
Intel® Integrated Performance Primitives Developer Guide for Intel®
oneAPI Base Toolkit

Developer Guide

Notices and Disclaimers

Contents
Notices and Disclaimers... 4
What's New ... 5
Getting Help and Support... 6
Notational Conventions.. 7

Chapter 1: Getting Started with Intel® Integrated Performance
Primitives

Finding Intel® IPP on Your System..8
Setting Environment Variables... 10
Compiler Integration.. 10
Building Intel® IPP Applications.. 11
Using Intel® IPP Examples .. 13

Intel® IPP Examples Directory Structure ... 13
Building Intel® IPP Examples... 14

Finding the Intel® IPP Documentation ... 14

Chapter 2: Intel® Integrated Performance Primitives Theory of
Operation

Dispatching .. 15
Function Naming Conventions ... 16

Data-domain .. 16
Primitive vs. Variant Name ... 16
Data Types... 16
Descriptor .. 17
Parameters... 18

Intel® Integrated Performance Primitives Domain Details 18
Library Dependencies by Domain... 18

Chapter 3: Linking Your Application with Intel® Integrated
Performance Primitives

Linking Options ... 20
Automatically Linking Your Microsoft* Visual Studio* Project with Intel IPP...... 21

Chapter 4: Using Intel® Integrated Performance Primitives
Platform-Aware Functions

Chapter 5: Using Intel® Integrated Performance Primitives
Threading Layer (TL) Functions

Finding Intel® IPP TL Source Code Files... 24
Building Intel® IPP TL Libraries from Source Code .. 25

Chapter 6: Using Custom Library Tool for Intel® Integrated
Performance Primitives

System Requirements for Custom Library Tool... 27
Operation Modes ... 27
Building a Custom DLL with Custom Library Tool .. 27
Using Console Version of Custom Library Tool.. 28

Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

2

Chapter 7: Using Integration Wrappers for Intel® Integrated
Performance Primitives

Chapter 8: Programming Considerations
Core and Support Functions.. 32
Channel and Planar Image Data Layouts... 33
Regions of Interest .. 34
Managing Memory Allocations ... 35
Cache Optimizations .. 36

Chapter 9: Programming with Intel® Integrated Performance
Primitives in the Microsoft* Visual Studio* IDE

Configuring the Microsoft* Visual Studio* IDE to Link with Intel® IPP 37
Using the IntelliSense* Features.. 37

Appendix A: Appendix: Intel(R) IPP Threading and OpenMP* Support
Using Shared L2 Cache .. 40
Avoiding Nested Parallelization .. 40

Contents

3

Notices and Disclaimers
Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

The products described may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation
in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

4

What's New
This Developer Guide documents the Intel® Integrated Performance Primitives (Intel® IPP) for Intel® oneAPI
Base Toolkit.

Documentation for older versions of Intel® Integrated Performance Primitives is available for download only.
For a list of available documentation downloads by product version, see these pages:

• Download Documentation for Intel Parallel Studio XE
• Download Documentation for Intel System Studio

Intel® IPP 2021 document updates
Minor updates have been made to fix inaccuracies in the document.

What's New

5

https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-parallel-studio-xe-current-previous.html
https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-system-studio-current-previous.html

Getting Help and Support
If you did not register your Intel® software product during installation, please do so now at the Intel®
Software Development Products Registration Center. Registration entitles you to free technical support,
product updates, and upgrades for the duration of the support term.

For general information about Intel technical support, product updates, FAQs, tips and tricks and other
support questions, please visit http://www.intel.com/software/products/support/ and the Intel IPP forum
http://software.intel.com/en-us/forums/intel-integrated-performance-primitives/.

NOTE
If your distributor provides technical support for this product, please contact them rather than Intel.

 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

6

http://www.intel.com/software/products/support/
http://software.intel.com/en-us/forums/intel-integrated-performance-primitives/

Notational Conventions
The following font and symbols conventions are used in this document:

Italic Italic is used for emphasis and also indicates document names in body
text, for example:

see Intel IPP Developer Reference.

Monospace lowercase Indicates filenames, directory names, and pathnames.

Monospace lowercase
mixed with UPPERCASE

Indicates commands and command-line options, for example:
vars.bat ia32

UPPERCASE MONOSPACE Indicates system variables, for example: $PATH.

monospace italic Indicates a parameter in discussions, such as routine parameters, for
example: pSrc; makefile parameters, for example: function_list.

When enclosed in angle brackets, indicates a placeholder for an identifier,
an expression, a string, a symbol, or a value, for example: <ipp
directory>.

[items] Square brackets indicate that the items enclosed in brackets are optional.

{ item | item } Braces indicate that only one of the items listed between braces can be
selected. A vertical bar (|) separates the items.

Notational Conventions

7

Getting Started with Intel®
Integrated Performance
Primitives 1
This chapter helps you start using Intel® Integrated Performance Primitives (Intel® IPP) by giving a quick
overview of some fundamental concepts and showing how to build an Intel® IPP program.

Finding Intel® IPP on Your System
Intel® Integrated Performance Primitives (Intel® IPP) installs in the subdirectory referred to as <ipp
directory> inside <install_dir>. By default, the <install_dir> is:

• On Windows* OS: C:\Program files (x86)\Intel\oneapi (on certain systems, instead of Program
Files (x86), the directory name is Program Files)

• On Linux* OS:

• admin:/opt/intel/oneapi
• user:~/intel/oneapi

• On macOS*: /opt/intel/oneapi
The tables below describe the structure of the high-level directories on:

• Windows* OS
• Linux* OS
• macOS*

Windows* OS:
Directory Contents

env Batch files to set environmental variables in the
user shell

include Header files for the library functions

lib/ia32 Single-threaded static libraries for the IA-32
architecture

lib/intel64 Single-threaded static libraries for the Intel® 64
architecture

lib/<arch>/tl/<threading_type>, where
<arch> is one of {ia32, intel64}, and
<threading_type> is one of {tbb, openmp}

Threading Layer static and dynamic libraries

redist/ia32 Single-threaded DLLs for applications running on
processors with the IA-32 architecture

redist/intel64 Single-threaded DLLs for applications running on
processors with the Intel® 64 architecture

components Intel IPP interfaces and example files

tools/custom_library_tool_python Command-line and GUI tool for building custom
dynamic libraries

 1 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

8

Directory Contents

tools/<arch>/staticlib Header files for disabling the Intel IPP static
dispatcher (linking with one CPU-optimized variant)

Linux* OS:
Directory Contents

env Batch files to set environmental variables in the
user shell

include Header files for the library functions

lib/ia32 Single-threaded static libraries for the IA-32
architecture

lib/intel64 Single-threaded static libraries for the Intel® 64
architecture

lib/<arch>/tl/<threading_type>, where <arch>
is one of {ia32, intel64}, and <threading_type>
is one of {tbb, openmp}

Threading Layer static and dynamic libraries

lib/<arch>/nonpic Non-PIC single-threaded static libraries

lib/<arch>_and Intel IPP libraries for Android*

components Intel IPP interfaces and example files

tools/custom_library_tool_python Command-line and GUI tool for building custom
dynamic libraries

tools/<arch>/staticlib Header files for disabling the Intel IPP static
dispatcher (linking with one CPU-optimized
variant)

macOS*:
Directory Contents

env Batch files to set environmental variables in the
user shell

include Header files for the library functions

lib/intel64 Single-threaded static libraries for the Intel® 64
architecture

lib/<arch>_and Intel IPP libraries for Android*

components Intel IPP interfaces and example files

tools/custom_library_tool_python Header files for disabling the Intel IPP static
dispatcher (linking with one CPU-optimized
variant)

See Also
Notational Conventions

Getting Started with Intel® Integrated Performance Primitives 1

9

Setting Environment Variables
When the installation of Intel IPP is complete, set the environment variables in the command shell using one
of the script files in the env subdirectory of the Intel IPP installation directory:

On Windows* OS:

vars.bat for the IA-32 and Intel® 64 architectures.

