Intel® Advisor User Guide

Intel® Advisor User Guide

Contents

Chapter 1: Intele Advisor User Guide

INErOdUCEION o e e 7
Design and Optimization Methodology......cocoviiiiiiiiii e 8
Tutorials and SamPIES......v e 11
Get Help and SUP POt cuiiiii i e e aneas 12

Install and Launch Intel® AdViSOrcviiiiiiii i e 13
Install INtel® AdViSOr....oiiiiii i e 13
Set Up Environment Variables ..o 14
Set Up System to Analyze GPU Kernelsccvviiiiiiiiiiiiiiiiic i 17
Set Up Environment to Offload SYCL, OpenMP* target, and OpenCL™

ApPlIcations £0 CPU ...viiiiiiiii i e e e e 19
Launch Intel® AdViSOr .uiveiii i e s e 20
GUI Navigation QUICK Start.......ccoiiiiiii e eees 23

Y=o U o 0 = o PP 25

Configure Target Applicationcciuiieiiii e 25
Limit the Number of Threads Used by Parallel Frameworks 25
Choose a Small, Representative Data Setccovvviiiiiiiiinnn, 26

Build Target Application.......ccovieiiiii i e 27

Create ProJeCt. i e 32
CoNfigUIre ProjeCt ..ovieiie i e e e e 33
Configure Binary/Symbol Search Directories..........cccevviiiiiiniinnns 41
Configure Source Search DIireCtoryoovvvieiieiiiie i reaeeeeaes 42
Binary/Symbol Search and Source Search Locations..................... 43

Analyze Vectorization Perspectiveo.vieiiiiiiiii e e 45

Run Vectorization and Code Insights Perspective from GUI.................... 46
Vectorization Accuracy Presets.....ccovviviiiiiiiiiiiiiiiii i 48
Customize Vectorization and Code Insights Perspective................ 49

Run Vectorization and Code Insights Perspective from Command Line 55
Vectorization Accuracy Levels in Command Linecccovivvinnn. 58

Explore Vectorization and Code Insights Resultsccccoiviiiiiiiiinnnens 59
Vectorization Report OVEIrVIEWovviiiiiiiiiiiiiiiiri s sae e 62
Examine Not-Vectorized and Under-Vectorized LOOpSccvuennens 64
Analyze Loop Call COUNTviiiiiiii e neeas 67
Investigate Memory Usage and TraffiC.......c.ccvveviiiiiiiiiiiieeee 68
Find Data DependenCiEs. . .oovve it e e e e neens 71

Analyze CPU ROOFIINE .. .ue it e e naens 73

Run CPU / Memory Roofline Insights Perspective from GUI.................... 75
CPU Roofline Accuracy Presets.....ccovviiiiiiiiii e 76
Customize CPU / Memory Roofline Insights Perspective................ 77

Run CPU / Memory Roofline Insights Perspective from Command Line 81
CPU Roofline Accuracy Levels in Command Linecocoevvievnennn. 85

Explore CPU/Memory RoOfline RESUILSccvvieiiiiiii e 86
CPU Roofline Report OVEIrVIEWciviiiiiiiii i aaa s 89
Examine Bottlenecks on CPU Roofline Chart...........ocvieviiiiiniinnens 95
Examine Relationships Between Memory Levelscocvvivinnnens 98
Compare CPU Roofline RESUILScivviiiiiiiii i e 103

Model Threading DeSIGNS ... vuuiie ittt ae e e aeeeas 105

Run Threading Perspective from GUIL.........cooiiiiiiiiiiiiiiciiiici e 107

Contents

Customize Threading Perspectivecooiieiiiiiiiiii e 108
Run Threading Perspective from Command Linec.ccvvvviiiiiiinnnnnnns 114
Threading Accuracy Levels in Command Linecccevvivvivvinnnnnn. 116
Annotate Code for Deeper ANalysSiScvoeiiiniiiii e 117
Annotate Code to Model Parallelismccoooiiiiiiiiiee, 119
ANNOLALIONS L.viii i e 129
ANNotation REPOIt.....oivviiiiiii 156
Explore Threading ReSUIESoeiiiii e 163
Model Threading Parallelism...... ..o e 166
Suitability Report OVEerviewcoooiieiiiii e 169
Choose Modeling Parameters in the Suitability Report 173
Fix Annotation-related Errors Detected by the Suitability Tool...... 175
Advanced Modeling OptioNS......ccviiiiiiiiii e 176
Reduce Parallel Overhead, Lock Contention, and Enable Chunking 177
Check for DependencCies ISSUEScouieieie e e eeeneaeeaeenens 178
Code Locations Paneccoiiiiiiii i 179
Filter Pane (Dependencies Report).....ccovieviiiiiiiiiiiiii e, 181
Problems and Messages Paneccvvviniiiiiiiiiiii e 181
Dependencies Source WindOWccveeiniieiiiiiiiiiii e eeeee e 182
Add Parallelism to Your Program.......ccooeiiiiiiii e 188
Before You Add Parallelism: Choose a Parallel Framework........... 188
Add the Parallel Framework to Your Build Environment............... 191
ANNotation REPOIt.....oiviiiiiii 195
Replace Annotations with Intele oneAPI Threading Building
Blocks (ONETBB) COdE ..vviiiiiiiiiiiie it e e s 196
Replace Annotations with OpenMP* Codecovviviiiiiiiiiiinnnnnn. 201
Next Steps for the Parallel Programc.covviiiiiiiiiiiiiienen 215
Model Offloading to @ GPU ..o e 216
Run Offload Modeling Perspective from GUIccoiiiiiiiiiiiiiiiiinens 219
Offload Modeling Accuracy Presetscccovviiiiiiiiiiiiii e 221
Customize Offload Modeling Perspective........ccoooviiiiiiiiiiinennn. 222
Run Offload Modeling Perspective from Command Line............c.cvuens 228
Offload Modeling Accuracy Levels in Command Line 240
Run GPU-to-GPU Performance Modeling from Command Line...... 244
Explore Offload Modeling ReSUItS........oiviiiiiiiiii e 249
Offload Modeling Report OVEervVIiEWoovvviiiiiiii i 253
Examine Regions Recommended for Offloadingccocvvnnennn. 256
Examine Data Transfers for Modeled Regionscccevvvvivinnnnnn. 258
Check for Dependency ISSUESciveviiiiiiiiii i naee s 262
Explore Performance Gain from GPU-to-GPU Modeling................ 263
Investigate Non-Offloaded Code RegionS.......ccvvvvvivviiiiiiiininnnnnn. 266
Advanced Modeling Configurationcoooiiiiiiiiiii e 274
Model Application Performance on a Custom Target GPU Device .. 274
Check How Assumed Dependencies Affect Modeling................... 278
Manage Invocation TaXeSc.vvviiiiiiiiiii i e 280
Enforce Offloading for Specific LOOPS ...ovvvviviiiiiiiiiiiiiiiieneea 282
ANAlyze GPU ROOFIINE ... e e e e e e 283
Run GPU Roofline Insights Perspective from GUI...........cocviiiiiiiniinnnns 284
GPU Roofline Accuracy Presetsccvvviiiiiiiiiiiiiiii e 286
Customize GPU Roofline Insights Perspectivec.ccoviviivinnn. 287
Run GPU Roofline Insights Perspective from Command Line 292
GPU Roofline Accuracy Levels in Command Linecocceeeee. 295
Explore GPU Roofline RESUILSviieiiiiiii e 297
Examine GPU Roofline SUMMAarycooovviiiiiiiiiii i 300
Examine Bottlenecks on GPU Roofline Chartcccovviiiininnnn. 302

Intel® Advisor User Guide

Examine Kernel Detailsccveiiiiii e 308
Compare GPU Roofline RESUILS......cooeiniiiiii e 312
Design and Analyze FIOW Graphs ..o e 314
Where to Find the Flow Graph Analyzer.......oooiiiiiiiiiii e 314
Launching the Flow Graph Analyzerooiiiiiiii e, 314
Flow Graph Analyzer GUI OVEIrVIEWoviiiiiiieiie e e e 316
= 0 6 317
TOOIDAIS e e 320
JLE= 1 51 P 321
1= T T O= T 0 7= T 324
(O] =1 o o3P 325
Flow Graph Analyzer Workflows........ooieiiiiiii e 327
Designer WOrKfIOW ... e 327
Adding Nodes, Edges, and Ports........cooiieiiiiiiiiiiii e 328
Modifying Node Properties........ooviiiiiiiii e 329
Viewing Edge Properties.vieviiiiiiiiii i 331
Validating @ Graph ..o 331
Saving @a Graph to @ File....coniniii e 331
Generating C++ StUbS ... 332
P e O ENCES . e e 335
Scalability ANalysSisoe i 338
Activating the Graph.......cooiiii i 338
Scalability Analysis Prerequisites........ccovieiiiiiiiiii e 338
Running the Scalability Analysis......cccooiiiiiii e, 341
Exploring the Parallelism in a Concurrent Nodeceeeeeeene. 342
Showing Non-Parallel Nature of a Serial Nodec.ccovvvvininnnn. 342
Explore Parallelism Provided by the Topology of a Graph............. 343
Understanding Analysis Color Codescvieiiiiiiiiiiiiiiiieieeen, 344
Collecting Traces from Applicationscciiiiiii e 344
Building an Application for Trace Collectionc.ccoieiiiniienenn. 345
Collecting Trace Filesviiiiiii e 346
Nested Parallelism in Flow Graph Analyzer........coooiiiiiiiiiiiiiiiiiieeen, 352
Analyzer WOrkflOW 353
Find Time Regions of Low Concurrency and Their Cause 354
Finding a Critical Path ... 354
Finding Tasks with Small Durations..........coccviiiiiiiii e, 355
Reduce Scheduler Overhead using Lightweight Policy 356
Identifying Tasks that Operate on Common Input..............c.cceeees 358
SUPPOIE fOr SYCL . aniiiiiei e eeaees 359
Experimental Support for OpenMP* Applications..........cccociieiiiiiiennnnn. 367
Collecting Traces for OpenMP* Applications...........cocoviiiiiiiennnns 368
OpenMP* Constructs in the Per-Thread Task Viewc..... 369
OpenMP* Constructs in the Graph Canvasccccviiiiiiiiiiennnns 370
Sample Trace Files. ... e 374
code_generation Samples ..o 375
performance_analysis Samplescooeiiiiiiiiiii e 377
Additional RESOUICESoiiiiiie e e 380
Minimize Analysis Overhead........ccoiiiiiiiiiii e 380
Collection Controls to Minimize Analysis Overheadc..cocoiiientns 384
Loop Markup to Minimize Analysis Overheadc.cooviiiiiiiiiiiiennenn. 392
Filtering to Minimize Analysis Overhead.........c.ccviiiiiiiiii i, 397
Execution Speed/Duration/Scope Properties to Minimize Analysis
OVEINEAA . . 398
Miscellaneous Techniques to Minimize Analysis Overhead.................... 401
Analyze MPI AppliCationsceiieiie e e 404

Contents

Model MPI Application Performance on GPUc.coiiiiiiiiiiiiinnen. 409
Control Collection with an MPI_Pcontrol Function...........c.cccooiiiiiiintns 413
MaNAgE RESUITS ... vt 414
OPEN @ RESUIT .. e 415
Rename an Existing Resulto 416
Delete @ ReSUIE . v e 416
Save Results to @ Custom Locationccoiiiiiiiiiiiiiii e 417
Work with Standalone HTML RePOIrtS....coeiniiiiiii e 417
Create a Read-only Result Snapshotcocoiiiiiiii i 422
Create a Result Snapshot Dialog BOXciueiiiiiiieiiiiiiiii i eeneeeeaens 423
Command Line INterface ..oviviiiiiiii i e ea s 423
advisor Command Line Interface Referenceccocoiiiiiiiiiiiiiiniennn, 424
advisor Command Action Reference........cocoveviiiiiiiiiiiiiiienennen 426
advisor Command Option Referenceccveviviiiiiiiiiiiiienennen 436
Offload Modeling Command Line Reference.......cccooevviiiiiiiiciinennnn, 570
FUN_0a.pY OPLiONS ..uoiiiii i e 571
COllect.py OPLiONS ..o 578
analyze.py OptioNS. ... 583
Generate Pre-configured Command LiNeSccvvviiiiiiiiiiiiiiiienieeaean 592
TroUubIEShOOtING. ... e e 594
Error Message: Application Sets Its Own Handler for Signal 596
Error Message: Cannot Collect GPU Hardware Metrics for the Selected
GPU Adaper. e e 596
Error Message: Memory Model Cache Hierarchy Incompatible.............. 597
Error Message: No Annotations FOUNd..........c.cooviiiiiiiiiii i, 597
Error Message: No Data Is Collected.......ccooviiiiiiiiiiiiii e 598
Error Message: Stack Size Is Too Smallccooviiiiiiiiiiee, 599
Error Message: Undefined Linker References to dlopen or dlsym.......... 600
Problem: Broken Call Tree ..o iiiii i i ea s 600
Problem: Code Region is not Marked Upcccoiviiiiiiiiiiiieie e 602
Problem: Debug Information Not Availableccciiiiiiiiiiin, 603
Problem: NO Data ..cvviriiiiii i e 604
Problem: Source Not Available ... 605
Problem: Stack in the Top-Down Tree Window Is Incorrect.................. 607
Problem: Survey Tool does not Display Survey Report.............coeneenn. 608
Problem: Unexpected C/C++ Compilation Errors After Adding
ANNOLAIONS . e 608
Problem: Unexpected Unmatched Annotations in the Dependencies
= 5 o 609
Warning: Analysis of Debug Buildc.cooiiiiiiiii e 610
Warning: Analysis of Release BUildccooiviiiiiiiiiiii e 611
2] =] = Lol PR 611
Data REfIENCE . ittt e e 611
O U Y of o ol 612
AcCelerator MEEMICS . .viir i e e e 630
Dependencies Problem and Message TYPesSovvveiiiiiieiieiiiieinaeenens, 675
(D1=] g |11 gL I o ol R 676
Data CommuNICation ..oviuei i 677
Data Communication, Child Taskccoviiiiiiiiiiiiiiici e 678
Inconsistent LOCK USE....icviiiiiiiiiiiiiiii i i 679
Lock Hierarchy Violation........cooiiiiiii e 680
MEMOKY REUSE. ...ttt s 682
Memory Reuse, Child Task........cooiiiiiii e 683
Memory WatCh ... 684
MiSSING ENA St ..ouiiei i e 685

Intel® Advisor User Guide

Missing ENd Task.....ccooiriiiii i 686
Missing Start Site......ooiiiii 687
MisSiNg Start Task ...coue i 687

No Tasks in Parallel Siteo e 688

One Task Instance in Parallel Site.......c.cooiiiiiiiiii s 689
Orphaned TaskKcieieiii e 690
Parallel Site Informationccoiiiiiiii e 690
Thread Information ..o e 691
Unhandled Application EXception.......ccovieiiiiiiiiiiiiieeeen, 692
Recommendation Reference.......ooe i 693
Vectorization Recommendations for C++.......ooiiiiiiiiiiiiiennnn. 693
Vectorization Recommendations for Fortranc.ccoovieiienenn. 721

User Interface ReferenCeo.vviiiiiiiii e 742
Dialog Box: Corresponding Command Lineccoeeviiniiennnnn. 742
Dialog Box: Create a Project........coooiiiiiiii e 743
Dialog Box: Create a Result Snapshot............cocooiiiiiiinen. 744
Dialog Box: Options - Assembly ..o 744
Editor Tab ..o 745
Dialog Box: Options - General.......c.ccoiviniiiiiii e 746
Dialog Box: Options - Result Locationc.cooviiiiiiiiiiiennn. 748
Dialog Box: Project Properties - Analysis Targetcccvennene. 749
Dialog Box: Project Properties - Binary/Symbol Search 756
Dialog Box: Project Properties - Source Searchcooeenen. 757
Pane: Advanced VIEW ..o e 758
Pane: Analysis WOrkfloOwcoouiiiiiiiiii e 761
Pane: Roofline Chart....... ..o e 762
Pane: GPU Roofline Chart......ccoiiiiiii e 766
Project Navigator Panecoviiiiiiiiiiii e 770
Toolbar: Intel AdViSOro.eie e 771
ANNOtation REPOI....coiviiiii i 772
Window: Dependencies SOUINCEcvviieiiiiieiie i eeaes 772
Window: GPU Roofline RegioNSccovviviiiiiiiiiii e 775
Window: GPU Roofline Insights Summary.........cccooiiiiiiiiinenne. 779
Window: Memory Access Patterns Source..........ccooiviiiiiienennn. 780
Window: Offload Modeling Summaryccoeviiiiiiiiiiiieieene 781
Window: Offload Modeling Report - Accelerated Regions............. 787
Window: Perspective Selector.......coovviiiiiiiiiiiiii e 789
Window: Refinement Reportsoooiiiiiiiiiii e 790
Window: Suitability Report.......cooeiiiii e 793
Window: Suitability SOUICe.....c.iiei e 795
Window: Survey REePOI ..o 796
WiINAOW: SUINVEY SOUMCE....uiiitie i ie et e e e e e aaeaeeeenes 799
Window: Threading SUMMAryccooviiiiiii e eeaes 800
Window: Vectorization Summaryocoovieiiiiiiii e 802
7AYo 011 g o 803
Data Sharing Problems ..o 803
Data Sharing Problem Types......cciiiiiiiiiii e 804
Problem Solving Strategies.........covieiiiiiiiii e 807
Notational CoNVENTIONSc.uiiiii e e 817
S}V ©e] o= o] = 817
(€] (o 11T | Y PP 818
Parallelism ... e 820
Related Information.occii i e 824

Intel® Advisor User Guide 1

Intel® Advisor User Guide

This document provides a detailed overview of the Intel® Advisor functionality, workflows, and instructions.

Intel® Advisor is composed of a set of tools, or perspectives, to help ensure your Fortran, C, C++, SYCL ,
OpenMP*, Intel® oneAPI Level Zero (Level Zero), and OpenCL™ applications realize full performance potential
on modern processors:

e Vectorization and Code Insights: Identify high-impact, under-optimized loops, what is blocking
vectorization, and where it is safe to force vectorization. It also provides code-specific how-can-I-fix-this-
issue recommendations. For details, see Analyze Vectorization Perspective.

e CPU / Memory Roofline Insights and GPU Roofline Insights: Visualize actual performance against
hardware-imposed performance ceilings (rooflines). They provide insights into where the bottlenecks are,
which loops are worth optimizing for performance, what are the likely causes of bottlenecks and what
should be the next optimization steps. For details, see Analyze CPU Roofline or Analyze GPU Roofline.

e Offload Modeling: Identify high-impact opportunities to offload to GPU as well as the areas that are not
advantageous to offload. It provides performance speedup projection on accelerators along with offload
overhead estimation and pinpoints accelerator performance bottlenecks. For details, see the Model
Offloading to a GPU.

e Threading: Analyze, design, tune, and check threading design options without disrupting your normal
development. For details, see Model Threading Designs.

Flow Graph Analyzer is a part of the Intel® Advisor installation. Use it to visualize and analyze performance
for applications that use the Intel® oneAPI Threading Building Blocks (oneTBB) flow graph interfaces. For
details, see Flow Graph Analyzer.

Intel® Advisor is available as a standalone product and as part of the Intel® oneAPI Base Toolkit.

e Standalone Intel® Advisor
e Intel® oneAPI Base Toolkit

Documentation for older versions of Intel® Advisor is available for download only. For a list of available
documentation downloads by product version, see these pages:

e Download Documentation for Intel® Parallel Studio XE
e Download Documentation for Intel® System Studio

Start Here

¢ Design and Optimization Methodology
e What's New in Intel Advisor

e Install and Launch Intel® Advisor

e Get Started with Intel Advisor

e Intel Advisor Cookbook

Introduction

This document provides a detailed overview of the
product functionality, workflows, or perspectives, and
instruction to use Intel® Advisor.

Use Intel® Advisor to check that your application realize full performance potential on modern hardware
platforms (CPU, GPU) and get recommendations for where to add optimization.

With the Intel Advisor, you can:

e Model your application performance on an accelerator
¢ Visualize performance bottlenecks on a CPU or GPU with a Roofline chart

https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/advisor.html
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-parallel-studio-xe-current-previous.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-system-studio-current-previous.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/advisor-release-notes.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-cookbook/top.html

1 Intel® Advisor User Guide

e Check vectorization efficiency
e Prototype threading designs

Design and Optimization Methodology

Intel® Advisor helps you to design and optimize high-performing Fortran, C, C++, SYCL, OpenMP*, and
OpenCL™ code to realize full performance potential on modern computer architecture. You can measure your
application performance, collect required data, and look at your code from different perspectives depending
on your goal to dig deeper and get hints for optimization.

Visualize Performance Bottlenecks with Roofline Chart

When optimizing your C, C++, SYCL, or Fortran application, it is useful to know application's current and
potential performance in relation to hardware-imposed limitations like memory bandwidth and compute
capacity of a target platform that it runs on - a CPU or a GPU.

Roofline model of the Intel Advisor visualizes actual performance against hardware-imposed performance
ceilings and helps you determine the main limiting factor (memory bandwidth or compute capacity) to
provide an ideal road map of potential optimization steps. This analysis highlights loops that have the most
headroom for improvement, which allows you to focus on areas that deliver the biggest performance payoff.

To generate a Roofline report, the Intel Advisor:
e Collects loop/function (for CPU) or OpenCL" kernels (for GPU) timings and memory data.
e Measures the hardware limitations and collects floating-point and integer operations data.

GFLOPs/S

3

Compute Roof

Loop/Function
Performance

>
Arithmetic Intensity (FLOPs/Byte)

The Roofline chart plots an application achieved performance and arithmetic intensity against the hardware
maximum achievable performance:

e Arithmetic intensity (x axis) - measured in number of floating-point operations (FLOPs) and/or integer
operations (INTOPs) per byte, based on the loop/function algorithm, transferred between CPU/VPU/GPU
and memory.

Intel® Advisor User Guide 1

e Performance (y axis) - measured in billions of floating-point operations per second (GFLOPS) and/or
billions of integer operations per second (GINTOPS).

With the data collected, the Intel Advisor plots the Roofline chart:

e Execution time of each loop/function/kernel is reflected in the size and color of each dot. The dots on the
chart correspond to OpenCL kernels for GPU Roofline, while for the CPU Roofline, they correspond to
individual loops/functions.

e Memory bandwidth limitations are plotted as diagonal lines.

e Compute capacity limitations are plotted as horizontal lines.

For details on how to get the Roofline report and read the results, see CPU / Memory Roofline Insights
Perspective or GPU Roofline Insights Perspective.

Model Offloading to Accelerator
When designing your application to offload to an accelerator, you might first want to:

e Estimate the offload benefit and overhead for each loop/function in your original C++ or Fortran code to
make better decisions on which parts of code to offload

e Check performance gain for a SYCL , OpenCL™, or OpenMP* target application if you offload it to a
different accelerator

Offload Modeling perspective of the Intel® Advisor can identify high-impact portions of a code that are
profitable to offload to a target platform (for example, to a GPU) as well as the code regions that are not
advantageous to offload. It can also predict the code performance if run on the target platform and lets you
experiment with accelerator configuration parameters.

Offload Modeling takes measured baseline metrics and application characteristics as an input and applies an
analytical model to estimate execution time and characteristics on a target platform.

Data transfer costs

Offload Modeling is based on three models:

e Compute throughput model counts arithmetic operations in a region on a baseline platform and
estimates the execution time on a target platform required to achieve the same mix of arithmetic
operations, considering it as bound by compute engines only.

¢ Memory sub-system throughput model traces memory accesses inside a region on a baseline
platform and estimates the execution time on a target platform needed to transfer the same amount of
memory. Memory traffic is measured using a cache simulator that reflects the target platform's memory
configuration.

o Offload data transfer analysis measures memory accesses that are read from or written to a region
and will need to be sent over a PCle* if the region is offloaded to a target platform.

For details on how to run the Offload Modeling perspective and read the reports, see Offload Modeling
Perspective.

1 Intel® Advisor User Guide

Check Vectorization Efficiency

Modern Intel® processors have extensions that support SIMD (single instruction, multiple data) parallelism
with Intel® Streaming SIMD Extensions (Intel® SSE), Intel® Advanced Vector Extensions 2 (Intel® AVX2),
Intel® Advanced Vector Extensions 512 (Intel® AVX-512) . To take advantage of SIMD instructions with the
expanded vector width and achieve higher performance, applications need to be vectorized.

You can rely on your desired compiler - Intel® Fortran Compiler Classic, Intel® oneAPI DPC++/C++ Compiler,
GNU Compiler Collection (GCC)* - to auto-vectorize some loops, but serial constraints of programming
languages limit the compiler's ability to vectorize some loops. The need arose for explicit vector programming
methods to extend vectorization capability for supporting reductions, vectorizing:

e Outer loops
e Loops with user-defined functions
e Loops that the compiler assumes to have data dependencies

To improve the performance of CPU-bound applications on modern processors with vector processing units,
you might use explicit vector programming apply structural changes for thread-level parallelism and SIMD-
level parallelism.

Use the Vectorization and Code Insights perspective of the Intel Advisor to analyze your application run time
behavior and identify application parts that will benefit most from vectorization. Vectorization and Code
Insights perspective helps you to achieve the best performance using vectorization and identify:

e Where vectorization, or parallelization with threads, will pay off the most
e If vectorized loops are providing benefit, and if not, why not

e Un-vectorized loops and why they are not vectorized

e Performance problems in general

For details on how to run the perspective and read the reports, see Vectorization and Code Insights
Perspective.

Prototype Threading Designs

The best performance improvements from adding parallel execution (parallelism) to a program occur when
many cores are busy most of the time doing useful work. Achieving this requires a lot of analysis, knowledge,
and testing.

Because your serial program was not designed to allow parallel execution, as you convert parts of it to use
parallel execution, you may encounter unexpected errors that occur only during parallel execution. Instead of
wasting effort on portions of the program that use almost no CPU time, you should focus on the hotspots,
and the functions between the main entry point and each hotspot.

If you add parallel execution to a program without proper preparation, unpredictable crashes, program
hangs, and wrong answers can result from incorrect parallel task interactions. For example, you may need to
add synchronization to avoid incorrect parallel task interactions, but this must be done carefully because
locking overhead and serial synchronization can reduce the benefits of the parallel execution.

Threading perspective of the Intel Advisor helps you quickly prototype multiple threading options, project
scaling on larger systems, optimize faster, and implement with confidence.

e Identify issues and fix them before implementing parallelism

e Add threading to C, C++, and Fortran code

e Prototype the performance impact of different threaded designs and project scaling on systems with
larger core counts without disrupting development or implementation

e Find and eliminate data-sharing issues during design (when they're less expensive to fix)

The high-level parallel frameworks available for each programming language include:

Language Available High-Level Parallel Frameworks

C OpenMP

10

Intel® Advisor User Guide 1

Language Available High-Level Parallel Frameworks

C++ Intel® oneAPI Threading Building Blocks (oneTBB)
OpenMP

Fortran OpenMP

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

For details on how to run the perspective and read the reports, see Threading Perspective.
Using Amdahl's Law and Measuring the Program
There are two rules of optimization that apply to parallel programming:

e Focus on the part of the program that uses the most time.
e Do not guess, measure.

Amdahl's Law

In the context of parallel programming, Gene Amdahl formalized a rule called Amdahl's Law, which states
that the speed-up that is possible from parallelizing one part of a program is limited by the portion of the
program that still runs serially.

The consequence may be surprising: parallelizing the part of your program where it spends 80% of its time
cannot speed it up by more than a factor of five, no matter how many cores you run it on.

Therefore, to get maximum benefit from parallelizing your program, you could add parallelism to all parts of
your program as suggested by Amdahl's Law. However, it is more practical to find where it spends most of its
time and focus on areas that can provide the most benefit.

Do Not Guess - Measure

This leads to another rule of optimization: Do Not guess - Measure. Programmers' intuitions about where
their programs are spending time are notoriously inaccurate. Intel® Advisor includes a Survey tool you can
use to profile your running program and measure where it spends it time.

After you add Intel® Advisor annotations to your program to mark the proposed parallel code regions, run the
Suitability tool to predict the approximate maximum performance gain for the program and the annotated
sites. These estimated performance gain values are based on a model of parallel execution that reflects the
impact of Amdahl's law.

Tutorials and Samples

Intel® Advisor provides tutorials with step-by-step instructions on analyzing performance of applications with
sample code.

NOTE

You can find the complete list of oneAPI code samples in the oneAPI Samples Catalog (GitHub*). Use
these samples to develop, offload, and optimize multi-architecture applications that target CPUs,
GPUs, and FPGAs.

Discover Where Vectorization Pays Off The Most
Get Started Guide: Discover Where Vectorization Pays Off The Most

Sample: included in the product package

11

https://oneapi-src.github.io/oneAPI-samples/
https://www.intel.com/content/www/us/en/docs/advisor/get-started-guide/current/discover-where-vectorization-will-pay-off.html

1 Intel® Advisor User Guide

Learning Objective: Use Vectorization report to:

e Identify loops that will benefit most from vectorization.
e Identify what is blocking effective vectorization.

e Increase the confidence that vectorization is safe.

e Explore the benefit of alternative data reorganizations.

Prototype Threading Designs
Get Started Guide: Prototype Threading Designs
Sample: included in the product package

Learning Objective: Demonstrates an end-to-end workflow you can ultimately apply to your own
applications:

1. Survey the target executable to locate the loops and functions where your application spends the most
time.

2. In the target sources, add Intel Advisor annotations to mark possible parallel tasks and their enclosing
parallel sites.

3. Check Suitability to predict the maximum parallel performance speedup of the target based on these
annotations.

4. Check Dependencies to predict parallel data sharing problems in the target based on these annotations.

5. If the predicted maximum speedup benefit is worth the effort to fix the predicted parallel data sharing
problems, fix the problems.

6. Recheck Suitability to see how your fixes impact the predicted maximum speedup.

7. If the predicted maximum speedup benefit is still worth the effort to add parallelism to the target,
replace the annotations with parallel framework code that enables parallel execution.

Use the Automated Roofline Chart to Make Optimization Decisions - C++ Sample

Windows* OS Tutorial: HTML

Sample: Download roofline demo samples sample. You can download source code or pre-collected
results to save time.

Duration: 20 minutes (with pre-collected results)

Learning Objective: Use the Roofline chart to answer the following questions:

e What is the maximum achievable performance with your current hardware resources?

e Does your application work optimally on current hardware resources?

e If not, what are the best candidates for optimization?

e Is memory bandwidth or compute capacity limiting performance for each optimization candidate?

NOTE

e Sample applications are non-deterministic.
e Sample applications are designed only to illustrate the Intel Advisor features and do not represent
best practices for creating and optimizing code.

Get Help and Support

This topic explain the different options for accessing the Help documentation and technical support for Intel®
Advisor.

Get Help

The documents provided with this release are available in HTML format. You can access the documentation:

12

https://www.intel.com/content/www/us/en/docs/advisor/get-started-guide/current/prototype-threading-designs.html
https://www.intel.com/content/www/us/en/docs/advisor/tutorial-roofline/current/overview.html
https://www.intel.com/content/www/us/en/developer/articles/training/training-sample-intel-advisor-roofline.html

Intel® Advisor User Guide 1

e For Windows* OS only: From the Start menu, or Start screen, under the Intel oneAPI [version]
group.

e Help > Intel Advisor [version]

e Access context-sensitive Help on active GUI elements:

e In the Advisor Workflow tab and in the Result tab, click certain links to get specific help related to
the underlined word.

¢ In the Result tab, you can right-click an element to display its context menu. Certain context menus
display a What Should I Do Next? menu item. Choose this menu item to get help specific to the
active user interface element.

e F1 Help: Press F1 to get help for an active dialog box, property page, pane, or window.

Get Support

The following links provide information and support on Intel® software products, including developer suite
products:

e https://www.intel.com/content/www/us/en/develop/tools.html
At this site, you will find comprehensive product information, including:

e Links to each product, where you will find technical information such as white papers and articles
e Links to user forums
e Links to news and events

e https://www.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html

Intel® oneAPI Base Toolkit product page with links to download, support forums, knowledge base, and
product documentation.

For detailed system requirements and additional support information, see the product Release Notes.

Install and Launch Intel® Advisor

The following sections provide simple steps to quickly configure and run the Intel® Advisor graphical user
interface (GUI) or command line interface (CLI).

e Install Intel Advisor as part of the Intel® oneAPI Base Toolkit or standalone.
e Set up Intel Advisor environment variables to launch Intel Advisor from command line or a terminal.

e Optional: To analyze GPU kernels of your SYCL, OpenMP* target, or OpenCL™ application with the GPU
Roofline Insights or Offload Modeling perspective, configure your system to analyze GPU kernels.
e Optional: To analyze SYCL, OpenMP target, or OpenCL application running on a CPU with the Offload
Modeling perspective, set up your system to offload the application to CPU.
e Launch the Intel Advisor .

Quick steps to ramp up with the Intel Advisor are included in Getting Started with Intel Advisor.

Install Intel® Advisor

Use this topic to download and install Intel® Advisor
using oneAPI Installer and yum/APT package
managers.

Intel® Advisor is available for download as:

e Standalone installation
e Part of Intel® oneAPI Base Toolkit

Depending on your internet connection, choose local or online installer.

To install Intel Advisor as part of Intel® oneAPI Base Toolkit, refer to Installation Guide for Intel® oneAPI
Toolkits.

13

https://www.intel.com/content/www/us/en/develop/tools.html
https://www.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://www.intel.com/content/www/us/en/develop/articles/intel-advisor-release-notes.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top.html
https://www.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#advisor
https://www.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit/download.html
https://www.intel.com/content/www/us/en/develop/articles/installation-guide-for-intel-oneapi-toolkits.html
https://www.intel.com/content/www/us/en/develop/articles/installation-guide-for-intel-oneapi-toolkits.html

1 Intel® Advisor User Guide

NOTE Different major versions can co-exist with each other, but on Windows* OS, only one version of
Intel Advisor can be integrated with Visual Studio* IDE.

On Windows* OS

1. Double-click the compressed self-extracting executable file as a user with administrative privileges.
2. To get a complete set of user interfaces (GUI front end and Visual Studio* IDE integration), select the
Recommended Installation option. The default installation path is C:\Program Files
(x86) \Intel\oneAPI. To change the installation path, select the Custom Installation option.

NOTE To perform silent, non-interactive installation, refer to Intel® oneAPI Toolkits Installation Guide
for Windows*.

3. Click the Install button to complete the installation.

On Linux* OS
1. Make sure to have read/write permissions for the /tmp directory and start the installation.
e To install on the local system, run the installer using the following command:

sh <package-name>.sh
e If you want to install Intel Advisor for use by any user, you must do this as a root user. To install
Intel Advisor to a network-mounted drive or shared file systems available for multiple users, run the
following command:

sh <package-name>.sh --SHARED INSTALL

2. To get a complete set of user interfaces (GUI front end and Eclipse* IDE integration), select the
Recommended Installation option. The default installation path is /opt/intel/oneapi for root
users and SHOME/intel/oneapi for non-root users. To change the installation path, select the Custom
Installation option.

3. Integrate Intel Advisor with Eclipse IDE by specifying the path to Eclipse IDE executable. Skip this step
if you prefer to install Intel Advisor without integration into Eclipse IDE.

4. Click the Install button to complete the installation.

NOTEIntel Advisor is available for installation via yum and APT package managers.

System Requirements

See the list of System Requirements for more information.

See Also
After installation, consider the following next steps:

e Set Up Environment Variables
e Set Up Environment to Analyze GPU Kernels
e Set Up Environment to Model Performance on GPU-Enabled Applications

Set Up Environment Variables

Use this topic to get guidance on setting up
environment variables for Intel® Advisor.

14

https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-windows/top/installation/install-with-command-line.html
https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-windows/top/installation/install-with-command-line.html
https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top/installation/install-using-package-managers/yum-dnf-zypper.html
https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top/installation/install-using-package-managers/apt.html
https://www.intel.com/content/www/us/en/develop/articles/advisor-system-requirements.html

Intel® Advisor User Guide 1

Set the environment variables if you want to:

e Run Intel Advisor command line interface

e Run Intel Advisor graphical user interface from command line (for example, on Linux OS)

e Compile your application with Intel Advisor annotations using additional include directories, so the
compiler can find the include file that defines annotations

You can set the variables using one of the following methods:

e Recommended: Set up variables using a script.
e Set up variables manually. Use this method to set up variables for a custom Intel Advisor location or to
set the variables permanently.

Default Installation Paths

In the instructions below, be sure to replace any values in brackets, such as <version> or <install-dir>.
<version> is the Intel Advisor year and update version (for example, 2021.1).The default installation path
for the application, <install-dir>, can be one the following:

e On Linux* OS:

e /opt/intel/oneapi for root users
e SHOME/intel/oneapi for non-root users
e On Windows* OS: C:\Program Files (x86)\Intel\oneAPI

For 32-bit systems, the Program Files (x86) folderis Program Files.
e On macOS*: /opt/intel/oneapi

Set Up Environment Variables via Script

This is the recommended method to set up the Intel Advisor environment variables. In particular, use it if you
want to run the Offload Modeling using the dedicated Python* scripts. The script automatically sets up all the
required variables pointing to the Intel Advisor installation directory.

Linux OS and macOS

Run one of the following shell scripts:
source <install-dir>/setvars.sh
source <install-dir>/setvars.csh

The scripts set up the environment for the /atestIntel Advisor version installed on your system.

NOTE If you want to set up environment for a lower version of the Intel Advisor installed on your
system, also run one of the following Intel Advisor-specific scripts:
source <install-dir>/advisor/<version>/env/vars.sh

source <install-dir>/advisor/<version>/env/vars.csh

where <version> is the Intel Advisor version you want to use.

Windows OS
Run the following batch script:
<install-dir>\setvars.bat

The script sets up the environment for the latest Intel Advisor version installed on your system.

15

1 Intel® Advisor User Guide

NOTE If you want to set up environment for a lower version of the Intel Advisor installed on your
system, also run one of the following Intel Advisor-specific scripts:
source <install-dir>/advisor/<version>/env/vars.sh

source <install-dir>/advisor/<version>/env/vars.csh

where <version> is the Intel Advisor version you want to use.

Set Up Environment Variables Manually
Linux OS and macOS

1.
2.

Open a terminal.
Check the current definition of the environment variable. For example, with the bash shell, type:

env | grep ADVISOR <version-year> DIR
where <version-year> is a major Intel Advisor version installed on your system. For example, 2021.

If the variable is defined and points to the correct Intel Advisor installation directory, skip the steps
below and continue to launch the Intel Advisor.
Set the environment variable using the export command. Enter:

export ADVISOR <version-year> DIR="<install-dir>"

For example, for the Intel Advisor 2022 in the default installation directory:

export ADVISOR 2022 DIR="/opt/intel/oneapi/advisor/latest"

4.

5.

To set this variable permanently on the current system, add this definition to your .login or a similar
shell initialization file.
Check the definition of the environment variable set:

env | grep ADVISOR <version-year> DIR

You should see the environment variable with its value printed to the terminal.

Windows OS

set

Open a command prompt.
Check the current definition of the environment variable. For example, type:

set ADVISOR <version-year> DIR
where <version-year> is a major Intel Advisor version installed on your system. For example, 2021.

If the variable is defined and points to the correct Intel Advisor installation directory, skip the steps
below and continue to launch the Intel Advisor.
Use a set command to set the environment variable. Type:

set ADVISOR <version-year> DIR="<install-dir>"
For example, for the Intel Advisor 2022:

ADVISOR 2022 DIR="C:\Program Files (x86)\Intel\oneAPI\advisor\latest"

To set this variable permanently on the current system, add this definition to your system or user
environment variables using Control Panel > System and Security > System > Advanced system
settings > Environment Variables....

Additional Variables

Consider setting the following environment variables:

» To determine whether evaluation features have been activated, set the ADVISOR EXPERIMENTAL
environment variable.

16

Intel® Advisor User Guide 1

e To locate the Intel® oneAPI Threading Building Blocks (oneTBB) include directory when working with
programs that use oneTBB , set the TBBROOT environment variable. See Defining the TBBROOT
Environment Variable.

e On Linux OS and macOS: set the BROWSER environment variable to locate an installed HTML browser.
This enables the display of Get Started, Tutorials or Help from the Intel® Advisor GUI Help menu.

¢ On Linux OS and macOS: set the VISUAL or EDITOR environment variable to specify an external editor
to launch when you double-click a line in a Source window. VISUAL takes precedence over EDITOR.

Next Steps

Launch Intel Advisor from GUI or from command line interface.

See Also

Set Up System to Analyze GPU Kernels

Set Up Environment to Offload SYCL, OpenMP* target, and OpenCL™ Applications to CPU
Limit the Number of Threads Used by Parallel Frameworks

Intel Advisor Annotation Definitions File

Set Up System to Analyze GPU Kernels

To analyze performance of GPU kernels in your SYCL, OpenMP* target, or OpenCL™ application with the GPU
Roofline Insights or GPU-to-GPU Offload Modeling perspective, you need to configure your system properly:

1. Make sure you have the Intel® Metrics Discovery Application Programming Interface. The library is
included with the Intel® Advisor.

2. Install and configure a graphics processing unit (GPU) driver for your system.

3. For Linux* OS: Set up environment variables.

Important For the Offload Modeling perspective, make sure the kernels run with the oneAPI Level
Zero back end.

Install Intel® Metrics Discovery Application Programming Interface

To collect GPU hardware metrics and GPU utilization data, Intel Advisor uses the Intel Metric Discovery
Application Programming Interface library. This library is delivered with the Intel Advisor. If you already have
the library installed and you want to use your local library, make sure you have the correct version as
explained below.

NOTE If you see the Cannot Collect GPU Hardware Metrics for the Selected GPU Adapter error
message, install the library as follows. The message means the Intel Advisor cannot access the library.

Windows* OS

Intel Metric Discovery Application Programming Interface library is part of a GPU driver package. You should
have a driver version higher than 27.20.100.8280 for your system.

If you have a lower version of the driver, you can download it from https://downloadcenter.intel.com/.
Linux* OS

Intel Metrics Discovery Application Programming Interface library is supported on Linux OS with kernel
version 4.14 or higher. You should have the Intel Metric Discovery Application Programming Interface library
1.6.0 or higher to support the selection of video adapters.

