

 2

Application Performance
A Step-by-Step Approach to Application Tuning with Intel® Compilers

Before you begin performance tuning, you may want to check correctness of your application by building it without

optimization using /Od (-O0).

1. Use the general optimization options (Windows* /O1, /O2, or /O3; Linux* and OS X* -O1, -O2, or -O3) and determine

which one works best for your application by measuring performance with each. Most users should start at /O2 (–O2)

(default) before trying more advanced optimizations. Next, try /O3 (-O3) for loop-intensive applications.1

2. Fine-tune performance to target IA-32 and Intel® 64-based systems with processor-specific options. Examples are

/QxAVX (–xavx) for the 2nd- and 3rd-Generation Intel® Core™ processor families, and /arch:SSE3 (-msse3) for

compatible, non-Intel processors that support at least the SSE3 instruction set. Alternatively, you can use /QxHOST

(-xhost), which will use the most advanced instruction set for the processor on which you compiled.1 For a more

extensive list of options that optimize for specific processors or instruction sets, see the table ‟Recommended

Processor-Specific Optimization Options.”

3. Add interprocedural optimization (IPO), /Qipo (-ipo) and/or profile-guided optimization (PGO), /Qprof-gen and /Qprof-

use (-prof-gen and -prof-use)1, then measure performance again to determine whether your application benefits

from one or both of them.

4. Optimize your application for vector and parallel execution on multithreaded, multicore, and multiprocessor systems

using: advice from the Guided Auto-Parallelism (GAP) feature, /Qguide (-guide); the Intel® Cilk™ Plus language

extensions for C/C++; the parallel performance options /Qparallel (-parallel) or /Qopenmp (-openmp); or by using the

Intel® Performance Libraries included with the product.1

5. Use Intel® VTune™ Amplifier XE to help you identify serial and parallel performance hotspots, so that you know which

specific parts of your application could benefit from further tuning. Use Intel® Inspector XE to reduce the time to

market for threaded applications by diagnosing memory and threading errors and speeding up the development

process. These products cannot be used on non-Intel microprocessors.

Please consult the main product documentation for more details. For tuning applications for Intel® Xeon Phi™ coprocessors,

see the references in the section ‟Options for the Intel® Xeon Phi™ Coprocessor.”

1.Several of these options are available for both Intel® and non-Intel microprocessors but they may perform more

optimizations for Intel microprocessors than they perform for non-Intel microprocessors.

 3

Intel® Software Development Products
General Optimization Options

These options are available for both Intel and non-Intel microprocessors, but they may result in more optimizations for Intel

microprocessors than for non-Intel microprocessors.

Windows* Linux*/OS X* Comment

/Od -O0 No optimization. Used during the early stages of application

development and debugging. Use a higher setting when the application

is working correctly.

/O1 -O1 Optimize for size. Omits optimizations that tend to increase object size.

Creates the smallest optimized code in most cases.

This option is useful in many large server/database applications where

memory paging due to larger code size is an issue.

/O2 -O2 Maximize speed. Default setting. Enables many optimizations, including

vectorization. Creates faster code than /O1 (-O1) in most cases.

/O3 -O3 Enables /O2 (-O2) optimizations, plus more aggressive loop and memory-

access optimizations, such as scalar replacement, loop unrolling, code

replication to eliminate branches, loop blocking to allow more efficient

use of cache, and additional data prefetching.

The /O3 (-O3) option is particularly recommended for applications that

have loops that do many floating-point calculations or process large

data sets. These aggressive optimizations may occasionally slow down

other types of applications compared to /O2 (-O2).

/Qopt-report[:n] -opt-report [n] Generates an optimization report directed to stderr. n specifies the level

of detail, from 0 (no report) to 3 (maximum detail). Default is 2.

/Qopt-report-

file:name

-opt-report-

file=name

Generates an optimization report directed to the file name.

 4

Windows* Linux*/OS X* Comment

/Qopt-report-

phase:name

-opt-report-

phase=name

Optimization reports are generated for phase name. The option can be

used multiple times in the same compilation to get output from multiple

phases. Some commonly used name arguments are as follows:

all—All possible optimization reports for all phases (default)

ipo_inl—Inlining report from the Interprocedural Optimizer

hlo—High-Level Optimizer (includes loop and memory optimizations)

hpo—High-Performance Optimizer (includes vectorizer and parallelizer)

pgo—Profile Guided Optimizer

/Qopt-report-help -opt-report-help Displays all possible values of name for /Qopt-report-phase (-opt-report-

phase) above. No compilation is performed.