On Linux* OS and macOS*:

vars.sh Linux* OS: for the IA-32 and Intel® 64 architectures.
macOS*: for the Intel® 64 architectures.

When using the vars script, you need to specify the architecture as a parameter. For example:

• vars.bat ia32
sets the environment for Intel IPP to use the IA-32 architecture on Windows* OS.

• . vars.sh intel64
sets the environment for Intel IPP to use the Intel® 64 architecture on Linux* OS.

The scripts set the following environment variables:
Windows* OS Linux* OS Purpose

IPPROOT IPPROOT Point to the Intel IPP installation
directory

LIB n/a Add the search path for the Intel
IPP single-threaded libraries

PATH LD_LIBRARY_PATH Add the search path for the Intel
IPP single-threaded DLLs

INCLUDE n/a Add the search path for the Intel
IPP header files

Compiler Integration
Intel® C++ Compiler and Microsoft Visual Studio* compilers simplify developing with Intel® IPP.

On Windows* OS, a default installation of Intel® IPP installs integration plug-ins. These enable the option to
configure your Microsoft Visual Studio* project for automatic linking with Intel IPP.

Intel® C++ Compiler also provides command-line parameters to set the link/include directories:

• On Windows* OS:
/Qipp-link:{dynamic|static} and /Qipp

• On Linux* OS:
-ipp-link={dynamic|static}

See Also
Automatically Linking Your Microsoft* Visual Studio* Project with Intel IPP
Linking Your Application with Intel(R) IPP

 1 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

10

Building Intel® IPP Applications
The code example below represents a short application to help you get started with Intel® IPP:

#include "ipp.h"
#include <stdio.h>
int main(int argc, char* argv[])
{
 const IppLibraryVersion *lib;
 IppStatus status;
 Ipp64u mask, emask;

 /* Init IPP library */
 ippInit();
 /* Get IPP library version info */
 lib = ippGetLibVersion();
 printf("%s %s\n", lib->Name, lib->Version);

 /* Get CPU features and features enabled with selected library level */
 status = ippGetCpuFeatures(&mask, 0);
 if(ippStsNoErr == status) {
 emask = ippGetEnabledCpuFeatures();
 printf("Features supported by CPU\tby IPP\n");
 printf("---\n");
 printf(" ippCPUID_MMX = ");
 printf("%c\t%c\t",(mask & ippCPUID_MMX) ? 'Y':'N',(emask & ippCPUID_MMX) ? 'Y':'N');
 printf("Intel(R) Architecture MMX technology supported\n");
 printf(" ippCPUID_SSE = ");
 printf("%c\t%c\t",(mask & ippCPUID_SSE) ? 'Y':'N',(emask & ippCPUID_SSE) ? 'Y':'N');
 printf("Intel(R) Streaming SIMD Extensions\n");
 printf(" ippCPUID_SSE2 = ");
 printf("%c\t%c\t",(mask & ippCPUID_SSE2) ? 'Y':'N',(emask & ippCPUID_SSE2) ? 'Y':'N');
 printf("Intel(R) Streaming SIMD Extensions 2\n");
 printf(" ippCPUID_SSE3 = ");
 printf("%c\t%c\t",(mask & ippCPUID_SSE3) ? 'Y':'N',(emask & ippCPUID_SSE3) ? 'Y':'N');
 printf("Intel(R) Streaming SIMD Extensions 3\n");
 printf(" ippCPUID_SSSE3 = ");
 printf("%c\t%c\t",(mask & ippCPUID_SSSE3) ? 'Y':'N',(emask & ippCPUID_SSSE3) ?
'Y':'N');
 printf("Intel(R) Supplemental Streaming SIMD Extensions 3\n");
 printf(" ippCPUID_MOVBE = ");
 printf("%c\t%c\t",(mask & ippCPUID_MOVBE) ? 'Y':'N',(emask & ippCPUID_MOVBE) ?
'Y':'N');
 printf("The processor supports MOVBE instruction\n");
 printf(" ippCPUID_SSE41 = ");
 printf("%c\t%c\t",(mask & ippCPUID_SSE41) ? 'Y':'N',(emask & ippCPUID_SSE41) ?
'Y':'N');
 printf("Intel(R) Streaming SIMD Extensions 4.1\n");
 printf(" ippCPUID_SSE42 = ");
 printf("%c\t%c\t",(mask & ippCPUID_SSE42) ? 'Y':'N',(emask & ippCPUID_SSE42) ?
'Y':'N');
 printf("Intel(R) Streaming SIMD Extensions 4.2\n");
 printf(" ippCPUID_AVX = ");
 printf("%c\t%c\t",(mask & ippCPUID_AVX) ? 'Y':'N',(emask & ippCPUID_AVX) ? 'Y':'N');
 printf("Intel(R) Advanced Vector Extensions instruction set\n");
 printf(" ippAVX_ENABLEDBYOS = ");
 printf("%c\t%c\t",(mask & ippAVX_ENABLEDBYOS) ? 'Y':'N',(emask & ippAVX_ENABLEDBYOS) ?
'Y':'N');

Getting Started with Intel® Integrated Performance Primitives 1

11

 printf("The operating system supports Intel(R) AVX\n");
 printf(" ippCPUID_AES = ");
 printf("%c\t%c\t",(mask & ippCPUID_AES) ? 'Y':'N',(emask & ippCPUID_AES) ? 'Y':'N');
 printf("Intel(R) AES instruction\n");
 printf(" ippCPUID_SHA = ");
 printf("%c\t%c\t",(mask & ippCPUID_SHA) ? 'Y':'N',(emask & ippCPUID_SHA) ? 'Y':'N');
 printf("Intel(R) SHA new instructions\n");
 printf(" ippCPUID_CLMUL = ");
 printf("%c\t%c\t",(mask & ippCPUID_CLMUL) ? 'Y':'N',(emask & ippCPUID_CLMUL) ?
'Y':'N');
 printf("PCLMULQDQ instruction\n");
 printf(" ippCPUID_RDRAND = ");
 printf("%c\t%c\t",(mask & ippCPUID_RDRAND) ? 'Y':'N',(emask & ippCPUID_RDRAND) ?
'Y':'N');
 printf("Read Random Number instructions\n");
 printf(" ippCPUID_F16C = ");
 printf("%c\t%c\t",(mask & ippCPUID_F16C) ? 'Y':'N',(emask & ippCPUID_F16C) ? 'Y':'N');
 printf("Float16 instructions\n");
 printf(" ippCPUID_AVX2 = ");
 printf("%c\t%c\t",(mask & ippCPUID_AVX2) ? 'Y':'N',(emask & ippCPUID_AVX2) ? 'Y':'N');
 printf("Intel(R) Advanced Vector Extensions 2 instruction set\n");
 printf(" ippCPUID_AVX512F = ");
 printf("%c\t%c\t",(mask & ippCPUID_AVX512F) ? 'Y':'N',(emask & ippCPUID_AVX512F) ?
'Y':'N');
 printf("Intel(R) Advanced Vector Extensions 3.1 instruction set\n");
 printf(" ippCPUID_AVX512CD = ");
 printf("%c\t%c\t",(mask & ippCPUID_AVX512CD) ? 'Y':'N',(emask & ippCPUID_AVX512CD) ?
'Y':'N');
 printf("Intel(R) Advanced Vector Extensions CD (Conflict Detection) instruction set\n");
 printf(" ippCPUID_AVX512ER = ");
 printf("%c\t%c\t",(mask & ippCPUID_AVX512ER) ? 'Y':'N',(emask & ippCPUID_AVX512ER) ?
'Y':'N');
 printf("Intel(R) Advanced Vector Extensions ER instruction set\n");
 printf(" ippCPUID_ADCOX = ");
 printf("%c\t%c\t",(mask & ippCPUID_ADCOX) ? 'Y':'N',(emask & ippCPUID_ADCOX) ?
'Y':'N');
 printf("ADCX and ADOX instructions\n");
 printf(" ippCPUID_RDSEED = ");
 printf("%c\t%c\t",(mask & ippCPUID_RDSEED) ? 'Y':'N',(emask & ippCPUID_RDSEED) ?
'Y':'N');
 printf("The RDSEED instruction\n");
 printf(" ippCPUID_PREFETCHW = ");
 printf("%c\t%c\t",(mask & ippCPUID_PREFETCHW) ? 'Y':'N',(emask & ippCPUID_PREFETCHW) ?
'Y':'N');
 printf("The PREFETCHW instruction\n");
 printf(" ippCPUID_KNC = ");
 printf("%c\t%c\t",(mask & ippCPUID_KNC) ? 'Y':'N',(emask & ippCPUID_KNC) ? 'Y':'N');
 printf("Intel(R) Xeon Phi(TM) Coprocessor instruction set\n");
 }
 return 0;
}

