
THE PARALLEL
UNIVERSEIssue 3

June 2010

by James Reinders

Letter from the

Editor

Enhancing Productivity and

with Intel® Cluster Toolkit
Compiler Edition

Achieving High
Performance

by Bill Magro

Find out What IncrediBuild* and
Intel® Parallel Composer Can Offer

Increase Productivity
and Performance:

by Jennifer Jiang and Uri Mishol

DEVELOPER
ROCK STAR:

Bill Magro

Contents
Letter from the Editor
Parallelism Full Steam Ahead!, by JAmES REInDERS 4
James Reinders, lead evangelist and director of Intel® software Development Products,
explains how recent industry and product developments have positioned parallelism to
take off full throttle.

Enhancing Productivity and Achieving High Performance
with Intel® Cluster Toolkit Compiler Edition, by bILL mAgRO 6
Message-passing interface applications port seamlessly from dual-core desktops to
multithousand server clusters, a key advantage of distributed memory parallelism.

Increase Productivity and Performance:
Find out What IncrediBuild* and Intel® Parallel
Composer Can Offer, by JEnnIfER JIAng AnD URI mIShOL 12
software companies use many software development methodologies, but none eliminate
the need for building, testing, and tuning individual components or the whole application.

Optimizations for MSC.Software SimXpert*
Using Intel® Threading Building Blocks,
by KAThy CARVER, mARK LUbIn, AnD bOnnIE AOnA 24
to address increasing customer model sizes and align with the multicore processor
roadmaps for hardware vendors, MsC.software* engaged with Intel to thread simXpert*.

DEVELOPER ROCK STAR:

Robert Geva

APP EXPERTISE:

C++ and Fortran Compilers

© 2010, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

TURn UP yOUR
PRODUCTIVITy.

Robert’s tip to boost performance:
With wider SImD instructions in Intel® Architecture, expect more from
the vectorizer in the Intel® compiler. Use the -Qguide option in Intel®
Parallel Composer to get guidance on how simple, local restructuring of
your code can get more code vectorized and parallelized by the compiler.

ROCk YOUR COdE.
become a developer rock star with Intel® Parallel Studio. Learn how to add
parallelism to microsoft Visual Studio* by visiting www.intel.com/software/
products/eval for a free evaluation.

© 2010, Intel Corporation. All rights reserved. Intel, the Intel logo,
Intel Core, Intel Xeon, and VTune are trademarks of Intel Corporation
in the U.S. and other countries. *Other names and brands may be
claimed as the property of others.

THE PARALLEL UNIVERSE

http://www.intel.com/software/products/eval
http://www.intel.com/software/products/eval

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Parallelism Full Steam Ahead!

LETTER FROM THE EDITOR

Forces today include quad-core and eight-
core processors. Four hardware threads will
yield speedups for parallel programs more
universally than dual-core. this is because
the overhead of a tasking or threading
model is more easily acceptable comparing
one to four hardware threads instead of one
to two. Quad-core processors are mainstream
now, and eight-core processors are easy to
find, too. This changes everything in terms of
what developers can do and what application
users will utilize.

Another force at work is good software
development solutions. the Intel threading
Building Blocks project recently introduced
Intel® threading Building Blocks 3.0. this is a
very mature solution with unequaled adoption
worldwide. the new features in Intel tBB
3.0 really represent refinements that come
primarily from dedicated users giving feedback
on what would help them use Intel tBB more
effectively in real-world applications (learn
more about Intel Tbb 3.0).

I’m a developer, not a researcher, so
the stage of maturity that Intel tBB 3.0
represents is what really excites me. I’m
delighted because of its here-and-now
usefulness and large community of users.
Adobe’s adoption of Intel tBB for the
Creative suite 5* is another instance of
what really makes me excited. I’ve been
involved with Intel tBB since v1.0 in 2006, so
I can count it among a handful of exceptionally
successful products I’ve worked on in my
career. success to me comes only one way:
customers who value your product. We have
success with Intel tBB.

Intel Parallel studio is another rising star.
I’m pleased by Intel’s decision to create the
next major version and not charge current
customers for the upgrade. this means that
the new features, including Intel® Parallel
Advisor, which are now in beta, will be available
to all Intel Parallel studio customers as a free
upgrade in the fall when it is released. the
new version will be known as Intel® Parallel
studio 2011, but we should have it out a few
months before the end of 2010.

How do I gauge the success of Intel Parallel
studio? the same way I judge the success of
Intel threading Building Blocks: by what our
customers are doing with it. What I see after
only one year of Intel Parallel studio suggests
the same ramp of adoption that Herb, Intel
tBB, and others have led me to expect. early
adopters have a job to do, and they find that
Intel Parallel studio makes that job possible
both in terms of speed to solution and
greater confidence in the results.

Finally, released in April, Microsoft Visual
studio 2010 represents a milestone as well
with the first introduction of that product’s
support for parallelism. Developers working
with .NET will find a task stealing option
(called tPL), which is similar to Intel tBB
but intended for .net. Microsoft tPL works
great for .net parts of applications and in
conjunction with Intel tBB (for C/C++)
because of a layer called the Microsoft*
Concurrency Runtime (ConcRt) a new
addition in Microsoft Visual studio 2010.
We already have Intel tBB 3.0 and Intel’s
openMP* (in the forthcoming Intel® C++
Compiler 12.0) using ConcRt because of its
ability to coordinate multiple models used in
a single application to avoid oversubscription.
this is another real sign of maturation of
solutions for software developers.

Full steam ahead indeed. the emergence
of quad-core and eight-core processors, along
with the maturity of Intel tBB 3.0, Adobe’s
adoption of Intel tBB, the maturing of Intel
Parallel studio, and the arrival of Microsoft
Visual studio 2010, show parallelism is
definitely really to go full throttle.

JAMES REINdERS
Portland, oregon
June 2010

James Reinders is chief software evangelist and
director of Software Development Products at Intel
Corporation. his articles and books on parallelism
include Intel Threading Building Blocks: Outfitting
C++ for Multicore Processor Parallelism.

We have had five years of multicore
processors and four years of Intel® threading
Building Blocks. Time flies. Now, in 2010,
we have Intel® threading Building Blocks 3.0
(Intel® tBB) and Microsoft* Visual studio*
2010. Later this year we’ll have Intel’s second
generation of Intel® Parallel studio (no charge
to those who purchased the original).

I mentioned legacy, education, and tools
in the prior issue as primary concerns for
developers we have interviewed. our focus
on delivering solutions to these challenges
continues. We have solutions for real-world
existing (legacy) programs that are also the
right tools for new applications. We have
webinars and extensive online training (much
easier to find now using the new Intel®
Learning Lab). We also have great tools for
developers, some of which you’ll learn more
about in this issue, and may more of which
are explored at the Intel® Learning Lab.

I recently talked with Microsoft’s Herb
sutter over breakfast before doing a webinar
together (watch it on demand and join us
for future events). Herb reminded me of a
graph he showed me a few years ago about
technology adoption. His curves showed a
slow start and then a big takeoff, followed by
mass acceptance and adoption. He showed
a graph for object-oriented programming.
similarly, graphical interfaces (monochrome to
VGA to …) and the Internet followed his curve.
It’s a valid observation, even if not completely
quantified. The bottom line being that mass
acceptance doesn’t happen overnight. But you
can see signs, and you can enumerate forces.

