls multiple
functions (task parallelism). Use this structure when multiple tasks are needed within a parallel site.

• Pause/Resume Collection - View and copy an annotation code snippet whose annotations temporarily
pause data collection and later resume it. This lets you skip uninteresting parts of the target program's
execution to minimize the data collected and speed up the analysis of large applications. Add these
annotations outside a parallel site.

• Build Settings - View and copy build (compiler and linker) settings. The Build Settings are specific to the
language in use.

View annotated code samples in the text display area. To copy the text lines to the clipboard, right-click and

select Copy to Clipboard from the context menu, or use the  button on the upper-right
of the Assistance tab..

Recommendations Tab
Use this tab to explore code specific recommendations how to fix vectorization issues.

Controls

You can view a list of all performance issues detectable in Intel Advisor. Next to All Advisor-detectable
issues, click to display either C++ or Fortran issues.

Issues and recommendations are displayed in a list. Under each issue, you'll see an explanation of the issue,
recommendations for how to resolve it, and code samples that you can expand o collapse. You may also see
Read More links with additional information about the topic.

You can jump to a specific issue by clicking its name in the list of detected issues to the right.

Pane: Analysis Workflow

Use the Analysis Workflow pane to set up and control execution of your Intel® Advisor perspectives. This
pane allows you to select and run a perspective, choose data collection accuracy level, control both the
execution of the entire perspective and of each analysis separately.

To open the Analysis Workflow pane, click the Show My Result and Workflow button on the main
toolbar.

Select a Perspective
Use a drop-down list at the top of the Analysis Workflow pane to select a perspective you are going to run.

Intel Advisor allows you to analyze application performance using the following perspectives:

  1   Intel® Advisor User Guide

754



• Vectorization and Code Insights
• CPU / Memory Roofline Insights
• Threading
• Offload Modeling
• GPU Roofline Insights

Select Data Collection Accuracy Level
View the accuracy level options in the Accuracy pane under perspective execution controls. You can select
Low, Medium, High, and Custom accuracy level depending on the analysis types you want to perform.
Data collection accuracy level affects the potential overhead. View the potential overhead in the Overhead
indicator under the Accuracy pane. For more information about managing overhead, see Minimize Analysis
Overhead.

NOTE Choosing analysis types manually automatically sets the data collection accuracy level to
Custom.

Control Perspective Execution
Select a perspective using the drop-down menu on top of the Analysis Workflow pane. Control the execution
of the entire perspective using the pane on top of the Analysis Workflow pane. There are two sets of controls
available to you depending on the status of your perspective.

When the perspective is not started or paused, you can:

•

Run the perspective using the  button.
•

Resume its execution if the perspective is paused using the  button.
•

Get a corresponding command line for your perspective to access it from CLI using the  button.

When the perspective is running, you can pause  it, stop  it, or cancel  its execution.

Control Analysis Execution

Control the execution of a specific analysis. To do this, click the  button near the analysis type you want
to perform. There are two sets of controls available to you depending on the status of your analysis.

When the analysis is not started or paused, you can:

•
Run it from scratch using the  button.

•
Resume its execution if the analysis is paused using the  button.

•
Get a corresponding command line for your analysis to access it from CLI using the  button.

•
Open analysis properties pane to configure your analysis using the  button.

When the analysis is running, pause  it, stop  it, and cancel  its execution.

Intel® Advisor User Guide  1  

755

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/cpu-roofline-perspective.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/threading-perspective.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/offload-modeling-perspective.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/gpu-roofline-perspective.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/minimize-analysis-overhead.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/minimize-analysis-overhead.html


Pane: Roofline Chart

Use GPU Roofline chart to visualize actual performance of your GPU kernels against hardware-imposed
performance ceilings. For more information about investigating GPU Roofline results, see Examine
Bottlenecks on CPU Roofline Chart.

Controls
There are several controls to help you focus on the Roofline chart data most important to you, including the
following.

1 • Select Loops by Mouse Rect: Select one or more loops/functions by tracing a rectangle
with your mouse.

• Zoom by Mouse Rect: Zoom in and out by tracing a rectangle with your mouse. You can
also zoom in and out using your mouse wheel.

• Move View By Mouse: Move the chart left, right, up, and down.
• Undo or Redo: Undo or redo the previous zoom action.
• Cancel Zoom: Reset to the default zoom level.
• Export as x: Export the chart as a dynamic and interactive HTML or SVG file that does not

require the Intel Advisor viewer for display. Use the arrow to toggle between the options.

2 Use the Cores drop-down toolbar to:

• Adjust rooflines to see practical performance limits for your code on the host system.
• Build roofs for single-threaded applications (or for multi-threaded applications configured to

run single threaded, such as one thread-per-rank for MPI applications. (You can use Intel
Advisor filters to control the loops displayed in the Roofline chart; however, the Roofline
chart does not support the Threads filter.)

Choose the appropriate number of CPU cores to scale roof values up or down:

• 1 – if your code is single-threaded
• Number of cores equal or close to the number of threads – if your code has fewer threads

than available CPU cores
• Maximum number of cores – if your code has more threads than available CPU cores

By default, the number of cores is set to the number of threads used by the application (even
values only).

You’ll see the following options if your code is running on a multisocket PC:

  1   Intel® Advisor User Guide

756

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/cpu-roofline-perspective/identify-performance-bottlenecks-on-cpu/examine-bottlenecks-on-cpu-roofline-chart.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/cpu-roofline-perspective/identify-performance-bottlenecks-on-cpu/examine-bottlenecks-on-cpu-roofline-chart.html


• Choose Bind cores to 1 socket (default) if your application binds memory to one socket. For
example, choose this option for MPI applications structured as one rank per socket.

NOTE This option may be disabled if you choose a number of CPU cores exceeding the
maximum number of cores available on one socket.

• Choose Spread cores between all n sockets if your application binds memory to all
sockets. For example, choose this option for non-MPI applications.

3 • Toggle the display between floating-point (FLOP), integer (INT) operations, and mixed
operations (floating-point and integer).

• If you collected Roofline with Calltacks: Enable the display of Roofline with Callstacks
additions to the Roofline chart.

4 Display Roofline chart data from other Intel Advisor results or non-archived snapshots for
comparison purposes.

Use the drop-down toolbar to:

• Load a result/snapshot and display the corresponding filename in the Compared Results
region.

• Clear a selected result/snapshot and move the corresponding filename to the Ready for
comparison region.

Note: Click a filename in the Ready for comparison region to reload the result/snapshot.
• Save the comparison itself to a file.

NOTE The arrowed lines showing the relationship among loops/functions do not reappear if
you upload the comparison file.

Click a loop/function dot in the current result to show the relationship (arrowed lines) between it
and the corresponding loop/function dots in loaded results/snapshots.

Intel® Advisor User Guide  1  

757



5 Add visual indicators to the Roofline chart to make the interpretation of data easier, including
performance limits and whether loops/functions are memory bound, compute bound, or both.

Use the drop-down toolbar to:

• Show a vertical line from a loop/function to the nearest and topmost performance ceilings by
enabling the Display roof rulers checkbox. To view the ruler, hover the cursor over a loop/
function. Where the line intersects with each roof, labels display hardware performance limits
for the loop/function.

• If you collected Roofline for All Memory Levels: Visually emphasize the relationships among
displayed memory levels and roofs and for a selected loop/function dot by enabling the Show
memory level relationships checkbox.

• Color the roofline zones to make it easier to see if enclosed loops/functions are fundamentally
memory bound, compute bound, or bound by compute and memory roofs by enabling the
Show Roofline boundaries checkbox.

The preview picture is updated as you select guidance options, allowing you to see how changes
will affect the Roofline chart’s appearance. Click Apply to apply your changes, or Default to
return the Roofline chart to its original appearance.

Once you have a loop/function's dots highlighted, you can zoom and fit the Roofline chart to the
dots for the selected loop/function by once again double-clicking the loop/function or pressing
SPACE or ENTER with the loop/function selected. Repeat this action to return to the original
Roofline chart view.

To hide the labeled dots, select another loop/function, or double-click an empty space in the
Roofline chart.

6 • Roofline View Settings: Adjust the default scale setting to show:

• The optimal scale for each Roofline chart view
• A scale that accommodates all Roofline chart views

• Roofs Settings: Change the visibility and appearance of roofline representations (lines):

  1   Intel® Advisor User Guide

758



• Enable calculating roof values based on single-threaded benchmark results instead of
multi-threaded.

• Click a Visible checkbox to show/hide a roofline.
• Click a Selected checkbox to change roofline appearance: display a roofline as a solid or a

dashed line.
• Manually fine-tune roof values in the Value column to set hardware limits specific to your

code.
• Loop Weight Representation: Change the appearance of loop/function weight

representations (dots):

• Point Weight Calculation: Change the Base Value for a loop/function weight
calculation.

• Point Weight Ranges: Change the Size, Color, and weight Range (R) of a loop/
function dot. Click the + button to split a loop weight range in two. Click the - button to
merge a loop weight range with the range below.

• Point Colorization: color loop/function dots by weight ranges or by type (vectorized or
scalar). You can also change the color of loop with no self time.

You can save your Roofs Settings or Point Weight Representation configuration to a JSON file or
load a custom configuration.

7 Zoom in and out using numerical values.

8 Click a loop/function dot to:

• Outline it in black.
• Display metrics for it.
• Display corresponding data in other window tabs.

Right-click a loop/function dot or a blank area in the Roofline chart to perform more functions,
such as:

• Further simplify the Roofline chart by filtering out (temporarily hiding a dot), filtering in
(temporarily hiding all other dots), and clearing filters (showing all originally displayed dots).

• Copy data to the clipboard.

9 Show/hide the metrics pane:

• Review the basic performance metrics in the Point Info pane.
• If you collected the Roofline for All Memory Levels: Review how efficiently the loop/function

uses cache and what memory level bounds the loop/function in the Memory Metrics pane.

10 Display the number and percentage of loops in each loop weight representation category.

Pane: GPU Roofline Chart

Use GPU Roofline chart to visualize actual performance of your GPU kernels against hardware-imposed
performance ceilings. For more information about investigating GPU Roofline results, see Examine
Bottlenecks on GPU Roofline Chart.

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see 
GPU Architecture Terminology for Intel® Xe Graphics.

Intel® Advisor User Guide  1  

759

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/gpu-roofline-perspective/identify-performance-bottlenecks-on-gpu/examine-bottlenecks-on-gpu-roofline-chart.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/gpu-roofline-perspective/identify-performance-bottlenecks-on-gpu/examine-bottlenecks-on-gpu-roofline-chart.html
https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html


GPU Roofline Chart Controls
There are several controls to help you focus on the GPU Roofline chart data most important to you, including
the following.

1 • Select by Mouse Rect: Select one or more
kernels by tracing a rectangle with your mouse.

• Zoom by Mouse Rect: Zoom in and out by
tracing a rectangle with your mouse. You can
also zoom in and out using your mouse wheel.

• Move View by Mouse: Move the chart left,
right, up, and down.

• Undo or Redo: Undo or redo the previous zoom
action.

2 Use the filter drop-down to choose, which
functions/loops to display on a Roofline chart. The
following controls are available:

  1   Intel® Advisor User Guide

760



• Use Operations pane to filter kernels by type of
operations: INT or FLOAT.

• Use the Memory Level pane to show results for
each kernel in the chart: CARM, L3, SLM, GTI.

3 Use the Compare drop-down to plot results from
another Roofline chart on results of your current
project.

Click the  button to add results for comparison.

View and switch between the files that are currently
compared in the Compared Results pane.

After comparison, the recent results are saved. You
can view the list of recent results in the Ready for
Comparison pane.

4 Add visual Guidance to the GPU Roofline chart to
make the interpretation of data easier, including
performance limits and whether kernels are
memory bound, compute bound, or both.

In the Guidance drop-down toolbar, use the
Display roof rulers checkbox to enable showing a
vertical line from a kernel to the nearest and
topmost performance ceilings. To view the ruler,
hover the cursor over a kernel dot. Where the line
intersects with each roof, labels display hardware
performance limits for the kernel.

The preview picture is updated as you select
guidance options, allowing you to see how changes
will affect the GPU Roofline chart's appearance.
Click Apply to apply your changes or Default to
return the GPU Roofline chart to its original
appearance.

5 • Roofline View Settings: Change the default
scale setting to show:

• The optimal scale (default), which adjusts to
a chosen GPU Roofline chart view.

• A constant scale, which adjusts to the tallest
or widest view and does not change when a
different GPU Roofline chart view is chosen.

• Roof Settings: Change the visibility and
appearance of roofline representations (lines):

• Click a Visible checkbox to show/hide a roof
line.

• Click a Selected checkbox to change a roof
line appearance: display the roof line as a
solid or a dashed line.

• Manually fine-tune roof values in the Value
column to set hardware limits specific to your
code.

Intel® Advisor User Guide  1  

761



• Loop Weight Representation: Change the
appearance of dots:

• Point Weight Calculation: Change the
Base Value for a point weight calculation.

NOTE For a GPU Roofline chart, only Self
Elapsed Time is available as a base value.

• Point Weight Ranges: Change the Size,
Color, and weight Range of a dot. Click the
+ button to split a point weight range in two.
Click the - button to merge a point weight
range with the range below.

• Point Colorization: Color dots by weight
ranges or by type (vectorized or scalar). You
can also change the color of loop with no self
time.

6 • Hover your mouse over a dot to display metrics
and, if enabled, a roof ruler for it.

• By default, Intel Advisor generates a roofline for
GTI (Memory), which reports memory traffic, in
bytes, generated by all execution units.

Double-click a dot or select a dot and press
SPACE or ENTER to display labeled dots
representing memory levels for the selected
kernel. Lines connect the dots to indicate that
they correspond to the selected kernel.

NOTE If you have chosen to display only some
memory levels in the chart using the Memory
Level toolbar, unselected memory levels are
displayed with X marks.

To hide the labeled dots, do one of the following:

• Select another kernel.
• Double-click an empty space in the GPU

Roofline chart.
• Press SPACE or ENTER.

• Click the + button next to a dot on a chart to
break it into smaller dots representing groups of
instances of the same source kernel. Instances
differ by global and local size.

• Hover over each instance to view its
performance metrics.

• Select a dot representing an instance to
highlight it in the GPU pane and view
detailed information about its performance
and memory usage in the GPU Details tab.

  1   Intel® Advisor User Guide

762



• Double-click a dot representing an instance
to view how it utilizes each memory level.

• Right-click a kernel dot or a blank area in the
Roofline chart to perform more functions, such
as:

• Further simplify the GPU Roofline chart by
filtering out (temporarily hiding a dot),
filtering in (temporarily hiding all other dots),
and clearing filters (showing all originally
displayed dots).

• Show/hide a side panel that displays metrics
for a selected dot.

• Add visual guidance to the GPU Roofline chart
to make the interpretation of data easier.
These options are the same as in the
Guidance toolbar.

Project Navigator Pane

Purpose
Use this pane to view, modify, and open existing Intel® Advisor results.

Location
To open the Project Navigator pane, do one of the following:

•

Click the  button on the main toolbar.
• Choose View > Project Navigator

Controls

Use This To Do This

Title bar Drag to move the Project Navigator pane.

Drag to a window edge to dock the Project Navigator pane.

Path to project directory View the location of the currently opened project.

Right-click the path to access the directory context menu.

Project name Double-click to open the project.

Right-click to access the project context menu.

NOTE
Opening a project closes the currently opened project.

Result name Double-click to open the result.

Right-click to access the result context menu.

Intel® Advisor User Guide  1  

763



Use This To Do This

NOTE
Opening a result opens the associated project.

Toolbar: Intel Advisor
Use the Intel® Advisor toolbar to run the Intel Advisor perspectives and open certain panes or windows.

Use This Icon To Do This

Run Perspective

Run a perspective and open results of the latest perspective execution.

Show My Result and
Workflow

Open the Result window and Analysis Workflow pane to view the results
of the latest project and run a new perspective.

Perspective Selector

Open the Perspective Selector window to switch between the available
perspectives and view their short descriptions.

Project Properties

Open the Project Properties dialog box to specify the target executable,
set up search directories for supporting files and source search location
needed to analyze the target. Configure common project properties and
analysis-specific properties.

Snapshot

Create a snapshot of your project results.

Create Project

Open Create Project dialog box to create and set up your project.

Open Project

Open an existing project and view it in Project Navigator.

Project Navigator

Open the Project Navigator pane to manage your existing Intel Advisor
projects or create a new one.

Help

Open the installed Help or view the Intel Advisor User Guide in your web
browser.

  1   Intel® Advisor User Guide

764



Annotation Report
The Annotation Report window lists all annotations found during source scanning or running the Suitability
and Dependencies tools. It lists the annotation type, source location, and annotations label in a table-like
grid format, where each annotation appears on a separate row. Intel® Advisor updates the listed annotations
when changes occur to the specified source directories. For example, when you save a source file with a code
editor.