This application consists of three sections:

1. Initialize the Intel IPP library. This stage is required to take advantage of full Intel IPP optimization. The
ippInit() function detects the processor type and sets the dispatcher to use the processor-specific
code of the Intel® IPP library corresponding to the instruction set capabilities available. If your
application runs without ippInit(), the Intel IPP library is auto-initialized with the first call of the Intel
IPP function from any domain that is different from ippCore.

 1 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

12

In certain debugging scenarios, it is helpful to force a specific implementation layer using
ippSetCpuFeatures(), instead of the best as chosen by the dispatcher.

2. Get the library layer name and version. You can also get the version information using the
ippversion.h file located in the /include directory.

3. Show the hardware optimizations used by the selected library layer and supported by CPU.

Building the First Example with Microsoft Visual Studio* Integration on Windows* OS
On Windows* OS, Intel IPP applications are significantly easier to build with Microsoft* Visual Studio*. To
build the code example above, follow the steps:

1. Start Microsoft Visual Studio* and create an empty C++ project.
2. Add a new c file and paste the code into it.
3. Set the include directories and the linking model as described in Automatically Linking Your Microsoft*

Visual Studio* Project with Intel IPP.
4. Compile and run the application.

If you did not install the integration plug-in, configure your Microsoft* Visual Studio* IDE to build Intel IPP
applications following the instructions provided in Configuring the Microsoft Visual Studio* IDE to Link with
Intel® IPP.

Building the First Example on Linux* OS
To build the code example above on Linux* OS, follow the steps:

1. Paste the code into the editor of your choice.
2. Make sure the compiler and Intel IPP variables are set in your shell. For information on how to set

environment variables see Setting Environment Variables.
3. Compile with the following command: icc ipptest.cpp -o ipptest -I $IPPROOT/include -L

$IPPROOT/lib/<arch> -lippi -lipps -lippcore. For more information about which Intel IPP
libraries you need to link to, see Library Dependencies by Domain and Linking Options.

4. Run the application.

See Also
Automatically Linking Your Microsoft* Visual Studio* Project with Intel IPP
Configuring the Microsoft Visual Studio* IDE to Link with Intel® IPP
Setting Environment Variables
Library Dependencies by Domain
Linking Options
Dispatching
Intel® IPP Examples Directory Structure

Using Intel® IPP Examples
This section provides information on Intel IPP examples directory structure and examples build system.

Intel® IPP Examples Directory Structure
The Intel IPP package includes code examples, located in the components_and_examples_<os>.zip
archive at the <ipp directory>/components/ subdirectory. The examples_core subdirectory inside the
archive contains the following files and directories:

Directory Contents

common Common code files for all examples

documentation Documentation for the Intel IPP examples (ipp-examples.html)

Getting Started with Intel® Integrated Performance Primitives 1

13

Directory Contents

ipp_custom_dispatcher Custom dispatcher usage example

ipp_fft Fast Fourier transformation example

ipp_morphology Morphological reconstruction example

ipp_resize_mt Image resizing example

ipp_thread Example of external threading of Intel IPP functions

NOTE
Intel® IPP samples are no longer in active development and available as a separate download.

See Also
Finding Intel® IPP on Your System

Building Intel® IPP Examples
For building instructions refer to examples_core/documentation/ipp-examples.html provided with the /
<ipp directory>/components/components_and_examples_<os>.zip archive.

See Also
Intel® IPP Examples Directory Structure

Finding the Intel® IPP Documentation
You can find getting started instructions and a listing of all the available online documents with links in the
get_started.htm file available in the following directory:

• On Windows* OS: C:\Program files (x86)\Intel\oneAPI\ipp\<version>\documentation (on
certain systems, instead of Program Files (x86), the directory name is Program Files)

• On Linux* OS and macOS* : /opt/intel/oneapi/ipp/<version>/documentation
Additional documentation on the Intel IPP examples (documentation/ipp-examples.html) is available in
the components_and_examples_<os>.zip archive at the <ipp directory>/components/ subdirectory.

The Intel IPP forum and knowledge base can be useful locations to search for questions not answered by the
documents above. Please see: http://software.intel.com/en-us/forums/intel-integrated-performance-
primitives/ .

See Also
Finding Intel® IPP on Your System

 1 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

14

Intel® Integrated Performance
Primitives Theory of Operation 2
This section discusses dispatching of the Intel® Integrated Performance Primitives (Intel® IPP) libraries to
specific processors, provides functions and parameters naming conventions, and explains the data types on
which Intel IPP performs operations. This section also provides Intel IPP domain details, including existing
library dependencies by domain.

Dispatching
Intel® IPP uses multiple function implementations optimized for various CPUs. Dispatching refers to detection
of your CPU and selecting the corresponding Intel IPP binary path. For example, the ippie9 library in the /
redist/intel64 directory contains the image processing libraries optimized for 64-bit applications on
processors with Intel® Advanced Vector Extensions (Intel® AVX) enabled such as the 2nd Generation Intel®
Core™ processor family.

A single Intel IPP function, for example ippsCopy_8u(), may have many versions, each one optimized to
run on a specific Intel® processor with specific architecture, for example, the 64-bit version of this function
optimized for the 2nd Generation Intel® Core™ processor is e9_ippsCopy_8u(), and version optimized for 64-
bit applications on processors with Intel® Streaming SIMD Extensions 4.2 (Intel® SSE 4.2) is
y8_ippsCopy_8u(). This means that a prefix before the function name determines CPU model. However,
during normal operation the dispatcher determines the best version and you can call a generic function
(ippsCopy_8u in this example).

Intel® IPP is designed to support application development on various Intel® architectures. This means that the
API definition is common for all processors, while the underlying function implementation takes into account
the strengths of each hardware generation.

By providing a single cross-architecture API, Intel IPP enables you to port features across Intel® processor-
based desktop, server, and mobile platforms. You can use your code developed for one processor architecture
for many processor generations.

