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Letter From 
the Editor

James Reinders  Director of Parallel Programming Evangelism 
at Intel Corporation.  James is a co-author of a new book, Structured 
Parallel Programming, from Morgan Kaufmann, 2012. His other books 
include Intel® Threading Building Blocks: Outfitting C++ for Multicore 
Processor Parallelism, available in English, Japanese, Chinese, and Korean.

Complexity is every day in high performance and 
cluster applications. Applications are utilized to solve the  
increasingly complex problems that we pose. Parallelism is the 
natural vocabulary for developers trying to ensure that large 
data stores and demanding workloads run fast, run flawlessly, 
and helps us get the results we seek.

The conjunction of Intel® Cluster Studio XE 2013 and the  
Intel® Xeon Phi™ coprocessor makes this an ideal time to explore 
some of our more interesting development challenges.  

Is the Baseline

When
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We start by seeing Intel Cluster Studio XE 2013 in action—
in Using Intel® Software Development Tools to Analyze the 
Performance of LAMMPS —as we use new features of this 
advanced toolset to build and analyze LAMMPS, one of the  
Spec MPI* benchmarks. 

Next, in Checklist for Programming Intel® Xeon Phi™ 
Coprocessors, we offer programming tips for applications running 
on and taking advantage of the capabilities of Intel® Xeon Phi™ 
coprocessors. Scaling, vector usage, and memory usage can  
all be improved, and these benefits are preserved when the 
applications run on Intel® Xeon® processors.

Advanced Vectorization uses an example application to 
present practical, proven techniques enabled by Intel compilers 
and their Intel® Cilk™ Plus technologies.

And finally, Optimizing Correlation Analysis of Financial Market 
Data Streams Using Intel® Math Kernel Library, is at once a case study  
of extreme complexity—applying an online noise filtration algorithm  
to correlation analysis in the finance industry—and a proof of the 
performance gains possible with Intel® Math Kernel Library. 

We all live in an increasingly complexity environment—and I hope  
you are inspired by seeing some ways others are tackling their 
complex challenges.

James Reinders
November 2012
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Figure 1

Introduction 
This article highlights the features of Intel® Cluster  
Studio XE by using them to build and analyze LAMMPS 
(http://lammps.sandia.gov/), a benchmark used in Spec MPI. We will 
describe build settings for the Intel® C++ Compiler that optimize 
performance and how to use the Intel® MPI message library to deliver 
best-in-class performance for LAMMPS on Intel® architecture-based 
clusters. We will use Intel® Trace Analyzer and Intel® Trace Collector 
to illuminate the use of MPI APIs that cause performance problems in 
LAMMPS, and show how to compare trace files with the Intel Trace 
Analyzer GUI to get detailed analysis of message passing with aligned 
timelines. We will also show how to use the Intel® MPI correctness 
checking library to look for MPI coding errors. Additionally, we will show 
how to use Intel® VTune™ Amplifier XE to visualize application scaling 
on individual nodes.

The techniques described in this article may be applied to similar types 
of complex cluster applications by using diverse technology such as MPI 
and OpenMP* across multiple machines.

Our objective is to build LAMMPS, analyze the application with 
respect to MPI API performance and scaling on individual nodes, and 
make it run faster. In general, we will want to make sure we use an 
optimizing compiler like the Intel® C++ Compiler, that compiler settings 
are optimized for the architecture the application will run on, and that 
we are using an optimized MPI implementation like Intel MPI. In addition,  
we want to make sure MPI API call time is a reasonably small percentage 
of total computation time, and that individual MPI API calls are independent  
across ranks so MPI call time is minimized. We will also want to ensure 
that the application running on each node scales to take advantage 
of all of the CPU cores, so that we use CPU resources efficiently. Intel 
Cluster Studio XE 2013 provides the tools to build faster MPI applications 
and analyze MPI application performance.

According to LAMMPS documentation, “LAMMPS is a classical molecular 
dynamics code that models an ensemble of particles in a liquid, solid, 
or gaseous state. It can model atomic, polymeric, biological, metallic, 
granular, and coarse-grained systems using a variety of force fields 
and boundary conditions.”

Building LAMMPS with the Intel C++ Compiler 
and Intel MPI Library
To build LAMMPS we created a custom make file by copying one of the 
provided make files and editing the contents so the LAMMPS build used 
the Intel C++ Compiler and the Intel MPI Library. Here are some of the 
settings (Fig. 1):
mpiicpc is the Intel-specific command for building an application 

using the Intel C++ Compiler and the Intel MPI Library. The MPI Library 
focuses on making applications perform better on IA-based clusters 
by implementing the high-performance MPI-2 specification on multiple 
fabrics. It enables you to quickly deliver maximum end-user performance, 
even if you change or upgrade to new interconnects, without requiring 
major changes to the software or operating environment.

To analyze MPI message traffic in an application with Intel Trace 
Analyzer, we need to collect data into trace files. Intel Trace Collector 
for MPI applications produces trace files that can be analyzed with the 
Intel Trace Analyzer performance analysis tool. It records all calls to the  
MPI library and all transmitted messages, and allows arbitrary user-defined 
events to be recorded. Instrumentation can be switched on or off at 
runtime, and a powerful filtering mechanism helps to limit the amount 
of the generated trace data. 

Intel Trace Collector is an add-on for existing MPI implementations; 
using it merely requires relinking the application with the Intel Trace 
Collector profiling library. This will enable the tracing of all calls to MPI 
routines, as well as all explicit message passing. On some platforms, 
calls to user-level subroutines and functions will also be recorded.

We can use a fully optimized build and capture a trace that will allow 
us to drill down to source code with Intel Trace Analyzer. The same is true  
of Intel VTune Amplifier XE, so we use full optimizations in the compiler 
with the –O3 switch. We want to use the most advanced instruction 
set for our target nodes, which in our case supports SSE4.2, so we 
include the –SSE4.2 switch since the default for the compiler is SSE2. 

We need symbol information to drill down to source code with 
Intel VTune Amplifier XE and Intel Trace Analyzer, so we include the 
–g switch.  A new feature in Intel VTune Amplifier XE 2013 is that 
it allows us to drill down to source code even if functions are inlined, 
so we don’t need to include the –fno-inline-functions switch as was 
required for previous versions. Intel Trace Collector requires normal 
stack frames but the Intel® compiler does not use normal stack frames 
by default if optimization is enabled, so we must use -fno-omit-frame-
pointer to enable the use of normal stack frames.

# compiler/linker settings 
# specify flags and libraries needed for your compiler

CC =		  mpiicpc 
CCFLAGS =	 -g –O3 -xSSE4.2 -fno-alias -fno-omit-frame-pointer -vec-report5 -opt-report3  
-opt-report-phase=all 
DEPFLAGS =	 -M 
LINK =	 mpiicpc 
LINKFLAGS =	 -O  
LIB =		 -lstdc++ -lpthread -liomp5 
ARCHIVE =	 ar 
ARFLAGS =	 -rc 
SIZE =	 size
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Figure 3
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Running a LAMMPS Benchmark
LAMMPS runs by reading commands from stdin, and you can write an input script of commands to set up and simulate 

particle dynamics. There is a set of input scripts for tests and benchmarks provided in the LAMMPs distribution. We used 
the script for a standard Lennard-Jones benchmark.

This is an example of running LAMMPS with a Lennard-Jones benchmark script (Fig. 2):

mpirun is the command used to launch an MPI job. Here it runs the LAMMPS application on the nodes listed in the 
cluster.hosts file; in this case my build is called "lmp_walt“. The –trace switch causes Intel Trace Collector to profile the 
LAMMPS application by preloading the Intel Trace Collector library, and the environment variable VT_PCTRACE sets the 
call stack depth.

The –bootstrap slurm option selects a built-in bootstrap server to use, which is the basic remote node access 
mechanism provided on the nodes, and –n 8 says to use eight processes in the run. The –perhost 1 option is important: 
it says to create 1 MPI process on each node in a round-robin fashion. Without it, an MPI process is started for every  
core available on the first node. For example, if the nodes each have 12 cores and we use the –n 8 option, but not the  
–perhost option (or equivalently the –rr option), then eight MPI processes would be started on one node.

The –var x 2 –var y 2 –var z 2 LAMMPS flags are for scaling the problem 2x in each x, y, and z direction, 
where the data to work on is arrayed as a grid of x * y * z 3d subdomains. We set the variables to two so that there is a 
3D subdomain assigned to each of the eight processors used. 

We created eight MPI processes to run in total, each on a separate node for our first run of the Lennard-Jones benchmark, 
and analyzed the trace with Intel Trace Analyzer. 

Analyzing MPI Communications
When you develop MPI applications it is important to look at how much time the MPI calls are consuming compared to 
application time and the load balance for each MPI call. Intel Trace Analyzer provides this data through various charts  
and profiles.

The Flat Profile

The Flat Profile view tells us how much time user code took and can tell us how much time each MPI API took during 
the application run. It shows that the total amount of time taken by MPI calls over the whole run of the program is fairly 
significant compared to application time (Fig. 3), and we can use Intel Trace Analyzer to see more details.

Ungrouping MPI reveals that the MPI_Send and MPI_Wait calls are the most expensive in terms of time (Fig. 4).

> mpirun -f ~/cluster.hosts -trace -genv VT_PCTRACE 4 –perhost 1 -bootstrap slurm -n8  
 ~/LAMMPS/lammps-25Jul12/src/lmp_walt -var x 2 -var y 2 -var z 2 < in.lj
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Figure 5

Figure 4

The Load Balance Chart

In addition, MPI API call time and application 
time are not well balanced across nodes, as 
shown in the Load Balance chart (Fig. 5). 

If we look at the MPI function time in finer 
detail, there are varying times for individual 
MPI calls across the compute nodes, with 
most of the time taken on the 0, 4, 5, and 9 
compute nodes. This can be an indication of 
message dependencies that result in reduced 
application performance (Fig. 6). The Event 
Chart provides information on whether MPI 
API calls are interdependent.
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The Event Chart

If we open the Event Chart from the Chart 
menu, it shows us a timeline and horizontal 
bars with segments representing application 
code and MPI messages. This gives us an 
idea of which message APIs were called at 
a particular time and how long they took to 
complete. (Fig. 7) 

LAMMPS documentation states “For 
computational efficiency, LAMMPS uses 
neighbor lists to keep track of nearby 
particles … On parallel machines, LAMMPS 
uses spatial-decomposition techniques to 
partition the simulation domain into small 
3D subdomains, one of which is assigned to 
each processor. Processors communicate and 
store “ghost“ atom information for atoms that 
border their sub-domain …. The Comm class 
performs interprocessor communication,  
typically of ghost atom information. This usually 
involves MPI message exchanges with six 
neighboring processors in the 3D logical grid 
of processors mapped to the simulation box.”

Our input script called for 100 time steps 
with neighbor lists of particles rebuilt after 
20 time steps. The communication of atom 
information occurs at each time step, and the 
Event Chart allows us to see the communication  
graphically. We can see the five groups of  
20 atom information exchanges show up as 
black lines. 
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Figure 8

Figure 9

If we zoom into the event chart, we can 
get details on the message passing calls. 
Here is the zoom into one of the five groups 
(Fig. 8).

A further zoom into an atom information 
exchange provides a look at the individual MPI  
API calls over time. The black lines indicate  
which ranks or processes exchanged messages,  
and there are two distinct time periods within  
a time step where messages are exchanged 
(Fig. 9). The messages between ranks look 
fairly independent, since we do not see a  
stair-step pattern, which is indicative of message  
interdependence—although some of the MPI 
APIs in the first message exchange sequence 
take quite a bit longer to complete than the  
same MIP APIs in the second message exchange  
sequence during this application time step.
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Figure 10

Figure 11
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If we want to get information on a 
message or MPI API call, we can simply right-
click on a black message line or on the MPI 
call segment to bring up the message details 
dialog (Fig. 10).