To sort the grid using a column's values, click on the column's heading. The columns of the grid are the
following:

Use This Column To Do This

Annotation View the type of annotation, such as Site, Task, or Lock.

To show or hide a code snippet showing the annotation, click the  icon next to
its name.

For information about each annotation type, see the help topic Summary of
Annotation Types.

To view the source associated with an annotation in your code editor, double-click
its name or a line in the code snippet (or right-click and select Edit Source from
the context menu) in this column.
• On Windows* OS:

• When using Visual Studio, the Visual Studio code editor appears with the
file open at the corresponding location.

• When using the Intel® Advisor GUI, the file type association (or Open With
dialog box) determines the editor used.

• On Linux* OS: When using the Intel® Advisor GUI, the editor defined by the
Options > Editor dialog box appears with the file open at the corresponding
location.

Source Location View the name of the source file that contains the annotation and the line number.

Icons indicate where source is available  or not available .

To view the source, double-click its name (or right-click and select Edit Source) in
this column. The code editor appears.

Annotation Label View the annotation's label (name).

To view the source associated with an annotation, double-click its name (or right-
click and select Edit Source) in this column. The code editor appears.

Window: Dependencies Source

Code Locations Pane
Use this pane to view details about the code location for a selected problem in the Dependencies Report
window.

Location

Bottom left of Dependencies Source window.

Controls

Use This To Do This

Title bar View the problem type.

Intel® Advisor User Guide  1  

765



Use This To Do This

Code location data
row(s)

Review related code locations:

• ID - Code location identifier
• Description - What happens at this code location
• Source - The source file associated with this code location.
• Function - Function name.
• Modules - The executable associated with this problem.
• State - Indicates whether the problem has been fixed or not. To change the

state, use the context menu.

 icon,  icon, or
no icon in the
Source column

Shows:

• Whether this is a related code location.
• If code location source code is available for viewing and editing.

 icon,  icon, or
no icon in the
Source column

Shows:

• Whether this is the focus code location.
• If code location source code is available for viewing and editing.

 icon,  icon, or
no icon in the
Source column

Shows if code location source code is available for viewing and editing.

Column labels Click a column heading to sort the data grid rows in either ascending or descending
order.

Pane border Resize the pane (drag).

Right click a row to
display a context
menu

Display a context menu to: set this code location as the focus or related code
location, copy the selected data row(s) to the clipboard, mark the state as fixed or
not fixed, or display context-sensitive help.

Focus Code Locations Pane
Use this pane to explore the source code associated with focus code location in the Dependencies Source
window.

Location

Top left of Dependencies Source window.

Controls

Use This To Do This

 icon,  icon, or no
icon in the Source
column

Shows:

• Whether this is the focus code location.
• If code location source code is available for viewing and editing.

Pane border Resize the pane (drag).

Source code • Explore source code associated with the focus code location
• Display the code editor at the corresponding source file by double-clicking

a data row or by using the corresponding context menu item.

  1   Intel® Advisor User Guide

766



Use This To Do This

Right click a row to
display a context menu

Display a context menu to: open the code editor to the corresponding source
line, copy the selected data row(s) to the clipboard, or display context-
sensitive help.

Call Stack Pane
Use this pane to select which source code appears in the Focus Code Location pane in the Dependencies
Source window.

Location

Top right of the Dependencies Source window.

Controls

Use This To Do This

 or  icon View whether:

• Source code is available for viewing and editing. An  icon indicates that
source code is not available.

Click a row in the Call
Stack pane

Displays source code for the specified call stack entry.

Pane border Resize the pane (drag).

Right click a row in the
Call Stack pane

Customize the call stack presentation by using the Call Stack context menu.

Relationship Diagram Pane
Use this pane to view the relationships among code locations for the selected problem.

Location

Bottom right of Dependencies Source window.

Controls

Use This To Do This

Title bar View the problem type.

 icon,  icon, or
no icon in the
Source column

View:

• Whether this is a related code location.
• If code location source code is available for viewing and editing.

 icon,  icon, or
no icon in the
Source column

View:

• Whether this is the focus code location.
• If code location source code is available for viewing and editing.

 icon,  icon, or
no icon in the
Source column

View if code location source code is available for viewing and editing.

Intel® Advisor User Guide  1  

767



Use This To Do This

Pane border Resize the pane (drag).

Diagram View the relationship among code locations in a problem:

• Each box in a diagram represents a code location in a problem.
• A diagram with a single box is a trivial problem with no related code locations.
• Boxes arranged left-to-right with connecting arrows indicate a time ordering.
• Boxes with connecting lines indicate association.

Window: GPU Roofline Regions
Use the GPU Roofline Regions window to view GPU metrics for your kernels in the grid, visualize kernel
performance and identify room for optimization using a GPU Roofline chart, and view detailed information
about how well a specific kernel utilizes compute and memory bandwidth.

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see 
GPU Architecture Terminology for Intel® Xe Graphics.

Review the controls available in the main report of the GPU Roofline Insights perspective of Intel® Advisor. In
the GPU Roofline Regions and Summary tabs, you can drag-and-drop, close/open, collapse/expand panes
to change the report layout.

• Switch between perspectives using a drop-down
menu in the top left corner.

• Switch between Summary, GPU Roofline
Regions, and Source View.

  1   Intel® Advisor User Guide

768

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html


Review the summary metrics for parts of your
application executed on an accelerator.

• Expand/collapse a top slider with per-program

recommendations using the  button:

• Expand or collapse each recommendation.
• Pin recommendations pane by clicking the

 button.

• Expand/collapse a top slider with collection

event log using the button. The top slider
enables you to view the following:

• Main data collection events and issues in the
Featured Events pane.

Expand/collapse each featured event in the
log to view details.

• Application Output. Use a toggle in the
upper right corner of the view to show/hide
the application output.

• Full execution log of your application in the
Collection Log pane.

Click the  button to collapse the
top slider or drag it to maximize the event log.

Tip Collection event log top slider appears
automatically when you run a perspective. You
can track collection using the green progress bar
at the top and view collection events online.

• Create a snapshot for the current project results

using the  button. For details, see Create
a Read-only Result Snapshot.

• Click a + button to open previously closed
panes. With this button, you can add the
following panes:

Intel® Advisor User Guide  1  

769

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/manage-results/create-a-read-only-result-snapshot.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/manage-results/create-a-read-only-result-snapshot.html


• CPU Roofline pane that enables you to view
the actual performance of functions/loops
executed on a CPU against hardware-
imposed performance ceilings visualized on a
Roofline chart.

For details about interpretation, see Examine
Bottlenecks on CPU Roofline Chart.

• CPU pane that enables you to review
performance metrics of your application
performance on a CPU and compare tem with
performance metrics on an accelerator. For
details, see CPU Metrics.

Review the actual performance of GPU kernels in
your application against hardware-imposed
performance ceilings using the GPU Roofline
chart.

For details about interpretation, see Examine
Bottlenecks on GPU Roofline Chart.

See detailed description of GPU Roofline chart
controls in Pane: GPU Roofline Chart.

Use the GPU Details tab to view the detailed
information about the execution of a selected
kernel:

• View program metrics for a selected kernel in
the Summary pane.

• Identify the memory level your selected kernel is
bounded by using the Roofline Guidance pane.

• Explore the compute operations count and
memory level utilization metrics in the OP/S
and Bandwidth pane. Use the drop-downs to
view the operations count, memory traffic, and
arithmetic intensity (AI) for floating-point and
integer operations at different memory levels.

• View how the selected kernel impacts each
memory level and explore the amount of data
passed through each memory level using the
Memory Metrics pane.

• Explore the ratio of compute, memory and other
instructions grouped by types in the
Instruction Mix pane.

• Get detailed overview of instruction types used
during the execution of your application using
the Instruction Mix Details pane. Use the
drop-downs to expand each instruction category
and view the included instruction types and
instruction count. For compute category, Intel
Advisor determines the data type. The
dominating data type in th entire kernel is
highlighted blue. Filter instructions by type and
dominating data type using a filter button.

• View how th loops in a selected kernel utilize the
execution unit (EU) in the Performance
Characteristics pane.

Switch between GPU Source and GPU Assembly
tabs to:

  1   Intel® Advisor User Guide

770

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/cpu-roofline-perspective/identify-performance-bottlenecks-on-cpu/examine-bottlenecks-on-cpu-roofline-chart.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/cpu-roofline-perspective/identify-performance-bottlenecks-on-cpu/examine-bottlenecks-on-cpu-roofline-chart.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/reference/data-reference/cpu-metrics.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/gpu-roofline-perspective/identify-performance-bottlenecks-on-gpu/examine-bottlenecks-on-gpu-roofline-chart.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/gpu-roofline-perspective/identify-performance-bottlenecks-on-gpu/examine-bottlenecks-on-gpu-roofline-chart.html


• Examine the source code and offload details for
each source line. Select a loop in the GPU table
or a dot in the GPU Roofline to focus on the
corresponding parts of source and assembly
code.

• Review GPU assembly representation for a
selected kernel. Select a code line to highlight
the corresponding part in source code.

For details about interpreting GPU Roofline Insights
perspective results, see Explore GPU Roofline
Results

Use the Recommendations tab to view actionable
recommendations helping you improve performance
of the currently selected kernel. Expand a
recommendation to view more information and a
code snippet.

Review performance metrics of your application
performance on a GPU accelerator. For details about
metrics, see Accelerator Metrics.

Window: GPU Roofline Insights Summary

After running GPU Roofline Insights Perspective, use the GPU Roofline Insights Summary window to view the
most important information about the execution of your code on a GPU and on a CPU devices.

Customize the window layout using drop-downs in the upper-right corner of each pane.

Create a snapshot of your GPU Roofline result using the  button. For details, see Create a Read-only
Result Snapshot..

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see 
GPU Architecture Terminology for Intel® Xe Graphics.

Program Metrics Pane
View the most important metrics for parts of your application executed on a GPU and on a CPU. This pane
tells you how well your application uses the GPU resources and how much space for improvement your
application has. This pane is broken into the following sub-sections:

• GPU Time: view total elapsed time of all compute tasks executed on a GPU device.
• FPU Utilization: view the average percentage of GPU time when both floating-point units (FPUs) are

used.
• EU Threading Occupancy: view the percentage of cycles on all execution units (EUs) and thread slots

when a slot has a thread scheduled.
• EU IPC Rate: view the average rate of instructions per cycle (IPC) for execution units when two FPUs are

used.
• CPU Time: view total elapsed time for a part of your application executed on a CPU.
• Thread Count: view the number of threads used for execution of your application on a CPU.

Open the drop-down menus below the main program metrics to view detailed information about GFLOPS,
GINTOPS, and arithmetic intensity for INT and FLOP operation types.

Intel® Advisor User Guide  1  

771

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/analyze-gpu-roofline/explore-gpu-roofline-results.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/analyze-gpu-roofline/explore-gpu-roofline-results.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/reference/data-reference/accelerator-metrics.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/gpu-roofline-perspective.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/manage-results/create-a-read-only-result-snapshot.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/manage-results/create-a-read-only-result-snapshot.html
https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html


OP/S and Bandwidth Pane
View metrics for all compute tasks and functions/loops of your application against the hardware-imposed
performance ceilings on preview Roofline charts for GPU and CPU. Explore how many FLOPS and INTOPS per
second can be executed on different memory levels. For details about using GPU Roofline Chart, see Examine
Bottlenecks on GPU Roofline Chart.

Filter operations by type by switching between INT and FLOAT in the upper-right corner of preview Roofline
charts.

Open the drop-down menus below the preview Roofline charts to view detailed information about GFLOPS,
GINTOPS, and arithmetic intensity for INT and FLOP operation types on different memory levels (CARM, L3,
SLM, GTI). For a GPU Roofline chart, view instruction mix diagram showing a total number of instructions
united by their types (FLOAT, INT, STORE, LOAD, and MOVE).

Hover over a dot on a Roofline chart to view metrics for the selected function/loop. Click a dot to open it in
source code and view it on a GPU Roofline chart.

Top Hotspots Pane
View key metrics (elapsed time, FLOPS, GINTOPS) for top five most time-consuming compute tasks on a GPU
and functions/loops on a CPU that are the best candidates for optimization. Click the function name to open it
in source code and view it on a GPU Roofline chart.

Performance Characteristics Pane
View the execution time details for GPU- and CPU-executed parts of your application. This pane can tell you
how well your application uses GPU resources on each memory level. Hover over the histogram to see the
fractions of active, stalled, and idle EU arrays.

Platform Information Pane
View the system information including software and hardware summary.

Collection Information Pane
View information about Survey and Characterization data collection. Use drop-downs to show/hide
information for each analysis type.

Window: Memory Access Patterns Source

Details View Pane
Use this pane at the bottom right of the Memory Access Patterns Source window to examine details for a
selected site.

Source View Pane
Middle of Memory Access Patterns Source window

Controls

Use This To Do This

Source lines To navigate to related source lines.

Double-click a source
line

To open your code editor to the corresponding source file. The editor allows you
to add annotations to your code (right-click to open the context menu).

• On Windows* OS:

  1   Intel® Advisor User Guide

772

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/gpu-roofline-perspective/identify-performance-bottlenecks-on-gpu/examine-bottlenecks-on-gpu-roofline-chart.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/gpu-roofline-perspective/identify-performance-bottlenecks-on-gpu/examine-bottlenecks-on-gpu-roofline-chart.html


Use This To Do This

• When using Microsoft Visual Studio*, the Visual Studio code editor
appears with the file open at the corresponding location.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the
Intel® oneAPI 2022.1 release, and will be removed in a future release.

• When using the Intel® Advisor GUI, the file type association (or Open
With dialog box) determines the editor used.

• On Linux* OS: When using the Intel Advisor GUI, the editor defined by the
Options > Editor dialog box appears with the file open at the
corresponding location.

Select multiple source
lines

To view the accumulated details in the Details View pane.

Right click a source
line or multiple source
lines

Display a context menu to: open your code editor to the corresponding source
line, copy the selected source line(s) to the clipboard, or display context-
sensitive help relevant to the selected loop or function.

Assembly View Pane
Use this pane at the bottom of the Memory Access Patterns Source window to view assembly representation
of your code.

Controls

Use This To Do This

Source lines You can navigate to related source lines or explore assembly representation of
the code by using the Call Stack with Loops pane.

Select multiple source
lines

To view the accumulated time values for multiple source lines below the Self
Time column, or enable you to copy multiple source lines using the context
menu. Viewing accumulated time can help you decide how to divide the work.

Window: Offload Modeling Summary

After running Offload Modeling perspective, use the Summary window to view the most important
information about your code, total estimated speedup achieved from offloading, top offloaded and non-
offloaded code regions, and more.

You can drag and drop, expand and collapse, and resize the panes to customize the Summary view to your
needs.

Intel® Advisor User Guide  1  

773

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/offload-modeling-perspective.html


Top Metrics
Use this pane to view information about estimated speedup of your code achieved by offloading. The
following metrics are reported:

Speed-up for Accelerated Code Estimated speedup of your code in relation to its
original execution time in pane

Amdahl's Law Speed Up Estimated speedup for the whole application
estimated by the Amdahl's law, which states that
the potential speedup from parallelizing one part of
a program is limited by the portion of the program
that still runs serially. This metric is available only
for the CPU-to-GPU modeling.

Fraction of Accelerated Code Fraction of accelerated code, in per cent, relative to
the total time of the original program. This metric is
available only for the CPU-to-GPU modeling.

Number of Offloads Number of offloaded code regions

  1   Intel® Advisor User Guide

774



Program Metrics
This pane lists performance metrics estimated for the whole application, including original time before
offloading and estimated time after offloading, break-down of estimated time spent on host and target
devices, offload taxes, information about host and target platforms, and so on. This pane helps you to
determine if your code is profitable to offload to a target device and compare time of original code before
acceleration with estimated time of accelerated code.

Offload Bounded By
This pane lists the factors that prevent your code from achieving better performance on a target device. The
information is shown in a list and in a pie chart that helps you visualize the results. The factor with the
highest percentage indicates what you should optimize your application for on the target GPU to optimize its
performance.

Modeling Parameters
This pane shows the current modeled target GPU and its parameters. The pane is interactive, and you can
use it to:

• Examine device parameters that the application performance was modeled on to understand how they
affect the estimated performance.

• Change the target device to compare the selected device configuration with the current modeled device.
• Adjust the parameters using sliders and remodel performance for a new device to experiment with

parameters and see how they affect the performance on the GPU.