The following table shows processor-specific codes that Intel IPP uses:

Description of Codes Associated with Processor-Specific Libraries
 IA-3
2
Intel®
archit
ectur
e

 Intel® 64
architecture

Windo
ws*

Linux*
OS Description

w7 + + Optimized for processors with Intel SSE2

m7 + + Optimized for processors with Intel SSE3

s8 n8 + + Optimized for processors with Supplemental Streaming SIMD
Extensions 3 (SSSE3)

p8 y8 + + Optimized for processors with Intel SSE4.2

g9 e9 + + Optimized for processors with Intel® Advanced Vector
Extensions (Intel® AVX) and Intel® Advanced Encryption
Standard New Instructions (Intel® AES-NI)

h9 l9 + + Optimized for processors with Intel® Advanced Vector
Extensions 2 (Intel® AVX2)

n0 + + Optimized for 2nd Generation Intel® Xeon Phi™ Processor

Intel® Integrated Performance Primitives Theory of Operation 2

15

 IA-3
2
Intel®
archit
ectur
e

 Intel® 64
architecture

Windo
ws*

Linux*
OS Description

k0 + + Optimized for processors with Intel® Advanced Vector
Extensions 512 (Intel® AVX-512)

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Function Naming Conventions
Intel IPP functions have the same naming conventions for all domains.

Function names in Intel IPP have the following general format:

ipp<data-domain><name>_<datatype>[_<descriptor>](<parameters>)

NOTE
The core functions in Intel IPP do not need an input data type. These functions have ipp as a prefix
without the data-domain field. For example, ippGetStatusString.

See Also
Core and Support Functions

Data-domain
The data-domain element is a single character indicating type of input data. Intel IPP supports the following
data-domains:

s one-dimensional operations on signals, vectors, buffers

i two-dimensional operations on images, video frames

Primitive vs. Variant Name
The name element identifies the algorithm or operation of the function. The low-level algorithm that function
implements is a primitive. This algorithm often has several variants for different data types and
implementation variations.

For example, the CToC modifier in the ippsFFTInv_CToC_32fc function signifies that the inverse fast Fourier
transform operates on complex floating point data, performing the complex-to-complex (CToC) transform.

Data Types
The datatype element indicates data types used by the function, in the following format:

<bit depth><bit interpretation>,

 2 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

16

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

where

bit depth = <1|8|16|32|64>
and

bit interpretation<u|s|f>[c]
Here u indicates “unsigned integer”, s indicates “signed integer”, f indicates “floating point”, and c indicates
“complex”.

For functions that operate on a single data type, the datatype element contains only one value.

If a function operates on source and destination signals that have different data types, the respective data
type identifiers are listed in the function name in order of source and destination as follows:

<datatype> = <src1Datatype>[src2Datatype][dstDatatype]
For more information about supported data types see the Intel® IPP Reference Manual available in the Intel®
Software Documentation Library.

See Also
Intel® Software Documentation Library

Descriptor
The optional descriptor element describes the data associated with the operation. Descriptors are
individual characters that indicate additional details of the operation.

The Intel IPP functions use the following descriptors:
Descriptor Description Example

A Image data contains an alpha channel as the last
channel, requires C4, alpha-channel is not
processed.

ippiFilterMax_8u_AC4R

Axx Advanced arithmetic operations with xx bits of
accuracy.

ippsPowx_32f_A11

C The function operates on a specified channel of
interest (COI) for each source image.

ippiSet_8u_C3CR

Cn Image data consists of n channels. Possible values
for n: 1, 2, 3, 4.

ippiFilterBorder_32f_C1R

Dx

D

Signal is x-dimensional (default is D1). ippsConcat_8u_D2

I Operation is in-place (default is not-in-place). ippsAdd_16s_I

L Platform-aware functions (see Using Intel IPP
Platform-Aware Functions for details).

ippiAdd_8u_C1RSfs_L

TL Threading layer functions (see Using Intel IPP
Threading Layer Functions for details).

ippiAdd_8u_C1RSfs_LT

M Operation uses a mask to determine pixels to be
processed.

ippiCopy_8u_C1MR

Pn Image data consists of n discrete planar (not-
interleaved) channels with a separate pointer to
each plane. Possible values for n: 1, 2, 3, 4.

ippiAlphaPremul_8u_AP4R

R Function operates on a defined region of interest
(ROI) for each source image.

ippiMean_8u_C4R

Intel® Integrated Performance Primitives Theory of Operation 2

17

https://software.intel.com/content/www/us/en/develop/tools/data-analytics-acceleration-library/documentation.html

Descriptor Description Example

s Saturation and no scaling (default). ippiConvert_16s16u_C1Rs

Sfs Saturation and fixed scaling mode (default is
saturation and no scaling).

ippsConvert_16s8s_Sfs

The descriptors in function names are presented in the function name in alphabetical order.

Some data descriptors are default for certain operations and not added to the function names. For example,
the image processing functions always operate on a two-dimensional image and saturate the results without
scaling them. In these cases, the implied descriptors D2 (two-dimensional signal) and s (saturation and no
scaling) are not included in the function name.

Parameters
The parameters element specifies the function parameters (arguments).

The order of parameters is as follows:

• All source operands. Constants follow vectors.
• All destination operands. Constants follow vectors.
• Other, operation-specific parameters.

A parameter name has the following conventions:

• All parameters defined as pointers start with p, for example, pPhase, pSrc; parameters defined as double
pointers start with pp, for example, ppState. All parameters defined as values start with a lowercase
letter, for example, val, src, srcLen.

• Each new part of a parameter name starts with an uppercase character, without underscore; for example,
pSrc, lenSrc, pDlyLine.

• Each parameter name specifies its functionality. Source parameters are named pSrc or src, in some
cases followed by names or numbers, for example, pSrc2, srcLen. Output parameters are named pDst
or dst followed by names or numbers, for example, pDst2, dstLen. For in-place operations, the input/
output parameter contains the name pSrcDst or srcDst.

Intel® Integrated Performance Primitives Domain Details
Intel IPP is divided into groups of related functions. Each subdivision is called domain, and has its own
header file, static libraries, dynamic libraries, and tests. The table below lists each domain's code, header and
functional area.

The file ipp.h includes Intel IPP header files with the exception of cryptography and generated functions. If
you do not use cryptography and generated functions, include ipp.h in your application for forward
compatibility. If you want to use cryptography functions, you must directly include ippcp.h in your
application.

* available only within the Intel® System Studio suite

Library Dependencies by Domain
When you link to a certain Intel® IPP domain library, you must also link to the libraries on which it depends.
The following table lists library dependencies by domain.

Library Dependencies by Domain

Domain Domain Code Depends on

Color Conversion CC Core, VM, S, I

 2 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

18

Domain Domain Code Depends on

String Operations CH Core, VM, S

Computer Vision CV Core, VM, S, I

Data Compression DC Core, VM, S

Image Processing I Core, VM, S

Signal Processing S Core, VM

Vector Math VM Core

To find which domain your function belongs to, refer to the Intel® IPP Developer Reference available in the
Intel® Software Documentation Library.

See Also
Intel® Software Documentation Library

Intel® Integrated Performance Primitives Theory of Operation 2

19

https://software.intel.com/content/www/us/en/develop/documentation.html

Linking Your Application with
Intel® Integrated Performance
Primitives 3
This section discusses linking options available in Intel® Integrated Performance Primitives (Intel® IPP).

