Developer Reference for Intel® ${ }^{\circledR}$ oneAPI Math Kernel Library for C

Contents

Chapter 1: Developer Reference for Intel® oneAPI Math Kernel Library - C

Getting Help and Support ... 17
What's New ... 18
Notational Conventions ... 18
Overview... 19
Performance Enhancements.. 22
Parallelism ... 23
C Datatypes Specific to Intel MKL... 23
OpenMP* Offload... 24
OpenMP* Offload for Intel® oneAPI Math Kernel Library 24
BLAS and Sparse BLAS Routines... 32
BLAS Routines ... 32
Naming Conventions for BLAS Routines.. 32
C Interface Conventions for BLAS Routines................................... 34
Matrix Storage Schemes for BLAS Routines 35
BLAS Level 1 Routines and Functions... 35
BLAS Level 2 Routines .. 52
BLAS Level 3 Routines... 96
Sparse BLAS Level 1 Routines.. 118
Vector Arguments ... 118
Naming Conventions for Sparse BLAS Routines 119
Routines and Data Types... 119
BLAS Level 1 Routines That Can Work With Sparse Vectors......... 119
cblas_?axpyi ... 120
cblas_?doti .. 121
cblas_?dotci .. 121
cblas_?dotui... 122
cblas_?gthr... 123
cblas_?gthrz.. 124
cblas_?roti ... 124
cblas_?sctr.. 125
Sparse BLAS Level 2 and Level 3 Routines... 126
Naming Conventions in Sparse BLAS Level 2 and Level 3............ 126
Sparse Matrix Storage Formats for Sparse BLAS Routines........... 127
Routines and Supported Operations.. 128
Interface Consideration... 129
Sparse BLAS Level 2 and Level 3 Routines.................................. 133
Sparse QR Routines... 240
mkl_sparse_set_qr_hint .. 240
mkl_sparse_?_qr .. 241
mkl_sparse_qr_reorder.. 243
mkl_sparse_?_qr_factorize.. 244
mkl_sparse_?_qr_solve ... 245
mkl_sparse_?_qr_qmult ... 247
mkl_sparse_?_qr_rsolve .. 249
Compact BLAS and LAPACK Functions .. 250
mkl_?gemm_compact... 254
mkl_?trsm_compact 257
mkl_?potrf_compact 259
mkl_?getrfnp_compact 260
mkl_?geqrf_compact 261
mkl_?getrinp_compact 263
Numerical Limitations for Compact BLAS and Compact LAPACK Routines 264
mkl_?get_size_compact 265
mkl_get_format_compact 265
mkl_?gepack_compact 266
mkl_?geunpack_compact 268
Inspector-executor Sparse BLAS Routines. 269
Naming Conventions in Inspector-Executor Sparse BLAS Routines 269
Sparse Matrix Storage Formats for Inspector-executor Sparse BLAS Routines 271
Supported Inspector-executor Sparse BLAS Operations 271
Two-stage Algorithm in Inspector-Executor Sparse BLAS Routines 272
Matrix Manipulation Routines 273
Inspector-Executor Sparse BLAS Analysis Routines 293
Inspector-Executor Sparse BLAS Execution Routines 310
BLAS-like Extensions 354
cblas_?axpy_batch 356
cblas_?axpy_batch_strided 357
cblas_?axpby 358
cblas_?gemmt 359
cblas_?gemm3m 362
cblas_?gemm_batch 366
cblas_?gemm_batch_strided 369
cblas_?gemm3m_batch_strided 372
cblas_?gemm3m_batch 376
cblas_?trsm_batch 379
cblas_?trsm_batch_strided 382
mkl_?imatcopy 384
mkl_?imatcopy_batch 386
mkl_?imatcopy_batch_strided 387
mkl_?omatadd_batch_strided 389
mkl_?omatcopy 391
mkl_?omatcopy_batch 393
mkl_?omatcopy_batch_strided 395
mkl_?omatcopy2 397
mkl_?omatadd 399
cblas_?gemm_pack_get_size, cblas_gemm_*_pack_get_size 401
cblas_?gemm_pack 403
cblas_gemm_*_pack 406
cblas_?gemm_compute 411
cblas_gemm_*_compute 414
cblas_gemm_bf16bf16f32_compute 420
cblas_gemm_bf16bf16f32 424
cblas_gemm_f16f16f32_compute 426
cblas_gemm_f16f16f32 430
cblas_?gemm_free 433
cblas_gemm_* 434
cblas_?gemv_batch_strided 438
cblas_?gemv_batch 439
cblas_?dgmm_batch_strided 441
cblas_?dgmm_batch 443
mkl_jit_create_?gemm 445
mkl_jit_get_?gemm_ptr 447
mkl_jit_destroy 450
LAPACK Routines 451
Choosing a LAPACK Routine 451
C Interface Conventions for LAPACK Routines. 451
Matrix Layout for LAPACK Routines 453
Matrix Storage Schemes for LAPACK Routines 455
Mathematical Notation for LAPACK Routines 463
Error Analysis 464
LAPACK Linear Equation Routines 464
LAPACK Linear Equation Computational Routines 465
LAPACK Linear Equation Driver Routines 675
LAPACK Least Squares and Eigenvalue Problem Routines 779
LAPACK Least Squares and Eigenvalue Problem Computational Routines 780
LAPACK Least Squares and Eigenvalue Problem Driver Routines 1001
LAPACK Auxiliary Routines 1171
?lacgv 1171
?lacrm 1172
?syconv 1173
?syr 1174
i?max1 1176
?sum1 1176
?gelq2 1177
?geqr2 1178
?geqrt2 1180
?geqrt3 1182
?getf2 1184
?lacn2 1185
?lacpy 1187
?lakf2 1188
?lange 1189
?lansy 1190
?lanhe 1191
?lantr 1192
LAPACKE_set_nancheck 1194
LAPACKE_get_nancheck 1194
?lapmr 1194
?lapmt 1196
?lapy2 1197
?lapy3 1197
?laran 1198
?larfb 1198
?larfg 1201
?larft 1203
?larfx 1205
?large 1206
?larnd 1207
?larnv 1208
?laror 1209
?larot 1211
?lartgp 1214
?lartgs 1215
?lascl 1216
?lasd0 1217
?lasd1 1218
?lasd2 1221
?lasd3 1223
?lasd4 1225
?lasd5 1226
?lasd6 1227
?lasd7 1230
?lasd8 1233
?lasd9 1235
?lasda 1236
?lasdq 1239
?lasdt 1241
?laset 1241
?lasrt 1243
?laswp 1244
?latm1 1245
?latm2 1247
?latm3 1249
?latm5 1253
?latm6 1256
?latme 1258
?latmr 1262
?lauum 1268
?syswapr 1269
?heswapr 1270
?sfrk 1272
?hfrk 1273
?tfsm 1275
?tfttp 1277
?tfttr 1278
?tpqrt2 1280
?tprfb 1282
?tpttf 1285
?tpttr 1286
?trttf 1288
?trttp 1289
?lacp2 1290
?larcm 1291
mkl_?tppack 1292
mkl_?tpunpack 1294
LAPACK Utility Functions and Routines 1296
ilaver 1297
ilaenv 1297
?lamch 1300
LAPACK Test Functions and Routines 1301
?lagge 1301
?laghe 1302
?lagsy 1303
?latms 1304
Additional LAPACK Routines (Included for Compatibility with Netlib LAPACK) 1308
ScaLAPACK Routines 1312
Overview of ScaLAPACK Routines 1312
ScaLAPACK Array Descriptors 1313
Naming Conventions for ScaLAPACK Routines 1315
ScaLAPACK Computational Routines. 1316
Systems of Linear Equations: ScaLAPACK Computational Routines1316Matrix Factorization: ScaLAPACK Computational Routines1317
Solving Systems of Linear Equations: ScaLAPACK Computational Routines 1331
Estimating the Condition Number: ScaLAPACK Computational Routines 1347
Refining the Solution and Estimating Its Error: ScaLAPACK Computational Routines 1355
Matrix Inversion: ScaLAPACK Computational Routines. 1365
Matrix Equilibration: ScaLAPACK Computational Routines 1369
Orthogonal Factorizations: ScaLAPACK Computational Routines. 1373
Symmetric Eigenvalue Problems: ScaLAPACK Computational Routines 1442
Nonsymmetric Eigenvalue Problems: ScaLAPACK Computational Routines 1475
Singular Value Decomposition: ScaLAPACK Driver Routines 1489
Generalized Symmetric-Definite Eigenvalue Problems: ScaLAPACK Computational Routines 1501
ScaLAPACK Driver Routines 1505
p?geevx 1505
p?gesv 1509
p?gesvx 1510
p?gbsv 1515
p?dbsv 1518
p?dtsv 1520
p?posv 1522
p?posvx 1524
p?pbsv 1529
p?ptsv 1531
p?gels 1533
p?syev 1536
p?syevd 1539
p?syevr 1541
p?syevx 1545
p?heev 1551
p?heevd 1554
p?heevr 1556
p?heevx 1561
p?gesvd. 1568
p?sygvx 1572
p?hegvx 1579
ScaLAPACK Auxiliary Routines 1586
p?lacgv. 1591
p?max1 1592
pilaver 1593
pmpcol 1594
pmpim2 1595
?combamax1 1596
p?sum1 1596
p?dbtrsv 1597
p?dttrsv 1600
p?gebal 1602
p?gebd2 1605
p?gehd2 1608
p?gelq2 1610
p?geql2 1612
p?geqr2 1614
p?gerq2 1616
p?getf2 1618
p?labrd 1620
p?lacon 1623
p?laconsb 1625
p?lacp2 1626
p?lacp3 1627
p?lacpy 1629
p?laevswp 1630
p?lahrd 1632
p?laiect 1634
p?lamve 1635
p?lange 1636
p?lanhs 1638
p?lansy, p?lanhe 1640
p?lantr 1642
p?lapiv 1643
p?lapv2 1646
p?laqge 1648
p?laqr0 1649
p?laqr1 1652
p?laqr2 1655
p?laqr3 1657
p?laqr5 1660
p?laqsy 1662
p?lared1d 1664
p?lared2d 1665
p?larf 1666
p?larfb 1669
p?larfc 1672
p?larfg 1674
p?larft 1676
p?larz 1678
p?larzb 1681
p?larzc 1685
p?larzt 1687
p?lascl 1690
p?lase2 1692
p?laset 1693
p?lasmsub 1695
p?last 1696
p?lassq 1698
p?laswp 1699
p?latra 1701
p?latrd 1702
p?latrs 1705
p?latrz 1707
p?lauu2 1709
p? lauum 1711
p?lawil 1712
p?org21/p?ung21 1713
p?org2r/p?ung2r 1715
p?orgl2/p?ungl2 1717
p?orgr2/p?ungr2 1719
p?orm21/p?unm21 1721
p?orm2r/p?unm2r 1724
p?orml2/p?unml2 1728
p?ormr2/p?unmr2 1731
p?pbtrsv 1734
p?pttrsv 1738
p?potf2 1740
p? rot 1742
p?rscl 1744
p?sygs2/p?hegs2 1745
p?sytd2/p?hetd2 1747
p? trord 1750
p? trsen 1754
p?trti2 1758
?lahqr2 1759
?lamsh 1761
?lapst 1762
?laqr6 1763
?lar1va 1766
?laref 1767
?larrb2 1770
?larrd2 1772
?larre2 1775
?larre2a 1778
?larrf2 1782
?larrv2 1783
?lasorte 1788
?lasrt2 1789
?stegr2 1790
?stegr2a 1793
?stegr2b 1796
?stein2 1799
?dbtf2 1801
?dbtrf 1802
?dttrf 1803
?dttrsv 1804
?pttrsv 1806
?steqr2 1807
?trmvt 1809
pilaenv 1811
pilaenvx 1812
pjlaenv 1814
Additional ScaLAPACK Routines 1815
ScaLAPACK Utility Functions and Routines 1817
p?labad 1818
p?lachkieee 1819
p?lamch 1819
p?lasnbt 1820
descinit 1821
numroc 1822
ScaLAPACK Redistribution/Copy Routines 1823
p?gemr2d 1823
p?trmr2d 1825
Sparse Solver Routines 1827
oneMKL PARDISO - Parallel Direct Sparse Solver Interface 1827
pardiso 1834
pardisoinit 1841
pardiso_64 1842
mkl_pardiso_pivot 1843
pardiso_getdiag 1843
pardiso_export 1845
pardiso_handle_store 1847
pardiso_handle_restore 1848
pardiso_handle_delete. 1848
pardiso_handle_store_64 1849
pardiso_handle_restore_64 1850
pardiso_handle_delete_64 1851
oneMKL PARDISO Parameters in Tabular Form 1851
pardiso iparm Parameter 1856
PARDISO_DATA_TYPE 1869
Parallel Direct Sparse Solver for Clusters Interface. 1870
cluster_sparse_solver 1872
cluster_sparse_solver_64 1876
cluster_sparse_solver_get_csr_size 1877
cluster_sparse_solver_set_csr_ptrs 1879
cluster_sparse_solver_set_ptr 1881
cluster_sparse_solver_export 1883
cluster_sparse_solver iparm Parameter 1884
Direct Sparse Solver (DSS) Interface Routines 1893
DSS Interface Description 1895
DSS Implementation Details 1896
DSS Routines 1897
Iterative Sparse Solvers based on Reverse Communication Interface (RCI ISS) 1908
CG Interface Description 1909
FGMRES Interface Description 1914
RCI ISS Routines 1920
RCI ISS Implementation Details 1933
Preconditioners based on Incomplete LU Factorization Technique 1934
ILUO and ILUT Preconditioners Interface Description 1934
dcsrilu0 1935
dcsrilut 1938
Sparse Matrix Checker Routines 1941
sparse_matrix_checker 1941
sparse_matrix_checker_init 1943
Extended Eigensolver Routines 1944
The FEAST Algorithm 1944
Extended Eigensolver Functionality 1946
Parallelism in Extended Eigensolver Routines 1947
Achieving Performance With Extended Eigensolver Routines 1947
Extended Eigensolver Interfaces for Eigenvalues within Interval 1948
Extended Eigensolver Naming Conventions 1948
feastinit 1949
Extended Eigensolver Input Parameters 1949
Extended Eigensolver Output Details 1951
Extended Eigensolver RCI Routines 1952
Extended Eigensolver Predefined Interfaces 1957
Extended Eigensolver Interfaces for Extremal Eigenvalues/Singular Values 1970
Extended Eigensolver Interfaces to find largest/smallest eigenvalues 1970
Extended Eigensolver Interfaces to find largest/smallest singular values 1975
mkl_sparse_ee_init 1977
Extended Eigensolver Input Parameters for Extremal Eigenvalue Problem 1977
Vector Mathematical Functions 1979
VM Data Types, Accuracy Modes, and Performance Tips 1980
VM Naming Conventions 1980
VM Function Interfaces 1981
Vector Indexing Methods 1983
VM Error Diagnostics 1984
VM Mathematical Functions 1985
Special Value Notations 1987
Arithmetic Functions 1988
Power and Root Functions 2005
Exponential and Logarithmic Functions 2023
Trigonometric Functions 2038
Hyperbolic Functions 2068
Special Functions 2081
Rounding Functions 2097
VM Pack/Unpack Functions 2108
v?Pack 2108
v?Unpack 2109
VM Service Functions 2110
vmISetMode 2111
vmIGetMode 2113
MKLFreeTIs 2113
vmISetErrStatus 2114
vmlGetErrStatus 2115
vmIClearErrStatus 2115
vmlSetErrorCallBack 2116
vmIGetErrorCallBack 2118
vmIClearErrorCallBack 2118
Miscellaneous VM Functions 2118
v?CopySign 2118
v ?NextAfter 2119
v?Fdim 2121
v?Fmax 2122
v ?Fmin 2123
v?MaxMag 2124
v?MinMag 2126
Statistical Functions 2127
Random Number Generators 2128
Random Number Generators Conventions 2128
Basic Generators. 2134
Error Reporting 2137
VS RNG Usage ModelIntel® oneMKL RNG Usage Model 2139
Service Routines 2140
Distribution Generators 2161
Advanced Service Routines 2206
Convolution and Correlation. 2211
Convolution and Correlation Naming Conventions 2212
Convolution and Correlation Data Types 2213
Convolution and Correlation Parameters 2213
Convolution and Correlation Task Status and Error Reporting 2215
Convolution and Correlation Task Constructors 2216
Convolution and Correlation Task Editors 2223
Task Execution Routines 2228
Convolution and Correlation Task Destructors 2235
Convolution and Correlation Task Copiers 2236
Convolution and Correlation Usage Examples 2237
Convolution and Correlation Mathematical Notation and Definitions 2241
Convolution and Correlation Data Allocation 2242
Summary Statistics 2244
Summary Statistics Naming Conventions 2245
Summary Statistics Data Types 2245
Summary Statistics Parameters 2246
Summary Statistics Task Status and Error Reporting 2246
Summary Statistics Task Constructors 2250
Summary Statistics Task Editors 2252
Summary Statistics Task Computation Routines 2279
Summary Statistics Task Destructor 2284
Summary Statistics Usage Examples 2284
Summary Statistics Mathematical Notation and Definitions 2286
Fourier Transform Functions 2290
FFT Functions 2291
FFT Interface 2292
Computing an FFT 2292
Configuration Settings 2293
FFT Descriptor Manipulation Functions 2308
FFT Descriptor Configuration Functions 2312
FFT Computation Functions 2314
Status Checking Functions 2321
Cluster FFT Functions 2323
Computing Cluster FFT 2324
Distributing Data Among Processes 2325
Cluster FFT Interface 2326
Cluster FFT Descriptor Manipulation Functions 2327
Cluster FFT Computation Functions. 2329
Cluster FFT Descriptor Configuration Functions. 2332
Error Codes 2336
PBLAS Routines 2336
PBLAS Routines Overview 2337
PBLAS Routine Naming Conventions 2338
PBLAS Level 1 Routines. 2339
p?amax 2340
p?asum 2341
p?axpy 2342
p?copy 2343
p?dot 2344
p?dotc 2346
p?dotu. 2347
p?nrm2 2348
p?scal 2349
p?swap 2350
PBLAS Level 2 Routines 2351
p?gemv 2352
p?agemv 2354
p?ger 2357
p?gerc 2358
p?geru 2360
p?hemv 2362
p?ahemv 2363
p?her 2365
p?her2 2367
p?symv 2369
p?asymv 2371
p?syr 2372
p?syr2 2374
p?trmv 2376
p?atrmv 2378
p?trsv 2380
PBLAS Level 3 Routines 2382
p?geadd 2383
p?tradd 2384
p?gemm 2386
p?hemm 2388
p?herk 2390
p?her2k 2392
p?symm 2394
p?syrk 2396
p?syr2k 2398
p?tran 2401
p?tranu 2402
p? tranc 2403
p? trmm 2404
p?trsm 2407
Partial Differential Equations Support 2409
Trigonometric Transform Routines 2409
Trigonometric Transforms Implemented 2410
Sequence of Invoking TT Routines 2411
Trigonometric Transform Interface Description 2412
T Routines 2413
Common Parameters of the Trigonometric Transforms 2420
Trigonometric Transform Implementation Details 2423
Fast Poisson Solver Routines 2424
Poisson Solver Implementation 2424
Sequence of Invoking Poisson Solver Routines 2430
Fast Poisson Solver Interface Description 2432
Routines for the Cartesian Solver 2433
Routines for the Spherical Solver 2442
Common Parameters for the Poisson Solver 2449
Poisson Solver Implementation Details 2458
Nonlinear Optimization Problem Solvers 2459
Nonlinear Solver Organization and Implementation 2459
Nonlinear Solver Routine Naming Conventions 2461
Nonlinear Least Squares Problem without Constraints 2461
?trnlsp_init 2462
?trnlsp_check 2464
?trnlsp_solve 2465
?trnlsp_get 2467
?trnlsp_delete 2468
Nonlinear Least Squares Problem with Linear (Bound) Constraints 2469
?trnlspbc_init 2469
?trnlspbc_check 2471
?trnlspbc_solve 2473
?trnlspbc_get 2474
?trnlspbc_delete 2476
Jacobian Matrix Calculation Routines 2476
?jacobi_init 2477
?jacobi_solve 2478
?jacobi_delete 2479
?jacobi 2479
?jacobix 2480
Support Functions 2482
Version Information 2485
mkl_get_version 2485
mkl_get_version_string 2487
Threading Control 2487
mkl_set_num_threads 2488
mkl_domain_set_num_threads 2489
mkl_set_num_threads_local 2490
mkl_set_dynamic. 2492
mkl_get_max_threads 2493
mkl_domain_get_max_threads 2494
mkl_get_dynamic 2495
mkl_set_num_stripes 2496
mkl_get_num_stripes 2496
Error Handling 2497
Error Handling for Linear Algebra Routines 2497
Handling Fatal Errors 2500
Character Equality Testing 2501
Isame 2501
Isamen 2502
Timing 2502
second/dsecnd 2502
mkl_get_cpu_clocks 2503
mkl_get_cpu_frequency 2504
mkl_get_max_cpu_frequency 2504
mkl_get_clocks_frequency 2505
Memory Management 2505
mkl_free_buffers 2505
mkl_thread_free_buffers 2506
mkl_disable_fast_mm 2507
mkl_mem_stat 2507
mkl_peak_mem_usage 2508
mkl_malloc 2509
mkl_calloc 2510
mkl_realloc 2511
mkl_free 2511
mkl_set_memory_limit 2512
Usage Examples for the Memory Functions 2513
Single Dynamic Library Control 2514
mkl_set_interface_layer 2514
mkl_set_threading_layer 2515
mkl_set_xerbla 2516
mkl_set_progress 2517
mkl_set_pardiso_pivot 2517
Conditional Numerical Reproducibility Control 2518
mkl_cbwr_set 2519
mkl_cbwr_get 2520
mkl_cbwr_get_auto_branch 2521
Named Constants for CNR Control 2521
Reproducibility Conditions 2523
Usage Examples for CNR Support Functions 2523
Miscellaneous 2524
mkl_progress 2524
mkl_enable_instructions 2526
mkl_set_env_mode 2528
mkl_verbose 2529
mkl_verbose_output_file 2530
mkl_set_mpi 2531
mkl_finalize 2532
BLACS Routines 2533
Matrix Shapes. 2533
Repeatability and Coherence 2535
BLACS Combine Operations 2537
?gamx2d 2538
?gamn2d 2540
?gsum2d 2541
BLACS Point To Point Communication 2542
?gesd2d 2544
?trsd2d 2545
?gerv2d 2545
?trrv2d 2546
BLACS Broadcast Routines. 2547
?gebs2d 2548
?trbs2d. 2548
?gebr2d 2549
?trbr2d 2550
BLACS Support Routines 2551
Initialization Routines 2551
Destruction Routines 2558
Informational Routines 2559
Miscellaneous Routines 2561
BLACS Routines Usage Examples 2562
Data Fitting Functions 2562
Data Fitting Function Naming Conventions 2562
Data Fitting Function Data Types 2563
Mathematical Conventions for Data Fitting Functions 2563
Data Fitting Usage Model 2566
Data Fitting Usage Examples 2566
Data Fitting Function Task Status and Error Reporting 2572
Data Fitting Task Creation and Initialization Routines 2574
df?NewTask1D 2574
Task Configuration Routines 2576
df?EditPPSpline1D 2577
df?EditPtr 2584
dfiEditVal 2585
df?EditIdxPtr 2587
df?QueryPtr 2589
dfiQueryVal 2589
df?QueryIdxPtr 2590
Data Fitting Computational Routines 2591
df?Construct1D 2592
df?Interpolate1D/df?InterpolateEx1D 2593
df?Integrate1D/df?IntegrateEx1D 2601
df?SearchCells1D/df?SearchCellsEx1D 2605
df?InterpCallBack 2607
df?IntegrCallBack 2608
df?SearchCellsCallBack 2610
Data Fitting Task Destructors 2611
dfDeleteTask 2611
Appendix A: Linear Solvers Basics 2612
Sparse Linear Systems 2612
Matrix Fundamentals 2613
Direct Method 2614
Sparse Matrix Storage Formats 2620
DSS Symmetric Matrix Storage 2621
DSS Nonsymmetric Matrix Storage 2622
DSS Structurally Symmetric Matrix Storage 2622
DSS Distributed Symmetric Matrix Storage 2623
Sparse BLAS CSR Matrix Storage Format 2624
Sparse BLAS CSC Matrix Storage Format 2626
Sparse BLAS Coordinate Matrix Storage Format 2627
Sparse BLAS Diagonal Matrix Storage Format 2628
Sparse BLAS Skyline Matrix Storage Format 2629
Sparse BLAS BSR Matrix Storage Format 2630
Appendix B: Routine and Function Arguments 2632
Vector Arguments in BLAS 2632
Vector Arguments in Vector Math 2633
Matrix Arguments 2634
Appendix C: FFTW Interface to Intel® oneAPI Math Kernel Library (oneMKL) 2639
Notational Conventions 2639
FFTW2 Interface to Intel® oneAPI Math Kernel Library (oneMKL) 2639
Wrappers Reference 2640
Limitations of the FFTW2 Interface to Intel® oneAPI Math Kernel Library (oneMKL) 2642
Installing FFTW2 Interface Wrappers 2643
MPI FFTW2 Wrappers 2644
FFTW3 Interface to Intel® oneAPI Math Kernel Library (oneMKL) 2647
Using FFTW3 Wrappers 2647
Building Your Own Wrapper Library 2649
Building an Application With FFTW3 Interface Wrappers 2649
Running FFTW3 Interface Wrapper Examples 2650
MPI FFTW3 Wrappers 2650
Appendix D: Code Examples 2651
BLAS Code Examples 2651
Fourier Transform Functions Code Examples 2657
FFT Code Examples 2657
Examples for Cluster FFT Functions 2663
Auxiliary Data Transformations 2665
Appendix F: oneMKL Functionality 2666
BLAS Functionality 2666
Transposition Functionality 2667
LAPACK Functionality 2667
DFT Functionality 2668
Sparse BLAS Functionality 2669
Sparse Solvers Functionality 2674
Random Number Generators Functionality 2674
Vector Math Functionality 2676
Data Fitting Functionality 2676
Summary Statistics Functionality 2677
Bibliography 2678
Glossary 2683
Notices and Disclaimers 2688

Developer Reference for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library - C

For more documentation on this and other products, visit the oneAPI Documentation Library. Intel® Math Kernel Library is now Intel® oneAPI Math Kernel Library (oneMKL).
Documentation for versions of Intel ${ }^{\circledR}$ Math Kernel Library older than 2023.0 is available for download only. See Downloadable Documentation.

What's New
Fortran interface: Developer Reference for Intel® oneAPI Math Kernel Library - Fortran

This publication describes the C interface.

Basic Linear Algebra
Subprograms (BLAS)
Sparse BLAS

Sparse QR

LAPACK

Statistical Functions

Direct and Iterative Sparse Solvers

Vector Mathematics
Functions
Vector Statistics Functions
The Vector Statistics (VS) functions generate vectors of pseudorandom numbers with different types of statistical distributions and perform convolution and correlation computations.

The Fourier Transform Functions offer several options for computing Fast Fourier Transforms (FFTs).

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Getting Help and Support

Intel provides a support web site that contains a rich repository of self help information, including getting started tips, known product issues, product errata, license information, user forums, and more. Visit the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) support website athttp://www.intel.com/software/products/ support/.

What's New

This Developer Reference documents Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) release for the C interface.
Intel ${ }^{\circledR}$ Math Kernel Library is now Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL). Documentation for older versions of Intel ${ }^{\circledR}$ Math Kernel Library is available for download only. For a list of available documentation downloads by product version, see these pages:

- Download Documentation for Intel ${ }^{\circledR}$ Parallel Studio XE
- Download Documentation for Intel® System Studio

The manual has been updated to reflect enhancements to the product, besides improvements and error corrections.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

Notational Conventions

This manual uses the following terms to refer to operating systems:

Windows* OS	This term refers to information that is valid on all supported Windows* operating systems.
Linux* OS	This term refers to information that is valid on all supported Linux* operating systems.
macOS*	This term refers to information that is valid on Intel®-based systems running the macOS* operating system.

This manual uses the following notational conventions:

- Routine name shorthand (for example, ?ungqr instead of cungqr/zungqr).
- Font conventions used for distinction between the text and the code.

Routine Name Shorthand

For shorthand, names that contain a question mark "?" represent groups of routines with similar functionality. Each group typically consists of routines used with four basic data types: single-precision real, double-precision real, single-precision complex, and double-precision complex. The question mark is used to indicate any or all possible varieties of a function; for example:
?swap \quad Refers to all four data types of the vector-vector ?swap routine:
sswap, dswap, cswap, and zswap.

Font Conventions

The following font conventions are used:
lowercase courier
Code examples:
$a[k+i][j]=\operatorname{matrix}[i][j]$;
data types; for example, const float*
lowercase courier mixed with
UpperCase courier
lowercase courier italic
*

Function names; for example, vmlSetMode

Variables in arguments and parameters description. For example, incx.
Used as a multiplication symbol in code examples and equations and where required by the programming language syntax.

Overview

NOTE

This publication, the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library Developer Reference, was previously known as the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library Reference Manual.

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) is optimized for performance on Intel processors. oneMKL also runs on non-Intel x86-compatible processors.

NOTE

oneMKL provides limited input validation to minimize the performance overheads. It is your responsibility when using oneMKL to ensure that input data has the required format and does not contain invalid characters. These can cause unexpected behavior of the library. Examples of the inputs that may result in unexpected behavior:

- Not-a-number (NaN) and other special floating point values
- Large inputs may lead to accumulator overflow

As the oneMKL API accepts raw pointers, it is your application's responsibility to validate the buffer sizes before passing them to the library. The library requires subroutine and function parameters to be valid before being passed. While some oneMKL routines do limited checking of parameter errors, your application should check for NULL pointers, for example.

The Inte ${ }^{\circledR}$ oneAPI Math Kernel Library includes Fortran routines and functions optimized for Intel ${ }^{\circledR}$ processorbased computers running operating systems that support multiprocessing. In addition to the Fortran interface, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) includes a C-language interface for the Discrete Fourier transform functions, as well as for the Vector Mathematics and Vector Statistics functions. For hardware and software requirements to use Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL), seeInte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Release Notes.

NOTE

Functions calls at runtime for Intel® oneAPI Math Kernel Library (oneMKL) libraries on the Microsoft Windows* operating system can utilize the function,LoadLibrary (), and related loading functions in static, dynamic, and single dynamic library linking models. These functions attempt to access the loader lock which when used within or at the same time as another Dllmainfunction call, can lead to a deadlock. If possible, avoid making your calls to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) in aDllMain function or at the same time as other calls to DllMain even on separate threads. Refer to Microsoft documentation about DIIMain and Dynamic-Link Library Best Practices for more details.

BLAS Routines

The BLAS routines and functions are divided into the following groups according to the operations they perform:

- BLAS Level 1 Routines perform operations of both addition and reduction on vectors of data. Typical operations include scaling and dot products.
- BLAS Level 2 Routines perform matrix-vector operations, such as matrix-vector multiplication, rank-1 and rank-2 matrix updates, and solution of triangular systems.
- BLAS Level 3 Routines perform matrix-matrix operations, such as matrix-matrix multiplication, rank-k update, and solution of triangular systems.
Starting from release 8.0, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) also supports the Fortran 95 interface to the BLAS routines.

Starting from release 10.1, a number of BLAS-like Extensions are added to enable the user to perform certain data manipulation, including matrix in-place and out-of-place transposition operations combined with simple matrix arithmetic operations.

Sparse BLAS Routines

The Sparse BLAS Level 1 Routines and Functions and Sparse BLAS Level 2 and Level 3 Routinesroutines and functions operate on sparse vectors and matrices. These routines perform vector operations similar to the BLAS Level 1, 2, and 3 routines. The Sparse BLAS routines take advantage of vector and matrix sparsity: they allow you to store only non-zero elements of vectors and matrices. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) also supports Fortran 95 interface to Sparse BLAS routines.

Sparse QR

Sparse QRin Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) is a set of routines used to solve sparse matrices with real coefficients and general structure. All Sparse QR routines can be divided into three steps: reordering, factorization, and solving. Currently, only CSR format is supported for the input matrix, and Sparse QR operates on the matrix handle used in all SpBLAS IE routines. (For details on how to create a matrix handle, refer tomkl-sparse-create-csr.)

LAPACK Routines

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library fully supports the LAPACK 3.7 set of computational, driver, auxiliary and utility routines.

The original versions of LAPACK from which that part of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) was derived can be obtained fromhttp://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
The LAPACK routines can be divided into the following groups according to the operations they perform:

- Routines for solving systems of linear equations, factoring and inverting matrices, and estimating condition numbers (see LAPACK Routines: Linear Equations).
- Routines for solving least squares problems, eigenvalue and singular value problems, and Sylvester's equations (see LAPACK Routines: Least Squares and Eigenvalue Problems).

Starting from release 8.0, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) also supports the Fortran 95 interface to LAPACK computational and driver routines. This interface provides an opportunity for simplified calls of LAPACK routines with fewer required arguments.

Sparse Solver Routines

Direct sparse solver routines in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) (seeSparse Solver Routines) solve symmetric and symmetrically-structured sparse matrices with real or complex coefficients. For symmetric matrices, these Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) subroutines can solve both positivedefinite and indefinite systems. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) includes a solver based on the PARDISO* sparse solver, referred to as Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO, as well as an alternative set of user callable direct sparse solver routines.
If you use the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO sparse solver, please cite:
O.Schenk and K.Gartner. Solving unsymmetric sparse systems of linear equations with PARDISO. J. of Future Generation Computer Systems, 20(3):475-487, 2004.
Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides also an iterative sparse solver (seeSparse Solver Routines) that uses Sparse BLAS level 2 and 3 routines and works with different sparse data formats.

Extended Eigensolver Routines

TheExtended Eigensolver RCI Routines is a set of high-performance numerical routines for solving standard ($A x=\lambda x$) and generalized ($A x=\lambda B x$) eigenvalue problems, where A and B are symmetric or Hermitian. It yields all the eigenvalues and eigenvectors within a given search interval. It is based on the Feast algorithm, an innovative fast and stable numerical algorithm presented in [Polizzi09], which deviates fundamentally from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms [BaiOO]) or other Davidson-Jacobi techniques [Sleijpen96]. The Feast algorithm is inspired by the density-matrix representation and contour integration technique in quantum mechanics.

It is free from orthogonalization procedures. Its main computational tasks consist of solving very few inner independent linear systems with multiple right-hand sides and one reduced eigenvalue problem orders of magnitude smaller than the original one. The Feast algorithm combines simplicity and efficiency and offers many important capabilities for achieving high performance, robustness, accuracy, and scalability on parallel architectures. This algorithm is expected to significantly augment numerical performance in large-scale modern applications.

Some of the characteristics of the Feast algorithm [Polizzi09] are:

- Converges quickly in 2-3 iterations with very high accuracy
- Naturally captures all eigenvalue multiplicities
- No explicit orthogonalization procedure
- Can reuse the basis of pre-computed subspace as suitable initial guess for performing outer-refinement iterations
This capability can also be used for solving a series of eigenvalue problems that are close one another.
- The number of internal iterations is independent of the size of the system and the number of eigenpairs in the search interval
- The inner linear systems can be solved either iteratively (even with modest relative residual error) or directly

VM Functions

The Vector Mathematics functions (see Vector Mathematical Functions) include a set of highly optimized implementations of certain computationally expensive core mathematical functions (power, trigonometric, exponential, hyperbolic, etc.) that operate on vectors of real and complex numbers.

Application programs that might significantly improve performance with VM include nonlinear programming software, integrals computation, and many others. VM provides interfaces both for Fortran and C languages.

Statistical Functions

Vector Statistics (VS) contains three sets of functions (see Statistical Functions) providing:

- Pseudorandom, quasi-random, and non-deterministic random number generator subroutines implementing basic continuous and discrete distributions. To provide best performance, the VS subroutines use calls to highly optimized Basic Random Number Generators (BRNGs) and a set of vector mathematical functions.
- A wide variety of convolution and correlation operations.
- Initial statistical analysis of raw single and double precision multi-dimensional datasets.

Fourier Transform Functions

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) multidimensional Fast Fourier Transform (FFT) functions with mixed radix support (see Fourier Transform Functions) provide uniformity of discrete Fourier transform computation and combine functionality with ease of use. Both Fortran and C interface specifications are given. There is also a cluster version of FFT functions, which runs on distributed-memory architectures and is provided only for Intel ${ }^{\ominus} 64$ architectures.

The FFT functions provide fast computation via the FFT algorithms for arbitrary lengths. See the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide for the specific radices supported.

Partial Differential Equations Support

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides tools for solving Partial Differential Equations (PDE) (seePartial Differential Equations Support). These tools are Trigonometric Transform interface routines and Poisson Solver.
The Trigonometric Transform routines may be helpful to users who implement their own solvers similar to the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Poisson Solver. The users can improve performance of their solvers by using fast sine, cosine, and staggered cosine transforms implemented in the Trigonometric Transform interface.

The Poisson Solver is designed for fast solving of simple Helmholtz, Poisson, and Laplace problems. The Trigonometric Transform interface, which underlies the solver, is based on the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface (refer toFourier Transform Functions), optimized for Intel ${ }^{\circledR}$ processors.

Support Functions

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) support functions (seeSupport Functions) are used to support the operation of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) software and provide basic information on the library and library operation, such as the current library version, timing, setting and measuring of CPU frequency, error handling, and memory allocation.

Starting from release 10.0, the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) support functions provide additional threading control.
Starting from release 10.1 , Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) selectively supports aProgress Routine feature to track progress of a lengthy computation and/or interrupt the computation using a callback function mechanism. The user application can define a function called mkl_progressthat is regularly called from the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) routine supporting the progress routine feature. SeeProgress Routine in Support Functions for reference. Refer to a specific LAPACK or DSS/PARDISO function description to see whether the function supports this feature or not.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Performance Enhancements

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library has been optimized by exploiting both processor and system features and capabilities. Special care has been given to those routines that most profit from cache-management techniques. These especially include matrix-matrix operation routines such asdgemm ().
In addition, code optimization techniques have been applied to minimize dependencies of scheduling integer and floating-point units on the results within the processor.
The major optimization techniques used throughout the library include:

- Loop unrolling to minimize loop management costs
- Blocking of data to improve data reuse opportunities
- Copying to reduce chances of data eviction from cache
- Data prefetching to help hide memory latency
- Multiple simultaneous operations (for example, dot products in dgemm) to eliminate stalls due to arithmetic unit pipelines
- Use of hardware features such as the SIMD arithmetic units, where appropriate

These are techniques from which the arithmetic code benefits the most.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Parallelism

Intel oneAPI Math Kernel Library (oneMKL) offers performance gains through parallelism provided by the symmetric multiprocessing performance (SMP) feature. You can obtain improvements from SMP in the following ways:

- One way is based on user-managed threads in the program and further distribution of the operations over the threads based on data decomposition, domain decomposition, control decomposition, or some other parallelizing technique. Each thread can use any of the Intel oneAPI Math Kernel Library (oneMKL) functions (except for the deprecated?lacon LAPACK routine) because the library has been designed to be thread-safe.
- Another method is to use the FFT and BLAS level 3 routines. They have been parallelized and require no alterations of your application to gain the performance enhancements of multiprocessing. Performance using multiple processors on the level 3 BLAS shows excellent scaling. Since the threads are called and managed within the library, the application does not need to be recompiled thread-safe.
- Yet another method is to use tuned LAPACK routines. Currently these include the single- and double precision flavors of routines for $Q R$ factorization of general matrices, triangular factorization of general and symmetric positive-definite matrices, solving systems of equations with such matrices, as well as solving symmetric eigenvalue problems.

For instructions on setting the number of available processors for the BLAS level 3 and LAPACK routines, see Intel oneAPI Math Kernel Library (oneMKL) Developer Guide.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

C Datatypes Specific to Intel MKL

The mkl_types.hfile defines datatypes specific to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).

C/C++ Type	Fortran Type	LP32 Equivalent (Size in Bytes)	LP64 Equivalent (Size in Bytes)	ILP64 Equivalent (Size in Bytes)
MKL_INT	INTEGER	C/C++:	C/C++: int	C/C++: long long
$(M K L$ integer)	(default	int	Fortran: INTEGER*4	(or define MKL_ILP64
	INTEGER)	Fortran:	(4 bytes)	Fortran: INTEGER* 8

C/C++ Type	Fortran Type	LP32 Equivalent (Size in Bytes)	LP64 Equivalent (Size in Bytes)	ILP64 Equivalent (Size in Bytes)
		(4 bytes)		(8 bytes)
MKL_UINT (MKL unsigned integer)	N/A	$C / C++:$ unsigned int (4 bytes)	$C / C++:$ unsigned int (4 bytes)	C/C++: unsigned long long (8 bytes)
MKL_LONG (MKL long integer)	N/A	$C / C++:$ long (4 bytes)	C/C++: long (Windows: 4 bytes) (Linux, Mac: 8 bytes)	C/C++: long (8 bytes)
MKL_Complex 8 (Like C99 complex float)	COMPLEX* 8	(8 bytes)	(8 bytes)	(8 bytes)
MKL_Complex16 (Like C99 complex double)	COMPLEX*16	(16 bytes)	(16 bytes)	(16 bytes)

You can redefine datatypes specific to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL). One reason to do this is if you have your own types which are binary-compatible with Intel® oneAPI Math Kernel Library (oneMKL) datatypes, with the same representation or memory layout. To redefine a datatype, use one of these methods:

- Insert the \#define statement redefining the datatype before the mkl.h header file \#include statement. For example,

```
#define MKL_INT size_t
```

\#include "mk̄.h"

- Use the compiler -D option to redefine the datatype. For example,
...-DMKL_INT=size_t...

NOTE

As the user, if you redefine Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) datatypes you are responsible for making sure that your definition is compatible with that of Intel ${ }^{8}$ oneAPI Math Kernel Library (oneMKL). If not, it might cause unpredictable results or crash the application.

OpenMP* Offload

This section describes how to perform OpenMP offload computations using Intel ${ }^{\circledR}$ oneAPI Math Kernel Library.

OpenMP* Offload for Intel ${ }^{\oplus}$ oneAPI Math Kernel Library

You can use Intel® oneAPI Math Kernel Library (oneMKL) and OpenMP* offload to run standard oneMKL computations on Intel GPUs. You can find the list of oneMKL features that support OpenMP offload in the mkl_omp_offload.h header file, which includes:

- All Level 1, 2, and 3 BLAS functions through the CBLAS and BLAS interfaces, supporting both synchronous and asynchronous execution
- BLAS-like extensions: cblas_?axpby, cblas_?axpy_batch\{_strided\},
 cblas_hgemm, cblas_gemm_bf16bf16f32, cblas_gemm_s8u8s $32, \mathrm{cblas}$? c gemm_batch $\{$ strided\}, cblas_?trsm_batch \{_strided\}, and cblas_?gemmt functionality through the CBLAS and BLAS interfaces as well as mkl_?omatcopy_batch_strided, mkl_?imatcopy_batch_strided, and mkl ? omatadd_batch_strided, supporting both synchronous and asynchronous execution
- LAPACK, including LAPACK-like extensions
- All computations on the Intel GPU (supports both synchronous and asynchronous execution):
- ?getrf_batch
- ?getrf_batch_strided
- ?getrfnp_batch
- ?getrfnp_batch_strided
- ?getri
- ?getri_oop_batch
- ?getri_oop_batch_strided
- ?getrs
- ?getrs_batch_strided
- ?getrsn̄p_batch_strided
- ?gels_batch_strided
- ?potrf
- ?potri
- ?potrs
- ?trtri
- ?trtrs
- Hybrid; some computations on the Intel GPU (supports synchronous execution):
- ?geqrf
- ? getrf (all computations on the CPU for $\mathrm{n}<=256$)
- mkl_? getrfnp (all computations on the CPU for $\mathrm{n}<=512$)
- ?ormqr, ?unmqr
- Interface support only; all computations on the CPU (supports synchronous execution):
- ?gebrd
- ?gesvd
- ?orgqr, ?ungqr
- ?steqr
- ?syev, ?heev
- ?syevd, ?heevd
- ?syevx, ?heevx
- ?sygvd, ?hegvd
- ?sygvx, ?hegvx
- ?sytrd, ?hetrd
- Vector Statistics
- Random number generators

NOTE

All distributions are supported. See https://www.intel.com/content/www/us/en/docs/onemkl/ developer-reference-c/current/distribution-generators.html

Basic random number generators:

- VSL_BRNG_MCG31
- VSL_BRNG_MCG59
- VSL_BRNG_PHILOX4X32X10
- VSL_BRNG_MRG32K3A
- VSL_BRNG_MT19937
- VSL_BRNG_MT2203
- VSL_BRNG_SOBOL

Important Check the oneMKL DPC++ developer reference for the BRNG data type used in the distributions in case the offload device doesn't have sycl: :aspect: :fp64 support.

- Summary statistics

Supports the vsl?SSCompute routine for the following estimates:

- VSL_SS_MEAN
- VSL_SS_SUM
- VSL_SS_2R_MOM
- VSL_SS_2R_SUM
- VSL_SS_3R_MOM
- VSL_SS_3R_SUM
- VSL_SS_4R_MOM
- VSL_SS_4R_SUM
- VSL_SS_2C_MOM
- VSL_SS_2C_SUM
- VSL_SS_3C_MOM
- VSL_SS_3C_SUM
- VSL_SS_4C_MOM
- VSL_SS_4C_SUM
- VSL_SS_KURTOSIS
- VSL_SS_SKEWNESS
- VSL_SS_MIN
- VSL_SS_MAX
- VSL_SS_VARIATION

Supported methods:

- VSL_SS_METHOD_FAST
- VSL_SS_METHOD_FAST_USER_MEAN
- FFTs through both DFTI and FFTW3 interfaces in one, two, and three dimensions.
- For COMPLEX_STORAGE, only the DFTI_COMPLEX_COMPLEX format is currently supported on CPU and GPU devices.
- Both synchronous and asynchronous computations are supported.
- For R2C/C2R transforms on the GPU, only DFTI_CONJUGATE_EVEN_STORAGE=DFTI_COMPLEX_COMPLEX is supported (implying DFTI_PACKED_FORMAT=DFTI_CCE_FORMATT).
- NOTEINCONSISTENT_CONFIGURATION errors at compute time indicate an invalid descriptor or invalid data pointer. Double $\overline{\bar{c}}$ heck your data mapping if you encounter such errors.
- Arbitrary strides and batch distances are not supported for multi-dimensional R2C transforms offloaded to the GPU. Considering the last dimension of the data, every element must be separated from its two nearest peers (along another dimension and/or in another batch) by a constant distance. For example, to compute a batched, two-dimensional R2C FFT of size [N2, N1] with input strides [0, S2, 1] (row-major layout with unit elementary stride and no offset), INPUT_DISTANCE must be equal to $\mathrm{N} 2 *$ S2 so that every element is separated from its nearest last-dimension counterpart(s) by a distance S2 (in this example), even across batches.
- Due to the variadic implementation of DftiComputeForward and DftiComputeBackward, out-of-place compute calls using the DFTI API with the OpenMP 5.1 dispatch construct differ from common dispatch construct usage by requiring a "need_device_ptr" clause. The oneMKL examples provided on installation demonstrate this usage.
- Transforms on GPU devices may overwrite FFT-irrelevant, padding entries in the output data.
- Sparse BLAS
- mkl_sparse_\{s, d\}_create_csr
- mkl_sparse_\{s, d\}_export_csr
- mkl_sparse_destroy
- mkl_sparse_order
- Currently supports only CSR matrix format.
- mkl_sparse_set_mv_hint
- Currently supports only SPARSE_OPERATION_NON_TRANSPOSE with CSR matrix format for general MV (SPARSE_MATRIX_TYPE_GENERAL) and triangular MV (SPARSE_MATRIX_TYPE_TRIANGULAR with fill modes SPARSE_FILL_MODE_LOWER/SPARSE_FILL_MODE_UPPER).
- mkl_sparse_set_sv_hint
- mkl_sparse_optimize
- Supports optimization for mkl_sparse_\{s, d\}_mv functionality based on supported hints added through mkl_sparse_set_mv_hint offload.
- Supports optimization for mkl_sparse_\{s, d\}_trsv functionality based on supported hints added through mkl_sparse_set_sv_hint offload.
- Both synchronous and asynchronous executions are supported.

NOTE Note that although you can run the mkl_sparse_optimize offload function asynchronously, you are responsible for the data dependency between the optimization routine and the execution routines.

- mkl_sparse_\{s, d\}_mv:
- Currently supports only SPARSE_OPERATION_NON_TRANSPOSE with the following combinations of matrix types:
- SPARSE_MATRIX_TYPE_GENERAL
- SPARSE_MATRIX_TYPE_TRIANGULAR with fill modes SPARSE_FILL_MODE_LOWER/ SPARSE_FILL_MODE_UPPER and diagonal types SPARSE_DIAG_UNIT/SPARSE_DIAG_NON_UNIT
- SPARSE_MATRIX_TYPE_SYMMETRIC fill modes SPARSE_FILL_MODE_LOWER/ SPARSE_FILL_MODE_UPPER and diagonal type SPARSE_DIAG_NON_UNIT (currently, SPARSE_DIAG_UNIT is not supported)
- Both synchronous and asynchronous computations are supported.
- mkl_sparse_\{s, d\}_mm:
- Currently supported only with SPARSE_MATRIX_TYPE_GENERAL and SPARSE_OPERATION_NON_TRANSPOSE.
- Both SPARSE_LAYOUT_ROW_MAJOR and SPARSE_LAYOUT_COLUMN_MAJOR are supported.
- Both synchronous and asyn̄chronous computations are supported.
- mkl_sparse_\{s, d\}_trsv
- Currently only supported with SPARSE_MATRIX_TYPE_TRIANGULAR, SPARSE_OPERATION_NON_TRANSPOSE, and alpha ==1.0
- Both synchronous and asynchronous computations are supported
- mkl_sparse_sp2m
- Currently supported only with SPARSE_MATRIX_TYPE_GENERAL.
- Both synchronous and asynchronous computations are supported with Level Zero backend, and currently only synchronous computations are supported with OpenCL backend.
- Note that you can run the mkl_sparse_sp2m offload function asynchronously, but you are responsible for the data dependency between the first stage and the second stage of mkl_sparse_sp2m.
- mkl_sparse_sp2m internally creates arrays for the sparse C matrix output. As they may be expected to be used subsequently on both host and device, they are created internally using USM shared memory. The arrays are managed by the library and will be cleaned up when the corresponding C matrix handle is destroyed; however, direct access to the arrays is provided by the mkl_sparse_\{s,d\}_export_csr() OpenMP offload function. Users are recommended to make a copy to their own arrays if they want to have such data beyond the scope of the C matrix handle.

The choice of USM shared memory for C arrays is made for functional support of the OpenMP Offload paradigm and has a performance impact over choosing USM device memory, which would be more performant but not functional in all subsequent use cases.

- The created C matrix in the provided handle is not guaranteed to be sorted, so the mkl_sparse_order() OpenMP offload API is provided for user convenience if that property is needed.
- The input matrix handle A is not required to be sorted on input, but the input matrix handle B is required to be sorted on input.
- In Sparse BLAS, the usage model consists of the creation stage, the inspection stage, the execution stage, and the destruction stage. For Sparse BLAS with C OpenMP Offload, all stages can be asynchronously executed, provided any data dependencies are already respected.

The OpenMP offload feature from Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) enables you to run oneMKL computations on Intel GPUs through the standard oneMKL APIs within an omp target variant dispatch section. For example, the standard CBLAS API for single precision real data type matrix multiply is:

```
void cblas_sgemm(const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE TransA,
    const C
    const MKL_INT K, const float alpha, const float *A, cons\overline{t}}\textrm{MKL_INT lda,
    const float *B, const MKL_INT ldb, const float beta, float *C,
    const MKL_INT ldc);
```

If the oneMKL function (for example, cblas_sgemm) is called outside of an omp target variant dispatch section or if offload is disabled, then the CPU implementation is dispatched. If the same function is called within an omp target variant dispatch section and offload is possible then the GPU implementation is dispatched. By default the execution of the oneMKL function within a dispatch variant construct is synchronous. OpenMP offload computations may be done asynchronously by adding the nowait clause to the target variant dispatch construct. This ensures that the host thread encountering the task region generated by this target construct will not be blocked by the oneMKL call. Rather, the host thread is returned to the caller for further use. To finish the asynchronous (nowait) computations and ensure memory and execution model consistency (for example, that the results of a computation will be ready in memory to map), the last such nowait computation is followed by the stand-alone construct \#pragma omp taskwait.
From the OpenMP Application Programming Interface version 5.0 specification: "The taskwait region binds to the current task region [i.e., in this case, the last nowait computation]. The current task region is suspended at an implicit task scheduling point associated with the construct. The current task region remains suspended until all child tasks that it generated before the taskwait region complete execution [currently, depend clause is not supported]."

Example

Examples for using the OpenMP offload for oneMKL are located in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) installation directory, under:

```
examples/c_offload
```

The following code snippet shows how to use OpenMP offload for single-call oneMKL features such as most dense linear algebra functionality.

```
#include <omp.h>
#include "mkl.h"
#include "mkl_omp_offload.h" // MKL header file for OpenMP offload
int dnum = 0;
int main() {
    float *a, *b, *c, alpha = 1.0, beta = 1.0;
    MKL_INT m = 150, n = 200, k = 128, lda = m, ldb = k, ldc = m;
    MKL_INT sizea = lda * k, sizeb = ldb * n, sizec = ldc * n;
    // allocate matrices and check pointers
    a = (float *)mkl_malloc(sizea * sizeof(float), 64);
    // initialize matrices
#pragma omp target map(c[0:sizec])
```

```
    {
    for (i = 0; i < sizec; i++) {
        c[i] = 42;
        }
    }
    // run gemm on host, use standard MKL interface
    cblas_sgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, m, n, k, alpha, a,
lda, b, l\overline{db}, beta, c, ldc);
    // map the a, b, and c matrices on the device memory
#pragma omp target data map(to:a[0:sizea],b[0:sizeb]) map(tofrom:c[0:sizec])
device(dnum)
    {
    // run gemm on gpu, use standard MKL interface within a variant dispatch
construct
            // if offload is not possible, default to cpu
            // use the use_device_ptr clause to specify that a, b and c are device
memory
#pragma omp target variant dispatch device(dnum) use_device_ptr(a, b, c)
    {
            cblas_sgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, m, n, k,
alpha, a, lda, b, ldb, beta, c, ldc);
            }
    }
    // Free matrices
    mkl_free(a);
}
```

Some of the oneMKL functionality requires to call a set of functions to perform the corresponding computation. This is the case, for example, for the Discrete Fourier Transform which for a typical computation involves calling the functions.

```
DFTI_EXTERN MKL_LONG DftiCreateDescriptor(DFTI_DESCRIPTOR_HANDLE*,
                    enum DFTI_CONFIG_VALUE,
                    enum DFTI_CONFIG_VALUE,
    MKL_LONG, ...);
DFTI_EXTERN MKL_LONG DftiCommitDescriptor(DFTI_DESCRIPTOR_HANDLE);
DFTI_EXTERN MKL_LONG DftiComputeForward(DFTI_DESCRIPTOR_HANDLE, void*, ....);
DFTI_EXTERN MKL_LONG DftiComputeBackward(DFTI_ DESCRIPTOR_HANDLE, void*, ...);
DFTI_EXTERN MKL_LONG DftiFreeDescriptor(DFTI_DESCRIPTOR_HANDLE*);
```

In that case, only a subset of the calls must be wrapped in an omp target variant dispatch construct as shown in the following code snippet for DFTI.

```
#include <omp.h>
#include "mkl.h"
#include "mkl_omp_offload.h"
int main(void)
{
    const int devNum = 0;
    const MKL_LONG N = 64; // Size of 1D transform
    MKL_LONG status = 0;
    MKL_LONG statusGPU = 0;
    DFT\overline{I_}DESCRIPTOR_HANDLE descHandle = NULL;
    DFTI_DESCRIPTOR_HANDLE descHandleGPU = NULL;
    MKL_Complex8 *x = NULL;
    MKL_Complex8 *xGPU = NULL;
    printf("Create DFTI descriptor\n");
```

```
    status = DftiCreateDescriptor(&descHandle, DFTI_SINGLE, DFTI_COMPLEX, 1, N);
    printf("Create GPU DFTI descriptor\n");
    statusGPU = DftiCreateDescriptor(&descHandleGPU, DFTI_SINGLE, DFTI_COMPLEX,
1, N) ;
    printf("Commit DFTI descriptor\n");
    status = DftiCommitDescriptor(descHandle);
    printf("Commit GPU DFTI descriptor\n");
#pragma omp target variant dispatch device(devNum)
    {
        statusGPU = DftiCommitDescriptor(descHandleGPU);
    }
    printf("Allocate memory for input array\n");
    x = (MKL_Complex8 *)mkl_malloc(N*sizeof(MKL_Complex8), 64);
    printf("A
    xGPU = (MKL_Complex8 *)mkl_malloc(N*sizeof(MKL_Complex8), 64);
    printf("Initialize input for forward FFT\n");
    // init x and xGPU ...
    printf("Compute forward FFT in-place\n");
    status = DftiComputeForward(descHandle, x);
    printf("Compute GPU forward FFT in-place\n");
#pragma omp target data map(tofrom:xGPU[0:N]) device(devNum)
    {
#pragma omp target variant dispatch use_device_ptr(xGPU) device(devNum)
            {
                statusGPU = DftiComputeForward(descHandleGPU, xGPU);
            }
    }
    // use results now in x and xGPU ...
cleanup:
    DftiFreeDescriptor(&descHandle);
    DftiFreeDescriptor(&descHandleGPU);
    mkl_free(x);
    mkl_free(xGPU);
}
```

For asynchronous execution of multi-call oneMKL computation, the nowait clause needs to be used only on the call to the function performing the actual computation (for example,
DftiCompute $\{$ Forward, Backward\}). For instance, the following snippet shows how the DFTI example above could be changed to have two, back-to-back, asynchronous (nowait) computations dispatched, with a taskwait at the end of the second to ensure the completion of both computations before their results are accessed:

```
printf("Compute Intel GPU forward FFT 1 in-place\n");
#pragma omp target data map(tofrom:x1GPU[0:N1], x2GPU[0:N2]) device(devNum)
    {
#pragma omp target variant dispatch use_device_ptr(x1GPU) device(devNum) nowait
            {
            status1GPU = DftiComputeForward(descHandle1GPU, x1GPU);
        }
    printf("Compute Intel GPU forward FFT 2 in-place\n");
#pragma omp target variant dispatch use_device_ptr(x2GPU) device(devNum) nowait
        {
            status2GPU = DftiComputeForward(descHandle2GPU, x2GPU);
        }
#pragma omp taskwait
    }
    if (status1GPU != DFTI_NO_ERROR) goto failed;
    if (status2GPU != DFTI_NO_ERROR) goto failed;
```

For sparse BLAS computations, the workflow 'create a CSR matrix handle' \rightarrow 'compute' \rightarrow 'destroy the CSR matrix handle' must be done so that the offloaded data arrays are alive through the full workflow. For instance, if you are using a target data map, then the workflow must be contained in a single target data region. On the other hand, if the arrays were allocated directly using omp_target_alloc () or the Intel Extensions omp_target_alloc_host/omp_target_alloc_device/omp_target_alloc_shared, then the workflow must be contained at least in a subset of the scope where those arrays are usable; that is, before the corresponding calls to omp_target_free. The following snippet shows how the Sparse BLAS OpenMP Offload example for mkl_sparse_s_mv() could be run using a target data map region, where N is the number of rows, M is the number of columns, and $N N Z$ is the number of non-zero entries of the sparse matrix CSFA_gpu, x is the input vector, and the output is stored in the z array:

```
#pragma omp target data map(to:ia[0:N+1],ja[0:NNZ],a[0:NNZ],x[0:M]) map(tofrom:z[0:N])
device(devNum)
{
#pragma omp target variant dispatch device(devNum) use_device_ptr(ia, ja, a)
    {
        status_gpu1 = mkl_sparse_s_create_csr(&csrA_gpu, SPARSE_INDEX_BASE_ZERO, N, M, ia,
ia + 1, ja, a);
    }
#pragma omp target variant dispatch device(devNum) use_device_ptr(x, z)
    {
        status_gpu2 = mkl_sparse_s_mv(SPARSE_OPERATION_NON_TRANSPOSE, alpha, csrA_gpu,
descrA, x, beta, z);
    }
#pragma omp target variant dispatch device(devNum)
    {
        status_gpu3 = mkl_sparse_destroy(csrA_gpu);
    }
    }
```

For asynchronous execution of multi-call oneMKL Sparse BLAS computation, the nowait clause can be added to the call of the function performing the actual computation (for example, calls to the mkl_sparse_\{s,d\}_mv() function).
As an example, the following snippet shows how the Sparse BLAS example above could be changed to have two asynchronous (nowait) computations using the same matrix handle, csrA_gpu, but unrelated vector data so there is no read/write dependency between them. Add a taskwait at the end of the second execution to ensure the completion of both computations before the mkl_sparse_destroy() function is called:

```
#pragma omp target data map(to:ia[0:N+1],ja[0:NNZ],a[0:NNZ],x[0:M],w[0:M])
map(tofrom:y[0:N],z[0:N]) device(devNum)
    {
#pragma omp target variant dispatch device(devNum) use_device_ptr(ia, ja, a)
    {
        status_gpu1 = mkl_sparse_s_create_csr(&CSrA_gpu, SPARSE_INDEX_BASE_ZERO, N, M, ia,
ia + 1, ja, a);
    }
#pragma omp target variant dispatch device(devNum) use_device_ptr(x, z) nowait
    {
        status_gpu2 = mkl_sparse_s_mv(SPARSE_OPERATION_NON_TRANSPOSE, alpha, csrA_gpu,
descrA, x, beta, z);
    }
#pragma omp target variant dispatch device(devNum) use_device_ptr(w, y) nowait
    {
        status_gpu3 = mkl_sparse_s_mv(SPARSE_OPERATION_NON_TRANSPOSE, alpha, csrA_gpu,
descrA, w, beta, y);
```

```
    }
#pragma omp taskwait
#pragma omp target variant dispatch device(devNum)
    {
        status_gpu4 = mkl_sparse_destroy(csrA_gpu);
    }
    }
```


BLAS and Sparse BLAS Routines

Intel ${ }^{\circledast}$ oneAPI Math Kernel Library (oneMKL)implements the BLAS and Sparse BLAS routines, and BLAS-like extensions. The routine descriptions are arranged in several sections:

- BLAS Level 1 Routines (vector-vector operations)
- BLAS Level 2 Routines (matrix-vector operations)
- BLAS Level 3 Routines (matrix-matrix operations)
- Sparse BLAS Level 1 Routines (vector-vector operations).
- Sparse BLAS Level 2 and Level 3 Routines (matrix-vector and matrix-matrix operations)
- BLAS-like Extensions

The question mark in the group name corresponds to different character codes indicating the data type (s, d, c , and z or their combination); see Routine Naming Conventions.
When BLAS or Sparse BLAS routines encounter an error, they call the error reporting routine xerbla.

BLAS Routines

Naming Conventions for BLAS Routines

BLAS routine names have the following structure:

```
<character> <name> <mod> [_64]
```

The <character> field indicates the data type:

s	real, single precision
c	complex, single precision
d	real, double precision
z	complex, double precision

Some routines and functions can have combined character codes, such as sc or dz .
For example, the function scasum uses a complex input array and returns a real value.
The <name> field, in BLAS level 1, indicates the operation type. For example, the BLAS level 1 routines ? dot, ?rot, ? swap compute a vector dot product, vector rotation, and vector swap, respectively.
In BLAS level 2 and 3, <name> reflects the matrix argument type:

ge	general matrix
gb	general band matrix
sy	symmetric matrix
sp	symmetric matrix (packed storage)

sb	symmetric band matrix
he	Hermitian matrix
hp	Hermitian matrix (packed storage)
hb	Hermitian band matrix
tr	triangular matrix
tp	triangular matrix (packed storage)
tb	triangular band matrix.

The <mod> field, if present, provides additional details of the operation. BLAS level 1 names can have the following characters in the <mod> field:

c	conjugated vector
u	unconjugated vector
g	Givens rotation construction
m	modified Givens rotation
$m g$	modified Givens rotation construction

BLAS level 2 names can have the following characters in the $<\bmod \rangle$ field:

mv	matrix-vector product
sv	solving a system of linear equations with a single unknown vector
r	rank-1 update of a matrix
r2	rank-2 update of a matrix.

BLAS level 3 names can have the following characters in the $<\bmod >$ field:

mm	matrix-matrix product
sm	solving a system of linear equations with multiple unknown vectors
rk	rank- k update of a matrix
r 2 k	rank- $2 k$ update of a matrix.

On 64-bit platforms, routines with the _64 suffix support large data arrays in the LP64 interface library and enable you to mix integer types in one application. For example, when an application is linked with the LP64 interface library, SGEMM indexes arrays with the 32-bit integer type, while SGEMM_64 indexes arrays with the 64-bit integer type. For more interface library details, see "Using the ILP64 Interface vs. LP64 Interface" in the developer guide.
The examples below illustrate how to interpret BLAS routine names:

ddot	<d> <dot>: real and double precision, vector-vector dot product
cdotc	<c> <dot> <c>: complex and single precision, vector-vector dot product, conjugated
cdotu	<c> <dot> <u>: complex and single precision, vector-vector dot product, unconjugated
scasum	<sc> <asum>: real and single-precision output, complex and single-precision input, sum of magnitudes of vector elements
sgemv	<s> <ge> <mv>: real and single precision, general matrix, matrix-vector product

```
ztrmm <z> <tr> <mm> _64: complex and double precision, triangular matrix, matrix-
``` matrix product, 64-bit integer type

Sparse BLAS level 1 naming conventions are similar to those of BLAS level 1. For more information, see Naming Conventions.

\section*{C Interface Conventions for BLAS Routines}

CBLAS, the C interface to the Basic Linear Algebra Subprograms (BLAS), provides a C language interface to BLAS routines for Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL). While you can call the Fortran implementation of BLAS, for coding in C the CBLAS interface has some advantages such as allowing you to specify columnmajor or row-major ordering with thelayout parameter.

For more information about calling Fortran routines from C in general, and specifically about calling BLAS and CBLAS routines, see " Mixed-language Programming with the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library" in theIntel \({ }^{\circledR}\) oneAPI Math Kernel Library Developer Guide.

\section*{NOTE}

This reference contains syntax in C for both the CBLAS interface and the Fortran BLAS routines.

In CBLAS, the Fortran routine names are prefixed with cblas_ (for example, dasum becomes cblas_dasum). Names of all CBLAS functions are in lowercase letters. Like BLAS routines, Intel® oneAPI Math Kernel Library provides CBLAS routines with the _64 suffix (for example, cblas_dasum_64) to support large data arrays in the LP64 interface library on 64-bit platforms. For more interface library details, see "Using the ILP64 Interface vs. LP64 Interface" in the developer guide.
Complex functions ?dotc and ?dotu become CBLAS subroutines (void functions); they return the complex result via a void pointer, added as the last parameter. CBLAS names of these functions are suffixed with _sub. For example, the BLAS function cdotc corresponds to cblas_cdotc_sub.

\section*{WARNING}

Users of the CBLAS interface should be aware that the CBLAS are just a C interface to the BLAS, which is based on the FORTRAN standard and subject to the FORTRAN standard restrictions. In particular, the output parameters should not be referenced through more than one argument.

\section*{NOTE}

This interface is not implemented in the Sparse BLAS Level 2 and Level 3 routines.

The arguments of CBLAS functions comply with the following rules:
- Input arguments are declared with the const modifier.
- Non-complex scalar input arguments are passed by value.
- Complex scalar input arguments are passed as void pointers.
- Array arguments are passed by address.
- BLAS character arguments are replaced by the appropriate enumerated type.
- Level 2 and Level 3 routines acquire an additional parameter of type CBLAS_LAYOUT as their first argument. This parameter specifies whether two-dimensional arrays are row-major (CblasRowMajor) or column-major (CblasColMajor).

\section*{Enumerated Types}

The CBLAS interface uses the following enumerated types:
```

enum CBLAS_LAYOUT {
CblasRowMajor=101, /* row-major arrays */
CblasColMajor=102}; /* column-major arrays */

```
```

enum CBLAS_TRANSPOSE {
CblasNoTrans=111, /* trans='N' */
CblasTrans=112, /* trans='T' */
CblasConjTrans=113}; /* trans='C' */
enum CBLAS UPLO {
CblasUpper=121, /* uplo ='U' */
CblasLower=122}; /* uplo ='L' */
enum CBLAS_DIAG {
CblasNonUnit=131, /* diag ='N' */
CblasUnit=132}; /* diag ='U' */
enum CBLAS_SIDE {
CblasLeft=141, /* side ='L' */
CblasRight=142}; /* side ='R' */

```

\section*{Matrix Storage Schemes for BLAS Routines}

Matrix arguments of BLAS and CBLAS routines can use the following storage schemes:
- Full storage: a matrix \(A\) is stored in a two-dimensional array \(a\), with the matrix element \(A_{i j}\) stored in the array element \(a[i+j \star l d a]\) for column-major layout and \(a[j+i \star l d a]\) for row-major layout, where Ida is the leading dimension for the array.
- Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more compactly. For column-major layout, the upper or lower triangle of the matrix is packed by columns in a one dimensional array. For row-major layout, the upper or lower triangle of the matrix is packed by rows in a one dimensional array.
- Band storage: a band matrix is stored compactly in a two-dimensional array. For column-major layout, columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in a specific row of the array. For row-major layout, rows of the matrix are stored in the corresponding rows of the array, and diagonals of the matrix are stored in a specific column of the array.
For more information on matrix storage schemes, see Matrix Arguments in the Appendix "Routine and Function Arguments".

\section*{Row-Major and Column-Major Layout}

The BLAS routines follow the Fortran convention of storing two-dimensional arrays using column-major layout. When calling BLAS routines from C, remember that they require arrays to be in column-major format, not the row-major format that is the convention for \(C\). Unless otherwise specified, the psuedo-code examples for the BLAS routines illustrate matrices stored using column-major layout.
The CBLAS interface allows you to specify either column-major or row-major layout for BLAS Level 2 and Level 3 routines, by setting the layout parameter to CblasColMajor or CblasRowMajor.

\section*{BLAS Level 1 Routines and Functions}

BLAS Level 1 includes routines and functions, which perform vector-vector operations. The following table lists the BLAS Level 1 routine and function groups and the data types associated with them.

BLAS Level 1 Routine and Function Groups and Their Data Types
\begin{tabular}{lll}
\begin{tabular}{l}
Routine or \\
Function Group
\end{tabular} & Data Types & Description \\
\hline cblas_?asum & s, d, sc, dz & Sum of vector magnitudes (functions) \\
cblas_?axpy & s, d, c, z & Scalar-vector product (routines) \\
cblas_?copy & s, d, c, z & Copy vector (routines) \\
cblas_?dot & s, d & Dot product (functions)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Routine or Function Group & Data Types & Description \\
\hline cblas_?sdot & sd, d & Dot product with double precision (functions) \\
\hline cblas_?dotc & c, z & Dot product conjugated (functions) \\
\hline cblas_?dotu & C, z & Dot product unconjugated (functions) \\
\hline cblas_?nrm2 & \(s, d, s c, d z\) & Vector 2-norm (Euclidean norm) (functions) \\
\hline cblas_?rot & s, d, c, z, cs, zd & Plane rotation of points (routines) \\
\hline cblas_?rotg & s, d, c, z & Generate Givens rotation of points (routines) \\
\hline cblas_?rotm & \(s, d\) & Modified Givens plane rotation of points (routines) \\
\hline cblas_?rotmg & s, d & Generate modified Givens plane rotation of points (routines) \\
\hline cblas_?scal & s, d, c, z, cs, zd & Vector-scalar product (routines) \\
\hline cblas_?swap & \(s, d, c, z\) & Vector-vector swap (routines) \\
\hline cblas_i?amax & s, d, c, z & Index of the maximum absolute value element of a vector (functions) \\
\hline cblas_i?amin & s, d, c, z & Index of the minimum absolute value element of a vector (functions) \\
\hline cblas_?cabs1 & s, d & Auxiliary functions, compute the absolute value of a complex number of single or double precision \\
\hline
\end{tabular}
cblas_?asum
Computes the sum of magnitudes of the vector elements.

\section*{Syntax}
```

float cblas_sasum (const MKL_INT n, const float *x, const MKL_INT incx);
float cblas_scasum (const MKL_INT n, const void *x, const MKL_INT incx);
double cblas_dasum (const MKL_INT n, const double *x, const MKL_INT incx);
double cblas_dzasum (const MKL_INT n, const void *x, const MKL_INT incx);

```

Include Files
- mkl.h

\section*{Description}

The ?asum routine computes the sum of the magnitudes of elements of a real vector, or the sum of magnitudes of the real and imaginary parts of elements of a complex vector:
\[
\begin{aligned}
& \qquad \text { res }=\left|\operatorname{Re} x_{1}\right|+\left|\operatorname{Im} x_{1}\right|+\left|\operatorname{Re} x_{2}\right|+\operatorname{Im} x_{2}\left|+\ldots+\left|\operatorname{Re} x_{n}\right|+\left|\operatorname{Im} x_{n}\right|,\right. \\
& \text { result }=\sum_{i=1}^{n}\left(\left|\operatorname{Re}\left(X_{i}\right)\right|+\left|\operatorname{Im}\left(X_{i}\right)\right|\right. \\
& \text { where } x \text { is a vector with } n \text { elements. }
\end{aligned}
\]

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & Specifies the number of elements in vector \(x\). \\
\(x\) & Array, size at least \((1+(n-1) * a b s(\) incx \())\). \\
incx & Specifies the increment for indexing vector \(x\).
\end{tabular}

\section*{Output Parameters}
res
Contains the sum of magnitudes of real and imaginary parts of all elements of the vector.

\section*{Return Values}

Contains the sum of magnitudes of real and imaginary parts of all elements of the vector.
cblas_?axpy
Computes a vector-scalar product and adds the result
to a vector.
Syntax
```

void cblas_saxpy (const MKL_INT n, const float a, const float *x, const MKL_INT incx,
float *y, const MKL_INT incy);
void cblas_daxpy (const MKL_INT n, const double a, const double *x, const MKL_INT incx,
double *y, const MKL_INT incy);
void cblas_caxpy (const MKL_INT n, const void *a, const void *x, const MKL_INT incx,
void *y, const MKL_INT incy);
void cblas_zaxpy (const MKL_INT n, const void *a, const void *x, const MKL_INT incx,
void *y, const MKL_INT incy);

```

Include Files
- mkl.h

Description

The ?axpy routines perform a vector-vector operation defined as
```

y:= a* }x+

```
where:
\(a\) is a scalar
\(x\) and \(y\) are vectors each with a number of elements that equals \(n\).
Input Parameters
\begin{tabular}{ll}
\(n\) & Specifies the number of elements in vectors \(x\) and \(y\). \\
\(a\) & Specifies the scalar \(a\). \\
\(x\) & Array, size at least \((1+(n-1) * a b s(\) incx \())\). \\
incx & Specifies the increment for the elements of \(x\).
\end{tabular}
```

y Array, size at least (1 + (n-1)*abs(incy)).
incy Specifies the increment for the elements of y.

```

\section*{Output Parameters}
```

y
Contains the updated vector y.

```
cblas_?copy
Copies a vector to another vector.
Syntax
```

void cblas_scopy (const MKL_INT n, const float *x, const MKL_INT incx, float *y, const
MKL_INT incy);
void cblas_dcopy (const MKL_INT n, const double *x, const MKL_INT incx, double *y,
const MKL_INT incy);
void cblas_ccopy (const MKL_INT n, const void *x, const MKL_INT incx, void *y, const
MKL_INT incy);
void cblas_zcopy (const MKL_INT n, const void *x, const MKL_INT incx, void *y, const
MKL_INT incy);

```

Include Files
- mkl.h

\section*{Description}

The ?copy routines perform a vector-vector operation defined as
\[
y=x
\]
where \(x\) and \(y\) are vectors.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & Specifies the number of elements in vectors \(x\) and \(y\). \\
\(x\) & Array, size at least \((1+(n-1) * \operatorname{abs}(\) incx \())\). \\
incx & Specifies the increment for the elements of \(x\). \\
\(y\) & Array, size at least \((1+(n-1) * \operatorname{abs}(\) incy \())\). \\
incy & Specifies the increment for the elements of \(y\).
\end{tabular}

\section*{Output Parameters}
y
Contains a copy of the vector \(x\) if \(n\) is positive. Otherwise, parameters are unaltered.
cblas_?copy_batch
Computes a group of vector copies.
```

Syntax
void cblas_scopy_batch (const MKL_INT *n_array, const float **x_array, const MKL_INT
*incx_array, float **y_array, const MKL_INT *incy_array, const MKL_INT group_count,
const MKL_INT *group_size_array);
void cblas_dcopy_batch (const MKL_INT *n_array, const double **x_array, const MKL_INT
*incx_array, double **y_array, const MKL_INT *incy_array, const MKL_INT group_count,
const MKL_INT *group_size_array);
void cblas_ccopy_batch (const MKL_INT *n_array, const void **x_array, const MKL_INT
*incx_array, void **y_array, const MKL_INT *incy_array, const MKL_INT group_count,
const MKL_INT *group_size_array);
void cblas_zcopy_batch (const MKL_INT *n_array, const void **x_array, const MKL_INT
*incx_array, void **y_array, const MKL_INT *incy_array, const MKL_INT group_count,
const MKL_INT *group_size_array);

```

\section*{Description}

The cblas_?copy_batch routines perform a series of vector copies. They are similar to their cblas_?copy routine counterparts, but the cblas_?copy_batch routines perform vector operations with a group of vectors. Each groups contains vectors with the same parameters (size and increment), while those parameters may vary between groups.
The operation is defined as follows:
```

idx = 0
for i = 0 ... group_count - 1
n, incx, incy and group_size at position i in n_array, alpha_array, incx_array, incy_array
and group_size_array
for j = 0 ... group_size - 1
x and y are vectors of size n at position idx in x_array and y_array
y := x
idx := idx + 1
end for
end for

```

The number of entries in x_array and y_array is total_batch_count, which is the sum of all the group_size entries.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline n_array & Array of size group_count. For the group i, n_i = n_array[i] is the number of elements in the vectors \(x\) and \(y\). \\
\hline x_array & Array of size total_batch_count of pointers used to store \(x\) vectors. The array allocated for the \(x\) vectors of the group i must be of size at least (1 + (n_i - 1)*abs (incx_i)). \\
\hline incx_array & Array of size group_count. For the group i, incx_i = incx_array[i] is the increment (or stride) between two consecutive elements of the vector x . \\
\hline y_array & Array of size total_batch_count of pointers used to store the output vectors \(y\). The array allocated for the \(y\) vectors of the group i must be of size at least (1 + (n_i - 1)*abs(incy_i)). \\
\hline incy_array & Array of size group_count. For the group i, incy_i = incy_array[i] is the increment (or stride) between two consecutive elements of the vector \(y\). \\
\hline
\end{tabular}
```

group_count Number of groups. Must be at least 0.
group_size_array

```

Number of groups. Must be at least 0 .
Array of size group_count. The element group_size_array[i] is the number of vectors in the group i. Each element in
group_size_array must be at least 0 .

\section*{Output Parameters}
y_array
Array of pointers holding the total_batch_count copied vectors y.

\section*{cblas_?copy_batch_strided}

Computes a group of vector copies.

\section*{Syntax}
```

void cblas_scopy_batch_strided (const MKL_INT n, const float *x, const MKL_INT incx,
const MKL_INT stridex, float *y, const MKL_INT incy, const MKL_INT stridey, const
MKL_INT batch_size);
void cblas_dcopy_batch_strided (const MKL_INT n, const double *x, const MKL_INT incx,
const MKL_INT stridex, double *y, const MKL_INT incy, const MKL_INT stridey, const
MKL_INT batch_size);
void cblas_ccopy_batch_strided (const MKL_INT n, const void *x, const MKL_INT incx,
const MKL_INT stridex, void *y, const MKL_INT incy, const MKL_INT stridey, const
MKL_INT batch_size);
void cblas_zcopy_batch_strided (const MKL_INT n, const void *x, const MKL_INT incx,
const MKL_INT stridex, void *y, const MKL_INT incy, const MKL_INT stridey, const
MKL_INT batch_size);

```

\section*{Description}

The cblas_?copy_batch_strided routines perform a series of vector copies. They are similar to their cblas_?copy routine counterparts, but the cblas_?copy_batch_strided routines perform vector operations with a group of vectors.

All vectors \(x\) and \(y\) have the same parameters (size, increments) and are stored at constant distance stridex (respectively, stridey) from each other. The operation is defined as follows:
```

for i = 0 ... batch_size - 1
X and Y are vectors at offset i * stridex and i * stridey in x and y
Y = X
end for

```

\section*{Input Parameters}
n
x
incx
stridex
y
incy
Number of elements in vectors x and y . Must be at least 0.
Array containing the input vectors. Must be of size at least (\(1+\) (\(n-1\)) *abs(incx)) + (batch_size - 1) * stridex.
Increment between two consecutive elements of a single vector in x .
Stride between two consecutive vectors in x . Must be at least (1 + (\(\mathrm{n}-1\)) *abs(incx)).
Array holding the output vectors. Must be of size at least (1 + (\(n-1\)) *abs(incy)) + (batch_size - 1) * stridey.
Increment between two consecutive elements of a single vector in \(y\).
```

stridey Stride between two consecutive y vectors. Must be at least (1 +
(n-1)*abs(incy)).
batch_size
Number of copy computations to perform; also the number of x and y vectors. Must be at least 0 .

```

\section*{Output Parameters}
y
Array holding the batch_size copied vectors y.
cblas_?dot
Computes a vector-vector dot product.

\section*{Syntax}
```

float cblas_sdot (const MKL_INT n, const float *x, const MKL_INT incx, const float *y,
const MKL_INT incy);
double cblas_ddot (const MKL_INT n, const double *x, const MKL_INT incx, const double
*y, const MKL_INT incy);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ? dot routines perform a vector-vector reduction operation defined as

where \(x_{i}\) and \(y_{i}\) are elements of vectors \(x\) and \(y\).

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & Specifies the number of elements in vectors \(x\) and \(y\). \\
\(x\) & Array, size at least \((1+(n-1) * a b s(\) incx \()\). \\
incx & Specifies the increment for the elements of \(x\). \\
\(y\) & Array, size at least \((1+(n-1) * a b s(\) incy \()\). \\
incy & Specifies the increment for the elements of \(y\).
\end{tabular}

\section*{Return Values}

The result of the dot product of \(x\) and \(y\), if \(n\) is positive. Otherwise, returns 0 .
cblas_?sdot
Computes a vector-vector dot product with double precision.

\section*{Syntax}
```

float cblas_sdsdot (const MKL_INT n, const float sb, const float *sx, const MKL_INT
incx, const float *sy, const MKL_INT incy);
double cblas_dsdot (const MKL_INT n, const float *sx, const MKL_INT incx, const float
*sy, const MKL_INT incy);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?sdot routines compute the inner product of two vectors with double precision. Both routines use double precision accumulation of the intermediate results, but the sdsdot routine outputs the final result in single precision, whereas the dsdot routine outputs the double precision result. The function sdsdot also adds scalar value \(s b\) to the inner product.

\section*{Input Parameters}
n
sb

SX, Sy
incx
incy

\section*{Output Parameters}
res Contains the result of the dot product of \(s x\) and \(s y\) (with \(s b\) added for sdsdot), if \(n\) is positive. Otherwise, res contains \(s b\) for sdsdot and 0 for dsdot.

\section*{Return Values}

The result of the dot product of \(s x\) and \(s y\) (with \(s b\) added for \(s d s d o t\)), if \(n\) is positive. Otherwise, returns \(s b\) for sdsdot and 0 for dsdot.
cblas_?dotc
Computes a dot product of a conjugated vector with another vector.

\section*{Syntax}
```

void cblas_cdotc_sub (const MKL_INT n, const void *x, const MKL_INT incx, const void
*y, const MKL_INT incy, void *dotc);
void cblas_zdotc_sub (const MKL_INT n, const void *x, const MKL_INT incx, const void
*y, const MKL_INT incy, void *dotc);

```

Include Files
- mkl.h

\section*{Description}

The ? dotc routines perform a vector-vector operation defined as:

where \(x_{i}\) and \(y_{i}\) are elements of vectors \(x\) and \(y\).

\section*{Input Parameters}
```

n Specifies the number of elements in vectors x and y.
x Array, size at least (1 + (n -1)*abs(incx)).
incx
Specifies the increment for the elements of x.
Array, size at least (1 + (n -1)*abs(incy)).
Specifies the increment for the elements of y.

```

\section*{Output Parameters}
dotc
Contains the result of the dot product of the conjugated \(x\) and unconjugated \(y\), if \(n\) is positive. Otherwise, it contains 0 .
cblas_?dotu
Computes a complex vector-vector dot product.
Syntax
```

void cblas_cdotu_sub (const MKL_INT n, const void *x, const MKL_INT incx, const void
*y, const MKL_INT incy, void *dotu);
void cblas_zdotu_sub (const MKL_INT n, const void *x, const MKL_INT incx, const void
*y, const MKL_INT incy, void *dotu);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ? dotu routines perform a vector-vector reduction operation defined as

\section*{res \(=\sum_{i=1}^{n}\) \\ \\ \\ }
where \(x_{i}\) and \(y_{i}\) are elements of complex vectors \(x\) and \(y\).

NOTE The _sub suffix on cblas_cdotu_sub and cblas_zdotu_sub is to emphasize that these are subroutines rather than functions (the return value is stored into the dote pointer).

\section*{Input Parameters}
```

n
x
incx
y
incy
Specifies the number of elements in vectors $x$ and $y$.
Array, size at least $(1+(n-1) * a b s(i n c x))$.
Specifies the increment for the elements of $x$.
Array, size at least $(1+(n-1) * a b s(i n c y))$.
Specifies the increment for the elements of $y$.

```

\section*{Output Parameters}
dot

Contains the result of the dot product of \(x\) and \(y\), if \(n\) is positive. Otherwise, it contains 0 .

\section*{cblas_?nrm2 \\ Computes the Euclidean norm of a vector.}

\section*{Syntax}
```

float cblas_snrm2 (const MKL_INT n, const float *x, const MKL_INT incx);
double cblas_dnrm2 (const MKL_INT n, const double *x, const MKL_INT incx);
float cblas_scnrm2 (const MKL_INT n, const void *x, const MKL_INT incx);
double cblas_dznrm2 (const MKL_INT n, const void *x, const MKL_INT incx);

```

Include Files
- mkl.h

\section*{Description}

The ?nrm2 routines perform a vector reduction operation defined as
```

res = ||x||,

```
where:
\(x\) is a vector,
res is a value containing the Euclidean norm of the elements of \(x\).

\section*{Input Parameters}
```

n Specifies the number of elements in vector }x\mathrm{ .
x Array, size at least (1 + (n-1)*abs (incx)).
incx Specifies the increment for the elements of x.

```

\section*{Return Values}

The Euclidean norm of the vector \(x\).

\section*{cblas_?rot}

Performs rotation of points in the plane.

\section*{Syntax}
```

void cblas_srot (const MKL_INT n, float *x, const MKL_INT incx, float *y, const MKL_INT incy,
const float c, const float s);
void cblas_drot (const MKL_INT n, double *x, const MKL_INT incx, double *y, const MKL_INT incy,
const double c, const double s);
void cblas_crot (const MKL_INT n, void *x, const MKL_INT incx, void *y, const MKL_INT incy,
const float c, const void* s);
void cblas_zrot (const MKL_INT n, void *x, const MKL_INT incx, void *y, const MKL_INT incy,
const double c, const void``
void cblas_csrot (const MKL_INT n, void *x, const MKL_INT incx, void *y, const MKL_INT incy,
const float c, const float s);
void cblas_zdrot (const MKL_INT n, void *x, const MKL_INT incx, void *y, const MKL_INT incy,
const double c, const double s);

```

\section*{Description}

Given two complex vectors \(x\) and \(y\), each vector element of these vectors is replaced as follows:
```

xi = c*xi + s*yi
yi = c*yi - s*xi

```

If \(s\) is a complex type, each vector element is replaced as follows:
```

xi = c*xi + s*yi
yi = c*yi - conj(s)*xi

```

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & Specifies the number of elements in vectors \(x\) and \(y\). \\
\(x\) & Array, size at least \((1+(n-1) * a b s(\) incx \())\). \\
incx & Specifies the increment for the elements of \(x\). \\
\(y\) & Array, size at least \((1+(n-1) * a b s(\) incy \())\). \\
incy & Specifies the increment for the elements of \(y\). \\
\(s\) & A scalar. \\
A scalar.
\end{tabular}

\section*{Output Parameters}
\(x\)
\(y\)
Each element is replaced by \(c^{\star} x+s^{\star} y\).
Each element is replaced by \(c^{\star} y-s^{*} x\), or by \(c^{*} y-c o n j(s){ }^{*} x\) if \(s\) is a complex type.

\section*{cblas_?rotg}

Computes the parameters for a Givens rotation.

\section*{Syntax}
```

void cblas_srotg (float *a, float *b, float *c, float *s);
void cblas_drotg (double *a, double *b, double *c, double *s);
void cblas_crotg (void *a, const void *b, float *c, void *s);
void cblas_zrotg (void *a, const void *b, double *c, void *s);

```

\section*{Include Files}
- mkl.h

\section*{Description}

Given the Cartesian coordinates (\(a, b\)) of a point, these routines return the parameters \(c, s, r\), and \(z\) associated with the Givens rotation. The parameters \(c\) and \(s\) define a unitary matrix such that:

The parameter \(z\) is defined such that if \(|a|>|b|, z\) is \(s\); otherwise if \(c\) is not \(0 z\) is \(1 / c\); otherwise \(z\) is 1 . Input Parameters
a
b

\section*{Output Parameters}
a
b

Provides the \(x\)-coordinate of the point \(p\).
Provides the \(y\)-coordinate of the point p .

Contains the parameter \(r\) associated with the Givens rotation.
Contains the parameter \(z\) associated with the Givens rotation.
```

c Contains the parameter c associated with the Givens rotation.
S
Contains the parameter s associated with the Givens rotation.

```
cblas_?rotm
Performs modified Givens rotation of points in the
plane.

\section*{Syntax}
```

void cblas_srotm (const MKL_INT n, float *x, const MKL_INT incx, float *y, const
MKL_INT incy, const float *param);
void cblas_drotm (const MKL_INT n, double *x, const MKL_INT incx, double *y, const
MKL_INT incy, const double *param);

```

Include Files
- mkl.h

\section*{Description}

Given two vectors \(x\) and \(y\), each vector element of these vectors is replaced as follows:
\(\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]=H\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]\)
for \(i=1\) to \(n\), where \(H\) is a modified Givens transformation matrix whose values are stored in the param[1] through param[4] array. See discussion on the param argument.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & Specifies the number of elem \\
\(x\) & Array, size at least \((1+(n\) \\
incx & Specifies the increment for t \\
incy & Array, size at least \((1+(n\) \\
param & Specifies the increment for t \\
& Array, size 5. \\
& The elements of the param a \\
& param[0] contains a switch, \\
& \(h_{22,}\) respectively, the compon \\
& Depending on the values of \(f\) \\
& flag \(=-1.0: H=\left[\begin{array}{ll}h_{11} & h_{12} \\
h_{21} & h_{22}\end{array}\right]\) \\
& flag \(=0.0: H=\left[\begin{array}{ll}1.0 & h_{12} \\
h_{21} & 1.0\end{array}\right]\)
\end{tabular}
\[
\begin{aligned}
& \text { flag }=1.0: H=\left[\begin{array}{cc}
h_{11} & 1.0 \\
-1.0 & h_{22}
\end{array}\right] \\
& \text { flag }=-2.0: H=\left[\begin{array}{ll}
1.0 & 0.0 \\
0.0 & 1.0
\end{array}\right]
\end{aligned}
\]

In the last three cases, the matrix entries of \(1.0,-1.0\), and 0.0 are assumed based on the value of flag and are not required to be set in the param vector.

\section*{Output Parameters}

X
Each element \(x[i]\) is replaced by \(h_{11}{ }^{*} x[i]+h_{12}{ }^{*} y[i]\).
Each elementy[i] is replaced by \(h_{21} * x[i]+h_{22}{ }^{*} y[i]\).

\section*{cblas_?rotmg \\ Computes the parameters for a modified Givens rotation.}

\section*{Syntax}
```

void cblas_srotmg (float *dl, float *d2, float *xl, const float yl, float *param);
void cblas_drotmg (double *d1, double *d2, double *x1, const double yl, double *param);

```

\section*{Include Files}
- mkl.h

\section*{Description}

Given Cartesian coordinates (\(x 1, y 1\)) of an input vector, these routines compute the components of a modified Givens transformation matrix \(H\) that zeros the \(y\)-component of the resulting vector:
\(\left[\begin{array}{c}x 1 \\ 0\end{array}\right]=H\left[\begin{array}{l}x 1 \sqrt{d 1} \\ y 1 \sqrt{d 2}\end{array}\right]\)
Input Parameters
\begin{tabular}{ll}
\(d 1\) & Provides the scaling factor for the \(x\)-coordinate of the input vector. \\
\(d 2\) & Provides the scaling factor for the \(y\)-coordinate of the input vector. \\
\(y 1\) & Provides the \(x\)-coordinate of the input vector. \\
\(y 1\) & Provides the \(y\)-coordinate of the input vector.
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
\(d 1\) & Provides the first diagonal element of the updated matrix. \\
\(d 2\) & Provides the second diagonal element of the updated matrix. \\
\(x 1\) & Provides the \(x\)-coordinate of the rotated vector before scaling. \\
param & Array, size 5.
\end{tabular}

The elements of the param array are:
param[0] contains a switch, flag. the other array elements param[1-4] contain the components of the array \(H: h_{11}, h_{21}, h_{12}\), and \(h_{22}\), respectively.

Depending on the values of flag, the components of \(H\) are set as follows:
\[
\begin{aligned}
& \text { flag }=-1.0: H=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right] \\
& \text { flag }=0.0: H=\left[\begin{array}{ll}
1.0 & h_{12} \\
h_{21} & 1.0
\end{array}\right] \\
& \text { flag }=1.0: H=\left[\begin{array}{ll}
h_{11} & 1.0 \\
-1.0 & h_{22}
\end{array}\right] \\
& \text { flag }=-2.0: H=\left[\begin{array}{ll}
1.0 & 0.0 \\
0.0 & 1.0
\end{array}\right]
\end{aligned}
\]

In the last three cases, the matrix entries of \(1.0,-1.0\), and 0.0 are assumed based on the value of flag and are not required to be set in the param vector.
cblas_?scal
Computes the product of a vector by a scalar.

\section*{Syntax}
```

void cblas_sscal (const MKL_INT n, const float a, float *x, const MKL_INT incx);
void cblas_dscal (const MKL_INT n, const double a, double *x, const MKL_INT incx);
void cblas_cscal (const MKL_INT n, const void *a, void *x, const MKL_INT incx);
void cblas_zscal (const MKL_INT n, const void *a, void *x, const MKL_INT incx);
void cblas_csscal (const MKL_INT n, const float a, void *x, const MKL_INT incx);
void cblas_zdscal (const MKL_INT n, const double a, void *x, const MKL_INT incx);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?scal routines perform a vector operation defined as
\[
x=a^{\star} x
\]
where:
\(a\) is a scalar, \(x\) is an \(n\)-element vector.

\section*{Input Parameters}
\(n\)
a

Specifies the number of elements in vector \(x\).
Specifies the scalar \(a\).
```

x
Array, size at least (1 + (n -1)*abs (incx)).
Specifies the increment for the elements of x

```

\section*{Output Parameters}
```

x
Updated vector x.
cblas_?swap
Swaps a vector with another vector.
Syntax
void cblas_sswap (const MKL_INT n, float *x, const MKL_INT incx, float *y, const
MKL_INT incy);
void cblas_dswap (const MKL_INT n, double *x, const MKL_INT incx, double *y, const
MKL_INT incy);
void cblas_cswap (const MKL_INT n, void *x, const MKL_INT incx, void *y, const MKL_INT
incy);
void cblas_zswap (const MKL_INT n, void *x, const MKL_INT incx, void *y, const MKL_INT
incy);

```
Include Files
- mkl.h

\section*{Description}

Given two vectors \(x\) and \(y\), the ?swap routines return vectors \(y\) and \(x\) swapped, each replacing the other.

\section*{Input Parameters}
```

n Specifies the number of elements in vectors }x\mathrm{ and }y\mathrm{ .
x Array, size at least (1 + (n-1)*abs(incx)).
incx Specifies the increment for the elements of x.
y Array, size at least (1 + (n-1)*abs(incy)).
incy Specifies the increment for the elements of y.

```

\section*{Output Parameters}
```

x
Contains the resultant vector }x\mathrm{ , that is, the input vector }y\mathrm{ .
Contains the resultant vector }y\mathrm{ , that is, the input vector }x\mathrm{ .
cblas_i?amax
Finds the index of the element with maximum
absolute value.
Syntax
CBLAS_INDEX cblas_isamax (const MKL_INT n, const float *x, const MKL_INT incx);

```
```

CBLAS_INDEX cblas_idamax (const MKL_INT n, const double *x, const MKL_INT incx);
CBLAS_INDEX cblas_icamax (const MKL_INT n, const void *x, const MKL_INT incx);
CBLAS_INDEX cblas_izamax (const MKL_INT n, const void *x, const MKL_INT incx);

```
Include Files
- mkl.h

\section*{Description}

Given a vector \(x\), the i?amax functions return the position of the vector element \(x[i]\) that has the largest absolute value for real flavors, or the largest sum \(|\operatorname{Re}(x[i])|+|\operatorname{Im}(x[i])|\) for complex flavors.
If either \(n\) or incx are not positive, the routine returns 0 .
If more than one vector element is found with the same largest absolute value, the index of the first one encountered is returned.

If the vector contains NaN values, then the routine returns the index of the first NaN.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & Specifies the number of elements in vector \(\boldsymbol{x}\). \\
\(x\) & Array, size at least \((1+(n-1) * a b s(\) incx \())\). \\
incx & Specifies the increment for the elements of \(\boldsymbol{x}\).
\end{tabular}

\section*{Return Values}

Returns the position of vector element that has the largest absolute value such that \(x\) [index-1] has the largest absolute value. The index returned is zero-based.
cblas_i?amin
Finds the index of the element with the smallest
absolute value.

\section*{Syntax}
```

CBLAS_INDEX cblas_isamin (const MKL_INT n, const float *x, const MKL_INT incx);
CBLAS_INDEX cblas_idamin (const MKL_INT n, const double *x, const MKL_INT incx);
CBLAS_INDEX cblas_icamin (const MKL_INT n, const void *x, const MKL_INT incx);
CBLAS_INDEX cblas_izamin (const MKL_INT n, const void *x, const MKL_INT incx);

```

\section*{Include Files}
- mkl.h

\section*{Description}

Given a vector \(x\), the i?amin functions return the position of the vector element \(x[i]\) that has the smallest absolute value for real flavors, or the smallest sum \(|\operatorname{Re}(x[i])|+|\operatorname{Im}(x[i])|\) for complex flavors.

If either \(n\) or incx are not positive, the routine returns 0 .
If more than one vector element is found with the same smallest absolute value, the index of the first one encountered is returned.

If the vector contains NaN values, then the routine returns the index of the first NaN.

\section*{Input Parameters}
\(n\)

X
inCX

On entry, \(n\) specifies the number of elements in vector \(x\).
Array, size at least (\(1+(n-1) * a b s(i n c x))\).
Specifies the increment for the elements of \(x\).

\section*{Return Values}

Indicates the position of vector element with the smallest absolute value such that \(x\) [index-1] has the smallest absolute value. The index returned is zero-based.
```

cblas_?cabs1

```

Computes absolute value of complex number.

\section*{Syntax}
```

float cblas_scabs1 (const void *z);
double cblas_dcabs1 (const void *z);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ? cabs1 is an auxiliary routine for a few BLAS Level 1 routines. This routine performs an operation defined as
```

res=|\operatorname{Re}(z)|+|\operatorname{Im}(z)|,

```
where \(z\) is a scalar, and res is a value containing the absolute value of a complex number \(z\).
Input Parameters
```

z
Scalar.

```

\section*{Return Values}

The absolute value of a complex number \(z\).

\section*{BLAS Level 2 Routines}

This section describes BLAS Level 2 routines, which perform matrix-vector operations. The following table lists the BLAS Level 2 routine groups and the data types associated with them.
BLAS Level 2 Routine Groups and Their Data Types
\begin{tabular}{lll}
\hline Routine Groups & Data Types & Description \\
\hline cblas_?gbmv & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & Matrix-vector product using a general band matrix \\
cblas?_gemv & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & Matrix-vector product using a general matrix \\
cblas_?ger & \(\mathrm{s}, \mathrm{d}\) & Rank-1 update of a general matrix
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Routine Groups & Data Types & Description \\
\hline cblas_?gerc & C, z & Rank-1 update of a conjugated general matrix \\
\hline cblas_?geru & c, z & Rank-1 update of a general matrix, unconjugated \\
\hline cblas_?hbmv & C, z & Matrix-vector product using a Hermitian band matrix \\
\hline cblas_? hemv & c, z & Matrix-vector product using a Hermitian matrix \\
\hline cblas_?her & c, z & Rank-1 update of a Hermitian matrix \\
\hline cblas_?her2 & C, z & Rank-2 update of a Hermitian matrix \\
\hline cblas_?hpmv & c, z & Matrix-vector product using a Hermitian packed matrix \\
\hline cblas_?hpr & c, z & Rank-1 update of a Hermitian packed matrix \\
\hline cblas_?hpr2 & C, z & Rank-2 update of a Hermitian packed matrix \\
\hline cblas_?sbmv & s, d & Matrix-vector product using symmetric band matrix \\
\hline cblas_?spmv & s, d & Matrix-vector product using a symmetric packed matrix \\
\hline cblas_?spr & s, d & Rank-1 update of a symmetric packed matrix \\
\hline cblas_?spr2 & s, d & Rank-2 update of a symmetric packed matrix \\
\hline cblas_?symv & s, d & Matrix-vector product using a symmetric matrix \\
\hline cblas_?syr & s, d & Rank-1 update of a symmetric matrix \\
\hline cblas_?syr2 & s, d & Rank-2 update of a symmetric matrix \\
\hline cblas_?tbmv & s, d, c, z & Matrix-vector product using a triangular band matrix \\
\hline cblas_?tbsv & s, d, c, z & Solution of a linear system of equations with a triangular band matrix \\
\hline cblas_?tpmv & s, d, c, z & Matrix-vector product using a triangular packed matrix \\
\hline cblas_?tpsv & s, d, c, z & Solution of a linear system of equations with a triangular packed matrix \\
\hline cblas_?trmv & s, d, c, z & Matrix-vector product using a triangular matrix \\
\hline cblas_?trsv & s, d, c, z & Solution of a linear system of equations with a triangular matrix \\
\hline
\end{tabular}
cblas_?gbmv
Computes a matrix-vector product with a general band matrix.

\section*{Syntax}
```

void cblas_sgbmv (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE trans, const MKL_INT
m, const MKL_INT n, const MKL_INT kl, const MKL_INT ku, const float alpha, const float
*a, const MKL_INT lda, const float *x, const MKL_INT incx, const float beta, float *y,
const MKL_INT incy);

```
```

void cblas_dgbmv (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE trans, const MKL_INT
m, const MKL_INT n, const MKL_INT kl, const MKL_INT ku, const double alpha, const
double *a, const MKL_INT lda, const double *x, const MKL_INT incx, const double beta,
double *y, const MKL_INT incy);
void cblas_cgbmv (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE trans, const MKL_INT
m, const MKL_INT n, const MKL_INT kl, const MKL_INT ku, const void *alpha, const void
*a, const MKL_INT lda, const void *x, const MKL_INT incx, const void *beta, void *y,
const MKL_INT incy);
void cblas_zgbmv (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE trans, const MKL_INT
m, const MKL_INT n, const MKL_INT kl, const MKL_INT ku, const void *alpha, const void
*a, const MKL_INT lda, const void *x, const MKL_INT incx, const void *beta, void *y,
const MKL_INT incy);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ? gbmv routines perform a matrix-vector operation defined as
```

y := alpha*A*x + beta* y,

```
or
\(y\) := alpha*A'*x + beta*y,
or
\(y:=\) alpha *conjg(A')*x + beta*y,
where:
alpha and beta are scalars,
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(n\) band matrix, with \(k l\) sub-diagonals and \(k u\) super-diagonals.

\section*{Input Parameters}

Layout
trans
m
n
kI

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies the operation:
If trans=CblasNoTrans, then \(y\) := alpha*A*x + beta* \(y\)
If trans=CblasTrans, then \(y:=a l p h a \star A^{\prime *} x+b e t a * y\)
If trans=CblasConjTrans, then \(y:=a l p h a{ }^{*} \operatorname{conjg}\left(A^{\prime}\right){ }^{\prime} x+b e t a * y\)
Specifies the number of rows of the matrix \(A\).
The value of \(m\) must be at least zero.
Specifies the number of columns of the matrix \(A\).
The value of \(n\) must be at least zero.
Specifies the number of sub-diagonals of the matrix \(A\).

The value of \(k l\) must satisfy \(0 \leq k l\).
Specifies the number of super-diagonals of the matrix \(A\).
The value of \(k u\) must satisfy \(0 \leq k u\).
Specifies the scalar alpha.
Array, size lda*n.
Layout = CblasColMajor: Before entry, the leading (kl + ku + 1) by \(n\) part of the array a must contain the matrix of coefficients. This matrix must be supplied column-by-column, with the leading diagonal of the matrix in row (ku) of the array, the first super-diagonal starting at position 1 in row (\(k u-1\)), the first sub-diagonal starting at position 0 in row (\(k u+1\)), and so on. Elements in the array a that do not correspond to elements in the band matrix (such as the top left \(k u\) by \(k u\) triangle) are not referenced.
The following program segment transfers a band matrix from conventional full matrix storage (matrix, with leading dimension \(/ d m\)) to band storage (\(a\), with leading dimension Ida):
```

for (j = 0; j < n; j++) {
k = ku - j;
for (i = max(0, j-ku); i < min(m, j+kl+1); i++) {
a[(k+i) + j*lda] = matrix[i + j*ldm];
}
}

```

Layout = CblasRowMajor: Before entry, the leading \((k l+k u+1)\) by \(m\) part of the array a must contain the matrix of coefficients. This matrix must be supplied row-by-row, with the leading diagonal of the matrix in column (\(k l\)) of the array, the first super-diagonal starting at position 0 in column \((k I+1)\), the first sub-diagonal starting at position 1 in row (\(k l-1\)), and so on. Elements in the array \(a\) that do not correspond to elements in the band matrix (such as the top left \(k l\) by \(k l\) triangle) are not referenced.

The following program segment transfers a band matrix from row-major full matrix storage (matrix, with leading dimension \(/ d m\)) to band storage (\(a\), with leading dimension Ida):
```

for (i = 0; i < m; i++) {
k = kl - i;
for (j = max(0, i-kl); j < min(n, i+ku+1); j++) {
a[(k+j) + i*lda] = matrix[j + i*ldm];
}
}

```

Specifies the leading dimension of \(a\) as declared in the calling (sub)program. The value of Ida must be at least \((k l+k u+1)\).

Array, size at least (1 + (n - 1)*abs(incx)) when trans \(=\) CblasNoTrans, and at least (1 + (m-1)*abs (incx)) otherwise. Before entry, the array \(x\) must contain the vector \(x\).

Specifies the increment for the elements of \(x\). incx must not be zero.
Specifies the scalar beta. When beta is equal to zero, then \(y\) need not be set on input.
```

y Array, size at least (1 + (m - 1)*abs(incy)) when
trans=CblasNoTrans and at least (1 + (n - 1)*abs(incy)) otherwise.
Before entry, the incremented array y must contain the vector }y\mathrm{ .
Specifies the increment for the elements of y.
The value of incy must not be zero.

```

\section*{Output Parameters}
y
Buffer holding the updated vector \(y\).
```

cblas_?gemv
Computes a matrix-vector product using a general
matrix.
Syntax
void cblas_sgemv (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE trans, const MKL_INT
m, const MKL_INT n, const float alpha, const float *a, const MKL_INT lda, const float
*x, const MKL_INT incx, const float beta, float *y, const MKL_INT incy);
void cblas_dgemv (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE trans, const MKL_INT
m, const MKL_INT n, const double alpha, const double *a, const MKL_INT Ida, const
double *x, const MKL_INT incx, const double beta, double *y, const MKL_INT incy);
void cblas_cgemv (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE trans, const MKL_INT
m, const MKL_INT n, const void *alpha, const void *a, const MKL_INT lda, const void *x,
const MKL_INT incx, const void *beta, void *y, const MKL_INT incy);
void cblas_zgemv (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE trans, const MKL_INT
m, const MKL_INT n, const void *alpha, const void *a, const MKL_INT lda, const void *x,
const MKL_INT incx, const void *beta, void *y, const MKL_INT incy);

```

Include Files
- mkl.h

\section*{Description}

The ? gemv routines perform a matrix-vector operation defined as:
```

y := alpha*A*x + beta*y,

```
or
\(y:=a l p h a * A^{\prime *} x+b e t a * y\),
or
\(y:=a l p h a^{*} \operatorname{conj} g\left(A^{\prime}\right) * x+b e t a * y\),
where:
alpha and beta are scalars,
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(n\) matrix.

\section*{Input Parameters}

\author{
Layout \\ trans
}
m
\(n\)
alpha
a

Ida

X
incx
beta
y
incy

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies the operation:
if trans=CblasNoTrans, then \(y:=a l p h a \star A^{*} x+b e t a \star y ;\)
if trans=CblasTrans, then \(y:=a l p h a{ }^{\prime} A^{\prime} \star_{x}+\) beta*y;
if trans=CblasConjTrans, then \(y:=a l p h a{ }^{*} \operatorname{conjg}\left(A^{\prime}\right){ }^{*} X+b e t a \star y\).
Specifies the number of rows of the matrix \(A\). The value of \(m\) must be at least zero.

Specifies the number of columns of the matrix \(A\). The value of \(n\) must be at least zero.

Specifies the scalar alpha.
Array, size lda*k.
For Layout \(=\) CblasColMajor, \(k\) is \(n\). Before entry, the leading \(m\)-by-n part of the array a must contain the matrix \(A\).

For Layout \(=\) CblasRowMajor, \(k\) is \(m\). Before entry, the leading \(n\)-by-m part of the array a must contain the matrix \(A\).

Specifies the leading dimension of \(a\) as declared in the calling (sub)program.
For Layout \(=\) CblasColMajor, the value of Ida must be at least max (1, m).

For Layout \(=\) CblasRowMajor, the value of Ida must be at least max (1, n).

Array, size at least (1+(n-1)*abs (incx)) when trans=CblasNoTrans and at least \((1+(m-1) * a b s(i n c x))\) otherwise. Before entry, the incremented array \(x\) must contain the vector \(x\).