If we want to look at the source code 
where the MPI call originated and we have 
debug symbols, we can click on the Show 
Source button in the dialog box to display  
the location of the MPI call and the call stack 
(Fig. 11). In our case, this confirms that 
in the first message exchange sequence 
the Comm class is calling reverse_comm 
to exchange ghost atom information or, 
more specifically, forces on ghost atoms are 
communicated and summed back to their 
corresponding owned atoms.
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Figure 12

Figure 13

The same source code analysis confirms 
that the second message exchange sequence 
is where the Comm class calls forward_comm 
to distribute coordinates of ghost atoms to 
each process. This is done at each time step 
(Fig. 12). 

The Qualitative Timeline

Another metric we may want to examine is 
the data volume that is being transmitted 
with each message over time. To see this, we  
use the Qualitative Timeline, selected from 
the Chart menu, and right-click on the window  
to select Messages and Data Volume from 
the pop-up menu as the items to display  
(Fig. 13).

The data volume per message is fairly 
consistent over time—with a maximum at 
about 93 KB. Additionally, we can see the 
duration and transfer rate by picking those 
attributes for the display.
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Figure 14

Figure 15

The Quantitative Timeline

The Quantitative Timeline gives an overview 
of the parallel behavior of the application. 
It shows over time how many processes or 
threads are involved in which function. Along 
the time axis, the different functions are 
presented as vertically stacked color bars.  
The height of these bars is proportional to 
the number of processes that are currently 
within the respective function (Fig. 14).

There is also the option to view all of 
these profiles and charts in a single window 
working on a common timeline, so patterns 
and relationships in the data are easier to see 
(Fig. 15).
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We can also couple the mouse zoom and 
navigation keys for all of the displayed charts, 
so zooming in by highlighting a section of the 
timeline provides a detailed view of the data 
described above over the same time interval 
(Fig. 16).

The Message Profile Chart

To get another view on messages we can use 
the Message Profile Chart, which categorizes  
messages by groupings in a matrix and shows 
the value of several attributes in each cell. By 
default, the matrix is square with the sending  
processes as row labels and the receiving 
processes as column labels. It shows in cell (i, j)  
the total time spent in transferring messages 
from sender i to receiver j. This chart also 
includes per row and per column statistics, 
which give the sum, the average, and the 
standard deviation for the respective row or 
column (Fig. 17).

The chart shows that the most time-
consuming messages originated with 
compute nodes 0, 1, 3, and 4 sending 
messages to compute nodes 5, 6, 8, and  
9 respectively, while messages sent in the 
opposite direction are not a performance 
problem.

MPI Message Correctness Checking

During development of an MPI application  
you will need to check for errors. You can do 
this with the correctness checking feature 
in Intel Trace Collector by replacing the 
mpirun command –trace switch with –check. 
This will not generate a trace file, but will 
report errors to stdout. Errors include MPI 
local memory errors, message data type 
mismatches, message corruption, pending 
messages, deadlocks, invalid parameters,  
and others.

Figure 16

Figure 17
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Here is an example of how the correctness checking feature was used to check LAMMPS and reported no errors:  
(Fig. 18):

Application Scaling and Performance Profiling with Intel VTune Amplifier XE
It is important to balance the scalability of each MPI process with the number of MPI processes started on each node. 
For example, if we have an MPI application that scales to 12 cores and have 12 cores on each node, then we can start 
one MPI process per node and utilize all the CPUs effectively.

To check this on LAMMPS, we run Intel VTune Amplifier XE 2013 and a single LAMMPS process on each node. This 
allows us to collect performance data on each MPI process to see how well LAMMPS utilizes all of the cores on the node.

Here is the command line to collect hotspot data for the LAMMPS process on each node using Intel VTune Amplifier XE 
(Fig. 19).

Essentially, we are using the mpirun command to run Intel VTune Amplifier XE, which in turn launches an instance of 
LAMMPS. Intel VTune Amplifier XE will run on each node and collect data for the LAMMPS process. The results data is 
stored in separate folders for each node on the machine where the mpirun command was executed. 

Intel VTune Amplifier XE results tell us that the application is using only one thread for computation, and that most of 
the run time is concentrated in a function called PairLJCut::compute in file pair_lj_cut.cpp. (Fig. 20) 

Figure 18

Figure 19

 ~/LAMMPS/lammps-25Jul12/bench]> mpirun -f ~/cluster.hosts -check -perhost 1 -bootstrap 
slurm -n 8 ~/LAMMPS/lammps-25Jul12/src/lmp_walt -var x 2 -var y 2 -var z 2 < in.lj

~/LAMMPS/lammps-25Jul12/bench]> mpirun -f ~/cluster.hosts –perhost 1 -bootstrap slurm -n 8  
amplxe-cl -collect hotspots ~/LAMMPS/lammps-25Jul12/src/lmp_o3 -var x 2 -var y 2 -var z 2 < in.lj

Figure 20
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The runtime was about 3.15 seconds in default mode (Fig. 21).

Next, we want to include threading by using an optimization package provided in the LAMMPS 
distribution to see if performance improves. The amount of scaling we get will determine how 
many processes we will start on each node to get optimal use of the computational resources.

We include an optimization package that provides threading via OpenMP called USER-OMP. 
Intel VTune Amplifier XE shows multiple threads of execution with significant CPU activity 

(Fig.22). 

Figure 21

mpirun -f ~/cluster.hosts -perhost 1 -bootstrap slurm -n 8 ~/LAMMPS lammps-  
25Jul12/src/lmp_o3 -var x 2 -var y 2 -var z 2 < in.lj 
LAMMPS (25 Jul 2012) 
 using 24 OpenMP thread(s) per MPI task 
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796 
Created orthogonal box = (0 0 0) to (67.1838 67.1838 67.1838) 
 2 by 2 by 2 MPI processor grid 
Created 256000 atoms 
Setting up run . . . 
Memory usage per processor = 55.2672 Mbytes 
Step Temp E_pair E_mol TotEng Press  
    0     1.44  -6.7733681      0  -4.6133765  -5.019674  
   100  0.75865617  -5.7603259      0  -4.6223461  0.19586104  
Loop time of 3.14944 on 192 procs (8 MPI x 24 OpenMP) for 100 steps with 256000 atoms

Figure 22
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Intel VTune Amplifier XE Thread  
Concurrency data shows that the application 
threads are consuming significant CPU time 
over the time of the run (Fig. 23).

The histograms below (Fig. 24) show 
threads and CPUs are running simultaneously 
most of the time, indicating the application is 
utilizing computational resources effectively.

Figure 23

Figure 24
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The runtime was about 1.20 seconds with the optimization package, much less than without the package, even 
though there was a significant amount of OpenMP wait time introduced (Fig. 25).

Memory and Threading Error Checking of MPI Processes with Intel® Inspector XE 
We can also use Intel® Inspector XE to check for threading errors or memory errors in an MPI application. Here is the 
command line we used to check for memory errors and to pinpoint their location (Fig. 26).

Data results are collected and stored for each node in a manner similar to Intel VTune Amplifier XE. We can open the 
results in the Intel Inspector XE GUI just as we did for Intel VTune Amplifier XE results.

Support of Manycore Architectures: Intel® Xeon Phi™ Coprocessors
One of the newest additions to high performance computing is the Intel® Xeon Phi™ coprocessor, which is designed to 
provide efficient performance for highly parallel applications. Common programming models for Intel® Xeon processors 
extend to Intel Xeon Phi coprocessors—so as developers embrace high degrees of parallelism, they don’t need to rethink 
the entire problem. 

The practical result of this, in our case, is that it is very easy to run the LAMMPS application on an Intel Xeon Phi 
coprocessor. All we have to do if we are using the Intel C/C++ Compiler is to rebuild LAMMPS with the –mmic switch for 
both the compiler and linker. Here is the relevant part of the makefile (Fig. 27):

Figure 25

> mpirun -f ~/cluster.hosts -perhost 1 -bootstrap slurm -n 8 ~/LAMMPS/lammps-  
25Jul12/src/lmp_o3 -sf omp -var x 2 -var y 2 -var z 2 < in.lj 
LAMMPS (25 Jul 2012) 
 using 24 OpenMP thread(s) per MPI task 
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796 
Created orthogonal box = (0 0 0) to (67.1838 67.1838 67.1838) 
 2 by 2 by 2 MPI processor grid 
Created 256000 atoms 
Last active /omp style is pair_style lj/cut/omp 
Setting up run ... 
Memory usage per processor = 59.4847 Mbytes 
Step Temp E_pair E_mol TotEng Press  
    0     1.44  -6.7733681      0  -4.6133765  -5.019674  
   100  0.75865617  -5.7603259      0  -4.6223461  0.19586104  
Loop time of 1.19531 on 192 procs (8 MPI x 24 OpenMP) for 100 steps with 256000 atoms

Figure 26

Figure 27

> mpirun -f ~/cluster.hosts -perhost 1 -bootstrap slurm -n 8 inspxe-cl -collect mi3  
-r=~/LAMMPS/lammps-25Jul12/bench/ljinspxe/ljinspxedatarroptompo3con5  
~/LAMMPS/lammps-25Jul12/src/lmp_o3 -sf omp -var x 2 -var y 2 -var z 2 < in.lj

# compiler/linker settings 
# specify flags and libraries needed for your compiler

CC =	 mpiicpc 
CCFLAGS =		 -mmic -g –O3 -openmp -fno-alias-fno-omit-frame-pointer

DEPFLAGS =	 -M

LINK =	 mpiicpc 
LINKFLAGS =	 -mmic 
LIB =	 -lstdc++ -lpthread -liomp5 
…
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You will also need to have libiomp5.so and libVT.so on the coprocessor to use OpenMP and Intel Trace Collector.
There are a couple of choices on where to run the application. To run four LAMMPS processes on the host and eight 

LAMMPS processes on the Intel Xeon Phi coprocessor, use a command similar to the following. We use our original LAMMPS 
build for the host and the one built with the –mmic switch on the Intel Xeon Phi coprocessor (Fig. 28).

To run all eight LAMMPS processes on the Intel Xeon Phi coprocessor, use the following command line indicating the 
working directory on the coprocessor (Fig. 29):

In addition, we can still use Intel Trace Collector to get MPI information from applications running on Intel Xeon Phi 
coprocessors, and the command line switch is the same (Fig. 30).

Or, to run and collect traces only on the Intel Xeon Phi coprocessor (Fig. 31):

Conclusion
Intel Trace Collector and Intel Trace Analyzer give us insight into MPI application information like message timing, load 
balancing, and data volume so we can more easily optimize MPI applications. In the case of LAMMPS, we could see the 
most time-consuming APIs and where they were called.

Intel VTune Amplifier XE provides CPU utilization and hotspot information for each MPI process, which is vital to 
ensuring those processes scale on each node. Intel VTune Amplifier XE showed us that the USER-OMP package for 
LAMMPS provided significant CPU resource utilization on a node, allowing the application to scale well on a two-socket 
12-core node.

Intel Inspector XE and the check feature of Intel MPI help find MPI, memory, and threading errors in our application, 
and the Intel C++ Compiler and Intel MPI provide highly optimized binaries and MPI infrastructure that results in a high 
performance application.

This is only a glimpse into the power of Intel® Software Development tools to create and analyze complex software 
applications using diverse technology such as MPI and OpenMP across multiple machines. For more information on Intel 
Software Development tools see www.intel.com/software/products. o

Figure 28

Figure 30

Figure 29

Figure 31

$ mpiexec -host sc-mic -n 4 ../src/lmp_o3 -sf omp -var x 2 -var y 2 -var z 2 < in.lj : -host mic0 -n 8  
~/lmp_mic -sf omp -var x 2 -var y 2 -var z 2 < in.lj

$ mpiexec –trace -host sc-mic -n 4 ../src/lmp_o3 -sf omp -var x 2 -var y 2 -var z 2 < in.lj : -wdir ~/.   
-host mic0 -n 8 ~/lmp_mic -sf omp -var x 2 -var y 2 -var z 2 < in.lj

$ mpiexec -wdir ~/. -host mic0 -n 8 ~/lmp_mic -sf omp -var x 2 -var y 2 -var z 2 < in.lj

$ mpiexec –trace -wdir ~/. -host mic0 -n 8 ~/lmp_mic -sf omp -var x 2 -var y 2 -var z 2 < in.lj
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The Intel® Xeon Phi™ coprocessor extends the reach of the Intel® Xeon® 
family of computing products into higher realms of parallelism. This 
article offers the key tips for programming such a high degree of  
parallelism, while using familiar programming methods and the latest 
Intel® Parallel Studio XE 2013 and Intel® Cluster Studio XE 2013—which 
both support the Intel Xeon Phi coprocessor.