The pane has the following functionality:

Intel® Advisor User Guide  1  

775



1 For CPU-to-GPU modeling in GUI and HTML report
or for GPU-to-GPU modeling in HTML report: After
you change the hardware parameters, click Save
to Remodel to save the configuration file with your
parameters and use it for remodeling. This does not
update the modeling results automatically, but
generates a configuration file with the device
parameters you set.

  1   Intel® Advisor User Guide

776



For GPU-to-GPU modeling in GUI report: After you
change the hardware parameters, click the button
to rerun the Performance Modeling analysis for the
custom device.

2 Select a target device for modeling to see its
parameters and how they are different from the
current device configuration.

3 Click the Reset button to change the slider
positions back to the parameters used for the
current modeling. This button activates after you
change any slider position.

Click the Set to Hardware Default button to
change the slider positions to the default target
GPU parameters, for example, if your current
modeled configuration is custom.

4 Move the sliders to change the parameter to a
desired value for a custom device configuration.
Hover over the ? icon near the parameter name to
learn more about it.

• An arrow under a slider indicates the default
value of the parameter for the selected device.

• Black line indicates the parameter value for the
current modeled result.

• When you move a slider, a blue line indicates the
difference between the new parameter value
and the current modeled parameter.

• For bandwidth and size parameters, when you
move a slider to a maximum value to the right,
it sets the parameter to infinite meaning that
the bandwidth/size is unlimited.

• For bandwidth and size parameters, when you
move a slider to a minimum value to the left, it
disables the parameter as it does not exist on a
target device.

Notice that the parameter list might change
depending on the target device selected. This might
be due to differences between GPU architecture or
terminology specifics.

5 This is available only for CPU-to-GPU modeling in
GUI and HTML report or for GPU-to-GPU modeling
in HTML report.

Copy the generated Performance Modeling
command and run it from a terminal or a command
prompt to remodel application performance for the
custom target device. This command line is
generated after you save the custom configuration
with the Save to Remodel button. The command

Intel® Advisor User Guide  1  

777



already includes all necessary options and paths to
the configuration file and project directory and is
ready for copy and paste.

Top Offloaded
This pane lists the top five code regions that are the most profitable to offload to a target device with the
following data per code region:

Loop/Function For CPU-to-GPU modeling only. Source locations of
top five offloaded loops/functions with the highest
speedup. Click a loop/function name to switch to
the Accelerated Regions tab and view
information about it in more detail.

Kernel For GPU-to-GPU modeling only. Source locations of
top five kernels with the highest speedup. Click a
kernel name to switch to the Accelerated Regions
tab and view information about it in more detail.

Execution Time Elapsed time measured on a baseline device before
offloading and elapsed time estimated on a target
device after offloading.

Speed-Up Estimated speedup the code region can achieve on
a target device after offloading.

Bounded By Main factor(s) preventing the code region from
achieving better performance. Hover over the
diagram to see bounded-by time for each factor.

Data Transfer Data transfer overhead for the selected code
region.

Top Non-Offloaded
This pane lists the top five code regions not recommended for offloading to the current target device. This
pane is available only if you run the CPU-to-GPU modeling and is empty for the GPU-to-GPU modeling as it
assumes all kernels are offloaded ignoring their estimated speedup.

The pane shows the following data per code region:

Loop/Function Source locations of top five non-offloaded loops/
functions. Click a loop/function name to switch to
the Accelerated Regions tab and view information
about it in more detail.

Execution Time Elapsed time measured on a baseline device before
offloading and elapsed time estimated on a target
device after offloading.

Speed-Up Main factor(s) preventing the code region from
achieving better performance. Hover over the
diagram to see bounded-by time for each factor.

Bounded By Main factor(s) preventing the code region from
achieving better performance. Hover over the
diagram to see bounded-by time for each factor.

  1   Intel® Advisor User Guide

778



Why Not Offloaded Reason(s) why the code region is not recommended
for offloading to the current target device. Switch to
the Accelerated Regions tab to get a more
detailed explanation.

Data Transfer Data transfer overhead for the selected code
region.

See Also
Model Offloading to a GPU  Find high-impact opportunities to offload/run your code and identify
potential performance bottlenecks on a target graphics processing unit (GPU) by running the
Offload Modeling perspective.

Window: Offload Modeling Report - Accelerated Regions
Use the Accelerated Regions window to view detailed information about offloaded and non-offloaded loops/
functions, view source code for your loops/functions.

Review the controls available in the main report of the Offload Modeling perspective of the Intel® Advisor. In
the Accelerated Regions and Summary reports, you can drag-and-drop, close/open, collapse/expand
panes to change the report layout.

• Switch between perspectives using a drop-down menu in the top left corner.
• Switch between Summary, Accelerated Regions, and Source View.

Review the summary offload characteristics for your application to decide if the application
is recommended for offloading. The pane highlights total speedup, number of loops and
functions offloaded, and a fraction of code accelerated.

Intel® Advisor User Guide  1  

779



Select code regions to show in the report based on offload type:
• Show all code regions in your code.
• Show only code regions recommended for offloading.
• Show only code regions not recommended for offloading.

•

Expand/collapse a top slider with per-program recommendations using the 
button.

You can expand or collapse each recommendation.
•

Expand/collapse a top slider with collection event log using the button. The top
slider enables you to view the following:

• Main data collection events and issues in the Featured Events pane.

Expand/collapse each featured event in the log to view details.
• Application Output
• Full execution log of your application in the Collection Log pane.

Click the  button to collapse the top slider or drag it to maximize the
event log.

Tip Collection event log top slider appears automatically when you run a perspective.
You can track collection using the green progress bar at the top and view collection
events online.

•

Create a snapshot for the current project results using the  button. For details,
see Create a Read-only Result Snapshot.

• Click a + button to open previously closed panes.

Review the detailed information about your application performance measured on a host
platform and its performance modeled on a target platform. For details about metrics
reported, see Accelerator Metrics.

Depending on a perspective configuration, you might see different metrics reported and
some metrics might be not accurate. Refer to the following topics for interpretation details:
• Low accuracy: Examine Regions Recommended for Offloading
• Medium accuracy: Examine Data Transfers for Modeled Regions
• High accuracy: Check for Dependency Issues

  1   Intel® Advisor User Guide

780

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/manage-results/create-a-read-only-result-snapshot.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/reference/data-reference/accelerator-metrics.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/offload-modeling-perspective/identify-code-regions-to-offload/examine-regions-recommended-for-offloading.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/offload-modeling-perspective/identify-code-regions-to-offload/examine-data-transfers-for-modeled-regions.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/offload-modeling-perspective/identify-code-regions-to-offload/check-for-dependency-issues.html


Switch between the Data Transfer Estimations tab and Details tab.

In the Data Transfer Estimations tab, examine details about estimated data transfers in
a loop and memory objects tracked and review data transfer recommendations. Select a
loop in the Code Regions table to see the data transfer estimations for it. Click a
recommendation to expand it and view hints for offloading your code to another
accelerator, code samples, and links to useful resources.

For details about how to read this pane, see Examine Data Transfers for Modeled Regions.

NOTE You need to enable data transfer analysis before running the perspective to
see metrics in this pane,

In the Details tab, view performance metrics for a selected function/loop.

Advanced view pane enables you to:

• Examine the source code for selected functions/loops in the Source tab. Select a loop
in the Code Regions table to focus on the corresponding part of the source code.

Right-click a code line and click View Source to open the source view. Double click a
code line in the source view to open it in code editor.

• View the execution details for a selected function/loop in the call stack using the Top-
Down tab.

• Examine recommendations that provide guidance and code samples to resolve the
issues found by Intel Advisor using the Recommendations tab. Use the drop-down to
expand code snippets if you need them.

For details, see Examine Regions Recommended for Offloading

Window: Perspective Selector

Click the  button on the main toolbar to open the Perspective Selector window that enables you to
switch between different Intel® Advisor perspectives.

Click a perspective to see a brief information about it.

Double-click a perspective to open it.

For details about Intel Advisor perspectives, see:

• Vectorization and Code Insights Perspective
• CPU / Memory Roofline Insights Perspective
• Threading Perspective
• GPU Roofline Insights Perspective
• Offload Modeling Perspective

Window: Refinement Reports

Intel® Advisor offers two refinement analyses:

• Dependencies analysis (optional) - For safety purposes, the compiler is often conservative when assuming
data dependencies. Run a Dependencies analysis to check for real data dependencies in loops the
compiler did not vectorize because of assumed dependencies. If real dependencies are detected, the
analysis can provide additional details to help resolve the dependencies. Your objective: Identify and
better characterize real data dependencies that could make forced vectorization unsafe. For more details,
see Check for Dependencies Issues.

Intel® Advisor User Guide  1  

781

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/offload-modeling-perspective/identify-code-regions-to-offload/examine-data-transfers-for-modeled-regions.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/offload-modeling-perspective/identify-code-regions-to-offload/examine-regions-recommended-for-offloading.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/cpu-roofline-perspective.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/threading-perspective.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/gpu-roofline-perspective.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/design-for-gpu-offload/offload-modeling-perspective.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/threading-perspective/check-for-dependencies-issues.html


• Memory Access Patterns (MAP) analysis (optional) - Run a MAP analysis to check for various memory
issues, such as non-contiguous memory accesses and unit stride vs. non-unit stride accesses. Your
objective: Eliminate issues that could lead to significant vector code execution slowdown or block
automatic vectorization by the compiler. For more details, see Investigate Memory Usage and Traffic

Site Report Pane
The Site Report pane on top of Refinement Reports window comprises top-level information:

• Site Location lists names of the analyzed loops, names of the files with the source code, as well as the
number of the line where the loop is invoked

• Loop-Carried Dependencies Summarizes presence or absence of dependencies across iterations (loop-
carried dependencies). Dependency types:

• RAW - read after write (flow dependency)
• WAR - write after read (anti dependency)
• WAW - write after write (output dependency)

• Strides Distribution Unit/Constant/Variable stride ratio for the selected site.
• Access Pattern information about stride types detected in the site.
• Site Name Site Name in case of using source annotations, or sequence id in case of marking loops for

deeper analysis in survey report.

Double-click any line in the Refinement Reports top pane to see the loop source code.

The pane at the bottom of the Refinement Reports window contains the following elements:

• Filters pane - filter analysis data by a variety of criteria, such as module, loop/function, vectorized/non-
vectorized.

• Advanced View pane - includes the following tabs:

• Memory Access Patterns Report tab - view information about types of memory access inside selected
loops/functions. (Vectorization and Code Insights perspective only.)

• Dependencies Report tab - view any predicted data sharing problems and informational remark
messages.

• Recommendations tab - view memory-specific recommendations.

Tab: Dependencies Report

Problems and Messages Pane
Select the problems that you want to analyze by viewing their associated observations.

Controls

Use This To Do This

Column labels Click a column label to sort the data grid data rows in either ascending or
descending order.

Selected data row Review the characteristics of each data row in the grid. The columns are:

• ID - Identifier for the problem.
•

(severity) - The severity of the problem, such as error , warning ,

or an informational remark message . For example, the location of

parallel sites executed are indicated by the message Parallel Site.
• Type - The problem type or message type. For more information about a

problem, right click to display the context menu.
• Site Name- The name of the site associated with this problem.
• Sources - The source file associated with this problem.

  1   Intel® Advisor User Guide

782

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective/find-loops-that-benefit-from-better-vectorization/investigate-memory-usage-and-traffic.html


Use This To Do This

• Modules - The modules (executable) associated with this problem.
• State - Indicates whether the problem has been fixed or not. To change the

state, use the context menu in this pane.

Pane border Resize the pane (drag).

Right click a row to
display a context menu

Display a context menu to: open the code editor to the corresponding source
line, display the Dependencies Source window, copy the selected data
row(s) to the clipboard, or display context-sensitive help for that problem or
message.

Code Locations Pane
Use the Dependencies report to view each reported problem in its associated code locations.

Controls

Use This To Do This

Title bar View the problem type.

Code Location data
row(s)

Review related code locations:

• ID - Code location identifier
• Description - What happens at this code location.
• Source - The source file for this code location.
• Function - Function name.
• Modules - The executable associated with this problem.
• State - Indicates whether the problem has been fixed or not. To change the

state, use the context menu.

Click  to the left
of a code location
name

Display a code snippet associated with the selected code location.

 icon,  icon, or
no icon in the
Source column

Shows:

• Whether this is a related code location.
• If code location source code is available for viewing and editing.

 icon,  icon, or
no icon in the
Source column

Shows:

• Whether this is the focus code location.
• If code location source code is available for viewing and editing.

 icon,  icon, or
no icon in the
Source column

Shows if code location source code is available for viewing and editing.

Double-click a code
location data row or
source line, or
right-click and

Display the Dependencies Source window.

Intel® Advisor User Guide  1  

783



Use This To Do This

select the View
Source context
menu item

Right-click and
select the Edit
Source context
menu item

Display a code editor with the corresponding source file.

• On Windows* OS:

• When using Visual Studio, the Visual Studio code editor appears with the file
open at the corresponding location.

• When using the Intel Advisor GUI, the file type association (or Open With
dialog box) determines the editor used.

• On Linux* OS: When using the Intel Advisor GUI, the editor defined by the
Options > Editor dialog box appears with the file open at the corresponding
location.

Column labels Click a column heading to sort the data grid rows in either ascending or descending
order.

Pane border Resize the pane (drag).

Right click a row to
display a context
menu

Display a context menu to: expand or collapse all code snippets, open the
Dependencies Source window, edit sources in the code editor, copy the selected
data row(s) to the clipboard, mark the state as fixed or not fixed, or display
context-sensitive help.

Tab: Memory Access Patterns Report

You can view the Memory Access Patterns analysis results in both the Refinement Reports top panel and in
the Memory Access Patterns Report tab right beneath.

Controls
The Memory Access Patterns Report tab of the Refinement Reports window contains information about types
of memory access inside selected loops, including the following:

• ID of the memory access location
• Severity stride type classification (icon of the stride type)
• Stride physical distance in elements between memory accesses in two consequent iterations
• Type of the memory access:

• Unit/Uniform types:

• Unit stride (stride 1) instruction accesses memory that consistently changes by one element
from iteration to iteration.

• Uniform stride 0 instruction accesses the same memory from iteration to iteration.
• Constant stride (stride N) instruction accesses memory that consistently changes by N elements

(N>1) from iteration to iteration.
• Variable stride types:

• Irregular stride instruction accesses memory addresses that change by an unpredictable
number of elements from iteration to iteration.

• Gather (irregular) stride, which is detected for v(p)gather* instructions on AVX2 Instruction
Set Architecture.

• Source provides info on the operation's source file name and code line where the memory access is
issued.

• Nested Function function (invoked from site) where stride diagnostic was detected.

  1   Intel® Advisor User Guide

784



• Modules application modules, where the memory access is issued.
• Variable references name of the variable for which the memory access stride is detected.

Double-click any line in the Memory Access Patterns Report tab to see the selected operation's source
code.

Window: Suitability Report
Use this window to review the parallel sites in the upper right area. Select a site and view its annotations and
related characteristics. Use the list of sites as a to-do list: start at the top and work your way down.

Controls

This screen shows data based on a Target System of CPU. The screen shown on your system will differ.

The upper-left area shows the Maximum Program Gain for All Sites in the program. Your overall
goal of adding parallelism is to increase the Maximum Program Gain for All Sites so the parallel
program will execute as fast as possible. The measured serial execution runtime, predicted parallel
runtime, and any measured paused time are displayed below Maximum Program Gain for All
Sites. Use the predicted Suitability gain values to help you make informed decisions about where
to add parallelism.

If the Suitability tool detects any annotation-related errors, they appear at the top of the
Suitability Report window. If you see this type of error, the displayed Suitability data may not be
reliable. Annotation-related errors may be caused when the correct sequence of annotations do not
occur because of missing annotations, when unexpected execution paths occur, or if Suitability data
collection was paused while the target was executing.

Use the upper-right row of modeling parameters to model performance. Choose a hardware
configuration and threading model (parallel framework) values from the drop-down lists. If you
select a Target System for Intel® Xeon Phi™ processors, an additional value for total Coprocessor
Threads appears.

Below this row is a grid of data that shows the estimated performance of each parallel site detected
during program execution. The Site Label shows the argument to the site annotation. Examine the
predicted Site Gain and Impact to Program Gain (higher values are better) to estimate how

Intel® Advisor User Guide  1  

785



much each site contributes to the Maximum Program Gain for All Sites for all sites (described
above). To expand the data under Combined Site Metrics or Site Instance Metrics, click the 
icon to the right of that heading; to collapse data, click  to the right of that heading.

To view source code for a selected parallel site, click its row to display the Suitability Source
window.

To show or hide the side command toolbar, click the  or  icon.

The Scalability of Maximum Site Gain graph summarizes performance for the selected site. The
number of CPU processors or total number of coprocessor threads appears on the horizontal X axis
and the target's predicted performance gain appears on the Y axis. To change the default CPU
Count and the Maximum CPU Count, set the Options value.