/Qopt-report-

routine:string

-opt-report-

routine=string

Generates reports only for functions or subroutines whose names contain

string. By default, reports are generated for all functions and subroutines.

Parallel Performance

Options that use OpenMP* or auto-parallelization are available for both Intel and non-Intel microprocessors, but these options

may result in additional optimizations on Intel microprocessors that do not occur on non-Intel microprocessors.

Windows* Linux*/OS X* Comment

/Qopenmp -openmp Causes multithreaded code to be generated when OpenMP* directives

are present. For Fortran only: makes local arrays automatic and may

require an increased stack size. See http://www.openmp.org for the

OpenMP API specification.

/Qparallel -parallel The auto-parallelizer detects simply structured loops that may be safely

executed in parallel, including loops implied by Intel® Cilk™ Plus array

notation, and automatically generates multithreaded code for these

loops.

http://www.openmp.org/

 5

/Qpar-report[:n]

-par-report[n]

Controls the auto-parallelizer’s diagnostic level. n specifies the level of

detail, from 0 (no report) to 3 (maximum detail). Default is 0.

/Qpar-

threshold[:n]

-par-threshold[n] Sets a threshold for the auto-parallelization of loops based on the

likelihood of a performance benefit. n=0 to 100, default 100.

0: Parallelize loops regardless of computation work volume.

100: Parallelize loops only if a performance benefit is highly likely.

Must be used in conjunction with /Qparallel (-parallel).

/Qpar-affinity:

name

-par-affinity= name Specifies thread-processor affinity for OpenMP or auto-parallelized

applications. Typical values of name are none (default), scatter, and

compact. Has effect only when compiling the main program. See the

compiler User and Reference Guide for more settings and details.

Windows* Linux*/OS X* Comment

/Qguide[:n]

-guide[=n]

Guided auto-parallelization. Causes the compiler to suggest ways to

help loops to vectorize or auto-parallelize, without producing any

objects or executables. Auto-parallelization advice is given only if the

option /Qparallel (-parallel) is also specified.

n is an optional value from 1 to 4 specifying increasing levels of

guidance to be provided; level 4 being the most advanced and

aggressive. If n is omitted, the default is 4.

/Qopt-matmul[-]

-[no-]opt-matmul

This option enables [disables] a compiler-generated Matrix Multiply

(matmul) library call by identifying matrix multiplication loop nests, if

any, and replacing them with a matmul library call for improved

performance. This option is enabled by default if options /O3 (-O3) and

/Qparallel (-parallel) are specified. This option has no effect unless

option /O2 (-O2) or higher is set.

/Qcilk-serialize

-cilk-serialize

This option includes a header file, cilk_stubs.h, which causes the

compiler to ignore all Intel Cilk Plus threading keywords, resulting in a

serial executable. (C/C++ only). See the ‟Using Intel Cilk Plus” section of

the user and reference guide for more detail.

/Qcoarray:shared -coarray=shared Enables coarrays from the Fortran 2008 standard on shared memory

systems (Fortran only). See the Compiler Reference Guide for more

coarray options and detail.

 6

/Qmkl:name -mkl=name Requests that the Intel® Math Kernel Library

(Intel® MKL) be linked. Off by default. Possible values of name are:

parallel—Links the threaded part of Intel MKL (default)

sequential—Links the non-threaded part of Intel MKL

cluster—Links the cluster and sequential parts of Intel MKL

Parallel Performance Using Intel® Cilk™ Plus

Threading Keywords (C/C++) Description

cilk_spawn Allows (but does not require) a spawned function to be run in parallel with the caller,

subject to dynamic scheduling by the Intel® Cilk™ Plus runtime.

cilk_sync Introduces a barrier: function cannot continue until all spawned children are complete.

cilk_for Introduces a for loop whose iterations are allowed (but not required) to run in parallel.

Reducers: Allow reduction operations, such as accumulation of a sum, to be executed safely in parallel (e.g.,

cilk::reducer_opadd<unsigned int> declares a reducer to sum unsigned ints).

Holders: The cilk::holder template class provides a convenient form of task-local storage that is threadsafe.

Array Notation: A readable, explicitly data-parallel C and C++ language extension that facilitates generation of SIMD parallel

code by the compiler vectorizer at optimization level –O2 or higher and asserts absence of dependencies.