It is worth explaining this checklist in more depth, and that is the purpose of this article.  
You can see that preparing for Intel Xeon Phi coprocessors is primarily about preparing for a 
50+ core x86 SMP system with 512-bit SIMD capabilities. That work can happen on most any 
large, general purpose system, especially one based on Intel Xeon processors. Intel Parallel 
Studio XE 2013 and Intel Cluster Studio XE 2013 will support your work on an Intel Xeon 
processor-based system with or without Intel Xeon Phi coprocessors. All the tools you need  
are in one suite.

Checklist 

A checklist for programming for an Intel Xeon Phi coprocessor looks like this:

	 Make sure your application scales beyond 100 threads (usually 150 or more).

	 Make sure your application either:

•	 Does most computations as efficient vector instructions  
(requires vectorization)

•	 Uses a lot of memory bandwidth with decent locality of reference

	T he application is written using your favorite programming languages and 
parallel models to achieve the above.

	 Use your favorite tools, the same ones you use for programming for  
Intel® Xeon® processors. Get the latest versions that include support for 
Intel® Xeon Phi™ coprocessor support (such as Intel® Cluster Studio XE 2013, 
Intel® Parallel Studio XE 2013, Rogue Wave TotalView* debugger and  
IMSL* Library, NAG Library*, or Allinea DDT* debugger)

ü
ü

ü

ü
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Introduction
Intel Xeon Phi coprocessors are designed to extend the reach of 
applications that have demonstrated the ability to reach the scaling 
limits of Intel Xeon processor-based systems, and have also maximized 
usage of available vector capabilities or memory bandwidth. For such 
applications, the Intel Xeon Phi coprocessors offer additional power- 
efficient scaling, vector support, and local memory bandwidth, while 
maintaining the programmability and support associated with Intel 
Xeon processors.

Advice for successful programming can be summarized as: “Program 
with lots of threads that use vectors with your preferred programming 
languages and parallelism models.” Since most applications have not yet 
been structured to take advantage of the full magnitude of parallelism  
available in an Intel Xeon Phi coprocessor, understanding how to 
restructure to expose more parallelism is critically important to enable 
the best performance. This restructuring itself will generally yield 
benefits on most general purpose computing systems—a bonus due to 
the emphasis on common programming languages, models, and tools 
across the Intel Xeon family of products. You may refer to this bonus 
as the dual-transforming-tuning advantage. 

A system that includes Intel Xeon Phi coprocessors will consist of  
one or more nodes (a single node computer is “just a regular computer”). 
A typical node consists of one or two Intel Xeon processors, plus  
one to eight Intel Xeon Phi coprocessors. Nodes cannot consist of  
only coprocessors.

The First Intel Xeon Phi Coprocessor,  
Codename Knights Corner
While programming does not require deep knowledge of the imple-
mentation of the device, it is definitely useful to know some attributes 
of the coprocessor. From a programming standpoint, treating it as an 
x86-based SMP-on-a-chip with over 50 cores, over 200 hardware 
threads, and 512-bit SIMD instructions is the key. 

The cores are in-order, dual-issue x86 processor cores (which trace 
some history to the original Intel® Pentium® design). But with the addition 
of 64-bit support, four hardware threads per core, power management,  
ring interconnect support, 512 bit SIMD capabilities, and other enhance-
ments, these are hardly the Intel Pentium cores of 20 years ago. The 
x86-specific logic (excluding L2 caches) makes up less than 2 percent 
of the die for an Intel Xeon Phi coprocessor.

Here are key facts about the first Intel Xeon Phi coprocessor product:

>	 It is a coprocessor (requires at least one processor in the system);  
in production in 2012

>	 Boots and runs Linux* (source code available at  
http://intel.com/software/mic)

>	 It is supported by standard tools including Intel Parallel Studio XE 2013.  
Listings of additional tools available can be found online  
(http://intel.com/software/mic).

>	 It has many cores:

•	 More than 50 cores (This will vary within a generation of products,  
and between generations. It is good advice to not hard code  
applications to a particular number.)

•	 In-order cores support 64-bit x86 instructions with uniquely wide 
SIMD capabilities.

•	 Four hardware threads on each core (resulting in more than 200  
hardware threads on a single device) are primarily used to hide  
latencies implicit in an in-order microarchitecture. As such, these  
hardware threads are much more important for HPC applications to  
utilize than hyperthreads on an Intel Xeon processor.

•	 Cache coherent across the entire coprocessor.

•	E ach core has a 512K L2 cache locally with high-speed access to all  
other L2 caches (making the collective L2 cache size over 25M).

>	S pecial instructions in addition to 64-bit x86:

•	 Uniquely wide SIMD capability via 512-bit wide vectors instead of 
MMX, SSE or AVX.

•	 High performance support for reciprocal, square root, power, and 
exponent operations

•	S catter/gather and streaming store capabilities for better effective 
memory bandwidth

•	 Performance monitoring capabilities for tools like Intel® VTune™ 
Amplifier XE 2013

Maximizing Parallel Program Performance
The choice whether to run an application solely on Intel Xeon proces-
sors, or to extend an application run to utilize Intel Xeon Phi coproces-
sors, will always start with two fundamentals:

1.	Scaling: Is the scaling of an application ready to utilize the highly 
parallel capabilities of an Intel Xeon Phi coprocessor? The strongest 
evidence of this is generally demonstrated scaling on Intel Xeon 
processors.

2.	Vectorization and Memory Locality: Is the application either:

•	 Making strong use of vector units?

•	 Able to utilize more local memory bandwidth than available with  
Intel Xeon processors?

If both of these fundamentals are true for an application, then the 
highly parallel and power-efficient Intel Xeon Phi coprocessor is most 
likely worth evaluating.
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Figure 1: The double advantage of transforming-and-tuning means that optimizations are shared across the Intel®Xeon® family of products, 
Capabilities of Intel Xeon processors are extended by Intel® Xeon Phi™ coprocessors.
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Ways to Measure Readiness for  
Highly Parallel Execution
To know if your application is maximized on an Intel Xeon processor-
based system, you should examine how your application scales, as well 
as how it uses vectors and memory. Assuming you have a working 
application, you can get some impression of where you are with 
regards to scaling and vectorization by doing a few simple tests.

To check scaling, create a simple graph of performance as you run 
with various numbers of threads (from one up to the number of cores, 
with attention to thread affinity) on an Intel Xeon processor-based 
system. This can be done with settings for OpenMP*, Intel® Threading 
Building Blocks (Intel® TBB) or Intel® Cilk™ Plus (e.g., OMP_NUM_
THREADS for OpenMP). If the performance graph indicates any signifi-
cant trailing off of performance, you have tuning work you can do to 
improve your application before trying an Intel Xeon Phi coprocessor. 

To check vectorization, compile your application with and without 
vectorization. If you are using Intel compilers: disable vectorization 
via compiler switch: -no-vec, use at least –O2  xhost for vectorization. 
Compare the performance you see. If the performance difference is insuf-
ficient, you should examine opportunities to increase vectorization. Look 
again at the dramatic benefits vectorization may offer as illustrated in 
Figure 7. If you are using libraries, such as the Intel® Math Kernel Library 
(Intel® MKL), you should consider that time in Intel MKL routines offer 
vectorization invariant to the compiler switches.  Unless your application is 
bandwidth limited, effective use of Intel Xeon Phi coprocessors should be 
done with most cycles executing having computations utilizing the vector 
instructions. While some may tell you that “most cycles” needs to be over 
90 percent, we have found this number to vary widely based on the appli-
cation and whether the Intel Xeon Phi coprocessor needs to be the 
top performance source in a node or just to contribute to performance.

The Intel® VTune™ Amplifier XE 2013 can help measure computations 
on Intel Xeon processors and Intel Xeon Phi coprocessor to assist in 
your evaluations.

Aside from vectorization, being limited by memory bandwidth on 
Intel Xeon processors can indicate an opportunity to improve perfor-
mance with an Intel Xeon Phi coprocessor. In order for this to be most 
efficient, an application needs to exhibit good locality of reference and 
utilize caches well in its core computations.

The Intel VTune Amplifier XE product can be utilized to measure 
various aspect of a program, and among the most critical is “L1 
Compute Density.” This is greatly expanded upon in a paper titled 
Using Hardware Events for Tuning on Intel® Xeon Phi™ Coprocessor 
(codename: Knights Corner).

When using MPI, it is desirable to see a communication vs. compu-
tation ratio that is not excessively high in terms of communication. 
Because programs vary so much, this has not been well characterized 
other than to say that, like other machines, Intel Xeon Phi coprocessors 
favor programs with more computation vs. communication. Programs are 
most effective using a strategy of overlapping communication and I/O 
by computation. Intel® Trace Analyzer and Collector, part of Intel Cluster 
Studio XE 2013, is very useful for profiling. It can be used to profile MPI 
communications to help visualize bottlenecks and understand the effect- 
iveness of overlapping with computation to characterize your program.

Compiler and Programming Models
No popular programming language was designed for parallelism. In many 
ways, Fortran has done the best job adding new features, such as DO  
CONCURRENT, to address parallel programming needs, as well as bene- 
fiting from OpenMP. C users have OpenMP, as well as Intel Cilk Plus. C++  
users have embraced Intel Threading Building Blocks and, more recently,  
have Intel Cilk Plus to utilize as well. C++ users can use OpenMP as well.
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Intel Xeon Phi coprocessors offer the full capability to use the same 
tools, programming languages, and programming models as an Intel 
Xeon processor. However, with this coprocessor designed for high 
degrees of parallelism, some models are more interesting than others.

In essence, it is quite simple: an application needs to deal with having 
lots of tasks (call them “workers” or “threads” if you prefer), and deal 
with vector data efficiently (a.k.a., vectorization).

There are some recommendations we can make based on what 
has been working well for developers. For Fortran programmers, use 
OpenMP, DO CONCURRENT, and MPI. For C++ programmers, use Intel 
TBB, Intel Cilk Plus, and OpenMP. For C programmers, use OpenMP and 
Intel Cilk Plus. Intel TBB is a C++ template library that offers excellent 
support for task-oriented load balancing. While Intel TBB does not 
offer vectorization solutions, it does not interfere with any choice of 
solution for vectorization. Intel TBB is open source and available on 
a wide variety of platforms supporting most operating systems and 
processors. Intel Cilk Plus is a bit more complex in that it offers both 
tasking and vectorization solutions. Fortunately, Intel Cilk Plus fully 
interoperates with Intel TBB. Intel Cilk Plus offers a simpler set of 
tasking capabilities than Intel TBB, but uses keywords in the language 
to enable full compiler support for optimizing.

Intel Cilk Plus also offers elemental functions, array syntax, and 
“#pragma SIMD” to help with vectorization. The best use of array 
syntax is implemented along with blocking for caches, which unfor-
tunately means naïve use of constructs such as A[:] = B[:] + C[:]; 
for large arrays may yield poor performance. The best use of array 
syntax ensures that the vector length of single statements is short 
(some small multiple of the native vector length, perhaps only 1X).  
Finally, and perhaps most important to programmers today, Intel Cilk 
Plus offers mandatory vectorization pragmas for the compiler called 
“#pragma SIMD.” The intent of “#pragma SIMD” is to do for vectoriza-
tion what OpenMP has done for parallelization. Intel Cilk Plus requires 
compiler support. It is currently available from Intel for Windows*, 
Linux*, and Apple OS* X. It is also available in a branch of gcc.

