

Getting Started Tutorial: Analyzing
Threading Errors
Intel® Inspector XE 2011 for Windows* OS

Fortran Sample Application Code

Document Number: 326599-001

World Wide Web: http://developer.intel.com

Legal Information

Contents
Legal Information..5
Overview..7

Chapter 1: Navigation Quick Start

Chapter 2: Analyzing Threading Errors
Visual Studio* IDE: Choose Project and Build Application..............................13
Standalone GUI: Build Application and Create New Project............................17
Configure Analysis...20
Run Analysis...21
Choose Problem Set and Focus Code Location..23
Interpret Result Data..24
Resolve Issue..26
Resolve Next Issue...28
Rebuild and Rerun Analysis...30

Chapter 3: Summary

Chapter 4: Key Terms

Contents

3

Getting Started Tutorial: Analyzing Threading Errors

4

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A
SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order. Copies of documents which have an order number and are referenced in this
document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://
www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within
each processor family, not across different processor families. Go to: http://www.intel.com/products/
processor_number/

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside, E-GOLD, i960,
Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Insider, the
Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep,
Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo, Intel StrataFlash, Intel vPro, Intel
XScale, InTru, the InTru logo, the InTru Inside logo, InTru soundmark, Itanium, Itanium Inside, MCS, MMX,
Moblin, Pentium, Pentium Inside, Puma, skoool, the skoool logo, SMARTi, Sound Mark, The Creators Project,
The Journey Inside, Thunderbolt, Ultrabook, vPro Inside, VTune, Xeon, Xeon Inside, X-GOLD, XMM, X-PMU
and XPOSYS are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Microsoft, Windows, Visual Studio, Visual C++, and the Windows logo are trademarks, or registered
trademarks of Microsoft Corporation in the United States and/or other countries.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Copyright (C) 2010-2011, Intel Corporation. All rights reserved.

5

 Getting Started Tutorial: Analyzing Threading Errors

6

Overview

 Discover how to find and fix threading errors using the Intel® Inspector XE and the nqueens_fortran
Fortran sample application.

About This
Tutorial

This tutorial demonstrates an end-to-end workflow you can ultimately apply to your
own applications:

• From building an application to produce an optimal inspection result
• To inspecting an application to find threading errors
• To editing application code to fix the threading errors
• To rebuilding and reinspecting the application

Estimated
Duration

10-15 minutes.

Learning
Objectives

After you complete this tutorial, you should be able to:

• List, in order, the steps to find and fix threading errors using the Intel Inspector
XE.

• Define key Intel Inspector XE terms, such as analysis, result, problem set,
problem, and code location.

• Identify compiler/linker options that produce the most accurate, complete
analysis results.

• Explain how data set size impacts application execution time and analysis speed.
• Run threading error analyses.
• Influence analysis scope and running time.
• Access help for the Intel Inspector XE command-line interface.
• Navigate among windows in the Intel Inspector XE results.
• Display a prioritized to-do list for fixing errors.
• Access help for fixing specific errors.
• Access source code to fix errors.

More Resources The concepts and procedures in this tutorial apply regardless of programming
language; however, a similar tutorial using a sample application in another
programming language may be available at http://software.intel.com/en-us/articles/
intel-software-product-tutorials/. This site also offers tutorials for all the Intel®
Parallel Studio XE products and a printable version (PDF) of tutorials.

In addition, you can find more resources at http://software.intel.com/en-us/articles/
intel-parallel-studio-xe/.

7

 Getting Started Tutorial: Analyzing Threading Errors

8

Navigation Quick Start 1
 Intel® Inspector XE is a dynamic memory and threading error checking tool for users developing serial

and multithreaded applications on Windows* and Linux* operating systems. You can also use the Intel
Inspector XE to visualize and manage static security analysis results created by Intel® compilers in various
suite products.

Intel Inspector XE Access
To access the Intel Inspector XE in the Visual Studio* IDE: From the Windows* Start menu, choose Intel
Parallel Studio XE 2011 > Parallel Studio XE 2011 with [VS2005 | VS2008 | VS2010] .