Specifies the increment for the elements of \(x\).
The value of incx must not be zero.
Specifies the scalar beta. When beta is set to zero, then \(y\) need not be set on input.

Array, size at least (1 + \(m-1\)) *abs (incy)) when trans=CblasNoTrans and at least (1 + \(n-1\))*abs (incy)) otherwise. Before entry with non-zero beta, the incremented array \(y\) must contain the vector \(y\).

Specifies the increment for the elements of \(y\).
The value of incy must not be zero.

\section*{Output Parameters}

\section*{y}

Updated vector \(y\).

\section*{cblas_?ger}

Performs a rank-1 update of a general matrix.

\section*{Syntax}
```

void cblas_sger (const CBLAS_LAYOUT Layout, const MKL_INT m, const MKL_INT n, const
float alpha, const float *x, const MKL_INT incx, const float *y, const MKL_INT incy,
float *a, const MKL_INT Ida);
void cblas_dger (const CBLAS_LAYOUT Layout, const MKL_INT m, const MKL_INT n, const
double alpha, const double *x, const MKL_INT incx, const double *y, const MKL_INT incy,
double *a, const MKL_INT Ida);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?ger routines perform a matrix-vector operation defined as
```

A := alpha* ** ' ' + A,

```
where:
alpha is a scalar,
\(x\) is an \(m\)-element vector,
\(y\) is an \(n\)-element vector,
\(A\) is an m-by-n general matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Layout & Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor). \\
\hline m & Specifies the number of rows of the matrix \(A\). \\
\hline & The value of \(m\) must be at least zero. \\
\hline \(n\) & Specifies the number of columns of the matrix \(A\). \\
\hline & The value of \(n\) must be at least zero. \\
\hline alpha & Specifies the scalar alpha. \\
\hline \(x\) & Array, size at least (1 + (m-1)*abs (incx)). Before entry, the incremented array \(x\) must contain the \(m\)-element vector \(x\). \\
\hline incx & Specifies the increment for the elements of \(x\). \\
\hline & The value of incx must not be zero. \\
\hline Y & Array, size at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\). \\
\hline incy & Specifies the increment for the elements of \(y\). \\
\hline & The value of incy must not be zero. \\
\hline
\end{tabular}
a
Array, size lda*k.

For Layout \(=\) CblasColMajor, \(k\) is \(n\). Before entry, the leading \(m-b y-n\) part of the array a must contain the matrix \(A\).

For Layout \(=\) CblasRowMajor, \(k\) is \(m\). Before entry, the leading \(n\)-by- \(m\) part of the array a must contain the matrix \(A\).

Specifies the leading dimension of \(a\) as declared in the calling (sub)program.
For Layout \(=\) CblasColMajor, the value of \(I d a\) must be at least max (1, m).

For Layout = CblasRowMajor, the value of Ida must be at least max (1, n).

\section*{Output Parameters}
a
Overwritten by the updated matrix.
cblas_? \({ }^{2}\) gerc
Performs a rank-1 update (conjugated) of a general
matrix.
Syntax
```

void cblas_cgerc (const CBLAS_LAYOUT Layout, const MKL_INT m, const MKL_INT n, const
void *alpha, const void *x, const MKL_INT incx, const void *y, const MKL_INT incy, void
*a, const MKL_INT Ida);
void cblas_zgerc (const CBLAS_LAYOUT Layout, const MKL_INT m, const MKL_INT n, const
void *alpha, const void *x, const MKL_INT incx, const void *y, const MKL_INT incy, void
*a, const MKL_INT Ida);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?gerc routines perform a matrix-vector operation defined as
```

A := alpha* $x^{*} \operatorname{conjg}\left(y^{\prime}\right)+A$,

```
where:
alpha is a scalar,
\(x\) is an \(m\)-element vector,
\(y\) is an \(n\)-element vector,
\(A\) is an \(m\)-by- \(n\) matrix.
Input Parameters
Layout \(\quad\) Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).
m
Specifies the number of rows of the matrix \(A\).
\(n\)

X

Y
incy
a
lda

The value of \(m\) must be at least zero.
Specifies the number of columns of the matrix \(A\).
The value of \(n\) must be at least zero.
Specifies the scalar alpha.
Array, size at least \((1+(m-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(m\)-element vector \(x\).

Specifies the increment for the elements of \(x\).
The value of incx must not be zero.
Array, size at least (1 + (n - 1)*abs (incy)). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\).

Specifies the increment for the elements of \(y\).
The value of incy must not be zero.
Array, size \(1 d^{*} *\).
For Layout \(=\) CblasColMajor, \(k\) is \(n\). Before entry, the leading \(m-b y-n\) part of the array a must contain the matrix \(A\).

For Layout \(=\) CblasRowMajor, \(k\) is \(m\). Before entry, the leading \(n\)-by-m part of the array a must contain the matrix \(A\).

Specifies the leading dimension of \(a\) as declared in the calling (sub)program.
For Layout = CblasColMajor, the value of Ida must be at least max (1, m) .

For Layout = CblasRowMajor, the value of Ida must be at least max (1, n).

\section*{Output Parameters}
a
Overwritten by the updated matrix.
cblas_?geru
Performs a rank-1 update (unconjugated) of a general matrix.

\section*{Syntax}
```

void cblas_cgeru (const CBLAS_LAYOUT Layout, const MKL_INT m, const MKL_INT n, const
void *alpha, const void *x, const MKL_INT incx, const void *y, const MKL_INT incy, void
*a, const MKL_INT Ida);
void cblas_zgeru (const CBLAS_LAYOUT Layout, const MKL_INT m, const MKL_INT n, const
void *alpha, const void *x, const MKL_INT incx, const void *y, const MKL_INT incy, void
*a, const MKL_INT Ida);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?geru routines perform a matrix-vector operation defined as
```

A := alpha* $x^{*} y^{\prime}+A$,

```
where:
alpha is a scalar,
\(x\) is an \(m\)-element vector,
\(y\) is an \(n\)-element vector,
\(A\) is an \(m\)-by- \(n\) matrix.

\section*{Input Parameters}

Layout
m
n
alpha
X
incx

Y
incy
a
lda

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies the number of rows of the matrix \(A\).
The value of \(m\) must be at least zero.
Specifies the number of columns of the matrix \(A\).
The value of \(n\) must be at least zero.
Specifies the scalar alpha.
Array, size at least \((1+(m-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(m\)-element vector \(x\).

Specifies the increment for the elements of \(x\).
The value of incx must not be zero.
Array, size at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\).

Specifies the increment for the elements of \(y\).
The value of incy must not be zero.
Array, size lda*k.
For Layout = CblasColMajor, \(k\) is \(n\). Before entry, the leading m-by-n part of the array a must contain the matrix \(A\).

For Layout \(=\) CblasRowMajor, \(k\) is \(m\). Before entry, the leading \(n\)-by-m part of the array a must contain the matrix \(A\).

Specifies the leading dimension of a as declared in the calling (sub)program.

For Layout \(=\) CblasColMajor, the value of \(/ d a\) must be at least max (1, m).

For Layout \(=\) CblasRowMajor, the value of \(/ d a\) must be at least max (1, n).

\section*{Output Parameters}
a
Overwritten by the updated matrix.
```

cblas_?hbmv
Computes a matrix-vector product using a Hermitian
band matrix.

```

\section*{Syntax}
```

void cblas_chbmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const MKL_INT k, const void *alpha, const void *a, const MKL_INT lda, const void *x,
const MKL_INT incx, const void *beta, void *y, const MKL_INT incy);
void cblas_zhbmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const MKL_INT k, const void *alpha, const void *a, const MKL_INT lda, const void *X,
const MKL_INT incx, const void *beta, void *y, const MKL_INT incy);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?hbmv routines perform a matrix-vector operation defined as \(y:=a l p h a^{\star} A^{\star} X+b e t a^{\star} y\), where:
alpha and beta are scalars,
\(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n\)-by- \(n\) Hermitian band matrix, with \(k\) super-diagonals.
Input Parameters

Layout
uplo
n
k
alpha
a

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies whether the upper or lower triangular part of the Hermitian band matrix \(A\) is used:
If uplo = CblasUpper, then the upper triangular part of the matrix \(A\) is used.

If uplo = CblasLower, then the low triangular part of the matrix \(A\) is used.
Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
For uplo = CblasUpper: Specifies the number of super-diagonals of the matrix \(A\).

For uplo = CblasLower: Specifies the number of sub-diagonals of the matrix \(A\).

The value of \(k\) must satisfy \(0 \leq k\).
Specifies the scalar alpha.
Array, size lda*n.
```

Layout = CblasColMajor:

```

Before entry with uplo \(=\) CblasUpper, the leading \((k+1)\) by \(n\) part of the array a must contain the upper triangular band part of the Hermitian matrix. The matrix must be supplied column-by-column, with the leading diagonal of the matrix in row \(k\) of the array, the first super-diagonal starting at position 1 in row (\(k-1\)), and so on. The top left \(k\) by \(k\) triangle of the array \(a\) is not referenced.

The following program segment transfers the upper triangular part of a Hermitian band matrix from conventional full matrix storage (matrix, with leading dimension \(/ d m\)) to band storage (\(a\), with leading dimension Ida):
```

for (j = 0; j < n; j++) {
m = k - j;
for (i = max( 0, j - k); i <= j; i++) {
a[(m+i) + j*lda] = matrix[i + j*ldm];
}
}

```

Before entry with uplo = CblasLower, the leading \((k+1)\) by \(n\) part of the array a must contain the lower triangular band part of the Hermitian matrix, supplied column-by-column, with the leading diagonal of the matrix in row 0 of the array, the first sub-diagonal starting at position 0 in row 1 , and so on. The bottom right \(k\) by \(k\) triangle of the array \(a\) is not referenced.
The following program segment transfers the lower triangular part of a Hermitian band matrix from conventional full matrix storage (matrix, with leading dimension \(/ d m\)) to band storage (\(a\), with leading dimension Ida):
```

for (j = 0; j < n; j++) {
m = -j;
for (i = j; i < min(n, j + k + 1); i++) {
a[(m+i) + j*lda] = matrix[i + j*ldm];
}
}

```

Layout = CblasRowMajor:
Before entry with uplo = CblasUpper, the leading \((k+1)\)-by-n part of array a must contain the upper triangular band part of the Hermitian matrix. The matrix must be supplied row-by-row, with the leading diagonal of the matrix in column 0 of the array, the first super-diagonal starting at position 0 in column 1, and so on. The bottom right \(k-b y-k\) triangle of array \(a\) is not referenced.

The following program segment transfers the upper triangular part of a Hermitian band matrix from row-major full matrix storage (matrix with leading dimension 1 dm) to row-major band storage (\(a\), with leading dimension Ida):
```

for (i = 0; i < n; i++) {
m = -i;
for (j = i; j < MIN(n, i+k+1); j++) {
a[(m+j) + i*lda] = matrix[j + i*ldm];
}
}

```

Before entry with uplo \(=\) CblasLower, the leading \((k+1)\)-by-n part of array a must contain the lower triangular band part of the Hermitian matrix, supplied row-by-row, with the leading diagonal of the matrix in column \(k\) of the array, the first sub-diagonal starting at position 1 in column \(k-1\), and so on. The top left \(k\)-by- \(k\) triangle of array \(a\) is not referenced.
The following program segment transfers the lower triangular part of a Hermitian row-major band matrix from row-major full matrix storage (matrix, with leading dimension \(l d m\)) to row-major band storage (\(a\), with leading dimension 1 da):
```

for (i = 0; i < n; i++) {
m = k - i;
for (j = max(0, i-k); j <= i; j++) {
a[(m+j) + i*lda] = matrix[j + i*ldm];
}
}

```

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

Specifies the leading dimension of \(a\) as declared in the calling (sub)program. The value of Ida must be at least \((k+1)\).

Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the vector \(x\).

Specifies the increment for the elements of \(x\).
The value of incx must not be zero.
Specifies the scalar beta.
Array, size at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the vector \(y\).

Specifies the increment for the elements of \(y\).
The value of incy must not be zero.

\section*{Output Parameters}
y
Overwritten by the updated vector \(y\).
cblas_?hemv
Computes a matrix-vector product using a Hermitian matrix.

\section*{Syntax}
```

void cblas_chemv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const void *alpha, const void *a, const MKL_INT lda, const void *x, const MKL_INT incx,
const void *beta, void *y, const MKL_INT incy);
void cblas_zhemv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const void *alpha, const void *a, const MKL_INT lda, const void *x, const MKL_INT incx,
const void *beta, void *y, const MKL_INT incy);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?hemv routines perform a matrix-vector operation defined as
\[
y:=a l p h a^{\star} A^{\star} x+\operatorname{beta}^{\star} y
\]
where:
alpha and beta are scalars, \(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n\)-by- \(n\) Hermitian matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Layout & Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor). \\
\hline uplo & Specifies whether the upper or lower triangular part of the array \(a\) is used. \\
\hline & If uplo = CblasUpper, then the upper triangular of the array \(a\) is used. \\
\hline & If uplo = CblasLower, then the low triangular of the array \(a\) is used. \\
\hline \(n\) & Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero. \\
\hline alpha & Specifies the scalar alpha. \\
\hline a & Array, size lda*n. \\
\hline & Before entry with uplo = CblasUpper, the leading \(n\)-by- \(n\) upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of \(a\) is not referenced. Before entry with uplo = CblasLower, the leading n-by-n lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of \(a\) is not referenced. \\
\hline & The imaginary parts of the diagonal elements need not be set and are assumed to be zero. \\
\hline Ida & Specifies the leading dimension of \(a\) as declared in the calling (sub)program. The value of Ida must be at least max \((1, n)\). \\
\hline \(x\) & Array, size at least (1 + (n - 1)*abs (incx)). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\). \\
\hline incx & Specifies the increment for the elements of \(x\). \\
\hline & The value of incx must not be zero. \\
\hline beta & Specifies the scalar beta. When beta is supplied as zero then \(y\) need not be set on input. \\
\hline Y & Array, size at least (1 + (n-1)*abs (incy)). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\). \\
\hline incy & Specifies the increment for the elements of \(y\). \\
\hline
\end{tabular}

The value of incy must not be zero.

\section*{Output Parameters}
y
Overwritten by the updated vector \(y\).
cblas_?her
Performs a rank-1 update of a Hermitian matrix.

\section*{Syntax}
```

void cblas_cher (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const float alpha, const void *x, const MKL_INT incx, void *a, const MKL_INT lda);
void cblas_zher (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const double alpha, const void *x, const MKL_INT incx, void *a, const MKL_INT lda);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?her routines perform a matrix-vector operation defined as
```

A := alpha* **conjg(x') + A,

```
where:
alpha is a real scalar,
\(x\) is an n-element vector,
\(A\) is an \(n\)-by- \(n\) Hermitian matrix.
Input Parameters
\(\left.\begin{array}{ll}\text { Layout } \\
\text { uplo } & \begin{array}{l}\text { Specifies whether two-dimensional array storage is row-major } \\
\text { (CblasRowMajor) or column-major (CblasColMajor). }\end{array} \\
\text { Specifies whether the upper or lower triangular part of the array } a \text { is used. }\end{array}\right\}\)\begin{tabular}{l}
If uplo = CblasUpper, then the upper triangular of the array a is used. \\
If uplo = CblasLower, then the low triangular of the array a is used. \\
\(n\) \\
alpha \\
\(x\)
\end{tabular}\(\quad\)\begin{tabular}{l}
Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero. \\
Specifies the scalar alpha. \\
incx
\end{tabular}

Before entry with uplo = CblasUpper, the leading \(n\)-by- \(n\) upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of \(a\) is not referenced.

Before entry with uplo = CblasLower, the leading \(n\)-by- \(n\) lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of \(a\) is not referenced.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

Specifies the leading dimension of \(a\) as declared in the calling (sub)program. The value of Ida must be at least max \((1, n)\).

\section*{Output Parameters}
a
With uplo = CblasUpper, the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated matrix.
With uplo = CblasLower, the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated matrix.

If alpha is zero, matrix \(A\) is unchanged; otherwise, the imaginary parts of the diagonal elements are set to zero.
cblas_?her2
Performs a rank-2 update of a Hermitian matrix.

\section*{Syntax}
```

void cblas_cher2 (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const void *alpha, const void *x, const MKL_INT incx, const void *y, const MKL_INT
incy, void *a, const MKL_INT lda);
void cblas_zher2 (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const void *alpha, const void *x, const MKL_INT incx, const void *y, const MKL_INT
incy, void *a, const MKL_INT lda);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?her2 routines perform a matrix-vector operation defined as
\[
A:=\text { alpha *x*conjg }\left(y^{\prime}\right)+\operatorname{conjg}(a l p h a) * y * \operatorname{conjg}\left(x^{\prime}\right)+A,
\]
where:
alpha is scalar,
\(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n\)-by- \(n\) Hermitian matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Layout & Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor). \\
\hline uplo & Specifies whether the upper or lower triangular part of the array a is used. \\
\hline & If uplo = CblasUpper, then the upper triangular of the array \(a\) is used. \\
\hline & If uplo = CblasLower, then the low triangular of the array a is used. \\
\hline \(n\) & Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero. \\
\hline alpha & Specifies the scalar alpha. \\
\hline \(x\) & Array, size at least \((1+(n-1) * a b s(\) incx \()\)). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\). \\
\hline incx & Specifies the increment for the elements of \(x\). \\
\hline & The value of incx must not be zero. \\
\hline y & Array, size at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\). \\
\hline incy & Specifies the increment for the elements of \(y\). \\
\hline & The value of incy must not be zero. \\
\hline a & Array, size lda*n. \\
\hline & Before entry with uplo = CblasUpper, the leading \(n\)-by- \(n\) upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of \(a\) is not referenced. \\
\hline & Before entry with uplo = CblasLower, the leading \(n\)-by- \(n\) lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of \(a\) is not referenced. \\
\hline & The imaginary parts of the diagonal elements need not be set and are assumed to be zero. \\
\hline Ida & Specifies the leading dimension of \(a\) as declared in the calling (sub) program. The value of Ida must be at least \(\max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
With uplo = CblasUpper, the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated matrix.
With uplo = CblasLower, the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated matrix.

If alpha is zero, matrix \(A\) is unchanged; otherwise, the imaginary parts of the diagonal elements are set to zero.
cblas_?hpmv
Computes a matrix-vector product using a Hermitian packed matrix.

\section*{Syntax}
```

void cblas_chpmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const void *alpha, const void *ap, const void *x, const MKL_INT incx, const void *beta,
void *y, const MKL_INT incy);
void cblas_zhpmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const void *alpha, const void *ap, const void *x, const MKL_INT incx, const void *beta,
void *y, const MKL_INT incy);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?hpmv routines perform a matrix-vector operation defined as
```

y := alpha*A*}x + beta* y

```
where:
alpha and beta are scalars,
\(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n\)-by- \(n\) Hermitian matrix, supplied in packed form.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Layout & Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor). \\
\hline \multirow[t]{3}{*}{uplo} & Specifies whether the upper or lower triangular part of the matrix \(A\) is supplied in the packed array ap. \\
\hline & If uplo = CblasUpper, then the upper triangular part of the matrix \(A\) is supplied in the packed array ap. \\
\hline & If uplo = CblasLower, then the low triangular part of the matrix \(A\) is supplied in the packed array ap. \\
\hline \(n\) & Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero. \\
\hline alpha & Specifies the scalar alpha. \\
\hline \multirow[t]{4}{*}{ap} & Array, size at least (\(\left.\left.n^{\star}(n+1)\right) / 2\right)\). \\
\hline & For Layout = CblasColMajor: \\
\hline & Before entry with uplo = CblasUpper, the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, column-bycolumn, so that ap[0] contains \(A_{1,1}, a p[1]\) and \(a p[2]\) contain \(A_{1,2}\) and \(A_{2,2}\) respectively, and so on. Before entry with uplo \(=\) CblasLower, the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, column-by-column, so that ap[0] contains \(A_{1,1}\), ap [1] and ap [2] contain \(A_{2,1}\) and \(A_{3,1}\) respectively, and so on. \\
\hline & For Layout = CblasRowMajor: \\
\hline
\end{tabular}

X
incx
beta

Y
incy

Before entry with uplo = CblasUpper, the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, row-by-row, \(a p\) [0] contains \(A_{1,1}, a p\) [1] and \(a p\) [2] contain \(A_{1,2}\) and \(A_{1,3}\) respectively, and so on. Before entry with uplo \(=\) CblasLower, the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, row-by-row, so that ap [0] contains \(A_{1,1}, a p[1]\) and ap[2] contain \(A_{2,1}\) and \(A_{2,2}\) respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).

Specifies the increment for the elements of \(x\).
The value of incx must not be zero.
Specifies the scalar beta.
When beta is equal to zero then \(y\) need not be set on input.
Array, size at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\).

Specifies the increment for the elements of \(y\).
The value of incy must not be zero.

\section*{Output Parameters}
y
Overwritten by the updated vector \(y\).
cblas_?hpr
Performs a rank-1 update of a Hermitian packed matrix.

\section*{Syntax}
```

void cblas_chpr (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const float alpha, const void *x, const MKL_INT incx, void *ap);
void cblas_zhpr (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const double alpha, const void *x, const MKL_INT incx, void *ap);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?hpr routines perform a matrix-vector operation defined as
\[
A:=\text { alpha* } x^{\star} \operatorname{conjg}\left(x^{\prime}\right)+A,
\]
where:
alpha is a real scalar,
\(x\) is an \(n\)-element vector,
\(A\) is an \(n\)-by- \(n\) Hermitian matrix, supplied in packed form.

\section*{Input Parameters}

\author{
Layout \\ uplo \\ n \\ alpha \\ X \\ incx \\ \(a p\)
}

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies whether the upper or lower triangular part of the matrix \(A\) is supplied in the packed array ap.

If uplo = CblasUpper, the upper triangular part of the matrix \(A\) is supplied in the packed array ap.

If uplo = CblasLower, the low triangular part of the matrix \(A\) is supplied in the packed array ap.

Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
Specifies the scalar alpha.
Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).

Specifies the increment for the elements of \(x\). incx must not be zero.
Array, size at least \(\left(\left(n^{\star}(n+1)\right) / 2\right)\).
For Layout = CblasColMajor:
Before entry with uplo = CblasUpper, the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, column-bycolumn, so that ap[0] contains \(A_{1,1}, a p[1]\) and ap[2] contain \(A_{1,2}\) and \(A_{2,2}\) respectively, and so on.
Before entry with uplo = CblasLower, the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, column-bycolumn, so that ap[0] contains \(A_{1,1}, a p[1]\) and \(a p[2]\) contain \(A_{2,1}\) and \(A_{3,1}\) respectively, and so on.
For Layout = CblasRowMajor:
Before entry with uplo = CblasUpper, the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, row-by-row, ap [0] contains \(A_{1,1}, a p[1]\) and ap[2] contain \(A_{1,2}\) and \(A_{1,3}\) respectively, and so on.
Before entry with uplo = CblasLower, the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, row-by-row, so that ap[0] contains \(A_{1,1}\), ap [1] and ap[2] contain \(A_{2,1}\) and \(A_{2,2}\) respectively, and so on.
The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

\section*{Output Parameters}
\(a p\)

With uplo = CblasUpper, overwritten by the upper triangular part of the updated matrix.
With uplo = CblasLower, overwritten by the lower triangular part of the updated matrix.

If alpha is zero, matrix \(A\) is unchanged; otherwise, the imaginary parts of the diagonal elements are set to zero.
```

cblas_?hpr2
Performs a rank-2 update of a Hermitian packed
matrix.
Syntax

```
```

void cblas_chpr2 (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,

```
void cblas_chpr2 (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const void *alpha, const void *x, const MKL_INT incx, const void *y, const MKL_INT
const void *alpha, const void *x, const MKL_INT incx, const void *y, const MKL_INT
incy, void *ap);
incy, void *ap);
void cblas_zhpr2 (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
void cblas_zhpr2 (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const void *alpha, const void *x, const MKL_INT incx, const void *y, const MKL_INT
const void *alpha, const void *x, const MKL_INT incx, const void *y, const MKL_INT
incy, void *ap);
```

incy, void *ap);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?hpr2 routines perform a matrix-vector operation defined as
```

A := alpha* \mp@subsup{x}{}{*}conjg(y') + conjg(alpha)* y*conjg(x') + A,

```
where:
alpha is a scalar,
\(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n\)-by- \(n\) Hermitian matrix, supplied in packed form.
Input Parameters
Layout Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).
uplo Specifies whether the upper or lower triangular part of the matrix \(A\) is supplied in the packed array ap.

If uplo = CblasUpper, then the upper triangular part of the matrix \(A\) is supplied in the packed array ap.

If uplo = CblasLower, then the low triangular part of the matrix \(A\) is supplied in the packed array ap.

Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
Specifies the scalar alpha.
Array, dimension at least \((1+(n-1)\) *abs (incx) \()\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).

Specifies the increment for the elements of \(x\).
The value of incx must not be zero.

Y
incy
\(a p\)

Array, size at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\).

Specifies the increment for the elements of \(y\).
The value of incy must not be zero.
Array, size at least \(\left(\left(n^{*}(n+1)\right) / 2\right)\).
For Layout = CblasColMajor:
Before entry with uplo = CblasUpper, the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, column-bycolumn, so that ap [0] contains \(A_{1,1}, a p[1]\) and ap[2] contain \(A_{1,2}\) and \(A_{2,2}\) respectively, and so on.
Before entry with uplo = CblasLower, the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, column-bycolumn, so that \(a p[0]\) contains \(A_{1,1}, a p[1]\) and \(a p[2]\) contain \(A_{2,1}\) and \(A_{3,1}\) respectively, and so on.

For Layout = CblasRowMajor:
Before entry with uplo = CblasUpper, the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, row-by-row, ap [0] contains \(A_{1,1}, a p\) [1] and ap[2] contain \(A_{1,2}\) and \(A_{1,3}\) respectively, and so on.

Before entry with uplo = CblasLower, the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, row-by-row, so that ap[0] contains \(A_{1,1}\), ap [1] and ap [2] contain \(A_{2,1}\) and \(A_{2,2}\) respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

\section*{Output Parameters}
\(a p\)
With uplo = CblasUpper, overwritten by the upper triangular part of the updated matrix.

With uplo = CblasLower, overwritten by the lower triangular part of the updated matrix.

If alpha is zero, matrix \(A\) is unchanged; otherwise, the imaginary parts of the diagonal elements need are set to zero.
cblas_?sbmv
Computes a matrix-vector product with a symmetric band matrix.

\section*{Syntax}
```

void cblas_ssbmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const MKL_INT k, const float alpha, const float *a, const MKL_INT lda, const float *x,
const MKL_INT incx, const float beta, float *y, const MKL_INT incy);
void cblas_dsbmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const MKL_INT k, const double alpha, const double *a, const MKL_INT lda, const double
*x, const MKL_INT incx, const double beta, double *y, const MKL_INT incy);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?sbmv routines perform a matrix-vector operation defined as
```

y := alpha* A* }x+\mp@subsup{b}{}{*

```
where:
alpha and beta are scalars,
\(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n\)-by- \(n\) symmetric band matrix, with \(k\) super-diagonals.

\section*{Input Parameters}

\section*{Layout}
uplo
n
k
alpha
a

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies whether the upper or lower triangular part of the band matrix \(A\) is used:
if uplo = CblasUpper - upper triangular part;
if uplo = CblasLower - low triangular part.
Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
Specifies the number of super-diagonals of the matrix \(A\).
The value of \(k\) must satisfy \(0 \leq k\).
Specifies the scalar alpha.
Array, size \(l d a^{\star} n\). Before entry with uplo \(=\) CblasUpper, the leading (\(k+\) 1) by \(n\) part of the array a must contain the upper triangular band part of the symmetric matrix, supplied column-by-column, with the leading diagonal of the matrix in row \(k\) of the array, the first super-diagonal starting at position 1 in row (\(k-1\)), and so on. The top left \(k\) by \(k\) triangle of the array \(a\) is not referenced.

The following program segment transfers the upper triangular part of a symmetric band matrix from conventional full matrix storage (matrix, with leading dimension \(/ d m\)) to band storage (\(a\), with leading dimension Ida):
```

for (j = 0; j < n; j++) {
m = k - j;
for (i = max( 0, j - k); i <= j; i++) {
a[(m+i) + j*lda] = matrix[i + j*ldm];
}
}

```

Before entry with uplo = CblasLower, the leading (\(k+1\)) by \(n\) part of the array a must contain the lower triangular band part of the symmetric matrix, supplied column-by-column, with the leading diagonal of the matrix in row 0 of the array, the first sub-diagonal starting at position 0 in row 1 , and so on. The bottom right \(k\) by \(k\) triangle of the array \(a\) is not referenced.

The following program segment transfers the lower triangular part of a symmetric band matrix from conventional full matrix storage (matrix, with leading dimension \(/ d m\)) to band storage (\(a\), with leading dimension Ida):
```

for (j = 0; j < n; j++) {
m = -j;
for (i = j; i < min(n, j + k + 1); i++) {
a[(m+i) + j*lda] = matrix[i + j*ldm];
}
}

```

Layout = CblasRowMajor:
Before entry with uplo = CblasUpper, the leading \((k+1)\)-by-n part of array a must contain the upper triangular band part of the symmetric matrix. The matrix must be supplied row-by-row, with the leading diagonal of the matrix in column 0 of the array, the first super-diagonal starting at position 0 in column 1, and so on. The bottom right \(k-b y-k\) triangle of array a is not referenced.

The following program segment transfers the upper triangular part of a symmetric band matrix from row-major full matrix storage (matrix with leading dimension 1 dm) to row-major band storage (\(a\), with leading dimension Ida):
```

for (i = 0; i < n; i++) {
m = -i;
for (j = i; j < MIN(n, i+k+1); j++) {
a[(m+j) + i*lda] = matrix[j + i*ldm];
}
}

```

Before entry with uplo = CblasLower, the leading \((k+1)\)-by-n part of array a must contain the lower triangular band part of the symmetric matrix, supplied row-by-row, with the leading diagonal of the matrix in column \(k\) of the array, the first sub-diagonal starting at position 1 in column \(k-1\), and so on. The top left \(k\)-by- \(k\) triangle of array \(a\) is not referenced.
The following program segment transfers the lower triangular part of a symmetric row-major band matrix from row-major full matrix storage (matrix, with leading dimension 1 dm) to row-major band storage (\(a\), with leading dimension Ida):
```

for (i = 0; i < n; i++) {
m = k - i;
for (j = max(0, i-k); j <= i; j++) {
a[(m+j) + i*lda] = matrix[j + i*ldm];
}
}

```

Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least \((k+1)\).

Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the vector \(x\).

Specifies the increment for the elements of \(x\).
The value of incx must not be zero.
```

beta Specifies the scalar beta.
y
incy
Specifies the scalar beta.
Array, size at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array $y$ must contain the vector $y$.
Specifies the increment for the elements of $y$.
The value of incy must not be zero.

```

\section*{Output Parameters}
y
Overwritten by the updated vector \(y\).
```

cblas_?spmv
Computes a matrix-vector product with a symmetric
packed matrix.
Syntax
void cblas_sspmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const float alpha, const float *ap, const float *x, const MKL_INT incx, const float
beta, float *y, const MKL_INT incy);
void cblas_dspmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const double alpha, const double *ap, const double *x, const MKL_INT incx, const double
beta, double *y, const MKL_INT incy);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?spmv routines perform a matrix-vector operation defined as
```

y := alpha*A*x + beta*y,

```
where:
alpha and beta are scalars,
\(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n\)-by- \(n\) symmetric matrix, supplied in packed form.
Input Parameters
Layout
Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).
uplo
Specifies whether the upper or lower triangular part of the matrix \(A\) is supplied in the packed array ap.

If uplo = CblasUpper, then the upper triangular part of the matrix \(A\) is supplied in the packed array ap.

If uplo = CblasLower, then the low triangular part of the matrix \(A\) is supplied in the packed array \(a p\).
```

n
alpha
ap

```

X

Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
Specifies the scalar alpha.
Array, size at least \(((n *(n+1)) / 2)\).
For Layout = CblasColMajor:
Before entry with uplo = CblasUpper, the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that ap[0] contains \(A_{1,1}, a p[1]\) and \(a p[2]\) contain \(A_{1,2}\) and \(A_{2,2}\) respectively, and so on. Before entry with uplo \(=\) CblasLower, the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-by-column, so that ap[0] contains \(A_{1,1}\), ap [1] and ap [2] contain \(A_{2,1}\) and \(A_{3,1}\) respectively, and so on.
For Layout = CblasRowMajor:
Before entry with uplo = CblasUpper, the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, row-by-row, ap [0] contains \(A_{1,1}, a p[1]\) and \(a p\) [2] contain \(A_{1,2}\) and \(A_{1,3}\) respectively, and so on. Before entry with uplo \(=\) CblasLower, the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, row-by-row, so that \(a p[0]\) contains \(A_{1,1}, a p[1]\) and \(a p[2]\) contain \(A_{2,1}\) and \(A_{2,2}\) respectively, and so on.

Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).

Specifies the increment for the elements of \(x\).
The value of incx must not be zero.
Specifies the scalar beta.
When beta is supplied as zero, then \(y\) need not be set on input.
Array, size at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\).

Specifies the increment for the elements of \(y\).
The value of incy must not be zero.

\section*{Output Parameters}

Y
Overwritten by the updated vector \(y\).

\section*{cblas_?spr}

Performs a rank-1 update of a symmetric packed
matrix.

\section*{Syntax}
```

void cblas_sspr (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const float alpha, const float *x, const MKL_INT incx, float *ap);
void cblas_dspr (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const double alpha, const double *x, const MKL_INT incx, double *ap);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?spr routines perform a matrix-vector operation defined as
```

a:=alpha* }\mp@subsup{x}{}{\star}\mp@subsup{x}{}{\prime}+A

```
where:
alpha is a real scalar,
\(x\) is an \(n\)-element vector,
\(A\) is an \(n\)-by- \(n\) symmetric matrix, supplied in packed form.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Layout & Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor). \\
\hline uplo & Specifies whether the upper or lower triangular part of the matrix \(A\) is supplied in the packed array ap. \\
\hline & If uplo = CblasUpper, then the upper triangular part of the matrix \(A\) is supplied in the packed array ap. \\
\hline & If uplo = CblasLower, then the low triangular part of the matrix \(A\) is supplied in the packed array ap. \\
\hline \(n\) & Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero. \\
\hline alpha & Specifies the scalar alpha. \\
\hline \(x\) & Array, size at least \((1+(n-1)\) *abs (incx)). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\). \\
\hline incx & Specifies the increment for the elements of \(x\). \\
\hline & The value of incx must not be zero. \\
\hline ap & For Layout = CblasColMajor: \\
\hline
\end{tabular}

Before entry with uplo = CblasUpper, the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that \(a p[0]\) contains \(A_{1,1}, a p[1]\) and \(a p[2]\) contain \(A_{1,2}\) and \(A_{2,2}\) respectively, and so on.
Before entry with uplo = CblasLower, the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that ap[0] contains \(A_{1,1}, a p[1]\) and \(a p[2]\) contain \(A_{2,1}\) and \(A_{3,1}\) respectively, and so on.
For Layout = CblasRowMajor:
Before entry with uplo = CblasUpper, the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, row-by-row, ap [0] contains \(A_{1,1}, a p\) [1] and ap [2] contain \(A_{1,2}\) and \(A_{1,3}\) respectively, and so on.

Before entry with uplo = CblasLower, the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, row-by-row, so that ap[0] contains \(A_{1,1}\), ap [1] and ap[2] contain \(A_{2,1}\) and \(A_{2,2}\) respectively, and so on.

\section*{Output Parameters}
ap
With uplo = CblasUpper, overwritten by the upper triangular part of the updated matrix.

With uplo = CblasLower, overwritten by the lower triangular part of the updated matrix.
cblas_?spr2
Computes a rank-2 update of a symmetric packed matrix.

\section*{Syntax}
```

void cblas_sspr2 (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const float alpha, const float *x, const MKL_INT incx, const float *y, const MKL_INT
incy, float *ap);
void cblas_dspr2 (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const double alpha, const double *x, const MKL_INT incx, const double *y, const MKL_INT
incy, double *ap);

```

Include Files
- mkl.h

\section*{Description}

The ?spr2 routines perform a matrix-vector operation defined as
\[
A:=a l p h a^{\star} x^{\star} y^{\prime}+a l p h a^{\star} y^{\star} x^{\prime}+A
\]
where:
alpha is a scalar,
\(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n\)-by- \(n\) symmetric matrix, supplied in packed form.

\section*{Input Parameters}

Layout Specifies whether two-dimensional array storage is row-major
(CblasRowMajor) or column-major (CblasColMajor).
uplo Specifies whether the upper or lower triangular part of the matrix \(A\) is supplied in the packed array ap.
If uplo = CblasUpper, then the upper triangular part of the matrix \(A\) is supplied in the packed array ap.
If uplo = CblasLower, then the low triangular part of the matrix \(A\) is supplied in the packed array ap.
```

n
alpha
x
incx
y
incy
ap

```

Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero. Specifies the scalar alpha.

Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).

Specifies the increment for the elements of \(x\).
The value of incx must not be zero.
Array, size at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\).

Specifies the increment for the elements of \(y\). The value of incy must not be zero.

For Layout = CblasColMajor:
Before entry with uplo = CblasUpper, the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that \(a p[0]\) contains \(A_{1,1}, a p[1]\) and \(a p[2]\) contain \(A_{1,2}\) and \(A_{2,2}\) respectively, and so on.

Before entry with uplo = CblasLower, the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that ap [0] contains \(A_{1,1}, a p[1]\) and \(a p[2]\) contain \(A_{2,1}\) and \(A_{3,1}\) respectively, and so on.

For Layout = CblasRowMajor:
Before entry with uplo = CblasUpper, the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, row-by-row, ap [0] contains \(A_{1,1}, a p\) [1] and ap[2] contain \(A_{1,2}\) and \(A_{1,3}\) respectively, and so on.

Before entry with uplo = CblasLower, the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, row-by-row, so that ap [0] contains \(A_{1,1}\), ap [1] and ap [2] contain \(A_{2,1}\) and \(A_{2,2}\) respectively, and so on.

\section*{Output Parameters}

With uplo = CblasUpper, overwritten by the upper triangular part of the updated matrix.

With uplo = CblasLower, overwritten by the lower triangular part of the updated matrix.
cblas_?symv
Computes a matrix-vector product for a symmetric
matrix.
Syntax
```

void cblas_ssymv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const float alpha, const float *a, const MKL_INT lda, const float *x, const MKL_INT
incx, const float beta, float *y, const MKL_INT incy);

```
```

void cblas_dsymv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const double alpha, const double *a, const MKL_INT lda, const double *x, const MKL_INT
incx, const double beta, double *y, const MKL_INT incy);

```

Include Files
- mkl.h

\section*{Description}

The ?symv routines perform a matrix-vector operation defined as
```

y := alpha*A*x + beta*y,

```
where:
alpha and beta are scalars, \(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n\)-by- \(n\) symmetric matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Layout & Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor). \\
\hline \multirow[t]{3}{*}{uplo} & Specifies whether the upper or lower triangular part of the array a is used. \\
\hline & If uplo = CblasUpper, then the upper triangular part of the array \(a\) is used. \\
\hline & If uplo = CblasLower, then the low triangular part of the array \(a\) is used. \\
\hline \(n\) & Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero. \\
\hline alpha & Specifies the scalar alpha. \\
\hline \multirow[t]{2}{*}{a} & Array, size lda*n. \\
\hline & Before entry with uplo = CblasUpper, the leading \(n\)-by- \(n\) upper triangular part of the array a must contain the upper triangular part of the symmetric matrix \(A\) and the strictly lower triangular part of \(a\) is not referenced. Before entry with uplo = CblasLower, the leading \(n\)-by- \(n\) lower triangular part of the array a must contain the lower triangular part of the symmetric matrix \(A\) and the strictly upper triangular part of \(a\) is not referenced. \\
\hline Ida & Specifies the leading dimension of \(a\) as declared in the calling (sub)program. The value of Ida must be at least max \((1, n)\). \\
\hline \(x\) & Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\). \\
\hline \multirow[t]{2}{*}{incx} & Specifies the increment for the elements of \(x\). \\
\hline & The value of incx must not be zero. \\
\hline \multirow[t]{2}{*}{beta} & Specifies the scalar beta. \\
\hline & When beta is supplied as zero, then \(y\) need not be set on input. \\
\hline
\end{tabular}
```

y Array, size at least (1 + (n - 1)*abs(incy)).Before entry, the
incremented array }y\mathrm{ must contain the n-element vector }y\mathrm{ .
Specifies the increment for the elements of }y\mathrm{ .
The value of incy must not be zero.

```

\section*{Output Parameters}
```

y

```
 Overwritten by the updated vector \(y\).
cblas_?syr
Performs a rank-1 update of a symmetric matrix.

\section*{Syntax}
```

void cblas_ssyr (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const float alpha, const float *x, const MKL_INT incx, float *a, const MKL_INT Ida);
void cblas_dsyr (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const double alpha, const double *x, const MKL_INT incx, double *a, const MKL_INT lda);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?syr routines perform a matrix-vector operation defined as
```

A := alpha* ***' + A,

```
where:
alpha is a real scalar,
\(x\) is an \(n\)-element vector,
\(A\) is an \(n\)-by- \(n\) symmetric matrix.
Input Parameters
Layout
Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).
uplo
n
alpha
x
incx
Specifies whether the upper or lower triangular part of the array a is used.
If uplo = CblasUpper, then the upper triangular part of the array \(a\) is used.

If uplo = CblasLower, then the low triangular part of the array \(a\) is used.
Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
Specifies the scalar alpha.
Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).

Specifies the increment for the elements of \(x\).

The value of incx must not be zero.
a
Array, size \(1 d^{*}{ }^{*} n\).
Before entry with uplo = CblasUpper, the leading \(n\)-by- \(n\) upper triangular part of the array a must contain the upper triangular part of the symmetric matrix \(A\) and the strictly lower triangular part of \(a\) is not referenced.

Before entry with uplo = CblasLower, the leading \(n\)-by- \(n\) lower triangular part of the array a must contain the lower triangular part of the symmetric matrix \(A\) and the strictly upper triangular part of \(a\) is not referenced.

Specifies the leading dimension of \(a\) as declared in the calling (sub)program. The value of Ida must be at least max \((1, n)\).

\section*{Output Parameters}
a
With uplo = CblasUpper, the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated matrix.

With uplo = CblasLower, the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated matrix.
cblas_?syr2
Performs a rank-2 update of a symmetric matrix.

\section*{Syntax}
```

void cblas_ssyr2 (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const float alpha, const float *x, const MKL_INT incx, const float *y, const MKL_INT
incy, float *a, const MKL_INT lda);
void cblas_dsyr2 (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const MKL_INT n,
const double alpha, const double *x, const MKL_INT incx, const double *y, const MKL_INT
incy, double *a, const MKL_INT lda);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?syr2 routines perform a matrix-vector operation defined as
\[
A:=\text { alpha* } x^{\star} y^{\prime}+\text { alpha* } y^{\star} x^{\prime}+A,
\]
where:
alpha is scalar,
\(x\) and \(y\) are \(n\)-element vectors,
\(A\) is an \(n\)-by- \(n\) symmetric matrix.
Input Parameters
Layout
Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & Specifies whether the upper or lower triangular part of the array \(a\) is used. \\
\hline & If uplo = CblasUpper, then the upper triangular part of the array \(a\) is used. \\
\hline & If uplo = CblasLower, then the low triangular part of the array \(a\) is used. \\
\hline n & Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero. \\
\hline alpha & Specifies the scalar alpha. \\
\hline \(x\) & Array, size at least (1 + (n-1)*abs (incx)). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\). \\
\hline \multirow[t]{2}{*}{incx} & Specifies the increment for the elements of \(x\). \\
\hline & The value of incx must not be zero. \\
\hline Y & Array, size at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\). \\
\hline incy & Specifies the increment for the elements of \(y\). The value of incy must not be zero. \\
\hline \multirow[t]{3}{*}{a} & Array, size \(1 d a^{\star} n\). \\
\hline & Before entry with uplo = CblasUpper, the leading \(n\)-by- \(n\) upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(a\) is not referenced. \\
\hline & Before entry with uplo = CblasLower, the leading \(n\)-by- \(n\) lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(a\) is not referenced. \\
\hline Ida & Specifies the leading dimension of \(a\) as declared in the calling (sub) program. The value of Ida must be at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
With uplo = CblasUpper, the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated matrix.
With uplo = CblasLower, the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated matrix.
cblas_?tbmv
Computes a matrix-vector product using a triangular band matrix.

\section*{Syntax}
```

void cblas_stbmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const MKL_INT k, const
float *a, const MKL_INT lda, float *x, const MKL_INT incx);
void cblas_dtbmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const MKL_INT k, const
double *a, const MKL_INT lda, double *x, const MKL_INT incx);

```
```

void cblas_ctbmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const MKL_INT k, const
void *a, const MKL_INT lda, void *x, const MKL_INT incx);
void cblas_ztbmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const MKL_INT k, const
void *a, const MKL_INT lda, void *x, const MKL_INT incx);

```

Include Files
- mkl.h

\section*{Description}

The ? tbmv routines perform one of the matrix-vector operations defined as
```

x := A* }x\mathrm{ , or }x:=\mp@subsup{A}{}{\prime*}x,\mathrm{ or }x:=\operatorname{conjg(A')*}x

```
where:
\(x\) is an \(n\)-element vector,
\(A\) is an \(n\)-by- \(n\) unit, or non-unit, upper or lower triangular band matrix, with \((k+1)\) diagonals.

\section*{Input Parameters}

Layout
uplo
trans
diag
n
k
a

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies whether the matrix \(A\) is an upper or lower triangular matrix:
uplo = CblasUpper
if uplo = CblasLower, then the matrix is low triangular.
Specifies the operation:
if trans \(=\) CblasNoTrans, then \(x:=A^{\star} x\);
if trans=CblasTrans, then \(x:=A^{\prime *}{ }^{\prime}\);
if trans \(=\) CblasConjTrans, then \(x:=\operatorname{conjg}\left(A^{\prime}\right){ }^{*} x\).
Specifies whether the matrix \(A\) is unit triangular:
if diag = CblasUnit then the matrix is unit triangular;
if diag = CblasNonUnit , then the matrix is not unit triangular.
Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
On entry with uplo = CblasUpper specifies the number of super-diagonals of the matrix \(A\). On entry with uplo \(=\) CblasLower, \(k\) specifies the number of sub-diagonals of the matrix \(a\).

The value of \(k\) must satisfy \(0 \leq k\).
Array, size lda*n.
Layout = CblasColMajor:

Before entry with uplo = CblasUpper, the leading \((k+1)\) by \(n\) part of the array a must contain the upper triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row \(k\) of the array, the first super-diagonal starting at position 1 in row (\(k-1\)), and so on. The top left \(k\) by \(k\) triangle of the array \(a\) is not referenced. The following program segment transfers an upper triangular band matrix from conventional full matrix storage (matrix, with leading dimension \(/ d m\)) to band storage (\(a\), with leading dimension Ida):
```

for (j = 0; j < n; j++) {
m = k - j;
for (i = max( 0, j - k); i <= j; i++) {
a[(m+i) + j*lda] = matrix[i + j*ldm];
}
}

```

Before entry with uplo \(=\) CblasLower, the leading \((k+1)\) by \(n\) part of the array a must contain the lower triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row 0 of the array, the first sub-diagonal starting at position 0 in row 1 , and so on. The bottom right \(k\) by \(k\) triangle of the array \(a\) is not referenced. The following program segment transfers a lower triangular band matrix from conventional full matrix storage (matrix, with leading dimension \(/ d m\)) to band storage (\(a\), with leading dimension \(/ d a\)):
```

for (j = 0; j < n; j++) {
m = -j;
for (i = j; i < min(n, j + k + 1); i++) {
a[(m+i) + j*lda] = matrix[i + j*ldm];
}
}

```

Note that when diag = CblasUnit , the elements of the array a corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.

Layout = CblasRowMajor:
Before entry with uplo = CblasUpper, the leading \((k+1)\)-by-n part of array a must contain the upper triangular band part of the matrix of coefficients. The matrix must be supplied row-by-row, with the leading diagonal of the matrix in column 0 of the array, the first super-diagonal starting at position 0 in column 1, and so on. The bottom right \(k\)-by- \(k\) triangle of array \(a\) is not referenced.

The following program segment transfers the upper triangular part of a Hermitian band matrix from row-major full matrix storage (matrix with leading dimension \(l \mathrm{dm}\)) to row-major band storage (\(a\), with leading dimension Ida):
```

for (i = 0; i < n; i++) {
m = -i;
for (j = i; j < MIN(n, i+k+1); j++) {
a[(m+j) + i*lda] = matrix[j + i*ldm];
}
}

```

Before entry with uplo = CblasLower, the leading \((k+1)\)-by-n part of array a must contain the lower triangular band part of the matrix of coefficients, supplied row-by-row, with the leading diagonal of the matrix in column \(k\) of the array, the first sub-diagonal starting at position 1 in column \(k-1\), and so on. The top left \(k\)-by- \(k\) triangle of array \(a\) is not referenced.

The following program segment transfers the lower triangular part of a Hermitian row-major band matrix from row-major full matrix storage (matrix, with leading dimension 1 dm) to row-major band storage (\(a\), with leading dimension lda):
```

for (i = 0; i < n; i++) {
m = k - i;
for (j = max(0, i-k); j <= i; j++) {
a[(m+j) + i*lda] = matrix[j + i*ldm];
}
}

```

Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).

Specifies the increment for the elements of \(x\).
The value of incx must not be zero.

\section*{Output Parameters}

X
Overwritten with the transformed vector \(x\).
cblas_?tbsv
Solves a system of linear equations whose coefficients are in a triangular band matrix.

\section*{Syntax}
```

void cblas_stbsv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const MKL_INT k, const
float *a, const MKL_INT lda, float *x, const MKL_INT incx);
void cblas_dtbsv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const MKL_INT k, const
double *a, const MKL_INT lda, double *x, const MKL_INT incx);
void cblas_ctbsv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const MKL_INT k, const
void *a, const MKL_INT lda, void *x, const MKL_INT incx);
void cblas_ztbsv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const MKL_INT k, const
void *a, const MKL_INT lda, void *x, const MKL_INT incx);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ? tbsv routines solve one of the following systems of equations:
\(A^{*} x=b\), or \(A^{\prime}{ }^{*} x=b\), or \(\operatorname{conjg}\left(A^{\prime}\right)^{*} x=b\),
where:
\(b\) and \(x\) are \(n\)-element vectors,
\(A\) is an \(n\)-by-n unit, or non-unit, upper or lower triangular band matrix, with \((k+1)\) diagonals.
The routine does not test for singularity or near-singularity.
Such tests must be performed before calling this routine.

\section*{Input Parameters}

Layout
uplo
trans
diag
n
k
a

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies whether the matrix \(A\) is an upper or lower triangular matrix:
if uplo = CblasUpper the matrix is upper triangular;
if uplo = CblasLower, the matrix is low triangular.
Specifies the system of equations:
if trans=CblasNoTrans, then \(A^{\star}{ }_{x}=b\);
if trans=CblasTrans, then \(A^{\prime}{ }^{*} x=b\);
if trans \(=\) CblasConjTrans, then conjg(\(\left.A^{\prime}\right){ }^{*} x=b\).
Specifies whether the matrix \(A\) is unit triangular:
if diag = CblasUnit then the matrix is unit triangular;
if diag = CblasNonUnit, then the matrix is not unit triangular.
Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
On entry with uplo \(=\) CblasUpper, \(k\) specifies the number of superdiagonals of the matrix \(A\). On entry with uplo \(=\) CblasLower, \(k\) specifies the number of sub-diagonals of the matrix \(A\).
The value of \(k\) must satisfy \(0 \leq k\).
Array, size lda*n.
Layout = CblasColMajor:
Before entry with uplo = CblasUpper, the leading \((k+1)\) by \(n\) part of the array a must contain the upper triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row \(k\) of the array, the first super-diagonal starting at position 1 in row (\(k-1\)), and so on. The top left \(k\) by \(k\) triangle of the array \(a\) is not referenced.

The following program segment transfers an upper triangular band matrix from conventional full matrix storage (matrix, with leading dimension Idm) to band storage (\(a\), with leading dimension Ida):
```

for (j = 0; j < n; j++) {
m = k - j;
for (i = max( 0, j - k); i <= j; i++) {
a[(m+i) + j*lda] = matrix[i + j*ldm];
}
}

```

Before entry with uplo \(=\) CblasLower, the leading \((k+1)\) by \(n\) part of the array a must contain the lower triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row 0 of the array, the first sub-diagonal starting at position 0 in row 1 , and so on. The bottom right \(k\) by \(k\) triangle of the array \(a\) is not referenced.
The following program segment transfers a lower triangular band matrix from conventional full matrix storage (matrix, with leading dimension Idm) to band storage (\(a\), with leading dimension /da):
```

for (j = 0; j < n; j++) {
m = -j;
for (i = j; i < min(n, j + k + 1); i++) {
a[(m+i) + j*lda] = matrix[i + j*ldm];
}
}

```

When diag = CblasUnit, the elements of the array a corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.

Layout = CblasRowMajor:
Before entry with uplo = CblasUpper, the leading \((k+1)\)-by-n part of array a must contain the upper triangular band part of the matrix of coefficients. The matrix must be supplied row-by-row, with the leading diagonal of the matrix in column 0 of the array, the first super-diagonal starting at position 0 in column 1, and so on. The bottom right \(k\)-by- \(k\) triangle of array \(a\) is not referenced.

The following program segment transfers the upper triangular part of a Hermitian band matrix from row-major full matrix storage (matrix with leading dimension \(l \mathrm{dm}\)) to row-major band storage (\(a\), with leading dimension Ida):
```

for (i = 0; i < n; i++) {
m = -i;
for (j = i; j < MIN(n, i+k+1); j++) {
a[(m+j) + i*lda] = matrix[j + i*ldm];
}
}

```

Before entry with uplo = CblasLower, the leading \((k+1)\)-by-n part of array a must contain the lower triangular band part of the matrix of coefficients, supplied row-by-row, with the leading diagonal of the matrix in column \(k\) of the array, the first sub-diagonal starting at position 1 in column \(k-1\), and so on. The top left \(k\)-by- \(k\) triangle of array \(a\) is not referenced.
The following program segment transfers the lower triangular part of a Hermitian row-major band matrix from row-major full matrix storage (matrix, with leading dimension \(l d m\)) to row-major band storage (\(a\), with leading dimension Ida):
for (i = 0; i < n; i++) {
for (i = 0; i < n; i++) {
 m = k - i;
 m = k - i;
 for (j = max(0, i-k); j <= i; j++) {
 for (j = max(0, i-k); j <= i; j++) {
 a[(m+j) + i*lda] = matrix[j + i*ldm];
 a[(m+j) + i*lda] = matrix[j + i*ldm];
 }
 }
}
}
Ida \(\quad\) Specifies the leading dimension of \(a\) as declared in the calling (sub)program. The value of Ida must be at least \((k+1)\).
Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element right-hand side vector \(b\).
Specifies the increment for the elements of \(x\).
The value of incx must not be zero.

\section*{Output Parameters}

X
Overwritten with the solution vector \(x\).
```

cblas_?tpmv
Computes a matrix-vector product using a triangular
packed matrix.

```

\section*{Syntax}
```

void cblas_stpmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const float *ap, float
*x, const MKL_INT incx);
void cblas_dtpmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const double *ap, double
*x, const MKL_INT incx);
void cblas_ctpmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const void *ap, void *x,
const MKL_INT incx);
void cblas_ztpmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const void *ap, void *x,
const MKL_INT incx);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ? tpmv routines perform one of the matrix-vector operations defined as
```

x := A*}x,\mathrm{ or x := A'*x, or x := conjg(A')*x,

```
where:
\(x\) is an \(n\)-element vector,
\(A\) is an \(n\)-by- \(n\) unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

\section*{Input Parameters}

Layout
uplo
trans
diag
\(n\)
ap
x
incx

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies whether the matrix \(A\) is upper or lower triangular:
uplo = CblasUpper
if uplo = CblasLower, then the matrix is low triangular.
Specifies the operation:
```

if trans=CblasNoTrans, then x := A*x;
if trans=CblasTrans, then x := A'*x;
if trans=CblasConjTrans, then x := conjg(A')*x.

```

Specifies whether the matrix \(A\) is unit triangular:
if diag = CblasUnit then the matrix is unit triangular;
if diag = CblasNonUnit, then the matrix is not unit triangular.
Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
Array, size at least \(\left(\left(n^{\star}(n+1)\right) / 2\right)\).
For Layout = CblasColMajor:
Before entry with uplo = CblasUpper, the array ap must contain the upper triangular matrix packed sequentially, column-by-column, so that respectively, and so on. Before entry with uplo = CblasLowerap[0] contains \(A_{1,1}\), ap [1] and ap [2] contain \(A_{1,2}\) and \(A_{2,2}\), the array ap must contain the lower triangular matrix packed sequentially, column-by-column, so thatap [0] contains \(A_{1,1}\), ap [1] and ap[2] contain \(A_{2,1}\) and \(A_{3,1}\) respectively, and so on. When diag \(=\) CblasUnit, the diagonal elements of \(a\) are not referenced, but are assumed to be unity.
For Layout = CblasRowMajor:
Before entry with uplo = CblasUpper, the array ap must contain the upper triangular matrix packed sequentially, row-by-row, ap [0] contains \(A_{1,1}\), ap [1] and ap [2] contain \(A_{1,2}\) and \(A_{1,3}\) respectively, and so on.
Before entry with uplo = CblasLower, the array ap must contain the lower triangular matrix packed sequentially, row-by-row, so that ap [0] contains \(A_{1,1}, a p[1]\) and \(a p[2]\) contain \(A_{2,1}\) and \(A_{2,2}\) respectively, and so on.

Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).

Specifies the increment for the elements of \(x\).
The value of incx must not be zero.

\section*{Output Parameters}

X
Overwritten with the transformed vector \(x\).
```

cblas_?tpsv
Solves a system of linear equations whose coefficients
are in a triangular packed matrix.
Syntax
void cblas_stpsv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const float *ap, float
*x, const MKL_INT incx);
void cblas_dtpsv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const double *ap, double
*x, const MKL_INT incx);
void cblas_ctpsv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const void *ap, void *x,
const MKL_INT incx);
void cblas_ztpsv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const void *ap, void *x,
const MKL_INT incx);

```

Include Files
- mkl.h

\section*{Description}

The ?tpsv routines solve one of the following systems of equations
\(A^{*} X=b\), or \(A^{\prime}{ }^{*} x=b\), or conjg (\(\left.A^{\prime}\right){ }^{*} x=b\),
where:
\(b\) and \(x\) are \(n\)-element vectors,
\(A\) is an \(n\)-by-n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.
This routine does not test for singularity or near-singularity.
Such tests must be performed before calling this routine.

\section*{Input Parameters}

Layout
uplo
trans

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies whether the matrix \(A\) is upper or lower triangular:
uplo = CblasUpper
if uplo = CblasLower, then the matrix is low triangular.
Specifies the system of equations:
if trans=CblasNoTrans, then \(A^{*} x=b\);
if trans=CblasTrans, then \(A^{\prime}{ }^{*}{ }_{x}=b\);
if trans=CblasConjTrans, then conjg(\(\left.A^{\prime}\right){ }^{*} X=b\).

Specifies whether the matrix \(A\) is unit triangular:
if diag = CblasUnit then the matrix is unit triangular;
if diag = CblasNonUnit , then the matrix is not unit triangular.
Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
Array, size at least \(\left(\left(n^{\star}(n+1)\right) / 2\right)\).
For Layout = CblasColMajor:
Before entry with uplo = CblasUpper, the array ap must contain the upper triangular part of the triangular matrix packed sequentially, column-bycolumn, so that \(a p[0]\) contains \(A_{1,1}, a p[1]\) and \(a p[2]\) contain \(A_{1,2}\) and \(A_{2,2}\) respectively, and so on.
Before entry with uplo = CblasLower, the array ap must contain the lower triangular part of the triangular matrix packed sequentially, column-bycolumn, so that ap[0] contains \(A_{1,1}, a p[1]\) and ap[2] contain \(A_{2,1}\) and \(A_{3,1}\) respectively, and so on.
For Layout = CblasRowMajor:
Before entry with uplo = CblasUpper, the array ap must contain the upper triangular part of the triangular matrix packed sequentially, row-by-row, ap [0] contains \(A_{1,1}, a p\) [1] and ap [2] contain \(A_{1,2}\) and \(A_{1,3}\) respectively, and so on. Before entry with uplo \(=\) CblasLower, the array ap must contain the lower triangular part of the triangular matrix packed sequentially, row-by-row, so that ap[0] contains \(A_{1,1}, a p\) [1] and ap [2] contain \(A_{2,1}\) and \(A_{2,2}\) respectively, and so on.
When diag = CblasUnit, the diagonal elements of a are not referenced, but are assumed to be unity.

Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element right-hand side vector \(b\).

Specifies the increment for the elements of \(x\).
The value of incx must not be zero.

\section*{Output Parameters}

X
Overwritten with the solution vector \(x\).
cblas_?trmv
Computes a matrix-vector product using a triangular matrix.

\section*{Syntax}
```

void cblas_strmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const float *a, const
MKL_INT lda, float *x, const MKL_INT incx);
void cblas_dtrmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const double *a, const
MKL_INT lda, double *x, const MKL_INT incx);

```
```

void cblas_ctrmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const void *a, const
MKL_INT lda, void *x, const MKL_INT incx);
void cblas_ztrmv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const void *a, const
MKL_INT lda, void *x, const MKL_INT incx);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?trmv routines perform one of the following matrix-vector operations defined as
```

x := A*

```
where:
\(x\) is an \(n\)-element vector,
\(A\) is an \(n\)-by- \(n\) unit, or non-unit, upper or lower triangular matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Layout & Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor). \\
\hline uplo & Specifies whether the matrix \(A\) is upper or lower triangular: \\
\hline & uplo = CblasUpper \\
\hline & if uplo = CblasLower, then the matrix is low triangular. \\
\hline trans & Specifies the operation: \\
\hline & if trans=CblasNoTrans, then \(\mathrm{x}:=A^{*} \mathrm{x}\); \\
\hline & if trans=CblasTrans, then \(x:=A^{\prime *}{ }^{\text {x }}\) \\
\hline & if trans=CblasConjTrans, then \(x:=\operatorname{conjg}\left(A^{\prime}\right){ }^{*} \mathrm{x}\). \\
\hline diag & Specifies whether the matrix \(A\) is unit triangular: \\
\hline & if diag = CblasUnit then the matrix is unit triangular; \\
\hline & if diag = CblasNonUnit, then the matrix is not unit triangular. \\
\hline \(n\) & Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero. \\
\hline a & Array, size \(1 d a^{\star} n\). Before entry with uplo = CblasUpper, the leading \(n\)-by\(n\) upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of \(a\) is not referenced. Before entry with uplo \(=\mathrm{Cb}\) lasLower, the leading \(n\)-by- \(n\) lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of \(a\) is not referenced. \\
\hline & When diag = CblasUnit, the diagonal elements of \(a\) are not referenced either, but are assumed to be unity. \\
\hline Ida & Specifies the leading dimension of \(a\) as declared in the calling (sub)program. The value of Ida must be at least max \((1, n)\). \\
\hline
\end{tabular}

Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).
incx
Specifies the increment for the elements of \(x\).
The value of incx must not be zero.

\section*{Output Parameters}

X
Overwritten with the transformed vector \(x\).
cblas_?trsv
Solves a system of linear equations whose coefficients
are in a triangular matrix.

\section*{Syntax}
```

void cblas_strsv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const float *a, const
MKL_INT lda, float *x, const MKL_INT incx);
void cblas_dtrsv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const double *a, const
MKL_INT lda, double *x, const MKL_INT incx);
void cblas_ctrsv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const void *a, const
MKL_INT lda, void *x, const MKL_INT incx);
void cblas_ztrsv (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const CBLAS_DIAG diag, const MKL_INT n, const void *a, const
MKL_INT lda, void *x, const MKL_INT incx);

```

Include Files
- mkl.h

\section*{Description}

The ?trsv routines solve one of the systems of equations:
\(A^{*} x=b\), or \(A^{\prime} \star_{X}=b\), or conjg(\(\left.A^{\prime}\right){ }^{*} x=b\),
where:
\(b\) and \(x\) are \(n\)-element vectors,
\(A\) is an \(n\)-by- \(n\) unit, or non-unit, upper or lower triangular matrix.
The routine does not test for singularity or near-singularity.
Such tests must be performed before calling this routine.

\section*{Input Parameters}
```

Layout
Specifies whether two-dimensional array storage is row-major
(CblasRowMajor) or column-major (CblasColMajor).
uplo Specifies whether the matrix A is upper or lower triangular:

```
\begin{tabular}{|c|c|}
\hline & uplo = CblasUpper \\
\hline & if uplo = CblasLower, then the matrix is low triangular. \\
\hline trans & Specifies the systems of equations: \\
\hline & if trans=CblasNoTrans, then \(A^{\star} x=b\); \\
\hline & if trans \(=\) CblasTrans, then \(A^{\prime}{ }^{*} x=b\); \\
\hline & if trans \(=\) CblasConjTrans, then oconjg (\(A^{\prime}\)) \(*_{x}=\mathrm{b}\). \\
\hline diag & Specifies whether the matrix \(A\) is unit triangular: \\
\hline & if diag = Cblasunit then the matrix is unit triangular; \\
\hline & if diag = CblasNonUnit, then the matrix is not unit triangular. \\
\hline \(n\) & Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero. \\
\hline a & Array, size \(l d a^{\star} n\). Before entry with uplo \(=\) CblasUpper, the leading \(n\) -by-n upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of \(a\) is not referenced. Before entry with uplo = CblasLower, the leading n-by-n lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of \(a\) is not referenced. \\
\hline & When diag = CblasUnit, the diagonal elements of a are not referenced either, but are assumed to be unity. \\
\hline Ida & Specifies the leading dimension of \(a\) as declared in the calling (sub)program. The value of Ida must be at least max \((1, n)\). \\
\hline \(x\) & Array, size at least (1 + (n-1)*abs (incx)). Before entry, the incremented array \(x\) must contain the \(n\)-element right-hand side vector \(b\). \\
\hline incx & Specifies the increment for the elements of \(x\). \\
\hline & The value of incx must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}

X
Overwritten with the solution vector \(x\).

\section*{BLAS Level 3 Routines}

BLAS Level 3 routines perform matrix-matrix operations. The following table lists the BLAS Level 3 routine groups and the data types associated with them.
BLAS Level 3 Routine Groups and Their Data Types
\begin{tabular}{lll}
\hline Routine Group & Data Types & Description \\
\hline cblas_? gemm & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & Computes a matrix-matrix product with general matrices. \\
cblas_?hemm & \(\mathrm{c}, \mathrm{z}\) & \begin{tabular}{l}
Computes a matrix-matrix product where one input matrix \\
is Hermitian.
\end{tabular} \\
cblas_?herk & \(\mathrm{c}, \mathrm{z}\) & Performs a Hermitian rank-k update. \\
cblas_?her2k & \(\mathrm{c}, \mathrm{z}\) & Performs a Hermitian rank-2k update.
\end{tabular}
\begin{tabular}{lll}
\hline Routine Group & Data Types & Description \\
\hline cblas_?symm & s, d, c, z & \begin{tabular}{l}
Computes a matrix-matrix product where one input matrix \\
is symmetric.
\end{tabular} \\
cblas_?syrk & s,d, c, z & Performs a symmetric rank-k update. \\
cblas_?syr2k & s,d, c, z & Performs a symmetric rank-2k update. \\
cblas_?trmm & s,d, c, z & \begin{tabular}{l}
Computes a matrix-matrix product where one input matrix \\
is triangular. \\
cblas_?trsm
\end{tabular} \\
s,d, c, z & Solves a triangular matrix equation. \\
\hline
\end{tabular}

\section*{Symmetric Multiprocessing Version of Intel \({ }^{\circledR}\) MKL}

Many applications spend considerable time executing BLAS routines. This time can be scaled by the number of processors available on the system through using the symmetric multiprocessing (SMP) feature built into the Intel \({ }^{\circledR}\) oneMKL. The performance enhancements based on the parallel use of the processors are available without any programming effort on your part.

To enhance performance, the library uses the following methods:
- The BLAS functions are blocked where possible to restructure the code in a way that increases the localization of data reference, enhances cache memory use, and reduces the dependency on the memory bus.
- The code is distributed across the processors to maximize parallelism.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201
cblas_?gemm
Computes a matrix-matrix product with general matrices.

\section*{Syntax}
```

void cblas_hgemm (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa, const
CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const
MKL_F16 alpha, const MKL_F16 *a, const MKL_INT lda, const MKL_F16 *b, const MKL_INT
ldb, const MKL_F16 beta, MKL_F16 *C, const MKL_INT ldc);
void cblas_sgemm (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa, const
CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const float
alpha, const float *a, const MKL_INT lda, const float *b, const MKL_INT ldb, const
float beta, float *c, const MKL_INT ldc);
void cblas_dgemm (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa, const
CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const double
alpha, const double *a, const MKL_INT lda, const double *b, const MKL_INT ldb, const
double beta, double *}\mp@subsup{}{C}{\prime}\mathrm{ , const MKL_INT Idc);
void cblas_cgemm (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa, const
CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const void
*alpha, const void *a, const MKL_INT lda, const void *b, const MKL_INT ldb, const void
*beta, void *c, const MKL_INT ldc);

```
```

void cblas_zgemm (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa, const
CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const void
*alpha, const void *a, const MKL_INT lda, const void *b, const MKL_INT ldb, const void
*beta, void *c, const MKL_INT ldc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?gemm routines compute a scalar-matrix-matrix product and add the result to a scalar-matrix product, with general matrices. The operation is defined as
```

C:= alpha*op (A)*op(B) + beta*C

```
where:
```

op (X) is one of op (X) = X, or op (X) = X , or op (X) = X 'H,

```
alpha and beta are scalars,
\(A, B\) and \(C\) are matrices:
op (\(A\)) is an \(m\)-by- \(k\) matrix,
\(o p(B)\) is a \(k\)-by-n matrix,
\(C\) is an \(m\)-by- \(n\) matrix.
See also:
- ?gemm3m, BLAS-like extension routines, that use matrix multiplication for similar matrix-matrix operations

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Layout & Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor). \\
\hline transa & \begin{tabular}{l}
Specifies the form of op (A) used in the matrix multiplication: \\
- if transa=CblasNoTrans, then op \((A)=A\); \\
- if transa=CblasTrans, then op \((A)=A^{T}\); \\
- if transa=CblasConjTrans, then op \((A)=A^{\mathrm{H}}\).
\end{tabular} \\
\hline transb & \begin{tabular}{l}
Specifies the form of op (B) used in the matrix multiplication: \\
- if transb \(=C b l a s N o T r a n s\), then \(o p(B)=B\); \\
- if transb \(=\) CblasTrans, then op \((B)=B^{T}\); \\
- if transb=CblasConjTrans, then op \((B)=B^{\mathrm{H}}\).
\end{tabular} \\
\hline m & Specifies the number of rows of the matrix op (A) and of the matrix \(C\). The value of \(m\) must be at least zero. \\
\hline \(n\) & Specifies the number of columns of the matrix op (\(B\)) and the number of columns of the matrix \(C\). The value of \(n\) must be at least zero. \\
\hline k & Specifies the number of columns of the matrix op (\(A\)) and the number of rows of the matrix \(\mathrm{op}(B)\). The value of \(k\) must be at least zero. \\
\hline alpha & Specifies the scalar alpha. \\
\hline
\end{tabular}
a
b
\begin{tabular}{|l|l|l|}
\hline & transa=CblasNoTrans & \begin{tabular}{l}
transa=CblasTrans or \\
transa=CblasConjTrans
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Array, size \(l d a^{*} k\). \\
Before entry, the leading \\
\(m\)-by- part of the array a \\
must contain the matrix \\
\(A\).
\end{tabular} & \begin{tabular}{l}
Array, size \(l d A^{*} m\). \\
Before entry, the leading \(k\) - \\
by-m part of the array a \\
must contain the matrix \(A\).
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
Array, size \(l d a^{*} m\). \\
Before entry, the leading \\
\(k\)-by-m part of the array \(a\) \\
must contain the matrix \\
\(A\).
\end{tabular} & \begin{tabular}{l}
Array, size \(l d a^{*} k\). \\
Before entry, the leading \(m\) - \\
by- \(k\) part of the array a \\
must contain the matrix \(A\).
\end{tabular} \\
\hline
\end{tabular}

Specifies the leading dimension of \(a\) as declared in the calling (sub) program.
\begin{tabular}{|l|l|l|}
\hline & transa=CblasNoTrans & \begin{tabular}{l}
transa=CblasTrans or \\
transa=CblasConjTrans
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, ~ m)\).
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, \quad k)\)
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
lda must be at least \\
\(\max (1, k)\)
\end{tabular} & \begin{tabular}{l}
lda must be at least \\
\(\max (1, ~ m)\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline & transb=CblasNoTrans & \begin{tabular}{l}
transb=CblasTrans or \\
transb=CblasConjTrans
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Array, size \(l d b\) by \(n\). \\
Before entry, the leading \\
\(k\)-by-n part of the array \(b\) \\
must contain the matrix \\
\(B\).
\end{tabular} & \begin{tabular}{l}
Array, size \(l d b\) by \(k\). Before \\
entry the leading \(n\)-by- \(k\) \\
part of the array \(b\) must \\
contain the matrix \(B\).
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
Array, size \(l d b\) by \(k\). \\
Before entry the leading \\
\(n\)-by- \(k\) part of the array \\
must contain the matrix \\
\(B\).
\end{tabular} & \begin{tabular}{l}
Array, size ldb by \(n\). Before \\
entry, the leading \(k\)-by- \(n\) \\
part of the array \(b\) must \\
contain the matrix \(B\).
\end{tabular} \\
\hline
\end{tabular}

Specifies the leading dimension of \(b\) as declared in the calling (sub)program.
When transb=CblasNoTrans, then ldb must be at least max \((1, k)\), otherwise \(1 d b\) must be at least \(\max (1, n)\).
\begin{tabular}{|l|l|l|}
\hline & transb=CblasNoTrans & \begin{tabular}{l}
transb=CblasTrans or \\
trans \(b=C b l a s C o n j T r a n s ~\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
ldb must be at least \\
\(\max (1, k)\).
\end{tabular} & \begin{tabular}{l}
\(I d b\) must be at least \\
\(\max (1, ~ n)\).
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
ldb must be at least \\
\(\max (1, n)\).
\end{tabular} & \begin{tabular}{l}
ldb must be at least \\
\(\max (1, k)\).
\end{tabular} \\
\hline
\end{tabular}
beta

C
ldc

Specifies the scalar beta. When beta is equal to zero, then \(c\) need not be set on input.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Array, size \(l d c\) by \(n\). Before entry, the leading \(m\) - \\
by- \(n\) part of the array \(c\) must contain the matrix \(C\), \\
except when beta is equal to zero, in which case \(c\) \\
need not be set on entry.
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
Array, size \(l d c\) by \(m\). Before entry, the leading \(n-\) \\
by-m part of the array \(c\) must contain the matrix \(C\), \\
except when beta is equal to zero, in which case \(c\) \\
need not be set on entry.
\end{tabular} \\
\hline
\end{tabular}

Specifies the leading dimension of \(c\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|}
\hline Layout \(=\) CblasColMajor & ldc must be at least max \((1, m)\). \\
\hline Layout \(=\) CblasRowMajor & ldc must be at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
c
Overwritten by the \(m\)-by- \(n\) matrix (alpha*op \((A) * o p(B)+b e t a * C\)).

\section*{Example}

For examples of routine usage, see these code examples in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) installation directory:
- cblas_hgemm: examples\cblas\source\cblas_hgemmx.c
- cblas_sgemm: examples\cblas\source\cblas_sgemmx.c
- cblas_dgemm: examples\cblas\source\cblas_dgemmx.c
- cblas_cgemm: examples \cblas\source\cblas_cgemmx.c
- cblas_zgemm: examples\cblas\source\cblas_zgemmx.c
cblas_?hemm
Computes a matrix-matrix product where one input matrix is Hermitian.

\section*{Syntax}
```

void cblas_chemm (const CBLAS_LAYOUT Layout, const CBLAS_SIDE side, const CBLAS_UPLO
uplo, const MKL_INT m, const MKL_INT n, const void *alpha, const void *a, const MKL_INT
lda, const void *b, const MKL_INT ldb, const void *beta, void *c, const MKL_INT ldc);

```
```

void cblas_zhemm (const CBLAS_LAYOUT Layout, const CBLAS_SIDE side, const CBLAS_UPLO
uplo, const MKL_INT m, const MKL_INT n, const void *alpha, const void *a, const MKL_INT
lda, const void *b, const MKL_INT ldb, const void *beta, void *c, const MKL_INT ldC);

```
Include Files
- mkl.h

\section*{Description}

The ?hemm routines compute a scalar-matrix-matrix product using a Hermitian matrix \(A\) and a general matrix \(B\) and add the result to a scalar-matrix product using a general matrix \(C\). The operation is defined as
```

C := alpha*A*B + beta*C

```
or
\(C:=\) alpha* \(B^{\star} A+\operatorname{beta}^{\star} C\)
where:
alpha and beta are scalars,
\(A\) is a Hermitian matrix,
\(B\) and \(C\) are \(m\)-by- \(n\) matrices.
Input Parameters
\begin{tabular}{|c|c|}
\hline Layout & Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor). \\
\hline side & Specifies whether the Hermitian matrix \(A\) appears on the left or right in the operation as follows: \\
\hline & if side = CblasLeft, then \(C\) : = alpha* \({ }^{\star} B+\) beta* \(C\); \\
\hline & if side \(=\) CblasRight, then \(C:=a l p h a * B^{\star} A+\) beta* \(C\). \\
\hline uplo & Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is used: \\
\hline & If uplo = CblasUpper, then the upper triangular part of the Hermitian matrix \(A\) is used. \\
\hline & If uplo = CblasLower, then the low triangular part of the Hermitian matrix \(A\) is used. \\
\hline m & Specifies the number of rows of the matrix \(C\). \\
\hline & The value of \(m\) must be at least zero. \\
\hline \(n\) & Specifies the number of columns of the matrix \(C\). \\
\hline & The value of \(n\) must be at least zero. \\
\hline alpha & Specifies the scalar alpha. \\
\hline a & Array, size lda* \(k a\), where \(k a\) is \(m\) when side \(=C b l a s L e f t\) and is \(n\) otherwise. Before entry with side = CblasLeft, the \(m\)-by- \(m\) part of the array a must contain the Hermitian matrix, such that when uplo = CblasUpper, the leading \(m\)-by- \(m\) upper triangular part of the array a must \\
\hline
\end{tabular}
contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of \(a\) is not referenced, and when uplo = CblasLower, the leading \(m\)-by- \(m\) lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix, and the strictly upper triangular part of \(a\) is not referenced.

Before entry with side = CblasRight, the \(n\)-by-n part of the array a must contain the Hermitian matrix, such that when uplo = CblasUpper, the leading \(n\)-by- \(n\) upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of \(a\) is not referenced, and when uplo = CblasLower, the leading \(n\)-by- \(n\) lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix, and the strictly upper triangular part of \(a\) is not referenced. The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.

Specifies the leading dimension of \(a\) as declared in the calling (sub) program. When side \(=\) CblasLeft then Ida must be at least max (\(1, \mathrm{~m}\)) , otherwise Ida must be at least max \((1, n)\).

For Layout = CblasColMajor: array, size \(1 \mathrm{db}^{*} n\). The leading m-by-n part of the array \(b\) must contain the matrix \(B\).

For Layout = CblasRowMajor: array, size \(1 \mathrm{db}^{*}\) m. The leading \(n\)-by-m part of the array \(b\) must contain the matrix \(B\)

Specifies the leading dimension of \(b\) as declared in the calling (sub)program. When Layout = CblasColMajor, ldb must be at least \(\max (1, m)\); otherwise, \(1 d b\) must be at least \(\max (1, n)\).

Specifies the scalar beta.
When beta is supplied as zero, then \(c\) need not be set on input.
For Layout = CblasColMajor: array, size ldc^n. Before entry, the leading \(m\)-by- \(n\) part of the array \(c\) must contain the matrix \(C\), except when beta is zero, in which case \(c\) need not be set on entry.

For Layout = CblasRowMajor: array, size \(1 d c^{\star} m\). Before entry, the leading \(n\)-by-m part of the array \(c\) must contain the matrix \(C\), except when beta is zero, in which case \(c\) need not be set on entry.

Specifies the leading dimension of \(c\) as declared in the calling (sub)program. When Layout = CblasColMajor, Idc must be at least \(\max (1, m)\); otherwise, Idc must be at least max \((1, n)\).

\section*{Output Parameters}

Overwritten by the \(m\)-by- \(n\) updated matrix.
cblas_?herk
Performs a Hermitian rank-k update.

\section*{Syntax}
```

void cblas_cherk (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const MKL_INT n, const MKL_INT k, const float alpha, const void
*a, const MKL_INT lda, const float beta, void *C, const MKL_INT ldc);

```
```

void cblas_zherk (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const MKL_INT n, const MKL_INT k, const double alpha, const void
*a, const MKL_INT lda, const double beta, void *c, const MKL_INT ldc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?herk routines perform a rank-k matrix-matrix operation using a general matrix \(A\) and a Hermitian matrix \(C\). The operation is defined as:
```

C := alpha* A* A H}+\mp@subsup{b}{}{\textrm{H}

```
or
\[
C:=\operatorname{alpha\star } A^{H \star} A+\operatorname{beta}^{\star} C
\]
where:
alpha and beta are real scalars,
\(C\) is an \(n\)-by- \(n\) Hermitian matrix,
\(A\) is an \(n\)-by- \(k\) matrix in the first case and a \(k\)-by- \(n\) matrix in the second case.

\section*{Input Parameters}

\begin{tabular}{|l|l|l|}
& \begin{tabular}{l}
Before entry, the leading \\
\(n\)-by- \(k\) part of the array \\
a must contain the \\
matrix \(A\).
\end{tabular} & Array, size \(l d a^{*} n\). \\
\begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
Array, size \(l d a * k\). \\
Before entry, the leading \\
\(k\)-by- \(n\) part of the array \\
\(a\) must contain the \\
matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Before entry, the leading \(n\) - \\
by- \(k\) part of the array a \\
must contain the matrix \(A\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline & trans=CblasNoTrans & trans=CblasConjTrans \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, ~ n)\).
\end{tabular} & \begin{tabular}{l}
lda must be at least \\
\(\max (1, k)\)
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
lda must be at least \\
\(\max (1, k)\)
\end{tabular} & \begin{tabular}{l}
lda must be at least \\
\(\max (1, n)\).
\end{tabular} \\
\hline
\end{tabular}
beta

C
ldc

Specifies the scalar beta.
Array, size \(/ d c\) by \(n\).
Before entry with uplo = CblasUpper, the leading \(n\)-by- \(n\) upper triangular part of the array \(c\) must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of \(c\) is not referenced.

Before entry with uplo = CblasLower, the leading \(n\)-by- \(n\) lower triangular part of the array \(c\) must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of \(c\) is not referenced.

The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.

Specifies the leading dimension of \(c\) as declared in the calling (sub)program. The value of \(I d c\) must be at least max \((1, n)\).

\section*{Output Parameters}
c
With uplo = CblasUpper, the upper triangular part of the array \(c\) is overwritten by the upper triangular part of the updated matrix.

With uplo = CblasLower, the lower triangular part of the array \(c\) is overwritten by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.
cblas_?her2k
Performs a Hermitian rank-2k update.

\section*{Syntax}
```

void cblas_cher2k (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const MKL_INT n, const MKL_INT k, const void *alpha, const void
*a, const MKL_INT lda, const void *b, const MKL_INT ldb, const float beta, void *C,
const MKL_INT Idc);
void cblas_zher2k (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const MKL_INT n, const MKL_INT k, const void *alpha, const void
*a, const MKL_INT lda, const void *b, const MKL_INT ldb, const double beta, void *c,
const MKL_INT Idc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?her 2 k routines perform a rank-2k matrix-matrix operation using general matrices \(A\) and \(B\) and a Hermitian matrix \(C\). The operation is defined as
```

C := alpha* A* B

```
or
```

C:= alpha* A}\mp@subsup{A}{}{\textrm{H}}B+\operatorname{conjg(alpha)* B}\mp@subsup{B}{}{\textrm{H}}A+\mathrm{ beta*}

```
where:
alpha is a scalar and beta is a real scalar.
\(C\) is an \(n\)-by- \(n\) Hermitian matrix.
\(A\) and \(B\) are \(n\)-by- \(k\) matrices in the first case and \(k\)-by- \(n\) matrices in the second case.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Layout & Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor). \\
\hline \multirow[t]{3}{*}{uplo} & Specifies whether the upper or lower triangular part of the array \(c\) is used. \\
\hline & If uplo = CblasUpper, then the upper triangular of the array \(c\) is used. \\
\hline & If uplo = CblasLower, then the low triangular of the array \(c\) is used. \\
\hline \multirow[t]{4}{*}{trans} & Specifies the operation: \\
\hline & \\
\hline & if trans \(=\) CblasConjTrans, then \(C\) : =alpha* \(A^{\mathrm{H}} \mathrm{B}^{+}+\mathrm{alpha*} B^{\mathrm{H}} A+\) \\
\hline & beta*C. \\
\hline \(n\) & Specifies the order of the matrix \(C\). The value of \(n\) must be at least zero. \\
\hline \multirow[t]{3}{*}{k} & With trans=CblasNoTrans specifies the number of columns of the matrix \\
\hline & \(A\), and with trans \(=\mathrm{Cb}\) lasConjTrans, \(k\) specifies the number of rows of the matrix \(A\). \\
\hline & The value of \(k\) must be at least equal to zero. \\
\hline alpha & Specifies the scalar alpha. \\
\hline
\end{tabular}
a
b

1 db
\begin{tabular}{|c|c|c|}
\hline & trans=CblasNoTrans & trans=CblasConjTrans \\
\hline Layout = CblasColMajor & \begin{tabular}{l}
Array, size \(1 d^{*}{ }^{*}\). \\
Before entry, the leading \(n\)-by-k part of the array a must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Array, size \(l^{d a *}\). \\
Before entry, the leading \(k\) -by-n part of the array a must contain the matrix \(A\).
\end{tabular} \\
\hline Layout \(=\) CblasRowMajor & \begin{tabular}{l}
Array, size \(1 d^{*}{ }^{*} n\). \\
Before entry, the leading \(k\)-by-n part of the array a must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Array, size \(1 \mathrm{da}^{*} k\). \\
Before entry, the leading \(n\) -by-k part of the array a must contain the matrix \(A\).
\end{tabular} \\
\hline
\end{tabular}

Specifies the leading dimension of a as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & trans=CblasNoTrans & trans=CblasConjTrans \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, \quad n)\).
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, k)\)
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
lda must be at least \\
\(\max (1, k)\)
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, \quad n)\).
\end{tabular} \\
\hline
\end{tabular}

Specifies the scalar beta.
\begin{tabular}{|c|c|c|}
\hline & trans=CblasNoTrans & trans=CblasConjTrans \\
\hline Layout = CblasColMajor & \begin{tabular}{l}
Array, size \(1 d b^{*} k\). \\
Before entry, the leading \(n\)-by- \(k\) part of the array b must contain the matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Array, size \(1 d^{*}{ }^{*}\). \\
Before entry, the leading \(k\) -by-n part of the array \(b\) must contain the matrix \(B\).
\end{tabular} \\
\hline Layout = CblasRowMajor & \begin{tabular}{l}
Array, size \(1 d^{*}{ }^{*} n\). \\
Before entry, the leading \(k\)-by-n part of the array b must contain the matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Array, size lda*k. \\
Before entry, the leading \(n\) -by-k part of the array \(b\) must contain the matrix \(B\).
\end{tabular} \\
\hline
\end{tabular}

Specifies the leading dimension of \(a\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & trans=CblasNoTrans & trans=CblasConjTrans \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Idb must be at least \\
\(\max (1, ~ n)\).
\end{tabular} & \begin{tabular}{l}
Idb must be at least \\
\(\max (1, \quad k)\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
\(\operatorname{ldb}\) must be at least \\
\(\max (1, k)\)
\end{tabular} & \begin{tabular}{l}
ldb must be at least \\
\(\max (1, n)\).
\end{tabular} \\
\hline
\end{tabular}

C
Array, size ldc by \(n\).
Before entry withuplo = CblasUpper, the leading \(n\)-by- \(n\) upper triangular part of the array \(c\) must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of \(c\) is not referenced.
Before entry with uplo = CblasLower, the leading \(n\)-by- \(n\) lower triangular part of the array \(c\) must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of \(c\) is not referenced.

The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.

Specifies the leading dimension of \(c\) as declared in the calling (sub)program. The value of \(I d c\) must be at least max \((1, n)\).

\section*{Output Parameters}
c
With uplo = CblasUpper, the upper triangular part of the array \(c\) is overwritten by the upper triangular part of the updated matrix.
With uplo = CblasLower, the lower triangular part of the array \(c\) is overwritten by the lower triangular part of the updated matrix.
The imaginary parts of the diagonal elements are set to zero.
cblas_?symm
Computes a matrix-matrix product where one input
matrix is symmetric.

\section*{Syntax}
```

void cblas_ssymm (const CBLAS_LAYOUT Layout, const CBLAS_SIDE side, const CBLAS_UPLO
uplo, const MKL_INT m, const MKL_INT n, const float alpha, const float *a, const
MKL_INT lda, const float *b, const MKL_INT ldb, const float beta, float *c, const
MKL_INT ldc);
void cblas_dsymm (const CBLAS_LAYOUT Layout, const CBLAS_SIDE side, const CBLAS_UPLO
uplo, const MKL_INT m, const MKL_INT n, const double alpha, const double *a, const
MKL_INT lda, const double *b, const MKL_INT ldb, const double beta, double *c, const
MKL_INT ldc);
void cblas_csymm (const CBLAS_LAYOUT Layout, const CBLAS_SIDE side, const CBLAS_UPLO
uplo, const MKL_INT m, const MKL_INT n, const void *alphā, const void *a, const MKL_INT
lda, const void * *b, const MKL_INT ldb, const void *beta, void *c, const MKL_INT ldc);
void cblas_zsymm (const CBLAS_LAYOUT Layout, const CBLAS_SIDE side, const CBLAS_UPLO
uplo, const MKL_INT m, const MKL_INT n, const void *alpha, const void *a, const MKL_INT
lda, const void *b, const MKL_INT ldb, const void *beta, void *c, const MKL_INT ldc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?symm routines compute a scalar-matrix-matrix product with one symmetric matrix and add the result to a scalar-matrix product. The operation is defined as
```

C := alpha\star A* B + beta*C,

```
or
```

C := alpha* B*A + beta* C,

```
where:
alpha and beta are scalars,
\(A\) is a symmetric matrix, \(B\) and \(C\) are \(m\)-by- \(n\) matrices.

\section*{Input Parameters}

Layout
side
uplo
m
\(n\)
alpha
a

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies whether the symmetric matrix \(A\) appears on the left or right in the operation:
if side \(=\) CblasLeft, then \(C:=a l p h a \star A \star B+b e t a * C\);
if side = CblasRight, then \(C\) := alpha*B*A + beta*C.
Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is used:
if uplo = CblasUpper, then the upper triangular part is used;
if uplo = CblasLower, then the lower triangular part is used.
Specifies the number of rows of the matrix \(C\).
The value of \(m\) must be at least zero.
Specifies the number of columns of the matrix \(C\).
The value of \(n\) must be at least zero.
Specifies the scalar alpha.
Array, size lda* ka, where \(k a\) is \(m\) when side \(=\) CblasLeft and is \(n\) otherwise.

Before entry with side \(=\) CblasLeft, the \(m\)-by- \(m\) part of the array a must contain the symmetric matrix, such that when uplo = CblasUpper, the leading \(m\)-by- \(m\) upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(a\) is not referenced, and when side \(=\) CblasLeft, the leading \(m\)-by- \(m\) lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of a is not referenced.

Before entry with side \(=\) CblasRight, the \(n\)-by-n part of the array a must contain the symmetric matrix, such that when uplo = CblasUppere array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(a\) is not referenced, and when side \(=\) CblasLeft, the leading \(n\)-by- \(n\) lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(a\) is not referenced.

Specifies the leading dimension of \(a\) as declared in the calling (sub) program. When side = CblasLeft then Ida must be at least max (1, \(m\)), otherwise Ida must be at least max \((1, n)\).

For Layout = CblasColMajor: array, size \(/ d^{*} b^{*} n\). The leading \(m\)-by-n part of the array \(b\) must contain the matrix \(B\).

For Layout = CblasRowMajor: array, size Idb* \(m\). The leading \(n\)-by-m part of the array \(b\) must contain the matrix \(B\)

Specifies the leading dimension of \(b\) as declared in the calling (sub)program. When Layout = CblasColMajor, Idb must be at least \(\max (1, m)\); otherwise, \(I d b\) must be at least \(\max (1, n)\).

Specifies the scalar beta.
When beta is set to zero, then \(c\) need not be set on input.
For Layout = CblasColMajor: array, size \(1 d^{\star} n\). Before entry, the leading \(m\)-by- \(n\) part of the array \(c\) must contain the matrix \(C\), except when beta is zero, in which case \(c\) need not be set on entry.

For Layout = CblasRowMajor: array, size \(1 d c^{\star} m\). Before entry, the leading \(n\)-by- \(m\) part of the array \(c\) must contain the matrix \(C\), except when beta is zero, in which case \(c\) need not be set on entry.

Specifies the leading dimension of \(c\) as declared in the calling (sub)program. When Layout = CblasColMajor, Idc must be at least \(\max (1, m)\); otherwise, Idc must be at least max \((1, n)\).

\section*{Output Parameters}
c
Overwritten by the m-by-n updated matrix.
cblas_?syrk
Performs a symmetric rank-k update.

\section*{Syntax}
```

void cblas_ssyrk (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const MKL_INT n, const MKL_INT k, const float alpha, const float
*a, const MKL_INT lda, const float beta, float *c, const MKL_INT ldc);
void cblas_dsyrk (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const MKL_INT n, const MKL_INT k, const double alpha, const
double *a, const MKL_INT lda, const double beta, double *c, const MKL_INT IdC);
void cblas_csyrk (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const MKL_INT n, const MKL_INT k, const void *alpha, const void
*a, const MKL_INT lda, const void *beta, void *c, const MKL_INT ldc);

```
```

void cblas_zsyrk (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const MKL_INT n, const MKL_INT k, const void *alpha, const void
*a, const MKL_INT lda, const void *beta, void *C, const MKL_INT ldc);

```

Include Files
- mkl.h

\section*{Description}

The ?syrk routines perform a rank-k matrix-matrix operation for a symmetric matrix \(C\) using a general matrix \(A\). The operation is defined as:
```

C := alpha*A*A' + beta*C,

```
or
\[
C:=a l p h a^{\star} A^{\prime \star} A+\operatorname{beta}^{\star} C
\]
where:
alpha and beta are scalars,
\(C\) is an \(n\)-by- \(n\) symmetric matrix,
\(A\) is an \(n\)-by- \(k\) matrix in the first case and a \(k\)-by- \(n\) matrix in the second case.

\section*{Input Parameters}
```

Layout

```
uplo
trans
n
k
alpha
a

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies whether the upper or lower triangular part of the array \(c\) is used.
If uplo = CblasUpper, then the upper triangular part of the array \(c\) is used.
If uplo = CblasLower, then the low triangular part of the array \(c\) is used.
Specifies the operation:
if trans=CblasNoTrans, then \(C:=a l p h a \star A^{\star} A^{\prime}+b e t a \star C\);
if trans \(=\) CblasTrans, then \(C:=a l p h a \star A^{\prime *} A+b e t a \star C\);
if trans \(=\) CblasConjTrans, then \(C:=a l p h a^{\star} A^{\prime}{ }^{*} A+b e t a \star C\).
Specifies the order of the matrix \(C\). The value of \(n\) must be at least zero.
On entry with trans=CblasNoTrans, \(k\) specifies the number of columns of the matrix \(a\), and on entry with trans=CblasTrans or trans=CblasConjTrans, \(k\) specifies the number of rows of the matrix \(a\).

The value of \(k\) must be at least zero.
Specifies the scalar alpha.
Array, size lda* \(k a\), where \(k a\) is \(k\) when trans=CblasNoTrans, and is \(n\) otherwise. Before entry with trans=CblasNoTrans, the leading \(n\)-by- \(k\) part of the array a must contain the matrix \(A\), otherwise the leading \(k-b y-n\) part of the array a must contain the matrix \(A\).
\begin{tabular}{|c|c|c|}
\hline & trans=CblasNoTrans & trans=CblasConjTrans \\
\hline Layout = CblasColMajor & \begin{tabular}{l}
Array, size \(1 d^{*}{ }^{*}\). \\
Before entry, the leading \(n\)-by-k part of the array a must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Array, size \(1 d^{*}{ }^{n}\). \\
Before entry, the leading \(k\) -by-n part of the array a must contain the matrix \(A\).
\end{tabular} \\
\hline Layout \(=\) CblasRowMajor & \begin{tabular}{l}
Array, size \(1 d^{*}{ }^{*} n\). \\
Before entry, the leading \(k\)-by-n part of the array a must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Array, size lda*k. \\
Before entry, the leading \(n\) -by-k part of the array a must contain the matrix \(A\).
\end{tabular} \\
\hline
\end{tabular}

Ida
\begin{tabular}{|l|l|l|}
\hline & trans=CblasNoTrans & trans=CblasConjTrans \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, ~ n)\).
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, k)\)
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, k)\)
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, ~ n)\).
\end{tabular} \\
\hline
\end{tabular}

Specifies the scalar beta.
Array, size \(l d^{*} n\). Before entry with uplo \(=\) CblasUpper, the leading \(n\) -by-n upper triangular part of the array \(c\) must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(c\) is not referenced.

Before entry with uplo = CblasLower, the leading \(n\)-by- \(n\) lower triangular part of the array \(c\) must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(c\) is not referenced.

Specifies the leading dimension of \(c\) as declared in the calling (sub)program. The value of \(I d c\) must be at least max \((1, n)\).

\section*{Output Parameters}
c
With uplo = CblasUpper, the upper triangular part of the array \(c\) is overwritten by the upper triangular part of the updated matrix.

With uplo = CblasLower, the lower triangular part of the array \(c\) is overwritten by the lower triangular part of the updated matrix.
cblas_?syr2k
Performs a symmetric rank-2k update.

\section*{Syntax}
```

void cblas_ssyr2k (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const MKL_INT n, const MKL_INT k, const float alpha, const float
*a, const MKL_INT lda, const float *b, const MKL_INT ldb, const float beta, float *c,
const MKL_INT Idc);

```
```

void cblas_dsyr2k (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const MKL_INT n, const MKL_INT k, const double alpha, const
double *a, const MKL_INT lda, const double *b, const MKL_INT ldb, const double beta,
double *C, const MKL_INT IdC);
void cblas_csyr2k (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const MKL_INT n, const MKL_INT k, const void *alpha, const void
*a, const MKL_INT lda, const void *b, const MKL_INT ldb, const void *beta, void *C,
const MKL_INT Idc);
void cblas_zsyr2k (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE trans, const MKL_INT n, const MKL_INT k, const void *alpha, const void
*a, const MKL_INT lda, const void *b, const MKL_INT ldb, const void *beta, void *c,
const MKL_INT Idc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?syr 2 k routines perform a rank-2k matrix-matrix operation for a symmetric matrix \(C\) using general matrices \(A\) and \(B\) The operation is defined as:
\[
C:=\text { alpha* } A^{\star} B^{\prime}+\text { alpha* } B^{\star} A^{\prime}+\text { beta} a^{\star} C,
\]
or
```

C := alpha*}\mp@subsup{A}{}{\prime}*B+alpha* B'*A + beta*C

```
where:
alpha and beta are scalars,
\(C\) is an \(n\)-by- \(n\) symmetric matrix,
\(A\) and \(B\) are \(n\)-by- \(k\) matrices in the first case, and \(k\)-by- \(n\) matrices in the second case.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Layout & Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor). \\
\hline \multirow[t]{3}{*}{uplo} & Specifies whether the upper or lower triangular part of the array \(c\) is used. \\
\hline & If uplo \(=\) CblasUpper, then the upper triangular part of the array \(c\) is used. \\
\hline & If uplo \(=\) CblasLower, then the low triangular part of the array \(c\) is used. \\
\hline \multirow[t]{5}{*}{trans} & Specifies the operation: \\
\hline & if trans=CblasNoTrans, then \(C:=a l p h a^{*} A^{*} B^{\prime}+a l p h a^{*} B^{*} A^{\prime}+\) beta* \({ }^{\text {a }}\); \\
\hline & if trans=CblasTrans, then \(C\) := alpha*A'*B +alpha*B'*A +beta*C; \\
\hline & if trans=CblasConjTrans, then \(C:=a l p h *^{*} A^{\prime} \star B+a l p h a * B^{\prime} \star A\) \\
\hline & +beta*C. \\
\hline \(n\) & Specifies the order of the matrix \(C\). The value of \(n\) must be at least zero. \\
\hline
\end{tabular}
k
a

Ida
b

On entry with trans=CblasNoTrans, \(k\) specifies the number of columns of the matrices \(A\) and \(B\), and on entry with trans \(=C b l a s T r a n s\) or trans=CblasConjTrans, \(k\) specifies the number of rows of the matrices \(A\) and \(B\). The value of \(k\) must be at least zero.

Specifies the scalar alpha.
\begin{tabular}{|c|c|c|}
\hline & trans=CblasNoTrans & trans=CblasConjTrans \\
\hline Layout = CblasColMajor & \begin{tabular}{l}
Array, size \(1 d^{*}{ }^{*} k\). \\
Before entry, the leading n-by-k part of the array a must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Array, size \(l^{d a *}\). \\
Before entry, the leading \(k\) -by-n part of the array a must contain the matrix \(A\).
\end{tabular} \\
\hline Layout = CblasRowMajor & \begin{tabular}{l}
Array, size \(1 \mathrm{da}^{*}{ }_{n}\). \\
Before entry, the leading k-by-n part of the array a must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Array, size \(1 d^{*}{ }^{*} k\). \\
Before entry, the leading \(n\) -by-k part of the array a must contain the matrix \(A\).
\end{tabular} \\
\hline
\end{tabular}

Specifies the leading dimension of \(a\) as declared in the calling (sub) program.
\begin{tabular}{|l|l|l|}
\hline & trans=CblasNoTrans & trans=CblasConjTrans \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, \quad n)\).
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, k)\)
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, k)\)
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, \quad n)\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline & trans=CblasNoTrans & trans=CblasConjTrans \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Array, size \(l d b^{*} k\). \\
Before entry, the leading \\
\(n\)-by- \(k\) part of the array \\
\(b\) must contain the \\
matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Array, size \(l d b^{*} n\). \\
Before entry, the leading \(k\) - \\
by- \(n\) part of the array \(b\) \\
must contain the matrix \(B\).
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
Array, size \(l d *_{n} n\). \\
Before entry, the leading \\
\(k\)-by-n part of the array \\
\(b\) must contain the \\
matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Array, size \(l d A_{k}\). \\
Before entry, the leading \(n-\) \\
by- \(k\) part of the array \(b\) \\
must contain the matrix \(B\).
\end{tabular} \\
\hline
\end{tabular}

Specifies the leading dimension of \(a\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & trans=CblasNoTrans & trans=CblasConjTrans \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
ldb must be at least \\
\(\max (1, n)\).
\end{tabular} & \begin{tabular}{l}
ldb must be at least \\
\(\max (1, k)\)
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
ldb must be at least \\
\(\max (1, k)\)
\end{tabular} & \begin{tabular}{l}
ldb must be at least \\
\(\max (1, n)\).
\end{tabular} \\
\hline
\end{tabular}
beta
C
Specifies the scalar beta.
Array, size \(1 d^{*} n\). Before entry with uplo = CblasUpper, the leading \(n\) -
by- \(n\) upper triangular part of the array \(c\) must contain the upper triangular
part of the symmetric matrix and the strictly lower triangular part of \(c\) is not
referenced.
Before entry with uplo = CblasLower, the leading \(n\)-by- \(n\) lower triangular
part of the array \(c\) must contain the lower triangular part of the symmetric
matrix and the strictly upper triangular part of \(c\) is not referenced.
Specifies the leading dimension of \(c\) as declared in the calling
(sub)program. The value of \(I d c\) must be at least max \((1, n)\).

\section*{Output Parameters}
c
With uplo = CblasUpper, the upper triangular part of the array \(c\) is overwritten by the upper triangular part of the updated matrix.

With uplo = CblasLower, the lower triangular part of the array \(c\) is overwritten by the lower triangular part of the updated matrix.
cblas_?trmm
Computes a matrix-matrix product where one input
matrix is triangular.

\section*{Syntax}
```

void cblas_strmm (const CBLAS_LAYOUT Layout, const CBLAS_SIDE side, const CBLAS_UPLO
uplo, const CBLAS_TRANSPOSE transa, const CBLAS_DIAG diag, const MKL_INT m, const
MKL_INT n, const float alpha, const float *a, const MKL_INT lda, float *b, const
MKL_INT ldb);
void cblas_dtrmm (const CBLAS_LAYOUT Layout, const CBLAS_SIDE side, const CBLAS_UPLO
uplo, const CBLAS_TRANSPOSE transa, const CBLAS_DIAG diag, const MKL_INT m, const
MKL_INT n, const double alpha, const double *a, const MKL_INT lda, double *b, const
MKL_INT ldb);
void cblas_ctrmm (const CBLAS_LAYOUT Layout, const CBLAS_SIDE side, const CBLAS_UPLO
uplo, const CBLAS_TRANSPOSE transa, const CBLAS_DIAG diag, const MKL_INT m, const
MKL_INT n, const void *alpha, const void *a, const MKL_INT lda, void *b, const MKL_INT
Idb);
void cblas_ztrmm (const CBLAS_LAYOUT Layout, const CBLAS_SIDE side, const CBLAS_UPLO
uplo, const CBLAS_TRANSPOSE transa, const CBLAS_DIAG diag, const MKL_INT m, const
MKL_INT n, const void *alpha, const void *a, const MKL_INT lda, void *b, const MKL_INT
ldb);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?trmm routines compute a scalar-matrix-matrix product with one triangular matrix. The operation is defined as
```

B := alpha*op (A)*B

```
or
```

B := alpha*B*op(A)

```
where:
alpha is a scalar,
\(B\) is an \(m\)-by- \(n\) matrix,
\(A\) is a unit, or non-unit, upper or lower triangular matrix \(\mathrm{op}(A)\) is one of op \((A)=A\), or op \((A)=A^{\prime}, \operatorname{or} o p(A)=\operatorname{conjg}\left(A^{\prime}\right)\).

\section*{Input Parameters}

a

Ida
b

1 db

Array, size Ida by \(k\), where \(k\) is \(m\) when side \(=\) CblasLeft and is \(n\) when side \(=\) CblasRight. Before entry with uplo \(=\) CblasUpper, the leading \(k\) by \(k\) upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of \(a\) is not referenced.

Before entry with uplo = CblasLower, the leading \(k\) by \(k\) lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of \(a\) is not referenced.
When diag = CblasUnit, the diagonal elements of \(a\) are not referenced either, but are assumed to be unity.

Specifies the leading dimension of \(a\) as declared in the calling (sub)program. Whenside = CblasLeft, then Ida must be at least max (1, \(m\)), when side \(=\) CblasRight, then Ida must be at least max \((1, n)\).

For Layout = CblasColMajor: array, size \(1 d b^{\star} n\). Before entry, the leading \(m\)-by- \(n\) part of the array \(b\) must contain the matrix \(B\).
For Layout = CblasRowMajor: array, size \(1 d b^{\star} m\). Before entry, the leading \(n\)-by-m part of the array \(b\) must contain the matrix \(B\).

Specifies the leading dimension of \(b\) as declared in the calling (sub)program. When Layout = CblasColMajor, Idb must be at least \(\max (1, m)\); otherwise, \(I d b\) must be at least \(\max (1, n)\).

\section*{Output Parameters}
b
Overwritten by the transformed matrix.

\section*{cblas_?trsm}

Solves a triangular matrix equation.