James Reinders, lead evangelist
and director of Intel® Software
Development Products, explains
how recent industry and product
developments have positioned
parallelism to take off full throttle.

4

http://www.threadingbuildingblocks.org/
http://www.threadingbuildingblocks.org/
http://software.intel.com/en-us/intel-learning-lab/
http://software.intel.com/en-us/intel-learning-lab/
https://event.on24.com/event/36/88/3/rt/1/index.html?&eventid=36883&sessionid=1&key=D76A2FD29D7444AEC06765011A2D4953&tab=1&sourcepage=register
https://event.on24.com/event/36/88/3/rt/1/index.html?&eventid=36883&sessionid=1&key=D76A2FD29D7444AEC06765011A2D4953&tab=1&sourcepage=register

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Applications

Develop applications for one fabric

Fabrics

Achieve optimized MPI performance

Intel® MPI Library eliminates the need to develop, maintain,
and test applications running on multiple fabrics.

Select interconnect fabric at runtime

Intel® MPI Library

CFD Crash Climate QCD BIO Other

TCP/IP Myrinet InfiniBand Quadrics Shared
Memory

Other
Networks

the power of MPI has also reached the workstation, where MPI
applications run well and are frequently used. that highlights a
key advantage of distributed memory parallelism over the shared
memory techniques you’ll most often read about: MPI applications
port seamlessly from dual-core desktops to multithousand-server
clusters. the Intel® Cluster Toolkit Compiler Edition is the premier
toolkit for developers writing MPI applications. the suite of products
includes the essential tools for MPI developers: C++ and Fortran
compilers, performance libraries, analysis tools and benchmarks,
and, of course, a high-performance MPI implementation. the
newly released toolkit version 4.0 brings a host of new usability,
productivity, and performance features.

Intel® mPI is a good place to start. Version 4.0 is the biggest step
forward in the product since its launch. But before we explore its
advances, let’s take a moment to revisit its origins. Intel MPI was
created to bring the plug-and-play simplicity of desktop operating
systems to the world of high-performance computing (HPC). on the
desktop, we take for granted that we can freely select applications
that will work with a wide range of printers and network interfaces.

But in the world of high-performance computing, high-
performance networks—critical to achieving good scaling on
clusters—typically arrived with a custom implementation of MPI.
As a result, software vendors were typically burdened with creating
and validating a separate application version for each flavor of
network or “interconnect.” this approach was expensive, and it left
ethernet as the least-common denominator. Beyond those who
developed and used their own applications, high-performance MPI
applications were limited, and innovative network vendors found
it hard to penetrate the commercial market.

Intel MPI addressed this issue via an interconnect-independent
architecture (Figure 1). By moving from an approach that supported
one or more specific interconnects to one focused on a small number
of stable binary interfaces—sockets, direct access programming
libraries (DAPLs), and shared memory—Intel MPI decoupled application
development and innovation from network development and innovation.
this simple but powerful approach has allowed software vendors to
write a single application binary that is forward and backward compatible
with a wide range of interconnects. Fewer application versions means
lower development and validation costs, while improved compatibility
through standard interfaces brings lower support costs.

At the same time, interconnect vendors now have immediate
access to a wide range of commercial applications simply by
implementing a driver for one of Intel MPI’s supported interfaces.
today, a variety of commercial MPI applications utilize a wide range
of advanced interconnection networks via Intel MPI.

Initially targeted at commercial software developers, Intel MPI’s
architecture focused on compatibility, usability, and performance
in the sweet spot of commercial software: two- to 256-core
parallelism. Despite this focus, the product has proven popular with
MPI developers targeting 1,024 cores and above. As a result, Intel
MPI 4.0 introduces a new architecture designed to scale to 10,000
cores and beyond.

You might wonder what prevents the previous architecture from
scaling to these levels. to start with, you need to know that to reach
even 1,000 cores, an advanced interconnect is typically essential.
Usually, one uses an interconnect based on remote direct memory
access, or RDMA. InfiniBand* is the most common such interconnect
in HPC. to achieve performance on RDMA networks, Intel MPI takes
a familiar tack: It trades memory consumption for performance. small
message performance is critical to scaling MPI applications, and Intel
MPI optimizes these transfers by creating and using pinned memory
buffers. this avoids paying the repeated (and high) cost of pinning and
unpinning a memory region for a single transfer.

It’s an effective approach, but these buffers are needed for
every communication target—and the memory consumption really
adds up when using thousands of processes. Intel MPI was already
smart about managing memory—buffers were only created for active
targets—but version 4.0 goes further. It introduces a connectionless
protocol that avoids memory registration. By using the RDMA
network’s unreliable datagrams and moving the reliability protocol into
MPI itself, Intel MPI can now send small messages to an arbitrary
number of endpoints, all from a single set of memory buffers.

As a result, local memory usage no longer grows with the number
of endpoints, and MPI jobs can scale into the thousands—or even
tens of thousands—of processes. the default connection-oriented
approach still delivers the highest performance for smaller jobs, but
those needing extreme scalability can enable the connectionless
approach by setting I_MPI_DAPL_UD=enable in the environment.
Intel MPI 4.0 provides binary compatibility with previous versions,
so existing binaries can take advantage of these new capabilities
without recompiling or relinking.

The Intel® Cluster Toolkit
Compiler Edition is the premier
toolkit for developers writing
mPI applications. The suite of
products includes the essential
tools for mPI developers.

Clusters of networked servers are the most
popular form of high-performance computers today.
Developers of cluster applications most commonly use
the message-passing interface, or MPI, to implement
parallelism. MPI is a mature and well-established industry
standard for implementing distributed memory parallelism.
MPI allows anywhere from a few to tens of thousands of
processes to exchange information and work together to
collectively solve the world’s hardest problems.

Figure 1: Intel mPI’s unique interconnect independent architecture allows a single application
binary to efficiently run over a wide range of networking fabrics.

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

8

http://www.intel.com/go/clustertools
http://www.intel.com/go/mpi
http://www.mpi-forum.org

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

As noted, the focus is usually on shared memory programming
models, such as threading and tasking. since MPI is a distributed
memory model, it might be a surprise that its shared memory
performance inside a single system is rather important. It is especially
important when MPI applications are deployed on workstations. Intel
MPI’s new architecture significantly improves messaging speed over
shared memory. As an example, on a modern Intel® Xeon® platform,
Intel MPI achieves about twice the messaging performance of a
popular open-source MPI on messages up to 16kB in size. For larger
messages, the advantage is still more than 1.5x.

In addition to cluster applications that also run on workstations,
some developers choose MPI to create parallel applications
specifically for desktop and workstations, finding that the high-
level data decomposition it encourages is a straightforward way to
design for scalability.