If you choose a Target System of CPU, to view detailed characteristics of the selected site as well
as its tasks and locks, click the Site Details tab.

Use the Loop Iterations (Tasks) Modeling (or Tasks Modeling) modeling parameters to
experiment with different loop structures, iteration counts, and instance durations that might
improve the predicted parallel performance.

For example, you might want to see the impact of modifying your nested change loop structure,
modify the loop body code, or change number of iterations.

If the task annotations indicate likely task parallelism, the title will appear as Task Modeling
(instead of Loop Iterations (Task) Modeling for data parallelism).

Use the Runtime Modelingmodeling parameters to learn which parallel overhead categories might
have an impact on parallel overhead. If you agree to address a category later by using the chosen
parallel framework's capabilities or by tuning the parallel code after you have implemented
parallelism, check that category.

If the chosen Target System is Intel Xeon Phi or Offload to Intel Xeon Phi, additional Intel®
Xeon Phi™ Advanced Modeling options appear below the Runtime Modeling area. To expand this
area, click the down arrow to the right of Intel Xeon Phi Advanced Modeling.

Below the graph is a list of issues that might be preventing better predicted performance gains as
well as a summary of serial and predicted parallel time. To expand a line, click the down arrow to
the right of the item's name. Most issues are related to the Runtime Modelingmodeling
parameters. Later, you can use other Analyzer tools like Intel® VTune™Profiler to measure actual
performance of your parallel program.

Window: Suitability Source

Source View Pane
Use this pane to explore your source code.

Location

On the left of the Suitability Source window.

Controls

Use This To Do This

Source code lines You can view and navigate to related source code by using the Call Stack pane.

Double-click a source
line

To open the code editor to the corresponding source line.

  1   Intel® Advisor User Guide

786

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/threading-perspective/annotate-code-for-deeper-analysis/annotate-code-to-model-parallelism/task-patterns/data-and-task-parallelism.html


Use This To Do This

• On Windows* OS:

• When using Visual Studio, the Visual Studio code editor appears with the
file open at the corresponding location.

• When using the Intel® Advisor GUI, the file type association (or Open With
dialog box) determines the editor used.

• On Linux* OS: When using the Intel Advisor GUI, the editor defined by the
Options > Editor dialog box appears with the file open at the corresponding
location.

To return to the Suitability Source or Suitability Report window, click the
Result tab.

Select multiple source
lines

To copy source lines using the context menu.

Right click a source
line or multiple source
lines

Display a context menu to: open the code editor to the corresponding source file,
copy the selected source line(s) to the clipboard, or display context-sensitive help
relevant to the selected loop or function.

Call Stack Pane
Use this pane to locate and open your source code from a call stack.

Location

On the right of the Suitability Source Window.

Controls

Use This To Do This

 or  icon.
View whether:

• The row displayed is for a function .
• Source code is available for viewing and editing. An icon indicates whether

source code is available  or not available .

Click a row in the Call
Stack pane

Displays source code for the specified location in the call stack tree.

Pane border (drag) Resize the pane.

Right click a row in the
Call Stack pane

Customize call stack presentation by using the Call Stack context menu.

Window: Survey Report

After running the Vectorization and Code Insights perspective, Intel Advisor generates a Survey report that
helps you identify top time-consuming and non- or under-vectorized functions/loops.

Intel® Advisor User Guide  1  

787

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective.html


Controls

There are many controls available to help you focus on the data most important to you, including the
following:

1 Click the control to save a read-only result snapshot you can view any time.

Intel Advisor stores only the most recent analysis result. Visually comparing one or more snapshots
to each other or to the most recent analysis result can be an effective way to judge performance
improvement progress.

To open a snapshot, choose File > Open > Result...

2 Click the various Filter controls to temporarily limit displayed data based on your criteria.

3 Click the control to view loops in non-executed code paths for various instruction set architectures
(ISAs). Prerequisites:

• Compile the target application for multiple code paths using the Intel compiler.
• Enable the Analyze loops in not executed code path checkbox in Project Properties >

Analysis Target > Survey Hotspots Analysis.

4 This toggle control currently combines two features: The View
Configurator and the Smart Mode filter.

• View Configurator - Toggle on the Customize View control to
choose the view layout to display: Default, Smart Mode, or a
customized view layout. To create a customized view layout you can
apply to this and other projects:

1.Click the Settings control next to the View Layout drop-down list to
open the Configure Columns dialog box.

2.Choose an existing view layout in the Configuration drop-down list.
3.Enable/disable columns to show/hide.

Outcome: Copy n is added to the name of the selected view layout in
the Configuration drop-down list.

4.Click the Rename button and supply an appropriate name for the
customized view layout.

5.Click OK to save the customized view layout.

  1   Intel® Advisor User Guide

788



• Smart Mode Filter - Toggle on the Customize View control to
temporarily limit displayed data to the top potential candidates for
optimization based on Total CPU Time (the time your application
spends actively executing a function/loop and its callees). In the Top
drop-down list, choose one of the following:

• The Number of top loops/functions to display
• The Percent of Total CPU Time the displayed loops/functions

must equal or exceed

5 Click the button to search for specific data.

6 Click the tab to open various Intel Advisor reports or views.

7 Right-click a column header to:

• Hide the associated report column.
• Resume showing all available report columns.
• Open the Configure Columns dialog box (see #4 for more information).

8 Click the toggle to show all available columns in a column set, and resume showing a limited number
of preset columns in a column set.

9 Click the control to:

• Show options for customizing data in a column or column set.
• Open the Configure Columns dialog box (see #4 for more information).

For example, click the control in the Compute Performance column set to:

• Show data for floating-point operations only, for integer operations only, or for the sum of
floating-point and integer operations.

• Determine what is counted as an integer operation in integer calculations:

• Choose Show Pure Compute Integer Operations to count only ADD, MUL, IDIV, and SUB
operations.

• Choose Show All Operations Processing Integer Data to count ADD, ADC, SUB, MUL,
IMUL, DIV, IDIV, INC/DEC, shift, and rotate operations.

10 Click the control to show/hide a chart that helps you visualize actual performance against hardware-
imposed performance ceilings, as well as determine the main limiting factor (memory bandwidth or
compute capacity), thereby providing an ideal roadmap of potential optimization steps.

11 Click a data row in the top of the Survey Report to display more data specific to that row in the
bottom of the Survey Report. Double-click a loop data row to display a Survey Source window. To
more easily identify data rows of interest:

•  = Vectorized function
•  = Vectorized loop
•  = Scalar function
•  = Scalar loop

12 Click a checkbox to mark a loop for deeper analysis.

13 If present, click the image to display code-specific how-can-I-fix-this-issue? information in the
Recommendations pane.

14 If present, click the image to view the reason automatic compiler vectorization failed in the Why No
Vectorization? pane.

Intel® Advisor User Guide  1  

789



15 Click the control to show/hide the Workflow pane.

Window: Survey Source

Source View Pane
Use this pane to view the user-visible source code representation of the selected site.

Location

Middle of the Survey Source window.

Controls

Use This To Do This

Source lines You can navigate to related source lines or explore your source code by using
the Call Stack with Loops pane.

Double-click a source
line

To open your code editor to the corresponding source file. The editor allows you
to add annotations to your code (right-click to open the context menu). You can
use the annotation assistant pane to help you copy parallel site and task
annotations.

• On Windows* OS:

• When using Microsoft Visual Studio*, the Visual Studio code editor
appears with the file open at the corresponding location.

• When using the Intel® Advisor GUI, the file type association (or Open
With dialog box) determines the editor used.

• On Linux* OS: When using the Intel Advisor GUI, the editor defined by the
Options > Editor dialog box appears with the file open at the
corresponding location.

To return to the Survey Source or Survey Report window, click the Result
tab.

Select multiple source
lines

To view the accumulated time values for multiple source lines below the Self
Time column, or enable you to copy multiple source lines using the context
menu. Viewing accumulated time can help you decide how to divide the work.

Right click a source
line or multiple source
lines

Display a context menu to: open your code editor to the corresponding source
line, copy the selected source line(s) to the clipboard, or display context-
sensitive help relevant to the selected loop or function.

Assembly View Pane
Use this pane to view assembly representation for a selected loop.

Location

Bottom of Survey Source window.

Controls

Use This To Do This

Source lines You can navigate to related source lines or explore assembly representation of
the code by using the Call Stack with Loops pane.

  1   Intel® Advisor User Guide

790



Use This To Do This

Select multiple source
lines

To view the accumulated time values for multiple source lines below the Self
Time column, or enable you to copy multiple source lines using the context
menu. Viewing accumulated time can help you decide how to divide the work.

Call Stack Pane
View the call stack for a selected code region.

Location

On the right of the Survey Source window.

Controls

Use This To Do This

, , or  icon.
View whether:

• The row displayed is for a function  or a loop . A function  or

loop  icon indicates that source code is available.
•

Source code is available for viewing and editing. A  function or 
loop icon indicates that source code is not available.

Click a row in the Call
Stack pane

Displays source code for the specified location in the call stack tree.

Pane border (drag) Resize the pane.

Right click a row in the Call
Stack pane

Customize call stack presentation by using the Call Stack context menu.

Window: Threading Summary

After running Threading perspective, review a results summary that includes the most important information
about your code. Click the Summary tab after running an analysis to view results.

Program Metrics Pane
View the main performance metrics of your program, such as execution time statistics, vector instruction set
(and whether extensions, such as VNNI, are used), and number of CPU threads utilized. The section is
broken down into several sub-sections:

• Performance characteristics: View execution time details, such as total CPU time and time spent in
vectorized and scalar code.

If your application usesIntel® oneAPI Math Kernel Library, you will see the MKL detail button in the
Performance characteristics section, which toggles two additional columns: the User column, which
reports time spent in your code and corresponding compute metrics, and the MKL column, which reports
time spent in the oneMKL code and corresponding compute metrics.

• Vectorization Gain/Efficiency: View average estimated speedup of vectorized loops and total estimated
program speedup.

Intel® Advisor User Guide  1  

791

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/threading-perspective.html


NOTE
The vectorization efficiency data is available only for vectorized loops in modules compiled with an
Intel® compiler version 16 or higher.

• OP/S and Bandwidth: View GFLOPS and GINTOPS usage and cache bandwidth metrics compared to

hardware peak. Hover the mouse over the Utilization column and click the  button to select single-
core or multicore benchmarks utilization metrics.

NOTE
The OP/S and bandwidth metrics are available after you run the Trip Counts and FLOP analysis.

Per Program Recommendations Pane
View suggested changes for your program that you might want to apply to achieve better performance.

Top Time-consuming Loops Pane
View top five time-consuming loops sorted by total time with performance metrics, such as execution time
statistics and vectorization efficiency with comparison to original scalar loop efficiency.

Suitability and Dependencies Analysis Data Pane
View information about predicted sharing problems for annotated parallel sites. The Maximum Site Gain
column summarizes potential performance improvement achieved through threading. The Dependencies
column summarizes the predicted data sharing problems. To display the Dependencies Report window at
the corresponding parallel site location, click a function link under the Site Location column.

NOTE
This information is available only after you run the Suitability or Dependencies analysis.

Recommendations Pane
View suggested changes with high confidence level for first five loops in the code that you might want to
apply to achieve better performance. Click a recommendation link to access the recommendations texts.

Collection Details Pane
View execution statistics for each of the collectors, as well as the Collection Log, Application Output, and
Collection Command Line links that lead to the corresponding report logs, command line and output
details.

NOTE
Application Output is available if you set output destination to Application Output window. To do this,
go to File > Options > General > Application Output Destination and choose Application
Output window.

Platform Information Pane
View the system information including software and hardware summary.

  1   Intel® Advisor User Guide

792



Window: Vectorization Summary

After running the Vectorization and Code Insights perspective, consider reviewing a results summary that
includes the most important information about your code. Click the Summary tab after running an analysis
to view results.

Program Metrics Pane
View the main performance metrics of your program, such as execution time statistics, vector instruction set
(and whether extensions, such as VNNI, are used), and number of CPU threads utilized. The section is
broken down into several sub-sections:

• Performance characteristics: View execution time details, such as total CPU time and time spent in
vectorized and scalar code.

If your application uses Intel® oneAPI Math Kernel Library (oneMKL), you will see the MKL detail button
in the Performance characteristics section, which toggles two additional columns: the User column,
which reports time spent in your code and corresponding compute metrics, and the MKL column, which
reports time spent in the oneMKL code and corresponding compute metrics.

• Vectorization Gain/Efficiency: View average estimated speedup of vectorized loops and total estimated
program speedup.

NOTE
The vectorization efficiency data is available only for vectorized loops.

• OP/S and Bandwidth: View GFLOPS and GINTOPS usage and cache bandwidth metrics compared to

hardware peak. Hover the mouse over the Utilization column and click the  button to select single-
core or multicore benchmarks utilization metrics.

NOTE
The OP/S and bandwidth metrics are available after you run the Trip Counts and FLOP or the Roofline
analysis.

Per Program Recommendations Pane
View suggested changes for your program that you might want to apply to achieve better performance.

Top Time-consuming Loops Pane
View top five time-consuming loops sorted by self time with performance metrics, such as execution time
statistics and vectorization efficiency with comparison to original scalar loop efficiency.

Refinement Analysis Data Pane
View details about found dependencies and memory access patterns.

The Dependencies column summarizes the predicted data sharing problems collected by the Dependencies
tool. To display the Dependencies Report window at the corresponding parallel site location, click a
function link in the Site Location column.

The Strides Distribution column reports the memory access stride distribution within a loop in the ratio
format in %: unit strides, constant strides, and variable strides.

Intel® Advisor User Guide  1  

793

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/optimize-cpu-usage/vectorization-perspective.html


NOTE
The information in the Refinement analysis data section is available only after you run the Memory
Access Patterns or Dependencies analysis.

Recommendations Pane
View suggested changes with high confidence level for first five loops in the code that you might want to
apply to achieve better performance. Click a recommendation link to access the recommendations texts.

Collection Details Pane
View execution statistics for each of the collectors, as well as the Collection Log, Application Output, and
Collection Command Line links that lead to the corresponding report logs, command line and output
details.

NOTE
Application Output is available if you set output destination to Application Output window. To do this,
go to File > Options > General > Application Output Destination and choose Application
Output window.

Platform Information Pane
View the system information including software and hardware summary.

Appendix

Data Sharing Problems
In a serial program, the order of the operations during program execution are known. However, when code
executes as multiple parallel tasks, an operation can execute before, after, or simultaneously with an
operation in the other task. For example, when parallel tasks access or modify a shared memory location,
data sharing problems can occur.

The Intel® Advisor Dependencies tool  performs extensive analysis of your running serial program to help
you predict data sharing problems. Use the Dependencies Report window and the topics introduced by this
section to help you understand and decide how to fix the reported data sharing problems.

For each data sharing problem, you can either:

• Modify the sources to fix incidental or accidental data sharing by privatizing shared data use. This type of
data sharing occurs when tasks use the same memory location, but do not communicate about using that
memory location. If the data written by one is not needed by the other, each task could use a private copy
of the data.

• Add lock annotations to implement synchronization for independent updates. This type of sharing occurs
when multiple tasks contribute to determining the final value of a memory location.

• Recognize that the order of the operations cannot change, and consider modifying the chosen parallel
sites and their tasks. When shared data access must occur in the original sequential order, this is called
true dependence.

The following sections explain how to understand and fix sharing problems.

  1   Intel® Advisor User Guide

794



Data Sharing Problem Types
A data sharing problem happens when two tasks access the same memory location, and the behavior of the
program depends on the order of accesses. This group of topics describes two common data access patterns
- incidental sharing and independent updates - that result in data sharing problems that are relatively easy to
fix. The fixes are described in Problem Solving Strategies.

The task's code is called its static extent. You need to understand all the data accesses that might be
executed during the execution of the task. You are interested in accesses to memory locations in the dynamic
extent of a task, which includes all functions called from the task's static extent, all functions the called
functions may in turn call, and so on.
Incidental Sharing

Sharing is incidental when tasks use the same memory location, but do not communicate any information
using it.

The Basic Pattern
Suppose that a task always writes to a memory location before reading from it, and that the value that it
writes is not read again outside the task. For example:

extern int x;
// ...
ANNOTATE_SITE_BEGIN(site1);
for (i = 0; i != n; ++i) {
    ANNOTATE_ITERATION_TASK(task1);
    x = a[i];
    b[i] = x * b[i];
}
ANNOTATE_SITE_END(site1);

The variable x is both read and written in the task, so there will be a sharing problem when multiple copies
of the task execute at the same time. For example:

1. Task 0 sets x to a[0].
2. Task 1 sets x to a[1].
3. Task 0 computes x * b[0].

What is interesting is that the sharing is incidental to the logic of the program. Each iteration of the loop uses
x, but its use in each iteration is totally independent. Memory locations used in this way are called
privatizable, because giving each task its own private memory location will eliminate the sharing without
changing the program behavior.