If you are happy with OpenMP and MPI, you are in great shape to 
use Intel Xeon Phi coprocessors. Additional options may be interesting 
to you over time, but OpenMP and MPI are enough to get great results. 
Your key challenge will remain vectorization. Auto-vectorization may 
be enough for you, especially if you code in Fortran, with the possible 
additional considerations for efficient vectorization, such as alignment 
and unit-stride accesses. The “#pragma SIMD” capability of Intel Cilk 
Plus (available in Fortran, too) is worth a look. In time, you may find it 
has become part of OpenMP.

Dealing with tasks means specification of tasks, and load balancing 
amongst them. MPI has provided this capability for decades with 
full flexibility and control given to the programmer. Shared memory 
programmers have Intel TBB and Intel Cilk Plus to assist them. Intel 
TBB has widespread usage in the C++ community. Intel Cilk Plus 
extends Intel TBB to offer C programmers a solution, as well as help 
with vectorization in C and C++ programs.

Coprocessor Major Usage Model:  
MPI vs. Offload

Given that we know how to program the Intel Xeon processors in 
the host system, the question arises of how to involve the Intel Xeon 
Phi coprocessors in an application. There are two major approaches: 
(1) “offload” selective portions of an application to the Intel Xeon Phi 
coprocessors, and (2) run an MPI program where MPI ranks can exist on 
Intel Xeon processors cores, as well as on Intel Xeon Phi coprocessor 
cores with connections made by MPI communications. The first is 
call “offload mode” and the second “native mode.” The second does 
not require MPI to be used, because any SMP programming model 
can be employed, including just running on a single core. There is no 
machine “mode” in either case, only a programming style that can be 
intermingled in a single application if desired. Offload is generally used 
for finer-grained parallelism and, as such, generally involves localized 
changes to a program. MPI is more often done in a coarse-grained 
manner, often requiring more scattered changes in a program. RDMA 
support for MPI is available.

The choice is certain to be one of considerable debate for years 
to come. Applications that already utilize MPI can actually use either 
method by either limiting MPI ranks to Intel Xeon processors and 
use offload to the coprocessors, or distributing MPI ranks across the 
coprocessors. It is possible that the only real MPI ranks be established 
on the coprocessor cores, but if this leaves the Intel Xeon processors 
unutilized then this approach is likely to give up too much performance 
in the system.

Being separate and on a PCIe bus creates two additional issues:  
(1) the limited memory on the coprocessor card, and (2) the benefits 
of minimizing communication to and from the card. It is worth noting 
as well, that the number of MPI ranks used on an Intel Xeon Phi copro-
cessor should be substantially less than the number of cores—in no 
small part because of limited memory on the coprocessor. Consistent 
with parallel programs in general, the advantages of overlapping 
communication (e.g., MPI messages or offload data movement) with 
computation are important to consider, as well as techniques to 
load balance work across all available cores. Of course, involving Intel 
Xeon processor cores and Intel Xeon Phi coprocessor cores adds the 
dimension of “big cores” and “little cores” to the balancing work, even 
though they share x86 instructions and programming models. While 
MPI programs often already tackle the overlap of communication  
and computation, the placement of ranks on coprocessor cores still 
requires dealing with the highly parallel programming needs and 
limited memory. This is why an offload model can be attractive, even 
within an MPI program.

The offload model for Intel Xeon Phi coprocessors is quite rich.  
The syntax and semantics of the Intel® Language Extensions for 
Offload are generally a superset of other offload models including 
OpenACC. This provides for greater interoperability with OpenMP; 
ability to manage multiple coprocessors (cards); and the ability to 
offload complex program components that an Intel Xeon Phi copro-
cessor can process, but that a GPU could not (and hence, OpenACC 
does not allow). We expect that a future version of OpenMP will 
include offload directives that provide support for these needs, and 
Intel plans to support such a standard for Intel Xeon Phi coprocessors 
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as part of our commitment to providing OpenMP capabilities. Intel 
Language Extensions for Offload also provides for an implicit sharing 
model that is beyond what OpenMP will support. It rests on a shared 
memory model supported by Intel Xeon Phi coprocessors that allow a 
shared memory programming model (Intel calls this “MYO”) between 
Intel Xeon processors and Intel Xeon Phi coprocessors. This is most 
similar to partitioned global address space (PGAS) programming models;  
not an extension provided by OpenMP. The Intel “MYO” capability 
offers a global address space within the node, allowing sharing of 
virtual addresses for select data between processors and coprocessor 
on the same node. It is offered in C and C++, but not Fortran, since 
future support of coarray will be a standard solution to the same basic 
problem. Offloading is available as Fortran offloading via pragmas,  
C/C++ offloading with pragmas, and optionally shared (MYO) data.  
Use of MPI can also distribute applications across the system.

Summary: Transforming-and-Tuning  
Double Advantage

Programming should not be called easy, and neither should parallel 
programming. However, we can work to keep the fundamentals the 
same: maximizing parallel computations and minimizing data movement.  
Parallel computations are enabled through scaling (more cores and 
threads) and vector processing (more data processed at once). Minimal 
data movement is an algorithmic endeavor, but can be eased through 
the higher bandwidth between memory and cores that is available 
with the Intel® Many Integrated Core (Intel® MIC) architecture used 
by Intel Xeon Phi coprocessors. This leads to parallel programming 
using the same programming languages and models across the Intel 
Xeon family of products, which are generally also shared across all 
general purpose processors in the industry. Languages such Fortran, 
C, and C++ are fully supported. Popular programming methods such 
as OpenMP, MPI, and Intel TBB are fully supported. Newer models 
with widespread support such as Coarray Fortran, Intel Cilk Plus, and 
OpenCL* can apply as well.

Tuning on Intel Xeon Phi coprocessors for scaling, and vector and 
memory usage, also benefits the application when run on Intel Xeon 
processors. Maintaining a value across the Intel Xeon family is critical, 
as it helps preserve past and future investments. Applications that 
initially fail to get maximum performance on Intel Xeon Phi coprocessors  
generally trace problems back to scaling, vector usage, or memory usage.  
When these issues are addressed, the improvements to the application 
usually have a related positive effect when run on Intel Xeon processors. 
This is the double advantage of “transforming-and-tuning,” and devel-
opers have found it to be among the most compelling features of the 
Intel Xeon Phi coprocessors. o

Learn More
Additional material regarding programming for Intel Xeon Phi coprocessors can 
be found at http://intel.com/software/mic.

Parallel Programming Community: http://software.intel.com/en-us/parallel/

Advanced Vector Extensions: http://software.intel.com/en-us/avx/

Intel Guide for Developing Multithreaded Applications: http://software.intel.
com/en-us/articles/intel-guide-for-developing-multithreaded-applications/

ispc: Intel® Xeon® and  
Intel® Xeon Phi™ support now 
james reinders, (Intel) 
Director of Parallel Programming Evangelism

Vectorization is an industry-wide challenge—and if you are 

interested in seeing some one of the industry-leading exploration 

projects (and trying it on your code), then you may want to 

look at ispc.

ispc is an R&D compiler for a C-based language that is targeted 

to exploring the performance available from doing SPMD 

(single program, multiple data) computation on SIMD units 

found on CPUs and on Intel® Xeon Phi™ coprocessors (using the 

Intel® Many Integrated Core [MIC] architecture). It has delivered 

performance competitive with hand-coded SSE and AVX for a 

variety of graphics and throughput kernels, and typically delivers 

a 3x to 4x speedup vs. scalar C and C++ code on SSE and a 5 

to 7x speedup on AVX (for computations that are amenable to 

SPMD implementation), while still providing the ease of use of 

a C-like language.

The paper “ispc: A SPMD Compiler for High-Performance 

CPU Programming” by Matt Pharr and Bill Marks won Best 

Paper Award at InPar 2012. It is an excellent paper that 

articulates the challenges of vectorization and explains the 

important context very well. It also advances a solid demon-

stration of what is possible when you think about SPMD on 

SIMD models clearly…

Visit Go-Parallel.com
Browse other blogs exploring a range of related  

subjects at Go Parallel: Translating Multicore  
Power into Application Performance.

BLOG
highlights

SEE THE REST OF james’ BLOG: 
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by Georg Zitzlsberger,  
Technical Consulting Engineer, Intel

Issue 10 of the Parallel Universe Magazine featured a basic introduction to vectorization.  
However, this parallelization technique using Intel® compilers is neither black nor white. There are many variations that 
impact the degree of vectorization, and the performance of the final application. For large-scale systems like compute 
clusters, even small improvements are desirable—vector computation as a per-core feature of the processor quickly amplifies 
through core and node count. 

Here, we demonstrate the most important features and best-known methods by applying some of the vectorization 
techniques enabled by Intel® compilers and their Intel® Cilk™ Plus technologies to an example application implementing an 
image processing algorithm.
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Figure 1: Block diagram of the example used. Focus is the implementation of the filter.

Example Application
Our example application reads a motion-blurred JPEG image, calling  
a filter function that undoes the motion blur (i.e., deconvolution) and 
eliminates low frequencies, before saving it back to a JPEG file.  
Figure 1 shows the basic workflow.

To keep the implementation simple, we have decided to implement 
the filter function in the frequency domain. Thus, before executing 
the function a forward DFT takes place, transforming the image into 
two single-precision floating point (32-bit FP) arrays: magnitude and 
phase. The same is also applied to the (de-)convolution kernel. Initial 
implementations of the filter function are shown in Figure 2, in both 
C and Fortran versions. After executing the filter function, both output 
arrays are recombined to an image by inverse DFT and stored as JPEG.

Our example operates on three channel (RGB) images, so magnitude 
and phase are clustered in the same way. This adds some complexity 
to the filter regarding the DC values, which does not make it trivial to 
vectorize (see modulo operation).

The filter is provided as a separate compilation unit. To measure the 
quality of the vectorization, we record the time it takes to execute it. 
To lower the noise, the filter is executed multiple times with the same 
input data. Throughout this article, we only focus on the vectorization 
of the filter itself. For the detailed implementation and reproducibility 
you can download the example from our blog.

Baseline
For our measurements, we are using Ubuntu* 11.04 (64-bit) running 
on an Intel® Core™ i7 processor (i7-2600). We’re also using 64-bit C/
C++ and Fortran compilers shipped with Intel® Composer XE 2013. 
Since we’re working with arrays of single-precision FP values, we also 
want to make full use of Intel® Advanced Vector Extensions (Intel® AVX), 
which can process vectors with up to eight such elements at once.

Starting with the baseline implementations for C and Fortran shown 
in Listing 1, we measure the runtime of repetitive calls to the filter and  
denote them as baseline. We get those results with standard build options  
and can see that there’s improvement left for vectorization.

Looking at this example, the benefit of vectorization seems quite 
obvious. But did the baseline already take full advantage of it? A 
common, though tedious, way to verify this is by analyzing the produced  
assembly code. For complex algorithms, this easily becomes a challenge 
and also requires advanced knowledge about the underlying architecture. 
A better solution would be using Intel® VTune™ Amplifier XE to count 
executed instructions using SIMD vectors. However, this still requires  
some knowledge about the architecture. Fortunately there is yet another, 
much faster, and easier way, that is used here—the Intel compiler 
vectorization reports (Table 1).