\section*{Syntax}
```

void cblas_strsm (const CBLAS_LAYOUT Layout, const CBLAS_SIDE side, const CBLAS_UPLO
uplo, const CBLAS_TRANSPOSE transa, const CBLAS_DIAG diag, const MKL_INT m, const
MKL_INT n, const float alpha, const float *a, const MKL_INT lda, float *b, const
MKL_INT ldb);
void cblas_dtrsm (const CBLAS_LAYOUT Layout, const CBLAS_SIDE side, const CBLAS_UPLO
uplo, const CBLAS_TRANSPOSE transa, const CBLAS_DIAG diag
MKL_INT n, const double alpha, const double *a, const MKL_INT lda, double *b, const
MKL_INT ldb);
void cblas_ctrsm (const CBLAS_LAYOUT Layout, const CBLAS_SIDE side, const CBLAS_UPLO
uplo, const CBLAS_TRANSPOSE transa, const CBLAS_DIAG diag, const MKL_INT m, const
MKL_INT n, const void *alpha, const void *a, const MKL_INT lda, void * *b, const MKL_INT
ldb);
void cblas_ztrsm (const CBLAS_LAYOUT Layout, const CBLAS_SIDE side, const CBLAS_UPLO
uplo, const CBLAS_TRANSPOSE transa, const CBLAS_DIAG diag, const MKL_INT m, const
MKL_INT n, const void *alpha, const void *a, const MKL_INT lda, void *b, const MKL_INT
ldb);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?trsm routines solve one of the following matrix equations:
\[
\begin{aligned}
& \mathrm{op}(A) \star X=\text { alpha*B, } \\
& \text { or } \\
& X^{*} \mathrm{op}(A)=\text { alpha*B, }
\end{aligned}
\]
where:
alpha is a scalar,
\(X\) and \(B\) are \(m\)-by- \(n\) matrices,
\(A\) is a unit, or non-unit, upper or lower triangular matrix, and
```

op (A) is one of op (A) = A, or op (A) = A', or op (A) = Conjg(A').

```

The matrix \(B\) is overwritten by the solution matrix \(X\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Layout & Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor). \\
\hline side & \begin{tabular}{l}
Specifies whether op (A) appears on the left or right of \(X\) in the equation: \\
if side \(=\) CblasLeft, then op \((A) * X=a l p h a * B ;\) \\
if side \(=\) CblasRight, then \(X^{\star} \mathrm{op}(A)=a l p h a^{\star} B\).
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
Specifies whether the matrix \(A\) is upper or lower triangular. \\
uplo = CblasUpper \\
if uplo = CblasLower, then the matrix is low triangular.
\end{tabular} \\
\hline transa & \begin{tabular}{l}
Specifies the form of op (\(A\)) used in the matrix multiplication: \\
if transa=CblasNoTrans, then op \((A)=A\); \\
if transa=CblasTrans; \\
if transa=CblasConjTrans, then op \((A)=\operatorname{conjg(A').~}\)
\end{tabular} \\
\hline diag & \begin{tabular}{l}
Specifies whether the matrix \(A\) is unit triangular: \\
if diag = CblasUnit then the matrix is unit triangular; \\
if diag = CblasNonUnit , then the matrix is not unit triangular.
\end{tabular} \\
\hline m & Specifies the number of rows of \(B\). The value of \(m\) must be at least zero. \\
\hline \(n\) & Specifies the number of columns of \(B\). The value of \(n\) must be at least zero. \\
\hline alpha & Specifies the scalar alpha. \\
\hline & When alpha is zero, then \(a\) is not referenced and \(b\) need not be set before entry. \\
\hline a & Array, size lda* \(k\), where \(k\) is \(m\) when side \(=\) CblasLeft and is \(n\) when side \(=\) CblasRight. Before entry with uplo \(=\) CblasUpper, the leading \(k\) by \(k\) upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of \(a\) is not referenced. \\
\hline
\end{tabular}
lda
b
\(1 d b\)

Before entry with uplo = CblasLower lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of \(a\) is not referenced.

When diag = CblasUnit, the diagonal elements of a are not referenced either, but are assumed to be unity.

Specifies the leading dimension of \(a\) as declared in the calling (sub) program. When side = CblasLeft, then Ida must be at least max (1, \(m)\), when side \(=C b l a s R i g h t\), then \(I d a\) must be at least max \((1, n)\).

For Layout \(=\) CblasColMajor: array, size \(1 d b^{*} n\). Before entry, the leading \(m\)-by-n part of the array \(b\) must contain the matrix \(B\).
For Layout = CblasRowMajor: array, size \(1 d b^{\star} m\). Before entry, the leading \(n\)-by-m part of the array \(b\) must contain the matrix \(B\).

Specifies the leading dimension of \(b\) as declared in the calling (sub)program. When Layout = CblasColMajor, Idb must be at least \(\max (1, m)\); otherwise, Idb must be at least max \((1, n)\).

\section*{Output Parameters}
b
Overwritten by the solution matrix \(X\).

\section*{Sparse BLAS Level 1 Routines}

This section describes Sparse BLAS Level 1, an extension of BLAS Level 1 included in the Intel® oneAPI Math Kernel Library beginning with the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) release 2.1. Sparse BLAS Level 1 is a group of routines and functions that perform a number of common vector operations on sparse vectors stored in compressed form.
Sparse vectors are those in which the majority of elements are zeros. Sparse BLAS routines and functions are specially implemented to take advantage of vector sparsity. This allows you to achieve large savings in computer time and memory. If \(n z\) is the number of non-zero vector elements, the computer time taken by Sparse BLAS operations will be \(O(n z)\).

\section*{Vector Arguments}

Compressed sparse vectors. Let a be a vector stored in an array, and assume that the only non-zero elements of \(a\) are the following:
\[
a\left[k_{1}\right], a\left[k_{2}\right], a\left[k_{3}\right] \ldots . a\left[k_{n z}\right],
\]
where \(n z\) is the total number of non-zero elements in \(a\).
In Sparse BLAS, this vector can be represented in compressed form by two arrays, \(x\) (values) and indx (indices). Each array has \(n z\) elements:
\[
\begin{aligned}
& x[0]=a\left[k_{1}\right], \quad x[1]=a\left[k_{2}\right], . . . x[n z-1]=a\left[k_{n z}\right], \\
& \text { indx[0]=k}, \quad \text { indx[1]=k}, \ldots . \operatorname{indx}[n z-1]=k_{n z} .
\end{aligned}
\]

Thus, a sparse vector is fully determined by the triple (\(n z, x, i n d x\)). If you pass a negative or zero value of \(n z\) to Sparse BLAS, the subroutines do not modify any arrays or variables.
Full-storage vectors. Sparse BLAS routines can also use a vector argument fully stored in a single array (a full-storage vector). If \(y\) is a full-storage vector, its elements must be stored contiguously: the first element in \(y[0]\), the second in \(y[1]\), and so on. This corresponds to an increment incy \(=1\) in BLAS Level 1 . No increment value for full-storage vectors is passed as an argument to Sparse BLAS routines or functions.

\section*{Naming Conventions for Sparse BLAS Routines}

Similar to BLAS, the names of Sparse BLAS subprograms have prefixes that determine the data type involved: \(s\) and \(d\) for single- and double-precision real; \(c\) and \(z\) for single- and double-precision complex respectively.
If a Sparse BLAS routine is an extension of a "dense" one, the subprogram name is formed by appending the suffix \(i\) (standing for indexed) to the name of the corresponding "dense" subprogram. For example, the Sparse BLAS routine saxpyi corresponds to the BLAS routine saxpy, and the Sparse BLAS function cdotci corresponds to the BLAS function cdotc.

\section*{Routines and Data Types}

Routines and data types supported in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) implementation of Sparse BLAS are listed inTable "Sparse BLAS Routines and Their Data Types".

Sparse BLAS Routines and Their Data Types
\begin{tabular}{lll}
\hline \begin{tabular}{l}
Routine/ \\
Function
\end{tabular} & Data Types & Description \\
\hline cblas_?axpyi & s,d, c, z & Scalar-vector product plus vector (routines) \\
cblas_?doti & s,d & Dot product (functions) \\
cblas_?dotci & c, z & Complex dot product conjugated (functions) \\
cblas_?dotui & c, z & \begin{tabular}{l}
Complex dot product unconjugated (functions) \\
cblas_?gthr
\end{tabular} \\
s, d, c, z & \begin{tabular}{l}
Gorm \(n z, x_{1}\), indx (routines)
\end{tabular} \\
cblas_?gthrz & s, d, c, z & \begin{tabular}{l}
Gathering a full-storage sparse vector into compressed \\
form and assigning zeros to gathered elements in the full- \\
storage vector (routines)
\end{tabular} \\
cblas_?roti & s, d & \begin{tabular}{l}
Givens rotation (routines)
\end{tabular} \\
cblas_?sctr & s, d, c, z & \begin{tabular}{l}
Scattering a vector from compressed form to full-storage \\
form (routines)
\end{tabular} \\
\hline
\end{tabular}

\section*{BLAS Level 1 Routines That Can Work With Sparse Vectors}

The following BLAS Level 1 routines will give correct results when you pass to them a compressed-form array \(x\) (with the increment incx=1):
```

cblas ?asum sum of absolute values of vector elements
cblas_?copy copying a vector
cblas ?nrm2 Euclidean norm of a vector
cblas ?scal scaling a vector
cblas_i?amax index of the element with the largest absolute value for real flavors, or the
largest sum | Re(x[i])|+|Im(x[i])| for complex flavors.
index of the element with the smallest absolute value for real flavors, or the
smallest sum | Re(x[i])|+|Im(x[i])| for complex flavors.

```

The result \(i\) returned by i?amax and i?amin should be interpreted as index in the compressed-form array, so that the largest (smallest) value is \(x[i-1]\); the corresponding index in full-storage array is indx[i-1].

You can also call cblas_?rotg to compute the parameters of Givens rotation and then pass these parameters to the Sparse BLAS routines cblas_?roti.
cblas_?axpyi
Adds a scalar multiple of compressed sparse vector to a full-storage vector.

\section*{Syntax}
```

void cblas_saxpyi (const MKL_INT nz, const float a, const float *x, const MKL_INT
*indx, float *y);
void cblas_daxpyi (const MKL_INT nz, const double a, const double *x, const MKL_INT
*indx, double *y);
void cblas_caxpyi (const MKL_INT nz, const void *a, const void *x, const MKL_INT *indx,
void *y);
void cblas_zaxpyi (const MKL_INT nz, const void *a, const void *x, const MKL_INT *indx,
void *y);

```

Include Files
- mkl.h

\section*{Description}

The ?axpyi routines perform a vector-vector operation defined as
\[
y:=a^{\star} x+y
\]
where:
a is a scalar,
\(x\) is a sparse vector stored in compressed form,
\(y\) is a vector in full storage form.
The ?axpyi routines reference or modify only the elements of \(y\) whose indices are listed in the array indx.
The values in indx must be distinct.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n z\) & The number of elements in \(x\) and indx. \\
\(a\) & Specifies the scalar \(a\). \\
\(x\) & Array, size at least \(n z\). \\
\(i n d x\) & Specifies the indices for the elements of \(x\). \\
\(y\) & Array, size at least \(n z\). \\
\(y\) & Array, size at least max (indx[i]).
\end{tabular}

\section*{Output Parameters}
y
Contains the updated vector \(y\).
```

cblas_?doti
Computes the dot product of a compressed sparse real
vector by a full-storage real vector.
Syntax
float cblas_sdoti (const MKL_INT nz, const float *x, const MKL_INT *indx, const float
*y) ;
double cblas_ddoti (const MKL_INT nz, const double *x, const MKL_INT *indx, const
double *y);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?doti routines return the dot product of \(x\) and \(y\) defined as
```

res = x[0]*y[indx[0]] + x[1]*y[indx[1]] +...+ x[nz-1]*y[indx[nz-1]]

```
where the triple (\(n z, x, i n d x\)) defines a sparse real vector stored in compressed form, and \(y\) is a real vector in full storage form. The functions reference only the elements of \(y\) whose indices are listed in the array indx. The values in indx must be distinct.

\section*{Input Parameters}
```

nz The number of elements in x and indx .
x Array, size at least nz.
indx Specifies the indices for the elements of x
Array, size at least nz.
Array, size at least max(indx[i]).

```

\section*{Output Parameters}

Contains the dot product of \(x\) and \(y\), if \(n z\) is positive. Otherwise, res contains 0 .
```

cblas_?dotci
Computes the conjugated dot product of a
compressed sparse complex vector with a full-storage
complex vector.
Syntax

```
```

void cblas_cdotci_sub (const MKL_INT nz, const void *x, const MKL_INT *indx, const void

```
void cblas_cdotci_sub (const MKL_INT nz, const void *x, const MKL_INT *indx, const void
*y, void *dotui);
*y, void *dotui);
void cblas_zdotci_sub (const MKL_INT nz, const void *x, const MKL_INT *indx, const void
void cblas_zdotci_sub (const MKL_INT nz, const void *x, const MKL_INT *indx, const void
*y, void *dotui);
```

*y, void *dotui);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ? dotci routines return the dot product of \(x\) and \(y\) defined as
```

conjg(x[0])*y[indx[0]] + ... + conjg(x[nz-1])*y[indx[nz-1]]

```
where the triple (\(n z, x, i n d x\)) defines a sparse complex vector stored in compressed form, and \(y\) is a real vector in full storage form. The functions reference only the elements of \(y\) whose indices are listed in the array indx. The values in indx must be distinct.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n z\) & The number of elements in \(x\) and indx. \\
\(x\) & Array, size at least \(n z\). \\
\(i n d x\) & Specifies the indices for the elements of \(x\). \\
\(y\) & Array, size at least \(n z\). \\
& Array, size at least max(indx[i]).
\end{tabular}

\section*{Output Parameters}
dotui
Contains the conjugated dot product of \(x\) and \(y\), if \(n z\) is positive. Otherwise, it contains 0 .

\section*{cblas_?dotui}

Computes the dot product of a compressed sparse
complex vector by a full-storage complex vector.

\section*{Syntax}
```

void cblas_cdotui_sub (const MKL_INT nz, const void *x, const MKL_INT *indx, const void
*y, void *dotui);
void cblas_zdotui_sub (const MKL_INT nz, const void *x, const MKL_INT *indx, const void
*y, void *dotui);

```

Include Files
- mkl.h

\section*{Description}

The ? dotui routines return the dot product of \(x\) and \(y\) defined as
```

res = x[0]*y[indx[0]] + x[1]*y(indx[1]) +...+ x[nz - 1]*y[indx[nz - 1]]

```
where the triple (\(n z, x, i n d x\)) defines a sparse complex vector stored in compressed form, and \(y\) is a real vector in full storage form. The functions reference only the elements of \(y\) whose indices are listed in the array indx. The values in indx must be distinct.

\section*{Input Parameters}
```

nz
x
indx
y
The number of elements in $x$ and ind $x$.
Array, size at least $n z$.
Specifies the indices for the elements of $x$.
Array, size at least $n z$.
Array, size at least max(indx[i]).

```

\section*{Output Parameters}

Contains the dot product of \(x\) and \(y\), if \(n z\) is positive. Otherwise, res contains 0 .
cblas_?gthr
Gathers a full-storage sparse vector's elements into compressed form.

\section*{Syntax}
```

void cblas_sgthr (const MKL_INT nz, const float *y, float *x, const MKL_INT *indx);
void cblas_dgthr (const MKL_INT nz, const double *y, double *x, const MKL_INT *indx);
void cblas_cgthr (const MKL_INT nz, const void *y, void *x, const MKL_INT *indx);
void cblas_zgthr (const MKL_INT nz, const void *y, void *x, const MKL_INT *indx);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?gthr routines gather the specified elements of a full-storage sparse vector \(y\) into compressed form(\(n z\), \(x, i n d x)\). The routines reference only the elements of \(y\) whose indices are listed in the array indx:
\(x[i]=y] i n d x[i]]\), for \(i=0,1, \ldots, n z-1\).
Input Parameters
```

nz The number of elements of }y\mathrm{ to be gathered.
indx Specifies indices of elements to be gathered.
Array, size at least nz.
Array, size at least max(indx[i]).

```

\section*{Output Parameters}

X
Array, size at least \(n z\).
Contains the vector converted to the compressed form.
```

cblas_?gthrz
Gathers a sparse vector's elements into compressed
form, replacing them by zeros.
Syntax

```
```

void cblas_sgthrz (const MKL_INT nz, float *y, float *x, const MKL_INT *indx);

```
void cblas_sgthrz (const MKL_INT nz, float *y, float *x, const MKL_INT *indx);
void cblas_dgthrz (const MKL_INT nz, double *y, double *x, const MKL_INT *indx);
void cblas_dgthrz (const MKL_INT nz, double *y, double *x, const MKL_INT *indx);
void cblas_cgthrz (const MKL_INT nz, void *y, void *x, const MKL_INT *indx);
void cblas_cgthrz (const MKL_INT nz, void *y, void *x, const MKL_INT *indx);
void cblas_zgthrz (const MKL_INT nz, void *y, void *x, const MKL_INT *indx);
```

void cblas_zgthrz (const MKL_INT nz, void *y, void *x, const MKL_INT *indx);

```

Include Files
- mkl.h

\section*{Description}

The ?gthrz routines gather the elements with indices specified by the array indx from a full-storage vector \(y\) into compressed form (\(n z, x\), indx) and overwrite the gathered elements of \(y\) by zeros. Other elements of \(y\) are not referenced or modified (see also ?gthr).

\section*{Input Parameters}
```

nz The number of elements of }y\mathrm{ to be gathered.
indx Specifies indices of elements to be gathered.
Array, size at least nz.
Array, size at least max(indx[i]).

```

\section*{Output Parameters}

X
Array, size at least \(n z\).
Contains the vector converted to the compressed form.
The updated vector \(y\).

\section*{cblas_?roti}

Applies Givens rotation to sparse vectors one of which is in compressed form.

\section*{Syntax}
```

void cblas_sroti (const MKL_INT nz, float *x, const MKL_INT *indx, float *y, const
float c, const float s);
void cblas_droti (const MKL_INT nz, double *x, const MKL_INT *indx, double *y, const
double c, const double s);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?roti routines apply the Givens rotation to elements of two real vectors, \(x\) (in compressed form \(n z, x\), indx) and \(y\) (in full storage form):
```

x[i] = c*x[i] + s*y[indx[i]]
y[indx[i]] = c*y[indx[i]]- s*x[i]

```

The routines reference only the elements of \(y\) whose indices are listed in the array indx. The values in indx must be distinct.

\section*{Input Parameters}
```

nz The number of elements in }x\mathrm{ and indx.
x Array, size at least nz.
indx Specifies the indices for the elements of x
Array, size at least nz.
Array, size at least max(indx[i]).
A scalar.
A scalar.

```

\section*{Output Parameters}
```

x and y
The updated arrays.

```
cblas_?sctr
Converts compressed sparse vectors into full storage form.

\section*{Syntax}
```

void cblas_ssctr (const MKL_INT nz, const float *x, const MKL_INT *indx, float *y);
void cblas_dsctr (const MKL_INT nz, const double *x, const MKL_INT *indx, double *y);
void cblas_csctr (const MKL_INT nz, const void *x, const MKL_INT *indx, void *y);
void cblas_zsctr (const MKL_INT nz, const void *x, const MKL_INT *indx, void *y);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?sctr routines scatter the elements of the compressed sparse vector (\(n z, x\), indx) to a full-storage vector \(y\). The routines modify only the elements of \(y\) whose indices are listed in the array indx:
```

y[indx[i]] = x[i],for i=0,1,... ,nz-1.

```

\section*{Input Parameters}
\(n z\)
indx
\(x\)

\section*{Output Parameters}
y

The number of elements of \(x\) to be scattered.
Specifies indices of elements to be scattered.
Array, size at least \(n z\).
Array, size at least \(n z\).
Contains the vector to be converted to full-storage form.

Array, size at least max(indx[i]).
Contains the vector \(y\) with updated elements.

\section*{Sparse BLAS Level 2 and Level 3 Routines}

NOTE The Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines are deprecated. Use the corresponding routine from the Intel® oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface as indicated in the description for each routine.

This section describes Sparse BLAS Level 2 and Level 3 routines included in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL). Sparse BLAS Level 2 is a group of routines and functions that perform operations between a sparse matrix and dense vectors. Sparse BLAS Level 3 is a group of routines and functions that perform operations between a sparse matrix and dense matrices.
The terms and concepts required to understand the use of the Intel oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines are discussed in theLinear Solvers Basics appendix.
The Sparse BLAS routines can be useful to implement iterative methods for solving large sparse systems of equations or eigenvalue problems. For example, these routines can be considered as building blocks for Iterative Sparse Solvers based on Reverse Communication Interface (RCI ISS).
Intel oneAPI Math Kernel Library (oneMKL) provides Sparse BLAS Level 2 and Level 3 routines with typical (or conventional) interface similar to the interface used in the NIST* Sparse BLAS library [Rem05].
Some software packages and libraries (the PARDISO* Solverused in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL),Sparskit 2 [Saad94], the Compaq* Extended Math Library (CXML)[CXML01]) use different (early) variation of the compressed sparse row (CSR) format and support only Level 2 operations with simplified interfaces. Intel® oneAPI Math Kernel Library (oneMKL) provides an additional set of Sparse BLAS Level 2 routines with similar simplified interfaces. Each of these routines operates only on a matrix of the fixed type.
The routines described in this section support both one-based indexing and zero-based indexing of the input data (see details in the section One-based and Zero-based Indexing).

\section*{Naming Conventions in Sparse BLAS Level 2 and Level 3}

Each Sparse BLAS Level 2 and Level 3 routine has a six- or eight-character base name preceded by the prefix mkl_or mkl_cspblas_ .
The routines with typical (conventional) interface have six-character base names in accordance with the template:
```

mkl_<character > <data> <operation>( )

```

The routines with simplified interfaces have eight-character base names in accordance with the templates:
```

mkl_<character > <data> <mtype> <operation>( )

```
for routines with one-based indexing; and
```

mkl_cspblas_<character> <data><mtype><operation>( )

```
for routines with zero-based indexing.
The <character> field indicates the data type:
\begin{tabular}{ll}
s & real, single precision \\
c & complex, single precision \\
d & real, double precision \\
z & complex, double precision
\end{tabular}

The <data> field indicates the sparse matrix storage format (see section Sparse Matrix Storage Formats):
\begin{tabular}{ll}
coo & coordinate format \\
csr & compressed sparse row format and its variations \\
csc & compressed sparse column format and its variations \\
dia & diagonal format \\
sky & skyline storage format \\
bsr & block sparse row format and its variations
\end{tabular}

The <operation> field indicates the type of operation:
\begin{tabular}{ll}
mv & matrix-vector product (Level 2) \\
mm & matrix-matrix product (Level 3) \\
sv & solving a single triangular system (Level 2) \\
sm & solving triangular systems with multiple right-hand sides (Level 3)
\end{tabular}

The field <mtype> indicates the matrix type:
\begin{tabular}{ll}
ge & sparse representation of a general matrix \\
sy & sparse representation of the upper or lower triangle of a symmetric matrix \\
tr & sparse representation of a triangular matrix
\end{tabular}

\section*{Sparse Matrix Storage Formats for Sparse BLAS Routines}

The current version of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines support the following point entry [Duff86] storage formats for sparse matrices:
- compressed sparse row format (CSR) and its variations;
- compressed sparse column format (CSC);
- coordinate format;
- diagonal format;
- skyline storage format;
and one block entry storage format:
- block sparse row format (BSR) and its variations.

For more information see "Sparse Matrix Storage Formats" in the Appendix"Linear Solvers Basics". Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides auxiliary routines -matrix converters - that convert sparse matrix from one storage format to another.

\section*{Routines and Supported Operations}

This section describes operations supported by the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines. The following notations are used here:
```

A is a sparse matrix;
B and C are dense matrices;
D is a diagonal scaling matrix;
x and y are dense vectors;
alpha and beta are scalars;

```
\(o p(A)\) is one of the possible operations:
```

op (A) = A;

```
op \((A)=A^{\mathrm{T}}\) - transpose of \(A\);
\(\mathrm{op}(A)=A^{\mathrm{H}}\) - conjugated transpose of \(A\).
inv (op (A)) denotes the inverse of op(A).
The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines support the following operations:
- computing the vector product between a sparse matrix and a dense vector:
```

y := alpha*op (A)*x + beta* y

```
- solving a single triangular system:
```

y := alpha*inv(op (A))*x

```
- computing a product between sparse matrix and dense matrix:
\(C:=\) alpha*op \((A) * B+\) beta* \(C\)
- solving a sparse triangular system with multiple right-hand sides:
```

C := alpha*inv(op (A))*B

```

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides an additional set of the Sparse BLAS Level 2 routines withsimplified interfaces. Each of these routines operates on a matrix of the fixed type. The following operations are supported:
- computing the vector product between a sparse matrix and a dense vector (for general and symmetric matrices):
```

y := op (A)*x

```
- solving a single triangular system (for triangular matrices):
```

y := inv(op (A))*X

```

Matrix type is indicated by the field <mtype> in the routine name (see section Naming Conventions in Sparse BLAS Level 2 and Level 3).

\section*{NOTE}

The routines with simplified interfaces support only four sparse matrix storage formats, specifically:
CSR format in the 3-array variation accepted in the direct sparse solvers and in the CXML;
diagonal format accepted in the CXML;
coordinate format;
BSR format in the 3-array variation.

Note that routines with both typical (conventional) and simplified interfaces use the same computational kernels that work with certain internal data structures.

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines do not support inplace operations.
Complete list of all routines is given in the "Sparse BLAS Level 2 and Level 3 Routines".

\section*{Interface Consideration}

\section*{One-Based and Zero-Based Indexing}

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines support one-based and zero-based indexing of data arrays.

Routines with typical interfaces support zero-based indexing for the following sparse data storage formats: CSR, CSC, BSR, and COO. Routines with simplified interfaces support zero based indexing for the following sparse data storage formats: CSR, BSR, and COO. See the complete list of Sparse BLAS Level 2 and Level 3 Routines.

The one-based indexing uses the convention of starting array indices at 1 . The zero-based indexing uses the convention of starting array indices at 0 . For example, indices of the 5 -element array \(x\) can be presented in case of one-based indexing as follows:

Element index: 12345
Element value: \(1.05 .07 .08 .0 \quad 9.0\)
and in case of zero-based indexing as follows:
Element index: 01234
Element value: \(1.05 .07 .08 .0 \quad 9.0\)
The detailed descriptions of the one-based and zero-based variants of the sparse data storage formats are given in the "Sparse Matrix Storage Formats" in the Appendix "Linear Solvers Basics".

Most parameters of the routines are identical for both one-based and zero-based indexing, but some of them have certain differences. The following table lists all these differences.
\begin{tabular}{|c|c|c|}
\hline Parameter & One-based Indexing & Zero-based Indexing \\
\hline val & Array containing non-zero elements of the matrix \(A\), its length is . pntre[m] pntrb[1] & \begin{tabular}{l}
Array containing non-zero elements of the matrix \(A\), its length is . pntre [m-1] \\
- pntrb[0]
\end{tabular} \\
\hline pntrb & Array of length \(m\). This array contains row indices, such that pntrb[i] pntrb[1]+1 is the first index of row i in the arrays val and indx & Array of length \(m\). This array contains row indices, such that pntrb[i] - pntrb[0] is the first index of row \(i\) in the arrays val and indx. \\
\hline pntre & Array of length \(m\). This array contains row indices, such that pntre[I] - pntrb[1] is the last index of row \(i\) in the arrays val and indx. & Array of length \(m\). This array contains row indices, such that pntre[i] -pntrb[0]-1 is the last index of row i in the arrays val and indx. \\
\hline ia & Array of length \(m+1\), containing indices of elements in the array \(a\), such that ia [i] is the index in the array a of the first non-zero element from the row \(i\). The value of the last element ia[m+1] is equal to the number of non-zeros plus & Array of length \(m+1\), containing indices of elements in the array \(a\), such that ia[i] is the index in the array a of the first non-zero element from the row i. The value of the last element \(i a[m]\) is equal to the number of non-zeros. \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Parameter & \multicolumn{1}{c}{ One-based Indexing } & \multicolumn{1}{c}{ Zero-based Indexing } \\
\hline\(l d b\) & \begin{tabular}{l}
Specifies the leading dimension of \(b\) as \\
declared in the calling (sub) program.
\end{tabular} & \begin{tabular}{l}
Specifies the second dimension of \(b\) as \\
declared in the calling (sub) program.
\end{tabular} \\
\(l d c\) & \begin{tabular}{l}
Specifies the leading dimension of \(c\) as \\
declared in the calling (sub)program.
\end{tabular} & \begin{tabular}{l}
Specifies the second dimension of \(c\) as \\
declared in the calling (sub)program.
\end{tabular} \\
\hline
\end{tabular}

\section*{Differences Between Intel MKL and NIST* Interfaces}

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 3 routines have the following conventional interfaces:
mkl_xyyymm(transa, m, \(n, k, a l p h a, ~ m a t d e s c r a, ~ a r g(A), b, \quad l d b, b e t a, ~ c, ~ l d c)\), for matrixmatrix product;
mkl_xyyysm(transa, \(m, n, a l p h a, ~ m a t d e s c r a, ~ a r g(A), b, l d b, c, l d c)\), for triangular solvers with multiple right-hand sides.

Here x denotes data type, and yyy - sparse matrix data structure (storage format).
The analogous NIST* Sparse BLAS (NSB) library routines have the following interfaces:
xyyymm(transa, \(m, n, k, a l p h a, ~ d e s c r a, ~ a r g(A), b, l d b, b e t a, ~ c, ~ l d c, ~ w o r k, ~ l w o r k), ~ f o r ~\) matrix-matrix product;
xyyysm(transa, \(m, n\), unitd, dv, alpha, descra, arg(A), b, ldb, beta, \(c, l d c, ~ w o r k\), lwork), for triangular solvers with multiple right-hand sides.

Some similar arguments are used in both libraries. The argument transa indicates what operation is performed and is slightly different in the NSB library (see Table "Parameter transa"). The arguments \(m\) and \(k\) are the number of rows and column in the matrix \(A\), respectively, \(n\) is the number of columns in the matrix \(C\). The arguments alpha and beta are scalar alpha and beta respectively (betais not used in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) triangular solvers.) The arguments. \(b\) and \(c\) are rectangular arrays with the leading dimension \(I d b\) and \(I d c\), respectively. \(\arg (A)\) denotes the list of arguments that describe the sparse representation of \(A\).
Parameter transa
\begin{tabular}{llll}
\hline & MKL interface & NSB interface & Operation \\
\hline data type & char \(*\) & INTEGER & \\
value & N or n & 0 & op \((A)=A\) \\
& T or t & 1 & \(o p(A)=A^{T}\) \\
& C or c & 2 & \(\circ p(A)=A^{\mathrm{T}}\) or op \((A)=\) \\
& & \(A^{\mathrm{H}}\)
\end{tabular}

\section*{Parameter matdescra}

The parameter matdescra describes the relevant characteristic of the matrix \(A\). This manual describes matdescraas an array of six elements in line with the NIST* implementation. However, only the first four elements of the array are used in the current versions of the Intel oneAPI Math Kernel Library (oneMKL) Sparse BLAS routines. Elementsmatdescra [4] and matdescra [5] are reserved for future use. Note that whether matdescrais described in your application as an array of length 6 or 4 is of no importance because the array is declared as a pointer in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) routines. To learn more about declaration of thematdescraarray, see the Sparse BLAS examples located in the Intel \({ }^{\circledR}\) oneAPI Math

Kernel Library (oneMKL) installation directory: examples/spblasc/for C. The table below lists elements of the parameter matdescra, their Fortran values, and their meanings. The parameter matdescra corresponds to the argument descra from NSB library.

Possible Values of the Parameter matdescra [descra - 1]
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{MKL interface} & \multirow[t]{2}{*}{\begin{tabular}{l}
NSB \\
interface
\end{tabular}} & \multirow[t]{2}{*}{Matrix characteristics} \\
\hline & one-based indexing & zero-based indexing & & \\
\hline data type & char * & char* & int * & \\
\hline 1st element & matdescra[1] & matdescra[0] & descra[0] & matrix structure \\
\hline \multirow[t]{6}{*}{value} & G & G & 0 & general \\
\hline & S & S & 1 & symmetric (\(A=A^{\text {T }}\)) \\
\hline & H & H & 2 & Hermitian \(\left(A=\left(A^{\mathrm{H}}\right)\right.\)) \\
\hline & T & T & 3 & triangular \\
\hline & A & A & 4 & skew(anti)-symmetric (\(A=-A^{\mathrm{T}}\)) \\
\hline & D & D & 5 & diagonal \\
\hline 2nd element & matdescra[2] & matdescra[1] & descra[1] & upper/lower triangular indicator \\
\hline \multirow[t]{2}{*}{value} & L & L & 1 & lower \\
\hline & U & U & 2 & upper \\
\hline 3rd element & matdescra[3] & matdescra[2] & descra[2] & main diagonal type \\
\hline \multirow[t]{2}{*}{value} & N & N & 0 & non-unit \\
\hline & U & U & 1 & unit \\
\hline 4th element & matdescra[4] & matdescra[3] & descra[3] & type of indexing \\
\hline \multirow[t]{2}{*}{value} & F & & 1 & one-based indexing \\
\hline & & C & 0 & zero-based indexing \\
\hline
\end{tabular}

In some cases possible element values of the parameter matdescra depend on the values of other elements. The Table "Possible Combinations of Element Values of the Parameter matdescra" lists all possible combinations of element values for both multiplication routines and triangular solvers.
Possible Combinations of Element Values of the Parameter matdescra
\begin{tabular}{lllll}
\hline Routines & matdescra[0] & matdescra[1] & matdescra[2] & matdescra[3] \\
\hline \begin{tabular}{l}
Multiplication \\
Routines
\end{tabular} & G & ignored & ignored & F (default) or C \\
& & L (default) & N (default) & F (default) or C \\
& S or H & L (default) & U & F (default) or C \\
& S or H & U & N (default) & F (default) or C \\
& S or H & U & U & F (default) or C \\
& S or H & L (default) & ignored & F (default) or C
\end{tabular}
\begin{tabular}{lllll}
\hline Routines & matdescra[0] & matdescra[1] & matdescra[2] & matdescra[3] \\
\hline & A & U & ignored & F (default) or C \\
Multiplication & T & L & U & F (default) or C \\
Routines and & & & & \\
Triangular Solvers & & U & N & F (default) or C \\
& T & U & F & (default) or C \\
& T & ignored & N (default) or C \\
& T & ignored & U (default) or C \\
& D & & F (default) or C \\
\hline
\end{tabular}

For a matrix in the skyline format with the main diagonal declared to be a unit, diagonal elements must be stored in the sparse representation even if they are zero. In all other formats, diagonal elements can be stored (if needed) in the sparse representation if they are not zero.

\section*{Operations with Partial Matrices}

One of the distinctive feature of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS routines is a possibility to perform operations only on partial matrices composed of certain parts (triangles and the main diagonal) of the input sparse matrix. It can be done by setting properly first three elements of the parametermatdescra.
An arbitrary sparse matrix \(A\) can be decomposed as
\[
A=L+D+U
\]
where \(L\) is the strict lower triangle of \(A, U\) is the strict upper triangle of \(A, D\) is the main diagonal.
Table "Output Matrices for Multiplication Routines" shows correspondence between the output matrices and values of the parameter matdescra for the sparse matrix \(A\) for multiplication routines.

\section*{Output Matrices for Multiplication Routines}
\begin{tabular}{|c|c|c|c|}
\hline matdescra[0] & matdescra[1] & matdescra[2] & Output Matrix \\
\hline G & ignored & ignored & \[
\begin{aligned}
& \text { alpha*op }(A) *_{X}+\text { beta* } y \\
& \text { alpha*op }(A) * B+\text { beta*C }
\end{aligned}
\] \\
\hline S or H & L & N & \[
\begin{aligned}
& \text { alpha*op }\left(L+D+L^{\prime}\right) *_{x}+\text { beta* } y \\
& \text { alpha*op }\left(L+D+L^{\prime}\right) * B+\text { beta*C }
\end{aligned}
\] \\
\hline S or H & L & U & \[
\begin{aligned}
& \text { alpha*op }\left(L+I+L^{\prime}\right) * X+\text { beta* } y \\
& \text { alpha*op }\left(L+I+L^{\prime}\right) \star B+\text { beta* } C
\end{aligned}
\] \\
\hline S or H & U & N & \[
\begin{aligned}
& \text { alpha*op }\left(U^{\prime}+D+U\right) * x+\text { beta* } y \\
& \text { alpha*op }\left(U^{\prime}+D+U\right) * B+\text { beta*C }
\end{aligned}
\] \\
\hline S or H & U & U & \[
\begin{aligned}
& \text { alpha*op }\left(U^{\prime}+I+U\right){ }^{*} X+\text { beta* } y \\
& \text { alpha*op }\left(U^{\prime}+I+U\right) * B+\text { beta*C }
\end{aligned}
\] \\
\hline T & L & U & \[
\begin{aligned}
& \text { alpha*op }(L+I) * x+\text { beta* } y \\
& \text { alpha*op }(L+I) * B+\text { beta* } C
\end{aligned}
\] \\
\hline T & L & N & \[
\begin{aligned}
& \text { alpha*op }(L+D) *_{x}+\text { beta* } y \\
& \text { alpha*op }(L+D) * B+\text { beta* } C
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline matdescra[0] & matdescra[1] & matdescra[2] & Output Matrix \\
\hline T & U & U & \[
\begin{aligned}
& \text { alpha*op }(U+I) *_{X}+\text { beta* } Y \\
& \text { alpha*op }(U+I) * B+\text { beta*C }
\end{aligned}
\] \\
\hline T & U & N & \[
\begin{aligned}
& \text { alpha*op }(U+D) *_{X}+\text { beta* } Y \\
& \text { alpha*op }(U+D) * B+\text { beta* } C
\end{aligned}
\] \\
\hline A & L & ignored & \[
\begin{aligned}
& \text { alpha*op }\left(L-L^{\prime}\right) * X+\text { beta* } y \\
& \text { alpha*op }\left(L-L^{\prime}\right) * B+\text { beta*C }
\end{aligned}
\] \\
\hline A & U & ignored & \[
\begin{aligned}
& \text { alpha*op }\left(U-U^{\prime}\right) * X+\text { beta* } Y \\
& \text { alpha*op }\left(U-U^{\prime}\right) * B+\text { beta*C }
\end{aligned}
\] \\
\hline D & ignored & N & \[
\begin{aligned}
& \text { alpha* } D^{*} x+b e t a^{*} y \\
& \text { alpha*} D^{*} B+\text { beta* } C
\end{aligned}
\] \\
\hline D & ignored & U & \[
\begin{aligned}
& \text { alpha* } x+\text { beta* } y \\
& \text { alpha*B }+ \text { beta* } C
\end{aligned}
\] \\
\hline
\end{tabular}

Table "Output Matrices for Triangular Solvers" shows correspondence between the output matrices and values of the parameter matdescra for the sparse matrix \(A\) for triangular solvers.
Output Matrices for Triangular Solvers
\begin{tabular}{|c|c|c|c|}
\hline matdescra[0] & matdescra[1] & matdescra[2] & Output Matrix \\
\hline \multirow[t]{2}{*}{T} & L & N & alpha*inv (op (L))*x \\
\hline & & & alpha*inv(op(L) \({ }^{*}\) * \\
\hline \multirow[t]{2}{*}{T} & L & U & alpha*inv (op (L))*X \\
\hline & & & alpha*inv(op(L))*B \\
\hline \multirow[t]{2}{*}{T} & U & N & alpha*inv (op (U)) *x \\
\hline & & & alpha*inv(op(U))*B \\
\hline \multirow[t]{2}{*}{T} & U & U & alpha*inv (op (U)) * \({ }_{\text {S }}\) \\
\hline & & & alpha*inv(op(U))*B \\
\hline \multirow[t]{2}{*}{D} & ignored & N & alpha*inv (D)*x \\
\hline & & & alpha*inv(D)*B \\
\hline \multirow[t]{2}{*}{D} & ignored & U & alpha*x \\
\hline & & & alpha*B \\
\hline
\end{tabular}

\section*{Sparse BLAS Level 2 and Level 3 Routines.}

NOTE The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines are deprecated. Use the corresponding routine from the Intel® oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface as indicated in the description for each routine.

Table "Sparse BLAS Level 2 and Level 3 Routines" lists the sparse BLAS Level 2 and Level 3 routines described in more detail later in this section.

Sparse BLAS Level 2 and Level 3 Routines
Routine/Function
Simplified interface, one-based indexing

Computes matrix - vector product of a sparse general matrix in the CSR format (3-array variation)

Computes matrix - vector product of a sparse general matrix in the BSR format (3-array variation).

Computes matrix - vector product of a sparse general matrix in the coordinate format.

Computes matrix - vector product of a sparse general matrix in the diagonal format.

Computes matrix - vector product of a sparse symmetrical matrix in the CSR format (3-array variation)

Computes matrix - vector product of a sparse symmetrical matrix in the BSR format (3-array variation).

Computes matrix - vector product of a sparse symmetrical matrix in the coordinate format.

Computes matrix - vector product of a sparse symmetrical matrix in the diagonal format.

Triangular solvers with simplified interface for a sparse matrix in the CSR format (3-array variation).

Triangular solver with simplified interface for a sparse matrix in the BSR format (3-array variation).

Triangular solvers with simplified interface for a sparse matrix in the coordinate format.

Triangular solvers with simplified interface for a sparse matrix in the diagonal format.

\section*{Simplified interface, zero-based indexing}
mkl_cspblas_?csrgemv
mkl_cspblas_?bsrgemv
mkl_cspblas_?coogemv
mkl_cspblas_?csrsymv
mkl_cspblas_?bsrsymv

Computes matrix - vector product of a sparse general matrix in the CSR format (3-array variation) with zero-based indexing.

Computes matrix - vector product of a sparse general matrix in the BSR format (3-array variation)with zero-based indexing.

Computes matrix - vector product of a sparse general matrix in the coordinate format with zero-based indexing.

Computes matrix - vector product of a sparse symmetrical matrix in the CSR format (3-array variation) with zero-based indexing

Computes matrix - vector product of a sparse symmetrical matrix in the BSR format (3-array variation) with zero-based indexing.
\begin{tabular}{|c|c|}
\hline Routine/Function & Description \\
\hline mkl_cspblas_?coosymv & Computes matrix - vector product of a sparse symmetrical matrix in the coordinate format with zero-based indexing. \\
\hline mkl_cspblas_?csrtrsv & Triangular solvers with simplified interface for a sparse matrix in the CSR format (3-array variation) with zero-based indexing. \\
\hline mkl_cspblas_?bsrtrsv & Triangular solver with simplified interface for a sparse matrix in the BSR format (3-array variation) with zero-based indexing. \\
\hline mkl_cspblas_?cootrsv & Triangular solver with simplified interface for a sparse matrix in the coordinate format with zero-based indexing. \\
\hline
\end{tabular}

Typical (conventional) interface, one-based and zero-based indexing
\begin{tabular}{|c|}
\hline mkl_?csrmv \\
\hline mkl_? bsrmv \\
\hline mkl_? cscmv \\
\hline mkl_?coomv \\
\hline mkl_? csrsv \\
\hline mkl_? bsrsv \\
\hline mkl_? cscsv \\
\hline mkl_?coosv \\
\hline mkl_?csrmm \\
\hline mkl_? bsrmm \\
\hline mkl_? cscmm \\
\hline mkl_?coomm \\
\hline mkl_?csrsm \\
\hline mkl_?bsrsm \\
\hline mkl_?cscsm \\
\hline
\end{tabular}

Computes matrix - vector product of a sparse matrix in the CSR format.

Computes matrix - vector product of a sparse matrix in the BSR format.

Computes matrix - vector product for a sparse matrix in the CSC format.

Computes matrix - vector product for a sparse matrix in the coordinate format.

Solves a system of linear equations for a sparse matrix in the CSR format.

Solves a system of linear equations for a sparse matrix in the BSR format.

Solves a system of linear equations for a sparse matrix in the CSC format.

Solves a system of linear equations for a sparse matrix in the coordinate format.

Computes matrix - matrix product of a sparse matrix in the CSR format

Computes matrix - matrix product of a sparse matrix in the BSR format.

Computes matrix - matrix product of a sparse matrix in the CSC format

Computes matrix - matrix product of a sparse matrix in the coordinate format.

Solves a system of linear matrix equations for a sparse matrix in the CSR format.

Solves a system of linear matrix equations for a sparse matrix in the BSR format.

Solves a system of linear matrix equations for a sparse matrix in the CSC format.

\section*{Routine/Function}

\section*{Description}
mkl_?coosm
Solves a system of linear matrix equations for a sparse matrix in the coordinate format.

\section*{Typical (conventional) interface, one-based indexing}
```

mkl_?diamv
mkl ?skymv
mkl_?diasv
mkl_?skysv
mkl_?diamm
mkl_?skymm
mkl_?diasm
mkl_?skysm

```

\section*{Auxiliary routines}

Matrix converters
mkl_?dnscsr
mkl_?csrcoo
mkl_?csrbsr
mkl_?csrcsc
mkl_?csrdia
mkl_?csrsky

Operations on sparse matrices
mkl_?csradd
mkl ?csrmultcsr

Computes matrix - vector product of a sparse matrix in the diagonal format.

Computes matrix - vector product for a sparse matrix in the skyline storage format.

Solves a system of linear equations for a sparse matrix in the diagonal format.

Solves a system of linear equations for a sparse matrix in the skyline format.

Computes matrix - matrix product of a sparse matrix in the diagonal format.

Computes matrix - matrix product of a sparse matrix in the skyline storage format.

Solves a system of linear matrix equations for a sparse matrix in the diagonal format.

Solves a system of linear matrix equations for a sparse matrix in the skyline storage format.

Converts a sparse matrix in uncompressed representation to CSR format (3-array variation) and vice versa.

Converts a sparse matrix in CSR format (3-array variation) to coordinate format and vice versa.

Converts a sparse matrix in CSR format to BSR format (3array variations) and vice versa.

Converts a sparse matrix in CSR format to CSC format and vice versa (3-array variations).

Converts a sparse matrix in CSR format (3-array variation) to diagonal format and vice versa.

Converts a sparse matrix in CSR format (3-array variation) to sky line format and vice versa.

Computes the sum of two sparse matrices stored in the CSR format (3-array variation) with one-based indexing.

Computes the product of two sparse matrices stored in the CSR format (3-array variation) with one-based indexing.
\begin{tabular}{ll}
\hline Routine/Function & \multicolumn{1}{c}{ Description } \\
\hline\(m k l_{-}\)?csrmultd & \begin{tabular}{l}
Computes product of two sparse matrices stored in the CSR \\
format (3-array variation) with one-based indexing. The result \\
is stored in the dense matrix.
\end{tabular} \\
\hline
\end{tabular}
```

mkl_?csrgemv

```
Computes matrix - vector product of a sparse general
matrix stored in the CSR format (3-array variation)
with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_scsrgemv (const char *transa, const MKL_INT *m, const float *a, const
MKL_INT *ia, const MKL_INT *ja, const float *x , float *y );
void mkl_dcsrgemv (const char *transa , const MKL_INT *m, const double *a , const
MKL_INT *ia, const MKL_INT *ja, const double *x, double *y );
void mkl_ccsrgemv (const char *transa, const MKL_INT *m , const MKL_Complex8 *a ,
const MKL_INT *ia, const MKL_INT *ja , const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_zcsrgemv (const char *transa, const MKL_INT *m , const MKL_Complex16 *a ,
const MKL_INT *ia, const MKL_INT *ja , const MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?csrgemv routine performs a matrix-vector operation defined as
\[
y:=A^{*} X
\]
or
\[
y:=A^{T} * X
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(m\) sparse square matrix in the CSR format (3-array variation), \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
transa

Specifies the operation.
If transa \(=\) ' \(N\) ' or 'n', then as \(y:=A^{\star} x\)
If transa \(=\) 'T' or 't' or 'C' or 'c', then \(y:=A^{T}{ }^{*} X\),
\(\left.\begin{array}{ll}m & \text { Number of rows of the matrix } A . \\ \text { Array containing non-zero elements of the matrix } A \text {. Its length is equal to } \\ \text { the number of non-zero elements in the matrix } A \text {. Refer to values array } \\ \text { description in Sparse Matrix Storage Formats for more details. } \\ \text { Array of length } m+1, \text { containing indices of elements in the array } a \text {, such } \\ \text { that } i a[i]-i a[0] \text { is the index in the array a of the first non-zero } \\ \text { element from the row } i \text {. The value of the last element } i a[m]-i a[0] \text { is } \\ \text { equal to the number of non-zeros. Refer to rowIndex array description in } \\ \text { Sparse Matrix Storage Formats for more details. }\end{array}\right\}\)

\section*{Output Parameters}

\section*{y}

Array, size at least \(m\).
On exit, the array \(y\) must contain the vector \(y\).

\section*{mkl_?bsrgemv}

Computes matrix - vector product of a sparse general matrix stored in the BSR format (3-array variation) with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_sbsrgemv (const char *transa , const MKL_INT *m, const MKL_INT *lb , const
float *a, const MKL_INT *ia , const MKL_INT *ja , const float *x , float *y );
void mkl_dbsrgemv (const char *transa, const MKL_INT *m, const MKL_INT *lb, const
double *a , const MKL_INT *ia, const MKL_INT *ja - const double *x , double *y );
void mkl_cbsrgemv (const char *transa , const MKL_INT *m, const MKL_INT *lb , const
MKL_Complex8 *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_Complex8 *X ,
MKL_Complex8 *y );
void mkl_zbsrgemv (const char *transa , const MKL_INT *m , const MKL_INT *lb , const
MKL_Complex16 *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_Complex16 *X ,
MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_? mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?bsrgemv routine performs a matrix-vector operation defined as
```

y := A* X

```
or
\[
y:=A^{\mathrm{T}} \star_{X},
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(m\) block sparse square matrix in the BSR format (3-array variation), \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
transa
m
1.b
a
ia
ja

X

\section*{Output Parameters}

Specifies the operation.
If transa \(=\) ' \(N\) ' or ' \(n\) ', then the matrix-vector product is computed as \(y:=A^{\star} X\)
If transa \(=\) 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as \(y:=A^{T}{ }^{*}{ }_{x}\),

Number of block rows of the matrix \(A\).
Size of the block in the matrix \(A\).
Array containing elements of non-zero blocks of the matrix \(A\). Its length is equal to the number of non-zero blocks in the matrix \(A\) multiplied by \(1 b \star I b\). Refer to values array description in BSR Format for more details.

Array of length \((m+1)\), containing indices of block in the array \(a\), such that ia[i] - ia[0] is the index in the array a of the first non-zero element from the row \(i\). The value of the last element ia[m]-ia[0] is equal to the number of non-zero blocks. Refer to rowIndex array description in BSR Format for more details.

Array containing the column indices plus one for each non-zero block in the matrix \(A\).

Its length is equal to the number of non-zero blocks of the matrix \(A\). Refer to columns array description in BSR Format for more details.

Array, size (\(m^{*} l b\)).
On entry, the array \(x\) must contain the vector \(x\).

\section*{y}

Array, size at least (\(m^{\star} l b\)).
On exit, the array \(y\) must contain the vector \(y\).
mkl_?coogemv
Computes matrix-vector product of a sparse general matrix stored in the coordinate format with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_scoogemv (const char *transa , const MKL_INT *m, const float *val , const
MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const float *x , float
*Y );
void mkl_dcoogemv (const char *transa, const MKL_INT *m, const double *val, const
MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const double *x , double
*Y );
void mkl_ccoogemv (const char *transa, const MKL_INT *m, const MKL_Complex8 *val ,
const MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const MKL_Complex8
*x , MKL_Complex8 *y );
void mkl_zcoogemv (const char *transa , const MKL_INT *m , const MKL_Complexl6 *val,
const MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const
MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_? coogemv routine performs a matrix-vector operation defined as
\[
y:=A^{\star} x
\]
or
\[
y:=A^{T} *
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(m\) sparse square matrix in the coordinate format, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
transa
Specifies the operation.
If transa \(=\) ' \(N\) ' or ' \(n\) ', then the matrix-vector product is computed as \(y:=A^{*} X\)

If transa \(=\) 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as \(y:=A^{T}{ }^{\mathrm{t}} x\),
```

m Number of rows of the matrix A.
val
rowind
colind
nnz
x
Array, size is m.
One entry, the array $x$ must contain the vector $x$.

```

\section*{Output Parameters}

Array, size at least \(m\).
On exit, the array \(y\) must contain the vector \(y\).
mkl_?diagemv
Computes matrix - vector product of a sparse general matrix stored in the diagonal format with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_sdiagemv (const char *transa, const MKL_INT *m, const float *val , const
MKL_INT *lval, const MKL_INT *idiag, const MKL_INT *ndiag, const float *x , float
*Y );
void mkl_ddiagemv (const char *transa, const MKL_INT *m , const double *val , const
MKL_INT *lval, const MKL_INT *idiag, const MKL_INT *ndiag, const double *x , double
*Y );
void mkl_cdiagemv (const char *transa , const MKL_INT *m , const MKL_Complex8 *val ,
const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const MKL_Complex8
*x , MKL_Complex8 *y );
void mkl_zdiagemv (const char *transa , const MKL_INT *m , const MKL_Complex16 *val ,
const MKL_INT *lval , const MKL_INT *idiag, const MKL_INT *ndiag , const MKL_Complex16
*x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?diagemv routine performs a matrix-vector operation defined as
```

Y := A* X

```
or
\[
y:=A^{T} * x,
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(m\) sparse square matrix in the diagonal storage format, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{transa} & Specifies the operation. \\
\hline & If transa \(=\) 'N' or 'n', then \(y:=A^{*}{ }^{\text {d }}\) \\
\hline & If transa \(=\) 'T' or 't' or 'C' or 'c', then \(y:=A^{T} * x\), \\
\hline m & Number of rows of the matrix \(A\). \\
\hline val & Two-dimensional array of size \(l^{2} \mathrm{val}{ }^{*}\) ndiag, contains non-zero diagonals of the matrix A. Refer to values array description in Diagonal Storage Scheme for more details. \\
\hline Ival & Leading dimension of vallval \(\geq m\). Refer to lval description in Diagonal Storage Scheme for more details. \\
\hline \multirow[t]{2}{*}{idiag} & Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix \(A\). \\
\hline & Refer to distance array description in Diagonal Storage Scheme for more details. \\
\hline ndiag & Specifies the number of non-zero diagonals of the matrix \(A\). \\
\hline \multirow[t]{2}{*}{\(x\)} & Array, size is \(m\). \\
\hline & On entry, the array \(x\) must contain the vector \(x\). \\
\hline
\end{tabular}

\section*{Output Parameters}
y
Array, size at least \(m\).
On exit, the array y must contain the vector \(y\).
mkl_?csrsymv
Computes matrix - vector product of a sparse symmetrical matrix stored in the CSR format (3-array variation) with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_scsrsymv (const char *uplo, const MKL_INT *m, const float *a , const MKL_INT
*ia , const MKL_INT *ja , const float *x , float *y );
void mkl_dcsrsymv (const char *uplo, const MKL_INT *m, const double *a, const
MKL_INT *ia, const MKL_INT *ja , const double *x, double *y );
void mkl_ccsrsymv (const char *uplo, const MKL_INT *m, const MKL_Complex8 *a , const
MKL_INT *ia, const MKL_INT *ja, const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_zcsrsymv (const char *uplo, const MKL_INT *m, const MKL_Complexl6 *a , const
MKL_INT *ia, const MKL_INT *ja , const MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_? mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?csrsymv routine performs a matrix-vector operation defined as
\[
y:=A^{\star} X
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is an upper or lower triangle of the symmetrical sparse matrix in the CSR format (3-array variation).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & Specifies whether the upper or low triangle of the matrix \(A\) is used. \\
\hline & If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used. \\
\hline & If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used. \\
\hline m & Number of rows of the matrix \(A\). \\
\hline a & Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details. \\
\hline ia & Array of length \(m+1\), containing indices of elements in the array \(a\), such that ia[i] - ia[0] is the index in the array a of the first non-zero element from the row \(i\). The value of the last element ia[m]-ia[0] is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details. \\
\hline
\end{tabular}
```

ja Array containing the column indices plus one for each non-zero element of the matrix $A$.
Its length is equal to the length of the array $a$. Refer to columns array description in Sparse Matrix Storage Formats for more details.
Array, size is $m$.
On entry, the array $x$ must contain the vector $x$.

```

\section*{Output Parameters}
y
Array, size at least \(m\).
On exit, the array \(y\) must contain the vector \(y\).

\section*{mkl_?bsrsymv}

Computes matrix-vector product of a sparse
symmetrical matrix stored in the BSR format (3-array
variation) with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_sbsrsymv (const char *uplo, const MKL_INT *m, const MKL_INT *Ib , const
float *a, const MKL_INT *ia, const MKL_INT *ja, const float *x , float *y );
void mkl_dbsrsymv (const char *uplo, const MKL_INT *m, const MKL_INT *lb, const
double *a, const MKL_INT *ia, const MKL_INT *ja, const double *x, double *y );
void mkl_cbsrsymv (const char *uplo, const MKL_INT *m, const MKL_INT *lb, const
MKL_Complex8 *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_Complex8 *x ,
MKL_Complex8 *y );
void mkl_zbsrsymv (const char *uplo, const MKL_INT *m, const MKL_INT *lb , const
MKL_Complex16 *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_Complex16 *x ,
MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?bsrsymv routine performs a matrix-vector operation defined as
\[
y:=A^{*} X
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is an upper or lower triangle of the symmetrical sparse matrix in the BSR format (3-array variation).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & Specifies whether the upper or low triangle of the matrix \(A\) is considered. \\
\hline & If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used. \\
\hline & If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used. \\
\hline m & Number of block rows of the matrix \(A\). \\
\hline 1.6 & Size of the block in the matrix \(A\). \\
\hline a & Array containing elements of non-zero blocks of the matrix \(A\). Its length is equal to the number of non-zero blocks in the matrix \(A\) multiplied by \(1 b^{*} 1 b\). Refer to values array description in BSR Format for more details. \\
\hline ia & Array of length \((m+1)\), containing indices of block in the array \(a\), such that ia[i] - ia[0] is the index in the array a of the first non-zero element from the row \(i\). The value of the last element ia[m] - ia[0] is equal to the number of non-zero blocks. Refer to rowIndex array description in BSR Format for more details. \\
\hline \multirow[t]{2}{*}{ja} & Array containing the column indices plus one for each non-zero block in the matrix \(A\). \\
\hline & Its length is equal to the number of non-zero blocks of the matrix \(A\). Refer to columns array description in BSR Format for more details. \\
\hline \multirow[t]{2}{*}{\(x\)} & Array, size (\(m^{*}\) lb) . \\
\hline & On entry, the array \(x\) must contain the vector \(x\). \\
\hline
\end{tabular}

\section*{Output Parameters}
y
Array, size at least (\(m^{\star}\) lb) .
On exit, the array \(y\) must contain the vector \(y\).

\section*{mkl_?coosymv}

Computes matrix - vector product of a sparse
symmetrical matrix stored in the coordinate format with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_scoosymv (const char *uplo, const MKL_INT *m, const float *val , const
MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const float *x , float
*Y );
void mkl_dcoosymv (const char *uplo, const MKL_INT *m, const double *val , const
MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const double *x , double
*Y );
void mkl_ccoosymv (const char *uplo, const MKL_INT *m, const MKL_Complex8 *val ,
const MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz, const MKL_Complex8
*X , MKL_Complex8 *y );

```
```

void mkl_zcoosymv (const char *uplo, const MKL_INT *m, const MKL_Complex16 *val ,
const MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const
MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?coosymv routine performs a matrix-vector operation defined as
\[
y:=A^{*} X
\]
where:
```

x and }y\mathrm{ are vectors,

```
\(A\) is an upper or lower triangle of the symmetrical sparse matrix in the coordinate format.

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & Specifies whether the upper or low triangle of the matrix \(A\) is used. \\
\hline & If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used. \\
\hline & If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used. \\
\hline m & Number of rows of the matrix \(A\). \\
\hline \multirow[t]{2}{*}{val} & Array of length \(n n z\), contains non-zero elements of the matrix \(A\) in the arbitrary order. \\
\hline & Refer to values array description in Coordinate Format for more details. \\
\hline \multirow[t]{2}{*}{rowind} & Array of length nnz, contains the row indices plus one for each non-zero element of the matrix \(A\). \\
\hline & Refer to rows array description in Coordinate Format for more details. \\
\hline colind & Array of length \(n n z\), contains the column indices plus one for each non-zero element of the matrix \(A\). Refer to columns array description in Coordinate Format for more details. \\
\hline \multirow[t]{2}{*}{\(n n z\)} & Specifies the number of non-zero element of the matrix \(A\). \\
\hline & Refer to \(n n z\) description in Coordinate Format for more details. \\
\hline \multirow[t]{2}{*}{\(x\)} & Array, size is m. \\
\hline & On entry, the array x must contain the vector \(x\). \\
\hline
\end{tabular}

\section*{Output Parameters}
y
Array, size at least \(m\).
On exit, the array \(y\) must contain the vector \(y\).
mkl_?diasymv
Computes matrix - vector product of a sparse symmetrical matrix stored in the diagonal format with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_sdiasymv (const char *uplo, const MKL_INT *m , const float *val , const
MKL_INT *lval , const MKL_INT *idiag, const MKL_INT *ndiag, const float *X , float
*Y );
void mkl_ddiasymv (const char *uplo, const MKL_INT *m , const double *val , const
MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag, const double *x , double
*Y );
void mkl_cdiasymv (const char *uplo, const MKL_INT *m , const MKL_Complex8 *val ,
const MKL_INT *lval , const MKL_INT *idiag, const MKL_INT *ndiag , const MKL_Complex8
*x , MKL_Complex8 *y );
void mkl_zdiasymv (const char *uplo , const MKL_INT *m , const MKL_Complex16 *val ,
const MKL_INT *lval , const MKL_INT *idiag, const MKL_INT *ndiag , const MKL_Complex16
*x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?diasymv routine performs a matrix-vector operation defined as
```

y := A* X

```
where:
\(x\) and \(y\) are vectors,
\(A\) is an upper or lower triangle of the symmetrical sparse matrix.

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
uplo
Specifies whether the upper or low triangle of the matrix \(A\) is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used.
\begin{tabular}{|c|c|}
\hline & If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used. \\
\hline m & Number of rows of the matrix \(A\). \\
\hline val & Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix \(A\). Refer to values array description in Diagonal Storage Scheme for more details. \\
\hline lval & Leading dimension of val, lval \(\geq m\). Refer to lval description in Diagonal Storage Scheme for more details. \\
\hline idiag & Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix \(A\). \\
\hline & Refer to distance array description in Diagonal Storage Scheme for more details. \\
\hline ndiag & Specifies the number of non-zero diagonals of the matrix \(A\). \\
\hline \(x\) & Array, size is \(m\). \\
\hline & On entry, the array \(x\) must contain the vector \(x\). \\
\hline
\end{tabular}

\section*{Output Parameters}
y
Array, size at least \(m\).
On exit, the array \(y\) must contain the vector \(y\).
mkl_?csrtrsv
Triangular solvers with simplified interface for a sparse matrix in the CSR format (3-array variation) with onebased indexing (deprecated).

\section*{Syntax}
```

void mkl_scsrtrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m, const float *a , const MKL_INT *ia, const MKL_INT *ja, const float *x ,
float *y );
void mkl_dcsrtrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m, const double *a , const MKL_INT *ia, const MKL_INT *ja , const double
*x , double *y );
void mkl_ccsrtrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m, const MKL_Complex8 *a , const MKL_INT *ia , const MKL_INT *ja , const
MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_zcsrtrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m, const MKL_Complex16 *a , const MKL_INT *ia, const MKL_INT *ja , const
MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?csrtrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the CSR format (3 array variation):
```

A*}y=

```
or
\[
A^{T} \star y=x,
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
uplo
transa
m
a

Specifies whether the upper or low triangle of the matrix \(A\) is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used.
If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used.
Specifies the system of linear equations.
If transa \(=\) ' \(N\) ' or ' \(n\) ', then \(A^{*} y=x\)
If transa \(=\) 'T' or 't' or 'C' or 'C', then \(A^{T *} y=x\),
Specifies whether \(A\) is unit triangular.
If diag = 'U' or 'u', then \(A\) is a unit triangular.
If diag \(=\) 'N' or 'n', then \(A\) is not unit triangular.
Number of rows of the matrix \(A\).
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.

\section*{NOTE}

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

Array of length \(m+1\), containing indices of elements in the array \(a\), such that ia[i] - ia[0] is the index in the array a of the first non-zero element from the row \(i\). The value of the last element ia[m]-ia[0] is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

Array containing the column indices plus one for each non-zero element of the matrix \(A\).
Its length is equal to the length of the array \(a\). Refer to columns array description in Sparse Matrix Storage Formats for more details.

\section*{NOTE}

Column indices must be sorted in increasing order for each row.

X
Array, size is \(m\).
On entry, the array \(x\) must contain the vector \(x\).

\section*{Output Parameters}
```

y

```

Array, size at least \(m\).
Contains the vector \(y\).

\section*{mkl_?bsrtrsv}

Triangular solver with simplified interface for a sparse
matrix stored in the BSR format (3-array variation)
with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_sbsrtrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m, const MKL_INT *Ib , const float *a , const MKL_INT *ia , const MKL_INT
*ja , const float *x, float *Y );
void mkl_dbsrtrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m, const MKL_INT *lb, const double *a, const MKL_INT *ia, const MKL_INT
*ja, const double *x , double *y );
void mkl_cbsrtrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m, const MKL_INT *Ib, const MKL_Complex8 *a, const MKL_INT *ia, const
MKL_INT *ja , const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_zbsrtrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m, const MKL_INT *lb , const MKL_Complex16 *a , const MKL_INT *ia , const
MKL_INT *ja , const MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?bsrtrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the BSR format (3-array variation) :
```

y := A* X
Or
y := A ** X,
where:
$x$ and $y$ are vectors,
$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\top}$ is the transpose of $A$.

```

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
uplo
transa
diag
m
1b
a

Specifies the upper or low triangle of the matrix \(A\) is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used.
If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used.
Specifies the operation.
If transa \(=\) ' \(N\) ' or ' \(n\) ', then the matrix-vector product is computed as \(y:=A^{\star} x\)
If transa \(=\) 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as \(y:=A^{T} *_{x}\).

Specifies whether \(A\) is a unit triangular matrix.
If diag = 'U' or 'u', then \(A\) is a unit triangular.
If diag \(=\) ' \(N\) ' or ' \(n\) ', then \(A\) is not a unit triangular.
Number of block rows of the matrix \(A\).
Size of the block in the matrix \(A\).
Array containing elements of non-zero blocks of the matrix \(A\). Its length is equal to the number of non-zero blocks in the matrix \(A\) multiplied by \(1 . b^{\star} 1 . b\). Refer to values array description in BSR Format for more details.

\section*{NOTE}

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).
No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.
```

ia
ja
x
Array of length $(m+1)$, containing indices of block in the array $a$, such that ia[I] - ia[0] is the index in the array a of the first non-zero element from the row $I$. The value of the last element ia[m]-ia[0] is equal to the number of non-zero blocks. Refer to rowIndex array description in BSR Format for more details.
Array containing the column indices plus one for each non-zero block in the matrix $A$.
Its length is equal to the number of non-zero blocks of the matrix $A$. Refer to columns array description in BSR Format for more details.
Array, size ( $m^{*}$ lb).
On entry, the array $x$ must contain the vector $x$.

```

\section*{Output Parameters}
y
Array, size at least (\(m^{\star}\) lb).
On exit, the array \(y\) must contain the vector \(y\).
```

mkl_?cootrsv
Triangular solvers with simplified interface for a sparse
matrix in the coordinate format with one-based
indexing (deprecated).

```

\section*{Syntax}
```

void mkl_scootrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m, const float *val, const MKL_INT *rowind, const MKL_INT *colind, const
MKL_INT *nnz , const float *x , float *y );
void mkl_dcootrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m, const double *val, const MKL_INT *rowind, const MKL_INT *colind, const
MKL_INT *nnz , const double *x , double *y );
void mkl_ccootrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m, const MKL_Complex8 *val, const MKL_INT *rowind, const MKL_INT *colind,
const MKL_INT *nnz , const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_zcootrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m, const MKL_Complex16 *val , const MKL_INT *rowind, const MKL_INT *colind,
const MKL_INT *nnz , const MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?cootrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the coordinate format:
```

A*}y=

```
or
\[
A^{T} * y=x,
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
uplo
transa
diag
m
val
rowind
colind
\(n n z\)
x

\section*{Output Parameters}

Specifies whether the upper or low triangle of the matrix \(A\) is considered. If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used. If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used.

Specifies the system of linear equations.
If transa \(=\) ' \(N\) ' or ' \(n\) ', then \(A^{\star} y=x\)
If transa \(=\) ' \(T\) ' or 't' or 'C' or 'c', then \(A^{T} \star y=x\),
Specifies whether \(A\) is unit triangular.
If diag = 'U' or 'u', then \(A\) is unit triangular.
If diag \(=\) ' \(N\) ' or ' n ', then \(A\) is not unit triangular.
Number of rows of the matrix \(A\).
Array of length \(n n z\), contains non-zero elements of the matrix \(A\) in the arbitrary order.
Refer to values array description in Coordinate Format for more details.
Array of length \(n n z\), contains the row indices plus one for each non-zero element of the matrix \(A\).

Refer to rows array description in Coordinate Format for more details.
Array of length \(n n z\), contains the column indices plus one for each non-zero element of the matrix \(A\). Refer to columns array description in Coordinate Format for more details.

Specifies the number of non-zero element of the matrix \(A\).
Refer to \(n n z\) description in Coordinate Format for more details.
Array, size is \(m\).
On entry, the array \(x\) must contain the vector \(x\).

Array, size at least \(m\).
Contains the vector \(y\).
```

mkl_?diatrsv
Triangular solvers with simplified interface for a sparse
matrix in the diagonal format with one-based indexing
(deprecated).

```

\section*{Syntax}
```

void mkl_sdiatrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m , const float *val , const MKL_INT *lval , const MKL_INT *idiag , const
MKL_INT *ndiag , const float *x , float *y );
void mkl_ddiatrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m, const double *val, const MKL_INT *lval, const MKL_INT *idiag, const
MKL_INT *ndiag, const double *x , double *y );
void mkl_cdiatrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m, const MKL_Complex8 *val , const MKL_INT *lval , const MKL_INT *idiag ,
const MKL_INT *ndiag , const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_zdiatrsv (const char *uplo, const char *transa, const char *diag , const
MKL_INT *m , const MKL_Complex16 *val , const MKL_INT *lval , const MKL_INT *idiag ,
const MKL_INT *ndiag, const MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?diatrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the diagonal format:
\[
A^{\star} y=x
\]
or
\[
A^{T \star} y=x
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
uplo
transa

Specifies whether the upper or low triangle of the matrix \(A\) is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used.
If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used.
Specifies the system of linear equations.

\section*{NOTE}

All elements of this array must be sorted in increasing order.
ndiag
X

Array, size is \(m\).
On entry, the array \(x\) must contain the vector \(x\).

\section*{Output Parameters}

Y
Array, size at least \(m\).
Contains the vector \(y\).
mkl_cspblas_?csrgemv
Computes matrix - vector product of a sparse general matrix stored in the CSR format (3-array variation) with zero-based indexing (deprecated).

\section*{Syntax}
```

void mkl_cspblas_scsrgemv (const char *transa, const MKL_INT *m , const float *a ,
const MKL_INT *ia, const MKL_INT *ja , const float *x , float *y );
void mkl_cspblas_dcsrgemv (const char *transa, const MKL_INT *m, const double *a ,
const MKL_INT *ia, const MKL_INT *ja , const double *x , double *y );
void mkl_cspblas_ccsrgemv (const char *transa, const MKL_INT *m , const MKL_Complex8
*a , const MKL_INT *ia, const MKL_INT *ja , const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_cspblas_zcsrgemv (const char *transa, const MKL_INT *m , const MKL_Complex16
*a , const MKL_INT *ia, const MKL_INT *ja , const MKL_Complex16 *x , MKL_Complex16
*Y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_cspblas_?csrgemv routine performs a matrix-vector operation defined as
\[
y:=A^{\star} X
\]
or
\[
y:=A^{T} * x,
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(m\) sparse square matrix in the CSR format (3-array variation) with zero-based indexing, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only zero-based indexing of the input arrays.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{transa} & Specifies the operation. \\
\hline & If transa \(=\) 'N' or 'n', then the matrix-vector product is computed as \(y:=A^{*} x\) \\
\hline & If transa \(=\) 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as \(y:=A^{T}{ }^{T} x\), \\
\hline m & Number of rows of the matrix \(A\). \\
\hline a & Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details. \\
\hline ia & Array of length \(m+1\), containing indices of elements in the array \(a\), such that \(i a[I]\) is the index in the array \(a\) of the first non-zero element from the row \(I\). The value of the last element ia[m] is equal to the number of nonzeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details. \\
\hline \multirow[t]{2}{*}{ja} & Array containing the column indices for each non-zero element of the matrix \(A\). \\
\hline & Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details. \\
\hline \multirow[t]{2}{*}{\(x\)} & Array, size is \(m\). \\
\hline & One entry, the array \(x\) must contain the vector \(x\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

y
Array, size at least $m$.
On exit, the array $y$ must contain the vector $y$.

```
mkl_cspblas_?bsrgemv
Computes matrix - vector product of a sparse general
matrix stored in the BSR format (3-array variation)
with zero-based indexing (deprecated).

\section*{Syntax}
```

void mkl_cspblas_sbsrgemv (const char *transa, const MKL_INT *m , const MKL_INT *Ib ,
const float *a , const MKL_INT *ia, const MKL_INT *ja, const float *x, float *y );
void mkl_cspblas_dbsrgemv (const char *transa, const MKL_INT *m , const MKL_INT *Ib ,
const double *a , const MKL_INT *ia, const MKL_INT *ja, const double *x, double
*Y );
void mkl_cspblas_cbsrgemv (const char *transa, const MKL_INT *m , const MKL_INT *Ib ,
const MKL_Complex8 *a , const MKL_INT *ia, const MKL_INT *ja, const MKL_Complex8 *x ,
MKL_Complex8 *y );
void mkl_cspblas_zbsrgemv (const char *transa, const MKL_INT *m , const MKL_INT *Ib ,
const MKL_Complex16 *a , const MKL_INT *ia, const MKL_INT *ja , const MKL_Complex16
*x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_cspblas_?bsrgemv routine performs a matrix-vector operation defined as
```

y := A*}

```
or
\[
y:=A^{T} * x,
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(m\) block sparse square matrix in the BSR format (3-array variation) with zero-based indexing, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only zero-based indexing of the input arrays.

\section*{Input Parameters}
```

transa Specifies the operation.
If transa = 'N' or 'n', then the matrix-vector product is computed as
y := A\star }
If transa = 'T' or 't' or 'C' or 'C', then the matrix-vector product is
computed as y := AT* X,
Number of block rows of the matrix $A$.
Size of the block in the matrix $A$.
Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 b \star 1 b$. Refer to values array description in BSR Format for more details.
Array of length $(m+1)$, containing indices of block in the array $a$, such that $i a[i]$ is the index in the array $a$ of the first non-zero element from the row $i$. The value of the last element $i a[\mathrm{~m}]$ is equal to the number of nonzero blocks. Refer to rowIndex array description in BSR Format for more details.
Array containing the column indices for each non-zero block in the matrix $A$.
Its length is equal to the number of non-zero blocks of the matrix $A$. Refer to columns array description in BSR Format for more details.
x
Array, size ( $m^{*}$ lb).
On entry, the array $x$ must contain the vector $x$.

```

\section*{Output Parameters}
y
Array, size at least (\(m^{\star}\) lb).
On exit, the array \(y\) must contain the vector \(y\).
mkl_cspblas_?coogemv
Computes matrix - vector product of a sparse general matrix stored in the coordinate format with zerobased indexing (deprecated).

\section*{Syntax}
```

void mkl_cspblas_scoogemv (const char *transa, const MKL_INT *m , const float *val ,
const MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const float *x,
float *y );
void mkl_cspblas_dcoogemv (const char *transa, const MKL_INT *m , const double *val ,
const MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const double *x ,
double *y );
void mkl_cspblas_ccoogemv (const char *transa, const MKL_INT *m , const MKL_Complex8
*val, const MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const
MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_cspblas_zcoogemv (const char *transa, const MKL_INT *m , const MKL_Complex16
*val, const MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const
MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_cspblas_dcoogemv routine performs a matrix-vector operation defined as
\[
Y:=A^{\star} X
\]
or
\[
y:=A^{T *} X
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(m\) sparse square matrix in the coordinate format with zero-based indexing, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only zero-based indexing of the input arrays.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{transa} & Specifies the operation. \\
\hline & If transa \(=\) ' \(N\) ' or ' \(n\) ', then the matrix-vector product is computed as \(y:=A^{*} X\) \\
\hline & If transa \(=\) 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as \(y:=A^{T}{ }^{\mathrm{x}}\). \\
\hline m & Number of rows of the matrix \(A\). \\
\hline \multirow[t]{2}{*}{val} & Array of length \(n n z\), contains non-zero elements of the matrix \(A\) in the arbitrary order. \\
\hline & Refer to values array description in Coordinate Format for more details. \\
\hline \multirow[t]{2}{*}{rowind} & Array of length \(n n z\), contains the row indices for each non-zero element of the matrix \(A\). \\
\hline & Refer to rows array description in Coordinate Format for more details. \\
\hline colind & Array of length \(n n z\), contains the column indices for each non-zero element of the matrix \(A\). Refer to columns array description in Coordinate Format for more details. \\
\hline \multirow[t]{2}{*}{\(n n z\)} & Specifies the number of non-zero element of the matrix \(A\). \\
\hline & Refer to \(n n z\) description in Coordinate Format for more details. \\
\hline \multirow[t]{2}{*}{\(x\)} & Array, size is \(m\). \\
\hline & On entry, the array \(x\) must contain the vector \(x\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

y
Array, size at least $m$.
On exit, the array $y$ must contain the vector $y$.

```
mkl_cspblas_?csrsymv
Computes matrix-vector product of a sparse
symmetrical matrix stored in the CSR format (3-array
variation) with zero-based indexing (deprecated).

\section*{Syntax}
```

void mkl_cspblas_scsrsymv (const char *uplo, const MKL_INT *m , const float *a , const
MKL_INT *ia, const MKL_INT *ja, const float *x , float *y );
void mkl_cspblas_dcsrsymv (const char *uplo, const MKL_INT *m , const double *a ,
const MKL_INT *ia, const MKL_INT *ja , const double *x , double *y );
void mkl_cspblas_ccsrsymv (const char *uplo, const MKL_INT *m , const MKL_Complex8
*a , const MKL_INT *ia , const MKL_INT *ja , const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_cspblas_zcsrsymv (const char *uplo, const MKL_INT *m , const MKL_Complex16
*a , const MKL_INT *ia, const MKL_INT *ja , const MKL_Complex16 *x , MKL_Complex16
*Y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_cspblas_?csrsymv routine performs a matrix-vector operation defined as
```

y := A* X

```
where:
\(x\) and \(y\) are vectors,
\(A\) is an upper or lower triangle of the symmetrical sparse matrix in the CSR format (3-array variation) with zero-based indexing.

\section*{NOTE}

This routine supports only zero-based indexing of the input arrays.

Input Parameters
uplo
Specifies whether the upper or low triangle of the matrix \(A\) is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used.
If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used.
\begin{tabular}{ll}
\(m\) & Number of rows of the matrix \(A\). \\
a & \begin{tabular}{l}
Array containing non-zero elements of the matrix \(A\). Its length is equal to \\
the number of non-zero elements in the matrix \(A\). Refer to values array \\
description in Sparse Matrix Storage Formats for more details.
\end{tabular} \\
ia & \begin{tabular}{l}
Array of length \(m+1\), containing indices of elements in the array a, such \\
that \(i a[i]\) is the index in the array a of the first non-zero element from the \\
row \(i\). The value of the last element \(i a[m]\) is equal to the number of non- \\
zeros. Refer to rowIndex array description in Sparse Matrix Storage \\
Formats for more details.
\end{tabular} \\
ja & \begin{tabular}{l}
Array containing the column indices for each non-zero element of the \\
matrix \(A\).
\end{tabular} \\
Its length is equal to the length of the array a. Refer to columns array \\
description in Sparse Matrix Storage Formats for more details.
\end{tabular}

\section*{Output Parameters}

\section*{y}

Array, size at least \(m\).
On exit, the array \(y\) must contain the vector \(y\).

\section*{mkl_cspblas_?bsrsymv}

Computes matrix-vector product of a sparse symmetrical matrix stored in the BSR format (3-arrays variation) with zero-based indexing (deprecated).

\section*{Syntax}
```

void mkl_cspblas_sbsrsymv (const char *uplo, const MKL_INT *m , const MKL_INT *lb ,
const float *a , const MKL_INT *ia , const MKL_INT *ja , const float *x , float *y );
void mkl_cspblas_dbsrsymv (const char *uplo, const MKL_INT *m , const MKL_INT *lb ,
const double *a , const MKL_INT *ia, const MKL_INT *ja, const double *x , double
*y );
void mkl_cspblas_cbsrsymv (const char *uplo, const MKL_INT *m , const MKL_INT *lb ,
const MKL_Complex }8\mathrm{ *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_Complex8 *X ,
MKL_Complex8 *y );
void mkl_cspblas_zbsrsymv (const char *uplo, const MKL_INT *m , const MKL_INT *lb ,
const MKL_Complex16 *a , const MKL_INT *ia, const MKL_INT *ja , const MKL_Complex16
*X , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_cspblas_?bsrsymv routine performs a matrix-vector operation defined as
```

y := A* }

```
where:
\(x\) and \(y\) are vectors,
\(A\) is an upper or lower triangle of the symmetrical sparse matrix in the BSR format (3-array variation) with zero-based indexing.

\section*{NOTE}

This routine supports only zero-based indexing of the input arrays.

\section*{Input Parameters}
```

uplo Specifies whether the upper or low triangle of the matrix A is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix A is used.
If uplo = 'L' or 'l', then the low triangle of the matrix A is used.
Number of block rows of the matrix $A$.
Size of the block in the matrix $A$.
Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 . b^{*} 1 b$. Refer to values array description in BSR Format for more details.
Array of length $(m+1)$, containing indices of block in the array $a$, such that $i a[i]$ is the index in the array $a$ of the first non-zero element from the row $i$. The value of the last element ia[m] is equal to the number of nonzero blocks. Refer to rowIndex array description in BSR Format for more details.
Array containing the column indices for each non-zero block in the matrix $A$.
Its length is equal to the number of non-zero blocks of the matrix $A$. Refer to columns array description in BSR Format for more details.
Array, size ( $m^{\star}$ lb).
On entry, the array $x$ must contain the vector $x$.

```

\section*{Output Parameters}
y
Array, size at least (\(m^{\star} l b\)).
On exit, the array \(y\) must contain the vector \(y\).
mkl_cspblas_?coosymv
Computes matrix - vector product of a sparse symmetrical matrix stored in the coordinate format with zero-based indexing (deprecated).

\section*{Syntax}
```

void mkl_cspblas_scoosymv (const char *uplo, const MKL_INT *m , const float *val ,
const MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const float *x ,
float *Y );
void mkl_cspblas_dcoosymv (const char *uplo, const MKL_INT *m , const double *val,
const MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const double *x ,
double *Y );
void mkl_cspblas_ccoosymv (const char *uplo, const MKL_INT *m , const MKL_Complex8
*val, const MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const
MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_cspblas_zcoosymv (const char *uplo, const MKL_INT *m , const MKL_Complex16
*val, const MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const
MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_cspblas_?coosymv routine performs a matrix-vector operation defined as
\[
y:=A^{\star} X
\]
where:
```

x and y are vectors,

```
\(A\) is an upper or lower triangle of the symmetrical sparse matrix in the coordinate format with zero-based indexing.

\section*{NOTE}

This routine supports only zero-based indexing of the input arrays.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & Specifies whether the upper or low triangle of the matrix \(A\) is used. \\
\hline & If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used. \\
\hline & If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used. \\
\hline m & Number of rows of the matrix \(A\). \\
\hline \multirow[t]{2}{*}{val} & Array of length \(n n z\), contains non-zero elements of the matrix \(A\) in the arbitrary order. \\
\hline & Refer to values array description in Coordinate Format for more details. \\
\hline rowind & Array of length \(n n z\), contains the row indices for each non-zero element of the matrix \(A\). \\
\hline
\end{tabular}
```

colind
nnz
X
Array of length nnz, contains the column indices for each non-zero element of the matrix A. Refer to columns array description in Coordinate Format for more details.
Specifies the number of non-zero element of the matrix $A$.
Refer to $n n z$ description in Coordinate Format for more details.
Array, size is $m$.

```

Refer to rows array description in Coordinate Format for more details.

On entry, the array \(x\) must contain the vector \(x\).

\section*{Output Parameters}
y
Array, size at least \(m\).
On exit, the array \(y\) must contain the vector \(y\).
mkl_cspblas_?csrtrsv
Triangular solvers with simplified interface for a sparse matrix in the CSR format (3-array variation) with zero-based indexing (deprecated).

\section*{Syntax}
```

void mkl_cspblas_scsrtrsv (const char *uplo, const char *transa, const char *diag ,
const MKL_INT *m, const float *a, const MKL_INT *ia, const MKL_INT *ja, const float
*x , float *y );
void mkl_cspblas_dcsrtrsv (const char *uplo, const char *transa, const char *diag ,
const MKL_INT *m, const double *a, const MKL_INT *ia, const MKL_INT *ja, const
double *x , double *Y );
void mkl_cspblas_ccsrtrsv (const char *uplo, const char *transa, const char *diag,
const MKL_INT *m, const MKL_Complex8 *a , const MKL_INT *ia , const MKL_INT *ja ,
const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_cspblas_zcsrtrsv (const char *uplo, const char *transa , const char *diag ,
const MKL_INT *m, const MKL_Complex16 *a, const MKL_INT *ia, const MKL_INT *ja,
const MKL_Complex16 *x , MKL_Complex16 *y );

```

Include Files
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_cspblas_?csrtrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the CSR format (3-array variation) with zero-based indexing:
\[
A^{\star} y=x
\]
or
\[
A^{T} * y=x,
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only zero-based indexing of the input arrays.

\section*{Input Parameters}
uplo

Specifies whether the upper or low triangle of the matrix \(A\) is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used.
If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used.
Specifies the system of linear equations.
If transa \(=\) ' \(N\) ' or ' \(n\) ', then \(A^{\star} y=x\)
If transa \(=\) ' T ' or ' t ' or ' C ' or 'c', then \(A^{T} * y=x\),
Specifies whether matrix \(A\) is unit triangular.
If diag = 'U' or 'u', then \(A\) is unit triangular.
If diag \(=\) ' \(N\) ' or ' n ', then \(A\) is not unit triangular.
Number of rows of the matrix \(A\).
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.

\section*{NOTE}

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).
No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

Array of length \(m+1\), containing indices of elements in the array \(a\), such that ia[i] is the index in the array a of the first non-zero element from the row \(i\). The value of the last element \(i a[m]\) is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

Array containing the column indices for each non-zero element of the matrix \(A\).
Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

\section*{NOTE}

Column indices must be sorted in increasing order for each row.
x
Array, size is \(m\).
On entry, the array \(x\) must contain the vector \(x\).

\section*{Output Parameters}
y
Array, size at least \(m\).
Contains the vector \(y\).

\section*{mkl_cspblas_?bsrtrsv}

Triangular solver with simplified interface for a sparse matrix stored in the BSR format (3-array variation)
with zero-based indexing (deprecated).

\section*{Syntax}
```

void mkl_cspblas_sbsrtrsv (const char *uplo, const char *transa , const char *diag ,
const MKL_INT *m , const MKL_INT *lb , const float *a , const MKL_INT *ia, const
MKL_INT *ja , const float *x , float *y );
void mkl_cspblas_dbsrtrsv (const char *uplo, const char *transa , const char *diag ,
const MKL_INT *m , const MKL_INT *lb, const double *a , const MKL_INT *ia, const
MKL_INT *ja, const double *x , double *y );
void mkl_cspblas_cbsrtrsv (const char *uplo , const char *transa , const char *diag ,
const MKL_INT *m , const MKL_INT *lb , const MKL_Complex8 *a , const MKL_INT *ia ,
const MKL_INT *ja , const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_cspblas_zbsrtrsv (const char *uplo, const char *transa , const char *diag ,
const MKL_INT *m , const MKL_INT *lb , const MKL_Complex16 *a , const MKL_INT *ia ,
const MKL_INT *ja , const MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_cspblas_?bsrtrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the BSR format (3-array variation) with zero-based indexing:
```

y := A\star}

```
or
\[
y:=A^{T} * x
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only zero-based indexing of the input arrays.

\section*{Input Parameters}
uplo
transa
diag
m
Ib
a

X

Specifies the upper or low triangle of the matrix \(A\) is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used.
If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used.
Specifies the operation.
If transa \(=\) 'N' or 'n', then the matrix-vector product is computed as \(y:=A^{*} X\)

If transa \(=\) 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as \(y:=A^{T} *_{x}\).

Specifies whether matrix \(A\) is unit triangular or not.
If diag = 'U' or 'u', \(A\) is unit triangular.
If diag \(=\) ' \(N\) ' or ' n ', \(\boldsymbol{A}\) is not unit triangular.
Number of block rows of the matrix \(A\).
Size of the block in the matrix \(A\).
Array containing elements of non-zero blocks of the matrix \(A\). Its length is equal to the number of non-zero blocks in the matrix \(A\) multiplied by \(1 . b^{*} 1 b\). Refer to values array description in BSR Format for more details.

\section*{NOTE}

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).
No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

Array of length \((m+1)\), containing indices of block in the array \(a\), such that ia[I] is the index in the array a of the first non-zero element from the row \(I\). The value of the last element \(i a[m]\) is equal to the number of nonzero blocks. Refer to rowIndex array description in BSR Format for more details.

Array containing the column indices for each non-zero block in the matrix \(A\).
Its length is equal to the number of non-zero blocks of the matrix \(A\). Refer to columns array description in BSR Format for more details.

Array, size (\(m^{*}\) lb).
On entry, the array \(x\) must contain the vector \(x\).

\section*{Output Parameters}
```

y
Array, size at least ( $m^{\star} l b$ ).
On exit, the array $y$ must contain the vector $y$.

```

\section*{mkl_cspblas_?cootrsv}

Triangular solvers with simplified interface for a sparse matrix in the coordinate format with zero-based indexing (deprecated).

\section*{Syntax}
```

void mkl_cspblas_scootrsv (const char *uplo, const char *transa, const char *diag ,
const MKL_INT *m, const float *val, const MKL_INT *rowind, const MKL_INT *colind,
const MKL_INT *nnz, const float *x , float *y );
void mkl_cspblas_dcootrsv (const char *uplo, const char *transa, const char *diag ,
const MKL_INT *m, const double *val, const MKL_INT *rowind, const MKL_INT *colind,
const MKL_INT *nnz , const double *x , double *y );
void mkl_cspblas_ccootrsv (const char *uplo, const char *transa , const char *diag ,
const MKL_INT *m, const MKL_Complex8 *val, const MKL_INT *rowind, const MKL_INT
*colind, const MKL_INT *nnz , const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_cspblas_zcootrsv (const char *uplo, const char *transa , const char *diag ,
const MKL_INT *m, const MKL_Complex16 *val, const MKL_INT *rowind, const MKL_INT
*colind , const MKL_INT *nnz , const MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_cspblas_?cootrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the coordinate format with zero-based indexing:
\[
A^{\star} y=x
\]
or
\[
A^{T} \star y=x
\]
where:
\(x\) and \(y\) are vectors,
\(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only zero-based indexing of the input arrays.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & Specifies whether the upper or low triangle of the matrix \(A\) is considered. \\
\hline & If uplo = 'U' or 'u', then the upper triangle of the matrix \(A\) is used. \\
\hline & If uplo = 'L' or 'l', then the low triangle of the matrix \(A\) is used. \\
\hline \multirow[t]{3}{*}{transa} & Specifies the system of linear equations. \\
\hline & If transa \(=\) ' \(N\) ' or 'n', then \(A^{*} y=x\) \\
\hline & If transa \(=\) 'T' or 't' or 'C' or 'c', then \(A^{T} \star y=x\), \\
\hline \multirow[t]{3}{*}{diag} & Specifies whether \(A\) is unit triangular. \\
\hline & If diag = 'U' or 'u', then \(A\) is unit triangular. \\
\hline & If diag = 'N' or 'n', then \(A\) is not unit triangular. \\
\hline m & Number of rows of the matrix \(A\). \\
\hline \multirow[t]{2}{*}{val} & Array of length nnz, contains non-zero elements of the matrix \(A\) in the arbitrary order. \\
\hline & Refer to values array description in Coordinate Format for more details. \\
\hline \multirow[t]{2}{*}{rowind} & Array of length nnz, contains the row indices for each non-zero element of the matrix \(A\). \\
\hline & Refer to rows array description in Coordinate Format for more details. \\
\hline colind & Array of length \(n n z\), contains the column indices for each non-zero element of the matrix \(A\). Refer to columns array description in Coordinate Format for more details. \\
\hline \multirow[t]{2}{*}{\(n n z\)} & Specifies the number of non-zero element of the matrix \(A\). \\
\hline & Refer to \(n n z\) description in Coordinate Format for more details. \\
\hline \multirow[t]{2}{*}{\(x\)} & Array, size is \(m\). \\
\hline & On entry, the array \(x\) must contain the vector \(x\). \\
\hline
\end{tabular}

\section*{Output Parameters}
y
Array, size at least \(m\).
Contains the vector \(y\).

\section*{mkl_?csrmv}

Computes matrix - vector product of a sparse matrix stored in the CSR format (deprecated).

\section*{Syntax}
```

void mkl_scsrmv (const char *transa, const MKL_INT *m, const MKL_INT *k , const float
*alpha, const char *matdescra, const float *val, const MKL_INT *indx , const MKL_INT
*pntrb, const MKL_INT *pntre , const float *x, const float *beta , float *y );
void mkl_dcsrmv (const char *transa, const MKL_INT *m, const MKL_INT *k , const
double *alpha, const char *matdescra, const double *val, const MKL_INT *indx , const
MKL_INT *pntrb, const MKL_INT *pntre, const double *x , const double *beta , double
*Y );

```
```

void mkl_ccsrmv (const char *transa, const MKL_INT *m, const MKL_INT *k, const
MKL_Complex8 *alpha, const char *matdescra, const MKL_Complex8 *val , const MKL_INT
*indx , const MKL_INT *pntrb, const MKL_INT *pntre, const MKL_Complex8 *x , const
MKL_Complex8 *beta, MKL_Complex8 *y );
void mkl_zcsrmv (const char *transa, const MKL_INT *m, const MKL_INT *k, const
MKL_Complex16 *alpha, const char *matdescra, const MKL_Complex16 *val , const MKL_INT
*indx, const MKL_INT *pntrb, const MKL_INT *pntre, const MKL_Complex16 *x , const
MKL_Complex16 *beta , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?csrmv routine performs a matrix-vector operation defined as
```

y := alpha* A*}x+beta* y

```
or
\[
y:=a l p h a^{\star} A^{T \star} x+\operatorname{beta}^{\star} y
\]
where:
alpha and beta are scalars,
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(k\) sparse matrix in the CSR format, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports a CSR format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline transa & Specifies the operation. \\
\hline & If transa \(=\) 'N' or 'n', then \(y:=a l p h a \star A * x+b e t a * y ~\) \\
\hline & If transa \(=\) 'T' or 't' or 'C' or 'c', then \(y:=a l p h a * A^{T} *^{\prime} \mathrm{C}+\) beta* \(y\), \\
\hline m & Number of rows of the matrix \(A\). \\
\hline k & Number of columns of the matrix \(A\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline matdescra & Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & Array containing non-zero elements of the matrix \(A\). \\
\hline
\end{tabular}

Its length is pntre[m-1] - pntrb[0].
Refer to values array description in CSR Format for more details.
For one-based indexing, array containing the column indices plus one for each non-zero element of the matrix \(A\). For zero-based indexing, array containing the column indices for each non-zero element of the matrix \(A\).

Its length is equal to length of the val array.
Refer to columns array description in CSR Format for more details.
Array of length \(m\).
This array contains row indices, such that pntrb[i] - pntrb[0] is the first index of row \(i\) in the arrays val and indx.
Refer to pointerb array description in CSR Format for more details.
Array of length \(m\).
This array contains row indices, such that pntre[i] - pntrb[0]-1 is the last index of row \(i\) in the arrays val and indx.
Refer to pointerE array description in CSR Format for more details.
Array, size at least \(k\) if transa \(=\) ' \(N\) ' or ' \(n\) ' and at least \(m\) otherwise. On entry, the array \(x\) must contain the vector \(x\).

Specifies the scalar beta.
Array, size at least \(m\) if transa \(=\) ' \(N\) ' or ' \(n\) ' and at least \(k\) otherwise. On entry, the array \(y\) must contain the vector \(y\).

\section*{Output Parameters}
y
Overwritten by the updated vector \(y\).
mkl_?bsrmv
Computes matrix - vector product of a sparse matrix stored in the BSR format (deprecated).

\section*{Syntax}
```

void mkl_sbsrmv (const char *transa , const MKL_INT *m , const MKL_INT *k , const
MKL_INT *lb, const float *alpha , const char *matdescra, const float *val , const
MKL_INT *indx , const MKL_INT *pntrb, const MKL_INT *pntre, const float *x , const
float *beta , float *y );
void mkl_dbsrmv (const char *transa , const MKL_INT *m , const MKL_INT *k , const
MKL_INT *lb, const double *alpha, const char *matdescra, const double *val , const
MKL_INT *indx, const MKL_INT *pntrb, const MKL_INT *pntre , const double *x , const
double *beta, double *y);
void mkl_cbsrmv (const char *transa , const MKL_INT *m , const MKL_INT *k , const
MKL_INT *lb , const MKL_Complex8 *alpha , const char *matdescra , const MKL_Complex8
*val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre, const
MKL_Complex8 *x , const MKL_Complex8 *beta , MKL_Complex8 *y );

```
```

void mkl_zbsrmv (const char *transa, const MKL_INT *m, const MKL_INT *k, const
MKL_INT *lb, const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complexl6
*val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const
MKL_Complex16 *x , const MKL_Complex16 *beta , MKL_Complex16 *y );

```

Include Files
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?bsrmv routine performs a matrix-vector operation defined as
\[
y:=a l p h a^{\star} A^{\star} x+b^{*} y
\]
or
\(y:=\) alpha* \(A^{T \star} x+\operatorname{beta}^{\star} y\),
where:
alpha and beta are scalars,
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(k\) block sparse matrix in the BSR format, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports a BSR format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{transa} & Specifies the operation. \\
\hline & If transa \(=\) 'N' or 'n', then the matrix-vector product is computed as \(y:=a l p h a^{*} A^{*} x+b e t a * y\) \\
\hline & If transa \(=\) 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as \(y:=a l p h a^{\star} A^{T} \star_{x}+b e t a \star y\), \\
\hline m & Number of block rows of the matrix \(A\). \\
\hline k & Number of block columns of the matrix \(A\). \\
\hline 1.6 & Size of the block in the matrix \(A\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline matdescra & Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & Array containing elements of non-zero blocks of the matrix \(A\). Its length is equal to the number of non-zero blocks in the matrix \(A\) multiplied by \(1 b^{\star} 1 b\). \\
\hline
\end{tabular}

Refer to values array description in BSR Format for more details.
For one-based indexing, array containing the column indices plus one for each non-zero block of the matrix \(A\). For zero-based indexing, array containing the column indices for each non-zero block of the matrix \(A\).
Its length is equal to the number of non-zero blocks in the matrix \(A\).
Refer to columns array description in BSR Format for more details.
Array of length \(m\).
This array contains row indices, such that pntrb[i] - pntrb[0] is the first index of block row \(i\) in the array indx

Refer to pointerB array description in BSR Format for more details.
Array of length \(m\).
For zero-based indexing this array contains row indices, such that pntre[i] - pntrb[0] - 1 is the last index of block row \(i\) in the array indx.

Refer to pointerE array description in BSR Format for more details.
Array, size at least (\(k^{\star} l b\)) if transa \(=\) ' \(N\) ' or 'n', and at least (\(m^{\star} l b\)) otherwise. On entry, the array \(x\) must contain the vector \(x\).

Specifies the scalar beta.
Array, size at least (\(m^{\star} l b\)) if transa \(=\) ' \(N\) ' or ' \(n\) ', and at least (\(k^{\star} l b\)) otherwise. On entry, the array \(y\) must contain the vector \(y\).

\section*{Output Parameters}
y
Overwritten by the updated vector \(y\).

\section*{mkl_?cscmv}

Computes matrix-vector product for a sparse matrix in the CSC format (deprecated).

\section*{Syntax}
```

void mkl_scscmv (const char *transa, const MKL_INT *m, const MKL_INT *k , const float
*alpha, const char *matdescra, const float *val, const MKL_INT *indx , const MKL_INT
*pntrb, const MKL_INT *pntre , const float *x, const float *beta , float *y );
void mkl_dcscmv (const char *transa, const MKL_INT *m, const MKL_INT *k, const
double *alpha, const char *matdescra, const double *val, const MKL_INT *indx , const
MKL_INT *pntrb, const MKL_INT *pntre, const double *x , const double *beta , double
*Y );
void mkl_ccscmv (const char *transa, const MKL_INT *m, const MKL_INT *k, const
MKL_Complex8 *alpha, const char *matdescra, const MKL_Complex8 *val , const MKL_INT
*indx , const MKL_INT *pntrb, const MKL_INT *pntre, const MKL_Complex8 *x , const
MKL_Complex8 *beta , MKL_Complex8 *y );

```
```

void mkl_zcscmv (const char *transa, const MKL_INT *m, const MKL_INT *k, const
MKL_Complex16 *alpha, const char *matdescra, const MKL_Complex16 *val , const MKL_INT
*indx, const MKL_INT *pntrb, const MKL_INT *pntre, const MKL_Complex16 *x , const
MKL_Complex16 *beta , MKL_Complex16 *y );

```

Include Files
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?cscmv routine performs a matrix-vector operation defined as
\[
y:=a l p h a^{\star} A^{\star} x+b^{*} y
\]
or
```

y := alpha*}\mp@subsup{A}{}{T}*x+beta* y

```
where:
alpha and beta are scalars,
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(k\) sparse matrix in compressed sparse column (CSC) format, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports CSC format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline transa & Specifies the operation. \\
\hline & If transa \(=\) 'N' or 'n', then \(y:=a l p h a * A^{*} x+\) beta* \(y\) \\
\hline & \\
\hline m & Number of rows of the matrix \(A\). \\
\hline k & Number of columns of the matrix \(A\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline matdescra & Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & Array containing non-zero elements of the matrix \(A\). \\
\hline & Its length is pntre[k-1] - pntrb[0]. \\
\hline & Refer to values array description in CSC Format for more details. \\
\hline
\end{tabular}
```

indx For one-based indexing, array containing the column indices plus one for each non-zero element of the matrix $A$. For zero-based indexing, array containing the column indices for each non-zero element of the matrix $A$.
Its length is equal to length of the val array.
Refer to rows array description in CSC Format for more details.
Array of length $k$.
This array contains column indices, such that pntrb[i] - pntrb[0] + 1 is the first index of column $i$ in the arrays val and indx.
Refer to pointerb array description in CSC Format for more details.
Array of length $k$.
For one-based indexing this array contains column indices, such that pntre[i] - pntrb[1] is the last index of column $i$ in the arrays val and indx.
For zero-based indexing this array contains column indices, such that pntre[i] - pntrb[1] - 1 is the last index of column $i$ in the arrays val and indx.
Refer to pointerE array description in CSC Format for more details.
Array, size at least $k$ if transa $=$ ' $N$ ' or ' $n$ ' and at least $m$ otherwise. On entry, the array $x$ must contain the vector $x$.
Specifies the scalar beta.
Array, size at least $m$ if transa $=$ ' $N$ ' or ' $n$ ' and at least $k$ otherwise. On entry, the array $y$ must contain the vector $y$.

```

\section*{Output Parameters}
y
Overwritten by the updated vector \(y\).

\section*{mkl_?coomv}

Computes matrix - vector product for a sparse matrix in the coordinate format (deprecated).

\section*{Syntax}
```

void mkl_scoomv (const char *transa, const MKL_INT *m, const MKL_INT *k , const float
*alpha, const char *matdescra, const float *val, const MKL_INT *rowind, const
MKL_INT *colind, const MKL_INT *nnz , const float *x , const float *beta, float *y );
void mkl_dcoomv (const char *transa, const MKL_INT *m, const MKL_INT *k, const
double *alpha, const char *matdescra, const double *val, const MKL_INT *rowind,
const MKL_INT *colind, const MKL_INT *nnz, const double *x , const double *beta ,
double *Y );
void mkl_ccoomv (const char *transa, const MKL_INT *m, const MKL_INT *k, const
MKL_Complex8 *alpha, const char *matdescra , const MKL_Complex8 *val , const MKL_INT
*rowind, const MKL_INT *colind, const MKL_INT *nnz , const MKL_Complex8 *x , const
MKL_Complex8 *beta, MKL_Complex8 *y );

```
```

void mkl_zcoomv (const char *transa, const MKL_INT *m, const MKL_INT *k, const
MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16 *val , const MKL_INT
*rowind, const MKL_INT *colind, const MKL_INT *nnz , const MKL_Complexl6 *x , const
MKL_Complex16 *beta , MKL_Complex16 *y );

```

Include Files
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_? coomv routine performs a matrix-vector operation defined as
\[
y:=a l p h a^{\star} A^{\star} x+b^{*} y
\]
or
\(y:=a l p h a^{\star} A^{T} \star x+\) beta* \(^{\star} y\),
where:
alpha and beta are scalars,
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(k\) sparse matrix in compressed coordinate format, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports a coordinate format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{transa} & Specifies the operation. \\
\hline & If transa \(=\) 'N' or 'n', then \(y:=a l p h a * A * x+b e t a * y ~\) \\
\hline & If transa \(=\) 'T' or 't' or 'C' or 'c', then \(y:=a l p h a * A^{T} *^{\prime} x+b e t a * y\), \\
\hline m & Number of rows of the matrix \(A\). \\
\hline k & Number of columns of the matrix \(A\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline matdescra & Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline \multirow[t]{2}{*}{val} & Array of length \(n n z\), contains non-zero elements of the matrix \(A\) in the arbitrary order. \\
\hline & Refer to values array description in Coordinate Format for more details. \\
\hline rowind & Array of length nnz. \\
\hline
\end{tabular}

For one-based indexing, contains the row indices plus one for each non-zero element of the matrix \(A\).

For zero-based indexing, contains the row indices for each non-zero element of the matrix \(A\).
Refer to rows array description in Coordinate Format for more details.
Array of length nnz.
For one-based indexing, contains the column indices plus one for each nonzero element of the matrix \(A\).

For zero-based indexing, contains the column indices for each non-zero element of the matrix \(A\).

Refer to columns array description in Coordinate Format for more details.
Specifies the number of non-zero element of the matrix \(A\).
Refer to \(n n z\) description in Coordinate Format for more details.
Array, size at least \(k\) if transa \(=\) ' \(N\) ' or ' \(n\) ' and at least \(m\) otherwise. On entry, the array \(x\) must contain the vector \(x\).

Specifies the scalar beta.
Array, size at least \(m\) if transa \(=\) ' \(N\) ' or ' \(n\) ' and at least \(k\) otherwise. On entry, the array \(y\) must contain the vector \(y\).

\section*{Output Parameters}
y
Overwritten by the updated vector \(y\).
mkl_?csrsv
Solves a system of linear equations for a sparse matrix in the CSR format (deprecated).

\section*{Syntax}
```

void mkl_scsrsv (const char *transa, const MKL_INT *m , const float *alpha , const
char *matdescra, const float *val , const MKL_INT *indx , const MKL_INT *pntrb , const
MKL_INT *pntre, const float *x , float *y );
void mkl_dcsrsv (const char *transa, const MKL_INT *m , const double *alpha , const
char *matdescra, const double *val , const MKL_INT *indx , const MKL_INT *pntrb ,
const MKL_INT *pntre, const double *x , double *y );
void mkl_ccsrsv (const char *transa , const MKL_INT *m , const MKL_Complex8 *alpha ,
const char *matdescra, const MKL_Complex8 *val , const MKL_INT *indx , const MKL_INT
*pntrb, const MKL_INT *pntre , const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_zcsrsv (const char *transa , const MKL_INT *m , const MKL_Complexl6 *alpha ,
const char *matdescra , const MKL_Complex16 *val , const MKL_INT *indx , const MKL_INT
*pntrb , const MKL_INT *pntre, const MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?csrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the CSR format:
```

y := alpha*inv(A)*x

```
or
```

Y := alpha*inv (AT)*x,

```
where:
alpha is scalar, \(x\) and \(y\) are vectors, \(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports a CSR format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
transa
m
alpha
matdescra
val
indx

Specifies the system of linear equations.
If transa \(=\) 'N' or 'n', then \(y:=a \operatorname{lpha*inv}(A) *_{X}\)
If transa \(=\) 'T' or 't' or 'C' or 'C', then \(y:=a l p h a * i n v\left(A^{T}\right) * x\),
Number of columns of the matrix \(A\).
Specifies the scalar alpha.
Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

Array containing non-zero elements of the matrix \(A\).
Its length is pntre[m - 1] - pntrb[0].
Refer to values array description in CSR Format for more details.

\section*{NOTE}

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

For one-based indexing, array containing the column indices plus one for each non-zero element of the matrix \(A\). For zero-based indexing, array containing the column indices for each non-zero element of the matrix \(A\).

Its length is equal to length of the val array.
Refer to columns array description in CSR Format for more details.

\section*{NOTE}

Column indices must be sorted in increasing order for each row.
```

pntrb Array of length m.
This array contains row indices, such that pntrb[i] - pntrb[0] is the
first index of row i in the arrays val and indx.
Refer to pointerb array description in CSR Format for more details.
Array of length m.
This array contains row indices, such that pntre[i] - pntrb[0] - 1 is
the last index of row i in the arrays val and indx.
Refer to pointerE array description in CSR Format for more details.
Array, size at least $m$.
On entry, the array $x$ must contain the vector $x$. The elements are accessed with unit increment.
Array, size at least $m$.
On entry, the array $y$ must contain the vector $y$. The elements are accessed with unit increment.

```

\section*{Output Parameters}
y
Contains solution vector \(x\).
mkl_?bsrsv
Solves a system of linear equations for a sparse matrix in the BSR format (deprecated).

\section*{Syntax}
```

void mkl_sbsrsv (const char *transa, const MKL_INT *m, const MKL_INT *lb , const
float *alpha, const char *matdescra, const float *val, const MKL_INT *indx , const
MKL_INT *pntrb , const MKL_INT *pntre, const float *x , float *y );
void mkl_dbsrsv (const char *transa , const MKL_INT *m, const MKL_INT *lb , const
double *alpha, const char *matdescra, const double *val, const MKL_INT *indx , const
MKL_INT *pntrb, const MKL_INT *pntre , const double *x , double *y );
void mkl_cbsrsv (const char *transa, const MKL_INT *m, const MKL_INT *lb, const
MKL_Complex8 *alpha, const char *matdescra, const MKL_Complex8 *val , const MKL_INT
*indx , const MKL_INT *pntrb, const MKL_INT *pntre , const MKL_Complex8 *x ,
MKL_Complex8 *y );
void mkl_zbsrsv (const char *transa, const MKL_INT *m, const MKL_INT *lb, const
MKL_Complex16 *alpha, const char *matdescra, const MKL_Complex16 *val , const MKL_INT
*indx , const MKL_INT *pntrb, const MKL_INT *pntre, const MKL_Complex16 *x ,
MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?bsrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the BSR format:
```

y := alpha*inv (A)**

```
or
\[
y:=a l p h a * i n v\left(A^{T}\right) * x
\]
where:
alpha is scalar, \(x\) and \(y\) are vectors, \(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports a BSR format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline transa & Specifies the operation. \\
\hline & If transa \(=\) 'N' or 'n', then \(y:=a \operatorname{loha*inv}(A) * x\) \\
\hline & If transa \(=\) 'T' or 't' or 'C' or 'c', then \(y\) : = alpha*inv (\(A^{T}\))* x , \\
\hline m & Number of block columns of the matrix \(A\). \\
\hline 1.6 & Size of the block in the matrix \(A\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline matdescra & Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & \begin{tabular}{l}
Array containing elements of non-zero blocks of the matrix \(A\). Its length is equal to the number of non-zero blocks in the matrix \(A\) multiplied by \(1 b^{*} 1 b\). \\
Refer to the values array description in BSR Format for more details.
\end{tabular} \\
\hline
\end{tabular}

\section*{NOTE}

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.
\begin{tabular}{|c|c|}
\hline indx & For one-based indexing, array containing the column indices plus one for each non-zero element of the matrix \(A\). For zero-based indexing, array containing the column indices for each non-zero element of the matrix \(A\). \\
\hline & Its length is equal to the number of non-zero blocks in the matrix \(A\). \\
\hline & Refer to the columns array description in BSR Format for more details. \\
\hline pntrb & Array of length m. \\
\hline & This array contains row indices, such that pntrb[i] - pntrb[0] is the first index of block row \(i\) in the array indx \\
\hline & Refer to pointerB array description in BSR Format for more details. \\
\hline pntre & Array of length \(m\). \\
\hline & For one-based indexing this array contains row indices, such that pntre[i] - pntrb[1] is the last index of block row \(i\) in the array indx. \\
\hline & For zero-based indexing this array contains row indices, such that pntre[i] - pntrb[0] - 1 is the last index of block row \(i\) in the array indx. \\
\hline & Refer to pointerE array description in BSR Format for more details. \\
\hline \(x\) & Array, size at least (\(m^{\star}\) lb) . \\
\hline & On entry, the array \(x\) must contain the vector \(x\). The elements are accessed with unit increment. \\
\hline y & Array, size at least (\(m^{*}\) lb) . \\
\hline & On entry, the array \(y\) must contain the vector \(y\). The elements are accessed with unit increment. \\
\hline
\end{tabular}

\section*{Output Parameters}
y
\[
\text { Contains solution vector } x
\]
mkl_?cscsv
Solves a system of linear equations for a sparse matrix in the CSC format (deprecated).