Memory Allocators
The use of dynamically allocated memory is a special case of incidental sharing. Consider this task:

ANNOTATE_TASK_BEGIN(task2);
Type *ptr = allocate_Type();
// some code that uses the object pointed to by ptr
free_Type(ptr);
ANNOTATE_TASK_END();

If allocate_Type() returns the same address to one task that was used and freed by another task, then
those tasks will both access the same memory location, but the sharing is incidental. The memory allocator
will never return a pointer to memory that has been allocated and not freed, so the tasks will not use the
same dynamically allocated memory location at the same time, and the appearance of sharing is an illusion.

Intel® Advisor User Guide  1  

795



The Dependencies tool understands the standard memory allocators such as C/C++ new/delete and
malloc/free, but it does not know about any custom memory allocators that your program might have. If
your code has custom memory allocators, you can mark their uses with the special-purpose C/C++
annotations ANNOTATE_RECORD_ALLOCATION and ANNOTATE_RECORD_DEALLOCATION.

See Also
Independent Updates
Special-purpose Annotations

Independent Updates

Independent updates can occur when multiple tasks contribute to determining the final value of a memory
location.

The Basic Pattern
Suppose that multiple tasks write to a memory location, that the value written by each task is computed
using the previous value in that location, and that the order in which the tasks update the memory location
does not matter.

For example, consider a loop that sums all the values in an array:

extern int x;
// ...
ANNOTATE_SITE_BEGIN(site1);
for (i = 0; i != n; ++i) { 
    ANNOTATE_ITERATION_TASK(task1);
    x = x + a[i];
}
ANNOTATE_SITE_END(site1);
printf("%d\n", x);

The sharing problem looks like this:

1. Task 0 reads x.
2. Task 1 reads x.
3. Task 0 adds a[0] to the value it read and stores the result back in x.
4. Task 1 adds a[1] to the value it read and stores the result back in x, overwriting the value stored by

task 0.

The important fact is that the updates of x can be performed in any order. All you need to do is to make sure
that no task can write to x between the read from x and the write to x in any other task; the uses of x in the
tasks are otherwise independent.

Reductions
Reductions are a special case of the independent update pattern. The reduction pattern occurs when a loop
combines a collection of values using a commutative, associative function.

In Adding Parallelism to Your Program, you will see that the Intel® oneAPI Threading Building Blocks and
OpenMP* parallel frameworks have special features for writing parallel reductions.

Transactions
In a more general form of this pattern, there may be multiple memory locations which must be updated
together.

void insert_node_in_list(T *new_node, T *insert_after)
{
    new_node->next = insert_after->next;
    new_node->prev = insert_after->next->prev;

  1   Intel® Advisor User Guide

796



    insert_after->next->prev = new_node;
    insert_after->next = new_node;
}

Two insertions must not occur simultaneously, but the insertions may occur in any order, as long as the final
list order does not matter.

A collection of updates that must all occur together is referred to as a transaction.

Guard Variables
A special case is the use of a shared memory location to control some additional code. The update and the
code that depends on it may be treated as a transaction.

bool initialized = false;
void do_something()
{
    if (!initialized) {
        do_the_initialization();
        initialized = true;
    }
    do_the_real_work();
}

If do_something()is called from multiple tasks, then the sharing problem is:

1. Task 0 reads initialized, which is false, and enters the body of the if statement.
2. Task 1 reads initialized, which is false, and enters the body of the if statement, so

do_the_initialization() is called twice.

It does not matter which task the initialization occurs in, so your only problem is to make sure that other
tasks wait until this initialization has happened.

Independent Writes
The simplest case occurs when the value that the tasks write to the memory location does not depend on its
previous value:

bool found = false;
ANNOTATE_SITE_BEGIN(site1);
for (i = 0; i != n; ++i) {
    ANNOTATE_ITERATION_TASK(task1);
    if (a[i] == b) found = true;
}
if (found) printf("found\n");
ANNOTATE_SITE_BEGIN(site1);

There is no read to keep together with the write, and it does not matter what order the writes to found occur
in, so the tasks are totally independent, and can execute concurrently without restrictions. If a task writes to
found at all, it will write the value true.

Note that if the task body were the following, then this example would fit the reduction pattern:

found = found || (a[i] == b);
This is also called a benign race because the program will always compute the same value, regardless of
which thread does the last write.

See Also
Problem Solving Strategies
Adding Parallelism to Your Program

Intel® Advisor User Guide  1  

797



Eliminating Incidental Sharing

Problem Solving Strategies
Data Sharing Problem Types describes the kinds of problems that can occur when tasks access the same
memory locations. Two common strategies are used to deal with the following sharing problems:

• Incidental sharing: If a memory location is shared, but it is not used to communicate data between tasks,
then you can eliminate the sharing by giving each task its own copy of the shared memory. This rarely
causes significant increases in execution time or memory consumption. See Eliminating Incidental
Sharing.

• Independent updates: If the reads and writes of the memory location occur in updates which can be done
in any order, then you can add synchronization code to guarantee that the updates and related code in
different tasks cannot be intermingled. This can increase execution time because only one task at a time
can be accessing the shared memory location. This limits parallel execution. See Synchronizing
Independent Updates.

If neither of these applies, you might be able to restructure your program to avoid the sharing problem;
otherwise you may have to change your task structure. See Difficult Problems: Choosing a Different Set of
Tasks.
Eliminate Incidental Sharing

Sharing problems involving a task and a memory location are incidental if the memory location does not
carry information into or out of the task. Therefore, if you replace all uses of the shared memory location in
the task with uses of some non-shared memory location, you eliminate the sharing problem without
changing the behavior of the program.

The following sections describe incidental sharing problems and their solutions.
Examine the Task's Static and Dynamic Extent

Consider the example of incidental sharing from the help topic Incidental Sharing:

extern int x;
ANNOTATE_SITE_BEGIN(site1);
for (i = 0; i != n; ++i) {
    ANNOTATE_ITERATION_TASK(task1);
    x = a[i];
    b[i] = x * b[i];
}
ANNOTATE_SITE_END();

Examining the Static Extent of the Task
If you define a substitute variable inside the static extent, then each task will get its own private storage for
it:

extern int x;
// ...
ANNOTATE_SITE_BEGIN(site2);
for (i = 0; i != n; ++i) {
    ANNOTATE_ITERATION_TASK(task2);
    int x_sub;
    x_sub = a[i];
    b[i] = x_sub * b[i];
}
ANNOTATE_SITE_END();

  1   Intel® Advisor User Guide

798



Examining the Dynamic Extent of the Task
In the simplest cases, like the example above, the task's dynamic extent is the same as its static extent - it
does not contain any function calls. When it does contain function calls, all the functions that might be called
while the task is executing are part of its dynamic extent, and you need to consider all reads and writes of
the memory location in all of those functions.

So, you need to examine not only the static extent, but also the dynamic extent of a task.

See Also
Verify Whether Incidental Sharing Exists
Data Sharing Problem Types

Verify Whether Incidental Sharing Exists

Sharing is incidental only if the task writes to the memory location before any read of the memory location
anywhere in the dynamic extent of the task. This is easy to check when the task is a few lines of code in a
single function. It is much harder when the task is hundreds or thousands of lines of code, and involves calls
to many functions in many source files.

Even worse, the sharing is not incidental if any code that might execute after the task completes, or in any
other task that might run at the same time as the task, could read a value written by the task to that
memory location.

There is no "magic bullet" to prove that the requirements are met, but there is a simple technique that you
might find useful. Add statements that write a known bad value into the memory location immediately after
the ANNOTATE_ITERATION_TASK(taskname);, and then test your serial program. If the sharing is
incidental, these assignments will have no effect. If  not, there is a good chance that the changes will change
the program behavior. Of course, the effectiveness of this technique depends on how good your test system
is at detecting the resulting bugs.

For example, if you want to confirm that the variable x is incidentally shared in the_task():

extern int x;
// ...
ANNOTATE_SITE_BEGIN(site1); 
for (i = 0; i != n; ++i) {
    ANNOTATE_ITERATION_TASK(task1);
    x = 0xdeadbeef;
    the_task();
    x = 0xdeadbeef;
}
ANNOTATE_SITE_BEGIN();

To identify stray memory references, consider using the C/C++ special-purpose annotations
ANNOTATE_OBSERVE_USES() and ANNOTATE_CLEAR_USES().

See Also
Creating the Private Memory Location
Special-purpose Annotations

Create the Private Memory Location

The important thing is that every execution of a task must get its own private memory location to take the
place of the shared memory location in the original program. This involves:

• Creating the private memory location.
• Replacing all uses of the shared memory location with uses of the private memory location.

How you do this will depend on what kind of shared memory location you have.

Intel® Advisor User Guide  1  

799



Replacing a Local Variable  
If the shared memory location is a local variable in the function containing the task's static extent, the fix is
simple:

1. Add braces around the static extent, if necessary, to make sure that it is a block.
2. Define a new variable at the beginning of the block.
3. Replace every use of the shared variable in the static extent with a use of the new variable.

Now each occurrence of the task will have its own copy of the local variable.

Replacing a Static or Global Variable or Class Static Data Member
Using global variables is usually a bad idea in large-scale software design. Global variables often seem like
the easiest solution to a design problem, but they create obscure dependencies between parts of a program,
making it harder to understand the program and harder to make changes to it. When you convert a program
to run in parallel, these problems are compounded, as global variables are a prolific source of data sharing
problems.

Therefore, the changes that you will make to eliminate uses of global variables are not only necessary to fix
sharing problems and allow your program to run correctly in parallel. You will probably find that they would
make your program more understandable and maintainable, even if you were not parallelizing it.

For example:

extern int global;
// ...
ANNOTATE_SITE_BEGIN(site1);
    ANNOTATE_TASK_BEGIN(taskname);
    foo(i);
    bar(i);
    ANNOTATE_TASK_END();
// ...
ANNOTATE_SITE_END(site1);
void foo(int i)
{
    global = x*3 - a[i];
}
void bar(int i)
{
    b[i] = b[i] - global;
}

The approach to creating a private replacement for a static or global variable or a class static data member is
the same as for a local variable. The important difference is that global variables may be accessed in other
functions in the dynamic extent of the task, so you will have to make the private replacement variable
accessible to those functions, too.

1. Define a local variable in the static extent to take the place of the shared variable, just as you do when
replacing a local variable.

2. Replace all uses of the shared variable in the static extent with uses of the new local variable.
3. If the task calls other functions, add an additional reference parameter to each one, and pass the

private variable to it. If you are programming in C, you will have to use a pointer parameter and pass
the address of the variable to it.

4. Replace all uses of the shared variable in the called functions with uses of the reference parameter.

Applying these rules to the example above, we get:

// ...
ANNOTATE_SITE_BEGIN(site1);
ANNOTATE_TASK_BEGIN(taskname);
int replacement;

  1   Intel® Advisor User Guide

800



foo(i, replacement);
bar(i, replacement);
ANNOTATE_TASK_END();
ANNOTATE_SITE_END(site1);
// ...
void foo(int i, int& replacement)
{
    replacement = x*3 - a[i];
}
void bar(int i, int& replacement)
{
    b[i] = b[i] - replacement;
}

Mixed-caller functions: If there are functions that are called both from the dynamic extent of the task and
from outside the task, steps 3 and 4 will fix the sharing problem in the task, but they will break the calls
outside the task. There are two possible solutions:

• Modify all the calls to such functions from outside the task to pass the original variable to the new
parameter.

• Make two copies of the function: the original version, to be called from outside the task, and the one with
the new parameter, to be called from inside the task.

Variables whose address is taken: The special problems of variables that are accessed through pointers are
discussed in the help topic Pointer Dereferences.

More than one shared variable: The strategy described above is simple, but if you have a task with several
incidentally shared variables, the multiple extra parameters are clumsy. A cleaner solution is to define a local
structure variable with a field for each incidentally shared variable. Modify the functions and calls in the
task's dynamic extent to pass the structure to them, and replace uses of the shared variables with uses of
the appropriate field of the structure.

Creating a Task Class: If the functions in the task's dynamic extent are closely related, you might be able to
create a new class which has the functions as member functions and the replacement shared variables as
data members. Then the class's this pointer takes the place of the added reference parameter. Using the
same example:

class TaskClass {
public:
ANNOTATE_SITE_BEGIN(site1);
    void the_task()
    {
        ANNOTATE_TASK_BEGIN(taskname);
        foo(i);
        bar(i);
        ANNOTATE_TASK_END();
    }
ANNOTATE_SITE_END(site1);
private:
    int replacement;
    void foo(int i)
    {
        replacement = x*3 - a[i];
    }
    void bar(int i)
    {
        b[i] = b[i] - replacement;
    }
};

Intel® Advisor User Guide  1  

801



Replacing a Structure Field
Sometimes you may have sharing problems with one or more fields in an object:

struct Point { float x, y, z; };
extern Point p;
// ...
ANNOTATE_SITE_BEGIN(site1);
    ANNOTATE_TASK_BEGIN(taskname);
    p.x = a[i].x * scale_x;
    p.y = a[i].y * scale_y;
    foo(i);
    ANNOTATE_TASK_END();
ANNOTATE_SITE_END(site1);
// ...
void foo(int i)
{
    b[i].x = b[i].x - p.x;
    b[i].y = b[i].y - p.y;
}

The most straightforward solution is to introduce a new local variable for the shared field:

struct Point { float x, y; };
extern Point p;
// ...
ANNOTATE_SITE_BEGIN(site1);
    ANNOTATE_TASK_BEGIN(taskname);
    float sub_p_x = a[i].x * scale_x;
    float sub_p_y = a[i].y * scale_y;
    foo(I, sub_p_x, sub_p_y);
    ANNOTATE_TASK_END();
ANNOTATE_SITE_END(site1);
// ...
void foo(int i, float& sub_p_x, float& sub_p_y)
{
    b[i].x = b[i].x - sub_p_x;
    b[i].y = b[i].y - sub_p_y;
}

If every shared field of the object is incidentally shared, then it will be simpler to make a single local
replacement variable for the entire structure rather than a separate replacement variable for each shared
field.

struct Point { float x, y; };
extern Point p;
//...
ANNOTATE_SITE_BEGIN(site1);
    ANNOTATE_TASK_BEGIN(taskname);
    Point sub_p;
    sub_p.x = a[i].x * scale_x;
    sub_p.y = a[i].y * scale_y;
    foo(I, sub_p);
    ANNOTATE_TASK_END();
ANNOTATE_SITE_END(site1);
// ...
void foo(int i, Point& sub_p)
{
    b[i].x = b[i].x - sub_p.x;
    b[i].y = b[i].y - sub_p.y;
}

  1   Intel® Advisor User Guide

802



See Also
Pointer Dereferences

Pointer Dereferences

It may be tedious to find all the uses of a shared variable in a task's dynamic extent, but at least it is
relatively straightforward. The situation is much worse when the Dependencies tool reports that you have a
sharing problem on a pointer dereference. In general:

• A dereference of a pointer expression may or may not refer to the same object as some other dereference
of a pointer expression with the same type.

• Different executions of a pointer expression dereference may or may not refer to the same object.
• If you have a variable whose address is taken, a dereference of a pointer expression may or may not refer

to that variable.

However, suppose that your program has an abstract data type whose objects are implemented as
dynamically allocated data structures. You may be able to step back from the individual pointer dereferences
involved in a sharing problem and say: "These are just implementation details in an access to an abstract
object." If you can prove that the access pattern for the abstract object satisfies the incidental sharing
pattern, you can apply the techniques from this topic:

• Within the task, create a private object of the abstract data type.
• Make a reference to the private object available throughout the task.
• Replace references to the original object with references to the private object.
• Destroy the private object before the task exits.

The point is to ignore the pointer dereferences, and solve the problem in terms of the abstraction that they
are implementing.

Additional suggestions for dealing with sharing problems with pointer-accessed memory locations can be
found in Memory That is Accessed Through a Pointer .

See Also
Synchronizing Independent Updates
Memory That is Accessed Through a Pointer

Synchronize Independent Updates

In the independent update pattern, both of the following occur:

• Two tasks contain regions of code that update the same memory locations.
• It does not matter what order the code regions execute in, as long as the regions do not execute in

parallel.

For example, suppose that multiple tasks call do_something():

void do_something()
{
    static bool initialized = false;
    if (!initialized) {
        do_the_initialization();
        initialized = true;
    }
    do_the_real_work();
}

The function do_something() updates the variable initialized as well as the initialized memory locations.
The function do_the_real_work() will never be called before the initialization happens; and the
initialization will only happen once, regardless of which task calls do_something() first, as long as two tasks
do not try to execute the if statement at the same time. If two tasks do try to execute the if statement at
the same time, they could both see that initialized is false and both try to do the initialization.