First, we start with the C implementation and apply the vectoriza-
tion report with n=3 to the source file “feature.c.“ It unveils rather 
dramatic reasons that turn out to have hindered the compiler from 
proper vectorization:

Boiling down the redundant output, mostly caused by loop  
unrolling and permutation of dependencies, reveals that the loop 
cannot be vectorized because of dependencies between elements  
of the arrays, including:

1.	 “imgMag“and “imgPhase“

2.	 “imgMag“ and “filterMag“

3.	 “imgMag“ and “filterPhase“ 

4.	 “imgMag“ and “gaussian“

5.	 “imgPhase“ and “filterMag“

6.	 “imgPhase“ and “gaussian“

If we list the dependencies this way it turns out that only two arrays, 
“imgMag“ and “imgPhase,“ are involved. Those are the output parameters 
from our filter. The report assumes that any write access also influences 
the other arrays. Why?
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Syntax

Linux* and Mac OS* X: -vec-report[n]       Windows*: /Qvec-report[n]

Arguments

n
Is a value denoting which diagnostic messages to report.  
Possible values are:

 0 Tells the vectorizer to report no diagnostic information.

1 Tells the vectorizer to report on vectorized loops.

2 Tells the vectorizer to report on vectorized and non-vectorized loops.

3 Tells the vectorizer to report on vectorized and non-vectorized loops and any proven or assumed data dependencies.

4 Tells the vectorizer to report on non-vectorized loops.

5 Tells the vectorizer to report on non-vectorized loops and the reason why they were not vectorized.

Table 1: Compiler option to turn on the Intel® compiler vectorization reports
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Figure 2

filter.c:

#include "filter.h"

void filter( 
		  unsigned int size, 
		  float *imgMag, float *imgPhase,	 // in & out 
		  float *filterMag, float *filterPhase,	 // in 
		  float *gaussian)	 // in 
{ 
	 for(int idx = 0; idx < size; idx++) 
	 { // idx%3: RGB values from DC, first 3 elements of "filterMag" 
		  imgMag[idx] /= (filterMag[idx] * 1/filterMag[idx%3] + filterMag[idx%3]); 
		  imgMag[idx] *= gaussian[idx]; 
		  imgPhase[idx] -= filterPhase[idx]; 
	 } 
}

filter.f90:

subroutine filter(sze, imgMag, imgPhase, filterMag, filterPhase, gaussian) & 
	 bind(C, name="filter") 
	 use, intrinsic :: ISO_C_BINDING 
	 implicit none 
	 integer(kind=C_INT), VALUE		  :: sze 
	 real(C_FLOAT), dimension(*), intent(inout)	 :: imgMag 
	 real(C_FLOAT), dimension(*), intent(inout)	 :: imgPhase 
	 real(C_FLOAT), dimension(*), intent(in)	 :: filterMag 
	 real(C_FLOAT), dimension(*), intent(in)	 :: filterPhase 
	 real(C_FLOAT), dimension(*), intent(in)	 :: gaussian 
	 integer	 :: idx 
! mod(idx, 3) + 1: RGB values from DC, first 3 elements of "filterMag" 
	 do idx = 1, sze 
		  imgMag(idx) = imgMag(idx) / (filterMag(idx) *	 & 
			   1/filterMag(mod(idx, 3) + 1) + & 
			   filterMag(mod(idx, 3) + 1)); 
		  imgMag(idx) = imgMag(idx) * gaussian(idx) 
		  imgPhase(idx) = imgPhase(idx) - filterPhase(idx) 
	 end do 
end subroutine
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Figure 3

filter.c(9): (col. 3) remark: loop was not vectorized: existence of vector dependence. 
filter.c(13): (col. 5) remark: vector dependence: assumed FLOW dependence  
between imgPhase line 13 and filterMag line 11. 
filter.c(11): (col. 5) remark: vector dependence: assumed ANTI dependence  
between filterMag line 11 and imgPhase line 13. 
filter.c(13): (col. 5) remark: vector dependence: assumed FLOW dependence  
between imgPhase line 13 and filterMag line 11. 
filter.c(11): (col. 5) remark: vector dependence: assumed ANTI dependence  
between filterMag line 11 and imgPhase line 13.

...

filter.c(13): (col. 5) remark: vector dependence: assumed ANTI dependence  
between imgPhase line 13 and imgMag line 11. 
filter.c(11): (col. 5) remark: vector dependence: assumed OUTPUT dependence  
between imgMag line 11 and imgPhase line 13. 
filter.c(13): (col. 5) remark: vector dependence: assumed OUTPUT dependence  
between imgPhase line 13 and imgMag line 11.

Figure 4

filter.c:

# include "filter.h"

void filter( 
		  unsigned int size, 
		  float * restrict imgMag, float * restrict imgPhase,	// in & out 
		  float *filterMag, float *filterPhase,	 // in 
		  float *gaussian)	 // in 
{ 
	 for(int idx = 0; idx < size; idx++) 
	 { // idx%3: RGB values from DC, first 3 elements of "filterMag" 
		  imgMag[idx] /= (filterMag[idx] * 1/filterMag[idx%3] + filterMag[idx%3]); 
		  imgMag[idx] *= gaussian[idx]; 
		  imgPhase[idx] -= filterPhase[idx]; 
	 } 
}

In C and C++, a pointer to a memory location is assumed to be over-
lapped by other pointers. Even strict ANSI aliasing rules, which prohibit 
reference of memory locations by pointers of different types, are not 
strict enough. They still allow pointers of the same type to overlap.

In our example, this is the case for all pointers. Hence the compiler 
has to assume dependencies among them. It should be emphasized 
that these are “assumed“ dependencies, meaning they must not occur 
during runtime, and the compiler cannot disambiguate because the 
filter is implemented in a separate compilation unit. Nevertheless, any 
language-standard compliant compiler needs to assume the worst 
case—with pointers overlapping—and handle them correctly. 

In most cases, such assumed dependencies may not be desired, and 
add unnecessary complexity to optimizations such as vectorization. 
However, for our example, every pointer from the parameter list refer-
ences its own memory location. As a result these are not expected to  
overlap at all, which breaks up dependencies and increases the likelihood 
of successful vectorization. There are two ways to tell the compiler 
to ignore such assumed dependencies, the “restrict“ keyword and the 
IVDEP pragma/directive.

“For large-scale systems like 
compute clusters, even small 
improvements are desirable—
vector computation as a per- 
core feature of the processor 
quickly amplifies through  
core and node count.”
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Figure 5

filter.c:

#include "filter.h"

void filter( 
		  unsigned int size, 
		  float *imgMag, float *imgPhase,	 // in & out 
		  float *filterMag, float *filterPhase,	 // in 
		  float *gaussian)		  // in 
{ 
#pragma ivdep 
	 for(int idx = 0; idx < size; idx++) 
	 { // idx%3: RGB values from DC, first 3 elements of "filterMag" 
		  imgMag[idx] /= (filterMag[idx] * 1/filterMag[idx%3] + filterMag[idx%3]); 
		  imgMag[idx] *= gaussian[idx]; 
		  imgPhase[idx] -= filterPhase[idx]; 
	 } 
}

filter.f90:

subroutine filter(sze, imgMag, imgPhase, filterMag, filterPhase, gaussian) & 
	 bind(C, name="filter") 
	 use, intrinsic :: ISO_C_BINDING 
	 implicit none 
	 integer(kind=C_INT), VALUE		  :: sze 
	 real(C_FLOAT), dimension(*), intent(inout)	:: imgMag 
	 real(C_FLOAT), dimension(*), intent(inout)	:: imgPhase 
	 real(C_FLOAT), dimension(*), intent(in)	 :: filterMag 
	 real(C_FLOAT), dimension(*), intent(in)	 :: filterPhase 
	 real(C_FLOAT), dimension(*), intent(in)	 :: gaussian 
	 integer		  :: idx 
! mod(idx, 3) + 1: RGB values from DC, first 3 elements of "filterMag" 
!DEC$ IVDEP 
	 do idx = 1, sze 
		  imgMag(idx) = imgMag(idx) / (filterMag(idx) *	 & 
			   1/filterMag(mod(idx, 3) + 1) +	 & 
			   filterMag(mod(idx, 3) + 1)); 
		  imgMag(idx) = imgMag(idx) *	gaussian(idx) 
		  imgPhase(idx) = imgPhase(idx) - filterPhase(idx) 
	 end do 
end subroutine
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“Restrict“ Keyword & IVDEP Pragma/Directive
The “restrict“ keyword is a feature of the C99 standard. It can be attributed to pointers to guarantee that no other 
pointer overlaps the referenced memory location. Using the Intel® C++ compiler does not only limit it to C99. It makes 
the keyword available for C89 and even for different incarnations of C++, simply by enabling a dedicated option: 
“-restrict“ (Linux* and Mac OS* X) or “/Qrestrict” (Windows*).

Figure 4 shows a possible implementation by using this keyword. It should be noted that we only need to apply the 
keyword to the two output parameters to break up the dependencies. 

Another approach is the IVDEP pragma/directive, provided by all Intel compilers (C++ and Fortran). This pragma is used 
in front of block scopes, such as loops, to tell the compiler to ignore all assumed dependencies therein. Applied to our 
C example (Figure 5), the speedup is the same as with the “restrict“ keyword (Figure 6). Nevertheless, the pragma 
still has some advantages over it. First, pragmas not known by other compilers are ignored. Thus this is less intrusive 
than using the keyword approach, which might not work for other compilers and non-C99 code. Second, the pragma can 
be used locally (e.g., for one loop), and leave the rest unchanged, while the keyword has impact on the entire function 
body. And lastly, the locality of the pragma allows it to selectively ignore overlapping memory locations. For example, it 
might be legal to ignore dependencies if certain conditions are met, but it would be incorrect to generally ignore these 
throughout the entire function body.
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Figure 6: Speedup for the example against the baseline of the  
C version (higher is better)

Figure 7: Speedup for the example  
against the baseline of the Fortran version 
(higher is better)

Figure 8

Figure 9

C: 
filter.c(9): (col. 3) remark: PARTIAL LOOP WAS VECTORIZED. 
filter.c(9): (col. 3) remark: PARTIAL LOOP WAS VECTORIZED.

Fortran: 
filter.f90(13): (col. 3) remark: PARTIAL LOOP WAS VECTORIZED. 
filter.f90(13): (col. 3) remark: PARTIAL LOOP WAS VECTORIZED.

remark: loop was not vectorized: vectorization possible but  
seems inefficient.

You might have noticed already that the result for the IVDEP directive 
(Figure 5) is not shown in Figure 7. That’s true because Fortran is  
much stricter regarding overlapping memory regions than C, and because 
there’s no improvement in our example. There are exceptions when 
using Fortran pointers.

Numerous other cases can also produce assumed dependencies for 
both C and Fortran. Two examples are access of array elements through 
indirection at runtime and conditional memory accesses in a loop. All such 
cases justify the availability of the IVDEP directive for Fortran as well.

In any case, both “restrict” keyword and IVDEP pragma/directive can 
change semantics of the code if applied incorrectly. For our example, 
both inform the compiler that no other pointer overlaps the referenced 
memory location. If this is violated, for instance, by sharing memory 
among different pointers of the function parameters, the compiler 
might reorder or otherwise optimize accesses in a way that yields 

different results. Therefore, it is crucial to verify the correctness once 
the “restrict” keyword and IVDEP pragma/directive are used. In our case,  
we can do so easily by comparing the results of the different versions 
we have created. If the resulting image was corrupted, further analysis 
would be required. Since our example uses disjunctive memory locations, 
all optimizations work well.

Intel® Cilk™ Plus SIMD Pragma/Directive
For the next step, we apply any of the above proposals to our C 

implementation. For the Fortran version, we still use the baseline. 
After consulting the vectorization report once again, vectorization still 
does not look optimal, for either the C or Fortran version (Figure 8):

It seems like the loop was not fully vectorized. This reflects the 
conclusion from the compiler's efficiency heuristic. It only regards a 
fraction of the loop body as being meaningfully vectorized. This result 
is based on general knowledge about the underlying architecture and 
on following language standards. Here, the compiler regards only a 
small fraction as not being vectorized, because of gather accesses 
caused by the modulo operations. There can be other cases where the 
compiler might not vectorize at all because of alleged inefficiency. In 
such cases there will be a clear message (Figure 9):

In such cases, it may make sense to ignore such heuristics, and 
also to partly ignore language standards to “enforce“ vectorization. It 
should be noted that vectorization can only be enforced if it is techni-
cally possible. A loop which prints strings to the terminal is a trivial 
example which cannot be vectorized. 

Intel Cilk Plus—an integral part of Intel compilers—comes with a 
SIMD pragma/directive that does what we are looking for: it ignores 
any compiler heuristic regarding efficiency, as well as any restrictions 
induced by the language to enforce vectorization. It also ignores all 
dependencies; not just assumed ones like the IVDEP pragma/directive. 
Due to this fact, it is important to mention that it can change semantics 
of vectorized code as a side effect. Hence, it is mandatory to verify 
the correctness once more. For our example, we simply compare 
the output among the different versions, as we already did for the 
changes with the “restrict” keyword and IVDEP pragma/directive.