\section*{Syntax}
```

void mkl_scscsv (const char *transa, const MKL_INT *m , const float *alpha , const
char *matdescra , const float *val , const MKL_INT *indx , const MKL_INT *pntrb, const
MKL_INT *pntre, const float *x , float *y );

```
```

void mkl_dcscsv (const char *transa, const MKL_INT *m, const double *alpha, const
char *matdescra, const double *val, const MKL_INT *indx , const MKL_INT *pntrb ,
const MKL_INT *pntre, const double *x , double *Y );
void mkl_ccscsv (const char *transa, const MKL_INT *m, const MKL_Complex8 *alpha,
const char *matdescra, const MKL_Complex8 *val, const MKL_INT *indx , const MKL_INT
*pntrb, const MKL_INT *pntre, const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_zcscsv (const char *transa, const MKL_INT *m , const MKL_Complex16 *alpha ,
const char *matdescra, const MKL_Complexl6 *val , const MKL_INT *indx , const MKL_INT
*pntrb , const MKL_INT *pntre , const MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?cscsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the CSC format:
```

y := alpha*inv (A)*x

```
or
```

y := alpha*inv (AT)* x,

```
where:
alpha is scalar, \(x\) and \(y\) are vectors, \(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports a CSC format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline transa & Specifies the operation. \\
\hline & If transa \(=\) 'N' or 'n', then \(y:=a \operatorname{loha*inv}(A) *{ }_{x}\) \\
\hline & If transa= 'T' or 't' or 'C' or 'c', then \(y\) := alpha*inv (\(A^{T}\))* \(x\), \\
\hline m & Number of columns of the matrix \(A\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline matdescra & Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & Array containing non-zero elements of the matrix \(A\). \\
\hline & Its length is pntre[m-1] - pntrb[0]. \\
\hline
\end{tabular}

Refer to values array description in CSC Format for more details.

\section*{NOTE}

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).
No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.
indx
pntrb

For one-based indexing, array containing the row indices plus one for each non-zero element of the matrix \(A\).

For zero-based indexing, array containing the row indices for each non-zero element of the matrix \(A\).

Its length is equal to length of the val array.
Refer to columns array description in CSC Format for more details.

\section*{NOTE}

Row indices must be sorted in increasing order for each column.

Array of length \(m\).
This array contains column indices, such that pntrb[i] - pntrb[0] is the first index of column \(i\) in the arrays val and indx.

Refer to pointerb array description in CSC Format for more details.
Array of length \(m\).
This array contains column indices, such that pntre[i] - pntrb[0] - 1 is the last index of column \(i\) in the arrays val and indx.

Refer to pointerE array description in CSC Format for more details.
Array, size at least \(m\).
On entry, the array \(x\) must contain the vector \(x\). The elements are accessed with unit increment.

Array, size at least \(m\).
On entry, the array \(y\) must contain the vector \(y\). The elements are accessed with unit increment.

\section*{Output Parameters}
y
Contains the solution vector \(x\).
mkl_?coosv
Solves a system of linear equations for a sparse matrix in the coordinate format (deprecated).

\section*{Syntax}
```

void mkl_scoosv (const char *transa, const MKL_INT *m, const float *alpha , const
char *matdescra , const float *val, const MKL_INT *rowind, const MKL_INT *colind,
const MKL_INT *nnz , const float *x , float *y );
void mkl_dcoosv (const char *transa, const MKL_INT *m, const double *alpha, const
char *matdescra, const double *val, const MKL_INT *rowind, const MKL_INT *colind,
const MKL_INT *nnz , const double *x , double *y );
void mkl_ccoosv (const char *transa, const MKL_INT *m, const MKL_Complex8 *alpha ,
const char *matdescra , const MKL_Complex8 *val , const MKL_INT *rowind, const MKL_INT
*colind, const MKL_INT *nnz , const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_zcoosv (const char *transa, const MKL_INT *m, const MKL_Complex16 *alpha,
const char *matdescra, const MKL_Complex16 *val, const MKL_INT *rowind, const
MKL_INT *colind , const MKL_INT *nnz , const MKL_Complex16 *x , MKL_Complex16 *y );

```
Include Files
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?coosv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the coordinate format:
\[
y:=a l p h a * i n v(A) *_{X}
\]
or
\[
y:=a l p h a^{*} \operatorname{inv}\left(A^{\mathrm{T}}\right){ }^{*} x,
\]
where:
alpha is scalar, \(x\) and \(y\) are vectors, \(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports a coordinate format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{transa} & Specifies the system of linear equations. \\
\hline & If transa \(=\) 'N' or 'n', then \(y:=a \operatorname{loha*inv}(A) * x\) \\
\hline & If transa \(=\) 'T' or 't' or 'C' or 'c', then \(y:=a l p h a * i n v\left(A^{T}\right) * x\), \\
\hline m & Number of rows of the matrix \(A\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline
\end{tabular}
```

matdescra
val
rowind
colind
nnz
x
y
Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".
Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.
Refer to values array description in Coordinate Format for more details.
Array of length nnz.
For one-based indexing, contains the row indices plus one for each non-zero element of the matrix $A$.
For zero-based indexing, contains the row indices for each non-zero element of the matrix $A$.
Refer to rows array description in Coordinate Format for more details.
Array of length nnz.
For one-based indexing, contains the column indices plus one for each nonzero element of the matrix $A$.
For zero-based indexing, contains the column indices for each non-zero element of the matrix $A$.
Refer to columns array description in Coordinate Format for more details.
Specifies the number of non-zero element of the matrix $A$.
Refer to $n n z$ description in Coordinate Format for more details.
Array, size at least $m$.
On entry, the array $x$ must contain the vector $x$. The elements are accessed with unit increment.
Array, size at least $m$.
On entry, the array $y$ must contain the vector $y$. The elements are accessed with unit increment.

```

\section*{Output Parameters}
y
Contains solution vector \(x\).
mkl_?csrmm
Computes matrix - matrix product of a sparse matrix stored in the CSR format (deprecated).

\section*{Syntax}
```

void mkl_scsrmm (const char *transa, const MKL_INT *m , const MKL_INT *n , const
MKL_INT *k , const float *alpha , const char *matdescra, const float *val , const
MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const float *b , const
MKL_INT *ldb , const float *beta , float *C , const MKL_INT *ldc );

```
```

void mkl_dcsrmm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k, const double *alpha, const char *matdescra, const double *val , const
MKL_INT *indx , const MKL_INT *pntrb, const MKL_INT *pntre, const double *b , const
MKL_INT *ldb, const double *beta , double *c , const MKL_INT *ldc );
void mkl_ccsrmm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k , const MKL_Complex8 *alpha, const char *matdescra, const MKL_Complex8
*val, const MKL_INT *indx , const MKL_INT *pntrb, const MKL_INT *pntre , const
MKL_Complex8 *b , const MKL_INT *ldb , const MKL_Complex8 *beta , MKL_Complex8 *C ,
const MKL_INT *Idc );
void mkl_zcsrmm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k , const MKL_Complex16 *alpha , const char *matdescra, const MKL_Complex16
*val , const MKL_INT *indx , const MKL_INT *pntrb, const MKL_INT *pntre , const
MKL_Complex16 *b , const MKL_INT *ldb , const MKL_Complex16 *beta, MKL_Complex16 *C ,
const MKL_INT *Idc );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?csrmm routine performs a matrix-matrix operation defined as
```

C := alpha*A*B + beta* }

```
or
```

C := alpha* AT* B + beta*C

```
or
```

C := alpha\star A}\mp@subsup{A}{}{H}B+\mathrm{ beta* C,

```
where:
alpha and beta are scalars,
\(B\) and \(C\) are dense matrices, \(A\) is an \(m\)-by- \(k\) sparse matrix in compressed sparse row (CSR) format, \(A^{\top}\) is the transpose of \(A\), and \(A^{\mathrm{H}}\) is the conjugate transpose of \(A\).

\section*{NOTE}

This routine supports a CSR format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
```

transa
Specifies the operation.
If transa = 'N' or 'n', then C := alpha*A*B + beta*C,
If transa = 'T' or't', then C := alpha* AT* B + beta*C,
If transa = 'C' or 'c', then C := alpha* A**B + beta*C.
Number of rows of the matrix A.

```
\begin{tabular}{|c|c|}
\hline \(n\) & Number of columns of the matrix \(C\). \\
\hline k & Number of columns of the matrix \(A\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline matdescra & Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & Array containing non-zero elements of the matrix \(A\). \\
\hline & For zero-based indexing its length is pntre[m-1] - pntrb[0]. \\
\hline & Refer to values array description in CSR Format for more details. \\
\hline indx & For one-based indexing, array containing the column indices plus one for each non-zero element of the matrix \(A\). \\
\hline & For zero-based indexing, array containing the column indices for each nonzero element of the matrix \(A\). \\
\hline & Its length is equal to length of the val array. \\
\hline & Refer to columns array description in CSR Format for more details. \\
\hline pntrb & Array of length \(m\). \\
\hline & This array contains row indices, such that pntrb[I] - pntrb[0] is the first index of row \(I\) in the arrays val and indx. \\
\hline & Refer to pointerb array description in CSR Format for more details. \\
\hline pntre & Array of length \(m\). \\
\hline & This array contains row indices, such that pntre[I] - pntrb[0] - 1 is the last index of row \(I\) in the arrays val and indx. \\
\hline & Refer to pointerE array description in CSR Format for more details. \\
\hline b & Array, size \(l d b\) by at least \(n\) for non-transposed matrix \(A\) and at least \(m\) for transposed for one-based indexing, and (at least \(k\) for non-transposed matrix \(A\) and at least \(m\) for transposed, \(1 d b\)) for zero-based indexing. \\
\hline & On entry with transa='N' or 'n', the leading \(k\)-by-n part of the array \(b\) must contain the matrix \(B\), otherwise the leading \(m\)-by- \(n\) part of the array \(b\) must contain the matrix \(B\). \\
\hline 1 db & Specifies the leading dimension of \(b\) for one-based indexing, and the second dimension of \(b\) for zero-based indexing, as declared in the calling (sub)program. \\
\hline beta & Specifies the scalar beta. \\
\hline C & Array, size \(l d c\) by \(n\) for one-based indexing, and (\(m, ~ l d c\)) for zero-based indexing. \\
\hline & On entry, the leading m-by-n part of the array \(c\) must contain the matrix \(C\), otherwise the leading \(k\)-by- \(n\) part of the array \(c\) must contain the matrix \(C\). \\
\hline
\end{tabular}

Specifies the leading dimension of \(c\) for one-based indexing, and the second dimension of \(c\) for zero-based indexing, as declared in the calling (sub)program.

\section*{Output Parameters}
c
Overwritten by the matrix (alpha*A*B+beta*C), (alpha* \(A^{T} \star B+\) beta* \(C\)), or (alpha* \(A^{\mathrm{H}}{ }^{*} B+\) beta* \(C\)).
mkl_?bsrmm
Computes matrix - matrix product of a sparse matrix stored in the BSR format (deprecated).

\section*{Syntax}
```

void mkl_sbsrmm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k , const MKL_INT *lb , const float *alpha, const char *matdescra, const
float *val, const MKL_INT *indx, const MKL_INT *pntrb, const MKL_INT *pntre , const
float *b, const MKL_INT *ldb, const float *beta, float *c , const MKL_INT *ldc );
void mkl_dbsrmm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k , const MKL_INT *Ib , const double *alpha, const char *matdescra , const
double *val, const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const
double *b, const MKL_INT *Idb, const double *beta, double *c, const MKL_INT *Idc );
void mkl_cbsrmm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k , const MKL_INT *lb , const MKL_Complex8 *alpha, const char *matdescra ,
const MKL_Complex8 *val, const MKL_INT *indx, const MKL_INT *pntrb , const MKL_INT
*pntre , const MKL_Complex8 *b , const MKL_INT *ldb , const MKL_Complex8 *beta ,
MKL_Complex8 *c , const MKL_INT *ldc );
void mkl_zbsrmm (const char *transa, const MKL_INT *m, const MKL_INT *n, const
MKL_INT *k , const MKL_INT *lb, const MKL_Complex16 *alpha, const char *matdescra,
const MKL_Complex16 *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT
*pntre, const MKL_Complex16 *b , const MKL_INT *ldb , const MKL_Complex16 *beta ,
MKL_Complex16 *C , const MKL_INT *Idc );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use Use mkl_sparse_? mmfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?bsrmm routine performs a matrix-matrix operation defined as
\[
C:=\text { alpha* } A^{\star} B+\text { beta* } C
\]
or
\[
C:=\text { alpha* } A^{\mathbb{T}} \star B+\text { beta* } C
\]
or
\[
C:=\text { alpha* } A^{\mathrm{H} *} B+\text { beta* } C,
\]
where:
alpha and beta are scalars,
\(B\) and \(C\) are dense matrices, \(A\) is an \(m\)-by- \(k\) sparse matrix in block sparse row (BSR) format, \(A^{\top}\) is the transpose of \(A\), and \(A^{\mathrm{H}}\) is the conjugate transpose of \(A\).

\section*{NOTE}

This routine supports a BSR format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{transa} & Specifies the operation. \\
\hline & If transa \(=\) 'N' or 'n', then the matrix-matrix product is computed as \(C\) : = alpha*A*B + beta* \(C\) \\
\hline & If transa \(=\) 'T' or 't', then the matrix-vector product is computed as \(C:=\) alpha* \(A^{T} \star B+\) beta* \(C\) \\
\hline & If transa \(=\) 'C' or 'c', then the matrix-vector product is computed as \(C:=\) alpha* \(A^{\mathrm{H}} * B+\operatorname{beta}{ }^{\star} C\), \\
\hline m & Number of block rows of the matrix \(A\). \\
\hline \(n\) & Number of columns of the matrix \(C\). \\
\hline k & Number of block columns of the matrix \(A\). \\
\hline 1.6 & Size of the block in the matrix \(A\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline matdescra & Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & Array containing elements of non-zero blocks of the matrix \(A\). Its length is equal to the number of non-zero blocks in the matrix \(A\) multiplied by \(1 b^{\star} I b\). Refer to the values array description in BSR Format for more details. \\
\hline \multirow[t]{3}{*}{indx} & For one-based indexing, array containing the column indices plus one for each non-zero block in the matrix \(A\). \\
\hline & For zero-based indexing, array containing the column indices for each nonzero block in the matrix \(A\). \\
\hline & Its length is equal to the number of non-zero blocks in the matrix \(A\). Refer to the columns array description in BSR Format for more details. \\
\hline \multirow[t]{4}{*}{pntrb} & Array of length m. \\
\hline & This array contains row indices, such that pntrb[I] - pntrb[0] is the first index of block row \(I\) in the array indx. \\
\hline & Refer to pointerB array description in BSR Format for more details. \\
\hline & Array of length m. \\
\hline
\end{tabular}
b

1 db
beta
c
ldc

This array contains row indices, such that pntre[I] - pntrb[0] - 1 is the last index of block row \(I\) in the array indx.

Refer to pointerE array description in BSR Format for more details.
Array, size \(l d b\) by at least \(n\) for non-transposed matrix \(A\) and at least \(m\) for transposed for one-based indexing, and (at least \(k\) for non-transposed matrix \(A\) and at least \(m\) for transposed, \(1 d b\)) for zero-based indexing.
On entry with transa='N' or 'n', the leading \(n\)-by- \(k\) block part of the array \(b\) must contain the matrix \(B\), otherwise the leading \(m\)-by- \(n\) block part of the array \(b\) must contain the matrix \(B\).

Specifies the leading dimension (in blocks) of \(b\) as declared in the calling (sub)program.

Specifies the scalar beta.
Array, size \(l d c^{\star} n\) for one-based indexing, size \(k^{\star} l d c\) for zero-based indexing.
On entry, the leading m-by- \(n\) block part of the array \(c\) must contain the matrix \(C\), otherwise the leading \(n\)-by- \(k\) block part of the array \(c\) must contain the matrix \(C\).

Specifies the leading dimension (in blocks) of \(c\) as declared in the calling (sub)program.

\section*{Output Parameters}
c
Overwritten by the matrix (alpha夫A*B+beta*C) or (alpha* \(A^{T} \star^{*}+\) beta* \(C\)) or (alpha* \(A^{\text {H }} B+\) beta* \(C\)).

\section*{mkl_?cscmm}

Computes matrix-matrix product of a sparse matrix
stored in the CSC format (deprecated).

\section*{Syntax}
```

void mkl_scscmm (const char *transa, const MKL_INT *m , const MKL_INT *n , const
MKL_INT *k , const float *alpha , const char *matdescra , const float *val , const
MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre, const float *b, const
MKL_INT *ldb , const float *beta , float *c , const MKL_INT *ldc );
void mkl_dcscmm (const char *transa , const MKL_INT *m , const MKL_INT *n , const
MKL_INT *k , const double *alpha , const char *matdescra, const double *val , const
MKL_INT *indx, const MKL_INT *pntrb , const MKL_INT *pntre, const double *b , const
MKL_INT *ldb, const double *beta, double *C , const MKL_INT *ldc );
void mkl_ccscmm (const char *transa , const MKL_INT *m , const MKL_INT *n , const
MKL_INT **k , const MKL_Complex8 *alpha, const char *matdescra , const MKL_Complex8
*val, const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const
MKL_Complex8 *b , const MKL_INT *ldb , const MKL_Complex8 *beta , MKL_Complex8 *c ,
const MKL_INT *ldc );

```
```

void mkl_zcscmm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k, const MKL_Complex16 *alpha, const char *matdescra , const MKL_Complex16
*val , const MKL_INT *indx , const MKL_INT *pntrb, const MKL_INT *pntre , const
MKL_Complex16 *b , const MKL_INT *ldb , const MKL_Complex16 *beta , MKL_Complex16 *C ,
const MKL_INT *ldc );

```

Include Files
- mkl.h

\section*{Description}

This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?cscmm routine performs a matrix-matrix operation defined as
```

C := alpha\starA* B + beta*}

```
or
```

C := alpha\star AT* B + beta* C,

```
or
\[
C:=a l p h a^{\star} A^{\mathrm{H}} B+\operatorname{bet} a^{\star} C,
\]
where:
alpha and beta are scalars,
\(B\) and \(C\) are dense matrices, \(A\) is an \(m\)-by- \(k\) sparse matrix in compressed sparse column (CSC) format, \(A^{\top}\) is the transpose of \(A\), and \(A^{\mathrm{H}}\) is the conjugate transpose of \(A\).

\section*{NOTE}

This routine supports CSC format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline transa & Specifies the operation. \\
\hline & If transa \(=\) 'N' or 'n', then \(C:=a l p h a * A * ~ B+b e t a * C ~\) \\
\hline & If transa \(=\) 'T' or 't', then \(C:=a l p h a^{\star} A^{T} \star B+\) beta* \(C\), \\
\hline & If transa \(=\) 'C' or 'c', then \(C:=a l p h a * A^{H} * B+\) beta* \(C\) \\
\hline m & Number of rows of the matrix \(A\). \\
\hline \(n\) & Number of columns of the matrix \(C\). \\
\hline k & Number of columns of the matrix \(A\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline matdescra & Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline
\end{tabular}
```

val
indx
pntrb
pntre
b
Idb
beta
c
ldc

```

\section*{Output Parameters}

Overwritten by the matrix (alpha* \(A \star B+\) beta* \(C\)) or (alpha* \(A^{T} * B+\) beta* \(C\)) or (alpha* \(A^{H} * B+\) beta* \(C\)).
```

mkl_?coomm

```

Computes matrix-matrix product of a sparse matrix stored in the coordinate format (deprecated).

\section*{Syntax}
```

void mkl_scoomm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k, const float *alpha, const char *matdescra, const float *val, const
MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const float *b , const
MKL_INT *ldb , const float *beta , float *c , const MKL_INT *ldc );
void mkl_dcoomm (const char *transa, const MKL_INT *m, const MKL_INT *n, const
MKL_INT *k, const double *alpha, const char *matdescra, const double *val , const
MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const double *b, const
MKL_INT *ldb, const double *beta, double *c , const MKL_INT *ldc );
void mkl_ccoomm (const char *transa, const MKL_INT *m, const MKL_INT *n, const
MKL_INT *k , const MKL_Complex8 *alpha, const char *matdescra, const MKL_Complex8
*val, const MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const
MKL_Complex8 *b , const MKL_INT *ldb , const MKL_Complex8 *beta , MKL_Complex8 *c ,
const MKL_INT *Idc );
void mkl_zcoomm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k , const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16
*val, const MKL_INT *rowind, const MKL_INT *colind, const MKL_INT *nnz , const
MKL_Complex16 *b , const MKL_INT *ldb , const MKL_Complex16 *beta , MKL_Complex16 *c ,
const MKL_INT *Idc );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The \(m k l_{-}\)?coomm routine performs a matrix-matrix operation defined as
```

C := alpha\star A* B + beta* C

```
or
```

C := alpha\star AT* B + beta* C,

```
or
```

C := alpha\star AH* B + beta* C,

```
where:
alpha and beta are scalars,
\(B\) and \(C\) are dense matrices, \(A\) is an \(m\)-by- \(k\) sparse matrix in the coordinate format, \(A^{\top}\) is the transpose of \(A\), and \(A^{\mathrm{H}}\) is the conjugate transpose of \(A\).

\section*{NOTE}

This routine supports a coordinate format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{transa} & Specifies the operation. \\
\hline & If transa \(=\) 'N' or 'n', then \(C:=a l p h a \star A \star B+\) beta* \(C\) \\
\hline & If transa \(=\) 'T' or 't', then \(C:=a l p h a \star A^{T} \star B+\) beta* \(C\), \\
\hline & If transa \(=\) 'C' or 'c', then \(C:=a l p h a \star A^{\mathrm{H}} \mathrm{B}^{\prime}+\) beta* \(C\). \\
\hline m & Number of rows of the matrix \(A\). \\
\hline n & Number of columns of the matrix \(C\). \\
\hline k & Number of columns of the matrix \(A\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline matdescra & Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline \multirow[t]{2}{*}{val} & Array of length \(n n z\), contains non-zero elements of the matrix \(A\) in the arbitrary order. \\
\hline & Refer to values array description in Coordinate Format for more details. \\
\hline rowind & Array of length nnz. \\
\hline
\end{tabular}

For one-based indexing, contains the row indices plus one for each non-zero element of the matrix \(A\).

For zero-based indexing, contains the row indices for each non-zero element of the matrix \(A\).

Refer to rows array description in Coordinate Format for more details.
Array of length nnz.
For one-based indexing, contains the column indices plus one for each nonzero element of the matrix \(A\).

For zero-based indexing, contains the column indices for each non-zero element of the matrix \(A\).

Refer to columns array description in Coordinate Format for more details.
Specifies the number of non-zero element of the matrix \(A\).
Refer to \(n n z\) description in Coordinate Format for more details.
Array, size \(l d b\) by at least \(n\) for non-transposed matrix \(A\) and at least \(m\) for transposed for one-based indexing, and (at least \(k\) for non-transposed matrix \(A\) and at least \(m\) for transposed, \(1 d b\)) for zero-based indexing.

On entry with transa \(=\) ' \(N\) ' or 'n', the leading \(k\)-by-n part of the array \(b\) must contain the matrix \(B\), otherwise the leading \(m-b y-n\) part of the array \(b\) must contain the matrix \(B\).

1 db
beta
C

Idc

Specifies the leading dimension of \(b\) for one-based indexing, and the second dimension of \(b\) for zero-based indexing, as declared in the calling (sub)program.

Specifies the scalar beta.
Array, size \(l d c\) by \(n\) for one-based indexing, and (\(m, ~ l d c\)) for zero-based indexing.

On entry, the leading \(m\)-by-n part of the array \(c\) must contain the matrix \(C\), otherwise the leading \(k\)-by- \(n\) part of the array \(c\) must contain the matrix \(C\).

Specifies the leading dimension of \(c\) for one-based indexing, and the second dimension of \(c\) for zero-based indexing, as declared in the calling (sub)program.

\section*{Output Parameters}
c
Overwritten by the matrix (alpha* \(A^{\star} B+\) beta* \(\left.C\right),\left(a l p h a * A^{T}{ }^{*} B+\right.\) beta*C), or (alpha* \(A^{\mathrm{H}} \mathrm{B} B+\) beta* \(C\)).

\section*{mkl_?csrsm}

Solves a system of linear matrix equations for a sparse matrix in the CSR format (deprecated).

\section*{Syntax}
```

void mkl_scsrsm (const char *transa, const MKL_INT *m, const MKL_INT *n, const float
*alpha, const char *matdescra , const float *val, const MKL_INT *indx , const MKL_INT
*pntrb, const MKL_INT *pntre , const float *b , const MKL_INT *ldb , float *c , const
MKL_INT *Idc );
void mkl_dcsrsm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
double *alpha, const char *matdescra, const double *val, const MKL_INT *indx , const
MKL_INT *pntrb, const MKL_INT *pntre, const double *b , const MKL_INT *ldb , double
*C , const MKL_INT *Idc );
void mkl_ccsrsm (const char *transa, const MKL_INT *m, const MKL_INT *n, const
MKL_Complex8 *alpha, const char *matdescra, const MKL_Complex8 *val , const MKL_INT
*indx , const MKL_INT *pntrb, const MKL_INT *pntre, const MKL_Complex8 *b , const
MKL_INT *ldb , MKL_Complex8 *c , const MKL_INT *ldc );
void mkl_zcsrsm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_Complex16 *alpha, const char *matdescra, const MKL_Complex16 *val , const MKL_INT
*indx , const MKL_INT *pntrb, const MKL_INT *pntre , const MKL_Complex16 *b , const
MKL_INT *Idb , MKL_Complex16 *c , const MKL_INT *Idc );

```

Include Files
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsmfrom the Intel® oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?csrsm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the CSR format:
```

C := alpha*inv(A)*B

```
or
\(C:=a l p h a \star \operatorname{inv}\left(A^{T}\right) * B\),
where:
alpha is scalar, \(B\) and \(C\) are dense matrices, \(A\) is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports a CSR format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
transa
m
n
alpha
matdescra
val
indx

Specifies the system of linear equations.
If transa \(=\) 'N' or 'n', then \(C:=a \operatorname{lpha*inv}(A) * B\)
If transa \(=\) 'T' or 't' or 'C' or 'C', then \(C:=\) alpha*inv \(\left(A^{T}\right) * B\),
Number of columns of the matrix \(A\).
Number of columns of the matrix \(C\).
Specifies the scalar alpha.
Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

Array containing non-zero elements of the matrix \(A\).
For zero-based indexing its length is pntre[m-1] - pntrb[0].
Refer to values array description in CSR Format for more details.

\section*{NOTE}

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).
No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

For one-based indexing, array containing the column indices plus one for each non-zero element of the matrix \(A\).

For zero-based indexing, array containing the column indices for each nonzero element of the matrix \(A\).

Its length is equal to length of the val array.
Refer to columns array description in CSR Format for more details.

\section*{NOTE}

Column indices must be sorted in increasing order for each row.
\begin{tabular}{|c|c|}
\hline pntrb & Array of length \(m\). \\
\hline & This array contains row indices, such that pntrb[i] - pntrb[0] is the first index of row \(i\) in the arrays val and indx. \\
\hline & Refer to pointerb array description in CSR Format for more details. \\
\hline pntre & Array of length m. \\
\hline & For zero-based indexing this array contains row indices, such that pntre[i] - pntrb[0] - 1 is the last index of row \(i\) in the arrays val and indx. \\
\hline & Refer to pointerE array description in CSR Format for more details. \\
\hline b & Array, size \(l d b^{*} n\) for one-based indexing, and (\(m, l d b\)) for zero-based indexing. \\
\hline & On entry the leading \(m\)-by-n part of the array \(b\) must contain the matrix \(B\). \\
\hline 1 db & Specifies the leading dimension of \(b\) for one-based indexing, and the second dimension of \(b\) for zero-based indexing, as declared in the calling (sub) program. \\
\hline \(1 d c\) & Specifies the leading dimension of \(c\) for one-based indexing, and the second dimension of \(c\) for zero-based indexing, as declared in the calling (sub)program. \\
\hline
\end{tabular}

\section*{Output Parameters}
c
Array, size \(1 d c\) by \(n\) for one-based indexing, and (\(m, ~ l d c\)) for zero-based indexing.

The leading \(m-\) by \(-n\) part of the array \(c\) contains the output matrix \(C\).

\section*{mkl_?cscsm}

Solves a system of linear matrix equations for a sparse matrix in the CSC format (deprecated).

\section*{Syntax}
```

void mkl_scscsm (const char *transa, const MKL_INT *m, const MKL_INT *n, const float
*alpha, const char *matdescra , const float *val, const MKL_INT *indx , const MKL_INT
*pntrb, const MKL_INT *pntre, const float *b , const MKL_INT *ldb , float *c , const
MKL_INT *ldc );
void mkl_dcscsm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
double *alpha, const char *matdescra, const double *val, const MKL_INT *indx , const
MKL_INT *pntrb, const MKL_INT *pntre, const double *b, const MKL_INT *ldb , double
*C , const MKL_INT *Idc );

```
```

void mkl_ccscsm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_Complex8 *alpha, const char *matdescra, const MKL_Complex8 *val , const MKL_INT
*indx , const MKL_INT *pntrb, const MKL_INT *pntre, const MKL_Complex8 *b , const
MKL_INT *ldb , MKL_Complex8 *C , const MKL_INT *Idc );
void mkl_zcscsm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_Complex16 *alpha, const char *matdescra, const MKL_Complex16 *val , const MKL_INT
*indx , const MKL_INT *pntrb, const MKL_INT *pntre , const MKL_Complex16 *b , const
MKL_INT *Idb , MKL_Complex16 *c , const MKL_INT *Idc );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsmfrom the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?cscsm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the CSC format:
\[
C:=a l p h a * i n v(A) * B
\]
or
```

C := alpha*inv (AT})*B

```
where:
alpha is scalar, \(B\) and \(C\) are dense matrices, \(A\) is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports a CSC format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
```

transa Specifies the system of equations.
If transa = 'N' or 'n', then C := alpha*inv (A)*B
If transa = 'T' or 't' or 'C' or 'c', then C := alpha*inv( (A')*B,
Number of columns of the matrix A.
Number of columns of the matrix C.
Specifies the scalar alpha.
Array of six elements, specifies properties of the matrix used for operation.
Only first four array elements are used, their possible values are given in
Table "Possible Values of the Parameter matdescra (descra)". Possible
combinations of element values of this parameter are given in Table
"Possible Combinations of Element Values of the Parameter matdescra".
Array containing non-zero elements of the matrix A.
For zero-based indexing its length is pntre[m] - pntrb[0].

```

Refer to values array description in CSC Format for more details.

\section*{NOTE}

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).
No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.
indx
pntrb
pntre
\(b\)
\(1 d C\)

For one-based indexing, array containing the row indices plus one for each non-zero element of the matrix \(A\). For zero-based indexing, array containing the row indices for each non-zero element of the matrix \(A\).

Refer to rows array description in CSC Format for more details.

\section*{NOTE}

Row indices must be sorted in increasing order for each column.

Array of length \(m\).
This array contains column indices, such that pntrb[I] - pntrb[0] is the first index of column \(I\) in the arrays val and indx.

Refer to pointerb array description in CSC Format for more details.
Array of length m.
This array contains column indices, such that pntre[I] - pntrb[1]-1 is the last index of column \(I\) in the arrays val and indx.

Refer to pointerE array description in CSC Format for more details.
Array, size \(l \mathrm{db}\) by \(n\) for one-based indexing, and (\(m, ~ l \mathrm{db}\)) for zero-based indexing.

On entry the leading \(m\)-by-n part of the array \(b\) must contain the matrix \(B\).
Specifies the leading dimension of \(b\) for one-based indexing, and the second dimension of \(b\) for zero-based indexing, as declared in the calling (sub)program.

Specifies the leading dimension of c for one-based indexing, and the second dimension of \(c\) for zero-based indexing, as declared in the calling (sub)program.

\section*{Output Parameters}

C
Array, size \(l d c\) by \(n\) for one-based indexing, and (\(m, ~ l d c\)) for zero-based indexing.
The leading \(m\)-by-n part of the array \(c\) contains the output matrix \(C\).
```

mkl_?coosm

```

Solves a system of linear matrix equations for a sparse matrix in the coordinate format (deprecated).

\section*{Syntax}
```

void mkl_scoosm (const char *transa, const MKL_INT *m, const MKL_INT *n , const float
*alpha, const char *matdescra , const float *val, const MKL_INT *rowind, const
MKL_INT *colind, const MKL_INT *nnz , const float *b, const MKL_INT *ldb, float *c ,
const MKL_INT *Idc );
void mkl_dcoosm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
double *alpha, const char *matdescra , const double *val, const MKL_INT *rowind,
const MKL_INT *colind, const MKL_INT *nnz, const double *b, const MKL_INT *ldb,
double *}\mp@subsup{}{C}{\prime},\mathrm{ const MKL_INT *IdC );
void mkl_ccoosm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_Complex8 *alpha, const char *matdescra, const MKL_Complex8 *val , const MKL_INT
*rowind, const MKL_INT *colind, const MKL_INT *nnz , const MKL_Complex8 *b , const
MKL_INT *ldb , MKL_Complex8 *C , const MKL_INT *IdC );
void mkl_zcoosm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_Complex16 *alpha, const char *matdescra, const MKL_Complex16 *val, const MKL_INT
*rowind, const MKL_INT *colind, const MKL_INT *nnz , const MKL_Complex16 *b , const
MKL_INT *ldb , MKL_Complex16 *c , const MKL_INT *ldc );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsmfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_? coosm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the coordinate format:
```

C := alpha*inv (A)*B

```
or
\(C:=\operatorname{alpha*} \operatorname{inv}\left(A^{T}\right) * B\),
where:
alpha is scalar, \(B\) and \(C\) are dense matrices, \(A\) is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports a coordinate format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
transa
Specifies the system of linear equations.
If transa \(=\) 'N' or 'n', then the matrix-matrix product is computed as \(C:=a l p h a * i n v(A) * B\)

If transa \(=\) 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as \(C:=\) alpha*inv \(\left(A^{T}\right) * B\),

Number of rows of the matrix \(A\).
Number of columns of the matrix \(C\).
Specifies the scalar alpha.
Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

Array of length \(n n z\), contains non-zero elements of the matrix \(A\) in the arbitrary order.
Refer to values array description in Coordinate Format for more details.
Array of length nnz.
For one-based indexing, contains the row indices plus one for each non-zero element of the matrix \(A\).
For zero-based indexing, contains the row indices for each non-zero element of the matrix \(A\).

Refer to rows array description in Coordinate Format for more details.
Array of length nnz.
For one-based indexing, contains the column indices plus one for each nonzero element of the matrix \(A\)

For zero-based indexing, contains the row indices for each non-zero element of the matrix \(A\)
Refer to columns array description in Coordinate Format for more details.
Specifies the number of non-zero element of the matrix \(A\).
Refer to \(n n z\) description in Coordinate Format for more details.
Array, size \(l d b\) by \(n\) for one-based indexing, and (\(m, ~ l d b\)) for zero-based indexing.

Before entry the leading \(m\)-by- \(n\) part of the array \(b\) must contain the matrix \(B\).

Specifies the leading dimension of \(b\) for one-based indexing, and the second dimension of \(b\) for zero-based indexing, as declared in the calling (sub)program.

Specifies the leading dimension of \(c\) for one-based indexing, and the second dimension of \(c\) for zero-based indexing, as declared in the calling (sub)program.

Output Parameters
Array, size \(l d c\) by \(n\) for one-based indexing, and (\(m, ~ l d c\)) for zero-based indexing.

The leading \(m\)-by- \(n\) part of the array \(c\) contains the output matrix \(C\).
mkl_?bsrsm
Solves a system of linear matrix equations for a sparse matrix in the BSR format (deprecated).

\section*{Syntax}
```

void mkl_sbsrsm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *lb, const float *alpha, const char *matdescra, const float *val, const
MKL_INT *indx , const MKL_INT *pntrb, const MKL_INT *pntre , const float *b , const
MKL_INT *Idb , float *c , const MKL_INT *Idc );
void mkl_dbsrsm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *lb, const double *alpha, const char *matdescra, const double *val, const
MKL_INT *indx, const MKL_INT *pntrb, const MKL_INT *pntre, const double *b, const
MKL_INT *Idb , double *c , const MKL_INT *Idc );
void mkl_cbsrsm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *Ib , const MKL_Complex8 *alpha, const char *matdescra , const MKL_Complex8
*val , const MKL_INT *indx , const MKL_INT *pntrb, const MKL_INT *pntre , const
MKL_Complex8 *b , const MKL_INT *Idb , MKL_Complex8 *c , const MKL_INT *ldc );
void mkl_zbsrsm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *lb, const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16
*val , const MKL_INT *indx , const MKL_INT *pntrb, const MKL_INT *pntre , const
MKL_Complex16 *b , const MKL_INT *ldb , MKL_Complex16 *c , const MKL_INT *Idc );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsmfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?bsrsm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the BSR format:
\[
C:=a l p h a * \operatorname{inv}(A) * B
\]
or
\[
C:=\operatorname{alpha*inv}\left(A^{\mathrm{T}}\right) * B,
\]
where:
alpha is scalar, \(B\) and \(C\) are dense matrices, \(A\) is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports a BSR format both with one-based indexing and zero-based indexing.

\section*{Input Parameters}
indx
pntrb
pntre
b
```

transa
m
n
Ib
alpha
matdescra
val
Specifies the operation.
If transa $=$ 'N' or 'n', then the matrix-matrix product is computed as $C$ := alpha*inv $(A) * B$.
If transa $=$ 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as $C:=a l p h a \star \operatorname{inv}\left(A^{T}\right) * B$.
Number of block columns of the matrix $A$.
Number of columns of the matrix $C$.
Size of the block in the matrix $A$.
Specifies the scalar alpha.
Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".
Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 . b^{\star} I b$. Refer to the values array description in BSR Format for more details.

```

\section*{NOTE}

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

For one-based indexing, array containing the column indices plus one for each non-zero element of the matrix \(A\). For zero-based indexing, array containing the column indices for each non-zero element of the matrix \(A\).
Its length is equal to the number of non-zero blocks in the matrix \(A\).
Refer to the columns array description in BSR Format for more details.
Array of length \(m\).
This array contains row indices, such that pntrb[i] - pntrb[0] is the first index of block row \(i\) in the array indx.

Refer to pointerB array description in BSR Format for more details.
Array of length m.
This array contains row indices, such that pntre[i] - pntrb[0] - 1 is the last index of block row \(i\) in the arrays val and indx.

Refer to pointerE array description in BSR Format for more details.
Array, size \(1 d b^{*} n\) for one-based indexing, size \(m^{\star} \quad l d b\) for zero-based indexing.

On entry the leading m-by-n part of the array \(b\) must contain the matrix \(B\).
\(1 d b\)
ldc Specifies the leading dimension (in blocks) of \(c\) as declared in the calling (sub)program.

\section*{Output Parameters}
c
Array, size \(l d C^{*} n\) for one-based indexing, size \(m^{*} \quad l d c\) for zero-based indexing.

The leading \(m\)-by-n part of the array \(c\) contains the output matrix \(C\).
mkl_?diamv
Computes matrix - vector product for a sparse matrix in the diagonal format with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_sdiamv (const char *transa, const MKL_INT *m, const MKL_INT *k , const float
*alpha, const char *matdescra , const float *val , const MKL_INT *lval , const MKL_INT
*idiag , const MKL_INT *ndiag, const float *x, const float *beta , float *y );
void mkl_ddiamv (const char *transa, const MKL_INT *m, const MKL_INT *k , const
double *alpha, const char *matdescra, const double *val, const MKL_INT *lval, const
MKL_INT *idiag, const MKL_INT *ndiag, const double *x , const double *beta , double
*Y );
void mkl_cdiamv (const char *transa, const MKL_INT *m, const MKL_INT *k , const
MKL_Complex8 *alpha, const char *matdescra, const MKL_Complex8 *val , const MKL_INT
*lval, const MKL_INT *idiag, const MKL_INT *ndiag, const MKL_Complex8 *x , const
MKL_Complex8 *beta , MKL_Complex8 *y );
void mkl_zdiamv (const char *transa, const MKL_INT *m, const MKL_INT *k , const
MKL_Complex16 *alpha, const char *matdescra, const MKL_Complex16**val , const MKL_INT
*lval, const MKL_INT *idiag, const MKL_INT *ndiag, const MKL_Complex16 *x , const
MKL_Complex16 *beta , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_? diamv routine performs a matrix-vector operation defined as
\[
y:=a l p h a^{\star} A^{\star} x+b^{*} a^{\star} y
\]
or
\[
y:=a l p h a^{\star} A^{T} \star x+b e t a^{\star} y
\]
where:
alpha and beta are scalars,
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(k\) sparse matrix stored in the diagonal format, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline transa & Specifies the operation. \\
\hline & If transa \(=\) 'N' or 'n', then \(y:=a l p h a^{\star} A^{\star} x+\) beta* \(y\), \\
\hline & If transa \(=\) 'T' or 't' or 'C' or 'c', then \(y:=a l p h a \star A^{T} * x+\) beta* \(y\). \\
\hline m & Number of rows of the matrix \(A\). \\
\hline k & Number of columns of the matrix \(A\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline matdescra & Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix \(A\). Refer to values array description in Diagonal Storage Scheme for more details. \\
\hline lval & Leading dimension of val, lval \(\geq m\). Refer to lval description in Diagonal Storage Scheme for more details. \\
\hline idiag & Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix \(A\). \\
\hline & Refer to distance array description in Diagonal Storage Scheme for more details. \\
\hline ndiag & Specifies the number of non-zero diagonals of the matrix \(A\). \\
\hline \(x\) & Array, size at least \(k\) if transa \(=\) ' \(N\) ' or ' \(n\) ', and at least \(m\) otherwise. On entry, the array \(x\) must contain the vector \(x\). \\
\hline beta & Specifies the scalar beta. \\
\hline Y & Array, size at least \(m\) if transa \(=\) ' \(N\) ' or ' \(n\) ', and at least \(k\) otherwise. On entry, the array \(y\) must contain the vector \(y\). \\
\hline
\end{tabular}

\section*{Output Parameters}
y
Overwritten by the updated vector \(y\).
mkl_?skymv
Computes matrix - vector product for a sparse matrix in the skyline storage format with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_sskymv (const char *transa, const MKL_INT *m, const MKL_INT *k , const float
*alpha, const char *matdescra , const float *val, const MKL_INT *pntr , const float
*x , const float *beta , float *y );
void mkl_dskymv (const char *transa, const MKL_INT *m, const MKL_INT *k, const
double *alpha, const char *matdescra, const double *val, const MKL_INT *pntr, const
double *x, const double *beta, double *y );
void mkl_cskymv (const char *transa, const MKL_INT *m, const MKL_INT *k, const
MKL_Complex8 *alpha, const char *matdescra, const MKL_Complex8 *val, const MKL_INT
*pntr, const MKL_Complex8 *x , const MKL_Complex8 *beta, MKL_Complex8 *y );
void mkl_zskymv (const char *transa, const MKL_INT *m, const MKL_INT *k, const
MKL_Complex16 *alpha, const char *matdescra , const MKL_Complex16 *val , const MKL_INT
*pntr, const MKL_Complex16 *x , const MKL_Complex16 *beta , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?skymv routine performs a matrix-vector operation defined as
```

y := alpha*A*x + beta* y

```
or
```

y := alpha* A}\mp@subsup{}{}{T}*x+\operatorname{beta*}y

```
where:
alpha and beta are scalars,
\(x\) and \(y\) are vectors,
\(A\) is an \(m\)-by- \(k\) sparse matrix stored using the skyline storage scheme, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
transa
m

Specifies the operation.
If transa \(=\) 'N' or 'n', then \(y:=a l p h a \star A * x+b e t a * y\)
If transa \(=\) 'T' or 't' or 'C' or 'c', then \(y:=a l p h a \star A^{T} * x+b e t a \star y\), Number of rows of the matrix \(A\).
\begin{tabular}{|c|c|}
\hline k & Number of columns of the matrix \(A\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline \multirow[t]{2}{*}{matdescra} & Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline & \begin{tabular}{l}
NOTE \\
General matrices (matdescra[0]='G') is not supported.
\end{tabular} \\
\hline \multirow[t]{4}{*}{val} & Array containing the set of elements of the matrix \(A\) in the skyline profile form. \\
\hline & If matdescrsa[1]= 'L', then val contains elements from the low triangle of the matrix \(A\). \\
\hline & If matdescrsa[1]= 'U', then val contains elements from the upper triangle of the matrix \(A\). \\
\hline & Refer to values array description in Skyline Storage Scheme for more details. \\
\hline pntr & Array of length \((m+1)\) for lower triangle, and \((k+1)\) for upper triangle. \\
\hline & It contains the indices specifying in the val the positions of the first element in each row (column) of the matrix \(A\). Refer to pointers array description in Skyline Storage Scheme for more details. \\
\hline \(x\) & Array, size at least \(k\) if transa \(=\) ' \(N\) ' or ' \(n\) ' and at least \(m\) otherwise. On entry, the array \(x\) must contain the vector \(x\). \\
\hline beta & Specifies the scalar beta. \\
\hline Y & Array, size at least \(m\) if transa \(=\) ' \(N\) ' or ' \(n\) ' and at least \(k\) otherwise. On entry, the array \(y\) must contain the vector \(y\). \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{y}

Overwritten by the updated vector \(y\).
mkl_?diasv
Solves a system of linear equations for a sparse matrix in the diagonal format with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_sdiasv (const char *transa, const MKL_INT *m, const float *alpha , const
char *matdescra, const float *val, const MKL_INT *lval, const MKL_INT *idiag, const
MKL_INT *ndiag, const float *x , float *y );
void mkl_ddiasv (const char *transa, const MKL_INT *m, const double *alpha, const
char *matdescra, const double *val , const MKL_INT *lval, const MKL_INT *idiag,
const MKL_INT *ndiag, const double *x , double *Y );

```
```

void mkl_cdiasv (const char *transa, const MKL_INT *m, const MKL_Complex8 *alpha ,
const char *matdescra , const MKL_Complex8 *val, const MKL_INT *lval, const MKL_INT
*idiag , const MKL_INT *ndiag , const MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_zdiasv (const char *transa, const MKL_INT *m , const MKL_Complex16 *alpha,
const char *matdescra, const MKL_Complexl6 *val, const MKL_INT *lval, const MKL_INT
*idiag , const MKL_INT *ndiag, const MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?diasv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the diagonal format:
```

y := alpha*inv (A)**

```
or
\[
y:=a l p h a * i n v\left(A^{T}\right) * x
\]
where:
alpha is scalar, \(x\) and \(y\) are vectors, \(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline transa & Specifies the system of linear equations. \\
\hline & If transa \(=\) 'N' or 'n', then \(y:=a l p h a * i n v(A) * x\) \\
\hline & If transa \(=\) 'T' or 't' or 'C' or 'c', then \(y:=a \operatorname{loha*inv}\left(A^{\mathrm{T}}\right) * x\), \\
\hline m & Number of rows of the matrix \(A\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline matdescra & Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix \(A\). Refer to values array description in Diagonal Storage Scheme for more details. \\
\hline lval & Leading dimension of val, lval \(\geq\). Refer to lval description in Diagonal Storage Scheme for more details. \\
\hline
\end{tabular}
idiag Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix \(A\).

\section*{NOTE}

All elements of this array must be sorted in increasing order.

Refer to distance array description in Diagonal Storage Scheme for more details.

Specifies the number of non-zero diagonals of the matrix \(A\).
Array, size at least \(m\).
On entry, the array \(x\) must contain the vector \(x\). The elements are accessed with unit increment.

Array, size at least \(m\).
On entry, the array \(y\) must contain the vector \(y\). The elements are accessed with unit increment.

\section*{Output Parameters}
```

y

```
Contains solution vector \(x\).
mkl_?skysv
Solves a system of linear equations for a sparse matrix in the skyline format with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_sskysv (const char *transa, const MKL_INT *m, const float *alpha , const
char *matdescra , const float *val, const MKL_INT *pntr, const float *x , float *y );
void mkl_dskysv (const char *transa, const MKL_INT *m, const double *alpha , const
char *matdescra, const double *val, const MKL_INT *pntr, const double *x, double
*Y );
void mkl_cskysv (const char *transa, const MKL_INT *m, const MKL_Complex8 *alpha ,
const char *matdescra, const MKL_Complex8 *val, const MKL_INT *pntr , const
MKL_Complex8 *x , MKL_Complex8 *y );
void mkl_zskysv (const char *transa, const MKL_INT *m, const MKL_Complexl6 *alpha,
const char *matdescra , const MKL_Complex16 *val, const MKL_INT *pntr , const
MKL_Complex16 *x , MKL_Complex16 *y );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?skysv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the skyline storage format:
```

y := alpha*inv (A)*x

```
or
```

y := alpha*inv (AT)**,

```
where:
alpha is scalar, \(x\) and \(y\) are vectors, \(A\) is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
transa
m
alpha
matdescra

Specifies the system of linear equations.
If transa \(=\) 'N' or 'n', then \(y:=a \operatorname{lpha*inv}(A) *_{X}\)
If transa \(=\) 'T' or 't' or 'C' or 'C', then \(y:=\operatorname{alpha*inv}\left(A^{T}\right) * x\),
Number of rows of the matrix \(A\).
Specifies the scalar alpha.
Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

\section*{NOTE}

General matrices (matdescra[0]='G') is not supported.

Array containing the set of elements of the matrix \(A\) in the skyline profile form.

If matdescra[2] = 'L', then val contains elements from the low triangle of the matrix \(A\).

If matdescsa[2]= 'U', then val contains elements from the upper triangle of the matrix \(A\).

Refer to values array description in Skyline Storage Scheme for more details.

Array of length \((m+1)\) for lower triangle, and \((k+1)\) for upper triangle.
It contains the indices specifying in the val the positions of the first element in each row (column) of the matrix \(A\). Refer to pointers array description in Skyline Storage Scheme for more details.

Array, size at least \(m\).

On entry, the array \(x\) must contain the vector \(x\). The elements are accessed with unit increment.
y
Array, size at least \(m\).
On entry, the array \(y\) must contain the vector \(y\). The elements are accessed with unit increment.

\section*{Output Parameters}
y

\section*{Contains solution vector \(x\).}

\section*{mkl_?diamm \\ Computes matrix-matrix product of a sparse matrix stored in the diagonal format with one-based indexing (deprecated).}

\section*{Syntax}
```

void mkl_sdiamm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k, const float *alpha, const char *matdescra, const float *val , const
MKL_INT *lval, const MKL_INT *idiag, const MKL_INT *ndiag, const float *b, const
MKL_INT *ldb , const float *beta, float *c, const MKL_INT *ldc );
void mkl_ddiamm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k, const double *alpha, const char *matdescra, const double *val , const
MKL_INT *lval, const MKL_INT *idiag, const MKL_INT *ndiag, const double *b , const
MKL_INT *ldb, const double *beta, double *c , const MKL_INT *ldc );
void mkl_cdiamm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k , const MKL_Complex8 *alpha, const char *matdescra, const MKL_Complex8
*val, const MKL_INT *lval , const MKL_INT *idiag, const MKL_INT *ndiag, const
MKL_Complex8 *b , const MKL_INT *ldb , const MKL_Complex8 *beta , MKL_Complex8 *c ,
const MKL_INT *Idc );
void mkl_zdiamm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k , const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16
*val , const MKL_INT *lval , const MKL_INT *idiag, const MKL_INT *ndiag , const
MKL_Complex16 *b , const MKL_INT *ldb , const MKL_Complex16 *beta , MKL_Complex16 *C ,
const MKL_INT *Idc );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?diamm routine performs a matrix-matrix operation defined as
```

C := alpha*A*B + beta*C

```
or
```

C := alpha* A}\mp@subsup{}{}{T}*B+\mathrm{ beta* C,

```
or
```

C := alpha\star AH* B + beta* C,

```
where:
alpha and beta are scalars,
\(B\) and \(C\) are dense matrices, \(A\) is an \(m\)-by- \(k\) sparse matrix in the diagonal format, \(A^{\top}\) is the transpose of \(A\), and \(A^{\mathrm{H}}\) is the conjugate transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
m
\(n\)
k
alpha
matdescra
val

IVal
idiag
ndiag
b

Specifies the operation.
If transa \(=\) 'N' or 'n', then \(C:=a l p h a \star A * B+b e t a * C\),
If transa \(=\) 'T' or 't', then \(C:=a l p h a \star A^{T} \star B+\) beta* \(C\),
If transa \(=\) ' C' or 'C', then \(C:=a l p h a \star A^{H \star} B+\) beta* \(C\).
Number of rows of the matrix \(A\).
Number of columns of the matrix \(C\).
Number of columns of the matrix \(A\).
Specifies the scalar alpha.
Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix \(A\). Refer to values array description in Diagonal Storage Scheme for more details.

Leading dimension of val, lval \(\geq m\). Refer to lval description in Diagonal Storage Scheme for more details.

Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix \(A\).

Refer to distance array description in Diagonal Storage Scheme for more details.

Specifies the number of non-zero diagonals of the matrix \(A\).
Array, size ldb* \(n\).
On entry with transa \(=\) 'N' or ' \(n\) ', the leading \(k\)-by-n part of the array \(b\) must contain the matrix \(B\), otherwise the leading \(m-b y-n\) part of the array \(b\) must contain the matrix \(B\).
```

ldb
beta
c
ldc
Specifies the leading dimension of $b$ as declared in the calling (sub)program.
Specifies the scalar beta.
Array, size ldc by $n$.
On entry, the leading $m$-by-n part of the array $c$ must contain the matrix $C$, otherwise the leading $k$-by-n part of the array $c$ must contain the matrix $C$.
Specifies the leading dimension of $c$ as declared in the calling (sub)program.

```

\section*{Output Parameters}
c
Overwritten by the matrix (alpha*A*B+beta*C), (alpha* \(A^{T}{ }^{*} B+\) beta*C), or (alpha* \(A^{\mathrm{H}}{ }^{B}+\) beta* \(C\)).
mkl_?skymm
Computes matrix-matrix product of a sparse matrix stored using the skyline storage scheme with onebased indexing (deprecated).

\section*{Syntax}
```

void mkl_sskymm (const char *transa, const MKL_INT *m , const MKL_INT *n , const
MKL_INT *k , const float *alpha, const char *matdescra , const float *val , const
MKL_INT *pntr , const float *b , const MKL_INT *ldb , const float *beta , float *C ,
const MKL_INT *Idc );
void mkl_dskymm (const char *transa , const MKL_INT *m , const MKL_INT *n , const
MKL_INT *k , const double *alpha , const char *matdescra, const double *val , const
MKL_INT *pntr , const double *b , const MKL_INT *ldb , const double *beta , double *C ,
const MKL_INT *ldc );
void mkl_cskymm (const char *transa , const MKL_INT *m , const MKL_INT *n , const
MKL_INT *k , const MKL_Complex8 *alpha , const char *matdescra , const MKL_Complex8
*val , const MKL_INT *pntr , const MKL_Complex8 *b , const MKL_INT *ldb , const
MKL_Complex8 *beta , MKL_Complex8 *C , const MKL_INT *ldc );
void mkl_zskymm (const char *transa , const MKL_INT *m , const MKL_INT *n , const
MKL_INT *k , const MKL_Complex16 *alpha, const char *matdescra , const MKL_Complex16
*val , const MKL_INT *pntr , const MKL_Complex16 *b , const MKL_INT *ldb , const
MKL Complex16 *beta , MKL Complex16 *C , const MKL INT *ldc );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?skymm routine performs a matrix-matrix operation defined as
```

C := alpha\star A* B + beta* C

```
or
```

C := alpha* AT* B + beta* C,

```
or
```

C := alpha* A}\mp@subsup{A}{}{H}B+\operatorname{beta*}C

```
where:
alpha and beta are scalars,
\(B\) and \(C\) are dense matrices, \(A\) is an \(m\)-by- \(k\) sparse matrix in the skyline storage format, \(A^{\top}\) is the transpose of \(A\), and \(A^{\mathrm{H}}\) is the conjugate transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
transa
m
n
k
alpha
matdescra

Specifies the operation.
If transa \(=\) 'N' or 'n', then \(C:=a l p h a \star A \star B+b e t a * C\),
If transa \(=\) 'T' or 't', then \(C:=a l p h a \star A^{T} \star B+\) beta* \(C\),
If transa \(=\) 'C' or 'c', then \(C:=a l p h a \star A^{H} B+\) beta* \(C\).
Number of rows of the matrix \(A\).
Number of columns of the matrix \(C\).
Number of columns of the matrix \(A\).
Specifies the scalar alpha.
Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

\section*{NOTE}

General matrices (matdescra [0]='G') is not supported.

Array containing the set of elements of the matrix \(A\) in the skyline profile form.

If matdescrsa[2] = 'L', then val contains elements from the low triangle of the matrix \(A\).

If matdescrsa[2]= 'U', then val contains elements from the upper triangle of the matrix \(A\).

Refer to values array description in Skyline Storage Scheme for more details.

Array of length \((m+1)\) for lower triangle, and \((k+1)\) for upper triangle.
\(b\)

1 db
beta
C
\(1 d C\)

It contains the indices specifying the positions of the first element of the matrix \(A\) in each row (for the lower triangle) or column (for upper triangle) in the val array such that val[pntr[i] - 1] is the first element in row or column \(i+1\). Refer to pointers array description in Skyline Storage Scheme for more details.

Array, size \(1 d b^{*} n\).
On entry with transa \(=\) 'N' or 'n', the leading \(k\)-by-n part of the array \(b\) must contain the matrix \(B\), otherwise the leading \(m\)-by- \(n\) part of the array \(b\) must contain the matrix \(B\).

Specifies the leading dimension of \(b\) as declared in the calling (sub)program.

Specifies the scalar beta.
Array, size \(1 d c\) by \(n\).
On entry, the leading m-by-n part of the array \(c\) must contain the matrix \(C\), otherwise the leading \(k\)-by- \(n\) part of the array \(c\) must contain the matrix \(C\).

Specifies the leading dimension of \(c\) as declared in the calling (sub)program.

\section*{Output Parameters}
c
Overwritten by the matrix (alpha* \(\left.A^{\star} B+b e t a \star C\right),\left(a l p h a \star A^{T}{ }^{*} B+\right.\) beta* \(C\)), or (alpha* \(A^{\mathrm{H}} B+\) beta* \(C\)).
mkl_?diasm
Solves a system of linear matrix equations for a sparse matrix in the diagonal format with one-based
indexing (deprecated).

\section*{Syntax}
```

void mkl_sdiasm (const char *transa, const MKL_INT *m, const MKL_INT *n , const float
*alpha, const char *matdescra , const float *val, const MKL_INT *lval, const MKL_INT
*idiag , const MKL_INT *ndiag, const float *b , const MKL_INT *ldb, float *c , const
MKL_INT *ldc );
void mkl_ddiasm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
double *alpha, const char *matdescra, const double *val, const MKL_INT *lval , const
MKL_INT *idiag, const MKL_INT *ndiag, const double *b, const MKL_INT *Idb , double
*C , const MKL_INT *ldc );
void mkl_cdiasm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_Complex8 *alpha, const char *matdescra , const MKL_Complex8 *val , const MKL_INT
*lval, const MKL_INT *idiag, const MKL_INT *ndiag, const MKL_Complex8 *b , const
MKL_INT *Idb , MKL_Complex8 *c , const MKL_INT *IdC );
void mkl_zdiasm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_Complex16 *alpha, const char *matdescra, const MKL_Complex16 *val , const MKL_INT
*lval, const MKL_INT *idiag, const MKL_INT *ndiag, const MKL_Complex16 *b , const
MKL_INT *ldb , MKL_Complex16 *c , const MKL_INT *ldc );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_trsmfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_? diasm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the diagonal format:
```

C := alpha*inv (A)*B

```
or
```

C:= alpha*inv ( }\mp@subsup{A}{}{T}\mathrm{ )* B,

```
where:
alpha is scalar, \(B\) and \(C\) are dense matrices, \(A\) is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{transa} & Specifies the system of linear equations. \\
\hline & If transa \(=\) 'N' or 'n', then \(C:=a l p h a * i n v(A) * B\), \\
\hline & If transa \(=\) 'T' or 't' or 'C' or 'c', then \(C:=a l p h a * i n v\left(A^{T}\right) * B\). \\
\hline m & Number of rows of the matrix \(A\). \\
\hline \(n\) & Number of columns of the matrix \(C\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline matdescra & Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra". \\
\hline val & Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix \(A\). Refer to values array description in Diagonal Storage Scheme for more details. \\
\hline Ival & Leading dimension of val, lval \(\geq\). Refer to \(\operatorname{lval}\) description in Diagonal Storage Scheme for more details. \\
\hline idiag & Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix \(A\). \\
\hline
\end{tabular}

\section*{NOTE}

All elements of this array must be sorted in increasing order.
```

ndiag
b
Array, size ldb* n.
On entry the leading m-by-n part of the array b must contain the matrix B.
Specifies the leading dimension of b as declared in the calling
(sub)program.
Specifies the leading dimension of c as declared in the calling
(sub)program.

```

\section*{Output Parameters}

C
Array, size ldc by \(n\).
The leading \(m\)-by- \(n\) part of the array \(c\) contains the matrix \(C\).
mkl_?skysm
Solves a system of linear matrix equations for a
sparse matrix stored using the skyline storage scheme with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_sskysm (const char *transa, const MKL_INT *m, const MKL_INT *n , const float
*alpha, const char *matdescra, const float *val, const MKL_INT *pntr, const float
*b , const MKL_INT *Idb , float *c , const MKL_INT *Idc );
void mkl_dskysm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
double *alpha, const char *matdescra, const double *val, const MKL_INT *pntr, const
double *b , const MKL_INT *Idb , double *c , const MKL_INT *Idc );
void mkl_cskysm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_Complex8 *alpha, const char *matdescra, const MKL_Complex8 *val , const MKL_INT
*pntr , const MKL_Complex8 *b , const MKL_INT *ldb , MKL_Complex8 *c , const MKL_INT
*ldc );
void mkl_zskysm (const char *transa, const MKL_INT *m, const MKL_INT *n , const
MKL_Complex16 *alpha, const char *matdescra, const MKL_Complex16 *val , const MKL_INT
*pntr , const MKL_Complex16 *b , const MKL_INT *ldb , MKL_Complex16 *c , const MKL_INT
*Idc );

```

Include Files
- mkl.h

Description

This routine is deprecated. Use mkl_sparse_?_trsmfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?skysm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the skyline storage format:
```

C := alpha*inv (A)*B

```
or
```

C := alpha*inv (AT)*B,

```
where:
alpha is scalar, \(B\) and \(C\) are dense matrices, \(A\) is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, \(A^{\top}\) is the transpose of \(A\).

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
transa
m
\(n\)
alpha
matdescra

Specifies the system of linear equations.
If transa \(=\) 'N' or 'n', then \(C:=a \operatorname{lpha*inv}(A) * B\), If transa \(=\) 'T' or 't' or 'C' or 'c', then \(C:=a l p h a * i n v\left(A^{T}\right) * B\),

Number of rows of the matrix \(A\).
Number of columns of the matrix \(C\).
Specifies the scalar alpha.
Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

\section*{NOTE}

General matrices (matdescra[0]='G') is not supported.

Array containing the set of elements of the matrix \(A\) in the skyline profile form.

If matdescrsa[2] = 'L', then val contains elements from the low triangle of the matrix \(A\).

If matdescrsa[2]= 'U', then val contains elements from the upper triangle of the matrix \(A\).

Refer to values array description in Skyline Storage Scheme for more details.

Array of length \((m+1)\) for lower triangle, and \((n+1)\) for upper triangle.

It contains the indices specifying the positions of the first element of the matrix \(A\) in each row (for the lower triangle) or column (for upper triangle) in the val array such that val[pntr[i] - 1] is the first element in row or column \(i+1\). Refer to pointers array description in Skyline Storage Scheme for more details.

Array, size ldb* \(n\).
On entry the leading \(m\)-by- \(n\) part of the array \(b\) must contain the matrix \(B\).
Specifies the leading dimension of \(b\) as declared in the calling (sub)program.

Specifies the leading dimension of \(c\) as declared in the calling (sub)program.

\section*{Output Parameters}

C
Array, size ldc by \(n\).
The leading \(m\)-by- \(n\) part of the array \(c\) contains the matrix \(C\).
mkl_?dnscsr
Convert a sparse matrix in uncompressed representation to the CSR format and vice versa (deprecated).

\section*{Syntax}
```

void mkl_ddnscsr (const MKL_INT *job, const MKL_INT *m, const MKL_INT *n , double
*adns, const MKL_INT *lda, double *acsr , MKL_INT *ja, MKL_INT *ia, MKL_INT *info );
void mkl_sdnscsr (const MKL_INT *job, const MKL_INT *m, const MKL_INT *n, float
*adns, const MKL_INT *lda , float *acsr, MKL_INT *ja, MKL_INT *ia, MKL_INT *info );
void mkl_cdnscsr (const MKL_INT *job , const MKL_INT *m, const MKL_INT *n ,
MKL_Complex8 *adns, const MKL_INT *lda , MKL_Complex8 *acsr , MKL_INT *ja , MKL_INT
*ia , MKL_INT *info );
void mkl_zdnscsr (const MKL_INT *job, const MKL_INT *m, const MKL_INT *n ,
MKL_Complex16 *adns , const MKL_INT *lda , MKL_Complex16 *acsr , MKL_INT *ja , MKL_INT
*ia , MKL_INT *info );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use the matrix manipulation routinesfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
This routine converts a sparse matrix \(A\) between formats: stored as a rectangular array (dense representation) and stored using compressed sparse row (CSR) format (3-array variation).

Input Parameters

Array, contains the following conversion parameters:
- job[0]: Conversion type.
- If job[0]=0, the rectangular matrix \(A\) is converted to the CSR format;
- if \(\operatorname{job}[0]=1\), the rectangular matrix \(A\) is restored from the CSR format.
- job[1]: index base for the rectangular matrix \(A\).
- If job[1]=0, zero-based indexing for the rectangular matrix \(A\) is used;
- if job[1]=1, one-based indexing for the rectangular matrix \(A\) is used.
- job[2]: Index base for the matrix in CSR format.
- If job[2]=0, zero-based indexing for the matrix in CSR format is used;
- if job[2]=1, one-based indexing for the matrix in CSR format is used.
- job[3]: Portion of matrix.
- If job[3]=0, adns is a lower triangular part of matrix \(A\);
- If job[3]=1, adns is an upper triangular part of matrix \(A\);
- If job[3]=2, adns is a whole matrix \(A\).
- job [4]=nzmax: maximum number of the non-zero elements allowed if job \([0]=0\).
- job[5]: job indicator for conversion to CSR format.
- If job[5]=0, only array ia is generated for the output storage.
- If job[5]>0, arrays acsr, ia, ja are generated for the output storage.

Number of rows of the matrix \(A\).
Number of columns of the matrix \(A\).
(input/output)
If the conversion type is from uncompressed to CSR, on input adns contains an uncompressed (dense) representation of matrix \(A\).

Specifies the leading dimension of adns as declared in the calling (sub)program.

For zero-based indexing of \(A\), lda must be at least max \((1, n)\).
For one-based indexing of \(A\), lda must be at least max \((1, m)\).
(input/output)
If conversion type is from CSR to uncompressed, on input acsr contains the non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output). If conversion type is from CSR to uncompressed, on input for zero-based indexing of \(A\) ja contains the column indices plus one for each non-zero element of the matrix \(A\). For one-based indexing of \(A\) ja contains the column indices for each non-zero element of the matrix \(A\).

Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output). Array of length \(m+1\).
If conversion type is from CSR to uncompressed, on input for zero-based indexing of \(A\) ia contains indices of elements in the array acsr, such that ia[i] - 1 is the index in the array acsr of the first non-zero element from the row \(i\). For one-based indexing of \(A\) ia contains indices of elements in the array acsr, such that ia[i] is the index in the array acsr of the first non-zero element from the row \(i\).

The value of \(i a[m]\) - ia[0] is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

\section*{Output Parameters}
adns
acsr, ja, ia
info

If conversion type is from CSR to uncompressed, on output adns contains the uncompressed (dense) representation of matrix \(A\).

If conversion type is from uncompressed to CSR, on output acsr, ja, and ia contain the compressed sparse row (CSR) format (3-array variation) of matrix \(A\) (see Sparse Matrix Storage Formats for a description of the storage format).

Integer info indicator only for restoring the matrix \(A\) from the CSR format. If info \(=0\), the execution is successful.

If info=i, the routine is interrupted processing the \(i\)-th row because there is no space in the arrays acsr and ja according to the value nzmax.
mkl_?csrcoo
Converts a sparse matrix in the CSR format to the coordinate format and vice versa (deprecated).

\section*{Syntax}
```

void mkl_scsrcoo (const MKL_INT *job , const MKL_INT *n , float *acsr , MKL_INT *ja ,
MKL_INT *ia, MKL_INT *nnz , float *acoo , MKL_INT *rowind, MKL_INT *colind, MKL_INT
*info );
void mkl_dcsrcoo (const MKL_INT *job , const MKL_INT *n , double *acsr , MKL_INT *ja ,
MKL_INT *ia, MKL_INT *nnz , double *acoo, MKL_INT *rowind, MKL_INT *Colind, MKL_INT
*info );
void mkl_ccsrcoo (const MKL_INT *job , const MKL_INT *n , MKL_Complex8 *acsr , MKL_INT
*ja , MKL_INT *ia , MKL_INT *nnz , MKL_Complex8 *acoo, MKL_INT *rowind , MKL_INT
*colind , MKL_INT *info);
void mkl_zcsrcoo (const MKL_INT *job , const MKL_INT *n , MKL_Complex16 *acsr , MKL_INT
*ja , MKL_INT *ia , MKL_INT *nnz , MKL_Complex16 *acoo , MKL_INT *rowind , MKL_INT
*colind , MKL_INT *info );

```

Include Files
- mkl.h

\section*{Description}

This routine is deprecated. Use the matrix manipulation routinesfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
This routine converts a sparse matrix \(A\) stored in the compressed sparse row (CSR) format (3-array variation) to coordinate format and vice versa.

\section*{Input Parameters}

\section*{job}

Array, contains the following conversion parameters:
job[0]
If \(\operatorname{job}[0]=0\), the matrix in the CSR format is converted to the coordinate format;
if \(\operatorname{job}[0]=1\), the matrix in the coordinate format is converted to the CSR format.
if job[0]=2, the matrix in the coordinate format is converted to the CSR format, and the column indices in CSR representation are sorted in the increasing order within each row.
job[1]
If \(j 0 b[1]=0\), zero-based indexing for the matrix in CSR format is used;
if \(j o b[1]=1\), one-based indexing for the matrix in CSR format is used.
job[2]
If job[2]=0, zero-based indexing for the matrix in coordinate format is used;
if \(\operatorname{job}[2]=1\), one-based indexing for the matrix in coordinate format is used.
job[4]
job[4]=nzmax - maximum number of the non-zero elements allowed if job [0] \(=0\).
job[5] - job indicator.
For conversion to the coordinate format:
If job[5] \(=1\), only array rowind is filled in for the output storage.
If job[5]=2, arrays rowind, colind are filled in for the output storage.
If job[5] \(=3\), all arrays rowind, colind, acoo are filled in for the output storage.
For conversion to the CSR format:
If job[5]=0, all arrays acsr, ja, ia are filled in for the output storage.
If \(j o b[5]=1\), only array \(i\) a is filled in for the output storage.
If job[5]=2, then it is assumed that the routine already has been called with the \(j 0 b[5]=1\), and the user allocated the required space for storing the output arrays acsr and ja.
\begin{tabular}{|c|c|}
\hline \(n\) & Dimension of the matrix \(A\). \\
\hline \(n n z\) & Specifies the number of non-zero elements of the matrix \(A\) for job [0] \(\neq 0\). \\
\hline & Refer to \(n n z\) description in Coordinate Format for more details. \\
\hline acsr & (input/output) \\
\hline & Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details. \\
\hline ja & (input/output). For job[1] = 1 (one-based indexing for the matrix in CSR format), array containing the column indices plus one for each non-zero element of the matrix \(A\). \\
\hline & For job[1] = 0 (zero-based indexing for the matrix in CSR format), array containing the column indices for each non-zero element of the matrix \(A\). \\
\hline & Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details. \\
\hline ia & (input/output). Array of length \(n+1\), containing indices of elements in the array acsr, such that ia[i] - ia[0] is the index in the array acsr of the first non-zero element from the row \(i\). The value of the last element ia[n] \\
\hline & - ia[0] is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details. \\
\hline acoo & (input/output) \\
\hline & Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details. \\
\hline rowind & (input/output). Array of length \(n n z\), contains the row indices for each nonzero element of the matrix \(A\). \\
\hline & Refer to rows array description in Coordinate Format for more details. \\
\hline colind & (input/output). Array of length \(n n z\), contains the column indices for each non-zero element of the matrix \(A\). Refer to columns array description in Coordinate Format for more details. \\
\hline
\end{tabular}

\section*{Output Parameters}
nnz
info
Returns the number of converted elements of the matrix \(A\) for \(j o b[0]=0\).
Integer info indicator only for converting the matrix \(A\) from the CSR format. If info=0, the execution is successful.

If info=1, the routine is interrupted because there is no space in the arrays acoo, rowind, colind according to the value nzmax.
mkl_?csrbsr
Converts a square sparse matrix in the CSR format to the BSR format and vice versa (deprecated).

\section*{Syntax}
```

void mkl_scsrbsr (const MKL_INT *job , const MKL_INT *m , const MKL_INT *mblk , const
MKL_INT *ldabsr , float *acsr , MKL_INT *ja , MKL_INT *ia , float *absr , MKL_INT *jab ,
MKL_INT *iab , MKL_INT *info );
void mkl_dcsrbsr (const MKL_INT *job , const MKL_INT *m , const MKL_INT *mblk , const
MKL_INT *ldabsr , double *acsr , MKL_INT *ja, MKL_INT *ia , double *absr , MKL_INT
*jab , MKL_INT *iab , MKL_INT *info );
void mkl_ccsrbsr (const MKL_INT *job, const MKL_INT *m, const MKL_INT *mblk , const
MKL_INT *ldabsr , MKL_Complex8 *acsr , MKL_INT *ja , MKL_INT *ia , MKL_Complex8 *absr ,
MKL_INT *jab, MKL_INT *iab , MKL_INT *info );
void mkl_zcsrbsr (const MKL_INT *job, const MKL_INT *m, const MKL_INT *mblk , const
MKL_INT *ldabsr , MKL_Complex16 *acsr , MKL_INT *ja , MKL_INT *ia , MKL_Complex16
*absr, MKL_INT *jab, MKL_INT *iab , MKL_INT *info );

```

Include Files
- mkl.h

\section*{Description}

This routine is deprecated. Use the matrix manipulation routinesfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

This routine converts a square sparse matrix \(A\) stored in the compressed sparse row (CSR) format (3-array variation) to the block sparse row (BSR) format and vice versa.

\section*{Input Parameters}
job
Array, contains the following conversion parameters:
job[0]
If job [0]=0, the matrix in the CSR format is converted to the BSR format;
if \(j o b[0]=1\), the matrix in the BSR format is converted to the CSR format.
job[1]
If job[1]=0, zero-based indexing for the matrix in CSR format is used;
if \(j o b[1]=1\), one-based indexing for the matrix in CSR format is used.
job[2]
If job[2]=0, zero-based indexing for the matrix in the BSR format is used;
if job[2]=1, one-based indexing for the matrix in the BSR format is used.
job[3] is only used for conversion to CSR format. By default, the converter saves the blocks without checking whether an element is zero or not. If job[3]=1, then the converter only saves non-zero elements in blocks.
job[5] - job indicator.
For conversion to the BSR format:
If job[5]=0, only arrays jab, iab are generated for the output storage.

If job[5]>0, all output arrays absr, jab, and iab are filled in for the output storage.

If job[5]=-1, iab[m] - iab[0] returns the number of non-zero blocks.
For conversion to the CSR format:
If job[5]=0, only arrays ja, ia are generated for the output storage.
Actual row dimension of the matrix \(A\) for convert to the BSR format; block row dimension of the matrix \(A\) for convert to the CSR format.

Size of the block in the matrix \(A\).
Leading dimension of the array absr as declared in the calling program. ldabsr must be greater than or equal to \(m b l k \star m b l k\).
(input/output)
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output). Array containing the column indices for each non-zero element of the matrix \(A\).
Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output). Array of length \(m+1\), containing indices of elements in the array acsr, such that ia[I]] - iab[0] is the index in the array acsr of the first non-zero element from the row \(I\). The value of ia[m] - iab[0] is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
(input/output)
Array containing elements of non-zero blocks of the matrix \(A\). Its length is equal to the number of non-zero blocks in the matrix \(A\) multiplied by \(m b l k^{\star} m b l k\). Refer to values array description in BSR Format for more details.
(input/output). Array containing the column indices for each non-zero block of the matrix \(A\).

Its length is equal to the number of non-zero blocks of the matrix \(A\). Refer to columns array description in BSR Format for more details.
(input/output). Array of length \((m+1)\), containing indices of blocks in the array \(a b s r\), such that \(i a b[i]\) - iab[0] is the index in the array absr of the first non-zero element from the \(i\)-th row. The value of \(i a b[\mathrm{~m}\)] is equal to the number of non-zero blocks. Refer to rowIndex array description in BSR Format for more details.

\section*{Output Parameters}
info
Integer info indicator only for converting the matrix \(A\) from the CSR format.
If info=0, the execution is successful.
If info=1, it means that mblk is equal to 0 .

If info \(=2\), it means that \(l\) dabsr is less than \(m b l k^{\star} m b l k\) and there is no space for all blocks.
mkl_?csrcsc
Converts a square sparse matrix in the CSR format to the CSC format and vice versa (deprecated).

\section*{Syntax}
```

void mkl_dcsrcsc (const MKL_INT *job, const MKL_INT *n , double *acsr , MKL_INT *ja ,
MKL_INT *ia, double *aCSC , MKL_INT *jal, MKL_INT *ial, MKL_INT *info );
void mkl_scsrcsc (const MKL_INT *job , const MKL_INT *n , float *acsr , MKL_INT *ja,
MKL_INT *ia , float *acsc , MKL_INT *jal , MKL_INT *ial , MKL_INT *info );
void mkl_ccsrcsc (const MKL_INT *job , const MKL_INT *n , MKL_Complex8 *acsr , MKL_INT
*ja , MKL_INT *ia , MKL_Complex8 *acsc , MKL_INT *jal , MKL_INT *ial , MKL_INT *info );
void mkl_zcsrcsc (const MKL_INT *job , const MKL_INT *n , MKL_Complex16 *acsr , MKL_INT
*ja , MKL_INT *ia , MKL_Complex16 *aCSC , MKL_INT *jal , MKL_INT *ial , MKL_INT *info );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use the matrix manipulation routinesfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
This routine converts a square sparse matrix \(A\) stored in the compressed sparse row (CSR) format (3-array variation) to the compressed sparse column (CSC) format and vice versa.

\section*{Input Parameters}
job Array, contains the following conversion parameters:
job[0]
If job [0] \(=0\), the matrix in the CSR format is converted to the CSC format;
if \(j o b[0]=1\), the matrix in the CSC format is converted to the CSR format.
job[1]
If job[1]=0, zero-based indexing for the matrix in CSR format is used;
if \(j o b[1]=1\), one-based indexing for the matrix in CSR format is used.
job[2]
If job[2]=0, zero-based indexing for the matrix in the CSC format is used;
if \(j o b[2]=1\), one-based indexing for the matrix in the CSC format is used.
job[5] - job indicator.
For conversion to the CSC format:
If job[5]=0, only arrays ja1, ial are filled in for the output storage.

If \(j o b[5] \neq 0\), all output arrays acsc, ja1, and ial are filled in for the output storage.

For conversion to the CSR format:
If job[5]=0, only arrays ja, ia are filled in for the output storage.
If job[5] \(\neq 0\), all output arrays acsr, ja, and ia are filled in for the output storage.

Dimension of the square matrix \(A\).
(input/output)
Array containing non-zero elements of the square matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output). Array containing the column indices for each non-zero element of the matrix \(A\).

Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output). Array of length \(m+1\), containing indices of elements in the array acsr, such that ia[i] - ia[0] is the index in the array acsr of the first non-zero element from the row \(i\). The value of ia[m] - ia[0] is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
(input/output)
Array containing non-zero elements of the square matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output). Array containing the row indices for each non-zero element of the matrix \(A\).

Its length is equal to the length of the array acsc. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output). Array of length \(m+1\), containing indices of elements in the array acsc, such that ial[i] - ial[0] is the index in the array acsc of the first non-zero element from the column \(i\). The value of ial [m] ial[0] is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

\section*{Output Parameters}
info
This parameter is not used now.
mkl_?csrdia
Converts a sparse matrix in the CSR format to the
diagonal format and vice versa (deprecated).

\section*{Syntax}
```

void mkl_dcsrdia (const MKL_INT *job, const MKL_INT *n , double *acsr , MKL_INT *ja ,
MKL_INT *ia, double *adia , const MKL_INT *ndiag, MKL_INT *distance , MKL_INT
*idiag, double *acsr_rem , MKL_INT *ja_rem, MKL_INT *ia_rem, MKL_INT *info );
void mkl_scsrdia (const MKL_INT *job, const MKL_INT *n , float *acsr , MKL_INT *ja,
MKL_INT *ia, float *adia , const MKL_INT *ndiag, MKL_INT *distance , MKL_INT *idiag ,
float *acsr_rem, MKL_INT *ja_rem, MKL_INT *ia_rem, MKL_INT *info );
void mkl_ccsrdia (const MKL_INT *job , const MKL_INT *n , MKL_Complex8 *acsr , MKL_INT
*ja, MKL_INT *ia, MKL_Complex8 *adia , const MKL_INT *ndiag , MKL_INT *distance ,
MKL_INT *idiag, MKL_Complex8 *acsr_rem, MKL_INT *ja_rem, MKL_INT *ia_rem , MKL_INT
*infO );
void mkl_zcsrdia (const MKL_INT *job , const MKL_INT *n , MKL_Complex16 *acsr , MKL_INT
*ja , MKL_INT *ia, MKL_Complex16 *adia , const MKL_INT *ndiag , MKL_INT *distance ,
MKL_INT *idiag, MKL_Complex16 *acsr_rem, MKL_INT *ja_rem, MKL_INT *ia_rem , MKL_INT
*info );

```

Include Files
- mkl.h

\section*{Description}

This routine is deprecated. Use the matrix manipulation routinesfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
This routine converts a sparse matrix \(A\) stored in the compressed sparse row (CSR) format (3-array variation) to the diagonal format and vice versa.

\section*{Input Parameters}
job Array, contains the following conversion parameters:
job[0]
If job[0]=0, the matrix in the CSR format is converted to the diagonal format;
if job[0]=1, the matrix in the diagonal format is converted to the CSR format.
job[1]
If job[1]=0, zero-based indexing for the matrix in CSR format is used;
if job[1]=1, one-based indexing for the matrix in CSR format is used.
job[2]
If job[2]=0, zero-based indexing for the matrix in the diagonal format is used;
if job[2]=1, one-based indexing for the matrix in the diagonal format is used.
job [5] - job indicator.
For conversion to the diagonal format:
\begin{tabular}{|c|c|}
\hline & If job[5]=0, diagonals are not selected internally, and acsr_rem, ja_rem, ia_rem are not filled in for the output storage. \\
\hline & If job[5]=1, diagonals are not selected internally, and acsr_rem, ja_rem, ia_rem are filled in for the output storage. \\
\hline & If job[5]=10, diagonals are selected internally, and acsr_rem, ja_rem, ia_rem are not filled in for the output storage. \\
\hline & If job[5]=11, diagonals are selected internally, and csr_rem, ja_rem, ia_rem are filled in for the output storage. \\
\hline & For conversion to the CSR format: \\
\hline & If job[5]=0, each entry in the array adia is checked whether it is zero. Zero entries are not included in the array acsr. \\
\hline & If job[5] \(\ddagger 0\), each entry in the array adia is not checked whether it is zero. \\
\hline m & Dimension of the matrix \(A\). \\
\hline acsr & (input/output) \\
\hline & Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details. \\
\hline ja & (input/output). Array containing the column indices for each non-zero element of the matrix \(A\). \\
\hline & Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details. \\
\hline ia & (input/output). Array of length \(m+1\), containing indices of elements in the array acsr, such that ia[i] - ia[0] is the index in the array acsr of the first non-zero element from the row \(i\). The value of \(i a[m]-i a[0]\) is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details. \\
\hline adia & (input/output) \\
\hline & Array of size (ndiag*idiag) containing diagonals of the matrix \(A\). \\
\hline & The key point of the storage is that each element in the array adia retains the row number of the original matrix. To achieve this diagonals in the lower triangular part of the matrix are padded from the top, and those in the upper triangular part are padded from the bottom. \\
\hline ndiag & Specifies the leading dimension of the array adia as declared in the calling (sub) program, must be at least max \((1, m)\). \\
\hline distance & Array of length idiag, containing the distances between the main diagonal and each non-zero diagonal to be extracted. The distance is positive if the diagonal is above the main diagonal, and negative if the diagonal is below the main diagonal. The main diagonal has a distance equal to zero. \\
\hline idiag & Number of diagonals to be extracted. For conversion to diagonal format on return this parameter may be modified. \\
\hline acsr_rem, ja_rem, ia_rem & Remainder of the matrix in the CSR format if it is needed for conversion to the diagonal format. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

info

```

This parameter is not used now.

\section*{mkl_?csrsky}

Converts a sparse matrix in CSR format to the skyline format and vice versa (deprecated).

\section*{Syntax}
```

void mkl_dcsrsky (const MKL_INT *job, const MKL_INT *m , double *acsr , MKL_INT *ja ,
MKL_INT *ia, double *asky , MKL_INT *pointers , MKL_INT *info );
void mkl_scsrsky (const MKL_INT *job , const MKL_INT *m, float *acsr , MKL_INT *ja,
MKL_INT *ia , float *asky , MKL_INT *pointers , MKL_INT *info );
void mkl_ccsrsky (const MKL_INT *job , const MKL_INT *m , MKL_Complex8 *acsr , MKL_INT
*ja, MKL_INT *ia, MKL_Complex8 *asky , MKL_INT *pointers , MKL_INT *info );
void mkl_zcsrsky (const MKL_INT *job , const MKL_INT *m , MKL_Complex16 *acsr , MKL_INT
*ja , MKL_INT *ia, MKL_Complex16 *asky , MKL_INT *pointers , MKL_INT *info );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use the matrix manipulation routinesfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
This routine converts a sparse matrix \(A\) stored in the compressed sparse row (CSR) format (3-array variation) to the skyline format and vice versa.

\section*{Input Parameters}
job
Array, contains the following conversion parameters:
job[0]
If job[0]=0, the matrix in the CSR format is converted to the skyline format;
if job[0]=1, the matrix in the skyline format is converted to the CSR format.
job[1]
If job[1]=0, zero-based indexing for the matrix in CSR format is used;
if job[1]=1, one-based indexing for the matrix in CSR format is used.
job[2]
If job[2]=0, zero-based indexing for the matrix in the skyline format is used;
if job[2]=1, one-based indexing for the matrix in the skyline format is used.
job[3]

For conversion to the skyline format:
If job[3]=0, the upper part of the matrix \(A\) in the CSR format is converted.
If job[3]=1, the lower part of the matrix \(A\) in the CSR format is converted.
For conversion to the CSR format:
If job[3]=0, the matrix is converted to the upper part of the matrix \(A\) in the CSR format.
If \(j o b[3]=1\), the matrix is converted to the lower part of the matrix \(A\) in the CSR format.
job[4]
job[4]=nzmax - maximum number of the non-zero elements of the matrix \(A\) if job[0]=0.
job[5] - job indicator.
Only for conversion to the skyline format:
If job[5]=0, only arrays pointers is filled in for the output storage.
If job[5]=1, all output arrays asky and pointers are filled in for the output storage.

Dimension of the matrix \(A\).
(input/output)
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output). Array containing the column indices for each non-zero element of the matrix \(A\).

Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output). Array of length \(m+1\), containing indices of elements in the array acsr, such that ia[i] - ia[0] is the index in the array acsr of the first non-zero element from the row \(i\). The value of ia \([m\)] - ia[0] is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
(input/output)
Array, for a lower triangular part of \(A\) it contains the set of elements from each row starting from the first none-zero element to and including the diagonal element. For an upper triangular matrix it contains the set of elements from each column of the matrix starting with the first non-zero element down to and including the diagonal element. Encountered zero elements are included in the sets. Refer to values array description in Skyline Storage Format for more details.
(input/output).
Array with dimension \((m+1)\), where \(m\) is number of rows for lower triangle (columns for upper triangle), pointers[i-1] - pointers[0] gives the index of element in the array asky that is first non-zero element in row
(column)i. The value of pointers[m] is set to \(n n z+\) pointers[0], where \(n n z\) is the number of elements in the array asky. Refer to pointers array description in Skyline Storage Format for more details

\section*{Output Parameters}
info
Integer info indicator only for converting the matrix \(A\) from the CSR format.
If info=0, the execution is successful.
If info=1, the routine is interrupted because there is no space in the array asky according to the value nzmax.
mkl_?csradd
Computes the sum of two matrices stored in the CSR
format (3-array variation) with one-based indexing (deprecated).

\section*{Syntax}
```

void mkl_dcsradd (const char *trans, const MKL_INT *request , const MKL_INT *sort ,
const MKL_INT *m, const MKL_INT *n , double *a, MKL_INT *ja, MKL_INT *ia, const
double *beta , double *b , MKL_INT *jb, MKL_INT *ib, double *c , MKL_INT *jc , MKL_INT
*ic , const MKL_INT *nzmax , MKL_INT *info );
void mkl_scsradd (const char *trans, const MKL_INT *request , const MKL_INT *sort ,
const MKL_INT *m, const MKL_INT *n , float *a, MKL_INT *ja, MKL_INT *ia, const
float *beta, float *b, MKL_INT *jb, MKL_INT *ib, float *c , MKL_INT *jc , MKL_INT
*ic , const MKL_INT *nzmax , MKL_INT *info );
void mkl_ccsradd (const char *trans, const MKL_INT *request , const MKL_INT *sort ,
const MKL_INT *m, const MKL_INT *n , MKL_Complex8 *a , MKL_INT *ja , MKL_INT *ia ,
const MKL_Complex8 *beta , MKL_Complex8 *b, MKL_INT *jb , MKL_INT *ib , MKL_Complex8
*C , MKL_INT *jc , MKL_INT *ic , const MKL_INT *nzmax , MKL_INT *info );
void mkl_zcsradd (const char *trans, const MKL_INT *request , const MKL_INT *sort ,
const MKL_INT *m , const MKL_INT *n , MKL_Complex16 *a , MKL_INT *ja , MKL_INT *ia ,
const MKL_Complex16 *beta , MKL_Complex16 *b , MKL_INT *jb , MKL_INT *ib ,
MKL_Complex16 *c , MKL_INT *jc , MKL_INT *ic , const MKL_INT *nzmax , MKL_INT *info );

```

Include Files
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_addfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?csradd routine performs a matrix-matrix operation defined as
```

C := A+beta*op (B)

```
where:
\(A, B, C\) are the sparse matrices in the CSR format (3-array variation).
op \((B)\) is one of op \((B)=B\), or op \((B)=B^{\mathrm{T}}\), or op \((B)=B^{\mathrm{H}}\)
beta is a scalar.

The routine works correctly if and only if the column indices in sparse matrix representations of matrices \(A\) and \(B\) are arranged in the increasing order for each row. If not, use the parameter sort (see below) to reorder column indices and the corresponding elements of the input matrices.

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline trans & Specifies the operation. \\
\hline & If trans = 'N' or 'n', then \(C:=A+\) beta* \(B\) \\
\hline & If trans \(=\) 'T' or 't', then \(C:=A+\) beta* \(B^{T}\) \\
\hline & If trans \(=\) ' C' or ' C ', then \(C:=A+\) beta^ \(B^{\mathrm{H}}\). \\
\hline request & If request=0, the routine performs addition. The memory for the output arrays ic, jc, c must be allocated beforehand. \\
\hline & If request=1, the routine only computes the values of the array ic of length \(m+1\). The memory for the ic array must be allocated beforehand. On exit the value \(i c[m]-1\) is the actual number of the elements in the arrays \(c\) and \(j c\). \\
\hline & If request=2, after the routine is called previously with the parameter request=1 and after the output arrays \(j c\) and \(c\) are allocated in the calling program with length at least ic[m]-1, the routine performs addition. \\
\hline sort & Specifies the type of reordering. If this parameter is not set (default), the routine does not perform reordering. \\
\hline & If sort=1, the routine arranges the column indices ja for each row in the increasing order and reorders the corresponding values of the matrix \(A\) in the array \(a\). \\
\hline & If sort=2, the routine arranges the column indices \(j b\) for each row in the increasing order and reorders the corresponding values of the matrix \(B\) in the array \(b\). \\
\hline & If sort=3, the routine performs reordering for both input matrices \(A\) and \(B\). \\
\hline m & Number of rows of the matrix \(A\). \\
\hline \(n\) & Number of columns of the matrix \(A\). \\
\hline a & Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details. \\
\hline ja & Array containing the column indices plus one for each non-zero element of the matrix \(A\). For each row the column indices must be arranged in the increasing order. \\
\hline & The length of this array is equal to the length of the array \(a\). Refer to columns array description in Sparse Matrix Storage Formats for more details. \\
\hline
\end{tabular}
ia

Array of length \(m+1\), containing indices of elements in the array \(a\), such that ia[i] - ia[0] is the index in the array a of the first non-zero element from the row \(i\). The value of the last element ia[m] is equal to the number of non-zero elements of the matrix \(A\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

Specifies the scalar beta.
Array containing non-zero elements of the matrix \(B\). Its length is equal to the number of non-zero elements in the matrix \(B\). Refer to values array description in Sparse Matrix Storage Formats for more details.

Array containing the column indices plus one for each non-zero element of the matrix \(B\). For each row the column indices must be arranged in the increasing order.
The length of this array is equal to the length of the array b. Refer to columns array description in Sparse Matrix Storage Formats for more details.

Array of length \(m+1\) when trans \(=\) 'N' or ' \(n\) ', or \(n+1\) otherwise.
This array contains indices of elements in the array \(b\), such that \(i b[i]\) \(i b[0]\) is the index in the array \(b\) of the first non-zero element from the row \(i\). The value of the last element \(i b[\mathrm{~m}]\) or \(i b[\mathrm{n}]\) is equal to the number of non-zero elements of the matrix \(B\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

The length of the arrays \(c\) and \(j c\).
This parameter is used only if request=0. The routine stops calculation if the number of elements in the result matrix \(C\) exceeds the specified value of nzmax.

\section*{Output Parameters}

Array containing non-zero elements of the result matrix \(C\). Its length is equal to the number of non-zero elements in the matrix \(C\). Refer to values array description in Sparse Matrix Storage Formats for more details.

Array containing the column indices plus one for each non-zero element of the matrix \(C\).
The length of this array is equal to the length of the array c. Refer to columns array description in Sparse Matrix Storage Formats for more details.

Array of length \(m+1\), containing indices of elements in the array \(c\), such that ic[i] - ic[0] is the index in the array \(c\) of the first non-zero element from the row \(i\). The value of the last element \(i c[m]\) is equal to the number of non-zero elements of the matrix \(C\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
If infolo, the execution is successful.
If info \(=I>0\), the routine stops calculation in the \(I\)-th row of the matrix \(C\) because number of elements in \(C\) exceeds nzmax.

If info=-1, the routine calculates only the size of the arrays \(c\) and \(j c\) and returns this value plus 1 as the last element of the array ic.

\section*{mkl_?csrmultcsr \\ Computes product of two sparse matrices stored in the CSR format (3-array variation) with one-based indexing (deprecated).}

\section*{Syntax}
```

void mkl_dcsrmultcsr (const char *trans, const MKL_INT *request , const MKL_INT
*sort, const MKL_INT *m, const MKL_INT *n , const MKL_INT *k , double *a, MKL_INT
*ja , MKL_INT *ia, double *b , MKL_INT *jb, MKL_INT *ib, double *C , MKL_INT *jc ,
MKL_INT *ic , const MKL_INT *nzmax , MKL_INT *info );
void mkl_scsrmultcsr (const char *trans, const MKL_INT *request , const MKL_INT
*sort , const MKL_INT *m, const MKL_INT *n , const MKL_INT *k , float *a , MKL_INT
*ja, MKL_INT *ia, float *b , MKL_INT *jb , MKL_INT *ib, float *c , MKL_INT *jc ,
MKL_INT *ic , const MKL_INT *nzmax , MKL_INT *info );
void mkl_ccsrmultcsr (const char *trans , const MKL_INT *request , const MKL_INT
*sort , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , MKL_Complex8 *a ,
MKL_INT *ja , MKL_INT *ia, MKL_Complex8 *b , MKL_INT *jb , MKL_INT *ib , MKL_Complex8
*C , MKL_INT *jc, MKL_INT *ic , const MKL_INT *nzmax , MKL_INT *info );
void mkl_zcsrmultcsr (const char *trans, const MKL_INT *request , const MKL_INT
*sort , const MKL_INT *m, const MKL_INT *n , const MKL_INT *k , MKL_Complex16 *a ,
MKL_INT *ja, MKL_INT *ia, MKL_Complex16 *b , MKL_INT *jb , MKL_INT *ib ,
MKL_Complex16 *C , MKL_INT *jc , MKL_INT *ic , const MKL_INT *nzmax , MKL_INT *info );

```

Include Files
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_spmmfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?csrmultcsr routine performs a matrix-matrix operation defined as
\[
C:=o p(A) \star B
\]
where:
\(A, B, C\) are the sparse matrices in the CSR format (3-array variation);
\(\operatorname{op}(A)\) is one of op \((A)=A\), or op \((A)=A^{T}\), or op \((A)=A^{H}\).
You can use the parameter sort to perform or not perform reordering of non-zero entries in input and output sparse matrices. The purpose of reordering is to rearrange non-zero entries in compressed sparse row matrix so that column indices in compressed sparse representation are sorted in the increasing order for each row.
The following table shows correspondence between the value of the parameter sort and the type of reordering performed by this routine for each sparse matrix involved:
\begin{tabular}{|llll|}
\hline \begin{tabular}{l}
Value of the parameter \\
sort
\end{tabular} & \begin{tabular}{l}
Reordering of \(\boldsymbol{A}(\) arrays \\
\(a, j a, i a)\)
\end{tabular} & \begin{tabular}{l}
Reordering of \(\boldsymbol{B}\) (arrays \\
\(b, j a, i b)\)
\end{tabular} & \begin{tabular}{l}
Reordering of \(\boldsymbol{C}\) (arrays \\
\(c, j c, i c)\)
\end{tabular} \\
\hline 1 & yes & no & yes \\
2 & no & yes & yes \\
3 & yes & yes & yes \\
4 & yes & no & no \\
5 & no & yes & no \\
6 & yes & yes & no \\
7 & no & no & no \\
arbitrary value not equal to & no & no & yes \\
\(1,2, \ldots, 7\) & & & \\
\hline
\end{tabular}

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
trans
request
sort
m
n
k
a
ja

Specifies the operation.
If trans \(=\) ' \(N\) ' or ' n ', then \(C:=A^{\star} B\)
If trans \(=\) ' \(T\) ' or 't' or 'C' or 'c', then \(C:=A^{T} * B\).
If request=0, the routine performs multiplication, the memory for the output arrays ic, jc, c must be allocated beforehand.

If request=1, the routine computes only values of the array ic of length \(m\) +1 , the memory for this array must be allocated beforehand. On exit the value \(i c[m]-1\) is the actual number of the elements in the arrays \(c\) and jc.

If request=2, the routine has been called previously with the parameter request=1, the output arrays \(j c\) and \(c\) are allocated in the calling program and they are of the length ic[m] - 1 at least.

Specifies whether the routine performs reordering of non-zeros entries in input and/or output sparse matrices (see table above).

Number of rows of the matrix \(A\).
Number of columns of the matrix \(A\).
Number of columns of the matrix \(B\).
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.

Array containing the column indices plus one for each non-zero element of the matrix \(A\). For each row the column indices must be arranged in the increasing order.

The length of this array is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

Array of length \(m+1\).
This array contains indices of elements in the array \(a\), such that ia[i] ia[0] is the index in the array a of the first non-zero element from the row \(i\). The value of the last element ia[m] is equal to the number of non-zero elements of the matrix \(A\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

Array containing non-zero elements of the matrix \(B\). Its length is equal to the number of non-zero elements in the matrix \(B\). Refer to values array description in Sparse Matrix Storage Formats for more details.

Array containing the column indices plus one for each non-zero element of the matrix \(B\). For each row the column indices must be arranged in the increasing order.
The length of this array is equal to the length of the array \(b\). Refer to columns array description in Sparse Matrix Storage Formats for more details.

Array of length \(n+1\) when trans \(=\) 'N' or 'n', or \(m+1\) otherwise.
This array contains indices of elements in the array b, such that ib[i] \(i b[0]\) is the index in the array \(b\) of the first non-zero element from the row \(i\). The value of the last element \(i b[n]\) or \(i b[m]\) is equal to the number of non-zero elements of the matrix \(B\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

The length of the arrays \(c\) and \(j c\).
This parameter is used only if request=0. The routine stops calculation if the number of elements in the result matrix \(C\) exceeds the specified value of nzmax.

\section*{Output Parameters}

Array containing non-zero elements of the result matrix \(C\). Its length is equal to the number of non-zero elements in the matrix \(C\). Refer to values array description in Sparse Matrix Storage Formats for more details.

Array containing the column indices plus one for each non-zero element of the matrix \(C\).

The length of this array is equal to the length of the array c. Refer to columns array description in Sparse Matrix Storage Formats for more details.

Array of length \(m+1\) when trans \(=\) ' \(N\) ' or ' \(n\) ', or \(n+1\) otherwise.
This array contains indices of elements in the array \(c\), such that ic[i] \(i c[0]\) is the index in the array \(c\) of the first non-zero element from the row \(i\). The value of the last element \(i c[m]\) or \(i c[n]\) is equal to the number of non-zero elements of the matrix \(C\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

If info \(=0\), the execution is successful.
If info \(=I>0\), the routine stops calculation in the \(I\)-th row of the matrix \(C\) because number of elements in \(C\) exceeds nzmax.

If info=-1, the routine calculates only the size of the arrays \(c\) and \(j c\) and returns this value plus 1 as the last element of the array ic.
mkl_?csrmultd
Computes product of two sparse matrices stored in the CSR format (3-array variation) with one-based indexing. The result is stored in the dense matrix (deprecated).

\section*{Syntax}
```

void mkl_dcsrmultd (const char *trans, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *}*k, double *a , MKL_INT *ja, MKL_INT *ia, double *b , MKL_INT *jb , MKL_INT
*ib , double *c , MKL_INT *ldc );
void mkl_scsrmultd (const char *trans, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k, float *a , MKL_INT *ja, MKL_INT *ia, float *b, MKL_INT *jb, MKL_INT
*ib, float *C , MKL_INT *ldc );
void mkl_ccsrmultd (const char *trans, const MKL_INT *m, const MKL_INT *n, const
MKL_INT *k , MKL_Complex8 *a , MKL_INT *ja, MKL_INT *ia, MKL_Complex8 *b , MKL_INT
*jb , MKL_INT *ib, MKL_Complex8 *C , MKL_INT *IdC );
void mkl_zcsrmultd (const char *trans, const MKL_INT *m, const MKL_INT *n , const
MKL_INT *k, MKL_Complex16 *a , MKL_INT *ja , MKL_INT *ia, MKL_Complex16 *b , MKL_INT
*jb , MKL_INT *ib , MKL_Complex16 *cc, MKL_INT *IdC );

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_spmmdfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?csrmultd routine performs a matrix-matrix operation defined as
\[
C:=o p(A) \star B
\]
where:
\(A, B\) are the sparse matrices in the CSR format (3-array variation), \(C\) is dense matrix;
\(\mathrm{op}(A)\) is one of op \((A)=A\), or op \((A)=A^{\mathrm{T}}\), or op \((A)=A^{\mathrm{H}}\).
The routine works correctly if and only if the column indices in sparse matrix representations of matrices \(A\) and \(B\) are arranged in the increasing order for each row.

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}
trans
Specifies the operation.
\[
\text { If trans }=\text { 'N' or 'n', then } C:=A^{\star} B
\]

If trans \(=\) ' \(T\) ' or ' \(t\) ' or ' \(C\) ' or ' \(C\) ', then \(C:=A^{T} * B\).
Number of rows of the matrix \(A\).
Number of columns of the matrix \(A\).
Number of columns of the matrix \(B\).
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.

Array containing the column indices plus one for each non-zero element of the matrix \(A\). For each row the column indices must be arranged in the increasing order.

The length of this array is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

Array of length \(m+1\) when trans \(=\) 'N' or ' \(n\) ', or \(n+1\) otherwise.
This array contains indices of elements in the array \(a\), such that ia[i] ia[0] is the index in the array a of the first non-zero element from the row \(i\). The value of the last element \(i a[m]\) or \(i a[n]\) is equal to the number of non-zero elements of the matrix \(A\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

Array containing non-zero elements of the matrix \(B\). Its length is equal to the number of non-zero elements in the matrix \(B\). Refer to values array description in Sparse Matrix Storage Formats for more details.

Array containing the column indices plus one for each non-zero element of the matrix \(B\). For each row the column indices must be arranged in the increasing order.
The length of this array is equal to the length of the array b. Refer to columns array description in Sparse Matrix Storage Formats for more details.

Array of length \(m+1\).
This array contains indices of elements in the array \(b\), such that \(i b[i]\) \(i b[0]\) is the index in the array \(b\) of the first non-zero element from the row \(i\). The value of the last element \(i b[\mathrm{~m}]\) is equal to the number of non-zero elements of the matrix \(B\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

\section*{Output Parameters}

Array containing non-zero elements of the result matrix \(C\).
Specifies the leading dimension of the dense matrix \(C\) as declared in the calling (sub) program. Must be at least max \((m, 1)\) when trans \(={ }^{\prime} N\) ' or ' \(n\) ', or max \((1, n)\) otherwise.

\section*{Sparse QR Routines}

Sparse QR routines and their data types
\begin{tabular}{|l|l|l|}
\hline Routine or function group & Data types & Description \\
\hline mkl_sparse_set_qr_hint & & Enables a pivot strategy for an ill-conditioned matrix. \\
\hline mkl_sparse_?_qr & s,d & \begin{tabular}{l}
Calculates the solution of a sparse system of linear equations \\
using QR factorization.
\end{tabular} \\
\hline mkl_sparse_qr_reorder & & Performs reordering and symbolic analysis of the matrix \(A\). \\
\hline mkl_sparse_?_qr_factorize & s,d & Performs numerical factorization of the matrix \(A\). \\
\hline mkl_sparse_?_qr_solve & s,d & \begin{tabular}{l}
Solves the system \(A^{*} x=b\) using QR factorization of the matrix \\
A.
\end{tabular} \\
\hline mkl_sparse_?_qr_qmult & s,d & Performs \(x:=Q^{\wedge}(-1) * b\). \\
\hline mkl_sparse_?_qr_rsolve & s,d & Performs \(x:=R^{\wedge}(-1)^{*} b\). \\
\hline
\end{tabular}

NOTE The underdetermined systems of equations are not supported. The number of columns should be less or equal to the number or rows.

For more information about the workflow of sparse QR functionality, refer to oneMKL Sparse QR solver. Multifrontal Sparse QR Factorization Method for Solving a Sparse System of Linear Equations.
mkl_sparse_set_qr_hint
Define the pivot strategy for further calls of mkl_sparse_? qr.

\section*{Syntax}
```

sparse_status_t mkl_sparse_set_qr_hint (sparse_matrix_t A, sparse_qr_hint_t hint);

```

\section*{Include Files}
- mkl_sparse_qr.h

\section*{Description}

You can use this routine to enable a pivot strategy in the case of an ill-conditioned matrix.

\section*{Input Parameters}

A
hint

Handle containing a sparse matrix in an internal data structure.
Value specifying whether to use pivoting.

NOTE The only value currently supported is SPARSE_QR_WITH_PIVOTS, which enables the use of a pivot strategy for an ill-conditioned matrix.

\section*{Return Values}

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or matrix array.
TIALIZED
```

SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED
mkl_sparse_?_qr
Computes the QR decomposition for the matrix of a
sparse linear system and calculates the solution.

```

\section*{Syntax}
```

sparse_status_t mkl_sparse_d_qr ( sparse_operation_t operation, sparse_matrix_t A,

```
sparse_status_t mkl_sparse_d_qr (sparse_operation_t operation, sparse_matrix_t A,
struct matrix_descr descr, sparse_layout_t layout, MKL_INT columns, double *x, MKL_INT
struct matrix_descr descr, sparse_layout_t layout, MKL_INT columns, double *x, MKL_INT
ldx, const double *b, MKL_INT ldb);
ldx, const double *b, MKL_INT ldb);
sparse_status_t mkl_sparse_s_qr (sparse_operation_t operation, sparse_matrix_t A,
sparse_status_t mkl_sparse_s_qr (sparse_operation_t operation, sparse_matrix_t A,
struct matrix_descr descr, sparse_layout_t layout, MKL_INT columns, float *x, MKL_INT
struct matrix_descr descr, sparse_layout_t layout, MKL_INT columns, float *x, MKL_INT
ldx, const float *b, MKL_INT ldb);
```

ldx, const float *b, MKL_INT ldb );

```

Include Files
- mkl_sparse_qr.h

\section*{Description}

The mkl_sparse_?_qr routine computes the \(Q R\) decomposition for the matrix of a sparse linear system \(A^{*} X\) \(=b\), so that \(A=Q^{*} R\) where \(Q\) is the orthogonal matrix and \(R\) is upper triangular, and calculates the solution.

\section*{NOTE}

Currently, mkl_sparse_?_qr supports only square and overdetermined systems. For underdetermined systems you can manually transpose the system matrix and use QR decomposition for \(A^{T}\) to get the minimum-norm solution for the original underdetermined system.

NOTE Currently, mkl_sparse_?_qr supports only CSR format for the input matrix, nontranspose operation, and single right-hand side.

\section*{Input Parameters}

NOTE Currently, the only suppored value is
SPARSE_OPERATION_NON_TRANSPOSE (non-transpose case; that is, \(A^{*} X\) \(=b\) is solved).