To access the Standalone Intel Inspector XE GUI, do one of the following:

• From the Windows* Start menu, choose Intel Parallel Studio XE 2011 > Intel Inspector XE 2011.
• From the Windows* Start menu, choose Intel Parallel Studio XE 2011 > Command Prompt >

Parallel Studio XE with Intel Compiler > IA-32 Visual Studio [2005 | 2008 | 2010] mode to set
up your environment, then type inspxe-gui.

Intel Inspector XE/Visual Studio* IDE Integration

9

The menu, toolbar, and Solution Explorer offer different ways to perform many of the same
functions.

Use the Tools > Intel Inspector XE 2011 menu to create dynamic analysis results,
compare results, and import dynamic analysis results.

Use the Intel Inspector XE toolbar to open the Intel Inspector XE Getting Started
Tutorials, create dynamic analysis results, compare results, and configure projects.

Solution Explorer context menus:

• Use the Intel Inspector XE 2011 menu on the Solution Explorer project context
menu to create dynamic analysis results and configure projects.

• Use the context menu on a result in the Inspector XE Results folder to open results,
create dynamic analysis results, and manage results.

Use the Intel Inspector XE result tabs to manage result data.

Standalone Intel Inspector XE GUI

The menu, toolbar, and Project Navigator offer different ways to perform many of the same
functions.

 1 Getting Started Tutorial: Analyzing Threading Errors

10

Use the menu to create, configure, and open projects; create, import, open, and compare
results; set various options; and open the Intel Inspector XE Getting Started Tutorials and
Help.

Use the toolbar to open the Intel Inspector XE Getting Started Tutorials; create, configure,
and open projects; create, open, and compare results; and open the Project Navigator.

Use the Project Navigator:

• Tree to see a hierarchical view of your projects and results based on the directory where
the opened project resides.

• Context menus to perform functions available from the menu and toolbar plus delete or
rename a selected project or result, close all opened results, and copy various directory
paths to the system clipboard.

Use result tabs to view and manage result data.

Intel Inspector XE Result Tabs

Use result tab names to distinguish among results.

Click buttons on the navigation toolbar to change window views.

Use window panes to view and manage result data.

Navigation Quick Start 1

11

Click buttons to display help pages that describe how to use window panes.

Drag window pane borders to resize window panes.

Click , , , and controls to show/hide window panes.

Use title bars to identify window panes.

Data column headers - Drag to reposition the data column; drag the left or right border to
resize the data column; click to sort results in ascending or descending order by column data.

Right-click data in window panes to display context menus that provide access to key
capabilities.

 1 Getting Started Tutorial: Analyzing Threading Errors

12

Analyzing Threading Errors 2
 There are many ways to take advantage of the power and flexibility of the Intel® Inspector XE. The

following workflow, which shows how to find and fix threading errors in parallel programs, is one way to help
maximize your productivity as quickly as possible.

Step 1: Prepare
for analysis

Do one of the following:

• In the Visual Studio* IDE: Choose a project, verify settings, and build an
application to inspect for threading errors.

• In the Standalone Intel Inspector XE GUI: Build an application to inspect for
threading errors and create a new project.

Step 2: Find
errors

• Configure a threading error analysis.
• Run the threading error analysis on the application.

Step 3: Fix
errors

• Choose a problem set and focus code location in the analysis result.
• Interpret the result data.
• Resolve the issue.
• Resolve the next issue.

Step 4: Check
your work

Rebuild the application and rerun the threading error analysis.

Visual Studio* IDE: Choose Project and Build Application

13

 To create an application the Intel Inspector XE can inspect for threading errors:

• Get software tools.
• Open a Visual Studio* solution.
• Set a startup project.
• Verify optimal compiler/linker options.
• Verify the application is set to build in debug mode.
• Verify optimal data set size.
• Build and test the application.

Get Software Tools
You need the following tools to try tutorial steps yourself using the nqueens_fortran sample application:

• Intel Inspector XE, including sample applications
• .zip file extraction utility
• Supported compiler (see Release Notes for more information)

Acquire Intel Inspector XE

If you do not already have access to the Intel Inspector XE, you can download an evaluation copy from
http://software.intel.com/en-us/articles/intel-software-evaluation-center/.