Applying the SIMD pragma/directive to our example (Figure 10) 
indeed shows an additional improvement (Figure 11). Verifying the 
results also holds true; thus being a prime solution for us.

THE PARALLEL UNIVERSE

34 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice


keyword
“restrict”

Intel® Cilk™ Plus
Array Notation

SIMD
pragma

IVDEP
pragma

Sp
ee

du
p

4.5

4

3.5

3

2.5

2

1.5

1

C

SIMD
directive

Sp
ee

du
p

1.5

1.4

1.3

1.2

1.1

1

Fortran

Figure 10

Figure 11

filter.c:

#include "filter.h"

void filter( 
		  unsigned int size, 
		  float * restrict imgMag, float * restrict imgPhase,	// in & out 
		  float *filterMag, float *filterPhase,		  // in 
		  float *gaussian)			   // in 
{ 
#pragma simd vectorlength(8) assert 
	 for(int idx = 0; idx < size; idx++) 
	 { // idx%3: RGB values from DC, first 3 elements of "filterMag" 
		  imgMag[idx] /= (filterMag[idx] * 1/filterMag[idx%3] + filterMag[idx%3]); 
		  imgMag[idx] *= gaussian[idx]; 
		  imgPhase[idx] -= filterPhase[idx]; 
	 } 
}

filter.f90:

subroutine filter(sze, imgMag, imgPhase, filterMag, filterPhase, gaussian) & 
	 bind(C, name="filter") 
	 use, intrinsic :: ISO_C_BINDING 
	 implicit none 
	 integer(kind=C_INT), VALUE		  :: sze 
	 real(C_FLOAT), dimension(*), intent(inout)	:: imgMag 
	 real(C_FLOAT), dimension(*), intent(inout)	:: imgPhase 
	 real(C_FLOAT), dimension(*), intent(in)	 :: filterMag 
	 real(C_FLOAT), dimension(*), intent(in)	 :: filterPhase 
	 real(C_FLOAT), dimension(*), intent(in)	 :: gaussian 
	 integer		  :: idx 
! mod(idx, 3) + 1: RGB values from DC, first 3 elements of "filterMag" 
!DEC$ SIMD VECTORLENGTH(8) ASSERT 
	 do idx = 1, sze 
		  imgMag(idx) = imgMag(idx) / (filterMag(idx) *		  & 
			   1/filterMag(mod(idx, 3) + 1) +	 & 
			   filterMag(mod(idx, 3) + 1)); 
		  imgMag(idx) = imgMag(idx) * gaussian(idx) 
		  imgPhase(idx) = imgPhase(idx) - filterPhase(idx) 
	 end do 
end subroutine

Sign up for future issues  |  Share with a friend

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com


Syntax

C/C++: #pragma simd [clause[ [,] clause]...]      Fortran: cDEC$ SIMD [clause[, clause]...]

Arguments

clause Can be any of the following:

 vectorlength(n1[, n2]...) Vector length to use (power of 2) 

vectorlengthfor(data type)
Only for C/C++; same as above but uses built-in types to calculate the 
vector length

private(var1[, var2]...)
firstprivate(var1[, var2]...)
lastprivate(var1[, var2]...)
reduction(oper:var1 [,var2]...)

Same as in OpenMP* work-sharing construct:  
see the OpenMP* 3.1 specification, section 2.5.1

linear(var1:step1 
          [,var2:step2]...) 

Specify additional induction variables

[no]assert Compile time error in case vectorization fails

Table 2: SIMD pragma/directive and clauses

Figure 12

filter.hpp:

... 
class FreqDomain { 
	 public: 
		  FreqDomain(float *mag, float *phase, unsigned int size) : 
			   mMag(mag), mPhase(phase), mSize(size) {}

		  unsigned int getSize() { return mSize; } 
		  float getMag(unsigned int idx) { return mMag[idx]; } 
		  void setMag(unsigned int idx, float val) { mMag[idx] = val; } 
		  float getPhase(unsigned int idx) { return mPhase[idx]; } 
		  void setPhase(unsigned int idx, float val) { mPhase[idx] = val; }

	 private: 
		  const unsigned int mSize; 
		  float *mMag; 
		  float *mPhase; 
}; 
...

filter.cpp:

include "filter.hpp"

void filter(FreqDomain &img, FreqDomain &filter, float *gaussian) 
{ //		  ^in & out	 ^in	 ^in 
// Uncomment either of the following for IVDEP or SIMD results 
// #pragma ivdep 
// #pragma simd vectorlength(8) assert 
	 for(int idx = 0; idx < img.getSize(); idx++) 
	 { // idx%3: RGB values from DC, first 3 elements of magnitude from "filter" 
		  img.setMag(idx, img.getMag(idx) / (filter.getMag(idx) * 
					     1/filter.getMag(idx%3) + 
					     filter.getMag(idx%3))); 
		  img.setMag(idx, img.getMag(idx) * gaussian[idx]); 
		  img.setPhase(idx, img.getPhase(idx) - filter.getPhase(idx)); 
	 } 
}
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Figure 14

filter_cilk.c:

#include "filter.h"

void filter( 
		  unsigned int size, 
		  float imgMag[size], float imgPhase[size],	 // in & out 
		  float filterMag[size], float filterPhase[size],	 // in 
		  float gaussian[size])			   // in 
{ 
// Note: 24 is least common multiple of 3 RGB elements and 8 elements per vector 
// (3 vectors in total) 
//						     R  G  B  R  G  B	 ... 
unsigned int index[24] = {	0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 
					     0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2 }; 
int idx = 0; 
for(; idx < size; idx += 24) 
		  imgMag[idx:24] /= (filterMag[idx:24] * 1/filterMag[index[:]] + 
				    filterMag[index[:]]) * 1/gaussian[idx:24];

for(; idx < size; idx++) // Rest (< 24) 
		  imgMag[idx] /= (filterMag[idx] * 1/filterMag[idx%3] + 
			   filterMag[idx%3]) * 1/gaussian[idx];

imgPhase[:] -= filterPhase[:];

SIMD
pragma

IVDEP
pragma

Sp
ee

du
p

4

3.5

3

2.5

2

1.5

1

C++

Figure 13: Speedups for the example against the baseline of the 
C++ version (higher is better))

Sign up for future issues  |  Share with a friend

For our example we also provided additional clauses to the pragma/
directive: “vectorlength(8)“ and “assert.“ The former guarantees the 
use of vectors with eight elements—in this case an Intel AVX 256 
bit vector with eight single-precision FP elements. The latter yields 
a compile time error in case the loop cannot be vectorized at all. This 
can be useful during development in order to guarantee that only 
vectorized code is generated, thus detecting unwanted changes early. 
There are additional clauses (Table 2). Most of them are derived from 
the OpenMP* work-sharing construct. This highlights another aspect 
of the SIMD pragma/directive: it maps existing OpenMP paradigms for 
concurrency to vectorization. 

References in C++
In combination with C++, IVDEP and SIMD pragmas have another 
advantage. For this, we convert the C version from our example to 
C++ (Figure 12). We use the dedicated class “FreqDomain“ for the 
frequency domain, containing pointers to arrays for magnitude and 
phase. Instead of passing such pointers to the filter, we provide them 
encapsulated in wrapper objects. Those objects are forwarded by 
reference. And that’s the pinpoint: with passing references we lose  
the option to use the keyword “restrict,“ because it is only specified  
for pointers, not references.

 “Intel® Cilk™ Plus—an integral part of Intel® compilers—comes with a 
SIMD pragma/directive that does what we are looking for: it ignores 
any compiler heuristic regarding efficiency, as well as any restrictions 
induced by the language to enforce vectorization.”
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void filter( 
		  unsigned int size, 
		  float * restrict imgMag, float * restrict imgPhase,	// in & out 
		  float *filterMag, float *filterPhase,		  // in 
		  float *gaussian)			  // in 
{ 
#pragma offload target(mic:0)	 \ 
			   inout(imgMag:length(size))	 \ 
			   inout(imgPhase:length(size))	 \ 
			   in(filterMag:length(size))	 \ 
			   in(filterPhase:length(size))	 \ 
			   in(gaussian:length(size)) 
#pragma simd vectorlength(16) assert 
	 for(int idx = 0; idx < size; idx++) 
	 { // idx%3: RGB values from DC, first 3 elements of "filterMag" 
		  imgMag[idx] /= (filterMag[idx] * 1/filterMag[idx%3] + filterMag[idx%3]); 
		  imgMag[idx] *= gaussian[idx]; 
		  imgPhase[idx] -= filterPhase[idx]; 
	 } 
}

Intel® Xeon Phi™ Coprocessor
Compute clusters are large scale systems. Intel® Xeon Phi™ coprocessors can also be seen this way. The huge amount of cores, each with 
their own vector execution unit, makes it more beneficial to invest in optimization. Even small gains quickly increase overall performance 
by a magnitude. All features mentioned throughout this article can also be applied to Intel Xeon Phi coprocessors. The application of the  
examples is identical for native mode use of an Intel Xeon Phi coprocessor. If using the coprocessor in an offload mode, a little additional  
control is needed to specify the particulars. Enabling our example for an Intel Xeon Phi coprocessor is quite simple. Among the different 
explicit and implicit offloading models that the coprocessor offers, we show a basic, explicit offloading implementation. A possible C 
version could look like this:

The explicit offloading pragma declares the loop to be executed on the first coprocessor target (mic:0) of the host system. All the  
data is transferred to the target before entering the loop (in/inout attributes), but only the two resulting image components are 
transferred back (inout attribute). We also applied the SIMD pragma here with increased vector length: Intel Xeon Phi coprocessors can 
handle up to 16 single-precision FP elements per vector.

The implementation above is just an example. In addition, offloading can:

>	T ransfer invariant data once and keep it on the target

>	 Asynchronous data transfer (double buffering)

>	 Conditional allocation and deallocation on the target

>	 Implicit offloading which shares memory between host and target, i.e., virtual shared memory (VSHM)

>	 And, much more (see documentation for Intel® MIC) 

The changes seem a bit complex at first glance. However, besides 
using the extended array notation syntax, we only split the arrays into 
blocks of 24. We use precisely this block size, because it is the least- 
common multiple of three (RGB values) and eight (maximum single-
precision FP elements per Intel AVX vector). This enables the compiler 
to generate code using three SIMD vectors (or multiples thereof) at 
once. Both the array notation and the blocking provide enough infor-
mation to improve performance even further (Figure 7).

Summary
IVDEP and SIMD pragmas/directives are easy to apply for C/C++  
and Fortran. While changes are kept minimal, they can help improve 

Fortunately, both IVDEP and SIMD pragmas can still be applied. Albeit 
we encapsulated the arrays in objects and only access them via member  
functions, both pragmas can improve the situation for our example 
(Figure 13). And, all that is possible just by adding a single line. 

Intel Cilk Plus Array Notations
Lastly, we’ll take a completely different approach and use another 
facet of Intel Cilk Plus technology. We refactor our example to make 
use of Intel Cilk Plus array notations for C and C++ (see the “Learn 
More” section below). Figure 14 shows a potential implementation, 
using the C version of our example as baseline.
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Did you know?

Strict ANSI aliasing: For historical reasons, the Intel® C and C++ compiler 
does not enable strict ANSI aliasing per default. Obeying strict ANSI aliasing 
rules provides more room for optimization. Hence, it is highly recommended 
to enable for ANSI-conforming code via “-ansi-alias“ (Linux* and Mac OS* X)  
or “/Qansi-alias“ (Windows*). This is already the default for the Intel®  
Fortran Compiler. 

No aliasing of arguments: On Linux* and Mac OS* X the option “-fargument-
noalias“, “/Qalias-args-“ on Windows* acts in the same way as applying the 
keyword “restrict“ to all pointers of all function parameters throughout a 
compilation unit. For those platforms, this would have been another option 
for our example.

Alignment: In our example, no information about alignment of the arrays is 
provided. In such a case, the compiler generates multiple versions of function 
or loop bodies and code additions to select the most appropriate one during 
runtime. Such a test usually adds minimal overhead, but is already slightly 
noticeable in our example. In more complex scenarios, any missing information 
about aligned data can also hinder vectorization entirely. Hence, it is recom-
mended to use pointer attributes for alignment (e.g. __declspec(align(…)), 
!DEC$ ASSUME_ALIGNED, etc.) or the vector pragma/directive (see below). 
See the Intel® compiler documentation for more information. 

