
THE PARALLEL
UNIVERSEIssue 12

November 2012

Walter Shands
Software Development Engineer

by Walter Shands

Scale HPC applications forward, faster

The efficient path to
increased performance

Intel® Cluster Studio XE 2013 combines proven cluster and performance profiling
tools with advanced threading and memory correctness analysis to boost HPC
application performance and reliability.

©2012, Intel Corporation. All rights reserved. Intel, the Intel logo, Cilk Plus, and VTune are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

›› Industry-leading Intel® MPI Library: New
levels of performance, scalability and flexibility
for cluster applications on Intel® platforms

›› Intel® C, C++, and Fortran compilers:
Built-in optimization technologies and
multithreading support

›› Intel® VTune™ Amplifier XE and
Intel® Inspector XE: Efficient thread
and memory analysis

›› Intel® Cilk™ Plus and Intel® Threading
Building Blocks: Support open, standard
parallel programming models

http://software.intel.com/en-us/intel-cluster-studio-xe/

Contents
Letter from the Editor
When Complex Is the Baseline, by James Reinders	 4

Shedding Light on Cluster Performance with LAMMPS,
by walter shands	 6
Highlights the features of Intel® Cluster Studio XE by using them to build and analyze
LAMMPS (http://lammps.sandia.gov/), a complex cluster application and benchmark used
in Spec MPI*.

Checklist for Programming Intel® Xeon Phi™ Coprocessors,
by James Reinders	 22
Offers key tips for programming a high degree of parallelism, while using familiar programming
methods and the latest Intel® tools supporting the Intel® Xeon Phi™ coprocessor.

Advanced Vectorization, by Georg Zitzlsberger	 28
Applying some of the vectorization techniques enabled by Intel compilers and their
Intel® Cilk™ Plus technologies to an example application.

Optimizing Correlation Analysis of Financial Market Data
Streams Using Intel® Math Kernel Library,
by Zhang Zhang, Andrey Nikolaev, and Victoriya Kardakova	 40
Demonstrates the performance advantages of Intel® Math Kernel Library in the
implementation of the online noise filtration algorithm on a correlation analysis of
financial market data.

Sign up for future issues | Share with a friend
The Parallel Universe is a free quarterly magazine. Click here to sign
up for future issue alerts and to share the magazine with friends.

© 2012, Intel Corporation. All rights reserved. Intel, the Intel logo,
Intel Core, Intel Inside, Cilk, Pentium, VTune, VPro, Xeon and Xeon Phi
are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com/

Letter From
the Editor

James Reinders Director of Parallel Programming Evangelism
at Intel Corporation. James is a co-author of a new book, Structured
Parallel Programming, from Morgan Kaufmann, 2012. His other books
include Intel® Threading Building Blocks: Outfitting C++ for Multicore
Processor Parallelism, available in English, Japanese, Chinese, and Korean.

Complexity is every day in high performance and
cluster applications. Applications are utilized to solve the
increasingly complex problems that we pose. Parallelism is the
natural vocabulary for developers trying to ensure that large
data stores and demanding workloads run fast, run flawlessly,
and helps us get the results we seek.

The conjunction of Intel® Cluster Studio XE 2013 and the
Intel® Xeon Phi™ coprocessor makes this an ideal time to explore
some of our more interesting development challenges.

Is the Baseline

When

THE PARALLEL UNIVERSE

4 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://parallelbook.com/
http://parallelbook.com/
http://threadingbuildingblocks.org/
http://threadingbuildingblocks.org/
http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

We start by seeing Intel Cluster Studio XE 2013 in action—
in Using Intel® Software Development Tools to Analyze the
Performance of LAMMPS —as we use new features of this
advanced toolset to build and analyze LAMMPS, one of the
Spec MPI* benchmarks.

Next, in Checklist for Programming Intel® Xeon Phi™
Coprocessors, we offer programming tips for applications running
on and taking advantage of the capabilities of Intel® Xeon Phi™
coprocessors. Scaling, vector usage, and memory usage can
all be improved, and these benefits are preserved when the
applications run on Intel® Xeon® processors.

Advanced Vectorization uses an example application to
present practical, proven techniques enabled by Intel compilers
and their Intel® Cilk™ Plus technologies.

And finally, Optimizing Correlation Analysis of Financial Market
Data Streams Using Intel® Math Kernel Library, is at once a case study
of extreme complexity—applying an online noise filtration algorithm
to correlation analysis in the finance industry—and a proof of the
performance gains possible with Intel® Math Kernel Library.

We all live in an increasingly complexity environment—and I hope
you are inspired by seeing some ways others are tackling their
complex challenges.

James Reinders
November 2012

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Using
 Intel® Software
 Development Tools
to Analyze the Performance of

by Walter Shands,
Software Development Engineer, Intel

LAMMPS

6 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

THE PARALLEL UNIVERSE

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friendSign up for future issues | Share with a friend

Using
 Intel® Software
 Development Tools
to Analyze the Performance of

https://swdevtoolsmag.makebettercode.com
https://swdevtoolsmag.makebettercode.com

Figure 1

Introduction
This article highlights the features of Intel® Cluster
Studio XE by using them to build and analyze LAMMPS
(http://lammps.sandia.gov/), a benchmark used in Spec MPI. We will
describe build settings for the Intel® C++ Compiler that optimize
performance and how to use the Intel® MPI message library to deliver
best-in-class performance for LAMMPS on Intel® architecture-based
clusters. We will use Intel® Trace Analyzer and Intel® Trace Collector
to illuminate the use of MPI APIs that cause performance problems in
LAMMPS, and show how to compare trace files with the Intel Trace
Analyzer GUI to get detailed analysis of message passing with aligned
timelines. We will also show how to use the Intel® MPI correctness
checking library to look for MPI coding errors. Additionally, we will show
how to use Intel® VTune™ Amplifier XE to visualize application scaling
on individual nodes.

The techniques described in this article may be applied to similar types
of complex cluster applications by using diverse technology such as MPI
and OpenMP* across multiple machines.

Our objective is to build LAMMPS, analyze the application with
respect to MPI API performance and scaling on individual nodes, and
make it run faster. In general, we will want to make sure we use an
optimizing compiler like the Intel® C++ Compiler, that compiler settings
are optimized for the architecture the application will run on, and that
we are using an optimized MPI implementation like Intel MPI. In addition,
we want to make sure MPI API call time is a reasonably small percentage
of total computation time, and that individual MPI API calls are independent
across ranks so MPI call time is minimized. We will also want to ensure
that the application running on each node scales to take advantage
of all of the CPU cores, so that we use CPU resources efficiently. Intel
Cluster Studio XE 2013 provides the tools to build faster MPI applications
and analyze MPI application performance.

According to LAMMPS documentation, “LAMMPS is a classical molecular
dynamics code that models an ensemble of particles in a liquid, solid,
or gaseous state. It can model atomic, polymeric, biological, metallic,
granular, and coarse-grained systems using a variety of force fields
and boundary conditions.”

Building LAMMPS with the Intel C++ Compiler
and Intel MPI Library
To build LAMMPS we created a custom make file by copying one of the
provided make files and editing the contents so the LAMMPS build used
the Intel C++ Compiler and the Intel MPI Library. Here are some of the
settings (Fig. 1):
mpiicpc is the Intel-specific command for building an application

using the Intel C++ Compiler and the Intel MPI Library. The MPI Library
focuses on making applications perform better on IA-based clusters
by implementing the high-performance MPI-2 specification on multiple
fabrics. It enables you to quickly deliver maximum end-user performance,
even if you change or upgrade to new interconnects, without requiring
major changes to the software or operating environment.

To analyze MPI message traffic in an application with Intel Trace
Analyzer, we need to collect data into trace files. Intel Trace Collector
for MPI applications produces trace files that can be analyzed with the
Intel Trace Analyzer performance analysis tool. It records all calls to the
MPI library and all transmitted messages, and allows arbitrary user-defined
events to be recorded. Instrumentation can be switched on or off at
runtime, and a powerful filtering mechanism helps to limit the amount
of the generated trace data.

Intel Trace Collector is an add-on for existing MPI implementations;
using it merely requires relinking the application with the Intel Trace
Collector profiling library. This will enable the tracing of all calls to MPI
routines, as well as all explicit message passing. On some platforms,
calls to user-level subroutines and functions will also be recorded.

We can use a fully optimized build and capture a trace that will allow
us to drill down to source code with Intel Trace Analyzer. The same is true
of Intel VTune Amplifier XE, so we use full optimizations in the compiler
with the –O3 switch. We want to use the most advanced instruction
set for our target nodes, which in our case supports SSE4.2, so we
include the –SSE4.2 switch since the default for the compiler is SSE2.

We need symbol information to drill down to source code with
Intel VTune Amplifier XE and Intel Trace Analyzer, so we include the
–g switch. A new feature in Intel VTune Amplifier XE 2013 is that
it allows us to drill down to source code even if functions are inlined,
so we don’t need to include the –fno-inline-functions switch as was
required for previous versions. Intel Trace Collector requires normal
stack frames but the Intel® compiler does not use normal stack frames
by default if optimization is enabled, so we must use -fno-omit-frame-
pointer to enable the use of normal stack frames.

compiler/linker settings
specify flags and libraries needed for your compiler

CC =		 mpiicpc
CCFLAGS =	 -g –O3 -xSSE4.2 -fno-alias -fno-omit-frame-pointer -vec-report5 -opt-report3
-opt-report-phase=all
DEPFLAGS =	 -M
LINK =	 mpiicpc
LINKFLAGS =	 -O
LIB =		 -lstdc++ -lpthread -liomp5
ARCHIVE =	 ar
ARFLAGS =	 -rc
SIZE =	 size

THE PARALLEL UNIVERSE

8 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Figure 3

Figure 2

Sign up for future issues | Share with a friend

Running a LAMMPS Benchmark
LAMMPS runs by reading commands from stdin, and you can write an input script of commands to set up and simulate

particle dynamics. There is a set of input scripts for tests and benchmarks provided in the LAMMPs distribution. We used
the script for a standard Lennard-Jones benchmark.

This is an example of running LAMMPS with a Lennard-Jones benchmark script (Fig. 2):

mpirun is the command used to launch an MPI job. Here it runs the LAMMPS application on the nodes listed in the
cluster.hosts file; in this case my build is called "lmp_walt“. The –trace switch causes Intel Trace Collector to profile the
LAMMPS application by preloading the Intel Trace Collector library, and the environment variable VT_PCTRACE sets the
call stack depth.

The –bootstrap slurm option selects a built-in bootstrap server to use, which is the basic remote node access
mechanism provided on the nodes, and –n 8 says to use eight processes in the run. The –perhost 1 option is important:
it says to create 1 MPI process on each node in a round-robin fashion. Without it, an MPI process is started for every
core available on the first node. For example, if the nodes each have 12 cores and we use the –n 8 option, but not the
–perhost option (or equivalently the –rr option), then eight MPI processes would be started on one node.

The –var x 2 –var y 2 –var z 2 LAMMPS flags are for scaling the problem 2x in each x, y, and z direction,
where the data to work on is arrayed as a grid of x * y * z 3d subdomains. We set the variables to two so that there is a
3D subdomain assigned to each of the eight processors used.

We created eight MPI processes to run in total, each on a separate node for our first run of the Lennard-Jones benchmark,
and analyzed the trace with Intel Trace Analyzer.

Analyzing MPI Communications
When you develop MPI applications it is important to look at how much time the MPI calls are consuming compared to
application time and the load balance for each MPI call. Intel Trace Analyzer provides this data through various charts
and profiles.

The Flat Profile

The Flat Profile view tells us how much time user code took and can tell us how much time each MPI API took during
the application run. It shows that the total amount of time taken by MPI calls over the whole run of the program is fairly
significant compared to application time (Fig. 3), and we can use Intel Trace Analyzer to see more details.

Ungrouping MPI reveals that the MPI_Send and MPI_Wait calls are the most expensive in terms of time (Fig. 4).

> mpirun -f ~/cluster.hosts -trace -genv VT_PCTRACE 4 –perhost 1 -bootstrap slurm -n8
 ~/LAMMPS/lammps-25Jul12/src/lmp_walt -var x 2 -var y 2 -var z 2 < in.lj

THE PARALLEL UNIVERSE

Sign up for future issues | Share with a friend

https://swdevtoolsmag.makebettercode.com

Figure 5

Figure 4

The Load Balance Chart

In addition, MPI API call time and application
time are not well balanced across nodes, as
shown in the Load Balance chart (Fig. 5).

If we look at the MPI function time in finer
detail, there are varying times for individual
MPI calls across the compute nodes, with
most of the time taken on the 0, 4, 5, and 9
compute nodes. This can be an indication of
message dependencies that result in reduced
application performance (Fig. 6). The Event
Chart provides information on whether MPI
API calls are interdependent.

