インテル® DAAL 2018 デベロッパー・ガイド

文献目録 (英語)

インテル® DAAL に実装されているアルゴリズムの詳細は、次の文献を参照してください。

[Agrawal94]

Rakesh Agrawal, Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules. Proceedings of the 20th VLDB Conference Santiago, Chile, 1994.

[Arthur2007]

Arthur, D., Vassilvitskii, S. k-means++: The Advantages of Careful Seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics Philadelphia, PA, USA, 2007, pp. 1027-1035. Available from http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf.

[Bahmani2012]

B. Bahmani, B. Moseley, A. Vattani, R. Kumar, S. Vassilvitskii. Scalable K-means++. Proceedings of the VLDB Endowment, 2012. Available from http://vldb.org/pvldb/vol5/p622_bahmanbahmani_vldb2012.pdf.

[Ben05]

Ben-Gal I. Outlier detection. In: Maimon O. and Rockach L. (Eds.) Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers", Kluwer Academic Publishers, 2005, ISBN 0-387-24435-2.

[Biernacki2003]

C. Biernacki, G. Celeux, and G. Govaert. Choosing Starting Values for the EM Algorithm for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models. Computational Statistics & Data Analysis, 41, 561-575, 2003.

[Billor2000]

Nedret Billor, Ali S. Hadib, and Paul F. Velleman. BACON: blocked adaptive computationally efficient outlier nominators. Computational Statistics & Data Analysis, 34, 279-298, 2000.

[Bishop2006]

Christopher M. Bishop. Pattern Recognition and Machine Learning, p.198, Computational Statistics & Data Analysis, 34, 279-298, 2000. Springer Science+Business Media, LLC, ISBN-10: 0-387-31073-8, 2006.

[Boser92]

B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal marginclassifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp: 144–152, ACM Press, 1992.

[Breiman2001]

Leo Breiman. Random Forests. Machine Learning, Volume 45 Issue 1, pp. 5-32, 2001.

[Breiman84]

Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J. Stone. Classification and Regression Trees. Chapman & Hall, 1984.

[Byrd2015]

R. H. Byrd, S. L. Hansen, Jorge Nocedal, Y. Singer. A Stochastic Quasi-Newton Method for Large-Scale Optimization, 2015. arXiv:1401.7020v2 [math.OC]. Available from http://arxiv.org/abs/1401.7020v2.

[bzip2]

http://www.bzip.org/

[Dempster77]

A.P.Dempster, N.M. Laird, and D.B. Rubin. Maximum-likelihood from incomplete data via the em algorithm. J. Royal Statist. Soc. Ser. B., 39, 1977.

[Duchi2011]

Elad Hazan, John Duchi, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12:21212159, 2011.

[Fan05]

Rong-En Fan, Pai-Hsuen Chen, Chih-Jen Lin. Working Set Selection Using Second Order Information for Training Support Vector Machines. Journal of Machine Learning Research 6 (2005), pp: 1889–1918.

[Fleischer2008]

Rudolf Fleischer, Jinhui Xu. Algorithmic Aspects in Information and Management. 4th International conference, AAIM 2008, Shanghai, China, June 23-25, 2008. Proceedings, Springer.

[Freund99]

Yoav Freund, Robert E. Schapire. Additive Logistic regression: a statistical view of boosting. Journal of Japanese Society for Artificial Intelligence (14(5)), 771-780, 1999.

[Freund01]

Yoav Freund. An adaptive version of the boost by majority algorithm. Machine Learning (43), pp. 293-318, 2001.

[Friedman00]

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive Logistic regression: a statistical view of boosting. The Annals of Statistics, 28(2), pp: 337-407, 2000.

[Glorot2010]

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. International conference on artificial intelligence and statistics, 2010.

[GregorLecun2010]

Karol Gregor, Yann LeCun. Emergence of Complex-Like Cells in a Temporal Product Network with Local Receptive Fields. ArXiv:1006.0448v1 [cs.NE] 2 Jun 2010.

[Hastie2009]

Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Second Edition (Springer Series in Statistics), Springer, 2009. Corr. 7th printing 2013 edition (December 23, 2011).

[HeZhangRenSun]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Delving Deep into Rectifiers: Surpassing Human-Level Performance on Image Net, arXiv:1502.01852v1 [cs.CV] 6 Feb 201, available from https://arxiv.org/pdf/1502.01852.pdf.

[Hoerl70]

Arthur E. Hoerl and Robert W. Kennard. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, Vol. 12, No. 1 (Feb., 1970), pp. 55-67.

[Hsu02]

Chih-Wei Hsu and Chih-Jen Lin. A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transactions on Neural Networks, Vol. 13, No. 2, pp: 415-425, 2002.