The following sections describe several aspects of synchronizing independent updates, including explicit
locking, assigning locks, and potential problems of using synchronization.

Intel® Advisor User Guide  1  

803



Synchronization

You can fix independent update sharing problems by synchronizing the execution of code that uses the same
memory locations. The key idea is that when two or more tasks contain groups of operations which should
not execute at the same time, there must be a lock which controls the execution of all of these groups of
operations. Such a group of operations is called a transaction, and may be anything from a read/modify/write
of a single variable to a collection of related modifications to multiple data structures.

Before beginning a transaction, a task must acquire the lock that controls it, and when the transaction is
done, the task must release it. If one task has already acquired a lock, then another task that tries to acquire
the same lock will stop executing until the first task has released it. This guarantees that two transactions
controlled by the same lock cannot execute at the same time.

Use the Advisor lock annotations ANNOTATE_LOCK_ACQUIRE and ANNOTATE_LOCK_RELEASE to describe a
transaction you intend to lock. Later, you will modify the lock annotations to actual code that implements a
lock using the chosen parallel framework code:

void do_something()
{
    static bool initialized = false;
    ANNOTATE_LOCK_ACQUIRE(0);
    if (!initialized) {
        do_the_initialization();
        initialized = true;
    }
    ANNOTATE_LOCK_RELEASE(0);
    do_the_real_work();
}

Locks are identified by a lock address.

See Also
Explicit Locking
Lock Annotations

Explicit Locking

Use ANNOTATE_LOCK_ACQUIRE and ANNOTATE_LOCK_RELEASE to specify explicit locking. These annotations
are simple executable statements you can put wherever is most convenient. For example:

 if (synchronization_needed) ANNOTATE_LOCK_ACQUIRE(0);
 x = f(x, a);
 if (synchronization_needed) ANNOTATE_LOCK_RELEASE(0);

You must make sure you match the lock acquires and releases, and both occur in the same task. Your
program will get synchronization errors if a task releases a lock that it does not own, or acquires a lock and
fails to release it. You can acquire a lock in one function and release it in a different function, but it is a poor
practice.

See Also
Assigning Locks to Transactions
Lock Annotations

Assign Locks to Transactions

A transaction updates a set of shared memory locations and is controlled by a lock. In general, you need to
be sure that if two transactions both access the same memory location, they will not run simultaneously.
What is the best way to associate locks with transactions to accomplish that? Consider:

// transaction 1
if (a > b) { a -= b; b = b / 2; }

  1   Intel® Advisor User Guide

804



...
// transaction 2
if (c > d) { c -= d; d = d / 2; }
...
// transaction 3
if (a > c) { a -= c; c = c / 2; }
...
// transaction 4
temp = x;
x = y;
y = temp;

You must ensure that if two transactions can access the same memory location, they are controlled by the
same lock. The simplest way to do this is to assign locks to sets of memory locations, so that if a transaction
accesses two or more memory locations, all of the memory locations accessed in the transaction have the
same lock. Then a transaction must be controlled by the lock that is assigned to all of the variables it
accesses.

In the example above, variables a and b are both accessed in transaction 1, so they must have the same
lock. Variables c and d are both accessed in transaction 2, so they must have the same lock. Variables a and
c are both accessed in transaction 3, so they must have the same lock, which must be the same as the locks
for b and d. Transaction 4 accesses x and y, so they must have the same lock, which is different from the
lock for a, b, c, and d:

int abcd_lock;
int xy_lock;
// ...
ANNOTATE_LOCK_ACQUIRE(&abcd_lock);
if (a > b) { a -= b; b = b / 2; }
ANNOTATE_LOCK_RELEASE(&abcd_lock);
ANNOTATE_LOCK_ACQUIRE(&abcd_lock);
if (c > d) { c -= d; d = d / 2; }
ANNOTATE_LOCK_RELEASE(&abcd_lock);
ANNOTATE_LOCK_ACQUIRE(&abcd_lock );
if (a > c) { a -= c; c = c / 2; }
ANNOTATE_LOCK_RELEASE(&abcd_lock);
ANNOTATE_LOCK_ACQUIRE(&xy_lock);
temp = x;
x = y;
y = temp;
ANNOTATE_LOCK_RELEASE(&xy_lock);

See Also
Pitfalls from Using Synchronization

Pitfalls from Using Synchronization

Synchronization is a relatively simple way to eliminate sharing problems, but it must be used very carefully.

Performance
The purpose of synchronization is to let tasks run safely in parallel, but it does this by not letting them run in
parallel when it would be unsafe. A task that is waiting for a lock is not doing any work at all.

Also, acquiring and releasing locks take a non-trivial amount of time. It is easy to write tasks that spend
more time doing synchronization than doing useful work.

Intel® Advisor User Guide  1  

805



Taken together, these two issues mean that you need to be careful how much you use synchronization.
Synchronization should be used carefully to solve specific problems. If you find yourself synchronizing large
portions of your tasks, you may need to rethink your task structure so that you can get useful tasks that can
run safely without so much synchronization.

One strategy is for a task to synchronize its import of the data it needs into private memory locations, work
on this private data, and then synchronize the export of the results.

Synchronization Errors
The final problem with synchronization is the danger of deadlocks. A deadlock happens when one or more
threads cannot make progress. This can happen, for example, when a task has acquired one lock and is
trying to acquire another, while another task has acquired this second lock and is trying to acquire the first.
This situation is called deadlock, and it could cause a program to hang forever.

After adding synchronization, to see whether your changes have solved the problems, run the Dependencies
tool again. This may reveal previously hidden and newly introduced problems. For example, after you add
locks, run the Dependencies tool again to make sure you have not accidentally introduced deadlocks into
your program or unbalanced pairs of annotations. The Dependencies tool can detect potential deadlocks
because in addition to memory data accesses, it observes the lock events when the annotated program runs.

See Also
Difficult Problems: Choosing a Different Set of Tasks

Difficult Problems: Choosing a Different Set of Tasks

If you find a conflict that cannot be resolved using the above techniques, you should consider the following
alternatives.

• Merge the two tasks involved in the conflict into a single task.
• Divide the tasks into smaller tasks and do the work preceding the conflict in parallel, the work involving

the conflict serially, and the work after the conflict in parallel.
• Find a different site to introduce parallelism.
• Intel Advisor presents a simplified model of what is possible with parallel programming. Occasionally it will

be beneficial to take advantage of more advanced techniques that are available in the Intel® oneAPI
Threading Building Blocks (oneTBB), OpenMP*, or native threading APIs.

Any changes - other than lock annotations - you have made to fix incidental sharing problems should be left
in the code. These changes will not harm performance, they have improved maintainability, and they may be
useful at the new site or in future parallelization efforts.

See Also
Fixing Problems in Code Used by Multiple Parallel Sites

Fix Problems in Code Used by Multiple Parallel Sites

If the Dependencies tool reports a problem(s) in one or more common functions used by multiple parallel
sites, you need to investigate and consider several options. In general, keep in mind that the performance
impact for privatization is usually less than synchronization, and the performance impact for synchronization
is usually less than not adding parallelism. Thus, the general approach is:

• Evaluate whether it is possible to privatize the data causing the Dependencies problem for both sites. For
example, you can often use privatization if the cause is incidental (accidental) sharing. Usually, providing
each task with its own private copy of a variable provides the best performance.

• If you cannot fix the problem by privatizing, consider using synchronization (such as using locks or
mutexes). For example, synchronization is often needed if the Dependencies problem is caused by
independent updates that have true dependence.

• In some cases, it may not be feasible to add parallelism to a site. That is, after you to modify the
annotations for the parallel site or its tasks and check the Suitability and Dependencies again, you might
find a parallel site has negative or minimal performance gain and/or complex data sharing problems. In
this case, you may need to remove the site and task annotations and add a comment that states that this
code location could not be parallelized.

  1   Intel® Advisor User Guide

806



If you cannot eliminate a Dependencies problem for a common function called by multiple parallel sites by
using the approach described above, consider adding a cloned function. That is, one of the parallel sites calls
the cloned function and the other parallel site calls the original function. This allows you to implement
different fixes to the Dependencies problem(s) for the original function and the cloned function. For example,
this approach might allow you to privatize data in either the original function or the cloned function, which
was not possible originally.

As with any program, after you modify the code within a parallel site or the annotations, you should run and
analyze your program again using the Dependencies and Suitability tools.

See Also
Memory That is Accessed Through a Pointer
Data Sharing Problem Types

Memory That is Accessed Through a Pointer

In the topic Pointer Dereferences, we saw that there are techniques for dealing with incidental sharing of
pointer-accessed storage in particular cases.

In general, to deal with sharing problems at indirect references you have to really understand what your
program is doing. You cannot just do a text search for all the uses of a shared location and apply some
transformation mechanically.

Although you may not know which memory location is being accessed by an indirect reference, you may be
able to tell that a set of indirect references using the same pointer value implement an independent update
pattern. The process for synchronizing independent updates of indirect references is the same as for
variables. The only special concern is that you need to use the same lock for all data accesses that might be
accessing the same memory locations. Using the same lock in more places means that your tasks will spend
more time waiting for it.

Finally, your design may have tasks working on separate parts of a larger data structure. If you find sharing
problems, it may be that the parts are not as independent as designed. In that case, you are likely to get the
best results by disentangling the data structures to resolve the sharing problems.

See Also
Pointer Dereferences

Notational Conventions
The following conventions may be used in this document.

Convention Explanation Example

Italic Used for introducing new terms,
denotation of terms, placeholders, or
titles of manuals.

The filename consists of the basename and
the
extension.

For more information, see the Intel® Advisor
User Guide.

Bold Denotes GUI elements Click Cancel.

> Indicates a menu item inside a
menu.

File > Close

indicates to select Close from the File menu.

Monospace Indicates directory paths and
filenames, or text that can be part of
source code.

ippsapi.h
\alt\include
Use the okCreateObjs() function to...

printf("hello, world\n");

Intel® Advisor User Guide  1  

807



Convention Explanation Example

* An asterisk at the end of a word or
name indicates it is a third-party
product trademark.

Adobe Acrobat*

Windows* OS,
Windows
operating system

These terms refer to all supported
Windows* operating systems.

This table contains a summary of Windows*
OS Linking Behavior.

Linux* OS, Linux
operating system

These terms refer to all supported
Linux* operating systems.

This table contains a summary of Linux* OS
Linking Behavior.

Key Concepts
This group of topics introduces you to the key concepts and terms needed to add parallelism to a program. A
list of key terms is also provided.

Over the last few years, processor technology found in personal laptops, desktops, and enterprise servers
has shifted from making single-core processors faster to having multiple cores in each processor.

In a parallel program, portions of the program (tasks) may execute at the same time. On multi-core
systems, this can provide better performance.

To parallelize your application, you need to identify the potential parallel tasks, modify your code to run
correctly when these tasks execute in parallel, and add code to execute them in parallel. Intel® Advisor
combines a methodology with a set of tools to help you add this parallelism to your program. You work on
the sequential version of your program and the tools model how it would behave if it was parallelized in the
ways you specify. As an add-in to Microsoft Visual Studio*, Intel Advisor fits right into a Windows* OS
development environment.

NOTE Support for Microsoft* Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

Your final step will be to express the parallelism in your program using a high-level parallel framework
(threading model) like Intel® oneAPI Threading Building Blocks (oneTBB) or OpenMP*, or low-level threading
APIs.

For native C/C++ or Fortran code, Intel recommends using the high-level oneTBB or OpenMP frameworks,
which are included with several Intel® oneAPI Toolkits. Intel Advisor's documentation shows you how to
introduce parallelism into your program using these frameworks. Intel Advisor provides multiple C/C++
samples and several Fortran samples.

For managed C# code on Windows* OS, use the Microsoft Task Parallel Library* (TPL). Intel Advisor provides
a C# nqueens sample.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

This is an interactive process, where you repeat these basic steps as you identify more sites for adding
parallelism.

The related group of topics provides an introduction to parallelism, and to parallel framework
implementations.

See Also
Parallelism
Glossary

  1   Intel® Advisor User Guide

808



Glossary
Amdahl's law: A theoretical formula for predicting the maximum performance benefits of parallelizing
application programs. Amdahl's law states that run-time execution time speedup is limited by the part of the
program that is not parallelized (executes serially). To achieve results close to this potential, overhead must
be minimized and all cores need to be fully utilized. See also Use Amdahl's Law and Measuring the Program.

annotation: A method of conveying information about proposed parallel execution. In the Intel® Advisor, you
create annotations by adding macros or function calls. These annotations are used by Intel Advisor tools to
predict parallel execution. For example, the C/C++ ANNOTATE_SITE_BEGIN(sitename) macro identifies
where a parallel site begins. Later, to allow this code to execute in parallel, you replace the annotations with
code needed to use a parallel framework. See also parallel framework and Annotation Types Summary.

atomic operation: An operation performed by a thread on a memory location(s) that is guaranteed not to
be interfered with by other threads. See also synchronization.

chunking: The ability of a parallel framework to aggregate multiple instances of a task into groups for more
efficient parallel processing. For tasks that do small amounts of computation and many iterations, task
chunking can minimize task overhead. You can also restructure a single loop into an inner and outer loop
(strip-mining). See also task and Enable Task Chunking.

code region: A subtree of loops/functions in a call tree. Synonym whole Loopnest.

critical section: A synchronization construct that allows only one thread to enter its associated code region
at a time. Critical sections enforce mutual exclusion on enclosed regions of code. With Intel Advisor, mark
critical sections by using ANNOTATE_LOCK_ACQUIRE() and ANNOTATE_LOCK_RELEASE() annotations.

data race: When multiple threads share (read/write) a memory location, if the program does not implement
controls to manage the sequence of concurrent memory accesses, one thread can inadvertently overwrite
data written by another thread, or otherwise read or write stale data. This can produce execution errors that
are difficult to detect and reproduce, such as obtaining different calculated results when the same
 executable is run on different systems. To prevent data races, you can add data synchronization constructs
that restrict shared memory access to one thread at a time, or you might eliminate the sharing.

data parallelism: Occurs when a single portion of code is paired with multiple portions of  data, and each
pairing executes as a task. For example, tasks are made by pairing a loop body with each element of an
array iterated by the loop, and the tasks execute in parallel. See also Task Patterns. Contrast task
parallelism.

data set: A set of data to be used as input or with an interactive application the way you interact with the
application to cause a portion of the application to be executed. Because the Dependencies tool watches each
memory access in a parallel site in great detail, the parallel site's code takes much longer to run than usual.
To limit the time needed to run Dependencies analysis, reduce the data (such as the number of loop
iterations) and when using an interactive program, create a very small test case. See also Choose a Small,
Representable Data Set for the Dependencies Tool.

deadlock: A situation where a set of threads have each acquired some locks and are waiting for other locks
to be released. All threads in the set are waiting for a lock held by a different thread, and since none can
proceed and release their lock(s), they all remain waiting.

dynamic extent: All code that may possibly be executed by a parallel site or task. For example, a dynamic
extent might include a loop, all functions called from the loop, all functions the called functions may in turn
call, and so on. Contrast static extent. See also Task Organization and Annotations.

false positive: When viewing the Dependencies Report, a problem reported by the Dependencies tool that is
not an actual problem.

framework: See parallel framework

head: A loop or function at the top of a subtree, which contains one or more child loops/functions.

hotspot: A small code region that consumes much of the program's run time. Hotspots can be identified by
a profiler, such as the Intel Advisor Survey tool. See also Use Amdahl's Law and Measuring the Program.