A
descr
type
layout

X
columns
ldx
b

1 db

Handle containing a sparse matrix in an internal data structure.
Structure specifying sparse matrix properties. Only the parameters listed here are currently supported.

Specifies the type of sparse matrix.
NOTE Currently, the only supported value is SPARSE_MATRIX_TYPE_GENERAL (the matrix is processed as-is).

Describes the storage scheme for the dense matrix:
\begin{tabular}{|l|l|}
\hline SPARSE_LAYOUT_COLUMN_MAJOR & \begin{tabular}{l}
Storage of elements uses column-major \\
layout.
\end{tabular} \\
\hline SPARSE_LAYOUT_ROW_MAJOR & Storage of elements uses row-major layout. \\
\hline
\end{tabular}

Array with a size of at least rows*cols:
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l}
rows \\
(number of \\
rows in \(x\)
\end{tabular} & ldx & Number of columns in A \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
x)
\end{tabular} & columns & ldx \\
\hline
\end{tabular}

Number of columns in matrix \(b\).
Specifies the leading dimension of matrix \(x\).
Array with a size of at least rows*cols:
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l}
rows \\
(number of \\
rows in b)
\end{tabular} & ldb & Number of columns in A \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
b)
\end{tabular} & columns & ldb \\
\hline
\end{tabular}

Specifies the leading dimension of matrix \(b\).

\section*{Output Parameters}
```

x
Overwritten by the updated matrix $y$.

```

\section*{Return Values}
```

SPARSE_STATUS_SUCCESS The operation was successful.

```
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or matrix array.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or matrix array.
TIALIZED
TIALIZED
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED
```

PORTED

```
mkl_sparse_qr_reorder
Reordering step of SPARSE QR solver.
Syntax
sparse_status_t mkl_sparse_qr_reorder (sparse_matrix_t A, struct matrix_descr descr);
Include Files
- mkl_sparse_qr.h

\section*{Description}

The mkl_sparse_qr_reorder routine performs ordering and symbolic analysis of matrix \(A\).

NOTE Currently, mkl_sparse_qr_reorder supports only general structure and CSR format for the input matrix.

\section*{Input Parameters}

Handle containing a sparse matrix in an internal data structure.
Structure specifying sparse matrix properties. Only the parameters listed here are currently supported.

\section*{Return Values}

SPARSE_STATUS_SUCCESS The operation was successful.
```

SPARSE_STATUS_NOT_INI The routine encountered an empty handle or matrix array.
TIALIZED
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED
mkl_sparse_?_qr_factorize
Factorization step of the SPARSE QR solver.
Syntax
sparse_status_t mkl_sparse_d_qr_factorize (sparse_matrix_t A, double *alt_values);
sparse_status_t mkl_sparse_s_qr_factorize (sparse_matrix_t A, float *alt_values);

```

\section*{Include Files}
```

- mkl_sparse_qr.h

```

\section*{Description}

The mkl_sparse_?_qr_factorize routine performs numerical factorization of matrix \(A\). Prior to calling this routine, the mkl_sparse_?_qr_reorder routine must be called for the matrix handle \(A\). For more information about the workflow of sparse QR functionality, refer to oneMKL Sparse QR solver. Multifrontal Sparse QR Factorization Method for Solving a Sparse System of Linear Equations.

NOTE Currently, mkl_sparse_?_qr_factorize supports only CSR format for the input matrix.

\section*{Input Parameters}
```

A
alt_values
Handle containing a sparse matrix in an internal data structure.
Array with alternative values. Must be the size of the non-zeroes in the initial input matrix. When passed to the routine, these values will be used during the factorization step instead of the values stored in handle $A$.

```

\section*{Return Values}

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or matrix array.
TIALIZED
```

SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```
mkl_sparse_?_qr_solve
Solving step of the SPARSE QR solver.

\section*{Syntax}
```

sparse_status_t mkl_sparse_d_qr_solve ( sparse_operation_t operation, sparse_matrix_t
A, double *alt_values, sparse_layout_t layout, MKL_INT columns, double *x, MKL_INT ldx,
const double *b, MKL_INT ldb );
sparse_status_t mkl_sparse_s_qr_solve ( sparse_operation_t operation, sparse_matrix_t
A, float *alt_values, sparse_layout_t layout, MKL_INT columns, float *x, MKL_INT Idx,
const float *b, MKL_INT Idb );

```
Include Files
- mkl_sparse_qr.h

\section*{Description}

The mkl_sparse_?_qr_solve routine computes the solution of sparse systems of linear equations \(A^{*} x=\) \(b\). Prior to calling this routine, the mkl_sparse_?_qr_factorize routine must be called for the matrix handle \(A\). For more information about the workflow of sparse QR functionality, refer to oneMKL Sparse QR solver. Multifrontal Sparse QR Factorization Method for Solving a Sparse System of Linear Equations.

\section*{NOTE}

Currently, mkl_sparse_?_qr_solve supports only CSR format for the input matrix, nontranspose operation, and single right-hand side.
Alternative values are not supported and must be set to NULL.

\section*{Input Parameters}
Specifies the operation to perform.
\[\)\begin{tabular}{ll}
\text { operation } \\
& \begin{tabular}{l}
\text { NOTE Currently, the only supported value is } \\
\\
\\
\\
\\
\end{tabular}\(\quad b \text { is solved). }\)
\end{tabular}
\]

A
Handle containing a sparse matrix in an internal data structure.
alt_values
layout

X
columns
\(1 d x\)
b

Reserved for future use.
Describes the storage scheme for the dense matrix:
\begin{tabular}{|l|l|}
\hline SPARSE_LAYOUT_COLUMN_MAJOR & \begin{tabular}{l}
Storage of elements uses column-major \\
layout.
\end{tabular} \\
\hline SPARSE_LAYOUT_ROW_MAJOR & Storage of elements uses row-major layout. \\
\hline
\end{tabular}

Array with a size of at least rows* cols:
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
layout_ = \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l}
rows (number of \\
rows in \(x\)
\end{tabular} & ldx & Number of columns in A \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
\(x\)
\end{tabular} & columns & ldx \\
\hline
\end{tabular}

Number of columns in matrix \(b\).
Specifies the leading dimension of matrix \(x\).
Array with a size of at least rows* cols:
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l}
rows \\
(number of \\
rows in \(b\))
\end{tabular} & ldb & Number of columns in A \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
\(b)\)
\end{tabular} & columns & ldb \\
\hline
\end{tabular}

Specifies the leading dimension of matrix b .

\section*{Output Parameters}

Contains the solution of system \(A^{*} x=b\).

\section*{Return Values}

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or matrix array. TIALIZED
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
```

SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```
mkl_sparse_?_qr_qmult
First stage of the solving step of the SPARSE QR
solver.

\section*{Syntax}
```

sparse_status_t mkl_sparse_d_qr_qmult ( sparse_operation_t operation, sparse_matrix_t
A, sparse_layout_t layout, MKL_INT columns, double *x, MKL_INT ldx, const double *b,
MKL_INT ldb );
sparse_status_t mkl_sparse_s_qr_qmult ( sparse_operation_t operation, sparse_matrix_t
A, sparse_layout_t layout, MKL_INT columns, float *x, MKL_INT ldx, const float *b,
MKL_INT ldb );

```

\section*{Include Files}
- mkl_sparse_qr.h

\section*{Description}

The mkl_sparse_?_qr_qmult routine computes multiplication of inversed matrix \(Q\) and right-hand side matrix \(b\). This routine can be used to perform the solving step in two separate calls as an alternative to a single call of mkl_sparse_?_qr_solve.

NOTE Currently, mkl_sparse_?_qr_qmult supports only CSR format for the input matrix, non-transpose operation, and single right-hand side.

\section*{Input Parameters}
```

operation
Specifies the operation to perform.
NOTE Currently, the only supported value is SPARSE_OPERATION_NON_TRANSPOSE (non-transpose case; that is, $A^{*} X$ $=b$ is solved).

```

A Handle containing a sparse matrix in an internal data structure.
layout
Describes the storage scheme for the dense matrix:
\begin{tabular}{|l|l|}
\hline SPARSE_LAYOUT_COLUMN_MAJOR & \begin{tabular}{l}
Storage of elements uses column-major \\
layout.
\end{tabular} \\
\hline SPARSE_LAYOUT_ROW_MAJOR & Storage of elements uses row-major layout. \\
\hline
\end{tabular}

X
Array with a size of at least rows* cols:
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l}
rows \\
(number of \\
rows in \(x\)
\end{tabular} & ldx & Number of columns in A \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
\(x\)
\end{tabular} & columns & ldx \\
\hline
\end{tabular}
columns
\(1 d x\)
b
ldb

Number of columns in matrix \(b\).
Specifies the leading dimension of matrix \(x\).
Array with a size of at least rows* cols:
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l}
rows \\
(number of \\
rows in b)
\end{tabular} & ldb & Number of columns in A \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
\(b)\)
\end{tabular} & columns & ldb \\
\hline
\end{tabular}

Specifies the leading dimension of matrix \(b\).

\section*{Output Parameters}

X
Overwritten by the updated matrix \(x=Q^{-1 *} b\).

\section*{Return Values}
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or matrix array.
TIALIZED
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```
mkl_sparse_?_qr_rsolve
Second stage of the solving step of the SPARSE QR solver.

\section*{Syntax}
```

sparse_status_t mkl_sparse_d_qr_rsolve ( sparse_operation_t operation, sparse_matrix_t
A, sparse_layout_t layout, MKL_INT columns, double *x, MKL_INT ldx, const double *b,
MKL_INT ldb );
sparse_status_t mkl_sparse_s_qr_rsolve ( sparse_operation_t operation, sparse_matrix_t
A, sparse_layout_t layout, MKL_INT columns, float *x, MKL_INT ldx, const float *b,
MKL_INT ldb );

```

\section*{Include Files}
- mkl_sparse_qr.h

\section*{Description}

The mkl_sparse_?_qr_rsolve routine computes the solution of \(A^{*} x=b\).
NOTE Currently, mkl_sparse_?_qr_rsolve supports only CSR format for the input matrix, non-transpose operation, and single right-hand side.

\section*{Input Parameters}
Specifies the operation to perform.
\[\)\begin{tabular}{ll}
\text { operation } \\
& \begin{tabular}{l}
\text { NOTE Currently, the only Supported value is } \\
\\
\\
\\
\(=b \text { is solved). }\)
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l}
\text { SOPERATION_NON_TRANSPOSE (non-transpose case; that is, }\(A^{*} X\)
\end{tabular}
\]
\(A \quad\) Handle containing a sparse matrix in an internal data structure.
layout
Describes the storage scheme for the dense matrix:
\begin{tabular}{|l|l|}
\hline SPARSE_LAYOUT_COLUMN_MAJOR & \begin{tabular}{l}
Storage of elements uses column-major \\
layout.
\end{tabular} \\
\hline SPARSE_LAYOUT_ROW_MAJOR & Storage of elements uses row-major layout. \\
\hline
\end{tabular}
x
Array with a size of at least rows* cols:
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l}
rows \\
(number of \\
rows in \(x\))
\end{tabular} & ldx & Number of columns in A \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
x)
\end{tabular} & columns & ldx \\
\hline
\end{tabular}
\begin{tabular}{ll|l|l|}
Columns & Number of columns in matrix \(b\). \\
ldx & Specifies the leading dimension of matrix \(x\). \\
\(b\) & Array with a size of at least rows*cols: \\
\(\qquad\)\begin{tabular}{lll}
\hline layout \(=\) \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
layout \(=\) \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l}
rows \\
(number of \\
rows in b)
\end{tabular} & ldb & Number of columns in A \\
\begin{tabular}{l}
cols \\
(number of \\
columns in \\
b)
\end{tabular} & Columns & ldb \\
\hline
\end{tabular}
\(I d b \quad\) Specifies the leading dimension of matrix \(b\).

\section*{Output Parameters}

X
Contains the solution of the triangular system \(R^{*} x=b\).

\section*{Return Values}
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or matrix array.
TIALIZED
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```

\section*{Compact BLAS and LAPACK Functions}

\section*{Overview}

Many HPC applications rely on the application of BLAS and LAPACK operations on groups of very small matrices. While existing batch Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) BLAS routines already provide meaningful speedup over OpenMP* loops around BLAS operations for these sizes, another customization offers potential speedup by allocating matrices in aSIMD-friendly format, thus allowing for cross-matrix vectorization in the BLAS and LAPACK routines of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) calledCompact BLAS and LAPACK.

The main idea behind these compact methods is to create true SIMD computations in which subgroups of matrices are operated on with kernels that abstractly appear as scalar kernels, while registers are filled by cross-matrix vectorization.

These are the BLAS/LAPACK compact functions:
- mkl_?gemm_compact
- mkl_?trsm_compact
- mkl_?potrf_compact
- mkl_?getrfnp_compact
- mkl_?geqrf_compact
- mkl_?getrinp_compact

The compact API provides additional service functions to refactor data. Because this capability is not specific to any particular BLAS or LAPACK operation, this data manipulation can be executed once for an application's data, allowing the entire program -- consisting of any number of BLAS and LAPACK operations for which compact kernels have been written -- to be performed on the compact data without any refactoring. For applications working on data in compact format, the packing function need not be used.
See "About the Compact Format" below for more details.
Along with this new data format, the API consists of two components:
- BLAS and LAPACK Compact Kernels: The first component of the API is a compact kernel that works on matrices stored in compact format.
- Service Functions for the Compact Format: The second component of the API is a compact service function allowing for data to be factored into and out of compact format. These are:
- mkl_?gepack_compact
- mkl_?geunpack_compact
- mkl_get_format_compact
- mkl_?get_size_compact

Note that there are some Numerical Limitations for the routines mentioned above.

\section*{About the Compact Format}

In compact format, for calculations involving real precision, matrices are organized in packs of size \(V\), where \(V\) is the SIMD vector length of the underlying architecture. Each pack is a 3D-tensor with the matrix index incrementing the fastest. These packs are then loaded into registers and operated on using SIMD instructions.

The figure below demonstrates the packing of a set of four \(3 \times 3\) real-precision matrices into compact format. The pack length for this example is \(V=2\), resulting in 2 compact packs.

\section*{Interleaved Data for Compact BLAS and LAPACK}

For calculations involving complex precision, the real and imaginary parts of each matrix are packed separately. In the figure below, the group of four \(3 \times 3\) complex matrices is packed into compact format with pack length \(V=2\). The first pack consists of the real parts of the first two matrices, and the second pack consists of the imaginary parts of the first two matrices. Real and imaginary packs alternate in memory. This storage format means that all compact arrays can be handled as a real type.

Compact Format for Complex Precision

The particular specifications (size and number) of the compact packs for the architecture and problemprecision definition are specified by an MKL_COMPACT_PACK enum type. For example: given a doubleprecision problem involving a group of 128 matrices working on an architecture with a 256 -bit SIMD vector length, the optimal pack length is \(V=4\), and the number of packs is 32 .

The initially-permitted values for the enum are:
- MKL_COMPACT_SSE - pack length 2 for double precision, pack length 4 for single precision.
- MKL_COMPACT_AVX - pack length 4 for double precision, pack length 8 for single precision.
- MKL_COMPACT_AVX512 - pack length 8 for double precision, pack length 16 for single precision.

For calculations involving complex precision, the pack length is the same; however, half of the packs store the real parts of matrices, and half store the imaginary parts. The means that it takes double the number of packs to store the same number of matrices.

The above examples illustrate the case when the number of matrices is evenly-divisible by the pack length. When this is not the case, there will be partially-unfilled packs at the end of the memory segment, and the compact-packing routine will pad these partially unfilled packs with identity matrices, so that compact routines use only the completely-filled registers in their calculations. The next figure illustrates this padding for a group of three \(3 \times 3\) real-precision matrices with a pack length of 2 .

\section*{Compact Format with Padding}
\begin{tabular}{|l|l|l|}
\hline A111 & A112 & A113 \\
\hline A121 & A122 & A123 \\
\hline A131 & A132 & A133 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline A211 & A212 & A213 \\
\hline A221 & A222 & A223 \\
\hline A231 & A232 & A233 \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|}
\hline A111 & A112 & A113 \\
A211 & A212 & A213 \\
\hline A121 & A122 & A123 \\
A221 & A222 & A223 \\
\hline A131 & A132 & A133 \\
A231 & A232 & A233 \\
\hline \begin{tabular}{|l|l|l|}
\hline A311 & A312 & A313 \\
1 & 0 & 0 \\
\hline A321 & A322 & A323 \\
0 & 1 & 0 \\
\hline A331 & A332 & A333 \\
0 & 0 & 1 \\
\hline
\end{tabular}
\end{tabular} \begin{tabular}{l}
\end{tabular}

Before calling a BLAS or LAPACK compact function, the input data must be packed in compact format. After execution, the output data should be unpacked from this compact format, unless another compact routine will be called immediately following the first. Two service functions, mkl_? gepack_compact, and mkl_? geunpack_compact, facilitate the process of storing matrices in compact format. It is recommended that the user call the function mkl_get_format_compact before calling the mkl_?gepack_compactroutine to obtain the optimal format for performance. Advanced users can pack and unpack the matrices themselves and still use Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) compact functions on the packed set.

Compact routines can only be called for groups of matrices that have the same dimensions, leading dimension, and storage format. For example, the routine mkl_?getrfnp_compact, which calculates the LU factorization of a group of \(m \times n\) matrices without pivoting, can only be called for a group of matrices with the same number of rows \((m)\) and the same number of columns (\(n\)). All of the matrices must also be stored in arrays with the same leading dimension, and all must be stored in the same storage format (column-major or row-major).

\section*{mkl_?gemm_compact}

Computes a matrix-matrix product of a set of compact format general matrices.

\section*{Syntax}
```

void mkl_sgemm_compact (MKL_LAYOUT layout, MKL_TRANSPOSE transa, MKL_TRANSPOSE transb,
MKL_INT m, MKL_INT n, MKL_INT k, float alpha, const float *ap, MKL_INT ldap, const float
*bp, MKL_INT ldbp, float beta, float *cp, MKL_INT ldcp, MKL_COMPACT_PACK format, MKL_INT
nm);

```
```

void mkl_dgemm_compact (MKL_LAYOUT layout, MKL_TRANSPOSE transa, MKL_TRANSPOSE transb,
MKL_INT m, MKL_INT n, MKL_INT k, double alpha, const double *ap, MKL_INT ldap, const
double *bp, MKL_INT ldbp, double beta, double *cp, MKL_INT ldcp, MKL_COMPACT_PACK
format, MKL_INT nm);
void mkl_cgemm_compact (MKL_LAYOUT layout, MKL_TRANSPOSE transa, MKL_TRANSPOSE transb,
MKL_INT m, MKL_INT n, MKL_INT k, mkl_compact_complex_float *alpha, const float *ap,
MKL_INT ldap, const float *bp, MKL_INT ldbp, mkl_compact_complex_float *beta, float
*cp, MKL_INT Idcp, MKL_COMPACT_PACK format, MKL_INT nm);
void mkl_zgemm_compact (MKL_LAYOUT layout, MKL_TRANSPOSE transa, MKL_TRANSPOSE transb,
MKL_INT m, MKL_INT n, MKL_INT k, mkl_compact_complex_double *alpha, const double *ap,
MKL_INT ldap, const double *bp, MKL_INT ldbp, mkl_compact_complex_double *beta, double
*cp, MKL_INT Idcp, MKL_COMPACT_PACK format, MKL_INT nm);

```

\section*{Description}

The mkl_? gemm_compact routine computes a scalar-matrix-matrix product and adds the result to a scalarmatrix product for a group of nm general matrices \(A_{c}\) that have been stored in compact format. The operation is defined for each matrix as:
\(C_{c}:=\) alpha*op \(\left(A_{c}\right) * \mathrm{op}\left(B_{C}\right)+\) beta \(^{*} C_{c}\)
Where
- \(\operatorname{op}\left(X_{c}\right)\) is one of \(\mathrm{op}\left(X_{c}\right)=X_{c}\), or op \(\left(X_{c}\right)=X_{c}{ }^{\top}\), or op \(\left(X_{c}\right)=X_{c}{ }^{\mathrm{H}}\),
- alpha and beta are scalars,
- \(A_{c}, B_{c}\), and \(C_{c}\) are matrices that have been stored in compact format,
- op \(\left(A_{c}\right)\) is an \(m\)-by- \(k\) matrix for each matrix in the group,
- op \(\left(B_{c}\right)\) is a \(k\)-by- \(n\) matrix for each matrix in the group,
- and \(C_{c}\) is an m-by- \(n\) matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline layout & Specifies whether two-dimensional array storage is row-major (MKL_ROW_MAJOR) or column-major (MKL_COL_MAJOR). \\
\hline transa & Specifies the operation: \\
\hline & If transa=MKL_NOTRANS, then op \(\left(A_{C}\right):=A_{C}\). \\
\hline & If transa=MKL_TRANS, then op \(\left(A_{C}\right):=A_{C}{ }^{T}\). \\
\hline & If transa \(=\) MKL_CONJTRANS, then op \(\left(A_{C}\right):=A_{C}{ }^{\text {H }}\). \\
\hline transb & Specifies the operation: \\
\hline & If transb \(=\) MKL_NOTRANS, then op (\(B_{C}\)) : \(=B_{C}\). \\
\hline & If transb \(=\) MKL_TRANS, then op \(\left(B_{C}\right):=B_{C}{ }^{T}\). \\
\hline & If transb \(=\) MKL_CONJTRANS, then op \(\left(B_{C}\right):=B_{C}{ }^{\text {H }}\). \\
\hline m & The number of rows of the matrices op \(\left(A_{C}\right), \mathrm{m}>=0\). \\
\hline \(n\) & The number of columns of matrices op \(\left(B_{C}\right)\) and \(C_{c} . n \geq 0\). \\
\hline k & The number of columns of matrices \(\mathrm{op}\left(A_{c}\right)\) and the number of rows of matrices op \(\left(B_{C}\right) . k \geq 0\). \\
\hline alpha & Specifies the scalar alpha. \\
\hline
\end{tabular}
ap
ldap
bp

1 dbp
beta
\(c p\)
ldcp
format
nm

Points to the beginning of the array that stores the \(n m A_{c}\) matrices. See Compact Format for more details.
\begin{tabular}{|c|c|c|}
\hline & transa=MKL_NOTRANS & transa=MKL_TRANS or transa=MKL CONJTRANS \\
\hline \begin{tabular}{l}
layout = \\
MKL_COL_MAJOR
\end{tabular} & ap has size \(1 \mathrm{dap}^{*} k^{*} n m\). & ap has size 1 dap \(^{*}{ }^{*}{ }_{n m}\). \\
\hline \begin{tabular}{l}
layout = \\
MKL_ROW_MAJOR
\end{tabular} & ap has size \(1 \mathrm{dap}^{*} \mathrm{~m}^{*} n m\). & ap has size 1 dap \(^{*} k^{*} n \mathrm{n}\). \\
\hline
\end{tabular}

Specifies the leading dimension of \(A_{c}\).
Points to the beginning of the array that stores the \(n m B_{c}\) matrices. See Compact Format for more details.
\begin{tabular}{|c|c|c|}
\hline & transb=MKL_NOTRANS & transb=MKL_TRANS or transb=MKL CONJTRANS \\
\hline \[
\begin{aligned}
& \text { layout = } \\
& \text { MKL_COL_MAJOR }
\end{aligned}
\] & bp has size \(1 \mathrm{dbp}^{*}{ }_{n}{ }^{\text {nmm}}\). & bp has size \(1 \mathrm{dbp}{ }^{*} k^{*} n m\). \\
\hline \begin{tabular}{l}
layout = \\
MKL_ROW_MAJOR
\end{tabular} & bp has size \(1 \mathrm{dbp}{ }^{*} k^{*} n \mathrm{~nm}\). & bp has size \(1 \mathrm{dbp}^{*}{ }_{n}{ }^{\text {nm}}\). \\
\hline
\end{tabular}

Specifies the leading dimension of \(B_{c}\).
Specifies the scalar beta.
Before entry, \(c p\) points to the beginning of the array that stores the \(n m C_{c}\) matrices, except when beta is equal to zero, in which case \(c p\) need not be set on entry.
\begin{tabular}{|l|l|}
\hline & \\
\hline layout \(=\) MKL_COL_MAJOR & \(c p\) has size ldap* \(_{n} *_{n m}\). \\
\hline layout \(=\) MKL_ROW_MAJOR & \(c p\) has size ldap* \(^{\prime} *_{n m}\). \\
\hline
\end{tabular}

Specifies the leading dimension of \(C_{C}\).
\begin{tabular}{|l|l|}
\hline & \\
\hline layout \(=\) MKL_COL_MAJOR & ldcp must be at least max \((1, m)\). \\
\hline layout \(=\) MKL_ROW_MAJOR & ldcp must be at least max \((1, n)\). \\
\hline
\end{tabular}

Specifies the format of the compact matrices. See Compact Format or mkl_get_format_compact for details.

Total number of matrices stored in compact format in the group of matrices.

\section*{NOTE}

The values of \(1 d a p, 1 d b p\), and \(1 d c p\) used in mkl_?gemm_compact must be consistent with the values used in mkl_?get_size_compact, mkl_?gepack_compact, and mkl_? geunpack_compact.

\section*{Output Parameters}
cp
Each matrix \(C_{c}\) is overwritten by the \(m\)-by-n matrix (alpha*op \(\left(A_{c}\right) * o p\left(B_{c}\right)\) + beta \(C_{c}\)).
mkl_?trsm_compact
Solves a triangular matrix equation for a set of general, \(m \times n\) matrices that have been stored in Compact format.

\section*{Syntax}
```

mkl_strsm_compact (MKL_LAYOUT layout, MKL_SIDE side, MKL_UPLO uplo, MKL_TRANSPOSE
transa, MKL_DIAG diag, MKL_INT m, MKL_INT n, float alpha, const float *ap, MKL_INT
a_stride, float *bp, MKL_INT b_stide, MKL_COMPACT_PACK format, MKL_INT nm);
mkl_dtrsm_compact (MKL_LAYOUT layout, MKL_SIDE side, MKL_UPLO uplo, MKL_TRANSPOSE
transa, MKL_DIAG diag, MKL_INT m, MKL_INT n, double alpha, const double*ap, MKL_INT
a_stride, double *bp, MKL_INT b_stride, MKL_COMPACT_PACK format, MKL_INT nm);
mkl_ctrsm_compact (MKL_LAYOUT layout, MKL_SIDE side, MKL_UPLO uplo, MKL_TRANSPOSE
transa, MKL_DIAG diag, MKL_INT m, MKL_INT n, mkl_compact_complex_float *alpha, const
float *ap, MKL_INT a_stride, float *bp, MKL_INT b_stride, MKL_COMPACT_PACK format,
MKL_INT nm);
mkl_ztrsm_compact (MKL_LAYOUT layout, MKL_SIDE side, MKL_UPLO uplo, MKL_TRANSPOSE
transa, MKL_DIAG diag, MKL_INT m, MKL_INT n, mkl_compact_complex_double *alpha, const
double *ap, MKL_INT a_stride, double *bp, MKL_INT b_stride, MKL_COMPACT_PACK format,
MKL_INT nm);

```

\section*{Description}

The routine solves one of the following matrix equations for a group of nm matrices:
\(\operatorname{op}\left(\mathrm{A}_{\mathrm{c}}\right) * \mathrm{X}_{\mathrm{c}}=\) alpha* \(\mathrm{B}_{\mathrm{c}}\),
or
\(\mathrm{X}_{\mathrm{c}}{ }^{*}\) op \(\left(\mathrm{A}_{\mathrm{c}}\right)=\) alpha* \(\mathrm{B}_{\mathrm{c}}\)
where:
alpha is a scalar, \(X_{c}\) and \(B_{c}\) are \(m\)-by- \(n\) matrices that have been stored in compact format, and \(A_{c}\) is a \(m\)-by\(m\) unit, or non-unit, upper or lower triangular matrix that has been stored in compact format.
\(\operatorname{op}\left(A_{c}\right)\) is one of op \(\left(A_{c}\right)=A_{c}\), or op \(\left(A_{c}\right)=A_{c}{ }^{\top}\), or op \(\left(A_{c}\right)=A_{c}{ }^{H}\),
\(B_{c}\) is overwritten by the solution matrix \(X_{C}\).

\section*{Input Parameters}
\begin{tabular}{ll}
layout & \begin{tabular}{l}
Specifies whether two-dimensional array storage is row-major \\
(MKL_ROW_MAJOR) or column-major (MKL_COL_MAJOR).
\end{tabular} \\
side & Specifies whether op \(\left(A_{c}\right)\) appears on the left or right of \(X_{c}\) in the equation:
\end{tabular}
```

if side $=$ MKL_LEFT, then $o p\left(A_{c}\right) * X_{c}=$ alpha $* B_{c}$, if side $=M K L \_$RIGHT, then

```
\(\mathrm{X}_{\mathrm{c}}{ }^{*} \mathrm{op}\left(\mathrm{A}_{\mathrm{c}}\right)=\) alpha* \(\mathrm{B}_{\mathrm{c}}\)

Specifies whether matrix \(A_{c}\) is upper or lower triangular.
If uplo \(=\) MKL_UPPER, \(A_{c}\) is upper triangular.
If uplo \(=\) MKL_LOWER, \(A_{c}\) is lower triangular.
Specifies the operation:
If transa=MKL_NOTRANS, then op \(\left(\mathrm{A}_{\mathrm{c}}\right)=\mathrm{A}_{\mathrm{c}}\);
If transa=MKL_TRANS, then op \(\left(A_{c}\right)=A_{C}{ }^{\top}\);
If transa=MKL_CONJTRANS, then \(\operatorname{op}\left(A_{c}\right)=A_{c}{ }^{H}\);
Specifies whether the matrix \(A_{c}\) is unit triangular:
If diag=MKL_UNIT, then the matrix is unit triangular;
if diag=MKL_NONUNIT, then the matrix is not unit triangular.
The number of rows of \(B_{c}\) and the number of rows and columns of \(\mathrm{A}_{\mathrm{C}}\) when side=MKL_LEFT; m > \(=0\).
The number of columns of \(\mathrm{B}_{\mathrm{c}}\) and the number of rows and columns of \(A_{c}\) when side=MKL_RIGHT; \(n>=0\).
Specifies the scalar alpha. When alpha is zero, then ap is not referenced and bp need not be set before entry.
Array, size Idap*k*nm, where \(k\) is \(m\) when side = MKL_LEFTand \(n\) when side \(=\) MKL_RIGHT. \(a p\) points to the beginning of \(n m A_{c}\) matrices stored in compact format. When uplo \(=\) MKL_UPPER,\(A_{c}\) is assumed to be an upper triangular matrix and the lower triangular part of \(A_{c}\) is not referenced. With uplo \(=\) MKL_LOWER, \(A_{c}\) is assumed to be a lower triangular matrix and the upper triangular part of \(A_{c}\) is not referenced. With diag = MKL_UNIT, the diagonal elements of \(A_{c}\) are not referenced either, but are assumed to be unity.
Column stride (column-major layout) or row stride (row-major layout) of \(\mathrm{A}_{\mathrm{c}}\).
When side=MKL_LEFT, Idap must be at least max \((1, m)\).
When side=MKL_RIGHT, Idap must be at least max \((1, n)\).
Array, size Idbp*n*nm when layout = MKL_COL_MAJOR; size Idbp*m*nm when layout = MKL_ROW_MAJOR. Before entry, bp points to the beginning of \(n m B_{c}\) matrices stored in compact format.
Column stride (column-major layout) or row stride (row-major layout) of \(\mathrm{B}_{\mathrm{c}}\).
\begin{tabular}{|l|l|}
\hline & \\
\hline layout \(=\) MKL_COL_MAJOR & ldbp must be at least max \((1, m)\). \\
\hline layout \(=\) MKL_ROW_MAJOR & *ldbp must be at least max \((1, n)\). \\
\hline
\end{tabular}

Specifies the format of the compact matrices. See <Compact Format> or mkl_get_format_compact for details.
Total number of matrices stored in Compact format; \(\mathrm{nm}>=0\).

\section*{NOTE}

The values of \(l\) dap and \(l d b p\) used in mkl_?trsm_compact must be consistent with the values used in mkl_?get_size_compact, mkl_?gepack_compact, and mkl_?geunpack_compact.

\section*{Output Parameters}
bp
On exit, \(\mathrm{B}_{\mathrm{c}}\) is overwritten by the solution matrix \(\mathrm{X}_{\mathrm{c}}\). bp points to the beginning of nm such \(X_{c}\) matrices.

\section*{mkl_?potrf_compact}

Computes the Cholesky factorization of a set of symmetric (Hermitian), positive-definite matrices, stored in Compact format (see Compact Format for details).

\section*{Syntax}
```

void mkl_spotrf_compact (MKL_LAYOUT layout, MKL_UPLO uplo, MKL_INT n, float * ap,
MKL_INT ldap, MKL_INT * info, MKL_COMPACT_PACK format, MKL_INT nm);
void mkl_cpotrf_compact (MKL_LAYOUT layout, MKL_UPLO uplo, MKL_INT n, float * ap,
MKL_INT ldap, MKL_INT * info, MKL_COMPACT_PACK format, MKL_INT nm);
void mkl_dpotrf_compact (MKL_LAYOUT layout, MKL_UPLO uplo, MKL_INT n, double * ap,
MKL_INT Idap, MKL_INT * info, MKL_COMPACT_PACK format, MKL_INT nm);
void mkl_zpotrf_compact (MKL_LAYOUT layout, MKL_UPLO uplo, MKL_INT n, double * ap,
MKL_INT ldap, MKL_INT * info, MKL_COMPACT_PACK format, MKL_INT nm);

```

\section*{Description}

The routine forms the Cholesky factorization of a set of symmetric, positive definite (or, for complex data, Hermitian, positive-definite), \(n \times n\) matrices \(A_{c}\), stored in Compact format, as:
- \(A_{c}=U_{c}{ }^{\top} * U_{c}\) (for real data), \(A_{c}=U_{c}{ }^{H *} U_{c}\) (for complex data), if uplo = MKL_UPPER
- \(A_{c}=L_{c}{ }^{*} L_{c}{ }^{\top}\) (for real data), \(A_{c}=L_{c}{ }^{*} L_{c}{ }^{H}\) (for complex data), if uplo \(=\) MKL_LOWER
where \(L_{c}\) is a lower triangular matrix, and \(U_{c}\) is upper triangular. The factorization (output) data will also be stored in Compact format.
Before calling this routine, call mkl_? gepack_compact to store the matrices in the Compact format.

\section*{NOTE}

Compact routines have some limitations; see Numerical Limitations.

\section*{Input Parameters}
\begin{tabular}{ll}
layout & \begin{tabular}{l}
Specifies whether two-dimensional array storage is row-major \\
(MKL_ROW_MAJOR) or column-major (MKL_COL_MAJOR).
\end{tabular} \\
uplo & Must be MKL_UPPER or MKL_LOWER \\
& Indicates whether the upper or lower triangular part of \(A_{c}\) has been stored \\
and will be factored. \\
& \begin{tabular}{l}
If uplo \(=M K L _U P P E R, ~ t h e ~ u p p e r ~ t r i a n g u l a r ~ p a r t ~ o f ~\) \\
\(A_{c}\)
\end{tabular} \\
& strictly stored, and the triangular part of \(A_{c}\) is not referenced.
\end{tabular}
\begin{tabular}{ll}
& \begin{tabular}{l}
If uplo \(=M K L _L O W E R\), the lower triangular part of \(A_{c}\) is stored, and the \\
strictly upper triangular part of \(A_{c}\) is not referenced.
\end{tabular} \\
\(n\) & The order of \(A_{c} ; n>=0\). \\
Column stride (column-major layout) or row stride (row-major \\
layout) of \(A_{c}\).
\end{tabular}

\section*{Application Notes:}

Before calling this routine, mkl_? gepack_compact must be called. After calling this routine, mkl_?geunpack_compact should be called, unless another compact routine will be called for the Compact format matrices.

The total number of floating-point operations is approximately \(n m *(1 / 3) n^{3}\) for real flavors and \(n m *(4 / 3) n\) 3 for complex flavors.

\section*{Output Parameters}
\(a p\)
info

The upper or lower triangular part of \(A_{c}\), stored in Compact format in \(a p\), is overwritten by its Cholesky factor \(U_{c}\) or \(L_{c}\) (as specified by uplo). ap now points to the beginning of this set of factors, stored in Compact format.
The parameter is not currently used in this routine. It is reserved for the future use.
mkl_?getrfnp_compact
The routine computes the LU factorization, without pivoting, of a set of general, \(m \times n\) matrices that have been stored in Compact format (see Compact Format).

\section*{Syntax}
```

void mkl_sgetrfnp_compact (MKL_LAYOUT layout, MKL_INT m, MKL_INT n, float * ap, MKL_INT
ldap, MKL_INT * info, MKL_COMPACT_PACK format, MKL_INT nm) ;
void mkl_dgetrfnp_compact (MKL_LAYOUT layout, MKL_INT m, MKL_INT n, double * ap,
MKL_INT Idap, MKL_INT * info, MKL_COMPACT_PACK format, MKL_INT nm);
void mkl_cgetrfnp_compact (MKL_LAYOUT layout, MKL_INT m, MKL_INT n, float * ap, MKL_INT
Idap, MKL_INT * info, MKL_COMPACT_PACK format, MKL_INT nm);
void mkl_zgetrfnp_compact (MKL_LAYOUT layout, MKL_INT m, MKL_INT n, double * ap,
MKL_INT Idap, MKL_INT * info, MKL_COMPACT_PACK format, MKL_INT nm);

```

\section*{Description}

The mkl_?getrfnp_compact routine calculates the \(L U\) factorizations of a set of nm general (\(m \times n\)) matrices A, stored in Compact format, as \(A_{c}=L_{c} * U_{C}\). The factorization (output) data will also be stored in Compact format.

\section*{NOTE}

Compact routines have some limitations; see Numerical Limitations.

\section*{Input Parameters}
\begin{tabular}{ll}
layout & \begin{tabular}{l}
Specifies whether two-dimensional array storage is row-major \\
(MKL_ROW_MAJOR) or column-major (MKL_COL_MAJOR).
\end{tabular} \\
\(m\) & The number of rows of A; \(m \geq 0\). \\
\(n\) & \begin{tabular}{l}
The number of columns of \(A ; n \geq 0\). \\
\(a p\)
\end{tabular} \\
\begin{tabular}{l}
Points to the beginning of the the array which stores \(n m A_{c}\) \\
matrices. \\
See Compact Format for more details.
\end{tabular} \\
ldap & \begin{tabular}{l}
Leading dimension of \(A_{c}\).
\end{tabular} \\
format & \begin{tabular}{l}
Specifies the format of the compact matrices. See Compact Format \\
or mkl_get_format_compact for details.
\end{tabular} \\
\(n m\) & \begin{tabular}{l}
Total number of matrices stored in Compact format.
\end{tabular}
\end{tabular}

\section*{Application Notes:}

Before calling this routine, mkl_?gepack_compact must be called. After calling this routine, mkl_? geunpack_compact should be called, unless another compact routine will be subsequently called for the Compact format matrices.
The approximate number of floating-point operations for real flavors is:
\(n m^{*}(2 / 3) n^{3}\), if \(m=n\),
\(n m^{*}(1 / 3) n^{2}(3 m-n)\), if \(m>n\),
\(n m^{*}(1 / 3) m^{2}(3 n-m)\), if \(m<n\).
The number of operations for complex flavors is four times greater. Directly after calling this routine, you can call the following:
mkl_?getrinp_compact, for computing the inverse of the nm input matrices in Compact format

\section*{Output Parameters}
```

ap On exit, Ac is overwritten by its factorization data. ap points to the beginning of $n m L_{c}$ and $U_{c}$ factors of $A_{c}$. The unit diagonal elements of $L_{c}$ are not stored.
info
The parameter is not currently used in this routine. It is reserved for the future use.

```

\section*{mkl_?geqrf_compact}

Computes the \(Q R\) factorization of a set of general \(m x\) \(n\), matrices, stored in Compact format (see Compact Format for details).

\section*{Syntax}
```

void mkl_sgeqrf_compact (MKL_LAYOUT layout, MKL_INT m, MKL_INT n, float * ap, MKL_INT
ldap, float * taup, float * work, MKL_INT lwork, MKL_INT * info, MKL_COMPACT_PACK
format, MKL_INT nm);

```
```

void mkl_cgeqrf_compact (MKL_LAYOUT layout, MKL_INT m, MKL_INT n, float * ap, MKL_INT
ldap, float * taup, float * work, MKL_INT lwork, MKL_INT * info, MKL_COMPACT_PACK
format, MKL_INT nm);
void mkl_dgeqrf_compact (MKL_LAYOUT layout, MKL_INT m, MKL_INT n, double * ap, MKL_INT
ldap, double * taup, double * work, MKL_INT lwork, MKL_INT * info, MKL_COMPACT_PACK
format, MKL_INT nm);
void mkl_zgeqrf_compact (MKL_LAYOUT layout, MKL_INT m, MKL_INT n, double * ap, MKL_INT
ldap, double * taup, double * work, MKL_INT lwork, MKL_INT * info, MKL_COMPACT_PACK
format, MKL_INT nm);

```

\section*{Description}

The routine forms the QR factorization of a set of general, \(m \times n\) matrices \(A\), stored in Compact format. The routine does not form the \(Q\) factors explicitly. Instead, \(Q\) is represented as a product of min(\(m, n\)) elementary reflectors. The factorization (output) data will also be stored in Compact format.

\section*{NOTE}

Compact routines have some limitations; see Numerical Limitations.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline layout & Specifies whether two-dimensional array storage is row-major (MKL_ROW_MAJOR) or column-major (MKL_COL_MAJOR). \\
\hline m & The number of rows of \(A_{c} ; m \geq 0\). \\
\hline \(n\) & The number of columns of \(A_{c} ; n \geq 0\). \\
\hline \(a p\) & Points to the beginning of the \(n m A_{c}\) matrices. On entry, \(a p\) contains either the upper or the lower triangular part of \(\mathrm{A}_{\mathrm{c}}\) (see uplo). \\
\hline 1 dap & Column stride (column-major layout) or row stride (row-major layout) of \(\mathrm{A}_{\mathrm{c}}\). \\
\hline work & Points to the beginning of the workspace array. \\
\hline lwork & The size of the work array. If Iwork \(=-1\), a workspace query is assumed; the routine only calculates the optimal size of the work array and returns this value as the first entry of the work array. \\
\hline format & Specifies the format of the compact matrices. See Compact Format or mkl_get_format_compact for details. \\
\hline nm & Total number of matrices stored in Compact format. \\
\hline
\end{tabular}

\section*{Application Notes:}

The compact array that will store the elementary reflectors needs to be allocated before the routine is called and unpacked after. First, the routine mkl_?get_size_compact should be called, to determine the size of taup, and memory for taup should be allocated. After calling mkl_? geqrf_compact, taup stores the elementary reflectors in compact form, so should be unpacked using mkl_? geunpack_compact. See Compact Format for more details, or reference the example below. (Note: the following example is meant to demonstrate the calling sequence to allocate memory and unpack taup. All other parameters are assumed to be already set up before the sequence below is executed.)
```

MKL_R_TYPE *tau_array[nm];
// ...
tau_buffer_size = mkl_?get_size_compact(min(m, n), 1, format, nm);

```
```

MKL_R_TYPE *tau_compact = (MKL_R_TYPE *)mkl_malloc(tau_buffer_size, 128);
mkl_?geqrf_compact(layout, m, n, a_compact, ldap, tau_compact, work, lwork, \&info, format, nm);
// Note that here MKL_COL_MAJOR is used because tau is a 1-d array
mkl_?geunpack_compact(MKL_COL_MAJOR, min(m, n), 1, tau_array, min(m, n), tau_compact, min(m, n),
format, nm);

```

\section*{Output Parameters}

On exit, \(\mathrm{A}_{\mathrm{c}}\) is overwritten by its factorization data. ap points to the beginning of nm factorizations of \(A_{c}\), stored in Compact format. The factorization data is stored as follows: The elements on and above the diagonal contain the \(\min (m, n)\)-by- \(n\) upper trapezoidal matrix \(R_{c}\) (\(R_{c}\) is upper triangular if \(m \geq n\)); the elements below the diagonal, with tau, present the orthogonal matrix \(\mathrm{Q}_{\mathrm{c}}\) as a product of \(\min (m, n)\) elementary reflectors (see Orthogonal Factorizations: LAPACK Computational Routines). See Compact Format for more details.
Points to the beginning of a set of the tau \({ }_{c}\) arrays, each of which has size \(\min (m, n)\), stored in Compact format. tau \(u_{c}\) contains scalars that define elementary reflectors for \(\mathrm{Q}_{\mathrm{c}}\) in its decomposition in a product of elementary reflectors. taup needs to be allocated by the user before calling this routine. See the application notes (below the description) for more details.

On exit contains the minimum value of Iwork required for optimum performance. Use this lwork for subsequent runs.
The parameter is not currently used in this routine. It is reserved for the future use.
mkl_?getrinp_compact
Computes the inverse of a set of LU-factorized general matrices, without pivoting, stored in the compact format (see Compact Format for details).

\section*{Syntax}
```

void mkl_sgetrinp_compact (MKL_LAYOUT layout, MKL_INT n, float * ap, MKL_INT Idap,
float * work, MKL_INT lwork, MKL_INT * info, MKL_COMPACT_PACK format, MKL_INT nm);
void mkl_dgetrinp_compact (MKL_LAYOUT layout, MKL_INT n, double * ap, MKL_INT Idap,
double * work, MKL_INT lwork, MKL_INT * info, MKL_COMPACT_PACK format, MKL_INT nm);
void mkl_cgetrinp_compact (MKL_LAYOUT layout, MKL_INT n, float * ap, MKL_INT Idap,
float * work, MKL_INT lwork, MKL_INT * info, MKL_COMPACT_PACK format, MKL_INT nm);
void mkl_zgetrinp_compact (MKL_LAYOUT layout, MKL_INT n, double * ap, MKL_INT Idap,
double * work, MKL_INT lwork, MKL_INT * info, MKL_COMPACT_PACK format, MKL_INT nm);

```

\section*{Description}

This routine computes the inverse \(\operatorname{inv}\left(A_{c}\right)\) of a set of general, \(n \times n\) matrices \(A_{c}\), that have been stored in Compact format. The factorization (output) data will also be stored in Compact format.

\section*{NOTE}

Compact routines have some limitations; see Numerical Limitations.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline layout & Specifies whether two-dimensional array storage is row-major (MKL ROW MAJOR) or column-major (MKL COL MAJOR). \\
\hline n & The order of \(\mathrm{A}_{\mathrm{c}} ; \mathrm{n} \gg=0\). \\
\hline \(a p\) & \begin{tabular}{l}
Points to the beginning of the \(n m A_{c}\) matrices. On entry, \(a p\) contains the LU factorizations of \(\mathrm{A}_{c}\), stored in Compact format, as returned by mkl_?getrfnp_compact : \(\mathrm{A}_{\mathrm{c}}=\mathrm{L}_{\mathrm{c}} * \mathrm{U}_{\mathrm{c}}\). \\
See Compact Format for more details.
\end{tabular} \\
\hline 1 dap & Column stride (column-major layout) or row stride (row-major layout) of \(A_{c}\). \\
\hline work & Points to the beginning of the work array. \\
\hline lwork & The size of the work array. If Iwork \(=-1\), a workspace query is assumed; the routine calculates only the optimal size of the work array and returns this value as the first entry of the work array. \\
\hline format & Specifies the format of the compact matrices. See Compact Format or mkl_get_format_compact for details. \\
\hline nm & Total number of matrices stored in Compact format. \\
\hline
\end{tabular}

\section*{Application Notes:}

Before calling this routine, mkl_?gepack_compact must be called. After calling this routine, mkl_?geunpack_compact should be called, unless another compact routine will be subsequently called on the Compact format matrices.
The total number of floating-point operations is approximately \(n m^{*}(4 / 3) n^{3}\) for real flavors and \(n m *(16 / 3) n\) \({ }^{3}\) for complex flavors.

\section*{Output Parameters}
\(a p\)
On exit, \(A_{c}\) is overwritten by \(\operatorname{inv}\left(A_{c}\right)\).ap points to the beginning of \(n m \operatorname{inv}\left(A_{c}\right)\) matrices stored in Compact format.
work [0]
info
On exit, work[0] contains the minimum value of lwork required for optimum performance. Use this Iwork for subsequent runs.
The parameter is not currently used in this routine. It is reserved for the future use.

\section*{Numerical Limitations for Compact BLAS and Compact LAPACK Routines}

Compact routines are subject to a set of numerical limitations. They also skip most of the checks presented in regular BLAS and LAPACK routines in order to provide effective vectorization. The following limitations apply to at least one compact routine.
Complex division: BLAS and LAPACK compact routines rely on a naïve method for complex division that does not protect the solution against overflow, underflow, or loss of precision.
Error checking : the LAPACK compact routines skip error checking for performance reasons ; therefore, the user is responsible for passing correct parameters. There are no checks for incorrect matrices (such as singular for LU, non-positive-definite for Cholesky) - it is always assumed that the algorithm for the input matrix can be completed without error.
No pivoting: the generic LU factorization routine, ?getrf, calculates the factorization using partial pivoting. However, because pivoting includes comparisons which cannot be effectively vectorized, only non-pivoting versions of LU mkl_?getrfnp_compact and Inverse from LU (mkl_?getrinp_compact) are provided as compact routines.

Matrices scaled near underflow/overflow: the LAPACK compact routines do not provide safe handling for values near underflow/overflow. This means that Compact routines may return incorrect results for such matrices. This limitation is related to compact routine for QR: mkl_? geqrf_compact.

It is the responsibility of the user to ensure that the input matrices can be factorized, inverted, and/or solved given these numerical limitations.

\section*{mkl_?get_size_compact}

Returns the buffer size, in bytes, needed to pack data in Compact format.

\section*{Syntax}
```

MKL_INT mkl_sget_size_compact (MKL_INT ld, MKL_INT sd, MKL_COMPACT_PACK format, MKL_INT
nm);
MKL_INT mkl_dget_size_compact (MKL_INT ld, MKL_INT sd, MKL_COMPACT_PACK format, MKL_INT
nm);
MKL_INT mkl_cget_size_compact (MKL_INT ld, MKL_INT sd, MKL_COMPACT_PACK format, MKL_INT
nm);
MKL_INT mkl_zget_size_compact (MKL_INT ld, MKL_INT sd, MKL_COMPACT_PACK format, MKL_INT
nm);

```

\section*{Description}

The routine returns the buffer size, in bytes, required for mkl_? gepack_compact.

\section*{Input Parameters}
\begin{tabular}{ll}
Id & Leading dimension of the matrices in Compact format. \\
sd & Second dimension of the matrices in Compact format. \\
format & Describes the compact packing format according to the \\
& MKL_COMPACT_PACK enum type. \\
\(n m\) & Total number of matrices to be packed in Compact format.
\end{tabular}

\section*{Application Notes:}

Before calling this routine, \(\mathrm{mkl} l_{-}\)? get_format_compact can be called to determine the optimal format.
After calling this routine and allocating the amount of memory indicated by size, the user can call mkl_?gepack_compact to pack the nm input matrices in Compact format.

\section*{Return Values}

This function returns a value size.
size The buffer size, in bytes, required by the packing function mkl_?gepack_compact.

\section*{mkl_get_format_compact}

Returns the optimal compact packing format for the architecture, needed for all compact routines.

\section*{Syntax}

MKL_COMPACT_PACK mkl_get_format_compact ();

\section*{Description}

The routine returns the optimal compact packing format, which is an MKL_COMPACT_PACK type, for the current architecture. The optimal value of format is determined by the architecture's vector-register length. format is a required parameter for any packing, unpacking, or BLAS/LAPACK compact routine. See Compact Format for details.

\section*{Return Values}

The function returns a value format.
\begin{tabular}{|c|c|}
\hline format & \begin{tabular}{l}
format can be returned as any of the following three values. MKL_COMPACT_AVX512 is the optimal format value for: \\
- Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512)-enabled processors. \\
- Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) for Intel \({ }^{\circledR}\) Many Integrated Core Architecture (Intel \({ }^{\circledR}\) MIC Architecture)-enabled processors. \\
- Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) for Intel \({ }^{\circledR}\) Many Integrated Core Architecture (Intel \({ }^{\circledR}\) MIC Architecture) with support of AVX512_4FMAPS and AVX512_4VNNIW instruction groups processors. \\
MKL_COMPACT_AVX is the optimal format value for: \\
- Inte \({ }^{\circledR}\) Advanced Vector Extensions (Intel \({ }^{\circledR}\) AVX)enabled processors. \\
- Intel \({ }^{\circledR}\) Advanced Vector Extensions 2 (Intel \({ }^{\circledR}\) AVX2)-enabled processors. \\
MKL_COMPACT_SSE is the optimal format value for all other processors.
\end{tabular} \\
\hline
\end{tabular}

\section*{Application Notes:}

After calling this routine, mkl_?get_size_compact can be called to calculate the buffer size needed for mkl_?gepack_compact.
```

mkl_?gepack_compact

```
Packs matrices from standard (row or column-major)
format to Compact format.

\section*{Syntax}
```

mkl_sgepack_compact(MKL_LAYOUT layout, MKL_INT rows, MKL_INT columns, const float *
const *a, MKL_INT lda, float *ap, MKL_INT Idap, MKL_COMPACT_PACK format, MKL_INT nm);
mkl_dgepack_compact(MKL_LAYOUT layout, MKL_INT rows, MKL_INT columns, const double *
const *a, MKL_INT lda, double *ap, MKL_INT ldap, MKL_COMPACT_PACK format, MKL_INT nm);
mkl_cgepack_compact (MKL_LAYOUT layout, MKL_INT rows, MKL_INT columns, const
mkl_compact_complex_float * const *a, MKL_INT lda, float *ap, MKL_INT ldap,
MKL_COMPACT_PACK format, const MKL_INT nm);

```
mkl_zgepack_compact (MKL_LAYOUT layout, MKL_INT rows, MKL_INT columns, const \(m k l _c o m p a c t _c o m p l e x _d o u b l e ~ * ~ c o n s t ~ * a, ~ M K L _I N T ~ I d a, ~ d o u b l e ~ * a p, ~ M K L _I N T ~ I d a p, ~\) MKL_COMPACT_PACK format, MKL_INT nm);

\section*{Description}

The routine packs \(n m\) matrices \(A\) from standard format (row or column-major, pointer to pointer) in a into Compact format, storing the new compact format matrices \(A_{c}\) in array ap.

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline layout & \multicolumn{2}{|l|}{Specifies whether two-dimensional array storage is row-major (MKL_ROW_MAJOR) or column-major (MKL_COL_MAJOR).} \\
\hline rows & \multicolumn{2}{|l|}{The number of rows of \(A\); rows \(>=0\).} \\
\hline columns & \multicolumn{2}{|l|}{The number of columns of \(A\); columns \(>=0\).} \\
\hline a & \multicolumn{2}{|l|}{A standard format (row or column-major, pointer-to-pointer) array, storing nm input A matrices.} \\
\hline Ida & \multicolumn{2}{|l|}{Leading dimension of \(A\).} \\
\hline & layout = MKL_COL_MAJOR & Ida must be at least max (1,rows). \\
\hline & layout = MKL_ROW_MAJOR & Ida must be at least max (1, columns). \\
\hline \multirow[t]{3}{*}{Idap} & \multicolumn{2}{|l|}{Leading dimension of \(A_{C}\).} \\
\hline & layout \(=\) MKL_COL_MAJOR & Idap must be at least max (1,rows). \\
\hline & layout = MKL_ROW_MAJOR & Idap must be at least max (1,columns). \\
\hline
\end{tabular}

\section*{NOTE}

The values of ldap used in mkl_? gepack_compact must be consistent with the values used in mkl_?get_size_compact and mkl_? geunpack_compact.
format
\(n m\)

Specifies the format of the compact matrices. See Compact Format or mkl_get_format_compact for details.
Total number of matrices that will be stored in Compact format.

\section*{Application Notes:}

Directly after calling this routine, any BLAS or LAPACK compact routine can be called. Unpacking matrices from Compact format can be done by calling mkl_?geunpack_compact.

\section*{Output Parameters}
\(a p\)
Array storing the compact format input matrices \(\mathrm{A}_{\mathrm{c}}\). ap must have size at least size \(=m k l _\)?get_size_compact.
```

mkl_?geunpack_compact
Unpacks matrices from Compact format to standard
(row- or column-major, pointer-to-pointer) format.
Syntax
mkl_sgeunpack_compact (MKL_LAYOUT layout, MKL_INT rows, MKL_INT columns, float * const
*a, MKL_INT lda, const float *ap, MKL_INT ldap, MKL_COMPACT_PACK format, MKL_INT nm);
mkl_dgeunpack_compact (MKL_LAYOUT layout, MKL_INT rows, MKL_INT columns, double * const
*a, MKL_INT lda, const double *ap, MKL_INT Idap, MKL_COMPACT_PACK format, MKL_INT nm);
mkl_cgeunpack_compact (MKL_LAYOUT layout, MKL_INT rows, MKL_INT columns,
mkl_compact_complex_float * const *a, MKL_INT lda, const float *ap, MKL_INT Idap,
MKL_COMPACT_PACK format, MKL_INT nm);
mkl_zgeunpack_compact (MKL_LAYOUT layout, MKL_INT rows, MKL_INT columns,
mkl_compact_complex_double * const *a, MKL_INT lda, const double *ap, MKL_INT Idap,
MKL COMPACT PACK format, MKL INT nm);

```

\section*{Description}

The routine unpacks nm Compact format matrices \(A_{c}\) from array ap into standard (row- or column-major, pointer-to-pointer) format in array \(A\).

\section*{Input Parameters}
layout Specifies whether two-dimensional array storage is row-major
(MKL_ROW_MAJOR) or column-major (MKL_COL_MAJOR).
The number of rows of \(A\); rows \(>=0\).
The number of columns of \(A\); columns \(>=0\).
Leading dimension of \(A\).
\begin{tabular}{|l|l|}
\hline & \\
\hline layout \(=\) MKL_COL_MAJOR & lda must be at least max (1,rows). \\
\hline layout \(=\) MKL_ROW_MAJOR & lda must be at least max (1,columns). \\
\hline
\end{tabular}

Array storing the compact format of input matrices \(A_{c}\). See Compact Formator mkl_get_format_compact for details.
\begin{tabular}{|l|l|}
\hline & \\
\hline layout \(=\) MKL_COL_MAJOR & ap has size ldap*columns*nm. \\
\hline layout \(=\) MKL_ROW_MAJOR & ap has size ldap*rows*nm. \\
\hline
\end{tabular}
ldap
Leading dimension of of \(A_{c}\).
\begin{tabular}{|l|l|}
\hline & \\
\hline layout \(=\) MKL_COL_MAJOR & ldap must be at least max (1,rows). \\
\hline layout \(=\) MKL_ROW_MAJOR & ldap must be at least max (1,columns). \\
\hline
\end{tabular}

\section*{NOTE}

The values of ldap used in mkl_? geunpack_compact must be consistent with the values used in mkl_?get_size_compact and mkl_?gepack_compact.
format
nm

\section*{Output Parameters}
a

Specifies the format of the compact matrices. See Compact Format ormkl_get_format_compact for details.
Total number of matrices that will be stored in Compact format.

A standard format (row- or column-major, pointer-to-pointer) array, storing nm output \(A\) matrices.
\begin{tabular}{|l|l|}
\hline & \\
\hline layout \(=\) MKL_COL_MAJOR & a has size lda*columns*nm. \\
\hline layout \(=\) MKL_ROW_MAJOR & a has size lda* rows*nm. \\
\hline
\end{tabular}

\section*{Inspector-executor Sparse BLAS Routines}

The inspector-executor API for Sparse BLAS divides operations into two stages: analysis and execution. During the initial analysis stage, the API inspects the matrix sparsity pattern and applies matrix structure changes. In the execution stage, subsequent routine calls reuse this information in order to improve performance.

The inspector-executor API supports key Sparse BLAS operations for iterative sparse solvers:
- Sparse matrix-vector multiplication
- Sparse matrix-matrix multiplication with a sparse or dense result
- Solution of triangular systems
- Sparse matrix addition

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Naming Conventions in Inspector-Executor Sparse BLAS Routines}

The Inspector-Executor Sparse BLAS API routine names use the following convention:
```

mkl_sparse_[<character>_]<operation>[_<format>]

```

The <character> field indicates the data type:
s real, single precision
c complex, single precision
d real, double precision
z complex, double precision

The data type is included in the name only if the function accepts dense matrix or scalar floating point parameters.
The <operation> field indicates the type of operation:
\begin{tabular}{ll}
create & create matrix handle \\
copy & create a copy of matrix handle
\end{tabular}
convert convert matrix between sparse formats
export export matrix from internal representation to CSR or BSR format destroy frees memory allocated for matrix handle
set_<op>_hint
provide information about number of upcoming compute operations and operation type for optimization purposes, where <op> is mv, sv, mm, sm, dotmv, symgs, or memory
optimize analyze the matrix using hints and store optimization information in matrix handle
mv compute sparse matrix-vector product
\(\mathrm{mm} \quad\) compute sparse matrix by dense matrix product (batch mv)
set_value change a value in a matrix
spmm/spmmd
compute sparse matrix by sparse matrix product and store the result as a sparse/dense matrix
trsv solve a triangular system
trsm solve a triangular system with multiple right-hand sides
add compute sum of two sparse matrices
symgs compute a symmetric Gauss-Zeidel preconditioner
symgs_mv compute a symmetric Gauss-Zeidel preconditioner with a final matrix-vector multiplication
sorv computes forward, backward sweeps or symmetric successive over-relaxation preconditioner
sypr compute the symmetric or Hermitian product of sparse matrices and store the result as a sparse matrix
syprd compute the symmetric or Hermitian product of sparse and dense matrices and store the result as a dense matrix
syrk compute the product of sparse matrix with its transposed matrix and store the result as a sparse matrix
syrkd compute the product of sparse matrix with its transposed matrix and store the result as a dense matrix
order perform ordering of column indexes of the matrix in CSR format
dotmv compute a sparse matrix-vector product with dot product
The <format> field indicates the sparse matrix storage format:
\begin{tabular}{ll}
coo & coordinate format \\
bsr & \begin{tabular}{l}
block sparse row format plus variations. Fill out either rows_start and rows_end \\
(for 4-arrays representation) or rowIndex array (for 3-array BSR/CSR).
\end{tabular}
\end{tabular}
csr compressed sparse row format plus variations. Fill out either rows_start and rows_end (for 4-arrays representation) or rowIndex array (for 3-array BSR/ CSR).
compressed sparse column format plus variations. Fill out either cols_start and cols_end (for 4-arrays representation) or colIndex array (for 3 array CSC).

The format is included in the function name only if the function parameters include an explicit sparse matrix in one of the conventional sparse matrix formats.

\section*{Sparse Matrix Storage Formats for Inspector-executor Sparse BLAS Routines}

Inspector-executor Sparse BLAS routines support four conventional sparse matrix storage formats:
- compressed sparse row format (CSR) plus variations
- compressed sparse column format (CSC) plus variations
- coordinate format (COO)
- block sparse row format (BSR) plus variations

Computational routines operate on a matrix handle that stores a matrix in CSR or BSR formats. Other formats should be converted to CSR or BSR format before calling any computational routines. For more information see Sparse Matrix Storage Formats.

\section*{Supported Inspector-executor Sparse BLAS Operations}

The Inspector-executor Sparse BLAS API can perform several operations involving sparse matrices. These notations are used in the description of the operations:
- \(A, G, V\) are sparse matrices
- \(B\) and \(C\) are dense matrices
- \(x\) and \(y\) are dense vectors
- alpha and beta are scalars
op (A) represents a possible transposition of matrix \(A\)
```

op (A) = A
op (A) = AT
op (A) = A H

```
\(o p(A)^{-1}\) denotes the inverse of op \((A)\).
The Inspector-executor Sparse BLAS routines support the following operations:
- computing the vector product between a sparse matrix and a dense vector:
\(y:=a l p h a * o p(A) * x+\operatorname{beta}^{*} y\)
- solving a single triangular system:
```

y := alpha*inv(op (A))*x

```
- computing a product between a sparse matrix and a dense matrix:
\(C:=\) alpha*op \((A) * B+\) beta* \(C\)
- computing a product between sparse matrices with a sparse result:
```

$V$ := alpha*op (A)*op (G)

```
- computing a product between sparse matrices with a dense result:
\(C:=\) alpha*op \((A) * o p(G)\)
- computing a sum of sparse matrices with a sparse result:
\(V:=\) alpha*op(A) + G
- solving a sparse triangular system with multiple right-hand sides:
\(C:=\) alpha*inv(op (A))*B

\section*{Two-stage Algorithm in Inspector-Executor Sparse BLAS Routines}

You can use a two-stage algorithm in Inspector-executor Sparse BLAS routines which produce a sparse matrix. The applicable routines are:
- mkl_sparse_sp2m (BSR/CSR/CSC formats)
- mkl_sparse_sypr (CSR format)

The two-stage algorithm allows you to split computations into stages. The main purpose of the splitting is to provide an estimate for the memory required for the output prior to allocating the largest part of the memory (for the indices and values of the non-zero elements). Additionally, the two-stage approach extends the functionality and allows more complex usage models.

NOTE The multistage approach currently does not allow you to allocate memory for the output matrix outside oneMKL.

In the two-stage algorithm:
1. The first stage allocates data which is necessary for the memory estimation (arrays rows_start/ rows_end or cols_start/cols_end depending on the format, (see Sparse Matrix Storage Formats) and computes the number of entries or the full structure of the matrix.

NOTE The format of the output is decided internally but can be checked using the export functionality mkl_sparse_? export_<format>.
2. The second stage allocates data and computes column or row indices (depending on the format) of non-zero elements and/or values of the output matrix.
Specifying the stage for execution is supported through the sparse_request_t parameter in the API with the following options:
\begin{tabular}{|c|c|}
\hline Value & Description \\
\hline SPARSE_STAGE_NNZ_COUN
\(T\) & Allocates and computes only the rows_start/rows_end (CSR/BSR format) or cols_start/cols_end (CSC format) arrays for the output matrix. After this stage, by calling mkl_sparse_?_export_<format>, you can obtain the number of non-zeros in the output matrix and calculate the amount of memory required for the output matrix. \\
\hline SPARSE_STAGE_FINALIZE_ MULT_NO_VAL & Allocates and computes row/column indices provided that rows_start/ rows_end or cols_start/cols_end have already been computed in a prior call with the request SPARSE_STAGE_NNZ_COUNT. The values of the output matrix are not computed. \\
\hline SPARSE_STAGE_FINALIZE_ MULT & \begin{tabular}{l}
Depending on the state of the output matrix \(C\) on entry to the routine, this stage does one of the following: \\
- Allocates and computes row/column indices and values of nonzero elements, if only rows_start/rows_end or cols_start/cols_end are present \\
- allocates and computes values of nonzero elements, if rows_start/ rows_end or cols_start/cols_end and row/column indices of non-zero elements are present
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { SPARSE_STAGE_FULL_MULT } \\
& \text { _NO_VAL }
\end{aligned}
\] & Allocates and computes the output matrix structure in a single step. The values of the output matrix are not computed. \\
\hline SPARSE_STAGE_FULL_MULT & Allocates and computes the entire output matrix (structure and values) in a single step. \\
\hline
\end{tabular}

The example below shows how you can use the two-stage approach for estimating the memory requirements for the output matrix in CSR format:
```

First stage (sparse_request_t = SPARSE_STAGE_NNZ_COUNT)

```
1. The routine mkl_sparse_sp2m is called with the request parameter SPARSE_STAGE_NNZ_COUNT.
2. The arrays rows_start and rows_end are exported using the mkl_sparse_x_export_csr routine.
3. These arrays are used to calculate the number of non-zeros (\(n n z\)) of the resulting output matrix.

Note that by the end of the first stage, the arrays associated with column indices and values of the output matrix have not been allocated or computed yet.
```

sparse_matrix_t csrC = NULL;
status = mkl_sparse_sp2m (opA, descrA, csrA, opB, descrB, csrB, SPARSE_STAGE_NNZ_COUNT, \&CsrC);
/* optional calculation of nnz in the output matrix for getting a memory estimate */
status = mkl_sparse_?_export_csr (csrC, \&indexing, \&nrows, \&ncols, \&rows_start, \&rows_end,
\&Col_indx, \&values);
MKL_INT nnz = rows_end[nrows-1] - rows_start[0];

```

Second stage (sparse_request_t = SPARSE_STAGE_FINALIZE_MULT)
This stage allocates and computes the remaining output arrays (associated with column indices and values of output matrix entries) and completes the matrix-matrix multiplication.
```

status = mkl_sparse_sp2m (opA, descrA, csrA, opB, descrB, csrB, SPARSE_STAGE_FINALIZE_MULT,
\& CsrC) ;

```

When the two-stage approach is not needed, you can perform both stages in a single call:
Single stage operation (sparse_request_t = SPARSE_STAGE_FULL_MULT)
```

status = mkl_sparse_sp2m (opA, descrA, csrA, opB, descrB, csrB, SPARSE_STAGE_FULL_MULT, \&CsrC);

```

\section*{Matrix Manipulation Routines}

The Matrix Manipulation Routines table lists the matrix manipulation routines and the data types associated with them.

Matrix Manipulation Routines and Their Data Types
\begin{tabular}{lll}
\begin{tabular}{l}
Routine or \\
Function Group
\end{tabular} & Data Types & Description \\
\hline \begin{tabular}{l}
mkl_sparse_? \\
_create_csr
\end{tabular} & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & Creates a handle for a CSR-format matrix. \\
\begin{tabular}{l}
mkl_sparse_? \\
_create_csc
\end{tabular} & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & Creates a handle for a CSC format matrix. \\
\begin{tabular}{l}
mkl_sparse_? \\
_create_coo
\end{tabular} & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & Creates a handle for a matrix in COO format. \\
\begin{tabular}{l}
mkl_sparse_? \\
_create_bsr
\end{tabular} & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & Creates a handle for a matrix in BSR format. \\
mkl_sparse_copy & NA & Creates a copy of a matrix handle. \\
mkl_sparse_destro & NA & Frees memory allocated for matrix handle. \\
y & Converts internal matrix representation to CSR format.
\end{tabular}
\begin{tabular}{lll}
\hline \begin{tabular}{l}
Routine or \\
Function Group
\end{tabular} & Data Types & Description \\
\hline \begin{tabular}{l}
mkl_sparse_conve \\
rt_bsr
\end{tabular} & NA & \begin{tabular}{l}
Converts internal matrix representation to BSR format or \\
changes BSR block size.
\end{tabular} \\
\begin{tabular}{l}
mkl_sparse_? \\
_export_csr
\end{tabular} & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & Exports CSR matrix from internal representation. \\
\begin{tabular}{l}
mkl_sparse_? \\
_export_csc
\end{tabular} & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & Exports CSC matrix from internal representation. \\
\begin{tabular}{l}
mkl_sparse_? \\
-export_bsr
\end{tabular} & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & Exports BSR matrix from internal representation. \\
\begin{tabular}{l}
mkl_sparse_? \\
-set_value
\end{tabular} & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & \begin{tabular}{l}
Changes a single value of matrix in internal \\
representation.
\end{tabular} \\
\begin{tabular}{l}
mkl_sparse_? \\
-update_values
\end{tabular} & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & \begin{tabular}{l}
Changes all or selected matrix values in internal \\
representation.
\end{tabular} \\
mkl_sparse_order & NA & \begin{tabular}{l}
Performs ordering of column indexes of the matrix in CSR \\
format.
\end{tabular} \\
\hline
\end{tabular}
mkl_sparse_?_create_csr
Creates a handle for a CSR-format matrix.

\section*{Syntax}
```

sparse_status_t mkl_sparse_s_create_csr (sparse_matrix_t *A, const sparse_index_base_t
indexing, const MKL_INT rows, const MKL_INT cols, MKL_INT *rows_start, MKL_INT
*rows_end, MKL_INT *col_indx, float *values);
sparse_status_t mkl_sparse_d_create_csr (sparse_matrix_t *A, const sparse_index_base_t
indexing, const MKL_INT rows, const MKL_INT cols, MKL_INT *rows_start, MKL_INT
*rows_end, MKL_INT *col_indx, double *values);
sparse_status_t mkl_sparse_c_create_csr (sparse_matrix_t *A, const sparse_index_base_t
indexing, const MKL_INT rows, const MKL_INT cols, MKL_INT *rows_start, MKL_INT
*rows_end, MKL_INT *col_indx, MKL_Complex8 *values);
sparse_status_t mkl_sparse_z_create_csr (sparse_matrix_t *A, const sparse_index_base_t
indexing, const MKL_INT rows, const MKL_INT cols, MKL_INT *rows_start, MKL_INT
*rows_end, MKL_INT *col_indx, MKL_Complex16 *values);
Include Files

```
- mkl_spblas.h

\section*{Description}

The mkl_sparse_?_create_csr routine creates a handle for an \(m\)-by- \(k\) matrix \(A\) in CSR format.

\section*{NOTE}

The input arrays provided are left unchanged except for the call to mkl_sparse_order, which performs ordering of column indexes of the matrix. To avoid any changes to the input data, use mkl_sparse_copy.

\section*{Input Parameters}
\begin{tabular}{ll}
indexing & \begin{tabular}{l}
Indicates how input arrays are indexed. \\
rows \\
rols \\
rows_start \\
\\
\\
SPARSE_INDEX_BASE_ZER Zero-based (C-style) indexing: indices start at
\end{tabular} \\
& Number of rows of matrix \(A\).
\end{tabular}

\section*{Output Parameters}

A
Handle containing internal data for subsequent Inspector-executor Sparse BLAS operations.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS
SPARSE_STATUS_NOT_INITIALIZED
SPARSE_STATUS_ALLOC_FAILED
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED

```

The operation was successful.
The routine encountered an empty handle or matrix array.
Internal memory allocation failed.
The input parameters contain an invalid value.
Execution failed.
```

SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED

```

An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_?_create_csc
Creates a handle for a CSC format matrix.

\section*{Syntax}
```

sparse_status_t mkl_sparse_s_create_csc (sparse_matrix_t *A, const sparse_index_base_t
indexing, const MKL_INT rows, const MKL_INT cols, MKL_INT *cols_start, MKL_INT
*cols_end, MKL_INT *row_indx, float *values);
sparse_status_t mkl_sparse_d_create_csc (sparse_matrix_t *A, const sparse_index_base_t
indexing, const MKL_INT rows, const MKL_INT cols, MKL_INT *cols_start, MKL_INT
*cols_end, MKL_INT *row_indx, double *values);
sparse_status_t mkl_sparse_c_create_csc (sparse_matrix_t *A, const sparse_index_base_t
indexing, const MKL_INT rows, const MKL_INT cols, MKL_INT *cols_start, MKL_INT
*cols_end, MKL_INT *row_indx, MKL_Complex8 *values);
sparse_status_t mkl_sparse_z_create_csc (sparse_matrix_t *A, const sparse_index_base_t
indexing, const MKL_INT rows, const MKL_INT cols, MKL_INT *cols_start, MKL_INT
*cols_end, MKL_INT *row_indx, MKL_Complex16 *values);

```

Include Files
- mkl_spblas.h

\section*{Description}

The mkl_sparse_?_create_csc routine creates a handle for an \(m\)-by- \(k\) matrix \(A\) in CSC format.

\section*{NOTE}

The input arrays provided are left unchanged except for the call to mkl_sparse_order, which performs ordering of column indexes of the matrix. To avoid any changes to the input data, use mkl_sparse_copy.

\section*{Input Parameters}
\begin{tabular}{ll}
indexing & Indicates how input arrays are indexed. \\
& \begin{tabular}{ll}
SPARSE_INDEX_BASE_ZER Zero-based (C-style) indexing: indices start at \\
0
\end{tabular} \\
& SPARSE_INDEX_BASE_ONE One-based (Fortran-style) indexing: indices \\
rows start at 1.
\end{tabular}

Refer to pointerB array description in CSC Format for more details.
cols_end
row_indx
values

Array of at least length \(m\). This array contains col indices, such that cols_end[i] - ind - 1 is the last index of col \(i\) in the arrays values and row_indx. ind takes 0 for zero-based indexing and 1 for one-based indexing.
Refer to pointerE array description in CSC Format for more details.
For one-based indexing, array containing the row indices plus one for each non-zero element of the matrix \(A\). For zero-based indexing, array containing the row indices for each non-zero element of the matrix \(A\). Its length is at least cols_end[cols - 1] - ind. ind takes 0 for zero-based indexing and 1 for one-based indexing.

Array containing non-zero elements of the matrix \(A\). Its length is equal to length of the row_indx array.
Refer to values array description in CSC Format for more details.

\section*{Output Parameters}

A
Handle containing internal data.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
\begin{tabular}{ll}
SPARSE_STATUS_SUCCESS & The operation was successful. \\
SPARSE_STATUS_NOT_INITIALIZED & The routine encountered an empty handle or matrix array. \\
SPARSE_STATUS_ALLOC_FAILED & Internal memory allocation failed. \\
SPARSE_STATUS_INVALID_VALUE & The input parameters contain an invalid value. \\
SPARSE_STATUS_EXECUTION_FAILED & Execution failed. \\
SPARSE_STATUS_INTERNAL_ERROR & An error in algorithm implementation occurred. \\
SPARSE_STATUS_NOT_SUPPORTED & The requested operation is not supported.
\end{tabular}
mkl_sparse_?_create_coo
Creates a handle for a matrix in COO format.

\section*{Syntax}
```

sparse_status_t mkl_sparse_s_create_coo (sparse_matrix_t *A, const sparse_index_base_t
indexing, const MKL_INT rows, const MKL_INT cols, const MKL_INT nnz, MKL_INT *row_indx,
MKL_INT * col_indx, float *values);
sparse_status_t mkl_sparse_d_create_coo (sparse_matrix_t *A, const sparse_index_base_t
indexing, const MKL_INT rows, const MKL_INT cols, const MKL_INT nnz, MKL_INT *row_indx,
MKL_INT * col_indx, double *values);
sparse_status_t mkl_sparse_c_create_coo (sparse_matrix_t *A, const sparse_index_base_t
indexing, const MKL_INT rows, const MKL_INT cols, const MKL_INT nnz, MKL_INT *row_indx,
MKL_INT * col_indx, MKL_Complex8 *values);

```
```

sparse_status_t mkl_sparse_z_create_coo (sparse_matrix_t *A, const sparse_index_base_t
indexing, const MKL_INT rows, const MKL_INT cols, const MKL_INT nnz, MKL_INT *row_indx,
MKL_INT * col_indx, MKL_Complex16 *values);

```

Include Files
- mkl_spblas.h

\section*{Description}

The mkl_sparse_?_create_coo routine creates a handle for an \(m\)-by- \(k\) matrix \(A\) in COO format.

\section*{NOTE}

The input arrays provided are left unchanged except for the call to mkl_sparse_order, which performs ordering of column indexes of the matrix. To avoid any changes to the input data, use mkl_sparse_copy.

\section*{Input Parameters}
\begin{tabular}{ll}
indexing & Indicates how input arrays are indexed. \\
& \\
rows & SPARSE_INDEX_BASE_ZER Zero-based (C-style) indexing: indices start at \\
Cols & \\
Number of rows of matrix \(A\).
\end{tabular}

\section*{Output Parameters}

A
Handle containing internal data.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
SPARSE_STATUS_SUCCESS
The operation was successful.
```

SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED

```

The routine encountered an empty handle or matrix array. Internal memory allocation failed.

The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_?_create_bsr Creates a handle for a matrix in BSR format.

\section*{Syntax}
```

sparse_status_t mkl_sparse_s_create_bsr (sparse_matrix_t *A, const sparse_index_base_t
indexing, const sparse_layout_t block_layout, const MKL_INT rows, const MKL_INT cols,
const MKL_INT block_size, MKL_INT *rows_start, MKL_INT *rows_end, MKL_INT *COl_indx,
float *values);
sparse_status_t mkl_sparse_d_create_bsr (sparse_matrix_t *A, const sparse_index_base_t
indexing, const sparse_layout_t block_layout, const MKL_INT rows, const MKL_INT cols,
const MKL_INT block_size, MKL_INT *rows_start, MKL_INT *rows_end, MKL_INT *col_indx,
double *values);
sparse_status_t mkl_sparse_c_create_bsr (sparse_matrix_t *A, const sparse_index_base_t
indexing, const sparse_layout_t block_layout, const MKL_INT rows, const MKL_INT cols,
const MKL_INT block_size, MKL_INT *rows_start, MKL_INT *rows_end, MKL_INT *Col_indx,
MKL_Complex8 *values);
sparse_status_t mkl_sparse_z_create_bsr (sparse_matrix_t *A, const sparse_index_base_t
indexing, const sparse_layout_t block_layout, const MKL_INT rows, const MKL_INT cols,
const MKL_INT block_size, MKL_INT *rows_start, MKL_INT *rows_end, MKL_INT *COl_indx,
MKL_Complex16 *values);

```

\section*{Include Files}
- mkl_spblas.h

\section*{Description}

The mkl_sparse_?_create_bsr routine creates a handle for an m-by-k matrix \(A\) in BSR format.

\section*{NOTE}

The input arrays provided are left unchanged except for the call to mkl_sparse_order, which performs ordering of column indexes of the matrix. To avoid any changes to the input data, use mkl_sparse_copy.

\section*{Input Parameters}
indexing
Indicates how input arrays are indexed.
```

SPARSE_INDEX_BASE_ZER Zero-based (C-style) indexing: indices start at
O
0.

```
\begin{tabular}{|c|c|}
\hline & SPARSE_INDEX_BASE_ONE One-based (Fortran-style) indexing: indices start at 1. \\
\hline \multirow[t]{3}{*}{block_layout} & Specifies layout of blocks: \\
\hline & SPARSE_LAYOUT_ROW_MAJ Storage of elements of blocks uses row major OR layout. \\
\hline & SPARSE_LAYOUT_COLUMN__ \(\begin{aligned} & \text { Storage of elements of blocks uses column } \\ & \text { major }\end{aligned}\) layout. \\
\hline rows & Number of block rows of matrix \(A\). \\
\hline cols & Number of block columns of matrix \(A\). \\
\hline block_size & Size of blocks in matrix \(A\). \\
\hline \multirow[t]{2}{*}{rows_start} & Array of length \(m\). This array contains row indices, such that rows_start[i] - ind is the first index of block row \(i\) in the arrays values and col_indx. ind takes 0 for zero-based indexing and 1 for one-based indexing. \\
\hline & Refer to pointerB array description in CSR Format for more details. \\
\hline \multirow[t]{2}{*}{rows_end} & Array of length \(m\). This array contains row indices, such that rows_end[i] - ind- 1 is the last index of block row \(i\) in the arrays values and col_indx. ind takes 0 for zero-based indexing and 1 for one-based indexing. \\
\hline & Refer to pointerE array description in CSR Format for more details. \\
\hline col_indx & For one-based indexing, array containing the column indices plus one for each non-zero block of the matrix \(A\). For zero-based indexing, array containing the column indices for each non-zero block of the matrix \(A\). Its length is rows_end[rows - 1] - ind. ind takes 0 for zero-based indexing and 1 for one-based indexing. \\
\hline \multirow[t]{2}{*}{values} & Array containing non-zero elements of the matrix \(A\). Its length is equal to length of the col_indx array multiplied by block_size*block_size. \\
\hline & Refer to the values array description in BSR Format for more details. \\
\hline
\end{tabular}

\section*{Output Parameters}

A
Handle containing internal data.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED Execution failed.

```
```

SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED

```

An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_copy
Creates a copy of a matrix handle.

\section*{Syntax}
```

sparse_status_t mkl_sparse_copy (const sparse_matrix_t source, const struct
matrix_descr descr, sparse_matrix_t *dest);

```

Include Files
- mkl_spblas.h

\section*{Description}

The mkl_sparse_copy routine creates a copy of a matrix handle.

\section*{NOTE}

Currently, the mkl_sparse_copy routine does not support the descriptor argument and creates an exact (deep) copy of the input matrix.

\section*{Input Parameters}
source
Specifies handle containing internal data.
descr
Structure specifying sparse matrix properties.
\[
\begin{array}{ll}
\text { sparse_matrix_type_t } & \text { type - Specifies the type of a sparse matrix: } \\
\text { SPARSE_MATRIX_TYPE_GE } & \text { The matrix is processed as is. } \\
\text { NERAL }
\end{array} \quad \begin{array}{ll}
\text { SPARSE_MATRIX_TYPE_SY } & \begin{array}{l}
\text { The matrix is symmetric (only the requested } \\
\text { triangle is processed). }
\end{array} \\
\text { MMETRIC } & \\
\begin{array}{ll}
\text { SPARSE_MATRIX_TYPE_HE } \\
\text { RMITIAN }
\end{array} & \begin{array}{l}
\text { The matrix is Hermitian (only the requested } \\
\text { triangle is processed). }
\end{array} \\
\text { SPARSE_MATRIX_TYPE_TR } & \begin{array}{l}
\text { The matrix is triangular (only the requested } \\
\text { triangle is processed). }
\end{array} \\
\text { IANGULAR } & \begin{array}{l}
\text { The matrix is diagonal (only diagonal elements } \\
\text { are processed). }
\end{array} \\
\begin{array}{ll}
\text { SPARSE_MATRIX_TYPE_DI } \\
\text { AGONAL }
\end{array} & \begin{array}{l}
\text { The matrix is block-triangular (only requested } \\
\text { triangle is processed). Applies to BSR format } \\
\text { only. }
\end{array} \\
\text { SPARSE_MATRIX_TYPE_BL } \\
\text { OCK_TRIANGULAR } & \begin{array}{l}
\text { The matrix is block-diagonal (only diagonal } \\
\text { blocks are processed). Applies to BSR format } \\
\text { only. }
\end{array}
\end{array}
\]
sparse_fill_mode_t mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:
```

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed.
R
SPARSE_FILI_MODE_UPPE The upper triangular matrix part is processed.
R
sparse_diag_type_t diag - Specifies diagonal type for non-general
matrices:
SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.

```

\section*{Output Parameters}
dest
Handle containing internal data.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
\begin{tabular}{ll}
SPARSE_STATUS_SUCCESS & The operation was successful. \\
SPARSE_STATUS_NOT_INITIALIZED & The routine encountered an empty handle or matrix array. \\
SPARSE_STATUS_ALLOC_FAILED & Internal memory allocation failed. \\
SPARSE_STATUS_INVALID_VALUE & The input parameters contain an invalid value. \\
SPARSE_STATUS_EXECUTION_FAILED & Execution failed. \\
SPARSE_STATUS_INTERNAL_ERROR & An error in algorithm implementation occurred. \\
SPARSE_STATUS_NOT_SUPPORTED & The requested operation is not supported.
\end{tabular}
mkl_sparse_destroy
Frees memory allocated for matrix handle.
Syntax
```

sparse_status_t mkl_sparse_destroy (sparse_matrix_t A);

```

Include Files
- mkl_spblas.h

\section*{Description}

The mkl_sparse_destroy routine frees memory allocated for matrix handle.

NOTE
You must free memory allocated for matrices after completing use of them. The mkl_sparse_destroy routine provides a utility to do so.

\section*{Input Parameters}

A Handle containing internal data.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED

```

The operation was successful.
The routine encountered an empty handle or matrix array. Internal memory allocation failed.

The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_convert_csr
Converts internal matrix representation to CSR format.

\section*{Syntax}
```

sparse_status_t mkl_sparse_convert_csr (const sparse_matrix_t source, const
sparse_operation_t operation, sparse_matrix_t *dest);

```

Include Files
- mkl_spblas.h

\section*{Description}

The mkl_sparse_convert_csr routine converts internal matrix representation to CSR format.
When the source matrix is in COO format, the routine performs a sum reduction on duplicate elements.

\section*{Input Parameters}
\begin{tabular}{ll}
source & Handle containing internal data. \\
operation & Specifies operation op () on input matrix. \\
& SPARSE_OPERATION_NON_ Non-transpose, op \((A)=A\). \\
& TRANSPOSE \\
& SPARSE_OPERATION_TRAN Transpose, op \((A)=A^{T}\). \\
& SPOSE \\
& SPARSE_OPERATION_CONJ Conjugate transpose, op \((A)=A^{H}\). \\
& UGATE_TRANSPOSE
\end{tabular}

\section*{Output Parameters}
dest Handle containing internal data.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
SPARSE_STATUS_SUCCESS The operation was successful.
```

SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED

```
mkl_sparse_convert_bsr
Converts internal matrix representation to BSR format
or changes BSR block size.

\section*{Syntax}
```

sparse_status_t mkl_sparse_convert_bsr (const sparse_matrix_t source, const MKL_INT
block_size, const sparse_layout_t block_layout, const sparse_operation_t operation,
sparse_matrix_t *dest);

```

Include Files
- mkl_spblas.h

\section*{Description}

Themkl_sparse_convert_bsr routine converts internal matrix representation to BSR format or changes BSR block size.

When the source matrix is in COO format, the routine performs a sum reduction on duplicate elements.

\section*{Input Parameters}
```

source Handle containing internal data.
block_size Size of the block in the output structure.
block_layout Specifies layout of blocks:
SPARSE_LAYOUT_ROW_MAJ Storage of elements of blocks uses row major
OR layout.
SPARSE_LAYOUT_COLUMN_ Storage of elements of blocks uses column
MAJOR - major layout.
Specifies operation op () on input matrix.
SPARSE_OPERATION_NON_ Non-transpose, op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose,op(A) = AT
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = A }\mp@subsup{A}{}{H}\mathrm{ .
UGATE_TRANSPOSE

```

\section*{Output Parameters}
```

dest Handle containing internal data.

```

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED
SPARSE_STATUS_ALLOC_FAILED
SPARSE_STATUS_INVALID_VALUE The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED Execution failed.
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED

```

The operation was successful.
The routine encountered an empty handle or matrix array.
Internal memory allocation failed.
The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_?_export_csr
Exports CSR matrix from internal representation.

\section*{Syntax}
```

sparse_status_t mkl_sparse_s_export_csr (const sparse_matrix_t source,
sparse_index_base_t *indexing, MKL_INT *rows, MKL_INT *cols, MKL_INT **rows_start,
MKL_INT **rows_end, MKL_INT **Col_indx, float **values);
sparse_status_t mkl_sparse_d_export_csr (const sparse_matrix_t source,
sparse_index_base_t *indexing, MKL_INT *rows, MKL_INT *cols, MKL_INT **rows_start,
MKL_INT **roWS_end, MKL_INT **Col_indx, double **values);
sparse_status_t mkl_sparse_c_export_csr (const sparse_matrix_t source,
sparse_index_base_t *indexing, MKL_INT *rows, MKL_INT *cols, MKL_INT **rows_start,
MKL_INT **rows_end, MKL_INT **Col_indx, MKL_Complex8 **values);
sparse_status_t mkl_sparse_z_export_csr (const sparse_matrix_t source,
sparse_index_base_t *indexing, MKL_INT *rows, MKL_INT *cols, MKL_INT **rows_start,
MKL_INT **rows_end, MKL_INT **Col_indx, MKL_Complex16 **values);

```

\section*{Include Files}
- mkl_spblas.h

\section*{Description}

If the matrix specified by the source handle is in CSR format, the mkl_sparse_? export_csr routine exports an \(m\)-by- \(k\) matrix \(A\) in CSR format matrix from the internal representation. The routine returns pointers to the internal representation and does not allocate additional memory.

If the matrix is not already in CSR format, the routine returns SPARSE_STATUS_INVALID_VALUE.

\section*{Input Parameters}
source Handle containing internal data.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{indexing} & Indicates how input arrays are indexed. \\
\hline & SPARSE_INDEX_BASE_ZER Zero-based (C-style) indexing: indices start at 0 0 . \\
\hline & SPARSE_INDEX_BASE_ONE One-based (Fortran-style) indexing: indices start at 1. \\
\hline rows & Number of rows of the matrix source. \\
\hline cols & Number of columns of the matrix source. \\
\hline rows_start & Pointer to array of length \(m\). This array contains row indices, such that rows_start[i] - ind is the first index of row \(i\) in the arrays values and col_indx. ind takes 0 for zero-based indexing and 1 for one-based indexing. \\
\hline & Refer to pointerB array description in CSR Format for more details. \\
\hline rows_end & Pointer to array of length \(m\). This array contains row indices, such that rows_end[i] - ind-1 is the last index of row \(i\) in the arrays values and col_indx. ind takes 0 for zero-based indexing and 1 for one-based indexing. \\
\hline & Refer to pointerE array description in CSR Format for more details. \\
\hline col_indx & For one-based indexing, pointer to array containing the column indices plus one for each non-zero element of the matrix source. For zero-based indexing, pointer to array containing the column indices for each non-zero element of the matrix source. Its length is rows_end[rows - 1] - ind. ind takes 0 for zero-based indexing and 1 for one-based indexing. \\
\hline values & \begin{tabular}{l}
Pointer to array containing non-zero elements of the matrix \(A\). Its length is equal to length of the col_indx array. \\
Refer to values array description in CSR Format for more details.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS
SPARSE_STATUS_NOT_INITIALIZED
SPARSE_STATUS_ALLOC_FAILED Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED

```

The operation was successful.
The routine encountered an empty handle or matrix array.
Internal memory allocation failed.
The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.
```

mkl_sparse_?_export_csc
Exports CSC matrix from internal representation.

```

\section*{Syntax}
```

sparse_status_t mkl_sparse_s_export_csc (const sparse_matrix_t source,
sparse_index_base_t *indexing, MKL_INT *rows, MKL_INT *cols, MKL_INT **cols_start,
MKL_INT **COls_end, MKL_INT **row_indx, float **values);
sparse_status_t mkl_sparse_d_export_csc (const sparse_matrix_t source,
sparse_index_base_t *indexing, MKL_INT *rows, MKL_INT *cols, MKL_INT **cols_start,
MKL_INT **Cols_end, MKL_INT **row_indx, double **values);
sparse_status_t mkl_sparse_c_export_csc (const sparse_matrix_t source,
sparse_index_base_t *indexing, MKL_INT *rows, MKL_INT *Cols, MKL_INT **Cols_start,
MKL_INT **COls_end, MKL_INT **rOw_indx, MKL_Complex8 **values);
sparse_status_t mkl_sparse_z_export_csc (const sparse_matrix_t source,
sparse_index_base_t *indexing, MKL_INT *rows, MKL_INT *Cols, MKL_INT **cols_start,
MKL_INT **Cols_end, MKL_INT **row_indx, MKL_Complex16 **values);

```

Include Files
- mkl_spblas.h

\section*{Description}

If the matrix specified by the source handle is in CSC format, the mkl_sparse_? export_csc routine exports an \(m\)-by- \(k\) matrix \(A\) in CSC format matrix from the internal representation. The routine returns pointers to the internal representation and does not allocate additional memory.
If the matrix is not already in CSC format, the routine returns SPARSE_STATUS_INVALID_VALUE.

\section*{Input Parameters}
source Handle containing internal data.

\section*{Output Parameters}
indexing
rows \(\quad\) Number of rows of the matrix source.
cols Number of columns of the matrix source.
cols_start
cols_end

Indicates how input arrays are indexed.
\begin{tabular}{ll}
\begin{tabular}{ll}
SPARSE_INDEX_BASE_ZER & Zero-based (C-style) indexing: indices start at \\
0 & 0.
\end{tabular} \\
SPARSE_INDEX_BASE_ONE & \begin{tabular}{l}
One-based (Fortran-style) indexing: indices \\
start at 1.
\end{tabular}
\end{tabular}

Array of length \(m\). This array contains column indices, such that cols_start[i] - cols_start[0] is the first index of column \(i\) in the arrays values and row_indx.

Refer to pointerb array description in csc Format for more details.
Pointer to array of length \(m\). This array contains row indices, such that cols_end[i]-cols_start[0]-1 is the last index of column \(i\) in the arrays values and row_indx.

Refer to pointere array description in csc Format for more details.
```

row indx For one-based indexing, pointer to array containing the row indices plus one
for each non-zero element of the matrix source. For zero-based indexing,
pointer to array containing the row indices for each non-zero element of the
matrix source. Its length is cols_end[cols - 1] - cols_start[0].
Pointer to array containing non-zero elements of the matrix }A\mathrm{ . Its length is
equal to length of the row_indx array.
Refer to values array description in csc Format for more details.

```

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED

```

The operation was successful.
The routine encountered an empty handle or matrix array.
Internal memory allocation failed.
The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_?_export_bsr
Exports BSR matrix from internal representation.

\section*{Syntax}
```

sparse_status_t mkl_sparse_s_export_bsr (const sparse_matrix_t source,
sparse_index_base_t *indexing, sparse_layout_t *block_layout, MKL_INT *rows, MKL_INT
*cols, MKL_INT *block_size, MKL_INT **rows_start, MKL_INT **rows_end, MKL_INT
**Col_indx, float **values);
sparse_status_t mkl_sparse_d_export_bsr (const sparse_matrix_t source,
sparse_index_base_t *indexing, sparse_layout_t *block_layout, MKL_INT *rows, MKL_INT
*cols, MKL_INT *block_size, MKL_INT **rows_start, MKL_INT **rows_end, MKL_INT
**col_indx, double **values);
sparse_status_t mkl_sparse_c_export_bsr (const sparse_matrix_t source,
sparse_index_base_t *indexing, sparse_layout_t *block_layout, MKL_INT *rows, MKL_INT
*COls, MKL_INT *block_size, MKL_INT **rows_start, MKL_INT **rows_end, MKL_INT
**col_indx, MKL_Complex8 **values);
sparse_status_t mkl_sparse_z_export_bsr (const sparse_matrix_t source,
sparse_index_base_t *indexing, sparse_layout_t *block_layout, MKL_INT *rows, MKL_INT
*cols, MKL_INT *block_size, MKL_INT **rows_start, MKL_INT **rows_end, MKL_INT
**col_indx, MKL_Complex16 **values);

```

Include Files
- mkl_spblas.h

\section*{Description}

If the matrix specified by the source handle is in BSR format, the mkl_sparse_? export_bsr routine exports an (block_size * rows)-by-(block_size * cols) matrix \(A\) in BSR format from the internal representation. The routine returns pointers to the internal representation and does not allocate additional memory.

If the matrix is not already in BSR format, the routine returns SPARSE_STATUS_INVALID_VALUE.

\section*{Input Parameters}
source

\section*{Output Parameters}
```

indexing
block_layout

```
rows
cols
block_size
rows_start
rows_end
col_indx

Handle containing internal data.

Indicates how input arrays are indexed.
```

SPARSE_INDEX_BASE_ZER Zero-based (C-style) indexing: indices start at
O
SPARSE_INDEX_BASE_ONE
One-based (Fortran-style) indexing: indices start at 1.

```

Specifies layout of blocks:
SPARSE_LAYOUT_ROW_MAJ Storage of elements of blocks uses row major OR

SPARSE_LAYOUT_COLUMN_ Storage of elements of blocks uses column MAJOR major layout.

Number of block rows of the matrix source.
Number of block columns of matrix source.
Size of the square block in matrix source.
Pointer to array of length rows. This array contains row indices, such that rows_start[i] - ind is the first index of block row \(i\) in the arrays values and col_indx. ind takes 0 for zero-based indexing and 1 for one-based indexing.

Refer to pointerB array description in BSR Format for more details.
Pointer to array of length rows. This array contains row indices, such that rows_end[i] - ind-1 is the last index of block row \(i\) in the arrays values and col_indx. ind takes 0 for zero-based indexing and 1 for one-based indexing.

Refer to pointerE array description in BSR Format for more details.
For one-based indexing, pointer to array containing the column indices plus one for each non-zero blocks of the matrix source. For zero-based indexing, pointer to array containing the column indices for each non-zero blocks of the matrix source. Its length is rows_end[rows - 1] - ind[0]. ind takes 0 for zero-based indexing and 1 for one-based indexing.

Pointer to array containing non-zero elements of matrix source. Its length is equal to length of the col_indx array multiplied by
block_size*block_size.
Refer to the values array description in BSR Format for more details.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS
SPARSE_STATUS_NOT_INITIALIZED
SPARSE_STATUS_ALLOC_FAILED
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED

```

The operation was successful.
The routine encountered an empty handle or matrix array. Internal memory allocation failed.

The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_?_set_value
Changes a single value of matrix in internal
representation.
Syntax
```

sparse_status_t mkl_sparse_s_set_value (const sparse_matrix_t A, const MKL_INT row,
const MKL_INT col, const float value);
sparse_status_t mkl_sparse_d_set_value (const sparse_matrix_t A, const MKL_INT row,
const MKL_INT col, const double value);
sparse_status_t mkl_sparse_c_set_value (const sparse_matrix_t A, const MKL_INT row,
const MKL_INT col, const MKL_Complex8 value);
sparse_status_t mkl_sparse_z_set_value (const sparse_matrix_t A, const MKL_INT row,
const MKL_INT col, const MKL_Complex16 value);

```

\section*{Include Files}
- mkl_spblas.h

\section*{Description}

Use the mkl_sparse_?_set_value routine to change a single value of a matrix in the internal Inspectorexecutor Sparse BLAS format. The value should already be presented in a matrix structure.

\section*{Input Parameters}
\begin{tabular}{ll}
A & Specifies handle containing internal data. \\
row & Indicates row of matrix in which to set value. \\
col & Indicates column of matrix in which to set value. \\
value & Indicates value
\end{tabular}

\section*{Output Parameters} A

Handle containing modified internal data.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_INVALID_VALUE The input parameters contain an invalid value.
SPARSE_STATUS_INTERNAL_ERROR An error in algorithm implementation occurred.

```
mkl_sparse_?_update_values
Changes all or selected matrix values in internal
representation.
Syntax

\section*{NOTE}

This routine is supported for sparse matrices in BSR format only.
```

sparse_status_t mkl_sparse_s_update_values (sparse_matrix_t A, MKL_INT nvalues, MKL_INT
*indx, MKL_INT *indy, float *values);
sparse_status_t mkl_sparse_d_update_values (sparse_matrix_t A, MKL_INT nvalues, MKL_INT
*indx, MKL_INT *indy, double *values);
sparse_status_t mkl_sparse_c_update_values (sparse_matrix_t A, MKL_INT nvalues, MKL_INT
*indx, MKL_INT *indy, MKL_Complex8 *values);
sparse_status_t mkl_sparse_z_update_values (sparse_matrix_t A, MKL_INT nvalues, MKL_INT
*indx, MKL_INT *indy, MKL_Complex16 *values);

```

\section*{Include Files}
- mkl_spblas.h

\section*{Description}

Use the mkl_sparse_? update_values routine to change all or selected values of a matrix in the internal Inspector-Executor Sparse BLAS format.

The values to be updated should already be present in the matrix structure.
- To change selected values, you must provide an array values (with new values) and also the corresponding row and column indices for each value via indx and indy arrays as well as the overall number of changed elements nvalues.
So that, for example, to change \(A(0,0)\) to 1 and \(A(0,1)\) to 2 , pass the following input parameters: nvalues \(=2\), ind \(x=\{0,0\}\), indy \(=\{0,1\}\) and values \(=\{1,2\}\).
- To change all the values in the matrix, provide the values array and explicitly set nvalues to 0 or the actual number of non zero elements. There is no need to supply indx and indy arrays.

\section*{Input Parameters}
\begin{tabular}{ll}
A & Specifies handle containing internal data. \\
nvalues & Total number of elements changed. \\
indx & Row indices for the new values.
\end{tabular}

\section*{NOTE}

Currently, only updating the full matrix is supported. Set indx and indy as NULL.
indy
Column indices for the new values.

\section*{NOTE}

Currently, only updating the full matrix is supported. Set indx and indy as NULL.

New values.

\section*{Output Parameters}

A
Handle containing modified internal data.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
\begin{tabular}{ll}
SPARSE_STATUS_SUCCESS & The operation was successful. \\
SPARSE_STATUS_NOT_INITIALIZED & The routine encountered an empty handle or matrix array. \\
SPARSE_STATUS_ALLOC_FAILED & Internal memory allocation failed. \\
SPARSE_STATUS_INVALID_VALUE & The input parameters contain an invalid value. \\
SPARSE_STATUS_EXECUTION_FAILED & Execution failed. \\
SPARSE_STATUS_INTERNAL_ERROR & An error in algorithm implementation occurred. \\
SPARSE_STATUS_NOT_SUPPORTED & The requested operation is not supported.
\end{tabular}
mkl_sparse_order
Performs ordering of column indexes of the matrix in
CSR format
Syntax
sparse_status_t mkl_sparse_order (const sparse_matrix_t csrA);
Include Files
- mkl_spblas.h

\section*{Description}

Use the mkl_sparse_order routine to perform ordering of column indexes of the matrix in CSR format.

\section*{Input Parameters}
```

CSrA CSR data

```

\section*{Output Parameters}
csrA
Handle containing modified internal data.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_INVALID_VALUE The input parameters contain an invalid value.
SPARSE_STATUS_INTERNAL_ERROR An error in algorithm implementation occurred.

```

\section*{Inspector-Executor Sparse BLAS Analysis Routines}

Analysis Routines and Their Data Types
\begin{tabular}{ll}
\begin{tabular}{l}
Routine or Function \\
Group
\end{tabular} & Description \\
\hline \begin{tabular}{l}
mkl_sparse_set_lu_smoot \\
her_hint
\end{tabular} & \begin{tabular}{l}
Provides and estimate of the number and type of upcoming calls to LU \\
smoother functionality.
\end{tabular} \\
mkl_sparse_set_mv_hint & \begin{tabular}{l}
Provides estimate of number and type of upcoming matrix-vector operations.
\end{tabular} \\
mkl_sparse_set_sv_hint & \begin{tabular}{l}
Provides estimate of number and type of upcoming triangular system solver \\
operations.
\end{tabular} \\
mkl_sparse_set_mm_hint & \begin{tabular}{l}
Provides estimate of number and type of upcoming matrix-matrix \\
multiplication operations.
\end{tabular} \\
mkl_sparse_set_sm_hint & \begin{tabular}{l}
Provides estimate of number and type of upcoming triangular matrix solve \\
with multiple right hand sides operations.
\end{tabular} \\
mkl_sparse_set_dotmv_h & \begin{tabular}{l}
Sets estimate of the number and type of upcoming matrix-vector operations. \\
int
\end{tabular} \\
mkl_sparse_set_symgs_h & \begin{tabular}{l}
Sets estimate of number and type of upcoming mkl_sparse_?_symgs \\
operations.
\end{tabular} \\
int & \begin{tabular}{l}
Sets estimate of number and type of upcoming mkl_sparse_?_symgs \\
operations.
\end{tabular} \\
m
\end{tabular}

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201
mkl_sparse_set_lu_smoother_hint
Provides an estimate of the number and type of upcoming calls to LU smoother functionality.

\section*{Syntax}
```

sparse_status_t mkl_sparse_set_lu_smoother_hint (sparse_matrix_t A, const
sparse_operation_t operation, struct matrix_descr descr, MKL_INT expected_calls);

```

Include Files
- mkl_spblas.h

\section*{Description}

The mkl_sparse_set_lu_smoother_hint function provides subsequent Inspector-Executor Sparse BLAS calls an estimate of the number of upcoming calls to the lu_smoother routine that ultimately may influence the optimizations applied and specifies whether or not to perform an operation on the matrix.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
operation
Specifies the operation \(o p()\) on input matrix.
```

SPARSE_OPERATION_NON_ Non-transpose,op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose, op (A) = A
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose, op (A) = A }\mp@subsup{A}{}{H}\mathrm{ .
UGATE_TRANSPOSE

```

Structure specifying sparse matrix properties.
sparse_matrix_type_ttype - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested
\(\operatorname{MMETRIC} \overline{\mathrm{C}} \quad-\quad\) triangle is processed).
SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested
RMITIAN - triangle is processed).
SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested
IANGULAR
triangle is processed).
SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements
AGONAL
are processed).
SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only the
OCK_TRIANGULAR requested triangle is processed). Applies to BSR format only.
sparse_fill_mode_tmode - Specifies the triangular matrix part for
symmetric, Hermitian, triangular, and block-triangular matrices:
SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed.
R
SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed.
R
sparse_diag_type_tdiag-Specifies the diagonal type for non-general
matrices:
expected_calls
Number of expected calls to execution routine.
```

```
```

SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal

```
```

SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal
OCK_DIAGONAL blocks are processed). Applies to BSR format
OCK_DIAGONAL blocks are processed). Applies to BSR format
only.
only. ock DIAGONAL blocks are processed). Applies to BSR format only.

```
```

sparse_fill_mode_tmode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:
SPARSE FILL_MODE LOWE The lower triangular matrix part is processed. R SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R sparse_diag_type_tdiag - Specifies the diagonal type for non-general matrices:

```
```

SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.

```
SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
```

A
expected_calls

Handle containing internal data.
Number of expected calls to execution routine.

## Return Values

The function returns a value indicating whether the operation was successful or not, and why.

SPARSE_STATUS_SUCCESS	The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED	The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED	Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE	The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED	Execution failed.
SPARSE_STATUS_INTERNAL_ERROR	An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED	The requested operation is not supported.

mkl_sparse_set_mv_hint
Provides estimate of number and type of upcoming matrix-vector operations.

## Syntax

```
sparse_status_t mkl_sparse_set_mv_hint (const sparse_matrix_t A, const
sparse_operation_t operation, const struct matrix_descr descr, const MKL_INT
expected_calls);
```

Include Files

- mkl_spblas.h


## Description

Use the mkl_sparse_set_mv_hint routine to provide the Inspector-executor Sparse BLAS API an estimate of the number of upcoming matrix-vector multiplication operations for performance optimization, and specify whether or not to perform an operation on the matrix.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Input Parameters

operation
descr
Specifies operation op () on input matrix.

```
SPARSE_OPERATION_NON_ Non-transpose, op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose,op(A) = AT
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = A A.
UGATE_TRANSPOSE
```

Structure specifying sparse matrix properties.
sparse_matrix_type_t type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested $\operatorname{MMETRIC} \bar{C} \quad-\quad$ triangle is processed).

SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested RMITIAN $-\quad$ - triangle is processed).

SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested IANGULAR - - triangle is processed).

SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements AGONAL - - are processed).

SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested OCK_TRIANGULAR $\bar{R}$ triangle is processed). Applies to BSR format only.

SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIAGONAL - blocks are processed). Applies to BSR format only.
sparse_fill_mode_t mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R

SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R
sparse_diag_type_t diag - Specifies diagonal type for non-general matrices:

SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.

## SPARSE_DIAG_UNIT Diagonal elements are equal to one.

expected_calls Number of expected calls to execution routine.

## Output Parameters

A
Handle containing internal data.

## Return Values

The function returns a value indicating whether the operation was successful or not, and why.

SPARSE_STATUS_SUCCESS	The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED	The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED	Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE	The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED	Execution failed.
SPARSE_STATUS_INTERNAL_ERROR	An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED	The requested operation is not supported.

mkl_sparse_set_sv_hint
Provides estimate of number and type of upcoming
triangular system solver operations.