Vector pragma/directive: Allows some control over the vectorization of a 
loop. As with the SIMD pragma/directive, it can assert vectorization during 
compilation time. It also controls use of streaming stores, thus bypassing 
the cache. Alignment can also be ignored throughout the loop, freeing the 
compiler from another burden to create multiple code versions. Finally, it can 
also ignore compiler internal efficiency heuristics by applying the “always“ 
clause. For our simple example, applying the vector pragma/directive would 
provide the same performance as when applying the SIMD pragma/directive, 
yet it has to obey the language standards and hence is less powerful. See  
the Intel® compiler documentation for more information.
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vectorization of an application and thus increase the overall performance. 
Intel compiler vectorization reports provide potential locations of where 
to apply the pragmas/directives. Combining all of that provides a 
powerful feature set to increase the quality of vectorization.

Intel Cilk Plus array notations on the other side require a small 
change in the existing paradigm. The benefit is that a different 
methodology can be a better solution for using the compiler to aid 
in vectorization. Intel Cilk Plus, part of Intel compilers, offers more 
technologies than covered here and addresses both vectorization 
and concurrency. It is an open specification that will be adopted in 
additional compilers in the future (there is already an experimental 
GCC branch which implements it). Please refer to the Intel Cilk Plus 
product page for a full description. 

Further information about vectorization is provided online with our 
compiler documentation, knowledge base articles, and blogs. o

Learn More
Blog: http://software.intel.com/en-us/blogs/2012/11/01/parallel- 
universe-magazine-12-advanced-vectorization/

Intel® Cilk™ Plus: http://cilkplus.org/

Intel® Xeon Phi coprocessors and the Many Integrated Core (MIC)  
Architecture: http://intel.com/software/mic/

Intel® Composer XE: http://software.intel.com/en-us/intel-composer-xe/

Structured Parallel Programming 
with Deterministic Patterns 
Dr. Michael McCool, (Intel)

Many-core processors target improved computational  

performance by making available various forms of architectural 

parallelism, including but not limited to multiple cores and  

vector instructions. However, approaches to parallel programming  

based on targeting these low-level parallel mechanisms directly  

lead to overly complex, non-portable, and often unscalable and 

unreliable code.

A more structured approach to designing and implementing 

parallel algorithms is useful to reduce the complexity of  

developing software for such processors, and is particularly 

relevant for many-core processors with a large amount of 

parallelism and multiple parallelism mechanisms. In particular, 

efficient and reliable parallel programs can be designed around 

the composition of deterministic algorithmic skeletons, or 

patterns. While improving the productivity of experts, specific 

patterns and fused combinations of patterns can also guide 

relatively inexperienced users on developing efficient algorithm 

implementations that have good scalability.

The approach to parallelism described in this document includes 

both collective “data-parallel” patterns, such as map and reduce, 

as well as structured “task-parallel” patterns, such as pipelining 

and superscalar task graphs…

Visit Go-Parallel.com
Browse other blogs exploring a range of related  

subjects at Go Parallel: Translating Multicore  
Power into Application Performance.

BLOG
highlights

SEE THE REST OF michael’S BLOG: 
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Data arrive in chunks, each chunk — matrix of size p x m, t(i)

D1
p x m(t1)

D2
p x m(t2)

Dk
p x m(tk)

Further analysis

Signal
component

Noise
component

Time

t1 t2 tk

FilterMajor blocks of the filter
• Update correlation matrix using the latest data
   chunk Dk
• Apply PCA(*): compute Eigenvalues/vectors for
   the correlation
• Split Eigenvalues into two sets (**): 1st set
   presents signal, 2nd set — noise
• Assembly signal and noise correlations from 2 
   sets of Eigenvalues/vectors

   * PCA — Principal Component Analysis
 ** Split is based on Randomized Matrix theory and 
     distribution of Eigenvalues

Figure 1: The online noise filtration algorithm.

Introduction
Online data analysis is becoming highly important in the 
financial industry—it supports real-time decision making and respon-
siveness to fluctuating market conditions. Here, we demonstrate that 
advanced algorithms and the right combination of hardware and soft-
ware technologies lead to a high performance implementation, which 
is the key to any practical use of such analysis. As an example, we’ll 
consider online detection of dependencies in the price movements of 
a large stock portfolio. This is an important component of technical 
financial analysis. The purpose is to find correlation patterns among 
the stocks, i.e., to see how the price movements of some stocks  
influence the price movements of others. 

A noise filtration algorithm1 has been developed for this type of  
analysis. The algorithm is compute-intensive. It requires high-performance 
software building blocks running on powerful hardware to produce 
results in a timely fashion. We describe an implementation using the 
Intel® Math Kernel Library (Intel® MKL). The advantages of an Intel 
MKL-based implementation are that Intel MKL readily provides all math 
functions needed by this algorithm, as well as the high performance 
we can achieve thanks to the highly tuned statistical and linear algebra  
functions in Intel MKL. We demonstrate that this implementation can 
attain ~29x speedup on an Intel® Xeon® E5-2600 system over a refer-
ence implementation based on non-optimized statistics functions and 
NetLib LAPACK*. We also show that the implementation can be easily 
extended to make use of the Intel® Xeon® Phi™ coprocessor.

Section 2 of this article discusses the methodology of the online 
noise filtration algorithm. Section 3 provides an overview of the math 
building blocks in the algorithm, describes the Intel MKL-based imple-
mentation, and then discusses performance results. Section 4 covers 

a straightforward port to the Intel Xeon Phi coprocessor. Section 5 
summarizes the work and relates the techniques used in this article to 
similar statistical analyses. 

Dependency Detection for Financial Market 
Data Streams
Computation of correlations is an important and basic instrument in 
stock data analysis. Its purpose is to reveal any statistical dependencies 
among different stocks. Straightforward computation of correlations, 
without any post-processing, can result in biased results as the price 
data that comes in the form of data streams is generally noisy, the 
number of observations in each data block is small, and the underlying 
statistical distribution is unknown. Thus, noise filtration is one of the 
early and basic stages in reliable data processing and analysis.

The algorithmic scheme proposed1 resolves these issues and results  
in a more accurate estimation of dependencies and patterns in joint 
behavior of stock prices. The methodology is to split a correlation matrix— 
representing the overall dependencies in data—into two components, 
a “signal” matrix and a “noise” matrix. The signal matrix gives an accurate 
estimate of dependencies between stocks. The algorithm relies on an  
Eigen state-based approach that separates noise from useful information 
by considering the Eigenvalues of the correlation matrix for the accu-
mulated data. In addition, it organizes the computation in a fashion that  
is particularly suitable for online and real-time analysis: it only needs 
information in the current data block to update the estimates of the signal 
and noise correlation matrices. It does not need historical price data. 

We start with a general description of the algorithm and then provide  
additional details related to the steps of the algorithm.
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Figure 2

Online Noise Filtration Algorithm
The online noise filtration algorithm can be summarized as follows:

Step 1	 Get a new block of data from the data stream.

Step 2	 Update the correlation matrix using the latest data block.

Step 3	 Compute the Eigenvalues/Eigenvectors that define the noise component, by searching those  
	E igenvalues of the correlation matrix belonging to the interval [λmin , λmax ]. 

Step 4	 Compute the correlation matrix of the noise component by combining Eigenvalues/Eigenvectors  
	 computed in Step 3.

Step 5	 Compute the correlation matrix of the signal component by subtracting the noise component  
	 from the overall correlation matrix.

Step 6	 If there is more data, go back to Step 1.

Figure 1 schematically depicts the algorithm and its main elements.
From algorithmic perspective, the computation of correlation matrix, Eigenvalues/Eigenvectors, 

and matrix operations are three essential components. Computational complexity of the components  
means that powerful hardware and fast software are key to the systems intended for practical use. 

Let’s consider the major elements of the algorithm in more detail. The data block arriving at 
time t is organized as a p-by-m matrix D(t), where p is the number of stocks, and m the number 
of readings (observations) of the p stock prices. The information contained in D(t) is noisy in 
general. The signal/noise filtration in the algorithm is based on principal component analysis 
(PCA), which transforms a set of related variables into a smaller set of principal, linearly inde-
pendent components. These components capture a good approximation of the original data 
with fewer variables by throwing out statistically insignificant information. To apply PCA we 
compute the correlation matrix Cor(D) for data block D : Cor(Dc ) =  (m–1)   Dc D c

T, where Dc is the 
normalized D (subtracting the mean and dividing by the standard deviation). Next, on this corre-
lation matrix we compute Eigenvectors representing the basis of the source data and find the 
Eigenvalues defining the statistical importance of the corresponding vectors. The Eigenvalues 
are then used to separate signal and noise.

The step of filtering out noise is based on the theory of random matrices, which assumes 
that noise in the price data is represented by independent and identically distributed random 
variates. Under this assumption the Eigenvalues of the noise correlation matrix are known to 
follow statistical distribution described by probability density function1 (see Karupta, 2002 for 
more details):

Simply speaking, it means that the correlation matrix of the noise is constructed from the 
Eigenvalues belonging to the interval [λmin , λmax ] and the corresponding Eigenvectors by 
using matrix operations. The correlation matrix of the signal is obtained by subtracting the 
noise component from the original correlation matrix. 

 “Intel® Math Kernel Library provides a  
set of functions for computing statistical 
estimates of multidimensional datasets.”
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status = vsldSSNewTask( &task, &p, &m, x, &x_storage, 0,0 );

status = vslSSDeleteTask( &task );

status = vsldSSEditCovCor( task, mean, 0, 0, cor, cor_storage );

status = vsldSSCompute( task, VSL_SS_COR, VSL_SS_METHOD_FAST);

W[0] = W[1] = 0.0; 
status = vsldSSEditTask( task, VSL_SS_ED_ACCUM_WEIGHT, W );

Optimizing Online Noise Filtration Using Intel MKL
Intel MKL2 is the industry-leading computational math library for applications that require 
maximum performance. It provides advanced performance optimizations for past, present, and 
future Intel® and compatible processors. The library provides rich collections of the algorithms 
that address a wide spectrum of problems in finance, engineering, and science. The high speed 
of Intel MKL functions relies on the latest advances in hardware and the intensive applications 
of instruction-level, data-level, and task-level parallelisms available in modern multicore CPUs. 
All kernels necessary to implement the online noise filtration algorithm are available in Intel 
MKL. These kernels include statistical functions, functions for solving symmetric Eigenvalue 
problems, and matrix operations. 

Intel MKL Statistics Functions
Intel MKL provides a set of functions for computing statistical estimates of multidimensional 
datasets. Those functions rely on cutting-edge parallel algorithms of computational statistics, 
and provide simple interfaces that allow almost any statistical analysis task to be performed 
with only four steps. The functions that are of particular interest for this article are the ones 
that compute correlation matrix. Let’s take a brief look at the usage model:

1.	 Initialize a summary statistics task and define the objects for our analysis: dataset x, its sizes 
(number of variables p and number of observations m), and the storage format x_storage:

2.	 	Specify task parameters:

•	T he memory intended to hold the correlation matrix:

•	 A two-element array intended to hold accumulated weights of observations processed so far  
(necessary for correct computation of estimates for data streams):

3.	 	Call the major compute driver by specifying computation type VSL_SS_COR, and computation 
method, VSL_SS_METHOD_FAST:

4.	 	De-allocate resources associated with the task:

Refer to related sections in the Intel MKL Reference Manual,3 as well as the Summary 
Statistics Library Application Notes,4 for detailed information on these functions. 