THE PARALLEL UNIVERSE

10 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Figure 6

Figure 7

Sign up for future issues | Share with a friend

The Event Chart

If we open the Event Chart from the Chart
menu, it shows us a timeline and horizontal
bars with segments representing application
code and MPI messages. This gives us an
idea of which message APIs were called at
a particular time and how long they took to
complete. (Fig. 7)

LAMMPS documentation states “For
computational efficiency, LAMMPS uses
neighbor lists to keep track of nearby
particles … On parallel machines, LAMMPS
uses spatial-decomposition techniques to
partition the simulation domain into small
3D subdomains, one of which is assigned to
each processor. Processors communicate and
store “ghost“ atom information for atoms that
border their sub-domain …. The Comm class
performs interprocessor communication,
typically of ghost atom information. This usually
involves MPI message exchanges with six
neighboring processors in the 3D logical grid
of processors mapped to the simulation box.”

Our input script called for 100 time steps
with neighbor lists of particles rebuilt after
20 time steps. The communication of atom
information occurs at each time step, and the
Event Chart allows us to see the communication
graphically. We can see the five groups of
20 atom information exchanges show up as
black lines.

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Figure 8

Figure 9

If we zoom into the event chart, we can
get details on the message passing calls.
Here is the zoom into one of the five groups
(Fig. 8).

A further zoom into an atom information
exchange provides a look at the individual MPI
API calls over time. The black lines indicate
which ranks or processes exchanged messages,
and there are two distinct time periods within
a time step where messages are exchanged
(Fig. 9). The messages between ranks look
fairly independent, since we do not see a
stair-step pattern, which is indicative of message
interdependence—although some of the MPI
APIs in the first message exchange sequence
take quite a bit longer to complete than the
same MIP APIs in the second message exchange
sequence during this application time step.

THE PARALLEL UNIVERSE

12 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Figure 10

Figure 11

Sign up for future issues | Share with a friend

If we want to get information on a
message or MPI API call, we can simply right-
click on a black message line or on the MPI
call segment to bring up the message details
dialog (Fig. 10).

If we want to look at the source code
where the MPI call originated and we have
debug symbols, we can click on the Show
Source button in the dialog box to display
the location of the MPI call and the call stack
(Fig. 11). In our case, this confirms that
in the first message exchange sequence
the Comm class is calling reverse_comm
to exchange ghost atom information or,
more specifically, forces on ghost atoms are
communicated and summed back to their
corresponding owned atoms.

THE PARALLEL UNIVERSE

Sign up for future issues | Share with a friend

https://swdevtoolsmag.makebettercode.com

Figure 12

Figure 13

The same source code analysis confirms
that the second message exchange sequence
is where the Comm class calls forward_comm
to distribute coordinates of ghost atoms to
each process. This is done at each time step
(Fig. 12).

The Qualitative Timeline

Another metric we may want to examine is
the data volume that is being transmitted
with each message over time. To see this, we
use the Qualitative Timeline, selected from
the Chart menu, and right-click on the window
to select Messages and Data Volume from
the pop-up menu as the items to display
(Fig. 13).

The data volume per message is fairly
consistent over time—with a maximum at
about 93 KB. Additionally, we can see the
duration and transfer rate by picking those
attributes for the display.

THE PARALLEL UNIVERSE

14 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Figure 14

Figure 15

The Quantitative Timeline

The Quantitative Timeline gives an overview
of the parallel behavior of the application.
It shows over time how many processes or
threads are involved in which function. Along
the time axis, the different functions are
presented as vertically stacked color bars.
The height of these bars is proportional to
the number of processes that are currently
within the respective function (Fig. 14).

There is also the option to view all of
these profiles and charts in a single window
working on a common timeline, so patterns
and relationships in the data are easier to see
(Fig. 15).

Sign up for future issues | Share with a friend

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

We can also couple the mouse zoom and
navigation keys for all of the displayed charts,
so zooming in by highlighting a section of the
timeline provides a detailed view of the data
described above over the same time interval
(Fig. 16).

The Message Profile Chart

To get another view on messages we can use
the Message Profile Chart, which categorizes
messages by groupings in a matrix and shows
the value of several attributes in each cell. By
default, the matrix is square with the sending
processes as row labels and the receiving
processes as column labels. It shows in cell (i, j)
the total time spent in transferring messages
from sender i to receiver j. This chart also
includes per row and per column statistics,
which give the sum, the average, and the
standard deviation for the respective row or
column (Fig. 17).

The chart shows that the most time-
consuming messages originated with
compute nodes 0, 1, 3, and 4 sending
messages to compute nodes 5, 6, 8, and
9 respectively, while messages sent in the
opposite direction are not a performance
problem.

MPI Message Correctness Checking

During development of an MPI application
you will need to check for errors. You can do
this with the correctness checking feature
in Intel Trace Collector by replacing the
mpirun command –trace switch with –check.
This will not generate a trace file, but will
report errors to stdout. Errors include MPI
local memory errors, message data type
mismatches, message corruption, pending
messages, deadlocks, invalid parameters,
and others.

Figure 16

Figure 17

THE PARALLEL UNIVERSE

16 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Here is an example of how the correctness checking feature was used to check LAMMPS and reported no errors:
(Fig. 18):

Application Scaling and Performance Profiling with Intel VTune Amplifier XE
It is important to balance the scalability of each MPI process with the number of MPI processes started on each node.
For example, if we have an MPI application that scales to 12 cores and have 12 cores on each node, then we can start
one MPI process per node and utilize all the CPUs effectively.

To check this on LAMMPS, we run Intel VTune Amplifier XE 2013 and a single LAMMPS process on each node. This
allows us to collect performance data on each MPI process to see how well LAMMPS utilizes all of the cores on the node.

Here is the command line to collect hotspot data for the LAMMPS process on each node using Intel VTune Amplifier XE
(Fig. 19).

Essentially, we are using the mpirun command to run Intel VTune Amplifier XE, which in turn launches an instance of
LAMMPS. Intel VTune Amplifier XE will run on each node and collect data for the LAMMPS process. The results data is
stored in separate folders for each node on the machine where the mpirun command was executed.

Intel VTune Amplifier XE results tell us that the application is using only one thread for computation, and that most of
the run time is concentrated in a function called PairLJCut::compute in file pair_lj_cut.cpp. (Fig. 20)

Figure 18

Figure 19

 ~/LAMMPS/lammps-25Jul12/bench]> mpirun -f ~/cluster.hosts -check -perhost 1 -bootstrap
slurm -n 8 ~/LAMMPS/lammps-25Jul12/src/lmp_walt -var x 2 -var y 2 -var z 2 < in.lj

~/LAMMPS/lammps-25Jul12/bench]> mpirun -f ~/cluster.hosts –perhost 1 -bootstrap slurm -n 8
amplxe-cl -collect hotspots ~/LAMMPS/lammps-25Jul12/src/lmp_o3 -var x 2 -var y 2 -var z 2 < in.lj

Figure 20

Sign up for future issues | Share with a friend

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

The runtime was about 3.15 seconds in default mode (Fig. 21).

Next, we want to include threading by using an optimization package provided in the LAMMPS
distribution to see if performance improves. The amount of scaling we get will determine how
many processes we will start on each node to get optimal use of the computational resources.

We include an optimization package that provides threading via OpenMP called USER-OMP.
Intel VTune Amplifier XE shows multiple threads of execution with significant CPU activity

(Fig.22).

Figure 21

mpirun -f ~/cluster.hosts -perhost 1 -bootstrap slurm -n 8 ~/LAMMPS lammps-
25Jul12/src/lmp_o3 -var x 2 -var y 2 -var z 2 < in.lj
LAMMPS (25 Jul 2012)
 using 24 OpenMP thread(s) per MPI task
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
Created orthogonal box = (0 0 0) to (67.1838 67.1838 67.1838)
 2 by 2 by 2 MPI processor grid
Created 256000 atoms
Setting up run . . .
Memory usage per processor = 55.2672 Mbytes
Step Temp E_pair E_mol TotEng Press
 0 1.44 -6.7733681 0 -4.6133765 -5.019674
 100 0.75865617 -5.7603259 0 -4.6223461 0.19586104
Loop time of 3.14944 on 192 procs (8 MPI x 24 OpenMP) for 100 steps with 256000 atoms

Figure 22

THE PARALLEL UNIVERSE

18 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Intel VTune Amplifier XE Thread
Concurrency data shows that the application
threads are consuming significant CPU time
over the time of the run (Fig. 23).

The histograms below (Fig. 24) show
threads and CPUs are running simultaneously
most of the time, indicating the application is
utilizing computational resources effectively.

Figure 23

Figure 24

Sign up for future issues | Share with a friend

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

The runtime was about 1.20 seconds with the optimization package, much less than without the package, even
though there was a significant amount of OpenMP wait time introduced (Fig. 25).

Memory and Threading Error Checking of MPI Processes with Intel® Inspector XE
We can also use Intel® Inspector XE to check for threading errors or memory errors in an MPI application. Here is the
command line we used to check for memory errors and to pinpoint their location (Fig. 26).

Data results are collected and stored for each node in a manner similar to Intel VTune Amplifier XE. We can open the
results in the Intel Inspector XE GUI just as we did for Intel VTune Amplifier XE results.

Support of Manycore Architectures: Intel® Xeon Phi™ Coprocessors
One of the newest additions to high performance computing is the Intel® Xeon Phi™ coprocessor, which is designed to
provide efficient performance for highly parallel applications. Common programming models for Intel® Xeon processors
extend to Intel Xeon Phi coprocessors—so as developers embrace high degrees of parallelism, they don’t need to rethink
the entire problem.

The practical result of this, in our case, is that it is very easy to run the LAMMPS application on an Intel Xeon Phi
coprocessor. All we have to do if we are using the Intel C/C++ Compiler is to rebuild LAMMPS with the –mmic switch for
both the compiler and linker. Here is the relevant part of the makefile (Fig. 27):

Figure 25

> mpirun -f ~/cluster.hosts -perhost 1 -bootstrap slurm -n 8 ~/LAMMPS/lammps-
25Jul12/src/lmp_o3 -sf omp -var x 2 -var y 2 -var z 2 < in.lj
LAMMPS (25 Jul 2012)
 using 24 OpenMP thread(s) per MPI task
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
Created orthogonal box = (0 0 0) to (67.1838 67.1838 67.1838)
 2 by 2 by 2 MPI processor grid
Created 256000 atoms
Last active /omp style is pair_style lj/cut/omp
Setting up run ...
Memory usage per processor = 59.4847 Mbytes
Step Temp E_pair E_mol TotEng Press
 0 1.44 -6.7733681 0 -4.6133765 -5.019674
 100 0.75865617 -5.7603259 0 -4.6223461 0.19586104
Loop time of 1.19531 on 192 procs (8 MPI x 24 OpenMP) for 100 steps with 256000 atoms

Figure 26

Figure 27

> mpirun -f ~/cluster.hosts -perhost 1 -bootstrap slurm -n 8 inspxe-cl -collect mi3
-r=~/LAMMPS/lammps-25Jul12/bench/ljinspxe/ljinspxedatarroptompo3con5
~/LAMMPS/lammps-25Jul12/src/lmp_o3 -sf omp -var x 2 -var y 2 -var z 2 < in.lj

compiler/linker settings
specify flags and libraries needed for your compiler

CC =	 mpiicpc
CCFLAGS =		 -mmic -g –O3 -openmp -fno-alias-fno-omit-frame-pointer

DEPFLAGS =	 -M

LINK =	 mpiicpc
LINKFLAGS =	 -mmic
LIB =	 -lstdc++ -lpthread -liomp5
…

THE PARALLEL UNIVERSE

20 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

You will also need to have libiomp5.so and libVT.so on the coprocessor to use OpenMP and Intel Trace Collector.
There are a couple of choices on where to run the application. To run four LAMMPS processes on the host and eight

LAMMPS processes on the Intel Xeon Phi coprocessor, use a command similar to the following. We use our original LAMMPS
build for the host and the one built with the –mmic switch on the Intel Xeon Phi coprocessor (Fig. 28).

To run all eight LAMMPS processes on the Intel Xeon Phi coprocessor, use the following command line indicating the
working directory on the coprocessor (Fig. 29):

In addition, we can still use Intel Trace Collector to get MPI information from applications running on Intel Xeon Phi
coprocessors, and the command line switch is the same (Fig. 30).

Or, to run and collect traces only on the Intel Xeon Phi coprocessor (Fig. 31):

Conclusion
Intel Trace Collector and Intel Trace Analyzer give us insight into MPI application information like message timing, load
balancing, and data volume so we can more easily optimize MPI applications. In the case of LAMMPS, we could see the
most time-consuming APIs and where they were called.

Intel VTune Amplifier XE provides CPU utilization and hotspot information for each MPI process, which is vital to
ensuring those processes scale on each node. Intel VTune Amplifier XE showed us that the USER-OMP package for
LAMMPS provided significant CPU resource utilization on a node, allowing the application to scale well on a two-socket
12-core node.