Syntax: array[<lower bound>:<length>:<stride>]. Examples: bb[:][:] = 0 zeros the entire two-dimensional array bb (size and

shape of the array object must be known to the compiler). c[j:len] = sqrt(c[k:len:2]) takes the square root of alternate

elements of c starting at c[k], and asserts that this is safe to vectorize (e.g., j<k).

Reduction functions are available (e.g., __sec_reduce_add(a[:]) sums the elements of array a).

Elemental Functions: A language extension that allows functions to be called in either scalar or SIMD parallel mode, allowing

loops containing function calls to be vectorized efficiently. The compiler generates an alternate function version where one

or more scalar arguments may be replaced by vectors.

C/C++ declaration syntax: __declspec (vector(clauses)) func_name(arguments)

Fortran equivalent: !DIR$ ATTRIBUTES VECTOR: (clauses) :: func_name

Optional clauses include procname, vectorlength, vectorlengthfor, linear, uniform, and mask.

 7

The vector version of the function may be invoked directly using array notation, or indirectly via a loop, for example:

a[:] = func_name(b[:],c[:],d,..) ;

for (int i=0; i<n; i++) a[i] = func_name(b[i],c[i],d,…) ;

DO J=1,N; A(J) = FUNC_NAME(B(J),C(J),D,…) ; ENDDO

In certain cases, a SIMD pragma (C/C++) or directive (Fortran) may be needed to ensure vectorization of a loop containing an

elemental function.

Explicit vector programming using the SIMD pragma (C/C++) and directive (Fortran)

This tells the compiler to vectorize a loop using SIMD instructions. The programmer is responsible for correctness, e.g., by

explicitly specifying private variables and reductions. Semantics are similar to those for the OpenMP* directives:

#pragma omp parallel for (!$OMP PARALLEL DO) .

C/C++ syntax: #pragma simd (clauses) Fortran syntax: !DIR$ SIMD (clauses)

Clause Description

private(var1,var2,…) Specifies which variables need to be private to each iteration of the loop,

to avoid conflicts.

reduction(oper:var1,var2,…) Instructs the compiler to accumulate a vector reduction into var1, var2, …

under operator oper.

[no]assert Compiler emits an error if it is unable to vectorize the loop. (default

noassert).

linear(var1:step1,…) var1 is incremented by step1 for each iteration of the scalar loop.

Other supported clauses: vectorlength, vectorlengthfor, firstprivate, lastprivate, vecremainder.

For more information, see www.cilk.com and the Intel® C++ Compiler User and

Reference Guide.

http://www.cilk.com/

 8

Recommended Processor-Specific Optimization Options‡

Windows* Linux*/OS X* Comment

/Qxtarget

-xtarget

Generates specialized code for any Intel® processor that supports the

instruction set specified by target. The executable will not run on non-

Intel processors or on Intel processors that support only lower instruction

sets. Possible values of target, from highest to lowest instruction set:

CORE-AVX2, AVX, SSE4.2, SSE4.1, SSSE3, SSE3, SSE2

Note: On OS X*, options SSE3 and SSE2 are not supported.

This option enables additional optimizations that are not enabled by the

/arch or –m options.

/arch:target -mtarget Generates specialized code for any Intel processor or compatible, non-Intel

processor that supports the instruction set specified by target. Running

the executable on an Intel processor or compatible, non-Intel processor

that does not support the specified instruction set may result in a runtime

error.

Possible values of target: AVX, SSE4.2, SSE4.1, SSSE3, SSE3, SSE2, IA32

Note: Option IA32 generates non-specialized, generic x86/x87 code. It is

supported on IA-32 architecture only. On OS X, options SSE3, SSE2 and

IA32 are not supported.

/QxHOST -xhost Generates instruction sets up to the highest that is supported by the

compilation host. On Intel processors, this corresponds to the most

suitable /Qx (-x) option; on compatible, non-Intel processors, this

corresponds to the most suitable of the /arch (-m) options IA32, SSE2, or

SSE3. This option may result in additional optimizations for Intel®

microprocessors that are not performed for non-Intel microprocessors.‡

 9

Windows* Linux*/OS X* Comment

/Qaxtarget

-axtarget May generate specialized code for any Intel processor that supports the

instruction set specified by target, while also generating a default code

path. Possible values of target: CORE-AVX2, AVX, SSE4.2, SSE4.1, SSSE3,

SSE3, SSE2.