17

https://downloadcenter.intel.com/

1 Intel® Advisor User Guide

If you have a lower version of the library, you can build and install it from https://github.com/intel/metrics-
discovery.

Install a GPU driver
To collect GPU hardware metrics, install Intel® software packages for general purpose GPU capabilities.
On Windows OS, install a GPU driver for your system from Download Center.

On Linux OS, follows the instructions in the GPGPU Installation Guides to install and configure drivers for
your operating system.

Set Up Environment Variables
On Windows OS, run the Survey step of the perspective as an Administrator.
On Linux OS, run the Survey step of the perspective with root privileges.

If you do not have root permissions on Linux OS, enable collecting GPU hardware metrics for non-privileged
users as follows:

1. Add your username to the video group.

a. To check if you are already in the video group, run:

groups | grep video
b. If you are not part of the video group, add your username to it:

sudo usermod -a -G video <username>
c. Type groups to verify that you successfully added your username to the video group . If video is
not listed, log out and log back in.
2. For Ubuntu* 19.10 and higher: Add your username to the render group.

a. To check if you are already in the render group, run:

groups | grep render
b. If you are not part of the render group, add your username to it:

sudo usermod -a -G render <username>
c. Type groups to verify that you successfully added your username to the render group . If
render is not listed, log out and log back in.
3. Set the value of the dev.1915.perf stream paranoid sysctl option to 0:

sysctl -w dev.i915.perf stream paranoid=0

NOTE This command makes a temporary change that is lost on the next reboot. To change this option
permanently, run:

echo dev.i915.perf stream paranoid=0 > /etc/sysctl.d/60-mdapi.conf

»

Open the grub file in the /etc/default directory.

5. Find GRUB_CMDLINE LINUX DEFAULT and type 1915.enable hangcheck=0 between the "" to disable
time limit and run OpenCL™ kernel for a longer period of time. Save the file and close.

6. Run the following command to update the configuration:

sudo update-grub
Next Steps

e Set up environment variables and run the Intel Advisor from the command-line interface.
¢ Run the Intel Advisor from the graphical user interface and set up a project if you do not have one.

18

https://github.com/intel/metrics-discovery
https://github.com/intel/metrics-discovery
https://downloadcenter.intel.com/
https://dgpu-docs.intel.com/installation-guides/index.html

Intel® Advisor User Guide 1

See Also

Model Offloading to a GPU Find high-impact opportunities to offload/run your code and identify
potential performance bottlenecks on a target graphics processing unit (GPU) by running the
Offload Modeling perspective.

Analyze GPU Roofline Measure and visualize the actual performance of GPU kernels using
benchmarks and hardware metric profiling against hardware-imposed performance ceilings, as
well as determine the main limiting factor, by running the GPU Roofline Insights perspective.

Set Up Environment to Offload SYCL, OpenMP* target, and OpenCL™ Applications to CPU

If you have an application that contains SYCL, C++/Fortran with OpenMP* target, or OpenCL™ code and
prepared for offloading to a target device, you can analyze and model its potential performance on a different
target device with the it with the Intel® Advisor.

To do this, use CPU offload profiling to offload your code temporarily to a CPU so that you can profile it and
model its performance with the Offload Modeling perspective.

Important Offload your SYCL, C++/Fortran with OpenMP target, or OpenCL code to CPU only to
analyze it with the CPU-to-GPU Offload Modeling workflow. To analyze it with the GPU-to-GPU Offload
Modeling workflow or GPU Roofline workflow, configure your system to analyze GPU kernels instead.

Depending on your operating system, do one of the following:

Linux* OS
1. For SYCL code: Force offloading to a CPU using one of the following:

e Recommended: Set the ONEAPI DEVICE SELECTOR environment variable as follows:

export ONEAPI DEVICE SELECTOR=opencl:cpu
e If your application uses a SYCL device selector:

1. In the application source code, add the following to specify the CPU as the target device:
sycl::cpu _selector v

For details, see Device selectors in the SYCL Reference.
2. Rebuild the application,
2. For OpenMP code: Force offloading to a CPU with one of the following:

e Recommended: To offload code to CPU, set the following environment variables:
export OMP TARGET OFFLOAD=MANDATORY
export LIBOMPTARGET DEVICETYPE=CPU

export LIBOMPTARGET PLUGIN=OPENCL
e To run code natively on CPU, set the following variable:

export OMP TARGET OFFLOAD=DISABLED
3. If your application uses OpenCL code: Configure your code to be offloaded to a CPU. Refer to the
OpenCL documentation at https://www.khronos.org/registry/OpenCL/ for specific instructions.

Windows* OS
1. Set the following environment variable to use the JIT profiling API:

set INTEL JIT BACKWARD COMPATIBILITY=1
2. For SYCL code: Force offloading to a CPU using one of the following:

19

https://docs.oneapi.io/versions/latest/iface/device-selector.html
https://www.khronos.org/registry/OpenCL/

1 Intel® Advisor User Guide

e Recommended: Set the ONEAPI DEVICE SELECTOR environment variable as follows:

set ONEAPI DEVICE SELECTOR=opencl:cpu
e If your application uses a SYCL device selector:
1. In the application source code, add the following to specify the CPU as the target device:
sycl::cpu_selector v

For details, see Device selectors in the SYCL Reference.
2. Rebuild the application,
3. For OpenMP code: Force offloading to a CPU with one of the following:

e Recommended: To offload code to CPU, set the following environment variables:
set OMP TARGET OFFLOAD=MANDATORY
set LIBOMPTARGET DEVICETYPE=CPU

set LIBOMPTARGET PLUGIN=OPENCL
e To run code natively on CPU, set the following variable:

set OMP TARGET OFFLOAD=DISABLED
4. If your application uses OpenCL code: Configure your code to be offloaded to a CPU. Refer to the
OpenCL documentation at https://www.khronos.org/registry/OpenCL/ for specific instructions.

Next Steps

e Set up a project if you do not have one and run the Intel Advisorfrom a graphical user interface.
¢ Run the Intel Advisor from a graphical user interface and set up a project if you do not have one.

Launch Intel® Advisor

Once you have downloaded Intel Advisor and set environment variables, choose an option to launch the
product:

Launch Intel Advisor in Visual Studio* IDE (Windows* OS)
Launch Intel Advisor Standalone Interface

Launch Intel Advisor Command Line Interface

Launch Intel Advisor with Python* Scripts

Launch Intel Advisor from a Docker* Container (Linux* OS)

Launch Intel Advisor in Visual Studio* IDE

You can simplify the process of debugging code and tuning your application when both your application and
tuning tools are available in the same interface. By default, Intel Advisor integrates into Microsoft Visual
Studio environment installed on your system and enables you to create and tune your application within a
single environment.

In the Visual Studio, use any of these options to launch Intel Advisor:

e From the Tools menu, choose Intel Advisor [version] > Open Perspective Selector to choose a
perspective for your first analysis.
e From the top toolbar: Click

Intel Advisor icon.

Important If you do not see the icon, right-click the toolbar and select Intel Advisor from the
context menu.

20

https://docs.oneapi.io/versions/latest/iface/device-selector.html
https://www.khronos.org/registry/OpenCL/

Intel® Advisor User Guide 1

Limited Integration to Visual Studio 2022

Intel Advisor provides lightweight integration into Visual Studio 2022. You can launch a standalone Intel
Advisor for your Visual Studio project as follows:

e Select the Tools > Open Intel Advisor menu item

e Click the
Open Intel Advisor toolbar icon

e Right-click the project entry in the Solution Explorer and select Intel Inspector > Open Intel Advisor
from the context menu.

The standalone Intel Advisor graphical version opens inheriting the project properties of the target selected
in Visual Studio.

In Visual Studio 2022, you can also open the documentation resources for Intel Advisor as follows:

e Select the Help > Intel Advisor menu item and choose a required documentation format from the sub-
menu.
e Click the drop-down control at the

toolbar icon and choose a documentation format.

Launch Intel Advisor Standalone Interface
To launch the standalone version, do one of the following:

e Use the Search menu or locate Intel Advisor from the system start menu.
e Launch the product from the command line with the advisor-gui command.

To open a specific project or result, enter:
advisor-gui <path>
where <path> is one of the following:

e Full (absolute) path to a result file (*.advixe)

e Full path to a project file (config.advixeproj)

e Full path to a project directory. If there is no project file in the directory, the Create a Project dialog
box opens and prompts you to create a project in the specified directory.

NOTE
On Windows systems, if the path contains embedded spaces, enclose it in quotation marks.

Launch Intel Advisor Command Line Interface

To run the advisorcommand-line interface, use the following syntax:

advisor <--action> [--action-options] [--global-options] -- <target-application>
[target options]

where:

e <--action> is an Intel Advisor action to do, such as collect or report.

e [--action-options] and [--global-options] are options to modify action behavior.

e <target-application> is an application executable to analyze with optional [target-options] to apply to the
target.

21

1 Intel® Advisor User Guide

The advisor command line interface supports all Intel Advisor perspective and is the recommended method
to run the Intel Advisor from command line.

When you run the first Intel Advisor analysis to a target application from the command line, it also creates a
new project for the target.

NOTE
Review the typical workflows for the Intel Advisor CLI in the dedicated topics for each perspective.

e Run Vectorization and Code Insights Perspective from Command Line
e Run CPU / Memory Roofline Insights Perspective from Command Line
e Run Threading Perspective from Command Line

e Run Offload Modeling Perspective from Command Line

¢ Run GPU Roofline Insights Perspective from Command Line

Launch Intel Advisor with Python* Scripts
You can also run the Offload Modeling perspective using Python scripts as follows:

advisor-python <APM>/<offload-script>.py <project-dir> [--options] [-- <target-
application> [target-options]]

where:

e <APM> is the environment variable that points to the directory with the Intel Advisor scripts. It is SAPM
for Linux* OS and %aPM% for Windows* OS.

e <offload-script> is a script to run: run_oa, collect, or analyze.

e <project-dir> is a path to a project directory.

e [--options] is options to modify script behavior.

e <target-application> is an application executable to analyze with optional [target-options] to apply to the
target.

Launch the Intel Advisor from a Docker* Container on Linux* OS
Containers enable you to set up and configure environments and distribute them using images:

e You can install an image containing an environment pre-configured with all the tools you need, then
develop within that environment.

e You can save an environment and use the image to move that environment to another system without
additional setup.

e You can prepare containers with different sets of compilers, tools, libraries, or other components, as
needed.

1. Pull the Docker image from the oneAPI Containers Repository with the following commands:

image=amr-registry.caas.intel.com/oneapi/oneapi:base-dev-ubuntul8.04
docker pull "S$image"
2. Run the Docker container using the following command:

docker run --cap-add=SYS PTRACE -it "Simage"

NOTE

e The --device=/dev/dri option enables the gpu (if available).
¢ You can specify proxy information using options as follows: -e http proxy="$http proxy" -e
https proxy="S$https proxy"

22

https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers/

Intel® Advisor User Guide 1

3. For the rest of the steps in this section, run any commands from the command line prompt inside the
Docker container.

For example, to set up the Mandelbrot sample, you can run:

cd /one-api-code-samples/HPC/mandelbrot
make
./main -dl
./main -t gpu # run on gpu
./main -t cpu # run on cpu
make clean
4. Run the following commands to source Intel Advisor variables:

source /opt/intel/oneapi/setvars.sh

NOTE This step is not required, but allows you to run tools from any directory, rather than using
absolute file paths.

5. Now that your Docker container is running, you can run Advisor from the command line as you would
without a container. For example:

advisor --collect=survey /bin/ls

When you run the first Intel Advisor analysis to a target application from the command line, it also creates a
new project for the target.

For details about the Intel Advisor command line syntax and options, see the advisor Command Line
Interface Reference. Review the typical workflows for the Intel Advisor CLI in the dedicated topics for each
perspective.

See Also

Set Up a Project

Analyze Vectorization Perspective Improve your application performance, get code-specific
recommendations for how to fix vectorization issues and quick visibility into source code and
assembly code by running the Vectorization and Code Insights perspective.

Analyze CPU Roofline Visualize actual performance against hardware-imposed performance
ceilings by running the CPU / Memory Roofline Insights perspective. It helps you determine the
main limiting factor (memory bandwidth or compute capacity) and provides an ideal roadmap of
potential optimization steps.

Model Threading Designs Analyze, design, tune, and check threading design options without
disrupting your normal development by running the Threading Perspective.

Model Offloading to a GPU Find high-impact opportunities to offload/run your code and identify
potential performance bottlenecks on a target graphics processing unit (GPU) by running the
Offload Modeling perspective.

Analyze GPU Roofline Measure and visualize the actual performance of GPU kernels using
benchmarks and hardware metric profiling against hardware-imposed performance ceilings, as
well as determine the main limiting factor, by running the GPU Roofline Insights perspective.

GUI Navigation Quick Start

Use Get Started with Intel® Advisor to learn how to run perspectives using code samples and collect your first
results.

Navigation Quick Start

After you launch the Intel® Advisor, a Welcome pane opens with the following controls:

23

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top.html

1 Intel® Advisor User Guide

- Project Navigator o Ell T File 1 View () Help 3 Welcome

il
= a4 mmult
a D15

intel Get Started

ADVISOR 01 B srow e

Vectorization Optimization, Memory Insights and Offload Design

Current Project: vect Recent Projects
Show Result Select Perspective mmult
Configure Project Open Project/Result

Create Project

1 Use the left-side toolbar for quick access to Intel Advisor projects and perspective
E controls. For example:

|

- Open the Perspective Selector window and select a perspective to run.

- Create a project.

- Open an existing project.

Use the Project Navigator to view your projects and results based on the directory

2 where the opened project resides.

3 Use the menu to create projects and dynamic analysis results, open projects and results,
configure projects, set various options, open new panes, and access the Intel Advisor
help.

4 Use the main Welcome window to create/open a project, configure current project, see
recent projects, open the Get Started page.

See Also

Set Up a Project

Vectorization and Code Insights Perspective Improve your application performance, get code-
specific recommendations for how to fix vectorization issues and quick visibility into source code
and assembly code by running the Vectorization and Code Insights perspective.

24

]

Intel® Advisor User Guide 1

CPU / Memory Roofline Insights Perspective Visualize actual performance against hardware-
imposed performance ceilings by running the CPU / Memory Roofline Insights perspective. It helps
you determine the main limiting factor (memory bandwidth or compute capacity) and provides an
ideal roadmap of potential optimization steps.

Threading Perspective Analyze, design, tune, and check threading design options without
disrupting your normal development by running the Threading Perspective.

Offload Modeling Perspective Find high-impact opportunities to offload/run your code and identify
potential performance bottlenecks on a target graphics processing unit (GPU) by running the
Offload Modeling perspective.

GPU Roofline Insights Perspective Measure and visualize the actual performance of GPU kernels
using benchmarks and hardware metric profiling against hardware-imposed performance ceilings,
as well as determine the main limiting factor, by running the GPU Roofline Insights perspective.

Set Up Project

To run Intel® Advisor, you need to create a project with your target executable. The project serves as a
reusable container for:

The location of a target executable, which is your compiled application
Target executable sources and binaries

A collection of configurable properties

A previously collected analysis result

To set up a project:

1. Optional: Configure your target application to optimize it for analyses
2. Build your target application with optimal build settings
3. Create and configure a project with your target application

Configure Target Application
Intel® Advisor supports targets:

e Developed to run on Windows* or Linux* operating systems using the Intel® oneAPI DPC++/C++
Compiler, Intel® Fortran Compiler Classic, or GNU* gcc compiler development environment

e That use C/C++, Fortran, or mixed Python* code for the portions that will run in parallel.

e That use SYCL, OpenCL™, or OpenMP* with pragma omp target (for C++) or directive omp target (for
Fortran) code

The target executable must contain source symbol table debug information, so the Intel® Advisor can provide
source line correlation and viewing sources.

Important To analyze an application with the Intel® Advisor, the application should take longer than
500 milliseconds to execute on CPU or GPU. If your application execution time is lower, it might cause
inaccurate data sampling or a No data is collected error.

Before you start profiling your application and applying changes that should increase performance, you can
configure the application as follows to optimize it for analyses:

e Limit the number of threads used by parallel frameworks to configure the application for threading.
e Choose a small, representative data set to reduce analysis overheads by reducing the amount of analyzed
data.

Limit the Number of Threads Used by Parallel Frameworks

Intel® Advisor tools are designed to collect data and analyze serial programs. Before you use the Intel
Advisor to examine a partially parallel program, modify your program so it runs as a serial program with a
single thread within each parallel site.

25

1 Intel® Advisor User Guide

Run Your Program as a Serial Program

To run the current version of your program as a serial program, you need to limit the number of threads to 1.
To run your program with a single thread:

e With Intel® oneAPI Threading Building Blocks (oneTBB) , in the main thread create a
tbb::task scheduler init init (1); object for the lifetime of the program and run the executable
again. For example:

int main() {
tbb::task scheduler init init(1);
// ...rest of program...
return 0;

}

The effect of task_scheduler init applies separately to each user-created thread. So if the program
creates threads elsewhere, you need to create a tbb: :task scheduler init init(1); for that
thread's lifetime as well. Use of certain oneTBB features can prevent the program from running serially.
For more information, see the oneTBB documentation.

e With OpenMP*, do one of the following:

e Set the OpenMP* environment variable OMP_NUM THREADS to 1 before you run the program.

e Omit the compiler option that enables recognition of OpenMP pragmas and directives. On Windows*
0S, omit /Qopenmp, and on Linux* OS omit -openmp.

For more information, see your compiler documentation.

If you cannot remove the parallelism, you should add annotations to mark the parallel code regions and learn
how parallel code will impact Intel Advisor tool reports.

See Also

Build Target Application

Create a Project

Use Partially Parallel Programs with Intel Advisor

Choose a Small, Representative Data Set

When you run an analysis, the Intel® Advisor executes the target against the supplied data set. Data set size
and workload have a direct impact on application execution time and analysis speed

For example, it takes longer to process a 1000x1000 pixel image than a 100x100 pixel image. A possible
reason: You may have loops with an iteration space of 1...1000 for the larger image, but only 1...100 for the
smaller image. The exact same code paths may be executed in both cases. The difference is the number of
times these code paths are repeated.

You can control analysis cost without sacrificing completeness by minimizing this kind of unnecessary
repetition from your target's execution.

Instead of choosing large, repetitive data sets, choose small, representative data sets that fully create tasks
with minimal to moderate work per task. Minimal to moderate means just enough work to demonstrate all
the different behaviors a task can perform.

Your objective: In as short a runtime period as possible, execute as many paths and the maximum number
of tasks (parallel activities) as you can afford, while minimizing the repetitive computation within each task
to the bare minimum needed for good code coverage.

Data sets that run in about ten seconds or less are ideal. You can always create additional data sets to
ensure all your code is checked.

To modify the input data set using the Intel® Advisor GUI, do one of the following

e Specify the project properties for the target. For example:

26

Intel® Advisor User Guide 1

1.Either click File > Project properties... or the

icon on the Intel® Advisor toolbar. This displays the Project Properties dialog box.

2.If needed, click the Analysis Target tab.

3.1n the Target type drop-down list, choose Dependencies Analysis.

4.1n the Application parameters, if your target's main entry point accepts command-line arguments,
specify a value in this field. Either type a value, or click the Modify... button.

5. When done, click OK.

Modify the program's sources (perhaps using #ifdef directives) and rebuild the target.

On Windows* OS only: To modify the input data set in the Visual Studio IDE, do one of the following:

Specify Properties for the project or configuration. For example, right-click the startup project's name to
display the context menu:

1.Choose Properties > Configuration properties > Debugging.

2.Select the type of configuration this change will apply to by selecting the type under Configuration,
such as Active(Debug), Debug, Release, or All Configurations. By default, properties for Debug
and Release configuration are maintained separately.

3. Edit the Command Arguments to select the appropriate data set.

4.Click OK.

Specify a different startup project that already has a reduced data set.

Modify the program's sources (perhaps using #1ifdef directives) and rebuild the target.

NOTE In Visual Studio* 2022, Intel Advisor provides lightweight integration. You can configure and
compile your application and open the standalone Intel Advisor interface from the Visual Studio for
further analysis. All your settings will be inherited by the standalone Intel Advisor project.

Tip
e On Windows* OS only: If you run this configuration often, consider creating a new configuration
perhaps called Dependencies for this small data set.

e For the most current information on optimal C/C++ and Fortran build settings, see Build Target
Application.

Build Target Application

This section contains steps you should do before you begin running analyses on your application with Intel®
Advisor. Do the following:

Build an optimized binary of your application in release mode using settings designed to produce the
most accurate and complete analysis results.
Verify the resulting executable runs before trying to analyze it with the Intel® Advisor.

Important To analyze an application with the Intel® Advisor, the application should take longer than
500 milliseconds to execute on CPU or GPU. If your application execution time is lower, it might cause
inaccurate data sampling or a No data is collected error.

27

1 Intel® Advisor User Guide

Optimal C/C++ Settings

To Do This

For This

Optimal C/C++ Settings

Request full debug
information (compiler
and linker).

Request moderate
optimization.

Disable interprocedural
optimizations that may
inhibit the ability of
Intel® Advisor to collect
performance data.

For Intel® oneAPI
DPC++/C++ Compiler
only.

Produce compiler
diagnostics (optional)

28

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Offload
Modeling

Threading

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Threading

Offload
Modeling

Offload
Modeling

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Linux* OS command line: -g
Windows* OS command line:

o /7I
e /DEBUG

Microsoft Visual Studio* IDE:

¢ C/C++ > General > Debug Information Format >
Program Database (/Zi)

e Linker > Debugging > Generate Debug Info > Yes (/
DEBUG)

Linux* OS command line: -02 or higher
Windows* OS command line:

e /02 or higher
¢ /Obl (Threading only)

Visual Studio* IDE:

e C/C++ > Optimization > Optimization > Maximum
Optimization (Favor Speed) (/02) or higher

¢ C/C++ > Optimization > Inline Function Expansion >
Only_inline (/Ob1) (Threading only)

Linux* OS command line: -no-ipo

Windows* OS command line: /Qipo-

Linux* OS command line: —qopt-report=>5
Windows* OS command line: /Qopt-report:5

Visual Studio* IDE: C/C++ > Diagnostics [Intel C++] >
Optimization Diagnostic Level > Level 5 (/Qopt-
report:5)

Intel® Advisor User Guide 1

To Do This

For This

Optimal C/C++ Settings

Enable vectorization.

Enable SIMD directives.

Enable generation of
multi-threaded code
based on OpenMP*
directives.

Search additional
directory related to Intel
Advisor annotation
definitions.

Search for unresolved
references in
multithreaded,
dynamically linked
libraries.

Enable dynamic loading.

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Primarily
Threading,
but could
also be useful
for
refinement
analyses

Threading
only

Threading
only

Linux* OS command line: -vec

Windows* OS command line: /Qvec

Linux command line: -simd

Windows* OS command line: /Qsimd

Linux* OS command line: —gopenmp
Windows* OS command line: /Qopenmp

Visual Studio* IDE: C/C++ > Language [Intel C++] >
OpenMP Support > Generate Parallel Code (/Qopenmp)

Linux* OS command line:
- IS{ADVISOR [product year] DIR}/include

Windows* OS command
line: /I"$ADVISOR [product year] DIR%"\include

Visual Studio* IDE: C/C++ > General > Additional Include
Directories > $(ADVISOR_[product_year]_DIR)
\include;% (AdditionalIncludeDirectories)

Linux* OS command line: -Bdynamic
Windows* OS command line: /MD or /MDd

Visual Studio* IDE: C/C++ > Code Generation > Runtime
Library > Mutithread

Linux* OS command line: -1d1

29

1 Intel® Advisor User Guide

Optimal Fortran Settings

To Do This

For This
Tool

Optimal Fortran Settings

Request full debug
information (compiler
and linker).

Request moderate
optimization.

Produce compiler
diagnostics (necessary
for version 15.0 of the
Intel® Fortran Compiler
Classic; unnecessary for
version 16.0 and
higher).

Enable vectorization.

Enable SIMD directives.

30

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Threading

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Threading

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Vectorization
and Code
Insights

CPU /

Memory
Roofline
Insights

GPU Roofline
Insights

Vectorization
and Code
Insights

Linux* OS command line: -g
Windows* OS command line:

e /debug=full
e /DEBUG

Visual Studio* IDE:

e Fortran > General > Debug Information Format >
Full (/debug=full)

e Linker > Debugging > Generate Debug Info > Yes (/
DEBUG)

Linux* OS command line: -02 or higher

Windows* OS command line:

e /02 or higher
e /Obl (Threading only)

Visual Studio* IDE:

¢ Fortran > Optimization > Optimization > Maximize
Speed or higher

¢ Fortran > Optimization > Inline Function Expansion >
Only INLINE directive (/Ob1) (Threading only)

Linux* OS command line: —qopt-report=>5

Windows* OS command line: /Qopt-report:5

Visual Studio* IDE: Fortran > Diagnostics > Optimization
Diagnostic Level > Level 5 (/Qopt-report:5)

Linux* OS command line: -vec

Windows* OS command line: /Qvec

Linux* OS command line: -simd

Windows* OS command line: /Qsimd

Intel® Advisor User Guide 1

To Do This For This Optimal Fortran Settings
Tool
CPU /
Memory
Roofline
Insights
GPU Roofline
Insights
Enable generation of Vectorization Linux* OS command line: -gqopenmp
Iti-th
E;l;;:jtogegdiihj(;ie ?:5(1 (I::;Se Visual Studio* IDE: Fortran > Language > Process
. . P 9 OpenMP Directives > Generate Parallel Code (/
directives.
CPU / Qopenmp)
Memory
Roofline
Insights
GPU Roofline
Insights
Search additional Primarily Linux* OS command line:
ige_(:tory relatte: to Intel ;h;:‘eadlll‘(ljg, e -IS{ADVISOR [product year] DIR}/include/ia32 or
visor annotation ut cou ~T${ADVISOR [product year] DIR}/include/ia64
definitions. also be useful - - - i
for -L${ADVISOR [product year] DIR}/1ib32 or
refinement -L${ADVISOR [product year] DIR}/1ib64
analyses e -ladvisor
Windows* OS command line:
e /I"SADVISOR [product year] DIR%"\include\ia32
or /I"SADVISOR [product year] DIR%"\include\ia64
e /L"$ADVISOR [product year] DIR%"\1ib32
or /L"SADVISOR [product year] DIR%"\1lib64
e /ladvisor or
Visual Studio* IDE:
¢ Fortran > General > Additional Include Directories >
"$(ADVISOR_[product_year]_DIR)\include\ia32\"
or "$(ADVISOR_[product_year]_DIR)\include
\ia64\"
+ Linker > General > Additional Library Directories >
"$(ADVISOR_[product_year]_DIR)\Iib32" or "$
(ADVISOR_[product_year]_DIR)\Ilib64"
¢ Linker > Input > Additional Dependencies > .lib >
libadvisor
Search for unresolved Threading Linux* OS command line: -shared-intel
references in only

multithreaded,
dynamically linked
libraries.

Windows* OS command line: /MD or /MDd

Visual Studio* IDE: Fortran > Libraries > Runtime
Librarary > Multithread DLL (/libs:dll /threads) or
Debug Multithread DLL (/libs:dll /threads /dbglibs)

31

1 Intel® Advisor User Guide

To Do This For This Optimal Fortran Settings
Tool

Enable dynamic loading. Threading Linux* OS command line: -1d1
only

Create Project

Intel® Advisor is based on a project paradigm and requires that you create or open a project to enable
analysis features. Think of a project as a reusable container for:

e The location of a compiled application
e A collection of configurable properties
e An analysis result

NOTE You can skip this step in the following cases:

o If you use Intel Advisor as a Microsoft Visual Studio* integration, as it creates a new project
automatically when opened.

e If you use Intel Advisor from the command line interface, as it creates a new project automatically
when you run the first analysis

To create an Intel® Advisor project from the GUI:
1. Open the Create a Project dialog box using any of the following options:

e Choose File > New > Project....
e Click the

icon on the left-side toolbar.
¢ Click the Welcome page Create Project link.
2. In the Create a Project dialog box, configure the following:

Use This To Do This

Project name field Specify the name of the Intel® Advisorproject. This might be similar to
the target executable name. The project name is used for the project
directory name:

e A project file that identifies the target to be analyzed and a set of
configurable attributes for running the target.
¢ Results that allows you to view the collected data.

Location field and Browse Choose or create a directory to contain the project directory. Click the
button Browse button to browse to and select a directory where the project
directory will be created.

Project files should be located in a different directory than your source
directories, such as a directory above the source directories or in a
separate projects directory. You must have write permission to the
specified directory and its subdirectories.

Create project button After entering the Project name and specifying its Location, click
Create project to create the project and its directory and display the
Analysis Target tab of the Project Properties dialog box.

32

Intel® Advisor User Guide 1

3. Click Create Project button.

A Project Properties dialog box opens where you can configure your target application and the
project.

Continue to select a perspective and run it to analyze your application.

NOTE In Visual Studio* 2022, Intel Advisor provides lightweight integration. You can configure and
compile your application and open the standalone Intel Advisor interface from the Visual Studio for
further analysis. All your settings will be inherited by the standalone Intel Advisor project.

See Also

Launch Intel® Advisor

Run Vectorization and Code Insights Perspective from GUI

Run CPU / Memory Roofline Insights Perspective from GUI

Run Threading Perspective from GUI Steps to run the Threading perspective.
Run Offload Modeling Perspective from GUI

Run GPU Roofline Insights Perspective from GUI

Configure Project

After you create a project, the Project Properties dialog box opens. In the Analysis Target tab, you can
specify the target executable, set important project properties, and review current project properties.

Tip
Always check project property values before analyzing a new target.

For an existing project, you can also access this tab:

¢ From the Intel Advisor GUI, choose File > Project Properties.

e Click the
icon on the left-side toolbar.

e From the Visual Studio* menu, choose Project > Intel Advisor [version] Project Properties...

NOTE In Visual Studio* 2022, Intel Advisor provides lightweight integration. You can configure and
compile your application and open the standalone Intel Advisor interface from the Visual Studio for
further analysis. All your settings will be inherited by the standalone Intel Advisor project.

Analysis Target Tab Overview

In the Analysis Target tab, select an analysis type from list (on the left) to display and set project
properties.

Analysi | Select an analysis type to configure. Different project properties are available in the Analysis
s Type Properties region depending on the analysis type selected. The following analysis types are
selector | available:

¢ Survey Analysis Types

e Survey Hotspots Analysis

33

1 Intel® Advisor User Guide

e Trip Counts and FLOP analysis
e Suitability Analysis
« Refinement Analysis Types
e Memory Access Patterns Analysis

¢ Dependencies Analysis
+ Performance Modeling Analysis

Analysi | Set project properties for the analysis type selected in the Analysis Type region.
s
Proper
ties

Analysis Target Tab Controls

The following table covers project properties applicable to all analysis types. To view controls applicable only
to a specific analysis type, use the links immediately below:

e Survey Analysis Controls

e Trip Counts and FLOPS Controls
e Suitability Analysis Controls

e MAP Analysis Controls

e Dependencies Analysis Controls

NOTE To configure a project, it is enough to set only common properties.

Common Controls

The following controls are common for all analysis types. Specify the properties in the Survey Hotspot
Analysis tab and check that the Inherit settings from the Survey Hotspots Analysis Type checkbox is
enabled in other tabs to share the properties for all analyses.

Use This To Do This

Target type drop-down e Analyze an executable or script (choose Launch Application).
e Analyze a process (choose Attach to Process).

If you choose Attach to Process, you can either inherit settings from
the Survey Hotspots Analysis Type or specify the needed settings.

Inherit settings from Inherit Intel Advisor project properties from the Visual Studio* startup
Visual Studio project project (enable).
checkbox and field (Visual

Studio* IDE only) If enabled, the Application, Application parameters, and Working

directory fields are pre-filled and cannot be modified.

NOTE In Visual Studio* 2022, Intel Advisor provides lightweight integration.

You can configure and compile your application and open the standalone Intel
Advisor interface from the Visual Studio for further analysis. All your settings
will be inherited by the standalone Intel Advisor project.

Application field and Select an analysis target executable or script.
Browse... button

34

Intel® Advisor User Guide 1

Use This To Do This
If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application Specify runtime arguments to use when performing analysis (equivalent

parameters field and
Modify... button

to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment

variables field and Modify...

button

Specify environment variables to use during analysis.

Managed code profiling
mode drop-down

+ Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

¢ Collect data for native code and do not attribute data to managed
code (choose Native).

e Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

¢ Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

Child application field

Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

NOTE

For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

e Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

+ Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

35

1 Intel® Advisor User Guide

Use This

To Do This

GPU kernels of interest
field and Modify... button

Analyze specific kernels only, minimizing analysis overhead.

Use MPI launcher checkbox

Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

¢ Select MPI Launcher - Intel or another vendor
« Number of ranks - Number of instances of the application
+ Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis-Specific Con

trols

Use This

To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip

The corresponding CLI action option is ——-resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector

Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Callstack unwinding mode
drop-down list

Set to After collection if:

e Survey analysis runtime overhead exceeds 1.1x.

e A large quantity of data is allocated on the stack, which is a common
case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox

Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

36

Intel® Advisor User Guide 1

Use This

To Do This

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE

Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
—ax (Linux* OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
list

¢ Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

* Keep source code cache within the project (choose Keep cached
files).

Trip Counts and FLOP Analys

is-Specific Controls

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is ——resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

37

1 Intel® Advisor User Guide

Use This

To Do This

Trip Counts / Collect
information about Loop
Trip Counts checkbox

Measure loop invocation and execution (enable).

FLOP / Collect information
about FLOP, L1 memory
traffic, and AVX-512 mask
usage checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Callstacks / Collect
callstacks checkbox

Collect call stack information when performing analysis (enable).

Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Capture metrics for
stripped binaries checkbox

Collect metrics for stripped binaries.

Enabling could increase analysis overhead.

Cache Simulation / Enable
Memory-Level Roofline
with cache simulation
checkbox

Model multiple levels of cache for data, such as counts of loaded or
stored bytes for each loop, to plot the Roofline chart for all memory levels
(enable).

Enabling could increase analysis overhead.

Cache simulator
configuration field

Specify a cache hierarchy configuration to model (enable and specify
hierarchy).

The hierarchy configuration template is:

[num_of_levell_caches]:[num_of_ways_levell_connected]:
[levell_cache_size]:[levell_cacheline_size]/

[num_of _level2_caches]:[num_of _ways_level2 _connected]:
[level2_cache_size]:[level2 _cacheline_size]/

[num_of_level3_caches]:[num_of_ways_level3_connected]:
[level3_cache_size]:[level3_cacheline_size]

For example: 4:8w:32k:641/4:4w:256k:641/1:16w:6m:64l is the
hierarchy configuration for:

e Four eight-way 32-KB level 1 caches with line size of 64 bytes
e Four four-way 256-KB level 2 caches with line size of 64 bytes
¢ One sixteen-way 6-MB level 3 cache with line size of 64 bytes

Data Transfer Simulation /
Data transfer simulation
mode drop-down

Select a level of details for data transfer simulation:

e Off - Disable data transfer simulation analysis.

+ Light - Model data transfers between host and device memory.

e Full - Model data transfers, attribute memory objects to loops that
accessed the objects, and track accesses to stack memory.

38

Intel® Advisor User Guide 1

Suitability Analysis-Specific Controls

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is ——resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Sampling Interval selector

Set the wait time between each analysis collection sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Memory Access Patterns Analysis-Specific Controls

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode group
box

e Report possible memory issues in system modules (choose the Show
problems in system modules radio button).

e Do not report possible memory issues in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Report stack variables
checkbox

Report stack variables for which memory access strides are detected
(enable).

Enabling could increase analysis overhead.

Report heap allocated
variables checkbox

Report heap-allocated variables for which memory access strides are
detected (enable).

39

1 Intel® Advisor User Guide

Use This

To Do This

Enabling could increase analysis overhead.

Enable CPU cache
simulation checkbox

Model cache misses, cache misses and cache line utilization, or cache
misses and loop footprint (enable and select desired options).

Enabling could increase analysis overhead.

Cache associativity drop-
down list

Set the cache associativity for modeling CPU cache behavior. You can set
the value to the following power-of-two integers: 1, 2, 4, 8, 16.

Cache sets drop-down list

Set the cache set size (in bytes) for modeling CPU cache behavior. You
can set the value to the following power-of-two integers: 256, 512, 1024,
2048, 4096, 8192.

Cache line size drop-down
list

Set the cache line size (in bytes) to model CPU cache behavior. You can
set the value to the following power-of-two integers: 4, 8, 16, 32, ..., up
to 65536.

Cache simulation mode
drop-down list

Set the focus for modeling CPU cache behavior:

e Model cache misses only.

e Model cache misses and memory footprint of a loop. Calculation:
Cache line size x Number of unique cache lines accessed during
simulation.

¢ Model cache misses and cache line utilization.

Dependencies Analysis Controls

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode radio
buttons

e Report possible dependencies in system modules (choose the Show
problems in system modules radio button).

e Do not report possible dependencies in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

Analyze stack variables
checkbox

Analyze parallel data sharing for stack variables (enable).

Enabling could increase analysis overhead.

Filter stack variables by scope
checkbox

Enable to report:

e Variables initiated inside the loop as potential dependencies (warning)
e Variables initialized outside the loop as dependencies (error)

40

Intel® Advisor User Guide 1

Use This To Do This

Enabling could increase analysis overhead.

Reduction Detection / Filter

Mark all potential reductions by a specific diagnostic (enable).
reduction variables checkbox

Enabling could increase analysis overhead.

Markup type checkbox Select loops/functions by pre-defined markup algorithm. Supported

algorithms are:

« GPU generic - Select loops executed on a GPU.

e OpenMP - Select OpenMP* loops.

e SYCL - Select SYCL loops.

e OpenCL - Select OpenCL™ loops.

¢« DAAL - Select Intel® oneAPI Data Analytics Library loops.

e TBB - Select Intel® oneAPI Threading Building Blocks loops.

NOTE This option is available only from the Analysis Workflow pane for the
Offload Modeling perspective.

Performance Modeling Properties

Use This To Do This

Device configuration Select a pre-defined hardware configurations from

a drop-down list to model application performance
on.

Other parameters Enter a space-separated list of command-line

parameters. For a full list of available options, see
Command Option Reference.

Configure Binary/Symbol Search Directories

You need to configure binary/symbol search directories if your target application has non-standard directories
with the supporting files needed to execute and analyze the target. By default, if you do not specify source
search directory, Intel Advisor searches the standard OS directories. See Binary/Symbol Search Locations for
details.

With Visual Studio* on Windows* OS, you can instead use the Visual Studio solution and project capabilities
to search for specific directories.

Tab Location
To access this tab:

e From the Intel Advisor GUI, choose File > Project Properties. Then click the Binary/Symbol Search
tab.
e Click the

icon on the left-side toolbar.
e From the Visual Studio* menu, choose File > Intel Advisor [version] Project Properties.... Then click
the Binary/Symbol Search tab.

41

1 Intel® Advisor User Guide

NOTE In Visual Studio* 2022, Intel Advisor provides lightweight integration. You can configure and
compile your application and open the standalone Intel Advisor interface from the Visual Studio for
further analysis. All your settings will be inherited by the standalone Intel Advisor project.

Tab Controls

Use This To Do This
D On a row containing Add new search location, click to browse for directories
to include in the search list. You can also type directly in the row. In addition to
button local directories, you can specify a symbol server URL.
Change the search order of the selected directory by moving it up or down. To
select multiple rows, use the Ctrl or Shift keys.
and
buttons
@ Delete a selected directory row(s).
button
Search recursively Enable to search the specified location subdirectories. To use recursive search,
checkbox the lines must provide only a directory name and omit a file name. Using a
recursive search for multiple directories may slow processing and could lead to
unexpected results.
See Also

e Binary/Symbol Search and Source Search Locations

Configure Source Search Directory

You need to configure source search directories to specify the source search locations needed to execute and
analyze your target application. By default, if you do not specify source search directory, Intel Advisor
searches the directories from the collected result. See Source Search Locations for details.

With Visual Studio, some source locations are pre-populated from the Visual Studio startup project into the
internal representation of Intel Advisor project properties, so you may not need to add new row(s).

Tip

For Threading Advisor only: Intel® Advisor does not automatically populate source locations after you
create a project using the Intel® Advisor GUI, so you must specify one or more locations to find
application annotations. View the Annotation Report to verify all project annotations are found.

Tab Location
To access this tab:

e From the Intel® Advisor GUI, choose File > Project Properties. Then click the Source Search tab.

e Click the

42

Intel® Advisor User Guide 1

icon on the left-side toolbar.
e From the Visual Studio* menu, choose File > Intel Advisor [version] Project Properties.... Then click

the Source Search tab.

NOTE In Visual Studio* 2022, Intel Advisor provides lightweight integration. You can configure and
compile your application and open the standalone Intel Advisor interface from the Visual Studio for
further analysis. All your settings will be inherited by the standalone Intel Advisor project.

Tab Controls

Use This

To Do This

]

On a row containing Add new search location, click to browse for directories
to include in the search list. You can also type directly in the row.

button
Change the search order of the selected directory by moving it up or down. To
select multiple rows, use the Ctrl or Shift keys.
and
buttons
[E Delete a selected directory row(s).
button

Search recursively
checkbox

Enable to search the specified location subdirectories. To use recursive search,
the lines must provide only a directory name and omit a file name. Using a
recursive search for multiple directories may slow processing and could lead to
unexpected results.

Mask text box

Specify the file name mask pattern(s) to ignore (skip) using wildcard
characters, such as an asterisk (*). For example, you can skip certain file
suffixes.

File text box Specify the file(s) to ignore (skip) using an absolute path.
To delete a row, use the
button.
See Also

e Binary/Symbol Search and Source Search Locations

Binary/Symbol Search and Source Search Locations
When using the Standalone GUI:

e If you specify binary and symbol locations to search using the Binary/Symbol Search tab, they will be
searched in addition to the default binary and symbol locations.

e If you specify source locations to search using the Source Search tab, they will be searched in addition
to the default source search locations.

43

1 Intel® Advisor User Guide

Binary/Symbol Search Locations

Intel Inspector searches binary and symbol files in default locations and in locations specified in the Binary/
Symbol Search tab (if specified).