Intel Inspector XE and the check feature of Intel MPI help find MPI, memory, and threading errors in our application,
and the Intel C++ Compiler and Intel MPI provide highly optimized binaries and MPI infrastructure that results in a high
performance application.

This is only a glimpse into the power of Intel® Software Development tools to create and analyze complex software
applications using diverse technology such as MPI and OpenMP across multiple machines. For more information on Intel
Software Development tools see www.intel.com/software/products. o

Figure 28

Figure 30

Figure 29

Figure 31

$ mpiexec -host sc-mic -n 4 ../src/lmp_o3 -sf omp -var x 2 -var y 2 -var z 2 < in.lj : -host mic0 -n 8
~/lmp_mic -sf omp -var x 2 -var y 2 -var z 2 < in.lj

$ mpiexec –trace -host sc-mic -n 4 ../src/lmp_o3 -sf omp -var x 2 -var y 2 -var z 2 < in.lj : -wdir ~/.
-host mic0 -n 8 ~/lmp_mic -sf omp -var x 2 -var y 2 -var z 2 < in.lj

$ mpiexec -wdir ~/. -host mic0 -n 8 ~/lmp_mic -sf omp -var x 2 -var y 2 -var z 2 < in.lj

$ mpiexec –trace -wdir ~/. -host mic0 -n 8 ~/lmp_mic -sf omp -var x 2 -var y 2 -var z 2 < in.lj

Sign up for future issues | Share with a friend

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

	Ch ecklist for Programming

 Intel® Xeon Phi™
Coprocessors
	 by James Reinders,
	 Director, Software Evangelist, Intel

THE PARALLEL UNIVERSE

22 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

The Intel® Xeon Phi™ coprocessor extends the reach of the Intel® Xeon®
family of computing products into higher realms of parallelism. This
article offers the key tips for programming such a high degree of
parallelism, while using familiar programming methods and the latest
Intel® Parallel Studio XE 2013 and Intel® Cluster Studio XE 2013—which
both support the Intel Xeon Phi coprocessor.

It is worth explaining this checklist in more depth, and that is the purpose of this article.
You can see that preparing for Intel Xeon Phi coprocessors is primarily about preparing for a
50+ core x86 SMP system with 512-bit SIMD capabilities. That work can happen on most any
large, general purpose system, especially one based on Intel Xeon processors. Intel Parallel
Studio XE 2013 and Intel Cluster Studio XE 2013 will support your work on an Intel Xeon
processor-based system with or without Intel Xeon Phi coprocessors. All the tools you need
are in one suite.

Checklist

A checklist for programming for an Intel Xeon Phi coprocessor looks like this:

	 Make sure your application scales beyond 100 threads (usually 150 or more).

	 Make sure your application either:

•	 Does most computations as efficient vector instructions
(requires vectorization)

•	 Uses a lot of memory bandwidth with decent locality of reference

	T he application is written using your favorite programming languages and
parallel models to achieve the above.

	 Use your favorite tools, the same ones you use for programming for
Intel® Xeon® processors. Get the latest versions that include support for
Intel® Xeon Phi™ coprocessor support (such as Intel® Cluster Studio XE 2013,
Intel® Parallel Studio XE 2013, Rogue Wave TotalView* debugger and
IMSL* Library, NAG Library*, or Allinea DDT* debugger)

ü
ü

ü

ü

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Introduction
Intel Xeon Phi coprocessors are designed to extend the reach of
applications that have demonstrated the ability to reach the scaling
limits of Intel Xeon processor-based systems, and have also maximized
usage of available vector capabilities or memory bandwidth. For such
applications, the Intel Xeon Phi coprocessors offer additional power-
efficient scaling, vector support, and local memory bandwidth, while
maintaining the programmability and support associated with Intel
Xeon processors.

Advice for successful programming can be summarized as: “Program
with lots of threads that use vectors with your preferred programming
languages and parallelism models.” Since most applications have not yet
been structured to take advantage of the full magnitude of parallelism
available in an Intel Xeon Phi coprocessor, understanding how to
restructure to expose more parallelism is critically important to enable
the best performance. This restructuring itself will generally yield
benefits on most general purpose computing systems—a bonus due to
the emphasis on common programming languages, models, and tools
across the Intel Xeon family of products. You may refer to this bonus
as the dual-transforming-tuning advantage.

A system that includes Intel Xeon Phi coprocessors will consist of
one or more nodes (a single node computer is “just a regular computer”).
A typical node consists of one or two Intel Xeon processors, plus
one to eight Intel Xeon Phi coprocessors. Nodes cannot consist of
only coprocessors.

The First Intel Xeon Phi Coprocessor,
Codename Knights Corner
While programming does not require deep knowledge of the imple-
mentation of the device, it is definitely useful to know some attributes
of the coprocessor. From a programming standpoint, treating it as an
x86-based SMP-on-a-chip with over 50 cores, over 200 hardware
threads, and 512-bit SIMD instructions is the key.

The cores are in-order, dual-issue x86 processor cores (which trace
some history to the original Intel® Pentium® design). But with the addition
of 64-bit support, four hardware threads per core, power management,
ring interconnect support, 512 bit SIMD capabilities, and other enhance-
ments, these are hardly the Intel Pentium cores of 20 years ago. The
x86-specific logic (excluding L2 caches) makes up less than 2 percent
of the die for an Intel Xeon Phi coprocessor.

Here are key facts about the first Intel Xeon Phi coprocessor product:

>	 It is a coprocessor (requires at least one processor in the system);
in production in 2012

>	 Boots and runs Linux* (source code available at
http://intel.com/software/mic)

>	 It is supported by standard tools including Intel Parallel Studio XE 2013.
Listings of additional tools available can be found online
(http://intel.com/software/mic).

>	 It has many cores:

•	 More than 50 cores (This will vary within a generation of products,
and between generations. It is good advice to not hard code
applications to a particular number.)

•	 In-order cores support 64-bit x86 instructions with uniquely wide
SIMD capabilities.

•	 Four hardware threads on each core (resulting in more than 200
hardware threads on a single device) are primarily used to hide
latencies implicit in an in-order microarchitecture. As such, these
hardware threads are much more important for HPC applications to
utilize than hyperthreads on an Intel Xeon processor.

•	 Cache coherent across the entire coprocessor.

•	E ach core has a 512K L2 cache locally with high-speed access to all
other L2 caches (making the collective L2 cache size over 25M).

>	S pecial instructions in addition to 64-bit x86:

•	 Uniquely wide SIMD capability via 512-bit wide vectors instead of
MMX, SSE or AVX.

•	 High performance support for reciprocal, square root, power, and
exponent operations

•	S catter/gather and streaming store capabilities for better effective
memory bandwidth

•	 Performance monitoring capabilities for tools like Intel® VTune™
Amplifier XE 2013

Maximizing Parallel Program Performance
The choice whether to run an application solely on Intel Xeon proces-
sors, or to extend an application run to utilize Intel Xeon Phi coproces-
sors, will always start with two fundamentals:

1.	Scaling: Is the scaling of an application ready to utilize the highly
parallel capabilities of an Intel Xeon Phi coprocessor? The strongest
evidence of this is generally demonstrated scaling on Intel Xeon
processors.

2.	Vectorization and Memory Locality: Is the application either:

•	 Making strong use of vector units?

•	 Able to utilize more local memory bandwidth than available with
Intel Xeon processors?

If both of these fundamentals are true for an application, then the
highly parallel and power-efficient Intel Xeon Phi coprocessor is most
likely worth evaluating.

THE PARALLEL UNIVERSE

24 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Compilers
Libraries

Parallel Models

Multicore

Multicore
CPU

Source

Multicore
CPU

Multicore
Cluster

Multicore
and Many-core

Cluster

Intel® MIC
Architecture
co-processor

Many-core Cluster

> mpirun
-f ~/clu
ster.hos
ts -trac
e -genv

Figure 1: The double advantage of transforming-and-tuning means that optimizations are shared across the Intel®Xeon® family of products,
Capabilities of Intel Xeon processors are extended by Intel® Xeon Phi™ coprocessors.

Sign up for future issues | Share with a friend

Ways to Measure Readiness for
Highly Parallel Execution
To know if your application is maximized on an Intel Xeon processor-
based system, you should examine how your application scales, as well
as how it uses vectors and memory. Assuming you have a working
application, you can get some impression of where you are with
regards to scaling and vectorization by doing a few simple tests.

To check scaling, create a simple graph of performance as you run
with various numbers of threads (from one up to the number of cores,
with attention to thread affinity) on an Intel Xeon processor-based
system. This can be done with settings for OpenMP*, Intel® Threading
Building Blocks (Intel® TBB) or Intel® Cilk™ Plus (e.g., OMP_NUM_
THREADS for OpenMP). If the performance graph indicates any signifi-
cant trailing off of performance, you have tuning work you can do to
improve your application before trying an Intel Xeon Phi coprocessor.

To check vectorization, compile your application with and without
vectorization. If you are using Intel compilers: disable vectorization
via compiler switch: -no-vec, use at least –O2 xhost for vectorization.
Compare the performance you see. If the performance difference is insuf-
ficient, you should examine opportunities to increase vectorization. Look
again at the dramatic benefits vectorization may offer as illustrated in
Figure 7. If you are using libraries, such as the Intel® Math Kernel Library
(Intel® MKL), you should consider that time in Intel MKL routines offer
vectorization invariant to the compiler switches. Unless your application is
bandwidth limited, effective use of Intel Xeon Phi coprocessors should be
done with most cycles executing having computations utilizing the vector
instructions. While some may tell you that “most cycles” needs to be over
90 percent, we have found this number to vary widely based on the appli-
cation and whether the Intel Xeon Phi coprocessor needs to be the
top performance source in a node or just to contribute to performance.

The Intel® VTune™ Amplifier XE 2013 can help measure computations
on Intel Xeon processors and Intel Xeon Phi coprocessor to assist in
your evaluations.

Aside from vectorization, being limited by memory bandwidth on
Intel Xeon processors can indicate an opportunity to improve perfor-
mance with an Intel Xeon Phi coprocessor. In order for this to be most
efficient, an application needs to exhibit good locality of reference and
utilize caches well in its core computations.

The Intel VTune Amplifier XE product can be utilized to measure
various aspect of a program, and among the most critical is “L1
Compute Density.” This is greatly expanded upon in a paper titled
Using Hardware Events for Tuning on Intel® Xeon Phi™ Coprocessor
(codename: Knights Corner).

When using MPI, it is desirable to see a communication vs. compu-
tation ratio that is not excessively high in terms of communication.
Because programs vary so much, this has not been well characterized
other than to say that, like other machines, Intel Xeon Phi coprocessors
favor programs with more computation vs. communication. Programs are
most effective using a strategy of overlapping communication and I/O
by computation. Intel® Trace Analyzer and Collector, part of Intel Cluster
Studio XE 2013, is very useful for profiling. It can be used to profile MPI
communications to help visualize bottlenecks and understand the effect-
iveness of overlapping with computation to characterize your program.

Compiler and Programming Models
No popular programming language was designed for parallelism. In many
ways, Fortran has done the best job adding new features, such as DO
CONCURRENT, to address parallel programming needs, as well as bene-
fiting from OpenMP. C users have OpenMP, as well as Intel Cilk Plus. C++
users have embraced Intel Threading Building Blocks and, more recently,
have Intel Cilk Plus to utilize as well. C++ users can use OpenMP as well.

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Intel Xeon Phi coprocessors offer the full capability to use the same
tools, programming languages, and programming models as an Intel
Xeon processor. However, with this coprocessor designed for high
degrees of parallelism, some models are more interesting than others.

In essence, it is quite simple: an application needs to deal with having
lots of tasks (call them “workers” or “threads” if you prefer), and deal
with vector data efficiently (a.k.a., vectorization).

There are some recommendations we can make based on what
has been working well for developers. For Fortran programmers, use
OpenMP, DO CONCURRENT, and MPI. For C++ programmers, use Intel
TBB, Intel Cilk Plus, and OpenMP. For C programmers, use OpenMP and
Intel Cilk Plus. Intel TBB is a C++ template library that offers excellent
support for task-oriented load balancing. While Intel TBB does not
offer vectorization solutions, it does not interfere with any choice of
solution for vectorization. Intel TBB is open source and available on
a wide variety of platforms supporting most operating systems and
processors. Intel Cilk Plus is a bit more complex in that it offers both
tasking and vectorization solutions. Fortunately, Intel Cilk Plus fully
interoperates with Intel TBB. Intel Cilk Plus offers a simpler set of
tasking capabilities than Intel TBB, but uses keywords in the language
to enable full compiler support for optimizing.