Multiple values, separated by commas, may be used to tune for additional

Intel processors in the same executable (e.g., /QaxAVX,SSE4.2). The

default code path will run on any Intel or compatible, non-Intel processor

that supports at least SSE2, but may be modified by using, in addition, a

/Qx (-x) or /arch (-m) switch.

For example, to generate a specialized code path optimized for the 2nd

Generation Intel® Core™ processor family and a default code path

optimized for Intel processors or compatible, non-Intel processors that

support at least SSE3, use /QaxAVX /arch:SSE3

(-axavx –msse3 on Linux).

At runtime, the application automatically detects whether it is running on

an Intel processor, and if so, selects the most appropriate code path. If an

Intel processor is not detected, the default code path is selected.

Note: On OS X, options sse3 and sse2 are not supported.

This option may result in additional optimizations for Intel microprocessors

that are not performed for non-Intel microprocessors.‡

Please see the article Intel® Compiler options for Intel® SSE and Intel® AVX Generation and Processor-Specific Optimizations

to view the latest recommendations for processor-specific optimization options. These options are described in greater detail

in the Intel® Compiler User and Reference Guides.

Options for the Intel® Xeon Phi™ Coprocessor (Linux* only)

-mmic Builds an application that runs natively on Intel® Xeon Phi™ coprocessors. Off by default.

-no-offload The compiler ignores language constructs for offloading to Intel Xeon Phi coprocessors and

builds for the host only. By default, offload constructs are honored and compiled for

execution on the coprocessor.

-offload-option, mic,

tool, ‟option-list”

Specifies options to be used for the target compilation but not for the host. tool may be

compiler, ld, or as.

http://www.intel.com/support/performancetools/sb/CS-009787.htm

 10

-opt-report-phase

offload

Generates a report at compile time of variables that will be copied from the host to the

coprocessor and vice versa.

-opt-cache-evict=n Controls whether compiler generates a cache line evict instruction after a streaming store.

n=0 no clevict; n=1 L1 clevict only; n=2 L2 clevict only (default); n=3 L1 and L2 clevict

generated.

-opt-assume-safe-

padding

Asserts that compiler may safely access up to 64 bytes beyond the end of array or

dynamically allocated objects as accessed by the user program. User is responsible for

padding. Off by default.

-opt-threads-per-core=n Hint to the compiler to optimize for n threads per physical core, where n=1, 2, 3, or 4.

-opt-prefetch=n Enables increasing levels of software prefetching for n=0 to 4. Default is n=3 at

optimization levels of –O2 or higher.

-fimf-domain-

exclusion=n

Specifies special case arguments for which math functions need not conform to IEEE

standard. The bits of n correspond to these domains:

0: extreme values (e.g., very large; very small; close to singularities); 1: NaNs; 2: infinities; 3:

denormals; 4: zeros.

-align array64byte

(Fortran only)

Where possible, align the start of arrays at a memory address that is divisible by 64, to

enable aligned loads and help vectorization.

Environment Variables for the Intel® Xeon Phi™ Coprocessor

Variable Comment

OFFLOAD_REPORT=<n> Provides a runtime report for offload applications:

n=1 reports execution times on host and on coprocessor

n=2 also reports on data transfers between host and coprocessor

OFFLOAD_DEVICES= <n1,n2,…> Restricts the process on the host to use only the physical coproccessors n1,

n2, etc., numbered from 0.

MIC_STACKSIZE=<n>M Sets the maximum stack size on the coprocessor for offload applications. In

this example, n is in megabytes.

MIC_ENV_PREFIX=<name> Specifies prefix to distinguish environment variables on the coprocessor from

ones on the host, for offload applications.

For example, if name=MIC, then MIC_OMP_NUM_THREADS controls the

number of OpenMP* threads on the coprocessor.

 11

MIC_USE_2MB_

BUFFERS=<n>M

Offloaded pointer variables whose runtime data length exceeds n MB will be

allocated in large, 2MB pages.

For more optimization detail, see http://software.intel.com/en-us/articles/advanced-optimizations-for-intel-mic-architecture.

For building for Intel® Many Integrated Core (MIC) architecture in general, see http://software.intel.com/en-

us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture, http://software.intel.com/mic-developer

and the Intel® Compiler User and Reference Guides.

Interprocedural Optimization (IPO) and Profile-Guided Optimization (PGO)

Options

Windows* Linux*/OS X* Comment

/Qip -ip Single file interprocedural optimizations, including selective inlining,

within the current source file.