Another key component of the Intel Cluster toolkit is its MPI
analysis tool, the Intel® Trace Analyzer and Collector. there aren’t a
lot of things more frustrating in software development than investing
a lot of time and energy recoding for performance, only to find the
performance doesn’t change. Intel provides a number of tools to help
you find the critical path and ensure local performance gains will
translate into application gains.

A key question is often whether the performance limits observed
are due to the hardware or the software. Usually, one doesn’t have
access to higher performance hardware, so one focuses on the
software. In the case of MPI programs, the limiting hardware is often
the interconnect, but one also wonders whether the software is
itself limiting the scalability. Intel trace Analyzer and Collector 8.0
provides tools you need to easily visualize the messaging patterns
in your application and identify potential hotspots.

However, it’s still natural to ask, “Is my application’s scalability limited
more by my code or by the network?” to help answer this question,
Intel trace Analyzer and Collector 8.0 adds an “ideal interconnect
simulator.” An “ideal” interconnect is defined, in this case, as one that
instantaneously transports any amount of data to a ready receiver.
By simulating the effects of an ideal interconnect, one can quickly
separate messaging overheads due to transfer time from those
originating in the application itself.

Using the feature is pretty straightforward. to get started, a real
message trace is collected using the Intel® trace Collector. With
this trace loaded in the Intel trace Analyzer, select “Advanced >

Idealization” and a dialog box appears (Figure 2). From here, you can
generate a transformed trace file, representing the run on an ideal
interconnect. With the new trace file loaded in the tool, it can be
compared with the original run. the performance increases achieved
from the ideal interconnect are immediately apparent; any remaining
inefficiencies are in the code.

this feature is also helpful for people wanting to estimate the
gains, if any, they’d see from moving up from, say, 1Gb ethernet to an
InfiniBand interconnect. Intel Trace Analyzer includes a new display—
the application imbalance diagram—that breaks down the remaining
overheads, helping you quickly identify the MPI function calls and
specific message sizes that need attention (Figure3).

While the ideal interconnect is one useful trace transform, you can
write and apply your own through the custom plug-in framework—
another new feature in 8.0. Do you want to understand how much
further your code will scale if the latency of the interconnect is halved
for small messages? Write a simple transform function, and Intel trace
Analyzer will generate and display the updated trace file.

We’ve focused on RDMA interconnects here—and for good reason.
Standard support for RDMA in InfiniBand and iWarp* interconnects
has been a boon for HPC users. It has allowed an unprecedented
number of systems vendors and even do-it-yourself computer
centers to build world-class supercomputer clusters from affordable
and readily available components. one look at the growth of clusters
in the world’s Top 500 computer systems illustrates the impact
of RDMA and Intel® Architecture servers. Despite RDMA’s popularity
in HPC, its semantics are not a perfect match to those of MPI. For
example, every MPI message carries a tag that is matched at the
destination, while RDMA lacks such a notion. such differences mean
every MPI implementation must do a certain amount of “impedance
matching” to an RDMA fabric. And the extra code brings overheads.

Intel MPI 4.0 is now capable of efficiently running over interconnects
that more directly support MPI semantics. Myricom’s Myrinet*, with its
MX interface, and Qlogic’s InfiniBand adapter, with its PSM interface,
are good examples. In the past, Intel MPI supported these interconnects
only via the DAPL RDMA interface, since no other common binary
interface existed. note that the overheads of impedance matching
to these interconnects occurs twice—first from fabric to DAPL and
then from DAPL to MPI.

In version 4.0, Intel MPI introduces a new interface, the “tag-matching
Interface,” or tMI, tailored to this class of interconnects. the tMI
interface represents a substantially thinner—and more efficient—
interface for fabrics that natively support semantics that closely
approximate those of MPI. the result is simpler drivers and better
performance. For example, the latency of small messages over
Qlogic’s PsM* decreased by a factor of three from Intel MPI 3.2.1
to Intel MPI 4.0.

the Intel Cluster toolkit Compiler edition is Intel’s premier tool
suite for developers of MPI-based cluster applications. We’ve only
scratched the surface here regarding what’s new in version 4.0.
Check out the release notes to discover many more new features
to enhance your productivity as you achieve high performance. o

Intel® mPI 4.0 is now
capable of efficiently
running over interconnects
that more directly support
mPI semantics.

Figure 2: This dialog
box makes it easy to
create an idealized
message trace.

Figure 3:
The application
imbalance view
helps you see the
portion of time
spent in messaging
network transfers
and application
load imbalance.
The former will
decrease with faster
networks, while
the latter requires
application tuning.

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

10

http://www.intel.com/go/traceanalyzer
http://www.top500.org/overtime/list/34/archtype
http://software.intel.com/sites/products/documentation/hpc/ictce/ictce_release_notes4.pdf

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

By Jennifer Jiang
and Uri Mishol

Software companies use many
software development method-
ologies, but none eliminate the
need for building, testing, and
tuning individual components
or the whole application.

Increase Productivity
and Performance:
Find out What IncrediBuild* and Intel® Parallel Composer Can Offer

Is your application taking a long time to build?
Why is it not running as fast as you would like?

IncrediBuild*, a distributed computing tool, can reduce
the application build time significantly by distributing the
different parts of the build process or compilation across
computers in a local network. As a result, the build can run
up to 20 times faster.

Intel® Parallel Composer, an Intel® C++ Compiler with
performance libraries, as well as the Intel® C++ Compiler
Professional edition, brings much needed runtime
performance with its advanced optimization techniques,
including auto-vectorization, auto-parallelism, and
high-performance optimization.

THE PARALLEL UNIVERSE THE PARALLEL UNIVERSE

12

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

LAN CONNECTION

IncrediBuild* Coordinator
(with or without Agent)

Microsoft Visual
Studio Plug-in

GUI
INCREDIBUILD AGENT 2

XGE

Microsoft* Visual
Studio* Plug-in

GUI
INCREDIBUILD AGENT 1

XGE

Microsoft Visual
Studio Plug-in

GUI
INCREDIBUILD AGENT 3

XGE

Tune for optimal
concurrency usage with
Intel® Parallel Amplifier

Introduce threads,
compile, and debug with
Intel® Parallel Composer

Find threading and
memory errors with

Intel® Parallel Inspector

Find where to start
parallelizing

Performance
› Highly optimizing C/C++ compiler
 and runtime libraries

Parallelism
› OpenMP* 3.0

› Intel® Threading Building Blocks

› Intel® Integrated
 Performance Primitives

Productivity

› Intel® Parallel Debugger Extension

› Microsoft Visual Studio
 integration and compatibility

5:00:00

4:00:00

3:00:00

2:00:00

1:00:00

0:00:00

0:05:38

2:51:00

0:05:38

2:04:00

4:55:00

0:08:480:03:53

0:03:53 0:08:48

2:51:00 2:04:00 4:55:00Standard
MSVC++ Build

IncrediBuild
(utilizing 20 CPUs)

Debug Release Batch
(Debug & Release)

Introduction
there are many software development methodologies being used by
software companies for application development, but none eliminate
the need for building, testing, and tuning individual components or
the whole application. For some applications, building time may not
be an issue. For other applications, it can take hours or dozens of
hours to perform a complete build. In such cases, software engineers
may be less motivated to change source code and improve readability
or maintainability just to avoid the pain of a full rebuild. If faced with
this situation, it may be time to consider how you can speed up your
application build time so that more time can be spent on designing,
coding, debugging, and testing. this is where IncrediBuild* can help.