Install and Set Up Intel Inspector XE Sample Applications

1. Copy the nqueens_fortran.zip file from the <install-dir>\samples\<locale>\Fortran directory
to a writable directory or share on your system. The default installation path is C:\Program Files
\Intel\Inspector XE 2011\ (on certain systems, instead of Program Files, the directory name is
Program Files (x86)).

2. Extract the sample from the .zip file.

• Samples are non-deterministic. Your screens may vary from the screen captures shown throughout
this tutorial.

• Samples are designed only to illustrate the Intel Inspector XE features; they do not represent best
practices for creating code.

Open a Visual Studio* Solution

1. Choose File > Open > Project/Solution.
2. In the Open Project dialog box, open the nqueens_fortran\nqueens_fortran.sln file to display the

nqueens_fortran solution in the Solution Explorer:

 2 Getting Started Tutorial: Analyzing Threading Errors

14

Choose a Startup Project

1. Right-click the threading_issues project.
2. Choose Set as StartUp Project.

Verify Optimal Compiler/Linker Options
You can use the Intel Inspector XE to analyze:

• Memory errors in debug and release modes of binaries - the Intel Inspector XE can analyze native code in
native binaries and in mixed native/managed binaries.

• Threading errors in debug and release modes of binaries - the Intel Inspector XE can analyze native and
managed code in native/managed/mixed binaries.

Applications compiled/linked in debug mode using the following options produce the most accurate, complete
results.

Compiler/Linker
Options

Correct C/C++
Setting

Correct Fortran
Setting

Impact If Not Set
Correctly

Debug information Enabled (/Zi or /ZI) Enabled (/debug:full) Missing file/line
information

Optimization Disabled (/Od) Disabled (/Od) Incorrect file/line
information

Analyzing Threading Errors 2

15

Compiler/Linker
Options

Correct C/C++
Setting

Correct Fortran
Setting

Impact If Not Set
Correctly

Dynamic runtime library Selected (/MD or /MDd) Selected (/libs:dll) False positives or
missing code locations

Basic runtime error
checks

Disabled (do not use /
RTC; Default option in
Visual Studio* IDE)

Disabled (/check:
[no]bounds)

False positives

1. Right-click the threading_issues project in the Solution Explorer.
2. Choose Properties to display the Property Pages dialog box.
3. Verify the Configuration drop-down list is set to Debug or Active(Debug).
4. In the left pane, choose Configuration Properties > Fortran > Debugging.
5. Verify the Debug Information Format is set to Full (/debug:full).
6. In the left pane, choose Configuration Properties > Fortran > Optimization.
7. Verify the Optimization field is set to Disable (/Od).
8. In the left pane, choose Configuration Properties > Fortran > Libraries.
9. Verify the Runtime Library field is set to Multithread DLL (/libs:dll).
10.In the left pane, choose Configuration Properties > Fortran > Run-time.
11.Verify the Check Array and String Bounds field is set to No.
12.In the left pane, choose Configuration Properties > Linker > Debugging.
13.Verify the Generate Debug Info field is set to Yes (/DEBUG).

Verify the Application is Set to Build in Debug Mode

1. Click the Configuration Manager button.
2. Verify the Active solution configuration drop-down list is set to Debug.
3. Click the Close button to close the Configuration Manager dialog box.
4. Click the OK button to close the Property Pages dialog box.

Verify Optimal Data Set Size
When you run a dynamic analysis, the Intel Inspector XE executes an application. Data set size has a direct
impact on application execution time and analysis speed.

For example, it takes longer to process a 1000x1000 pixel image than a 100x100 pixel image. A possible
reason for the longer processing time: You may have loops with an iteration space of 1...1000 for the larger
image, but only 1...100 for the smaller image. The exact same code paths may be executed in both cases.
The difference is the number of times these code paths are repeated.

You may control analysis cost without sacrificing completeness by removing this kind of redundancy from
your data set.

Instead of choosing large, repetitive data sets, choose small, representative data sets that fully create
threads with minimal to moderate work per thread. Minimal to moderate means just enough work to
demonstrate all the different behaviors a thread can perform. Data sets with runs in the seconds time range
are ideal. Create additional data sets to ensure all your code is inspected.