Intel Cilk Plus also offers elemental functions, array syntax, and
“#pragma SIMD” to help with vectorization. The best use of array
syntax is implemented along with blocking for caches, which unfor-
tunately means naïve use of constructs such as A[:] = B[:] + C[:];
for large arrays may yield poor performance. The best use of array
syntax ensures that the vector length of single statements is short
(some small multiple of the native vector length, perhaps only 1X).
Finally, and perhaps most important to programmers today, Intel Cilk
Plus offers mandatory vectorization pragmas for the compiler called
“#pragma SIMD.” The intent of “#pragma SIMD” is to do for vectoriza-
tion what OpenMP has done for parallelization. Intel Cilk Plus requires
compiler support. It is currently available from Intel for Windows*,
Linux*, and Apple OS* X. It is also available in a branch of gcc.

If you are happy with OpenMP and MPI, you are in great shape to
use Intel Xeon Phi coprocessors. Additional options may be interesting
to you over time, but OpenMP and MPI are enough to get great results.
Your key challenge will remain vectorization. Auto-vectorization may
be enough for you, especially if you code in Fortran, with the possible
additional considerations for efficient vectorization, such as alignment
and unit-stride accesses. The “#pragma SIMD” capability of Intel Cilk
Plus (available in Fortran, too) is worth a look. In time, you may find it
has become part of OpenMP.

Dealing with tasks means specification of tasks, and load balancing
amongst them. MPI has provided this capability for decades with
full flexibility and control given to the programmer. Shared memory
programmers have Intel TBB and Intel Cilk Plus to assist them. Intel
TBB has widespread usage in the C++ community. Intel Cilk Plus
extends Intel TBB to offer C programmers a solution, as well as help
with vectorization in C and C++ programs.

Coprocessor Major Usage Model:
MPI vs. Offload

Given that we know how to program the Intel Xeon processors in
the host system, the question arises of how to involve the Intel Xeon
Phi coprocessors in an application. There are two major approaches:
(1) “offload” selective portions of an application to the Intel Xeon Phi
coprocessors, and (2) run an MPI program where MPI ranks can exist on
Intel Xeon processors cores, as well as on Intel Xeon Phi coprocessor
cores with connections made by MPI communications. The first is
call “offload mode” and the second “native mode.” The second does
not require MPI to be used, because any SMP programming model
can be employed, including just running on a single core. There is no
machine “mode” in either case, only a programming style that can be
intermingled in a single application if desired. Offload is generally used
for finer-grained parallelism and, as such, generally involves localized
changes to a program. MPI is more often done in a coarse-grained
manner, often requiring more scattered changes in a program. RDMA
support for MPI is available.

The choice is certain to be one of considerable debate for years
to come. Applications that already utilize MPI can actually use either
method by either limiting MPI ranks to Intel Xeon processors and
use offload to the coprocessors, or distributing MPI ranks across the
coprocessors. It is possible that the only real MPI ranks be established
on the coprocessor cores, but if this leaves the Intel Xeon processors
unutilized then this approach is likely to give up too much performance
in the system.

Being separate and on a PCIe bus creates two additional issues:
(1) the limited memory on the coprocessor card, and (2) the benefits
of minimizing communication to and from the card. It is worth noting
as well, that the number of MPI ranks used on an Intel Xeon Phi copro-
cessor should be substantially less than the number of cores—in no
small part because of limited memory on the coprocessor. Consistent
with parallel programs in general, the advantages of overlapping
communication (e.g., MPI messages or offload data movement) with
computation are important to consider, as well as techniques to
load balance work across all available cores. Of course, involving Intel
Xeon processor cores and Intel Xeon Phi coprocessor cores adds the
dimension of “big cores” and “little cores” to the balancing work, even
though they share x86 instructions and programming models. While
MPI programs often already tackle the overlap of communication
and computation, the placement of ranks on coprocessor cores still
requires dealing with the highly parallel programming needs and
limited memory. This is why an offload model can be attractive, even
within an MPI program.

The offload model for Intel Xeon Phi coprocessors is quite rich.
The syntax and semantics of the Intel® Language Extensions for
Offload are generally a superset of other offload models including
OpenACC. This provides for greater interoperability with OpenMP;
ability to manage multiple coprocessors (cards); and the ability to
offload complex program components that an Intel Xeon Phi copro-
cessor can process, but that a GPU could not (and hence, OpenACC
does not allow). We expect that a future version of OpenMP will
include offload directives that provide support for these needs, and
Intel plans to support such a standard for Intel Xeon Phi coprocessors

THE PARALLEL UNIVERSE

26 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.26

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friendSign up for future issues | Share with a friend

as part of our commitment to providing OpenMP capabilities. Intel
Language Extensions for Offload also provides for an implicit sharing
model that is beyond what OpenMP will support. It rests on a shared
memory model supported by Intel Xeon Phi coprocessors that allow a
shared memory programming model (Intel calls this “MYO”) between
Intel Xeon processors and Intel Xeon Phi coprocessors. This is most
similar to partitioned global address space (PGAS) programming models;
not an extension provided by OpenMP. The Intel “MYO” capability
offers a global address space within the node, allowing sharing of
virtual addresses for select data between processors and coprocessor
on the same node. It is offered in C and C++, but not Fortran, since
future support of coarray will be a standard solution to the same basic
problem. Offloading is available as Fortran offloading via pragmas,
C/C++ offloading with pragmas, and optionally shared (MYO) data.
Use of MPI can also distribute applications across the system.

Summary: Transforming-and-Tuning
Double Advantage

Programming should not be called easy, and neither should parallel
programming. However, we can work to keep the fundamentals the
same: maximizing parallel computations and minimizing data movement.
Parallel computations are enabled through scaling (more cores and
threads) and vector processing (more data processed at once). Minimal
data movement is an algorithmic endeavor, but can be eased through
the higher bandwidth between memory and cores that is available
with the Intel® Many Integrated Core (Intel® MIC) architecture used
by Intel Xeon Phi coprocessors. This leads to parallel programming
using the same programming languages and models across the Intel
Xeon family of products, which are generally also shared across all
general purpose processors in the industry. Languages such Fortran,
C, and C++ are fully supported. Popular programming methods such
as OpenMP, MPI, and Intel TBB are fully supported. Newer models
with widespread support such as Coarray Fortran, Intel Cilk Plus, and
OpenCL* can apply as well.

Tuning on Intel Xeon Phi coprocessors for scaling, and vector and
memory usage, also benefits the application when run on Intel Xeon
processors. Maintaining a value across the Intel Xeon family is critical,
as it helps preserve past and future investments. Applications that
initially fail to get maximum performance on Intel Xeon Phi coprocessors
generally trace problems back to scaling, vector usage, or memory usage.
When these issues are addressed, the improvements to the application
usually have a related positive effect when run on Intel Xeon processors.
This is the double advantage of “transforming-and-tuning,” and devel-
opers have found it to be among the most compelling features of the
Intel Xeon Phi coprocessors. o

Learn More
Additional material regarding programming for Intel Xeon Phi coprocessors can
be found at http://intel.com/software/mic.

Parallel Programming Community: http://software.intel.com/en-us/parallel/

Advanced Vector Extensions: http://software.intel.com/en-us/avx/

Intel Guide for Developing Multithreaded Applications: http://software.intel.
com/en-us/articles/intel-guide-for-developing-multithreaded-applications/

ispc: Intel® Xeon® and
Intel® Xeon Phi™ support now
james reinders, (Intel)
Director of Parallel Programming Evangelism

Vectorization is an industry-wide challenge—and if you are

interested in seeing some one of the industry-leading exploration

projects (and trying it on your code), then you may want to

look at ispc.

ispc is an R&D compiler for a C-based language that is targeted

to exploring the performance available from doing SPMD

(single program, multiple data) computation on SIMD units

found on CPUs and on Intel® Xeon Phi™ coprocessors (using the

Intel® Many Integrated Core [MIC] architecture). It has delivered

performance competitive with hand-coded SSE and AVX for a

variety of graphics and throughput kernels, and typically delivers

a 3x to 4x speedup vs. scalar C and C++ code on SSE and a 5

to 7x speedup on AVX (for computations that are amenable to

SPMD implementation), while still providing the ease of use of

a C-like language.

The paper “ispc: A SPMD Compiler for High-Performance

CPU Programming” by Matt Pharr and Bill Marks won Best

Paper Award at InPar 2012. It is an excellent paper that

articulates the challenges of vectorization and explains the

important context very well. It also advances a solid demon-

stration of what is possible when you think about SPMD on

SIMD models clearly…

Visit Go-Parallel.com
Browse other blogs exploring a range of related

subjects at Go Parallel: Translating Multicore
Power into Application Performance.

BLOG
highlights

SEE THE REST OF james’ BLOG:

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
http://software.intel.com/en-us/articles/intel-guide-for-developing-multithreaded-applications/
https://secure-software.intel.com/en-us/user/335550
http://cloud.github.com/downloads/ispc/ispc/ispc_inpar_2012.pdf
http://cloud.github.com/downloads/ispc/ispc/ispc_inpar_2012.pdf
http://www.go-parallel.com
http://software.intel.com/en-us/blogs/2012/07/27/ispc-xeon-and-xeon-phi-support-now

by Georg Zitzlsberger,
Technical Consulting Engineer, Intel

Issue 10 of the Parallel Universe Magazine featured a basic introduction to vectorization.
However, this parallelization technique using Intel® compilers is neither black nor white. There are many variations that
impact the degree of vectorization, and the performance of the final application. For large-scale systems like compute
clusters, even small improvements are desirable—vector computation as a per-core feature of the processor quickly amplifies
through core and node count.

Here, we demonstrate the most important features and best-known methods by applying some of the vectorization
techniques enabled by Intel® compilers and their Intel® Cilk™ Plus technologies to an example application implementing an
image processing algorithm.

THE PARALLEL UNIVERSE

28 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Gaussian
Filter

JPEG
(out)

JPEG
(in)

Provided by
framework

Repeat x times
(only for measurement)

Image
Magnitude

&
Phase

Image
Magnitude

&
Phase

DFT-1

filter(…)
(De-)

convo-
lution
Kernel

Filter
Magnitude

&
Phase

DFT

Write
JPEG

Read
JPEG DFT

Figure 1: Block diagram of the example used. Focus is the implementation of the filter.

Example Application
Our example application reads a motion-blurred JPEG image, calling
a filter function that undoes the motion blur (i.e., deconvolution) and
eliminates low frequencies, before saving it back to a JPEG file.
Figure 1 shows the basic workflow.

To keep the implementation simple, we have decided to implement
the filter function in the frequency domain. Thus, before executing
the function a forward DFT takes place, transforming the image into
two single-precision floating point (32-bit FP) arrays: magnitude and
phase. The same is also applied to the (de-)convolution kernel. Initial
implementations of the filter function are shown in Figure 2, in both
C and Fortran versions. After executing the filter function, both output
arrays are recombined to an image by inverse DFT and stored as JPEG.

Our example operates on three channel (RGB) images, so magnitude
and phase are clustered in the same way. This adds some complexity
to the filter regarding the DC values, which does not make it trivial to
vectorize (see modulo operation).

The filter is provided as a separate compilation unit. To measure the
quality of the vectorization, we record the time it takes to execute it.
To lower the noise, the filter is executed multiple times with the same
input data. Throughout this article, we only focus on the vectorization
of the filter itself. For the detailed implementation and reproducibility
you can download the example from our blog.

Baseline
For our measurements, we are using Ubuntu* 11.04 (64-bit) running
on an Intel® Core™ i7 processor (i7-2600). We’re also using 64-bit C/
C++ and Fortran compilers shipped with Intel® Composer XE 2013.
Since we’re working with arrays of single-precision FP values, we also
want to make full use of Intel® Advanced Vector Extensions (Intel® AVX),
which can process vectors with up to eight such elements at once.

Starting with the baseline implementations for C and Fortran shown
in Listing 1, we measure the runtime of repetitive calls to the filter and
denote them as baseline. We get those results with standard build options
and can see that there’s improvement left for vectorization.

Looking at this example, the benefit of vectorization seems quite
obvious. But did the baseline already take full advantage of it? A
common, though tedious, way to verify this is by analyzing the produced
assembly code. For complex algorithms, this easily becomes a challenge
and also requires advanced knowledge about the underlying architecture.
A better solution would be using Intel® VTune™ Amplifier XE to count
executed instructions using SIMD vectors. However, this still requires
some knowledge about the architecture. Fortunately there is yet another,
much faster, and easier way, that is used here—the Intel compiler
vectorization reports (Table 1).

First, we start with the C implementation and apply the vectoriza-
tion report with n=3 to the source file “feature.c.“ It unveils rather
dramatic reasons that turn out to have hindered the compiler from
proper vectorization:

Boiling down the redundant output, mostly caused by loop
unrolling and permutation of dependencies, reveals that the loop
cannot be vectorized because of dependencies between elements
of the arrays, including:

1.	 “imgMag“and “imgPhase“

2.	 “imgMag“ and “filterMag“

3.	 “imgMag“ and “filterPhase“

4.	 “imgMag“ and “gaussian“

5.	 “imgPhase“ and “filterMag“

6.	 “imgPhase“ and “gaussian“

If we list the dependencies this way it turns out that only two arrays,
“imgMag“ and “imgPhase,“ are involved. Those are the output parameters
from our filter. The report assumes that any write access also influences
the other arrays. Why?