Intel® oneAPI Threading Building Blocks (oneTBB) : A C++ template library for writing programs that
take advantage of multiple cores. You can use this library to write scalable programs that specify tasks rather
than threads, emphasize data parallel programming, and take advantage of concurrent collections and

Intel® Advisor User Guide  1  

809



parallel algorithms. This is provided as an Intel® software product - Intel® oneAPI Threading Building Blocks
(oneTBB) - as well as open source. Intel® oneAPI Threading Building Blocks (oneTBB) is one of several
parallel frameworks. Abbreviation oneTBB .

load balancing: The equal division of work among cores. If the load is balanced, the cores are busy most of
the time.

lock: A synchronization mechanism that allows one thread to wait until another thread allows it to continue.
A lock can be used to synchronize threads accessing a specific memory location. See also synchronization
and nested lock.

multi-core: A processor that combines two or more independent cores. Although each core shares
interconnection to the rest of the system, it executes instructions independently by using its dedicated CPU,
architectural state, and interrupt controllers, as well as private and/or shared cache. Most multi-core systems
use identical cores. The number of cores used determines whether it is called dual-core (2), quad-core (4),
or many-core system.

multithreaded processing: See parallel processing

mutual exclusion: A type of locking typically used to prevent actions occurring at the same time.
Abbreviation mutex. See also synchronization

nested lock: A type of lock that can be locked again by a task when the task already owns the lock. Nested
locks are convenient when several inter-related functions use the same lock. See also synchronization and
lock

node: A loop or function.

oneTBB : See IIntel® oneAPI Threading Building Blocks (oneTBB)

OpenMP*: A high-level parallel framework and language extension designed to support shared-memory
parallel programming that consists of compiler directives (C/C++ pragmas and Fortran directives), library
functions, and environment variables. The OpenMP specification was developed by multiple hardware and
software vendors to provide a scalable, portable interface for parallel programming on a variety of platforms.
OpenMP is one of several parallel frameworks. See also http://openmp.org.

parallel framework: A combination of libraries, language features, or other software techniques that enable
code for a program to execute in parallel. Examples include OpenMP, Intel® oneAPI Threading Building Blocks
(oneTBB) , Message Passing Interface (MPI), Intel® Concurrent Collections for C/C++, Microsoft Task Parallel
Library* (TPL), and low-level, basic threading APIs, like POSIX* threads (Pthreads). Some parallel
frameworks support shared-memory parallel processing, while others like MPI support non-shared-memory
parallel processing. See also Intel® oneAPI Threading Building Blocks (oneTBB) and Parallel Frameworks
Overview.

parallel processing: The use of multiple threads during execution of a program. Intel Advisor focuses on
parallel processing for shared-memory systems. There are other types of parallel processing, such as for
clusters or grids and vector processing. Shortened version is parallelism. See also hotspot and thread.

parallel region:Offload Modeling term. A code region that starts with a specific parallel framework
construction. Intel® oneAPI Threading Building Blocks (oneTBB),Intel® oneAPI Data Analytics Library
(oneDAL), OpenMP*, SYCL parallel frameworks are supported.

parallel site: A region of code that contains tasks that can execute in parallel. See also annotation and Task
Organization and Annotations

pipeline: An approach to organizing task computations that uses both data parallelism and task parallelism,
and organizes the computation into stages that run in a predetermined order.

self time: In the Survey Report window, how much time was spent in a particular function or loop.

site: See parallel site

shared-memory parallelism: See parallel processing

static extent: The code between a site's or a task's _BEGIN and _END annotations. A static extent might
not be lexically paired; for example, a parallel site may have one _BEGIN point, but may require multiple
independent _END exit points. Contrast with dynamic extent. See also annotation, parallel site, and Task
Organization and Annotations.

  1   Intel® Advisor User Guide

810



synchronization: Coordinating the execution of multiple threads. In some cases, you can provide
synchronization within a task by using a private memory location instead of a shared memory location. In
other cases, a lock or mutex can be used to restrict access to a shared data. See also Data Sharing Problem
Types.

task: A portion of code and its data that can be given to a thread to execute. See also Task Organization and
Annotations, Choosing the Tasks, and chunking.

task parallelism: Occurs when two different portions of the code are made into tasks and execute in
parallel. For example, a task is made by pairing a display algorithm with the state to display, another task by
pairing a compute-next-state algorithm with the same state, and the two tasks execute in parallel. See also
Task Patterns. Contrast data parallelism

thread: A thread executes instructions within a process. Each process has one or more threads active at a
time. Threads share the address space of the process, but have their own stack, program counters, and
other registers.

total time: In the Survey Report window, how much time was spent in a particular function or loop, plus the
time spent by anything that entity calls.

vector processing: A form of parallel processing where multiple data items are packed together in vector
registers to allow vector instructions to operate on the packed data with a single instruction. Reducing the
number of instructions needed to process the packed vector data minimizes memory use and latency, and
provides good locality of reference and data cache utilization. Vector instructions are Single Instruction
Multiple Data (SIMD) instructions. Some SIMD vector instructions support large register sizes to
accommodate more packed data, such as Intel® Advanced Vector Extensions (Intel® AVX).

Parallelism
The following topics describe some key terms related to multithreaded parallel processing (parallelism), an
overview of multithreaded parallelism, and common issues when adding multithreaded parallelism to your
program:

• If you are just learning about adding multithreaded parallel processing to application programs, please
read these topics carefully.

• If you have advanced knowledge about multithreaded parallel processing and are familiar with the
concepts, quickly read (scan) these topics so you are familiar with the terms used.

Parallel Processing Terminology

A serial (non-parallel) program uses a single thread, so you do not need to control the side-effects that can
occur when multiple threads interact with shared resources.

A program takes time to run to completion. A serial program only uses a single core, so its run time will not
decrease by running it on a system with multiple cores. However, if you add parallel processing (parallelism)
to parts of the program, it can use more cores, so it finishes sooner.

Threads and Tasks
An operating system process has an address space, open files, and other resources. A thread executes
instructions within a process. Each process has one or more threads active at a time. Threads share the
address space of the process, but have their own stack, program counter, and other registers. A program
that uses multiple threads is called a multithreadedor parallel program.

A task is a portion of a program that can be run in parallel with other portions of the program and other
instances of that task. Each task instance is run by a thread, and the operating system assigns threads to
cores.

Hotspots - Find Where a Program Spends Its Time
A hotspot is a small code region that consumes much of the program's run time. You can use profiling tools
such as the Survey tool provided with Intel Advisor to identify where your program spends it time. To
improve your program's performance when you add parallelism:

Intel® Advisor User Guide  1  

811



• Find the hotspots and hot parts of the call tree, such as hot loops or hot routines. The Intel Advisor
Survey tool's report provides an extended top-down call tree that identifies the top hot loops.

• Examine all the functions in the call tree from main() to each hot routine or loop. You want to distribute
frequently executed instructions to different tasks that can run at the same time.

Data and Task Parallelism
If the hot part of the call tree is caused by executing the same region of code many times, it may be possible
to divide its execution by running multiple instances of its code, each on a separate core. This is called data
parallelism because each execution is processing different parts of the same composite data item. Compute-
intensive loops over arrays are often good candidates for data parallelism. For example, the line
process(a[i]); below is a possible task:

 for (int i = 0; i != n; ++i) {
    process(a[i]);
 }

If two or more hotspots are close to each other in the serial execution, and do not share data, it may be
possible to execute the hotspots as tasks. This is task parallelism. For example:

 initialize(data); 
 while (!done) {
    old_data = data;
    display_on_screen(old_data);
    update(data);
 }

Making effective use of multiple cores may require both data-level parallelism to process large amounts of
data, and task-parallelism to overlap the execution of unrelated portions of the program.
Add Parallelism

The best performance improvements from adding parallel execution (parallelism) to a program occur when
many cores are busy most of the time doing useful work. Achieving this requires a lot of analysis, knowledge,
and testing.

Because your serial program was not designed to allow parallel execution, as you convert parts of it to use
parallel execution, you may encounter unexpected errors that occur only during parallel execution. Instead of
wasting effort on portions of a program that use almost no CPU time, you must focus on the hotspots, and
the functions between the main entry point and each hotspot.

If you naively add parallel execution to a program without proper preparation, unpredictable crashes,
program hangs, and wrong answers can result from incorrect parallel task interactions. For example, you
may need to add synchronization to avoid incorrect parallel task interactions, but this must be done carefully
because locking overhead and serial synchronization can reduce the benefits of the parallel execution.

Intel Advisor helps you:

• Find the possible code regions where you could add parallel execution.
• Choose the code regions best-suited for parallel execution. This includes measuring approximate parallel

performance so you can experiment with different possible parallel code regions.
• Find and eliminate potential data sharing problems before parallel execution is introduced.

See Also
Common Issues When Adding Parallelism

Common Issues When Adding Parallelism

The types of problems encountered by parallel programs include shared memory data conflicts and incorrect
locking.

  1   Intel® Advisor User Guide

812



Shared Memory Problems
Introducing parallelism can result in unexpected problems when parallel tasks access the same memory
location. Such problems are known as data races. For example, in the Primes sample, the following line calls
the function Tick():
  if (IsPrime(p)) Tick();

The called function Tick() increments the global variable primes:

void Tick() { primes++; }
Consider the following scenario, where the value of primes is incremented only once instead of twice:

Time Thread 0 Thread 1

T1 Enters function Tick()

T2 Enters function Tick()

T3 Load value of primes

T4 Load value of primes

T5 Increment loaded value

T6 Store value of primes

T7 Increment loaded value

T8 Store value of primes

T9 Return

T10 Return

If you run this as a serial program, this problem does not occur. However, when you run it with multiple
threads, the tasks may run in parallel and primes may not be incremented enough.

Such problems are non-deterministic, difficult to detect, and at first glance might seem to occur at random.
The results can vary based on multiple factors, including the workload on the system, the data being
processed, the number of cores, and the number of threads.

It is possible to use locks to restrict access to a shared memory location to one task at a time. However, all
implementations of locks add overhead. It is more efficient to avoid the sharing by replicating the storage.
This is possible if data values are not being communicated between the tasks, even though the memory
locations are being reused.

Lock Problems
One thread (thread A) may have to wait for another thread (thread B) to release a lock before it can
proceed. The core executing thread A is not performing useful work. This is a case of lock contention. In
addition, thread B may be waiting for thread A to release a different lock before it can proceed. Such a
condition is called a deadlock.

Like a data race, a deadlock can occur in a non-deterministic manner. It might occur only when certain
factors exist, such as the workload on the system, the data being processed, or the number of threads.

Intel® Advisor User Guide  1  

813



Ensuring the Parallel Portions of a Program are Thread Safe
Intel® Advisor can detect many problems related to parallelism. Because it only analyzes the serial execution
of your program, Intel Advisor cannot detect all possible errors. When you have finished using Intel Advisor
to introduce parallelism into your program, you should use the Intel® Inspector and other Intel software suite
products. These tools and using a debugger can detect parallelism problems that normal testing will not
detect, and can also identify times when the cores are idle.

See Also
Parallel Programming Implementations
Using Intel® Inspector and Intel® VTune™Profiler
Debugging Parallel Programs
Data Sharing Problem Types

Parallel Programming Implementations

There are two popular approaches for adding parallelism to programs. You can use either:

• A high-level parallel framework like Intel® oneAPI Threading Building Blocks (oneTBB) or OpenMP*. Of
these parallel frameworks for native code, oneTBB supports C++ programs and OpenMP supports C, C++,
or Fortran programs. For managed code on Windows* OS such as C#, use the Microsoft Task Parallel
Library* (TPL).

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

• A low-level threading API like Windows* threads or POSIX* threads. In this case, you directly create and
control threads at a low level. These implementations may not be as portable as high-level frameworks.

There are several reasons that Intel recommends using a high-level parallel framework:

• Simplicity: You do not have to code all the detailed operations required by the threading APIs. For
example, the OpenMP* #pragma omp parallel for (or Fortran !$OMP PARALLEL DO) and the oneTBB
parallel_for() are designed to make it easy to parallelize a loop (see Reinders Ch. 3). With
frameworks, you reason about tasks and the work to be done; with threads, you also need to decide how
each thread will do its work.

• Scalability: The frameworks select the best number of threads to use for the available cores, and
efficiently assign the tasks to the threads. This makes use of all the cores available on the current system.

• Loop Scalability: oneTBB and OpenMP assign contiguous chunks of loop iterations to existing threads,
amortizing the threading overhead across multiple iterations (see oneTBB grain size: Reinders Ch. 3).

• Automatic Load Balancing: oneTBB and OpenMP have features for automatically adjusting the grain
size to spread work amongst the cores. In addition, when the loop iterations or parallel tasks do uneven
amounts of work, the oneTBB scheduler will dynamically reschedule the work to avoid idle cores.

To implement parallelism, you can use any parallel framework you are familiar with.

The high-level parallel frameworks available for each programming language include:

Language Available High-Level Parallel Frameworks

C OpenMP

C++ Intel® oneAPI Threading Building Blocks (oneTBB)

OpenMP

C# Microsoft Task Parallel Library* (Windows* OS only)

Fortran OpenMP

See Also
Parallel Frameworks

  1   Intel® Advisor User Guide

814



Other Parallel Frameworks

Related Information
A variety of resources provide additional information on a number of topics.

Intel Analyzers
Explore more profiling and optimization opportunities with Intel performance analysis tools:

• Intel® Advisor to design your code performance on Intel hardware with the roofline methodology and
explore potential for vectorization, threading, and offload optimizations.

• Intel® Inspector to analyze your code for threading, memory, and persistent memory errors.
• Intel® VTune™Profiler to analyze your algorithm choices and identify where and how your application can

benefit from available hardware resources.
• Intel® Graphics Performance Analyzers to analyze performance of your game applications (system, frame,

and trace analysis).

More Resources

To View Access

Intel® oneAPI DPC++/C++
Compiler

See the Intel® oneAPI DPC++/C++ Compiler documentation at 
https://www.intel.com/content/www/us/en/develop/tools/oneapi/
components/dpc-compiler.html.

Intel® Fortran Compiler Classic
documentation

See the Intel® Fortran Compiler Classic documentation at https://
www.intel.com/content/www/us/en/develop/tools/oneapi/
components/fortran-compiler.html.

Intel® oneAPI Threading Building
Blocks (oneTBB) documentation

See the documentation for oneTBB at https://www.intel.com/
content/www/us/en/develop/tools/oneapi/components/onetbb.html.

Intel® MPI Library documentation
and resources

Intel MPI Library documentation at: https://www.intel.com/
content/www/us/en/develop/tools/mpi-library/get-started.html

Articles about using Intel MPI Library , such as Hybrid applications:
Intel MPI Library and OpenMP on the Intel® Developer Zone at: 
https://www.intel.com/content/www/us/en/develop/articles/hybrid-
applications-intelmpi-openmp.html

Intel® oneAPI Programming Guide https://www.intel.com/content/www/us/en/develop/documentation/
oneapi-programming-guide/top.html

Description of Intel®
microarchitectures and their
instruction sets

http://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

For Intel® software product documentation, see https://www.intel.com/content/www/us/en/develop/
documentation.html

For additional technical product information, including white papers about Intel products, see the Intel®
Developer Zone at https://www.intel.com/content/www/us/en/develop/home.html

Intel® Advisor User Guide  1  

815

https://www.intel.com/content/www/us/en/develop/tools/advisor.html
https://www.intel.com/content/www/us/en/develop/tools/inspector.html
https://www.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://www.intel.com/content/www/us/en/develop/tools/graphics-performance-analyzers.html
https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html
https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html
https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/fortran-compiler.html
https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/fortran-compiler.html
https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/fortran-compiler.html
https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html
https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html
https://www.intel.com/content/www/us/en/develop/tools/mpi-library/get-started.html
https://www.intel.com/content/www/us/en/develop/tools/mpi-library/get-started.html
https://www.intel.com/content/www/us/en/develop/articles/hybrid-applications-intelmpi-openmp.html
https://www.intel.com/content/www/us/en/develop/articles/hybrid-applications-intelmpi-openmp.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top.html
https://www.intel.com/content/www/us/en/develop/documentation.html
https://www.intel.com/content/www/us/en/develop/documentation.html
https://www.intel.com/content/www/us/en/develop/home.html

	Contents
	Intel® Advisor User Guide
	Introduction
	What's New in Intel® Advisor
	Design and Optimization Methodology
	Tutorials and Samples
	Get Help and Support

	Install and Launch Intel® Advisor
	Install Intel® Advisor
	Set Up Environment Variables
	Set Up System to Analyze GPU Kernels
	Set Up Environment to Offload SYCL, OpenMP* target, and OpenCL™ Applications to CPU
	Launch Intel® Advisor
	GUI Navigation Quick Start

	Set Up Project
	Configure Target Application
	Limit the Number of Threads Used by Parallel Frameworks
	s Choose a Small, Representative Data Set

	Build Target Application
	Create Project
	Configure Project
	Configure Binary/Symbol Search Directories
	Configure Source Search Directory
	Binary/Symbol Search and Source Search Locations


	Analyze Vectorization Perspective
	Run Vectorization and Code Insights Perspective from GUI
	Vectorization Accuracy Presets
	Customize Vectorization and Code Insights Perspective

	Run Vectorization and Code Insights Perspective from Command Line
	Vectorization Accuracy Levels in Command Line

	Explore Vectorization and Code Insights Results
	Vectorization Report Overview
	Examine Not-Vectorized and Under-Vectorized Loops
	Analyze Loop Call Count
	Investigate Memory Usage and Traffic
	Find Data Dependencies


	Analyze CPU Roofline
	Run CPU / Memory Roofline Insights Perspective from GUI
	CPU Roofline Accuracy Presets
	Customize CPU / Memory Roofline Insights Perspective

	Run CPU / Memory Roofline Insights Perspective from Command Line
	CPU Roofline Accuracy Levels in Command Line

	Explore CPU/Memory Roofline Results
	CPU Roofline Report Overview
	Examine Bottlenecks on CPU Roofline Chart
	Examine Relationships Between Memory Levels
	Compare CPU Roofline Results


	Model Threading Designs
	Run Threading Perspective from GUI
	Customize Threading Perspective

	Run Threading Perspective from Command Line
	Threading Accuracy Levels in Command Line

	Annotate Code for Deeper Analysis
	Annotate Code to Model Parallelism
	Before Annotating Code for Deeper Analysis
	Use Amdahl's Law and Measure the Program
	Task Organization and Annotations
	Annotate Parallel Sites and Tasks
	Task Patterns
	Multiple Parallel Sites
	Data and Task Parallelism
	Mix and Match Tasks

	Choose the Tasks
	Task Interactions and Suitability
	How Big Should a Task Be?