Build and Test the Application

1. Choose Build > Project Only > Build Only threading_issues.
2. Choose Debug > Start Without Debugging.
3. If the Visual Studio* IDE responds any projects are out of date, click No.
4. Check for output similar to the following:

Usage: threading_issues.exe boardSize
Using default size of 10
Starting nqueens solver for size 10 with 2 thread(s)

 2 Getting Started Tutorial: Analyzing Threading Errors

16

Number of solutions: 1344
Incorrect result!
Calculations took 31 ms.
Press any key to continue...

Key Terms
False positive

Standalone GUI: Build Application and Create New Project

 To create an application the Intel Inspector XE can inspect for threading errors:

• Get software tools.
• Verify optimal compiler/linker options.
• Verify optimal data set size.
• Build the application.
• Verify the application runs outside the Intel Inspector XE.
• Open the Standalone Intel Inspector XE GUI.
• Create a new project.

Get Software Tools
You need the following tools to try tutorial steps yourself using the nqueens_fortran sample application:

• Intel Inspector XE
• .zip
• Supported compiler (see Release Notes for more information)

Acquire Intel Inspector XE

If you do not already have access to the Intel Inspector XE, you can download an evaluation copy from
http://software.intel.com/en-us/articles/intel-software-evaluation-center/.

Install and Set Up Intel Inspector XE Sample Applications

1. Copy the nqueens_fortran.zip file from the <install-dir>\samples\<locale>\Fortran\ directory
to a writable directory or share on your system. The default installation path is C:\Program Files
\Intel\Inspector XE 2011\ (on certain systems, instead of Program Files, the directory name is
Program Files (x86)).

2. Extract the sample from the .zip file to create the nqueens_fortran directory.

• Samples are non-deterministic. Your screens may vary from the screen captures shown throughout
this tutorial.

• Samples are designed only to illustrate the Intel Inspector XE features; they do not represent best
practices for creating code.

Verify Optimal Compiler/Linker Settings
You can use the Intel Inspector XE to analyze:

• Memory errors in debug and release modes of binaries - the Intel Inspector XE can analyze native code in
native binaries and in mixed native/managed binaries.

• Threading errors in debug and release modes of binaries - the Intel Inspector XE can analyze native and
managed code in native/managed/mixed binaries.

Applications compiled/linked in debug mode using the following options produce the most accurate, complete
results.

Analyzing Threading Errors 2

17

Compiler/Linker
Options

Correct C/C++
Setting

Correct Fortran
Setting

Impact If Not Set
Correctly

Debug information Enabled (/Zi or /ZI) Enabled (/debug:full) Missing file/line
information

Optimization Disabled (/Od) Disabled (/Od) Incorrect file/line
information

Dynamic runtime library Selected (/MD or /MDd) Selected (/libs:dll) False positives or
missing code locations

Basic runtime error
checks

Disabled (do not use /
RTC; Default option in
Visual Studio* IDE)

Disabled (/check:
[no]bounds)

False positives

Verify Optimal Data Set Size
When you run a dynamic analysis, the Intel Inspector XE executes an application. Data set size has a direct
impact on application execution time and analysis speed.

For example, it takes longer to process a 1000x1000 pixel image than a 100x100 pixel image. A possible
reason for the longer processing time: You may have loops with an iteration space of 1...1000 for the larger
image, but only 1...100 for the smaller image. The exact same code paths may be executed in both cases.
The difference is the number of times these code paths are repeated.

You may control analysis cost without sacrificing completeness by removing this kind of redundancy from
your data set.

Instead of choosing large, repetitive data sets, choose small, representative data sets that fully create
threads with minimal to moderate work per thread. Minimal to moderate means just enough work to
demonstrate all the different behaviors a thread can perform. Data sets with runs in the seconds time range
are ideal. Create additional data sets to ensure all your code is inspected.

Build the Application

1. From the Windows* Start menu, choose Intel Parallel Studio XE 2011 > Command Prompt >
Parallel Studio XE with Intel Compiler > IA-32 Visual Studio [2005 | 2008 | 2010] mode to set
up your environment.