The following lists describe the order and default locations that are searched. As indicated below, some
directory searches examine the specified directory and its subdirectories, while other searches do not
examine its subdirectories.

The search order on Windows* OS systems is the following:

1. Search for binary and symbol files in the directories specified in the Binary/Symbol Search tab and
their subdirectories (if enabled in the tab).

2. Search for symbol files in the directories near the related (corresponding) binary file(s) just found, such
as a library:

e Check in the directory of the corresponding binary file, using the corresponding name.
e Check in the directory of the corresponding binary file, using a related name. For example, for
app.dll where a file app_x86.pdb is present, also search for file app.pdb.

3. For symbol files, also search using symbol server paths specified in the Binary/Symbol Search tab in
the following notation: srv*C:\localsymbols*http://msdl.microsoft.com/download/symbols
and/or provided in Visual Studio Tools > Options > Debugging > Symbols.

4. Search for binary files in this standard Windows OS system directory:

%SYSTEMROOT%\system32\drivers (subdirectories are not searched)
5. Search for symbol files in these standard Windows OS system directories:

e All directories specified in the environment variable NT SYMBOL PATH (subdirectories are not
searched)

e srv*%SYSTEMROOT%\symbols (symbol downstream or cache path)

e S$SYSTEMROOT%\symbols\dll (subdirectories are not searched)

The search order on Linux* OS systems is the following:

1. Search for binary and symbol files in the directories specified in the Binary/Symbol Search tab and
their subdirectories (if enabled in the tab).

2. Search for binary files in directories from the collected result that provide an absolute path name. If the
file name vmlinux is present, search these directories:

e /usr/lib/debug/lib/modules/ uname -r /vmlinux
e /boot/vmlinuz-'uname -r°

3. Search for symbol files in the directories near the related (corresponding) binary file(s) just found, such
as a library:

e Check in the directory of the corresponding binary file, using the corresponding name.
e Check in the directory of the corresponding binary file, using a related name. For example, for
app.dll where a file app x86.pdb is present, also search for file app.pdb.
e Search in the .debug subdirectory.
4. Search for binary files in these standard Linux OS system directories:

e /lib/modules (subdirectories are not searched)
e /lib/modules/ uname -r /kernel (subdirectories are searched)
5. Search for symbol files in these standard Linux OS system directories:

e usr/lib/debug(subdirectories are not searched)
e /usr/lib/debug with appended path to the corresponding binary file, such as /usr/1ib/
debug/usr/bin/ls.debug

44

Intel® Advisor User Guide

Source Search Locations

A limited set of default source locations are used in addition to the locations specified in the Source Search

tab.

NOTE

When using the Intel Advisor GUI, you must specify one or more new rows (locations) in the Source

Search tab so Intel Advisor tools can find your application's annotations.

The following list describes the order and default locations that are searched. As indicated below, some
directory searches examine the specified directory and its subdirectories, while other searches do not
examine its subdirectories.

1. Search for source files in the directories specified in the Source Search tab. With Intel Advisor, you

can indicate whether the subdirectories of these directories should be searched.
2. Search for source files in directories from the collected result that provide an absolute path name.
3. On Linux OS systems: Search for source files in these standard Linux locations (does not search
subdirectories):
/usr/src

/usr/src/linux-headers- " "uname -r°

See Also
Binary/Symbol Search Tab
Source Search Tab

Analyze Vectorization Perspective

Improve your application performance, get code-
specific recommendations for how to fix vectorization
issues and quick visibility into source code and
assembly code by running the Vectorization and Code
Insights perspective.

The Vectorization and Code Insights perspective can help you to identify:

Where vectorization, or parallelization with threads, will pay off the most
If vectorized loops are providing benefit, and if not, why not

Not vectorized loops and why they are not vectorized

Memory usage issues

Performance insights and problems in general

How It Works
The Vectorization and Code Insights perspective includes the following steps:

1. Getintegrated compiler report data and performance data by running a Survey analysis.

2. Identify the number of times loops are invoked and execute and the number of floating-point and
integer operations by running the Characterization analysis. It measures the call count/loop count
and iteration count metrics for your application. Enable to make better decisions about your
vectorization strategy for particular loops, as well as optimize already-vectorized loops.

3. Check for various memory issues by running the Memory Access Patterns (MAP) analysis. It can

warn you about non-contiguous memory accesses, unit stride vs. non-unit stride accesses, or other
issues. Enable to identify issues that could lead to significant vector code execution slowdown or block
automatic vectorization by the compiler.

45

1 Intel® Advisor User Guide

4. Check for data dependencies in loops the compiler did not vectorize by running the Dependencies
analysis. The Dependencies analysis checks for real data dependencies and if real dependencies are
detected, provides additional details to help resolve them. Choose to identify and better characterize
real data dependencies that could make forced vectorization unsafe.

Vectorization Summary

Vectorization and Code Insights perspective collects data about your application performance, including the
following:

e Performance metrics, including vectorization efficiency for the whole application and for each vectorized
loop/function

e Top five time-consuming loops sorted by self time
e Integrated compiler report data and code-specific recommendations for fixing performance issues

@ Vectorization And Code Insights

Veclorization and Code Insights perspective lets you identify loaps thal will Denefit most from vector parallelism, discover performance issues preventing from effective vectorization

v Program Metrics

Elapsed Time 318 ~ GFLOPS 520

Vector Instruction Set AVX2, AVX, SSE GFLOP Count 16.545

MNumber of CPU Threads 1 FP Arithmetic Intensity 0.270
» GINTOPS 1.76

~ Performance Characteristics

Wetics Total

Total CPU time 2888 I 1 00°

Time in 3 vectorized loops 2238

Time in scalar code 0658 — 22.4%
v Vectorization Gain/Efficiency

Vectorized Loops Gain/Efficiency ™ 2.03x

Program Approximate Gain 1.80x

> OP/S And Bandwidih
> Per Program Recommendations

v Top Time-Consuming Loops

Loop Self Time Total Time! Trip Counts' Vector Efficienc)

Ioop in matvec at Multily.c: 0.880s 0.880s 57 [—

loop in matvec at Muli 0.8225 08225 13 S —
O loop in matvec at Muliy 06215 2.8565 a7

loop in matvec at Multiy 05335 05333 7.5 [o —
< loop in main at Driver.c:155 0.008s 2.864s 1000000

v

Refinement Analysis Data

v Recommendations

Force veclorized remainder loop in matvec at Multipiy.c:82
Add data padding loop in matvec at Multiply.c:82
Force vectorized remainder loop in matv:

it Multiply.c-69

Add daa padding loop in malvec at 69

Force veclorized remainder loop in matvec at Multiply.c:60

See Also
Run Vectorization and Code Insights Perspective from GUI
Run Vectorization and Code Insights Perspective from Command Line

Vectorization Report Navigation Overview Review the controls available in the main report of the
Vectorization and Code Insights perspective of the Intel® Advisor.

Model Offloading to a GPU Find high-impact opportunities to offload/run your code and identify

potential performance bottlenecks on a target graphics processing unit (GPU) by running the
Offload Modeling perspective.

Run Vectorization and Code Insights Perspective from GUI

Prerequisite:

In the graphical-user interface (GUI): Create a project and specify an analysis target and target options.
To configure and run the Vectorization and Code Insights perspective from the GUI:

1. From the Analysis Workflow tab, configure the perspective and set analysis properties, depending on
desired results:

46

Intel® Advisor User Guide 1

e Select a collection accuracy level with analysis properties preset for a specific result:

Low: Get the basic insights about vectorized and un-vectorized loops in your code.
¢ Medium: Identify the number of times loops execute to make better decisions about your
vectorization strategy.
e High: Analyze application memory usage and performance values that help you make better
decisions about your vectorization strategy in details.
e Select the analyses and properties manually to adjust the perspective flow to your needs. The
accuracy level is set to Custom.

The higher accuracy value you choose, the higher runtime overhead is added to your application. The
Overhead indicator shows the overhead for the selected configuration. For the Custom accuracy, the
overhead is calculated automatically for the selected analyses and properties.

By default, accuracy is set to Low. For more information, see Vectorization Accuracy Presets.
2. If you want to limit the Characterization, Memory Access Patterns, and/or Dependencies analyses to
one or more specific loops/functions instead of analyzing the whole application:

e From a Survey report generated: Mark one or more un-vectorized loops by enabling the
corresponding
&

While the perspective is running, you can do the following in the Analysis Workflow tab:

checkboxes in the report.
3. Click

button to run the perspective.

e Control the perspective execution:

e Stop data collection and see the already collected data: Click the

button.

e Cancel data collection and discard the collected data: Click the

button.
e Pause data collection: Click the

button.
e Expand an analysis with

to control the analysis execution:

e Pause the analysis: Click the

00|
button.

e Stop the currently running analysis and start the next analysis selected: Click the

=]
button.

e Interrupt execution of all selected analyses and see the already collected data: Click the

button.

To run the Vectorization and Code Insights perspective with the Low accuracy from the command
line interface:

advisor --collect=survey --project-dir=./advi results -- ./myApplication

47

1 Intel® Advisor User Guide

See Run Vectorization and Code Insights Perspective from Command Line for details.

NOTE To generate command lines for selected perspective configuration, click the

Command Line button.

Once the data is collected, the Survey report opens showing a Summary tab. Depending on the selected

accuracy level and perspective properties, continue to investigate the results:

e Examine Not-Vectorized and Under-Vectorized Loops

e Examine Loop Call Count
e Investigate Memory Usage and Traffic
e Identify Data Dependencies in Your Application

NOTE

e After you run the Vectorization and Code Insights perspective, the collected Survey data becomes
available for all other perspectives. If you switch to another perspective, you can skip the Survey
step and run only perspective-specific analyses.

o If the Survey analysis does not collect enough data to produce a report, it displays a Target
executed too quickly or does not contain debug symbols message. Increase the target workload or
data to run the analysis for at least a few seconds, check whether debug information is specified as
a build option, or specify a different target application.

Vectorization Accuracy Presets

For each perspective, Intel® Advisor has several levels
of collection accuracy. Each accuracy level is a set of

analyses and properties that control what data is

collected and the level of collection details. The higher

accuracy value you choose, the higher runtime
overhead is added.

The following accuracy levels are available:

about how well your
application is
vectorized and how
you can improve
vectorization
efficiency

Analyses Survey

48

about how well your
application is
vectorized and the
number of iterations
in loops/functions

Survey +
Characterization (Trip
Counts)

Comparison / Low Medium High

Accuracy Level

Overhead 1.1x 5-8x 10 - 40x

Goal Get basic insights Get more insights Get detailed insights about

your application performance,
including performance issues
and detailed optimization
recommendations

Survey + Characterization
(Trip Counts, FLOP, Call
Stacks) + Memory Access
Patterns

Intel® Advisor User Guide 1

Comparison / Low Medium High
Accuracy Level

Result Basic Survey report Survey report Extended Survey report with
extended with trip trip counts and floating-point
count data and integer operations (FLOP

and INTOP)

Memory Access Patters with
memory traffic data and
memory usage issues

You can choose custom accuracy and set a custom perspective flow for your application. For more
information, see Customize Vectorization and Code Insights Perspective.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

Customize Vectorization and Code Insights Perspective

Customize the perspective flow to better fit your goal
and your application.

If you change any of the analysis settings from the Analysis Workflow tab, the accuracy level changes to
Custom automatically. With this accuracy level, you can customize the perspective flow and/or analysis
properties.

To change the properties of a specific analysis:

1. Expand the analysis details on the Analysis Workflow pane with

2. Select desired settings.
3. For more detailed customization, click the gear

icon. You will see the Project Properties dialog box open for the selected analysis.
4. Select desired properties and click OK.

For a full set of available properties, click the
icon on the left-side pane or go to File > Project Properties.

The following tables cover project properties applicable to the analyses in the Vectorization and Code Insights
perspective.

Common Properties

Use This To Do This

Target type drop-down e Analyze an executable or script (choose Launch Application).
¢ Analyze a process (choose Attach to Process).

If you choose Attach to Process, you can either inherit settings from
the Survey Hotspots Analysis Type or specify the needed settings.

49

1 Intel® Advisor User Guide

Use This

To Do This

Inherit settings from
Visual Studio project
checkbox and field (Visual
Studio* IDE only)

Inherit Intel Advisor project properties from the Visual Studio* startup
project (enable).

If enabled, the Application, Application parameters, and Working
directory fields are pre-filled and cannot be modified.

NOTE In Visual Studio* 2022, Intel Advisor provides lightweight integration.

You can configure and compile your application and open the standalone Intel
Advisor interface from the Visual Studio for further analysis. All your settings
will be inherited by the standalone Intel Advisor project.

Application field and
Browse... button

Select an analysis target executable or script.

If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application
parameters field and
Modify... button

Specify runtime arguments to use when performing analysis (equivalent
to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment

variables field and Modify...

button

Specify environment variables to use during analysis.

Managed code profiling
mode drop-down

+ Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

e Collect data for native code and do not attribute data to managed
code (choose Native).

¢ Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

¢ Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

Child application field

Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

50

Intel® Advisor User Guide 1

Use This

To Do This

NOTE

For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

* Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

e Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

GPU kernels of interest
field and Modify... button

Analyze specific kernels only, minimizing analysis overhead.

Use MPI launcher checkbox

Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

e Select MPI Launcher - Intel or another vendor
 Number of ranks - Number of instances of the application
» Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis Properties

Use This

To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip

The corresponding CLI action option is —-resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector

Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

51

1 Intel® Advisor User Guide

Use This

To Do This

Decreasing the limit could decrease analysis overhead.

Callstack unwinding mode
drop-down list

Set to After collection if:

e Survey analysis runtime overhead exceeds 1.1x.

e A large quantity of data is allocated on the stack, which is a common
case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox

Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE

Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
—ax (Linux* OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
list

¢ Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

* Keep source code cache within the project (choose Keep cached
files).

52

Intel® Advisor User Guide 1

Trip Counts and FLOP Analysis Properties

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is ——resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Collect information about
Loop Trip Counts checkbox

Measure loop invocation and execution (enable).

Collect information about
FLOP, L1 memory traffic,
and AVX-512 mask usage
checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Collect stacks checkbox

Collect call stack information when performing analysis (enable).

Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Memory Access Patterns Analysis Properties

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode group
box

e Report possible memory issues in system modules (choose the Show
problems in system modules radio button).

e Do not report possible memory issues in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

53

1 Intel® Advisor User Guide

Use This

To Do This

Report stack variables
checkbox

Report stack variables for which memory access strides are detected
(enable).

Enabling could increase analysis overhead.

Report heap allocated
variables checkbox

Report heap-allocated variables for which memory access strides are
detected (enable).

Enabling could increase analysis overhead.

Enable CPU cache
simulation checkbox

Model cache misses, cache misses and cache line utilization, or cache
misses and loop footprint (enable and select desired options).

Enabling could increase analysis overhead.

Cache associativity drop-
down list

Set the cache associativity for modeling CPU cache behavior. You can set
the value to the following power-of-two integers: 1, 2, 4, 8, 16.

Cache sets drop-down list

Set the cache set size (in bytes) for modeling CPU cache behavior. You
can set the value to the following power-of-two integers: 256, 512, 1024,
2048, 4096, 8192.

Cache line size drop-down
list

Set the cache line size (in bytes) to model CPU cache behavior. You can
set the value to the following power-of-two integers: 4, 8, 16, 32, ..., up
to 65536.

Cache simulation mode
drop-down list

Set the focus for modeling CPU cache behavior:

¢ Model cache misses only.

e Model cache misses and memory footprint of a loop. Calculation:
Cache line size x Number of unique cache lines accessed during
simulation.

e Model cache misses and cache line utilization.

Dependencies Analysis Properties

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode radio
buttons

¢ Report possible dependencies in system modules (choose the Show
problems in system modules radio button).

e Do not report possible dependencies in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

54

Intel® Advisor User Guide 1

Use This To Do This

Analyze stack variables

Analyze parallel data sharing for stack variables (enable).
checkbox

Enabling could increase analysis overhead.

Filter stack variables by scope

Enable to report:
checkbox

e Variables initiated inside the loop as potential dependencies (warning)
e Variables initialized outside the loop as dependencies (error)

Enabling could increase analysis overhead.

Reduction Detection / Filter

Mark all potential reductions by a specific diagnostic (enable).
reduction variables checkbox

Enabling could increase analysis overhead.

Markup type checkbox Select loops/functions by pre-defined markup algorithm. Supported

algorithms are:

¢ GPU generic - Select loops executed on a GPU.

e OpenMP - Select OpenMP* loops.

e SYCL - Select SYCL loops.

e OpenCL - Select OpenCL™ loops.

¢ DAAL - Select Intel® oneAPI Data Analytics Library loops.

e TBB - Select Intel® oneAPI Threading Building Blocks loops.

NOTE This option is available only from the Analysis Workflow pane for the
Offload Modeling perspective.

Run Vectorization and Code Insights Perspective from Command Line

Vectorization and Code Insights perspective includes several analyses that you can run depending on the
desired result. The main analysis is the Survey, which collects performance data for loops and functions in
your application and identifies under-vectorized and non-vectorized loops/functions. The Survey analysis is
enough to get the basic insights about your application performance.

Tip See Intel Advisor cheat sheet for quick reference on command line interface.

Prerequisites

Set Intel Advisor environment variables with an automated script to enable the command line interface (CLI).

Run Vectorization and Code Insights Perspective

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

1. Run the Survey analysis.

advisor --collect=survey --project-dir=./advi results -- ./myApplication
2. Run the Characterization analysis to collect trip counts and FLOP data:

advisor --collect=tripcounts --flop --stacks --project-dir=./advi results -- ./myApplication

55

https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-cheat-sheet.pdf

1 Intel® Advisor User Guide

3. Optional: Run the Memory Access Patterns analysis for loops/functions with the Possible Inefficient
Memory Access Patter issue.

advisor --collect=map --select=has-issue --project-dir=./advi results -- ./myApplication
4. Optional: Run the Dependencies analysis to check for loop-carried dependencies in loops/functions with
Assumed dependency present issue:

advisor --collect=dependencies --project-dir=./advi results --select=has-issue -- ./myApplication

You can view the results in the Intel Advisor graphical user interface (GUI), print a summary to a command
prompt/terminal, or save to a file. See View the Results below for details.

Analysis Details
The Vectorization and Code Insights workflow includes the following analyses:

1. Survey to collect initial performance data.

2. Characterization with trip counts and FLOP data to collect additional performance details.

3. Memory Access Patterns (optional) to identify memory traffic data and memory usage issues.
4. Dependencies (optional) to identify loop-carried dependencies.

Each analysis has a set of additional options that modify its behavior and collect additional performance data.
The more analyses you run and option you use, the more useful data about your application you get.

Consider the following options:
Characterization Options
To run the Characterization analysis, use the following command line action: --collect=tripcounts.

Recommended action options:

Options Description

--flop Collect data about floating-point and integer
operations, memory traffic, and mask utilization
metrics for AVX-512 platforms.

--stacks Enable advanced collection of call stack data.

--enable-cache-simulation Model CPU cache behavior on your target
application.

--cache-config=<config> Set the cache hierarchy to collect modeling data for

CPU cache behavior. Use with
enable-cache-simulation.

The value should follow the template:
[<num_of_caches>]:
[<num_of_ways_caches_connected>]:
[<cache_size>]:[<cacheline_size>] for each of
three cache levels separated with a /.

--cachesim-associativity=<num> Set the cache associativity for modeling CPU cache
behavior: 1 | 2 | 4 | 8 (default) | 16. Use with
enable-cache-simulation.

--cachesim-mode=<mode> Set the focus for modeling CPU cache behavior:
cache-misses | footprint | utilization. Use
with enable-cache-simulation.

See advisor Command Option Reference for more options.

56

Intel® Advisor User Guide 1

Memory Access Patterns Options

The Memory Access Patterns analysis is optional because it adds a high overhead. To run the Memory Access
Patterns analysis, use the following command line action: --collect=map.

Recommended action options:

Options Description

--select=<string> Select loops for the analysis by loop IDs, source
locations, or criteria such as scalar, has-issue,
or markup=<markup-mode>. This option is
required.

See select for more selection options.

--enable-cache-simulation Model CPU cache behavior on your target
application.
--cachesim-cacheline-size=<num> Set the cache line size (in bytes) for modeling CPU

cache behavior: 4 | 8| 16 | 32 | 64 (default) | 128
| 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 |
32768 | 65536. Use with

enable-cache-simulation.

--cachesim-sets=<num> Set the cache set size (in bytes) for modeling CPU
cache behavior: 256 | 512 | 1024 | 2048 | 4096
(default) | 8192. Use with
enable-cache-simulation.

See advisor Command Option Reference for more options.
Dependencies Options

The Dependencies analysis is optional because it adds a high overhead and is mostly necessary if you have
scalar loops/functions in your application. To run the Dependencies analysis, use the following command line
action: --collect=dependencies.

Recommended action options:

Options Description

--select=<string> Select loops for the analysis by loop IDs, source
locations, criteria such as scalar, has-issue, or
markup=<markup-mode>. This option is required.

See select for more selection options.

--filter-reductions Mark all potential reductions with a specific
diagnostic.

See advisor Command Option Reference for more options.

Next Steps
Continue to explore the Vectorization and Code Insights results with a preferred method. For details about
the metrics reported, see CPU and Memory Metrics.

See Also

Analyze Vectorization Perspective Improve your application performance, get code-specific
recommendations for how to fix vectorization issues and quick visibility into source code and
assembly code by running the Vectorization and Code Insights perspective.

57

1 Intel® Advisor User Guide

Command Line Interface This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.
Minimize Analysis Overhead

Analyze MPI Applications With Intel® Advisor, you can analyze parallel tasks running on a cluster
to examine performance of your MPI application.

Vectorization Accuracy Levels in Command Line

For each perspective, Intel® Advisor has several levels of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is collected and the level of collection details. The higher
accuracy value you choose, the higher runtime overhead is added.

In CLI, each accuracy level corresponds to a set of commands with specific options that you should run one
by one to get a desired result.

The following accuracy levels are available:

extended with trip
count data

Comparison / Low Medium High
Accuracy Level
Overhead 1.1x 5 - 8x 10 - 40x
Goal Get basic insights Get more insights Get detailed insights about
about how well your about how well your your application performance,
application is application is including performance issues
vectorized and how vectorized and the and detailed optimization
you can improve number of iterations recommendations
vectorization in loops/functions
efficiency
Analyses Survey Survey + Survey + Characterization
Characterization (Trip (Trip Counts, FLOP, Call
Counts) Stacks) + Memory Access
Patterns
Result Basic Survey report Survey report Extended Survey report with

trip counts and floating-point
and integer operations (FLOP
and INTOP)

Memory Access Patters with
memory traffic data and
memory usage issues

You can generate commands for a desired accuracy level from the Intel Advisor GUI. See Generate Command

Lines from GUI for details.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead .

Consider the following command examples.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Low Accuracy

To run the Vectorization and Code Insights perspective with the low accuracy:

advisor --collect=survey --project-dir=./advi results -- ./myApplication

58

Intel® Advisor User Guide 1

Medium Accuracy
To run the Vectorization and Code Insights perspective with the medium accuracy:
1. Run the Survey analysis:

advisor --collect=survey --project-dir=./advi results -- ./myApplication
2. Run the Trip Counts analysis:

advisor --collect=tripcounts --enable-data-transfer-analysis --project-dir=./advi results -- ./
myApplication

High Accuracy
To run the Vectorization and Code Insights perspective with the high accuracy:
1. Run the Survey analysis:

advisor --collect=survey --project-dir=./advi results -- ./myApplication
2. Run the Trip Counts and FLOP analysis:

advisor --collect=tripcounts --flop --stacks --project-dir=./advi results -- ./myApplication
3. Run the Memory Access Pattern analysis for the loops that have the Possible Inefficient Memory Access
Pattern issue:

advisor --collect=map --select=has issue --project-dir=./advi results -- ./myApplication

You can view the results in the Intel Advisor GUI or generate an interactive HTML report.

See Also

advisor Command Option Reference

Command Line Interface Reference This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

Run Vectorization and Code Insights Perspective from Command Line

Minimize Analysis Overhead

Explore Vectorization and Code Insights Results

Intel® Advisor provides several ways to view the Vectorization and Code Insights results.

View Result in CLI

If you run the Vectorization and Code Insights perspective from command line, you can print the results to a
terminal or a command prompt and save them to a .txt, .csv, or .xml file.

For example, to generate the Survey report:
advisor --report=survey --project-dir=./advi results

You should see a similar result:

ID Function Call Sites Total Self
Type Why No Vectorization ...
and Loops Time
Time

14 [loop in main at mmult serial.cpp:79] 0.495s 0.495s Vectorized Versions 1 vectorization
possible but seems inefficient ...

6 -[loop in main at mmult serial.cpp:79] 0.275s 0.275s Vectorized

(Body)

59

1 Intel® Advisor User Guide

3 -[loop in main at mmult serial.cpp:79] 0.205s 0.205s Vectorized

(Body) .

7 -[loop in main at mmult serial.cpp:79] 0.015s 0.015s

Peeled

11 -[loop in main at mmult serial.cpp:79] Os Os Remainder vectorization
possible but seems inefficient ...

4 [loop in main at mmult serial.cpp:79] 0.510s 0.015s Scalar inner loop was
already vectorized Ce

12 [loop in main at mmult serial.cpp:79] 0.510s Os Scalar Versions 1 inner loop
was already vectorized e

5 -[loop in main at mmult serial.cpp:79] 0.510s Os Scalar inner loop was

already vectorized
The result is also saved into a text file advisor-survey.txt located at . /advi results/eNNN/hsNNN.
You can generate a report for any analysis you run. The generic report command looks as follows:
advisor --report=<analysis-type> --project-dir=<project-dir> --format=<format>
where:

e <analysis-type> is the analysis you want to generate the results for. For example, survey for the Survey
report, top-down for the Survey report in a top-down view, map for the Memory Access Patterns, or
dependencies for the Dependencies report.

e ——format=<format>is a file format to save the results to. <format> is text (default), csv, xml.

You can also generate a report with the data from all analyses run and save it to a CSV file with the —-
report=joined action as follows:

advisor --report=joined --report-output=<path-to-csv>

where --report-output=<path-to-csv> is a path and a name for a .csv file to save the report to. For
example, /home/report.csv. This option is required to generate a joined report.

See advisor Command Line Interface Reference for more options.

View Result in GUI

If you run the Vectorization and Code Insights perspective from command line, a project is created
automatically in the directory specified with --project-dir. All the collected results and analysis
configurations are stored in the .advixeproj project, that you can view in the Intel Advisor.

To open the project in GUI, you can run the following command:

advisor-gui <project-dir>

NOTE If the report does not open, click Show Result on the Welcome pane.

If you run the Vectorization and Code Insights perspective from GUI, the result is opened automatically after
the collection finishes.

You first see a Vectorization Summary report that includes the overall information about vectorized and not
vectorized loops/functions in your code and the vectorization efficiency, including:

e Performance metrics of your program and the speedup for the vectorized loops/functions
e Top five time-consuming loops and top five optimization recommendations with the highest confidence

60

Intel® Advisor User Guide 1

@ Vectorization And Code Insights

Vectorization and Code Insights perspective lets you identify loops that will benefit most from vector parallelism, discover performance issues preventing from effective vectorization

~ Program Metrics

Elapsed Time 318z * GFLOPS 520

Vector Instruction Set AVX2, AVX, SSE GFLOP Count 16.545

Number of CPU Threads 1 FP Arthmetic Intensity 0270
» GINTOPS 176

~ Performance Characteristics
Metrics
Total CPU time
Time in 3 vectorized loops

Total
2.88s
223s

Time in scalar code 0.65s

~ Vectorization Gain/Efficiency

Vectorized Loops Gain/Efficiency’ =203 [SASQ

Program Approximate Gain 1.80x

> OP/S And Bandwidth

> Per Program Recommendations

v Top Time-Consuming Loops

Loop Self Time! Total Time! Trip Counts' Vector Efficiency

loop in matvec at Multiphy c: 038808 0.880s 57 |
08225 0.822s 1.3 2% 1
0.821s 2.856s 47
05335 0.533s 7.5
3 loop in main at Driver.c:155 0.008s 2.864s 1000000

loop in matvec at Multiply.c!

3 loop in matvec at Multiply.c:
loop in matvec at Multiphy.c-6(

.

~

Refinement Analysis Data

v Recommendations

Force vectorized remainder loop in matvec at Multiply. c82
Add data padding loop in matvec at Multiph.c:82
Force vectorized remainder loop in matvec at Multiply. 69
Add data padding loop in matvec at Multiph.c:69
Force vectorized remainder loop in matvec at Multiply.c:6(

s

o =

Save a Read-only Snapshot

A snapshot is a read-only copy of a project result, which you can view at any time using the Intel Advisor
GUI. You can save a snapshot for a project using Intel Advisor GUI or CLI.

To save an active project result as a read-only snapshot from GUI: Click the

button in the top ribbon of the report. In the Create a Result Snapshot dialog box, enter the snapshot
details and save it.

To save an active project result as a read-only snapshot from CLI:

advisor --snapshot --project-dir=<project-dir> [--cache-sources] [--cache-binaries] --
<snapshot-path>

where:
e --cache-sources is an option to add application source code to the snapshot.
e -—-cache-binaries is an option to add application binaries to the snapshot.

e <snapshot-path is a path and a name for the snapshot. For example, if you specify /tmp/new snapshot,
a snapshot is saved in a tmp directory as new_snapshot.advixeexpz. You can skip this and save the
snapshot to a current directory as snapshotXXX.advixeexpz.

To open the result snapshot in the Intel Advisor GUI, you can run the following command:

advisor-gui <snapshot-path>

61

1 Intel® Advisor User Guide

You can visually compare the saved snapshot against the current active result or other snapshot results.

See Create a Read-only Result Snapshot for details.

Result Interpretation

When you run the Vectorization and Code Insights perspective, depending on a configuration chosen, the

report can show different levels of details:

e Examine Not-Vectorized and Under-Vectorized Loops
e Analyze Loop Call Count

e Investigate Memory Usage and Traffic

e Find Data Dependencies

For a general overview of the report, see Vectorization Report Overview.

See Also
Run Vectorization and Code Insights Perspective from GUI

Run Vectorization and Code Insights Perspective from Command Line

CPU Metrics This reference section describes the contents of data columns in Survey and
Refinement Reports of the Vectorization and Code Insights, CPU / Memory Roofline Insights,

and Threading perspectives.

Vectorization Report Overview

Review the controls available in the main report of the
Vectorization and Code Insights perspective of the
Intel® Advisor.

@ 2 3
| Bupeiime 290 [T] 7| PATER| &0 Middes v || A8Sowir = | Ledpd Aed Fussilions =
] Sommary O ey & Fzciirs (1) Aafnamant Report

A Thopihi
TP Tire = 7

arsssmm 2000 [Sl Veriom, | | ey loop was ol

=| Fonction Call St med Loops W) | o Pedclet voe Wiy N Vigcicoation? [T P

s
[

Lo Temaw | Total Tom

=" Poop in matve at Mutpgeay |

-~ —@ 6 -

| Top Down | Codedmaicy | Amembly | o Becommensmcns | 0 Why o Verasatia?

There are many controls available to help you focus on the data most important to you, including the

following:

) e

Gain [ntimute | V8, (ieceos L B p GILOSS Total GFL— | Sar Al

LT TR 25
[ELTT)
L LI B P
L L] e 1IN

1 Click the control to save a read-only result snapshot you can view any time.

[Fe)
a5
35
ams

andy
aoed

Intel Advisor stores only the most recent analysis result. Visually comparing one or more snapshots
to each other or to the most recent analysis result can be an effective way to judge performance

improvement progress.

To open a snapshot, choose File > Open > Result...

2 Click the various Filter controls to temporarily limit displayed data based on your criteria.

3 Click the control to view loops in non-executed code paths for various instruction set architectures

(ISAs). Prerequisites:

62

Intel® Advisor User Guide 1

4

10

e Compile the target application for multiple code paths using the Intel compiler.
* Enable the Analyze loops in not executed code path checkbox in Project Properties >
Analysis Target > Survey Hotspots Analysis.

This toggle control currently combines two features: The View
Configurator and the Smart Mode filter.

* View Configurator - Toggle on the Customize View control to
choose the view layout to display: Default, Smart Mode, or a
customized view layout. To create a customized view layout you can
apply to this and other projects:

1Click the Settings control next to the View Layout drop-down list to
open the Configure Columns dialog box.

2Choose an existing view layout in the Configuration drop-down list.

3Enable/disable columns to show/hide.

Outcome: Copy n is added to the name of the selected view layout in
the Configuration drop-down list.

4Click the Rename button and supply an appropriate name for the
customized view layout.

5Click OK to save the customized view layout.

* Smart Mode Filter - Toggle on the Customize View control to
temporarily limit displayed data to the top potential candidates for
optimization based on Total CPU Time (the time your application
spends actively executing a function/loop and its callees). In the Top
drop-down list, choose one of the following:

e The Number of top loops/functions to display
e The Percent of Total CPU Time the displayed loops/functions
must equal or exceed

Click the button to search for specific data.
Click the tab to open various Intel Advisor reports or views.

Right-click a column header to:

¢ Hide the associated report column.
e Resume showing all available report columns.
¢ Open the Configure Columns dialog box (see #4 for more information).

Click the toggle to show all available columns in a column set, and resume showing a limited number
of preset columns in a column set.

Click the control to:

* Show options for customizing data in a column or column set.
* Open the Configure Columns dialog box (see #4 for more information).

For example, click the control in the Compute Performance column set to:

e Show data for floating-point operations only, for integer operations only, or for the sum of
floating-point and integer operations.
e Determine what is counted as an integer operation in integer calculations:

e Choose Show Pure Compute Integer Operations to count only ADD, MUL, IDIV, and SUB
operations.

e Choose Show All Operations Processing Integer Data to count ADD, ADC, SUB, MUL,
IMUL, DIV, ID1V, INC/DEC, shift, and rotate operations.

Click the control to show/hide a chart that helps you visualize actual performance against hardware-

imposed performance ceilings, as well as determine the main limiting factor (memory bandwidth or
compute capacity), thereby providing an ideal roadmap of potential optimization steps.

63

1

Intel® Advisor User Guide

11

12
13

14

15

Click a data row in the top of the Survey Report to display more data specific to that row in the
bottom of the Survey Report. Double-click a loop data row to display a Survey Source window. To
more easily identify data rows of interest:

= Vectorized function
= Vectorized loop

= Scalar function

= Scalar loop

Click a checkbox to mark a loop for deeper analysis.

If present, click the image to display code-specific how-can-I-fix-this-issue? information in the
Recommendations pane.

If present, click the image to view the reason automatic compiler vectorization failed in the Why No
Vectorization? pane.

Click the control to show/hide the Workflow pane.

Examine Not-Vectorized and Under-Vectorized Loops

Accuracy Level

Low

Enabled Analyses

Survey

Result Interpretation

After running the Vectorization and Code Insights perspective with Low accuracy, you get a basic
vectorization report, which shows not-vectorized and under-vectorized loops, and other performance issues.

In the Survey report:

1.

64

Sort by the Self-Time and/or Total-Time column to find top time-consuming loops.

Self Timew

0,891s
0,281s =0
0,200s B

Intel® Advisor User Guide 1

2. Check whether your target loop or function is vector or scalar. Intel Advisor helps you to differentiate

vector and scalar using the following icons:

- vectorized function
- vectorized loop

- scalar function

- scalar loop
3. Use filters to hide the code sides that you do not want to tweak now:

| 5 Mot 1».n‘var‘:tu:nrize:c:l|

and

4. Decide what loops or functions to investigate:

e If loop/function is scalar
e If loop/function is vectorized

If Loop/Function is Scalar

If the target loop/function is scalar (

or
1

), you need to understand why the compiler did not vectorize the loop/function.

Several reasons are possible:

NOTE
See OpenMP* Pragmas Summary in the Intel® oneAPI DPC++/C++

Compiler Developer Guide and

Reference for more information about the directives mentioned below.

Possible Reason To Confirm

To Do

Assumed dependency Refer to Why No Vectorization?
column. Search for Vector
dependence prevents
vectorization issue.

Function call in the loop Refer to Why No Vectorization?
column. Search for issues:

e Function call present

e Indirect function call present

e Serialized user function call
present

Run the Dependencies analysis.

« If no dependencies are found,
force vectorization with the
omp simd directive or provide
other vectorization
recommendations to compiler.

e If dependencies are
confirmed, resolve them, or
move to the next loop.

For issue: Function call present,
do one of the following:

¢ Inline function into the loop.
¢ \ectorize the function with the
omp declare simd directive.

65

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-pragmas-summary.html

1 Intel® Advisor User Guide

Possible Reason

To Confirm

To Do

Compiler-assumed inefficient
vectorization

Other

Refer to Why No Vectorization?
column. Search for the Loop
vectorization possible but seems
inefficient issue.

Refer to

¢ Why No Vectorization?
column
¢ Vector Issues column

For issues Indirect function call
present or Serialized user
function call present, refer to
guidelines in the
Recommendations tab.

Try forcing vectorization with the
omp simd directive.

If forcing vectorization doesn't
provide tangible results, consider
experimenting with other
directives.

To better understand
performance implications and
potential speed-up, consider
running additional analyses:

e Trip Counts
¢ Memory Access Patterns

Study the Compiler Diagnostic
Details and Advisor
Recommendations to resolve the
issues.

If Loop/Function is Vectorized

If the target loop is vectorized (

or

), ensure vector efficiency is above 90%.

If efficiency is below 90%, consider the following:

Possible Reason

To Confirm

To Do

ISA

Inefficient peel/remainder

Possible inefficient memory
access

66

Refer to Vectorized Loops/
Vector ISA column to check the
ISA version used in the
application.

Refer to Vector Issues column.
Search for the Inefficient Peel/
Reminder issue. Or check if the
time spent in peel/reminder is
significant.

Refer to Vector Issues column.
Search for the Possible Inefficient
Memory Access issue.

Refer to Instruction Set
Analysis/Traits column. Search
for the following traits:

Change the target ISA by
specifying corresponding
compiler flags.

Resolve the issues:

¢ Check Recommendations
tab.
¢ Run the Trip Counts analysis.

Run the Memory Access Patterns
analysis.

Intel® Advisor User Guide 1

Type conversions present

Unaligned vector access in loop

Register pressure

Potential underutilization of FMA
instructions

Refer to Instruction Set
Analysis/Traits column. Search
for the Type Conversions metric.

Refer to Advanced/
Vectorization Details column.
Search for the Unaligned access
in vector loop metric.

Refer to Vector Issues column.
Search for the Vector register
spilling possible issue.

Refer to Vector Issues column.
Search for the Potential
underutilization of FMA
instructions issue.

Possible Reason To Confirm To Do
e extracts
e inserts
e gather
e scatter

Remove redundant type
conversions from float to double
that might lead to smaller vector
length and reduced vectorization
efficiency.

Align data.

Resolve the issue by doing one of
the following:

e Decrease loop unroll factor.
¢ Split the loop into smaller
parts.

Resolve the issue by doing one of
the following:

¢ Change the target ISA.
* Explicitly enable FMA
generation and vectorization.

Other Refer to Vector Issues column. Follow the Intel Advisor
recommendations to resolve the
issues.

Next Steps

e Investigate Memory Usage and Traffic

e Find Data Dependencies

Analyze Loop Call Count

Accuracy Level

Medium

Enabled Analyses

Survey + Trip Counts (Characterization)

NOTE Collecting additional data may substantially increase report generation time. There is a variety
of techniques available to minimize data collection, result size, and execution time. Check Minimize

Analysis Overhead.

67

1 Intel® Advisor User Guide

Result Interpretation

After you run the Vectorization and Code Insights perspective with medium accuracy and Trip Counts
collection enabled, Intel® Advisor dynamically identifies the number of times loops are invoked and execute
and extends the basic vectorization report with the Trip Counts data. Use Trip Counts data to analyze
parallelism granularity more deeply and fine-tune vector efficiency and capability.

Trip Counts
[=] Function Call Sites and Loops i - i
o | Average Min Mazx Call Count | teration D...| Loop Instance Total Time
_ [loop in main at Driver.c:171] 6 6 6 AT000000 < 0.001s < 0.001s
3| [loop in main at Driver.c:164] B B & ATD00000 < 0.000s < 0.000s
=|t0 [loop in main at Driver.c:158] 47 47 a7 1000000 < 0.001s < 0.001s
x| f main 1 0.763s
2|t5 [loop in main at Driver.c:135] 1000000 1000000 1000000 |1 < 0.001s 0.763s

By default, the Trip Counts column shows only Average and Call Count metrics. Look for the following to
find good candidates for optimization:

e Detect loops with too-small trip counts and trip counts that are not a multiple of vector length.

e A high number in the Call Count column means there is an outer loop in the selected loop call chain with
high trip count values.

e If the loop has a low trip count value, the outer loop could be a better candidate for parallelization
(threading/vectorization).

To optimize such loops, follow the Intel® Advisor Recommendations for the loop/function, for example, use
specific recommended pragmas to provide the information about loop trip counts to a compiler.

Next Steps

For further investigation, you can run the Vectorization and Code Insights perspective with a higher accuracy
level or with different configurations:

e Examine Not-Vectorized and Under-Vectorized Loops
e Investigate Memory Usage and Traffic
e Find Data Dependencies

Investigate Memory Usage and Traffic

Accuracy Level
High

Enabled Analyses

Survey with register spill/fill analysis + Trip Counts, FLOP, Call Stacks (Characterization) + Memory Access
Patterns

NOTE Collecting additional data may substantially increase report generation time. There is a variety
of techniques available to minimize data collection, result size, and execution time. Check Minimize
Analysis Overhead.

Result Interpretation

After you run the Vectorization and Code Insights perspective with high accuracy and full Characterization
and Memory Access Patterns steps enabled, Intel® Advisor:

68

Intel® Advisor User Guide 1

e Extends the Survey report with the Compute Performance and Memory metrics.
e Adds Memory Access Patterns data to the Refinement Report tab.