## Syntax

```
sparse_status_t mkl_sparse_set_sv_hint (const sparse_matrix_t A, const
sparse_operation_t operation, const struct matrix_descr descr, const MKL_INT
expected_calls);
```


## Include Files

- mkl_spblas.h


## Description

The mkl_sparse_set_sv_hint routine provides an estimate of the number of upcoming triangular system solver operations and type of these operations for performance optimization.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Input Parameters

operation
Specifies operation op () on input matrix.

```
SPARSE_OPERATION_NON_ Non-transpose, op (A) = A.
TRANSPOSE
```

	SPARSE_OPERATION_TRAN
	SPOSE Transpose, op $(A)=A^{T}$.
descr	SPARSE_OPERATION_CONJ Conjugate transpose, op ( $A$ ) $=A^{H}$.
	UGATE_TRANSPOSE

Number of expected calls to execution routine.

## Output Parameters

A Handle containing internal data.

## Return Values

The function returns a value indicating whether the operation was successful or not, and why.

```
SPARSE_STATUS_SUCCESS
```

The operation was successful.

```
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED
The routine encountered an empty handle or matrix array. Internal memory allocation failed.
The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.
```

mkl_sparse_set_mm_hint
Provides estimate of number and type of upcoming matrix-matrix multiplication operations.

## Syntax

```
sparse_status_t mkl_sparse_set_mm_hint (const sparse_matrix_t A, const
sparse_operation_t operation, const struct matrix_descr descr, const sparse_layout_t
layout, const MKL_INT dense_matrix_size, const MKL_INT expected_calls);
```

Include Files

- mkl_spblas.h


## Description

The mkl_sparse_set_mm_hint routine provides an estimate of the number of upcoming matrix-matrix multiplication operations and type of these operations for performance optimization purposes.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Input Parameters

operation
descr

Specifies operation op () on input matrix.

```
SPARSE_OPERATION_NON_ Non-transpose, op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose,op(A) = AT
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = A }\mp@subsup{A}{}{\textrm{H}}\mathrm{ .
UGATE_TRANSPOSE
```

Structure specifying sparse matrix properties. sparse_matrix_type_t type - Specifies the type of a sparse matrix: SPARSE_MATRIX_TYPE_GE The matrix is processed as is. NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested $\operatorname{MMETRIC} \overline{\mathrm{C}} \quad-\quad$ triangle is processed).

	SPARSE_MATRIX_TYPE_HE RMITIAN	The matrix is Hermitian (only the requested triangle is processed).
	SPARSE_MATRIX_TYPE_TR IANGULAR	The matrix is triangular (only the requested triangle is processed).
	$\begin{aligned} & \text { SPARSE_MATRIX_TYPE_DI } \\ & \text { AGONAL } \end{aligned}$	The matrix is diagonal (only diagonal elements are processed).
	SPARSE_MATRIX_TYPE_BL OCK_TRIANGULAR	The matrix is block-triangular (only requested triangle is processed). Applies to BSR format only.
	SPARSE_MATRIX_TYPE_BL OCK_DIAGONAL	The matrix is block-diagonal (only diagonal blocks are processed). Applies to BSR format only.
	sparse_fill_mode_t mod symmetric, Hermitian, tria	ode - Specifies the triangular matrix part for ngular, and block-triangular matrices:
	SPARSE_FILL_MODE_LOWE R	The lower triangular matrix part is processed.
	$\begin{aligned} & \text { SPARSE_FILL_MODE_UPPE } \\ & \text { R } \end{aligned}$	The upper triangular matrix part is processed.
	sparse_diag_type_t dia matrices:	- Specifies diagonal type for non-general
	SPARSE_DIAG_NON_UNIT	Diagonal elements might not be equal to one.
	SPARSE_DIAG_UNIT	Diagonal elements are equal to one.
layout	Specifies layout of eleme	
	SPARSE_LAYOUT_COLUMN_ MAJOR	Storage of elements uses column major layout.
	```SPARSE_LAYOUT_ROW_MAJ OR```	Storage of elements uses row major layout.
dense_matrix_size	Number of columns in den	se matrix.
expected_calls	Number of expected calls	to execution routine.

Output Parameters

Handle containing internal data.

Return Values

The function returns a value indicating whether the operation was successful or not, and why.

SPARSE_STATUS_SUCCESS	The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED	The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED	Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE	The input parameters contain an invalid value.

```
SPARSE_STATUS_EXECUTION_FAILED Execution failed.
SPARSE_STATUS_INTERNAL_ERROR An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED The requested operation is not supported.
```

mkl_sparse_set_sm_hint
Provides estimate of number and type of upcoming
triangular matrix solve with multiple right hand sides operations.

Syntax

```
sparse_status_t mkl_sparse_set_sm_hint (const sparse_matrix_t A, const
```

sparse_operation_t operation, const struct matrix_descr descr, const sparse_layout_t
layout, const MKL_INT dense_matrix_size, const MKL_INT expected_calls);

Include Files

- mkl_spblas.h

Description

The mkl_sparse_set_sm_hint routine provides an estimate of the number of upcoming triangular matrix solve with multiple right hand sides operations and type of these operations for performance optimization purposes.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Input Parameters

operation
descr

Specifies operation op () on input matrix.

```
SPARSE_OPERATION_NON_ Non-transpose, op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose,op(A) = AT
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = AH
UGATE_TRANSPOSE
```

Structure specifying sparse matrix properties. sparse_matrix_type_t type - Specifies the type of a sparse matrix: SPARSE_MATRIX_TYPE_GE The matrix is processed as is. NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested $\operatorname{MMETRIC} \quad-\quad-\quad$ triangle is processed).

SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested RMITIAN $\bar{N} \quad-\quad$ triangle is processed).

Output Parameters

A
Handle containing internal data.

Return Values

The function returns a value indicating whether the operation was successful or not, and why.

SPARSE_STATUS_SUCCESS	The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED	The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED	Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE	The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED	Execution failed.
SPARSE_STATUS_INTERNAL_ERROR	An error in algorithm implementation occurred.

```
SPARSE_STATUS_NOT_SUPPORTED The requested operation is not supported.
```

mkl_sparse_set_dotmv_hint
Sets estimate of the number and type of upcoming matrix-vector operations.

Syntax

```
sparse_status_t mkl_sparse_set_dotmv_hint (const sparse_matrix_t A, const
sparse_operation_t operation, const struct matrix_descr descr, const MKL_INT
expected_calls);
```

Include Files

- mkl_spblas.h

Description

Use the mkl_sparse_set_dotmv_hint routine to provide the Inspector-executor Sparse BLAS API an estimate of the number of upcoming matrix-vector multiplication operations for performance optimization, and specify whether or not to perform an operation on the matrix.

Input Parameters

operation
descr

```
Specifies the operation performed on matrix \(A\).
If operation = SPARSE_OPERATION_NON_TRANSPOSE, op \((A)=A\). If operation \(=\) SPARSE_OPERATION_TRANSPOSE, op \((A)=A^{T}\). If operation \(=\) SPARSE_OPERATION_CONJUGATE_TRANSPOSE, op \((A)=A^{H}\).
```

Structure specifying sparse matrix properties.

```
sparse_matrix_type_t type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested
MMETRIC - triangle is processed).
SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested
RMITIAN - _ triangle is processed).
SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested
IANGULAR triangle is processed).
SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements
AGONAL are processed).
SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested
OCK_TRIANGULAR triangle is processed). Applies to BSR format
    only.
SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal
OCK_DIAGONAL blocks are processed). Applies to BSR format
    only.
```

expected_calls

Output Parameters

A
sparse_fill_mode_t mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R

SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R
sparse_diag_type_t diag - Specifies diagonal type for non-general matrices:

SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
Expected number of calls to the execution routine.

Return Values

The function returns a value indicating whether the operation was successful or not, and why.

SPARSE_STATUS_SUCCESS	The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED	The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED	Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE	The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED	Execution failed.
SPARSE_STATUS_INTERNAL_ERROR	An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED	The requested operation is not supported.

mkl_sparse_set_symgs_hint

Syntax

Sets estimate of number and type of upcoming mkl_sparse_? symgs operations.

```
sparse_status_t mkl_sparse_set_symgs_hint (const sparse_matrix_t A, const
sparse_operation_t operation, const struct matrix_descr descr, const MKL_INT
expected_calls);
```


Include Files

- mkl_spblas.h

Description

Use the mkl_sparse_set_symgs_hint routine to provide the Inspector-executor Sparse BLAS API an estimate of the number of upcoming symmetric Gauss-Zeidel preconditioner operations for performance optimization, and specify whether or not to perform an operation on the matrix.

Input Parameters

operation
descr
diag
mode
type
expected_calls

Specifies the operation performed on matrix A.

```
If operation = SPARSE_OPERATION_NON_TRANSPOSE, Op (A) = A.
If operation = SPARSE_OPERATION_TRANSPOSE, op (A) = A A
If operation = SPARSE_OPERATION_CONJUGATE_TRANSPOSE, op (A) = A '.
```

Structure specifying sparse matrix properties.

```
sparse_matrix_type_t type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested
MMETRI\overline{C}
SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested
RMITIAN triangle is processed).
SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested
IANGULA
SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements
AGONAL - - are processed).
SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested
OCK_TRIANGULA\overline{R - triangle is processed). Applies to BSR format}
        only.
SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIAGONAL - blocks are processed). Applies to BSR format only.
```

sparse_fill_mode_t mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R

SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R
sparse_diag_type_t diag - Specifies diagonal type for non-general matrices:

SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
Specifies diagonal type for non-general matrices
Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices.

Specifies the type of a sparse matrix.
Estimate of the number to the execution routine.

Output Parameters

A
Handle containing internal data.

Return Values

The function returns a value indicating whether the operation was successful or not, and why.

SPARSE_STATUS_SUCCESS	The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED	The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED	Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE	The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED	Execution failed.
SPARSE_STATUS_INTERNAL_ERROR	An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED	The requested operation is not supported.

mkl_sparse_set_sorv_hint
Sets an estimate of the number and type of upcoming
mkl_sparse_? sorv operations.

Syntax

```
sparse_status_t mkl_sparse_set_sorv_hint(
    const sparse_sor_type_t type,
    const sparse_matrix_t A,
    const struct matrix_descr descr,
    const MKL_INT expected_calls
);
```

Include Files

- mkl_spblas.h

Description

Use the mkl_sparse_set_sorv_hint routine to provide the Inspector-Executor Sparse BLAS API an estimate of the number of upcoming forward/backward sweeps or symmetric SOR preconditioner operations for performance optimization.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

Input Parameters

type
Specifies the operation performed by the SORV preconditioner.
SPARSE_SOR_FORWARD Performs forward sweep as defined by:

$$
(\omega * L+D) * x^{\wedge} 1=(D-\omega * D-\omega * U) * x^{\wedge} 0+\omega * b
$$

SPARSE_SOR_BACKWARD Performs backward sweep as defined by:

$$
(\omega * U+D) * x^{\wedge} 1=(D-\omega * D-\omega * L) * x^{\wedge} 0+\omega * b
$$

SPARSE_SOR_SYMMETRIC Preconditioner matrix could be expressed as:

$$
\frac{\omega}{2-\omega}\left(\frac{1}{\omega} D+L\right) D^{-1}\left(\frac{1}{\omega} D+L\right)^{T}
$$

Structure specifying sparse matrix properties.
sparse_matrix_type_t Specifies the type of a sparse matrix:
type

- SPARSE_MATRIX_TYPE_GENERAL

The matrix is processed as-is.

- SPARSE_MATRIX_TYPE_SYMMETRIC

The matrix is symmetric (only the requested triangle is processed).

- SPARSE_MATRIX_TYPE_HERMITIAN

The matrix is Hermitian (only the requested triangle is processed).

- SPARSE_MATRIX_TYPE_TRIANGULAR

The matrix is triangular (only the requested triangle is processed).

- SPARSE_MATRIX_TYPE_DIAGONAL

The matrix is diagonal (only diagonal elements are processed).

- SPARSE_MATRIX_TYPE_BLOCK_TRIANGULAR

The matrix is block-triangular (only requested triangle is processed). Applies to BSR format only.

- SPARSE_MATRIX_TYPE_BLOCK_DIAGONAL

The matrix is block-diagonal (only diagonal blocks are processed). Applies to BSR format only.
sparse_fill_mode_t mode

Specifies the triangular matrix part for symmetric, Hermitian, triangular, and blocktriangular matrices:

- SPARSE_FILL_MODE_LOWER

The lower triangular matrix part is processed.

- SPARSE_FILL_MODE_UPPER

The upper triangular matrix part is processed.

Specifies diagonal type for non-general matrices:

- SPARSE_DIAG_NON_UNIT

Diagonal elements might not be equal to one.

- SPARSE_DIAG_UNIT

Diagonal elements are equal to one.

A
expected_calls Estimate of the number of calls to the execution routine.

Output Parameters

A
Handle containing internal data.

Return Values

The function returns a value indicating whether the operation was successful or not, and why.

SPARSE_STATUS_SUCCESS	The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED	The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED	Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE	The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED	Execution failed.
SPARSE_STATUS_INTERNAL_ERROR	An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED	The requested operation is not supported.

mkl_sparse_set_memory_hint
Provides memory requirements for performance optimization purposes.

Syntax

```
sparse_status_t mkl_sparse_set_memory_hint (const sparse_matrix_t A, const
```

sparse_memory_usage_t policy);

Include Files

- mkl_spblas.h

Description

The mkl_sparse_set_memory_hint routine allocates additional memory for further performance optimization purposes.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Input Parameters

policy
Specify memory utilization policy for optimization routine using these types:

SPARSE_MEMORY_NONE	Routine can allocate memory only for auxiliary structures (such as for workload balancing); the amount of memory is proportional to vector
	size.

Output Parameters

A
Handle containing internal data.

Return Values

The function returns a value indicating whether the operation was successful or not, and why.

SPARSE_STATUS_SUCCESS	The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED	The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED	Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE	The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED	Execution failed.
SPARSE_STATUS_INTERNAL_ERROR	An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED	The requested operation is not supported.

mkl_sparse_optimize
Analyzes matrix structure and performs optimizations
using the hints provided in the handle.
Syntax
sparse_status_t mkl_sparse_optimize (sparse_matrix_t A);

Include Files

- mkl_spblas.h

Description

The mkl_sparse_optimize routine analyzes matrix structure and performs optimizations using the hints provided in the handle. Generally, specifying a higher number of expected operations allows for more aggressive and time consuming optimizations.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Product and Performance Information

Notice revision \#20201201

Input Parameters

A
Handle containing internal data.

Return Values

The function returns a value indicating whether the operation was successful or not, and why.

SPARSE_STATUS_SUCCESS	The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED	The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED	Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE	The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED	Execution failed.
SPARSE_STATUS_INTERNAL_ERROR	An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED	The requested operation is not supported.

Inspector-Executor Sparse BLAS Execution Routines

Execution Routines and Their Data Types

Routine or Function Group	Data Types	Description

mkl_sparse_? _lu_smoother	s, d, c, z	Computes an action of a preconditioner which corresponds to the approximate matrix decomposition $A \approx(L+D) * E *(U$ $+D)$ for the system $A x=b$
mkl_sparse_?_mv	s, d, c, z	Computes a sparse matrix-vector product.
mkl_sparse_? trsv	s, d, c, z	Solves a system of linear equations for a square sparse matrix.
mkl_sparse_?_mm	s, d, c, z	Computes the product of a sparse matrix and a dense matrix and stores the result as a dense matrix.
mkl_sparse_? _trsm	s, d, c, z	Solves a system of linear equations with multiple righthand sides for a square sparse matrix.
mkl_sparse_?_add	s, d, c, z	Computes the sum of two sparse matrices. The result is stored in a newly allocated sparse matrix.
mkl_sparse_spmm	s, d, c, z	Computes the product of two sparse matrices and stores the result in a newly allocated sparse matrix.
mkl_sparse_? _spmmd	s, d, c, z	Computes the product of two sparse matrices and stores the result as a dense matrix.
mkl_sparse_sp2m	s, d, c, z	Computes the product of two sparse matrices (support operations on both matrices) and stores the result in a newly allocated sparse matrix.

Routine or Function Group	Data Types	Description
$\begin{aligned} & \text { mkl_sparse_? } \\ & \text { _sp2md } \end{aligned}$	s, d, c, z	Computes the product of two sparse matrices (support operations on both matrices) and stores the result as a dense matrix.
mkl_sparse_sypr	s, d, c, z	Computes the symmetric product of three sparse matrices and stores the result in a newly allocated sparse matrix.
mkl_sparse_? _syprd	s, d, c, z	Computes the symmetric triple product of a sparse matrix and a dense matrix and stores the result as a dense matrix.
mkl_sparse_? _symgs	s, d, c, z	Computes an action of a symmetric Gauss-Seidel preconditioner.
mkl_sparse_? _symgs_mv	s, d, c, z	Computes an action of a symmetric Gauss-Seidel preconditioner followed by a matrix-vector multiplication at the end.
mkl_sparse_? _syrkd	s, d, c, z	Computes the product of sparse matrix with its transpose (or conjugate transpose) and stores the result as a dense matrix.
mkl_sparse_syrk	s, d, c, z	Computes the product of a sparse matrix with its transpose (or conjugate transpose) and stores the result in a newly allocated sparse matrix.
mkl_sparse_? _dotmv	s, d, c, z	Computes a sparse matrix-vector product followed by a dot product.

mkl_sparse_?_lu_smoother
Computes an action of a preconditioner which corresponds to the approximate matrix decomposition
$A \approx(L+D) \times E \times(U+D)$ for the system $A x=b$ (see description below).

Syntax

```
sparse_status_t mkl_sparse_s_lu_smoother (const sparse_operation_t op, const
sparse_matrix_t A, const struct matrix descr descr, const float *diag, const float
*approx_diag_inverse, float *x, const float *b);
sparse_status_t mkl_sparse_d_lu_smoother (const sparse_operation_t op, const
sparse_matrix_t A, const struct matrix descr descr, const double *diag, const double
*approx_diag_inverse, double *x, const double *b);
sparse_status_t mkl_sparse_c_lu_smoother (const sparse_operation_t op, const
sparse_matrix_t A, const struct matrix descr descr, const MKL_COMPLEX8 *diag, const
MKL_COMPLEX8 *approx_diag_inverse, MKL_COMPLEX8 *x, const MKL_COMPLEX8 *b);
sparse_status_t mkl_sparse_z_lu_smoother (const sparse_operation_t op, const
sparse_matrix_t A, const struct matrix descr descr, const MKL_COMPLEX16 *diag, const
MKL_COMPLEX16 *approx_diag_inverse, MKL_COMPLEX16 *x, const MKL_COMPLEX16 *b);
```

Include Files

- mkl_spblas.h

Description

This routine computes an update for an iterative solution x of the system $A x=b$ by means of applying one iteration of an approximate preconditioner which is based on the following approximation:
$A \sim(L+D) * E *(U+D)$, where E is an approximate inverse of the diagonal (using exact inverse will result in Gauss-Seidel preconditioner), L and U are lower/upper triangular parts of A, D is the diagonal (block diagonal in case of BSR format) of A.

The mkl_sparse_?_lu_smoother routine performs these operations:

```
r = b - A*x /* 1. Computes the residual */
(L + D)*E*(U + D)*dx = r /* 2. Finds the update dx by solving the system */
y = x + dx /* 3. Performs an update */
```

This is also equal to the Symmetric Gauss-Seidel operation in the case of a CSR format and 1×1 diagonal blocks:

```
(L + D)**^1 = b - U*x /* Lower solve for intermediate x^1 */
(U + D)*x = b - L**^1 /* Upper solve */
```


NOTE

This routine is supported only for non-transpose operation, real data types, and CSR/BSR sparse formats. In a BSR format, both diagonal values and approximate diagonal inverse arrays should be passed explicitly. For CSR format, diagonal values should be passed explicitly.

Input Parameters

operation
descr

Specifies the operation performed on matrix A.
SPARSE_OPERATION_NON_ TRANSPOSE, op(A) := A

NOTE

Transpose and conjugate transpose (SPARSE_OPERATION_TRANSPOSE and SPARSE_OPERATION_CONJUGATE_TRANSPOSE) are not supported.

Handle which contains the sparse matrix A.
Structure specifying sparse matrix properties.

```
sparse_matrix_type_ttype - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested
MMETRIC C - - triangle is processed).
SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested
RMITIANN - triangle is processed).
SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested
IANGULAR triangle is processed).
```

```
SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements
AGONAL are processed).
SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only the OCK_TRIANGULAR requested triangle is processed). Applies to BSR format only.
SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIĀGONAL - blocks are processed). Applies to BSR format only.
sparse_fill_mode_tmode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:
SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R
SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R
sparse_diag_type_tdiag - Specifies the diagonal type for non-general matrices:
SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
```

NOTE
Only SPARSE_MATRIX_TYPE_GENERAL is supported.
diag Array of size at least m, where m is the number of rows (or nrows * block_size * block_size in case of BSR format) of matrix A.

The array diag must contain the diagonal values of matrix A.
Array of size at least m, where m is the number of rows (or the number of rows * block_size * block_size in case of BSR format) of matrix A.

The array approx_diag_inverse will be used as E, approximate inverse of the diagonal of the matrix A.

Array of size at least k, where k is the number of columns (or columns * block_size in case of BSR format) of matrix A.

On entry, the array x must contain the input vector.
Array of size at least m, where m is the number of rows (or rows * block_size in case of BSR format) of matrix A. The array b must contain the values of the right-hand side of the system.

Output Parameters

Return Values

The function returns a value indicating whether the operation was successful or not, and why.

```
SPARSE_STATUS_SUCCESS
SPARSE_STATUS_NOT_INITIALIZED
SPARSE_STATUS_ALLOC_FAILED
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED
```

The operation was successful.
The routine encountered an empty handle or matrix array. Internal memory allocation failed.

The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_?_mv
Computes a sparse matrix- vector product.

Syntax

```
sparse_status_t mkl_sparse_s_mv (const sparse_operation_t operation, const float alpha,
const sparse_matrix_t A, const struct matrix_descr descr, const float *x, const float
beta, float *y);
sparse_status_t mkl_sparse_d_mv (const sparse_operation_t operation, const double
alpha, const sparse_matrix_t A, const struct matrix_descr descr, const double *x, const
double beta, double *y);
sparse_status_t mkl_sparse_c_mv (const sparse_operation_t operation, const MKL_Complex8
alpha, const sparse_matrix_t A, const struct matrix_descr descr, const MKL_Complex8 *x,
const MKL_Complex8 beta, MKL_Complex8 *y);
sparse_status_t mkl_sparse_z_mv (const sparse_operation_t operation, const
MKL_Complex16 alpha, const sparse_matrix_t A, const struct matrix_descr descr, const
MKL_Complex16 *x, const MKL_Complex16 beta, MKL_Complex16 *y);
```


Include Files

- mkl_spblas.h

Description

The mkl_sparse_?_mv routine computes a sparse matrix-dense vector product defined as

$$
y:=\text { alpha*op }(A) \star_{x}+b^{*} \operatorname{ba}^{\star} y
$$

where:
alpha and beta are scalars, x and y are vectors, and A is a sparse matrix handle of a matrix with m rows and k columns, and op is a matrix modifier for matrix A.

Input Parameters
operation
Specifies operation op () on input matrix.

```
SPARSE_OPERATION_NON_ Non-transpose, op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose,op(A) = AT
SPOSE
```

```
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = A .
UGATE_TRANSPOSE
```

alpha
A descr

X
beta
y

Specifies the scalar alpha.
Handle which contains the input matrix A.
Structure specifying sparse matrix properties.

```
sparse_matrix_type_t type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested
MMETRIC \ - - triangle is processed).
SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested
RMITIAN
SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested
IANGULAR
SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements
AGONAL - are processed).
SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested
OCK_TRIANGULAR - triangle is processed). Applies to BSR format
    only.
SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal
OCK_DIAGONAL - blocks are processed). Applies to BSR format
    only.
```

sparse_fill_mode_t mode - Specifies the triangular matrix part for
symmetric, Hermitian, triangular, and block-triangular matrices:
SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed.
R
SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed.
R
sparse_diag_type_t diag - Specifies diagonal type for non-general
matrices:
SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.

Array of size equal to the number of columns, k of A if operation $=$ SPARSE_OPERATION_NON_TRANSPOSE and at least the number of rows, m, of A otherwise. On entry, the array must contain the vector x.

Specifies the scalar beta.
Array with size at least m if
operation=SPARSE_OPERATION_NON_TRANSPOSE and at least k otherwise. On entry, the array y must contain the vector y. Array of size equal to the
number of rows, m of A if operation $=$
SPARSE_OPERATION_NON_TRANSPOSE and at least the number of columns, k, of A otherwise. On entry, the array y must contain the vector y.

Output Parameters

y
Overwritten by the updated vector y.

Return Values

The function returns a value indicating whether the operation was successful or not, and why.

```
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED
```

mkl_sparse_?_trsv
Solves a system of linear equations for a triangular
sparse matrix.

Syntax

```
sparse_status_t mkl_sparse_s_trsv (const sparse_operation_t operation, const float
alpha, const sparse_matrix_t A, const struct matrix_descr descr, const float *x, float
* y) ;
sparse_status_t mkl_sparse_d_trsv (const sparse_operation_t operation, const double
alpha, const sparse_matrix_t A, const struct matrix_descr descr, const double *x,
double *y);
sparse_status_t mkl_sparse_c_trsv (const sparse_operation_t operation, const
MKL_Complex8 alpha, const sparse_matrix_t A, const struct matrix_descr descr, const
MKL_Complex8 *x, MKL_Complex8 *y);
sparse_status_t mkl_sparse_z_trsv (const sparse_operation_t operation, const
MKL_Complex16 alpha, const sparse_matrix_t A, const struct matrix_descr descr, const
MKL_Complex16 *x, MKL_Complex16 *y);
```


Include Files

- mkl_spblas.h

Description

The mkl_sparse_?_trsv routine solves a system of linear equations for a matrix:

```
op(A)*y = alpha * x
```

where A is a triangular sparse matrix, op is a matrix modifier for matrix A, alpha is a scalar, and x and y are vectors .

NOTE

For sparse matrices in the BSR format, the supported combinations of (indexing,block_layout) are:

- (SPARSE_INDEX_BASE_ZERO, SPARSE_LAYOUT_ROW_MAJOR)
- (SPARSE_INDEX_BASE_ONE, SPARSE_LAYOUT_COLUMN_MAJOR)

Input Parameters

operation	Specifies operation op() on input matrix.
	SPARSE_OPERATION_NON_ Non-transpose, op (A) = A. TRANSPOSE
	$\begin{aligned} & \text { SPARSE_OPERATION_TRAN Transpose, op }(A)=A^{T} \text {. } \\ & \text { SPOSE } \end{aligned}$
	SPARSE_OPERATION_CONJ Conjugate transpose, op (A) $=A^{\text {H }}$. UGATE_TRANSPOSE
alpha	Specifies the scalar alpha.
A	Handle which contains the input matrix A.
descr	Structure specifying sparse matrix properties.
	sparse_matrix_type_t type - Specifies the type of a sparse matrix:
	SPARSE_MATRIX_TYPE_GE The matrix is processed as is. NERAL
	SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested MMETRIC - - triangle is processed).
	SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested RMITIAN triangle is processed).
	SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested IANGULAR triangle is processed).
	SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements AGONAL are processed).
	SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested OCK_TRIANGULAR triangle is processed). Applies to BSR format only.
	SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIAGONAL - blocks are processed). Applies to BSR format only.
	sparse_fill_mode_t mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:
	SPARSE_FILL_MODE_LOWE R
	SPARSE_FILL_MODE_UPPE R

sparse_diag_type_t diag - Specifies diagonal type for non-general matrices:

SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
Array of size at least m, where m is the number of rows of matrix A. On entry, the array must contain the vector x.

Output Parameters

y
Array of size at least m containing the solution to the system of linear equations.

Return Values

The function returns a value indicating whether the operation was successful or not, and why.

SPARSE_STATUS_SUCCESS	The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED	The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED	Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE	The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED	Execution failed.
SPARSE_STATUS_INTERNAL_ERROR	An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED	The requested operation is not supported.

mkl_sparse_?_mm
Computes the product of a sparse matrix and a dense matrix and stores the result as a dense matrix.

Syntax

```
sparse_status_t mkl_sparse_s_mm (const sparse_operation_t operation, const float alpha,
const sparse_matrix_t A, const struct matrix_descr descr, const sparse_layout_t layout,
const float *B, const MKL_INT columns, const MKL_INT ldb, const float beta, float *C,
const MKL_INT IdC);
sparse_status_t mkl_sparse_d_mm (const sparse_operation_t operation, const double
alpha, const sparse_matrix_t A, const struct matrix_descr descr, const sparse_layout_t
layout, const double *B, const MKL_INT columns, const MKL_INT ldb, const double beta,
double *C, const MKL_INT ldc);
sparse_status_t mkl_sparse_c_mm (const sparse_operation_t operation, const MKL_Complex8
alpha, const sparse_matrix_t A, const struct matrix_descr descr, const sparse_layout_t
layout, const MKL_Complex8 *B, const MKL_INT columns, const MKL_INT ldb, const
MKL_Complex8 beta, MKL_Complex8 *C, const MKL_INT ldc);
sparse_status_t mkl_sparse_z_mm (const sparse_operation_t operation, const
MKL_Complex16 alpha, const sparse_matrix_t A, const struct matrix_descr descr, const
sparse_layout_t layout, const MKL_Complex16 *B, const MKL_INT columns, const MKL_INT
ldb, const MKL_Complex16 beta, MKL_Complex16 *C, const MKL_INT ldc);
```


Include Files

- mkl_spblas.h

Description

The mkl_sparse_?_mm routine performs a matrix-matrix operation:

```
C := alpha*op(A)*B + beta*C
```

where alpha and beta are scalars, A is a sparse matrix, op is a matrix modifier for matrix A, and B and C are dense matrices.
The mkl_sparse_?_mm and mkl_sparse_?_trsm routines support these configurations:

	Column-major dense matrix: layout $=$ SPARSE_LAYOUT_COLUMN_MAJOR	Row-major dense matrix: layout 0-based sparse matrix: SPARSE_INDEX_BASE_ZERO
	CSR	All formats
	BSR: general non-transposed matrix multiplication only	
1-based sparse matrix: SPARSE_INDEX_BASE_ONE	All formats	CSR

NOTE

For sparse matrices in the BSR format, the supported combinations of (indexing,block_layout) are:

- (SPARSE_INDEX_BASE_ZERO, SPARSE_LAYOUT_ROW_MAJOR)
- (SPARSE_INDEX_BASE_ONE, SPARSE_LAYOUT_COLUMN_MAJOR)

Input Parameters

operation	Specifies operation op () on input matrix.
	$\text { SPARSE_OPERATION_NON_ Non-transpose, op }(A)=A .$ TRANSPOSE
	$\begin{aligned} & \text { SPARSE_OPERATION_TRAN Transpose, op }(A)=A^{T} \text {. } \\ & \text { SPOSE } \end{aligned}$
	SPARSE_OPERATION_CONJ Conjugate transpose, op $(A)=A^{H}$. UGATE_TRANSPOSE
alpha	Specifies the scalar alpha.
A	Handle which contains the sparse matrix A.
descr	Structure specifying sparse matrix properties.
	sparse_matrix_type_t type - Specifies the type of a sparse matrix:
	SPARSE_MATRIX_TYPE_GE The matrix is processed as is. NERAL

```
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested
MMETRIC - - triangle is processed).
SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested
RMITIANN - - triangle is processed).
SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested
IANGULARR - - triangle is processed).
SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements
AGONAL
are processed).
SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested
OCK_TRIANGULAR - - triangle is processed). Applies to BSR format
    only.
SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal
OCK_DIAGGONAL - - blocks are processed). Applies to BSR format
    only.
sparse_fill_mode_t mode - Specifies the triangular matrix part for
symmetric, Hermitian, triangular, and block-triangular matrices:
SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed.
R
SPARSE_FILI_MODE_UPPE The upper triangular matrix part is processed.
R
sparse_diag_type_t diag - Specifies diagonal type for non-general
matrices:
\begin{tabular}{ll} 
SPARSE_DIAG_NON_UNIT & Diagonal elements might not be equal to one. \\
SPARSE_DIAG_UNIT & Diagonal elements are equal to one.
\end{tabular}
```

Describes the storage scheme for the dense matrix:
SPARSE_LAYOUT_COLUMN_ Storage of elements uses column major layout.
MAJOR
SPARSE_LAYOUT_ROW_MAJ Storage of elements uses row major layout.
OR

Array of size at least rows*cols.

rows (number of rows in B)	layout = SPARSE_LAYOUT_COLU MN MAJOR	```layout = SPARSE_LAYOUT_ROW_MA JOR```
	1 db	If op $(A)=A$, number of columns in A
		If $\mathrm{op}(A)=A^{\mathrm{T}}$, number of rows in A
cols (number of columns in B)	columns	1 db

Number of columns of matrix C.

1 db	Specifies the leading dimension of matrix B.		
beta	Specifies the scalar beta		
C	Array of size at least rows*cols, where		
		```layout = SPARSE_LAYOUT_COLU MN_MAJOR```	```layout = SPARSE_LAYOUT_ROW_MA JOR```
	rows (number of rows in C)	$1 d c$	If $\mathrm{op}(A)=A$, number of rows in $A$
			If $o p(A)=A^{T}$, number of columns in $A$
	cols (number of columns in $C$ )	columns	IdC
$1 d c$	Specifies the leading dimension of matrix $C$.		

## Output Parameters

## C

Overwritten by the updated matrix $C$.

## Return Values

The function returns a value indicating whether the operation was successful or not, and why.

SPARSE_STATUS_SUCCESS	The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED	The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED	Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE	The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED	Execution failed.
SPARSE_STATUS_INTERNAL_ERROR	An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED	The requested operation is not supported.

mkl_sparse_?_trsm
Solves a system of linear equations with multiple right
hand sides for a triangular sparse matrix.

## Syntax

```
sparse_status_t mkl_sparse_s_trsm (const sparse_operation_t operation, const float
alpha, const sparse_matrix_t A, const struct matrix_descr descr, const sparse_layout_t
layout, const float *x, const MKL_INT columns, const MKL_INT ldx, float *y, const
MKL_INT ldy);
sparse_status_t mkl_sparse_d_trsm (const sparse_operation_t operation, const double
alpha, const sparse_matrix_t A, const struct matrix_descr descr, const sparse_layout_t
layout, const double *x, const MKL_INT columns, const MKL_INT ldx, double *y, const
MKL_INT ldy);
```

```
sparse_status_t mkl_sparse_c_trsm (const sparse_operation_t operation, const
MKL_Complex8 alpha, const sparse_matrix_t A, const struct matrix_descr descr, const
sparse_layout_t layout, const MKL_Complex8 *x, const MKL_INT columns, const MKL_INT
ldx, MKL_Complex8 *y, const MKL_INT ldy);
sparse_status_t mkl_sparse_z_trsm (const sparse_operation_t operation, const
MKL_Complex16 alpha, const sparse_matrix_t A, const struct matrix_descr descr, const
sparse_layout_t layout, const MKL_Complex16 *x, const MKL_INT columns, const MKL_INT
ldx, MKL_Complex16 *y, const MKL_INT ldy);
```


## Include Files

- mkl_spblas.h


## Description

The mkl_sparse_?_trsm routine solves a system of linear equations with multiple right hand sides for a triangular sparse matrix:

```
Y := alpha*inv(op (A))*X
```

where:
alpha is a scalar, $X$ and $Y$ are dense matrices, $A$ is a sparse matrix, and op is a matrix modifier for matrix $A$. The mkl_sparse_? mm and mkl_sparse_? trsm routines support these configurations:

	Column-major dense matrix: layout = SPARSE_LAYOUT_COLUMN_MAJOR	Row-major dense matrix: layout = SPARSE_LAYOUT_ROW_MAJOR
0-based sparse matrix:	CSR	All formats
SPARSE_INDEX_BASE_ZERO	BSR: general non-transposed matrix multiplication only	
1-based sparse matrix:	All formats	CSR
SPARSE_INDEX_BASE_ONE		BSR: general non-transposed matrix multiplication only

## NOTE

For sparse matrices in the BSR format, the supported combinations of
(indexing,block_layout) are:

- (SPARSE_INDEX_BASE_ZERO, SPARSE_LAYOUT_ROW_MAJOR )
- (SPARSE_INDEX_BASE_ONE, SPARSE_LAYOUT_COLUMN_MAJOR )


## Input Parameters

operation
Specifies operation op () on input matrix.

```
SPARSE_OPERATION_NON_ Non-transpose, op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose,op(A) = AT
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose, op (A) = AH
UGATE_TRANSPOSE
```

alpha
A
descr

```
Specifies the scalar alpha.
Handle which contains the sparse matrix \(A\).
Structure specifying sparse matrix properties.
```

```
sparse_matrix_type_t type - Specifies the type of a sparse matrix:
```

sparse_matrix_type_t type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested
MMETRIC C - - triangle is processed).
SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested
RMITIAN - _ triangle is processed).
SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested
IANGULARR - - triangle is processed).
SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements
AGONAL - - are processed).
SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested OCK_TRIANGULAR $\bar{R} \quad$ triangle is processed). Applies to BSR format only.
SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIAGONAL - blocks are processed). Applies to BSR format only.
sparse_fill_mode_t mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:
SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R
sparse_diag_type_t diag - Specifies diagonal type for non-general matrices:
SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
Describes the storage scheme for the dense matrix:
SPARSE_LAYOUT_COLUMN_ Storage of elements uses column major layout. MAJOR
SPARSE_LAYOUT_ROW_MAJ Storage of elements uses row major layout. OR
Array of size at least rows*cols.

```
\begin{tabular}{ll}
layout = & layout \(=\) \\
SPARSE_LAYOUT_COLU & SPARSE_LAYOUT_ROW_MA \\
MN_MAJOR & JOR
\end{tabular}
\begin{tabular}{|lll|}
\begin{tabular}{lll}
rows (number of \\
rows in \(x\)
\end{tabular} & \(I d x\) & number of rows in A \\
\begin{tabular}{l}
cols (number of \\
columns in \(x\))
\end{tabular} & columns & \(I d x\) \\
\hline
\end{tabular}

On entry, the array x must contain the matrix \(X\).
columns
\(I d x\)
y

Number of columns in matrix \(Y\).
Specifies the leading dimension of matrix \(X\).
Array of size at least rows*cols, where

\section*{Output Parameters}
y
Overwritten by the updated matrix \(Y\).

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED Execution failed.
SPARSE_STATUS_INTERNAL_ERROR An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED The requested operation is not supported.

```
mkl_sparse_?_add
Computes the sum of two sparse matrices. The result is stored in a newly allocated sparse matrix.

\section*{Syntax}
```

sparse_status_t mkl_sparse_s_add (const sparse_operation_t operation, const
sparse_matrix_t A, const float alpha, const sparse_matrix_t B, sparse_matrix_t *C);
sparse_status_t mkl_sparse_d_add (const sparse_operation_t operation, const
sparse_matrix_t A, const double alpha, const sparse_matrix_t B, sparse_matrix_t *C);

```
```

sparse_status_t mkl_sparse_c_add (const sparse_operation_t operation, const
sparse_matrix_t A, const MKL_Complex8 alpha, const sparse_matrix_t B, sparse_matrix_t
*C) ;
sparse_status_t mkl_sparse_z_add (const sparse_operation_t operation, const
sparse_matrix_t A, const MKL_Complex16 alpha, const sparse_matrix_t B, sparse_matrix_t
*C) ;

```

\section*{Include Files}
- mkl_spblas.h

\section*{Description}

The mkl_sparse_?_add routine performs a matrix-matrix operation:
```

C := alpha*op(A) + B

```
where alpha is a scalar, op is a matrix modifier, and \(A, B\), and \(C\) are sparse matrices.

\section*{NOTE}

This routine is only supported for sparse matrices in CSR and BSR formats. It is not supported for COO or CSC formats.

\section*{Input Parameters}

A
alpha
operation

B

Handle which contains the sparse matrix \(A\).
Specifies the scalar alpha.
Specifies operation op () on input matrix.
SPARSE_OPERATION_NON_ Non-transpose, op \((A)=A\). TRANSPOSE
SPARSE_OPERATION_TRAN Transpose, op (A) \(=A^{T}\).
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose, op \((A)=A^{H}\). UGATE_TRANSPOSE

Handle which contains the sparse matrix \(B\).

\section*{Output Parameters}

C
Handle which contains the resulting sparse matrix.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
\begin{tabular}{ll}
SPARSE_STATUS_SUCCESS & The operation was successful. \\
SPARSE_STATUS_NOT_INITIALIZED & The routine encountered an empty handle or matrix array. \\
SPARSE_STATUS_ALLOC_FAILED & Internal memory allocation failed. \\
SPARSE_STATUS_INVALID_VALUE & The input parameters contain an invalid value. \\
SPARSE_STATUS_EXECUTION_FAILED & Execution failed.
\end{tabular}
```

SPARSE_STATUS_INTERNAL_ERROR An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED The requested operation is not supported.
mkl_sparse_spmm
Computes the product of two sparse matrices. The
result is stored in a newly allocated sparse matrix.

```

\section*{Syntax}
```

sparse_status_t mkl_sparse_spmm (const sparse_operation_t operation, const

```
sparse_status_t mkl_sparse_spmm (const sparse_operation_t operation, const
sparse_matrix_t A, const sparse_matrix_t B, sparse_matrix_t *C);
```


## Include Files

- mkl_spblas.h


## Description

The mkl_sparse_spmm routine performs a matrix-matrix operation:

```
C := op (A) *B
```

where $A, B$, and $C$ are sparse matrices and $o p$ is a matrix modifier for matrix $A$.

## Notes

- This routine is supported only for sparse matrices in CSC, CSR, and BSR formats. It is not supported for sparse matrices in COO format.
- The column indices of the output matrix (if in CSR format) can appear unsorted due to the algorithm chosen internally. To ensure sorted column indices (if that is important), call mkl_sparse_order().


## Input Parameters

```
operation
Specifies operation op () on input matrix.
SPARSE_OPERATION_NON_ Non-transpose, op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose,op(A) = AT
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = A .
UGATE_TRANSPOSE
```

A
B

A
B
Handle which contains the sparse matrix $A$.
Handle which contains the sparse matrix $B$.

## Output Parameters

C
Handle which contains the resulting sparse matrix.

## Return Values

The function returns a value indicating whether the operation was successful or not, and why.

```
SPARSE_STATUS_SUCCESS
SPARSE_STATUS_NOT_INITIALIZED
SPARSE_STATUS_ALLOC_FAILED
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED
```

The operation was successful.
The routine encountered an empty handle or matrix array. Internal memory allocation failed.

The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_?_spmmd
Computes the product of two sparse matrices and stores the result as a dense matrix.

## Syntax

```
sparse_status_t mkl_sparse_s_spmmd (const sparse_operation_t operation, const
sparse_matrix_t A, const sparse_matrix_t B, const sparse_layout_t layout, float *C,
const MKL_INT ldc);
sparse_status_t mkl_sparse_d_spmmd (const sparse_operation_t operation, const
sparse_matrix_t A, const sparse_matrix_t B, const sparse_layout_t layout, double *C,
const MKL_INT Idc);
sparse_status_t mkl_sparse_c_spmmd (const sparse_operation_t operation, const
sparse_matrix_t A, const sparse_matrix_t B, const sparse_layout_t layout, MKL_Complex8
*C, const MKL_INT ldc);
sparse_status_t mkl_sparse_z_spmmd (const sparse_operation_t operation, const
sparse_matrix_t A, const sparse_matrix_t B, const sparse_layout_t layout, MKL_Complex16
*C, const MKL_INT Idc);
```


## Include Files

- mkl_spblas.h


## Description

The mkl_sparse_?_spmmd routine performs a matrix-matrix operation:

$$
C:=o p(A) * B
$$

where $A$ and $B$ are sparse matrices, $o p$ is a matrix modifier for matrix $A$, and $C$ is a dense matrix.

## NOTE

This routine is not supported for sparse matrices in the COO format. For sparse matrices in BSR format, these combinations of (indexing, block_layout) are supported:

- (SPARSE_INDEX_BASE_ZERO, SPARSE_LAYOUT_ROW_MAJOR)
- (SPARSE_INDEX_BASE_ONE, SPARSE_LAYOUT_COLUMN_MAJOR)


## Input Parameters

operation
Specifies operation op () on input matrix.

```
SPARSE_OPERATION_NON_ Non-transpose,op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose, op (A) = AT
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = A H
UGATE_TRANSPOSE
```

Handle which contains the sparse matrix $A$. Handle which contains the sparse matrix $B$.

Describes the storage scheme for the dense matrix:
SPARSE_LAYOUT_COLUMN_ Storage of elements uses column major layout. MAJOR

SPARSE_LAYOUT_ROW_MAJ Storage of elements uses row major layout. OR

Leading dimension of matrix $C$.

A

B
layout
$1 d C$

## Output Parameters

C
Resulting dense matrix.

## Return Values

The function returns a value indicating whether the operation was successful or not, and why.

SPARSE_STATUS_SUCCESS	The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED	The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED	Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE	The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED	Execution failed.
SPARSE_STATUS_INTERNAL_ERROR	An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED	The requested operation is not supported.

mkl_sparse_sp2m
Computes the product of two sparse matrices. The
result is stored in a newly allocated sparse matrix.

## Syntax

```
sparse_status_t mkl_sparse_sp2m (const sparse_operation_t transA, const struct
matrix_descr descrA, const sparse_matrix_t A, const sparse_operation_t transB, const
struct matrix_descr descrB, const sparse_matrix_t B, const sparse_request_t request,
sparse_matrix_t *C);
```


## Include Files

- mkl_spblas.h


## Description

The mkl_sparse_sp 2 m routine performs a matrix-matrix operation:

```
C:= opA(A) *opB(B)
```

where $A, B$, and $C$ are sparse matrices, $o p A$ and $o p B$ are matrix modifiers for matrices $A$ and $B$, respectively.

## NOTE

The column indices of the output matrix (if in CSR format) can appear unsorted due to the algorithm chosen internally. To ensure sorted column indices (if that is important), call mkl_sparse_order().

## Input Parameters

$o p A$
Specifies operation on input matrix.

SPARSE_OPERATION_NON_TRANSPOSE	Non-transpose, op $(A)=A$
SPARSE_OPERATION_TRANSPOSE	Transpose,op $(A)=A^{T}$
SPARSE_OPERATION_CONJUGATE_TRANSP	Conjugate transpose,   OSE

Specifies operation on input matrix.

SPARSE_OPERATION_NON_TRANSPOSE	Non-transpose, op $(B)=B$
SPARSE_OPERATION_TRANSPOSE	Transpose, op $(B)=B^{T}$
SPARSE_OPERATION_CONJUGATE_TRANSP	Conjugate transpose,
OSE	op $(B)=B^{H}$

Structure that specifies sparse matrix properties.
NOTE Currently, only SPARSE_MATRIX_TYPE_GENERAL is supported.
sparse_matrix_type_ttype specifies the type of sparse matrix.

SPARSE_MATRIX_TYPE_GENERAL	The matrix is processed as is.
SPARSE_MATRIX_TYPE_SYMMETRIC	The matrix is symmetric (only the   requested triangle is processed).
SPARSE_MATRIX_TYPE_HERMITIAN	The matrix is Hermitian (only the   requested triangle is processed).
SPARSE_MATRIX_TYPE_TRIANGULA	The matrix is triangular (only the   R
requested triangle is processed).	
SPARSE_MATRIX_TYPE_DIAGONAL	The matrix is diagonal (only   diagonal elements are processed).


SPARSE_MATRIX_TYPE_BLOCK_TRI	The matrix is block-triangular (only   ANGULAR
	the requested triangle is   processed). This applies to BSR   format only.
SPARSE_MATRIX_TYPE_BLOCK_DIA	The matrix is block-diagonal (only   the requested triangle is   ponal
processed). This applies to BSR   format only.	

sparse_fill_mode_tmode specifies the triangular matrix portion for symmetric, Hermitian, triangular, and block-triangular matrices.

SPARSE_FILL_MODE_LOWER	The lower triangular matrix is   processed.
SPARSE_FILL_MODE_UPPER	The upper triangular matrix is   processed.

sparse_diag_type_tdiag specifies the type of diagonal for non-general matrices.

SPARSE_DIAG_NON_UNIT	Diagonal elements must not be   equal to 1.
SPARSE_DIAG_UNIT	Diagonal elements are equal to 1.

Structure that specifies sparse matrix properties.
NOTE Currently, only SPARSE_MATRIX_TYPE_GENERAL is supported.
sparse_matrix_type_ttype specifies the type of sparse matrix.

SPARSE_MATRIX_TYPE_GENERAL	The matrix is processed as is.
SPARSE_MATRIX_TYPE_SYMMETRIC	The matrix is symmetric (only the requested triangle is processed).
SPARSE_MATRIX_TYPE_HERMITIAN	The matrix is Hermitian (only the requested triangle is processed).
$\begin{aligned} & \text { SPARSE_MATRIX_TYPE_TRIANGULA } \\ & \text { R } \end{aligned}$	The matrix is triangular (only the requested triangle is processed).
SPARSE_MATRIX_TYPE_DIAGONAL	The matrix is diagonal (only diagonal elements are processed).
SPARSE_MATRIX_TYPE_BLOCK_TRI ANGULAR	The matrix is block-triangular (only the requested triangle is processed). This applies to BSR format only.

```
SPARSE_MATRIX_TYPE_BLOCK_DIA
GONAL
The matrix is block-diagonal (only the requested triangle is processed). This applies to BSR format only.
```

sparse_fill_mode_tmode specifies the triangular matrix portion for symmetric, Hermitian, triangular, and block-triangular matrices.

SPARSE_FILL_MODE_LOWER	The lower triangular matrix is
processed.	
SPARSE_FILL_MODE_UPPER	The upper triangular matrix is
	processed.

sparse_diag_type_tdiag specifies the type of diagonal for non-general matrices.

SPARSE_DIAG_NON_UNIT	Diagonal elements must not be   equal to 1.
SPARSE_DIAG_UNIT	Diagonal elements are equal to 1.

A
B
request

Handle which contains the sparse matrix $A$.
Handle which contains the sparse matrix $B$.
Specifies whether the full computations are performed at once or using the two-stage algorithm. See Two-stage Algorithm for Inspector-executor Sparse BLAS Routines.

SPARSE_STAGE_NNZ_COUNT	Only rowIndex (BSR/CSR format) or   col Index (CSC format) array of the   matrix is computed internally. The   computation can be extracted to   measure the memory required for full   operation.
SPARSE_STAGE_FINALIZE_MULT_NO_	
VAL	Finalize computations of the matrix   structure (values will not be   computed). Use only after the call with   SPARSE_STAGE_NNZ_COUNT   parameter.
SPARSE_STAGE_FINALIZE_MULT	Finalize computation. Can also be used   when the matrix structure remains   unchanged and only values of the
resulting matrix C need to be	
recomputed.	

## Output Parameters

Handle which contains the resulting sparse matrix.

## Return Values

The function returns a value indicating whether the operation was successful, or the reason why it failed.

SPARSE_STATUS_SUCCESS	The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED	The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED	The internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE	The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILE D	The execution failed.
SPARSE_STATUS_INTERNAL_ERROR	An error occurred in the implementation of the algorithm.
SPARSE_STATUS_NOT_SUPPORTED	The requested operation is not supported.

mkl_sparse_?_sp2md
Computes the product of two sparse matrices (support
operations on both matrices) and stores the result as
a dense matrix.

## Syntax

```
sparse_status_t mkl_sparse_s_sp2md (const sparse_operation_t transA, const struct
matrix_descr descrA, const sparse_matrix_t A, const sparse_operation_t transB, const
struct matrix_descr descrB, const sparse_matrix_t B, const float alpha, const float
beta, float *C, const sparse_layout_t layout, const MKL_INT ldc);
sparse_status_t mkl_sparse_d_sp2md (const sparse_operation_t transA, const struct
matrix_descr descrA, const sparse_matrix_t A, const sparse_operation_t transB, const
struct matrix_descr descrB, const sparse_matrix_t B, const double alpha, const double
beta, double *C, const sparse_layout_t layout, const MKL_INT ldc);
sparse_status_t mkl_sparse_c_sp2md (const sparse_operation_t transA, const struct
matrix_descr descrA, const sparse_matrix_t A, const sparse_operation_t transB, const
struct matrix_descr descrB, const sparse_matrix_t B, const MKL_Complex8 alpha, const
MKL_Complex8 beta, MKL_Complex8 *C, const sparse_layout_t layout, const MKL_INT ldc);
sparse_status_t mkl_sparse_z_sp2md (const sparse_operation_t transA, const struct
matrix_descr descrA, const sparse_matrix_t A, const sparse_operation_t transB, const
struct matrix_descr descrB, const sparse_matrix_t B, const MKL_Complex16 alpha, const
MKL_Complex16 beta, MKL_Complex16 *C, const sparse_layout_t layout, const MKL_INT
ldc);
```


## Include Files

- mkl_spblas.h


## Description

The mkl_sparse_?_sp 2 md routine performs a matrix-matrix operation:

$$
C=\text { alpha } * \text { opA }(A) * o p B(B)+\text { beta* } C
$$

where $A$ and $B$ are sparse matrices, $o p A$ is a matrix modifier for matrix $A, o p B$ is a matrix modifier for matrix $B$, and $C$ is a dense matrix, alpha and beta are scalars.

## NOTE

This routine is not supported for sparse matrices in the COO format. For sparse matrices in BSR format, these combinations of (indexing, block_layout) are supported:

- (SPARSE_INDEX_BASE_ZERO, SPARSE_LAYOUT_ROW_MAJOR)
- (SPARSE_INDEX_BASE_ONE, SPARSE_LAYOUT_COLUMN_MAJOR)


## Input Parameters

$\operatorname{trans} A$
$\operatorname{descr} A$

Specifies operation op() on the input matrix.

SPARSE_OPERATION_NON_TRANSPOSE	Non-transpose, op $(A)=A$
SPARSE_OPERATION_TRANSPOSE	Transpose, op $(A)=A^{T}$
SPARSE_OPERATION_CONJUGATE_TRANSP	Conjugate transpose,   OPE $(A)=A^{H}$

Structure that specifies the sparse matrix properties.

```
NOTE Currently, only SPARSE_MATRIX_TYPE_GENERAL is supported.
```

sparse_matrix_type_ttype specifies the type of sparse matrix.

SPARSE_MATRIX_TYPE_GENERAL	The matrix is processed as is.
SPARSE_MATRIX_TYPE_SYMMETRIC	The matrix is symmetric (only the   requested triangle is processed).
SPARSE_MATRIX_TYPE_HERMITIAN	The matrix is Hermitian (only the   requested triangle is processed).
SPARSE_MATRIX_TYPE_TRIANGULA	The matrix is triangular (only the   requested triangle is processed).
SPARSE_MATRIX_TYPE_DIAGONAL	The matrix is diagonal (only   diagonal elements are processed).
SPARSE_MATRIX_TYPE_BLOCK_TRI	The matrix is block-triangular (only   the requested triangle is
ANGULAR	processed). This applies to BSR   format only.
GPARSE_MATRIX_TYPE_BLOCK_DIA	The matrix is block-diagonal (only   the requested triangle is
	processed). This applies to BSR   format only.

sparse_fill_mode_tmode specifies the triangular matrix portion for symmetric, Hermitian, triangular, and block-triangular matrices.

The lower triangular matrix is processed.

sparse_diag_type_tdiag specifies the type of diagonal for non-general matrices.

SPARSE_DIAG_NON_UNIT	Diagonal elements must not be   equal to 1.
SPARSE_DIAG_UNIT	Diagonal elements are equal to 1.

A
transB
descrB
Handle which contains the sparse matrix $A$.
Specifies operation opB() on the input matrix.

SPARSE_OPERATION_NON_TRANSPO	Non-transpose, opB $(B)=B$.
SE	
SPARSE_OPERATION_TRANSPOSE	Transpose, opB $(B)=B^{T}$.
SPARSE_OPERATION_CONJUGATE_T	Conjugate transpose, opB $(B)=B^{H}$.
RANSPOSE	

Structure that specifies the sparse matrix properties.

## NOTE

Currently, only SPARSE_MATRIX_TYPE_GENERAL is supported.
sparse_matrix_type_ttype specifies the type of sparse matrix.

SPARSE_MATRIX_TYPE_GENERAL	The matrix is processed as is.
SPARSE_MATRIX_TYPE_SYMMETRIC	The matrix is symmetric (only the
requested triangle is processed).	
SPARSE_MATRIX_TYPE_HERMITIAN	The matrix is Hermitian (only the   requested triangle is processed).
SPARSE_MATRIX_TYPE_TRIANGULA	The matrix is triangular (only the
R	requested triangle is processed).
SPARSE_MATRIX_TYPE_DIAGONAL	The matrix is diagonal (only   diagonal elements are processed).
SPARSE_MATRIX_TYPE_BLOCK_TRI	The matrix is block-triangular (only   the requested triangle is
SPARGULAR	processed). This applies to BSR   format only.
GONAL	The matrix is block-diagonal (only   the requested triangle is
	processed). This applies to BSR   format only.

sparse_fill_mode_tmode specifies the triangular matrix portion for symmetric, Hermitian, triangular, and block-triangular matrices.

SPARSE_FILL_MODE_LOWER	The lower triangular matrix is   processed.
SPARSE_FILL_MODE_UPPER	The upper triangular matrix is   processed.
SPARSE_DIAG_NON_UNIT Diagonal elements must not be   matrices.   equal to 1.    SPARSE_DIAG_UNIT Diagonal elements are equal to 1.	

B
alpha
beta
layout
ldc

Handle which contains the sparse matrix $B$.
Specifies the scalar alpha.
Specifies the scalar beta.
Describes the storage scheme for the dense matrix:

SPARSE_LAYOUT_COLUMN_MAJOR	Storage of elements uses column   major layout.
SPARSE_LAYOUT_ROW_MAJOR	Storage of elements uses row   major layout.

Leading dimension of matrix $C$.

## Output Parameters

C
The resulting dense matrix.

## Return Values

The function returns a value indicating whether the operation was successful, or the reason why it failed.

```
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED The internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILE The execution failed.
D
SPARSE_STATUS_INTERNAL_ERROR An error occurred in the implementation of the algorithm.
SPARSE_STATUS_NOT_SUPPORTED The requested operation is not supported.
```

mkl_sparse_sypr
Computes the symmetric product of three sparse
matrices and stores the result in a newly allocated
sparse matrix.

```
Syntax
```

```
sparse_status_t mkl_sparse_sypr (const sparse_operation_t operation , const
```

sparse_status_t mkl_sparse_sypr (const sparse_operation_t operation , const
sparse_matrix_t }A\mathrm{ , const sparse_matrix_t }B\mathrm{ , const struct matrix_descr }B\mathrm{ ,
sparse_matrix_t *C, const sparse_request_t request);

```

\section*{Include Files}
- mkl_spblas.h

\section*{Description}

The mkl_sparse_sypr routine performs a multiplication of three sparse matrices that results in a symmetric or Hermitian matrix, \(C\).
\[
C:=A^{\star} B^{\star} \operatorname{op} A(A)
\]
or
```

C:=opA(A)* B*A

```
depending on the matrix modifier operation.
Here, \(A, B\), and \(C\) are sparse matrices, where \(A\) has a general structure while \(B\) and \(C\) are symmetric (for real data types) or Hermitian (for complex data types) matrices. op \(A\) is the transpose (real data types) or conjugate transpose (complex data types) operator.

\section*{NOTE}

This routine is not supported for sparse matrices in COO or CSC formats. This routine supports only CSR and BSR formats. In addition, it supports only the sorted CSR and sorted BSR formats for the input matrix. If the data is unsorted, call the mkl_sparse_order routine before either mkl_sparse_sypr or mkl_sparse_?_syprd.

\section*{Input Parameters}
operation
Specifies operation on the input sparse matrices.
\begin{tabular}{|ll}
\hline SPARSE_OPERATION_NON_TRANSPOSE & Non-transpose case. \\
& \(C:=A^{*} B^{*}\left(A^{\top}\right)\) for real \\
& precision \\
& \(C:=A^{*} B^{*}\left(A^{H}\right)\) for \\
& complex precision. \\
SPARSE_OPERATION_TRANSPOSE & Transpose case. This is \\
& not supported for \\
& complex matrices. \\
& \(C:=\left(A^{\top}\right)^{*} B^{*} A\) \\
SPARSE_OPERATION_CONJUGATE_TRAN & Conjugate transpose \\
SPOSE & case. This is not \\
& supported for real \\
& matrices. \\
& \(C:=\left(A^{H}\right)^{*} B^{*} A\) \\
&
\end{tabular}

A
Handle which contains the sparse matrix \(A\).

B
descrB
request

Handle which contains the sparse matrix \(B\).
Structure specifying properties of the sparse matrix.
sparse_matrix_type_t type specifies the type of a sparse matrix
\begin{tabular}{|ll|}
\hline SPARSE_MATRIX_TYPE_SYMMETRIC & \begin{tabular}{l}
The matrix is symmetric (only \\
the specified triangle is \\
processed).
\end{tabular} \\
SPARSE_MATRIX_TYPE_HERMITIAN & \begin{tabular}{l}
The matrix is Hermitian (only \\
the specified triangle is \\
processed).
\end{tabular} \\
\hline
\end{tabular}
sparse_fill_mode_t mode specifies the triangular matrix part.
\begin{tabular}{ll}
SPARSE_FILL_MODE_LOWER & \begin{tabular}{l}
The lower triangular matrix part \\
is processed.
\end{tabular} \\
SPARSE_FILL_MODE_UPPER & \begin{tabular}{l}
The upper triangular matrix part \\
is processed.
\end{tabular}
\end{tabular}
sparse_diag_type_t diag specifies the type of diagonal.
SPARSE_DIAG_NON_UNIT \begin{tabular}{l}
Diagonal elements cannot be \\
equal to one.
\end{tabular} equal to one.

\section*{NOTE}

This routine also supports \(C=A A^{\mathrm{T}, \mathrm{H}}\) with these parameters:
```

descrB.type=SPARSE_MATRIX_TYPE_DIAGONAL
descrB.diag=SPARSE_DIAG_UNIT

```

In this case, you do not need to allocate structure B. Use the routine as a 2 -stage version of mkl_sparse_syrk.

Use this routine to specify if the computations should be performed in a single step or using the two-stage algorithm. See Two-stage Algorithm for Inspector-executor Sparse BLAS Routines for more information.
\begin{tabular}{|ll}
\hline SPARSE_STAGE_NNZ_COUNT & \begin{tabular}{l}
Only rowIndex (BSR/CSR format) \\
or colIndex (CSC format) array \\
of the matrix is computed internally.
\end{tabular} \\
& \begin{tabular}{l}
The computation can be extracted \\
to measure the memory required \\
for full operation.
\end{tabular} \\
SPARSE_STAGE_FINALIZE_MULT_N & \begin{tabular}{l}
Finalize computations of the matrix \\
structure (values will not be \\
computed). Use only after the call \\
with SPARSE_STAGE_NNZ_COUNT \\
parameter.
\end{tabular} \\
SPARSE_STAGE_FINALIZE_MULT & \begin{tabular}{l}
Finalize computation. Can be used \\
after the call with the \\
SPARSE_STAGE_NNZ_COUNT or
\end{tabular} \\
&
\end{tabular}
\begin{tabular}{|ll}
& \begin{tabular}{l}
SPARSE_STAGE_FINALIZE_MULT_N \\
O_VAL. Can also be used when the \\
matrix structure remains unchanged \\
and only values of the resulting \\
matrix \(C\) need to be recomputed.
\end{tabular} \\
SPARSE_STAGE_FULL_MULT_NO_V & \begin{tabular}{l}
Perform computations of the matrix \\
structure.
\end{tabular} \\
AL & \begin{tabular}{l}
Perform the entire computation in a \\
single step.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{C}

Handle which contains the resulting sparse matrix. Only the uppertriangular part of the matrix is computed.

\section*{Return Values}

The function returns a value indicating whether the operation was successful, or the reason why it failed.
```

SPARSE_STATUS_SUCCESS
SPARSE_STATUS_NOT_INITIALIZED
SPARSE_STATUS_ALLOC_FAILED
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED

```

The operation was successful.
The routine encountered an empty handle or matrix array.
Internal memory allocation failed.
The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_?_syprd
Computes the symmetric triple product of a sparse
matrix and a dense matrix and stores the result as a dense matrix.

\section*{Syntax}
```

sparse_status_t mkl_sparse_s_syprd (const sparse_operation_t op, const sparse_matrix_t
A, const float *B, const sparse_layout_t layoutB, const MKL_INT ldb, const float alpha,
const float beta, float *C, const sparse_layout_t layoutC, const MKL_INT IdC);
sparse_status_t mkl_sparse_d_syprd (const sparse_operation_t op, const sparse_matrix_t
A, const double *B, const sparse_layout_t layout\overline{B}, const MKL_INT ldb, const double
alpha, const double beta, double *C, const sparse_layout_t layoutC, const MKL_INT ldc);
sparse_status_t mkl_sparse_c_syprd (const sparse_operation_t op, const sparse_matrix_t
A, const MKL_Complex8 *B, const sparse_layout_t layoutB, const MKL_INT Idb, const
MKL_Complex8 alpha, const MKL_Complex8 beta, MKL_Complex8 *C, const sparse_layout_t
layoutC, const MKL_INT Idc);
sparse_status_t mkl_sparse_z_syprd (const sparse_operation_t op, const sparse_matrix_t
A, const MKL_Complex16 *B, const sparse_layout_t layoutB, const MKL_INT ldb, const
MKL_Complex16 alpha, const MKL_Complex16 beta, MKL_Complex16 *C, const sparse_layout_t
layoutC, const MKL_INT Idc);

```

\section*{Include Files}
- mkl_spblas.h

\section*{Description}

The mkl_sparse_?_syprd routine performs a multiplication of three sparse matrices that results in a symmetric or Hermitian matrix, \(C\).
```

C:=alpha*A* B*op (A) + beta*C

```
or
\[
C:=a l p h a^{\star} o p(A) \star B^{\star} A+b e t a^{\star} C
\]
depending on the matrix modifier operation. Here \(A\) is a sparse matrix, \(B\) and \(C\) are dense and symmetric (or Hermitian) matrices.
op is the transpose (real precision) or conjugate transpose (complex precision) operator.

\section*{NOTE}

This routine is not supported for sparse matrices in COO or CSC formats. It supports only CSR and BSR formats. In addition, this routine supports only the sorted CSR and sorted BSR formats for the input matrix. If the data is unsorted, call the mkl_sparse_order routine before either mkl_sparse_sypr or mkl_sparse_?_syprd.

\section*{Input Parameters}
operation
Specifies operation on the input sparse matrix.
\begin{tabular}{|c|c|}
\hline SPARSE_OPERATION_NON_TRANSPOSE & \begin{tabular}{l}
Non-transpose case.
\[
C:=\operatorname{alpha*} A^{*} B^{*}\left(\mathrm{~A}^{\top}\right)
\] \\
\(+b e t a * C\) for real precision.
\[
C:=\operatorname{alpha*} A^{*} B^{*}\left(A^{H}\right)
\] \\
+beta* \(C\) for complex precision.
\end{tabular} \\
\hline SPARSE_OPERATION_TRANSPOSE & Transpose case. This is not supported for complex matrices.
\[
\begin{aligned}
& C:=\text { alpha* }\left(A^{\top}\right) * B^{*} A \\
& + \text { beta* }^{*} C
\end{aligned}
\] \\
\hline SPARSE_OPERATION_CONJUGATE_TRAN
SPOSE & Conjugate transpose case. This is not supported for real matrices.
\[
\begin{aligned}
& C:=\text { alpha* }\left(A^{H}\right) * B^{*} A \\
& + \text { beta* } C
\end{aligned}
\] \\
\hline
\end{tabular}

A
B
Handle which contains the sparse matrix \(A\).
Input dense matrix. Only the upper triangular part of the matrix is used for computation.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{denselayoutB} & \multicolumn{2}{|l|}{Structure that describes the storage scheme for the dense matrix.} \\
\hline & \begin{tabular}{l}
SPARSE_LAYOUT_COLUMN_MAJOR \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} & \begin{tabular}{l}
Store elements in a columnmajor layout. \\
Store elements in a row-major layout.
\end{tabular} \\
\hline 1 db & \multicolumn{2}{|l|}{Leading dimension of matrix B.} \\
\hline alpha & \multicolumn{2}{|l|}{Scalar parameter.} \\
\hline beta & \multicolumn{2}{|l|}{Scalar parameter.} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
NOTE \\
Since the upper triangular part of matrix \(C\) is the only portion that is processed, set real values of alpha and beta in the complex case to obtain the Hermitian matrix.
\end{tabular}} \\
\hline \multirow[t]{3}{*}{denselayoutC} & \multicolumn{2}{|l|}{Structure that describes the storage scheme for the dense matrix.} \\
\hline & SPARSE_LAYOUT_COLUMN_MAJOR & Store elements in a columnmajor layout. \\
\hline & SPARSE_LAYOUT_ROW_MAJOR & Store elements in a row-major layout. \\
\hline Idc & Leading dimension of matrix C . & \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{C}

Handle which contains the resulting dense matrix. Only the uppertriangular part of the matrix is computed.

\section*{Return Values}

The function returns a value indicating whether the operation was successful, or the reason why it failed.
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED The internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILE The execution failed.
D
SPARSE_STATUS_INTERNAL_ERROR An error occurred in the implementation of the algorithm.
SPARSE_STATUS_NOT_SUPPORTED The requested operation is not supported.
mkl_sparse_?_symgs
Computes a symmetric Gauss-Seidel preconditioner.

```

\section*{Syntax}
```

sparse_status_t mkl_sparse_s_symgs (const sparse_operation_t operation, const
sparse_matrix_t A, const struct matrix_descr descr, const float alpha, const float *b,
float *X);
sparse_status_t mkl_sparse_d_symgs (const sparse_operation_t operation, const
sparse_matrix_t A, const struct matrix_descr descr, const double alpha, const double
*b, double *x);
sparse_status_t mkl_sparse_c_symgs (const sparse_operation_t operation, const
sparse_matrix_t A, const struct matrix_descr descr, const MKL_Complex8 alpha, const
MKL_Complex8 *b, MKL_Complex8 *x);
sparse_status_t mkl_sparse_z_symgs (const sparse_operation_t operation, const
sparse_matrix_t A, const struct matrix_descr descr, const MKL_Complexl6 alpha, const
MKL_Complex16 *b, MKL_Complex16 *x);

```

\section*{Include Files}
- mkl_spblas.h

\section*{Description}

The mkl_sparse_?_symgs routine performs this operation:
```

x0 := x*alpha;
(L + D)* * 1 = b - U* }\mp@subsup{|}{0}{*}0
(U + D)* X = b - L* XI;

```
where \(A=L+D+U\).

\section*{NOTE}

This routine is not supported for sparse matrices in BSR, COO, or CSC formats. It supports only the CSR format. Additionally, only symmetric matrices are supported, so the desc.type must be SPARSE_MATRIX_TYPE_SYMMETRIC.

\section*{Input Parameters}
operation
Specifies the operation performed on matrix \(A\).
SPARSE_OPERATION_NON_TRANSPOSE, op (A) := A.
```

NOTE
Transpose (SPARSE_OPERATION_TRANSPOSE) and conjugate
transpose (SPARSE_OPERATION_CONJUGATE_TRANSPOSE) are not supported.

```

A
alpha
descr
Handle which contains the sparse matrix \(A\).
Specifies the scalar alpha.
Structure specifying sparse matrix properties.
sparse_matrix_type_t type - Specifies the type of a sparse matrix:
\begin{tabular}{|c|c|}
\hline & SPARSE_MATRIX_TYPE_GE The matrix is processed as is. NERAL \\
\hline & SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested \\
\hline & SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested RMITIAN triangle is processed). \\
\hline & SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested IANGULAR triangle is processed). \\
\hline & SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements AGONAL are processed). \\
\hline & SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested OCK_TRIANGULAR triangle is processed). Applies to BSR format only. \\
\hline & SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIAGONAL blocks are processed). Applies to BSR format only. \\
\hline & sparse_fill_mode_t mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices: \\
\hline & SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R \\
\hline & SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R \\
\hline & sparse_diag_type_t diag - Specifies diagonal type for non-general matrices: \\
\hline & SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one. \\
\hline & SPARSE_DIAG_UNIT Diagonal elements are equal to one. \\
\hline \(x\) & Array of size at least \(m\), where \(m\) is the number of rows of matrix \(A\). \\
\hline \multirow[t]{3}{*}{\(x\)
\(b\)} & On entry, the array \(x\) must contain the vector \(x\). \\
\hline & Array of size at least \(m\), where \(m\) is the number of rows of matrix \(A\). \\
\hline & On entry, the array \(b\) must contain the vector \(b\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(x\)
Overwritten by the computed vector \(x\).

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED Internal memory allocation failed.

```
```

SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED

```

The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_?_symgs_mv
Computes a symmetric Gauss-Seidel preconditioner followed by a matrix-vector multiplication.

\section*{Syntax}
```

sparse_status_t mkl_sparse_s_symgs_mv (const sparse_operation_t operation, const
sparse_matrix_t A, const struct matrix_descr descr, const float alpha, const float *b,
float *x, float *y);
sparse_status_t mkl_sparse_d_symgs_mv (const sparse_operation_t operation, const
sparse_matrix_t A, const struct matrix_descr descr, const double alpha, const double
*b, double *x, double *y);
sparse_status_t mkl_sparse_c_symgs_mv (const sparse_operation_t operation, const
sparse_matrix_t A, const struct matrix_descr descr, const MKL_Complex8 alpha, const
MKL_Complex8 *b, MKL_Complex8 *x, MKL_Complex8 *y);
sparse_status_t mkl_sparse_z_symgs_mv (const sparse_operation_t operation, const
sparse_matrix_t A, const struct matrix_descr descr, const MKL_Complex16 alpha, const
MKL_Complex16 *b, MKL_Complex16 *x, MKL_Complex16 *y);

```

\section*{Include Files}
- mkl_spblas.h

\section*{Description}

The mkl_sparse_?_symgs_mv routine performs this operation:
```

x0 := x*alpha;
(L + D)*x1 = b - U*X0;
(U + D)*X = b - L**I;
y := A* X

```
where \(A=L+D+U\)

\section*{NOTE}

This routine is not supported for sparse matrices in BSR, COO, or CSC formats. It supports only the CSR format. Additionally, only symmetric matrices are supported, so the desc.type must be SPARSE_MATRIX_TYPE_SYMMETRIC.

\section*{Input Parameters}
operation
Specifies the operation performed on input matrix.
SPARSE_OPERATION_NON_TRANSPOSE, op \((A)=A\).
```

NOTE
Transpose (SPARSE_OPERATION_TRANSPOSE) and conjugate
transpose (SPARSE_OPERATION_CONJUGATE_TRANSPOSE) are not
supported.

```

A
alpha
descr

X
b

Handle which contains the sparse matrix \(A\).
Specifies the scalar alpha.
Structure specifying sparse matrix properties.
```

sparse_matrix_type_t type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested
MMETRIC triangle is processed).
SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested
RMITIAN triangle is processed).
SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested
IANGULAR triangle is processed).
SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements
AGONAL
SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested
OCK_TRIANGULAR triangle is processed). Applies to BSR format only.
SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIAGONAL blocks are processed). Applies to BSR format only.

```
sparse_fill_mode_t mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R

SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R
sparse_diag_type_t diag - Specifies diagonal type for non-general matrices:

SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
Array of size at least \(m\), where \(m\) is the number of rows of matrix \(A\).
On entry, the array \(x\) must contain the vector \(x\).
Array of size at least \(m\), where \(m\) is the number of rows of matrix \(A\). On entry, the array \(b\) must contain the vector \(b\).

\section*{Output Parameters}
```

x
Overwritten by the computed vector $x$.
Array of size at least $m$, where $m$ is the number of rows of matrix $A$.
Overwritten by the computed vector $y$.

```

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED Execution failed.
SPARSE_STATUS_INTERNAL_ERROR An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED The requested operation is not supported.

```
mkl_sparse_syrk
Computes the product of sparse matrix with its
transpose (or conjugate transpose) and stores the
result in a newly allocated sparse matrix.

\section*{Syntax}
```

sparse_status_t mkl_sparse_syrk (const sparse_operation_t operation, const

```
sparse_matrix_t A, sparse_matrix_t *C);

\section*{Include Files}
- mkl_spblas.h

\section*{Description}

The mkl_sparse_syrk routine performs a sparse matrix-matrix operation which results in a sparse matrix \(C\) that is either Symmetric (real) or Hermitian (complex):
\[
C:=A^{*} \circ p(A)
\]
where \(\mathrm{op}\left(^{*}\right)\) is the transpose for real matrices and conjugate transpose for complex matrices OR
\[
C:=\mathrm{op}(A) \star A
\]
depending on the matrix modifier op which can be the transpose for real matrices or conjugate transpose for complex matrices.

Here, \(A\) and \(C\) are sparse matrices.
NOTE This routine is not supported for sparse matrices in COO or CSC formats. It supports only CSR and BSR formats. Additionally, this routine supports only the sorted CSR and sorted BSR formats for the input matrix. If data is unsorted, call the mkl_sparse_order routine before either mkl_sparse_syrk or mkl_sparse_?_syrkd.

\section*{Input Parameters}

\author{
operation
}

A
Specifies the operation op () on input matrix.
SPARSE_OPERATION_NON_TRANSPOSE, Non-transpose, \(C:=A \star \circ p(A)\) where \(\mathrm{op}(*)\) is the transpose for real matrices and conjugate transpose for complex matrices
SPARSE_OPERATION_TRANSPOSE, Transpose, \(C:=\left(A^{T}\right) * A f o r ~ r e a l ~ m a t r i x ~ A ~\) SPARSE_OPERATION_CONJUGATE_TRANSPOSE, Conjugate transpose, C := \(\left(A^{\mathrm{H}}\right) \star A\) for complex matrix \(A\).

Handle which contains the sparse matrix \(A\).

\section*{Output Parameters}

C
Handle which contains the resulting sparse matrix. Only the uppertriangular part of the matrix is computed.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED Execution failed.
SPARSE_STATUS_INTERNAL_ERROR An error in algorithm implementation occurred.
SPARSE_STATUS_NOT_SUPPORTED The requested operation is not supported.

```
mkl_sparse_?_syrkd
Computes the product of sparse matrix with its
transpose (or conjugate transpose) and stores the
result as a dense matrix.

\section*{Syntax}
```

sparse_status_t mkl_sparse_s_syrkd (sparse_operation_t operation, const sparse_matrix_t
A, float alpha, float beta, float *C, sparse_layout_t layout, MKL_INT ldc);
sparse_status_t mkl_sparse_d_syrkd (sparse_operation_t operation, const sparse_matrix_t
A, double alpha, double beta, double *C, sparse_layout_t layout, MKL_INT ldC);
sparse_status_t mkl_sparse_c_syrkd (sparse_operation_t operation, const sparse_matrix_t
A, const MKL_Complex8 alpha, MKL_Complex8 beta, MKL_Complex8 *C, sparse_layout_t
layout, MKL_INT ldc);
sparse_status_t mkl_sparse_z_syrkd (sparse_operation_t operation, const sparse_matrix_t
A, MKL_Complex16 alpha, MKL_Complex16 beta, MKL_Complex16 *C, sparse_layout_t layout,
const MKL_INT ldc);

```

\section*{Include Files}
- mkl_spblas.h

\section*{Description}

The mkl_sparse_?_syrkd routine performs a sparse matrix-matrix operation which results in a dense matrix \(C\) that is either symmetric (real case) or Hermitian (complex case):
```

C := beta*C + alpha*A*op(A)

```
or
```

C := beta*C + alpha*op (A)*A

```
depending on the matrix modifier op which can be the transpose for real matrices or conjugate transpose for complex matrices. Here, \(A\) is a sparse matrix and \(C\) is a dense matrix.

NOTE This routine is not supported for sparse matrices in COO or CSC formats. It supports only CSR and BSR formats. Additionally, this routine supports only the sorted CSR and sorted BSR formats for the input matrix. If data is unsorted, call the mkl_sparse_order routine before either mkl_sparse_syrk or mkl_sparse_?_syrkd.

\section*{Input Parameters}
```

operation
A
alpha
beta
layout
ldc
Specifies the operation op () performed on the input matrix.

```
```

SPARSE_OPERATION_NON_TRANSPOSE,Non-transpose, C := beta*C +

```
SPARSE_OPERATION_NON_TRANSPOSE,Non-transpose, C := beta*C +
alpha\starA*op (A) where op(*) is the transpose (real matrices) or conjugate transpose (complex matrices).
SPARSE_OPERATION_TRANSPOSE, Transpose, \(C\) := beta*C + alpha*AT*A for real matrix A.
SPARSE_OPERATION_CONJUGATE_TRANSPOSE Conjugate transpose,C := beta* \(C+a l p h a \star A^{H} * A\) for complex matrix \(A\).
A
alpha
beta
layout
Handle which contains the sparse matrix \(A\).
Scalar parameter alpha.
Scalar parameter beta.
Describes the storage scheme for the dense matrix.
\begin{tabular}{|ll}
\hline layout \(=\) SPARSE_LAYOUT_COLUMN_MAJOR & \begin{tabular}{l}
Storage of elements uses \\
column-major layout.
\end{tabular} \\
layout \(=\) SPARSE_LAYOUT_ROW_MAJOR & \begin{tabular}{l}
Storage of elements uses \\
row-major layout.
\end{tabular} \\
\hline
\end{tabular}
Leading dimension of matrix \(C\).
```


## NOTE

```
Only the upper triangular part of matrix C is processed. Therefore, you must set real values of alpha and beta for complex matrices in order to obtain a Hermitian matrix.
```


## Output Parameters

C
Resulting dense matrix．Only the upper triangular part of the matrix is computed．

## Return Values

The function returns a value indicating whether the operation was successful or not，and why．

SPARSE＿STATUS＿SUCCESS	The operation was successful．
SPARSE＿STATUS＿NOT＿INITIALIZED	The routine encountered an empty handle or matrix array．
SPARSE＿STATUS＿ALLOC＿FAILED	Internal memory allocation failed．
SPARSE＿STATUS＿INVALID＿VALUE	The input parameters contain an invalid value．
SPARSE＿STATUS＿EXECUTION＿FAILED	Execution failed．
SPARSE＿STATUS＿INTERNAL＿ERROR	An error in algorithm implementation occurred．
SPARSE＿STATUS＿NOT＿SUPPORTED	The requested operation is not supported．

mkl＿sparse＿？＿dotmv Computes a sparse matrix－vector product followed by a dot product．

## Syntax

```
sparse_status_t mkl_sparse_s_dotmv (const sparse_operation_t operation, const float
alpha, const sparse_matrix_t A, const struct matrix_descr descr, const float *x, const
float beta, float *y, float *d);
sparse_status_t mkl_sparse_d_dotmv (const sparse_operation_t operation, const double
alpha, const sparse_matrix_t A, const struct matrix_descr descr, const double *x, const
double beta, double *y, double *d);
sparse_status_t mkl_sparse_c_dotmv (const sparse_operation_t operation, const
MKL_Complex8 alpha, const sparse_matrix_t A, const struct matrix_descr descr, const
MKL_Complex8 *x, const MKL_Complex8 beta, MKL_Complex8 *y, MKL_Complex8 *d);
sparse_status_t mkl_sparse_z_dotmv (const sparse_operation_t operation, const
MKL_Complex16 alpha, const sparse_matrix_t A, const struct matrix_descr descr, const
MKL_Complex16 *x, const MKL_Complex16 beta, MKL_Complex16 *y, MKL_Complex16 *d);
```


## Include Files

－mkl＿spblas．h

## Description

The mkl＿sparse＿？＿dotmv routine computes a sparse matrix－vector product and dot product：

```
y := alpha*op(A)*x + beta*yd := 住的* * y (real case)
d := 勆conj (}\mp@subsup{\textrm{x}}{\textrm{i}}{})*\mp@subsup{y}{i}{
```

where
－alpha and beta are scalars．
－$x$ and $y$ are vectors．
－$A$ is an $m$－by－$k$ matrix．

- conj represents complex conjugation.
- op ( $A$ ) is a matrix modifier.

Available options for $\mathrm{op}(A)$ are $A, A^{T}$, or $A^{H}$.

## NOTE

For sparse matrices in the BSR format, the supported combinations of (indexing,block_layout) are:

- (SPARSE_INDEX_BASE_ZERO, SPARSE_LAYOUT_ROW_MAJOR )
- (SPARSE_INDEX_BASE_ONE, SPARSE_LAYOUT_COLUMN_MAJOR )


## Input Parameters

operation
alpha

A
descr

Specifies the operation performed on matrix $A$.

```
If operation = SPARSE_OPERATION_NON_TRANSPOSE,op (A) = A.
If operation = SPARSE_OPERATION_TRANSPOSE, op (A) = AT
If operation = SPARSE_OPERATION_CONJUGATE_TRANSPOSE,op (A) = A A}\mathrm{ .
```

Specifies the scalar alpha.
Handle which contains the sparse matrix $A$.
Structure specifying sparse matrix properties.

```
sparse_matrix_type_t type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested
MMETRIC C - - triangle is processed).
SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested
RMITIANN - - triangle is processed).
SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested
IANGULAR
SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements
AGONAL - are processed).
SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested
OCK_TRIANGULAR triangle is processed). Applies to BSR format
 only.
SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal
OCK_DIAGGONAL - - blocks are processed). Applies to BSR format only.
```

sparse_fill_mode_t mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R

	SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed.
	R
	sparse_diag_type_t diag - Specifies diagonal type for non-general matrices:
	SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
	SPARSE_DIAG_UNIT Diagonal elements are equal to one.
x	If operation = SPARSE_OPERATION_NON_TRANSPOSE, array of size at least $k$, where $k$ is the number of columns of matrix $A$.
	Otherwise, array of size at least $m$, where $m$ is the number of rows of matrix $A$.
	On entry, the array $x$ must contain the vector $x$.
beta	Specifies the scalar beta.
Y	If operation $=$ SPARSE_OPERATION_NON_TRANSPOSE, array of size at least $m$, where $k$ is the number of rows of matrix $A$.
	Otherwise, array of size at least $k$, where $k$ is the number of columns of matrix $A$.
	On entry, the array $y$ must contain the vector $y$.

## Output Parameters

y

Overwritten by the updated vector $y$.
d
Overwritten by the dot product of $x$ and $y$.

## Return Values

The function returns a value indicating whether the operation was successful or not, and why.

```
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED
The operation was successful.
The routine encountered an empty handle or matrix array.
Internal memory allocation failed.
The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_?_sorv
Computes forward, backward sweeps or a symmetric successive over-relaxation preconditioner operation.
Syntax
```

```
sparse_status_t mkl_sparse_s_sorv(
 const spar\mp@code{e_sor_type_\overline{t}}\mathrm{ type,}
 const struct matrix_descr descrA,
```

```
 const sparse_matrix_t A,
 float omega,
 float alpha,
 float* x,
 float* b
);
```

```
sparse_status_t mkl_sparse_d_sorv(
```

    con̄st sparse_sor_type_̄ \(\bar{t} y p e\),
    const struct matrix_descr descrA,
    const sparse_matrix_t \(A\),
    double omega,
    double alpha,
    double* \(x\),
    double* b
    );

Include Files

- mkl_spblas.h


## Description

The mkl_sparse_?_sorv routine performs one of the following operations:
SPARSE_SOR_FORWARD:

$$
(\omega * L+D) * x^{\wedge} 1=(D-\omega * D-\omega * U) * x^{\wedge} 0+\omega * b
$$

SPARSE_SOR_BACKWARD:

$$
(\omega * U+D) * x^{\wedge} 1=(D-\omega * D-\omega * L) * x^{\wedge} 0+\omega * b
$$

SPARSE_SOR_SYMMETRIC: Performs application of a

$$
\frac{\omega}{2-\omega}\left(\frac{1}{\omega} D+L\right) D^{-1}\left(\frac{1}{\omega} D+L\right)^{T}
$$

preconditioner.
where $A=L+D+U$ and $x^{\wedge} 0$ is an input vector $x$ scaled by input parameter alpha vector and $x^{\wedge} 1$ is an output stored in vector $x$.

## NOTE

## Currently this routine only supports the following configuration:

- CSR format of the input matrix
- SPARSE_SOR_FORWARD operation
- General matrix (descr.type is SPARSE_MATRIX_TYPE_GENERAL) or symmetric matrix with full portrait and unit diagonal (descr.type is SPARSE_MATRIX_TYPE_SYMMETRIC, descr.mode is SPARSE_FILL_MODE_FULL, and descr.diag is SPARSE_DIAG_UNIT)


## NOTE

Currently, this routine is optimized only for sequential threading execution mode.

Warning It is currently not allowed to place a sorv call in a parallel section (e.g., under \#pragma omp parallel), because it is not thread-safe in this scenario. This limitation will be addressed in one of the upcoming releases.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Input Parameters

type
descr

Specifies the operation performed by the SORV preconditioner.
SPARSE_SOR_FORWARD Performs forward sweep as defined by:

$$
(\omega * L+D) * x^{\wedge} 1=(D-\omega * D-\omega * U) * x^{\wedge} 0+\omega * b
$$

Performs backward sweep as defined by: $(\omega * U+D) * x^{\wedge} 1=(D-\omega * D-\omega * L) * x^{\wedge} 0+\omega * b$

Preconditioner matrix could be expressed as:

$$
\frac{\omega}{2-\omega}\left(\frac{1}{\omega} D+L\right) D^{-1}\left(\frac{1}{\omega} D+L\right)^{T}
$$

Structure specifying sparse matrix properties.

```
sparse_matrix_type_t
type
```

Specifies the type of a sparse matrix:

- SPARSE_MATRIX_TYPE_GENERAL

The matrix is processed as-is.

- SPARSE_MATRIX_TYPE_SYMMETRIC

The matrix is symmetric (only the requested triangle is processed).

- SPARSE_MATRIX_TYPE_HERMITIAN

The matrix is Hermitian (only the requested triangle is processed).

- SPARSE_MATRIX_TYPE_TRIANGULAR

The matrix is triangular (only the requested triangle is processed).

- SPARSE_MATRIX_TYPE_DIAGONAL

The matrix is diagonal (only diagonal elements are processed).

- SPARSE_MATRIX_TYPE_BLOCK_TRIANGULAR

The matrix is block-triangular (only requested triangle is processed). Applies to BSR format only.

- SPARSE_MATRIX_TYPE_BLOCK_DIAGONAL

The matrix is block-diagonal (only diagonal blocks are processed). Applies to BSR format only.

```
sparse_fill_mode_t
mode
```

Specifies the triangular matrix part for symmetric, Hermitian, triangular, and blocktriangular matrices:

- SPARSE_FILL_MODE_LOWER

The lower triangular matrix part is processed.

- SPARSE_FILL_MODE_UPPER

The upper triangular matrix part is processed.
sparse_diag_type_t diag

A
omega
alpha

X
b

## Output Parameters

$X$

Handle containing internal data.
Relaxation factor.
Parameter that could be used to normalize or set to zero the vector $x$ that holds the initial guess.

Initial guess on input.
Right-hand side.

Solution vector on output.

## Return Values

The function returns a value indicating whether the operation was successful or not, and why.

```
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED
```

The operation was successful.
The routine encountered an empty handle or matrix array.
Internal memory allocation failed.
The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.

## BLAS-like Extensions

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library provides $C$ and Fortran routines to extend the functionality of the BLAS routines. These include routines to compute vector products, matrix-vector products, and matrix-matrix products.
Inte ${ }^{\circledR}$ oneAPI Math Kernel Library also provides routines to perform certain data manipulation, including matrix in-place and out-of-place transposition operations combined with simple matrix arithmetic operations. Transposition operations are Copy As Is, Conjugate transpose, Transpose, and Conjugate. Each routine adds the possibility of scaling during the transposition operation by giving some alpha and/or beta parameters. Each routine supports both row-major orderings and column-major orderings.
Table "BLAS-like Extensions" lists these routines.
The <?> symbol in the routine short names is a precision prefix that indicates the data type:

$s$	float
$d$	dou.ble
$c$	MKL_Complex8
$z$	MKL_Complex16

## BLAS-like Extensions

Routine Data Types	Description
cblas_?axpby s,d, c, z	Scales two vectors, adds them to one another and stores result in the vector (routines).
cblas_?axpy_batch s,d, c, z   cblas_?axpy_batch_strided	Computes groups of vector-scalar products added to a vector.
cblas_?dgmm_batch_strs,ddfc, z cblas_?dgmm_batch	Computes groups of diagonal matrix-general matrix product
cblas_?gemm_batch s,d, c, z   cblas_?gemm_batch_strided	Computes scalar-matrix-matrix products and adds the results to scalar matrix products for groups of general matrices.
cblas_gemm_bf16bf16f3 bfloat16	Computes a matrix-matrix product with general matrices of bfloat16 data type.


Routine Data Types	Description
cblas_gemm_bf16bf16f3bfloat16ate	Computes a matrix-matrix product with general matrices of bfloat16 data type where one or both input matrices are stored in a packed data structure, and adds the result to a scalar-matrix product.
cblas_gemm_f16£16£32 half precision	Computes a matrix-matrix product with general matrices of half precision data type.
cblas_gemm_f16£16£32_halfiprecision	Computes a matrix-matrix product with general matrices of half precision data type where one or both input matrices are stored in a packed data structure, and adds the result to a scalar-matrix product.
cblas_gemm_* Integer	Computes a matrix-matrix product with general integer matrices.
cblas_? gemm_compute h, s, d	Computes a matrix-matrix product with general matrices where one or both input matrices are stored in a packed data structure and adds the result to a scalar-matrix product.
cblas_gemm_* compute Integer	Computes a matrix-matrix product with general integer matrices where one or both input matrices are stored in a packed data structure and adds the result to a scalarmatrix product.
cblas_? gemm_pack h,s,d	Performs scaling and packing of the matrix into the previously allocated buffer.
cblas_gemm_*_pack Integer, bfloat16	Pack the matrix into the buffer allocated previously.
	Returns the number of bytes required to store the packed matrix.
cblas_gemm_*_pack_getInteger, bfloat16	Returns the number of bytes required to store the packed matrix.
cblas_?gemm3m c, z	Computes a scalar-matrix-matrix product using matrix multiplications and adds the result to a scalar-matrix product.
cblas_?gemm3m_batch c, z   cblas_?gemm3m_batch_strided	Computes a scalar-matrix-matrix product using matrix multiplications and adds the result to a scalar-matrix product.
cblas_? ${ }^{\text {cbemmt }}$ s,d, c, z	Computes a matrix-matrix product with general matrices but updates only the upper or lower triangular part of the result matrix.
```cblas_?gemv_batch_str\boldsymbol{S,ld},\mathbf{C},\mathbf{z} cblas_?gemv_batch```	Computes groups of matrix-vector product using general matrices.
cblas_?trsm_batch s,d, c, z	Solves a triangular matrix equation for a group of matrices.
?cblas_?trsm_batch_strided	
mkl_?imatcopy s,d, c, z	Performs scaling and in-place transposition/copying of matrices.
mkl_?imatcopy_batch_ss,rd,c,dz mkl_?imatcopy_batch	Computes groups of in-place matrix copy/transposition with scaling using general matrices.

Routine	Data Types	Description
mkl_?omatadd	s, d, c, z	Performs scaling and sum of two matrices including their out-of-place transposition/copying.
mkl_?omatcopy	s, d, c, z	Performs scaling and out-of-place transposition/copying of matrices.
mkl_? omatcopy_batch_stride d	s, d, c, z	Computes groups of out of place matrix copy/transposition with scaling using general matrices.
mkl_?omatcopy_batch		
mkl_?omatcopy2	s, d, c, z	Performs two-strided scaling and out-of-place transposition/copying of matrices.
mkl_jit_create_?gemm	s, d, c, z	Creates a handle on a jitter and generates a GEMM kernel that computes a scalar-matrix-matrix product and adds the result to a scalar-matrix product, with general matrices.
mkl_jit_destroy		Deletes the previously created jitter and the generated GEMM kernel.
		Returns the GEMM kernel previously generated.

```
cblas_?axpy_batch
Computes a group of vector-scalar products added to
```

a vector.

Syntax

```
void cblas_saxpy_batch (const MKL_INT *n_array, const float *alpha_array, const float
**x_array, const MKL_INT *incx_array, float **y_array, const MKL_INT *incy_array, const
MKL_INT group_count, const MKL_INT *group_size_array);
void cblas_daxpy_batch (const MKL_INT *n_array, const double *alpha_array, const double
**x_array, const MKL_INT *incx_array, double **y_array, const MKL_INT *incy_array,
const MKL_INT group_count, const MKL_INT *group_size_array);
void cblas_caxpy_batch (const MKL_INT *n_array, const void *alpha_array, const void
**x_array, const MKL_INT *incx_array, void **y_array, const MKL_INT *incy_array, const
MKL_INT group_count, const MKL_INT *group_size_array);
void cblas_zaxpy_batch (const MKL_INT *n_array, const void *alpha_array, const void
**x_array, const MKL_INT *incx_array, void **y_array, const MKL_INT *incy_array, const
MKL_INT group_count, const MKL_INT *group_size_array);
```


Description

The cblas_?axpy_batch routines perform a series of scalar-vector product added to a vector. They are similar to the cblas_?axpy routine counterparts, but the cblas_?axpy_batch routines perform vector operations with a group of vectors. The groups contain vectors with the same parameters.
The operation is defined as

```
idx = 0
for i = 0 ... group_count - 1
    n, alpha, incx, incy and group_size at position i in n_array, alpha_array, incx_array,
incy_array and group_size_array
    for j = 0 ... group_size - 1
```

```
        x and y are vectors of size n at position idx in x_array and y_array
        y := alpha * x + y
        idx := idx + 1
    end for
end for
```

The number of entries in x_array, and y_array is total_batch_count = the sum of all of the group_size entries.

Input Parameters

```
n_array
alpha_array
x_array
incx_array
y_array
incy_array
group_count
group_size_array
Array of size group_count. For the group \(i, n_{i}=n_{-}\)array[i] is the number of elements in vectors \(x\) and \(y\).
Array of size group_count. For the group i, alphai = alpha_array[i] is the scalar alpha.
Array of size total_batch_count of pointers used to store \(x\) vectors. The array allocated for the \(x\) vectors of the group i must be of size at least ( \(1+\) ( \(n_{i}-1\) )*abs(incxi)).
Array of size group_count. For the group i, incxi \(=\) incx_array[i] is the stride of vector \(x\).
Array of size total_batch_count of pointers used to store \(y\) vectors. The array allocated for the \(y\) vectors of the group \(i\) must be of size at least \((1+\) ( \(\mathrm{n}_{\mathrm{i}}-1\) )*abs(incyi)).
Array of size group_count. For the group i, incyi = incy_array[i] is the stride of vector \(y\).
Number of groups. Must be at least 0 .
Array of size group_count. The element group_size_array[i] is the number of vector in the group i. Each element in group_size_array must be at least 0 .
```


Output Parameters

```
y_array
```

Array of pointers holding the total_batch_count updated vector y.
cblas_?axpy_batch_strided
Computes a group of vector-scalar products added to a vector.

Syntax

```
void cblas_saxpy_batch_strided (const MKL_INT n, const float alpha, const float *x,
const MKL_INT incx, const MKL_INT stridex, float *y, const MKL_INT incy, const MKL_INT
stridey, const MKL_INT batch_size);
void cblas_daxpy_batch_strided (const MKL_INT n, const double alpha, const double *x,
const MKL_INT incx, const MKL_INT stridex, double *y, const MKL_INT incy, const MKL_INT
stridey, const MKL_INT batch_size);
void cblas_caxpy_batch_strided (const MKL_INT n, const void alpha, const void *x, const
MKL_INT incx, const MKL_INT stridex, void *y, const MKL_INT incy, const MKL_INT
stridey, const MKL_INT batch_size);
```

```
void cblas_zaxpy_batch_strided (const MKL_INT n, const void alpha, const void *x, const
MKL_INT incx, const MKL_INT stridex, void *y, const MKL_INT incy, const MKL_INT
stridey, const MKL_INT batch_size);
```

Include Files

- mkl.h

Description

The cblas_?axpy_batch_strided routines perform a series of scalar-vector product added to a vector. They are similar to the cblas_?axpy routine counterparts, but the cblas_?axpy_batch_strided routines perform vector operations with a group of vectors.
All vector x (respectively, y) have the same parameters (size, increments) and are stored at constant stridex (respectively, stridey) from each other. The operation is defined as

```
For i = 0 ... batch_size - 1
    X and Y are vectors at offset i * stridex and i * stridey in x and y
    Y = alpha * X + Y
end for
```


Input Parameters

```
n Number of elements in vectors }x\mathrm{ and }y\mathrm{ .
alpha Specifies the scalar alpha.
x Array of size at least stridex*batch_size holding the x vectors.
incx Specifies the increment for the elements of x.
stridex
y
incy
stridey
batch_size
```


Output Parameters

y
Array holding the batch_size updated vector y.
cblas_?axpby
Scales two vectors, adds them to one another and stores result in the vector.

Syntax

```
void cblas_saxpby (const MKL_INT n, const float a, const float *x, const MKL_INT incx,
const float b, float *y, const MKL_INT incy);
void cblas_daxpby (const MKL_INT n, const double a, const double *x, const MKL_INT
incx, const double b, double *y, const MKL_INT incy);
```

```
void cblas_caxpby (const MKL_INT n, const void *a, const void *x, const MKL_INT incx,
const void *b, void *y, const MKL_INT incy);
void cblas_zaxpby (const MKL_INT n, const void *a, const void *x, const MKL_INT incx,
const void *b, void *y, const MKL_INT incy);
```

Include Files

- mkl.h

Description

The ?axpby routines perform a vector-vector operation defined as

```
y := a* }x+\mp@subsup{b}{}{\star}
```

where:
a and b are scalars
x and y are vectors each with n elements.

Input Parameters

n	Specifies the number of elements in vectors x and y.
a	Specifies the scalar a.
x	Array, size at least $(1+(n-1) * a b s($ incx $))$.
incx	Specifies the increment for the elements of x.
b	Specifies the scalar b.
y	Array, size at least $(1+(n-1) * a b s($ incy $))$.
incy	Specifies the increment for the elements of y.

Output Parameters

y
Contains the updated vector y.

Example

For examples of routine usage, see these code examples in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) installation directory:

- cblas_saxpby: examples\cblas\source\cblas_saxpbyx.c
- cblas_daxpby: examples \cblas\source\cblas_daxpbyx.c
- cblas_caxpby: examples \cblas\source\cblas_caxpbyx.c
- cblas_zaxpby: examples\cblas\source\cblas_zaxpbyx.c
cblas_?gemmt
Computes a matrix-matrix product with general matrices but updates only the upper or lower triangular part of the result matrix.

```
Syntax
void cblas_sgemmt (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE transa, const CBLAS_TRANSPOSE transb, const MKL_INT n, const MKL_INT k,
const float alpha, const float *a, const MKL_INT lda, const float *b, const MKL_INT
ldb, const float beta, float *c, const MKL_INT ldc);
void cblas_dgemmt (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE transa, const CBLAS_TRANSPOSE transb, const MKL_INT n, const MKL_INT k,
const double alpha, const double *a, const MKL_INT lda, const double *b, const MKL_INT
ldb, const double beta, double *}\mp@subsup{}{C}{\prime}\mathrm{ , const MKL_INT ldc);
void cblas_cgemmt (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE transa, const CBLAS_TRANSPOSE transb, const MKL_INT n, const MKL_INT k,
const void *alpha, const void *a, const MKL_INT lda, const void *b, const MKL_INT ldb,
const void *beta, void *c, const MKL_INT ldc);
void cblas_zgemmt (const CBLAS_LAYOUT Layout, const CBLAS_UPLO uplo, const
CBLAS_TRANSPOSE transa, const CBLAS_TRANSPOSE transb, const MKL_INT n, const MKL_INT k,
const void *alpha, const void *a, const MKL_INT lda, const void *b, const MKL_INT ldb,
const void *beta, void *C, const MKL_INT ldc);
```

Include Files

- mkl.h

Description

The ?gemmt routines compute a scalar-matrix-matrix product with general matrices and add the result to the upper or lower part of a scalar-matrix product. These routines are similar to the ?gemm routines, but they only access and update a triangular part of the square result matrix (see Application Notes below).
The operation is defined as

```
C:= alpha*op (A)*op (B) + beta*C,
```

where:

```
op (X) is one of op (X) = X, or op (X) = X , or op (X) = X H
alpha and beta are scalars,
A,B and C are matrices:
op (A) is an n-by-k matrix,
op (B) is a k-by-n matrix,
```

C is an n-by- n upper or lower triangular matrix.

Input Parameters

Layout
uplo
transa

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies whether the upper or lower triangular part of the array c is used. If uplo = 'CblasUpper', then the upper triangular part of the array c is used. If uplo = 'CblasLower', then the lower triangular part of the array c is used.

Specifies the form of op (A) used in the matrix multiplication:
if transa $=$ 'CblasNoTrans', then op $(A)=A$;
if transa $=$ 'CblasTrans', then op $(A)=A^{T}$;
if transa $=$ 'CblasConjTrans', then op $(A)=A^{H}$.
Specifies the form of op (B) used in the matrix multiplication:
if transb $=$ 'CblasNoTrans', then op $(B)=B$;
if transb $=$ 'CblasTrans', then op $(B)=B^{T}$;
if transb $=$ 'CblasConjTrans', then op $(B)=B^{\mathrm{H}}$.
Specifies the order of the matrix C. The value of n must be at least zero.
Specifies the number of columns of the matrix op (A) and the number of rows of the matrix $o p(B)$. The value of k must be at least zero.