2. Change directory to the nqueens_fortran directory in its unzipped location.
3. If you choose IA-32 Visual Studio 2008 or IA-32 Visual Studio 2010 mode, type devenv

nqueens_fortran.sln to convert the nqueens_fortran.sln solution. When conversion is complete, close
the Visual Studio* IDE.

4. Type devenv nqueens_fortran.sln /Build to build all projects in the solution.

Verify the Application Runs Outside the Intel Inspector XE

1. Change directory to threading_issues\Debug\.
2. Type threading_issues.exe to execute the application.
3. Check for output similar to the following:

Usage: threading_issues.exe boardSize
Using default size of 10
Starting nqueens solver for size 10 with 2 thread(s)
Number of solutions: 1333
Incorrect result!
Calculations took 31 ms.

Open the Standalone Intel Inspector XE GUI
From the Windows* Start menu, choose Intel Parallel Studio XE 2011 > Intel Inspector XE 2011.

 2 Getting Started Tutorial: Analyzing Threading Errors

18

TIP Keep the command prompt window open.

Create a New Project

1. Choose File > New > Project... to display a dialog box similar to the following:

2. In the Project name field, type threading_issues. Then click the Create project button to create a

config.inspxeproj file in the \Inspector XE\Projects\threading_issues\ directory (default
location) and display a dialog box similar to the following:

Analyzing Threading Errors 2

19

3. Click the Browse button next to the Application field and select the nqueens_fortran

\threading_issues\Debug\threading_issues.exe application. Notice the Intel Inspector XE autofills
the project Working directory field for you. Then click the OK button to display a threading_issues
project is open window.

Key Terms
False positive

Configure Analysis

 The Intel Inspector XE offers a range of preset threading analysis types to help you control analysis
scope and cost. The analysis type with the narrowest scope minimizes the load on the system and the time
and resources required to perform the analysis; however, it detects the narrowest set of errors and provides
minimal details. The analysis type with the widest scope maximizes the load on the system and the time and
resources required to perform the analysis; however, it detects the widest set of errors and provides context
and the maximum amount of detail for those errors.

To configure a threading error analysis, choose a threading analysis type.

Choose Threading Error Analysis Type

1. To display an Analysis Type window similar to the following:

• From the Visual Studio* menu, choose Tools > Intel Inspector XE 2011 > New Analysis....
• From the Standalone Intel Inspector XE GUI menu, choose File > New > Analysis....

 2 Getting Started Tutorial: Analyzing Threading Errors

20

Use the Navigation toolbar to navigate among the Intel Inspector XE windows. The buttons
on the toolbar vary depending on the displayed window.

The Analysis Type tree shows available preset analysis types.

This tutorial covers threading error analysis types, which you can use to search for these
kinds of errors: Data race, deadlock, lock hierarchy violation, and cross-thread stack access.

Use memory error analysis types to search for these kinds of errors: GDI resource leak,
incorrect memcpy call, invalid deallocation, kernel resource leak, invalid memory access,
invalid partial memory access, memory leak, mismatched allocation/deallocation, missing
allocation, uninitialized memory access, and uninitialized partial memory access.

Use the checkbox(es) and drop-down list(s) to fine-tune some, but not all, analysis type
settings. If you need to fine-tune more analysis type settings, choose another preset
analysis type or create a custom analysis type.

The Details region shows all current analysis type settings. Try choosing a different preset
analysis type or checkbox/drop-down list value to see the impact on the Details region.

Use the Command toolbar to control analysis runs and perform other functions. For
example, use the Project Properties button to display the Project Properties dialog box,
where you can change the default result directory location, set parameters to potentially
speed up analysis, and perform other project configuration functions.

2. After you finish experimenting, choose the Detect Deadlocks and Data Races analysis type.

Key Terms
Analysis

Run Analysis

 To find threading errors that may need fixing, run a threading error analysis.

Run Threading Error Analysis
Click the Start button on the Analysis Type window and the Intel Inspector XE:

• Executes the threading_issues.exe application.
• Identifies threading errors that may need handling.
• Collects the result in a directory in the nqueens_fortran\threading_issues\My Inspector XE

Results - threading_issues\ directory.
• Finalizes the result (converts symbol information into filenames and line numbers, performs duplicate

elimination, and forms problem sets).