/Qipo[n] -ipo[n] Permits inlining and other interprocedural optimizations among multiple

source files. The optional argument n controls the maximum number of

link-time compilations (or number of object files) spawned. Default for n

is 0 (the compiler chooses).

Caution: This option can in some cases significantly increase compile

time and code size.

/Qipo-jobs[n] -ipo-jobs[n] Specifies the number of commands (jobs) to be executed

simultaneously during the link phase of Interprocedural Optimization

(IPO). The default is 1 job.

/Ob2 -finline-functions

-finline-level=2

This option enables function inlining within the current source file at

the compiler’s discretion. This option is enabled by default at /O2 and

/O3 (-O2 and –O3).

Caution: For large files, this option may sometimes significantly

increase compile time and code size. It can be disabled by /Ob0 (-fno-

inline-functions on Linux* and OS X*).

/Qinline-factor:n -finline-factor=n This option scales the total and maximum sizes of functions that can

be inlined. The default value of n is 100 (i.e., 100% or a scale factor of

one).

/Qprof-gen -prof-gen Instruments a program for profile generation.

http://software.intel.com/en-us/articles/advanced-optimizations-for-intel-mic-architecture
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture
http://software.intel.com/mic-developer

 12

Windows* Linux*/OS X* Comment

/Qprof-use -prof-use Enables the use of profiling information during optimization.

/Qprof-dir dir -prof-dir dir Specifies a directory for the profiling output files, *.dyn and *.dpi.

/Qprofile-functions -profile-functions Instruments functions so that a profile of execution time spent in each

function may be generated.

/Qprofile-loops -profile-loops Instruments functions to generate a profile of each loop or loop nest.

See “Profile Function or Loop Execution Time” in the main compiler

documentation for additional detail and information on how to view

profiles.

Floating-Point Arithmetic Options

Windows* Linux*/OS X* Comment

/fp:name -fp-model name May enhance the consistency of floating-point results by restricting

certain optimizations. Possible values of name:

fast=[1|2]—Allows more aggressive optimizations at a slight cost in

accuracy or consistency. (fast=1 is the default) . This may include some

additional optimizations that are performed on Intel® microprocessors

but not on non-Intel microprocessors.

precise—Allows only value-safe optimizations on floating point code.

double/extended/source—Intermediate results are computed in double,

extended, or source precision. Implies precise unless overridden.

The double and extended options are not available for the Intel® Fortran

compiler.

except—Enforces floating-point exception semantics.

strict—Enables both the precise and except options, and does not

assume the default floating-point environment.

Recommendation: /fp:precise /fp:source (-fp-model precise –fp-model

source) is the recommended form for the majority of situations where

enhanced floating-point consistency and reproducibility are needed.

/Qftz[-] -ftz[-] When the main program or dll main is compiled with this option,

denormals (resulting from Intel® SSE or AVX instructions) at runtime are

flushed to zero for the whole program (dll). The default is on except at

/Od (-O0).

 13

Windows* Linux*/OS X* Comment

/Qimf-

precision:name

-fimf-precision:name This option defines the accuracy for math library functions. The

default is OFF (compiler uses default heuristics). Possible values of

name are high, medium, and low. Reduced precision may lead to

increased performance and vice versa. Many routines in the math

library are more highly optimized for Intel microprocessors than for

non-Intel microprocessors.

/Qimf-arch-

consistency:true

-fimf-arch-

consistency=true

Ensures that math library functions produce consistent results

across different Intel* or compatible, non-Intel processors of the

same architecture. May decrease runtime performance. The default

is ‟false” (off).

/Qprec-div[-] -[no-]prec-div Improves [reduces] precision of floating-point divides. This may

slightly degrade [improve] performance.

/Qprec-sqrt[-] -[no-]prec-sqrt Improves [reduces] precision of square root computations. This may

slightly degrade [improve] performance.

For more information, go to: http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-

compiler.

Fine-Tuning (All Processors)

Windows* Linux*/OS X* Comment

/Qunroll[n] -unroll[n] Sets the maximum number of times to unroll loops. /Qunroll0 (-unroll0)

disables loop unrolling. The default is /Qunroll (-unroll), which uses

default heuristics.

/Qopt-prefetch:n -opt-prefetch=n Controls the level of software prefetching. n is an optional value

between 0 (no prefetching) and 4 (aggressive prefetching), with a

default value of 2 when high-level optimization is enabled. Warning:

excessive prefetching may result in resource conflicts that degrade

performance.