The Intel IPP library supports the following linking options:

• Single-threaded dynamic
• Single-threaded static
• Threading Layer static
• Threading Layer dynamic

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Linking Options
Intel® Integrated Performance Primitives (Intel® IPP) is distributed as:

• Static library: static linking results in a standalone executable
• Dynamic/shared library: dynamic linking defers function resolution until runtime and requires that you

bundle the redistributable libraries with your application

The following table provides description of libraries available for linking.
Single-threaded

(non-threaded)

Threading Layer

(externally threaded)
Description Suitable for application-level threading Implementation of application-level

threading depends on single-threaded
libraries

Found in Main package

After installation: <ipp directory>/lib/
<arch> (static) and <ipp directory>/
redist/<arch> (dynamic)

Main package

After installation:<ipp
directory>/lib/<arch>/tl/
<threading_type>, where

<threading_type> is one of {tbb,
openmp}

Static linking Windows* OS: mt suffix in a library name
(ipp<domain>mt.lib)

Linux* OS: no suffix in a library name
(libipp<domain>.a)

Windows* OS:
_mt_tl_<threading_sfx> suffix in a
library name
(ipp<domain>mt_tl_<threading_sf
x>.lib)

Linux* OS: _tl_<threading_sfx> suffix
in a library name
(libipp<domain>_tl_<threading_s
fx>.a)

 3 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

20

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

+ single-threaded libraries
dependency, where <threading_sfx> is
one of {tbb, omp}

Dynamic Linking Default (no suffix)

Windows* OS: ipp<domain>.dll
Linux* OS: libipp<domain>.so

tl<threading_sfx> suffix

Windows* OS:
ipp<domain>_tl_<threading_sfx>.
dll
Linux* OS:
libipp<domain>_tl_<threading_sf
x>.so
+ single-threaded library dependency,
where <threading_sfx> is one of {tbb,
omp}

To switch between Intel IPP libraries, set the path to the preferred library in system variables or in your
project, for example:

• Windows* OS:

Single-threaded: SET LIB=<ipp directory>/lib/<arch>
Threading Layer: SET LIB=<ipp directory>/lib/<arch>/tl/<threading_type>. Additionally, set
path to single-threaded libraries: SET LIB=<ipp directory>/lib/<arch>

• Linux* OS:

Single-threaded: gcc <options> -L <ipp directory>/lib/<arch>
Threading Layer: gcc <options> -L <ipp directory>/lib/<arch>/tl<threading_type>.
Additionally, set path to single-threaded libraries: gcc <options> -L <ipp directory>/lib/<arch>

NOTE
On Linux* OS, Intel IPP library depends on the following Intel® C++ Compiler runtime libraries:
libirc.a, libsvml.a, and libimf.a. You should add a link to these libraries into your project. You
can find these libraries in <intel compiler directory>/lib folders.

Threading Layer depends on the OpenMP* or Intel® Threading Building Blocks (Intel® TBB) library
according to the selected threading type. You can find these libraries in <intel compiler
directory>/lib or <tbb directory>/lib folders.

See Also
Automatically Linking Your Microsoft* Visual Studio* Project with Intel IPP
Configuring the Microsoft Visual Studio* IDE to Link with Intel® IPP
Library Dependencies by Domain

Automatically Linking Your Microsoft* Visual Studio*
Project with Intel IPP
After a default installation of the Intel® IPP, you can easily configure your project to automatically link with
Intel IPP. Configure your Microsoft* Visual Studio* project for automatic linking with Intel IPP as follows:

1. Go to Project>Properties>Configuration Properties>Intel Performance Libraries.
2. Change the Use IPP property setting by selecting one of the options to set the include directories and

the linking model, as shown on the screen shot below.

Linking Your Application with Intel® Integrated Performance Primitives 3

21

 3 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

22

Using Intel® Integrated
Performance Primitives
Platform-Aware Functions 4
Intel® Integrated Performance Primitives (Intel® IPP) library provides so-called platform-aware functions for
signal and image processing. While the rest of Intel IPP functions support only signals or images of 32-bit
integer size, Intel IPP platform-aware functions work with 64-bit object sizes if it is supported by the target
platform.

The API of platform-aware functions is similar to the API of other Intel IPP functions and has only slight
differences. You can distinguish Intel IPP platform-aware functions by the L suffix in the function name, for
example, ippiAdd_8u_C1RSfs_L. With Intel IPP platform-aware functions you can overcome 32-bit size
limitations.

Intel IPP platform-aware functions are declared in separate header files with the _l suffix, for example,
ippi_l.h. However, you do not have to additionally include these headers in your application because they
are already included in standard Intel IPP headers (without the _l suffix). Platform-aware functions cover
only the functionality that is implemented in standard Intel IPP functions, and can be considered as additional
flavors to the existing functions declared in standard Intel IPP headers.

Using Intel® Integrated Performance Primitives Platform-Aware Functions 4

23

Using Intel® Integrated
Performance Primitives
Threading Layer (TL) Functions 5
Intel® Integrated Performance Primitives (Intel® IPP) library provides threading layer (TL) functions for image
processing. Intel IPP TL functions are visual examples of external threading for Intel IPP functions. Taking
advantage of multithreaded execution and tile processing, Intel IPP TL functions enable you to overcome 32-
bit size limitations.

TL functions are provided as:

• Pre-built binaries:

• Header files have the _tl suffix and can be found in: <ipp directory>/include
• Library files for use with Intel® OpenMP have the _tl_omp suffix and can be found in: <ipp

directory>/lib/<arch>/tl/openmp
• Library files for use with Intel® oneTBB have the _tl_tbb suffix and can be found in: <ipp

directory>/lib/<arch>/tl/tbb
• Source code samples: the source code and corresponding header files are available in the

components_and_examples_<os>.zip archive inside the <ipp directory>/components subdirectory.
For more information about the archive contents and source code building instructions, refer to Finding
Intel® IPP TL Source Code Files and Building Intel® IPP TL Libraries from Source Code, respectively.

The API of TL functions is similar to the API of other Intel IPP functions and has only slight differences. You
can distinguish Intel IPP TL functions by the _LT or _T suffix in the function name, for example,
ippiAdd_8u_C1RSfs_LT. Intel IPP TL functions are implemented as wrappers over Intel IPP functions by
using tiling and multithreading with OpenMP* or the Intel® Threading Building Blocks. For implementation
details, please see the corresponding source code files.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Finding Intel® IPP TL Source Code Files
Building Intel® IPP TL Libraries from Source Code
Using Intel® Integrated Performance Primitives Platform-Aware Functions

Finding Intel® IPP TL Source Code Files
You can find the Intel IPP TL source code files in the components_and_examples_<os>.zip archive
available in the <ipp directory>/components subdirectory. The library source code and header files are
located in the interfaces/tl subdirectory.

 5 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

24

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Building Intel® IPP TL Libraries from Source Code
You can find the TL libraries source code and the tl_resize example in the /components/interfaces/tl
directory inside the components_and_examples_<os> archive available in <ipp directory>/
components/. Before building an application that uses TL, make sure that the IPPROOT environment variable
is set correctly and points to the Intel IPP library location, for more information see Setting Environment
Variables.

To build Intel IPP TL libraries and the tl_resize example, do the following:

Windows* OS
Prerequisites: The tl_resize example uses OpenGL rendering to display results. This requires Windows*
SDK to be installed on your system. Usually Windows* SDK is provided with the Microsoft* Visual Studio*
distribution. Alternatively, you can download Windows* SDK for your version of Windows* OS from https://
www.microsoft.com. To disable the rendering part of tl_resize, remove the ENABLE_RENDERING macro
from the preprocessors definitions.

1. Open the tl.sln file in Microsoft* Visual Studio*.
2. Choose the required configuration in the solution and build the solution using the Build command. The

example will be linked with the newly built TL libraries from the same solution.