During analysis, the Intel Inspector XE displays a Collection Log window similar to the following:

Analyzing Threading Errors 2

21

The result name appears in the tab. Here, the name of the result (and the name of the result
directory in the nqueens_fortran\threading_issues\My Inspector XE Results -
threading_issues\ directory) is r000ti2, where

• r = constant
• 000 = next available number
• ti = threading error analysis type
• 2 = preset analysis type of medium scope

NOTE Intel Inspector XE also offers a pointer to the result in the Solution Explorer
(Visual Studio* IDE) and Project Navigator (standalone GUI).

The Collection Log pane shows analysis milestones.

Notice you can start to manage results before analysis (collection and finalization) is complete
by clicking the Summary button; however, this tutorial does not cover handling issues before
analysis is complete.

NOTE This tutorial explains how to run an analysis from the Intel Inspector XE graphical user interface
(GUI). You can also use the Intel Inspector XE command-line interface (inspxe-cl command) to run
an analysis.

The Summary window automatically displays after analysis completes successfully.

Key Terms
• Analysis
• Collection
• Finalization

 2 Getting Started Tutorial: Analyzing Threading Errors

22

Choose Problem Set and Focus Code Location

 To start exploring a detected threading error:

• Understand window panes.
• Choose a problem set.
• Choose a focus code location.

Understand Summary Window Panes

Think of the Summary window as the starting point for managing result data. It groups code
locations into problem sets and then prioritizes the problem sets by severity and size.

Think of the Problems pane as a to-do list. Start at the top and work your way down.

The Code Locations pane shows all the code locations in all the problems in the selected
problem set. By default, the Intel Inspector XE selects the first problem set for you.

Choose a Problem Set
If necessary, click the data row for the P1 Data Race problem set.

Choose a Focus Code Location
Double-click the data row for the X2 Read code location set to display the Sources window, which provides
more visibility into the cause of the error.

Analyzing Threading Errors 2

23

Key Terms

• Code location
• Problem
• Problem set
• Result

Interpret Result Data

 To determine the cause of the detected threading error:

• Interpret window panes and icons.
• View source code for another code location.
• Access more information on interpreting and resolving problems.

Interpret Sources Window Panes and Icons

Like the pane on the Summary window, the Code Locations pane shows all the code
locations in one Write -> Write Data race problem and two Write -> Read Data race problems
in the P1 Data race problem set.

The Write -> Write Data race problem contains three code locations:

• The X4 Write code location represents the instruction and associated call stack of the
thread responsible for a memory write.

 2 Getting Started Tutorial: Analyzing Threading Errors

24

• The X7 Write code location represents the instruction and associated call stack of the
thread responsible for a concurrent memory write.

• The X1 Allocation site code location represents the location and associated call stack from
which the memory block was allocated.

Each Write -> Read Data race problem also contains three code locations:

• The X4 Write code location represents the instruction and associated call stack of the
thread responsible for a memory write.

• The X2 and X3 Read code locations represent the instructions and associated call stacks of
the threads responsible for a concurrent memory read.

• The X1 Allocation site code location represents the location and associated call stack from
which the memory block was allocated.

Notice the X4 Write and X1 Allocation site code locations are in all problems.

The Related Code Location pane shows the source code in the nqueens_threading.f90
source file surrounding the Write code location. Also notice the icon in the pane title
matches the icon on the Write code location data row in the Code Locations pane. The
source code corresponding to the Write code location is highlighted.

The Focus Code Location pane shows the source code in the nqueens_threading.f90
source file surrounding the Read code location. Notice the icon in the pane title matches the

 icon on the Read code location data row in the Code Locations pane. The source code
corresponding to the Read code location is highlighted.

Icon Meaning

This code location is the focus code location. You chose it
when you double-clicked the Read code location on the
Summary window. Its source code is currently displayed in
the Focus Code Location pane.

Code location source code is
available for viewing in the
Intel Inspector XE and editing
in an editor.

This code location is related to the focus code location. Its
source code is currently displayed in the Related Code
Location pane.