/Qopt-block-

factor:n

-opt-block-factor=n Specifies preferred loop blocking factor n, the number of loop

iterations in a block, overriding default heuristics. Loop blocking is

enabled at /O3 (–O3) and is designed to increase the reuse of data in

cache.

http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler

 14

/Qopt-streaming-

stores:mode

-opt-streaming-

stores mode

Specifies whether streaming stores may be generated. Values for

mode:

always—Encourages compiler to generate streaming stores that

bypass cache, assuming application is memory bound with little data

reuse

never—Disables generation of streaming stores

auto—Default compiler heuristics for streaming store generation

/Qrestrict[-] -[no]restrict Enables [disables] pointer disambiguation with the restrict keyword.

Off by default. (C/C++ only)

/Oa -fno-alias Assumes no aliasing in the program. Off by default.

/Ow -fno-fnalias Assumes no aliasing within functions. Off by default.

/Qalias-args[-] -fargument-[no]alias Implies function arguments may be aliased [are not aliased]. On by

default. (C/C++ only). –fargument-noalias often helps the compiler to

vectorize loops involving function array arguments.

Windows* Linux*/OS X* Comment

/Qopt-class-

analysis[-]

-[no-]opt-class-

analysis

C++ class hierarchy information is used to analyze and resolve C++

virtual function calls at compile time. If a C++ application contains

non-standard C++ constructs, such as pointer downcasting, it may

result in different behavior. Default is off, but it is turned on by

default with the /Qipo (Windows*) or –ipo (Linux* and OS X*) compiler

option, enabling improved C++ optimization. (C++ only).

 -f[no-]exceptions -f-exceptions, default for C++, enables exception handling table

generation.

-fno-exceptions, default for C or Fortran, may result in smaller code.

For C++, it causes exception specifications to be parsed but ignored.

Any use of exception handling constructs (such as try blocks and

throw statements) will produce an error if any function in the call

chain has been compiled with

-fno-exceptions.

/Qvec-threshold:n -vec-threshold n Sets a threshold n for the vectorization of loops based on the

probability of performance gain. 0 ≤ n ≤ 100, default n=100.

0—Vectorize loops regardless of amount of computational work.

100—Vectorize loops only if a performance benefit is almost certain.

 15

/Qvec-report:n

-vec-report n

Controls the vectorizer’s diagnostic levels. Values n = 0, 1, 2, 3, and 6

specify increasing levels of detail. Default is 0 (no report).

Debug Options

Windows* Linux*/OS X* Comment

/Zi

/debug

/debug:full

/debug:all

-g

-debug

-debug full

-debug all

Produces debug information for use with any of the common

platform debuggers, for full symbolic debugging of unoptimized code.

Turns off /O2 (-O2) and makes /Od (-O0) the default unless /O2 (-O2)

(or another O option) is specified. Debug symbols will generally

increase the size of object modules and may slightly degrade

performance of optimized code.

/debug:none -debug none No debugging information is generated. (default)

/debug:minimal -debug minimal Generates line number information for debugging, but not local

symbols.

/debug:inline-

debug-info

-debug inline-debug-

info

This option causes symbols for inlined functions to be associated

with the source of the called function, instead of with the caller.

Not enabled by /debug:full (-debug full) unless

-O2 is specified.

 -debug extended Produces additional information for improved symbolic debugging of

optimized code. Not enabled by /debug:full (-debug full).

 -debug parallel Generates additional symbols and instrumentation for debugging

threaded code. (Linux* only; not enabled by -debug full).

/Qsox[-] -[no-]sox

(Linux only)

Embeds the compiler version and options used as strings in the

object file (Windows* and Linux) and in the executable (Linux). Off by

default.

/Qtraceback -traceback Compiler includes slight extra information in the object file to provide

source file traceback information when a severe error occurs at

runtime. May be used with optimized code. (Fortran applications only)

 16

‡ Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are

not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other

optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for

use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.

Notice revision #20110804

For product and purchase information, visit the Intel® Software Development Products site at:

www.intel.com/software/products/compilers.

© 2013, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Cilk, Intel Core, VTune, and Intel Xeon Phi are

trademarks of Intel Corporation in the U.S. an/or other countries. *Other names and brands may be claimed as the property of

others.

http://www.intel.com/software/products/compilers