Application performance tuning is an art. It can be a very
time-consuming process involving a great deal of testing, data
reconstruction, etc. other times it may require large-scale surgery,
such as a redesign, for better performance. But sometimes, it might
only require a few small code changes or a data structure change,
or just a change of the compiler. Intel® Parallel Composer can help
with the state-of-the-art C++ compiler and a number of fine-tuned
performance libraries.

Solutions

Reducing Compile Time: IncrediBuild* by Xoreax Ltd.

IncrediBuild is a distributed computing tool for Windows* software
developers. It utilizes a technology called “Grid Computing,” a form
of distributed computing, in which different parts of one or more
processes are executed in parallel across computers connected to
a network. this way, all idle CPU cycles on the network can be put
to use. As a result of the distributed parallel execution, the process
is considerably accelerated. the above chart shows the actual
reduction in compilation time for a Microsoft* Visual studio* C++
project based on the number of agents used (Figure 1).

how Incredibuild Works
IncrediBuild consists of two major components: the Coordinator
(running on a server) and Agents (running on all clients). IncrediBuild
Agents are client components responsible both for initiating jobs as
well as for participating in executing jobs initiated by other Agents.
the most basic functionality of an IncrediBuild Agent is to act as a
“Helper,” executing tasks initiated by other Agents. throughout the
distributed job execution, the Coordinator assigns remote Agents to
the executing jobs and balances the jobs among Agents. Relevant
input or output files are transferred on demand between remote
Agents and the local file system.

Application
performance tuning
is an art. It can
be a very time-
consuming process
involving a great
deal of testing, data
reconstruction, etc.

Figure 2: LAn connected computers with Incredibuild
Coordinator and/or Agent installed

Figure 3: Intel
Parallel Composer
features

Figure 1: Possible build-time speedup using Incredibuild

Build-Time Comparison

Code and debug with Intel® Parallel Composer

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

14

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Example: auto-v.cpp

	 1	void	work(float*	a,	float	*b,	float	*c,	int	MAX)
 2 {
	 3					for	(int	I=0;I<=MAX;I++)
	 4								c[I]=a[I]+b[I];
 5 }

Figure 5

Auto-vectorization translates the single element operation to four
elements operation per iteration, hence the better performance.

Non-
Vectorized

Vectorized

not usednot usedA[1] not used

not usednot usedB[1] not used

not usednot usedC[1] not used

A[1]A[2]A[1] A[0]

B[1]B[2]B[3] B[0]

C[1]C[2]C[3] C[0]

the Agents utilize the Virtual environment
(effectively the “brain” of IncrediBuild) of the
Xoreax Grid engine* (XGe*) to ensure that a
task runs on remote machines exactly as if it
were being executed on the computer that
initiated the job —regardless of the remote
machine’s file system, installation base, and
environment. the XGe dynamically adjusts
its operation according to the participating
machines’ status and availability, handling
various disconnect and recovery scenarios
(Figure 2).

Using Incredibuild
IncrediBuild is easy to install and use.
Installation should always begin by installing
the Coordinator (the server component),
followed by the Agents (client machines),
which are typically developer workstations or
relatively idle machines that can contribute
processing power to running builds. During
Agent installation, the setup program
will automatically test the connection to
Coordinator and set the appropriate settings
such as port# and so on. the entire installation
process takes only minutes.

A system tray icon will be installed on both
Agent and Coordinator after installations;
it offers a convenient way to manage
everything from a single place.

Version updates can be automatically
pushed by the Coordinator to all Agents to
further simplify ongoing maintenance.

Incredibuild is integrated into the
following Visual Studio IDEs**:

 > Microsoft* Visual studio* 2008 standard
or above

 > Visual* studio* 2005 standard or above

 > Visual* studio* .net 2003 standard or
above

 > Visual* studio* 6.0 standard or above

**Note: Visual Studio* 2010 is to be
supported in Q2 of 2010.

Required Software
Both the IncrediBuild Agent and Coordinator modules can only run
on Windows os. However, it is not required that every Agent system
have Visual studio installed; only the Agent that initiates the “Build”
job requires Visual studio, just like any software developer’s system.
Agents that contribute processing power to builds initiated by other
Agents do not require any software apart from the IncrediBuild
Agent as the entire build environment is virtualized via XGe’s
virtualization mechanism.

The latest Incredibuild version 3.51 supports the following
Windows OS versions:

 > Windows nt*, Windows* 2000, Windows XP*, Windows server*
2003, Windows server 2008*, Vista*, and Windows* 7

 > Please visit the following pages for more information about
IncrediBuild:

 - FAQs about IncrediBuild

 - What others have to say about this tool

After having installed an Agent, you will find everything you need
in the new “IncrediBuild” menu.

If you are a command line user, IncrediBuild supports command
line builds from various scripting languages like Perl, Dos command
files, and so on. There’s also an extension to IncrediBuild called XgE
Interfaces, which allows you to use XGe to speed up other
processes such as make-based builds, scripts, data builds, and more.

Incredibuild also supports the following additional
compilers within the IDE or from the command line:

 > Intel® C++ Compiler 7.x ~ 11.x Professional edition for Windows

 > Intel® Parallel Composer

 > GnU* C++ Compiler variants

both the Incredibuild Agent
and Coordinator modules can
only run on Windows OS*.

Figure 4:
Project property
field for /Qx
option Figure 6:

Auto-vectorization
translates the
single-element
operation to four
element operation
per iteration,
hence the better
performance.

Auto-vectorization

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

16

http://xoreax.com/xge_xoreax_grid_engine.htm
http://xoreax.com/xge_xoreax_grid_engine.htm

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Sys0 Coordinator

Sys1 (2 cpus) Agent
Dev system

Visual Studio* 2008
Intel® Parallel Composer

Sys2 (8 cpus) Agent
Dev system

Visual Studio 2008
Intel Parallel Composer

Sys3 (1 cpus) AgentLAN

Toolbar for Incredibuild*

Toolbar for Intel® Parallel Composer

Improving Performance: Intel Parallel Composer

Intel Parallel Composer is one of the four components included in
Intel Parallel Studio. the Intel Parallel Composer component contains
the Intel C++ Compiler for Windows with openMP* 3.0 support, the
Intel® threading Building Blocks (Intel® tBB), and the Intel® Integrated
Performance Primitives (Intel® IPP). And best of all, the optimizations
provided by the Intel® C++ Compiler, such as auto-vectorization,
auto-parallelism, inter-procedural optimization, and high-performance
optimization, do not require any code changes or very minimal code
changes. You only need to pass the right compiler options; the Intel
C++ Compiler will do the magic and generate the binary with the best
performance for the processors you would like to target (Figure 3).

so, just by switching to Intel C++ Compiler, your application can
benefit from those optimizations for better performance. How could
those optimizations bring better performance?