This is another code location in the problem or problem set.
Its source code is not currently displayed on screen.

This is another code location in the problem or problem set for
which the Intel Inspector XE did not find the source file.

Code location source code is
not available for viewing in
the Intel Inspector XE and
editing in an editor.

View Source Code for Another Code Location
Double-click the data row for the Allocation site code location in the Code Locations pane to display a
window similar to the following:

Analyzing Threading Errors 2

25

Notice the window changes:

• The Related Code Location pane now shows the source code for the Allocation site code location and
the icon for the Allocation site code location is now instead of throughout the Sources window.

• The icon for the X4 Read code location is now instead of .

Double-click the data row for X4 Read code location.

Access More Information on Interpreting and Resolving Problems

1. Right-click any code location in the Code Locations pane.
2. Choose Explain Problem to display the Intel Inspector XE Help information for the Data race problem

type.

Key Terms

• Code location
• Problem
• Problem set
• Related code location

Resolve Issue

 To fix the detected threading error:

• Investigate the issue.
• Access an editor directly from the Intel Inspector XE.
• Change the source code.

 2 Getting Started Tutorial: Analyzing Threading Errors

26

Investigate the Issue
Scroll to near line 123 in the Focus Code Location pane to display a window similar to the following:

The commenting in the Focus Code Location window identifies the cause of the Data race problems:
Multiple threads are concurrently accessing the global queens array. One possible correction strategy:
Change the global array to a local array.

Access Editor
Double-click anywhere in the Focus Code Location pane to open the nqueens_threading.f90 source file
in an editor:

Analyzing Threading Errors 2

27

Change the Source Code

1. Search the file and uncomment six statements using the lcl_queens array. Beneath four of those six
statements, comment out the statements using the queens array.

2. Save your edits (automatic if you are using the Visual Studio* editor in the Visual Studio* IDE) and return
to the Sources window.

NOTE The Sources window data is unchanged because it is a snapshot of the source code at the time
of analysis.

3. Click the Summary button to display the Summary window.

Key Terms
Code location

Resolve Next Issue

 To fix another detected threading error:

• Choose another problem set.
• Fix the threading error.

 2 Getting Started Tutorial: Analyzing Threading Errors

28

Choose Another Problem Set
In the Problems pane on the Summary window, double-click the data row for the P2 Data race problem
set to display the Sources window:

Fix the Threading Error

1. Double-click line 147 in either the Focus Code Location or Related Code Location pane to open the
nqueens_threading.90 source file in your editor:

Analyzing Threading Errors 2

29

2. Uncomment !!$OMP ATOMIC.
3. Save your edits (automatic if you are using the Visual Studio* editor in the Visual Studio* IDE) and return

to the Sources window.

Key Terms

• Code location
• Problem
• Problem set

Rebuild and Rerun Analysis

 To check if your edits resolved the threading errors:

• Rebuild the application with your edited source code.
• Rerun the analysis.

Rebuild the Application
If you are using the Visual Studio* IDE:

1. Choose Build > Clean Solution.
2. Choose Build > Rebuild Solution.

If you are using the Standalone Intel Inspector XE GUI:

1. In a command prompt window, change directory to the nqueens_fortran directory.

 2 Getting Started Tutorial: Analyzing Threading Errors

30

2. Type devenv nqueens_fortran.sln /Clean.
3. Type devenv nqueens_fortran.sln /Build.

Rerun the Analysis
To run another analysis of the same analysis type:

• From the Visual Studio* menu, choose Tools > Intel Inspector XE 2011 > Threading Error
Analysis / Detect Deadlocks and Data Races.

• From the Standalone Intel Inspector XE GUI menu, choose File > Threading Error Analysis / Detect
Deadlocks and Data Races.

The Summary window automatically displays after analysis (both collection and finalization) completes
successfully:

Notice the Intel Inspector XE:

• Created a new result tab.
• No longer detects any threading problems.

Key Terms
Analysis

Analyzing Threading Errors 2

31

 2 Getting Started Tutorial: Analyzing Threading Errors

32

Summary 3
 This tutorial demonstrated an end-to-end workflow you can ultimately apply to your own applications.