In the Survey report

1| Compute Performance -3

+| |=| Function Call Sites and Loops - Mernory &
. | Self GFLOPS Self Al Self GINTOPS Self INT Al Self Giga OPS Self Overall Al
[loop in main at Driver.c:171] 9.3853 0.444 2.933 0.139 1231803 0.583 10.152
[loop in main at Driver.c:164] 36,732 1 0.373 4,591 T/ 0.047 41,323 T 0422 18,043
& [loop in main at Driver.c:138] 689300 2375 1.084 3 0.375 20240 2.730 0.376
f main 0.063 0.036 0.098 < 0,001
o] [leop in main at Driver.c:153] 0,083 0167 0.250 0.012

CARICanIS [[

Use the FLOP data to analyze application memory usage and performance values that help you make better
decisions about your vectorization strategy.

Compute Performance column

You can configure this column to show only metrics for a specific type of operations used in your application.
Click the

o

control in the Compute Performance column set header and choose the desired drop-down option to:

e Show data for floating-point operations only, for integer operations only, or for both floating-point and
integer operations.
e Determine what is counted as an integer operation in integer calculations:

e Choose Show Pure Compute Integer Operations to count only ADD, MUL, IDIV, and SUB

operations.
e Choose Show All Operations Processing Integer Data to count ADD, ADC, SUB, MUL, IMUL, D1V,

IDIV, INC/DEC, shift, and rotate operations.

Select a specific loop/function to see the details about FLOP and/or integer operation utilization in the Code
Analytics tab:

Statistics for FLOP ~ @

And Data Transfers Self Total
Per loop Per lteration Per Instance

GFLOP" 6.77 2.40e-08 1.44e-07

GFLOPS 36.73

A< 0.38

Mask Uitilization - -

L1Gh" 18.05 5.40e-08 3.84e-07

L1Gbs " 97.95

Elapsed Time : 0.18s §.532-10= 3.922-00s

Memory column

You can configure this column to show only metrics for one or more specific memory levels and specific types
of operations. Click the gear icon in the Memory column set header and choose the desired drop-down
option to determine which columns to display in the grid:

69

1 Intel® Advisor User Guide

NOTE This data is only available if cache simulation is enabled. By default, Intel® Advisor collects only
L1 traffic, so you will not be able to select memory levels or loads/stores.

e Show data for L1, L2, L3, or DRAM memory metrics, or show a Customized Column Layout.
e Show data for memory load operations only, store operations only, or the sum of both.

You can choose to hide the current column, Show All Columns, or customize the columns displayed in the
grid by choosing Configure Column Layouts.

You can use the traffic and Al data reported in the Compute Performance and Memory columns to find the
best candidates to examine the memory usage for in the Memory Access Patterns tab. For example, bad
access pattern has stronger impact on loops/functions with higher Al value suggesting that you start with
optimizing their memory usage.

In the Refinement report

Important Before running the Memory Access Patterns analysis, select loops/functions from the
[]

column in the Survey report.

Get information about types of memory access in selected loops/functions, how you traverse your data, and
how it affects your vector efficiency and cache bandwidth usage by running the Memory Access Patterns
analysis.

Memory access patterns affect how data is loaded into and stored from the vector registers.

Ty

Footprint Estimate

Site Location Loop-Carried Dependencies Strides Distribution Access Pattern - . - - - -
Max, Per-Instruction Addr. Range | First Instance Site Footprint Simulated Memory Feotprint

) [loop in main at Driver.c: ... No Information Available T5% /0% / 25% IMixed Strides KB 10KB 0B Ic

[loop in main at Driver.c: ... @ RAW:T & WAW:2 Me Information Available Mo Information Available Mo Information Available Me Infarmation Available Me Information Available lc

.| Mo Information Available
156 #ifdef NOFUNCCALL

McdStrides___Jokg [& |

157 int i, j, 1, m, sumx;
158 for (i = 0; i < sizel; i++) |
159 bl[i] = 0z
160 #ifdef ALIGNED
[leop in main at Driver.c: ... Mo Dependencies Found MNe Information Available Mo Information Available Mo Information Available Mo Information Available Mo Information Available Ic
[loop in main at Driver.c: ... No Information Available 100% /0% / 0% All Unit Strides 160B 3208 0B 14
[loop in main at Driver.c: ... Mo Information Available 50% / 0%/ 50% Mixed Strides TKB 7KB 0B 14
<
Memory Access Patterns Report | Dependencies Report | &' Rec dati
1D Stride Type Source MNested Function Variable references Max. Per-Instruction Addr. Range Modules Site Name Access Type
#HP1 @D 6 Constant stride Driver.c:165 a KB wvec_samples.exe loop_site_2 Read
=P3 2] Gather stride Driver.c:172 SKB vec_samples.exe loop_site_2 Read
[#HP& [T Parallel site information Driver.c:138 vec_samples.exe loop_site_2
EP14 @ 0 Uniform stride Driver.c:165 X 1928 vec_samples.exe loop_site_2 Read
P16 @ 0 Uniform stride Driver.c:172 X 1928 vec_samples.exe loop_site_2 Read
=P @ 1 Unit stride Driver.c:163 wr 140B vec_samples.exe loop_site 2 Read
=p21 @ 1 Unit stride Driver.c:172 b 1848 vec_samples.exe loop_site 2 Write

To analyze how the data structure layout affects performance, pay attention to the following:

e Look for loops/functions that do not have "All Unit Strides" in the Access Pattern column to find

optimization candidates.
e Strides Distribution column reports the ratio of stride types for a selected loop/function and is color-

coded:

e Blue is unite/uniform stride, which means that the instruction access memory sequentially or within
the distance of one element.

70

Intel® Advisor User Guide 1

e Yellow is constant stride, which means that the instructions access memory with the constant step of
more than one element.

e Red is irregular stride, which means that the instructions access memory addresses that change by an
unpredictable number of elements from iteration to iteration.

For vectorization, unit stride is the preferred distribution. Your goal is to eliminate irregular strides and
minimize the constant stride to optimize memory usage.

Click a loop in the top pane to see a detailed report for this loop below in the Memory Access Patterns
Report tab.

e Review details for each stride type that contributes to the loop/function with corresponding source
locations.

e Review the size of the strides, variables accessed, and source locations and modules.

To optimize memory access patterns, follow the Intel® AdvisorRecommendations for specific loops/

functions.

In the Memory Analysis Patterns Report tab at the bottom of the Refinement Reportsdouble-click a line
to view the selected operation's source code.

Associated Memory Access Patterns Source window, from top left to bottom right:

View Activation pane - Enable or disable views shown in the Source view.
Source View pane - View source code of the selected loop/function.
Assembly View pane - View assembly source of the selected loop/function.
Details View pane - View details of the selected site.

Next Steps

Run CPU / Memory Roofline Insights perspective to get a detailed view about your application
performance.
Cookbook: Optimize Memory Access Patterns Using Loop Intercharge and Cache Blocking Technique

Find Data Dependencies

Prerequisites

Collect Survey data and select loops for the analysis from the

&

column in the Survey report.

Accuracy Level

Custom

Enabled Analyses

Dependencies

NOTE Collecting Dependencies data may substantially increase report generation time. There are a
variety of techniques available to minimize data collection, result size, and execution time. Check
Minimize Analysis Overhead.

Result Interpretation

For safety purposes, compiler is often conservative when assuming data dependencies. The Dependencies
analysis checks for real data dependencies in loops the compiler did not vectorize because of assumed
dependencies and provides recommendations to help resolve the dependencies if detected.

71

https://www.intel.com/content/www/us/en/develop/documentation/advisor-cookbook/top/optimize-memory-access-patterns-using-loop-interchange-and-cache-blocking-techniques.html

1 Intel® Advisor User Guide

NOTE The Dependencies analysis is not enabled in any of the accuracy presets by default. Select it
manually from the Analysis Workflow tab before executing the perspective.

Site Location Loop-Carried Dependencies Strides Distribution Access Pattern
+ (0 [loop in main at Driver.c: ... No Information Available 73% ./ 0%/ 25% Mixed Strides
=10 [loop in main at Driver.c: ... @ RAW:1 A WAW:2 Mo Information Available Mo Infoermation Available
153 S/atart timing the matrix multiply code
154 startTime = clock_it(}:
155 for (k = 0;k < REPEATNTIMES:k++) |
158 #ifdef NOFUNCCALL
157 int i, j, 1, m, sumx;
+ (0 [loop in main at Driver.c: ... No Information Available 67% S 17% /[17% Mixed Strides
<

Memory Access Patterns Report | Dependencies Report | ' Recommendations

0] & | Type Site Mame Sources Maodules State
P1 @ Parallel site information loop_site 77 Driver.c vec_samples.exe " Mot a problem
P5 @ Read after write dependency loop_site_77 Driver.c vec_samiples.exe | B Mew
P6 @ Write after write dependency loop_site 77 Driver.c vec_samples.exe | B Mew
P7 @ Write after write dependency | loop_site 77 Driver.c vec_samples.exe P Mew

e Click a loop in the top pane to see a detailed report for each dependency found in this loop below in the
Dependencies Report tab.
e Use the Dependencies Report to view each reported problem and its associated code locations.

e If no dependencies found, it is safe to force vectorization.
e For loops/functions with real dependencies, Intel Advisor reports dependency type and severity in the
Loop-Carried Dependency column in the top pane.

¢ Use the Dependencies Source window to view the focus and related source code regions to help you
understand the cause of the reported problem.

e Use the Code Locations window to view the focus and related source code regions to help you
understand the cause of the reported problem.

e To learn about a reported problem, right-click its name in the Dependencies Report, Problems and
Messages pane and select What Should I Do Next?. This displays the help topic for that problem type
with recommendations on how to resolve the dependency.

¢ Double-click a problem in the Dependencies Report, Problems and Messages pane to open the
Dependencies Source tab and examine the problem in more detail.

Dependencies Report Overview

In the Dependencies Report tab at the bottom of the Refinement Report, review the following panes:

e Problems and Messages pane - Select the problems that you want to analyze by viewing their
associated observations.

e Code Locations pane - View details about the code locations for the selected problem in the
Dependencies Report window. Icons identify the focus code location

and related code location

72

Intel® Advisor User Guide 1

Filters pane - Filter contents of the report tab.

Associated Dependencies Source window, from top left to bottom right:

Focus Code Location pane - Use this pane to explore source code associated with focus code location in
the Dependencies Source window.

Focus Code Location Call Stack pane - Use this pane to select which source code appears in the Focus
Code Location pane in the Dependencies Source window.

Related Code Locations pane - Use this pane to explore source code associated with related code
locations (related to the focus code location) in the Dependencies Source window.

Related Code Location Call Stack pane - Use this pane to select which source code appears in the
Related Code Location pane.

Code Locations pane - Use this pane to view the details about the code location for the selected problem
in the Dependencies Report window.

Relationship Diagram pane - Use this pane to view the relationships among code locations for the
selected problem.

Next Steps

Dependencies Problem and Message Types Reference

Analyze CPU Roofline

Visualize actual performance against hardware-
imposed performance ceilings by running the CPU /
Memory Roofline Insights perspective. It helps you
determine the main limiting factor (memory
bandwidth or compute capacity) and provides an ideal
roadmap of potential optimization steps.

Use the Roofline chart to answer the following questions:

What is the maximum achievable performance with your current hardware resources?

Does your application work optimally on current hardware resources?

If not, what are the best candidates for optimization?

Is memory bandwidth or compute capacity limiting performance for each optimization candidate?

How It Works

The CPU / Memory Roofline Insights perspective includes the following steps:

1.
2.

Collect loop/function timings using the Survey analysis.
Collect floating-point and/or integer operations data, memory traffic data, and measure the hardware
limitations of your hardware using the FLOP analysis in the Characterization step.

At this step, Intel® Advisor collects:
e Compute operations (floating-point operations (FLOP) and integer operations (INTOP)):

e FLOP is calculated as a sum of the following classes of instructions multiplied by their iteration
count: FMA, ADD, SUB, DIV, DP, MUL, ATAN, FPREM, TAN, SIN, COS, SQRT, SUB, RCP, RSQRT,
EXP, VSCALE, MAX, MIN, ABS, IMUL, ID1V, FIDIVR, CMP, VREDUCE, VRND

e INTOP is calculated by default as a sum of the following classes of instructions multiplied by
their iteration count:ADD, ADC, SUB, MUL, IMUL, D1V, IDIV, INC/DEC, shifts, rotates.

¢ Memory traffic data that is calculated as a product of memory operations and the amount of bytes
in the register accessed by the function/loop. For memory traffic calculation, Intel Advisor counts the
following classes of memory instructions:

73

1 Intel® Advisor User Guide

e scalar and vector MOV instructions
e GATHER/SCATTER instructions
e VBMI2 compress/expand instructions

NOTE This collection can take three to four times longer than the Survey analysis.

CPU Roofline Report

The Roofline chart plots an application's achieved performance and arithmetic intensity against the
hardware maximum achievable performance:

e Arithmetic intensity (x axis) - measured in number of floating-point operations (FLOPs) and/or integer
operations (INTOPs) per byte, based on the loop/function algorithm, transferred between CPU/VPU and

memory
e Performance (y axis) - measured in billions of floating-point operations per second (GFLOPS) and/or

billions of integer operations per second (GINTOPS)

Summary & Survey & Roofline ™ Refinement Reports INTEL ADVISOR BETA
k(@ cly v [Cores: 19 + |[¥ Default: FLOAT CARM (L1+NTS) + |[4l* Compare ~ |[* Guidance ~ =

[#]

100 g

'

w

01

0.01 r
1
> >
e bound” Compute bound
FLOP/Byte (Arthmetic Intensity)
T T T T T T T T T T T
0.001 0.01 0.1 1 10 100 1000 10000 1.00e+5 1.00e+6 1.008+7
Physical Cores: 4 L] App Threads: 1 ® sef Elapsed Time: 2127 s Total Elapsed Time: 2.685 =
Source | Top Down | Code Analytics | A bly | & Rec dati & Why No Vectorization?
Loop in main &t sirice cpp:99 Average Trip Counts: ¥ 9000 () Data Transfers and Bandwidth
Self Total
2 . 6858 P Per Loop Per Instance Per lteration Float Al
Scalar Total time 7 L1, GB - 250 2.8%e-04 3.20e-08 0.08375
Roofling” @ L2 GB 2073 230603 256e-07 00117245
2 1%75 Memory Level CARM 13,68~ 259 2.8%e-04 320e-08 0.093798
Self time DRAM, GB
2 Integer Seaiar Add Peai o 2.60 2.8%e-04 321e-08 0.0035969
: gfﬂa c" ‘f:;:‘f") 3 - T Self bandwidtn, GHls Usization, % Herdnere
» Memory 38% (405000000, 5) (I L1 1218 - -
» Compute 23% (243000000, 3) D L2 9743 -
Other 309% (405000000, 5) (R I3 1.218 =
DRAM 1.220 =
CPU Total Time
3.31536e-08s | 0.00030s ar
Per lteration | Per Instance ’ GFLOPS: 0.11 @
Drrat | [CARM (L1 + NTE) = GINTOPS: 0.15
25085 GB 2502 C8 2591 GB
012
INTOP/Biyte: [Arithmesic Inlersity)
Code Optimizations
oo1e Compiler: Intel(R} C++ Intel(R) 64 Compiler for applications running
. . on Intel{R) 64,
This loop is mostly memory bound Version: 19.0.0.117 Build 20180804
The performance of the loop is bounded by the L2 bandwidth. ‘Vectorization/Cptimization report by Compiler: no messages
‘fou can switch to the Recommendations tab to see optimization
recommendafions in the Roofline Conclusions section.
See Also

Run CPU / Memory Roofline Insights Perspective from GUI
Run CPU / Memory Roofline Insights Perspective from Command Line

74

Intel® Advisor User Guide 1

CPU Roofline Report Overview Review the controls available in the main report of the CPU /
Memory Roofline Insights perspective of the Intel® Advisor.

Run CPU / Memory Roofline Insights Perspective from GUI

Prerequisite: In the graphical-user interface (GUI): Create a project and specify an analysis target and
target options.

To run the CPU / Memory Roofline Insights perspective from the GUI:
1. Configure the perspective and set analysis properties, depending on desired results:
e Select a collection accuracy level with analysis properties preset for a specific result:

e Low: Get the basic CPU Cache-Aware Roofline chart with self data metrics.
e Medium: Get the detailed Memory-Level Roofline chart with total data metrics and an additional
memory usage report.
e Select the analyses and properties manually to adjust the perspective flow to your needs. The
accuracy level is set to Custom.

The higher accuracy value you choose, the higher runtime overhead is added to your application. The
Overhead indicator shows the overhead for the selected configuration. For the Custom accuracy, the
overhead is calculated automatically for the selected analyses and properties.

By default, accuracy is set to Low. For more information, see CPU Roofline Accuracy Presets.
2. Optional: If you want check for loop-carried dependency, select the Dependencies analysis. For more
information about the Dependencies analysis and report, see Find Data Dependencies.

3. Run the perspective: click
button.

While the perspective is running, you can do the following in the Analysis Workflow tab:
e Control the perspective execution:

e Stop data collection and see the already collected data: Click the

button.

e Cancel data collection and discard the collected data: Click the

button.
e Pause data collection: Click the

button.
e Expand an analysis with

to control the analysis execution:
e Pause the analysis: Click the

01|
button.

e Stop the currently running analysis and start the next analysis selected: Click the

=]
button.

e Interrupt execution of all selected analyses and see the already collected data: Click the

button.

75

1 Intel® Advisor User Guide

To run the CPU / Memory Roofline Insights perspective with the Low accuracy from the command

line interface:

advisor --collect=roofline --project-dir=./advi results -- ./myApplication

See Run CPU / Memory Roofline Insights from Command Line for details.

NOTE To generate command lines for selected perspective configuration, click the

Command Line button.

Once the CPU / Memory Roofline Insights perspective collects data, the report opens showing a Summary
tab. Continue to investigate the results:

e Examine Bottlenecks on CPU Roofline Chart
¢ Examine Relationships Between Memory Levels

NOTE After you run the CPU / Memory Roofline Insights perspective, the collected Survey data
becomes available for all other perspectives. If you switch to another perspective, you can skip the
Survey step and run only perspective-specific analyses.

CPU Roofline Accuracy Presets

For each perspective, Intel® Advisor has several levels
of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is
collected and the level of collection details. The higher
accuracy value you choose, the higher runtime

overhead is added.

The following accuracy levels are available:

cache

Comparison / Accuracy Level Low Medium

Overhead 5-10x 15 - 50x

Goal Analyze how well your application Analyze how well your application

uses memory and compute uses CPU memory at different
resources of a CPU and cache levels in more details
determine the main limiting

factor (memory bandwidth or

compute capacity)

Analyses Survey + Characterization (FLOP) Survey + Characterization (Trip
Counts and FLOP with call stacks
for all memory levels) + Memory
Access Patterns

Result Cache-aware CPU Roofline for L1 Memory-level CPU Roofline with

call stacks (for L1, L2, L3, DRAM)

Memory Access Patterns

You can choose custom accuracy and set a custom perspective flow for your application. For more

information, see Customize CPU / Memory Roofline Insights Perspective.

76

Intel® Advisor User Guide 1

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

Customize CPU / Memory Roofline Insights Perspective

Customize the perspective flow to better fit your goal
and your application.

If you change any of the analysis settings from the Analysis Workflow tab, the accuracy level changes to
Custom automatically. With this accuracy level, you can customize the perspective flow and/or analysis
properties.

To change the properties of a specific analysis:

1. Expand the analysis details on the Analysis Workflow pane with

2. Select desired settings.
3. For more detailed customization, click the gear

icon. You will see the Project Properties dialog box open for the selected analysis.
4. Select desired properties and click OK.

For a full set of available properties, click the
icon on the left-side pane or go to File > Project Properties.

The following tables cover project properties applicable to the analyses in the CPU / Memory Roofline Insights
perspective.

Common Properties

Use This To Do This

Target type drop-down e Analyze an executable or script (choose Launch Application).
e Analyze a process (choose Attach to Process).

If you choose Attach to Process, you can either inherit settings from
the Survey Hotspots Analysis Type or specify the needed settings.

Inherit settings from Inherit Intel Advisor project properties from the Visual Studio* startup
Visual Studio project project (enable).
checkbox and field (Visual

If enabled, the Application, Application parameters, and Workin
Studio* IDE only) pplicatl pplication par r rking

directory fields are pre-filled and cannot be modified.

NOTE In Visual Studio* 2022, Intel Advisor provides lightweight integration.

You can configure and compile your application and open the standalone Intel
Advisor interface from the Visual Studio for further analysis. All your settings
will be inherited by the standalone Intel Advisor project.

Application field and Select an analysis target executable or script.
Browse... button

77

1 Intel® Advisor User Guide

Use This To Do This
If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application Specify runtime arguments to use when performing analysis (equivalent

parameters field and
Modify... button

to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment

variables field and Modify...

button

Specify environment variables to use during analysis.

Managed code profiling
mode drop-down

+ Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

¢ Collect data for native code and do not attribute data to managed
code (choose Native).

e Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

¢ Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

Child application field

Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

NOTE

For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

e Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

+ Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

78

Intel® Advisor User Guide 1

Use This

To Do This

GPU kernels of interest
field and Modify... button

Analyze specific kernels only, minimizing analysis overhead.

Use MPI launcher checkbox

Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

¢ Select MPI Launcher - Intel or another vendor
« Number of ranks - Number of instances of the application
+ Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis Properties

Use This

To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip

The corresponding CLI action option is ——-resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector

Set the wait time between each analysis collection CPU sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Callstack unwinding mode
drop-down list

Set to After collection if:

e Survey analysis runtime overhead exceeds 1.1x.

e A large quantity of data is allocated on the stack, which is a common
case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox

Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

79

1 Intel® Advisor User Guide

Use This

To Do This

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE

Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
—ax (Linux* OS) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
list

¢ Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

* Keep source code cache within the project (choose Keep cached
files).

Trip Counts and FLOP Analys

is Properties

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is ——resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

80

Intel® Advisor User Guide 1

Use This

To Do This

Trip Counts / Collect
information about Loop
Trip Counts checkbox

Measure loop invocation and execution (enable).

FLOP / Collect information
about FLOP, L1 memory
traffic, and AVX-512 mask
usage checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Callstacks / Collect
callstacks checkbox

Collect call stack information when performing analysis (enable).
Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Capture metrics for
stripped binaries checkbox

Collect metrics for stripped binaries.

Enabling could increase analysis overhead.

Cache Simulation / Enable
Memory-Level Roofline
with cache simulation
checkbox

Model multiple levels of cache for data, such as counts of loaded or
stored bytes for each loop, to plot the Roofline chart for all memory levels
(enable).

Enabling could increase analysis overhead.

Cache simulator
configuration field

Specify a cache hierarchy configuration to model (enable and specify
hierarchy).

The hierarchy configuration template is:

[num_of _levell_caches]:[num_of _ways_levell_connected]:
[levell_cache_size]:[levell_cacheline_size]/

[num_of_level2_caches]:[num_of_ways_level2_connected]:
[level2_cache_size]:[level2_cacheline_size]/

[num_of _level3_caches]:[num_of _ways_level3_connected]:
[level3_cache_size]:[level3_cacheline_size]

For example: 4:8w:32k:641/4:4w:256k:641/1:16w:6m:64l is the
hierarchy configuration for:

e Four eight-way 32-KB level 1 caches with line size of 64 bytes
e Four four-way 256-KB level 2 caches with line size of 64 bytes
¢ One sixteen-way 6-MB level 3 cache with line size of 64 bytes

Data Transfer Simulation /
Data transfer simulation
mode drop-down

Select a level of details for data transfer simulation:

e Off - Disable data transfer simulation analysis.

* Light - Model data transfers between host and device memory.

* Full - Model data transfers, attribute memory objects to loops that
accessed the objects, and track accesses to stack memory.

Run CPU / Memory Roofline Insights Perspective from Command Line

To plot a Roofline chart, the Intel® Advisor does the following:

1. Collect OpenCL™ kernels timings and memory data using the Survey analysis with GPU profiling.
2. Measure the hardware limitations and collect floating-point and integer operations data using the
Characterization analysis with GPU profiling.

81

1 Intel® Advisor User Guide

Intel® Advisor calculates compute operations (FLOP and INTOP) as a weighted sum of the following
groups of instructions: BASIC COMPUTE, FMA, BIT, DIV, POW, MATH.

Intel Advisor automatically determines data type in the collected operations using the dst register.

Tip See Intel Advisor cheat sheet for quick reference on command line interface.

Prerequisites

Set Intel Advisor environment variables with an automated script to enable the advisor command line
interface (CLI).

Plot a CPU Roofline Chart
There are two methods to run the CPU Roofline. Use one of the following:

e Run the shortcut —--collect=roofline command line action to execute the Survey and Characterization
analyses with a single command. This method is recommended to run the CPU / Memory Roofline Insights
perspective, but it does not support MPI applications.

e Run the Survey and Characterization analyses with the —-collect=survey and --collect=tripcounts
command actions separately one by one. This method is recommended if you want to analyze an MPI
application.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Method 1. Run the Shortcut Command
To collect data for a CPU Roofline chart with a shortcut, run the following command:
advisor --collect=roofline --project-dir=./advi results -- ./myApplication

This command collects data for a basic CPU Roofline chart based on the Cache-Aware Roofline model. You
can add other option to the command to collect more data. See Analysis Details below for more options.

Method 2. Run the Analyses Separately
Use this method if you want to analyze an MPI application.
1. Run the Survey analysis.

advisor --collect=survey --project-dir=./advi results -- ./myApplication
2. Run the Characterization analysis to collect trip counts and FLOP data:

advisor --collect=tripcounts --flop --project-dir=./advi results -- ./myApplication

These commands collect data for a basic CPU Roofline chart based on the Cache-Aware Roofline model. You
can add other option to the command to collect more data. See Analysis Details below for more options.

You can view the results in the Intel Advisor graphical user interface (GUI), or generate an interactive HTML
report. See View the Results below for details.

Analysis Details
The CPU / Memory Roofline Insights workflow includes the following analyses:

1. Roofline to plot a Roofline chart. This step sequentially runs the Survey and Characterization (trip
counts and FLOP) analyses.

2. Memory Access Patterns (optional) to identify memory traffic data and memory usage issues.

3. Dependencies (optional) to identify loop-carried dependencies that might limit offloading.

82

https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-cheat-sheet.pdf

Intel® Advisor User Guide 1

Each analysis has a set of additional options that modify its behavior and collect additional performance data.
The more analyses you run and option you use, the more useful data about your application you get.

Consider the following options:
Roofline Options

To run the Roofline analysis, use the following command line action: --collect=roofline.

NOTE You can also use this options with —-collect=tripcounts if you want to run the analyses
separately.

Recommended action options:

Options Description

--stacks Enable advanced collection of call stack data. Use
this option to get a CPU Roofline with callstacks.

--enable-cache-simulation Model CPU cache behavior on your target
application. Use this option to get a Memory-level
CPU Roofline that shows data for all memory levels.

--cache-config=<config> Set the cache hierarchy to collect modeling data for
CPU cache behavior. Use with
enable-cache-simulation.

The value should follow the template:
[<num_of_caches>]:
[<num_of_ways_caches_connected>]:
[<cache_size>]:[<cacheline_size>] for each of
three cache levels separated with a /.

--cachesim-associativity=<num> Set the cache associativity for modeling CPU cache
behavior: 1 | 2 | 4 | 8 (default) | 16. Use with
enable-cache-simulation.

--cachesim-mode=<mode> Set the focus for modeling CPU cache behavior:
cache-misses | footprint | utilization. Use
with enable-cache-simulation.

See advisor Command Option Reference for more options.
Memory Access Patterns Options

The Memory Access Patterns analysis is optional because it adds a high overhead. This analysis does not add
more information to the CPU Roofline chart. The results are added to the Refinement report, which you can
view from GUI or from CLI. Use it to understand the Memory-Level Roofline chart better and get more
detailed optimization recommendations.

To run the Memory Access Patterns analysis, use the following command line action: --collect=map.

Recommended action options:

83

1 Intel® Advisor User Guide

Options Description

--select=<string> Select loops for the analysis by loop IDs, source
locations, or criteria such as scalar, has-issue,
or markup=<markup-mode>. This option is
required.

See select for more selection options.

--enable-cache-simulation Model CPU cache behavior on your target
application.
--cachesim-cacheline-size=<num> Set the cache line size (in bytes) for modeling CPU

cache behavior: 4 | 8| 16 | 32 | 64 (default) | 128
| 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 |
32768 | 65536. Use with

enable-cache-simulation.

--cachesim-sets=<num> Set the cache set size (in bytes) for modeling CPU
cache behavior: 256 | 512 | 1024 | 2048 | 4096
(default) | 8192. Use with
enable-cache-simulation.

See advisor Command Option Reference for more options.
Dependencies Options

The Dependencies analysis is optional because it adds a high overhead and is mostly necessary if you have
scalar loops/functions in your application. This analysis does not add more information to the CPU Roofline
chart. The results are added to the Refinement report, which you can view from GUI or from CLI. Use it to
get more detailed optimization recommendations.

To run the Dependencies analysis, use the following command line action: --collect=dependencies.

Recommended action options:

Options Description

--select=<string> Select loops for the analysis by loop IDs, source
locations, criteria such as scalar, has-issue, or
markup=<markup-mode>. This option is required.

See select for more selection options.

--filter-reductions Mark all potential reductions with a specific
diagnostic.

See advisor Command Option Reference for more options.

Next Steps

Continue to explore the CPU / Memory Roofline Insights results with a preferred method. For details about
the metrics reported, see CPU and Memory Metrics.

See Also

CPU / Memory Roofline Insights Perspective Visualize actual performance against hardware-
imposed performance ceilings by running the CPU / Memory Roofline Insights perspective. It helps
you determine the main limiting factor (memory bandwidth or compute capacity) and provides an
ideal roadmap of potential optimization steps.

84

Intel® Advisor User Guide 1

Command Line Interface This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.

Minimize Analysis Overhead

Analyze MPI Applications With Intel® Advisor, you can analyze parallel tasks running on a cluster
to examine performance of your MPI application.

CPU Roofline Accuracy Levels in Command Line

For each perspective, Intel® Advisor has several levels of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is collected and the level of collection details. The higher
accuracy value you choose, the higher runtime overhead is added.

In CLI, each accuracy level corresponds to a set of commands with specific options that you should run one
by one to get a desired result.

The following accuracy levels are available:

Comparison / Accuracy Level Low Medium

Overhead 5-10x 15 - 50x

Goal Analyze how well your application Analyze how well your application
uses memory and compute uses CPU memory at different
resources of a CPU and cache levels in more details

determine the main limiting
factor (memory bandwidth or
compute capacity)

Analyses Survey + Characterization (FLOP) Survey + Characterization (Trip
Counts and FLOP with call stacks
for all memory levels) + Memory
Access Patterns

Result Cache-aware CPU Roofline for L1 Memory-level CPU Roofline with
cache call stacks (for L1, L2, L3, DRAM)

Memory Access Patterns

You can generate commands for a desired accuracy level from the Intel Advisor GUI. See Generate Command
Lines from GUI for details.

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

Consider the following command examples.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Low Accuracy

To run the CPU / Memory Roofline Insights perspective with the low accuracy:

advisor --collect=roofline --project-dir=./advi results -- ./myApplication

Medium Accuracy

To run the CPU / Memory Roofline Insights perspective with the medium accuracy:

85

1 Intel® Advisor User Guide

1. Generate the Memory-level Roofline report with call stacks:

advisor --collect=roofline --stacks --enable-data-transfer-analysis --project-dir=./advi results
-- ./myApplication
2. Run the Memory Access Pattern analysis for the loops that have the Possible Inefficient Memory Access
Pattern issue:

advisor --collect=map --select=has-issue --project-dir=./advi results -- ./myApplication

You can view the results in the Intel Advisor GUI or generate an interactive HTML report.

See Also

advisor Command Option Reference

Command Line Interface Reference This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

Run CPU / Memory Roofline Insights from Command Line

Minimize Analysis Overhead

Explore CPU/Memory Roofline Results

Intel® Advisor provides several ways to view the CPU / Memory Roofline Insights results.

View Results in GUI

If you run the CPU / Memory Roofline Insights perspective from command line, a project is created
automatically in the directory specified with --project-dir. All the collected results and analysis
configurations are stored in the .advixeproj project, which you can view in the Intel Advisor.

To open the project in GUI, run the following command:

advisor-gui <project-dir>

NOTE If the report does not open, click Show Result on the Welcome pane.

If you run the CPU / Memory Roofline Insights perspective from GUI, the result is opened automatically after
the collection finishes.

You will see the CPU Roofline report that includes:

e Roofline chart that plots an application's achieved performance and arithmetic intensity against the CPU
maximum achievable performance

e Additional information about your application in the Advanced View pane under the chart, including
source code, detailed code analytics for trip counts and FLOP/INTOP data, optimization recommendations,
and compiler diagnostics

Select a dot on the Roofline chart to see details for the selected loop in all tabs of the Advanced View
pane

86

Intel® Advisor User Guide 1

Surmmary 2 Survey & Roofline "1 Refinement Reports

% /& Some target modules are compiled with inline debug information disabled ® X
Suggestion: rebuild the modules with the /debug:inline-debug-info option enabled.

r[Q ¢l v | Cores 1@ ~ [| ¥ Default FLOAT ~ | [Compare ~ | [Guidance =

,
U A P SO IO R A SP Vector FMA Pegk: 103,16 GFLOPS _

e o
SP-vetfor Add Peak: 53.86 GFLOPS

"DP Vieolor FIMA Peal: 4878 GFLOPS

DP Vector Add Peak: 27.61 GFLOPS

100

SdON4D
'
i

-
Scalar Add Peak: 6.59 GFLOPS

Bound by compute
.2
and memory roots

D ,
0.1 FTemo i

T T T Z T T T T T T
0.04 0.07 0.1 04 07 1 4 7 10
Physical Cores: 4 e App Threads: 1 © geff Elapsed Time: 0.880 s Total Elapsed Time: 0.880 s

Top Down Code Analytics Assembly %' Recommendations & Why Mo Vectorization?

Line Source Total'l'lme| % | Loop/Function Tlme| % | Traits L
69 for (1 = 0:1 < size2; 1++) {

70 b[i] += a[l][i] * =[1];

n

72 }

73 /* The following loop will not vectorize because of a reduction dependency caused by the addition in sumx. *

74 /% By running survey you can see the "Assumed dependency™, select this loop in the survey and then run a dependency */

75 /% analysis to verify that the dependency is real. Then you can apply the reduction clause by setting the BEDUCTION */

76 /% define. The compiler will then generate correctly vectorized code. Note: if you just specify a simd clause without*/

77 /% specifying the reduction then the code generated will not be correct. *y

78 #pragma nounrcll

79 #ifdef REDUCTION

20 #pragma omp simd reduction (+:sumx)

a1 #endif

82 B for (k= 0:k < size2:; k++) | 578.363ms W 879.928ms .

[6] [loop in matwec at Multiply.c:82]
Scalar remainder loop
No loop transformations applied
[loop in matwec at Multiply.c:32]
Vectorized AVE loop processes Float32 data type(3)
No loop transformations applied
[loop in matvec at Multiply.c:82]

Sealar nmealad loon [nat averntadl
Selected (Total Time): | 578.363ms]
< >

View an Interactive HTML Report

Intel Advisor enables you to export an interactive HTML report for the CPU Roofline chart, which you can
open in your preferred browser and share.

When you open the report, you see the CPU Roofline chart with the selected configuration. In this report, you
can:

e Expand the Performance Metrics Summary drop-down to view the summary performance
characteristics for your application.

e Double-click a dot on the chart to see a roof ruler that point to exact roofs that bound the dot.

e Hover over a dot to see a detailed tooltip with performance metrics.

If you have a Memory-level Roofline report, you can also:

e Select memory levels to show dots for from the filter drop-down list on the chart.
e Double-click a dot on the chart to expand it for other memory levels and see roof rulers.

87

1 Intel® Advisor User Guide

Performance Metrics Summary v

x @ cores 1 9 v | ¥ Default: FLOAT CARM (L1+NTS) v |[% Guidance v

v Point Info

[loop in matvec at Multiply.c:60]
Scalar, processes Float32 data type(s)
Performance: 3.937 GFLOPS
CARM (L1 + NTS) Arithmetic Intensity: 0.187 FLOP/E
Bounded by: Scalar Add Peak
Self Time: 1.683 s
Self Elapsed Time: 1.683 s
- Total Time: 1.683 s
Total Elapsed Time: 1.683 s
Self Memory Traffic: 35.344 GB
Total Memory Traffic: 35.344 GB

8d0T40

1000 4

100

2
Scalar Add Peak: 6.98 GFLOPS ©

[loop in matvec at Multiply.c:60]
Scalar; processes Float32 data type(s) N

Performance: 3.937 GFLOPS E
CARM (L1 + NTS) Arithmetic Intensity: 0.187 FLOP/Byte [Copy To Clipooard |
Bounded by: Scalar Add Peak i Memory Metrics ¢
Self Time: 1.683 s
01 Self Elapsed Time: 1.683 s Impacts &

Total Time: 1.683 s L «{_ 100%
Total Elapsed Time: 1.683 s o
Self Memory Traffic: 35.344 GB Shares
Total Memory Traffic: 35.344 GB L1 - —— 35.344GB

001 L2 - — 47.766GB

0.0001
1 I

Memory bound? and Compute bound?
FLOP/Byte (Arithmetic Intensity)

1.00e-5 0.0001 0.001 100 1000 10000 1.00e+5 1.00e+6 1.00e+7 1.00e+8

0.0t 01’ 1 10
Physical Cores: 4 ® App Threads: 1 © Self Elapsed Time: 1.683 s Total Elapsed Time: 1.683 s

For details on exporting HTML reports, see Work with Standalone HTML Reports.

Save a Read-only Snapshot

A snapshot is a read-only copy of a project result, which you can view at any time using the Intel Advisor
GUI. You can save a snhapshot for a project using Intel Advisor GUI or CLI.

To save an active project result as a read-only snapshot from GUI: Click the

button in the top ribbon of the report. In the Create a Result Snapshot dialog box, enter the snapshot
details and save it.

To save an active project result as a read-only snapshot from CLI:

advisor --snapshot --project-dir=<project-dir> [--cache-sources] [--cache-binaries] --

<snapshot-path>

where:
e --cache-sources is an option to add application source code to the snapshot.
e -—-cache-binaries is an option to add application binaries to the snapshot.

e <snapshot-path is a path and a name for the snapshot. For example, if you specify /tmp/new_ snapshot,
a snapshot is saved in a tmp directory as new_snapshot.advixeexpz. You can skip this and save the
snapshot to a current directory as snapshotXXX.advixeexpz.

To open the result snapshot in the Intel Advisor GUI, you can run the following command:
advisor-gui <snapshot-path>
You can visually compare the saved snapshot against the current active result or other snapshot results.

See Create a Read-only Result Snapshot for details.
Result Interpretation

When you run the CPU / Memory Roofline Insights perspective from GUI, depending on a configuration
chosen, the chart shows a different level of details:

88

1

Intel® Advisor User Guide

e Examine Bottlenecks on CPU Roofline Chart
e Examine Relationships Between Memory Levels

For a general overview of the report, see CPU Roofline Report Overview.

See Also

Run CPU / Memory Roofline Insights Perspective from GUI

Run CPU / Memory Roofline Insights Perspective from Command Line

Compare CPU Roofline Results Use the Roofline Compare functionality to display Roofline chart
data from other Intel® Advisor results or non-archived snapshots for comparison purposes to track
optimization progress.

CPU Metrics This reference section describes the contents of data columns in Survey and
Refinement Reports of the Vectorization and Code Insights, CPU / Memory Roofline Insights,
and Threading perspectives.

CPU Roofline Report Overview

Review the controls available in the main report of the
CPU / Memory Roofline Insights perspective of the
Intel® Advisor.

Basic Roofline Chart (Low Accuracy)

There are several controls to help you focus on the Roofline chart data most important to you, including the
following.

kQ

100
T0

Sd014D

40

3}

oy v \ Cores: 1 @ j|v FLOAT: No Calistacks v \ £ Compare v “;* Guidance +
2 4 =

5, EMA Peak:
..e‘cllrr MA Peak:

+ Point Info

[loop in matvec at Multiply.c:82]

- Scalar, processes Float32 data type(s)
Performance: 2.422 GFLOPS

" L1 Arithmetic Intensity: 0.167 FLOP/Byte

, Self Time: 1.824 5
Self Elapsed Time: 1.824 5

Total Time: 1.824 5

Total Elapsed Time: 1.824 5

Self Memory Traffic: 26.508 GB

113.26 :3__:LI'I;DS ‘

?
Scalar Add Peak: 6.79 GFLOPS

[loop in matvec at Multiply.c:82]
Scalar; processes Float32 data type(s)
Performance: 2.422 GFLOPS

L1 Arithmetic Intensity: 0.167 FLOP/Byte
Self Time: 1.824 =

Self Elapsed Time: 1.824 5

Total Time: 1.824 ¢

Total Elapsed Time: 1.824

T 0.04 007 01
Physical Cores 4 @ App Threads 1 ©

| self Memory Trafiic: 26.508 GB

FLOP/Byte (Arithmetic Intensity)
.

g | Copy To Clipboard |
=~ Memory Metrics

10
4

Self Elapsed Time” 1.824 5 Total Elapsed Tima: 1.824 =

T
4 7

with your mouse.

2 Use the Cores drop-down toolbar to:

Select Loops by Mouse Rect: Select one or more loops/functions by tracing a rectangle

e Zoom by Mouse Rect: Zoom in and out by tracing a rectangle with your mouse. You can
also zoom in and out using your mouse wheel.

« Move View By Mouse: Move the chart left, right, up, and down.

¢ Undo or Redo: Undo or redo the previous zoom action.

e Cancel Zoom: Reset to the default zoom level.

« Export as x: Export the chart as a dynamic and interactive HTML or SVG file that does not
require the Intel Advisor viewer for display. Use the arrow to toggle between the options.

89

1 Intel® Advisor User Guide

90

e Adjust rooflines to see practical performance limits for your code on the host system.

e Build roofs for single-threaded applications (or for multi-threaded applications configured to
run single threaded, such as one thread-per-rank for MPI applications. (You can use Intel
Advisor filters to control the loops displayed in the Roofline chart; however, the Roofline
chart does not support the Threads filter.)

Choose the appropriate number of CPU cores to scale roof values up or down:

e 1 - if your code is single-threaded

¢« Number of cores equal or close to the number of threads - if your code has fewer threads
than available CPU cores

e Maximum number of cores - if your code has more threads than available CPU cores

By default, the number of cores is set to the number of threads used by the application (even
values only).