 “Straightforward  
computation of  
correlations, without 
any post-processing, 
can result in biased 
results as the price 
data that comes in 
the form of data 
streams is generally 
noisy, the number of 
observations in each 
data block is small, 
and the underlying 
statistical distribution 
is unknown. Thus, 
noise filtration is  
one of the early and 
basic stages in reliable 
data processing  
and analysis.”
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Figure 3

Figure 4: Initialize a correlation analysis task and its parameters

Initialization

#define P 450 /* # of stocks*/ 
*/  to #define M 1000 /* # of observations in block */ 
... 
VSLSSTaskPtr task; 
double x[P*M], mean[P], cor[P*P], W[2]; 
MKL_INT p, m, x_storage, cor_storage;

/* Initialize VSL Summary Stats task */ 
p = P; m = M; 
x_storage = VSL_SS_MATRIX_STORAGE_COLS; 
vsldSSNewTask( &task, &p, &m, x, &x_storage, 0,0 );

/* Set-up parameters of the task */ 
/* Specify memory for correlation estimate in task */ 
cor_storage = VSL_SS_MATRIX_STORAGE_FULL; 
vsldSSEditCovCor( task, mean, 0, 0, cor, cor_storage );

/* Specify the parameter for progressive estimation of 
 correlation */ 
W[0] = W[1] = 0.0; 
vsldSSEditTask( task, VSL_SS_ED_ACCUM_WEIGHT, W ); 
...
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Intel MKL Eigenvector/Eigenvalue Functions
Step 3 of the algorithm involves solving an Eigenvalue problem for a symmetric matrix, one 
of the fundamental problems handled by the LAPACK package. Intel MKL offers a parallelized 
and highly optimized set of LAPACK functions that is API-compatible with the open source 
LAPACK library. In particular, it contains a set of drivers and computational routines to compute 
Eigenvalues and Eigenvectors for symmetric matrices of various properties and storage formats. 

The online noise filtration algorithm requires computation of Eigenvalues that belong to the  
predefined interval, λmin and λmax . These Eigenvalues define noise in the data. The LAPACK  
river routine syevr is the default choice to solve this kind of problem. The syevr interface 
allows the caller to specify a pair of values, in our case corresponding to λmin and λmax , as 
the lower and upper bounds of the interval to be searched for Eigenvalues. 

Intel MKL Matrix Operations
The Eigenvectors found are returned as columns of an orthogonal matrix A, and the Eigenvalues 
are returned in a diagonal matrix Diag. The correlation matrix for the noise component can be  
obtained as ADiagAT. Instead of constructing a noise correlation matrix using two general matrix 
multiplications, this can be more efficiently computed with one diagonal matrix multiplication 
and one rank-n update operation:

For the rank-n update operation, Intel MKL provides the BLAS function syrk. 

Source Code 
The source code of our implementation comes with two versions, a baseline implementation 
and an optimized implementation. The baseline uses the open source Netlib LAPACK and BLAS 
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Figure 5: Important steps involved in noise filtration for each block of data

Figure 6: Delete the task and release associated resources

Computation

/* Set threshold that define noise component */ 
l1 = ( 1.0 – sqrt ( (double)p / m ) ); 
l1 = l1*l1; 
l2 = ( 1.0 + sqrt ( (double)p / m ) ); 
l2 = l2*l2; 
/* Loop over data blocks */ 
for ( nblock = 0; ; nblock ++ ) 
{ 
	/* Get the next chunk of size p x m into x */ 
		 GetNextChunck( p, m, x );

	/* Update correlation estimate in cor */ 
	vsldSSCompute( task, VSL_SS_COR, VSL_SS_METHOD_FAST );

	/* Apply PCA and compute eigen-values that 
	 belong to (l1, l2) and define noise */   
	dsyevr(...,&l1, &l2, ..., &evect_n);

	/* Assembly correlation matrix of noise */ 
	...  
	dsyrk( &evect_n, ..., cor_n,... );

	/* Compute correlation matrix of signal  
	 by substracting cor_n from cor */  
}

De-Initialization

vslSSDeleteTask( task ); 
MKL_Free_Buffers(); 
...

libraries for the Eigen solvers and matrix operations. NetLib BLAS* routines are also used to 
build the correlation algorithm. The optimized version is developed by combining building blocks 
from Intel MKL, as discussed above. 

The accuracy and performance of the implementations is tested using a dataset containing 
historical closing stock prices for 450 companies from the S&P 500 for a range of 9,608 trading 
days. In both implementations, we emulate data streaming by reading a block of 1,000 price 
vectors of size 450 at every time step. The structure of the source code, and some of the important 
steps in the optimized implementation are shown in Figures 4–6. 

 “Although the problem of interest in this article is correlation 
analysis of financial market data, the principles and statistical 
analysis techniques used can find applications in many  
other fields, such as data mining, machine learning, pattern 
recognition, and bioinformatics.”
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Seconds per Block Speedup

Baseline implementation 0.883 1.0

Optimized implementation (using Intel® MKL) 0.031 28.9

Table 1

Figure 7: Offload noise filtration with asynchronous data transfer

Offload Noise Filtration with Asynchronous Data Transfer

... 
for (k = 0; k < nBlocks; k++) 
{ 
	 /* Get the next data block */ 
	 status = nfReadNextChunk(..., xblock );

	 /* Start asynchronous transfer of block xshared to coprocessor */ 
	 #pragma offload_transfer target(mic:0) wait(res) \ 
		  in(xblock:length(m*p) alloc_if(0) free_if(0))signal(xblock)  
	 {}

	 /* Offload noise filtration computations to the coprocessor */ 
	 #pragma offload target(mic:0) in(params) in(res_buf_sz)    \ 
		  wait(xblock)	 \ 
		  nocopy(ssTask)	 \ 
		  nocopy(xblock:length(m*p) alloc_if(0) free_if(0))     \ 
		  nocopy(buf:length(buf_sz) alloc_if(0) free_if(0))     \ 
		  out(res:length(res_sz) alloc_if(0) free_if(0))      \ 
		  signal(res) 
	 { 
		  NoiseFiltr(&params, xblock, buffer, res, ssTask); 
	 } 
} 
/* Wait for the result of the last iteration */ 
#pragma offload_wait target(mic:0) wait(res) 
{}
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Performance
The performance of the two implementations was measured on a 16-core Intel® Xeon® E5-2690 processor. The configuration 
of the test platform is:

>	 Intel Math Kernel Library (Intel MKL) 11.0

>	 Hardware: Intel Xeon Processor E5-2690, two eight-core CPUs (20Mb L3 Cache, 2.9GHz), 32GB of RAM

>	 Operating System: RHEL 6 GA x86_64

>	 Benchmark Source: Intel Corporation

The benchmarking results show that the optimized implementation runs ~29 times faster than the baseline implementation. 
Intel MKL functions tuned for multicore architectures and their effective exploiting of data and instruction level parallelisms 
are helping to enable this huge performance difference.

Using an Intel Xeon Phi Coprocessor
The highly parallel online nature of the noise filtration algorithm is a great fit for an efficient, natural implementation using 
the Intel Xeon Phi coprocessor. There are several key advantages for using a coprocessor for this type of data analysis:

>	T he programming models for processors and the coprocessor are the same. That is, the coprocessor does not require new devel-
opment of the algorithm. The same set of software development tools, such as the Intel® C++ compiler and Intel MKL, support 
both platforms and the transparent communication between them;

>	T he number of cores on the coprocessor is substantially larger and the vector registers are wider. These help Intel MKL to get 
additional performance advantages on the coprocessor;

>	 Offloading computations to the coprocessor frees up resources on the host for other tasks, and just one thread is necessary to 
support communication between host and coprocessor.
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Several approaches are available to arrange communication between host and coprocessor. 
In our implementation, we rely on asynchronous data transfer. This mechanism allows us to 
get additional performance benefits by overlapping computation and communication. Upon 
offloading the data block and initiating computation on the coprocessor, the host immediately 
moves to get and preprocess the next block of data. The host gets back the results once 
the coprocessor signals its availability. Asynchronous data transfer is supported by Intel C++ 
compiler and can be arranged using relevant Intel-specific pragmas. The skeleton of the code 
for offloading with asynchronous data transfer is shown in Figure 7.

The algorithm implemented in NoiseFiltr is identical to the one discussed earlier. The 
computational flow is mostly the same. To control data transfer and offloading, we add corre-
sponding compiler pragmas to the necessary elements of the loop. It is worth noting that the 
pragmas can be easily disabled, so the code can be recompiled to run on the host.

When the i-th data block is obtained through the function nfReadNextChunk the host 
comes to a state of waiting for the filtration results to arrive in buffer res. The results were 
computed on the previous iteration, for the (i-1)-th block, by the coprocessor. Once the results 
arrive, the host resumes and transfers the i-th data block xblock to the coprocessor and 
moves to the next statement. The data transfer is achieved using a single pragma #pragma 
offload_transfer. Next, the host initiates noise filtration on the coprocessor using 
#pragma offload. The signal clause in the pragma dictates the host to immediately 
move to reading the (i+1)-th data block, in parallel with the computation on the coprocessor. 
Note that filtration starts only after the i-th data block is received by the coprocessor. The 
results of analysis of the i-th block are expected by iteration (i+1).

This coprocessor-oriented implementation has advantages only if the cost of computation 
dominates data transfer overheads. To some extent, asynchronous data transfer helps to hide 
the overhead. The key is to choose a right data block size, such that there is enough parallelism 
to be exploited in each block to achieve the optimal speedup, while still keeping data transfer 
overhead relatively low.

Conclusion
This article demonstrates the superb performance advantages of Intel MKL in the implemen-
tation of the online noise filtration algorithm on Intel Xeon processors. It also demonstrates 
a straightforward port to the Intel Xeon Phi coprocessor. Although the problem of interest in 
this article is correlation analysis of financial market data, the principles and statistical analysis 
techniques used can find applications in many other fields, such as data mining, machine 
learning, pattern recognition, and bioinformatics. A common problem in these applications is 
transforming data in a highly dimensional space to a space with a reduced number of dimen-
sions, i.e., dimensionality reduction. Principal component analysis (PCA) and the closely related 
linear discriminant analysis (LDA) are the most frequently used methods of dimensionality 
reduction. These methods require computation of statistical estimates for the raw data, such 
as variance, covariance, and correlation. They also typically involve linear transformation of 
large datasets. Intel MKL offers highly optimized and extensively threaded summary statistics 
functions and linear algebra functions on both Intel Xeon architectures and Intel Xeon Phi 
coprocessors, and should be considered the math library of choice in powering these data-
oriented and compute-intensive applications. o

Learn More
Source Code: http://software.intel.com/sites/default/files/article/327618/nf-bench6.zip 
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lead to a high  
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implementation.”
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Resources AND Sites of Interest

The mission of Go Parallel is to assist developers in 
their efforts toward “Translating Multicore Power into 
Application Performance.” Robust and full of helpful  
information, the site is a valuable clearinghouse of  
multicore-related blogs, news, videos, feature stories,  
and other useful resources.

Check out a range of resources on a wide variety  
of software topics for a multitude of developer  
communities ranging from manageability to parallel 
programming to virtualization and visual computing.  
This content-rich collection includes Intel® Software 
Network TV, popular blogs, videos, tools, and downloads.

See these products in use, with video overviews that 
provide an inside look into the latest Intel® software. You 
can see software features firsthand, such as memory 
check, thread check, hotspot analysis, locks and waits 
analysis, and more.

Intel® Inspector XE

Intel® VTune™ Amplifier XE

The Intel® Software Evaluation Center  
makes 30-day evaluation versions of Intel® Software 
Development Products available for free download.  
For high-performance computing products, you can get 
free support during the evaluation period by creating  
an Intel® Premier Support account after requesting the 
evaluation license, or via Intel® Software Network Forums. 
For evaluating Intel® Parallel Studio, you can access free 
support through Intel Software Network Forums ONLY. 

What if you could experiment with Intel’s advanced 
research and technology implementations that are still 
under development? And then what if your feedback 
helped influence a future product? It’s possible here.  
Test drive emerging tools, collaborate with peers,  
and share your thoughts via the What If blogs and 
support forums. 

Go Parallel

Intel® Software Network
“What If” Experimental  
Software

Step Inside the Latest Software
Intel® Software  
Evaluation Center
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Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that 
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets 
and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization 
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are 
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are 
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more 
information regarding the specific instruction sets covered by this notice.
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