Step Tutorial Recap Key Tutorial Take-aways

1. Prepare for
analysis

If you used the Visual Studio* IDE:
You chose a project; verified the
project is set to produce the most
accurate, complete results; built
and ensured the application runs
on your system outside the Intel
Inspector XE.

If you used the standalone GUI:
You built and ensured the
application runs on your system
outside the Intel Inspector XE, and
created a project to hold analysis
results.

• Applications compiled/linked in debug
mode using the following options produce
the most accurate, complete results: /
debug:full, /Od, /libs:dll, and /
check:[no] bounds .

• Use small, representative data sets to
control analysis cost without sacrificing
completeness. Data sets with runs in the
seconds time range are ideal. Create
additional data sets to ensure all your code
is inspected.

2. Find errors You chose an analysis type and ran
an analysis. During analysis, the
Intel Inspector XE:

• Ran the application, identified
errors that may need handling,
and collected a result.

• Added a pointer to the result in
the Solution Explorer (Visual
Studio* IDE) or Project
Navigator (standalone GUI).

• Intel Inspector XE offers preset analysis
types to help you control analysis scope
and cost. Widening analysis scope
maximizes the load on the system, and the
time and resources required to perform the
analysis.

• Run error analyses from the Tools menu
(Visual Studio* IDE), File menu
(Standalone Intel Inspector XE GUI),
toolbar, or command line using the
inspxe-cl command.

3. Fix errors You explored detected problems,
interpreted the result data,
accessed an editor directly from
the Intel Inspector XE, and
changed source code.

• A code location is a fact the Intel Inspector
XE observes at a source code location. A
problem is a small group of closely related
code locations that indicate an error in the
target. A problem set is a larger group of
more loosely related code locations that
could share a common solution.

• Think of the Problems pane on the
Summary window as a to-do list: Start at
the top and work your way down.

• Double-click a code location or problem set
on the Summary window to navigate to
the Sources window. Click the Summary
button on the Sources window to return
to the Summary window.

• Right-click a code location or problem set
to display a context menu, then choose
Explain Problem to access more
information on interpreting and resolving
the problem.

33

Step Tutorial Recap Key Tutorial Take-aways

• Double-click a code location on the
Sources window to open an editor.

4. Check your
work

You recompiled, relinked, and
reinspected the application.

Next step: Prepare your own application(s) for analysis. Then use the Intel Inspector XE to find and fix
errors.

 3 Getting Started Tutorial: Analyzing Threading Errors

34

Key Terms 4
 The following terms are used throughout this tutorial.

analysis: A process during which the Intel Inspector XE performs collection and finalization.

code location: A fact the Intel Inspector XE observes at a source code location, such as a write code
location. Sometimes called an observation. A focus code location is a source code location with relationships
you choose to explore. A related code location is a source code location with a relationship to a focus code
location and possibly other code locations.

collection: A process during which the Intel Inspector XE executes an application, identifies issues that may
need handling, and collects those issues in a result.

false positive: A reported error that is not an error.

finalization: A process during which the Intel Inspector XE uses debug information from binary files to
convert symbol information into filenames and line numbers, performs duplicate elimination, and forms
problem sets.

problem: A small group of closely related code locations that indicate an error in an application, such as a
data race problem.

problem set: A larger group of more loosely related code locations that could share a common solution,
such as a problem set resulting from deallocating an object too early during program execution. You can view
problem sets only after analysis is complete.

project: A compiled application, collection of configurable attributes for the compiled application, and a
container for results and suppression rules.

result: A collection of issues that may need handling.

target: An application the Intel Inspector XE inspects for errors.

35

 4 Getting Started Tutorial: Analyzing Threading Errors

36

	Getting Started Tutorial: Analyzing Threading Errors

	Legal Information
	Contents
	Overview
	Navigation Quick Start
	Analyzing Threading Errors
	Visual Studio* IDE: Choose Project and Build Application
	Standalone GUI: 	 Build Application and Create New Project
	Configure Analysis
	Run Analysis
	Choose Problem Set and Focus Code Location
	Interpret Result Data
	Resolve Issue
	Resolve Next Issue
	Rebuild and Rerun Analysis

	Summary
	Key Terms