You'll see the following options if your code is running on a multisocket PC:

e Choose Bind cores to 1 socket (default) if your application binds memory to one socket. For
example, choose this option for MPI applications structured as one rank per socket.

NOTE This option may be disabled if you choose a number of CPU cores exceeding the
maximum number of cores available on one socket.

¢ Choose Spread cores between all n sockets if your application binds memory to all
sockets. For example, choose this option for non-MPI applications.

e Toggle the display between floating-point (FLOP), integer (INT) operations, and mixed
operations (floating-point and integer).

e If you collected Roofline with Calltacks: Enable the display of Roofline with Callstacks
additions to the Roofline chart.

Display Roofline chart data from other Intel Advisor results or non-archived snapshots for
comparison purposes.

Use the drop-down toolbar to:

¢ Load a result/snapshot and display the corresponding filename in the Compared Results
region.

e Clear a selected result/snapshot and move the corresponding filename to the Ready for
comparison region.

Note: Click a filename in the Ready for comparison region to reload the result/snapshot.
e Save the comparison itself to a file.

NOTE The arrowed lines showing the relationship among loops/functions do not reappear if
you upload the comparison file.

Click a loop/function dot in the current result to show the relationship (arrowed lines) between it
and the corresponding loop/function dots in loaded results/snapshots.

Intel® Advisor User Guide 1

T+FLOAT. Mo Calstncin = || '[! 3 Compared Results = | 8 —
+
Covmpared reduls w
.

ﬂ. rosoflane_dermna_samples rovecior 02
{:} roollng_demo_samples pragma_simd 02
By for companson
reslbreg_deinn_sBimgle fgl
recling_demo_pamples pragma_send OF
reclline_dera_samgles der_change
ool _dema_samples novector OF

s + | roolline_demo_samples pragma_gemd
reeine_demn_samgdes changesd_ e

raolres_dermo_samgles 02

=GR

7
4] Scaler A Peaic: 3163 GINTOFS

Add visual indicators to the Roofline chart to make the interpretation of data easier, including
performance limits and whether loops/functions are memory bound, compute bound, or both.

Use the drop-down toolbar to:

e Show a vertical line from a loop/function to the nearest and topmost performance ceilings by
enabling the Display roof rulers checkbox. To view the ruler, hover the cursor over a loop/
function. Where the line intersects with each roof, labels display hardware performance limits
for the loop/function.

e If you collected Roofline for All Memory Levels: Visually emphasize the relationships among
displayed memory levels and roofs and for a selected loop/function dot by enabling the Show
memory level relationships checkbox.

* Color the roofline zones to make it easier to see if enclosed loops/functions are fundamentally

memory bound, compute bound, or bound by compute and memory roofs by enabling the
Show Roofline boundaries checkbox.

The preview picture is updated as you select guidance options, allowing you to see how changes
will affect the Roofline chart’s appearance. Click Apply to apply your changes, or Default to
return the Roofline chart to its original appearance.

Once you have a loop/function's dots highlighted, you can zoom and fit the Roofline chart to the
dots for the selected loop/function by once again double-clicking the loop/function or pressing

SPACE or ENTER with the loop/function selected. Repeat this action to return to the original
Roofline chart view.

To hide the labeled dots, select another loop/function, or double-click an empty space in the
Roofline chart.

+ Roofline View Settings: Adjust the default scale setting to show:

e The optimal scale for each Roofline chart view
e A scale that accommodates all Roofline chart views
+ Roofs Settings: Change the visibility and appearance of roofline representations (lines):

91

1 Intel® Advisor User Guide

10

e Enable calculating roof values based on single-threaded benchmark results instead of
multi-threaded.

e C(Click a Visible checkbox to show/hide a roofline.

e C(Click a Selected checkbox to change roofline appearance: display a roofline as a solid or a

dashed line.
e Manually fine-tune roof values in the Value column to set hardware limits specific to your
code.

« Loop Weight Representation: Change the appearance of loop/function weight
representations (dots):

e Point Weight Calculation: Change the Base Value for a loop/function weight
calculation.

o Point Weight Ranges: Change the Size, Color, and weight Range (R) of a loop/
function dot. Click the + button to split a loop weight range in two. Click the - button to
merge a loop weight range with the range below.

* Point Colorization: color loop/function dots by weight ranges or by type (vectorized or
scalar). You can also change the color of loop with no self time.

You can save your Roofs Settings or Point Weight Representation configuration to a JSON file or
load a custom configuration.

Zoom in and out using numerical values.

Click a loop/function dot to:

¢ Qutline it in black.
¢ Display metrics for it.
¢ Display corresponding data in other window tabs.

Right-click a loop/function dot or a blank area in the Roofline chart to perform more functions,
such as:

e Further simplify the Roofline chart by filtering out (temporarily hiding a dot), filtering in
(temporarily hiding all other dots), and clearing filters (showing all originally displayed dots).
¢ Copy data to the clipboard.

Show/hide the metrics pane:

* Review the basic performance metrics in the Point Info pane.
e If you collected the Roofline for All Memory Levels: Review how efficiently the loop/function
uses cache and what memory level bounds the loop/function in the Memory Metrics pane.

Display the number and percentage of loops in each loop weight representation category.

92

Intel® Advisor User Guide 1

Roofline with Callstacks Chart (Medium Accuracy)

k[Ql ™ & 4 x &y v [coes 19 + [FLOAT, With Callstacks « |[42 Compare ~ | [* Guidance + | =
ross 9 Operations Ur veon rms r-':.‘:ﬂf Daconarei gy p——
5542 —
g ® FLOAT () INT () INT+FLOAT s peak s ariops’ O Tunc@Didh2e5692
@ T etk - - O lunc@0x4b2es6ae
25!@:_@9.E'iﬁf I — P . (O BaseThreadinitThunk
ganu:""f“‘f"' - With Callstacks () _scrt_common_main_seh at exe_comm. .
10 : 1 Default || Apply || Cancel eecp E O main at Driver.c:133

O [loop in main at Driver.c:155]
() matvec at Multiply.c:46
() Noop in matvec at Multiply.c:49]

~ Point Info
[loop in matvec at Multiply.c:49]
Scalar; processes Float32 data type(s)
Total Performance: 2.468 GFLOPS
Total L1 Arithmetic Intensity: 0.17 FLOP/Byte

[loop in matvec at Multiply.c:49]

Scalar; processes Float32 data type(s) Salf Time: 0.006 =
1 Total Performance: 2.468 GFLOPS Self Elapsed Time: 0.096 5
07 Total L1 A_rithmetic Intensity: 0.17 FLOP/Byte Total Time: 6.266 5
Self Time' 0.096 = r Total Elapsed Time: 6.266 s
Sell Elapsed Time: 0.096 s I Qalf Mamnry Traffie 3 83 2R T
0.4 Total Time: 6.266 s 3
Total Elapsed Time: 6.266 = B metic Intensity) Cooy To O d
I ! I | Self Memory Traffic: 2.82 GE e Loy o et |
0.044 . 0.07 0.1 Total Memory Traffic: 81.18 GB 059 » Memory Metrics
Physical Cores: 4 @ App Threads: 1 © Self Elapsed Time® 0.096 5 Tolal EI2DSEd TIME 6.266 &
1 Enable the display of Roofline with Callstacks additions to the Roofline chart.
2 Show/hide loop/function descendants:

¢ Click a loop/function dot
[=]
control to collapse descendant dots into the parent dot.
¢ Click a loop/function dot

control to show descendant dots and their relationship via visual indicators to the parent dot.

You can also right-click a loop/function dot to open the context menu and expand/collapse the
loop/function subtree.

3 Show/hide the Callstack and other panes.

4 e Click an item in the Callstack pane to flash the corresponding loop/function dot in the
Roofline chart.
¢ Right-click an item in the Callstack pane to open the context menu and expand/collapse the
item subtree.

You can also click an item in the Callstack pane to flash the corresponding loop/function dot in
the Roofline chart.

93

1 Intel® Advisor User Guide

Memory-Level Roofline Chart (Medium Accuracy)

kQM & ¥ ogly v | Cores: 1 @ « HY FLOAT, Mo Callstacks; CARM (L1 + NTS); L2; L3; DRAM; Loads+Stores H=;= Compare ~ || 4 Guidance « E
15515 3 - 1 5P Vector P #| Display roof rulers & 1 i
100 43 _ o #| Show memory level relationships © it mmult_serial.cpp:79]
o eemTT ¥ Show Roofline boundaries € ions SSE2; processes Float32; Floatf4 d:
) P ow Roofline boundaries 506 GFLOPS
7o '3) Arithmetic Intensity: 0.083 FLOP/Byte
RAM Bandwidth
e 25
et me: 0.612 =
40 T)__..«" - 12 5
BC_ - =TT - ime: 0.612
it 2 —e 0P ecleq afiic: 25.77 GB
raffic: <0.001 GB
. _"“_—”" | Default || Apply || Cancel

et _’,.<-" E | Copy Te Clipboa:
. ===~ il Memory Metrics @

w2 - Impacts &
-7 __ Scalar Add Peak: 7.01 GFLOPS _ LT -/— 15
L2 | —— 19
L3 | — 25
. - "_--’" 3 DRAM - 39

’ —— @ Shares ©
CARM (L1+ NTS) _,-»-"J L2 L2 DRAM L1 - e 25 770G
25.77 GB ? - 10.404 GB 5.544 GB s3s7ce| W L2 | — 10.4040G
: L3 - — 85446
il DRAN - 43876

FLOP/Byte (Artnmetic Intensity)
T T T T T
0.4 055

T
0.083

0.1 0.25
Physical Cores: 4 @ App Threads: 1 © Self Elapsed Time: 0.612 s Total Elapsed Time: 0.612 5

Visually emphasize the relationships among displayed memory levels and roofs for a selected
loop/function dot by enabling the Show memory level relationships checkbox.

NOTE This checkbox is enabled by default.

Use the drop-down toolbar to:

Select the Memory Level(s) to show for each loop/function in the chart (L1, L2, L3, DRAM).
Select which Memory Operation Types(s) to display data for in the Roofline chart: Loads,
Stores, or Loads and Stores.

Double-click a dot or select a dot and press SPACE or ENTER to examine how the relationships
between displayed memory levels and roofs:

Labeled dots are displayed, representing memory levels for the selected loop/function. Lines
connect the dots to indicate that they correspond to the selected loop/function.

NOTE If you have chosen to display only some memory levels in the chart using the
Memory Level option, unselected memory levels are displayed with X marks.

An arrowed line is displayed, pointing to the memory level roofline that bounds the selected
loop. If the arrowed line cannot be displayed, a message will pop up with instructions on how
to fix it.

Show/hide the Memory Metrics and other panes.

In the Memory Metrics pane:

¢ Review the time spent processing requests for each memory level reported in the Impacts
histogram. A big value indicates a memory level that bounds the selected loop.
Review an amount of data that passes through each memory level reported in the Shares

histogram.

94

Intel® Advisor User Guide

1

Examine Bottlenecks on CPU Roofline Chart

Accuracy Level

Low

Enabled Analyses
Survey + FLOP (Characterization)

Result Interpretation

The farther a dot is from the topmost roofs, the more room for improvement there is. In accordance with
Amdahl's Law, optimizing the loops that take the largest portion of the program'’s total run time will lead to
greater speedups than optimizing the loops that take a smaller portion of the run time.

kQl i « xi,r|0c:-res:1§v

|T Default FLOAT CARM (L1+NTS) » |

¢ Compare ~ | |;" Guidance ~ |

121.714

SdO4D

0.1

0.01

0.002 o

T T T T T T
0.0016 0.004 0007 004 007
Physical Cores: 4 © App Threads: 1 @ Self Elapsed Time: 2127 s

0

Total El

[loop in main at stride.cpp:73]

Vectorized (Body) AVX2; processes Float64; Int32 data type(s)
Performance: 0.115 GFLOPS

CARM (L1 + NTS) Arithmetic Intensity: 0.125 FLOP/Byte
Bounded by: L2 Bandwidth

| Self Time: 2112 s
| Self Elapsed Time: 2.112 s
T Total Time: 2.314 5

Total Elapsed Time: 2.314 s

| Self Memory Traffic: 1.944 GB

Total Memory Traffic: 16.848 GE

r
I !

hmetic Intensity)
e

NOTE This topic describes data as it is shown in the CPU Roofline report in the Intel Advisor GUI. You
can also view the result in an HTML report, but data arrangement and panes may vary.

e By dot size and color, identify loops that take most of total program time and/or located very low in the

chart. For example:

e Small, green dots take up relatively little time, so are likely not worth optimizing.
e Large, red dots take up the most time, so the best candidates for optimization are the large, red dots
with a large amount of space between them and the topmost roofs.

NOTE You can switch between coloring the dots by execution time and coloring the dots by type
(scalar or vectorized) in the roof view menu on the right.

e Depending on the dots position, identify what the loops are bounded by. Intel® Advisor marks the roofline
zones on the chart to help you identify what roofs bound the loop:

e Loop is bounded by memory roofs.

95

1 Intel® Advisor User Guide

e Loop is bounded by compute roofs.

e Loop is bounded by both memory and compute roofs.
e In the Recommendations tab, scroll down to the Roofline Guidance section that provides you hints on

next optimization steps for a selected loop/function.

The roofs above a dot represent the restrictions preventing it from achieving a higher performance, although
the roofs below can contribute somewhat. Each roof represents the maximum performance achievable
without taking advantage of a particular optimization, which is associated with the next roof up. Depending
on a dot position, you can try the following optimizations.

NOTE For more precise optimization recommendations, see the Roofline Guidance in Code Analytics
and Roofline Conclusions in Recommendations tabs.

Dot Position

Reason

To Optimize

Below a memory roof (DRAM
Bandwidth, L1 Bandwidth, so on)

Below Vector Add Peak

Just above Scalar Add Peak

Below Scalar Add Peak

The loop/function uses memory
inefficiently.

The loop/function under-utilizes
available instruction sets.

The loop/function is
undervectorized.

The loop/function is scalar.

Run a Memory Access Patterns
analysis for this loop.

« If MAP analysis suggests
cache optimization, make any
appropriate optimizations.

o If cache optimization is
impossible, try reworking the
algorithm to have a higher Al

Check Traits column in the
Survey report to see if FMAs are
used.

e If FMA is not used, try altering
your code or compiler flags to
induce FMA usage.

Check vectorization efficiency
and performance issues in the
Survey. Follow the
recommendations to improve it if
it's low.

Check the Survey report to see if
the loop vectorized. If not, try to
get it to vectorize if possible. This
may involve running
Dependencies to see if it's safe to
force it.

In the following Roofline chart representation, loops A and G (large red dots), and to a lesser extent B

(yellow dot far below the roofs), are the best candidates for optimization. Loops C, D, and E (small green
dots) and H (yellow dot) are poor candidates because they do not have much room to improve or are too
small to have significant impact on performance.

96

Intel® Advisor User Guide 1

GFLOPs/S AN ad AP
' ca‘?' o o

CPU Cap: FMAs

.

CPU Cap: Vector Add

O@CPU Cap: Scalar Add

@@ .&

¢ _

Arithmetic Intensity (FLOPs/Byte) N

Some algorithms are incapable of breaking certain roofs. For instance, if Loop A in the example above cannot
be vectorized due to dependencies, it cannot break the Scalar Add Peak.

Tip If you cannot break a memory roof, try to rework your algorithm for higher arithmetic intensity.
This will move you to the right and give you more room to increase performance before hitting the
memory bandwidth roof. This would be the appropriate approach to optimizing loop F in the example,
as well as loop G if its cache usage cannot be improved.

Analyze Specific Loops
Select a dot on the chart, open the Code Analytics tab to view detailed information about the selected loop:

o Refer to Loop Information pane to examine total time, self time, instruction sets used, and instruction
mix for the selected loop. Intel Advisor provides:

e Static instruction mix data that is based on static assembly code analysis within a call stack. Use static
instruction mix to examine instruction sets in the inner-most functions/loops.

e Dynamic instruction mix that is based on dynamic assembly code analysis. This metric represents the
total count of instructions executed by your function/loop. Use dynamic instruction mix to examine
instruction sets in the outer loops and in complex loop-nests.

Intel Advisor automatically determines the data type used in operations. View the classes of instructions
grouped by categories in instruction mix:

Category Instruction Types

Compute (FLOP and INTOP) ADD, MUL, SUB, DIV, SAD, MIN, AVG, MAX, ABS, SIN,
SQRT, FMA, RCCP, SCALE, FCOM, V4FMA, V4VNNI

Memory scalar and vector MOV instructions

e GATHER/SCATTER instructions

e VBMI2 compress/expand instructions
Mixed Compute instructions with memory operands
Other MOVE, CONTROL FLOW, SYNC, OTHER

NOTEIntel Advisor counts FMA and VNNI instructions as more than 1 operation depending on the size
of the data type and/or the type of vector registers used.

o Refer to Roofline pane for more details about a specific roof that bounds the loop:

97

1 Intel® Advisor User Guide

e View roofs with number of threads, data types, and instructions mix used in the loop
o Identify what exactly bounds the selected loop - memory, compute, or both memory and compute
e Determine the exact roof that bounds the loop and estimates a potential speedup for the loop in the
callout if you optimize it for this roof

e Refer to Statistics for operations pane to view the count of operations collected during Characterization
analysis. Depending on the operations you need, use a drop-down list to choose FLOP, INTOP, FLOP
+INTOP or All Operations. Switch between Self and Total data using the toggle in the top right-hand
corner of the pane.

Intel Advisor calculates floating-point operations (FLOP) as a sum of the following classes of
instructions multiplied by their iteration count: FMA, ADD, SUB, DIV, DP, MUL, ATAN, FPREM, TAN, SIN,
COS, SQRT, SUB, RCP, RSQRT, EXP, VSCALE, MAX, MIN, ABS, IMUL, ID1V, FIDIVR, CMP, VREDUCE, VRND

Integer operations (INTOP) are calculated in two modes:

o Potential INT operations (default) that include loop counter operations that are not strictly
calculations (for example, INC/DEC, shift, rotate operations). In this case, INTOP is a sum of the
following instructions multiplied by their iteration count: ADD, ADC, SUB, MUL, IMUL, D1V, IDIV, INC/
DEC, shifts, rotates

e Strict INT operations (available in Python* API only) that include only calculation operations. In
this case, INTOP is a sum of the following instructions multiplied by their iteration count: ADD, MUL,
IDIV, SUB

Next Steps

e Identify Bottlenecks Iteratively: Cache-Aware Roofline

Examine Relationships Between Memory Levels

Accuracy Level

Medium

Enabled Analyses

Survey + Characterization (Trip Counts and FLOP, Call Stacks, Memory-Level) + Memory Access Patterns

Result Interpretation

In the Medium accuracy preset, the Intel® Advisor extends the basic Roofline capability and collects metrics
for all memory levels and the callstack data, which allows you to analyze your application in more detail.
Roofline chart uses the results of Memory Access Patterns analysis to understand what bounds the loop and
build recommendations in Roofline Guidance.

For information about Memory Access Patterns data interpretation, refer to Investigate Memory Usage and
Traffic.

NOTE This topic describes data as it is shown in the CPU Roofline report in the Intel Advisor GUI. You
can also view the result in an HTML report, but data arrangement and panes may vary.

Memory-Level Roofline

The Memory-Level Roofline allows you to examine each loop at different cache levels and arithmetic
intensities and provides precise insights into which cache level causes the performance bottlenecks.

The Memory-Level Roofline can help you to:

98

https://www.intel.com/content/www/us/en/develop/documentation/advisor-cookbook/top/identify-bottlenecks-iteratively-cache-aware-roofline.html

Intel® Advisor User Guide 1

e Determine which loops are limited by cache
e Find inefficient access patterns
e Locate loops that can benefit from vectorization or threading optimizations

k@ ™ &« 4 x oy v [coes 19 + [FLOAT, No Callstacks; CARM (L1 + NTS); L2 L3; DRAM: Loads+Stores + | [5* Compare ~ ||+ Guidance = =
110729 o SE vec| ¥ Display roof rulers @ o
T — - — E .
9:1 I ¥ Show memory level relationships @ |in at mmult_serial.cpp:79]
@ =T . e @ \'ersions SSE2; processes Floal
70 - #| Show Roofline boundaries o 1.587 GFLOPS
= NTS) Arithmetic Intensity: 0.0
- DRAM Bandwidth
40 . . 353 s
30 Pt I B - AR d Time: 1.353 5
1.353 s
pd Time: 1.353 5
v Traffic: 25.77 GB
ry Traffic: <0.001 GB
Default || Apply || Cancel b
10
2 Copy To Clipboard
7 i+ Memory Metrics @
Impacts &
4 L1 - 8%
P L2 10%
L3 - 15%
pmmma P DRAM - — 66%
- — B '@, Shares
CARM(LI=NTS) | cgaised -7 e |] L1 - —— 25 770G
1 zsr7ee (1005 | 10.057 GB 4 L2 - — 10.057GB
T
| DR L3 - 2.505G8
072
FLOP/Byle (Arithmetic Intensity} DRAM -j— 7.553G8
iy T T T T T TT
0.083 0.09 0.1 0.2 03 04 0.5
Physical Cores: 4 @ App Threads: 1 @ Self Elapsed Time: 1.353 5 Total Elapsed Time: 1.353 &

To configure the Memory-Level Roofline chart:

1. Expand the filter pane in the Roofline chart toolbar.
2. In the Memory Level section, select the memory levels you want to see metrics for.

¥ Default: FLOAT CARM (L1+NTS) « || :* Compare
Cperations

= FLOAT INT INT+FLOAT

Callstacks
With Callstacks @

Memory Level

« CARM L1+ NTS) L2 L3 DRAM

Memory Cperations Type
Loads Stores @ Loads+Stores
| Default || Apply || Cancel |
—_— -

3. Click Apply.

4. In the Roofline chart, double-click a loop to examine how the relationships between displayed memory
levels and roofs. Labeled dots are displayed, representing memory levels with arithmetic intensity for
the selected loop/function; lines connect the dots to indicate that they correspond to the selected loop/

function.

99

1 Intel® Advisor User Guide

16.206 GB __---16437GB || 6.105GB

Tip By default, the Memory-Level Roofline chart is generated for the system cache configuration. You
can also generate the chart for a custom cache configuration:

Go to Project Properties > Trip Count and FLOP.

In the Cache simulator field, click Modify.

Click Add and enter/select the desired cache configurations.
Re-run the Roofline with the Medium accuracy.

o

Memory-Level Roofline Data

Intel® Advisor collects integrated traffic data for all traffic types between a CPU and different memory
subsystem using cache simulation. With this data, Intel® Advisor counts the number of data transfers for a
given cache level and computes Al for each loop and each memory level.

Review the changes in the traffic from one memory level to another and compare it to respective to identify
the memory hierarchy bottleneck for the kernel and determine optimization steps based on this information.

The vertical distance between memory dots and their respective roofline shows how much you are limited
by a given memory subsystem. If a dot is close to its roof line, it means that the kernel is limited by the
performance of this memory level.

The horizontal distance between memory dots indicates how efficiently the loop/function uses cache. For
example, if L3 and DRAM dots are very close on the horizontal axis for a single loop, the loop/function
uses L3 and DRAM similarly. This mean that it does not use L3 and DRAM efficiently. You can try to
improve re-usage of data in the code to change arithmetic intensity for all loops/functions and improve
application performance. For more precise advice, see the Roofline Guidance in the Code Analytics
tab.

Arithmetic intensity determines the order in which dots are plotted, which can provide some insight into
your code's performance. For example, the L1 dot should be the largest and first plotted dot on the chart
from left to right. However, memory access type, latency, or technical issues can change the order of the
dots. Continue to run the Memory Access Pattern analysis to investigate this issue.

To examine a specific loop in more details, select a dot on the chart and open the Code Analytics tab below
the chart:

Review the amount of data transferred for the selected loop/function and a specific roof that bounds the
loop in the Roofline pane. Use this pane to analyze deeper a selected loop/function:

e It shows only roofs with number of threads, data types, and instructions mix used in the loop.
e It identifies what exactly bounds the selected loop - memory, compute, or both memory and compute.

100

¥ FLOAT, No Callstacks; CARM (L1 + NTS); L2; L3; DRAM; Loads+Stores = ||{* Compare = | /* Guidance
= }]
..__.__,_—'—"_'-'_-.-
..--""_'-'_FF-._-H-;
J-—"'-'_'_'_'— —
=" = |'+
CARM (L1 + NTS) z H DRAM
1393 GB

Intel® Advisor User Guide 1

Roofline with Callstacks

It determines exact roof that bounds the loop and estimates a potential speedup for the loop in the
callout if you optimize it for this roof.

Roofline” @

Memory Level CARM

DP Vector Add Peak

Ad0 1D

FLOP/Byte {Asithen i)

0.47
This loop is mostly memory bound
The performance of the loop is bounded by the DRAM bandwidth.

‘fou can swilch to the Recommendations tab to see oplimizaticn recommendations in the
Roofline Conclusions section

Review the memory metrics for different memory levels (L1, L2, L3 and DRAM) and the number of
operations transferred (FLOP and INTOP) in the Data transfers and Bandwidth table. This indicates the
amount of self data (excluding data from inner loops/functions) or total data (including data from inner
loops/functions) transferred, memory level bandwidth, and percentage of memory used at each memory

level.

NOTE Total data transfers are available only if you collect Roofline with Callstacks.

Review the amount of data processed at different memory levels for the selected loop in the Memory
Metrics pane. The pane shows two histograms:

Review the time spent processing requests for each memory level reported in the Impacts histogram.
A big value indicates a memory level that bounds the selected loop. Examine the difference between
the two largest bars to see how much throughput you can gain if you reduce the impact on your main
bottleneck. It also gives you a long-time plan to reduce your memory bound limitations as once you
will solve the problems coming from the widest bar, your next issue will come from the second biggest
bar and so on. Ideally, a developer would like to see the L1 as the most impactful memory in the
application for each loop.

Review an amount of data that passes through each memory level reported in the Shares histogram.

NOTE Metrics in the Memory Metrics pane calculated for a dominant operation type in the selected
loop (FLOAT or INT) and based on the total data aggregating all callctacks. Hover over the ? icon for
the whole pane to see the tooltip that indicates the dominant type.

Intel® Advisor basic Roofline model, the Cache-Aware Roofline Model (CARM), offers self data capability.
Intel® Advisor Roofline with Callstacks feature extends the basic model with total data capability:

Self data = Memory access, FLOPs, and duration related only to the loop/function itself and excludes data
originating in other loops/functions called by it

101

1 Intel® Advisor User Guide

Total data = Data from the loop/function itself and its inner loops/functions

The total-data capability in the Roofline with Callstacks feature can help you:

Investigate the source of loops/functions instead of just the loops/functions themselves.

Get a more accurate view of loops/functions that behave differently when called under different

circumstances.

Uncover design inefficiencies higher up the call chain that could be the root cause of poor performance by
smaller loops/functions.

To view the callstacks, enable the With Callstacks checkbox in the Roofline chart.

v Cores: 1 @ +

Operations

® FLOAT INT

Callstacks

Default

#| With Callstacks @

¥ FLOAT, With Callstacks + ||I* Compare ~ || * Guidance ~ |

INT+FLOAT

Apply || Cancel

DE. Wactdr -.'-.::I-:I Peak: 27 .74 GFLOPS .

?
Scalar Add Peak: 6.87 GFLOPS

FLOP/Byte (Arithmetic Intensity)

0.04

0.07

01

© pppThreads: 1 @ Self Elapsed Time: 1.727 5 Total Elapsed Time: 1.727 5

To show/hide dot descendants:

Click a loop/function dot

control to collapse descendant dots into the parent dot.

Click a loop/function dot

control to show descendant dots and their relationship with visual indicators to the parent dot.

Roofline with Callstacks Chart Data

0.7

0.54

w Callstack:

() func@0x4b2edh
() func@0x4b2edh
(") BaseThreadinit]
() _scrt_common_
(") main at Driver.c:
(") [loop in main at |
() matvec at Muliip
() [loop in matvec ;
@ [loop in matvec

+ Point Info

[loop in matvec at |
Scalar, processes Fl
Self Performance: 3.
Self L1 Arithmetic In
Total Performance:
Total L1 Arithmetic Ir
Self Time: 1.727 s

Self Elapsed Time: 1
Total Time: 1.727 s

Total Elapsed Time:
Self Memory Traffic:
Total Memory Traffic

The following Roofline chart representation shows some of the added benefits of the Roofline with Callstacks
feature, including:

A navigable, color-coded Callstack pane that shows the entire call chain for the selected loop/function,

but excludes its callees
Visual indicators (caller and callee arrows) that show the relationship among loops and functions

The ability to simplify dot-heavy charts by collapsing several small loops into one overall representation

102

Intel® Advisor User Guide 1

Loops/functions with no self data are grayed out when expanded and in color when collapsed. Loops/
functions with self data display at the coordinates, size, and color appropriate to the data when expanded,
but have a gray halo of the size associated with their total time. When such loops/functions are collapsed,
they change to the size and color appropriate to their total time and, if applicable, move to reflect the
total performance and total arithmetic intensity.

Performance (GFLOPS) =
% -EOEE - - s *-=~1 Galistack:

- = = -7 O RtlUserThread..

O BaseThreadinit.

O _scrt_common..
(O main at slbe.cp..

O fsBGKShanCh...
O [loopin fsBGK..
O fCalePotential_.
O [loop in fCalcP...
- i O [OpenMP fork]

" O _kmp_fork_call.

(O fCalcPotential ..

@ [loop in fCalcP...

15

0.014 127
Self Elapsed Time: 2.050s Total Elapsed Time: 9.710 s Arithmetic Intensity (FLOP/Byte)

See Also

Examine Bottlenecks on CPU Roofline Chart

Compare CPU Roofline Results Use the Roofline Compare functionality to display Roofline chart
data from other Intel® Advisor results or non-archived snapshots for comparison purposes to track
optimization progress.

Compare CPU Roofline Results

Use the Roofline Compare functionality to display
Roofline chart data from other Intel® Advisor results or
non-archived snapshots for comparison purposes to
track optimization progress.

Prerequisites
To compare the GPU Roofline results, make sure to get the following:

e A baseline GPU Roofline result or snapshot
e One or more GPU Roofline results or snapshots of the same application with an optimization applied

To compare the results:

1. Open a baseline GPU Roofline result/snapshot.
2. From the Compare drop-down toolbar, click + to load a comparison result/snapshot. You can load
multiple results/snapshots for comparison one by one.

103

1 Intel® Advisor User Guide

k[Q I; v | Cores: 1 @ + ||'¥ Default: FLOAT || 3 Compared Results » || #* Guidance =
2 + 2
100 42 SPVector FMA Pealc 90.66 GFLOPS
% [Compared results X -=--20 ook R R R 5 A
o . -
70 L () Current .
[Resultz . R
" DP Vector FMA Peak’ 46.23 GFLOPS-
0 A A Resut ™~ "" 55 Vacior Adj Pbak 36 2 GFLOPS -
R Ready for comparison L
’ ‘ :

P 7
D Vector Add Peak: 20.32 GFLOPS

7
Scalar Add Peak: 5.38 GFLOPS

Compu d’
FLOP/Byle (Arthmetic Intensity)
T T T T T

T T T
0.04 007 01 0.4 0.7 1 4 7 10

Physical Cores: 4 L] App Threads: 1 @ gelf Elapsed Time: 18.157 5 Total Elapsed Time: 18.157 s

When the comparison is uploaded:

e The filenames for uploaded results/snapshots are displayed in the Compared Results region.

e Similar loops/functions from all compared results are recognized automatically. They are connected with a
dashed arrow line. The performance improvement between the loops/functions is shown above the line, in
per cent. The improvement is calculated as the difference in FLOPS, INTOPS, or OPS and Total Time.

NOTE The arrows showing the relationship among loops/functions do not reappear if you upload a new
comparison file.

e Loops from different snapshots are shown as different icons on the chart. For example, on the picture
below, the baseline loops are shown as circles and comparison loops are triangles and diamonds.

104

Intel® Advisor User Guide 1

T+FLOAT: Mo Calsinchs = || ' 3 Compared Resuls = |iD =
+
Crpared ety »

ﬂ. rooflee_dema_samplaes novecios 02
{} rorplleve_ e _sampled peraapna_semsd 02
By for companscn
1o e _deria_saimglen redgd
recling_dams_pamples pragma_send 0
sl _derms_samgles del_changs
ool _damd_pamples ndvechor 07
» . rocline_damo_ssmples pragma_send
rooline_demo._sampdes changed_ s
ralienes_dermn._samgdes OF

T

i
Seale itd Peaic 363 GINTOFS

e To highlight all dots from a specific compared result, open the Compare drop-down and hover over the
result name.

e Each time you change the Roofline configuration or filter the dots on the chart, the comparison is updated
automatically.

e You can remove a selected result from Compared Results by hovering over it and clicking the X icon.
The result is removed from the chart and appears in the Ready for comparison region. Click a name in
the Ready for comparison region to reload the result back to the chart.

e You can save the comparison itself to a file using the export feature.

NOTE To find the same loops/functions among the results, Intel Advisor compares several loop/
function features, such as their type, nesting level, source code file name and line, and function name.
When a certain threshold of similar or equal features is reached, the two loops/functions are
considered a match and connected with a dashed line.

However, this method still has few limitations. Sometimes, there can be no match for the same loop/
function if one is optimized, parallelized, or moved in the source code to four or more lines from the

original place. Intel Advisor tries to ensure some balance between matching source code changes and
false positives.

Model Threading Designs

Analyze, design, tune, and check threading design
options without disrupting your normal development
by running the Threading Perspective.

The Threading Perspective can help you to:

Model different threading designs for your application

Prototype project scaling on systems with larger core counts

Find performance issues and fix them before implementing parallelism
Find and eliminate data-sharing issues during design

105

1 Intel® Advisor User Guide

How It Works
The Threading perspective includes the following steps:

1. Run the Survey analysis to find candidates for parallelizing.

2. Add parallel site and task annotations to your code and re-build your application.
3. Run Suitability analysis to view proposed parallel design options.

4. Run Dependencies analysis to identify stoppers for adding parallel code.

Threading Summary

Threading perspective reports information about your application performance recommends you loops/
functions to parallelize with the highest gain:

e View the main performance metrics of your program with execution time details.

e View optimization recommendations that help you to improve the overall performance of your application
and separate loops/functions.

e Examine how different parallel design options affect performance of annotated loops/functions and view
estimated gain for each option. Check if annotated loops have dependencies that can be show-stoppers
while parallelizing your code.

Surnrmary 5 Survey & Roofline " A Refinement Reports ¢ Annotation Report] Suitability Report

© Threading Perspective

Threading Perspective lets you analyze, design, tune, and check threading options without disrupting your development

v Program Metrics

Elapsed Time 5.309s Number of CPU Threads 1
Vector Instruction Set ™ None

~ Performance Characteristics

Metrics Total
Total CPU time 5.00s I | 0%
Time in scalar code 5.00s I, | 00

» Vectorization Gain/Efficiency (Mot Available)

v Per Program Recommendations

™ Higher instruction set architecture (ISA) available
Consider recompiling your application using a higher ISA. Show more

v Top Time-Consuming Loops

Consider adding parallel site and task annotations around these time-consuming loops found during Survey analysis.

Loop Self Time Total Time Trip Counts
O loop in setQueen at ngueens serial cpp:132 0.449s 49965 14

O loop in solve at ngueens serial.cpp:156 =0.001s 4.996s 14

O loop in setQueen at ngueens serial cpp:103 1.934s 1.934s 4

v Suitability And Dependencies Analysis Data

These annotated parallel sites were delecied:
Site Location Maximum Site Gain Dependencies:
O loop in solve at ngueens serial.cpp:154 G.4685634666754614 WAR:1 WAW:1

v Recommendations

See Also

Run Threading Perspective from GUI Steps to run the Threading perspective.
Run Threading Perspective from Command Line

Annotate Code for Deeper Analysis

106

Intel® Advisor User Guide 1

Model Threading Parallelism

Run Threading Perspective from GUI
Steps to run the Threading perspective.

In the Analysis Workflow pane, select the Threading perspective. The perspective can be executed at the
following collection accuracy levels:

¢ Low - Find candidates for parallelizing.

e Medium - Model parallel design options and determine whether there are dependencies limiting
parallelizing.

e Custom - Customize the perspective flow and properties.

In the Threading perspective, collection accuracy levels match the steps you should take. By default,
accuracy is set to Low.

NOTE The higher accuracy value you choose, the higher runtime overhead is added to your
application. The Overhead indicator shows the overhead for the selected configuration.

Prerequisites: In the graphical-user interface (GUI): Create a project and specify an analysis target and
target options.

To configure and run the Threading perspective from GUI, do the following:

1. Select Low accuracy level to enable the Survey analysis and run the perspective by clicking

button.

You will get a Survey report that shows the execution times of your functions and loops.

2. Sort the report data by Total Time to identify functions and loops with the longest execution time.
These loops/functions are the best candidates to apply parallelization for.

3. In your source code, annotate sites and tasks to model threading for and re-build your application. For
more information on annotations and how to apply them, see Annotate Code for Deeper Analysis
section.

4. Select Medium accuracy level and run the Threading perspective by clicking

button.
While the perspective is running, you can do the following in the Analysis Workflow tab:
e Control the perspective execution:

e Stop data collection and see the already collected data: Click the

button.

e Cancel data collection and discard the collected data: Click the

button.
e Pause data collection: Click the

button.
e Expand an analysis with

to control the analysis execution:

107

1 Intel® Advisor User Guide

e Pause the analysis: Click the

00|
button.

e Stop the currently running analysis and start the next analysis selected: Click the

=]
button.

e Interrupt execution of all selected analyses and see the already collected data: Click the

button.

NOTE To generate command lines for selected perspective configuration, click the

Command Line button.

To run the Threading perspective with the Medium accuracy from the command line interface:

1. Run the Survey analysis:

advisor --collect=survey --project-dir=./advi results -- ./myApplication
2. Collect trip count data:

advisor --collect=tripcounts --project-dir=./advi results -- ./myApplication
3. Run the Suitability analysis for annotated loops:

advisor --collect=suitability --project-dir=./advi results -- ./myApplication
4. Run the Dependencies analysis:

advisor --collect=dependencies --project-dir=./advi results -- ./myApplication
See Run Threading Perspective from Command Line for details.

After running the perspective as describes above, you get a Suitability report showing predicted options for
parallelizing and a Dependencies report showing whether you can implement parallel design without
disrupting your code.

Customize Threading Perspective

Customize the perspective flow to better fit your goal
and your application.

If you change any of the analysis settings from the Analysis Workflow tab, the accuracy level changes to
Custom automatically. With this accuracy level, you can customize the perspective flow and/or analysis
properties.

To change the properties of a specific analysis:
1. Expand the analysis details on the Analysis Workflow pane with

2. Select desired settings.
3. For more detailed customization, click the gear

icon. You will see the Project Properties dialog box open for the selected analysis.
4. Select desired properties and click OK.

The following tables cover project properties applicable to analyses in the Threading perspective.

108

Intel® Advisor User Guide 1

Common Properties

Use This

To Do This

Target type drop-down

¢ Analyze an executable or script (choose Launch Application).
e Analyze a process (choose Attach to Process).

If you choose Attach to Process, you can either inherit settings from
the Survey Hotspots Analysis Type or specify the needed settings.

Inherit settings from
Visual Studio project
checkbox and field (Visual
Studio* IDE only)

Inherit Intel Advisor project properties from the Visual Studio* startup
project (enable).

If enabled, the Application, Application parameters, and Working
directory fields are pre-filled and cannot be modified.

NOTE In Visual Studio* 2022, Intel Advisor provides lightweight integration.

You can configure and compile your application and open the standalone Intel
Advisor interface from the Visual Studio for further analysis. All your settings
will be inherited by the standalone Intel Advisor project.

Application field and
Browse... button

Select an analysis target executable or script.

If you specify a script in this field, consider specifying the executable in
the Advanced > Child application field (required for Dependencies
analysis).

Application
parameters field and
Modify... button

Specify runtime arguments to use when performing analysis (equivalent
to command line arguments).

Use application directory
as working directory
checkbox

Automatically use the value in the Application directory to pre-fill the
Working directory value (enable).

Working directory field and
Browse... button

Select the working directory.

User-defined environment

button

variables field and Modify...

Specify environment variables to use during analysis.

Managed code profiling
mode drop-down

e Automatically detect the type of target executable as Native or
Managed, and switch to that mode (choose Auto).

e Collect data for native code and do not attribute data to managed
code (choose Native).

¢ Collect data for both native and managed code, and attribute data to
managed code as appropriate (choose Mixed). Consider using this
option when analyzing a native executable that makes calls to
managed code.

¢ Collect data for both native and managed code, resolve samples
attributed to native code, and attribute data to managed source only
(choose Managed). The call stack in the analysis result displays data
for managed code only.

109

1 Intel® Advisor User Guide

Use This

To Do This

Child application field

Analyze a file that is not the starting application. For example: Analyze
an executable (identified in this field) called by a script (identified in the
Application field).

Invoking these properties could decrease analysis overhead.

NOTE

For the Dependencies Analysis Type: If you specify a script file in the
Application field, you must specify the target executable in the Child
application field.

Modules radio buttons, field,
and Modify... button

* Analyze specific modules and disable analysis of all other modules
(click the Include only the following module(s) radio button and
choose the modules).

e Disable analysis of specific modules and analyze all other modules
(click the Exclude only the following module(s) radio button and
choose the modules).

Including/excluding modules could minimize analysis overhead.

GPU kernels of interest
field and Modify... button

Analyze specific kernels only, minimizing analysis overhead.

Use MPI launcher checkbox

Generate a command line (enable) that appears in the Get command
line field based on the following parameters:

e Select MPI Launcher - Intel or another vendor
 Number of ranks - Number of instances of the application
« Profile ranks - All or a range of ranks to profile

Automatically stop
collection after (sec)
checkbox and field

Stop collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could minimize analysis overhead.

Survey Analysis Properties

Use This

To Do This

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip

The corresponding CLI action option is —-resume-
after=<integer>, where the integer argument is in milliseconds,
not seconds.

Sampling Interval selector

Set the wait time between each analysis collection CPU sample while your
target application is running.