To build TL libraries on the Intel® Threading Building Blocks (Intel® TBB) library, you need to install the Intel
TBB library (for the Intel IPP standalone package).

Linux* OS
Prerequisites: The tl_resize example uses OpenGL rendering to display results. This requires the
following packages to be installed:

• libx11-dev
• libgl1-mesa-dev
Execute the following commands using gcc4 or higher:

• To build TL libraries:

make libs [ARCH=ia32|intel64] [CONF=release|debug] [TBBROOT=]
• To build the tl_resize example and TL libraries:

make all [ARCH=ia32|intel64] [CONF=release|debug] [RENDERER=0|1] [TBBROOT=]
If TBBROOT is set to the Intel® TBB installation root, TL libraries will be built with the TBB support. In this
case, you need to install Intel TBB library (for the Intel IPP standalone package).

If TBBROOT is set to nothing, the OpenMP* support will be used.

See Also
Setting Environment Variables

Using Intel® Integrated Performance Primitives Threading Layer (TL) Functions 5

25

Using Custom Library Tool for
Intel® Integrated Performance
Primitives 6
With the Intel® Integrated Performance Primitives (Intel® IPP) Custom Library Tool, you can build your own
dynamic library containing only the Intel IPP/Intel IPP Cryptography functionality that is necessary for your
application.

The use of custom libraries built with the Custom Library Tool provides the following advantages:

• Package size. Your package may have much smaller size if linked with a custom library because standard
dynamic libraries additionally contain all optimized versions of Intel IPP/Intel IPP Cryptography functions
and a dispatcher. The following table compares the contents and size of packages for an end-user
application linked with a custom dynamic library and an application linked with the standard Intel IPP
dynamic libraries:

Application linked with custom DLL Application linked with Intel IPP dynamic
libraries

ipp_test_app.exe (for Windows*) or
ipp_test_app (for Linux* OS and macOS*)

ipp_custom_{dll|so}.{dll|so|dylib}

ipp_test_app.exe (for Windows*) or
ipp_test_app (for Linux* OS and macOS*)

ippi.{dll|so|dylib}
ippig9.{dll|so|dylib}
ippih9.{dll|so|dylib}
ippip8.{dll|so|dylib}
ippipx.{dll|so|dylib}
ippis8.{dll|so|dylib}
ippiw7.{dll|so|dylib}
ipps.{dll|so|dylib}
ippsg9.{dll|so|dylib}
ippsh9.{dll|so|dylib}
ippsp8.{dll|so|dylib}
ippspx.{dll|so|dylib}
ippss8.{dll|so|dylib}
ippsw7.{dll|so|dylib}
ippcore.{dll|so|dylib}

Package size: 0.1 Mb Package size: 121.5 Mb
• Smooth transition to a higher version of Intel IPP/Intel IPP Cryptography. You can easily build

the same custom dynamic library from a higher version of Intel IPP/Intel IPP Cryptography and substitute
the libraries in your application without relinking.

NOTE The current Python* version of the Intel IPP Custom Library Tool supports the host-host
configuration only, the host-target configuration is currently not supported.

 6 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

26

System Requirements for Custom Library Tool
Recommended hardware:

• System based on the 2nd Generation Intel® Core i3, i5, i7 or higher processor

Software requirements:

• Visual Studio* 2013 (or higher) Redistributable Packages
• Python* 3.7
• PyQt5 (required only for the GUI version of the Intel IPP Custom Library Tool)

Operation Modes
You can choose one of two tool operation modes, as shown at the screen shot below:

• Auto build. The tool automatically sets the environment and builds a dynamic library.
• Save script. The tool generates and saves a custom build script.

Building a Custom DLL with Custom Library Tool
Follow the steps below to build a custom dynamic library using the Intel IPP Custom Library Tool:

Using Custom Library Tool for Intel® Integrated Performance Primitives 6

27

1. Run python main.py to launch the GUI version of the tool.
2. Select the Intel IPP or Intel IPP Cryptography package (optional). If you run the tool inside the Intel IPP

or Intel IPP Cryptography package, the current one will be used as default. Otherwise, you need to
provide the path to the package.

3. Configure your custom library.
4. Set the library name.
5. Select functions from the list. You can build a dynamic library containing Intel IPP or Intel IPP

Cryptography functionality, but not both. If you need to add threaded functions to the custom list,
select Threading layer checkbox to show the list of threaded functions.

6. Build the library automatically (if available) or save a build script.

NOTE
You can save the configuration and the list of custom functions as a project by clicking Save project
or Save project as.... The project is saved as a file with the .cltproj extension. Then you can open
this project by clicking Open project button.

Using Console Version of Custom Library Tool
Follow the steps below to build a custom dynamic library using console version of the Custom Library Tool:

 6 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

28

1. Define a list of Intel IPP functions that the Intel IPP Custom Library Tools should export to your custom
dynamic library. See the example text file below:

2. Run python main.py with the following parameters:

-c, --console Launches the console version of the tool (the GUI version is
used by default).

-g, --generate Enables the script generation mode (the build mode is used
by default).

-n <name>, --name <name> Output library name.

-p <path>, --path <path> Path to the output directory.

-root <root_path> Path to Intel IPP or Intel IPP Cryptography package root
directory

-f <function>, --function
<function>

Name of a function to be included into your custom
dynamic library.

-ff <functions_file>, --
functions_file <functions_file>

Path to a file with a list of functions to be included into your
final dynamic library (the -f or --function flag can be
used to add functions on the command line).

-arch={ia32|intel64} Enables all actions for the IA-32 or the Intel ® 64
architecture (Intel ® 64 architecture is used by default).

-mt, --multi-threaded Enables multi-threaded libraries (single-threaded libraries
are used by default).

-tl={tbb|openmp} Sets Intel TBB or OpenMP* as the threading layer.

-d , --custom_dispatcher
<cpu_set>

Sets the exact list of CPUs that must be supported by
custom dynamic library and generates a C-file with the
custom dispatcher.

-h, --help Prints command help.

For example:

Generate build scripts in console mode
with the output dynamic library name “my_custom_dll.dll”
with functions defined in the “functions.txt” file
optimized only for processors with

Using Custom Library Tool for Intel® Integrated Performance Primitives 6

29

Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
using multi-threaded IA-32 Intel IPP libraries

python main.py -c -g
–n my_custom_dll
-p “C:\my_project”
-ff “C:\my_project\functions.txt”
-d avx512bw
-arch=ia32 -mt

 6 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

30

Using Integration Wrappers for
Intel® Integrated Performance
Primitives 7
Intel® Integrated Performance Primitives (Intel® IPP) Integration Wrappers aggregate Intel IPP functionality in
easy-to-use functions and help to reduce effort required to integrate Intel IPP into your code.

Integration Wrappers consist of C and C++ interfaces:

• C interface aggregates Intel IPP functions of similar functionality with various data types and channels
into one function. Initialization steps required by several Intel IPP functions are implemented in one
initialization function for each functionality. To reduce the size of your code and save time required for
integration, the wrappers handle all memory management and Intel IPP function selection routines.

• C++ interface wraps around the C interface to provide default parameters, easily initialized objects as
parameters, exception handling, and objects for complex Intel IPP functions with automatic memory
management for specification structures.

In general, Integration Wrappers are designed to improve user experience with threading of Intel IPP
functions and tiling.

Integration Wrappers are provided as a separate download. For more information about the main concepts,
usage, and implementation details, refer to the Developer Guide and Reference for Intel IPP Integration
Wrappers document available with the Integration Wrappers package.