	Use Partially Parallel Programs with Intel® Advisor

	Annotations
	Annotation Types
	Annotation Types Summary
	Annotation General Characteristics
	Site and Task Annotations for Simple Loops With One Task
	Site and Task Annotations for Parallel Sites with Multiple Tasks
	Lock Annotations
	Pause Collection and Resume Collection Annotations
	Special-purpose Annotations

	Annotation Definitions Files
	Reference the Annotations Definitions Directory
	Add a Copy of the C/C++ Annotation Definition File to Your Visual Studio* Project
	Include the Annotations Header File in C/C++ Sources

	Add Annotations into Your Source Code
	Insert Annotations Using the Annotation Wizard
	Annotation Wizard - Page 1
	Annotation Wizard - Page 2
	Annotation Wizard - Page 3

	Copy Annotations and Build Settings Using the Annotation Assistant Pane
	Insert Annotations in the Visual Studio* Code Editor
	Insert Annotations in a Text Editor

	Tips for Annotation Use with C/C++ Programs
	Control the Expansion of advisor-annotate.h
	Handle Compilation Issues that Appear After Adding advisor-annotate.h
	advisor-annotate.h and libittnotify.dll


	Annotation Report
	Annotation Report, Clear Description of Storage Row
	Annotation Report, Disable Observations in Region Row
	Annotation Report, Pause Collection Row
	Annotation Report, Inductive Expression Row
	Annotation Report, Lock Row
	Annotation Report, Observe Uses Row
	Annotation Report, Reduction Row
	Annotation Report, Re-enable Observations at End of Region Row
	Annotation Report, Resume Collection Row
	Annotation Report, Site Row
	Annotation Report, Task Row
	Annotation Report, User Memory Allocator Use Row
	Annotation Report, User Memory Deallocator Use Row


	Explore Threading Results
	Model Threading Parallelism
	Suitability Report Overview
	Choose Modeling Parameters in the Suitability Report
	Fix Annotation-related Errors Detected by the Suitability Tool
	Advanced Modeling Options
	Reduce Parallel Overhead, Lock Contention, and Enable Chunking
	Reduce Site Overhead
	Reduce Task Overhead
	Reduce Lock Overhead
	Reduce Lock Contention
	Enable Task Chunking


	Check for Dependencies Issues
	Code Locations Pane
	Filter Pane (Dependencies Report)
	Problems and Messages Pane
	Dependencies Source Window
	Code Locations Pane
	Focus Code Location Pane
	Focus Code Location Call Stack Pane
	Related Code Locations Pane
	Related Code Location Call Stack Pane
	Relationship Diagram Pane


	Add Parallelism to Your Program
	Before You Add Parallelism: Choose a Parallel Framework
	Parallel Frameworks
	Intel® oneAPI Threading Building Blocks (oneTBB)
	OpenMP*
	Microsoft Task Parallel Library* (TPL)
	Other Parallel Frameworks

	Add the Parallel Framework to Your Build Environment
	Enable Intel® oneAPI Threading Building Blocks (oneTBB) in your Build Environment
	Define the TBBROOT Environment Variable
	Enable C++11 Lambda Expression Support with Intel® oneAPI Threading Building Blocks (oneTBB)
	Enable OpenMP* in your Build Environment

	Annotation Report
	Annotation Report Overview
	Locate Annotations with the Annotation Report

	Replace Annotations with Intel® oneAPI Threading Building Blocks (oneTBB) Code
	Intel® oneAPI Threading Building Blocks (oneTBB) Mutexes
	Intel® oneAPI Threading Building Blocks (oneTBB) Simple Mutex - Example
	Test the Intel® oneAPI Threading Building Blocks (oneTBB) Synchronization Code
	Parallelize Functions - Intel® oneAPI Threading Building Blocks (oneTBB) Tasks
	Parallelize Data - Intel® oneAPI Threading Building Blocks (oneTBB) Counted Loops
	Parallelize Data - Intel® oneAPI Threading Building Blocks (oneTBB) Loops with Complex Iteration Control

	Replace Annotations with OpenMP* Code
	Add OpenMP Code to Synchronize the Shared Resources
	OpenMP Critical Sections
	Basic OpenMP Atomic Operations
	Advanced OpenMP Atomic Operations
	OpenMP Reduction Operations
	OpenMP Locks
	Test the OpenMP Synchronization Code
	Parallelize Functions - OpenMP Tasks
	Parallelize Data - OpenMP Counted Loops
	Parallelize Data - OpenMP Loops with Complex Iteration Control

	Next Steps for the Parallel Program
	Use Intel® Inspector and Intel® VTune™ Profiler
	Debug Parallel Programs



	Model Offloading to a GPU
	Run Offload Modeling Perspective from GUI
	Offload Modeling Accuracy Presets
	Customize Offload Modeling Perspective

	Run Offload Modeling Perspective from Command Line
	Offload Modeling Accuracy Levels in Command Line
	Run GPU-to-GPU Performance Modeling from Command Line

	Explore Offload Modeling Results
	Offload Modeling Report Overview
	Examine Regions Recommended for Offloading
	Examine Data Transfers for Modeled Regions
	Check for Dependency Issues
	Explore Performance Gain from GPU-to-GPU Modeling
	Investigate Non-Offloaded Code Regions

	Advanced Modeling Configuration
	Model Application Performance on a Custom Target GPU Device
	Check How Assumed Dependencies Affect Modeling
	Manage Invocation Taxes
	Enforce Offloading for Specific Loops


	Analyze GPU Roofline
	Run GPU Roofline Insights Perspective from GUI
	GPU Roofline Accuracy Presets
	Customize GPU Roofline Insights Perspective

	Run GPU Roofline Insights Perspective from Command Line
	GPU Roofline Accuracy Levels in Command Line

	Explore GPU Roofline Results
	Examine GPU Roofline Summary
	Examine Bottlenecks on GPU Roofline Chart
	Examine Kernel Details
	Compare GPU Roofline Results


	Design and Analyze Flow Graphs
	Where to Find the Flow Graph Analyzer
	Launching the Flow Graph Analyzer
	Flow Graph Analyzer GUI Overview
	Menus
	Toolbars
	Tabs
	Main Canvas
	Charts

	Flow Graph Analyzer Workflows
	Designer Workflow
	Adding Nodes, Edges, and Ports
	Modifying Node Properties
	Viewing Edge Properties
	Validating a Graph
	Saving a Graph to a File

	Generating C++ Stubs
	Preferences
	Scalability Analysis
	Activating the Graph
	Scalability Analysis Prerequisites
	Setting Concurrency Specification
	Setting Data Count
	Setting Node Weight

	Running the Scalability Analysis
	Exploring the Parallelism in a Concurrent Node
	Showing Non-Parallel Nature of a Serial Node
	Explore Parallelism Provided by the Topology of a Graph
	Understanding Analysis Color Codes

	Collecting Traces from Applications
	Building an Application for Trace Collection
	Building an Application on Windows* OS
	Building an Application on Linux* OS
	Building an Application on macOS*

	Collecting Trace Files
	Collect Traces In the Flow Graph Analyzer GUI
	Collect Traces Outside the Flow Graph Analyzer GUI
	Collecting Trace Files with fgtrun Script
	Collecting Trace Files without fgtrun Script



	Nested Parallelism in Flow Graph Analyzer
	Analyzer Workflow
	Find Time Regions of Low Concurrency and Their Cause
	Finding a Critical Path
	Finding Tasks with Small Durations
	Reduce Scheduler Overhead using Lightweight Policy
	Identifying Tasks that Operate on Common Input
	Support for SYCL
	Collect SYCL Application Traces
	Examine a SYCL Application Graph
	Hotspot View
	View Performance Inefficiencies of Data-parallel Constructs

	Find Issues Using Static Rule-check Engine
	Issue: Const Reference to a Host Pointer Used to Initialize a Buffer
	Issue: Host Pointer Accessor Used in a Loop
	Issue: Data Parallel Construct Inefficiency



	Experimental Support for OpenMP* Applications
	Collecting Traces for OpenMP* Applications
	OpenMP* Constructs in the Per-Thread Task View
	OpenMP* Constructs in the Graph Canvas

	Sample Trace Files
	code_generation Samples
	performance_analysis Samples

	Additional Resources

	Minimize Analysis Overhead
	Collection Controls to Minimize Analysis Overhead
	Loop Markup to Minimize Analysis Overhead
	Filtering to Minimize Analysis Overhead
	Execution Speed/Duration/Scope Properties to Minimize Analysis Overhead
	Miscellaneous Techniques to Minimize Analysis Overhead

	Analyze MPI Applications
	Model MPI Application Performance on GPU
	Control Collection with an MPI_Pcontrol Function

	Manage Results
	Open a Result
	Rename an Existing Result
	Delete a Result
	Save Results to a Custom Location
	Work with Standalone HTML Reports
	Create a Read-only Result Snapshot
	Create a Result Snapshot Dialog Box
	Open a Result as a Read-only File in Visual Studio

	Command Line Interface
	advisor Command Line Interface Reference
	advisor Command Action Reference
	collect
	command
	create-project
	help
	import-dir
	mark-up-loops
	report
	snapshot
	version
	workflow

	advisor Command Option Reference
	accuracy
	append
	app-working-dir
	assume-dependencies
	assume-hide-taxes
	assume-ndim-dependency
	assume-single-data-transfer
	auto-finalize
	batching
	benchmarks-sync
	bottom-up
	cache-binaries
	cache-binaries-mode
	cache-config
	cache-simulation
	cache-sources
	cachesim
	cachesim-associativity
	cachesim-cacheline-size
	cachesim-mode
	cachesim-sampling-factor
	cachesim-sets
	check-profitability
	clear
	config
	count-logical-instructions
	count-memory-instructions
	count-memory-objects-accesses
	count-mov-instructions
	count-send-latency
	cpu-scale-factor
	csv-delimiter
	custom-config
	data-limit
	data-reuse-analysis
	data-transfer
	data-transfer-histogram
	data-transfer-page-size
	data-type
	delete-tripcounts
	disable-fp64-math-optimization
	display-callstack
	dry-run
	duration
	dynamic
	enable-cache-simulation
	enable-data-transfer-analysis
	enable-task-chunking
	enforce-baseline-decomposition
	enforce-fallback
	enforce-offloads
	estimate-max-speedup
	evaluate-min-speedup
	exclude-files
	executable-of-interest
	exp-dir
	filter
	filter-by-scope
	filter-reductions
	flop
	force-32bit-arithmetics
	force-64bit-arithmetics
	format
	gpu
	gpu-carm
	gpu-sampling-interval
	hide-data-transfer-tax
	ignore
	ignore-app-mismatch
	ignore-checksums
	instance-of-interest
	integrated
	interval
	limit
	loop-call-count-limit
	loop-filter-threshold
	loops
	mark-up
	mark-up-list
	memory-level
	memory-operation-type
	mix
	mkl-user-mode
	model-baseline-gpu
	model-children
	model-extended-math
	model-system-calls
	module-filter
	module-filter-mode
	mpi-rank
	mrte-mode
	ndim-depth-limit
	option-file
	overlap-taxes
	pack
	profile-gpu
	profile-intel-perf-libs
	profile-jit
	profile-python
	profile-stripped-binaries
	project-dir
	quiet
	recalculate-time
	record-mem-allocations
	record-stack-frame
	reduce-lock-contention
	reduce-lock-overhead
	reduce-site-overhead
	reduce-task-overhead
	refinalize-survey
	remove
	report-output
	report-template
	result-dir
	resume-after
	return-app-exitcode
	search-dir
	search-n-dim
	select
	set-dependency
	set-parallel
	set-parameter
	show-all-columns
	show-all-rows
	show-functions
	show-loops
	show-not-executed
	show-report
	small-node-filter
	sort-asc
	sort-desc
	spill-analysis
	stack-access-granularity
	stack-stitching
	stack-unwind-limit
	stacks
	stackwalk-mode
	start-paused
	static-instruction-mix
	strategy
	support-multi-isa-binaries
	target-device
	target-gpu
	target-pid
	target-process
	target-system
	threading-model
	threads
	top-down
	trace-mode
	trace-mpi
	track-memory-objects
	track-stack-accesses
	track-stack-variables
	trip-counts
	verbose
	with-stack


	Offload Modeling Command Line Reference
	run_oa.py Options
	collect.py Options
	analyze.py Options

	Generate Pre-configured Command Lines

	Troubleshooting
	Error Message: Application Sets Its Own Handler for Signal
	Error Message: Cannot Collect GPU Hardware Metrics for the Selected GPU Adapter
	Error Message: Memory Model Cache Hierarchy Incompatible
	Error Message: No Annotations Found
	Error Message: No Data Is Collected
	Error Message: Stack Size Is Too Small
	Error Message: Undefined Linker References to dlopen or dlsym
	Problem: Broken Call Tree
	Problem: Code Region is not Marked Up
	Problem: Debug Information Not Available
	Problem: No Data
	Problem: Source Not Available
	Problem: Stack in the Top-Down Tree Window Is Incorrect
	Problem: Survey Tool does not Display Survey Report
	Problem: Unexpected C/C++ Compilation Errors After Adding Annotations
	Problem: Unexpected Unmatched Annotations in the Dependencies Report
	Warning: Analysis of Debug Build
	Warning: Analysis of Release Build

	Reference
	Data Reference
	CPU Metrics
	Accelerator Metrics

	Dependencies Problem and Message Types
	Dangling Lock
	Data Communication
	Data Communication, Child Task
	Inconsistent Lock Use
	Lock Hierarchy Violation
	Memory Reuse
	Memory Reuse, Child Task
	Memory Watch
	Missing End Site
	Missing End Task
	Missing Start Site
	Missing Start Task
	No Tasks in Parallel Site
	One Task Instance in Parallel Site
	Orphaned Task
	Parallel Site Information
	Thread Information
	Unhandled Application Exception

	Recommendation Reference
	Vectorization Recommendations for C++
	Vectorization Recommendations for Fortran

	User Interface Reference
	Dialog Box: Corresponding Command Line
	Dialog Box: Create a Project
	Dialog Box: Create a Result Snapshot
	Dialog Box: Options - Assembly
	Editor Tab
	Dialog Box: Options - General
	Dialog Box: Options - Result Location
	Dialog Box: Project Properties - Analysis Target
	Dialog Box: Project Properties - Binary/Symbol Search
	Dialog Box: Project Properties - Source Search
	Pane: Advanced View
	Pane: Analysis Workflow
	Pane: Roofline Chart
	Pane: GPU Roofline Chart
	Project Navigator Pane
	Toolbar: Intel Advisor
	Annotation Report
	Window: Dependencies Source
	Window: GPU Roofline Regions
	Window: GPU Roofline Insights Summary
	Window: Memory Access Patterns Source
	Window: Offload Modeling Summary
	Window: Offload Modeling Report - Accelerated Regions
	Window: Perspective Selector
	Window: Refinement Reports
	Tab: Dependencies Report
	Tab: Memory Access Patterns Report

	Window: Suitability Report
	Window: Suitability Source
	Window: Survey Report
	Window: Survey Source
	Window: Threading Summary
	Window: Vectorization Summary


	Appendix
	Data Sharing Problems
	Data Sharing Problem Types
	Incidental Sharing
	Independent Updates

	Problem Solving Strategies
	Eliminate Incidental Sharing
	Examine the Task's Static and Dynamic Extent
	Verify Whether Incidental Sharing Exists
	Create the Private Memory Location
	Pointer Dereferences

	Synchronize Independent Updates
	Synchronization
	Explicit Locking
	Assign Locks to Transactions
	Pitfalls from Using Synchronization

	Difficult Problems: Choosing a Different Set of Tasks
	Fix Problems in Code Used by Multiple Parallel Sites
	Memory That is Accessed Through a Pointer


	Notational Conventions
	Key Concepts
	Glossary
	Parallelism
	Parallel Processing Terminology
	Add Parallelism
	Common Issues When Adding Parallelism
	Parallel Programming Implementations


	Related Information