THE PARALLEL UNIVERSE

30 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/blogs/2012/11/01/parallel-universe-magazine-12-advanced-vectorization
http://software.intel.com/en-us/articles/optimization-notice

Syntax

Linux* and Mac OS* X: -vec-report[n] Windows*: /Qvec-report[n]

Arguments

n
Is a value denoting which diagnostic messages to report.
Possible values are:

 0 Tells the vectorizer to report no diagnostic information.

1 Tells the vectorizer to report on vectorized loops.

2 Tells the vectorizer to report on vectorized and non-vectorized loops.

3 Tells the vectorizer to report on vectorized and non-vectorized loops and any proven or assumed data dependencies.

4 Tells the vectorizer to report on non-vectorized loops.

5 Tells the vectorizer to report on non-vectorized loops and the reason why they were not vectorized.

Table 1: Compiler option to turn on the Intel® compiler vectorization reports

Sign up for future issues | Share with a friend

Figure 2

filter.c:

#include "filter.h"

void filter(
		 unsigned int size,
		 float *imgMag, float *imgPhase,	 // in & out
		 float *filterMag, float *filterPhase,	 // in
		 float *gaussian)	 // in
{
	 for(int idx = 0; idx < size; idx++)
	 { // idx%3: RGB values from DC, first 3 elements of "filterMag"
		 imgMag[idx] /= (filterMag[idx] * 1/filterMag[idx%3] + filterMag[idx%3]);
		 imgMag[idx] *= gaussian[idx];
		 imgPhase[idx] -= filterPhase[idx];
	 }
}

filter.f90:

subroutine filter(sze, imgMag, imgPhase, filterMag, filterPhase, gaussian) &
	 bind(C, name="filter")
	 use, intrinsic :: ISO_C_BINDING
	 implicit none
	 integer(kind=C_INT), VALUE		 :: sze
	 real(C_FLOAT), dimension(*), intent(inout)	 :: imgMag
	 real(C_FLOAT), dimension(*), intent(inout)	 :: imgPhase
	 real(C_FLOAT), dimension(*), intent(in)	 :: filterMag
	 real(C_FLOAT), dimension(*), intent(in)	 :: filterPhase
	 real(C_FLOAT), dimension(*), intent(in)	 :: gaussian
	 integer	 :: idx
! mod(idx, 3) + 1: RGB values from DC, first 3 elements of "filterMag"
	 do idx = 1, sze
		 imgMag(idx) = imgMag(idx) / (filterMag(idx) *	 &
			 1/filterMag(mod(idx, 3) + 1) + &
			 filterMag(mod(idx, 3) + 1));
		 imgMag(idx) = imgMag(idx) * gaussian(idx)
		 imgPhase(idx) = imgPhase(idx) - filterPhase(idx)
	 end do
end subroutine

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Figure 3

filter.c(9): (col. 3) remark: loop was not vectorized: existence of vector dependence.
filter.c(13): (col. 5) remark: vector dependence: assumed FLOW dependence
between imgPhase line 13 and filterMag line 11.
filter.c(11): (col. 5) remark: vector dependence: assumed ANTI dependence
between filterMag line 11 and imgPhase line 13.
filter.c(13): (col. 5) remark: vector dependence: assumed FLOW dependence
between imgPhase line 13 and filterMag line 11.
filter.c(11): (col. 5) remark: vector dependence: assumed ANTI dependence
between filterMag line 11 and imgPhase line 13.

...

filter.c(13): (col. 5) remark: vector dependence: assumed ANTI dependence
between imgPhase line 13 and imgMag line 11.
filter.c(11): (col. 5) remark: vector dependence: assumed OUTPUT dependence
between imgMag line 11 and imgPhase line 13.
filter.c(13): (col. 5) remark: vector dependence: assumed OUTPUT dependence
between imgPhase line 13 and imgMag line 11.

Figure 4

filter.c:

include "filter.h"

void filter(
		 unsigned int size,
		 float * restrict imgMag, float * restrict imgPhase,	// in & out
		 float *filterMag, float *filterPhase,	 // in
		 float *gaussian)	 // in
{
	 for(int idx = 0; idx < size; idx++)
	 { // idx%3: RGB values from DC, first 3 elements of "filterMag"
		 imgMag[idx] /= (filterMag[idx] * 1/filterMag[idx%3] + filterMag[idx%3]);
		 imgMag[idx] *= gaussian[idx];
		 imgPhase[idx] -= filterPhase[idx];
	 }
}

In C and C++, a pointer to a memory location is assumed to be over-
lapped by other pointers. Even strict ANSI aliasing rules, which prohibit
reference of memory locations by pointers of different types, are not
strict enough. They still allow pointers of the same type to overlap.

In our example, this is the case for all pointers. Hence the compiler
has to assume dependencies among them. It should be emphasized
that these are “assumed“ dependencies, meaning they must not occur
during runtime, and the compiler cannot disambiguate because the
filter is implemented in a separate compilation unit. Nevertheless, any
language-standard compliant compiler needs to assume the worst
case—with pointers overlapping—and handle them correctly.

In most cases, such assumed dependencies may not be desired, and
add unnecessary complexity to optimizations such as vectorization.
However, for our example, every pointer from the parameter list refer-
ences its own memory location. As a result these are not expected to
overlap at all, which breaks up dependencies and increases the likelihood
of successful vectorization. There are two ways to tell the compiler
to ignore such assumed dependencies, the “restrict“ keyword and the
IVDEP pragma/directive.

“For large-scale systems like
compute clusters, even small
improvements are desirable—
vector computation as a per-
core feature of the processor
quickly amplifies through
core and node count.”

THE PARALLEL UNIVERSE

32 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Figure 5

filter.c:

#include "filter.h"

void filter(
		 unsigned int size,
		 float *imgMag, float *imgPhase,	 // in & out
		 float *filterMag, float *filterPhase,	 // in
		 float *gaussian)		 // in
{
#pragma ivdep
	 for(int idx = 0; idx < size; idx++)
	 { // idx%3: RGB values from DC, first 3 elements of "filterMag"
		 imgMag[idx] /= (filterMag[idx] * 1/filterMag[idx%3] + filterMag[idx%3]);
		 imgMag[idx] *= gaussian[idx];
		 imgPhase[idx] -= filterPhase[idx];
	 }
}

filter.f90:

subroutine filter(sze, imgMag, imgPhase, filterMag, filterPhase, gaussian) &
	 bind(C, name="filter")
	 use, intrinsic :: ISO_C_BINDING
	 implicit none
	 integer(kind=C_INT), VALUE		 :: sze
	 real(C_FLOAT), dimension(*), intent(inout)	:: imgMag
	 real(C_FLOAT), dimension(*), intent(inout)	:: imgPhase
	 real(C_FLOAT), dimension(*), intent(in)	 :: filterMag
	 real(C_FLOAT), dimension(*), intent(in)	 :: filterPhase
	 real(C_FLOAT), dimension(*), intent(in)	 :: gaussian
	 integer		 :: idx
! mod(idx, 3) + 1: RGB values from DC, first 3 elements of "filterMag"
!DEC$ IVDEP
	 do idx = 1, sze
		 imgMag(idx) = imgMag(idx) / (filterMag(idx) *	 &
			 1/filterMag(mod(idx, 3) + 1) +	 &
			 filterMag(mod(idx, 3) + 1));
		 imgMag(idx) = imgMag(idx) *	gaussian(idx)
		 imgPhase(idx) = imgPhase(idx) - filterPhase(idx)
	 end do
end subroutine

Sign up for future issues | Share with a friend

“Restrict“ Keyword & IVDEP Pragma/Directive
The “restrict“ keyword is a feature of the C99 standard. It can be attributed to pointers to guarantee that no other
pointer overlaps the referenced memory location. Using the Intel® C++ compiler does not only limit it to C99. It makes
the keyword available for C89 and even for different incarnations of C++, simply by enabling a dedicated option:
“-restrict“ (Linux* and Mac OS* X) or “/Qrestrict” (Windows*).

Figure 4 shows a possible implementation by using this keyword. It should be noted that we only need to apply the
keyword to the two output parameters to break up the dependencies.

Another approach is the IVDEP pragma/directive, provided by all Intel compilers (C++ and Fortran). This pragma is used
in front of block scopes, such as loops, to tell the compiler to ignore all assumed dependencies therein. Applied to our
C example (Figure 5), the speedup is the same as with the “restrict“ keyword (Figure 6). Nevertheless, the pragma
still has some advantages over it. First, pragmas not known by other compilers are ignored. Thus this is less intrusive
than using the keyword approach, which might not work for other compilers and non-C99 code. Second, the pragma can
be used locally (e.g., for one loop), and leave the rest unchanged, while the keyword has impact on the entire function
body. And lastly, the locality of the pragma allows it to selectively ignore overlapping memory locations. For example, it
might be legal to ignore dependencies if certain conditions are met, but it would be incorrect to generally ignore these
throughout the entire function body.

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Keyword
“restrict”

Intel® Cilk™ Plus
Array Notation

SIMD
pragma

IVDEP
pragma

Sp
ee

du
p

4.5

4

3.5

3

2.5

2

1.5

1

C

SIMD directive

Sp
ee

du
p

1.5

1.4

1.3

1.2

1.1

1

Fortran

Figure 6: Speedup for the example against the baseline of the
C version (higher is better)

Figure 7: Speedup for the example
against the baseline of the Fortran version
(higher is better)

Figure 8

Figure 9

C:
filter.c(9): (col. 3) remark: PARTIAL LOOP WAS VECTORIZED.
filter.c(9): (col. 3) remark: PARTIAL LOOP WAS VECTORIZED.

Fortran:
filter.f90(13): (col. 3) remark: PARTIAL LOOP WAS VECTORIZED.
filter.f90(13): (col. 3) remark: PARTIAL LOOP WAS VECTORIZED.

remark: loop was not vectorized: vectorization possible but
seems inefficient.

You might have noticed already that the result for the IVDEP directive
(Figure 5) is not shown in Figure 7. That’s true because Fortran is
much stricter regarding overlapping memory regions than C, and because
there’s no improvement in our example. There are exceptions when
using Fortran pointers.

Numerous other cases can also produce assumed dependencies for
both C and Fortran. Two examples are access of array elements through
indirection at runtime and conditional memory accesses in a loop. All such
cases justify the availability of the IVDEP directive for Fortran as well.

In any case, both “restrict” keyword and IVDEP pragma/directive can
change semantics of the code if applied incorrectly. For our example,
both inform the compiler that no other pointer overlaps the referenced
memory location. If this is violated, for instance, by sharing memory
among different pointers of the function parameters, the compiler
might reorder or otherwise optimize accesses in a way that yields

different results. Therefore, it is crucial to verify the correctness once
the “restrict” keyword and IVDEP pragma/directive are used. In our case,
we can do so easily by comparing the results of the different versions
we have created. If the resulting image was corrupted, further analysis
would be required. Since our example uses disjunctive memory locations,
all optimizations work well.

Intel® Cilk™ Plus SIMD Pragma/Directive
For the next step, we apply any of the above proposals to our C

implementation. For the Fortran version, we still use the baseline.
After consulting the vectorization report once again, vectorization still
does not look optimal, for either the C or Fortran version (Figure 8):

It seems like the loop was not fully vectorized. This reflects the
conclusion from the compiler's efficiency heuristic. It only regards a
fraction of the loop body as being meaningfully vectorized. This result
is based on general knowledge about the underlying architecture and
on following language standards. Here, the compiler regards only a
small fraction as not being vectorized, because of gather accesses
caused by the modulo operations. There can be other cases where the
compiler might not vectorize at all because of alleged inefficiency. In
such cases there will be a clear message (Figure 9):

In such cases, it may make sense to ignore such heuristics, and
also to partly ignore language standards to “enforce“ vectorization. It
should be noted that vectorization can only be enforced if it is techni-
cally possible. A loop which prints strings to the terminal is a trivial
example which cannot be vectorized.

Intel Cilk Plus—an integral part of Intel compilers—comes with a
SIMD pragma/directive that does what we are looking for: it ignores
any compiler heuristic regarding efficiency, as well as any restrictions
induced by the language to enforce vectorization. It also ignores all
dependencies; not just assumed ones like the IVDEP pragma/directive.
Due to this fact, it is important to mention that it can change semantics
of vectorized code as a side effect. Hence, it is mandatory to verify
the correctness once more. For our example, we simply compare
the output among the different versions, as we already did for the
changes with the “restrict” keyword and IVDEP pragma/directive.

Applying the SIMD pragma/directive to our example (Figure 10)
indeed shows an additional improvement (Figure 11). Verifying the
results also holds true; thus being a prime solution for us.