Using Integration Wrappers for Intel® Integrated Performance Primitives 7

31

Programming Considerations 8
Core and Support Functions
There are several general purpose functions that simplify using the library and report information on how it is
working:

• Init/GetCpuFeatures/ SetCpuFeatures/GetEnabledCpuFeatures
• GetStatusString
• GetLibVersion
• Malloc/Free

Init/GetCpuFeatures/ SetCpuFeatures/GetEnabledCpuFeatures
The ippInit function detects the processor type and sets the dispatcher to use the processor-specific code
of the Intel® IPP library corresponding to the instruction set capabilities available. If your application does not
call the ippInit function, initialization of the library to the available instruction set capabilities is performed
automatically with the first call of any Intel IPP function from the domain different from ippCore.

In some cases like debugging and performance analysis, you may want to get the data on the difference
between various processor-specific codes on the same machine. Use the ippSetCpuFeatures function for
this. This function sets the dispatcher to use the processor-specific code according to the specified set of CPU
features. You can obtain features supported by CPU using ippGetCpuFeatures and obtain features
supported by the currently dispatched Intel IPP code using ippGetEnabledCpuFeatures. If you need to
enable support of some CPU features without querying the system (without CPUID instruction call), you must
set the ippCPUID_NOCHECK bit for ippSetCpuFeatures, otherwise, only supported by the current CPU
features are set.

The ippInit, ippGetCpuFeatures, ippGetEnabledCpuFeatures, and ippSetCpuFeatures functions are
a part of the ippCore library.

GetStatusString
The ippGetStatusString function decodes the numeric status return value of Intel® IPP functions and
converts them to a human readable text:

 status= ippInit();
 if(status != ippStsNoErr) {
 printf("IppInit() Error:\n");
 printf("%s\n", ippGetStatusString(status));
 return -1;
 }

The ippGetStatusString function is a part of the ippCore library.

GetLibVersion
Each domain has its own GetLibVersion function that returns information about the library layer in use
from the dispatcher. The code snippet below demonstrates the usage of the ippiGetLibVersion from the
image processing domain:

const IppLibraryVersion* lib = ippiGetLibVersion();
printf(“%s %s %d.%d.%d.%d\n”, lib->Name, lib->Version,
lib->major, lib->minor, lib->majorBuild, lib->build);

 8 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

32

Use this function in combination with ippInitCpu to compare the output of different implementations on the
same machine.

Malloc/Free
Intel IPP functions provide better performance if they process data with aligned pointers. Intel IPP provides
the following functions to ensure that data is aligned appropriately - 16-byte for CPU that does not support
Intel® Advanced Vector Extensions (Intel® AVX) instruction set, 32-byte for Intel AVX and Intel® Advanced
Vector Extensions 2 (Intel® AVX2), and 64-byte for Intel® Many Integrated Core instructions.

void* ippMalloc(int length)
void ippFree(void* ptr)

The ippMalloc function provides appropriately aligned buffer, and the ippFree function frees it.

The signal and image processing libraries provide ippsMalloc and ippiMalloc functions, respectively, to
allocate appropriately aligned buffer that can be freed by the ippsFree and ippiFree functions.

NOTE

• When using buffers allocated with routines different from Intel IPP, you may get better performance
if the starting address is aligned. If the buffer is created without alignment, use the ippAlignPtr
function.

For more information about the Intel IPP functions see the Intel® Integrated Performance Primitives for Intel®
Architecture Developer Reference available in Intel® Software Documentation Library.

See Also
Cache Optimizations
Intel® Software Documentation Library

Channel and Planar Image Data Layouts
Intel® IPP functions operate on two fundamental data layouts: channel and planar.

In channel format, all values share the same buffer and all values for the same pixel position are interleaved
together. Functions working with channel data have a _Cn descriptor, where n can take one of the following
values: 1, 2, 3, or 4. The figure below shows 24 bit per pixel RGB data, which is represented as _C3.

RGB data in _C3 layout

Programming Considerations 8

33

https://software.intel.com/content/www/us/en/develop/documentation.html

For planar format, there is one value per pixel but potentially several related planes. Functions working with
planar data have a _Pn descriptor, where n can take one of the following values: 1, 2, 3, or 4. The figure
below shows 24 bit per pixel RGB data represented as _P3.

RGB data in _P3 layout

NOTE
For many video and image processing formats planes may have different sizes.

Regions of Interest
Many Intel® IPP image processing functions operate with a region of interest (ROI). These functions include
an R descriptor in their names.

A ROI can be the full image or a subset. This can simplify thread or cache blocking.

Many functions sample a neighborhood and cannot provide values for an entire image. In this case a ROI
must be defined for the subset of the destination image that can be computed.

 8 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

34

Managing Memory Allocations
In Intel® Integrated Performance Primitives (Intel® IPP) functions, the areas in memory allocated for the
source and destination data must not overlap, except for functions that have the descriptor I in their name.
Only the functions that have the descriptor I (see Descriptors) in their name can have the same area in
memory allocated for both the source and destination data. Intel IPP does not guarantee correct behavior
and results for not-in-place functions that are used in in-place mode.

Depending on the implementation layer and the specific operation parameters, some Intel IPP functions need
varying amounts of memory for internal structures and working buffers. To address this, follow the steps
below:

1. Compute the size of the required buffer using the <function base name>GetSize function (some
functions have GetBufSize or GetBufferSize in their name instead of GetSize).

2. Set up any buffers needed for initialization. For more information, see the section Setting up Buffers
below.

3. Initialize the specification or state structure for the operation using <function base name>Init
function. For more information about the specification and state structures, see the section
Specification and State Structures below.

4. Free the buffers need for initialization only (the ones you set up in step 2).
5. Set up working buffers for the main operation. For more information, see the section Setting up Buffers

below.
6. Do the main operation.
7. Free the specification or state buffers that you set up in step 3 and the working buffers that you set up

in step 5.

If you use several Intel IPP functions with the pBuffer parameter (external memory buffer), for better
efficiency and performance it is recommended to call all <function base name>GetSize functions in one
single location within your application and allocate only one buffer that has the largest size. This approach
ensures optimal use of system memory and all cache levels.

Setting up Buffers
In this document, "setting up a buffer" refers to allocating the required amount of memory and providing a
pointer to this memory to the Intel IPP function you are calling. For better performance, you should allocate
aligned memory buffers, where the alignment factor depends on the architecture and should be at least 16
bytes for Intel® Streaming SIMD Extensions, 32 bytes for Intel® Advanced Vector Extensions, and 64 bytes
for Intel® Advanced Vector Extensions 512 Foundation instruction sets.

To set up aligned memory buffers, it is recommended to use the ipp<domain letter>Malloc_<IPP data
type> functions; these functions always provide memory buffers with the required alignment.

NOTE Intel IPP functions do not allocate any memory internally. You must manually allocate and free
previously allocated memory, that is required for your Intel IPP functions at the application level.
ipp<domain letter>Malloc_<IPP data type> and ipp<domain letter>Free functions allocate
and free a memory block aligned to 64-byte boundary for elements of different data types. Not aligned
memory allocation could cause not reproducible performance and precision results.

Specification and State Structures
Specification, or spec, structures are const; an instance of a specification structure does not change
between Intel IPP function calls. Therefore, you can use one instance of a specification structure
simultaneously in different application threads for the same operation.

Programming Considerations 8

35

State structures are not const; they always contain the state of an intermediate computation stage of an
Intel IPP function. Therefore, you can use a single instance of a state structure only for consecutive
operations. In the case of a threaded application, each thread must have its own instance of the state
structure.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Cache Optimizations
To get better performance, work should be grouped to take advantage of locality in the lowest/fastest level of
cache possible. This is the same for threading or cache blocking optimizations.