110

Intel® Advisor User Guide 1

Use This

To Do This

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Callstack unwinding mode
drop-down list

Set to After collection if:

e Survey analysis runtime overhead exceeds 1.1x.

e A large quantity of data is allocated on the stack, which is a common
case for Fortran applications or applications with a large number of
small, parallel, OpenMP* regions.

Otherwise, set to During Collection. This mode improves stack accuracy
but increases overhead.

Stitch stacks checkbox

Restore a logical call tree for Intel® oneAPI Threading Building Blocks
(oneTBB) or OpenMP* applications by catching notifications from the
runtime and attaching stacks to a point introducing a parallel workload
(enable).

Disable if Survey analysis runtime overhead exceeds 1.1x.

Analyze MKL Loops and
Functions checkbox

Show Intel® oneAPI Math Kernel Library (oneMKL) loops and functions in
Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze Python loops and
functions checkbox

Show Python* loops and functions in Intel Advisor reports (enable).

Enabling could increase analysis overhead.

Analyze loops that reside
in non-executed code
paths checkbox

Collect a variety of data during analysis for loops that reside in non-
executed code paths, including loop assembly code, instruction set
architecture (ISA), and vector length (enable).

Enabling could increase analysis overhead.

NOTE

Analyzing non-executed code paths in binaries that target multiple ISAs
(contain multiple code paths) is available only for binaries compiled using the
—-ax (Linux* 0S) / Qax (Windows* OS) option with an Intel compiler.

Enable registry spill/fill
analysis checkbox

Calculate the number of consecutive load/store operations in registers
and related memory traffic (enable).

Enabling could increase analysis overhead.

Enable static instruction
mix analysis checkbox

Statically calculate the number of specific instructions present in the
binary (enable).

Enabling could increase analysis overhead.

Source caching drop-down
list

¢ Delete source code cache from a project with each analysis run
(default; choose Clear cached files).

1 Intel® Advisor User Guide

Use This

To Do This

Keep source code cache within the project (choose Keep cached
files).

Suitability Analysis Propertie

(7]

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is ——resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Sampling Interval selector

Set the wait time between each analysis collection sample while your
target application is running.

Increasing the wait time could decrease analysis overhead.

Collection data limit, MB
selector

Set the amount of collected raw data if exceeding a size threshold could
cause issues. Not available for hardware event-based analyses.

Decreasing the limit could decrease analysis overhead.

Dependencies Analysis Properties

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Suppression mode radio
buttons

Report possible dependencies in system modules (choose the Show
problems in system modules radio button).

Do not report possible dependencies in system modules (choose the
Suppress problems in system modules radio button).

Loop call count limit
selector

Choose the maximum number of instances each marked loop is analyzed.
0 = analyze all loop instances.

Supplying a non-zero value could decrease analysis overhead.

Instance of interest
selector

Analyze the nth child process, where 1 = the first process of the specified
name in the application process tree. 0 = analyze all processes.

Supplying a non-zero value could decrease analysis overhead.

112

Intel® Advisor User Guide 1

Use This

To Do This

Analyze stack variables
checkbox

Analyze parallel data sharing for stack variables (enable).

Enabling could increase analysis overhead.

Filter stack variables by scope
checkbox

Enable to report:

e Variables initiated inside the loop as potential dependencies (warning)
e Variables initialized outside the loop as dependencies (error)

Enabling could increase analysis overhead.

Reduction Detection / Filter
reduction variables checkbox

Mark all potential reductions by a specific diagnostic (enable).

Enabling could increase analysis overhead.

Markup type checkbox

Select loops/functions by pre-defined markup algorithm. Supported
algorithms are:

¢ GPU generic - Select loops executed on a GPU.

e OpenMP - Select OpenMP* loops.

e SYCL - Select SYCL loops.

e OpenCL - Select OpenCL™ loops.

¢ DAAL - Select Intel® oneAPI Data Analytics Library loops.

e TBB - Select Intel® oneAPI Threading Building Blocks loops.

NOTE This option is available only from the Analysis Workflow pane for the
Offload Modeling perspective.

Trip Counts and FLOPs Analysis Properties

Use This

To Do This

Inherit settings from the
Survey Hotspots Analysis
Type checkbox

Copy similar settings from Survey analysis properties (enable).

When enabled, this option disables application parameters controls.

Automatically resume
collection after (sec)
checkbox and field

Start running your target application with collection paused, then resume
collection after a specified number of seconds (enable and specify
seconds).

Invoking this property could decrease analysis overhead.

Tip
The corresponding CLI action option is ——resume-after=<integer>,
where the integer argument is in milliseconds, not seconds.

Trip Counts / Collect
information about Loop
Trip Counts checkbox

Measure loop invocation and execution (enable).

113

1 Intel® Advisor User Guide

Use This

To Do This

FLOP / Collect information
about FLOP, L1 memory
traffic, and AVX-512 mask
usage checkbox

Measure floating-point operations, integer operations, and memory traffic
(enable).

Callstacks / Collect
callstacks checkbox

Collect call stack information when performing analysis (enable).

Enabling could increase analysis overhead.

Capture metrics for
dynamic loops and
functions checkbox

Collect metrics for dynamic Just-In-Time (JIT) generated code regions.

Capture metrics for
stripped binaries checkbox

Collect metrics for stripped binaries.

Enabling could increase analysis overhead.

Cache Simulation / Enable
Memory-Level Roofline
with cache simulation
checkbox

Model multiple levels of cache for data, such as counts of loaded or
stored bytes for each loop, to plot the Roofline chart for all memory levels
(enable).

Enabling could increase analysis overhead.

Cache simulator
configuration field

Specify a cache hierarchy configuration to model (enable and specify
hierarchy).

The hierarchy configuration template is:

[num_of_levell_caches]:[num_of_ways_levell_connected]:
[levell_cache_size]:[levell_cacheline_size]/

[num_of _level2_caches]:[num_of_ways_level2_connected]:
[level2_cache_size]:[level2_cacheline_size]/

[num_of_level3_caches]:[num_of_ways_level3_connected]:
[level3_cache_size]:[level3_cacheline_size]

For example: 4:8w:32k:641/4:4w:256k:641/1:16w:6m:64l is the
hierarchy configuration for:

e Four eight-way 32-KB level 1 caches with line size of 64 bytes
e Four four-way 256-KB level 2 caches with line size of 64 bytes
e One sixteen-way 6-MB level 3 cache with line size of 64 bytes

Data Transfer Simulation /
Data transfer simulation
mode drop-down

Select a level of details for data transfer simulation:

¢ Off - Disable data transfer simulation analysis.

e Light - Model data transfers between host and device memory.

¢ Full - Model data transfers, attribute memory objects to loops that
accessed the objects, and track accesses to stack memory.

Run Threading Perspective from Command Line

Threading perspective includes several steps that you are recommended to run one by one:

1.
2.
3.

analysis.

114

Collect performance metrics and find candidates for parallelizing using a Survey analysis.
Annotate manually loops/functions to model parallelization for.
Model parallel design options and estimate speedup for the annotated loops using a Suitability

Intel® Advisor User Guide 1

4. Check for loop-carried dependencies to make sure the loops/functions are safe to parallelize.

Tip See Intel Advisor cheat sheet for quick reference on command line interface.

Prerequisites

Set Intel Advisor environment variables with an automated script to enable the advisor command line
interface (CLI).

Run Threading Perspective

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

1. Run the Survey analysis.

advisor --collect=survey --project-dir=./advi results -- ./myApplication
2. Run the Characterization analysis to collect trip counts and FLOP data.

advisor --collect=tripcounts --project-dir=./advi results --flop -- ./myApplication
3. View the Survey report to identify candidates for parallelization. For example, run the following
command to print the report in command line:

advisor --report=survey --project-dir=<project-dir>

Consider analyzing loops/functions with high total time.
4. 1In the application source code, annotate loops/functions of interest to model parallelization for.

Rebuild the application as usual to make the annotations available for the Intel Advisor.
5. Run the Suitability analysis to model threading for the annotated loops/functions:

advisor --collect=suitability --project-dir=./advi results -- ./myApplication
6. Run the Dependencies analysis to check for loop-carried dependencies in the annotated loops:

advisor --collect=dependencies --project-dir=./advi results -- ./myApplication

You can view the results in the Intel Advisor graphical user interface (GUI), print a summary to a command
prompt/terminal, or save to a file. See View the Results below for details.

Analysis Details

Each analysis in the Threading perspective has a set of additional options that modify its behavior and collect
additional performance data.

Consider the following options:
Characterization Options
To run the Characterization analysis, use the following command line action: --collect=tripcounts.

Recommended action options:

Options Description

--flop Collect data about floating-point and integer
operations, memory traffic, and mask utilization
metrics for AVX-512 platforms.

--stacks Enable advanced collection of call stack data.

Dependencies Options

https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-cheat-sheet.pdf

1 Intel® Advisor User Guide

To run the Dependencies analysis, use the following command line action: --collect=dependencies.

Recommended action options:

Options Description
--filter-reductions Mark all potential reductions with a specific
diagnostic.

See advisor Command Option Reference for more options.

Next Steps
Continue to explore threading results. For details about the metrics reported, see CPU and Memory Metrics.

See Also

Threading Perspective Analyze, design, tune, and check threading design options without
disrupting your normal development by running the Threading Perspective.

Command Line Interface This reference section describes the Intel® Advisor command line
interface (CLI) used to run the analysis.

Minimize Analysis Overhead

Analyze MPI Applications With Intel® Advisor, you can analyze parallel tasks running on a cluster
to examine performance of your MPI application.

Threading Accuracy Levels in Command Line

For each perspective, Intel® Advisor has several levels of collection accuracy. Each accuracy level is a set of
analyses and properties that control what data is collected and the level of collection details. The higher
accuracy value you choose, the higher runtime overhead is added.

In CLI, each accuracy level corresponds to a set of commands with specific options that you should run one
by one to get a desired result.

For the Threading perspective, you are recommended to run the accuracy levels one by one to get a
Threading report.

The following accuracy levels are available:

Comparison / Accuracy Level Low Medium
Overhead 1.1x 5-8x
Goal Find candidates for parallelization = Model threading parallelism and

check for loop-carried
dependencies

Analyses Survey Survey + Characterization (Trip
Counts) + Suitability +
Dependencies

Result Basic Survey report Survey report extended with trip
count data

Dependencies report

Suitability report with parallel
performance modeled for
annotated loops

You can generate commands for a desired accuracy level from the Intel Advisor GUI. See Generate Command
Lines from GUI for details.

116

Intel® Advisor User Guide 1

NOTE There is a variety of techniques available to minimize data collection, result size, and execution
overhead. Check Minimize Analysis Overhead.

Consider the following command examples.

Note: In the commands below, make sure to replace the myApplication with your application executable
path and name before executing a command. If your application requires additional command line options,
add them after the executable name.

Low Accuracy

First, run the Threading perspective with low accuracy to find candidates for parallelizing based on Survey
analysis results.

Run the analysis as follows:
advisor --collect=survey --project-dir=./advi results -- ./myApplication

You can view the generated results in the Intel Advisor GUI or in the CLI. The loops/functions with high total
time are the best candidates for parallelization. Annotate the loops/functions of interest to model parallelism.

Medium Accuracy

Prerequisite: Annotate loops/functions to model parallelization for. Rebuild the application.
Run the commands as follows:

1. Run the Survey analysis:

advisor --collect=survey --project-dir=./advi results -- ./myApplication
2. Collect trip count data:

advisor --collect=tripcounts --project-dir=./advi results -- ./myApplication
3. Run the Suitability analysis to model threading parallelism for the annotated loops:

advisor --collect=suitability --project-dir=./advi results -- ./myApplication
4. Run the Dependencies analysis for the annotated loops:

advisor --collect=dependencies --project-dir=./advi results -- ./myApplication

You can view the generated results in the Intel Advisor GUI or in the CLI.

See Also
advisor Command Option Reference

Command Line Interface Reference This reference section describes the CLI actions and options
used in the command syntax: advisor <--action> [--action-options] [--global-options]
[[--] target [target options]].

Run Threading from Command Line

Minimize Analysis Overhead

Annotate Code for Deeper Analysis

Before you can mark the best parallel opportunities by adding Intel® Advisor annotations, you need to choose
likely places to add parallelism. This section provides a series of topics that explain factors to consider as you
examine the candidate code regions and their execution and choose candidate places.

117

1 Intel® Advisor User Guide

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

The operations of a serial program execute one after another in a well-defined order, starting at the
beginning, continuing to the end, and then stopping. A parallel program, on the other hand, is made up of
tasks - portions of the program that may execute independently on separate cores. Tasks can either be
implemented in separate functions or in iterations of a loop.

You mark your proposed code regions by adding Intel® Advisor annotations that identify the:

e Parallel site: A code region that contains one or more parallel tasks. Execution of a parallel site constrains
the time during which the tasks that it contains can execute. Although execution of a parallel site begins
when its execution reaches its beginning, tits execution terminates only after all tasks that started within
it have completed. In parallel frameworks, this corresponds to the join location in the code where all tasks
have completed.

e Parallel tasks: Task code regions run independently, at the same time as other tasks within the parallel
site and the enclosing parallel site itself. Also, each task can have multiple instances of its code executing.
As shown in the table below, there are two forms of task annotations:

e For a loop with only a single task, add a single iteration task annotation within the two site
annotations.

e For other code, add a task annotation pair to mark the task region's begin and end within the two site
annotations.

Characteristics of Parallel Site Parallel Site and Task Comments and Limitations
Code Annotations
A loop that requires only a single Add three annotations to mark: Based on the Suitability tool

task. For simple loops, begin with
the type of task annotation,
unless the task does not include
the entire loop body.

performance predictions, you
may want to try using multiple
tasks. In this case, remove the
single iteration task annotation
and replace it with task begin

e The parallel site region by
adding site begin and site end
annotations.

e The parallel task loop by

Example code: adding a single iteration task -

nqueens Advisor C/C++ annotation at the start of the andhtiskkend arglr::otatlotns for

sample and nqueens Fortran and loop body. each task (see the next row).

C# samples If the loop structure is complex,
you may need to mark the task
begin and task end region by
using the task annotations in the
next row.

Complex loop, code that allows Add four annotations to mark:

multiple tasks, or non-loop code « The parallel site region by

Example code: stats C++ adding site begin and site end
sample annotations.
* Each parallel task region by
adding task begin and task
end annotations.

After you choose several places to add parallelism, view the data displayed in the Survey Report window.
Use this data and your code editor to add annotations to mark the candidate parallel sites and their task(s).
Make sure that these annotations are executed by the selected target executable.

The site and task annotations enable the Intel® Advisor Suitability and Dependencies tools to predict your
serial program's execution as a parallel program. These tools perform extensive analysis of your running
serial program to provide data needed to help you decide the best place(s) to add parallelism.

118

Intel® Advisor User Guide 1

To take advantage of the Intel® Advisor parallel design capabilities, experiment with different possible parallel
code regions by modifying the site and task annotations and their locations, rebuilding your application's
target, and running the Suitability and Dependencies tools again.

The following figure illustrates the nqueens Advisor C/C++ sample code to show the task (blue
background) and its enclosing parallel site (orange background).

Before you convert your serial program into a parallel program, you need to:

e Understand where your program is spending its time.
e Decide how to divide that work up into tasks that can execute in parallel.

Annotate Code to Model Parallelism

After identifying candidates for parallelizing, mark up serial parts of your code where you plan to add
parallelism using Intel® Advisor annotations.

Before Annotating Code for Deeper Analysis

Before you can mark the best parallel opportunities by adding annotations, you need to choose likely places
to add parallelism. This section introduces several topics that explain factors you should consider as you
closely examine the candidate code regions and their execution.

Each code region where you might add parallelism consists of a single parallel site and one or more parallel
tasks enclosed within the parallel site. Each parallel site defines the scope of parallel execution. You can have
multiple parallel sites in a program.

No matter how much you improve one part of your program, the program cannot complete any faster than
the part that you did not speed up. So, focus your efforts on the parts of your program that use the most
time.

Use the Survey Report provided by the Survey tool to help you understand where your program spends it
time.

Use Amdahl's Law and Measure the Program
There are two rules of optimization that apply to parallel programming:

e Focus on the part of the program that uses the most time.
e Do not guess, measure.

Amdahl's Law

In the context of parallel programming, Gene Amdahl formalized a rule called Amdahl's Law, which states
that the speed-up that is possible from parallelizing one part of a program is limited by the portion of the
program that still runs serially.

The consequence may be surprising: parallelizing the part of your program where it spends 80% of its time
cannot speed it up by more than a factor of five, no matter how many cores you run it on.

Therefore, to get maximum benefit from parallelizing your program, you could add parallelism to all parts of
your program as suggested by Amdahl's Law. However, it is more practical to find where it spends most of its
time and focus on areas that can provide the most benefit.

119

1 Intel® Advisor User Guide

Do Not Guess - Measure

This leads to another rule of optimization: Do Not guess - Measure. Programmers' intuitions about where
their programs are spending time are notoriously inaccurate. Intel® Advisor includes a Survey tool you can
use to profile your running program and measure where it spends it time.

After you add Intel® Advisor annotations to your program to mark the proposed parallel code regions, run the
Suitability tool to predict the approximate maximum performance gain for the program and the annotated
sites. These estimated performance gain values are based on a model of parallel execution that reflects the
impact of Amdahl's law.

See Also
Task Organization and Annotations

Task Organization and Annotations

You will choose a region of code to execute as a task. This region is the static extent of the task. The task
includes not just its static extent, but also any other code that is called from the static extent when it
executes - this is the dynamic extent.

In addition to choosing tasks, you will also decide which tasks can execute in parallel with one another. To do
this, you will choose parallel sites. A parallel site, like a task, has a static extent which is a block of code and
a dynamic extent which includes all the code that is called from it.

NOTE

If you have a loop with a single task and the task includes the entire loop body, you can use the
simplified parallel site with one iteration task annotation. The remainder of this topic and this group of
topics describe the more complex case where multiple tasks are needed within a parallel site.

The execution of tasks with the serial execution done by Intel® Advisor works like this:

1. A parallel site begins when execution reaches the begin-site annotation.

2. Atask is created when execution reaches the begin-task annotation. The task executes independently,
in parallel with any other tasks that are already executing, including the parallel site itself.

3. When the execution of a task reaches an end-task annotation, the task terminates. Intel® Advisor end-
task annotations do not allow or require an end-task label, so be aware that in some cases the task's
execution could reach a task-end annotation for a different task, which can impact the predicted parallel
performance.

4. When execution reaches the end-site annotation for the parallel site, Intel® Advisor predicts that
execution suspends (waits) until all tasks that were created within it have terminated, after which
execution exits the parallel site.

With C/C++ code, note that goto, break, continue, return, and throw statements must not bypass the
end of the static extent of a task or parallel site! With Fortran code, such statements include goto and
return. You may need to add extra end annotations before these operations so the Intel® Advisor tools will
correctly model the end of a site or task.

Because you will later add parallel framework code after you no longer need the Intel® Advisor annotations,
you need to be aware of the requirements of the parallel framework. For example, some parallel frameworks
might not allow a branch out of a task, such as a loop task. Whenever possible, plan your tasks to suit the
needs of the parallel framework code. The annotations are present only while you need Intel® Advisor to help
you predict the proposed parallel behavior and make decisions about the best locations for your tasks.

After you decide where the parallel sites and tasks are in your program, add source annotations.

See Also

Annotate Parallel Sites and Tasks

Site and Task Annotations for Simple Loops with One Task

Copy Annotations and Build Settings Using the Annotation Assistant Pane

120

Intel® Advisor User Guide 1

Annotate Parallel Sites and Tasks

You add annotations into your program to mark the tasks and parallel sites. The annotations are one-line
macro uses or function calls that have no effect on the behavior of your program.

Annotations allow you to mark your tentative decisions about your program's task structure before you
modify the program to use parallel execution. Annotations are used by the Intel® Advisor Suitability and
Dependencies tools.

After you decide on the parallel site(s) and task(s), add the annotations into your source code.
To simplify adding Intel® Advisor annotations:

e When using the Microsoft Visual Studio* code editor, you can use the Annotation Wizard.

NOTE In Visual Studio* 2022, Intel Advisor provides lightweight integration. You can configure and
compile your application and open the standalone Intel Advisor interface from the Visual Studio for
further analysis. All your settings will be inherited by the standalone Intel Advisor project.

e With any editor, use the annotation assistant in the Survey Report window, Survey Source window, or
the No Data message to copy example annotation code and build settings.

Code examples throughout this group of topics illustrate the use of these annotations.

As you use Intel® Advisor to investigate possible code regions for adding parallel execution, you will find
some areas are not feasible. Adding a comment to explain why that site (or task) was not chosen may help
later. For example, with C/C++ code:

// Investigated the following function call as a parallel task and dismissed
// June 2014. Need to first re-write the function to improve parallel

// performance and fix the data race.

//

// ANNOTATE TASK BEGIN (funcl);

See Also

Task Patterns

Intel Advisor Annotation Definitions File

Annotation Types Summary

Copy Annotations and Build Settings Using the Annotation Assistant Pane
Add Annotations Using the Annotation Wizard

Add Parallelism

Task Patterns
To summarize:

e You choose parallel sites in your program.

e You choose tasks in your parallel sites.

e Tasks in a parallel site can execute in parallel with one another and with tasks in an outer parallel site, but
not in parallel with tasks in unrelated parallel sites.

You are free to arrange your sites and tasks any way that you want, but there are several simple, common
patterns that you will probably want to use.

The following sections describe the process of identifying task patterns, as well as information about data
parallelism and task parallelism.

121

1 Intel® Advisor User Guide

Multiple Parallel Sites
You may be able to introduce parallelism independently in more than one place in a program.

For example, consider a C/C++ program with the general structure:

initialize(data);

while (!done) {
display on screen(data);
update (data) ;

}

You might be able to parallelize the display and update operations independently:

display on screen(data)
{
ANNOTATE SITE BEGIN(site display);
for (each block of data) {
ANNOTATE ITERATION TASK (task display);
display the block of data;
}
ANNOTATE SITE END();
}
update (data)
{
ANNOTATE SITE BEGIN (site update);
for (each block of data) {
ANNOTATE ITERATION TASK(task update);
update the block of data;
}
ANNOTATE SITE END();
}

Each iteration of the main loop would still do the display and then the update, but the display and update
operations could be performed much faster.

Depending on your program, you need to decide whether to implement multiple parallel sites at the same or
at different times:

e When two parallel sites are truly disjoint or have overlapping functions that are purely functional and do
not show problems reported by the Dependencies tool, you can consider parallelizing those sites
separately at different times.

e When considering multiple parallel sites that overlap on the same call trees - such as multiple sites that
call the same (common) utility functions - consider parallelizing or not parallelizing the entire set of
parallel sites at the same time.

You need to determine the cause of each dependency and fix it. If you have multiple parallel sites that
overlap on the same call trees - such as multiple sites that call the same utility functions (common code) -
read the help topic Fixing Problems in Code Used by Multiple Parallel Sites.

See Also

Data and Task Parallelism

Using Partially Parallel Programs with Intel Advisor Tools
Data Sharing Problems

Fixing Problems in Code Used by Multiple Parallel Sites

Data and Task Parallelism

This topic describes two fundamental types of program execution - data parallelism and task parallelism -
and the task patterns of each.

122

Intel® Advisor User Guide 1

Data Parallelism

In many programs, most of the work is done processing items in a collection of data, often in a loop. The
data parallelism pattern is designed for this situation. The idea is to process each data item or a subset of the
data items in separate task instances. In general, the parallel site contains the code that invokes the
processing of each data item, and the processing is done in a task.

In the most common version of this pattern, the serial program has a loop that iterates over the data items,
and the loop body processes each item in turn. The data parallelism pattern makes the whole loop a parallel
site, and the loop body is a task. Consider this C/C++ simple loop:

ANNOTATE SITE BEGIN (sitename);

for (int I = 0; I != n; +4+4I) {
ANNOTATE ITERATION TASK (task process);
process(al[il);

}
ANNOTATE SITE END() ;

The following C/C++ code shows a situation where the data items to be processed are in the nodes of a tree.
The recursive tree walk is part of the serial execution of the parallel site - only the process node calls are
executed in separate tasks.

ANNOTATE SITE BEGIN (sitename);
process_subtree (root);
ANNOTATE SITE END(sitename);

void process subtree(node) // in the dynamic extent of the parallel site

{
ANNOTATE TASK BEGIN (task process);
process_node (node) ;
ANNOTATEiTASKiEND();
for (child = first child(node);
child;
child = next child(child))

process_subtree(child);

}
In the data parallelism pattern, the parallel site usually contains a single task.

The sample tachyon Advisor demonstrates data parallelism.

Task Parallelism

When work is divided into several activities which you cannot parallelize individually, you may be able to take
advantage of the task parallelism pattern.

NOTE

The word task in task parallelism is used in the general sense of an activity or job. It is just a
coincidence that we use the same word to refer to "a body of code that is executed independently of
other bodies of code".

In this pattern, you have multiple distinct task bodies in a parallel site performing different activities at the
same time.

123

1 Intel® Advisor User Guide

Suppose that neither the display nor the update operation from the previous example can be parallelized
individually. You still might be able to do the display and the update simultaneously. Consider this C/C++
code:

initialize(data);

while (!done) {
old data = data;
ANNOTATE SITE BEGIN (sitename);
ANNOTATE TASK BEGIN (task display);
display on screen(old data);
ANNOTATE_TASK_END();
ANNOTATE TASK BEGIN (task updatedata);
update (data) ;
ANNOTATE TASK END () ;
ANNOTATE SITE END();

}

The most obvious shortcoming of the task-parallel pattern is that it cannot take advantage of more cores
than the number of distinct tasks. In this example, any more than two cores would be wasted. On the other
hand, the task parallel pattern may be applicable to programs that simply do not fit the data parallel pattern
- some parallelism may be better than none.

The tasks used in task parallelism are not limited to called functions. For example, consider this C/C++ code
that creates two tasks that separately increment variables x and Y:

main() {
ANNOTATE_SITE_BEGIN(sitename);
ANNOTATE TASK BEGIN (task x);
X++; -
ANNOTATE_TASK_END () ;

ANNOTATE TASK BEGIN(task y);
Y++; a a -
ANNOTATE TASK END() ;
ANNOTATE SITE END();
}

The sample stats demonstrates task parallelism.

See Also
Mixing and Matching Tasks
Annotations

Mix and Match Tasks

You can combine the data parallel and task parallel patterns. Continuing with the display/update example,
suppose that you can parallelize the update operation, but not the display operation. Then you could execute
the display operation in parallel with multiple tasks from the update operation. Consider this C/C++ code:

initialize(data);

while (!done) {
old data = data;
ANNOTATE SITE BEGIN (sitename);
ANNOTATE TASK BEGIN (task display);
display on screen(old data);
ANNOTATE TASK END () ;
update (data) ;
ANNOTATE SITE END();

}

display on screen(data)

{

124

Intel® Advisor User Guide 1

}
update (data)

{
for (each block of data) {
ANNOTATE TASK BEGIN (task update);
update the block of data;
ANNOTATE TASK END () ;

See Also
Choosing the Tasks
Annotations

Choose the Tasks

When choosing tasks, you should consider task interactions and the factors that influence how large a task
should be. The following sections describe the process of choosing the tasks.

Task Interactions and Suitability

If your tasks access the same memory locations, then, left to themselves, they will tend to trip over each
other. You can solve this by adding synchronization code to make sure the tasks are well-behaved when they
access shared memory locations, but synchronization code can be tedious to add and hard to get right, and it
is easy to end up with tasks that spend more time doing synchronization than doing work.

You can use the Suitability tool to provide performance data that helps you choose your tasks wisely.

It is better to minimize data access conflicts in the first place by choosing your tasks wisely. It can be hard to
tell, just by looking at your code, where all the sharing problems will be, which is why you will learn how to
automate the process by using the Dependencies tool.

However, you can make a good guess whether two proposed tasks are mostly independent of each other or
are completely intertwined.

See Also

How Big Should a Task Be?
Model Threading Parallelism
Dependencies Analysis

How Big Should a Task Be?

The ideal task size is very dependent on the details of your program. Here are a few general considerations
to keep in mind.

Task Overhead

In general, if your program can keep most of the cores on your system busy doing useful work, then it will be
using the system about as efficiently as possible. There are two parts to this: keeping the cores busy, and
doing useful work.

It takes time to start a new task. If your tasks are too small, then your program may spend more time
creating tasks than it saves by running them in parallel - the cores are kept busy, but not doing useful work.

125

1 Intel® Advisor User Guide

Load Balance

On the other hand, very large tasks can reduce parallelism: your parallel program cannot finish any more
quickly than the longest-running task. A rule of thumb is to try to have the number of tasks in a parallel site
be at least several times larger than the number of cores available, so that there will always be some work to
do when a core is free.

Choosing the Right Level

You will often have the opportunity to create tasks at different loop nesting levels or function call depths. This
may provide an easy way to choose your task size. For example, consider the C/C++ code:

for (1 = 0; 1 !'= N; ++1) {
for (3 = 0; J != N; ++3) {
x[i, j]1 = yli, 31 * z[3, il;

The inner loop body is too small to be a useful task. You can view the Suitability Report for a task's Average
Instance Time. The entire inner loop might be more suitable:

ANNOTATE SITE BEGIN (sitename);
for (1 = 0; 1 < N; ++1i) {
ANNOTATE ITERATION TASK (task process_array);
for (3 = 0; J < N; +4+3) |
x[1, j} = Y[lr j} * Z[jl il;
}
}
ANNOTATE SITE END();

Blocking

If you have a loop which seems like an obvious place to introduce parallelism, but the loop body is too small
to make a good task, consider grouping several iterations together. When you specify a loop body as a
parallel construct,Intel® oneAPI Threading Building Blocks and OpenMP* will automatically group multiple
loop iterations together to create tasks of an appropriate size. Therefore, given a simple loop, the question is
not whether the loop body is the right size for a good task, but whether the total loop execution time can be
divided up into chunks of the right size.

For example, there is only one loop level here, and its body looks too small to be a good task:

for (1 = 0; 1 < 100000; ++1) {
ali]l = b[i] * c[i];

}
Go ahead and choose it, and it may run as though you had written it as:

ANNOTATE SITE BEGIN (sitename);
for (i = 0; i < 100000; 1 += 1000) {
ANNOTATE ITERATION TASK(task calculate a);
for (j = 1; j < i + 1000; ++3) {
aljl = bljl * cljl;
}

}
ANNOTATE SITE END();

Sizing to Avoid Interactions

It is not uncommon for loop iterations or other potential task bodies to be almost independent at one level,
but have many interactions at other levels. In this case, it may be worth accepting a less than perfect
program gain in exchange for simpler programming and cleaner code.

126

Intel® Advisor User Guide 1

The outer loop of the Sudoku problem generator repeatedly calls the generate () function to generate
problems. There are opportunities for introducing parallelism at many different levels in the problem
generation function, but the individual calls to generate () are almost perfectly independent, and each call
to generate () takes less than a second. Parallelizing the outermost loop would be a trivial project. No user
is likely to care if it takes 0.8 seconds instead of 0.2 seconds to generate a single problem, and the speedup
for generating more than a handful of problems should be nearly perfect.

Using the Survey Report

Ultimately, choosing your tasks is more of an art than a science. Locations close to the root of the call tree
tend to form larger tasks, but may have more conflicts on shared variables; locations toward the leaves of
the call tree tend to be smaller, causing problems with task overhead, but typically have fewer conflicts. We
can offer some rules of thumb. Start by looking at a function F that uses a significant portion of the time of
the program part you are trying to improve - remember Amdahl's law!

e If almost all of the time spent in F is spent in a block of code that is executed many times in a loop, then
that block of code may be a prime candidate for a data-parallel task.

e If Fis basically just a wrapper around a call to a function G, then look at G instead.

e If almost all of the time in F is spent in multiple calls to a function G that is too large to be a good task,
then you may want to enclose the calls to G in a parallel site, but introduce the actual tasks inside G or
another function that is called from G.

e If the time spent in F is distributed across a number of distinct activities, you should consider whether it is
better to apply the task parallelism pattern to F, or to use the multiple parallel sites pattern to look for
parallelism in each of the activities.

Recursion

Recursive algorithms can present a special challenge. The problem occurs when you have a large amount of
time spent in a function that only does a small amount of work in any one invocation, but that is called
recursively a great many times. The actual work may be data-parallel, but the function body is too small to
be a useful task by itself, and the blocking strategy (see Blocking above) is harder to apply to a recursive
algorithm.

The general solution is to use a threshold to control recursive parallelism. For example, a recursive sort might
solve sub-problems in parallel only if they are above a certain threshold size.

See Also

Using Partially Parallel Programs with Intel Advisor Tools

Data and Task Parallelism

Use Partially Parallel Programs with Intel® Advisor

Intel® Advisor tools are designed to collect data and analyze serial programs. If you have a partially parallel
program, before you use the Intel® Advisor Suitability and Dependencies tools to examine it to add more
parallelism, read the guidelines in this topic and modify your program so it runs as a serial program with a
single thread within each parallel site.

Run Your Program as a Serial Program

To run the current version of your program as a serial program, you need to limit the number of threads to 1.
To run your program with a single thread:

e With Intel® oneAPI Threading Building Blocks (oneTBB) , in the main thread create a
tbb::task scheduler init init(1); object for the lifetime of the program and run the executable
again. For example:

int main() {
tbb::task scheduler init init(1);

127

1 Intel® Advisor User Guide

// ...rest of program...

return 0;

}

The effect of task scheduler init applies separately to each user-created thread. So if the program
creates threads elsewhere, you need to create a tbb: :task scheduler init init(1); for that
thread's lifetime as well. Use of certain oneTBB features can prevent the program from running serially.
For more information, see the oneTBB documentation.

e With OpenMP*, do one of the following:

e Set the OpenMP* environment variable OMP_NUM THREADS to 1 before you run the program.

e Omit the compiler option that enables recognition of OpenMP pragmas and directives. On Windows*
0S, omit /Qopenmp, and on Linux* OS omit -openmp.

For more information, see your compiler documentation.

Add or Remove Intel® Advisor Annotations

Intel® Advisor site, task, and lock annotations are used by the Suitability and Dependencies tools. You can
add Intel® Advisor parallel site and task annotations to mark the already parallel code regions. For example,
the nqueens_Advisor sample nqueens cilk.cpp:

ANNOTATE SITE BEGIN(solve);
cilk for(int 1=0; i<size; i++) {
// try all positions in first row using separate array for each recursion
ANNOTATE ITERATION TASK (setQueen);
int * queens = new int[size];
setQueen (queens, 0, 1);
}
ANNOTATE SITE END();

If needed, you can comment out annotations, or add preprocessor directives by using conditional
compilation. For example, use the #ifdef, #ifndef, and #endif preprocessor directives:

// Comment out the next line to hide the annotations.
#define ANNOTATE ON

#ifdef ANNOTATE ON
ANNOTATE SITE BEGIN (solve);

#endif

#ifndef ANNOTATE ON

// add parallel code here

#ifdef ANNOTATE ON
ANNOTATEislTEiEND();
#endif

After you add the parallel framework code and test it, you can remove the annotations.

Effect of Parallel Code on Intel® Advisor Tools' Reports

Because Intel® Advisor tools are designed to collect data and analyze serial program targets.

128

Intel® Advisor User Guide 1

Parallel code that creates one or more threads within any annotated parallel site usually cause the Suitability
or Dependencies tool reports to contain unreliable data. To use these two tools, there must be only a single
thread within each parallel site. Also, when using parallel frameworks that use dynamic scheduling or work
stealing at run-time, execution times can be assigned to the wrong source code.

If you use the Survey tool to profile your program, the Self Time in the Survey Report shows the sum of the
CPU time for all threads. However, because Intel® Advisor's purpose is to analyze serial code, some of the
time used by parallel code may be added to the wrong places. For example, Self Time may be added to the
parallel framework run-time system entry points instead of the caller(s) in the thread that entered the
parallel region. Also in the Survey Report, when examining parallel code, some entry points may be parallel
framework run-time system entry points instead of the expected functions or loops. Similarly, in the Survey
Source window, for a parallel code region the Total Time (and Loop Time) shows the sum of the CPU time
for all threads.

Because Intel® Advisor's purpose is to analyze serial code, in the Suitability Report:

e Intel® Advisor assumes there is only a single thread (no parallelism) within any annotated parallel site,
including its task(s) and lock(s). When only a single thread executes within a parallel site (as expected),
the results for that site may be correct. If the application has multiple parallel sites, and one or more sites
were executed by multiple threads, the next two items apply.

o If multiple threads execute within any parallel site, the reported Maximum Program Gain and that site's
Impact on Program Gain values are not reliable. To obtain correct values, ensure that only a single
thread executes for all parallel sites (see Run Your Program as a Serial Program above).

e If multiple threads execute within a parallel site, the results for that site will be unpredictable and its
values will not be reliable. Also, if one thread executes the parallel site annotations and a second thread
executes the task annotation(s), the site may appear to not have any tasks and the tasks may appear to
not execute within a site. To obtain correct values, ensure that only a single thread executes within each
parallel site (see Run Your Program as a Serial Program above).

¢ Any work-stealing constructs within the site will cause extra time to be added to the suspended site
and/or task. All Suitability Report times are approximate.

Similarly in the Dependencies Report, if any parallel site uses multiple threads, this may prevent certain
problems from being detected and reported by the Dependencies tool. To obtain correct values, ensure that
only a single thread executes within each parallel site (see Run Your Program as a Serial Program above).

See Also
Model Threading Parallelism
Using Intel® Inspector and Intel® VTune™ Profiler

Annotations

You add Intel® Advisor annotations to mark the places in serial parts of your program where Intel® Advisor
tools should assume your program's parallel execution and synchronization will occur. Later, after you modify
your program to prepare it for parallel execution, you replace these annotations with parallel framework code
that enables parts of your program to execute in parallel.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

Annotations are either subroutine calls or macro uses, depending on which language you are using, so they
can be processed by your current compiler. The annotations do not change the computations of your
program, so your application runs normally.

The three main types of annotations mark the location of:

129

1 Intel® Advisor User Guide

e A parallel site. A parallel site encloses one or more tasks and defines the scope of parallel execution.
When converted to a parallel code, a parallel site executes initially using a single thread.

¢ One or more parallel tasks within the parallel site. Each task encountered during execution of a parallel
site is modeled as being possibly executed in parallel with the other tasks and the remaining code in the
parallel site. When converted to parallel code, the tasks will run in parallel. That is, each instance of a
task's code may run in parallel on separate cores, and the multiple instances of that task's code also runs
in parallel with multiple instances of any other tasks within the same parallel site.

e Locking synchronization, where mutual exclusion of data access must occur in the parallel program.

In addition, there are:

e Annotations that stop and resume data collection. Data collection occurs while the target executes. These
annotations allow you to skip uninteresting parts of the target program's execution.
e Special-purpose annotations used in less common cases.

The three Intel Advisor tools recognize the three main types of annotations and the Stop and Resume
Collection annotations. Only the Dependencies tool processes the special-purpose annotations.

Use the parallel site and task annotations to mark the code regions that are candidates for adding
parallelism. These annotations enable the Intel® Advisor Suitability and Dependencies tools to predict your
serial program's parallel behavior. For example:

e The Suitability tool runs your program and uses parallel site and task boundaries to predict your parallel
program's approximate performance characteristics.

e The Dependencies tool runs your program and uses parallel site and task boundaries to check for data
races and other data synchronization problems.

One common use of sites and tasks is to enclose an entire loop within a parallel site, and to enclose the body
of the loop in a task. For example, the following C/C++ code shows a simple loop that uses two parallel site
annotations and one task annotation from the nqueens Advisor sample. The three added annotations and
the line that includes the annotation definitions appear in a bold font below.

#include "advisor-annotate.h"

void solve() {
int * queens = new int[size]; //array representing queens placed on a chess board...
ANNOTATE SITE BEGIN(solve);
for (int 1=0; i<size; 1i++) {
// try all positions in first row
ANNOTATE ITERATION TASK (setQueen) ;
setQueen (queens, 0, 1i);
}
ANNOTATE SITE END();

}

The following code from the Fortran nqueens sample shows the use of parallel site and task Fortran
annotations, such as call annotate site begin("label"). The three added annotations and the line
that references the annotation definitions module (the use statement) appear in a bold font below.

use advisor_annotate

! Main solver routine
subroutine solve (queens)
implicit none
integer, intent (inout) :: queens(:)
integer :: i
call annotate site begin("solve")
do i=1,size
! try all positions in first row
call annotate iteration_task("setQueen")
call SetQueen (queens, 1, 1)
end do

130

Intel® Advisor User Guide 1

call annotate_site_end

end subroutine solve

The following code from the C# nqueens sample on Windows* OS systems shows the use of parallel site and
task C# annotations, such as Annotate.SiteBegin ("label") ;. The three added annotations and the line
that allows use of the annotation definitions (using directive) appear in a bold font below.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

using AdvisorAnnotate;

public void Solve ()
{
int[] queens = new int[size]; //array representing queens on a chess board. Index is row
position, value is column.
Annotate.SiteBegin("solve") ;
for (int 1 = 0; 1 < size; i++)
{
Annotate.IterationTask ("setQueen") ;
// try all positions in first row
SetQueen (ref queens, 0, i);
}
Annotate.SiteEnd() ;

}
To simplify adding annotations:

e When using the Microsoft Visual Studio* code editor, you can use the Annotation Wizard.

e With any editor, use the annotation assistant in the Survey windows or the No Data message. The
annotation assistant displays example annotated code and build settings that you can copy to your
application's code.

If you manually type annotations, you should place each annotation on a separate line and use the correct
data type for annotation arguments. With C/C++ code, do not place annotations in macros so that references
go to the correct source location.

You can experiment by modifying annotations and running the tools again to locate the best places to add
parallelism.

For each source compilation module that contains annotations, in addition to adding the annotations, you
need to:

e In files where you add annotations, add a source line to reference the Intel Advisor file that defines the
annotations:

e For C/C++ modules, include the advisor-annotate.h header file by adding either #include
"advisor-annotate.h" or #include <advisor-annotate.h>.
e For Fortran compilation units, add the use advisor annotate statement.
e For C# modules (on Windows* OS), add the using AdvisorAnnotate; directive.
e Specify the Intel Advisor include directory when you build your C/C++ or Fortran application, so the

compiler can find this include file. Similarly, you need to add the C# annotations definition file to your C#
project.

e For native applications, add the build (compiler and linker) settings.