[Hu2008]

Yifan Hu, Yehuda Koren, Chris Volinsky. Collaborative Filtering for Implicit Feedback Datasets. ICDM'08. Eighth IEEE International Conference, 2008.

[Iba92]

Wayne Iba, Pat Langley. Induction of One-Level Decision Trees. Proceedings of Ninth International Conference on Machine Learning, pp: 233-240, 1992.

[Ioffe2015]

Sergey Ioffe, Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv:1502.03167v3 [cs.LG] 2 Mar 2015, available from http://arxiv.org/pdf/1502.03167.pdf.

[James2013]

Gareth James, Daniela Witten, Trevor Hastie, and Rob Tibshirani. An Introduction to Statistical Learning with Applications in R. Springer Series in Statistics, Springer, 2013 (Corrected at 6th printing 2015).

[Jarrett2009]

K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? International Conference on Computer Vision, pp. 2146-2153, IEEE, 2009.

[Joachims99]

Thorsten Joachims. Making Large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola (ed.), pp: 169 – 184, MIT Press Cambridge, MA, USA 1999.

[kdb]

https://kx.com/

[Krizh2012]

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Available from http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

[LeCun15]

Yann LeCun, Yoshua Bengio, Geoffrey E. Hinton. Deep Learning. Nature (521), pp. 436-444, 2015.

[Lloyd82]

Stuart P Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory 1982, 28 (2): 1982pp: 129–137.

[lzo]

http://www.oberhumer.com/opensource/lzo/

[Maitra2009]

Maitra, R. Initializing Optimization Partitioning Algorithms. ACM/IEEE Transactions on Computational Biology and Bioinformatics 2009, 6 (1): pp: 144-157.

[Matsumoto98]

Matsumoto, M., Nishimura, T. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator. ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, pp. 3-30, January 1998.

[Mattew2013]

Matthew D. Zeiler, Rob Fergus. Stochastic Pooling for Regularization of Deep Convolutional Neural Networks. 2013. Available from http://www.matthewzeiler.com/pubs/iclr2013/iclr2013.pdf.

[Mitchell97]

Tom M. Mitchell. Machine Learning. McGraw-Hill Education, 1997.

[Mu2014]

Mu Li, Tong Zhang, Yuqiang Chen, Alexander J. Smola. Efficient Mini-batch Training for Stochastic Optimization, 2014. Available from https://www.cs.cmu.edu/~muli/file/minibatch_sgd.pdf.

[Patwary2016]

Md. Mostofa Ali Patwary, Nadathur Rajagopalan Satish, Narayanan Sundaram, Jialin Liu, Peter Sadowski, Evan Racah, Suren Byna, Craig Tull, Wahid Bhimji, Prabhat, Pradeep Dubey. PANDA: Extreme Scale Parallel K-Nearest Neighbor on Distributed Architectures, 2016. Available from https://arxiv.org/abs/1607.08220.

[Quinlan86]

J. R. Quinlan. Induction of Decision Trees. Machine Learning, Volume 1 Issue 1, pp. 81-106, 1986.

[Quinlan87]

J. R. Quinlan.Simplifying decision trees. International journal of Man-Machine Studies, Volume 27 Issue 3, pp. 221-234, 1987.

[Renie03]

Jason D.M. Rennie, Lawrence, Shih, Jaime Teevan, David R. Karget. Tackling the Poor Assumptions of Naïve Bayes Text classifiers. Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

[rle]

http://data-compression.info/Algorithms/RLE/index.htm

[Rumelhart86]

David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams. Learning representations by back-propagating errors. Nature (323), pp. 533-536, 1986.

[Sokolova09]

Marina Sokolova, Guy Lapalme. A systematic analysis of performance measures for classification tasks. Information Processing and Management 45 (2009), pp. 427–437. Available from http://atour.iro.umontreal.ca/rali/sites/default/files/publis/SokolovaLapalme-JIPM09.pdf.

[Szegedy13]

Christian Szegedy, Alexander Toshev, Dumitru Erhan. Scalable Object Detection Using Deep Neural Networks. Advances in Neural Information Processing Systems, 2013.

[West79]

D.H.D. West. Updating Mean and Variance Estimates: An improved method. Communications of ACM, 22(9), pp: 532-535, 1979.

[Wu04]

Ting-Fan Wu, Chih-Jen Lin, Ruby C. Weng. Probability Estimates for Multi-class Classification by Pairwise Coupling. Journal of Machine Learning Research 5, pp: 975-1005, 2004.

[zLib]

http://www.zlib.net/