THE PARALLEL UNIVERSE

34 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

keyword
“restrict”

Intel® Cilk™ Plus
Array Notation

SIMD
pragma

IVDEP
pragma

Sp
ee

du
p

4.5

4

3.5

3

2.5

2

1.5

1

C

SIMD
directive

Sp
ee

du
p

1.5

1.4

1.3

1.2

1.1

1

Fortran

Figure 10

Figure 11

filter.c:

#include "filter.h"

void filter(
		 unsigned int size,
		 float * restrict imgMag, float * restrict imgPhase,	// in & out
		 float *filterMag, float *filterPhase,		 // in
		 float *gaussian)			 // in
{
#pragma simd vectorlength(8) assert
	 for(int idx = 0; idx < size; idx++)
	 { // idx%3: RGB values from DC, first 3 elements of "filterMag"
		 imgMag[idx] /= (filterMag[idx] * 1/filterMag[idx%3] + filterMag[idx%3]);
		 imgMag[idx] *= gaussian[idx];
		 imgPhase[idx] -= filterPhase[idx];
	 }
}

filter.f90:

subroutine filter(sze, imgMag, imgPhase, filterMag, filterPhase, gaussian) &
	 bind(C, name="filter")
	 use, intrinsic :: ISO_C_BINDING
	 implicit none
	 integer(kind=C_INT), VALUE		 :: sze
	 real(C_FLOAT), dimension(*), intent(inout)	:: imgMag
	 real(C_FLOAT), dimension(*), intent(inout)	:: imgPhase
	 real(C_FLOAT), dimension(*), intent(in)	 :: filterMag
	 real(C_FLOAT), dimension(*), intent(in)	 :: filterPhase
	 real(C_FLOAT), dimension(*), intent(in)	 :: gaussian
	 integer		 :: idx
! mod(idx, 3) + 1: RGB values from DC, first 3 elements of "filterMag"
!DEC$ SIMD VECTORLENGTH(8) ASSERT
	 do idx = 1, sze
		 imgMag(idx) = imgMag(idx) / (filterMag(idx) *		 &
			 1/filterMag(mod(idx, 3) + 1) +	 &
			 filterMag(mod(idx, 3) + 1));
		 imgMag(idx) = imgMag(idx) * gaussian(idx)
		 imgPhase(idx) = imgPhase(idx) - filterPhase(idx)
	 end do
end subroutine

Sign up for future issues | Share with a friend

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Syntax

C/C++: #pragma simd [clause[[,] clause]...] Fortran: cDEC$ SIMD [clause[, clause]...]

Arguments

clause Can be any of the following:

 vectorlength(n1[, n2]...) Vector length to use (power of 2)

vectorlengthfor(data type)
Only for C/C++; same as above but uses built-in types to calculate the
vector length

private(var1[, var2]...)
firstprivate(var1[, var2]...)
lastprivate(var1[, var2]...)
reduction(oper:var1 [,var2]...)

Same as in OpenMP* work-sharing construct:
see the OpenMP* 3.1 specification, section 2.5.1

linear(var1:step1
 [,var2:step2]...)

Specify additional induction variables

[no]assert Compile time error in case vectorization fails

Table 2: SIMD pragma/directive and clauses

Figure 12

filter.hpp:

...
class FreqDomain {
	 public:
		 FreqDomain(float *mag, float *phase, unsigned int size) :
			 mMag(mag), mPhase(phase), mSize(size) {}

		 unsigned int getSize() { return mSize; }
		 float getMag(unsigned int idx) { return mMag[idx]; }
		 void setMag(unsigned int idx, float val) { mMag[idx] = val; }
		 float getPhase(unsigned int idx) { return mPhase[idx]; }
		 void setPhase(unsigned int idx, float val) { mPhase[idx] = val; }

	 private:
		 const unsigned int mSize;
		 float *mMag;
		 float *mPhase;
};
...

filter.cpp:

include "filter.hpp"

void filter(FreqDomain &img, FreqDomain &filter, float *gaussian)
{ //		 ^in & out	 ^in	 ^in
// Uncomment either of the following for IVDEP or SIMD results
// #pragma ivdep
// #pragma simd vectorlength(8) assert
	 for(int idx = 0; idx < img.getSize(); idx++)
	 { // idx%3: RGB values from DC, first 3 elements of magnitude from "filter"
		 img.setMag(idx, img.getMag(idx) / (filter.getMag(idx) *
					 1/filter.getMag(idx%3) +
					 filter.getMag(idx%3)));
		 img.setMag(idx, img.getMag(idx) * gaussian[idx]);
		 img.setPhase(idx, img.getPhase(idx) - filter.getPhase(idx));
	 }
}

THE PARALLEL UNIVERSE

36 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Figure 14

filter_cilk.c:

#include "filter.h"

void filter(
		 unsigned int size,
		 float imgMag[size], float imgPhase[size],	 // in & out
		 float filterMag[size], float filterPhase[size],	 // in
		 float gaussian[size])			 // in
{
// Note: 24 is least common multiple of 3 RGB elements and 8 elements per vector
// (3 vectors in total)
//						 R G B R G B	 ...
unsigned int index[24] = {	0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2,
					 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2 };
int idx = 0;
for(; idx < size; idx += 24)
		 imgMag[idx:24] /= (filterMag[idx:24] * 1/filterMag[index[:]] +
				 filterMag[index[:]]) * 1/gaussian[idx:24];

for(; idx < size; idx++) // Rest (< 24)
		 imgMag[idx] /= (filterMag[idx] * 1/filterMag[idx%3] +
			 filterMag[idx%3]) * 1/gaussian[idx];

imgPhase[:] -= filterPhase[:];

SIMD
pragma

IVDEP
pragma

Sp
ee

du
p

4

3.5

3

2.5

2

1.5

1

C++

Figure 13: Speedups for the example against the baseline of the
C++ version (higher is better))

Sign up for future issues | Share with a friend

For our example we also provided additional clauses to the pragma/
directive: “vectorlength(8)“ and “assert.“ The former guarantees the
use of vectors with eight elements—in this case an Intel AVX 256
bit vector with eight single-precision FP elements. The latter yields
a compile time error in case the loop cannot be vectorized at all. This
can be useful during development in order to guarantee that only
vectorized code is generated, thus detecting unwanted changes early.
There are additional clauses (Table 2). Most of them are derived from
the OpenMP* work-sharing construct. This highlights another aspect
of the SIMD pragma/directive: it maps existing OpenMP paradigms for
concurrency to vectorization.

References in C++
In combination with C++, IVDEP and SIMD pragmas have another
advantage. For this, we convert the C version from our example to
C++ (Figure 12). We use the dedicated class “FreqDomain“ for the
frequency domain, containing pointers to arrays for magnitude and
phase. Instead of passing such pointers to the filter, we provide them
encapsulated in wrapper objects. Those objects are forwarded by
reference. And that’s the pinpoint: with passing references we lose
the option to use the keyword “restrict,“ because it is only specified
for pointers, not references.

 “Intel® Cilk™ Plus—an integral part of Intel® compilers—comes with a
SIMD pragma/directive that does what we are looking for: it ignores
any compiler heuristic regarding efficiency, as well as any restrictions
induced by the language to enforce vectorization.”

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

void filter(
		 unsigned int size,
		 float * restrict imgMag, float * restrict imgPhase,	// in & out
		 float *filterMag, float *filterPhase,		 // in
		 float *gaussian)			 // in
{
#pragma offload target(mic:0)	 \
			 inout(imgMag:length(size))	 \
			 inout(imgPhase:length(size))	 \
			 in(filterMag:length(size))	 \
			 in(filterPhase:length(size))	 \
			 in(gaussian:length(size))
#pragma simd vectorlength(16) assert
	 for(int idx = 0; idx < size; idx++)
	 { // idx%3: RGB values from DC, first 3 elements of "filterMag"
		 imgMag[idx] /= (filterMag[idx] * 1/filterMag[idx%3] + filterMag[idx%3]);
		 imgMag[idx] *= gaussian[idx];
		 imgPhase[idx] -= filterPhase[idx];
	 }
}

Intel® Xeon Phi™ Coprocessor
Compute clusters are large scale systems. Intel® Xeon Phi™ coprocessors can also be seen this way. The huge amount of cores, each with
their own vector execution unit, makes it more beneficial to invest in optimization. Even small gains quickly increase overall performance
by a magnitude. All features mentioned throughout this article can also be applied to Intel Xeon Phi coprocessors. The application of the
examples is identical for native mode use of an Intel Xeon Phi coprocessor. If using the coprocessor in an offload mode, a little additional
control is needed to specify the particulars. Enabling our example for an Intel Xeon Phi coprocessor is quite simple. Among the different
explicit and implicit offloading models that the coprocessor offers, we show a basic, explicit offloading implementation. A possible C
version could look like this:

The explicit offloading pragma declares the loop to be executed on the first coprocessor target (mic:0) of the host system. All the
data is transferred to the target before entering the loop (in/inout attributes), but only the two resulting image components are
transferred back (inout attribute). We also applied the SIMD pragma here with increased vector length: Intel Xeon Phi coprocessors can
handle up to 16 single-precision FP elements per vector.

The implementation above is just an example. In addition, offloading can:

>	T ransfer invariant data once and keep it on the target

>	 Asynchronous data transfer (double buffering)

>	 Conditional allocation and deallocation on the target

>	 Implicit offloading which shares memory between host and target, i.e., virtual shared memory (VSHM)

>	 And, much more (see documentation for Intel® MIC)

The changes seem a bit complex at first glance. However, besides
using the extended array notation syntax, we only split the arrays into
blocks of 24. We use precisely this block size, because it is the least-
common multiple of three (RGB values) and eight (maximum single-
precision FP elements per Intel AVX vector). This enables the compiler
to generate code using three SIMD vectors (or multiples thereof) at
once. Both the array notation and the blocking provide enough infor-
mation to improve performance even further (Figure 7).

Summary
IVDEP and SIMD pragmas/directives are easy to apply for C/C++
and Fortran. While changes are kept minimal, they can help improve

Fortunately, both IVDEP and SIMD pragmas can still be applied. Albeit
we encapsulated the arrays in objects and only access them via member
functions, both pragmas can improve the situation for our example
(Figure 13). And, all that is possible just by adding a single line.

Intel Cilk Plus Array Notations
Lastly, we’ll take a completely different approach and use another
facet of Intel Cilk Plus technology. We refactor our example to make
use of Intel Cilk Plus array notations for C and C++ (see the “Learn
More” section below). Figure 14 shows a potential implementation,
using the C version of our example as baseline.

THE PARALLEL UNIVERSE

38 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/forums/intel-many-integrated-core/
http://software.intel.com/en-us/articles/optimization-notice

Did you know?

Strict ANSI aliasing: For historical reasons, the Intel® C and C++ compiler
does not enable strict ANSI aliasing per default. Obeying strict ANSI aliasing
rules provides more room for optimization. Hence, it is highly recommended
to enable for ANSI-conforming code via “-ansi-alias“ (Linux* and Mac OS* X)
or “/Qansi-alias“ (Windows*). This is already the default for the Intel®
Fortran Compiler.

No aliasing of arguments: On Linux* and Mac OS* X the option “-fargument-
noalias“, “/Qalias-args-“ on Windows* acts in the same way as applying the
keyword “restrict“ to all pointers of all function parameters throughout a
compilation unit. For those platforms, this would have been another option
for our example.

Alignment: In our example, no information about alignment of the arrays is
provided. In such a case, the compiler generates multiple versions of function
or loop bodies and code additions to select the most appropriate one during
runtime. Such a test usually adds minimal overhead, but is already slightly
noticeable in our example. In more complex scenarios, any missing information
about aligned data can also hinder vectorization entirely. Hence, it is recom-
mended to use pointer attributes for alignment (e.g. __declspec(align(…)),
!DEC$ ASSUME_ALIGNED, etc.) or the vector pragma/directive (see below).
See the Intel® compiler documentation for more information.

Vector pragma/directive: Allows some control over the vectorization of a
loop. As with the SIMD pragma/directive, it can assert vectorization during
compilation time. It also controls use of streaming stores, thus bypassing
the cache. Alignment can also be ignored throughout the loop, freeing the
compiler from another burden to create multiple code versions. Finally, it can
also ignore compiler internal efficiency heuristics by applying the “always“
clause. For our simple example, applying the vector pragma/directive would
provide the same performance as when applying the SIMD pragma/directive,
yet it has to obey the language standards and hence is less powerful. See
the Intel® compiler documentation for more information.

Sign up for future issues | Share with a friend

vectorization of an application and thus increase the overall performance.
Intel compiler vectorization reports provide potential locations of where
to apply the pragmas/directives. Combining all of that provides a
powerful feature set to increase the quality of vectorization.