Auto-vectorization: controlled by options /Qx[sse2| sse3| sse4.1|
sse4.2| sse3_AtoM| AVX], /arch:[sse|sse2|sse3|ssse3|sse4.1],
or /Qax{sse2, sse3, ssse3, sse4.1, sse4.2, AVX} under the project
property “C/C++ -> Code Generation” fields “Intel Processor-Specific
optimization” or “Add Processor-optimized Code Path” (Figure 4).

Auto-vectorization enables processor-specific optimizations
targeting any processor with Intel® streaming sIMD extensions
(Intel® ssex) support, including processors from Intel and AMD*.
It exploits instruction-level parallelism (ILP) for loops that do not
have loop dependencies and no data aliasing. By using one sIMD
instruction, it can process two, four, eight, or up to 16 data
elements in parallel, depending on the data type, speeding up the
application runtime performance (Figure 5).

the Intel C++ Compiler will use the Intel ssex instructions to
accomplish the operation illustrated in figure 6, resulting in a nice
performance improvement for the application (Figure 6).

There are some requirements in order for loops to
be vectorized. Option “/Qvec-report3” is very helpful in
determining why a critical loop is not vectorized. There are
pragmas provided to help the compiler better understand
the loops for vectorization, for example:

 > #pragma ivdep > #pragma loop_count min(n),
max(M), avg(K)

 > Inlining

 > Constant propagation

 > Alias analysis

 > Dead code elimination

 > C++ class hierarchy analysis

 > Indirect call conversion

Auto-vectorization optimization can only be done for the inner-
most loops. Consult the reference links at the end of this article for
more information about auto-vectorization.

Auto-parallelization: controlled by the option /Qparallel under
project property “C/C++ -> Optimization” field “Parallelization.”

Auto-parallelization is another optimization for loops. the auto-
parallelizer analyzes the code and dataflow to determine if the loops
are good worksharing candidates and partitions the data for threaded
code. It then translates serial portions of the program into equivalent
multithreaded code. Auto-parallelized applications can usually run
faster on multiprocessor and multicore systems.

Auto-parallelization optimization is usually applied for the
outer loops.

high-level Optimization (hLO): controlled by /o3 under project
property “C/C++ -> Optimization” field “Optimization.”

HLo exploits the source code constructs (loops and arrays)
and does more aggressive optimizations including prefetching,
scalar replacement, cache blocking, and loop- and memory-access
transformations (loop unroll and jam, loop distribution, data prefetching,
etc.). HLo is recommended for loop-intensive applications that perform
substantial floating-point calculations or process large data sets.

Interprocedural Optimization: controlled by /Qip and /Qipo
under project property “C/C++ -> optimization” field “Interprocedural
optimization.”

/Qip is the interprocedural optimization within one compilation unit.
/Qipo is the interprocedural optimization among multiple files. This

is also called “whole-program optimization.”

When /Qipo is used, the compiler has the knowledge of
the whole program, including all global variables, functions,
parameters, etc. this enables it to do a better job for all
the possible optimizations, including:

Interprocedural optimization can be very beneficial to application
performance, but because of the aggressive inlining, the application
binary size may increase significantly.

The auto-parallelizer analyzes
the code and dataflow to
determine if the loops are
good worksharing candidates
and partitions the data for
threaded code.

Figure 7: LAn-connected systems used for demo

Figure 8: Visual Studio* 2008 IDE with Intel® Parallel
Composer and Incredibuild* installed

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

18

http://software.intel.com/en-us/intel-parallel-composer
http://software.intel.com/en-us/intel-parallel-studio-home/

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Installing the Tools

First, download the fully functional 30-day trial version of Incredibuild.
Follow the instructions to install the Coordinator and Agents. the
assumption is that you have installed the Coordinator on sys0, and
the Agents on sys1, sys2, and sys3 (note that it’s also possible to
install an Agent on the same machine running the Coordinator).

next, download and install the evaluation of Intel Parallel Composer
on sys1 and sys2.

You should now have a farm of machines as illustrated in Figure 7.

Examining Microsoft Visual Studio 2008 on Sys1

Launch Microsoft Visual studio 2008 from sys1 and open your
solution. As an example, we’ll use the nQueen sample that comes
with Intel Parallel Composer (located in the “[Program files]\ Intel\
Parallel studio\Composer\samples\en_Us\C++\nqueens\” folder).
You should see the screen illustrated in Figure 8.

Projects shown with the Intel Parallel Composer icon have
been set to use the Intel C++ Compiler. to reset back to use the
Microsoft Visual C++ Compiler, click the third icon on the Intel Parallel
Composer’s toolbar.

Building the NQueen Sample Solution from Sys1

Let’s use IncrediBuild to build the solution so we can optimize
the compilation time. If we choose to, we can always build using
Microsoft Visual studio’s normal build method.

To build using IncrediBuild, click on the first icon on the IncrediBuild
toolbar. You should see all the available systems building the program
for you as illustrated in Figure 9.

Explanation of figure 9:

The total time used is: 54 seconds, 2.5x slower than building
the solution with IncrediBuild. one thing to note here is that build
improvement will be substantially more impressive with larger
projects that have more source files; the nQueen sample is a rather
small solution, hence the modest 2.5x improvement.

Testing NQueen Performance

The test is conducted on a laptop. you will need the
following:

once the build has finished, you will see the screen illustrated in
Figure 10.

now, let’s build the whole solution with microsoft Visual
Studio; note that the “build Time” for all eight projects is
as follows:

 > sys1 and sys2 are
development machines
with Microsoft* Visual
studio 2008 standard
(or above) installed.

 > sys0 and sys3 are used for
nondevelopment without
Microsoft Visual studio 2008.

 > sys1 is the agent who
initiated the build job.

 > three Agents (machines)
are helping the build job.

 > Each CPU is building files
from a separate project in
this test.

 > A total of eight projects are
being rebuilt.

 > each project is rebuilt using
a dedicated CPU: two CPUs
from Sys1, five CPUs from
sys2, one CPU from sys3.

 > Almost eight projects are
rebuilding at the same time.

1. >Build time: 0:00:10

2. >Build time: 0:00:11

3. >Build time: 0:00:06

4. >Build time: 0:00:04

5. >Build time: 0:00:06

6. >Build time: 0:00:06

7. >Build time: 0:00:05

8. >Build time: 0:00:06

 > Intel® Core™ 2 Duo
t7300 @2.00GHz

 > DDR2 2GB RAM

 > Windows XP* sP3

 > Visual studio* 2008 sP1

 > Intel® Parallel Composer
Update5

Compatibility with microsoft*
Visual* C++ 2005 or 2008:
Intel Parallel Composer is fully compatible with Microsoft Visual C++
2005 and 2008. What does this mean?

It means that you can continue to build everything with Microsoft
Visual C++, but only build the performance-critical code (files or
projects) with Intel Parallel Composer. In other words, you can mix
and match.

It is necessary to tune the performance by trying out different
compiler options. But with IncrediBuild saving you time on your builds,
you can take more time to concentrate on tuning and trying out
different compiler optimization options for best performance.