Specifies the scalar alpha.

	transa='CblasNoTr ans'	```transa='CblasTran s' or 'CblasConjTrans'```
$\begin{aligned} & \text { Layout=' CblasColMaj } \\ & \text { or' } \end{aligned}$	Array, size lda * k. Before entry, the leading n-by- k part of the array a must contain the matrix A.	Array, size lda * n. Before entry, the leading k-by-n part of the array a must contain the matrix A.
```Layout='CblasRowMaj or'```	Array, size lda * $n$. Before entry, the leading $k$-by-n part of the array a must contain the matrix $A$.	Array, size lda $* k$. Before entry, the leading $n$-by- $k$ part of the array a must contain the matrix $A$.

Specifies the leading dimension of a as declared in the calling (sub)program.

	transa='CblasNoTr	transa='CblasTran
	ans'	$s^{\prime}$ or
Layout='CblasColMaj	lda must be at least	'CblasConjTrans'
or'	$\max (1, n)$.	$\max (1, k)$.
Layout='CblasRowMaj	lda must be at least	lda must be at least
or'	$\max (1, k)$.	$\max (1, n)$.

b

	transb='CblasNoTr ans'	```transb='CblasTran s' or 'CblasConjTrans'```
$\begin{aligned} & \text { Layout= ' CblasColMaj } \\ & \text { or' } \end{aligned}$	Array, size $1 d b * n$.   Before entry, the leading $k$-by-n part of the array b must contain the matrix $B$.	Array, size $1 d b * k$. Before entry, the leading $n$-by- $k$ part of the array $b$ must contain the matrix $B$.

$\left.\begin{array}{lll}\text { Layout=' CblasRowMaj } \\ \text { or' }\end{array} \begin{array}{ll}\text { Array, size } l d b * k . \\ \text { Before entry, the leading } \\ n \text {-by- } k \text { part of the array } \\ b \text { must contain the } \\ \text { matrix } B .\end{array} \quad \begin{array}{l}\text { Array, size } l d b * n . \\ \text { Before entry, the leading } \\ k \text {-by- } n \text { part of the array } \\ b \text { must contain the } \\ \text { matrix } B .\end{array}\right]$

1 db
beta
c
ldc

Specifies the leading dimension of $b$ as declared in the calling (sub)program.

	transb='CblasNoTr	transb='CblasTran
	ans'	$s^{\prime}$ or
		'CblasConjTrans'
Layout='CblasColMaj	$l d b$ must be at least	$l d b$ must be at least
or'	$\max (1, k)$.	$\max (1, n)$.
Layout='CblasRowMaj	$l d b$ must be at least	$l d b$ must be at least
or'	$\max (1, n)$.	$\max (1, k)$.

Specifies the scalar beta. When beta is equal to zero, then $c$ need not be set on input.

Array, size ldc by $n$.
When beta is equal to zero, $c$ need not be set on input.

uplo $=$ 'CblasUpper'	uplo $=$ 'CblasLower'
The leading $n$-by- $n$ upper triangular	The leading $n$-by- $n$ lower triangular
part of the array $c$ must contain the	part of the array $c$ must contain the
upper triangular part of the matrix $C$	lower triangular part of the matrix $C$
and the strictly lower triangular part of	and the strictly upper triangular part of
$c$ is not referenced.	$C$ is not referenced.

Specifies the leading dimension of $c$ as declared in the calling (sub)program. The value of $l d c$ must be at least max $(1, n)$.

## Output Parameters

c
When uplo = 'CblasUpper', the upper triangular part of the array $c$ is overwritten by the upper triangular part of the updated matrix.

When uplo = 'CblasLower', the lower triangular part of the array $c$ is overwritten by the lower triangular part of the updated matrix.

## Application Notes

These routines only access and update the upper or lower triangular part of the result matrix. This can be useful when the result is known to be symmetric; for example, when computing a product of the form $C:=$ alpha夫 $B^{\star} S^{\star} B^{T}+$ beta* $C$, where $S$ and $C$ are symmetric matrices and $B$ is a general matrix. In this case, first compute $A:=B^{\star} S$ (which can be done using the corresponding ?symm routine), then compute $C:=$ alpha* $A \star B^{T}+$ beta* $C$ using the ?gemmt routine.
cblas_?gemm3m
Computes a scalar-matrix-matrix product using matrix multiplications and adds the result to a scalar-matrix product.

## Syntax

```
void cblas_cgemm3m (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa, const
CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const void
*alpha, const void *a, const MKL_INT lda, const void *b, const MKL_INT ldb, const void
*beta, void *}\mp@subsup{}{C}{\prime}, const MKL_INT Idc)
void cblas_zgemm3m (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa, const
CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const void
*alpha, const void *a, const MKL_INT lda, const void *b, const MKL_INT ldb, const void
*beta, void *c, const MKL_INT ldc);
```


## Include Files

- mkl.h


## Description

The ?gemm 3 m routines perform a matrix-matrix operation with general complex matrices. These routines are similar to the ?gemm routines, but they use fewer matrix multiplication operations (see Application Notes below).

The operation is defined as

```
C := alpha*op(A)*op(B) + beta*C,
```

where:
$o p(x)$ is one of $o p(x)=x$, or $o p(x)=x^{\prime}$, or $o p(x)=\operatorname{conjg}\left(x^{\prime}\right)$,
alpha and beta are scalars,
$A, B$ and $C$ are matrices:
$o p(A)$ is an $m$-by- $k$ matrix,
op ( $B$ ) is a $k$-by-n matrix,
$C$ is an $m$-by- $n$ matrix.

## Input Parameters

Layout	Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).
transa	Specifies the form of op (A) used in the matrix multiplication:
	if transa $=$ CblasNoTrans, then op (A) $=A$;
	if transa=CblasTrans, then op $(A)=A^{\prime}$;
	if transa=CblasConjTrans, then op $(A)=\operatorname{conjg}\left(A^{\prime}\right)$.
transb	Specifies the form of op ( $B$ ) used in the matrix multiplication:
	if transb $=$ CblasNoTrans, then op $(B)=B$;
	if transb=CblasTrans, then op $(B)=B^{\prime}$;
	if transb $=$ CblasConjTrans, then op $(B)=\operatorname{conjg}\left(B^{\prime}\right)$.

Specifies the number of rows of the matrix op ( $A$ ) and of the matrix $C$. The value of $m$ must be at least zero.
n
k
a

Ida
b

Specifies the number of columns of the matrix op ( $B$ ) and the number of columns of the matrix $C$.

The value of $n$ must be at least zero.
Specifies the number of columns of the matrix op ( $A$ ) and the number of rows of the matrix op ( $B$ ).

The value of $k$ must be at least zero.
Specifies the scalar alpha.

	transa=CblasNoTrans	transa=CblasTrans or transa=CblasConjTrans
Layout = CblasColMajor	Array, size 1 da* $_{k}$.   Before entry, the leading m-by-k part of the array a must contain the matrix A.	Array, size $l^{\text {da* }}$ m.   Before entry, the leading $k$ -by-m part of the array a must contain the matrix $A$.
Layout =   CblasRowMajor	Array, size lda* $m$.   Before entry, the leading $k$-by-m part of the array a must contain the matrix A.	Array, size $1 d^{*}{ }^{*} k$.   Before entry, the leading $m^{-}$ by-k part of the array a must contain the matrix $A$.

Specifies the leading dimension of $a$ as declared in the calling (sub)program.

	transa=CblasNoTrans	transa=CblasTrans or   transa=CblasConjTrans
Layout $=$   CblasColMajor	Ida must be at least   $\max (1, ~ m)$.	Ida must be at least   $\max (1, \quad k)$
Layout $=$   CblasRowMajor	Ida must be at least   $\max (1, k)$	Ida must be at least   $\max (1, ~ m)$.


	transb=CblasNoTrans	transb=CblasTrans or   transb=CblasConjTrans
Layout $=$   CblasColMajor	Array, size ldb by $n$.   Before entry, the leading   $k$-by-n part of the array $b$   must contain the matrix   $B$.	Array, size $l d b$ by $k$. Before   entry the leading $n$-by- $k$   part of the array b must   contain the matrix $B$.


Layout $=$   CblasRowMajor	Array, size $l d b$ by $k$.   Before entry the leading   $n-b y-k$ part of the array $b$   must contain the matrix   $B$.	Array, size $l d b$ by $n$. Before   entry, the leading $k$-by- $n$   part of the array $b$ must   contain the matrix $B$.

1 db
beta
c
ldc
Specifies the leading dimension of $b$ as declared in the calling (sub)program.

	transb=CblasNoTrans	transb=CblasTrans or   transb=CblasConjTrans
Layout $=$   CblasColMajor	ldb must be at least   $\max (1, k)$.	ldb must be at least   $\max (1, ~ n)$.
Layout $=$   CblasRowMajor	ldb must be at least   $\max (1, ~ n)$.	ldb must be at least   $\max (1, k)$.

Specifies the scalar beta.
When beta is equal to zero, then $c$ need not be set on input.

Layout $=$   CblasColMajor	Array, size $l d c$ by $n$. Before entry, the leading $m$ -   by- $n$ part of the array $c$ must contain the matrix $C$,   except when beta is equal to zero, in which case $c$   need not be set on entry.
Layout $=$   CblasRowMajor	Array, size $l d c$ by $m$. Before entry, the leading $n-$   by- $m$ part of the array $c$ must contain the matrix $C$,   except when beta is equal to zero, in which case $c$   need not be set on entry.

Specifies the leading dimension of $c$ as declared in the calling (sub)program.

Layout $=$ CblasColMajor	Idc must be at least max $(1, m)$.
Layout $=$ CblasRowMajor	Idc must be at least max $(1, n)$.

## Output Parameters

c
Overwritten by the $m$-by-n matrix (alpha*op $(A) * o p(B)+b e t a * C$ ).

## Application Notes

These routines perform a complex matrix multiplication by forming the real and imaginary parts of the input matrices. This uses three real matrix multiplications and five real matrix additions instead of the conventional four real matrix multiplications and two real matrix additions. The use of three real matrix multiplications reduces the time spent in matrix operations by $25 \%$, resulting in significant savings in compute time for large matrices.

If the errors in the floating point calculations satisfy the following conditions:

```
fl(x op y)=(x op y) (1+\delta), |\delta|\lequ, op=x,/, fl (x\pmy)=x(1+\alpha)\pmy(1+\beta), |\alpha|, |\beta|\lequ
```

then for an $n$-by-n matrix $\hat{C}=f l\left(C_{1}+i C_{2}\right)=f l\left(\left(A_{1}+i A_{2}\right)\left(B_{1}+i B_{2}\right)\right)=\hat{C}_{1}+i \hat{C}_{2}$, the following bounds are satisfied:
$\left\|\hat{C}_{1}-C_{1}\right\| \leq 2(n+1) u\|A\|_{\infty}\|B\|_{\infty}+O\left(u^{2}\right)$,
$\left\|\hat{C}_{2}-C_{2}\right\| \leq 4(n+4) u\|A\|_{\infty}\|B\|_{\infty}+O\left(u^{2}\right)$,
where $\|A\|_{\infty}=\max \left(\left\|A_{1}\right\|_{\infty},\left\|A_{2}\right\|_{\infty}\right)$, and $\|B\|_{\infty}=\max \left(\left\|B_{1}\right\|_{\infty},\left\|B_{2}\right\|_{\infty}\right)$.
Thus the corresponding matrix multiplications are stable.

## cblas_?gemm_batch <br> Computes scalar-matrix-matrix products and adds the results to scalar matrix products for groups of general matrices.

## Syntax

```
void cblas_sgemm_batch (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE* transa_array,
const CBLAS_TRANSPOSE* transb_array, const MKL_INT* m_array, const MKL_INT* n_array,
const MKL_INT* k_array, const float* alpha_array, const float **a_array, const MKL_INT*
lda_array, const float **b_array, const MKL_INT* ldb_array, const float* beta_array,
float **c_array, const MKL_INT* Idc_array, const MKL_INT group_count, const MKL_INT*
group_size);
void cblas_dgemm_batch (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE* transa_array,
const CBLAS_TRANSPOSE* transb_array, const MKL_INT* m_array, const MKL_INT* n_array,
const MKL_INT* k_array, const double* alpha_array, const double **a_array, const
MKL_INT* Ida_array, const double **b_array, const MKL_INT* ldb_array, const double*
beta_array, double **c_array, const MKL_INT* Idc_array, const MKL_INT group_count,
const MKL_INT* group_size);
void cblas_cgemm_batch (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE* transa_array,
const CBLAS_TRANSPOSE* transb_array, const MKL_INT* m_array, const MKL_INT* n_array,
const MKL_INT* k_array, const void *alpha_array, const void **a_array, const MKL_INT*
Ida_array, const void **b_array, const MKL_INT* ldb_array, const void *beta_array, void
**c_array, const MKL_INT* ldc_array, const MKL_INT group_count, const MKL_INT*
group_size);
void cblas_zgemm_batch (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE* transa_array,
const CBLAS_TRANSPOSE* transb_array, const MKL_INT* m_array, const MKL_INT* n_array,
const MKL_INT* k_array, const void *alpha_array, const void **a_array, const MKL_INT*
lda_array, const void **b_array, const MKL_INT* ldb_array, const void *beta_array, void
**c_array, const MKL_INT* ldc_array, const MKL_INT group_count, const MKL_INT*
group_size);
```


## Include Files

- mkl.h


## Description

The ? gemm_batch routines perform a series of matrix-matrix operations with general matrices. They are similar to the ?gemm routine counterparts, but the ?gemm_batch routines perform matrix-matrix operations with groups of matrices, processing a number of groups at once. The groups contain matrices with the same parameters.

The operation is defined as

```
idx = 0
for i = 0..group_count - 1
 alpha and beta in alpha_array[i] and beta_array[i]
 for j = 0..group_size[i] - 1
 A, B, and C matrix in a_array[idx], b_array[idx], and c_array[idx]
 C := alpha*op(A)*op (B) + beta*C,
 idx = idx + 1
 end for
end for
```

where:
op $(X)$ is one of op $(X)=X$, or op $(X)=X^{\mathrm{T}}$, or op $(X)=X^{\mathrm{H}}$,
alpha and beta are scalar elements of alpha_array and beta_array,
$A, B$ and $C$ are matrices such that for $m, n$, and $k$ which are elements of m_array, n_array, and $k$ _array:
op ( $A$ ) is an $m$-by- $k$ matrix,
$o p(B)$ is a $k$-by-n matrix,
$C$ is an $m$-by- $n$ matrix.
$A, B$, and $C$ represent matrices stored at addresses pointed to by a_array, b_array, and c_array, respectively. The number of entries in a_array, b_array, and c_array is total_batch_count = the sum of all of the group_size entries.

See also gemm for a detailed description of multiplication for general matrices and ?gemm3m_batch, BLASlike extension routines for similar matrix-matrix operations.

## NOTE

Error checking is not performed for oneMKL Windows* single dynamic libraries for the?gemm_batch routines.

## Input Parameters

Layout	Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).
transa_array	Array of size group_count. For the group $i, t_{r a n s a_{i}}=$ transa_array[i] specifies the form of op (A) used in the matrix multiplication:
	if transa ${ }_{i}=$ CblasNoTrans, then op $(A)=A$;
	if transa ${ }_{j}=$ CblasTrans, then op $(A)=A^{T}$;
	if transa ${ }_{i}=$ CblasConjTrans, then op $(A)=A^{\mathrm{H}}$.
transb_array	Array of size group_count. For the group $i, t_{r a n s b}^{i}=t r a n s b \_a r r a y[i]$ specifies the form of op $\left(B_{i}\right)$ used in the matrix multiplication:
	if $\operatorname{transb}_{i}=$ CblasNoTrans, then op $(B)=B$;
	if transb $b_{i}=$ CblasTrans, then op $(B)=B^{T}$;
	if $\operatorname{transb}_{i}=$ CblasConjTrans, then op $(B)=B^{\mathrm{H}}$.
m_array	Array of size group_count. For the group $i, m_{i}=m_{-}$array[i] specifies the number of rows of the matrix op $(A)$ and of the matrix $C$.

The value of each element of m_array must be at least zero.

Array of size group_count. For the group $i, n_{i}=n_{-}$array[i] specifies the number of columns of the matrix op ( $B$ ) and the number of columns of the matrix $C$.

The value of each element of $n_{\text {_array }}$ must be at least zero.
Array of size group_count. For the group $\left.i, k_{i}=k_{\text {_array }} i\right]$ specifies the number of columns of the matrix op ( $A$ ) and the number of rows of the matrix op ( $B$ ).

The value of each element of $k$ _array must be at least zero.
Array of size group_count. For the group $i$, alpha_array[i] specifies the scalar alpha.

Array, size total_batch_count, of pointers to arrays used to store $A$ matrices.

Array of size group_count. For the group $i, l_{1} a_{i}=1 d a \_a r r a y[i]$ specifies the leading dimension of the array storing matrix $A$ as declared in the calling (sub)program.

	transai $=$ CblasNoTrans	transa ${ }_{i}=$ CblasTrans or transaj $=$ CblasConjTrans
Layout =   CblasColMajor	lda ${ }_{i}$ must be at least $\max \left(1, m_{i}\right)$.	Idaj must be at least $\max \left(1, k_{i}\right)$
Layout = CblasRowMajor	Idaj must be at least $\max \left(1, k_{i}\right)$	Ida ${ }_{j}$ must be at least $\max \left(1, m_{i}\right)$.

Array, size total_batch_count, of pointers to arrays used to store $B$ matrices.

Array of size group_count. For the group $i, 1 d b_{i}=1 d b_{\text {_ }}$ array[i] specifies the leading dimension of the array storing matrix $B$ as declared in the calling (sub)program.

	transb $b_{i}=$ CblasNoTrans	trans $b_{i}=$ CblasTrans or   trans $b_{i}=$ CblasConjTrans
Layout $=$   CblasColMajor	$I d b_{i}$ must be at least   $\max \left(1, k_{i}\right)$.	$I d b_{i}$ must be at least   $\max \left(1, n_{i}\right)$.
Layout $=$   CblasRowMajor	$I d b_{i}$ must be at least   $\max \left(1, n_{i}\right)$.	$I d b_{i}$ must be at least   $\max \left(1, k_{i}\right)$.

Array of size group_count. For the group i, beta_array[i] specifies the scalar beta ${ }_{i}$.

When beta ${ }_{i}$ is equal to zero, then $C$ matrices in group $i$ need not be set on input.

```
c_array Array, size total_batch_count, of pointers to arrays used to store C
 matrices.
 Array of size group_count. For the group i, ldci = Idc_array[i]
 specifies the leading dimension of all arrays storing matrix C in group i as
 declared in the calling (sub)program.
 When Layout = CblasColMajorldci must be at least max(1, mi).
 When Layout = CblasRowMajorldci must be at least max(1, ni).
 Specifies the number of groups. Must be at least 0.
 Array of size group_count. The element group_size[i] specifies the
 number of matrices in group i. Each element in group_size must be at
 least 0.
```


## Output Parameters

```
c_array
```

Output buffer, overwritten by total_batch_count matrix multiply operations of the form alpha*op (A)*op (B) + beta*C.

## cblas_?gemm_batch_strided <br> Computes groups of matrix-matrix product with general matrices.

## Syntax

```
void cblas_sgemm_batch_strided (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE
transa, const CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT
k, const float alpha, const float *a, const MKL_INT lda, const MKL_INT stridea, const
float *b, const MKL_INT ldb, const MKL_INT strideb, const float beta, float *C, const
MKL_INT ldc, const MKL_INT stridec, const MKL_INT batch_size);
void cblas_dgemm_batch_strided (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE
transa, const CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT
k, const double alpha, const double *a, const MKL_INT lda, const MKL_INT stridea, const
double *b, const MKL_INT ldb, const MKL_INT strideb, const double beta, double *C,
const MKL_INT ldc, const MKL_INT stridec, const MKL_INT batch_size);
void cblas_cgemm_batch_strided (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE
transa, const CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT
k, const void *alpha, const void *a, const MKL_INT lda, const MKL_INT stridea, const
void *b, const MKL_INT ldb, const MKL_INT strideb, const void *beta, void *c, const
MKL_INT ldc, const MKL_INT stridec, const MKL_INT batch_size);
void cblas_zgemm_batch_strided (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE
transa, const CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT
k, const void *alpha, const void *a, const MKL_INT lda, const MKL_INT stridea, const
void *b, const MKL_INT ldb, const MKL_INT strideb, const void *beta, void *c, const
MKL_INT ldc, const MKL_INT stridec, const MKL_INT batch_size);
```

Include Files

- mkl.h


## Description

The cblas_?gemm_batch_strided routines perform a series of matrix-matrix operations with general matrices. They are similar to the cblas_? gemm routine counterparts, but the cblas_? gemm_batch_strided routines perform matrix-matrix operations with groups of matrices. The groups contain matrices with the same parameters.

All matrix $a$ (respectively, $b$ or $c$ ) have the same parameters (size, leading dimension, transpose operation, alpha, beta scaling) and are stored at constant stridea (respectively, strideb or stridec) from each other. The operation is defined as

```
For i = 0 ... batch_size - 1
 Ai, Bi and Ci are matrices at offset i * stridea, i * strideb and i * stridec in a, b and c
 Ci = alpha * Ai * Bi + beta * Ci
end for
```


## Input Parameters

layout	Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).		
transa	Specifies op(A) the transposition operation applied to the matrices $A$. if transa $=$ CblasNoTrans, then $o p(A)=A$;   if transa $=$ CblasTrans, then $o p(A)=A^{\top}$;   if transa $=$ CblasConjTrans, then $o p(A)=A^{H}$.		
transb	Specifies op(B) the transposition operation applied to the matrices $B$. if transb $=$ CblasNoTrans, then $o p(B)=B$;   if transb $=$ CblasTrans, then $o p(B)=B^{\top}$;   if trans $b=$ CblasConjTrans, then $o p(B)=B^{H}$.		
m	Number of rows of the $\operatorname{op}(A)$ and $C$ matrices. Must be at least 0 .		
$n$	Number of columns of the $\mathrm{op}(\mathrm{B})$ and $C$ matrices. Must be at least 0 .		
$k$	Number of columns of the $o p(A)$ matrix and number of rows of the $o p(B)$ matrix. Must be at least 0 .		
alpha	Specifies the scalar alpha.		
a	Array of size at least stridea*batch_size holding the a matrices.		
		transa=CblasNoTrans	transa=CblasTrans or CblasConjTrans
	layout = CblasColMajor	Before entry, the leading $m$-by- $k$ part of the array a $+i$ * stridea must contain the matrix $A_{i}$.	Before entry, the leading $k$-by-m part of the array a $+\mathrm{i}^{*}$ stridea must contain the matrix $A_{i}$.
	layout = CblasRowMajor	Before entry, the leading $k$ -by-m part of the array a $+i$ * stridea must contain the matrix $A_{i}$.	Before entry, the leading $m$-by- $k$ part of the array $\mathrm{a}+\mathrm{i}$ * stridea must contain the matrix $A_{i}$.

b

1 db
strideb

Specifies the leading dimension of the a matrices.

	transa=CblasNoTrans	transa=CblasTrans   or CblasConjTrans
layout $=$   CblasColMajor	Ida must be at least   max $(1, m)$	Ida must be at least   max $(1, k)$.
layout $=$   CblasRowMajor	Ida must be at least   max $(1, k)$.	Ida must be at least   max $(1, m)$

Stride between two consecutive a matrices.

	transa=CblasNoTrans	transa=CblasTrans or   CblasConjTrans
layout $=$   CblasColMajor	Must be at least Ida*k	Must be at least Ida*m
layout $=$   CblasRowMajor	Must be at least /da*m	Must be at least Ida*k

Array of size at least strideb*batch_size holding the $b$ matrices.

	transb=CblasNoTrans	transb=CblasTrans or   CblasConjTrans
layout $=$   CblasColMajor	Before entry, the leading $k-$   by-n part of the array $\mathrm{b}+\mathrm{i}$   * strideb must contain the   matrix $\mathrm{B}_{\mathrm{i}}$.	Before entry, the leading   $n$-by- $k$ part of the array b   $+\mathrm{i} *$ strideb must   contain the matrix $\mathrm{B}_{\mathrm{i}}$.
layout $=$   CblasRowMajor	Before entry, the leading $n-$   by- $k$ part of the array $\mathrm{b}+\mathrm{i}$   $*$ strideb must contain the   matrix $\mathrm{B}_{\mathrm{i}}$.	Before entry, the leading   $k-b y-n$ part of the array b   $+\mathrm{i} *$ strideb must   contain the matrix $\mathrm{B}_{\mathrm{i}}$.

Specifies the leading dimension of the $b$ matrices.

	transab=CblasNoTrans	transb=CblasTrans   or CblasConjTrans
layout $=$   CblasColMajor	Idb must be at least   $\max (1, k)$	Idb must be at least   $\max (1, n)$.
layout $=$   CblasRowMajor	Idb must be at least   $\max (1, n)$.	Idb must be at least   $\max (1, k)$

Stride between two consecutive $b$ matrices.

	transa=CblasNoTrans	transa=CblasTrans or   CblasConjTrans


layout $=$   CblasColMajor	Must be at least $I d b^{*} n$	Must be at least $I d b^{*} k$
layout $=$   CblasRowMajor	Must be at least $I d b^{*} k$	Must be at least $I d b^{*} n$


beta	Specifies the scalar beta.
c	Array of size at least stridec*batch_size holding the c matrices.
	If layout=CblasColMajor, before entry, the leading $m$-by- $n$ part of the array $c+\mathrm{i}^{*}$ stridec must contain the matrix $C_{i}$.
	If layout=CblasRowMajor, before entry, the leading $n$-by- $m$ part of the array $c+\mathrm{i}^{*}$ stridec must contain the matrix $C_{i}$.
$1 d c$	Specifies the leading dimension of the c matrices.
	Must be at least $\max (1, m)$ if layout=CblasColMajor or $\max (1, n)$ if layout=CblasRowMajor.
stridec	Specifies the stride between two consecutive c matrices.
	Must be at least Idc*nif layout=CblasColMajor or Idc*m if layout=CblasRowMajor.
batch_size	Number of gemm computations to perform and $a, b$ and $c$ matrices. Must be at least 0 .

## Output Parameters

C
Array holding the batch_size updated $c$ matrices.

## cblas_?gemm3m_batch_strided

Computes groups of matrix-matrix product with
general matrices.

## Syntax

```
void cblas_cgemm3m_batch_strided (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE
transa, const CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT
k, const void *alpha, const void *a, const MKL_INT lda, const MKL_INT stridea, const
void *b, const MKL_INT ldb, const MKL_INT strideb, const void *beta, void *C, const
MKL_INT ldc, const MKL_INT stridec, const MKL_INT batch_size);
void cblas_zgemm3m_batch_strided (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE
transa, const CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT
k, const void *alpha, const void *a, const MKL_INT lda, const MKL_INT stridea, const
void *b, const MKL_INT ldb, const MKL_INT strideb, const void *beta, void *c, const
MKL_INT ldc, const MKL_INT stridec, const MKL_INT batch_size);
```


## Include Files

- mkl.h


## Description

The cblas_? gemm3m_batch_strided routines perform a series of matrix-matrix operations with general matrices. They are similar to the cblas_?gemm routine counterparts, but the cblas_? gemm3m_batch_strided routines perform matrix-matrix operations with groups of matrices. The groups contain matrices with the same parameters.
All matrix $a$ (respectively, $b$ or $c$ ) have the same parameters (size, leading dimension, transpose operation, alpha, beta scaling) and are stored at constant stridea (respectively, strideb or stridec) from each other. The operation is defined as

```
For i = 0 ... batch_size - 1
 Ai, Bi and Ci are matrices at offset i * stridea, i * strideb and i * stridec in a, b and c
 Ci = alpha * Ai * Bi + beta * Ci
end for
```

The cblas_?gemm3m_batch_strided routines use fewer matrix multiplications than the cblas_?gemm routines, as described in the Application Notes below.

## Input Parameters

layout	Specifies whether two-dimensional array storage is row-major   (CblasRowMajor) or column-major (CblasColMajor).
transa	
	Specifies op $(A)$ the transposition operation applied to the matrices $A$.
	if transa $=$ CblasNoTrans, then op $(A)=A ;$
	if transa $=$ CblasTrans, then op $(A)=A^{\top} ;$
	if transa $=$ CblasConjTrans, then op $(A)=A^{H}$.
	Specifies op(B) the transposition operation applied to the matrices $B$.


layout $=$	Before entry, the leading $k-$   CblasRowMajor   by-m part of the array a +i   $*$ stridea must contain the   matrix $A_{i}$.	Before entry, the leading   $m-b y-k$ part of the array   $\mathrm{a}+\mathrm{i} *$ stridea must   contain the matrix $\mathrm{A}_{\mathrm{i}}$.

Specifies the leading dimension of the a matrices.

	transa=CblasNoTrans	transa=CblasTrans   or CblasConjTrans
layout $=$   CblasColMajor	Ida must be at least   $\max (1, m)$.	Ida must be at least   $\max (1, k)$.
layout $=$   CblasRowMajor	Ida must be at least   $\max (1, k)$.	Ida must be at least   $\max (1, m)$.

Stride between two consecutive a matrices.

	transa=CblasNoTrans	transa=CblasTrans or   CblasConjTrans
layout $=$   CblasColMajor	Must be at least Ida*k.	Must be at least /da*m.
layout $=$   CblasRowMajor	Must be at least /da*m.	Must be at least Ida*k.

b

1 db

Array of size at least strideb*batch_size holding the $b$ matrices.

	transb=CblasNoTrans	transb=CblasTrans or   CblasConjTrans
layout $=$   CblasColMajor	Before entry, the leading $k-$   by-n part of the array $\mathrm{b}+\mathrm{i}$   * strideb must contain the   matrix $\mathrm{B}_{\mathrm{i}}$.	Before entry, the leading   $n$-by- $k$ part of the array b   $+\mathrm{i} *$ strideb must   contain the matrix $\mathrm{B}_{\mathrm{i}}$.
layout $=$   CblasRowMajor		
Before entry, the leading $n-$   by- $k$ part of the array $\mathrm{b}+\mathrm{i}$   $*$ strideb must contain the   matrix $\mathrm{B}_{\mathrm{i}}$.	Before entry, the leading   $k-b y-n$ part of the array b   $+\mathrm{i} *$ strideb must   contain the matrix $\mathrm{B}_{\mathrm{i}}$.	

Specifies the leading dimension of the $b$ matrices.

	transab=CblasNoTrans	transb=CblasTrans   or CblasConjTrans
layout $=$   CblasColMajor	Idb must be at least   $\max (1, k)$.	Idb must be at least   $\max (1, n)$.


layout $=$   CblasRowMajor	Idb must be at least   $\max (1, n)$.	Idb must be at least   $\max (1, k)$.

strideb
beta
C
$1 d c$
stridec
batch_size

Stride between two consecutive $b$ matrices.

	transa=CblasNoTrans	transa=CblasTrans or   CblasConjTrans
layout $=$   CblasColMajor	Must be at least $/ d b^{*} n$.	Must be at least $/ d b^{*} k$.
layout $=$   CblasRowMajor	Must be at least $/ d b^{*} k$.	Must be at least $/ d b^{*} n$.

Specifies the scalar beta.
Array of size at least stridec*batch_size holding the c matrices.
If layout=CblasColMajor, before entry, the leading $m$-by- $n$ part of the array $c+i *$ stridec must contain the matrix $C_{i}$.
If layout=CblasRowMajor, before entry, the leading $n$-by- $m$ part of the array $c+\mathrm{i}^{*}$ stridec must contain the matrix $C_{i}$.

Specifies the leading dimension of the $c$ matrices.
Must be at least $\max (1, m)$ if layout=CblasColMajor or $\max (1, n)$ if layout=CblasRowMajor.

Specifies the stride between two consecutive c matrices.
Must be at least Idc*nif layout=CblasColMajor or Idc*m if layout=CblasRowMajor.

Number of gemm computations to perform and $a, b$ and $c$ matrices. Must be at least 0 .

Array holding the batch_size updated $c$ matrices.

## Application Notes

These routines perform a complex matrix multiplication by forming the real and imaginary parts of the input matrices. This uses three real matrix multiplications and five real matrix additions instead of the conventional four real matrix multiplications and two real matrix additions. The use of three real matrix multiplications reduces the time spent in matrix operations by $25 \%$, resulting in significant savings in compute time for large matrices.

If the errors in the floating point calculations satisfy the following conditions:

```
fl(x op y)=(x op y) (1+\delta), |\delta|\lequ, op=x, /, fl (x\pmy)=x (1+\alpha)\pmy (1+\beta), |\alpha|, | \beta|\lequ
```

then for an $n-b y-n$ matrix $\hat{C}=f l(C 1+i C 2)=f l((A 1+i A 2)(B 1+i B 2))=\hat{C} 1+i \hat{C} 2$, the following bounds are satisfied:

$$
\begin{aligned}
& \|\hat{C} 1-C 1\| \leq 2(n+1) u\|A\| \infty\|B\| \infty+0(u 2), \\
& \|\hat{C} 2-C 2\| \leq 4(n+4) u\|A\| \infty\|B\| \infty+0(u 2),
\end{aligned}
$$

where $\|A\|_{\infty}=\max \left(\|A 1\|_{\infty},\left\|_{A} 2\right\|_{\infty}\right)$, and $\|B\|_{\infty}=\max \left(\|B 1\|_{\infty},\left\|_{\mathrm{B}} 2\right\|_{\infty}\right)$.
Thus the corresponding matrix multiplications are stable.

## cblas_?gemm3m_batch

Computes scalar-matrix-matrix products and adds the results to scalar matrix products for groups of general matrices.

## Syntax

```
void cblas_cgemm3m_batch (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE*
transa_array, const CBLAS_TRANSPOSE* transb_array, const MKL_INT* m_array, const
MKL_INT* n_array, const MKL_INT* k_array, const void *alpha_array, const void
**a_array, const MKL_INT* Ida_array, const void **b_array, const MKL_INT* ldb_array,
const void *beta_array, void **C_array, const MKL_INT* ldc_array, const MKL_INT
group_count, const MKL_INT* group_size);
void cblas_zgemm3m_batch (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE*
transa_array, const CBLAS_TRANSPOSE* transb_array, const MKL_INT* m_array, const
MKL_INT* n_array, const MKL_INT* k_array, const void *alpha_array, const void
**a_array, const MKL_INT* lda_array, const void **b_array, const MKL_INT* ldb_array,
const void *beta_array, void **c_array, const MKL_INT* ldc_array, const MKL_INT
group_count, const MKL_INT* group_size);
```


## Include Files

- mkl.h


## Description

The ? gemm3m_batch routines perform a series of matrix-matrix operations with general matrices. They are similar to the ?gemm 3 m routine counterparts, but the ?gemm3m_batch routines perform matrix-matrix operations with groups of matrices, processing a number of groups at once. The groups contain matrices with the same parameters. The ?gemm3m_batch routines use fewer matrix multiplications than the ?gemm_batch routines, as described in the Application Notes.

The operation is defined as

```
idx = 0
for i = 0..group_count - 1
 alpha and beta in alpha_array[i] and beta_array[i]
 for j = 0..group_size[i] - 1
 A, B, and C matrix in a_array[idx], b_array[idx], and c_array[idx]
 C := alpha*op (A)*op (B) + beta*C,
 idx = idx + 1
 end for
end for
```

where:
op $(X)$ is one of op $(X)=X$, or op $(X)=X^{\mathrm{T}}$, or op $(X)=X^{\mathrm{H}}$,
alpha and beta are scalar elements of alpha_array and beta_array,
$A, B$ and $C$ are matrices such that for $m, n$, and $k$ which are elements of $m_{-}$array, $n_{-}$array, and $k$ _array: op ( $A$ ) is an $m$-by- $k$ matrix,
op ( $B$ ) is a $k$-by-n matrix,
$C$ is an $m$-by- $n$ matrix.
$A, B$, and $C$ represent matrices stored at addresses pointed to by a_array, b_array, and c_array, respectively. The number of entries in a_array, b_array, and c_array is total_batch_count = the sum of all the group_size entries.
See also gemm for a detailed description of multiplication for general matrices and gemm_batch, BLAS-like extension routines for similar matrix-matrix operations.

## NOTE

Error checking is not performed for Intel® oneAPI Math Kernel Library (oneMKL) Windows* single dynamic libraries for the? gemm3m_batch routines.

## Input Parameters

Layout
transa_array
transb_array
m_array
n_array
k_array
alpha_array
a_array

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Array of size group_count. For the group $i$, transa $_{i}=$ transa_array[i] specifies the form of op ( $A$ ) used in the matrix multiplication:
if transa $_{i}=$ CblasNoTrans, then op $(A)=A$;
if transa $_{i}=$ CblasTrans, then op $(A)=A^{T}$;
if transa ${ }_{i}=$ CblasConjTrans, then op $(A)=A^{\mathrm{H}}$.
Array of size group_count. For the group $i$, transb $b_{i}=$ transb_array[i] specifies the form of op $\left(B_{i}\right)$ used in the matrix multiplication:
if transb $_{i}=$ CblasNoTrans, then op $(B)=B$;
if $\operatorname{trans} b_{i}=$ CblasTrans, then op $(B)=B^{\mathrm{T}}$;
if $\operatorname{trans} b_{i}=$ CblasConjTrans, then op $(B)=B^{H}$.
Array of size group_count. For the group $i, m_{i}=m_{-}$array[i] specifies the number of rows of the matrix op (A) and of the matrix $C$.

The value of each element of m_array must be at least zero.
Array of size group_count. For the group $i, n_{i}=n_{-}$array[i] specifies the number of columns of the matrix op ( $B$ ) and the number of columns of the matrix $C$.
The value of each element of $n$ _array must be at least zero.
Array of size group_count. For the group $i, k_{i}=k_{-}$array[i] specifies the number of columns of the matrix op ( $A$ ) and the number of rows of the matrix op ( $B$ ).

The value of each element of $k$ _array must be at least zero.
Array of size group_count. For the group $i$, alpha_array[i] specifies the scalar alpha ${ }_{i}$.

Array, size total_batch_count, of pointers to arrays used to store $A$ matrices.

Ida_array
b_array
ldb_array
beta_array
c_array

Idc_array
group_count
group_size

Array of size group_count. For the group $i, I_{1} a_{i}=$ Ida_array[i] specifies the leading dimension of the array storing matrix $A$ as declared in the calling (sub)program.

	transai $=$ CblasNoTrans	transa $a_{i}=C b l a s T r a n s$ or transai=CblasConjTrans
Layout = CblasColMajor	Idaj must be at least $\max \left(1, m_{i}\right)$.	lda $a_{i}$ must be at least $\max \left(1, k_{i}\right)$
Layout $=$ CblasRowMajor	lda ${ }_{i}$ must be at least $\max \left(1, k_{i}\right)$	lda $a_{i}$ must be at least $\max \left(1, m_{i}\right)$.

Array, size total_batch_count, of pointers to arrays used to store $B$ matrices.

Array of size group_count. For the group $i, I b_{i}=1 d b_{\text {_ }}$ array[i] specifies the leading dimension of the array storing matrix $B$ as declared in the calling (sub)program.

	transb $b_{i}=$ CblasNoTrans	trans $b_{i}=$ CblasTrans or   transb $b_{i}=$ CblasConjTrans
Layout $=$   CblasColMajor	$I d b_{i}$ must be at least   $\max \left(1, k_{i}\right)$.	$I d b_{i}$ must be at least   $\max \left(1, n_{i}\right)$.
Layout $=$   CblasRowMajor	$I d b_{i}$ must be at least   $\max \left(1, n_{i}\right)$.	$I d b_{i}$ must be at least   $\max \left(1, k_{i}\right)$.

For the group $i$, beta_array [i] specifies the scalar beta ${ }_{i}$.
When beta ${ }_{i}$ is equal to zero, then $C$ matrices in group $i$ need not be set on input.

Array, size total_batch_count, of pointers to arrays used to store C matrices.

Array of size group_count. For the group $i, l d c_{i}=1 d c_{\text {_ }}$ array[i] specifies the leading dimension of all arrays storing matrix $C$ in group $i$ as declared in the calling (sub)program.
When Layout $=$ C.blasColMajorldc $c_{i}$ must be at least max $\left(1, m_{i}\right)$.
When Layout $=$ CblasRowMajorldc $c_{i}$ must be at least max $\left(1, n_{i}\right)$.
Specifies the number of groups. Must be at least 0 .
Array of size group_count. The element group_size[i] specifies the number of matrices in group i. Each element in group_size must be at least 0.

## Output Parameters

Overwritten by the $m_{i}$-by- $n_{i}$ matrix ( $\operatorname{alpha}_{i} * o p(A) * o p(B)+$ beta ${ }_{i}{ }^{*} C$ ) for group $i$.

## Application Notes

These routines perform a complex matrix multiplication by forming the real and imaginary parts of the input matrices. This uses three real matrix multiplications and five real matrix additions instead of the conventional four real matrix multiplications and two real matrix additions. The use of three real matrix multiplications reduces the time spent in matrix operations by $25 \%$, resulting in significant savings in compute time for large matrices.
If the errors in the floating point calculations satisfy the following conditions:

```
fl(x op y)=(x op y) (1+\delta), |\delta|\lequ, op=x,/, fl (x\pmy)=x(1+\alpha)\pmy(1+\beta), |\alpha|, | | | \lequ
```

then for an $n$-by-n matrix $\hat{C}=f l\left(C_{1}+i C_{2}\right)=f l\left(\left(A_{1}+i A_{2}\right)\left(B_{1}+i B_{2}\right)\right)=\hat{C}_{1}+i \hat{C}_{2}$, the following bounds are satisfied:

```
\(\left\|\hat{C}_{1}-C_{1}\right\| \leq 2(n+1) u\|A\|_{\infty}\|B\|_{\infty}+O\left(u^{2}\right)\),
\(\left\|\hat{C}_{2}-C_{2}\right\| \leq 4(n+4) u\|A\|_{\infty}\|B\|_{\infty}+O\left(u^{2}\right)\),
```

where $\|A\|_{\infty}=\max \left(\left\|A_{1}\right\|_{\infty},\left\|A_{2}\right\|_{\infty}\right)$, and $\|B\|_{\infty}=\max \left(\left\|B_{1}\right\| \infty,\left\|B_{2}\right\|_{\infty}\right)$.

Thus the corresponding matrix multiplications are stable.

## cblas_?trsm_batch

Solves a triangular matrix equation for a group of matrices.

## Syntax

```
void cblas_strsm_batch (const CBLAS_LAYOUT Layout, const CBLAS_SIDE *Side_Array, const
CBLAS_UPLO *Uplo_Array, const CBLAS_TRANSPOSE *TransA_Array, const CBLAS_DIAG
*Diag_Array, const MKL_INT *M_Array, const MKL_INT *N_Array, const float *alpha_Array,
const float * *A_Array, const MKL_INT *lda_Array, float * *B_Array, const MKL_INT
*ldb_Array, const MKL_INT group_count, const MKL_INT *group_size);
void cblas_dtrsm_batch (const CBLAS_LAYOUT Layout, const CBLAS_SIDE *Side_Array, const
CBLAS_UPLO *Uplo_Array, const CBLAS_TRANSPOSE *Transa_Array, const CBLAS_DIAG
*Diag_Array, const MKL_INT *M_Array, const MKL_INT *N_Array, const double *alpha_Array,
const double * *A_Array, const MKL_INT *lda_Array, double * *B_Array, const MKL_INT
*ldb_Array, const MKL_INT group_count, const MKL_INT *group_size);
void cblas_ctrsm_batch (const CBLAS_LAYOUT Layout, const CBLAS_SIDE *Side_Array, const
CBLAS_UPLO *Uplo_Array, const CBLAS_TRANSPOSE *Transa_Array, const CBLAS_DIAG
*Diag_Array, const MKL_INT *M_Array, const MKL_INT *N_Array, const void *alpha_Array,
const void * *A_Array, const MKL_INT *lda_Array, void * *B_Array, const MKL_INT
*ldb_Array, const MKL_INT group_count, const MKL_INT *group_size);
void cblas_ztrsm_batch (const CBLAS_LAYOUT Layout, const CBLAS_SIDE *Side_Array, const
CBLAS_UPLO *Uplo_Array, const CBLAS_TRANSPOSE *Transa_Array, const CBLAS_DIAG
*Diag_Array, const MKL_INT *M_Array, const MKL_INT *N_Array, const void *alpha_Array,
const void * *A_Array, const MKL_INT *lda_Array, void * *B_Array, const MKL_INT
*ldb_Array, const MKL_INT group_count, const MKL_INT *group_size);
```


## Include Files

- mkl.h


## Description

The ?trsm_batch routines solve a series of matrix equations. They are similar to the ?trsm routines except that they operate on groups of matrices which have the same parameters. The ?trsm_batch routines process a number of groups at once.

```
idx = 0
for i = 0..group_count - 1
 alpha in alpha_array[i]
 for j = 0..group_size[i] - 1
 A and B matrix in a_array[idx] and b_array[idx]
 Solve op (A)*X = alpha*B
 or
 Solve X*op(A) = alpha*B
 idx = idx + 1
 end for
end for
```

where:
alpha is a scalar element of alpha_array,
$X$ and $B$ are $m$-by- $n$ matrices for $m$ and $n$ which are elements of m_array and $n \_a r r a y$, respectively,
$A$ is a unit, or non-unit, upper or lower triangular matrix,

```
and op (A) is one of op (A) = A, or op (A) = AT,orop(A) = Conjg(A ().
```

$A$ and $B$ represent matrices stored at addresses pointed to by a_array and b_array, respectively. There are total_batch_count entries in each of a_array and b_array, where total_batch_count is the sum of all the group_size entries.

## Input Parameters

Layout	Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).
side_array	Array of size group_count. For group $i, 0 \leq i \leq g r o u p \_c o u n t-1$, side $_{i}=$ side_array[i] specifies whether op ( $A$ ) appears on the left or right of $X$ in the equation:
	if side $_{i}=$ CblasLeft, then $o p(A) * X=a l p h a * B ;$   if side $_{i}=$ CblasRight, then $X^{*} o p(A)=a l p h a \star B$.
uplo_array	Array of size group_count. For group $i, 0 \leq i \leq g r o u p \_c o u n t-1, u p l o o_{i}=$ uplo_array[i] specifies whether the matrix $A$ is upper or lower triangular:
	$u^{\prime} l_{i}=$ CblasUpper   if uplo ${ }_{i}=$ CblasLower, then the matrix is low triangular.
transa_array	Array of size group_count. For group $i, 0 \leq i \leq g r o u p \_c o u n t-1$, transa $_{i}=$ transa_array[i] specifies the form of op (A) used in the matrix multiplication:
	if transa ${ }_{i}=$ CblasNoTrans, then op $(A)=A ;$
	if transa ${ }_{i}=$ CblasTrans;
	if transa ${ }_{i}=\operatorname{CblasConj} \operatorname{Trans}$, then op $(A)=\operatorname{conjg}\left(A^{\prime}\right)$.
diag_array	Array of size group_count. For group $i, 0 \leq i \leq g r o u p \_c o u n t-1$, diag $_{i}=$ diag_array[i] specifies whether the matrix $A$ is unit triangular:   if diag $_{i}=$ CblasUnit then the matrix is unit triangular;

if $\operatorname{diag}_{i}=\mathrm{Cb}$ asNonUnit , then the matrix is not unit triangular.
Array of size group_count. For group $i, 0 \leq i \leq$ group_count $-1, m_{i}=$ $m_{-}$array [i] specifies the number of rows of $B$. The value of $m_{i}$ must be at least zero.

Array of size group_count. For group $i, 0 \leq i \leq$ group_count $-1, n_{i}=$ $n_{\text {_aray }}$ [i] specifies the number of columns of $B$. The value of $n_{i}$ must be at least zero.

Array of size group_count. For group $i, 0 \leq i \leq g r o u p \_c o u n t-1$, alpha_array[i] specifies the scalar alpha ${ }_{i}$.

Array, size total_batch_count, of pointers to arrays used to store $A$ matrices.

For group $i, 0 \leq i \leq$ group_count $-1, k$ is $m_{i}$ when side ${ }_{i}=$ CblasLeft and is $n_{i}$ when side $_{i}=$ CblasRight and $a$ is any of the group_size[i] arrays starting with a_array[group_size[0] + group_size[1] + ... + group_size(i - 1)]:

Before entry with $u p / o_{i}=$ CblasUpper, the leading $k$ by $k$ upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of $a$ is not referenced.
Before entry with uplo ${ }_{i}=$ CblasLower lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of $a$ is not referenced.
When $\operatorname{diag}_{i}=$ CblasUnit, the diagonal elements of $a$ are not referenced either, but are assumed to be unity.

Array of size group_count. For group $i, 0 \leq i \leq$ group_count $^{\prime} 1$, Ida $_{i}=$ lda_array[i] specifies the leading dimension of a as declared in the calling (sub)program. When $\operatorname{side}_{i}=$ CblasLeft, then $/ d a_{i}$ must be at least $\max \left(1, m_{i}\right)$, when $\operatorname{side}_{i}=$ CblasRight, then Ida $a_{i}$ must be at least max (1, $\left.n_{i}\right)$.

Array, size total_batch_count, of pointers to arrays used to store $B$ matrices.

For group $i, 0 \leq i \leq g r o u p \_c o u n t-1, b$ is any of the group_size[i] arrays starting with b_array[group_size[0] + group_size[1] + ... + group_size(i - 1)]:

For Layout = CblasColMajor: before entry, the leading $m_{i}$-by- $n_{i}$ part of the array $b$ must contain the matrix $B$.

For Layout $=$ CblasRowMajor: before entry, the leading $n_{i}$-by- $m_{i}$ part of the array $b$ must contain the matrix $B$.

Array of size group_count. Specifies the leading dimension of $b$ as declared in the calling (sub)program. When Layout = CblasColMajor, Idb must be at least max $(1, m)$; otherwise, $I d b$ must be at least max $(1, n)$.

Array of size group_count. For group $i, 0 \leq i \leq g r o u p \_c o u n t-1, I d b_{i}=$ ldb_array[i] specifies the leading dimension of $b$ as declared in the calling (sub)program. When Layout $=$ CblasColMajor, $l d b_{i}$ must be at least $\max \left(1, m_{i}\right)$; otherwise, $I d b_{i}$ must be at least max $\left(1, n_{i}\right)$.

```
group_count Specifies the number of groups. Must be at least 0.
group_size Array of size group_count. The element group_size[i] specifies the
number of matrices in group i. Each element in group_size must be at
least 0.
```


## Output Parameters

```
b_array
Overwritten by the solution matrix \(X\).
```

cblas_?trsm_batch_strided<br>Solves groups of triangular matrix equations.

## Syntax

```
void cblas_strsm_batch_strided(const CBLAS_LAYOUT layout, const CBLAS_SIDE side, const
CBLAS_UPLO uplo, const CBLAS_TRANSPOSE transa, const CBLAS_DIAG diag, const MKL_INT m,
const MKL_INT n, const float alpha, const float *a, const MKL_INT lda, const MKL_INT
stridea, float *b, const MKL_INT ldb, const MKL_INT strideb, MKL_INT batch_size);
void cblas_dtrsm_batch_strided(const CBLAS_LAYOUT layout, const CBLAS_SIDE side, const
CBLAS_UPLO uplo, const CBLAS_TRANSPOSE transa, const CBLAS_DIAG diag, const MKL_INT m,
const MKL_INT n, const double alpha, const double *a, const MKL_INT lda, const MKL_INT
stridea, double *b, const MKL_INT ldb, const MKL_INT strideb, const MKL_INT
batch_size);
void cblas_ctrsm_batch_strided(const CBLAS_LAYOUT layout, const CBLAS_SIDE side, const
CBLAS_UPLO uplo, const CBLAS_TRANSPOSE transa, const CBLAS_DIAG diag, const MKL_INT m,
const MKL_INT n, const void *alpha, const void *a, const MKL_INT lda, const MKL_INT
stridea, void *b, const MKL_INT ldb, const MKL_INT strideb, const MKL_INT batch_size);
void zblas_ctrsm_batch_strided(const CBLAS_LAYOUT layout, const CBLAS_SIDE side, const
CBLAS_UPLO uplo, const CBLAS_TRANSPOSE transa, const CBLAS_DIAG diag, const MKL_INT m,
const MKL_INT n, const void *alpha, const void *a, const MKL_INT lda, const MKL_INT
stridea, void *b, const MKL_INT ldb, const MKL_INT strideb, const MKL_INT batch_size);
```


## Include Files

- mkl.h


## Description

The cblas_?trsm_batch_strided routines solve a series of triangular matrix equations. They are similar to the cblas_?trsm routine counterparts, but the cblas_?trsm_batch_strided routines solve triangular matrix equations with groups of matrices. All matrix a have the same parameters (size, leading dimension, side, uplo, diag, transpose operation) and are stored at constant stridea from each other. Similarly, all matrix $b$ have the same parameters (size, leading dimension, alpha scaling) and are stored at constant strideb from each other.

The operation is defined as

## Input Parameters

Layout
Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).
side $\quad$ Specifies whether $o p(A)$ appears on the left or right of $X$ in the equation.

$$
\begin{aligned}
& \text { if } \text { side }=\text { CblasLeft, then op }(A) *_{X}=\operatorname{alpha} *_{B} ; \\
& \text { if side }=\text { CblasRight, then } X^{*} \mathrm{op}(A)=\operatorname{alpha} *_{B} .
\end{aligned}
$$



Specifies whether the matrices $A$ are upper or lower triangular.
if uplo $=$ CblasUpper, then $A$ are upper triangular;
if uplo $=$ CblasLower, then $A$ are lower triangular.

Specifies op (A) the transposition operation applied to the matrices $A$.
if transa $=$ CblasNoTrans, then op $(A)=A$;
if transa $=$ CblasTrans, then op $(A)=A^{T}$;
if transa $=$ CblasConjTrans, then op $(A)=A^{H}$;

Specifies whether the matrices $A$ are unit triangular.
if diag = CblasUnit, then $A$ are unit triangular;
if $\operatorname{diag}=$ CblasLower, then $A$ are non-unit triangular.
Number of rows of $B$ matrices. Must be at least 0
Number of columns of $B$ matrices. Must be at least 0
Specifies the scalar alpha.
Array of size at least stridea*batch_size holding the $A$ matrices. Each $A$ matrix is stored at constant stridea from each other.

Each $A$ matrix has size $l d a^{*} k$, where $k$ is $m$ when side $=$ CblasLeft and is $n$ when side $=$ CblasRight.

Before entry with uplo = CblasUpper, the leading $k$-by- $k$ upper triangular part of the array $A$ must contain the upper triangular matrix and the strictly lower triangular part of $A$ is not referenced.
Before entry with uplo = CblasLower lower triangular part of the array $A$ must contain the lower triangular matrix and the strictly upper triangular part of $A$ is not referenced.

When diag = CblasUnit, the diagonal elements of $A$ are not referenced either, but are assumed to be unity.

Specifies the leading dimension of the $A$ matrices. When side = CblasLeft, then Ida must be at least max $(1, \mathrm{~m})$, when side $=$ side $=$ CblasRight, then Ida must be at least max $(1, \mathrm{n})$.

Stride between two consecutive $A$ matrices.
When side $=$ CblasLeft, then stridea must be at least lda*m.
When side $=$ side $=$ CblasRight, then stridea must be at least $I d{ }^{\star} n$.
Array of size at least strideb*batch_size holding the $B$ matrices. Each $B$ matrix is stored at constant strideb from each other.

When layout= CblasColMajor, each $B$ matrix has size $1 d b^{*} n$. Before entry, the leading $m$-by-n part of the array $B$ must contain the matrix $B$.

When layout= CblasRowMajor, each $B$ matrix has size $1 d b^{*} m$. Before entry, the leading $n$-by- $m$ part of the array $B$ must contain the matrix $B$.
$1 d b$
Specifies the leading dimension of the $B$ matrices.
When layout= CblasColMajor, strideb must be at least max $(1, m)$.
Otherwise, strideb must be at least max $(1, n)$.
Stride between two consecutive $B$ matrices.
When layout= CblasColMajor, strideb must be at least $I d b^{\star} n$. Otherwise, strideb must be at least $I d b^{\star} m$.

Number of trsm computations to perform. Must be at least 0 .

## Output Parameters

b
Overwritten by the solution batch_size $X$ matrices.

## mkl_?imatcopy

Performs scaling and in-place transposition/copying of matrices.

## Syntax

```
void mkl_simatcopy (const char ordering, const char trans, size_t rows, size_t cols,
const float alpha, float * AB, size_t lda, size_t ldb);
void mkl_dimatcopy (const char ordering, const char trans, size_t rows, size_t cols,
const double alpha, double * AB, size_t lda, size_t ldb);
void mkl_cimatcopy (const char ordering, const char trans, size_t rows, size_t cols,
const MKL_Complex8 alpha, MKL_Complex8 * AB, size_t lda, size_t ldb);
void mkl_zimatcopy (const char ordering, const char trans, size_t rows, size_t cols,
const MKL_Complex16 alpha, MKL_Complex16 * AB, size_t lda, size_t ldb);
```


## Include Files

- mkl.h


## Description

The mkl_?imatcopy routine performs scaling and in-place transposition/copying of matrices. A transposition operation can be a normal matrix copy, a transposition, a conjugate transposition, or just a conjugation. The operation is defined as follows:

```
AB := alpha*op (AB).
```


## NOTE

Different arrays must not overlap.

## Input Parameters

ordering
Ordering of the matrix storage.

If ordering = 'R' or 'r', the ordering is row-major.
If ordering = ' C ' or ' c ', the ordering is column-major.
Parameter that specifies the operation type.
If trans $=$ ' $N$ ' or ' n ', op $(A B)=A B$ and the matrix $A B$ is assumed unchanged on input.
If trans $=$ ' $T$ ' or 't', it is assumed that $A B$ should be transposed.
If trans = ' $C$ ' or ' c ', it is assumed that $A B$ should be conjugate transposed.

If trans $=$ ' R ' or 'r', it is assumed that $A B$ should be only conjugated.
If the data is real, then trans = 'R' is the same as trans = 'N', and trans $=$ ' C' is the same as trans $=$ ' T '.

The number of rows in matrix $A B$ before the transpose operation.
The number of columns in matrix $A B$ before the transpose operation.

## Array.

This parameter scales the input matrix by alpha.
Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the source matrix; measured in the number of elements.

This parameter must be at least rows if ordering $=$ ' $C$ ' or ' $c$ ', and $\max (1, \operatorname{cols})$ otherwise.

Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the destination matrix; measured in the number of elements.

To determine the minimum value of 1 db on output, consider the following guideline:
If ordering = 'C' or 'c', then

- If trans $=$ 'T' or 't' or 'C' or 'c', this parameter must be at least $\max (1, \operatorname{cols})$
- If trans = 'N' or 'n' or 'R' or 'r', this parameter must be at least max (1, rows)

If ordering = 'R' or 'r', then

- If trans $=$ 'T' or 't' or 'C' or 'c', this parameter must be at least max (1, rows)
- If trans = 'N' or 'n' or 'R' or 'r', this parameter must be at least $\max (1$, cols $)$


## Output Parameters

## a.b

Array.
Contains the matrix $A B$.

## Application Notes

For threading to be active in mkl_? imatcopy, the pointer $A B$ must be aligned on the 64-byte boundary. This requirement can be met by allocating $A B$ with mkl_malloc.

## Interfaces

## mkl_?imatcopy_batch

Computes a group of in-place scaled matrix copy or transposition operations on general matrices.

## Syntax

```
void mkl_simatcopy_batch (char layout, const char * trans_array, const size_t *
rows_array, const size_t * cols_array, const float * alpha_array, float ** ab_array,
const size_t * lda_array, const size_t * ldb_array, size_t group_count, const size_t *
group size);
void mkl_dimatcopy_batch (char layout, const char * trans_array, const size_t *
rows_array, const size_t * cols_array, const double * alpha_array, double ** ab_array,
const size_t * lda_array, const size_t * ldb_array, size_t group_count, const size_t *
group_size);
void mkl_cimatcopy_batch (char layout, const char * trans_array, const size_t *
rows_array, const size_t * cols_array, const MKL_Complex8 * alpha_array, MKL_Complex8 **
ab_array, const size_t * lda_array, const size_t * ldb_array, size_t group_count, const
size_t * group_size);
void mkl_zimatcopy_batch (char layout, const char * trans_array, const size_t *
rows_array, const size_t * cols_array, const MKL_Complexl6 * alpha_array, MKL_Complex16
** ab_array, const size_t * lda_array, const size_t * ldb_array, size_t group_count,
const size_t * group_size);
```


## Description

The mkl_? imatcopy_batch routine performs a series of in-place scaled matrix copies or transpositions. They are similar to the mkl_?imatcopy routine counterparts, but the mkl_?imatcopy_batch routine performs matrix operations with groups of matrices. Each group has the same parameters (matrix size, leading dimension, and scaling parameter), but a single call to mkl_? imatcopy_batch operates on multiple groups, and each group can have different parameters, unlike the related mkl_?imatcopy_batch_strided routines.
The operation is defined as

```
idx = 0
for i = 0..group_count - 1
 m in rows_array[i], n in cols_array[i], and alpha in alpha_array[i]
 for j = O..group_size[i] - 1
 AB matrices in AB_array[idx]
 AB := alpha*op (AB)
 idx = idx + 1
 end for
end for
```

Where op $(X)$ is one of op $(X)=X, o p(X)=X^{\prime}$, op $(X)=\operatorname{conjg}\left(X^{\prime}\right)$, or op $(X)=\operatorname{conjg}(X)$. On entry, $A B$ is a $m$ -by-n matrix such that $m$ and $n$ are elements of rows_array and cols_array.
$A B$ represents a matrix stored at addresses pointed to by $A B_{-}$array. The number of entries in $A B_{\text {_ }}$ array is total_batch_count $=$ the sum of all of the group_size entries.

## Input Parameters

layout	Specifies whether two-dimensional array storage is row-major (R) or column-major (C).
trans_array	Array of size group_count. For the group $i$, trans = trans_array $[i]$ specifies the form of op $(A B)$, the transposition operation applied to the $A B$ matrix:
	If trans $=$ 'N' or 'n', op (AB) =AB.
	If trans $=$ 'T' or 't', op $(A B)=A B$ '
	If trans $=$ ' C' or ' C ', op ( $A B)=\operatorname{conjg}(A B$ ')
	If trans $=$ 'R' or 'r', op ( $A B$ ) = Conjg ( $A B$ )
rows_array	Array of size group_count. Specifies the number of rows of the input matrix $A B$. The value of each element must be at least zero.
cols_array	Array of size group_count. Specifies the number of columns of the input matrix $A B$. The value of each element must be at least zero.
alpha_array	Array of size group_count. Specifies the scalar alpha.
$A B$ array	Array of size total_batch_count, holding pointers to arrays used to store $A B$ matrices.
lda_array	Array of size group_count. The leading dimension of the matrix input AB. It must be positive and at least $m$ if column major layout is used or at least $n$ if row major layout is used.
ldb_array	Array of size group_count. The leading dimension of the matrix input AB. It must be positive and at least
	$m$ if column major layout is used and op $(A B)=A B$ or conjg ( $A B$ )
	$n$ if row major layout is used and op $(A B)=A B^{\prime}$ or conjg (AB')
	$n$ otherwise
group_count	Specifies the number of groups. Must be at least 0
group_size	Array of size group_count. The element group_size[i] specifies the number of matrices in group $i$. Each element in group_size must be at least 0 .

## Output Parameters

AB_array
Output array of size total_batch_count, holding pointers to arrays used to store the updated $A B$ matrices.
mkl_?imatcopy_batch_strided
Computes a group of in-place scaled matrix copy or transposition using general matrices.

## Syntax

```
void mkl_simatcopy_batch_strided (const char layout, const char trans, size_t row,
size_t col, const float alpha, float * ab, size_t lda, size_t ldb, size_t stride, size_t
batch_size);
void mkl_dimatcopy_batch_strided (const char layout, const char trans, size_t row,
size_t col, const double alpha, double * ab, size_t lda, size_t ldb, size_t stride,
size_t batch_size);
void mkl_cimatcopy_batch_strided (const char layout, const char trans, size_t row,
size_t col, MKL_complex8 alpha, MKL_complex8 * ab, size_t lda, size_t ldb, size_t
stride, size_t batch_size);
void mkl_zimatcopy_batch_strided (const char layout, const char trans, size_t row,
size_t col, MKL_complex16 alpha, MKL_complex16 * ab, size_t lda, size_t ldb, size_t
stride, size_t batch_size);
```


## Description

The mkl_?imatcopy_batch_strided routine performs a series of scaled matrix copy or transposition. They are similar to the mkl_?imatcopy routine counterparts, but the mkl_?imatcopy_batch_strided routine performs matrix operations with a group of matrices.

All matrices ab have the same parameters (size, transposition operation...) and are stored at constant stride from each other. The operation is defined as

```
for i = 0 ... batch_size - 1
 AB is a matrix at offset i * stride in ab
 AB = alpha * op(AB)
end for
```


## Input Parameters

layout	Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor)
trans	Specifies op (AB), the transposition operation applied to the $A B$ matrices.
	If trans $=$ ' N ' or ' n ', op $(A B)=A B$
	If trans $=$ 'T' or 't', op $(A B)=A B^{\prime}$
	If trans $=$ ' $C^{\prime}$ or ' $\mathrm{C}^{\prime}$, op $(A B)=\operatorname{conjg}\left(A B^{\prime}\right)$
	If trans $=$ 'R' or 'r', op $(A B)=\operatorname{conjg}(A B)$
row	Specifies the number of rows of the matrices $A B$. The value of row must be at least zero.
COI	Specifies the number of columns of the matrices $A B$. The value of col must be at least zero.
alpha	Specifies the scalar alpha.
$a b$	Array holding all the input matrix AB. Must be of size at least batch_size * stride.
Ida	The leading dimension of the matrix input AB. It must be positive and at least row if column major layout is used or at least col if row major layout is used.


1 db	The leading dimension of the matrix input AB. It must be positive and at least
	row if column major layout is used and op $(A B)=A B$ or conjg ( $A B$ )
	row if row major layout is used and op $(A B)=A B^{\prime}$ or conjg ( $A B^{\prime}$ )
	col otherwise
stride	Stride between two consecutive $A B$ matrices, must be at least

- ka is row if column major layout is used or col if row major layout is used
- $k b$ is col if column major layout is used and $o p(A B)=A B$ or conjg(AB) or row major layout is used and $o p(A B)=A B^{\prime}$ or conjg(AB'); kb is row otherwise.

Number of imatcopy computations to perform and $A B$ matrices. Must be at least 0.

## Output Parameters

Array holding the batch_size updated matrices AB.
mkl_?omatadd_batch_strided
Computes a group of out-of-place scaled matrix additions using general matrices.

## Syntax

```
void mkl_somatadd_batch_strided(char ordering, char transa, char transb, size_t rows,
size_t cols, float alpha, const float * A, size_t lda, size_t stridea, float beta,
const float * B, size_t ldb, size_t strideb, float * C, size_t ldc, size_t stridec,
size_t batch_size);
void mkl_domatadd_batch_strided(char ordering, char transa, char transb, size_t rows,
size_t cols, double alpha, const double * A, size_t lda, size_t stridea, double beta,
const double * B, size_t ldb, size_t strideb, double * C, size_t ldc, size_t stridec,
size_t batch_size);
void mkl_comatadd_batch_strided(char ordering, char transa, char transb, size_t rows,
size_t cols, MKL_Complex8 alpha, const MKL_Complex8 * A, size_t lda, size_t stridea,
MKL_Complex8 beta, const MKL_Complex8 * B, size_t ldb, size_t strideb, MKL_Complex8 *
C, size_t ldc, size_t stridec, size_t batch_size);
void mkl_zomatadd_batch_strided(char ordering, char transa, char transb, size_t rows,
size_t cols, MKL_Complex16 alpha, const MKL_Complex16 * A, size_t lda, size_t stridea,
MKL_Complex16 beta, const MKL_Complex16 * B, size_t ldb, size_t strideb, MKL_Complex16
* C, size_t ldc, size_t stridec, size_t batch_size);
```


## Description

The mkl_omatadd_batch_strided routines perform a series of scaled matrix additions. They are similar to the mkl_omatadd routines, but the mkl_omatadd_batch_strided routines perform matrix operations with a group of matrices.

The matrices A, B, and C are stored at a constant stride from each other in memory, given by the parameters stridea, strideb, and stridec. The operation is defined as:

```
for i = 0 ... batch_size - 1
 A is a matrix at offset i * stridea in the array a
 B is a matrix at offset i * strideb in the array b
 C is a matrix at offset i * stridec in the array c
 C = alpha * op(A) + beta * op (B)
end for
```

where:

- $o p(X)$ is one of $o p(X)=X, o p(X)=X^{\prime}, o p(X)=\operatorname{conjg}(X)$ or op $(X)=\operatorname{conjg}\left(X^{\prime}\right)$.
- alpha and beta are scalars.
- A, B, and C are matrices.

The input arrays $a$ and $b$ contain all the input matrices, and the single output array c contains all the output matrices. The locations of the individual matrices within the array are given by stride lengths, while the number of matrices is given by the batch_size parameter.

## Input Parameters

layout	Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).
transa	Specifies op (A), the transposition operation applied to the matrices A. ' N ' or ' n ' indicates no operation, ' T ' or ' t ' is transposition, ' R ' or ' r ' is complex conjugation wtihout tranpsosition, and ' C ' or ' C ' is conjugate transposition.
transb	Specifies op (B), the transposition operation applied to the matrices B.
rows	Number of rows for the result matrix C. Must be at least zero.
cols	Number of columns for the result matrix C. Must be at least zero.
alpha	Scaling factor for the matrices $A$.
a	Array holding the input matrices $A$. Must have size at least stride_a*batch_size.
Ida	Leading dimension of the A matrices. If matrices are stored using column major layout, lda must be at least rows if $A$ is not transposed or cols if A is transposed. If matrices are stored using row major layout, lda must be at least cols if A is not transposed or at least rows if $A$ is transposed. Must be positive.
stride_a	Stride between the different A matrices. If matrices are stored using column major layout, stride_a must be at least lda*rows if $A$ is not transposed or at least lda*cols if $A$ is transposed. If matrices are stored using row major layout, stride_a must be at least lda*rows if $B$ is not transposed or at least lda*cols if $A$ is transposed.
beta	Scaling factor for the matrices B.
b	Array holding the input matrices $B$. Must have size at least stride_b*batch_size.

Idb
stride_b

C

Idc
stride_c
batch_size

## Output Parameters

c

Leading dimension of the B matrices. If matrices are stored using column major layout, ldb must be at least rows if $B$ is not transposed or cols if $B$ is transposed. If matrices are stored using row major layout, 1 db must be at least cols if $B$ is not transposed or at least rows if $B$ is transposed. Must be positive.
Stride between the different $B$ matrices. If matrices are stored using column major layout, stride_b must be at least ldb*cols if B is not transposed or at least $1 \mathrm{db} \mathrm{*}^{*}$ rows if $B$ is transposed. If matrices are stored using row major layout, stride_b must be at least ldb*rows if $B$ is not transposed or at least $l \mathrm{db}^{*} \mathrm{col}^{-}$s if $B$ is transposed.
Output array, overwritten by batch_size matrix addition operations of the form alpha*op (A) + beta*op (B). Must have size at least stride_c*batch_size.
Leading dimension of the A matrices. If matrices are stored using column major layout, lda must be at least rows. If matrices are stored using row major layout, lda must be at least cols. Must be positive.
Stride between the different $C$ matrices. If matrices are stored using column major layout, stride_c must be at least ldc*cols. If matrices are stored using row major layout, stride_c must be at least ldc*rows.
Specifies the number of input and output matrices to add.

Array holding the updated matrices C .
mkl_?omatcopy
Performs scaling and out-place transposition/copying of matrices.

## Syntax

```
void mkl_somatcopy (char ordering, char trans, size_t rows, size_t cols, const float
alpha, const float * A, size_t lda, float * B, size_t ldb);
void mkl_domatcopy (char ordering, char trans, size_t rows, size_t cols, const double
alpha, const double * A, size_t lda, double * B, size_t ldb);
void mkl_comatcopy (char ordering, char trans, size_t rows, size_t cols, const
MKL_Complex8 alpha, const MKL_Complex8 * A, size_t lda, MKL_Complex8 * B, size_t ldb);
void mkl_zomatcopy (char ordering, char trans, size_t rows, size_t cols, const
MKL_Complex16 alpha, const MKL_Complex16 * A, size_t lda, MKL_Complex16 * B, size_t
Idb);
```

Include Files

- mkl.h

Description

The mkl_?omatcopy routine performs scaling and out-of-place transposition/copying of matrices. A transposition operation can be a normal matrix copy, a transposition, a conjugate transposition, or just a conjugation. The operation is defined as follows:

```
B := alpha*op(A)
```


## NOTE

Different arrays must not overlap.

## Input Parameters

ordering
trans
rows
cols
alpha
a
lda
b

Ordering of the matrix storage.
If ordering = 'R' or 'r', the ordering is row-major.
If ordering $=$ ' C ' or 'c', the ordering is column-major.
Parameter that specifies the operation type.
If trans $=$ ' $N$ ' or ' $n$ ', op $(A)=A$ and the matrix $A$ is assumed unchanged on input.
If trans $=$ 'T' or 't', it is assumed that $A$ should be transposed.
If trans $=$ ' C ' or ' C ', it is assumed that $A$ should be conjugate transposed.

If trans $=$ ' $R$ ' or 'r', it is assumed that $A$ should be only conjugated.
If the data is real, then trans = 'R' is the same as trans = 'N', and trans $=$ ' C' is the same as trans $=$ ' $T$ '.

The number of rows in matrix $A$ (the input matrix).
The number of columns in matrix $A$ (the input matrix).
This parameter scales the input matrix by alpha.
Input array.
If ordering = 'R' or 'r', the size of a is lda* rows.
If ordering $=$ 'C' or 'c', the size of a is lda*cols.

If ordering = 'R' or 'r', lda represents the number of elements in array a between adjacent rows of matrix $A$; lda must be at least equal to the number of columns of matrix $A$.

If ordering = 'C' or 'c', lda represents the number of elements in array a between adjacent columns of matrix $A$; lda must be at least equal to the number of row in matrix $A$.

Output array.
If ordering = 'R' or 'r';

- If trans $=$ 'T' or 't' or 'C' or 'c', the size of $b$ is ldb* cols.
- If trans $=$ ' $N$ ' or ' $n$ ' or 'R' or 'r', the size of $b$ is $l d b *$ rows.

If ordering = 'C' or 'c';

- If trans $=$ 'T' or 't' or 'C' or 'c', the size of $b$ is $l d b *$ rows.
- If trans $=$ 'N' or 'n' or 'R' or 'r', the size of $b$ is $l d b *$ cols.
$1 d b$
If ordering = 'R' or 'r', ldb represents the number of elements in array $b$ between adjacent rows of matrix $B$.
- If trans $=$ 'T' or 't' or 'C' or 'c', ldb must be at least equal to rows.
- If trans $=$ 'N' or ' $n$ ' or 'R' or 'r', ldb must be at least equal to cols.

If ordering $=$ ' C' or ' c ', 1 db represents the number of elements in array $b$ between adjacent columns of matrix $B$.

- If trans $=$ 'T' or 't' or 'C' or 'c', ldb must be at least equal to cols.
- If trans $=$ 'N' or ' $n$ ' or 'R' or 'r', ldb must be at least equal to rows.


## Output Parameters

b

## Output array.

Contains the destination matrix.

## Interfaces

mkl_?omatcopy_batch
Computes a group of out of place scaled matrix copy
or transposition operations on general matrices.

## Syntax

```
void mkl_somatcopy_batch (char layout, const char * trans_array, const size_t *
rows_array, const size_t * cols_array, const float * alpha_array, float ** A_array,
const size_t * lda_array, float ** B_array, const size_t * ldb_array, size_t
group_count, const size_t * group_size);
void mkl_domatcopy_batch (char layout, const char * trans_array, const size_t *
rows_array, const size_t * cols_array, const double * alpha_array, float ** A_array,
const size_t * lda_array, double ** B_array, const size_t * ldb_array, size_t
group_count, const size_t * group_size);
void mkl_comatcopy_batch (char layout, const char * trans_array, const size_t *
rows_array, const size_t * cols_array, const MKL_Complex8 * alpha_array, MKL_Complex8 **
A_array, const size_t * lda_array, MKL_Complex8 ** B_array, const size_t * ldb_array,
size_t group_count, const size_t * group_size);
void mkl_zomatcopy_batch (char layout, const char * trans_array, const size_t *
rows_array, const size_t * cols_array, const MKL_Complex16 * alpha_array, MKL_Complex16
** A_array, const size_t * lda_array, MKL_Complex16 ** B_array, const size_t *
ldb_array, size_t group_count, const size_t * group_size);
```


## Description

The mkl_?omatcopy_batch routine performs a series of out-of-place scaled matrix copies or transpositions. They are similar to the $\mathrm{mk} l_{-}$?omatcopy routine counterparts, but the mkl_?omatcopy_batch routine performs matrix operations with groups of matrices. Each group has the same parameters (matrix size, leading dimension, and scaling parameter), but a single call to mkl_?omatcopy_batch operates on multiple groups, and each group can have different parameters, unlike the related mkl_?omatcopy_batch_strided routines.

The operation is defined as

```
idx = 0
for i = 0..group_count - 1
 m in rows_array[i], n in cols_array[i], and alpha in alpha_array[i]
 for j = O..group_size[i] - 1
 A and B matrices in a_array[idx] and b_array[idx], respectively
 B := alpha*op(A)
 idx = idx + 1
 end for
end for
```

Where $o p(X)$ is one of $o p(X)=X, o p(X)=X^{\prime}, o p(X)=\operatorname{conjg}\left(X^{\prime}\right)$, or op $(X)=\operatorname{conjg}(X)$. $A$ is a $m$-by-n matrix such that $m$ and $n$ are elements of rows_array and cols_array.
$A$ and $B$ represent matrices stored at addresses pointed to by $A \_a r r a y$ and $B \_a r r a y$. The number of entries in A_array and B_array is total_batch_count = the sum of all of the group_size entries.

## Input Parameters

```
layout
trans_array
Specifies whether two-dimensional array storage is row-major (R) or column-major (C).
Array of size group_count. For the group \(i\), trans \(=\) trans_array \([i]\) specifies the form of op (\(A\)), the transposition operation applied to the \(A\) matrix:
If trans \(=\) 'N' or 'n', op \((A)=A\).
If trans \(=\) ' \(T\) ' or 't', op \((A)=A\) '
If trans \(=\) ' C ' or ' C ', op \((A)=\operatorname{conjg}(A\) ')
If trans \(=\) ' R ' or 'r', op \((A)=\operatorname{conjg}(A)\)
```

rows_array
cols_array
alpha_array
A_array
lda_array

Array of size group_count. Specifies the number of rows of the matrix $A$. The value of each element must be at least zero.

Array of size group_count. Specifies the number of columns of the matrix $A$. The value of each element must be at least zero.

Array of size group_count. Specifies the scalar alpha.
Array of size total_batch_count, holding pointers to arrays used to store $A$ input matrices.

Array of size group_count. The leading dimension of the input matrix A. It must be positive and at least $m$ if column major layout is used or at least $n$ if row major layout is used.

```
ldb array Array of size group_count. The leading dimension of the output matrix B.
 It must be positive and at least
 m}\mathrm{ if column major layout is used and op(A) = A or conjg(A)
 n if row major layout is used and op(A) = A' or conjg(A')
n otherwise
Specifies the number of groups. Must be at least 0
Array of size group_count. The element group_size[i] specifies the
number of matrices in group i. Each element in group_size must be at
least 0.
```


## Output Parameters

```
B_array
```

Output array of size total_batch_count, holding pointers to arrays used to store the $B$ output matrices, the contents of which are overwritten by the operation of the form alpha*op ( $A$ ).
mkl_?omatcopy_batch_strided Computes a group of out of place scaled matrix copy or transposition using general matrices.

## Syntax

```
void mkl_somatcopy_batch_strided (const char layout, const char trans, size_t row,
size_t col, const float alpha, const float * a, size_t lda, size_t stridea, float * b,
size_t ldb, size_t strideb, size_t batch_size);
void mkl_domatcopy_batch_strided (const char layout, const char trans, size_t row,
size_t col, const double alpha, const double * a, size_t lda, size_t stridea, double *
b, size_t ldb, size_t strideb, size_t batch_size);
void mkl_comatcopy_batch_strided (const char layout, const char trans, size_t row,
size_t col, const MKL_complex8 alpha, const MKL_complex8 * a, size_t lda, size_t
stridea, MKL_complex8 * b, size_t ldb, size_t strideb, size_t batch_size);
void mkl_zomatcopy_batch_strided (const char layout, const char trans, size_t row,
size_t col, const MKL_complex16 alpha, const MKL_complexl6 * a, size_t lda, size_t
stridea, MKL_complex16 * b, size_t ldb, size_t strideb, size_t batch_size);
```


## Description

The mkl_?omatcopy_batch_strided routine performs a series of out-of-place scaled matrix copy or transposition. They are similar to the mkl_?omatcopy routine counterparts, but the mkl_?omatcopy_batch_strided routine performs matrix operations with group of matrices.
All matrices $a$ and $b$ have the same parameters (size, transposition operation...) and are stored at constant stride from each other respectively given by stridea and strideb. The operation is defined as

```
for i = 0 ... batch_size - 1
 A and B are matrices at offset i * stridea in a and I * strideb in b
 B = alpha * op(A)
end for
```


## Input Parameters

layout	Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).
trans	Specifies op (A), the transposition operation applied to the AB matrices.
	If trans $=$ 'N' or 'n', op ( $A$ ) =A.
	If trans $=$ 'T' or 't', op (A) = $A^{\prime}$ '
	If trans $=$ ' C' or 'C', op ( $A$ ) = conig ( $\mathrm{A}^{\prime}$ )
	If trans $=$ 'R' or 'r', op ( $A$ ) = conig ( $A$ )
row	Specifies the number of rows of the matrices A and B. The value of row must be at least zero.
col	Specifies the number of columns of the matrices A and B. The value of col must be at least zero.
alpha	Specifies the scalar alpha.
a	Array holding all the input matrices A . Must be of size at least lda $k \mathrm{k}+$ stridea * (batch_size - 1) * stridea where $k$ is col if column major is used and row otherwise.
Ida	The leading dimension of the matrix input A. It must be positive and at least row if column major layout is used or at least col if row major layout is used.
stridea	Stride between two consecutive A matrices, must be at least 0 .
b	Array holding all the output matrices B. Must be of size at least batch_size * strideb. The b array must be independent from the a array.
1 db	The leading dimension of the output matrix B. It must be positive and at least:
	- row if column major layout is used and op(A) $=A$ or conjg(A)   - row if row major layout is used and op(A) = A' or conjg(A')   - col otherwise
strideb	Stride between two consecutive B matrices. It must be positive and at least:
	- $1 d b^{*}$ col if column major layout is used and op(A) = A or conjg(A)   - ldb* col if row major layout is used and op(A) = A' or conjg(A')   - $1 d b^{*}$ row otherwise
batch_si	

## Output Parameters

b Array holding the batch_size updated matrices B.

```
mkl_?omatcopy2
Performs two-strided scaling and out-of-place
transposition/copying of matrices.
```


## Syntax

```
void mkl_somatcopy2 (char ordering, char trans, size_t rows, size_t cols, const float
```

void mkl_somatcopy2 (char ordering, char trans, size_t rows, size_t cols, const float
alpha, const float * A, size_t lda, size_t stridea, float * B, size_t ldb, size_t
alpha, const float * A, size_t lda, size_t stridea, float * B, size_t ldb, size_t
strideb);
strideb);
void mkl_domatcopy2 (char ordering, char trans, size_t rows, size_t cols, const double
void mkl_domatcopy2 (char ordering, char trans, size_t rows, size_t cols, const double
alpha, const double * A, size_t lda, size_t stridea, double * B, size_t ldb, size_t
alpha, const double * A, size_t lda, size_t stridea, double * B, size_t ldb, size_t
strideb);
strideb);
void mkl_comatcopy2 (char ordering, char trans, size_t rows, size_t cols, const
void mkl_comatcopy2 (char ordering, char trans, size_t rows, size_t cols, const
MKL_Complex8 alpha, const MKL_Complex8 * A, size_t lda, size_t stridea, MKL_Complex8 *
MKL_Complex8 alpha, const MKL_Complex8 * A, size_t lda, size_t stridea, MKL_Complex8 *
B, size_t ldb, size_t strideb);
B, size_t ldb, size_t strideb);
void mkl_zomatcopy2 (char ordering, char trans, size_t rows, size_t cols, const
void mkl_zomatcopy2 (char ordering, char trans, size_t rows, size_t cols, const
MKL_Complex16 alpha, const MKL_Complex16 * A, size_t lda, size_t stridea, MKL_Complex16
MKL_Complex16 alpha, const MKL_Complex16 * A, size_t lda, size_t stridea, MKL_Complex16

* B, size_t ldb, size_t strideb);

```
* B, size_t ldb, size_t strideb);
```


## Include Files

- mkl.h


## Description

The mkl_?omatcopy2 routine performs two-strided scaling and out-of-place transposition/copying of matrices. A transposition operation can be a normal matrix copy, a transposition, a conjugate transposition, or just a conjugation. The operation is defined as follows:

```
B := alpha*op (A)
```

Normally, matrices in the BLAS or LAPACK are specified by a single stride index. For instance, in the columnmajor order, $A(2,1)$ is stored in memory one element away from $A(1,1)$, but $A(1,2)$ is a leading dimension away. The leading dimension in this case is at least the number of rows of the source matrix. If a matrix has two strides, then both $A(2,1)$ and $A(1,2)$ may be an arbitrary distance from $A(1,1)$.

## NOTE

Different arrays must not overlap.

## Input Parameters

ordering
trans

Ordering of the matrix storage.
If ordering = 'R' or 'r', the ordering is row-major.
If ordering = ' C' or 'c', the ordering is column-major.
Parameter that specifies the operation type.
If trans $=$ ' $N$ ' or ' $n$ ', op $(A)=A$ and the matrix $A$ is assumed unchanged on input.
If trans $=$ 'T' or 't', it is assumed that $A$ should be transposed.

```
rows
cols
alpha
a
b

If trans \(=\) ' \(C\) ' or ' \(C\) ', it is assumed that \(A\) should be conjugate transposed.
If trans \(=\) ' \(R\) ' or 'r', it is assumed that \(A\) should be only conjugated.
If the data is real, then trans = 'R' is the same as trans = 'N', and trans \(=\) ' C ' is the same as trans \(=\) ' \(T\) '.
number of rows for the input matrix \(A\). Must be at least zero.
Number of columns for the input matrix \(A\). Must be at least zero.
Scaling factor for the matrix transposition or copy.
Array holding the input matrix \(A\). Must have size at least \(/ d a * n\) for column major ordering and at least \(l d a * m\) for row major ordering.

Leading dimension of the matrix \(A\). If matrices are stored using column major layout, Ida is the number of elements in the array between adjacent columns of the matrix and must be at least stridea * (m-1) + 1. If using row major layout, Ida is the number of elements between adjacent rows of the matrix and must be at least stridea * \((n-1)+1\).

The second stride of the matrix \(A\). For column major layout, stridea is the number of elements in the array between adjacent rows of the matrix. For row major layout stridea is the number of elements between adjacent columns of the matrix. In both cases stridea must be at least 1.

Array holding the output matrix \(B\).
\begin{tabular}{|c|c|c|}
\hline & trans = transpose::nontrans & \begin{tabular}{l}
trans \(=\) \\
transpose::trans, or \\
trans \(=\) \\
transpose::conjtrans
\end{tabular} \\
\hline Column major & \(B\) is \(m \times n\) matrix. Size of array \(b\) must be at least \(l d b * n\). & \(B\) is \(n \times m\) matrix. Size of array \(b\) must be at least \(l d b * m\). \\
\hline Row major & \(B\) is \(m \times n\) matrix. Size of array \(b\) must be at least \(l d b * m\). & \(B\) is \(n \times m\) matrix. Size of array \(b\) must be at least \(l d b * n\). \\
\hline
\end{tabular}

The leading dimension of the matrix \(B\). Must be positive.
\begin{tabular}{|c|c|c|}
\hline & trans \(=\) transpose::nontrans & \begin{tabular}{l}
trans \(=\) \\
transpose::trans, or \\
trans = \\
transpose::conjtrans
\end{tabular} \\
\hline Column major & \begin{tabular}{l}
Idb must be at least \\
strideb * (m-1) + 1.
\end{tabular} & \begin{tabular}{l}
ldb must be at least \\
strideb * (n-1) + 1.
\end{tabular} \\
\hline Row major & ldb must be at least strideb * (\(n-1\)) + 1. & ldb must be at least strideb * (m-1) + 1. \\
\hline
\end{tabular}
strideb

The second stride of the matrix \(B\). For column major layout, strideb is the number of elements in the array between adjacent rows of the matrix. For row major layout, strideb is the number of elements between adjacent columns of the matrix. In both cases strideb must be at least 1.

\section*{Output Parameters}

\section*{b}

Array, size at least \(m\).
Contains the destination matrix.

\section*{Interfaces}

\section*{mkl_?omatadd}

Scales and sums two matrices including in addition to performing out-of-place transposition operations.

\section*{Syntax}
```

void mkl_somatadd (char ordering, char transa, char transb, size_t m, size_t n, const
float alpha, const float * A, size_t lda, const float beta, const float * B, size_t ldb,
float * C, size_t ldc);
void mkl_domatadd (char ordering, char transa, char transb, size_t m, size_t n, const
double alpha, const double * A, size_t lda, const double beta, const double * B, size_t
ldb, double * C, size_t ldc);
void mkl_comatadd (char ordering, char transa, char transb, size_t m, size_t n, const
MKL_Complex8 alpha, const MKL_Complex8 * A, size_t lda, const MKL_Complex8 beta, const
MKL_Complex8 * B, size_t ldb, MKL_Complex8 * C, size_t ldC);
void mkl_zomatadd (char ordering, char transa, char transb, size_t m, size_t n, const
MKL_Complex16 alpha, const MKL_Complex16 * A, size_t lda, const MKL_Complex16 beta,
const MKL_Complex16 * B, size_t ldb, MKL_Complex16 * C, size_t ldc);

```

Include Files
- mkl.h

\section*{Description}

The mkl_?omatadd routine scales and adds two matrices, as well as performing out-of-place transposition operations. A transposition operation can be no operation, a transposition, a conjugate transposition, or a conjugation (without transposition). The following out-of-place memory movement is done:
```

C := alpha*op(A) + beta*op(B)

```
where the \(o p(A)\) and \(o p(B)\) operations are transpose, conjugate-transpose, conjugate (no transpose), or no transpose, depending on the values of transa and transb. If no transposition of the source matrices is required, \(m\) is the number of rows and \(n\) is the number of columns in the source matrices \(A\) and \(B\). In this case, the output matrix \(C\) is \(m-b y-n\).

\section*{NOTE}

Note that different arrays must not overlap.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline ordering & Ordering of the matrix storage. \\
\hline & If ordering = 'R' or 'r', the ordering is row-major. \\
\hline & If ordering \(=\) ' C ' or ' C ', the ordering is column-major. \\
\hline transa & Parameter that specifies the operation type on matrix \(A\). \\
\hline & If transa \(=\) ' \(N\) ' or ' n ', op \((A)=A\) and the matrix \(A\) is assumed unchanged on input. \\
\hline & If transa \(=\) 'T' or 't', it is assumed that \(A\) should be transposed. \\
\hline & If transa \(=\) ' \(C\) ' or ' \(C\) ', it is assumed that \(A\) should be conjugate transposed. \\
\hline & If transa \(=\) 'R' or 'r', it is assumed that \(A\) should be conjugated (and not transposed). \\
\hline & If the data is real, then transa \(=\) 'R' is the same as transa \(=' N\) ', and transa \(=\) ' C ' is the same as transa \(=\) ' \(T\) '. \\
\hline transb & Parameter that specifies the operation type on matrix \(B\). \\
\hline & If transb \(=\) ' \(N\) ' or ' n ', op \((B)=B\) and the matrix \(B\) is assumed unchanged on input. \\
\hline & If transb \(=\) 'T' or 't', it is assumed that \(B\) should be transposed. \\
\hline & If transb \(=\) ' \(C\) ' or ' \(C\) ', it is assumed that \(B\) should be conjugate transposed. \\
\hline & If transb \(=\) 'R' or 'r', it is assumed that \(B\) should be conjugated (and not transposed). \\
\hline & If the data is real, then transb \(=\) 'R' is the same as transb \(=' N\) ', and transb \(=\) ' C ' is the same as transb \(=\) ' \(T\) '. \\
\hline m & The number of matrix rows in \(\operatorname{op}(A), \mathrm{op}(B)\), and \(C\). \\
\hline \(n\) & The number of matrix columns in \(\mathrm{op}(A), \mathrm{op}(B)\), and \(C\). \\
\hline alpha & This parameter scales the input matrix by alpha. \\
\hline a & Array. \\
\hline lda & Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the source matrix \(A\); measured in the number of elements. \\
\hline & For ordering = 'C' or 'c': when transa = 'N', 'n', 'R', or 'r', Ida must be at least max \((1, m)\); otherwise lda must be max \((1, n)\). \\
\hline & For ordering = 'R' or 'r': when transa = 'N', 'n', 'R', or 'r', lda must be at least max \((1, n)\); otherwise lda must be max \((1, m)\). \\
\hline beta & This parameter scales the input matrix by beta. \\
\hline b & Array. \\
\hline
\end{tabular}

Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the source matrix \(B\); measured in the number of elements.

For ordering = 'C' or 'c': when transa = 'N', 'n', 'R', or 'r', Idb must be at least max \((1, m)\); otherwise \(l d b\) must be max \((1, n)\).

For ordering = 'R' or 'r': when transa = 'N', 'n', 'R', or 'r', ldb must be at least max \((1, n)\); otherwise \(1 d b\) must be max \((1, m)\).

Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the destination matrix \(C\); measured in the number of elements.

If ordering \(=\) ' C' or 'c', then ldc must be at least max \((1, m)\), otherwise \(l d c\) must be at least \(\max (1, n)\).

\section*{Output Parameters}

\section*{c}

Array.

\section*{Interfaces}
cblas_?gemm_pack_get_size, cblas_gemm_*_pack_get_size
Returns the number of bytes required to store the packed matrix.

\section*{Syntax}
```

size_t cblas_hgemm_pack_get_size (const CBLAS_IDENTIFIER identifier, const MKL_INT m,
const MKL_INT n, const MKL_INT k)
size_t cblas_sgemm_pack_get_size (const CBLAS_IDENTIFIER identifier, const MKL_INT m,
const MKL_INT n, const MKL_INT k)
size_t cblas_dgemm_pack_get_size (const CBLAS_IDENTIFIER identifier, const MKL_INT m,
const MKL_INT n, const MKL_INT k)
size_t cblas_gemm_s8u8s32_pack_get_size (const CBLAS_IDENTIFIER identifier, const
MKL_INT m, const MKL_INT n, const MKL_INT k)
size_t cblas_gemm_s16s16s32_pack_get_size (const CBLAS_IDENTIFIER identifier, const
MKL_INT m, const MKL_INT n, const MKL_INT k)
size_t cblas_gemm_bf16bf16f32_pack_get_size (const CBLAS_IDENTIFIER identifier, const
MKL_INT m, const MKL_INT n, const MKL_INT k)
size_t cblas_gemm_f16f16f32_pack_get_size (const CBLAS_IDENTIFIER identifier, const
MKL_INT m, const MKL_INT n, const MKL_INT k)

```

\section*{Include Files}
- mkl.h

\section*{Description}

The cblas_?gemm_pack_get_size and cblas_gemm_*_pack_get_size routines belong to a set of related routines that enable the use of an internal packed storage. Call the cblas_?gemm_pack_get_size and cblas_gemm_*_pack_get_size routines first to query the size of storage required for a packed matrix structure to be used in subsequent calls. Ultimately, the packed matrix structure is used to compute
\(C:=a l p h a^{*} o p(A) * o p(B)+b e t a^{*} C\) for bfloat16, half, single and double precision or
\(C:=a l p h a^{*}\left(o p(A)+A_{o} o f f s e t\right) *\left(o p(B)+B _o f f s e t\right)+b e t a * C+C _o f f s e t\) for integer type.
where:
\(\mathrm{op}(X)\) is one of the operations op \((X)=X\) or op \((X)=X^{\mathrm{T}}\)
alpha and beta are scalars,
\(A\), \(A _\)offset, \(B, B\) offset, \(C\), and \(C _\)offset are matrices
op (\(A\)) is an \(m\)-by- \(k\) matrix,
\(o p(B)\) is a \(k-b y-n\) matrix,
\(C\) is an m-by-n matrix.
A_offset is an m-by-k matrix.
\(B\) _offset is an \(k\)-by-n matrix.
C_offset is an m-by-n matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Parameter & Type & Description \\
\hline \multirow[t]{3}{*}{identifier} & CBLAS_IDENTIFIER & Specifies which matrix is to be packed: \\
\hline & & If identifier = CblasAMatrix, the size returned is the size required to store matrix \(A\) in an internal format. \\
\hline & & If identifier = CblasBMatrix, the size returned is the size required to store matrix \(B\) in an internal format. \\
\hline m & MKL_INT & Specifies the number of rows of matrix op \((A)\) and of the matrix \(C\). The value of \(m\) must be at least zero. \\
\hline \(n\) & MKL_INT & Specifies the number of columns of matrix \(\mathrm{op}(B)\) and the number of columns of matrix \(C\). The value of \(n\) must be at least zero. \\
\hline k & MKL_INT & Specifies the number of columns of matrix \(\mathrm{op}(A)\) and the number of rows of matrix \(o p(B)\). The value of \(k\) must be at least zero. \\
\hline
\end{tabular}

\section*{Return Values}
\begin{tabular}{|lll|}
\hline Parameter & Type & Description \\
\hline size & size_t & Returns the size (in bytes) required to store \\
& & \begin{tabular}{l}
the matrix when packed into the internal \\
format of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library \\
(oneMKL).
\end{tabular} \\
& & \\
& & \\
\hline
\end{tabular}

\section*{Example}

See the following examples in the MKL installation directory to understand the use of these routines: cblas_hgemm_pack_get_size: examples\cblas\source\cblas_hgemm_computex.c
cblas_sgemm_pack_get_size: examples\cblas\source\cblas_sgemm_computex.c
cblas_dgemm_pack_get_size: examples\cblas\source\cblas_dgemm_computex.c
cblas_gemm_s8u8s32_pack_get_size: examples\cblas\source\cblas_gemm_s8u8s32_computex.c cblas_gemm_s16u16s32_pack_get_size: examples\cblas\source\cblas_gemm_s16s16s32_computex.c cblas_gemm_bf16bf16f32_pack_get_size: examples\cblas\source\cblas_gemm_bf16bf16f32_computex.c cblas_gemm_f16f16f32_pack_get_size: examples\cblas\source\cblas_gemm_f16f16f32_computex.c

\section*{See Also}
cblas_?gemm_pack and cblas_gemm_*_pack
to pack the matrix into a buffer allocated previously.
cblas_? gemm_compute and cblas_gemm_*_compute
to cōmpute \(\bar{a}\) matrix-matrix product with general matrices (where one or both input matrices are stored in a packed data structure) and add the result to a scalar-matrix product.
```

cblas_?gemm_pack
Performs scaling and packing of the matrix into the
previously allocated buffer.

```

\section*{Syntax}
```

void cblas_hgemm_pack (const CBLAS_LAYOUT Layout, const CBLAS_IDENTIFIER identifier,
const CBLAS_TRANSPOSE trans, const MKL_INT m, const MKL_INT n, const MKL_INT k, const
MKL_F16 alpha, const MKL_F16 *src, const MKL_INT ld, MKL_F16 *dest);
void cblas_sgemm_pack (const CBLAS_LAYOUT Layout, const CBLAS_IDENTIFIER identifier,
const CBLAS_TRANSPOSE trans, const MKL_INT m, const MKL_INT n, const MKL_INT k, const
float alpha, const float *src, const MKL_INT ld, float *dest);
void cblas_dgemm_pack (const CBLAS_LAYOUT Layout, const CBLAS_IDENTIFIER identifier,
const CBLAS_TRANSPOSE trans, const MKL_INT m, const MKL_INT n, const MKL_INT k, const
double alpha, const double *src, const MKL_INT ld, double *dest);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The cblas_? gemm_pack routine is one of a set of related routines that enable use of an internal packed storage. Call cblas_?gemm_pack after you allocate a buffer whose size is given by cblas_?gemm_pack_getsize. The cblas_?gemm_pack routine scales the identified matrix by alpha and packs it into the buffer allocated previously.

\section*{NOTE}

Do not copy the packed matrix to a different address because the internal implementation depends on the alignment of internally-stored metadata.

The cblas_?gemm_pack routine performs this operation:
dest := alpha*op(src) as part of the computation \(C:=a l p h a * o p(A) * o p(B)+b e t a * C\)
where:
\(\mathrm{op}(X)\) is one of the operations op \((X)=X, o p(X)=X^{\mathrm{T}}\), or op \((X)=X^{\mathrm{H}}\),
alpha and beta are scalars,
\(s r c\) is a matrix,
\(A, B\), and \(C\) are matrices
op (src) is an m-by-k matrix if identifier = CblasAMatrix, op (src) is a \(k\)-by-n matrix if identifier = CblasBMatrix, dest is an internal packed storage buffer.

\section*{NOTE}

You must use the same value of the Layout parameter for the entire sequence of related cblas_? \({ }^{\text {cemm_pack and cblas_? }}\).gemm_compute calls.

For best performance, use the same number of threads for packing and for computing.
If packing for both \(A\) and \(B\) matrices, you must use the same number of threads for packing \(A\) as for packing \(B\).

\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{identifier = CblasAMatrix} & \multicolumn{2}{|l|}{identifier = CblasBMatrix} \\
\hline & \begin{tabular}{l}
trans = \\
CblasNoT \\
rans
\end{tabular} & trans = CblasTra ns or trans = CblasCon jTrans & \begin{tabular}{l}
trans \(=\) \\
CblasNoTrans
\end{tabular} & \(\operatorname{trans}=\) CblasTrans or trans = CblasConjTra ns \\
\hline \begin{tabular}{l}
Layout = \\
CblasCol \\
Major
\end{tabular} & \begin{tabular}{l}
Size \\
\(l d^{\star} k\). \\
Before entry, the leading \(m\) -by-k part of the array src must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Size \\
\(l d^{\star} m\). \\
Before entry, the leading \(k\) -by-m part of the array src must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Size \(1 d^{\star} n\). \\
Before entry, the leading \(k\) -by-n part of the array src must contain the matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Size \(l d^{\star} k\). \\
Before entry, the leading \(n\) -by-k part of the array src must contain the matrix \(B\).
\end{tabular} \\
\hline \begin{tabular}{l}
Layout = \\
CblasRow \\
Major
\end{tabular} & \begin{tabular}{l}
Size \\
\(l d^{\star} m\). \\
Before entry, the leading \(k\) -by-m part of the array src must contain the matrix A.
\end{tabular} & \begin{tabular}{l}
Size \\
\(l d^{\star} k\). \\
Before entry, the leading \(m\) -by-k part of the array src must contain the matrix A.
\end{tabular} & \begin{tabular}{l}
Size \(l d^{\star} k\). \\
Before entry, the leading \(n\) -by- \(k\) part of the array src must contain the matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Size \(l d^{\star} n\). \\
Before entry, the leading \(k\) -by-n part of the array src must contain the matrix \(B\).
\end{tabular} \\
\hline
\end{tabular}
ld
Specifies the leading dimension of src as declared in the calling (sub)program.
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
identifier = \\
CblasAMatrix
\end{tabular}} & \multicolumn{2}{|l|}{identifier = CblasBMatrix} \\
\hline & \begin{tabular}{l}
trans \(=\) \\
CblasNoT \\
rans
\end{tabular} & trans = CblasTra ns or trans = CblasCon jTrans & trans \(=\) CblasNoTrans & \begin{tabular}{l}
trans \(=\) \\
CblasTrans \\
or trans = CblasConjTra ns
\end{tabular} \\
\hline \begin{tabular}{l}
Layout = \\
CblasCol \\
Major
\end{tabular} & \begin{tabular}{l}
Id must \\
be at \\
least \\
max (1, \\
m) .
\end{tabular} & \begin{tabular}{l}
ld must \\
be at least max (1, k).
\end{tabular} & ld must be at least max (1, k). & ld must be at least max (1, n). \\
\hline \begin{tabular}{l}
Layout = \\
CblasRow \\
Major
\end{tabular} & \begin{tabular}{l}
Id must \\
be at least \\
\(\max (1\), \\
k).
\end{tabular} & \begin{tabular}{l}
ld must \\
be at least \\
\(\max (1\), m) .
\end{tabular} & Id must be at least max (1, n) . & Id must be at least max (1, k). \\
\hline
\end{tabular}
dest

\section*{Output Parameters}
dest

Scaled and packed internal storage buffer.

Overwritten by the matrix alpha*op (src).

\section*{See Also}
cblas_?gemm_pack_get_size Returns the number of bytes required to store the packed matrix. cblas_? gemm_compute Computes a matrix-matrix product with general matrices where one or both input matrices are stored in a packed data structure and adds the result to a scalar-matrix product.
cblas_?gemm
for a detailed description of general matrix multiplication.
cblas_gemm_*_pack
Pack the matrix into the buffer allocated previously.

\section*{Syntax}
```

void cblas_gemm_s8u8s32_pack (const CBLAS_LAYOUT Layout, const CBLAS_IDENTIFIER
identifier, const CBLAS_TRANSPOSE trans, const MKL_INT m, const MKL_INT n, const
MKL INT k, const void *src, const MKL INT ld, void *dest);
void cblas_gemm_s16s16s32_pack (const CBLAS_LAYOUT Layout, const CBLAS_IDENTIFIER
identifier, const CBLAS_TRANSPOSE trans, const MKL_INT m, const MKL_INT n, const
MKL_INT k, const MKL_INT16 *src, const MKL_INT ld, MKL_INT16 *dest);
void cblas_gemm_bf16bf16f32_pack (const CBLAS_LAYOUT Layout, const CBLAS_IDENTIFIER
identifier, const CBLAS_TRANSPOSE trans, const MKL_INT m, const MKL_INT n, const
MKL_INT k, const MKL_BF16 *src, const MKL_INT ld, MKL_BF16 *dest);

```
```

void cblas_gemm_f16f16f32_pack (const CBLAS_LAYOUT Layout, const CBLAS_IDENTIFIER
identifier, const CBLAS_TRANSPOSE trans, const MKL_INT m, const MKL_INT n, const
MKL_INT k, const MKL_F16 *src, const MKL_INT ld, MKL_F16 *dest);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The cblas_gemm_*_pack routine is one of a set of related routines that enable the use of an internal packed storage. Call cblas_gemm_*_pack after you allocate a buffer whose size is given by cblas_gemm_*_pack_get_size. The cblas_gemm_*_pack routine packs the identified matrix into the buffer allocated previously.
The cblas_gemm_*_pack routine performs this operation:
dest \(:=\mathrm{op}(s r c)\) as part of the computation \(C:=a \operatorname{lpha*}\left(\mathrm{op}(A)+A_{-} o f f s e t\right) *\left(o p(B)+B_{-} o f f s e t\right)+\) beta*C + C_offset for integer types.
\(C:=\) alpha*op \((A)\) * op \((B)+\) beta* \(C\) for bfloat16 type.
where:
\(\mathrm{op}(X)\) is one of the operations op \((X)=X\) or op \((X)=X^{\mathbb{T}}\)
alpha and beta are scalars,
src is a matrix,
\(A, A _\)offset, \(B, B _\)offset, \(c\), and \(C _\)offset are matrices
\(\mathrm{op}(s r c)\) is an \(m\)-by- \(k\) matrix if identifier = CblasAMatrix,
\(\mathrm{op}(s r c)\) is a \(k\)-by-n matrix if identifier =CblasBMatrix,
dest is the buffer previously allocated to store the matrix packed into an internal format
A_offset is an \(m\)-by- \(k\) matrix.
B_offset is an \(k\)-by- \(n\) matrix.
C_offset is an m-by-n matrix.

\section*{NOTE}

You must use the same value of the Layout parameter for the entire sequence of related cblas_gemm_*_pack and cblas_gemm_*_compute calls.
For best performance, use the same number of threads for packing and for computing.
If packing for both \(A\) and \(B\) matrices, you must use the same number of threads for packing \(A\) as for packing \(B\).

\section*{Input Parameters}

Layout
identifier

\section*{CBLAS_LAYOUT}

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major(CblasColMajor).
CBLAS_IDENTIFIER
Specifies which matrix is to be packed:
If identifier = CblasAMatrix, the \(A\) matrix is packed.
If identifier = CblasBMatrix, the \(B\) matrix is packed.
trans
m
n
k
src

CBLAS_TRANSPOSE
Specifies the form of op (src) used in the packing:
If trans \(=\) CblasNoTrans op (src) \(=\) src.
If trans \(=\) CblasTrans \(o p(s r c)=s r c^{T}\).
MKL_INT
Specifies the number of rows of matrix \(\operatorname{op}(A)\) and of the matrix \(C\). The value of \(m\) must be at least zero.

MKL_INT
Specifies the number of columns of matrix \(\mathrm{op}(B)\) and the number of columns of matrix \(C\). The value of \(n\) must be at least zero.

MKL_INT
Specifies the number of columns of matrix \(\mathrm{op}(A)\) and the number of rows of matrix \(\mathrm{op}(B)\). The value of \(k\) must be at least zero.

MKL_BF16* for cblas_gemm_bf16bf16f32_pack, MKL_F16* for cblas_gemm_f16f16f32_pack, void* for cblas_gemm_s8u8s32_pack and MKL_INT16* for cblas_gemm_s16s16s32_pack
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{identifier = CblasAMatrix} & \multicolumn{2}{|l|}{identifier = CblasBMatrix} \\
\hline & \begin{tabular}{l}
trans \(=\) \\
CblasNoT \\
rans
\end{tabular} & \begin{tabular}{l}
trans \(=\) \\
CblasTra \\
ns
\end{tabular} & trans \(=\) CblasNoTrans & \begin{tabular}{l}
\[
\operatorname{trans}=
\] \\
CblasTrans
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasCol \\
Major
\end{tabular} & \begin{tabular}{l}
Size \\
\(l d^{\star} k\). \\
Before entry, the leading \(m\) -by-k part of the array src must contain the matrix A. \\
For \\
cblas_ge mm_s8u8s 32_pack the element in src array must be an 8-bit signed integer.
\end{tabular} & \begin{tabular}{l}
Size \\
\(l d^{\star} m\). \\
Before entry, the leading \(k\) -by-m part of the array src must contain the matrix A. \\
For cblas_ge mm_s8u8s 32_pack the element in src array must be an 8-bit signed integer.
\end{tabular} & \begin{tabular}{l}
Size \(l d^{\star} n\). \\
Before entry, the leading \(k\) -by-n part of the array src must contain the matrix \(B\). \\
For \\
cblas_gemm_ s8u8s32_pac k the element in src array must be an 8bit unsigned integer.
\end{tabular} & \begin{tabular}{l}
Size \(l d^{\star} k\). \\
Before entry, the leading \(n\) -by- \(k\) part of the array src must contain the matrix \(B\). \\
For cblas_gemm_ s8u8s32_pac \(k\) the element in src array must be an 8bit unsigned integer.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{identifier = CblasAMatrix} & \multicolumn{2}{|l|}{identifier \(=\) CblasBMatrix} \\
\hline & \begin{tabular}{l}
trans = \\
CblasNoT \\
rans
\end{tabular} & \begin{tabular}{l}
trans = \\
CblasTra \\
ns
\end{tabular} & trans = CblasNoTrans & \begin{tabular}{l}
\[
\operatorname{trans}=
\] \\
CblasTrans
\end{tabular} \\
\hline \begin{tabular}{l}
Layout = \\
CblasRow \\
Major
\end{tabular} & \begin{tabular}{l}
Size \\
\(l d^{\star} m\). \\
Before entry, the leading \(k\) -by-m part of the array src must contain the matrix A. \\
For \\
cblas_ge mm_s8u8s 32_pack the element in src array must be an 8 -bit unsigned integer.
\end{tabular} & \begin{tabular}{l}
Size \\
\(l d^{\star} k\). \\
Before entry, the leading \(m\) -by-k part of the array src must contain the matrix A. \\
For cblas_ge mm_s8u8s 32_pack the element in src array must be an 8-bit unsigned integer.
\end{tabular} & \begin{tabular}{l}
Size \(I d^{\star} k\). \\
Before entry, the leading \(n\) -by-k part of the array src must contain the matrix \(B\). \\
For \\
cblas_gemm_ s8u8s32_pac k the element in src array must be an 8bit signed integer.
\end{tabular} & \begin{tabular}{l}
Size \(l d^{\star} n\). \\
Before entry, the leading \(k\) -by-n part of the array src must contain the matrix \(B\). \\
For \\
cblas_gemm_ s8u8s32_pac k the element in src array must be an 8bit signed integer.
\end{tabular} \\
\hline
\end{tabular}

MKL_INTSpecifies the leading dimension of src as declared in the calling (sub) program.
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
identifier = \\
CblasAMatrix
\end{tabular}} & \multicolumn{2}{l|}{ identifier= CblasBMatrix } \\
\hline & \begin{tabular}{l}
trans \(=\) \\
CblasNoT \\
rans
\end{tabular} & \begin{tabular}{l}
trans \(=\) \\
CblasTra \\
ns
\end{tabular} & \begin{tabular}{l}
trans = \\
CblasNoTrans
\end{tabular} & \begin{tabular}{l}
trans \(=\) \\
CblasTrans
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasCol \\
Major
\end{tabular} & \begin{tabular}{l}
ld must \\
be at \\
least \\
max(1, \\
\(m)\).
\end{tabular} & \begin{tabular}{l}
Id must \\
be at \\
least \\
max(1, \\
\(k)\).
\end{tabular} & \begin{tabular}{l}
Id must be at \\
least max (1, \\
\(k)\).
\end{tabular} & \begin{tabular}{l}
Id must be at \\
least max (1, \\
\(n)\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{identifier = CblasAMatrix} & \multicolumn{2}{|l|}{identifier = CblasBMatrix} \\
\hline & trans \(=\) CblasNoT rans & trans \(=\) CblasTra ns & \begin{tabular}{l}
\[
\operatorname{trans}=
\] \\
CblasNoTrans
\end{tabular} & trans \(=\) CblasTrans \\
\hline \begin{tabular}{l}
Layout = \\
CblasRow \\
Major
\end{tabular} & \begin{tabular}{l}
Id must \\
be at least \(\max (1\), k).
\end{tabular} & ld must be at least \(\max (1\), m) . & Id must be at least max (1, n). & Id must be at least max (1, k). \\
\hline
\end{tabular}

MKL_BF16* for cblas_gemm_bf16bf16f32_pack, MKL_F16* for cblas_gemm_f16f16f32_pack, void* for cblas_gemm_s8u8s32_pack or MKL_INT16* for cblas_gemm_s16s16s32_pack
Buffer for the packed matrix.

\section*{Output Parameters}
dest
```

MKL_BF16* for cblas_gemm_bf16bf16f32_pack, MKL_F16* for
cblas_gemm_f16f16f32_pack, void* for
cblas_gemm_s8u8s32_pack or MKL_INT16* for
cblas_gemm_s16s16s32_pack

```

Overwritten by the matrix op (src) stored in a format internal to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).

\section*{Example}

See the following examples in the MKL installation directory to understand the use of these routines:
cblas_gemm_s8u8s32_pack: examples\cblas\source\cblas_gemm_s8u8s32_computex.c cblas_gemm_s16s16s32_pack: examples\cblas\source\cblas_gemm_s16s16s32_computex.c cblas_gemm_bf16bf16f32_pack: examples\cblas\source\cblas_gemm_bf16bf16f32_computex.c cblas_gemm_f16f16f32_pack: examples\cblas\source\cblas_gemm_f16f16f32_computex.c

\section*{Application Notes}

When using cblas_gemm_s8u8s32_pack with row-major layout, the data types of \(A\) and \(B\) must be swapped. That is, you must provide an 8-bit unsigned integer array for matrix \(A\) and an 8-bit signed integer array for matrix \(B\).