Annotation Types

131

1 Intel® Advisor User Guide

Annotation Types Summary

You can use different kinds of Intel® Advisor annotations to mark where you propose to have parallel sites,
tasks, locks, or perform special actions. These annotations are:

Parallel site annotations

Parallel task annotations

Parallel lock annotations

Annotations that let you pause and resume data collection
Special-purpose annotations

To be useful, a parallel site must contain at least one task. Code within a parallel task can be executed by
multiple threads independently of other instances of itself and also other parallel tasks. Many tasks are code
within a loop, or they could be a single statement that does an iterative operation. After you use the Survey
or similar profiling tool to locate where your program spends its time, you will see two general types of
parallel code regions (parallel sites):

e A simple loop that requires only a single task. For the common case where the Survey tool identifies
a simple loop structure whose iterations consume much of an application's CPU time and the entire loop
body should be a task, you may only need a single task within a parallel site. Unless your time-consuming
code is not in a loop or has task(s) in a complex loop, start with this simple form. Add annotations to
mark the beginning and end of the parallel site around the loop, and add one task-iteration annotation at
the start of the loop body. This annotation form is the easiest to convert to parallel code.

e Code whose characteristics require multiple tasks. Depending on the application code
characteristics, you may need multiple tasks. For example, you may have statements that can each
become separate tasks, or complex or nested loop structures where you need multiple tasks to meet
scalability requirements. In this case, add site annotations to mark the beginning and end of the parallel
site region and also task annotations that mark the beginning and end of each task.

The two task annotation types use the same parallel site annotations. The following table lists the
annotations by category type, including the syntax for the C/C++, Fortran, and C# languages. Each has a
link to its detailed description.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Optional arguments are identified using square brackets, such as annotation ([int expr]).

NOTE

To help you add annotations, use the Intel Advisorannotation assistant in the Survey windows or the
No Data message to copy and add code snippets or the Annotation Wizard if you use the Microsoft
Visual Studio* code editor (see Inserting Annotations Using the Annotation Wizard). You also need to
add the reference to the annotations definitions file.

Brief Description Name

Site and task annotations for a parallel site that contains a loop with a single task:

Start a parallel site that C/C++: ANNOTATE SITE BEGIN(sit) ;
contains a single task in a ’ - — sttename);
loop. Fortran: call annotate site begin(sitename)

C#: Annotate.SiteBegin (sitename) ;
Mark an iterative parallel C/C++: ANNOTATE ITERATION TASK (task) ;
task in a loop. Place this ’ - — askname)
annotation near,th_e start of Fortran: call annotate iteration task(taskname)
the loop body within the - -
parallel site's execution. C#: Annotate.IterationTask (taskname) ;

132

Intel® Advisor User Guide 1

Brief Description Name
End a parallel site. The
parallel site terminates only C/C++: ANI\!OTAITE_SITE_END([sitename]); // sitename is
after all tasks that started optiona
within it have completed. Fortran: call annotate site end

C#: Annotate.SiteEnd() ;

Site and task annotations for pa

Start a parallel site that
contains multiple tasks, or
task(s) within non-loop code
or complex loop code.

Start a parallel task. Must
execute within a parallel site
that contains multiple tasks,
or task(s) within non-loop
code or complex loop code.

End a parallel task. Must
execute within a parallel site
that contains multiple tasks,
or task(s) within non-loop
code or complex loop code.

End a parallel site. The
parallel site terminates only
after all tasks that started
within it have completed.

Lock Annotations: describe sync

Acquire a lock (0 is a valid
address). Must occur within a
parallel site.

Release a lock. Must occur
within a parallel site.

rallel site code that contains multiple tasks (all other situations):

C/C++: ANNOTATE SITE BEGIN (sitename) ;

Fortran: call annotate site begin(sitename)

C#: Annotate.SiteBegin (sitename) ;

C/C++: ANNOTATE TASK BEGIN (taskname) ;

Fortran: call annotate task begin(taskname)

C#: Annotate.TaskBegin (taskname) ;

C/C++: ANNOTATE TASK END([taskname]); //taskname is
optional

Fortran: call annotate task end

C#: Annotate.TaskEnd() ;

C/C++: ANNOTATE SITE END([sitename]); // sitename is
optional

Fortran: call annotate site end

C#: Annotate.SiteEnd();

hronization locations.

C/C++: ANNOTATE LOCK_ACQUIRE (pointer-expression);
Fortran: call annotate lock acquire (address)
C#: Annotate.LockAcquire ([int expr]);

// this C# argument is optional
C/C++: ANNOTATE LOCK_RELEASE (pointer-expression);
Fortran: call annotate lock release (address)
C#: Annotate.LockRelease ([int expr]);

// this C# argument is optional

Pause Collection and Resume Collection Annotations: lets you pause data collection to skip uninteresting

code.

133

1 Intel® Advisor User Guide

Brief Description Name

Pause Collection. The target C/C++: ANNOTATE DISABLE COLLECTION PUSH;

program continues to ’ — - - !

execute. Fortran: call annotate disable collection push ()
C#: Annotate.DisableCollectionPush();

Resume Collection after it C/C++: ANNOTATE DISABLE COLLECTION POP;

was stopped by a Pause : — — — !

Collection annotation. Fortran: call annotate disable collection pop ()
C#: Annotate.DisableCollectionPop () ;

Special-purpose Annotations:
describe certain memory
allocations to avoid false
conflicts, disable reporting of
problems or analysis, or
enable reporting more detail
for memory accesses. These
apply only to the
Dependencies tool. For their
syntax, see the Special-
purpose Annotations help
topic.

See Also

Intel Advisor Annotation Definitions File

Site and Task Annotations for Simple Loops With One Task
Site and Task Annotations for Loops with Multiple Tasks

Adding Annotations in Your Source Code

Lock Annotations
Pause Collection and Resume Collection Annotations

Special-purpose Annotations

Annotating Code for Deeper Analysis
Copying Annotations and Build Settings Using the Annotation Assistant Pane
Inserting Annotations Using the Annotation Wizard

Annotation General Characteristics

Usage

Annotations typically expand to calls to one or more functions, with minimal additional code. When you run

the Suitability or Dependencies tools, the calls are instrumented during data collection.

Most annotations must be used in pairs that will execute in a begin-end sequence, such as the parallel site

annotations for a site with a single task:

For C/C++: ANNOTATEislTEiBEGIN (sitename) ; and ANNOTATEisITEiEND ()
For Fortran: call annotate site begin(sitename) and call annotate site end
For C#: Annotate.SiteBegin (sitename); and Annotate.SiteEnd() ;

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

134

Intel® Advisor User Guide 1

Any mismatched annotations show up as error during data collection.

For example, if your C/C++ code has an ANNOTATE SITE BEGIN(); that is executed, but no corresponding
ANNOTATE SITE END();, You will see a message, such as: Error: Missing end site when you run the
Suitability or Dependencies tool.

You can also use annotations when they are dynamically paired. This lets you annotate code regions that
might have more than one exit point. For example, consider this parallel site with multiple tasks:

//Show that an end task annotation should be repeated for a jump out of a loop
ANNOTATE SITE BEGIN (for sitel);
ANNOTATE TASK BEGIN (for taska);
for ()
{
if ()
ANNOTATE TASK END () ;
break;
ANNOTATE_TASK END(); // unreachable!

ANNOTATE TASK BEGIN (for taskB);

ANNOTATE TASK END() ;
ANNOTATE SITE END();

With C/C++, when you add annotations after a loop that executes only one statement without opening and
closing braces ({ and }), add opening and closing braces to allow multi-statement execution of both the
original statement and the added annotation statement.

From a program source perspective, the annotation macros expand as a single executable statement (or to
nothing if null expansion is used). This allows annotations to be used in locations requiring a single statement
safely, as in this example:

if (!initialized)
ANNOTATE RECORD ALLOCATION (my buffer, my buffer size);

Guidelines for Placing Annotations in Source Code

Intel Advisor guidelines for placing annotations in source code are similar to debugger breakpoint limitations.
The rules include:

e Place each annotation on a separate statement line. That is, do not place multiple annotations in a single
statement line.
e With C/C++ code, do not place annotations inside preprocessor macros.

The following shows correct coding using one annotation per statement line:

ANNOTATE TASK BEGIN (foo);
call xyz();
ANNOTATE TASK END () ;

If you do not follow these guidelines, you may see unexpected Unmatched annotations in the Dependencies
Report window (see the Troubleshooting topic below) or annotation-related errors in the Suitability Report
window.

Semantics

When you run the Suitability or Dependencies tool to collect interactions between your tasks, the execution
of annotations and their implications for other operations are tracked by the tool during serial execution, and
the results of analysis are displayed in the corresponding Report.

135

1 Intel® Advisor User Guide

When you run the Dependencies tool, the primary problems of interest are the data interactions that need
attention. However, some semantic errors in the use of the annotations in your program may also be
reported.

See Also

Site and Task Annotations for Simple Loops With One Task...

Dependencies Analysis

Copying Annotations and Build Settings Using the Annotation Assistant Pane
Troubleshooting Unexpected Unmatched Annotations in the Dependencies Report
Fixing Annotation-related Errors Detected by the Suitability Tool

Inserting Annotations Using the Annotation Wizard

Data Sharing Problems

Site and Task Annotations for Simple Loops With One Task

Parallel site annotations mark the beginning and end of the parallel site. In contrast, to mark an entire simple
loop body as a task, you only need a single iteration task annotation in the common case where the Survey
tool identifies a single simple loop that consumes much of an application's time. In many cases, a single
time-consuming simple loop structure may be the only task needed within a parallel site. This annotation
form is also the easiest to convert to parallel code.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

NOTE
If the task's code does not include the entire loop body, or if you need multiple tasks in one parallel
site or for complex loops, use the task begin-end annotation pair to mark each task.

Use the general site/task annotation form for time-consuming code not in a loop, for complex loops
containing task(s), or cases that require multiple tasks within a parallel site.

Syntax: Simple Loops With One Task
Parallel site annotations mark the parallel site that wraps the loop:

C/C++: ANNOTATE SITE BEGIN (sitename); and ANNOTATE SITE END();
Fortran: call annotate site begin(sitename) and call annotate site end
C#: Annotate.SiteBegin (sitename); and Annotate.SiteEnd () ;

The iteration task annotation occurs within the parallel site. Place this annotation near the start of the loop
body to mark an entire simple loop body as a task:

C/C++: ANNOTATE ITERATION TASK (taskname) ;
Fortran: call annotate iteration task(taskname)
C#: Annotate.IterationTask (taskname) ;

For the C/C++ ANNOTATE SITE END(); annotation, the sitename argument is optional.
The sitename and taskname must follow the rules for annotation name arguments:

e For C/C++ code, the sitename must be an ASCII C++ identifier. This should be a name you will
recognize when it appears in Intel Advisor tool reports.

136

Intel® Advisor User Guide 1

e For Fortran code, the sitename must be a character constant. This should be a name you will recognize
when it appears in Intel Advisor tool reports.

e For C# code, the sitename must be a string. This name should be a string that you will easily remember
when it appears in Intel Advisor tool reports.

Examples: Simple Loops With One Task

The following C/C++ code fragment shows a parallel site for a loop with a single task, where the task
includes the entire simple loop body:

ANNOTATE SITE BEGIN (sitename);

for (i=0; i<N; i++) {
ANNOTATE ITERATION TASK (taskname);
func (i) ;

}

ANNOTATE SITE END();

The following Fortran code fragment shows a parallel site for a loop with a single task, where the task
includes the entire simple loop body:

call annotate site begin("sitename")
do i=1,size
call annotate iteration task("taskname")
call func(i)
end do
call annotate site end

The following C# code fragment shows a parallel site for a loop with a single task, where the task includes
the entire simple loop body:

Annotate.SiteBegin ("sitename");
for (int 1 = 0; 1 < N; i++4) {
Annotate.IterationTask ("taskname") ;
func (i) ;
}
Annotate.SiteEnd() ;

With Visual Studio projects, parallel sites may span project boundaries, but the parallel sites and their related
annotations should be placed within the set of projects that the startup project depends on. You may need to
use the Visual Studio* Project Dependencies context menu item to add appropriate dependencies - see the
help topic Troubleshooting Unexpected Unmatched Annotations.

The nqueens Advisor C++ sample and the nqueens Fortran Fortran sample demonstrate this form of
site/task annotations. For example, the C++ annotated code in nqueens_annotated. cpp:

ANNOTATE_SITE_BEGIN(Solve);
for(int i=0; i<size; i++) {
// try all positions in first row
// create separate array for each recursion
ANNOTATE ITERATION TASK (setQueen);
// int * queens = new int[size]; //array representing queens placed on a chess
// RADVISOR COMMENT: This is incidental sharing because all the tasks are using ...
setQueen (queens, 0, 1i);
}
ANNOTATE SITE END();

137

1 Intel® Advisor User Guide

The help topic Annotating Parallel Sites and Tasks describes adding parallel sites and tasks.

See Also

Site and Task Annotations with Multiple Tasks

Annotating Parallel Sites and Tasks

Dependencies Analysis

Annotation General Characteristics

Inserting Annotations Using the Annotation Wizard

Copying Annotations and Build Settings Using the Annotation Assistant Pane
Troubleshooting Unexpected Unmatched Annotations

Site and Task Annotations for Parallel Sites with Multiple Tasks

Parallel site annotations mark the beginning and end of the parallel site. Similarly, begin-end parallel task
annotations mark the start and end of each task region. Use this begin-end task annotation pair if there are
multiple tasks in a parallel site, if the task code does not include all of the loop body, or for complex loops or
code that requires specific task begin-end boundaries, including multiple task end annotations.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Syntax: Parallel Sites with Multiple Tasks

Parallel site annotations that mark the parallel site:

C/C++: ANNOTATE SITE BEGIN (sitename); and ANNOTATE SITE END() ;
Fortran: call annotate site begin(sitename) and call annotate site end
C#: Annotate.SiteBegin (sitename); and Annotate.SiteEnd();

Parallel task annotations that mark each task within the parallel site:

C/C++: ANNOTATE TASK BEGIN (taskname) ; and ANNOTATE TASK END() ;
Fortran: call annotate task begin(taskname) and call annotate task_end
C#: Annotate.TaskBegin (taskname); and Annotate.TaskEnd () ;

For the C/C++ ANNOTATE TASK END(); annotation, the taskname argument is optional.
The taskname must follow the rules for annotation name arguments:

e For C/C++ code, the taskname must be an ASCII C++ identifier. This should be a name you will
recognize when it appears in Intel Advisor tool reports.

e For Fortran code, the taskname must be a character constant. This should be a nhame you will recognize
when it appears in Intel Advisor tool reports.

e For C# code, the taskname must be a string. This name should be a string that you will easily remember
when it appears in Intel Advisor tool reports.

If you previously used site and task annotations for simple loops with one task and need to convert the task
to this general, multiple task form, replace the single iteration loop annotation with a pair of task begin and
task end annotations that mark the task region. Both forms use the same parallel site annotations.

138

Intel® Advisor User Guide 1

Examples: Parallel Site, Multiple Tasks Not in a Loop

The stats C++ sample application shows task parallelism with multiple tasks that are in a parallel site but
not in a loop. In this case, several related statements do a lot of computation work and each can be a
separate task:

ANNOTATE SITE BEGIN (MySitel);
cout << "Start calculating running average..."<<endl;
ANNNOTATE TASK BEGIN (MyTaskl);
runningAvg(vals, SIZE, rnAvg);
ANNOTATE TASK END (MyTaskl);

cout << "Start calculating running standard deviation..."<<endl;
ANNOTATE TASK BEGIN (MyTask2);
runningStdDev (vals, SIZE, rnStdDev);
ANNOTATE_TASK_END(MyTaSkZ);
ANNOTATE SITE END(MySitel);

In addition to calling functions that perform the computations, there are other cases where the Survey tool
may indicate that a single statement consumes a lot of CPU time. For example, a Fortran array assignment
for a very large array.

Examples: Parallel Site, Multiple Tasks Within a Loop

The annotations in the following C/C++ code fragment specify that each iteration of the loop can be two
separate tasks, potentially running in parallel with any other iteration and the other task.

ANNOTATE SITE BEGIN (sitename);

for (I=0; i<N; I++) {
ANNOTATE_TASK_BEGIN(taskl);
funcl (I);
ANNOTATE_TASK_END();
ANNOTATE_TASK_BEGIN(taskZ);
func2 (I);
ANNOTATE_TASK_END();

}

ANNOTATE_SITE_END();

The following Fortran code fragment also shows the Fortran site and task annotations, where each iteration of
the loop can be two separate tasks, potentially running in parallel with any other iteration and the other task.

call annotate site begin("sitename ")
do i=1,size
call annotate task begin("taskl")
call funcl (i)
call annotate task end
call annotate task begin("task2")
call func2 (i)
call annotate task end
end do
call annotate site end

139

1 Intel® Advisor User Guide

The following C# code fragment also shows the C# site and task annotations, where each iteration of the
loop can be two separate tasks, potentially running in parallel with any other iteration and the other task.

Annotate.SiteBegin ("sitename");
for (int 1 = 0; 1 < N; i++4) {
Annotate.TaskBegin ("taskl");
funcl (i) ;
Annotate.TaskEnd () ;
Annotate.TaskBegin ("task2");
func2 (i) ;
Annotate.TaskEnd () ;

}
Annotate.SiteEnd () ;

The code for each task will be marked between task begin and task end annotation pairs inside a parallel
site. Code that is not executed in any task is executed by the thread entering the site, which may run in
parallel with the identified tasks. In this example, the loop control code that increments i and the compares
i with N is assumed to be executed separately from the explicitly specified tasks. This means that you may
see conflicts between tasks, and the code outside of any task.

When you use the Dependencies tool on the above code, the tool would report data conflicts on global data
accessed by either funcl or func2 on a later loop iteration.

The help topic Annotating Parallel Sites and Tasks describes adding parallel sites and tasks.

Parallel Site and Task Placement
Consider the following C/C++ code:

ANNOTATE SITE BEGIN (sitename); for (1=0; i<N; i++) {

for (i=0; i<N; i++) { ANNOTATE_SITE_BEGIN(sitename);
ANNOTATE_ITERATION_TASK(taskname); ANNOTATE_TASK_BEGIN(taskfuncl);
func (i) ; funcl (1) ;
} ANNOTATE_TASK_END();
ANNOTATE_SITE_END(); ANNOTATE_TASK_BEGIN(taskfunCZ);
func2 (i) ;

ANNOTATE TASK END() ;
ANNOTATE SITE END();

In the simple case on the left, the single annotated site encapsulates the entire loop. This causes all of the
iterations of the loop to potentially run all at the same time. Use this simple form of loop annotations (two
site annotations and one iteration task annotation) for loops whenever possible.

In the case on the right, you are not specifying that all of the loop iterations will run in parallel, but rather
that the opportunities for parallelism are only within a single iteration of the loop. In this case, only the
invocations of funcl and func2 from one loop iteration at a time are considered as sources of potential
parallelism. So, in the case on the right, you will never see conflicts between successive invocations of
funcl, because you are specifying that you do not intend to run them in parallel.

Graphically comparing what the model considers to be in parallel for these two cases, with time progressing
from left to right for each case:

140

Intel® Advisor User Guide 1

Visual contrast of execution for previous examples

|fum:2, i=0 | |fum:2, i=1 | |fu.n|:!2, i-H-1

func?, i=0
|

| func?, i=1

| func?, i=H-1

Fach iteration as a separate parallel site — only
the heginning to the end of the site and the two

Whole loop as site — all tasks modeled as heing in parallel.

tasks in loop modeled
as heing in parallel.

Time e— Time —

The boxes shown overlapping vertically above are modeled as being executed in parallel.

The execution of ANNOTATE TASK BEGIN (taskname) and ANNOTATE TASK END() pair delimits the dynamic
extent of a task. Each time the annotations are executed during Intel Advisor Dependencies or Suitability
analysis to collect interactions between tasks, a dynamic extent is identified that is associated with the most
closely containing dynamic site. Each task is assumed to be independent and able to be run in parallel with
all other tasks inside the containing sites.

Task annotations in a multiple-task parallel site must use the following rules:

e According to execution paths, each begin task annotation must be terminated by an end task annotation.
e Task boundaries must be within parallel site boundaries.
e The argument to the task annotations follow the rules for annotation name arguments.

The only times tasks are not modeled to be executing in parallel are:

1. When tasks are using synchronization, the specific code inside the synchronized region will not be
modeled to be in parallel with other code synchronized using the same lock addresses.

2. When one task creates another task, the code of the parent task executed before the second task is
created is assumed to execute before the task creation. However, any code executed after the task
creation is assumed to be in parallel with the nested task. For example:

ANNOTATE SITE BEGIN (sitename);
for (I=0; i<N; I++) {
ANNOTATE TASK BEGIN (taskfuncla) ;
funcla(I);
ANNOTATE TASK BEGIN (taskfuncla) ;
func2 (I);
ANNOTATE TASK END ()
funclb (I);
ANNOTATEiTASKiEND () e
}
ANNOTATE SITE END () e

In this example, funcla (I) is not in parallel with either func2 (I) or funclb (I). However, func2 (I) and
funclb (I) are modeled as being executed in parallel. This semantic interpretation allows modeling of
recursion where nested calls create tasks that execute in parallel. In this example, note that while this

141

1 Intel® Advisor User Guide

parallel relationship holds for tasks inside one iteration, tasks from different loop iterations will all be in
parallel because they have no special relationship. For example, funcla (I) from one loop iteration may be
executed concurrently with func2 (I) in a different iteration.

While you are checking Dependencies, the Dependencies tool assumes that all tasks in a given site may
execute in parallel unless there is explicit synchronization. For example, in this case all N iterations of funci
and func2 will execute in parallel.

ANNOTATEislTEiBEGIN(sitename);

for (I=0; i<N; I++) {
ANNOTATE_TASK_BEGIN(taskfuncl);
funcl (I);
ANNOTATE_TASK_END();
ANNOTATE_TASK_BEGIN(taskfunc2);
func2 (I);
ANNOTATE_TASK_END();

}
ANNOTATE SITE END();

If you want to model other kinds of relationships, for example func?2 invocations will have some form of
serialization, that constraint needs to be expressed using lock annotations that mark a lock that is acquired
and released for the duration of that task's execution.

To select where to add task annotations may take some experimentation, considering factors such as average
instance time and number of iterations (provided in the Suitability Report). If your parallel site has nested
loops and the computation time used by the innermost loop is small, consider adding task annotations
around the next outermost loop. See help topics such as How Big Should a Task Be?.

See Also

Lock Annotations

Inserting Annotations Using the Annotation Wizard

Copying Annotations and Build Settings Using the Annotation Assistant Pane
Annotating Parallel Sites and Tasks

How Big Should a Task Be?

Dependencies Analysis

Fixing Sharing Problems

Lock Annotations

Lock annotations mark where you expect you will be adding explicit synchronization.

Syntax
C/C++: ANNOTATE LOCK_ACQUIRE (pointer-expression); and
ANNOTATE LOCK RELEASE (pointer-expression);
Fortran: call annotate lock acquire (address) and call
annotate lock release (address)
C#: Annotate.LockAcquire ([int expr]); and Annotate.LockRelease ([int expr]);

(for each annotation, its argument is optional)

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

142

Intel® Advisor User Guide 1

With C/C++ and Fortran programs, all of the lock annotations use an address value to represent distinct
locks in your final program. You can use the address value 0 to represent a global “lock” that is the same
across the entire program. With C# programs, the argument is an int with a default value of 0 (zero).

Intel recommends that you start by using a default lock, unless you need additional locks for performance
scaling.

The modeling step is aware of the standard locking routines in the Windows* OS API, as well as Intel®
oneAPI Threading Building Blocks (oneTBB) and OpenMP*, so there is no need to annotate existing locking.
Lock annotations are only required for cases where you are not already using synchronization.

The lock-acquire and lock-release annotations denote points in your program where you intend to acquire
and release locks. These annotations take a single parameter, which is an address that you choose.

For example, if you decided you would have a lock used only for glob_variable, you specify the same memory
address for all cases where you are protecting access to glob_variable, to represent that specific lock. The
sample below uses the variable's address to represent the lock that will be associated with glob_variable.

You typically can use one of the following four values, using a finer granularity of synchronization when
necessary:

e The value of 0 (zero) to represent a single unspecified lock that is the same across the entire program.

e The address of a data structure or other aggregation of data. This represents using a single lock for the
collection of data.

e The address of a member of the data collection. This represents finer-grained locking than the previous
value and provides better performance.

e A variable representing a lock as you move toward final parallel code.

This C/C++ example shows the intent for the parallel program to acquire and release a lock around the
access to the global variable glob_variable in each task:

extern int glob variable = 0;

ANNOTATE_SITE_BEGIN(sitename);

for (I=0; i<N; I++) {
ANNOTATE_TASK_BEGIN(taskfuncl);
funcl (I);
ANNOTATE_LOCK_ACQUIRE(&glob_variable);
glob variable++;
ANNOTATE_LOCK_RELEASE(&glob_variable);
func? (I);
ANNOTATE TASK END () ;

}

ANNOTATE SITE END();

This Fortran example also shows the intent to acquire and release a lock around the access to the global
variable glob_variable in each task:

integer :: glob variable = 0

call annotate site begin("sitename")
do i=1,size

call annotate task begin("taskfuncl")
call funcl(i)
call annotate lock acquire (0)
glob _variable = glob variable + 1
call annotate lock release(0)
call func2(i)

143

1 Intel® Advisor User Guide

call annotate task end
end do
call annotate site end

This C# example also shows the intent to acquire and release a lock around the access to the global variable
glob_variable in each task:

public int glob variable {
get{return nrOfSolutions;}
set{nrOfSolutions = value;}

Annotate.SiteBegin ("sitename");

for (int 1 = 0; 1 < N; i++) {
Annotate.TaskBegin ("taskfuncl");
funcl (1) ;
Annotate.LockAcquire () ;
glob variablet+;
Annotate.LockRelease () ;
func2 (1) ;
Annotate.TaskEnd() ;

}
Annotate.SiteEnd () ;

The following C/C++ example is a typical use of a data item's address. It shows the use of an Entity
address, where there is a vector of integers that are each going to have an associated lock, because the
program is counting random elements of the array that will be accessed by different tasks, some of which
may occasionally have the same random value. The text from adding annotations appears in bold below.

struct Entity {
int val;

}i

std::vector<Entity> v;

for (int I=0; i<v.size()*10000; I++) {
int random int = random n();
ANNOTATE LOCK_ACQUIRE (&v[random_int]);
v[random int].val++;
ANNOTATE LOCK RELEASE (&v[random int]);

Use Lock Annotations

Lock addresses are the basis of lock annotations, and each lock address corresponds to the intent to create a
unique lock, or other synchronization mechanism, in the final program. Tasks sharing a parallel site are
modeled as executing in parallel unless you describe synchronization using lock addresses, or known locking
mechanisms.

See Also

Special-purpose Annotations

Synchronize Independent Updates

Data Sharing Problems

Insert Annotations Using the Annotation Wizard

144

Intel® Advisor User Guide 1

Copy Annotations and Build Settings Using the Annotation Assistant Pane

Pause Collection and Resume Collection Annotations

The Pause Collection and Resume Collection annotations let you stop and resume data collection to skip
uninteresting parts of the target program's execution. If you pause data collection, the target executable
continues to execute until you resume data collection. Pausing data collection minimizes the amount of data
collected and speeds up the analysis of large applications.

In addition to these annotations, you can click certain buttons on the side command toolbar to pause or
resume data collection:

e You can start the Survey and Suitability tools with data collection either paused or enabled. For example,
the Start Paused button starts executing the target being analyzed with data collection (analysis)
disabled. Also, once the tool is started, you can pause and resume data collection by using the Pause or
Resume buttons or by executing the equivalent Pause Collection and Resume Collection annotations.

e You start the Dependencies tool with data collection enabled, but you can pause data collection either by
using the Pause button or by executing the equivalent Pause Collection annotation. You can add Pause
Collection and Resume Collection annotations as described below.

Pause Collection

This annotation completely stops the analysis of your program until the matching Resume Collection (disable-
collection-pop) annotation is executed. Use this annotation to reduce the analysis overhead for certain
uninteresting parts of your program. This annotation is recognized by the Dependencies, Survey, and
Suitability tools. Because this annotation completely disables monitoring of most annotations, add it carefully
in your source code, such as outside a parallel site. If there are multiple pushes, all have to be popped before
re-enabling collection.

Syntax:
C/C++: ANNOTATE DISABLE COLLECTION PUSH;
Fortran: call annotate disable collection push ()
C#: Annotate.DisableCollectionPush () ;

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

This annotation takes no arguments.

NOTE
For C/C++, this annotation does not have an argument list.

Resume Collection

This annotation resumes the analysis previously stopped by a Pause Collection (disable-collection-push)
annotation. This annotation is recognized by the Dependencies, Survey, and Suitability tools. Because the
Pause Collection annotation completely disables monitoring of most annotations, add this Resume Collection
annotation carefully in your source code, such as outside a parallel site.

Syntax:
C/C++: ANNOTATE DISABLE COLLECTION POP;
Fortran: call annotate disable collection pop()

145

1 Intel® Advisor User Guide

| C#: Annotate.DisableCollectionPop () ;

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

This annotation takes no arguments.

Special-purpose Annotations

All Intel Advisor special-purpose annotations are recognized by the Dependencies tool, which observes
memory accesses in great detail. Some of these annotations prevent the Dependencies tool from reporting
all or specific data sharing problems, while one (Observe Uses of Storage) provides more detail about
memory accesses.

NOTE
In the C/C++ syntax descriptions below, addresses and sizes are C++ expressions. Similarly, the
Fortran var is a Fortran integer address.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

This topic describes the following special-purpose annotations:

Inductive Expressions Uses
Reduction Uses

Observe Uses of Storage

Clear Uses of Storage

Disable Observation Annotations
Enable Observation Annotations
Memory Allocation Annotations

Inductive Expressions Uses

Induction variables (such as ++/) can often be eliminated when you add parallel framework code. Use this
annotation to disable reporting data sharing problems for the specified memory region. This annotation is
only recognized by the Dependencies tool.

Terminate this annotation with a Clear Uses of Storage annotation.

Syntax:
C/C++: ANNOTATE INDUCTION USES (address, size);
Fortran: call annotate induction uses(var)
C#: Not supported

e address is a C++ identifier or expression that provides information about the memory region for this
annotation.

e size is a C++ identifier or expression that provides information about the memory region for this
annotation.

e var is a Fortran integer address that provides information about the memory region for this annotation.

146

Intel® Advisor User Guide 1

Reduction Uses

Reduction variables (such as sum += data[i]) can often be replaced with reduction operations when you
add parallel framework code. Use this annotation to disable reporting data sharing problems for the specified
memory region. This annotation is only recognized by the Dependencies tool.

Terminate this annotation with a Clear Uses of Storage annotation. For example, with C/C++ code:

ANNOTATE REDUCTION USES (&sum, 4);
sum += af[i];
ANNOTATE CLEAR USES (&sum) ;

Syntax:
C/C++: ANNOTATE REDUCTION USES (address, size);
Fortran: call annotate reduction uses(var)
C#: Not supported

e address is a C++ identifier or expression that provides information about the memory region location for
this annotation.

e size is a C++ identifier or expression that provides information about the memory region location for this
annotation.

e var is a Fortran integer address that provides information about the memory region for this annotation.

Observe Uses of Storage

Use this annotation to report all accesses to the specified memory region. For example, this can help you find
all of the uses of a variable to determine how you should refactor your code. This annotation gets reported as
a Memory watch remark message in the Dependencies Report. This annotation is only recognized by the
Dependencies tool.

NOTE
For performance reasons, this annotation may not report memory access for variables stored on the
stack.

To terminate this annotation, add a Clear Uses of Storage annotation.

Syntax:
C/C++: ANNOTATE OBSERVE USES (address, size);
Fortran: call annotate observe uses(var)
C#: Not supported

e address is a C++ expression that provides information about the memory region location for this
annotation.

e size is a C++4 expression that provides information about the memory region location for this annotation.

e var is a Fortran integer address that provides information about the memory region for this annotation.

147

1 Intel® Advisor User Guide

Clear Uses of Storage

Use this annotation to terminate these annotations: Inductive Expressions Uses, Reduction Uses, and
Observe Uses of Storage. For example, when the C/C++ ANNOTATE CLEAR USES () ; annotation terminates
ANNOTATE OBSERVE USES () ;, the Dependencies tool stops reporting all uses of the specified variable. This
annotation is only recognized by the Dependencies tool.

Syntax:
C/C++: ANNOTATE CLEAR USES (address) ;
Fortran: call annotate clear uses(var)
C#: Not supported

e address is a C++ identifier or expression that provides information about the memory region location for
this annotation.
e var is a Fortran integer address that provides information about the memory region for this annotation.

Disable Observation Annotations

This annotation disables the reporting of problems until the matching Enable Observation Annotation is
executed. After executing this annotation, the Dependencies tool does not report problems but continues to
monitor other annotations so it can resume reporting problems if a matching Enable Observation Annotation
is executed. This can be useful to suppress Dependencies problems that are false-positives or not useful in
your program. Unlike ANNOTATE CLEAR_USES; - which applies to a specific memory area - this annotation
remains active until a disable-observation-pop annotation is executed to enable annotations. This annotation
is only recognized by the Dependencies tool.

Syntax:
C/C++: ANNOTATE DISABLE OBSERVATION PUSH;
Fortran: call annotate disable observation push()
C#: DisableObservationPush () ;

This annotation takes no arguments.

Enable Observation Annotations

This annotation enables the reporting of Dependencies stopped by a previous Disable Observation Annotation
was executed to disable observation annotations. This annotation is only recognized by the Dependencies
tool.

Syntax:
C/C++: ANNOTATE DISABLE OBSERVATION POP;
Fortran: call annotate disable observation pop ()
C#: Annotate.DisableObservationPop () ;

This annotation takes no arguments.

148

Intel® Advisor User Guide 1

Memory Allocation Annotations

Memory allocation annotations apply only to C/C++ programs. They describe non-standard or user-defined
memory allocations to avoid false conflicts reported by the Dependencies tool. Only use these Memory
allocation annotations if you see false conflicts related to memory allocation in the Dependencies tool. This
annotation is only recognized by the Dependencies tool.

Heap-allocated memory can be freed and then reused. If the same memory region is allocated during one
task, then freed, and then re-allocated for use by a second task, this can confuse Dependencies tool analysis,
because it appears as if two threads were accessing the same parallel memory region without
synchronization. When the program runs in parallel runs in parallel, each thread could allocate different
memory, so there is not really a data race.

The Dependencies tool understands the standard library memory allocation routines, such as malloc and
free, operator new, and so on. However, if you have a user-defined memory allocator, the Dependencies tool
may not accurately understand the memory relationships between different tasks. If your application utilizes
a user-defined memory allocator, you may need to use these annotations to help the Dependencies tool
understand the relationships. You place:

e ANNOTATE RECORD ALLOCATION after a call to your non-standard or user-defined allocator.
e ANNOTATE RECORD DEALLOCATION before the call to your non-standard or user-defined deallocator.

If you do not have such an allocator you can skip these annotations.

If you do have a user-defined memory allocator and you omit these annotations, you may see the effects as
Memory reuse problems for the storage that is actually allocated by your allocator, and Data
communication problems for the control information used by the allocator.

Syntax:
C/C++: ANNOTATE RECORD ALLOCATION (address, size); and
ANNOTATE RECORD DEALLOCATION (address) ;
Fortran: Not supported
C#: Not supported

ANNOTATE RECORD ALLOCATION (address, size); specifies the storage allocated by a user-memory
allocator with a specific address and size:

1. The address is a C++ expression that provides information about the memory region location for this
annotation.

2. The size is a C++ expression that provides information about the memory region size for this
annotation.

Use ANNOTATE RECORD DEALLOCATION (address) ; each time your deallocator is freeing memory.

Static Loop Scheduling Annotations

Loop scheduling annotation inform the Suitability tool that the following loop will be divided into equal-sized
(or as equal as possible) chunks. By default, chunk size is loop_count/number_of_threads.

Syntax:
C/C++: ANNOTATE AGGREGATE TASK;
Fortran: Not supported
C#: Not supported

See Also

Tips for Annotation Use with C/C++ Programs

149

1 Intel® Advisor User Guide

Pause Collection and Resume Collection Annotations

Annotation General Characteristics

Annotation Types Summary

Inserting Annotations Using the Annotation Wizard

Copying Annotations and Build Settings Using the Annotation Assistant Pane

Annotation Definitions Files
Intel® Advisor provides macro or routine definitions that enable use of its annotations for each language:

e For C/C++, the advisor-annotate.h header file defines macros that begin with ANNOTATE , so you can
use annotations such as ANNOTATE SITE BEGIN() ;.

e For Fortran, the advisor annotate module declares subroutines starting with annotate , so you can
call annotations such as annotate site begin().

e For C# on Windows* OS systems, the AdvisorAnnotate header declares an Annotate class containing
member routines, so you can use annotations such as Annotate.SiteBegin() ;.

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Reference the Annotation Definitions from Your Source Files

Before you add Intel® Advisor annotations into your source files, you need to reference the definitions for the
Intel® Advisor annotations:

e For C/C++, add: #include "advisor-annotate.h" or #include <advisor-annotate.h> (see
Including the Annotations Header File in C/C++ Sources).

e For Fortran, add: use advisor annotate

e For C#, add: using AdvisorAnnotate; (Windows OS systems only)

Where to Add USE Statements in Fortran Programs

Fortran does not have file scope declarations, so the USE statement needs to be inside the subroutine,
function or main program where the annotation(s) appear. For example:

program F_example

! The main program does not contain annotations, do not add use advisor annotate here!
! some code .

|

subroutine F_sub

! This subroutine contains annotations, so add the use advisor annotate statement

use advisor annotate

! some code .

! add Intel Advisor site and task annotations around compute intensive code

! For example, begin a parallel site: call annotate site begin(sitel)
|

end subroutine F sub
! some code .
end program F example

If the call is in @ module procedure, the USE statement can be at the module level. For more details about
placing USE statements, see your Fortran compiler documentation.

150

Intel® Advisor User Guide 1

Specify Build Settings

Specific build settings are needed for each language. Certain build settings are needed for each module that
contains Intel® Advisor annotations, such as specifying the directory where the annotations definitions are
located. For C/C++ and Fortran applications, other build (compiler and linker) settings are needed for all
modules in an application, such as full debug information. Read the Build Settings... topics by clicking the
links below under See Also for your language.

Redistribute the Annotations Definition File(s)

You only need annotations in your code when you are using the Intel® Advisor Suitability and Dependencies
tools to predict your serial program's parallel behavior. Before you distribute your application, you will
typically replace these annotations when you add the parallel framework code. However, because the
annotations do not change how your applications runs unless you use Intel® Advisor tools, you can distribute
your application with the annotations still present.

For information about redistributing the annotation definition files, see the installed End User License
Agreement (EULA.rtf or EULA. txt) and the redist. txt file installed in the Intel® Advisor. ../
documentation/<locale> directory.

Special Considerations for C/C++ Applications
With C/C++ programs:

e If your program encounters errors when you include the advisor-annotate.h file, see Handling
Compilation Issues that Appear After Adding advisor-annotate.h (primarily for Windows systems).

e On Windows OS systems: If you do need to modify the advisor-annotate.h file, you can add a copy
of it for a specific project or solution. If the version of advisor-annotate.h changes, you will need to
update your copies of the file. See Adding a Copy of the Annotations Include File to Your Visual Studio
Project.

If you do not need to modify this file, you can reference the same installed advisor-annotate.h from
multiple projects or solutions as a read-only file. If you use the Intel® Advisor environment variable and
the version of Intel® Advisoradvisor-annotate.h changes, you only need to change this reference if the
environment variable name changes, such as for a major version. Thus, using a read-only version can
minimize future maintenance.

¢ On Linux* OS systems: Except in very rare circumstances, you can reference the same installed
advisor—-annotate.h from multiple projects or solutions as a read-only file.

e Since the annotations do not change the values computed by your program, you can change the
expansions of the macro, or suppress expansion altogether, as described in Controlling the Expansions in
advisor-annotate.h.

Reference the Annotations Definitions Directory

You need to specify the directory containing the Intel® Advisor definition file as an additional include directory
when you compile your program. Intel® Advisor installs its annotation definition files into a default directory
on your system. For example:

e With a Visual Studio project or solution for a C/C++ or Fortran application, you need to specify the
property Additional Include path. You can use the environment variable ADVISOR <version> DIR
followed by the include directory.

e With the C/C++ or Fortran command line, use the compiler option -1dir (Linux* OS) or /1dir (Windows*
0S), where dir is the directory containing the annotation definition files. You can use the environment
variable ADVISOR <version> DIR followed by the include directory.

e With Fortran modules, you also need to specify the library name and directory of the annotations
definitions to the linker.

e With a Visual Studio project or solution for a C# program, you need to specify Properties > Add >
Existing Item and browse to and select the annotations definitions file.

151

1 Intel® Advisor User Guide

NOTE C# and .NET support is deprecated starting Intel® Advisor 2021.1.

Tip
For the most current information on optimal C/C++ and Fortran build settings, see Build Your Target
Application.

Include the Annotations Header File in C/C++ Sources

When you add annotations to your C/C++ source files, you also need to include the Intel® Advisor annotation
header file advisor-annotate.h in those files. Use the code editor to type the line or use the context menu
item to add a #include directive.

To include the annotations C/C++ header file, specify one of the following forms listed below:

Use the quoted form to have the preprocessor first #include "advisor-annotate.h"
search for the header file in the same directory as
the source file that contains the #include
directive, and then other directories (see your
compiler documentation for details).

Use the angle bracket form to have the #include <advisor-annotate.h>
preprocessor first search for the header file in the
directory specified by the /I option (Additional
Include Directories), and then other directories (see
your compiler documentation for details).

To use the include file with Fortran sources, see Intel® Advisor Annotation Definitions File.

See Also
Insert Annotations Using the Annotation Wizard

Set Intel Advisor Environment Variables Use this topic to get guidance on setting up environment
variables for Intel® Advisor.