Trying It Out

Let’s get started with Incredibuild 3.51 and Intel® Parallel
Composer update 5.

We will use four computers that are connected through
LAn: Sys0, Sys1, Sys2, and Sys3

BLOG
highlights

Testing for Scalability
in four Easy Steps
BY STEPHEN BLAIR-CHAPPELL

the other day I wrote a parallel program that worked very

well on my two-core laptop. the question is how well

would it scale? When I run the same program on a four- or

eight-core machine will it go proportionally faster?

not many of us have an eight- or 16-core machine sitting

under our desk, so testing programs for scalability sounds

out of reach for most of us. Intel has come to the rescue

by making available for public use a multicore lab that is

accessed through the Intel® Parallel Universe Portal.

In a nutshell, to test a program’s scalability all that has to

be done is log on to the portal, upload your executable as

a Zip file, fill in the command-line options, and wait for the

results to be available. the jobs you submit are queued,

so time taken to get the results will depend on how busy

the portal is. When I did my tests I had to wait about 40

minutes for the results. there are more details in this fAQ.

Figure 9: Rebuilding
solution in progress

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

20

http://www.xoreax.com/download_center.php
http://software.intel.com/en-us/intel-parallel-composer
http://paralleluniverse.intel.com/
http://intelsoftwaredispatch.r.delivery.net/r?2.1.3MB.2n9.1eqwgF.BveM6W..N.CwJs.2edS.bW89MQ__DRZaFUK0

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

3000

2500

2000

1500

500

0

vc-optimized: /O2/Ob2/GL/arch:SSE2

ici-optimized: /O3/Qipo/QxSSE3

nq-stl

Project

Ti
m

e
(m

s)

nq-serial

Intel® Parallel Studio Homepage

IncrediBuild Knowledgebase Center

Article: “Distributed compilation with IncrediBuild*
and Intel® C++ Compiler on Windows*”

Learn more about Intel Parallel Composer and
or Intel Parallel Studio:

IncrediBuild Support Center

Learn more about IncrediBuild:

IncrediBuild Download Center

Intel® Software Evaluation Center

Download a free trial of the tools:

Test results:

see Figure 12 for the results. note the 1.5x speedup for the nq-stl
project and the 1.12x speedup for the nq-serial project.

Summary
We have shown you how IncrediBuild can help your application build
time and how Intel Parallel Composer can improve your application’s
runtime performance. By simply combining those two tools you
will get the best of both worlds: quicker compile time, and faster
application performance. o

only two projects—nq-serial and nq-stl—are used from the nQueen
solution, because the other five projects can only be built with Intel
Parallel Composer.

Preparation:

 > Start with default “Release” configuration.

 > set the “Command Arguments” property to “12” under the project
property [Configuration Properties -> Debugging] so it is measurable.

 > When building with Microsoft Visual C++, set the following
optimizations: /o2 /ob2 /GL /arch:sse2
• optimization: Maximize speed (/o2)
• Inline Function expansion: Any suitable (/ob2)
• Whole Program optimization: Use Link time Code Generation (/GL)
• enable enhanced Instruction set: sse2

 > When building with Intel Parallel Composer, set following optimiza-
tions: /o3 /Qipo /Qxsse3
• optimization: Maximize speed plus High-Level optimization (/o3)
• Interprocedural Optimization: Multi-file (/Qipo)
• Intel Processor-Specific Optimization: /QxSSE3

The nQueen sample is
a rather small solution,
hence the modest 2.5x
improvement.

One thing to note here
is that build improvement
will be substantially more
impressive with larger
projects that have more
source files.

Figure 10: finished
rebuilding solution:
time bar shows less
than 20 sec used

Figure 11:
Incredibuild*
summary page: It
shows how many
files built, total time
used, etc.

Figure 12: Test Results

NQueen Test Result Reference Material

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

22

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Graphical Primitives Are Created for the Free Faces of the Element

Tetrahedral
Element

By kathy Carver, Mark Lubin,
and Bonnie Aona

To address increasing customer model sizes
and align with the multicore processor roadmaps
for hardware vendors, mSC.Software engaged
with Intel to thread SimXpert.

Intel® Software College provided training for
a group of MsC.software* engineers on threading for
multiprocessor architectures and Intel® threading tools
(Intel® thread Checker, Intel® thread Profiler, and Intel®
threading Building Blocks (Intel® tBB)). A multiphased,
incremental threading approach was defined for
the project.

For Phase One, MSC.Software identified 72 engineering
operations in the post-processing portion of simXpert that
are responsible for the calculation of various engineering
quantities (e.g., von Mises, Principal, tresca, and Maximum
shear stresses). Intel prototyped the engineering operations
and investigated both Intel® threading Building Blocks
(Intel® tBB) and openMP* for threading implementation.
Intel tBB was selected as the best method due to its
compatibility with all supported platforms. Its performance
was also slightly faster than openMP.

For Phase two, code responsible for producing graphical
primitives was threaded, which improved performance for
fringe plots. this article discusses the details of these
threading implementation phases, the results achieved,
and the plans for additional threading for simXpert in
future phases.

background/Workloads measured
once the finite element model has been analyzed, the
results can be accessed by simXpert for post-processing.
It was the Post-processing Component (PPC) of simXpert
that Intel and MsC.software targeted for threading. this
“module” allows the expert analyst to do the following:

 > View selected results in a variety of ways, such as fringe,
deformation, contour, vector, and tensor plots

 > Identify problems

 > Redesign areas of a structure

Performance for both threading phases
was measured for fringe plots using large
simulation models provided by MsC.software
customers. these models represent typical
use cases from customers in the aerospace,
automotive, and general manufacturing
industries. the numerical and graphical
loading that occurs is due to several
critical factors:

 > Free faces (Figure 1) are the internal
and external faces of the model’s finite
elements where a fringe plot is rendered.

 > The clustering of the finite element
IDs for the elements whose free faces
are being rendered directly affects the
resulting data retrieval time.

 > the dimensionality of the data (i.e., scalar,
vector, tensor data type) directly affects
the number of data values that are
retrieved for post-processing.

 > Also playing a role is the complexity of
the engineering derivation applied to the
initial analysis data to transform it from
either a vector or tensor data type to a
scalar data type for fringe plot rendering.