Intel Cilk Plus array notations on the other side require a small
change in the existing paradigm. The benefit is that a different
methodology can be a better solution for using the compiler to aid
in vectorization. Intel Cilk Plus, part of Intel compilers, offers more
technologies than covered here and addresses both vectorization
and concurrency. It is an open specification that will be adopted in
additional compilers in the future (there is already an experimental
GCC branch which implements it). Please refer to the Intel Cilk Plus
product page for a full description.

Further information about vectorization is provided online with our
compiler documentation, knowledge base articles, and blogs. o

Learn More
Blog: http://software.intel.com/en-us/blogs/2012/11/01/parallel-
universe-magazine-12-advanced-vectorization/

Intel® Cilk™ Plus: http://cilkplus.org/

Intel® Xeon Phi coprocessors and the Many Integrated Core (MIC)
Architecture: http://intel.com/software/mic/

Intel® Composer XE: http://software.intel.com/en-us/intel-composer-xe/

Structured Parallel Programming
with Deterministic Patterns
Dr. Michael McCool, (Intel)

Many-core processors target improved computational

performance by making available various forms of architectural

parallelism, including but not limited to multiple cores and

vector instructions. However, approaches to parallel programming

based on targeting these low-level parallel mechanisms directly

lead to overly complex, non-portable, and often unscalable and

unreliable code.

A more structured approach to designing and implementing

parallel algorithms is useful to reduce the complexity of

developing software for such processors, and is particularly

relevant for many-core processors with a large amount of

parallelism and multiple parallelism mechanisms. In particular,

efficient and reliable parallel programs can be designed around

the composition of deterministic algorithmic skeletons, or

patterns. While improving the productivity of experts, specific

patterns and fused combinations of patterns can also guide

relatively inexperienced users on developing efficient algorithm

implementations that have good scalability.

The approach to parallelism described in this document includes

both collective “data-parallel” patterns, such as map and reduce,

as well as structured “task-parallel” patterns, such as pipelining

and superscalar task graphs…

Visit Go-Parallel.com
Browse other blogs exploring a range of related

subjects at Go Parallel: Translating Multicore
Power into Application Performance.

BLOG
highlights

SEE THE REST OF michael’S BLOG:

THE PARALLEL UNIVERSE

http://software.intel.com/en-us/intel-composer-xe/
http://software.intel.com/en-us/intel-composer-xe/
https://swdevtoolsmag.makebettercode.com
http://cilkplus.org
http://cilkplus.org
http://software.intel.com/en-us/blogs/2012/11/01/parallel-universe-magazine-12-advanced-vectorization
http://software.intel.com/en-us/blogs/2012/11/01/parallel-universe-magazine-12-advanced-vectorization
http://software.intel.com/en-us/blogs/2012/11/01/parallel-universe-magazine-12-advanced-vectorization
http://cilkplus.org/
http://intel.com/software/mic/
http://software.intel.com/en-us/intel-composer-xe/
https://secure-software.intel.com/en-us/user/446529
http://www.go-parallel.com
http://software.intel.com/en-us/articles/structured-parallel-programming-with-deterministic-patterns
http://software.intel.com/en-us/articles/structured-parallel-programming-with-deterministic-patterns

Optimizing
Correlation Analysis of
Financial Market Data Streams
Using Intel® Math Kernel Library
by Zhang Zhang, Technical Consulting Engineer, Intel,

Andrey Nikolaev, Software Architect, Intel,

and Victoriya Kardakova, Software Development Engineer, Intel

THE PARALLEL UNIVERSE

40 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

Optimizing
Correlation Analysis of
Financial Market Data Streams
Using Intel® Math Kernel Library

https://swdevtoolsmag.makebettercode.com

Data arrive in chunks, each chunk — matrix of size p x m, t(i)

D1
p x m(t1)

D2
p x m(t2)

Dk
p x m(tk)

Further analysis

Signal
component

Noise
component

Time

t1 t2 tk

FilterMajor blocks of the filter
• Update correlation matrix using the latest data
 chunk Dk
• Apply PCA(*): compute Eigenvalues/vectors for
 the correlation
• Split Eigenvalues into two sets (**): 1st set
 presents signal, 2nd set — noise
• Assembly signal and noise correlations from 2
 sets of Eigenvalues/vectors

 * PCA — Principal Component Analysis
 ** Split is based on Randomized Matrix theory and
 distribution of Eigenvalues

Figure 1: The online noise filtration algorithm.

Introduction
Online data analysis is becoming highly important in the
financial industry—it supports real-time decision making and respon-
siveness to fluctuating market conditions. Here, we demonstrate that
advanced algorithms and the right combination of hardware and soft-
ware technologies lead to a high performance implementation, which
is the key to any practical use of such analysis. As an example, we’ll
consider online detection of dependencies in the price movements of
a large stock portfolio. This is an important component of technical
financial analysis. The purpose is to find correlation patterns among
the stocks, i.e., to see how the price movements of some stocks
influence the price movements of others.

A noise filtration algorithm1 has been developed for this type of
analysis. The algorithm is compute-intensive. It requires high-performance
software building blocks running on powerful hardware to produce
results in a timely fashion. We describe an implementation using the
Intel® Math Kernel Library (Intel® MKL). The advantages of an Intel
MKL-based implementation are that Intel MKL readily provides all math
functions needed by this algorithm, as well as the high performance
we can achieve thanks to the highly tuned statistical and linear algebra
functions in Intel MKL. We demonstrate that this implementation can
attain ~29x speedup on an Intel® Xeon® E5-2600 system over a refer-
ence implementation based on non-optimized statistics functions and
NetLib LAPACK*. We also show that the implementation can be easily
extended to make use of the Intel® Xeon® Phi™ coprocessor.

Section 2 of this article discusses the methodology of the online
noise filtration algorithm. Section 3 provides an overview of the math
building blocks in the algorithm, describes the Intel MKL-based imple-
mentation, and then discusses performance results. Section 4 covers

a straightforward port to the Intel Xeon Phi coprocessor. Section 5
summarizes the work and relates the techniques used in this article to
similar statistical analyses.

Dependency Detection for Financial Market
Data Streams
Computation of correlations is an important and basic instrument in
stock data analysis. Its purpose is to reveal any statistical dependencies
among different stocks. Straightforward computation of correlations,
without any post-processing, can result in biased results as the price
data that comes in the form of data streams is generally noisy, the
number of observations in each data block is small, and the underlying
statistical distribution is unknown. Thus, noise filtration is one of the
early and basic stages in reliable data processing and analysis.

The algorithmic scheme proposed1 resolves these issues and results
in a more accurate estimation of dependencies and patterns in joint
behavior of stock prices. The methodology is to split a correlation matrix—
representing the overall dependencies in data—into two components,
a “signal” matrix and a “noise” matrix. The signal matrix gives an accurate
estimate of dependencies between stocks. The algorithm relies on an
Eigen state-based approach that separates noise from useful information
by considering the Eigenvalues of the correlation matrix for the accu-
mulated data. In addition, it organizes the computation in a fashion that
is particularly suitable for online and real-time analysis: it only needs
information in the current data block to update the estimates of the signal
and noise correlation matrices. It does not need historical price data.

We start with a general description of the algorithm and then provide
additional details related to the steps of the algorithm.

THE PARALLEL UNIVERSE

42 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

1

Sign up for future issues | Share with a friend

Figure 2

Online Noise Filtration Algorithm
The online noise filtration algorithm can be summarized as follows:

Step 1	 Get a new block of data from the data stream.

Step 2	 Update the correlation matrix using the latest data block.

Step 3	 Compute the Eigenvalues/Eigenvectors that define the noise component, by searching those
	E igenvalues of the correlation matrix belonging to the interval [λmin , λmax].

Step 4	 Compute the correlation matrix of the noise component by combining Eigenvalues/Eigenvectors
	 computed in Step 3.

Step 5	 Compute the correlation matrix of the signal component by subtracting the noise component
	 from the overall correlation matrix.

Step 6	 If there is more data, go back to Step 1.

Figure 1 schematically depicts the algorithm and its main elements.
From algorithmic perspective, the computation of correlation matrix, Eigenvalues/Eigenvectors,

and matrix operations are three essential components. Computational complexity of the components
means that powerful hardware and fast software are key to the systems intended for practical use.

Let’s consider the major elements of the algorithm in more detail. The data block arriving at
time t is organized as a p-by-m matrix D(t), where p is the number of stocks, and m the number
of readings (observations) of the p stock prices. The information contained in D(t) is noisy in
general. The signal/noise filtration in the algorithm is based on principal component analysis
(PCA), which transforms a set of related variables into a smaller set of principal, linearly inde-
pendent components. These components capture a good approximation of the original data
with fewer variables by throwing out statistically insignificant information. To apply PCA we
compute the correlation matrix Cor(D) for data block D : Cor(Dc) = (m–1) Dc D c

T, where Dc is the
normalized D (subtracting the mean and dividing by the standard deviation). Next, on this corre-
lation matrix we compute Eigenvectors representing the basis of the source data and find the
Eigenvalues defining the statistical importance of the corresponding vectors. The Eigenvalues
are then used to separate signal and noise.

The step of filtering out noise is based on the theory of random matrices, which assumes
that noise in the price data is represented by independent and identically distributed random
variates. Under this assumption the Eigenvalues of the noise correlation matrix are known to
follow statistical distribution described by probability density function1 (see Karupta, 2002 for
more details):

Simply speaking, it means that the correlation matrix of the noise is constructed from the
Eigenvalues belonging to the interval [λmin , λmax] and the corresponding Eigenvectors by
using matrix operations. The correlation matrix of the signal is obtained by subtracting the
noise component from the original correlation matrix.

 “Intel® Math Kernel Library provides a
set of functions for computing statistical
estimates of multidimensional datasets.”

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

status = vsldSSNewTask(&task, &p, &m, x, &x_storage, 0,0);

status = vslSSDeleteTask(&task);

status = vsldSSEditCovCor(task, mean, 0, 0, cor, cor_storage);

status = vsldSSCompute(task, VSL_SS_COR, VSL_SS_METHOD_FAST);

W[0] = W[1] = 0.0;
status = vsldSSEditTask(task, VSL_SS_ED_ACCUM_WEIGHT, W);

Optimizing Online Noise Filtration Using Intel MKL
Intel MKL2 is the industry-leading computational math library for applications that require
maximum performance. It provides advanced performance optimizations for past, present, and
future Intel® and compatible processors. The library provides rich collections of the algorithms
that address a wide spectrum of problems in finance, engineering, and science. The high speed
of Intel MKL functions relies on the latest advances in hardware and the intensive applications
of instruction-level, data-level, and task-level parallelisms available in modern multicore CPUs.
All kernels necessary to implement the online noise filtration algorithm are available in Intel
MKL. These kernels include statistical functions, functions for solving symmetric Eigenvalue
problems, and matrix operations.

Intel MKL Statistics Functions
Intel MKL provides a set of functions for computing statistical estimates of multidimensional
datasets. Those functions rely on cutting-edge parallel algorithms of computational statistics,
and provide simple interfaces that allow almost any statistical analysis task to be performed
with only four steps. The functions that are of particular interest for this article are the ones
that compute correlation matrix. Let’s take a brief look at the usage model:

1.	 Initialize a summary statistics task and define the objects for our analysis: dataset x, its sizes
(number of variables p and number of observations m), and the storage format x_storage:

2.	 	Specify task parameters:

•	T he memory intended to hold the correlation matrix:

•	 A two-element array intended to hold accumulated weights of observations processed so far
(necessary for correct computation of estimates for data streams):

3.	 	Call the major compute driver by specifying computation type VSL_SS_COR, and computation
method, VSL_SS_METHOD_FAST:

4.	 	De-allocate resources associated with the task:

Refer to related sections in the Intel MKL Reference Manual,3 as well as the Summary
Statistics Library Application Notes,4 for detailed information on these functions.

 “Straightforward
computation of
correlations, without
any post-processing,
can result in biased
results as the price
data that comes in
the form of data
streams is generally
noisy, the number of
observations in each
data block is small,
and the underlying
statistical distribution
is unknown. Thus,
noise filtration is
one of the early and
basic stages in reliable
data processing
and analysis.”

THE PARALLEL UNIVERSE

44 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Figure 3

Figure 4: Initialize a correlation analysis task and its parameters

Initialization

#define P 450 /* # of stocks*/
/ to #define M 1000 / # of observations in block */
...
VSLSSTaskPtr task;
double x[P*M], mean[P], cor[P*P], W[2];
MKL_INT p, m, x_storage, cor_storage;

/* Initialize VSL Summary Stats task */
p = P; m = M;
x_storage = VSL_SS_MATRIX_STORAGE_COLS;
vsldSSNewTask(&task, &p, &m, x, &x_storage, 0,0);

/* Set-up parameters of the task */
/* Specify memory for correlation estimate in task */
cor_storage = VSL_SS_MATRIX_STORAGE_FULL;
vsldSSEditCovCor(task, mean, 0, 0, cor, cor_storage);

/* Specify the parameter for progressive estimation of
 correlation */
W[0] = W[1] = 0.0;
vsldSSEditTask(task, VSL_SS_ED_ACCUM_WEIGHT, W);
...