Add Annotations into Your Source Code
You can add Intel® Advisor annotations in your source code by:

e Copying annotations with the annotation assistant in the Survey Report window, Survey Source
window, or the No Data message. Use the annotation assistant to copy the main annotations for parallel
sites, tasks, and locks. For example, the annotation assistant appears in the lower part of the Survey
Report window in the Assistance tab.

e On Windows* OS only: When using the Visual Studio* code editor, you can use the Annotation Wizard
to select an annotation type and add the annotations and their arguments into your code. You can use the
Annotation Wizard to add parallel site, task, lock, pause/resume data collection, and special-purpose
annotations.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

152

Intel® Advisor User Guide 1

NOTE

If your sources include huge source files that contain annotations, be aware that only the first 8 MB of
each file will be parsed for annotations. If not all of your annotations are being parsed in such huge
source files, consider breaking each huge source file into several source files.

Copy Annotations and Build Settings Using the Annotation Assistant Pane

The Intel® Advisor provides an annotation assistant near the bottom of the Survey Report and Survey
Source windows, as well as with the No Data message. Use this assistant to view and copy selected
annotated code snippets and build setting information into a code editor.

The assistant provides a drop-down list under Example: from which you select one of the following:

Select This To Do This
Iteration Loop, View and copy an annotation code snippet for a simple loop structure, where the
Single Task task's code includes the entire loop body. Use this common task structure when

only a single task is needed within a parallel site. For example code, see the help
topic Site and Task Annotations for Simple Loops With One Task.

Click the
23 Copy to Clipboard
button to copy the selected snippet to the clipboard.

Loop, One or More View and copy an annotation code snippet for a loops where the task code does

Tasks (bounded) not include all of the loop body, or for complex loops or code that requires
specific task begin-end boundaries, including multiple task end annotations. Also
use this structure when multiple tasks are needed within a parallel site. For
example code, see the help topic Site and Task Annotations for Parallel Sites
with Multiple Tasks.

Click the
=3 Copy to Clipboard
button to copy the selected snippet to the clipboard.

Function, One or View and copy an annotation code snippet for code that calls multiple functions
More Tasks (task parallelism). Use this structure when multiple tasks are needed within a
(bounded) parallel site. For example code, see the help topic Site and Task Annotations for
Parallel Sites with Multiple Tasks.
Click the

=3 Copyto Clipboard
button to copy the selected snippet to the clipboard.

Pause/Resume View and copy an annotation code snippet whose annotations temporarily pause

Collection data collection and later resume it. This lets you skip uninteresting parts of the
target program's execution to minimize the data collected and speed up the
analysis of large applications. Add these annotations outside a parallel site.

Click the
23 Copy to Clipboard
button to copy the selected snippet to the clipboard.

Build Settings View and copy build settings. The Build Settings are specific to the language in
use.

Click the
23 Copy to Clipboard

153

1 Intel® Advisor User Guide

Select This To Do This

button to copy the selected snippet to the clipboard.

Site, task, and other annotations take name arguments. You should replace the placeholder name with a
name that helps you quickly identify its source location. For example, in place of MySite5 in the argument to
a site annotation, replace it with a meaningful function or loop name. The name you add must be unique
amongst the annotations in this project.

Insert Annotations in a Text Editor

To add Intel® Advisor annotations into your source files on a Linux* system, you can use any text editor.
Intel® Advisor simplifies the process of locating where to add annotations.

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

To add Intel® Advisor annotations:

1. Open the Intel® Advisor GUI and the relevant project.

2. In the File menu, select Options.

3. Select Editor to display the Options - Editor dialog box. Follow the instructions to associate an editor
with your source language(s).

4, For your project, open the Survey Source window.

5. Double-click a source line to display the specified editor opened to the corresponding source location.

6. Use the annotation assistant pane in the lower part of the Survey Source window to select the type of
annotation you want to add.

7. Copy the selected annotations from the annotation assistant pane by clicking the

=3 Copy to Clipboard

button.
8. Paste the copied annotations into your editor.
9. You may need to move some annotation lines around.
10. Repeat as needed for other annotations from step 4.

This enables you to quickly add annotations into the appropriate source files.

See Also

Annotation General Characteristics

Annotation Types Summary

Copying Annotations and Build Settings Using the Annotation Assistant Pane

Tips for Annotation Use with C/C++ Programs

The following topics provide tips related to using annotations with C/C++ programs:

NOTE In most cases, you do not need source annotations when using Intel® Advisor, except for the
Suitability analysis of the Threading perspective. When analyzing your application with other
perspectives, such as Vectorization and Code Insights or Offload Modeling, you can analyze all parts of
your code automatically or use Intel Advisormark-up capabilities, which do not require you to
recompile your application.

154

Intel® Advisor User Guide 1

e Depending on your particular environment, you may want to control the expansion of macros in advisor-
annotate.h by using the ANNOTATE EXPAND NULL environment variable. See the help topic Controlling
the Expansion of advisor-annotate.h.

e Tips for Windows* OS only:

e Because the advisor-annotate.h header file includes windows.h, including advisor-annotate.h
may cause type and symbols conflicts, which result in unexpected compiler messages. See the help
topic Handling Compilation Issues that Appear After Adding advisor-annotate.h.

e If you run into certain unexpected problems, you need to learn how advisor-annotate.h and
libittnotify.dl1l interact. See the help topic advisor-annotate.h and libittnotify.dll.

Control the Expansion of advisor-annotate.h

Depending on your particular environment, you may want to control the expansion of C/C++ macros in
advisor—-annotate.h at the inclusion site.

Defining ANNOTATE EXPAND NULL before you include advisor-annotate.h causes the annotation macros to
have a null expansion, which will remove the actions from your code. If you have a project where some
configurations, or some users, want to have annotations, while others should not have them present, this
control may be helpful.

#define ANNOTATE EXPAND NULL
#include "advisor-annotate.h"

You can also do this by defining the value as part of your compilation command using the /D option. For
example:

/DANNOTATE EXPAND NULL

See Also

Handling Compilation Issues that Appear After Adding advisor-annotate.h
Set Up Project

Including the Annotations Header File in C/C++ Sources

Handle Compilation Issues that Appear After Adding advisor-annotate.h

NOTE
This topic primarily applies to Windows systems. It is possible for similar errors to occur on Linux
systems.

Symptoms
On Windows* systems, the advisor-annotate.h header file includes windows.h to define some types and
functions. As a result, in some cases including advisor-annotate.h may cause compilation errors. For
example, the following conflict for the type UINT:

error C2371: ‘UINT' : redefinition; different basic types

On Linux systems, something similar could occur under certain very specific conditions when using a different
header file for operating system threading software.

Possible Correction Strategies

To fix this problem, you can use a declaration/definition approach, where all uses of advisor-annotate.h
other than one generate a set of declarations, and windows.h is only needed in a single implementation
module. In all cases, you #define either ANNOTATE DECLARE or ANNOTATE DEFINE just before the
#include "advisor-annotate.h" as follows:

155

1 Intel® Advisor User Guide

1. In nearly all modules that contain annotations, insert #define ANNOTATE DECLARE just before
#include "advisor-annotate.h". This causes advisor-annotate.h to declare an external
function, and not include windows.h (or Linux equivalent), which avoids the type/symbol conflicts with
the operating system threading header file, such as windows.h.

2. In a single module that either does not include annotations or does not have type/symbol conflicts with
windows.h, you insert #define ANNOTATE DEFINE just before #include "advisor-annotate.h".
This causes advisor-annotate.h to define the global function to resolve the external reference and
the #include "advisor-annotate.h" is the only one that uses the operating system threading
header file windows.h (or Linux equivalent). These two lines can be placed in an otherwise empty .cpp
file.

One way to do this is to add an empty .cpp to your project with two lines in it, shown as empty.cpp
below.

For example, on Windows systems:

//File foo.cpp/.h:

// Insert #define ANNOTATE DECLARE in all modules that contain annotations just before the
// #include "advisor-annotate.h". This prevents inclusion of windows.h to avoid the
// type/symbol conflicts.

#define ANNOTATE DECLARE
#include "advisor-annotate.h"

// annotation uses
ANNOTATE_SITE_BEGIN(MySitel)

ANNOTATE SITE END()

//File empty.cpp:

// Insert #define ANNOTATE DEFINE just before the #include "advisor-annotate.h" in only one
module.

// This single implementation file (.cpp/.cxx) causes windows.h to be included, and the
support

// routine is defined as a global routine called from the various annotation uses.

#define ANNOTATE DEFINE

#include "advisor-annotate.h"

If the problem persists, please request support, such as by using the support forum.

Annotation Report

To access this window, in the Result tab, click the Annotation Report button. Alternatively, if you are using
the Advisor Workflow tab, click the

button below 2. Annotate Sources or 5. Add Parallel Framework.

The Annotation Report window lists all annotations found during source scanning or running the Suitability
and Dependencies tools. It lists the annotation type, source location, and annotations label in a table-like
grid format, where each annotation appears on a separate row. Intel® Advisor updates the listed annotations
when changes occur to the specified source directories. For example, when you save a source file with a code
editor.

Annotation Report Layout 1. Analysis Workflow Tab
2. Result Tab
3. Annotation Report window grid

156

Intel® Advisor User Guide 1

Use This

To Do This

Analysis Workflow tab

Run a tool of your choice and see results in the Result tab.

Result Tab Select between available reports.
Annotation Report window View a summary of the annotations found as well as data collected by
grid the Suitability and Dependencies tools. Each annotation's data appears

on a separate row in the grid. The columns are explained below.

grid

Right-click a row in the
Annotation Report window edit corresponding source code using a code editor, copy data to the

Displays a context menu that lets you expand or collapse code snippets,

clipboard, or display context-sensitive help.

To sort the grid using a column's values, click on the column's heading. The columns of the grid are:

Use This Column

To Do This

Annotation

View the type of annotation, such as Site, Task, or Lock.

To show or hide a code snippet showing the annotation, click the
[+
icon next to its name.

For information about each annotation type, see the help topic Summary of
Annotation Types.

To view the source associated with an annotation in your code editor, double-click
its name or a line in the code snippet (or right-click and select Edit Source from
the context menu) in this column.

¢ On Windows* OS:

¢ When using Visual Studio, the Visual Studio code editor appears with the
file open at the corresponding location.

NOTE In Visual Studio* 2022, Intel Advisor provides lightweight integration.
You can configure and compile your application and open the standalone
Intel Advisor interface from the Visual Studio for further analysis. All your
settings will be inherited by the standalone Intel Advisor project.

¢ When using the Intel® Advisor GUI, the file type association (or Open With
dialog box) determines the editor used.
* On Linux* OS: When using the Intel® Advisor GUI, the editor defined by the
Options > Editor dialog box appears with the file open at the corresponding
location.

157

1 Intel® Advisor User Guide

Use This Column To Do This
Source Location View the name of the source file that contains the annotation and the line number.
Icons indicate where source is available
or not available
)
Ea

To view the source, double-click its name (or right-click and select Edit Source) in
this column. The code editor appears.

Annotation Label View the annotation's label (name).

To view the source associated with an annotation, double-click its name (or right-
click and select Edit Source) in this column. The code editor appears.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Clear Description of Storage Row

Use this special-purpose annotation to stop tracking references to a memory location by the Dependencies
tool. This information can help you understand what code accesses a memory location. When you have
learned enough, simply remove this annotation.

To view the source code for this annotation, click the
icon.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Disable Observations in Region Row

This special-purpose annotation disables the reporting of problems until the matching enable annotation
ANNOTATE DISABLE OBSERVATION POP; is executed. Use this annotation to suppress reported problems
that are false-positives, or not useful in you.

To view the source code for this annotation, click the

icon.

158

Intel® Advisor User Guide 1

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Pause Collection Row

This special-purpose annotation temporarily stops (pauses) the analysis of your program's execution until the
matching Resume Collection annotation (disable-collection-pop) is executed. Use this annotation to reduce
the tool analysis overhead and reported data for certain parts of your program while running the
Dependencies, Survey, and Suitability tools.

To view the source code for this annotation, click the
icon.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Inductive Expression Row
This special-purpose annotation marks a line that updates an expression that is inductive in a loop.

To view the source code for this annotation, click the

icon.

Inductive expressions cause dependence cycles which normally prevent parallelizing a loop, but it is possible
to compute the value of the expression if you know the iteration number. You may have to re-write the
inductive expression to compute the value based on the iteration humber when the loop is translated to
parallel code.

For example, if i++ is the iteration variable of your loop, the parallel framework that you use may
automatically fix this for you. For example, by using cilk for. Otherwise, you may need to fix it manually.
A common example is with §+=3, and i++. If i is your loop index (assuming 0 based), you can replace j+=3
with § = i*3. That is, the value of j actually is a function of the value of i.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

159

1 Intel® Advisor User Guide

Annotation Report, Lock Row
A lock row shows the source location of the lock annotation and its argument value.

To view the source code for this lock annotation, click the
.':]..

icon.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Observe Uses Row

Use this special-purpose annotation to report the access operations to a memory location in the
Dependencies Report. This information can help you understand what code accesses a memory location.
When you have learned enough, remove the annotation from your source code.

To view the source code for this annotation, click the
icon.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Reduction Row

This special-purpose annotation marks a line that computes a reduction in a loop. Marking the line as a
reduction causes the Dependencies tool to ignore the data race.

To view the source code for this annotation, click the

icon.

Reductions require special treatment when translating to parallel code (see the help topics Special-purpose
Annotations and About Replacing Annotations ... for your parallel framework below).

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

160

Intel® Advisor User Guide 1

Annotation Report, Re-enable Observations at End of Region Row

This special-purpose annotation enables reporting problems stopped by a previous
ANNOTATE DISABLE OBSERVATION PUSH; annotation.

To view the source code for this annotation, click the
icon.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Resume Collection Row

This special-purpose annotation resumes the analysis previously stopped by a previous Pause Collection
(disable-collection-push) annotation. This annotation is recognized by the Dependencies, Survey, and
Suitability tools.

To view the source code for this annotation, click the
icon.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Site Row
A site row shows the source location of the site annotation and the label of the site.

To view the source code for this site annotation, click the
i':i..

icon.
When converting annotations to parallel code:

e For Intel® oneAPI Threading Building Blocks (oneTBB), you need to add a scheduler initialization call in
each thread before you create any tasks.
e For OpenMP*, it depends on the pragmas/directives used.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

161

1 Intel® Advisor User Guide

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, Task Row

A task row shows the source location of the task annotation and the label of the task. A task identifies time-
consuming code whose work can be efficiently done by multiple cores.

To view the source code for this task annotation, click the
.':]..

icon.

When the task is translated to parallel code and you remove or comment out the task annotation(s), this
entry is removed from the table.

There are two types of task annotations. If the loop code changes, you can modify the type of task
annotation.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

¢ Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Annotation Report, User Memory Allocator Use Row

This row shows a source location where memory is being allocated using a non-standard or user-defined
memory deallocation. The Dependencies tool uses this as a hint about the lifetime of memory accesses, so
memory that is allocated will not cause conflicts to be reported if the non-standard or user-defined memory
allocation occurs with the span this annotation's execution.

To view the source code for this annotation, click the

icon.

When translating annotations to parallel code, this special-purpose record_allocation annotation can be
removed or commented out.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

162

Intel® Advisor User Guide 1

Annotation Report, User Memory Deallocator Use Row

This row shows a source location where memory is being freed using a non-standard or user-defined memory
deallocation. The Dependencies tool uses this as a hint about the lifetime of memory accesses, so memory
that is freed and then allocated again will not cause conflicts to be reported if the non-standard or user-
defined memory free occurs with the span of this annotation's execution.

To view the source code for this annotation, click the

icon.

When translating annotations to parallel code, this special-purpose record_deallocation annotation can be
removed or commented out.

When to View the Annotation Report

Use the Annotation Report window to view the types of annotations present in your project sources and
access their locations. You can view the Annotation Report at any time to check the annotations. In
addition:

e Intel recommends that you view annotations during Adding Parallelism to Your Program workflow step to
help you locate site, task, lock, and other annotations that should be replaced by parallel framework code.

e When using the Intel Advisor product GUI, you can use this report to verify that the correct sources have
been defined in the Project Properties > Source Search tab.

Explore Threading Results

Intel® Advisor provides several ways to work with the Threading results.

View Results in CLI

If you run the Threading perspective from command line, you can print the results collected in the CLI and
save them to a .txt, .csv, or .xml file.

For example, to generate the Suitability report for the OpenMP* threading model:
advisor --report=suitability --project-dir=./advi results --threading-model=openmp
You should see a similar result:

Target CPU Count: 8 Threading Model: OpenMP*
Maximum gain for all sites: 6.10998

All Sites
Site Label Source Location Impact to Total Serial Time Total Parallel Time
Site Gain Average Serial Time ...
Program
Gain
solve nqueens_serial.cpp:154 6.11x 4.080s 0.631s
6.47x 4.080s ...

Site Details
Annotation Annotation Label Source Location Number of Instances Maximum
Instance Average Serial

Time Time

163

1 Intel® Advisor User Guide

Selected Site solve nqueens serial.cpp:154 1
4.080s 4.080s R
Task setQueen nqueens serial.cpp:156 14
0.477s 0.267s 20C
Lock ? 365596 <
0.001s < 0.001s

Site Options
Benefit Loss If

Site Option Done? If Done Not Done Recommended
solve Reduce Site Overhead No
solve Reduce Task Overhead No
solve Reduce Lock Overhead No
solve Reduce Lock Contention 0.16x No
solve Enable Task Chunking No

The result is also saved into a text file advisor-suitability.txt located at ./advi results/e<NNN>/
St <NNN>,

You can generate a report for any analysis you run. The generic report command looks as follows:
advisor --report=<analysis-type> —--project-dir=<project-dir> --format=<format>
where:

e <analysis-type> is the analysis you want to generate the results for. For example, survey for the Survey
report, suitability for the Suitability report, or dependencies for the Dependencies report.
e —-format=<format>is a file format to save the results to. <format> is text (default), csv, xml.

If you generate the Suitability report, you can use additional options to control the result view:

e -—-target-system=[cpu | xeon-phi | offload-to-xeon-phi] is a platform to model parallelization
on.

¢ —-threading-model=[tbb | cilk | openmp | tpl | other] is a threading model to use

e --reduce-site-overhead=<string> is a list of annotated loops/functions to check if you can reduce
overhead.

You can also generate a report with the data from all analyses run and save it to a CSV file with the --
report=joined action as follows:

advisor —--report=joined --report-output=<path-to-csv>

where —--report-output=<path-to-csv> is a path and a name for a .csv file to save the report to. For
example, /home/report.csv. This option is required to generate a joined report.

See advisor Command Option Reference for more options.

View Results in GUI

If you run the Threading perspective from command line, a project is created automatically in the directory
specified with --project-dir. All the collected results and analysis configurations are stored in
the .advixeproj project, that you can view in the Intel Advisor.

To open the project in GUI, you can run the following command:

advisor-gui <project-dir>

164

Intel® Advisor User Guide

1

NOTE If the report does not open, click Show Result on the Welcome pane.

If you run the Threading perspective from GUI, the result is opened automatically after the collection

finishes.

You first see a Summary report that includes the overall information about loops/functions performance in

your code and the annotated parallel sites:

e Performance metrics of your program and top five time-consuming loops/functions

e Optimization recommendations for the whole application

e Estimated performance gain for annotated loops/functions when parallelized

Summary @ Survey & Roofline ™f Refinement Reports (3 Annotation Report 3 Suitability Report

@ Threading Perspective

Threading Perspective lets you analyze, design, fune, and check threading options without disrupting your development.

v Program Metrics

Elapsed Time 5.30s Number of CPU Threads 1

Vector Instruction Set ™ None

~ Performance Characteristics

Metrics Total
Total CPU time 5.00s I 100°%
Time in scalar code 5.008 I, 1 00%

» Vectorization Gain/Efficiency (Not Available)

v Per Program Recommendations

™ Higher instruction set architecture (1SA) available
Consider recompiling your application using a higher ISA. Show more

v Top Time-Consuming Loops

Consider adding parallel site and task annotations around these fime-consuming loops found during Survey analysis.

Loop Self Time
& loop in getQueen at ngueens serial.cpp:132 0.449z
3 loop in solve at ngueens serial. cpp:156 =0.001s
3 loop in setQueen at ngueens serial.cpp:103 1.934s

v Suitability And Dependencies Analysis Data

These annotated parallel sites were defected:
Site Location Maximum Site Gain

D) loop in solve at nguesns serial.cpp:154 5.4685634666754614

v Recommendations

]

lign loop title loop in setQueen at ngueens serial.cpp:103
lign loop title loop in setQuesn at ngueens serial.cpp:132

]

Save a Read-only Snapshot

Total Time:
4 9965
4.996s
1.934s

Dependencies
WAR:1

Trip Counts
14

14

4

WAW:1

A snapshot is a read-only copy of a project result, which you can view at any time using the Intel Advisor

GUI. You can save a snhapshot for a project using Intel Advisor GUI or CLI.

To save an active project result as a read-only snapshot from GUI: Click the

button in the top ribbon of the report. In the Create a Result Snapshot dialog box, enter the snapshot

details and save it.

165

1 Intel® Advisor User Guide

To save an active project result as a read-only snapshot from CLI:

advisor --snapshot --project-dir=<project-dir> [--cache-sources] [--cache-binaries] --
<snapshot-path>

where:
e --cache-sources is an option to add application source code to the snapshot.
e -—-cache-binaries is an option to add application binaries to the snapshot.

e <snapshot-path is a path and a name for the snapshot. For example, if you specify /tmp/new_ snapshot,
a snapshot is saved in a tmp directory as new_snapshot.advixeexpz. You can skip this and save the
snapshot to a current directory as snapshotXXX.advixeexpz.

To open the result snapshot in the Intel Advisor GUI, you can run the following command:
advisor-gui <snapshot-path>
You can visually compare the saved snapshot against the current active result or other snapshot results.

See Create a Read-only Result Snapshot for details.

Result Interpretation

When you run the Threading perspective from GUI, you can examine the results and try different threading
designs:

[]

e Model Threading Parallelism

e Check for Dependencies Issues
e Add Parallelism to Your Program

See Also

Run Threading Perspective from GUI Steps to run the Threading perspective.

Run Threading Perspective from Command Line

CPU Metrics This reference section describes the contents of data columns in Survey and

Refinement Reports of the Vectorization and Code Insights, CPU / Memory Roofline Insights,
and Threading perspectives.

Model Threading Parallelism

The Suitability analysis examines your running serial program to provide approximate estimated performance
characteristics of your annotated parallel sites. This shows you both the performance gain from running your
parallel program on multiple CPUs and the likely impact of parallel overhead.

To choose the best places to add parallelism, locate the parallel sites that contribute the most to the overall
program's gain. Because of the overhead of parallel execution - such as starting threads - certain parallel
sites and tasks may not contribute to the overall program's gain, or may slow down its performance. After
you identify such parallel sites or tasks that do not improve performance, either modify or eliminate their
annotations.

Use the Suitability Report Window

After you run the Suitability tool, view its data in the Suitability Report window. This window contains
multiple areas:

Location in Description
Window

Any annotation-related error the Suitability tool detects appears at the top of the Suitability Report
window. If you see such errors, the displayed Suitability data may not be reliable. To view the source
location associated with an error, click the

Upper

166

Intel® Advisor User Guide 1

Location in
Window

Description

Upper-left

Upper-right

Middle-left

Lower-left

Lower-
middle

View Source

button. To fix the error, read the displayed error message, modify your source code to fix the problem,
rebuild your target executable, and run Suitability tool analysis again.

The upper-left area shows the Maximum Program Gain for All Sites in the program. Your
overall goal of adding parallelism is to increase the Maximum Program Gain for All Sites
so the parallel program will execute as fast as possible. The measured serial execution
runtime, predicted parallel runtime, and any measured paused time are displayed below
Maximum Program Gain for All Sites. Use the predicted Suitability gain values to help
you make informed decisions about where to add parallelism.

Use the upper-right row of modeling parameters to model performance. Choose a hardware
configuration and threading model (parallel framework) values from the drop-down lists. If
you select a Target System for Intel® Xeon Phi™ processors, an additional value for total
Coprocessor Threads appears.

Below this row is a grid of data that shows the estimated performance of each parallel site
detected during program execution. The Site Label shows the argument to the site
annotation. Examine the predicted Site Gain and Impact to Program Gain (higher values
are better) to estimate how much each site contributes to the Maximum Program Gain
for All Sites for all sites (described above). To expand the data under Combined Site
Metrics or Site Instance Metrics, click the
icon to the right of that heading; to collapse data, click

=
to the right of that heading.

To show or hide the side command toolbar, click the

or

icon.

If you choose a Target System of CPU, to view detailed characteristics of the selected site
as well as its tasks and locks, click the Site Details tab.

The Scalability of Maximum Site Gain graph summarizes performance for the selected
site. The number of CPU processors or total number of coprocessor threads appears on the
horizontal X axis and the target's predicted performance gain appears on the Y axis. To
change the default CPU Count and the Maximum CPU Count, set the Options value.

Below the graph is a list of issues that might be preventing better predicted performance
gains as well as a summary of serial and predicted parallel time. To expand a line, click the
down arrow to the right of the item's name. Most issues are related to the Runtime
Modelingmodeling parameters. Later, you can use other Analyzer tools like Intel® VTune™
Profiler to measure actual performance of your parallel program.

Use the Loop Iterations (Tasks) Modeling (or Tasks Modeling) modeling parameters to
experiment with different loop structures, iteration counts, and instance durations that
might improve the predicted parallel performance.

Click Apply to view the impact on the predicted performance.

167

1 Intel® Advisor User Guide

Location in Description
Window

Lower-right Use the Runtime Modelingmodeling parameters to learn which parallel overhead
categories might have an impact on parallel overhead. If you agree to address a category
later by using the chosen parallel framework's capabilities or by tuning the parallel code
after you have implemented parallelism, check that category.

Bottom- If the chosen Target System is Intel Xeon Phi or Offload to Intel Xeon Phi, additional

right Intel® Xeon Phi™ Advanced Modeling options appear below the Runtime Modeling area. To
expand this area, click the down arrow to the right of Intel Xeon Phi Advanced
Modeling.

Lower, If you chose a Target System of CPU, the Site Details tab shows details about the

after selected parallel site, as well as details for each task and lock executed in that site.

clicking

Site

Details tab

When using an active result (not a read-only result), you can change the modeling parameters. Changing
modeling parameters updates the displayed data, except for Loop Iterations (Tasks) Modeling or Tasks
Modeling (click Apply). These modeling parameters help you understand the sensitivity of your annotation
choices so you can choose the best places to add parallelism, but the displayed data summary is not an
accurate estimate of final execution time on any specific parallel hardware (general processor characteristics
are used).

Later, before you add parallel code, you must choose one parallel framework (threading model) for your
application.

To view the source code associated with a site, locate the list of sites (upper-right area) and either:

e Double-click a row (or right-click and select View Source from the context menu) to display the
Suitability Source window. Later, to return to the Suitability Report window, click Suitability Report.

e Right-click a row and select Edit Source from the context menu to display the corresponding source file
in a code editor. When using the Intel® Advisor GUI on Linux* OS, the editor defined by the Options >
Editor dialog boxOptions > Editor dialog box appears with the file open at the corresponding location.
When using the Intel® Advisor GUI on Windows* OS, the file type association (or Open With dialog box)
determines the editor used. When using Microsoft Visual Studio*, the Visual Studio code editor appears
with the file open at the corresponding location. Later, to return to the Suitability Report or Suitability
Source window:

1.Click the Result tab.
2.Click either Suitability Report or Suitability Source.

Use the Suitability Source Window
Within the Suitability Source window, you can:

e Use the Call Stack pane to view different source locations in the call stack.

e Double-click a line (or right-click and select Edit Source) to open the corresponding source file in a code
editor. When using the Intel® Advisor GUI on Linux* OS, the editor defined by the Options > Editor
dialog boxOptions > Editor dialog box appears with the file open at the corresponding location. When
using the Intel Advisor GUI on Windows* OS, the file type association (or Open With dialog box)
determines the editor used. When using Microsoft Visual Studio*, the Visual Studio code editor appears
with the file open at the corresponding location. Later, to return to the Result tab, click Result.

e Return to the Suitability Report window by clicking Suitability Report.

The Suitability Report, Suitability Source, and other Intel Advisor windows appear within the Result tab.
There is one Result tab for each project.

168

Intel® Advisor User Guide 1

Understand the Scalability Graph in the Suitability Report

One of two different graphs appear depending on the chosen Target System. For an explanation of the
Scalability Graph, see Suitability Report Overview.

Tips on Understanding the Performance Data

In the Suitability Report window, you start at the top, select a site, look at its details in the Suitability
Report window, and examine its source code. You repeat this process to investigate each annotated site.
View this information, and if needed, modify the annotations by using your code editor.

Use the following guidelines to evaluate the feasibility of each site:

o If the Site Gain values for the selected site shows an estimated performance gain of 1.0 or less, the
overhead of parallel thread execution exceeds the potential performance gains. Modify or remove the
annotations for the task(s) and its enclosing site. Repeat this for each parallel site.

o If the Site Gain values for the selected site shows a performance gain greater than 1.0, look at the site's
contribution to the Maximum Program Gain for All Sites, which applies to all parallel sites. For sites
that do not contribute significantly to the Maximum Program Gain for All Sites, modify or remove the
annotations for the task(s) and its enclosing site. For sites that only contribute slightly to the Maximum
Program Gain for All Sites, examine more closely the annotations and the assumptions about fixing the
various overhead costs of parallel thread execution. In some cases, you may be able to adjust the
annotations to improve the performance gain or reduce the overhead. Repeat this for each parallel site.

e When the Maximum Program Gain for All Sites for all sites and the Site Gain values for all the sites
show a moderate or significant performance gain, proceed to the next workflow step that uses the
Dependencies tool to check your remaining annotated sites for data sharing problems.

Suitability Report Overview

After the Suitability tool runs your program's target executable to collect data, the Suitability Report
window appears. It displays the approximate predicted performance based on its analysis of the annotated
parallel sites and tasks.

Q Summary % Survey Report ¥ Refinement Reports {§ Annotation Report ‘*ﬂ Suitability Report

Maxirsum Program Target System: [CPU w| Threading Modek | Opentp -] cPUCount(2 | @
in For All Sites: 11, 3 .
Gain For Sites: 11.91x Combined Site Metncs, All Instances & e
SiteLabel Source Location Impact to Program Gain _ 3 Site Instance Metrics, Pasallel Time
Serial times 4y 148 Total Serial Time Total Parallel Time Site Gain

Predicted Parallel time: 12445
s % sohve 1 nqueens_se... 1191x 14805 1.2221s 1211x 12221

Site Performance Scalability

Scalability of Maximum Site Gain Loop lterations (Tasks) Modeling iuntime Modeling -
Avg. Humber of [terations Avg. Iteration [Task) ype e 5
3 (Tasksk Duration: o

o B 1057 Reduce Site Crverhead
0.008x e Reduce Task Overhead +0.05x
0.040x 0.040x
0.200x 0.200x Reduce Lock Overhaad

— 1 1xil4) — 11 (1.0571s)
5x i Reduce Lock Contention +0.55x

25 25x
125¢ 125¢

Enable Task Chunking

I 15.40% Load Imbalance: 0.1795s kot
I 0.19% Runtime Overhead: 0.0023s 9 .

5.23% Lock Contention: 0.0639s =

This screen shows data based on a Target System of CPU. The screen shown on your system will differ.

The upper-left area shows the Maximum Program Gain for All Sites in the program. Your overall
goal of adding parallelism is to increase the Maximum Program Gain for All Sites so the parallel
program will execute as fast as possible. The measured serial execution runtime, predicted parallel

169

Intel® Advisor User Guide

runtime, and any measured paused time are displayed below Maximum Program Gain for All
Sites. Use the predicted Suitability gain values to help you make informed decisions about where
to add parallelism.

If the Suitability tool detects any annotation-related errors, they appear at the top of the
Suitability Report window. If you see this type of error, the displayed Suitability data may not be
reliable. Annotation-related errors may be caused when the correct sequence of annotations do not
occur because of missing annotations, when unexpected execution paths occur, or if Suitability data
collection was paused while the target was executing.

Use the upper-right row of modeling parameters to model performance. Choose a hardware
configuration and threading model (parallel framework) values from the drop-down lists. If you
select a Target System for Intel® Xeon Phi™ processors, an additional value for total Coprocessor
Threads appears.

Below this row is a grid of data that shows the estimated performance of each parallel site detected
during program execution. The Site Label shows the argument to the site annotation. Examine the
predicted Site Gain and Impact to Program Gain (higher values are better) to estimate how
much each site contributes to the Maximum Program Gain for All Sites for all sites (described
above). To expand the data under Combined Site Metrics or Site Instance Metrics, click the
icon to the right of that heading; to collapse data, click

to the right of that heading.

To view source code for a selected parallel site, click its row to display the Suitability Source
window.

To show or hide the side command toolbar, click the

or

icon.

The Scalability of Maximum Site Gain graph summarizes performance for the selected site. The
number of CPU processors or total number of coprocessor threads appears on the horizontal X axis
and the target's predicted performance gain appears on the Y axis. To change the default CPU
Count and the Maximum CPU Count, set the Options value.

If you choose a Target System of CPU, to view detailed characteristics of the selected site as well
as its tasks and locks, click the Site Details tab.

Use the Loop Iterations (Tasks) Modeling (or Tasks Modeling) modeling parameters to
experiment with different loop structures, iteration counts, and instance durations that might
improve the predicted parallel performance.

For example, you might want to see the impact of modifying your nested change loop structure,
modify the loop body code, or change number of iterations.

If the task annotations indicate likely task parallelism, the title will appear as Task Modeling
(instead of Loop Iterations (Task) Modeling for data parallelism).

Use the Runtime Modelingmodeling parameters to learn which parallel overhead categories might
have an impact on parallel overhead. If you agree to address a category later by using the chosen
parallel framework's capabilities or by tuning the parallel code after you have implemented
parallelism, check that category.

170

Intel® Advisor User Guide 1

If the chosen Target System is Intel Xeon Phi or Offload to Intel Xeon Phi, additional Intel®
Xeon Phi™ Advanced Modeling options appear below the Runtime Modeling area. To expand this
area, click the down arrow to the right of Intel Xeon Phi Advanced Modeling.

Below the graph is a list of issues that might be preventing better predicted performance gains as
well as a summary of serial and predicted parallel time. To expand a line, click the down arrow to
the right of the item's nhame. Most issues are related to the Runtime Modelingmodeling
parameters. Later, you can use other Analyzer tools like Intel® VTune™ Profiler to measure actual
performance of your parallel program.

Target System Hardware Configurations

The Target System lets you select the type of hardware configuration to be analyzed. From this drop-down
list, you can check each type to learn the likely predicted performance characteristics for each:

CPU shows the predicted performance of only the CPU. Choose this item for Intel® Xeon® or similar
processors that do not have significant parallel coprocessors. For an Intel® Xeon Phi™ processor, choose
this setting to only model the host processor, such as an Intel Xeon processor. If you choose this
configuration, you can specify the CPU Count modeling parameter.

Intel Xeon Phi shows the predicted performance when using only the Intel Xeon Phi coprocessor cores,
and not the host processor. This parameter does not account for data exchange amongst Intel Xeon Phi
coprocessor cores and the host CPU. If you choose this configuration, you can specify the Coprocessor
Threads modeling parameter.

Offload to Intel Xeon Phi shows the predicted performance when using Intel Xeon Phi coprocessor
manycores to execute parallel code after the host CPU starts the program and before execution resumes
on the host CPU for program completion. If you choose this configuration, you can specify the
Coprocessor Threads and CPU Count modeling parameters.

Data Displayed When the Target System is Intel® Xeon Phi™

A sample screen below shows changes in orange boxes when the Target System is Intel Xeon Phi (instead

of CPU).
,’ Summary E Survey Report @ Refinement Reports 6 Annotation Report ‘iPE] Suitability Report
Maximum Program |Tug=l$yslem: (Intel Xeon Phi . |T!\r=adlng Madek [OpeahP | fcoprocessor Threads{256 +|
Gain For All Sites: 345 24x =
in Fer fhes it bl So Impact to Combined Site Metrics, All Instances S gite Instance Metrics,
Senal time 13232702 e labe e tucation Program Gain Total Serial Time Total Parallel Time Site Gain Paraliel Time:
[Parallel time: . -
recicted Palel times 03036 [ultply] B memult snnctatedicpp o 345,21 13241 016345 TS 016Ms
Site Performance Scalability
ity of Maimum Site Gain Loop lterations (Tasks) Modeling Runtime Modeling
Yy) Avg. Humber of [terations Avg. Iteration [Task) Type of Change Gain Benefit if Checked
This site is readsafor | g‘:“" E‘;;‘:“] Reduce Site Qverhead Do
R 0.008x 0.008x
z 2 Frrs Bk Reduce Task Cverhead +2. 76
0.200x 0.200x Reduce Lock Qyarhead
— 1 1x (1024) 2 (0.1.2905)
5 5 | Reduce Lock Contention
5x 25x 1 Enabl ;
Thit| sita is m »t rejidy | or 125« 125x e
li tel }leon Phi
J 18.96% Load Imbalance: 0.0302s v Intel Xeon Phi Advanced Modeling ~
= #| Censider Code Vectorizaticn
11.95% Runtime Overhead: 0.0202s b
= Reference CPU Vectorization Speedup: 200«
1 l 0.00% Lock Corttention: 0s Intel Xeon Phi Vectorization Speedup: 400 x
Intel Xecn Phi Maximum Vectorization Speedup
Total Parallel Time: 0.1694s v is 16x (for double- precision FMA
computations)

171

1 Intel® Advisor User Guide

e The displayed data changes, such as the Maximum Program Gain for All Sites and the serial and
predicted parallel time.

e The graph's appearance changes to a gray-green color and the X axis displays Coprocesser Threads
(instead of CPU Count) to represent the predicted performance of the manycore parallel coprocessor.
This graph shows the predicted parallel performance of the manycore parallel coprocessor without
accounting for data exchange amongst Intel Xeon Phii coprocessor cores and the host CPU. For many
applications, the number of task instances does not scale enough to fully utilize the many cores of the
parallel coprocessor, as indicated by a hover tip. Applications that are not appropriate for a Intel Xeon Phi
processing system have values that appears in the gray part of the graph; in this case, try modeling other
types of the Target System.

e The lines between the graph's gray and green areas is a reference baseline, where the reference CPU
chosen to calculate the Intel Xeon processor peak baseline is a dual-socket 8-core Intel Xeon processor
E5-26xx product family (2.7 GHz, 16 cores total). When the Maximum Site Gain exceeds this baseline,
you might consider using an Intel Xeon Phi coprocessor rather than an Intel Xeon or similar processor.

When the Target System is either Intel Xeon Phi or Offload to Intel Xeon Phi, the Intel Xeon Phi
Advanced Modeling options appear. See Intel® Xeon Phi™ Advanced Modeling.

Data and Modeling Parameters When the Target System is Offload to Intel Xeon Phi

A sample screen below shows changes in orange boxes when the Target System is Offload to Intel Xeon
Phi (instead of CPU) and the Offload to Intel Xeon Phi column is selected.

’ Summary z Survey Report ¥ Refinement Reports é Annotation Report ‘?El Suitability Report

Maximum Program | Target System: |Offioad to Intel Keon Phi -ll Threading Modet: | OpenMp - CPU Count: |16 -}
Gain For All Sites: 69.35x Coprocessor Threads: 355 -]
Serial time: 13.2327= -
Predicted Parsllel time: 01903 L e Sounce Offload to Intel | Impact to Combined Site Metrics, All Instances B Gte Instance Metrics,
Location Heon Phi Program Gain Total Serial Time Total Parallel Time Site Gain Parallel Time
matric_mul .. [mmult_an.. S 609.34x 132115 016545 17965 0.16345
Site Performance Scalability
o Scalability of Maximum Site Gain_ Loop Iterations (Tasks) Modeling Runtime Modeling
: = Avg. Number of Iterations Awvg. Iteration (Task) Type of Change Gain Benefit if Checked
This site is read for il:;h k :T;;':n [Reduce Site Overhead
Intel Xzon 1thi 0008 i 0.008
s E» X % "] Reduce Task Qverhead
i—‘ 0040 0040
3 0200 0200 Reduce Lock Choerh
3 —11x(1024) — 113 {0.12905) :
= 5 5ix Reduce Lok Contention
g 25 25x P
= 7 le Task Chunking
3 Thi:i sita is ot relwdy |pr 125x 125« Einbi e
liitel Jlean Phi
I 128.96% Load Imbalance: 0.0302s v Intel Xeon Phi Advanced Modeling ~

| Consider Cade Vectorization

; 11.95% Runtime Overhead: 0.0202s ¥

Reference CPU Vectorization Speedup: 200 x
| 0.00% Lock Contention: 0s

Intel Xgon Phi Vectorization Speedup: 400 x

Intel Xeon Phi Maximum Vectorization Speedup
Total Parallel Time: 0.1694s v 15 16x (for double-precision FMA
computations)

| Offload Data Transfer Size | 0 KB =0s

When you select a Target System of Offload to Intel Xeon Phi coprocessor:

e The displayed data changes, such as the Maximum Program Gain for All Sites and the serial and
predicted parallel time.

172

Intel® Advisor User Guide 1

e An additional modeling parameter appears as a new column for each site named Offload to Intel Xeon
Phi. If selected, the Scalability of Maximum Site Gain graph displays Coprocessor Threads on the X
axis. If unselected, the graph displays CPU Count on the X axis.

e In the upper-right corner, an additional modeling parameter appears. That is, both the total number of
Coprocessor Threads and the CPU Count appear because both the humber of CPUs and the
coprocessor's total number of hardware threads should be considered to predict parallel execution.

e Additional modeling parameters appear below Runtime Modeling area under Intel Xeon Phi Advanced
Modeling - see Intel® Xeon Phi™ Advanced Modeling.

e When the column named Offload to Intel Xeon Phi is selected, the graph's appearance changes to a
gray-green color and the X axis displays Coprocessor Threads instead of CPU Count. This graph shows
the predicted performance of the manycore parallel coprocessor and its host CPUs. For many applications,
the number of task instances does not scale enough to fully utilize the many cores of the parallel
coprocessor, as indicated by a hover tip. Applications that are not appropriate for an Intel Xeon Phi
processing system have values that appear in the gray part of the graph; in this case, try modeling other
types of the Target Sy