Optimizations for
MSC.Software SimXpert*
Using Intel® Threading
Building Blocks

Figure 1: Free face rendering on the model’s finite elements

THE PARALLEL UNIVERSE

24

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Plot File name/
Entity count

Serial
time
(sec)

Parallel
time
(sec)

Speedup
factor
(Serial Time/
Parallel Time)

Serial
process
time
(sec)

Parallel
process
time
(sec)

Percent
process
speedup
(s-p)/s

Percent
time spent
in numeric
operations

fringe - Stress, max Princ
Avg meth=Avg/Derive,
Extrap meth=Avg

xx0kst0.xdb/624924 0.765 0.196 3.903 10.22 9.65 5.579 7.48

fringe - Stress, mid Princ
Avg meth=Avg/Derive,
Extrap meth=Avg

xx0kst0.xdb/624924 0.763 0.195 3.904 10.209 9.635 5.623 7.47

fringe - Stress, min Princ
Avg meth=Avg/Derive,
Extrap meth=Avg

xx0kst0.xdb/624924 0.762 0.197 3.873 10.208 9.636 5.604 7.46

fringe - Stress, Tresca
Avg meth=Avg/Derive,
Extrap meth=Avg

xx0kst0.xdb/624924 0.767 0.196 3.905 10.228 9.675 5.410 7.50

nfringe - Stress, max
Princ Avg meth=Avg/
Derive, Extrap meth=Avg

xx0ust0.xdb/605288 0.696 0.180 3.874 9.573 9.152 4.401 7.27

fringe - Stress, mid Princ
Avg meth=Avg/Derive,
Extrap meth=Avg

xx0ust0.xdb/605288 0.691 0.181 3.820 9.553 9.110 4.641 7.24

fringe - Stress, min Princ
Avg meth=Avg/Derive,
Extrap meth=Avg

xx0ust0.xdb/605288 0.693 0.179 3.879 9.556 9.114 4.626 7.25

fringe - Stress, Tresca
Avg meth=Avg/Derive,
Extrap meth=Avg

xx0ust0.xdb/605288 0.693 0.178 3.886 9.584 9.105 4.998 7.23

fringe - Stress, max
Shear Avg meth=Avg/
Derive, Extrap meth=Avg

xx0ust0.xdb/605288 0.695 0.180 3.861 9.554 9.099 4.766 7.27

fringe - Stress, max Princ
Avg meth=Avg/Derive,
Extrap meth=Avg

xx0jst0.xdb/2394421 2.883 0.731 3.942 39.068 37.007 5.275 7.38

fringe - Stress, mid Princ
Avg meth=Avg/Derive,
Extrap meth=Avg

xx0jst0.xdb/2394421 2.888 0.730 3.956 39.090 36.945 5.486 7.39

fringe - Stress, min Princ
Avg meth=Avg/Derive,
Extrap meth=Avg

xx0jst0.xdb/2394421 2.880 0.730 3.947 39.086 36.816 5.808 7.37

fringe - Stress, Tresca
Avg meth=Avg/Derive,
Extrap meth=Avg

xx0jst0.xdb/2394421 2.874 0.730 3.937 37.996 36.833 3.061 7.56

fringe - Stress, max
Shear Avg meth=Avg/
Derive, Extrap meth=Avg

xx0jst0.xdb/2394421 2.894 0.732 3.952 39.433 38.277 2.932 7.34

Average 3.90 4.872 7.37

minimum 3.82 2.932 7.23

maximum 3.96 5.808 7.56

for	(size_t	i=0;	i<Size;++i)	{
	 deriveFunc(ptr_inArray,ptr_outArray);
	 ptr_inArray	+=	inStride);
	 ptr_outArray	+=	outStride);
}

for	(size_t	i=0;i<Size;	++i)	{
	 deriveFunc(ptr_inArray[k*	inStride],
	 	 	 	 ptr_outArray[k	*	outStride]);
}

Threading SimXpert: Phase One
the initial targets for threading simXpert were 72 engineering
calculations in the PPC portion of simXpert. transformations were
required in the original serial code before it could be parallelized with
tbb::parallel_for (Figures 2 and 3).

After the transformations were completed, tbb::parallel_for was
integrated into the application. MsC.software relied heavily on other
threading tools, such as Intel® thread Checker and Intel® thread
Profiler, to ensure correctness and optimum performance. this code
represented only 7.4 percent of the total runtime for simXpert, but
threading resulted in an average 4.9 percent improvement in overall
performance. Table 1 shows the scaling that was achieved on a
2s 3.0GHz Intel® Xeon® processor 5100 series platform/8GB with
Red Hat* Linux* 4 update 3.

Figure 4: fringe plot
of von mises stress

Table 1: Summary for plots where serial time in numeric operations was greater than 0.5 seconds

Figure 2: Original serial code

Figure 3: Transformation to make arrays random access containers

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

26

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

One task encapsulates data input, processing, and output

Read a
block

Process
a block

Write a
block

Read a
block

Process
a block

Write a
block

Read a
block

Process
a block

Write a
block

Read a
block

Process
a block

Write a
block

Adding tasks should enable overlaps of I/O and computation

Execute Pipeline

Pipeline.run(TOKEN_COUNT);

Set Output Filter

Tbb:: pipeline outpipe;

NewOutPipe(“outputfile.name”);

Pipeline.add_filter(outpipe);

Set Process Filter

NewComputePipe compipe;

Pipeline.add_filter(compipe);

Set Input Filter

Tbb:: pipeline inpipe;

NewInPipe(“inputfile.name”);

Pipeline.add_filter(inpipe);

Serial Parallel

Iterate over all elements/faces. Divide face/element iteration over multiple threads with tbb::parallel_for.

Allocate (or reallocate) memory as needed for containers. Local storage holds elements in each Intel Tbb task.

Do calculations on each element and produce graphical primitives. Serial code works on the local containers without modification.

Copy primitives into container (flat array) using memcpy.
Partial results in each local container safely get combined into
tbb::concurrent_vector.

Sequentially bump container pointer, stored in a member variable.

Threading SimXpert: Phase Two
A key goal for the user experience with simXpert is quick
post-processing of analysis result data. Post-processing analysis
involves transforming the initial analysis data to the final numerical
form specified by the engineer, and then mapping it to its graphical
primitive representation. For example, an engineer may want to
direct simXpert to render color fringe plots of von Mises, Maximum
Principal, and Maximum shear stress to investigate the performance
of the simulation model relative to its applied loading. Figure 4
demonstrates a fringe plot of the von Mises stress distribution
across a simple connecting rod model.

Phase two for simXpert applied threading to the portion of the
code responsible for graphical primitive production for fringe plots.
this code accounted for approximately 35 percent of the total plot
time. As a proof of concept, MsC.software and Intel prototyped the
threaded code and saw scaling up to 3.2x on four cores. the method
used involved the production and packaging of graphics primitives into
containers. The program flow was modified as indicated in Table 2.

Performance improvements were observed when the models ran
on a 2s 2.66GHz Intel Xeon processor 5100 series platform/8GB
memory/Windows XP Professional X64 edition Version 2003 sP2*
(Table 3).

 > A 3-D, solid, finite element simulation model, representing the casting
of a V6 engine block (modelsec.xdb) with 98,814 free faces and a
358.7MB file size, achieved a 28 percent performance improvement.

 > A 3-D, solid, finite element simulation model, representing a turbine
blade (xx0kst0.xdb) with 65,416 free faces and 513.3MB file size,
achieved a performance improvement of between 3 percent and 10
percent for various plots.

 > A 3-D, solid, finite element simulation model, representing a casting
of a kitchen appliance housing (xx0ust0.xdb) with 90,460 free faces
and a 281.7MB file size, achieved a performance improvement of
between 6 percent and 26 percent for various plots.

 > A 2-D and 3-D finite element simulation model, representing a car
chassis (xx0o.xdb) with 1,209,323 free faces and a 438.8MB file size,
achieved a performance improvement of between 19 percent and 27
percent for various plots.