Sign up for future issues | Share with a friend

Intel MKL Eigenvector/Eigenvalue Functions
Step 3 of the algorithm involves solving an Eigenvalue problem for a symmetric matrix, one
of the fundamental problems handled by the LAPACK package. Intel MKL offers a parallelized
and highly optimized set of LAPACK functions that is API-compatible with the open source
LAPACK library. In particular, it contains a set of drivers and computational routines to compute
Eigenvalues and Eigenvectors for symmetric matrices of various properties and storage formats.

The online noise filtration algorithm requires computation of Eigenvalues that belong to the
predefined interval, λmin and λmax . These Eigenvalues define noise in the data. The LAPACK
river routine syevr is the default choice to solve this kind of problem. The syevr interface
allows the caller to specify a pair of values, in our case corresponding to λmin and λmax , as
the lower and upper bounds of the interval to be searched for Eigenvalues.

Intel MKL Matrix Operations
The Eigenvectors found are returned as columns of an orthogonal matrix A, and the Eigenvalues
are returned in a diagonal matrix Diag. The correlation matrix for the noise component can be
obtained as ADiagAT. Instead of constructing a noise correlation matrix using two general matrix
multiplications, this can be more efficiently computed with one diagonal matrix multiplication
and one rank-n update operation:

For the rank-n update operation, Intel MKL provides the BLAS function syrk.

Source Code
The source code of our implementation comes with two versions, a baseline implementation
and an optimized implementation. The baseline uses the open source Netlib LAPACK and BLAS

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Figure 5: Important steps involved in noise filtration for each block of data

Figure 6: Delete the task and release associated resources

Computation

/* Set threshold that define noise component */
l1 = (1.0 – sqrt ((double)p / m));
l1 = l1*l1;
l2 = (1.0 + sqrt ((double)p / m));
l2 = l2*l2;
/* Loop over data blocks */
for (nblock = 0; ; nblock ++)
{
	/* Get the next chunk of size p x m into x */
		 GetNextChunck(p, m, x);

	/* Update correlation estimate in cor */
	vsldSSCompute(task, VSL_SS_COR, VSL_SS_METHOD_FAST);

	/* Apply PCA and compute eigen-values that
	 belong to (l1, l2) and define noise */
	dsyevr(...,&l1, &l2, ..., &evect_n);

	/* Assembly correlation matrix of noise */
	...
	dsyrk(&evect_n, ..., cor_n,...);

	/* Compute correlation matrix of signal
	 by substracting cor_n from cor */
}

De-Initialization

vslSSDeleteTask(task);
MKL_Free_Buffers();
...

libraries for the Eigen solvers and matrix operations. NetLib BLAS* routines are also used to
build the correlation algorithm. The optimized version is developed by combining building blocks
from Intel MKL, as discussed above.

The accuracy and performance of the implementations is tested using a dataset containing
historical closing stock prices for 450 companies from the S&P 500 for a range of 9,608 trading
days. In both implementations, we emulate data streaming by reading a block of 1,000 price
vectors of size 450 at every time step. The structure of the source code, and some of the important
steps in the optimized implementation are shown in Figures 4–6.

 “Although the problem of interest in this article is correlation
analysis of financial market data, the principles and statistical
analysis techniques used can find applications in many
other fields, such as data mining, machine learning, pattern
recognition, and bioinformatics.”

THE PARALLEL UNIVERSE

46 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Seconds per Block Speedup

Baseline implementation 0.883 1.0

Optimized implementation (using Intel® MKL) 0.031 28.9

Table 1

Figure 7: Offload noise filtration with asynchronous data transfer

Offload Noise Filtration with Asynchronous Data Transfer

...
for (k = 0; k < nBlocks; k++)
{
	 /* Get the next data block */
	 status = nfReadNextChunk(..., xblock);

	 /* Start asynchronous transfer of block xshared to coprocessor */
	 #pragma offload_transfer target(mic:0) wait(res) \
		 in(xblock:length(m*p) alloc_if(0) free_if(0))signal(xblock)
	 {}

	 /* Offload noise filtration computations to the coprocessor */
	 #pragma offload target(mic:0) in(params) in(res_buf_sz) \
		 wait(xblock)	 \
		 nocopy(ssTask)	 \
		 nocopy(xblock:length(m*p) alloc_if(0) free_if(0)) \
		 nocopy(buf:length(buf_sz) alloc_if(0) free_if(0)) \
		 out(res:length(res_sz) alloc_if(0) free_if(0)) \
		 signal(res)
	 {
		 NoiseFiltr(¶ms, xblock, buffer, res, ssTask);
	 }
}
/* Wait for the result of the last iteration */
#pragma offload_wait target(mic:0) wait(res)
{}

Sign up for future issues | Share with a friend

Performance
The performance of the two implementations was measured on a 16-core Intel® Xeon® E5-2690 processor. The configuration
of the test platform is:

>	 Intel Math Kernel Library (Intel MKL) 11.0

>	 Hardware: Intel Xeon Processor E5-2690, two eight-core CPUs (20Mb L3 Cache, 2.9GHz), 32GB of RAM

>	 Operating System: RHEL 6 GA x86_64

>	 Benchmark Source: Intel Corporation

The benchmarking results show that the optimized implementation runs ~29 times faster than the baseline implementation.
Intel MKL functions tuned for multicore architectures and their effective exploiting of data and instruction level parallelisms
are helping to enable this huge performance difference.

Using an Intel Xeon Phi Coprocessor
The highly parallel online nature of the noise filtration algorithm is a great fit for an efficient, natural implementation using
the Intel Xeon Phi coprocessor. There are several key advantages for using a coprocessor for this type of data analysis:

>	T he programming models for processors and the coprocessor are the same. That is, the coprocessor does not require new devel-
opment of the algorithm. The same set of software development tools, such as the Intel® C++ compiler and Intel MKL, support
both platforms and the transparent communication between them;

>	T he number of cores on the coprocessor is substantially larger and the vector registers are wider. These help Intel MKL to get
additional performance advantages on the coprocessor;

>	 Offloading computations to the coprocessor frees up resources on the host for other tasks, and just one thread is necessary to
support communication between host and coprocessor.

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Several approaches are available to arrange communication between host and coprocessor.
In our implementation, we rely on asynchronous data transfer. This mechanism allows us to
get additional performance benefits by overlapping computation and communication. Upon
offloading the data block and initiating computation on the coprocessor, the host immediately
moves to get and preprocess the next block of data. The host gets back the results once
the coprocessor signals its availability. Asynchronous data transfer is supported by Intel C++
compiler and can be arranged using relevant Intel-specific pragmas. The skeleton of the code
for offloading with asynchronous data transfer is shown in Figure 7.

The algorithm implemented in NoiseFiltr is identical to the one discussed earlier. The
computational flow is mostly the same. To control data transfer and offloading, we add corre-
sponding compiler pragmas to the necessary elements of the loop. It is worth noting that the
pragmas can be easily disabled, so the code can be recompiled to run on the host.

When the i-th data block is obtained through the function nfReadNextChunk the host
comes to a state of waiting for the filtration results to arrive in buffer res. The results were
computed on the previous iteration, for the (i-1)-th block, by the coprocessor. Once the results
arrive, the host resumes and transfers the i-th data block xblock to the coprocessor and
moves to the next statement. The data transfer is achieved using a single pragma #pragma
offload_transfer. Next, the host initiates noise filtration on the coprocessor using
#pragma offload. The signal clause in the pragma dictates the host to immediately
move to reading the (i+1)-th data block, in parallel with the computation on the coprocessor.
Note that filtration starts only after the i-th data block is received by the coprocessor. The
results of analysis of the i-th block are expected by iteration (i+1).

This coprocessor-oriented implementation has advantages only if the cost of computation
dominates data transfer overheads. To some extent, asynchronous data transfer helps to hide
the overhead. The key is to choose a right data block size, such that there is enough parallelism
to be exploited in each block to achieve the optimal speedup, while still keeping data transfer
overhead relatively low.

Conclusion
This article demonstrates the superb performance advantages of Intel MKL in the implemen-
tation of the online noise filtration algorithm on Intel Xeon processors. It also demonstrates
a straightforward port to the Intel Xeon Phi coprocessor. Although the problem of interest in
this article is correlation analysis of financial market data, the principles and statistical analysis
techniques used can find applications in many other fields, such as data mining, machine
learning, pattern recognition, and bioinformatics. A common problem in these applications is
transforming data in a highly dimensional space to a space with a reduced number of dimen-
sions, i.e., dimensionality reduction. Principal component analysis (PCA) and the closely related
linear discriminant analysis (LDA) are the most frequently used methods of dimensionality
reduction. These methods require computation of statistical estimates for the raw data, such
as variance, covariance, and correlation. They also typically involve linear transformation of
large datasets. Intel MKL offers highly optimized and extensively threaded summary statistics
functions and linear algebra functions on both Intel Xeon architectures and Intel Xeon Phi
coprocessors, and should be considered the math library of choice in powering these data-
oriented and compute-intensive applications. o

Learn More
Source Code: http://software.intel.com/sites/default/files/article/327618/nf-bench6.zip

1. H. Kargupta, K. Sivakumar, S. Ghost (2002). A Random Matrix-Based Approach for Dependency Detection from Data Streams. In Proceedings of PKDD'2002 (pp. 250-262).
Springer-Verlag.

2. Intel® Math Kernel Library Product Page: http://software.intel.com/en-us/articles/intel-mkl/

3. Intel® Math Kernel Library Reference Manual: http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mklman/index.htm

4. Summary Statistics Library Application Notes: http://software.intel.com/sites/products/documentation/hpc/mkl/sslnotes/index.htm

 “Here, we
demonstrate that
advanced algorithms
and the right
combination of
hardware and
software technologies
lead to a high
performance
implementation.”

THE PARALLEL UNIVERSE

48 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mklman/index.htm
http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

Resources AND Sites of Interest

The mission of Go Parallel is to assist developers in
their efforts toward “Translating Multicore Power into
Application Performance.” Robust and full of helpful
information, the site is a valuable clearinghouse of
multicore-related blogs, news, videos, feature stories,
and other useful resources.

Check out a range of resources on a wide variety
of software topics for a multitude of developer
communities ranging from manageability to parallel
programming to virtualization and visual computing.
This content-rich collection includes Intel® Software
Network TV, popular blogs, videos, tools, and downloads.

See these products in use, with video overviews that
provide an inside look into the latest Intel® software. You
can see software features firsthand, such as memory
check, thread check, hotspot analysis, locks and waits
analysis, and more.

Intel® Inspector XE

Intel® VTune™ Amplifier XE

The Intel® Software Evaluation Center
makes 30-day evaluation versions of Intel® Software
Development Products available for free download.
For high-performance computing products, you can get
free support during the evaluation period by creating
an Intel® Premier Support account after requesting the
evaluation license, or via Intel® Software Network Forums.
For evaluating Intel® Parallel Studio, you can access free
support through Intel Software Network Forums ONLY.

What if you could experiment with Intel’s advanced
research and technology implementations that are still
under development? And then what if your feedback
helped influence a future product? It’s possible here.
Test drive emerging tools, collaborate with peers,
and share your thoughts via the What If blogs and
support forums.

Go Parallel

Intel® Software Network
“What If” Experimental
Software

Step Inside the Latest Software
Intel® Software
Evaluation Center

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com
http://www.youtube.com/watch?v=Bx7M-NGuelg&NR=1
http://www.youtube.com/watch?v=n4z5p8f5L-A
http://www.go-parallel.com/
http://software.intel.com/en-us/
http://software.intel.com/en-us/whatif/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/

Sign up for future issues | Share with a friend
The Parallel Universe is a free quarterly magazine. Click here to sign
up for future issue alerts and to share the magazine with friends.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets
and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Free updates and fast downloads on even more new software technologies, tools, and best
practices for smart coding and innovative user experiences.

> Join Intel® Software Dispatch.

THE PARALLEL UNIVERSE

50 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

https://swdevtoolsmag.makebettercode.com/
https://intel.p.delivery.net/m/p/int/isd/profile.asp
http://software.intel.com/en-us/articles/optimization-notice

Download the free CodeBook now

Boost performance and accuracy
This downloadable CodeBook provides “how-to” guidance and a comprehensive
resource toolkit to help you efficiently produce fast, scalable, reliable applications
throughout the development lifecycle.

Look for guidance and techniques for C++ and Fortran developers:

©2012, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Tools and techniques across
the development lifecycle

Features for accelerated performance

Technical guides, white papers,
articles, and blogs

And much more

http://makebettercode.com/2013

FREE SUBSCRIPTION
softwareadrenaline.intel.com

http://softwareadrenaline.intel.com