For example, when operations on each pixels in an image processing pipeline are independent, the entire
image is processed before moving to the next step. This may cause many inefficiencies, as shown in a figure
below.

In this case cache may contain wrong data, requiring re-reading from memory. If threading is used, the
number of synchronization point/barriers is more than the algorithm requires.

You can get better performance after combining steps on local data, as shown in a figure below. In this case
each thread or cache-blocking iteration operates with ROIs, not full image.

NOTE
It is recommended to subdivide work into smaller regions considering cache sizes, especially for very
large images/buffers.

 8 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

36

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Programming with Intel®
Integrated Performance
Primitives in the Microsoft*
Visual Studio* IDE 9
This section provides instructions on how to configure your Microsoft* Visual Studio* IDE to link with the
Intel® IPP, explains how to access Intel IPP documentation and use IntelliSense* Sense features.

Configuring the Microsoft* Visual Studio* IDE to Link with
Intel® IPP
Steps for configuring Microsoft Visual C/C++* development system for linking with Intel® Integrated
Performance Primitives (Intel® IPP) depend on whether you installed the C++ Integration(s) in Microsoft
Visual Studio* component:

• If you installed the integration component, see Automatically Linking Your Microsoft* Visual Studio*
Project with Intel IPP

• If you did not install the integration component or need more control over Intel IPP libraries to link, you
can configure the Microsoft Visual Studio* by performing the following steps. Though some versions of the
Visual Studio* development system may vary slightly in the menu items mentioned below, the
fundamental configuring steps are applicable to all these versions.

1. In Solution Explorer, right-click your project and click Properties.
2.Select Configuration Properties>VC++ Directories and set the following from the Select

directories for drop down menu:

• Include Files menu item, and then type in the directory for the Intel IPP include files (default is
<ipp directory>\include)

• Library Files menu item, and then type in the directory for the Intel IPP library files (default is
<ipp directory>\lib)

• Executable Files menu item, and then type in the directory for the Intel IPP executable files
(default is <install_dir>\redist\<arch>\)

Using the IntelliSense* Features
Intel IPP supports two Microsoft* Visual Studio IntelliSense* features that support language references:
Complete Word and Parameter Info.

NOTE
Both features require header files. Therefore, to benefit from IntelliSense, make sure the path to the
include files is specified in the Visual Studio solution settings. On how to do this, see Configuring the
Microsoft Visual Studio* IDE to Link with Intel® IPP.

Complete Word
For a software library, the Complete Word feature types or prompts for the rest of the name defined in the
header file once you type the first few characters of the name in your code.

Provided your C/C++ code contains the include statement with the appropriate Intel IPP header file, to
complete the name of the function or named constant specified in the header file, follow these steps:

Programming with Intel® Integrated Performance Primitives in the Microsoft* Visual Studio* IDE 9

37

1. Type the first few characters of the name (for example, ippsFFT).
2. Press Alt + RIGHT ARROW or Ctrl + SPACEBAR If you have typed enough characters to eliminate

ambiguity in the name, the rest of the name is typed automatically. Otherwise, the pop-up list of the
names specified in the header file opens - see the figure below.

3. Select the name from the list, if needed.

Parameter Info
The Parameter Info feature displays the parameter list for a function to give information on the number and
types of parameters.

To get the list of parameters of a function specified in the header file, follow these steps:

1. Type the function name
2. Type the opening parenthesis

A tooltip appears with the function API prototype, and the current parameter in the API prototype is
highlighted - see the figure below.

 9 Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

38

See Also
Configuring the Microsoft Visual Studio* IDE to Link with Intel® IPP

Programming with Intel® Integrated Performance Primitives in the Microsoft* Visual Studio* IDE 9

39

Appendix: Intel® IPP Threading and
OpenMP* Support A
All Intel® Integrated Performance Primitives functions are thread-safe. They support multithreading in both
dynamic and static libraries and can be used in multi-threaded applications. However, if an application has its
own threading model or if other threaded applications are expected to run at the same time on the system, it
is strongly recommended to use non-threaded/single-threaded libraries.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Using a Shared L2 Cache
Several functions in the signal processing domain are threaded on two threads intended for the Intel(R)
Core™ 2 processor family, and make use of the merged L2 cache. These functions (single and double
precision FFT, Div, and Sqrt) achieve the maximum performance if both two threads are executed on the
same die. In this case, the threads work on the same shared L2 cache. For processors with two cores on the
die, this condition is satisfied automatically. For processors with more than two cores, set the following
OpenMP* environmental variable to avoid performance degradation:

KMP_AFFINITY=compact

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Avoiding Nested Parallelization
Nested parallelization may occur if you use a threaded Intel IPP function in a multithreaded application.
Nested parallelization may cause performance degradation because of thread oversubscription.

For applications that use OpenMP threading, nested threading is disabled by default, so this is not an issue.

However, if your application uses threading created by a tool other than OpenMP*, you must disable multi-
threading in the threaded Intel IPP function to avoid this issue.

Disabling Multi-threading (Recommended)
The best option to disable multi-threading is to link your application with the Intel® IPP single-threaded (non-
threaded) libraries included in the default package and discontinue use of the separately downloaded multi-
threaded versions.

You may also call the ippSetNumThreads function with parameter 1, but this method may still incur some
OpenMP* overhead.

 A Intel® Integrated Performance Primitives Developer Guide for Intel® oneAPI Base Toolkit

40

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Appendix: Intel® IPP Threading and OpenMP* Support A

41

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

	Intel® Integrated Performance Primitives Developer Guide for Intel®
oneAPI Base Toolkit
	Contents
	Notices and Disclaimers
	What's New
	Getting Help and Support
	Notational Conventions
	Getting Started with Intel® Integrated Performance Primitives
	Finding Intel® IPP on Your System
	Setting Environment Variables
	Compiler Integration
	Building Intel® IPP Applications
	Using Intel® IPP Examples
	Intel® IPP Examples Directory Structure
	Building Intel® IPP Examples

	Finding the Intel® IPP Documentation

	Intel® Integrated Performance Primitives Theory of Operation
	Dispatching
	Function Naming Conventions
	Data-domain
	Primitive vs. Variant Name
	Data Types
	Descriptor
	Parameters

	Intel® Integrated Performance Primitives Domain Details
	Library Dependencies by Domain

	Linking Your Application with Intel® Integrated Performance Primitives
	Linking Options
	Automatically Linking Your Microsoft* Visual Studio* Project with Intel IPP

	Using Intel® Integrated Performance Primitives Platform-Aware Functions
	Using Intel® Integrated Performance Primitives Threading Layer (TL) Functions
	Finding Intel® IPP TL Source Code Files
	Building Intel® IPP TL Libraries from Source Code

	Using Custom Library Tool for Intel® Integrated Performance Primitives
	System Requirements for Custom Library Tool
	Operation Modes
	Building a Custom DLL with Custom Library Tool
	Using Console Version of Custom Library Tool

	Using Integration Wrappers for Intel® Integrated Performance Primitives
	Programming Considerations
	Core and Support Functions
	Channel and Planar Image Data Layouts
	Regions of Interest
	Managing Memory Allocations
	Cache Optimizations

	Programming with Intel® Integrated Performance Primitives in the Microsoft* Visual Studio* IDE
	Configuring the Microsoft* Visual Studio* IDE to Link with Intel® IPP
	Using the IntelliSense* Features

	Appendix: Intel(R) IPP Threading and OpenMP* Support
	Using Shared L2 Cache
	Avoiding Nested Parallelization