 > A 3-D, solid, finite element simulation model, representing the central
hub of an aircraft propeller (xx0fst0.xdb) with 89,935 free faces
and a 165.2MB file size, achieved a performance improvement of
between 10 percent and 30 percent for various plots.

 > A 3-D, solid, finite element simulation model, representing the casting
of a straight six-cylinder engine block (xx0jst0.xdb) with 461,808
free faces and a 1028.5MB file size, achieved a performance improve-
ment of between 15 percent and 44 percent for various plots.

next Steps
In future releases (following simXpert R4), the remaining plot
types will be threaded. the Intel tBB pipeline will also be evaluated
for threading overlap processing and buffered I/o. Intel® engineers
have prototyped an Intel tBB pipeline that uses the engineering
calculations from Phase one. Intel thread Profiler identified an issue
in this initial implementation with buffer thrash. When fixed, the
desired scalability was achieved. Matching the pipeline token count
to the hardware thread count produced “laminar” scheduling and
eliminated buffer thrash, resulting in a 3.9x scaling on four cores
and a 7.5x to 7.8x scaling on eight cores (Figure 5).

Parallel Pattern 10:
Scatter
BY MICHAEL MCCOOL

For a while now, I have been working on a blog series

describing a set of patterns to use for parallel programming.

the concept behind these patterns is that if we can

identify a small set of composable deterministic patterns

from which most parallel algorithms can be composed,

then we can improve the structure and maintainability

of parallel programs.

In this post, I want to discuss the most troublesome

pattern: scatter. scatter is required for a fully general

parallel programming model, but is also the most difficult

to make deterministic. However, there are several variants

of scatter, some of which can be tested for determinism,

and others that are guaranteed to be deterministic but may

require some additional computation to ensure safety.

A scatter operation takes an array of data, an array of

locations, and a target array, and updates the elements of

the target array with the given data at the given locations.

BLOG
highlights

Figure 5

Table 2: Serial versus parallel program flow

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

28

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Workload/description modelsec
(engine block)

xx0kst0
(turbine blade)

xx0ust0
(housing)

xx0o
(car chassis)

xx0fst0
(propeller hub)

xx0jst0
(straigt 6-cyl
engine block)

File size/# free faces
358.7 mb/
98,814

513.3 mb/
65,416

281.7 mb/
90,460

438.8 mb/
1,309,323

165.2 mb/
83,935

1028.5 mb/
461,808

Fringe - Eigen Vectors,
Translational - percent speedup

28.092

Fringe - Stress, von Mises
Avg Meth=Avg/derive, Extrap
Meth=Avg - percent speedup

3.729 8.422 19.437 10.013 15.061

Fringe - Stress, von Mises
Avg Meth=Avg/derive, Extrap
Meth=Avg - percent speedup

8.103 13.03 19.791 10.863 18.856

Fringe - Stress, Tresca Avg
Meth=Avg/derive, Extrap
Meth=Avg - percent speedup

8.968 10.733 20.03 10.73 18.988

Fringe - Stress, Octal Avg
Meth=Avg/derive, Extrap
Meth=Avg - % speedup

3.373 6.024 19.647 10.472 15.636

Fringe - Stress, Inv 1 Avg
Meth=Avg/derive, Extrap
Meth=Avg - percent speedup

2.926 6.143 19.671 10.867 15.463

Fringe - Stress, Max Shear
Avg Meth=Avg/derive, Extrap
Meth=Avg - percent speedup

8.199 10.628 19.902 11.007 19.585

Fringe - disp Trans, Mag -
percent speedup

10.334 26.203 27.543 29.824 43.807

Conclusion
the MsC.software project to add threading to simXpert
was successful, resulting in a significant performance
improvement in simXpert and a faster turnaround time for
end users, leading to increased productivity. simXpert was
one of the first commercial applications to release with
Intel tBB. Intel tBB was an ideal tool for this project since
simXpert is a multiplatform application written in C++
that has many features beyond typical high-performance
computing number-crunching applications. In addition,
the code of simXpert was well suited to the incremental
threading approach that MsC.software chose.

For Phase one, measurements for seven very large
customer simulation models on a 2s Intel Xeon processor
5100 series platform (four threads) showed scaling
between 3.8x to 3.9x for the engineering calculations.
For Phase two, optimizations for fringe plots resulted
in a speedup ranging from 3 percent to 44 percent for
measured workloads. MsC.software plans to continue
with the incremental threading approach for the
remaining plot types, while investigating the Intel
tBB pipeline for overlapping processing and I/o.

For more information on simXpert, visit the
mSC.Software website. o

DEVELOPER ROCK STAR:

Arch Robison

APP EXPERTISE:

Threading Algorithm Libraries

© 2010, Intel Corporation. All rights reserved. Intel, VTune, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

mAXImIzE yOUR
ThREADIng
PERfORmAnCE.

Arch’s tip to boost productivity:
make parallelism part of your application architecture, not a coding
afterthought. Raw threads are like gotos, but worse. Structured parallel
patterns usually work best. Use Intel® Threading building blocks’ parallel
algorithm templates and boost efficiency.

ROCk YOUR COdE.
be a developer rock star with Intel® high-performance computing tools.
Support the entire development lifecycle with the following:

Visit www.intel.com/software/products/eval for free evaluations.

 > Intel® Compilers

 > Intel® VTune™ Performance Analyzers

 > Intel® Performance Libraries

 > Intel® Threading Analysis Tools

 > Intel® Cluster Tools

Table 3: Speedup for fringe plot optimization (average of three runs)

THE PARALLEL UNIVERSE

30

http://www.mscsoftware.com/Products/CAE-Tools/SIMXpert.aspx
http://www.intel.com/software/products/eval

BUILD.
 DeBUG.
 tUne.
 RoCK.

© 2010, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Rock your code.
Intel® compilers, libraries, and debugging and tuning tools provide everything
you need to roll out reliable apps that scale for today’s multicore innovations. From
supercomputers to laptops, and embedded systems to mobile devices, Intel® software
tools enable you to optimize legacy serial and threaded code and plug in to multicore.

Become a developer rock star with Intel software tools.
Visit www.intel.com/software/products/eval for free evaluations.

32

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that optimize
for instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD instruction
sets), but do not optimize equally for non-Intel microprocessors. In addition, certain compiler options for Intel
compilers, including some that are not specific to Intel micro-architecture, are reserved for Intel microprocessors.
For a detailed description of Intel compiler options, including the instruction sets and specific microprocessors they
implicate, please refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options.” Many library
routines that are part of Intel® compiler products are more highly optimized for Intel microprocessors than for other
microprocessors. While the compilers and libraries in Intel® compiler products offer optimizations for both Intel and
Intel-compatible microprocessors, depending on the options you select, your code and other factors, you likely will
get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same degree
for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and
Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on
Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine
which best meet your requirements. We hope to win your business by striving to offer the best performance of any
compiler or library; please let us know if you find we do not.

Notice revision #20101101

http://www.intel.com/software/products/eval