\section*{See Also}
cblas_gemm_*_pack_get_size
to return the number of bytes needed to store the packed matrix.
cblas_gemm_*_compute
to compute a matrix-matrix product with general integer matrices (where one or both input matrices are stored in a packed data structure) and add the result to a scalar-matrix product.
```

cblas_?gemm_compute
Computes a matrix-matrix product with general
matrices where one or both input matrices are stored
in a packed data structure and adds the result to a
scalar-matrix product.

```

\section*{Syntax}
```

void cblas_hgemm_compute (const CBLAS_LAYOUT Layout, const MKL_INT transa, const

```
void cblas_hgemm_compute (const CBLAS_LAYOUT Layout, const MKL_INT transa, const
MKL_INT transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const MKL_F16 *a,
MKL_INT transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const MKL_F16 *a,
const MKL_INT Ida, const MKL_F16 *b, const MKL_INT ldb, const MKL_F16 beta, MKL_F16 *C,
const MKL_INT Ida, const MKL_F16 *b, const MKL_INT ldb, const MKL_F16 beta, MKL_F16 *C,
const MKL_INT Idc);
const MKL_INT Idc);
void cblas_sgemm_compute (const CBLAS_LAYOUT Layout, const MKL_INT transa, const
void cblas_sgemm_compute (const CBLAS_LAYOUT Layout, const MKL_INT transa, const
MKL_INT transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const float *a,
MKL_INT transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const float *a,
const MKL_INT lda, const float *b, const MKL_INT ldb, const float beta, float *c, const
const MKL_INT lda, const float *b, const MKL_INT ldb, const float beta, float *c, const
MKL_INT Idc);
MKL_INT Idc);
void cblas_dgemm_compute (const CBLAS_LAYOUT Layout, const MKL_INT transa, const
void cblas_dgemm_compute (const CBLAS_LAYOUT Layout, const MKL_INT transa, const
MKL_INT transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const double *a,
MKL_INT transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const double *a,
const MKL_INT lda, const double *b, const MKL_INT ldb, const double beta, double *C,
const MKL_INT lda, const double *b, const MKL_INT ldb, const double beta, double *C,
const MKL_INT Idc);
```

const MKL_INT Idc);

```

Include Files
- mkl.h

\section*{Description}

The cblas_? gemm_compute routine is one of a set of related routines that enable use of an internal packed storage. After calling cblas_?gemm_pack call cblas_?gemm_compute to compute
\(C:=o p(A) * o p(B)+b e t a * C\),
where:
op \((X)\) is one of the operations op \((X)=X, o p(X)=X^{\mathrm{T}}\), or op \((X)=X^{\mathrm{H}}\),
beta is a scalar,
\(A, B\), and \(C\) are matrices:
\(o p(A)\) is an \(m\)-by- \(k\) matrix,
\(o p(B)\) is a \(k\)-by-n matrix,
\(C\) is an m-by-n matrix.

\section*{NOTE}

You must use the same value of the Layout parameter for the entire sequence of related cblas_?gemm_pack and cblas_?gemm_compute calls.
For best performance, use the same number of threads for packing and for computing.
If packing for both \(A\) and \(B\) matrices, you must use the same number of threads for packing \(A\) as for packing \(B\).

\section*{Input Parameters}

Layout

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies the form of op (\(A\)) used in the matrix multiplication, one of the CBLAS_TRANSPOSE or CBLAS_STORAGE enumerated types:

If transa \(=\) CblasNoTrans op \((A)=A\).
If transa \(=\) CblasTrans op \((A)=A^{T}\).
If transa \(=\) CblasConjTrans op \((A)=A^{\mathrm{H}}\).
If transa \(=\) CblasPacked the matrix in array \(a\) is packed and \(I d a\) is ignored.

Specifies the form of op \((B)\) used in the matrix multiplication, one of the CBLAS_TRANSPOSE or CBLAS_STORAGE enumerated types:

If transb \(=\) CblasNoTrans op \((B)=B\).
If transb \(=\) CblasTrans op \((B)=B^{T}\).
If transb \(=\) CblasConjTrans op \((B)=B^{\mathrm{H}}\).
If transb \(=\) CblasPacked the matrix in array \(b\) is packed and \(1 d b\) is ignored.

Specifies the number of rows of the matrix op \((A)\) and of the matrix \(C\). The value of \(m\) must be at least zero.

Specifies the number of columns of the matrix op \((B)\) and the number of columns of the matrix \(C\). The value of \(n\) must be at least zero.

Specifies the number of columns of the matrix op \((A)\) and the number of rows of the matrix \(o p(B)\). The value of \(k\) must be at least zero.

Array:
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { transa }= \\
& \text { CblasNoTrans }
\end{aligned}
\] & \begin{tabular}{l}
transa \(=\) \\
CblasTrans or \\
transa = \\
CblasConjTrans
\end{tabular} & \[
\begin{aligned}
& \text { transa }= \\
& \text { CblasPacked }
\end{aligned}
\] \\
\hline Layout \(=\) CblasColMajor & \begin{tabular}{l}
Size lda*k. \\
Before entry, the leading \(m\)-by- \(k\) part of the array a must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Size \(I d a^{\star} m\). \\
Before entry, the leading \(k\)-by-m part of the array a must contain the matrix A.
\end{tabular} & Stored in internal packed format. \\
\hline Layout \(=\) CblasRowMajor & \begin{tabular}{l}
Size \(1 d a^{\star} m\). \\
Before entry, the leading \(k\)-by-m part of the array a must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Size \(1 d a^{\star} k\). \\
Before entry, the leading \(m\)-by- \(k\) part of the array a must contain the matrix A.
\end{tabular} & Stored in internal packed format. \\
\hline
\end{tabular}

Specifies the leading dimension of a declared in the calling (sub)program.
\begin{tabular}{|l|l|l|l|}
\hline & \begin{tabular}{l}
transa = \\
CblasNoTrans
\end{tabular} & \begin{tabular}{l}
transa = \\
CblasTrans or \\
transa = \\
CblasConjTrans
\end{tabular} & \begin{tabular}{l}
transa = \\
CblasPacked
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Ida must be at \\
least max (1, \\
\(m)\).
\end{tabular} & \begin{tabular}{l}
Ida must be at \\
least max (1, k).
\end{tabular} & Ida is ignored. \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
Ida must be at \\
least max (1, \\
\(k)\).
\end{tabular} & \begin{tabular}{l}
Ida must be at \\
least max (1, m).
\end{tabular} & Ida is ignored. \\
\hline
\end{tabular}
b

1 db

Array:
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { transb }= \\
& \text { CblasNoTrans }
\end{aligned}
\] & \begin{tabular}{l}
\[
\text { transb }=
\] \\
CblasTrans or \\
transb = \\
CblasConjTrans
\end{tabular} & \[
\begin{aligned}
& \text { transb }= \\
& \text { CblasPacked }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Layout = \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Size \(1 d b^{*} n\). \\
Before entry, the leading \(k\)-by-n part of the array b must contain the matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Size \(I d b^{*} k\). \\
Before entry, the leading \(n\)-by-k part of the array \(b\) must contain the matrix \(B\).
\end{tabular} & Stored in internal packed format. \\
\hline \begin{tabular}{l}
Layout = \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
Size \(l d b^{*} k\). \\
Before entry, the leading \(n\)-by- \(k\) part of the array b must contain the matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Size \(1 d b^{*} n\). \\
Before entry, the leading \(k\)-by-n part of the array \(b\) must contain the matrix \(B\).
\end{tabular} & Stored in internal packed format. \\
\hline
\end{tabular}

Specifies the leading dimension of \(b\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|l|}
\hline & \begin{tabular}{l}
transb= \\
CblasNoTrans
\end{tabular} & \begin{tabular}{l}
transb \(=\) \\
CblasTransor \\
transb \(=\) \\
CblasConjTrans
\end{tabular} & \begin{tabular}{l}
transb \(=\) \\
CblasPacked
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
ldb must be at \\
least max(1, \\
\(k)\).
\end{tabular} & \begin{tabular}{l}
ldb must be at \\
least max (1, n).
\end{tabular} & Idb is ignored. \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
ldb must be at \\
least max(1, \\
\(n)\).
\end{tabular} & \begin{tabular}{l}
ldb must be at \\
least max (1, k).
\end{tabular} & Idb is ignored. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline beta & \multicolumn{2}{|l|}{Specifies the scalar beta. When beta is equal to zero, then \(c\) need not be set on input.} \\
\hline C & \multicolumn{2}{|l|}{Array:} \\
\hline & Layout = CblasColMajor & \begin{tabular}{l}
n. \\
try, the leading m-by-n part of the array ain the matrix \(C\), except when beta is ero, in which case \(c\) need not be set on
\end{tabular} \\
\hline & \begin{tabular}{l}
Layout \(=\) \\
Size \\
CblasRowMajor
\end{tabular} & try, the leading \(n\)-by-m part of the array ain the matrix \(C\), except when beta is zero, in which case c need not be set on \\
\hline \multirow[t]{3}{*}{Idc} & \multicolumn{2}{|l|}{Specifies the leading dimension of \(c\) as declared in the calling (sub)program.} \\
\hline & Layout = CblasColmajor & \(l d c\) must be at least max (1, m) . \\
\hline & Layout = CblasRowMajor & Idc must be at least max (1, \(n\)). \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{See Also}
cblas_?gemm_pack_get_size Returns the number of bytes required to store the packed matrix. cblas_?gemm_pack Performs scaling and packing of the matrix into the previously allocated buffer. cblas_? \({ }^{\text {cemm }}\)
for a detailed description of general matrix multiplication.

\section*{cblas_gemm_*_compute}

Computes a matrix-matrix product with general integer matrices (where one or both input matrices are stored in a packed data structure) and adds the result to a scalar-matrix product.

\section*{Syntax}
```

void cblas_gemm_s8u8s32_compute(const CBLAS_LAYOUT Layout, const MKL_INT transa, const
MKL_INT transb, const CBLAS_OFFSET offsetc, const MKL_INT m, const MKL_INT n, const
MKL_INT k, const float alpha, const void *a, const MKL_INT lda, const MKL_INT8 oa,
const void *b, const MKL_INT ldb, const MKL_INT8 ob, const float beta, MKL_INT32 *C,
const MKL_INT ldc, const MKL_INT32 *oc);
void cblas_gemm_s16s16s32_compute(const CBLAS_LAYOUT Layout, const MKL_INT transa,
const MKL_INT transb, const CBLAS_OFFSET offsetc, const MKL_INT m, const MKL_INT n,
const MKL_INT k, const float alpha, const MKL_INT16 *a, const MKL_INT lda, const
MKL_INT16 oa, const MKL_INT16 *b, const MKL_INT ldb, const MKL_INT16 ob, const float
beta, MKL_INT32 *c, const MKL_INT ldc, const MKL_INT32 *oc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The cblas_gemm_*_compute routine is one of a set of related routines that enable use of an internal packed storage. After calling cblas_gemm_*_pack call cblas_gemm_*_compute to compute
\(C:=a l p h a^{*}\left(o p(A)+A _o f f s e t\right) *\left(o p(B)+B _o f f s e t\right)+b e t a * C+C _o f f s e t\),
where:
\(\mathrm{op}(X)\) is either \(\mathrm{op}(X)=X\) or \(\mathrm{op}(X)=X^{\mathrm{T}}\)
alpha and betaare scalars
\(A, B\), and \(C\) are matrices:
op (\(A\)) is an \(m\)-by- \(k\) matrix,
\(\mathrm{op}(B)\) is a \(k\)-by-n matrix,
\(C\) is an m-by-n matrix.
A_offset is an m-by-k matrix with every element equal to the value oa.
\(B _o f f s e t\) is an \(k\)-by- \(n\) matrix with every element equal to the value ob.
C_offset is an m-by- \(n\) matrix defined by the oc array as described in the description of the offsetc parameter.

\section*{NOTE}

You must use the same value of the Layout parameter for the entire sequence of related cblas_?gemm_pack and cblas_?gemm_compute calls.

For best performance, use the same number of threads for packing and for computing.
If you are packing for both \(A\) and \(B\) matrices, you must use the same number of threads for packing \(A\) as for packing \(B\).

\section*{Input Parameters}

Layout
CBLAS_LAYOUT
Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or columnmajor(CblasColMajor).
transa
MKL_INTSpecifies the form of op (\(A\)) used in the packing:
If transa \(=\) CblasNoTrans \(o p(A)=A\).
If transa \(=\) CblasTrans op \((A)=A^{T}\).
If transa \(=\mathrm{CblasPacked}\) the matrix in array ais packed into a format internal to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) and \(1 d a\) is ignored.
transb MKL_INT Specifies the form of op (\(B\)) used in the packing:
If transb \(=\) CblasNoTrans \(o p(B)=B\).
If transb \(=\) CblasTrans op \((B)=B^{T}\).
If transb \(=\) CblasPacked the matrix in array bis packed into a format internal to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) and \(1 d b\) is ignored.
offsetc CBLAS_OFFSET Specifies the form of C_offset used in the matrix multiplication.

If offsetc=CblasFixOffset :oc has a single element and every element of \(C\) _offset is equal to this element.

If offsetc=CblasColoffset :oc has a size of \(m\) and every element of \(C\) _offset is equal to oc.
If offsetc=CblasRowOffset :oc has a size of \(n\) and every element of C_offset is equal to oc.
a MKL_INTSpecifies the number of rows of the matrix op (\(A\)) and of the matrix \(C\). The value of \(m\) must be at least zero.

MKL_INTSpecifies the number of columns of the matrix op \((B)\) and the number of columns of the matrix \(C\). The value of \(n\) must be at least zero.

MKL_INTSpecifies the number of columns of the matrix op (\(A\)) and the number of rows of the matrix op \((B)\). The value of \(k\) must be at least zero.
floatSpecifies the scalar alpha.
void* for gemm_s8u8s32_compute
MKL_INT16* for gemm_s16s16s32_compute
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Layout \(=\) CblasColMajor} \\
\hline \multirow[t]{3}{*}{transa \(=\) CblasNoTrans} & Array, size lda*k. \\
\hline & Before entry, the leading m-by-k part of the array a must contain the matrix \(A\). \\
\hline & For cblas_gemm_s8u8s32_compute, the element in the a array must be an 8-bit signed integer. \\
\hline \multirow[t]{3}{*}{transa \(=\) CblasTrans} & Array, size lda*m. \\
\hline & Before entry, the leading \(k\)-by-m part of the array a must contain the matrix \(A\). \\
\hline & For cblas_gemm_s8u8s32_compute, the element in the a array must be an 8 -bit signed integer. \\
\hline transa \(=\) CblasPacked & Array of size returned by cblas_gemm_*_pack_get_size and initialized using cblas_gemm_*_pack \\
\hline
\end{tabular}
\(\left.\begin{array}{|ll|}\hline \text { Layout }=\text { CblasRowMajor } & \\
\hline \text { transa }=\text { CblasNoTrans } & \begin{array}{l}\text { Array, size } l d a^{\star} m . \\
\text { Before entry, the leading } k \text {-by- } m \text { part of the } \\
\text { array a must contain the matrix } A .\end{array} \\
\text { For cblas_gemm_s } 8 u 8 s 32 _ \text {compute, the } \\
\text { element in the a array must be an 8-bit } \\
\text { unsigned integer. }\end{array}\right\}\)\begin{tabular}{l}
Array, size \(l d a^{\star} k\).
\end{tabular}
\(\left.\begin{array}{|ll|}\hline \text { Layout }=\text { CblasRowMajor } & \\
\hline & \begin{array}{l}\text { Before entry, the leading m-by- } k \text { part of the } \\
\text { array a must contain the matrix } A .\end{array} \\
\text { For cblas_gemm_s8u8s32_compute, the } \\
\text { element in the a array must be an 8-bit } \\
\text { unsigned integer. }\end{array}\right\}\)\begin{tabular}{l}
Array size returned by \\
cblas_gemm_*_pack_get_size and \\
initialized using cblas_gemm_*_pack
\end{tabular}
b

MKL_INTSpecifies the leading dimension of \(a\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & transa = CblasNoTrans & transa = CblasTrans \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & Ida must be at least max \((1, \mathrm{~m})\). & lda must be at least max \((1, \mathrm{k})\). \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & Ida must be at least max \((1, \mathrm{k})\). & Ida must be at least max \((1, \mathrm{~m})\). \\
\hline
\end{tabular}

MKL_INT8 for cblas_gemm_s8u8s32_compute
MKL_INT16 for cblas_gemm_s16s16s32_compute

Specifies the scalar offset value for the matrix \(A\).
```

void* for gemm_s8u8s32_compute
MKL_INT16* for gemm_s16s16s32_compute

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Layout \(=\) CblasColMajor} \\
\hline \multirow[t]{3}{*}{transa \(=\) CblasNoTrans} & Array, size \(1 \mathrm{db}{ }^{*} n\). \\
\hline & Before entry, the leading \(k-b y-n\) part of the array \(b\) must contain the matrix \(B\). \\
\hline & For cblas_gemm_s8u8s32_compute, the element in the \(b\) array must be an 8-bit unsigned integer. \\
\hline \multirow[t]{3}{*}{transa \(=\) CblasTrans} & Array, size \(1 \mathrm{db} \mathrm{b}^{*}\). \\
\hline & Before entry, the leading \(n-b y-k\) part of the array \(b\) must contain the matrix \(B\). \\
\hline & For cblas_gemm_s8u8s32_compute, the element in the \(b\) array must be an 8 -bit unsigned integer. \\
\hline transa \(=\) CblasPacked & Array of size returned by cblas_gemm_*_pack_get_size and initialized using cblas_gemm_*_pack \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Layout = CblasRowMajor} \\
\hline \multirow[t]{3}{*}{transa \(=\) CblasNoTrans} & Array, size \(1 \mathrm{db*}\) k. \\
\hline & Before entry, the leading \(n\)-by- \(k\) part of the array \(b\) must contain the matrix \(B\). \\
\hline & For cblas_gemm_s8u8s32_compute, the element in the \(b\) array must be an 8 -bit signed integer. \\
\hline \multirow[t]{3}{*}{transa \(=\) CblasTrans} & Array, size \(1 \mathrm{db}{ }^{\star} \mathrm{n}\). \\
\hline & Before entry, the leading \(k-b y-n\) part of the array \(b\) must contain the matrix \(B\). \\
\hline & For cblas_gemm_s8u8s32_compute, the element in the \(b\) array must be an 8 -bit signed integer. \\
\hline transa \(=\) CblasPacked & Array of size returned by cblas_gemm_*_pack_get_size and initialized using cblas_gemm_*_pack \\
\hline
\end{tabular}

MKL_INT Specifies the leading dimension of \(b\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & transb = CblasNoTrans & transb = CblasTrans \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & ldb must be at least max \((1, k) \cdot\) & ldb must be at least max (l, n). \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & ldb must be at least max \((1, n)\). & ldb must be at least max (l, k). \\
\hline
\end{tabular}

MKL_INT32*
Array:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Array, size \(l d c^{\star} n\). \\
Before entry, the leading \(m\)-by- \(n\) part of the array \(c\) must contain the \\
matrix \(C\), except when beta is equal to zero, in which case \(c\) need not \\
be set on entry.
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & Array, size \(l d c^{\star} m\). \\
\hline
\end{tabular}

Before entry, the leading \(n\)-by- \(m\) part of the array \(c\) must contain the matrix \(C\), except when beta is equal to zero, in which case \(c\) need not be set on entry.

Idc MKL_INT Specifies the leading dimension of \(c\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|}
\hline Layout \(=\) CblasColMajor & ldc must be at least max \((1, m)\) \\
\hline Layout \(=\) CblasRowMajor & Idc must be at least max \((1, n)\) \\
\hline
\end{tabular}
oc MKL_INT32*
Array, size len. Specifies the scalar offset value for the matrix \(C\).
If offsetc \(=\) CblasFixOffset, len must be at least 1 .
If offsetc \(=\) CblasColoffset, len must be at least max \((1, m)\).
If offsetc \(=\) CblasRowOffset, len must be at least max \((1, n)\).

\section*{Output Parameters}
```

c MKL_INT32*
Overwritten by the matrix alpha*(op(A) + A_offset)*(op(B) +
B_offset) + beta*C + C_offset.

```

\section*{Example}

See the following examples in the MKL installation directory to understand the use of these routines:
cblas_gemm_s8u8s32_compute: examples\cblas\source\cblas_gemm_s8u8s32_computex.c
cblas_gemm_s16s16s32_compute: examples\cblas\source\cblas_gemm_s16s16s32_computex.c

\section*{Application Notes}

You can expand the matrix-matrix product in this manner:
```

(op(A) + A_offset)*(op(B) + B_offset) =op(A)*op(B) +op(A)*B_offset + A_offset*op(B) +
A_offset*B_offset

```

After computing these four multiplication terms separately, they are summed from left to right. The results from the matrix-matrix product and the \(C\) matrix are scaled with alpha and beta floating-point values respectively using double-precision arithmetic. Before storing the results to the output \(c\) array, the floatingpoint values are rounded to the nearest integers.

In the event of overflow or underflow, the results depend on the architecture. The results are either unsaturated (wrapped) or saturated to maximum or minimum representable integer values for the data type of the output matrix.
When using cblas_gemm_s 8 u8ss32_compute with row-major layout, the data types of \(A\) and \(B\) must be swapped. That is, you must provide an 8 -bit unsigned integer array for matrix \(A\) and an 8 -bit signed integer array for matrix \(B\).

\section*{See Also}
cblas_gemm_*_pack_get_size
to return the number of bytes needed to store the packed matrix.
```

cblas_gemm_*_pack

```
to pack the matrix into the buffer allocated previously.
```

cblas_gemm_bf16bf16f32_compute
Computes a matrix-matrix product with general
bfloat16 matrices (where one or both input matrices
are stored in a packed data structure) and adds the
result to a scalar-matrix product.
Syntax
C:
void cblas_gemm_bf16bf16f32_compute (const CBLAS_LAYOUT Layout, const MKL_INT transa,
const MKL_INT transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const float
alpha, const MKL_BF16 *a, const MKL_INT lda, const MKL_BF16 *b, const MKL_INT ldb,
const float beta, float *c, const MKL_INT ldc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The cblas_gemm_bf16bf16f32_compute routine is one of a set of related routines that enable use of an internal packed storage. After calling cblas_gemm_bf16bf16f32_pack call
cblas_gemm_bf16bf16f32_compute to compute
\(C:=\) alpha* op \((A) * o p(B)+\) beta* \(C\),
where:
op \((X)\) is either op \((X)=X\) or op \((X)=X^{\mathrm{T}}\),
alpha and beta are scalars,
\(A, B\), and \(C\) are matrices:
op (\(A\)) is an m-by- \(k\) matrix,
op (\(B\)) is a \(k\)-by- \(n\) matrix,
\(C\) is an m-by-n matrix.

\section*{NOTE}

You must use the same value of the Layout parameter for the entire sequence of related cblas_gemm_bf16bf16f32_pack and cblas_gemm_bf16bf16f32_compute calls.
For best performance, use the same number of threads for packing and for computing.
If packing for both \(A\) and \(B\) matrices, you must use the same number of threads for packing \(A\) as for packing \(B\).

\section*{Input Parameters}

Layout
transa

CBLAS_LAYOUT
Specifies whether two-dimensional array storage is row-major
(CblasRowMajor) or column-major (CblasColMajor).
MKL_INT
Specifies the form of op (\(A\)) used in the packing:
If transa \(=\) CblasNoTrans \(o p(A)=A\).

If transa \(=\) CblasTrans op \((A)=A^{T}\).
If transa \(=\) CblasPacked the matrix in array \(a\) is packed into a format internal to Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) and lda is ignored.
transb
m
\(n\)
k
alpha
a

MKL_INT
Specifies the form of op (\(B\)) used in the packing:
If transb \(=\) CblasNoTrans op \((B)=B\).
If transb \(=\) CblasTrans op \((B)=B^{T}\).
If transb \(=\) CblasPacked the matrix in array \(b\) is packed into \(a\) format internal to Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) and \(l d b\) is ignored.

MKL_INT
Specifies the number of rows of the matrix op (\(A\)) and of the matrix \(C\). The value of \(m\) must be at least zero.

MKL_INT
Specifies the number of columns of the matrix op (\(B\)) and the number of columns of the matrix \(C\). The value of \(n\) must be at least zero.

MKL_INT
Specifies the number of columns of the matrix op (\(A\)) and the number of rows of the matrix op \((B)\). The value of \(k\) must be at least zero.
float
Specifies the scalar alpha.
MKL_BF16*
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { transa }= \\
& \text { CblasNoTrans }
\end{aligned}
\] & transa \(=\) CblasTrans & transa \(=\) CblasPac:ked \\
\hline \[
\begin{aligned}
& \text { Layout }= \\
& \text { CblasColMajor }
\end{aligned}
\] & \begin{tabular}{l}
Array, size Ida*k. \\
Before entry, the leading \(m\) -by-k part of the array a must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Array, size Ida*m. \\
Before entry, the leading \(k\) -by-m part of the array a must contain the matrix \(A\).
\end{tabular} & Array of size returne:d by cblas_gemm_bf16bf16f32_pac and initialized using cblas_gemm_bf16bf16f32_pac \\
\hline Layout = CblasRowMajor & \begin{tabular}{l}
Array, size lda*m. \\
Before entry, the leading \(k\) -by-m part of
\end{tabular} & \begin{tabular}{l}
Array, size lda*k. \\
Before entry, the leading \(m\) -
\end{tabular} & \begin{tabular}{l}
Array size returned loy \\
cblas_gemm_bf16bf16f32_pac and initialized using cblas_gemm_bf16bf16f32_pac
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\(|\)\begin{tabular}{l}
the array \(a\) \\
must contain \\
the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
by- \(k\) part of \\
the array a \\
must \\
contain the \\
matrix \(A\).
\end{tabular} \\
\hline
\end{tabular}

Ida
b

1 db

MKL INT
Specifies the leading dimension of \(a\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
transa \(=\) \\
CblasNoTrans
\end{tabular} & \begin{tabular}{l}
transa \(=\) \\
CblasTrans
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, ~ m)\).
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, ~ k)\).
\end{tabular} \\
\hline \begin{tabular}{l}
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, k)\).
\end{tabular} & \begin{tabular}{l}
Ida must be at least \\
\(\max (1, ~ m)\).
\end{tabular} \\
\hline
\end{tabular}

MKL_BF16*
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { transa }= \\
& \text { CblasNoTrans }
\end{aligned}
\] & transa = CblasTrans & transa \(=\) CblasPac:ked \\
\hline ```
Layout =
CblasColMajor
``` & \begin{tabular}{l}
Array, size ldb*n. \\
Before entry, the leading \(k\) -by-n part of the array \(b\) must contain the matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Array, size ldb*k. \\
Before entry, the leading \(n\) -by-k part of the array \(b\) must contain the matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Array of size returne:d by \\
cblas_gemm_bf16bf16f32_pac and initialized using cblas_gemm_bf16bf16f32_pac
\end{tabular} \\
\hline Layout = CblasRowMajor & \begin{tabular}{l}
Array, size ldb*k. \\
Before entry, the leading \(n\) -by- \(k\) part of the array \(b\) must contain the matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Array, size ldb*n. \\
Before entry, the leading \(k\) -by-n part of the array \(b\) must contain the matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Array size returned by \\
cblas_gemm_bf16bf16f32_pac and initialized using cblas_gemm_bf16bf16f32_pac
\end{tabular} \\
\hline
\end{tabular}

MKL_INT
Specifies the leading dimension of \(b\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l} 
transb \(=\) \\
CblasNoTrans
\end{tabular} & \begin{tabular}{l} 
transb \(=\) \\
CblasTrans
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
ldb must be at least \\
\(\max (1, k)\).
\end{tabular} & \begin{tabular}{l} 
ldb must be at least \\
\(\max (1, ~ n)\).
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l} 
ldb must be at least \\
\(\max (1, n)\).
\end{tabular} & \begin{tabular}{l} 
ldb must be at least \\
\(\max (1, k)\).
\end{tabular} \\
\hline
\end{tabular}
beta

C

Idc
float
Specifies the scalar beta.

\section*{float*}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
Array, size \(I d C^{\star} n\). \\
Before entry, the leading m-by- \(n\) part of the \\
array \(c\) must contain the matrix \(C\), except \\
when beta is equal to zero, in which case \(c\) \\
need not be set on entry.
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l} 
Array, size \(1 d c^{\star} m\). \\
Before entry, the leading \(n\)-by-m part of the \\
array \(c\) must contain the matrix \(C, ~ e x c e p t ~\) \\
when beta is equal to zero, in which case \(c\) \\
need not be set on entry.
\end{tabular} \\
\hline
\end{tabular}

MKL_INT
Specifies the leading dimension of \(c\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|}
\hline Layout \(=\) CblasColMajor & Idc must be at least max \((1, \mathrm{~m})\). \\
\hline Layout \(=\) CblasRowMajor & Idc must be at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
c
float*
Overwritten by the matrix alpha * op \((A) * \mathrm{op}(B)+\) beta* \(C\).

\section*{Example}

See the following examples in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) installation directory to understand the use of these routines:
```

cblas_gemm_bf16bf16f32_compute:
examples\cblas\source\cblas_gemm_bf16bf16f32_computex.c

```

\section*{Application Notes}

On architectures without native bfloat 16 hardware instructions, matrix \(A\) and \(B\) are upconverted to single precision and SGEMM is called to compute matrix multiplication operation.
cblas_gemm_bf16bf16f32
Computes a matrix-matrix product with general bfloat16 matrices.

\section*{Syntax}
```

void cblas_gemm_bf16bf16f32 (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa,
const CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const
float alpha, const MKL_BF16 *a, const MKL_INT lda, const MKL_BF16 *b, const MKL_INT
ldb, const float beta, float *c, const MKL_INT ldc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The cblas_gemm_bf16bf16f32 routines compute a scalar-matrix-matrix product and adds the result to a scalar-matrix product. The operation is defined as:
```

C := alpha*op(A) *op (B) + beta*C

```
where :
\(\mathrm{op}(X)\) is one of op \((X)=X\) or \(o p(X)=X^{T}\),
alpha and beta are scalars,
\(A, B\), and \(C\) are matrices
op ( \(A\) ) is \(m\)-by- \(k\) matrix,
op ( \(B\) ) is \(k\)-by- \(n\) matrix,
\(C\) is an m-by-n matrix.

\section*{Input Parameters}

Layout
transa
transb
m
\(n\)

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies the form of op \((A)\) used in the matrix multiplication:
```

if transa=CblasNoTrans, then op (A) = A;
if transa=CblasTrans, then op (A) = AT

```

Specifies the form of op(B) used in the matrix multiplication:
if transb=CblasNoTrans, then op \((B)=B\);
if transb \(=\) CblasTrans, then op \((B)=B^{T}\).
Specifies the number of rows of the matrix op ( \(A\) ) and of the matrix \(C\). The value of \(m\) must be at least zero.

Specifies the number of columns of the matrix op \((B)\) and the number of columns of the matrix \(C\). The value of \(n\) must be at least zero.
k

a

Ida
b
\(1 d b\)

Specifies the number of columns of the matrix op \((A)\) and the number of rows of the matrix op \((B)\). The value of \(k\) must be at least zero.

Specifies the scalar alpha.
\begin{tabular}{|l|l|l|}
\hline & transa=CblasNoTrans & transa=CblasTrans \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d a^{*} k\) \\
Before entry, the leading \\
m-by- \(k\) part of the array \\
a must contain the \\
matrix \(A\).
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d a *_{m}\) \\
Before entry, the \\
leading \(k\)-by-m part of \\
the array a must \\
contain the matrix \(A\).
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d a^{*} m\) \\
Before entry, the leading \\
\(k\)-by-m part of the array \\
\(a\) must contain the \\
matrix.
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d a * k\) \\
Before entry, the \\
leading m-by- \(k\) part of \\
the array a must \\
contain the matrix.
\end{tabular} \\
\hline
\end{tabular}

Specifies the leading dimension of \(a\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & transa=CblasNoTrans & transa=CblasTrans \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
Ida must be at least \\
\(\max (1, ~ m)\).
\end{tabular} & \begin{tabular}{l} 
Ida must be at least \\
\(\max (1, k)\).
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l} 
Ida must be at least \\
\(\max (1, k)\).
\end{tabular} & \begin{tabular}{l} 
lda must be at least \\
\(\max (1, \mathrm{~m})\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline & transb=CblasNoTrans & transb=CblasTrans \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d b\) by \(n\) \\
Before entry, the leading \\
\(k\)-by- \(n\) part of the array \\
\(b\) must contain the \\
matrix \(B\).
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d b\) by \(k\) \\
Before entry the \\
leading \(n\)-by- \(k\) part of \\
the array \(b\) must \\
contain the matrix \(B\).
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d b\) by \(k\) \\
Before entry the leading \\
\(n\)-by- \(k\) part of the array \\
\(b\) must contain the \\
matrix \(B\).
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d b\) by \(n\) \\
Before entry, the \\
leading \(k\)-by- \(n\) part of \\
the array \(b\) must \\
contain the matrix \(B\).
\end{tabular} \\
\hline
\end{tabular}

Specifies the leading dimension of \(b\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & transb=CblasNoTrans & transb=CblasTrans \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
ldb must be at least \\
\(\max (1, k)\).
\end{tabular} & \begin{tabular}{l}
\(\operatorname{ldb}\) must be at least \\
\(\max (1, n)\).
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l} 
ldb must be at least \\
\(\max (1, n)\).
\end{tabular} & \begin{tabular}{l}
\(I d b\) must be at least \\
\(\max (1, k)\).
\end{tabular} \\
\hline
\end{tabular}
beta

C
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d c\) by n. Before entry, the leading \\
\(m\)-by- \(n\) part of the array \(c\) must contain the \\
matrix \(C\), except when beta is equal to zero, \\
in which case \(c\) need not be set on entry.
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d c\) by m. Before entry, the leading \\
\(n\)-by-m part of the array \(c\) must contain the \\
matrix \(C, ~ e x c e p t ~ w h e n ~ b e t a ~ i s ~ e q u a l ~ t o ~ z e r o, ~\) \\
in which case \(c\) need not be set on entry.
\end{tabular} \\
\hline
\end{tabular}

Specifies the leading dimension of \(c\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|}
\hline Layout \(=\) CblasColMajor & ldc must be at least max \((1, m)\). \\
\hline Layout \(=\) CblasRowMajor & ldc must be at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

C
Overwritten by alpha* op (A) * op (B) +beta*C.

\section*{Example}

For examples of routine usage, see these code examples in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) installation directory:
- cblas_gemm_bf16bf16f32: examples \cblas\source\cblas_gemm_bf16bf16f32x.c

\section*{Application Notes}

On architectures without native bfloat16 hardware instructions, matrix \(A\) and \(B\) are upconverted to single precision and SGEMM is called to compute matrix multiplication operation.

\section*{cblas_gemm_f16f16f32_compute \\ Computes a matrix-matrix product with general matrices of half-precision data type (where one or both input matrices are stored in a packed data structure) and adds the result to a scalar-matrix product.}

\section*{Syntax}

C:
```

void cblas_gemm_f16f16f32_compute (const CBLAS_LAYOUT Layout, const MKL_INT transa,
const MKL_INT transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const float
alpha, const MKL_F16 *a, const MKL_INT lda, const MKL_F16 *b, const MKL_INT ldb, const
float beta, float *}\mp@subsup{}{C}{\prime}\mathrm{ , const MKL_INT ldc);

```

Include Files
- mkl.h

\section*{Description}

The cblas_gemm_f16f16f32_compute routine is one of a set of related routines that enable use of an internal packed storage. After calling cblas_gemm_f16f16f32_pack call cblas_gemm_f16f16f32_compute to compute
```

C := alpha* op(A)*op(B) + beta*C,

```
where:
\(\mathrm{op}(X)\) is either op \((X)=X\) or op \((X)=X^{\mathrm{T}}\),
alpha and beta are scalars,
\(A, B\), and \(C\) are matrices:
\(o p(A)\) is an \(m\)-by- \(k\) matrix,
\(o p(B)\) is a \(k\)-by- \(n\) matrix,
\(C\) is an m-by-n matrix.

\section*{NOTE}

You must use the same value of the Layout parameter for the entire sequence of related cblas_gemm_f16f16f32_pack and cblas_gemm_f16f16f32_compute calls.

For best performance, use the same number of threads for packing and for computing.
If packing for both \(A\) and \(B\) matrices, you must use the same number of threads for packing \(A\) as for packing \(B\).

\section*{Input Parameters}

Layout
transa
transb

CBLAS_LAYOUT
Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

MKL_INT
Specifies the form of op (A) used in the packing:
If transa \(=\) CblasNoTrans op \((A)=A\).
If transa \(=\) CblasTrans op \((A)=A^{T}\).
If transa \(=\) CblasPacked the matrix in array \(a\) is packed into a format internal to Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) and lda is ignored.

MKL_INT
Specifies the form of op ( \(B\) ) used in the packing:
If transb \(=\) CblasNoTrans \(o p(B)=B\).
m
\(n\)
k
a

Ida

If transb \(=\) CblasTrans op \((B)=B^{T}\).
If transb \(=\) CblasPacked the matrix in array \(b\) is packed into \(a\) format internal to Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) and \(l d b\) is ignored.

MKL_INT
Specifies the number of rows of the matrix op (A) and of the matrix \(C\). The value of \(m\) must be at least zero.

MKL_INT
Specifies the number of columns of the matrix op \((B)\) and the number of columns of the matrix \(C\). The value of \(n\) must be at least zero.

MKL_INT
Specifies the number of columns of the matrix op ( \(A\) ) and the number of rows of the matrix \(o p(B)\). The value of \(k\) must be at least zero.
float
Specifies the scalar alpha.
MKL_F16*
\begin{tabular}{|c|c|c|c|}
\hline & transa = CblasNoTrans & transa = CblasTrans & transa \(=\) CblasPac:ked \\
\hline \begin{tabular}{l}
Layout = \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
Array, size lda*k. \\
Before entry, the leading \(m^{-}\) by-k part of the array a must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Array, size \\
lda*m. \\
Before entry, the leading \(k\) -by-m part of the array a must contain the matrix \(A\).
\end{tabular} & Array of size returne:d by cblas_gemm_f16f16f32_pack and initialized using cblas_gemm_f16f16f32_pack. \\
\hline \begin{tabular}{l}
Layout = \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
Array, size lda*m. \\
Before entry, the leading \(k\) -by-m part of the array a must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Array, size Ida*k. \\
Before entry, the leading \(m\) -by-k part of the array a must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Array size returned by \\
cblas_gemm_f16f16f32_pack \\
and initialized using \\
cblas_gemm_f16f16f32_pack.
\end{tabular} \\
\hline
\end{tabular}

MKL_INT
Specifies the leading dimension of a as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l} 
transa \(=\) \\
CblasNoTrans
\end{tabular} & \begin{tabular}{l} 
transa \(=\) \\
CblasTrans
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
Ida must be at least \\
\(\max (1, ~ m)\).
\end{tabular} & \begin{tabular}{l} 
Ida must be at least \\
\(\max (1, ~ k)\).
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l} 
Ida must be at least \\
\(\max (1, ~ k)\).
\end{tabular} & \begin{tabular}{l} 
Ida must be at least \\
\(\max (1, ~ m)\).
\end{tabular} \\
\hline
\end{tabular}
b

MKL_F16*
\begin{tabular}{|c|c|c|c|}
\hline & transa \(=\) CblasNoTrans & transa \(=\) CblasTrans & transa \(=\) CblasPac:ked \\
\hline Layout \(=\) CblasColMajor & \begin{tabular}{l}
Array, size ldb*n. \\
Before entry, the leading \(k\) -by-n part of the array \(b\) must contain the matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Array, size ldb*k. \\
Before entry, the leading \(n\) -by-k part of the array \(b\) must contain the matrix \(B\).
\end{tabular} & Array of size returne:d by cblas_gemm_f16f16f32_pack and initialized using cblas_gemm_f16f16f32_pack. \\
\hline Layout = CblasRowMajor & \begin{tabular}{l}
Array, size ldb*k. \\
Before entry, the leading \(n\) -by-k part of the array \(b\) must contain the matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Array, size ldb*n. \\
Before entry, the leading \(k\) -by-n part of the array \(b\) must contain the matrix \(B\).
\end{tabular} & \begin{tabular}{l}
Array size returned by \\
cblas_gemm_f16f16f32_pack \\
and initialized using \\
cblas_gemm_f16f16f32_pack.
\end{tabular} \\
\hline
\end{tabular}

MKL_INT
Specifies the leading dimension of \(b\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l} 
transb \(=\) \\
CblasNoTrans
\end{tabular} & \begin{tabular}{l} 
transb \(=\) \\
CblasTrans
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
ldb must be at least \\
\(\max (1, k)\).
\end{tabular} & \begin{tabular}{l} 
ldb must be at least \\
\(\max (1, n)\).
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l} 
ldb must be at least \\
\(\max (1, n)\).
\end{tabular} & \begin{tabular}{l} 
ldb must be at least \\
\(\max (1, k)\).
\end{tabular} \\
\hline
\end{tabular}
float
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Specifies the scalar beta.} & \\
\hline & \begin{tabular}{l}
Layout = \\
Array \\
CblasColMajor
\end{tabular} & \begin{tabular}{l}
ize \(I d c^{\star} n\). \\
entry, the leading \(m\)-by- \(n\) part of the must contain the matrix \(C\), except ta is equal to zero, in which case \(c\) t be set on entry.
\end{tabular} \\
\hline & \begin{tabular}{l}
Layout = \\
Array \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l}
ize \(1 d C^{\star} m\). \\
entry, the leading \(n\)-by-m part of the must contain the matrix \(C\), except ta is equal to zero, in which case \(c\) be set on entry.
\end{tabular} \\
\hline \(1 d c\) & \multicolumn{2}{|l|}{\begin{tabular}{l}
MKL_INT \\
Specifies the leading dimension of \(c\) as declared in the calling (sub)program.
\end{tabular}} \\
\hline & Layout = CblasColMajor & \(l d c\) must be at least max \((1, m)\). \\
\hline & Layout = CblasRowMajor & Idc must be at least max (1, \(n\) ). \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{C}

\section*{float*}

Overwritten by the matrix alpha * op (A)*op \((B)+\) beta* \(C\).

\section*{Example}

See the following examples in the Intel® oneAPI Math Kernel Library (oneMKL) installation directory to understand the use of these routines:
```

cblas_gemm_f16f16f32_compute:
examples
overline{cblas\source\cblas_gemm_f16f16f32_computex.c}

```

\section*{Application Notes}

On architectures without native half precision hardware instructions, matrix \(A\) and \(B\) are upconverted to single precision and SGEMM is called to compute matrix multiplication operation.
cblas_gemm_f16f16f32
Computes a matrix-matrix product with general matrices of half precision data type.

\section*{Syntax}
```

void cblas_gemm_f16f16f32 (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa,
const CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const
float alpha, const MKL_F16 *a, const MKL_INT lda, const MKL_F16 *b, const MKL_INT ldb,
const float beta, float *c, const MKL_INT ldc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The cblas_gemm_f16f16f32 routines compute a scalar-matrix-matrix product and adds the result to a scalar-matrix product. The operation is defined as:
```

C:= alpha*op(A) *op (B) + beta*C

```
where :
\(\mathrm{op}(X)\) is one of op \((X)=X\) or op \((X)=X^{T}\),
alpha and beta are scalars,
\(A, B\), and \(C\) are matrices
\(o p(A)\) is \(m\)-by- \(k\) matrix,
op (B) is \(k-b y-n\) matrix,
\(C\) is an m-by-n matrix.

\section*{Input Parameters}

Layout
transa
transb
m
n
k
alpha
a

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies the form of op \((A)\) used in the matrix multiplication:
if transa=CblasNoTrans, then op \((A)=A\);
if transa=CblasTrans, then op \((A)=A^{T}\).
Specifies the form of \(o p(B)\) used in the matrix multiplication:
if transb=CblasNoTrans, then op \((B)=B\);
if transb \(=\) CblasTrans, then \(o p(B)=B^{T}\).
Specifies the number of rows of the matrix op (A) and of the matrix \(C\). The value of \(m\) must be at least zero.

Specifies the number of columns of the matrix op ( \(B\) ) and the number of columns of the matrix \(C\). The value of \(n\) must be at least zero.

Specifies the number of columns of the matrix op ( \(A\) ) and the number of rows of the matrix op \((B)\). The value of \(k\) must be at least zero.

Specifies the scalar alpha.
\begin{tabular}{|l|l|l|}
\hline & transa=CblasNoTrans & transa=CblasTrans \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d^{*} *_{k}\) \\
Before entry, the leading \\
m-by- \(k\) part of the array \\
\(a\) must contain the \\
matrix \(A\).
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d{ }^{*} *_{m}\) \\
Before entry, the \\
leading \(k\)-by-m part of \\
the array a must \\
contain the matrix \(A\).
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & Array, size \(l d *^{*} m\) & Array, size \(l d a * k\)
\end{tabular}
\begin{tabular}{|l|l|l|} 
& \begin{tabular}{l} 
Before entry, the leading \\
\(k\)-by- \(m\) part of the array \\
a must contain the \\
matrix.
\end{tabular} & \begin{tabular}{l} 
Before entry, the \\
leading \(m\)-by- \(k\) part of \\
the array a must \\
contain the matrix.
\end{tabular} \\
\hline
\end{tabular}

Ida
b

Specifies the leading dimension of \(a\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & transa=CblasNoTrans & transa=CblasTrans \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasColmajor
\end{tabular} & \begin{tabular}{l} 
Ida must be at least \\
\(\max (1, ~ m)\).
\end{tabular} & \begin{tabular}{l} 
Ida must be at least \\
\(\max (1, k)\).
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l} 
Ida must be at least \\
\(\max (1, k)\).
\end{tabular} & \begin{tabular}{l} 
lda must be at least \\
\(\max (1, \quad m)\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline & transb=CblasNoTrans & transb=CblasTrans \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d b\) by \(n\) \\
Before entry, the leading \\
\(k\)-by- \(n\) part of the array \\
\(b\) must contain the \\
matrix \(B\).
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d b\) by \(k\) \\
Before entry the \\
leading \(n\)-by- \(k\) part of \\
the array \(b\) must \\
contain the matrix \(B\).
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d b\) by \(k\) \\
Before entry the leading \\
\(n\)-by- \(k\) part of the array \\
\(b\) must contain the \\
matrix \(B\).
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d b\) by \(n\) \\
Before entry, the \\
leading \(k\)-by- \(n\) part of \\
the array \(b\) must \\
contain the matrix \(B\).
\end{tabular} \\
\hline
\end{tabular}

Specifies the leading dimension of \(b\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & transb=CblasNoTrans & transb=CblasTrans \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
Idb must be at least \\
\(\max (1, k)\).
\end{tabular} & \begin{tabular}{l} 
ldb must be at least \\
\(\max (1, n)\).
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l} 
Idb must be at least \\
\(\max (1, ~ n)\).
\end{tabular} & \begin{tabular}{l} 
ldb must be at least \\
\(\max (1, k)\).
\end{tabular} \\
\hline
\end{tabular}

Specifies the scalar beta. When beta is equal to zero, then \(c\) need not be set on input.
```

Layout =
CblasColMajor

```

Array, size \(1 d c\) by \(n\). Before entry, the leading \(m\)-by-n part of the array c must contain the matrix \(C\), except when beta is equal to zero, in which case \(c\) need not be set on entry.
```

Layout =
CblasRowMajor
Array, size $1 d c$ by m. Before entry, the leading n-by-m part of the array c must contain the matrix C, except when beta is equal to zero, in which case c need not be set on entry.

```
ldc
Specifies the leading dimension of \(c\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|}
\hline Layout \(=\) CblasColMajor & ldc must be at least max \((1, m)\). \\
\hline Layout \(=\) CblasRowMajor & ldc must be at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
c
Overwritten by alpha* op(A) * op (B) + beta*C.

\section*{Example}

For examples of routine usage, see these code examples in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) installation directory:
- cblas_gemm_f16f16f32: examples \cblas \source\cblas_gemm_f16f16f32x.c

\section*{Application Notes}

On architectures without native half precision hardware instructions, matrix \(A\) and \(B\) are upconverted to single precision and SGEMM is called to compute matrix multiplication operation.

\section*{cblas_?gemm_free}

Frees the storage previously allocated for the packed matrix (deprecated).

\section*{Syntax}
```

void cblas_sgemm_free (float *dest);
void cblas_dgemm_free (double *dest);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The cblas_? gemm_free routine is one of a set of related routines that enable use of an internal packed storage. Call the cblas_?gemm_free routine last to release storage for the packed matrix structure allocated with cblas_?gemm_alloc (deprecated).

\section*{Input Parameters}
dest
Previously allocated storage.

\section*{Output Parameters}
dest
The freed buffer.

\section*{See Also}
cblas_?gemm_pack Performs scaling and packing of the matrix into the previously allocated buffer. cblas_?gemm_compute Computes a matrix-matrix product with general matrices where one or both input matrices are stored in a packed data structure and adds the result to a scalar-matrix product.
cblas_? gemm
for a detailed description of general matrix multiplication.
```

cblas_gemm_*
Computes a matrix-matrix product with general
integer matrices.

```
Syntax
```

void cblas_gemm_s8u8s32 (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa, const
CBLAS_TRANSPOSE transb, const CBLAS_OFFSET offsetc, const MKL_INT m, const MKL_INT n,
const MKL_INT k, const float alpha, const void *a, const MKL_INT lda, const MKL_INT8
oa, const void *b, const MKL_INT ldb, const MKL_INT8 ob, const float beta, MKL_INT32 *C,
const MKL_INT ldc, const MKL_INT32 *oc);
void cblas_gemm_s16s16s32 (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa,
const CBLAS_TRANSPOSE transb, const CBLAS_OFFSET offsetc, const MKL_INT m, const
MKL_INT n, const MKL_INT k, const float alpha, const MKL_INT16 *a, const MKL_INT lda,
const MKL_INT16 oa, const MKL_INT16 *b, const MKL_INT ldb, const MKL_INT16 ob, const
float beta, MKL_INT32 *c, const MKL_INT ldc, const MKL_INT32 *oc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The cblas_gemm_* routines compute a scalar-matrix-matrix product and adds the result to a scalar-matrix product. To get the final result, a vector is added to each row or column of the output matrix. The operation is defined as:
```

C := alpha*(op(A) + A_offset)*(op(B) + B_offset) + beta*C + C_offset

```
where :
\(\mathrm{op}(X)\) is either op \((X)=X\) or op \((X)=X^{T}\),
A_offset is an m-by- \(k\) matrix with every element equal to the value oa,
\(B \_o f f s e t\) is a \(k-b y-n\) matrix with every element equal to the value ob,
C_offset is an m-by-n matrix defined by the oc array as described in the description of the offsetc parameter,
alpha and beta are scalars,
\(A\) is a matrix such that op ( \(A\) ) is \(m\)-by- \(k\),
\(B\) is a matrix such that op (B) is \(k-b y-n\),
and \(C\) is an m-by-n matrix.

\section*{Input Parameters}

Layout
Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Specifies the form of op \((A)\) used in the matrix multiplication:
if transa=CblasNoTrans, then op \((A)=A\);
if transa=CblasTrans, then \(o p(A)=A^{T}\).
Specifies the form of op(B) used in the matrix multiplication:
if transb=CblasNoTrans, then op \((B)=B\);
if transb=CblasTrans, then \(o p(B)=B^{T}\).
Specifies the form of C_offset used in the matrix multiplication.
offsetc = CblasFixOffset: oc has a single element and every element of \(C\) _offset is equal to this element.
offsetc = CblasColOffset: oc has a size of \(m\) and every column of C_offset is equal to oc.
offsetc \(=\) CblasRowOffset: oc has a size of \(n\) and every row of C_offset is equal to oc.

Specifies the number of rows of the matrix op ( \(A\) ) and of the matrix \(C\). The value of \(m\) must be at least zero.

Specifies the number of columns of the matrix op ( \(B\) ) and the number of columns of the matrix \(C\). The value of \(n\) must be at least zero.

Specifies the number of columns of the matrix op ( \(A\) ) and the number of rows of the matrix \(o p(B)\). The value of \(k\) must be at least zero.
. Specifies the scalar alpha.
\begin{tabular}{|c|c|c|}
\hline & transa=CblasNoTrans & transa=CblasTrans \\
\hline Layout = CblasColMajor & \begin{tabular}{l}
Array, size \(1 d^{\prime} *_{k}\) \\
Before entry, the leading \(m\)-by-k part of the array a must contain the matrix \(A\) of 8-bit signed integers for cblas_gemm_s8u8s32 or 16-bit signed integers for cblas_gemm_s16s16s32.
\end{tabular} & \begin{tabular}{l}
Array, size 1 da* \(_{m}\) \\
Before entry, the leading \(k\)-by-m part of the array a must contain the matrix \(A\) of 8-bit signed integers for cblas_gemm_s8u8s32 or 16-bit signed integers for cblas_gemm_s16s16s32.
\end{tabular} \\
\hline Layout \(=\) CblasRowMajor & \begin{tabular}{l}
Array, size \(1{ }^{\text {da* }} m\) \\
Before entry, the leading \(k\)-by-m part of the array a must contain the matrix \(A\) of 8 -bit unsigned integers for cblas_gemm_s8u8s32 or 16 -bit signed integers for \\
cblas_gemm_s16s16s32.
\end{tabular} & \begin{tabular}{l}
Array, size \(1 d^{\prime}{ }^{*} k\) \\
Before entry, the leading \(m\)-by-k part of the array a must contain the matrix \(A\) of 8 -bit unsigned integers for cblas_gemm_s8u8s32 or 16 -bit signed integers for \\
cblas_gemm_s16s16s32.
\end{tabular} \\
\hline
\end{tabular}

Specifies the leading dimension of \(a\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & transa=CblasNoTrans & transa=CblasTrans \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
Ida must be at least \\
\(\max (1, m)\).
\end{tabular} & \begin{tabular}{l} 
lda must be at least \\
\(\max (1, k)\).
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l} 
Ida must be at least \\
\(\max (1, k)\).
\end{tabular} & \begin{tabular}{l} 
lda must be at least \\
\(\max (1, m)\).
\end{tabular} \\
\hline
\end{tabular}
\(b\)

Specifies the scalar offset value for matrix \(A\).
\begin{tabular}{|c|c|c|}
\hline & transb=CblasNoTrans & transb=CblasTrans \\
\hline Layout = CblasColMajor & \begin{tabular}{l}
Array, size \(1 d b\) by \(n\) \\
Before entry, the leading \(k\)-by-n part of the array \(b\) must contain the matrix \(B\) of 8 -bit unsigned integers for cblas_gemm_s8u8s32 or 16 -bit signed integers for \\
cblas_gemm_s16s16s32.
\end{tabular} & \begin{tabular}{l}
Array, size ldb by \(k\) \\
Before entry the leading \(n\) -by- \(k\) part of the array \(b\) must contain the matrix \(B\) of 8 -bit unsigned integers for cblas_gemm_s8u8s32 or 16 -bit signed integers for cblas_gemm_s16s16s32.
\end{tabular} \\
\hline Layout = CblasRowMajor & \begin{tabular}{l}
Array, size \(l d b\) by \(k\) \\
Before entry the leading n-by- \(k\) part of the array \(b\) must contain the matrix \(B\) of 8 -bit signed integers for cblas_gemm_s8u8s32 or 16-bit signed integers for cblas_gemm_s16s16s32.
\end{tabular} & \begin{tabular}{l}
Array, size \(l d b\) by \(n\) \\
Before entry, the leading \(k\)-by-n part of the array \(b\) must contain the matrix \(B\) of 8 -bit signed integers for cblas_gemm_s8u8s32 or 16-bit signed integers for cblas_gemm_s16s16s32.
\end{tabular} \\
\hline
\end{tabular}

Specifies the leading dimension of \(b\) as declared in the calling (sub)program.
\begin{tabular}{|l|l|l|}
\hline & transb=CblasNoTrans & transb=CblasTrans \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
Idb must be at least \\
\(\max (1, k)\).
\end{tabular} & \begin{tabular}{l} 
ldb must be at least \\
\(\max (1, ~ n)\).
\end{tabular} \\
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasRowMajor
\end{tabular} & \begin{tabular}{l} 
Idb must be at least \\
\(\max (1, ~ n)\).
\end{tabular} & \begin{tabular}{l} 
ldb must be at least \\
\(\max (1, k)\).
\end{tabular} \\
\hline
\end{tabular}

Specifies the scalar offset value for matrix \(B\).
Specifies the scalar beta. When beta is equal to zero, then \(c\) need not be set on input.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Layout \(=\) \\
CblasColMajor
\end{tabular} & \begin{tabular}{l} 
Array, size \(l d c\) by \(n\). Before entry, the leading \(m-\) \\
by- \(n\) part of the array \(c\) must contain the matrix \(C\), \\
except when beta is equal to zero, in which case \(c\) \\
need not be set on entry.
\end{tabular} \\
\hline
\end{tabular}
```

Layout =
CblasRowMajor

```

Array, size \(1 d c\) by \(m\). Before entry, the leading \(n-\) by-m part of the array \(c\) must contain the matrix \(C\), except when beta is equal to zero, in which case \(c\) need not be set on entry.
ldc

OC

Specifies the leading dimension of \(c\) as declared in the calling (sub)program.
\begin{tabular}{|l|l||}
\hline Layout \(=\) CblasColMajor & Idc must be at least max \((1, \mathrm{~m})\). \\
\hline Layout \(=\) CblasRowMajor & Idc must be at least max \((1, \mathrm{n})\). \\
\hline
\end{tabular}

Array, size len. Specifies the offset values for matrix \(C\).
If offsetc \(=\) CblasFixOffset: len must be at least 1 .
If offsetc \(=\) CblasColoffset: len must be at least max \((1, m)\).
If offsetc \(=\) CblasRowOffset: oc must be at least \(\max (1, n)\).

\section*{Output Parameters}
c
Overwritten by alpha*(op(A) + A_offset)*(op(B) + B_offset)
+ beta*C+ C_offset.

\section*{Example}

For examples of routine usage, see the code in in the following links and in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) installation directory:
- cblas_gemm_s8u8s32: examples\cblas\source\cblas_gemm_s8u8s32x.c
- cblas_gemm_s16s16s32: examples \cblas\source\cblas_gemm_s16s16s32x.c

\section*{Application Notes}

The matrix-matrix product can be expanded:
```

(op (A) + A_offset)*(op(B) + B_offset)
=op(A)*op (B) +op(A)*B_offset + A_offset*op(B) + A_offset*B_offset

```

After computing these four multiplication terms separately, they are summed from left to right. The results from the matrix-matrix product and the \(C\) matrix are scaled with alpha and beta floating-point values respectively using double-precision arithmetic. Before storing the results to the output carray, the floatingpoint values are rounded to the nearest integers. In the event of overflow or underflow, the results depend on the architecture. The results are either unsaturated (wrapped) or saturated to maximum or minimum representable integer values for the data type of the output matrix.
When using cblas_gemm_s8u8s32 with row-major layout, the data types of \(A\) and \(B\) must be swapped. That is, you must provide an 8-bit unsigned integer array for matrix \(A\) and an 8 -bit signed integer array for matrix \(B\).

Intermediate integer computations in cblas_gemm_s8u8s32 on 64-bit Intel® Advanced Vector Extensions 2 (Intel \({ }^{\circledR}\) AVX2) and Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) architectures without Vector Neural Network Instructions (VNNI) extensions can saturate. This is because only 16-bits are available for the accumulation of intermediate results. You can avoid integer saturation by maintaining all integer elements of A or B matrices under 8 bits.

\author{
cblas_?gemv_batch_strided \\ Computes groups of matrix-vector product with general matrices.
}

\section*{Syntax}
```

void cblas_sgemv_batch_strided (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE trans,
const MKL_INT m, const MKL_INT n, const float alpha, const float *a, const MKL_INT lda,
const MKL_INT stridea, const float *x, const MKL_INT incx, const MKL_INT stridex, const
float beta, float *y, const MKL_INT incy, const MKL_INT stridey, const MKL_INT
batch_size);
void cblas_dgemv_batch_strided (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE trans,
const MKL_INT m, const MKL_INT n, const double alpha, const double *a, const MKL_INT
lda, const MKL_INT stridea, const double *x, const MKL_INT incx, const MKL_INT stridex,
const double beta, double *y, const MKL_INT incy, const MKL_INT stridey, const MKL_INT
batch_size);
void cblas_cgemv_batch_strided (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE trans,
const MKL_INT m, const MKL_INT n, const void alpha, const void *a, const MKL_INT lda,
const MKL_INT stridea, const void *x, const MKL_INT incx, const MKL_INT stridex, const
void beta, void *y, const MKL_INT incy, const MKL_INT stridey, const MKL_INT
batch_size);
void cblas_zgemv_batch_strided (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE trans,
const MKL_INT m, const MKL_INT n, const void alpha, const void *a, const MKL_INT Ida,
const MKL_INT stridea, const void *x, const MKL_INT incx, const MKL_INT stridex, const
void beta, void *y, const MKL_INT incy, const MKL_INT stridey, const MKL_INT
batch_size);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The cblas_? gemv_batch_strided routines perform a series of matrix-vector product added to a scaled vector. They are similar to the cblas_? gemv routine counterparts, but the cblas_?gemv_batch_strided routines perform matrix-vector operations with groups of matrices and vectors.
All matrices \(a\) and vectors \(x\) and \(y\) have the same parameters (size, increments) and are stored at constant stridea, stridex, and stridey from each other. The operation is defined as
```

for i = 0 ... batch_size - 1
A is a matrix at offset i * stridea in a
X and Y are vectors at offset i * stridex and i * stridey in x and y
Y = alpha * op(A) * X + beta * Y
end for

```

\section*{Input Parameters}
\begin{tabular}{ll} 
layout & \begin{tabular}{l} 
Specifies whether two-dimensional array storage is row-major \\
(CblasRowMajor) or column-major (CblasColMajor).
\end{tabular} \\
trans & \begin{tabular}{l} 
Specifies \(o p(A)\) the transposition operation applied to the \(A\) matrices. \\
if trans \(=\) CblasNoTrans, then op \((A)=A ;\)
\end{tabular} \\
& if trans \(=\) CblasTrans, then \(o p(A)=A^{\prime} ;\)
\end{tabular}
if trans \(=\) CblasConjTrans, then \(o p(A)=\operatorname{conjg}\left(A^{\prime}\right)\).
\begin{tabular}{|c|c|}
\hline m & Number of rows of the matrices \(A\). The value of must be at least 0 . \\
\hline \(n\) & Number of columns of the matrices \(A\). The value of \(n\) must be at least 0 . \\
\hline alpha & Specifies the scalar alpha. \\
\hline a & Array holding all the input matrix \(A\). Must be of size at least \(l d a * k+\) stridea * (batch_size -1) where \(k\) is \(n\) if column major layout is used or \(m\) if row major layout is used. \\
\hline Ida & Specifies the leading dimension of the matrixA. It must be positive and at least mif column major layout is used or at least \(n\) if row major layout is used. \\
\hline stridea & Stride between two consecutive \(A\) matrices. Must be at least 0 . \\
\hline \(x\) & Array holding all the input vector \(x\). Must be of size at least (1+ \((l e n-1) * a b s(i n c x))+\) stridex \(*\) (batch_size -1 ) where len is \(n\) if the \(A\) matrix is not transposed or \(m\) otherwise. \\
\hline incx & Stride between two consecutive elements of the \(x\) vectors. Must not be zero. \\
\hline stridex & Stride between two consecutive \(x\) vectors, must be at least 0 . \\
\hline beta & Specifies the scalar beta. \\
\hline Y & Array holding all the input vectors \(y\). Must be of size at least batch_size * stridey. \\
\hline incy & Stride between two consecutive elements of the \(y\) vectors. Must not be zero. \\
\hline stridey & Stride between two consecutive \(y\) vectors, must be at least (1+ (len-1)*abs(incy)) where len is \(m\) if the matrix \(A\) is non transpose or \(n\) otherwise. \\
\hline batch_size & Number of gemv computations to perform and \(a\) matrices, \(x\) and \(y\) vectors. Must be at least 0 . \\
\hline
\end{tabular}

\section*{Output Parameters}
```

y

```

Array holding the batch_size updated vector \(y\).
```

cblas_?gemv_batch
Computes groups of matrix-vector product with
general matrices.

```

\section*{Syntax}
```

void cblas_sgemv_batch (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE *trans_array,

```
void cblas_sgemv_batch (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE *trans_array,
const MKL_INT *m_array, const MKL_INT *n_array, const float *alpha_array, const float
const MKL_INT *m_array, const MKL_INT *n_array, const float *alpha_array, const float
**a_array, const MKL_INT *lda_array, const float **x_array, const MKL_INT *incx_array,
**a_array, const MKL_INT *lda_array, const float **x_array, const MKL_INT *incx_array,
const float *beta_array, float **y_array, const MKL_INT *incy_array, const MKL_INT
const float *beta_array, float **y_array, const MKL_INT *incy_array, const MKL_INT
group_count, const MKL_INT *group_size);
```

group_count, const MKL_INT *group_size);

```
```

void cblas_dgemv_batch (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE *trans_array,
const MKL_INT *m_array, const MKL_INT *n_array, const double *alpha_array, const double
**a_array, const MKL_INT *lda_array, const double **x_array, const MKL_INT *incx_array,
const double *beta_array, double **y_array, const MKL_INT *incy_array, const MKL_INT
group_count, const MKL_INT *group_size);
void cblas_cgemv_batch (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE *trans_array,
const MKL_INT *m_array, const MKL_INT *n_array, const void *alpha_array, const void
**a_array, const MKL_INT *lda_array, const void **x_array, const MKL_INT *incx_array,
const void *beta_array, void **y_array, const MKL_INT *incy_array, const MKL_INT
group_count, const MKL_INT *group_size);
void cblas_zgemv_batch (const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE *trans_array,
const MKL_INT *m_array, const MKL_INT *n_array, const void *alpha_array, const void
**a_array, const MKL_INT *lda_array, const void **x_array, const MKL_INT *incx_array,
const void *beta_array, void **y_array, const MKL_INT *incy_array, const MKL_INT
group_count, const MKL_INT *group_size);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The cblas_? gemv_batch routines perform a series of matrix-vector product added to a scaled vector. They are similar to the cblas_? gemv routine counterparts, but the cblas_? gemv_batch routines perform matrixvector operations with groups of matrices and vectors.
Each group contains matrices and vectors with the same parameters (size, increments). The operation is defined as:
```

idx = 0
For i = 0 ... group_count - 1
trans, m, n, alpha, lda, incx, beta, incy and group_size at position i in trans_array,
m_array, n_array, alpha_array, lda_array, incx_array, beta_array, incy_array and group_size_array
for j = 0 ... group_size - 1
a is a matrix of size mxn at position idx in a_array
x and y are vectors of size m or n depending on trans, at position idx in x_array and
y_array
y := alpha * op(a) * x + beta * y
idx := idx + 1
end for
end for

```

The number of entries in a_array, \(x_{\_}\)array, and \(y \_a r r a y\) is total_batch_count \(=\) the sum of all of the group_size entries.

\section*{Input Parameters}
layout
trans_array

Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor).

Array of size group_count. For the group \(i\), trans \(_{i}=\) trans_array[i] specifies the transposition operation applied to \(A\).
if trans \(=\) CblasNoTrans, then \(o p(A)=A\);
if trans \(=\) CblasTrans, then \(o p(A)=A^{\prime}\);
if trans \(=\) CblasConjTrans, then \(o p(A)=\operatorname{conjg}\left(A^{\prime}\right)\).
```

m_array
n_array
alpha_array
a_array
Ida_array
x_array
incx_array
beta_array
y_array
incy_array
group_count
group_size

```

\section*{Output Parameters}
```

y_array

```

Array of size group_count. For the group \(i, m_{i}=m_{-}\)array \([i]\) is the number of rows of the matrix \(A\).

Array of size group_count. For the group \(i, n_{i}=n_{\_}\)array \([i]\) is the number of columns in the matrix \(A\).

Array of size group_count. For the group \(i\), alpha \(_{i}=\) alpha_array \([i]\) is the scalar alpha.

Array of size total_batch_count of pointers used to store \(A\) matrices. The array allocated for the \(A\) matrices of the group \(i\) must be of size at least \(/ d a_{i}\) * \(n_{i}\) if column major layout is used or at least \(l d a_{i} * m_{i}\) is row major layout is used.

Array of size group_count. For the group \(i, I d a_{i}=/ d a \_a r r a y[i]\) is the leading dimension of the matrix \(A\). It must be positive and at least \(m_{i}\) if column major layout is used or at least \(n_{i}\) if row major layout is used..

Array of size total_batch_count of pointers used to store \(x\) vectors. The array allocated for the \(x\) vectors of the group \(i\) must be of size at least ( \(1+\) len \(i_{i}-1\) )*abs \(\left(i n c x_{i}\right)\) ) where \(\operatorname{len}_{i}\) is \(n_{i}\) if the \(A\) matrix is not transposed or \(m_{i}\) otherwise.

Array of size group_count. For the group \(i\), incx \(_{i}=i n c x \_a r r a y[i]\) is the stride of vector \(x\). Must not be zero.

Array of size group_count. For the group \(i\), beta \(_{i}=\) beta_array i\(]\) is the scalar beta.

Array of size total_batch_count of pointers used to store \(y\) vectors. The array allocated for the \(y\) vectors of the group \(i\) must be of size at least ( \(1+\) len \(i_{i}-1\) )*abs \(\left(i n c y_{i}\right)\) ) where \(\operatorname{len}_{i}\) is \(m_{i}\) if the \(A\) matrix is not transposed or \(n_{i}\) otherwise.

Array of size group_count. For the group \(i\), incy \(_{i}=i n c y \_a r r a y[i]\) is the stride of vector \(y\). Must not be zero.

Number of groups. Must be at least 0 .
Array of size group_count. The element group_count[ \(i\) i is the number of operations in the group \(i\). Each element in group_count must be at least 0.

Array of pointers holding the total_batch_count updated vector \(y\).
cblas_?dgmm_batch_strided
Computes groups of matrix-vector product using general matrices.

\section*{Syntax}
```

void cblas_sdgmm_batch_strided (const CBLAS_LAYOUT layout, const CBLAS_SIDE left_right,
const MKL_INT m, const MKL_INT n, const float *a, const MKL_INT lda, const MKL_INT
stridea, const float *x, const MKL_INT incx, const MKL_INT stridex, const float *C,
const MKL_INT ldc, const MKL_INT stridec, const MKL_INT batch_size);

```
```

void cblas_ddgmm_batch_strided (const CBLAS_LAYOUT layout, const CBLAS_SIDE left_right,
const MKL_INT m, const MKL_INT n, const double *a, const MKL_INT lda, const MKL_INT
stridea, const double *x, const MKL_INT incx, const MKL_INT stridex, const double *C,
const MKL_INT ldc, const MKL_INT stridec, const MKL_INT batch_size);
void cblas_cdgmm_batch_strided (const CBLAS_LAYOUT layout, const CBLAS_SIDE left_right,
const MKL_INT m, const MKL_INT n, const void *a, const MKL_INT lda, const MKL_INT
stridea, const void *x, const MKL_INT incx, const MKL_INT stridex, const void *c, const
MKL_INT ldc, const MKL_INT stridec, const MKL_INT batch_size);
void cblas_zdgmm_batch_strided (const CBLAS_LAYOUT layout, const CBLAS_SIDE left_right,
const MKL_INT m, const MKL_INT n, const void *a, const MKL_INT lda, const MKL_INT
stridea, const void *x, const MKL_INT incx, const MKL_INT stridex, const void *c, const
MKL_INT ldc, const MKL_INT stridec, const MKL_INT batch_size);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The cblas_?dgmm_batch_strided routines perform a series of diagonal matrix-matrix product. The diagonal matrices are stored as dense vectors and the operations are performed with group of matrices and vectors.

All matrices \(a\) and \(c\) and vector \(x\) have the same parameters (size, increments) and are stored at constant stride, respectively, given by stridea, stridec, and stridex from each other. The operation is defined as
```

for i = 0 ... batch_size - 1
A and C are matrices at offset i * stridea in a and i * stridec in c
X is a vector at offset i * stridex in x
C = diag(X) * A or C = A * diag(X)
end for

```

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline layout & Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor). \\
\hline \multirow[t]{3}{*}{left_right} & Specifies the position of the diagonal matrix in the matrix product \\
\hline & if left_right \(=\) CblasLeft, then \(C=\operatorname{diag}(X) * A\); \\
\hline & if left_right \(=\) CblasRight, then \(C=A * \operatorname{diag}(X)\). \\
\hline m & Number of rows of the matrices \(A\) and \(C\). The value of must be at least 0 . \\
\hline \(n\) & Number of columns of the matrices \(A\) and \(C\). The value of \(n\) must be at least 0. \\
\hline a & Array holding all the input matrix \(A\). Must be of size at least \(/ d a * k+\) stridea * (batch_size -1) where \(k\) is \(n\) if column major layout is used or \(m\) if row major layout is used. \\
\hline lda & Specifies the leading dimension of the matrixA. It must be positive and at least mif column major layout is used or at least \(n\) if row major layout is used. \\
\hline stridea & Stride between two consecutive \(A\) matrices, must be at least 0 . \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(x\) & Array holding all the input vector \(x\). Must be of size at least (1+(len \(-1) * \operatorname{abs}(i n c x))+\) stridex * (batch_size -1 ) where len is \(n\) if the diagonal matrix is on the right of the product or \(m\) otherwise. \\
\hline incx & Stride between two consecutive elements of the \(x\) vectors. \\
\hline stridex & Stride between two consecutive \(x\) vectors, must be at least 0 . \\
\hline c & Array holding all the input matrix \(C\). Must be of size at least batch_size * stridec. \\
\hline \(1 d c\) & Specifies the leading dimension of the matrix \(C\). It must be positive and at least mif column major layout is used or at least \(n\) if row major layout is used. \\
\hline stridec & Stride between two consecutive \(A\) matrices, must be at least \(/ d c\) * nif column major layout is used or \(I d c * m\) if row major layout is used. \\
\hline batch_size & Number of dgmm computations to perform and a c matrices and \(x\) vectors. Must be at least 0 . \\
\hline
\end{tabular}

\section*{Output Parameters}
c
Array holding the batch_size updated matrices c.

\section*{cblas_?dgmm_batch \\ Computes groups of matrix-vector product using \\ general matrices.}

\section*{Syntax}
```

void cblas_sdgmm_batch (const CBLAS_LAYOUT layout, const CBLAS_SIDE *left_right_array,
const MKL_INT *m_array, const MKL_INT *n_array, const float **a_array, const MKL_INT
*lda_array, const float **x_array, const MKL_INT *incx_array, float **c_array, const
MKL_INT *ldc_array, const MKL_INT group_count, const MKL_INT *group_size);
void cblas_ddgmm_batch (const CBLAS_LAYOUT layout, const CBLAS_SIDE *left_right_array,
const MKL_INT *m_array, const MKL_INT *n_array, const double **a_array, const MKL_INT
*lda_array, const double **x_array, const MKL_INT *incx_array, double **c_array, const
MKL_INT *ldc_array, const MKL_INT group_count, const MKL_INT *group_size);
void cblas_cdgmm_batch (const CBLAS_LAYOUT layout, const CBLAS_SIDE *left_right_array,
const MKL_INT *m_array, const MKL_INT *n_array, const void **a_array, const MKL_INT
*lda_array, const void **x_array, const MKL_INT *incx_array, void **c_array, const
MKL_INT *ldc_array, const MKL_INT group_count, const MKL_INT *group_size);
void cblas_zdgmm_batch (const CBLAS_LAYOUT layout, const CBLAS_SIDE *left_right_array,
const MKL_INT *m_array, const MKL_INT *n_array, const void **a_array, const MKL_INT
*lda_array, const void **x_array, const MKL_INT *incx_array, void **c_array, const
MKL_INT *Idc_array, const MKL_INT group_count, const MKL_INT *group_size);

```

Include Files
- mkl.h

\section*{Description}

The cblas_?dgmm_batch routines perform a series of diagonal matrix-matrix product. The diagonal matrices are stored as dense vectors and the operations are performed with group of matrices and vectors. .

Each group contains matrices and vectors with the same parameters (size, increments). The operation is defined as:
```

idx = 0
For i = 0 ... group_count - 1
left_right, m, n, lda, incx, ldc and group_size at position i in left_right_array, m_array,
n_array, lda_array, incx_array, ldc_array and group_size_array
for j = 0 ... group_size - 1
a and c are matrices of size mxn at position idx in a_array and c_array
x is a vector of size m or n depending on left_right, at position idx in x_array
if (left_right == oneapi::mkl::side::left) c := diag(x) * a
else c := a * diag(x)
idx := idx + 1
end for
end for

```

The number of entries in a_array, x_array, and c_array is total_batch_count \(=\) the sum of all of the group_size entries.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline layout & Specifies whether two-dimensional array storage is row-major (CblasRowMajor) or column-major (CblasColMajor). \\
\hline left_right_array & \begin{tabular}{l}
Array of size group_count. For the group \(i\), left_right \({ }_{i}=\) left_right_array[i] \(^{\text {l }}\). specifies the position of the diagonal matrix in the matrix product. \\
if left_right \({ }_{i}=\) CblasLeft, then \(C=\operatorname{diag}(X) * A\). \\
if left_right \({ }_{i}=\) CblasRight, then \(C=A * \operatorname{diag}(X)\).
\end{tabular} \\
\hline m_array & Array of size group_count. For the group \(i, m_{i}=m_{\text {_ }}\) array \([i]\) is the number of rows of the matrix \(A\) and \(C\). \\
\hline n_array & Array of size group_count. For the group \(i, n_{i}=n_{-}\)array \([i]\) is the number of columns in the matrix \(A\) and \(C\). \\
\hline a_array & Array of size total_batch_count of pointers used to store \(A\) matrices. The array allocated for the \(A\) matrices of the group \(i\) must be of size at least \(I d a_{i}\) * \(n_{i}\) if column major layout is used or at least \(I d a_{i} * m_{i}\) is row major layout is used. \\
\hline Ida_array & Array of size group_count. For the group \(i, I d a_{i}=I d a \_a r r a y[i]\) is the leading dimension of the matrix \(A\). It must be positive and at least \(m_{i}\) if column major layout is used or at least \(n_{i}\) if row major layout is used.. \\
\hline x_array & Array of size total_batch_count of pointers used to store \(x\) vectors. The array allocated for the \(x\) vectors of the group \(i\) must be of size at least ( \(1+\) len \(n_{i}-1\) )*abs \(\left(i n c x_{i}\right)\) ) where \(l e n_{i}\) is \(n_{i}\) if the diagonal matrix is on the right of the product or \(m_{i}\) otherwise. \\
\hline incx_array & Array of size group_count. For the group \(i\), incx \({ }_{i}=\) incx_array[i] is the stride of vector \(x\). \\
\hline c_array & Array of size total_batch_count of pointers used to store \(C\) matrices. The array allocated for the \(C\) matrices of the group \(i\) must be of size at least \(I d c_{i}\) * \(n_{i}\), if column major layout is used or at least \(l d c_{i} * m_{i}\) if row major layout is used. \\
\hline
\end{tabular}
```

ldc_array Array of size group_count. For the group i,Idc}\mp@subsup{i}{i}{}=|ldc_array[i] is the leading dimension of the matrix C. It must be positive and at least m_{i} if column major layout is used or at least n_{i} if row major layout is used..
Number of groups. Must be at least 0 .
Array of size group_count. The element group_count[i$]$ is the number of operations in the group i. Each element in group_size must be at least 0.

```

\section*{Output Parameters}
```

c_array

```

Array of pointers holding the total_batch_count updated matrix \(C\).
mkl_jit_create_?gemm
Create a GEMM kernel that computes a scalar-matrixmatrix product and adds the result to a scalar-matrix product.

\section*{Syntax}
```

mkl_jit_status_t mkl_jit_create_sgemm(void** jitter, const MKL_LAYOUT layout, const
MKL_TRANPOSE transa, const MKL_TRANSPOSE transb, const MKL_INT m, const MKL_INT n,
const MKL_INT k, const float alpha, const MKL_INT lda, const MKL_INT ldb, const float
beta, const MKL_INT ldc);
mkl_jit_status_t mkl_jit_create_dgemm(void** jitter, const MKL_LAYOUT layout, const
MKL_TRANPOSE transa, const MKL_TRANSPOSE transb, const MKL_INT m, const MKL_INT n,
const MKL_INT k, const double alpha, const MKL_INT lda, const MKL_INT ldb, const double
beta, const MKL_INT Idc);
mkl_jit_status_t mkl_jit_create_cgemm(void** jitter, const MKL_LAYOUT layout, const
MKL_TRANPOSE transa, const MKL_TRANSPOSE transb, const MKL_INT m, const MKL_INT n,
const MKL_INT k, const void* alpha, const MKL_INT lda, const MKL_INT ldb, const void*
beta, const MKL_INT Idc);
mkl_jit_status_t mkl_jit_create_zgemm(void** jitter, const MKL_LAYOUT layout, const
MKL_TRANPOSE transa, const MKL_TRANSPOSE transb, const MKL_INT m, const MKL_INT n,
const MKL_INT k, const void* alpha, const MKL_INT lda, const MKL_INT ldb, const void*
beta, const MKL_INT Idc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The mkl_jit_create_? gemm functions belong to a set of related routines that enable use of just-in-time code generation.
The mkl_jit_create_? gemm functions create a handle to a just-in-time code generator (a jitter) and generate a GEMM kernel that computes a scalar-matrix-matrix product and adds the result to a scalar-matrix product, with general matrices. The operation of the generated GEMM kernel is defined as follows:
```

C := alpha*op(A)*op (B) + beta*C

```

\section*{Where:}
- \(o p(X)\) is either \(o p(X)=X\) or \(o p(X)=X^{T}\) or op \((X)=X^{H}\)
- alpha and beta are scalars
- A, B, and C are matrices
- op (A) is an m-by-k matrix
- op (B) is a \(k-\) by-n matrix
- C is an m-by-n matrix

\section*{NOTE}

Generating a new kernel with mkl_jit_create_?gemm involves moderate runtime overhead. To benefit from JIT code generation, use this feature when you need to call the generated kernel many times (for example, several hundred calls).

\section*{Input Parameters}
layout
transa
transb
m
\(n\)
k
alpha
lda

Specifies whether two-dimensional array storage is row-major (MKL_ROW_MAJOR) or column-major (MKL_COL_MAJOR).

Specifies the form of op (A) used in the generated matrix multiplication:
- if transa \(=\) MKL_NOTRANS, then op \((A)=A\)
- if transa \(=M K L\) _TRANS, then op \((A)=A^{T}\)
- if transa \(=M K L \_C O N J T R A N S\), then \(o p(A)=A^{H}\)

Specifies the form of op(B) used in the generated matrix multiplication:
- if transb \(=\) MKL_NOTRANS, then op \((B)=B\)
- if transb \(=M K L \_T R A N S\), then \(o p(B)=B^{T}\)
- if transb \(=M K L\) CONJTRANS, then \(o p(B)=B^{H}\)

Specifies the number of rows of the matrix op (A) and of the matrix \(C\). The value of \(m\) must be at least zero.

Specifies the number of columns of the matrix op (B) and of the matrix \(C\). The value of \(n\) must be at least zero.

Specifies the number of columns of the matrix op (A) and the number of rows of the matrix \(o p(B)\). The value of \(k\) must be at least zero.

Specifies the scalar alpha.

\section*{NOTE}
alpha is passed by pointer for mkl_jit_create_cgemm and mkl_jit_create_zgemm.

Specifies the leading dimension of \(a\).
\begin{tabular}{|lll|}
\hline & transa=MKL_NOTRAN & \begin{tabular}{l} 
transa=MKL_TRANS \\
or
\end{tabular} \\
& S & \begin{tabular}{l} 
transa=MKL_CONJTR \\
ANS
\end{tabular} \\
\begin{tabular}{ll} 
layout=MKL_ROW_MA \\
JOR
\end{tabular} & \begin{tabular}{l} 
lda must be at least \\
max \((1, \mathrm{k})\)
\end{tabular} & \begin{tabular}{l} 
lda must be at least \\
layout=MKL_COL_MA \\
JOR
\end{tabular} \\
& \begin{tabular}{l} 
lda must be at least \\
\(\max (1, \mathrm{~m})\)
\end{tabular} & \begin{tabular}{l} 
lda must be at least \\
\(\max (1, \mathrm{k})\)
\end{tabular} \\
\hline
\end{tabular}

1 db
beta
ldc

Specifies the leading dimension of \(b\) :
\begin{tabular}{|c|c|c|}
\hline & transb=MKL_NOTRAN S & \begin{tabular}{l}
transb=MKL_TRANS \\
or \\
transb=MKL_CONJTR \\
ANS
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { layout=MKL_ROW_MA } \\
& \text { JOR }
\end{aligned}
\] & ldb must be at least \(\max (1, n)\) & \(1 d b\) must be at least \(\max (1, k)\) \\
\hline \[
\begin{aligned}
& \text { layout=MKL_COL_MA } \\
& \text { JOR }
\end{aligned}
\] & Idb must be at least \(\max (1, k)\) & \(1 d b\) must be at least \(\max (1, \mathrm{n})\) \\
\hline
\end{tabular}

Specifies the scalar beta.

\section*{NOTE}
beta is passed by pointer for mkl_jit_create_cgemm and mkl_jit_create_zgemm.

Specifies the leading dimension of \(c\).
\begin{tabular}{ll}
\hline layout=MKL_ROW_MAJOR & ldc must be at least max \((1, \mathrm{n})\) \\
layout=MKL_COL_MAJOR & ldc must be at least max \((1, \mathrm{~m})\)
\end{tabular}

\section*{Output Parameters}
jitter

\section*{Return Values}
status

Returns one of the following:
- MKL_JIT_ERROR if the handle cannot be created (no memory) -or-
- MKL_JIT_SUCCESS if the jitter has been created and the GEMM kernel was successfully created
-or-
- MKL_NO_JIT if the jitter has been created, but a JIT GEMM kernel was not created because JIT is not beneficial for the given input parameters. The function pointer returned by mkl_jit_get_?gemm_ptr will call standard (non-JIT) GEMM.
mkl_jit_get_?gemm_ptr
Return the GEMM kernel associated with a jitter
previously created with mkl_jit_create_?gemm.

\section*{Syntax}
```

sgemm_jit_kernel_t mkl_jit_get_sgemm_ptr(const void* jitter);
dgemm_jit_kernel_t mkl_jit_get_dgemm_ptr(const void* jitter);
cgemm_jit_kernel_t mkl_jit_get_cgemm_ptr(const void* jitter);

```
```

zgemm_jit_kernel_t mkl_jit_get_zgemm_ptr(const void* jitter);

```

Include Files
- mkl.h

\section*{Description}

The mkl_jit_get_?gemm_ptr functions belong to a set of related routines that enable use of just-in-time code generation.
The mkl_jit_get_?gemm_ptr functions take as input a jitter previously created with mkl_jit_create_?gemm, and return the GEMM kernel associated with that jitter. The returned GEMM kernel computes a scalar-matrix-matrix product and adds the result to a scalar-matrix product, with general matrices. The operation is defined as follows:
```

C := alpha*op (A)*op (B) + beta*C

```

Where:
- \(o p(X)\) is one of op \((X)=X\) or op \((X)=X^{T}\) or op \((X)=X^{H}\)
- alpha and beta are scalars
- A, B, and C are matrices
- op (A) is an m-by-k matrix
- op (B) is a \(k\)-by-n matrix
- \(C\) is an m-by-n matrix

\section*{NOTE}

Generating a new kernel with mkl_jit_create_?gemm involves moderate runtime overhead. To benefit from JIT code generation, use this feature when you need to call the generated kernel many times (for example, several hundred calls).

\section*{Input Parameter}
```

jitter

```

Handle to the code generator.

\section*{Return Values}

\section*{func}
- sgemm_jit_kernel_t - A function pointer type expecting four inputs of type void*, float*, float*, and float*
```

typedef void (*sgemm_jit_kernel_t)
(void*,float*,float*,floät*);

```
- dgemm_jit_kernel_t - A function pointer type expecting four inputs of type void*, double*, double*, and double*
```

typedef void(*dgemm_jit_kernel_t)
(void*,double*,double*,double*);

```
- cgemm_jit_kernel_t - A function pointer type expecting four inputs of type void*, MKL_Complex8*, MKL_Complex8*, and MKL_Complex8*
```

typedef void(*cgemm_jit_kernel_t)
(void*,MKL_Complex8*,MKL_Complex8*,MKL_Complex8*);

```
- zgemm_jit_kernel_t - A function pointer type expecting four inputs of type void*, MKL_Complex16*, MKL_Complex16*, and MKL_Complex16*
typedef void(*zgemm_jit_kernel_t) (void*, MKL_Complex16*,MKL_Complex16*,MKL_Complex16*);

If the jitter input is not NULL, returns a function pointer to a GEMM kernel. The GEMM kernel is called with four parameters: the jitter and the three matrices \(a, b\), and \(c\). Otherwise, returns NULL.

If layout, transa, transb, \(m, n, k, l d a, l d b\), and \(l d c\) are the parameters used during the creation of the input jitter, then:
a
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{aligned}
& \text { layout = } \\
& \text { MKL_COL_MAJOR }
\end{aligned}
\] & \[
\begin{aligned}
& \text { layout = } \\
& \text { MKL_ROW_MAJOR }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\[
\text { transa }=
\] \\
MKL_NOTRANS
\end{tabular} & \begin{tabular}{l}
Array of size \(1 d^{\prime} *_{k}\) \\
Before calling the returned function pointer, the leading \(m\) -by-k part of the array a must contain the matrix A.
\end{tabular} & \begin{tabular}{l}
Array of size \(1 d^{\prime} *_{m}\) \\
Before calling the returned function pointer, the leading \(k\) -by-m part of the array a must contain the matrix A.
\end{tabular} \\
\hline \begin{tabular}{l}
transa \(=\) \\
MKL_TRANS or transa = MKL_CONJTRANS
\end{tabular} & \begin{tabular}{l}
Array of size \(1 d a^{*}{ }_{m}\) \\
Before calling the returned function pointer, the leading \(k\) -by-m part of the array a must contain the matrix \(A\).
\end{tabular} & \begin{tabular}{l}
Array of size \(1 d^{\prime} *_{k}\) \\
Before calling the returned function pointer, the leading m-by- \(k\) part of the array a must contain the matrix \(A\).
\end{tabular} \\
\hline
\end{tabular}
b
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l} 
layout = \\
MKL_COL_MAJOR
\end{tabular} & \begin{tabular}{l} 
layout = \\
MKL_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l} 
transb \(=\) \\
MKL_NOTRANS
\end{tabular} & \begin{tabular}{l} 
Array of size \(l d b^{*} n\) \\
Before calling the \\
returned function \\
pointer, the leading \(k-\) \\
by-n part of the array \\
\(b\) must contain the \\
matrix B.
\end{tabular} & \begin{tabular}{l} 
Array of size \(l d b^{*} k\) \\
Before calling the \\
returned function \\
pointer, the leading \(n-\) \\
by- \(k\) part of the array \\
\(b\) must contain the \\
matrix B.
\end{tabular} \\
\hline \begin{tabular}{l} 
transb \(=\) \\
MKL_TRANS or \\
transb \(=\) \\
MKL_CONJTRANS
\end{tabular} & \begin{tabular}{l} 
Array of size \(l d b^{*} k\) \\
Before calling the \\
returned function \\
pointer, the leading \(n-\) \\
by- \(k\) part of the array \\
\(b\) must contain the \\
matrix B.
\end{tabular} & \begin{tabular}{l} 
Array of size \(l d b^{*} n\) \\
Before calling the \\
returned function \\
pointer, the leading \(k-\) \\
by- \(n\) part of the array \\
\(b\) must contain the \\
matrix B.
\end{tabular} \\
\hline
\end{tabular}

C
\begin{tabular}{|l|l|}
\hline layout \(=\) MKL_COL_MAJOR & layout = MKL_ROW_MAJOR \\
\hline Array of size \(I d c^{*} n\) & Array of size \(I d c^{*} m\) \\
\begin{tabular}{l} 
Before calling the returned \\
function pointer, the leading \(m\) - \\
by- \(n\) part of the array \(c\) must \\
contain the matrix \(C\).
\end{tabular} & \begin{tabular}{l} 
Before calling the returned \\
function pointer, the leading \(n\) - \\
by-m part of the array \(c\) must \\
contain the matrix \(C\).
\end{tabular} \\
\hline
\end{tabular}
mkl_jit_destroy
Delete the jitter previously created with
mkl_jit_create_? gemm as well as the GEMM kernel
that it contains.

\section*{Syntax}
```

mkl_jit_status_t mkl_jit_destroy (void* jitter);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The mkl_jit_destroy function belongs to a set of related routines that enable use of just-in-time code generation.

The mkl_jit_destroy function takes as input a jitter previously created with mkl_jit_create_?gemm and deletes the jitter as well as the GEMM kernel that it contains.

\section*{NOTE}

Generating a new kernel with mkl_jit_create_?gemm involves moderate runtime overhead. To benefit from JIT code generation, use this feature when you need to call the generated kernel many times (for example, several hundred calls).

\section*{Input Parameter}
jitter
Jitter handle

\section*{Return Values}
status
Returns one of the following:
- MKL_JIT_ERROR if the pointer is not NULL and is not a handle on a jitter-that is, if it was not created with mkl_jit_create_?gemm
-or-
- MKL_JIT_SUCCESS if the jitter has been successfully destroyed

\section*{LAPACK Routines}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL)implements routines from the LAPACK package that are used for solving systems of linear equations, linear least squares problems, eigenvalue and singular value problems, and performing a number of related computational tasks. The library includes LAPACK routines for both real and complex data. Routines are supported for systems of equations with the following types of matrices:
- General
- Banded
- Symmetric or Hermitian positive-definite (full, packed, and rectangular full packed (RFP) storage)
- Symmetric or Hermitian positive-definite banded
- Symmetric or Hermitian indefinite (both full and packed storage)
- Symmetric or Hermitian indefinite banded
- Triangular (full, packed, and RFP storage)
- Triangular banded
- Tridiagonal
- Diagonally dominant tridiagonal.

\section*{NOTE}

Different arrays used as parameters to Intel \({ }^{\circledR}\) MKL LAPACK routines must not overlap.

\section*{Warning}

LAPACK routines assume that input matrices do not contain IEEE 754 special values such as INF or NaN values. Using these special values may cause LAPACK to return unexpected results or become unstable.

\section*{Choosing a LAPACK Routine}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) offers many LAPACK routines, and many perform similar operations. The Intel® oneAPI Math Kernel Library LAPACK Function Finding Advisor helps you understand the differences between routines so that you can choose the appropriate routine for your task:
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library LAPACK Function Finding Advisor:https://www.intel.com/ content/www/us/en/developer/tools/oneapi/onemkl-function-finding-advisor.html.

\section*{C Interface Conventions for LAPACK Routines}

The C interfaces are implemented for most of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) LAPACK driver and computational routines.

\section*{NaN Checking in LAPACKE}

NaN checking can affect the performance of an application. By default, it is ON.
See the Support Functions section for details on the methods and options to turn NaN check off or back on with LAPACKE:.

\section*{Function Prototypes}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) supports four distinct floating-point precisions. Each corresponding prototype looks similar, usually differing only in the data type. C interface LAPACK function names follow the form<?><name> [_64], where <?> is:
- LAPACKE_s for float
- LAPACKE_d for double
- LAPACKE_c for lapack_complex_float
- LAPACKE_z for lapack_complex_double

On 64-bit platforms, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides LAPACK C interfaces with the _ 64 suffix to support large data arrays in the LP64 interface library. For more interface library details, see "Using the ILP64 Interface vs. LP64 Interface" in the developer guide.
A specific example follows. To solve a system of linear equations with a packed Cholesky-factored Hermitian positive-definite matrix with complex precision, use the following:
```

lapack_int LAPACKE_cpptrs(int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_float* ap, lapack_complex_float* b, lapack_int ldb);

```

For matrices whose dimensions are greater than \(2^{31}-1\), you can use either LAPACKE_cpptrs in the ILP64 interface library or LAPACKE_cpptrs_64 in the LP64 interface library.

\section*{Workspace Arrays}

In contrast to the Fortran interface, the LAPACK C interface omits workspace parameters because workspace is allocated during runtime and released upon completion of the function operation.
If you prefer to allocate workspace arrays yourself, the LAPACK C interface provides alternate interfaces with work parameters. The name of the alternate interface is the same as the LAPACK C interface with _work appended. For example, the syntax for the singular value decomposition of a real bidiagonal matrix is:
\begin{tabular}{|c|c|}
\hline Fortran: & call sbdsdc ( uplo, compq, \(n, ~ d, ~ e, ~ u, ~ l d u, ~ v t, ~ l d v t, ~ q, ~ i q, ~\) work, iwork, info ) \\
\hline C LAPACK interface: & ```
lapack_int LAPACKE_sbdsdc ( int matrix_layout, char uplo, char
compq, lapack_int n, float* d, float* e, float* u, lapack_int
ldu, float* vt, lapack_int ldvt, float* q, lapack_int* iq );
``` \\
\hline Alternate C LAPACK interface with work parameters: & ```
lapack_int LAPACKE_sbdsdc_work(int matrix_layout, char uplo,
char compq, lapack_int n, float* d, float* e, float* u,
lapack_int ldu, float* vt, lapack_int ldvt, float* q, lapack_int*
iq, float* work, lapack int* iwork);
``` \\
\hline
\end{tabular}

See the install_dir/include/mkl_lapacke.h file for the full list of alternative C LAPACK interfaces.
The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Fortran-specific documentation contains details about workspace arrays.

Mapping Fortran Data Types against C Data Types
Fortran Data Types vs. C Data Types
\begin{tabular}{ll}
\hline FORTRAN & C \\
\hline INTEGER & lapack_int \\
LOGICAL & lapack_logical \\
REAL & float \\
DOUBLE PRECISION & double \\
COMPLEX & lapack_complex_float \\
COMPLEX*16/DOUBLE COMPLEX & lapack_complex_double
\end{tabular}
\begin{tabular}{ll}
\hline FORTRAN & \(\mathbf{C}\) \\
\hline CHARACTER & char \\
\hline
\end{tabular}

\section*{C Type Definitions}

You can find type definitions specific to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) such asMKL_INT, MKL_Complex8, and MKL_Complex16 in install_dir/mkl_types.h.

C types
```

\#ifndef lapack_int
\#define lapack_int MKL_INT
\#endif
\#ifndef lapack_logical
\#define lapack_logical lapack_int
\#endif

```

Complex Type Definitions Complex type for single precision:
```

\#ifndef lapack_complex_float
\#define lapack_complex_float MKL_Complex8
\#endif

```

Complex type for double precision:
```

\#ifndef lapack_complex_double
\#define lapack_complex_double MKL_Complex16
\#endif

```
\(\begin{array}{llll}\text { Matrix Layout Definitions } & \begin{array}{ll}\text { \#define LAPACK_ROW_MAJOR } & 101 \\ & \text { \#define LAPACK_COL_MAJOR }\end{array} & 102\end{array}\)

See Matrix Layout for LAPACK Routines above for an explanation of row-major order and column-major order storage.

Error Code Definitions
```

\#define LAPACK_WORK_MEMORY_ERROR -1010 /* Failed to allocate
memory
for a working array */
\#define LAPACK_TRANSPOSE_MEMORY_ERROR -1011 /* Failed to allocate
memory
for transposed matrix */

```

\section*{Matrix Layout for LAPACK Routines}

There are two general methods of storing a two dimensional matrix in linear (one dimensional) memory: column-wise (column major order) or row-wise (row major order). Consider an \(M-b y-N\) matrix \(A\) :

\section*{Column Major Layout}

In column major layout the first index, \(i\), of matrix elements \(a_{i, j}\) changes faster than the second index when accessing sequential memory locations. In other words, for \(1 \leq i<M\), if the element \(a_{i, j}\) is stored in a specific location in memory, the element \(a_{i+1, j}\) is stored in the next location, and, for \(1 \leq j<N\), the element \(a_{M, j}\) is stored in the location previous to element \(a_{1, j+1}\). So the matrix elements are located in memory according to this sequence:
\(\left\{a_{1,1} a_{2,1} \ldots a_{M, 1} a_{1,2} a_{2,2} \ldots a_{M, 2} \ldots \ldots a_{1, N} a_{2, N} \ldots a_{M, N}\right\}\)

\section*{Row Major Layout}

In row major layout the second index, \(j\), of matrix elements \(a_{i, j}\) changes faster than the first index when accessing sequential memory locations. In other words, for \(1 \leq j<N\), if the element \(a_{i, j}\) is stored in a specific location in memory, the element \(a_{i, j+1}\) is stored in the next location, and, for \(1 \leq i<M\), the element \(a_{i, N}\) is stored in the location previous to element \(a_{i+1,1}\). So the matrix elements are located in memory according to this sequence:
\(\left\{a_{1,1} a_{1,2} \ldots a_{1, N} a_{2,1} a_{2,2} \ldots a_{2, N} \ldots \ldots a_{N, 1} a_{N, 2} \ldots a_{M, N}\right\}\)

\section*{Leading Dimension Parameter}

A leading dimension parameter allows use of LAPACK routines on a submatrix of a larger matrix. For example, the submatrix \(B\) can be extracted from the original matrix \(A\) defined previously:
\(B\) is formed from rows with indices \(i_{0}+1\) to \(i_{0}+K\) and columns \(j_{0}+1\) to \(j_{0}+L\) of matrix \(A\). To specify matrix \(B\), LAPACK routines require four parameters:
- the number of rows \(K\);
- the number of columns \(L\);
- a pointer to the start of the array containing elements of \(B\);
- the leading dimension of the array containing elements of \(B\).

The leading dimension depends on the layout of the matrix:
- Column major layout

Leading dimension \(I d b=M\), the number of rows of matrix \(A\).
Starting address: offset by \(i_{0}+j_{0} * I d b\) from \(a_{1,1}\).

- Row major layout

Leading dimension \(1 d b=N\), the number of columns of matrix \(A\).
Starting address: offset by \(i_{0} * l d b+j_{0}\) from \(a_{1,1}\).


\section*{Matrix Storage Schemes for LAPACK Routines}

LAPACK routines use the following matrix storage schemes:
- Full Storage
- Packed Storage
- Band Storage
- Rectangular Full Packed (RFP) Storage

\section*{Full Storage}

Consider an \(m\)-by- \(n\) matrix \(A\) :
\(A=\left(\begin{array}{ccccc}a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1, n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2, n} \\ a_{3,1} & a_{3,2} & a_{3,3} & \cdots & a_{3, n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m, 1} & a_{m, 2} & a_{m, 3} & \cdots & a_{m, n}\end{array}\right)\)
It is stored in a one-dimensional array a of length at least \(l d a * n\) for column major layout or \(m *\) lda for row major layout. Element \(a_{i, j}\) is stored as array element \(a[k]\) where the mapping of \(k(i, j)\) is defined as
- column major layout: \(k(i, j)=i-1+(j-1) * l d a\)
- row major layout: \(k(i, j)=(i-1)^{*} I d a+j-1\)

\section*{NOTE}

Although LAPACK accepts parameter values of zero for matrix size, in general the size of the array used to store an \(m\)-by- \(n\) matrix \(A\) with leading dimension \(1 d a\) should be greater than or equal to \(\max \left(1, n^{*} l d a\right)\) for column major layout and \(\max \left(1, m^{*} l d a\right)\) for row major layout.

\section*{NOTE}

Even though the array used to store a matrix is one-dimensional, for simplicity the documentation sometimes refers parts of the array such as rows, columns, upper and lower triangular part, and diagonals. These refer to the parts of the matrix stored within the array. For example, the lower triangle of array \(a\) is defined as the subset of elements \(a[k(i, j)]\) with \(i \geq j\).

\section*{Packed Storage}

The packed storage format compactly stores matrix elements when only one part of the matrix, the upper or lower triangle, is necessary to determine all of the elements of the matrix. This is the case when the matrix is upper triangular, lower triangular, symmetric, or Hermitian. For an \(n\)-by- \(n\) matrix of one of these types, a linear array ap of length \(n^{*}(n+1) / 2\) is adequate. Two parameters define the storage scheme:
matrix_layout, which specifies column major (with the value LAPACK_COL_MAJOR) or row major (with the value LAPACK_ROW_MAJOR) matrix layout, and uplo, which specifies that the upper triangle (with the value ' \(U\) ') or the lower triangle (with the value ' L ') is stored.

Element \(a_{i, j}\) is stored as array element \(a[k]\) where the mapping of \(k(i, j)\) is defined as
\begin{tabular}{|l|l|l|l|}
\hline & & matrix_layout = LAPACK_COL_MAJOR & matrix_layout = LAPACK_ROW_MAJOR \\
\hline uplo = 'U' & \(1 \leq i \leq j \leq n\) & \(k(i, j)=i-1+j^{*}(j-1) / 2\) & \(k(i, j)=j-1+(i-1)^{*}(2 * n-i) / 2\) \\
\hline\(u p l o=' L^{\prime}\) & \(1 \leq j \leq i \leq n\) & \(k(i, j)=i-1+(j-1)^{*}(2 * n-j) / 2\) & \(k(i, j)=j-1+i^{*}(i-1) / 2\) \\
\hline
\end{tabular}

\section*{NOTE}

Although LAPACK accepts parameter values of zero for matrix size, in general the size of the array should be greater than or equal to \(\max \left(1, n x^{*}(n+1) / 2\right)\).

\section*{Band Storage}

When the non-zero elements of a matrix are confined to diagonal bands, it is possible to store the elements more efficiently using band storage. For example, consider an \(m\)-by- \(n\) band matrix \(A\) with \(k l\) subdiagonals and \(k u\) superdiagonals:


This matrix can be stored compactly in a one dimensional array ab. There are two operations involved in storing the matrix: packing the band matrix into matrix \(A B\), and converting the packed matrix to a onedimensional array.
- Packing the Band Matrix: How the band matrix is packed depends on the matrix layout.
- Column major layout: matrix \(A\) is packed in an Idab-by-n matrix \(A B\) column-wise so that the diagonals of \(A\) become rows of array \(A B\).
\(A B=\left(\begin{array}{ccccccc} \\ & & & a_{1, k_{u}+1} & a_{1, k_{u}+2} & a_{1, k_{u}+3} & \cdots \\ & & \ddots & \vdots & \vdots & \vdots & \cdots \\ & a_{1,3} & \cdots & a_{k_{u}-1, k_{u}+1} & a_{k_{u}, k_{u}+2} & a_{k_{u}+1, k_{u}+3} & \cdots \\ & a_{2,3} & \cdots & a_{k_{u}, k_{u}+1} & a_{k_{u}+1, k_{u}+2} & a_{k_{u}+2, k_{u}+3} & \cdots \\ a_{1,1} & a_{2,2} & a_{3,3} & \cdots & a_{k_{u}+1, k_{u}+1} & a_{k_{u}+2, k_{u}+2} & a_{k_{u}+3, k_{u}+3} \\ a_{2,1} & a_{3,2} & a_{4,3} & \cdots & a_{k_{u}+2, k_{u}+1} & a_{k_{u}+3, k_{u}+2} & a_{k_{u}+4, k_{u}+3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{k_{l}+1,1} & a_{k_{l}+2,2} & a_{k_{l}+3,3} & \cdots & a_{k_{u}+k_{l .}+1, k_{u}+1} & a_{k_{u}+k_{l .}+2, k_{u}+2} & a_{k_{u}+k_{l .}+3, k_{u}+3}\end{array}\right)\)
The number of rows of \(A B / d a b \geq k I+k u+1\), and the number of columns of \(A B\) is \(n\).
- Row major layout: matrix \(A\) is packed in an \(m\)-by-ldab matrix \(A B\) row-wise so that the diagonals of \(A\) become columns of \(A B\).

The number of columns of \(A B / d a b \geq k I+k u+1\), and the number of rows of \(A B\) is \(m\).

\section*{NOTE}

For both column major and row major layout, elements of the upper left triangle of \(A B\) are not used. Depending on the relationship of the dimensions \(m, n, k l\), and \(k u\), the lower right triangle might not be used.
- Converting the Packed Matrix to a One-Dimensional Array: The packed matrix \(A B\) is stored in a linear array \(a b\) as described in Full Storage. The size of ab should be greater than or equal to the total number of elements of matrix \(A B\) : Idab*n for column major layout or \(I d a b^{*} m\) for row major layout. The leading dimension of \(a b, I d a b\), must be greater than or equal to \(k I+k u+1\) (and some routines require it to be even larger).
Element \(a_{i, j}\) is stored as array element \(a[k(i, j)]\) where the mapping of \(k(i, j)\) is defined as
- column major layout: \(k(i, j)=i+k u-j+(j-1) * \_d a b ; 1 \leq j \leq n, \max (1, j-k u) \leq i \leq \min (m, j+k l)\)
- row major layout: \(k(i, j)=j-i+k_{l}+(i-1)\left(k_{l}+k_{u}+1\right), 1 \leq i \leq m, \max \left(1, i-k_{l}\right) \leq j \leq \min \left(n, i+k_{u}\right)\)

\section*{NOTE}

Although LAPACK accepts parameter values of zero for matrix size, in general the size of the array should be greater than or equal to \(\max \left(1, n^{*} l d a b\right)\) for column major layout and \(\max \left(1, m^{*} l d a b\right)\) for row major layout.

\section*{Rectangular Full Packed Storage}

A combination of full and packed storage, rectangular full packed storage can be used to store the upper or lower triangle of a matrix which is upper triangular, lower triangular, symmetric, or Hermitian. It offers the storage savings of packed storage plus the efficiency of using full storage Level 3 BLAS and LAPACK routines. Three parameters define the storage scheme: matrix_layout, which specifies column major (with the value LAPACK_COL_MAJOR) or row major (with the value LAPACK_ROW_MAJOR) matrix layout; uplo, which specifies that the upper triangle (with the value 'U') or the lower triangle (with the value 'L') is stored;and transr, which specifies normal (with the value ' N '), transpose (with the value ' T '), or conjugate transpose (with the value ' \(C\) ') operation on the matrix.
Consider an \(N\)-by- \(N\) matrix \(A\) :
\(A=\left(\begin{array}{ccccc}a_{0,0} & a_{0,1} & a_{0,2} & \cdots & a_{0, N-1} \\ a_{1,0} & a_{1,1} & a_{1,2} & \cdots & a_{1, N-1} \\ a_{2,0} & a_{2,1} & a_{2,2} & \cdots & a_{2, N-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{N-1,0} & a_{N-1,1} & a_{N-1,2} & \cdots & a_{N-1, N-1}\end{array}\right)\)
The upper or lower triangle of \(A\) can be stored in the array ap of length \(N^{*}(N+1) / 2\).
Additionally, define \(k\) as the integer part of \(N / 2\), such that \(N=2 * k\) if \(N\) is even, and \(N=2 * k+1\) if \(N\) is odd.
Storing the matrix involves packing the matrix into a rectangular matrix, and then storing the matrix in a one-dimensional array. The size of rectangular matrix \(A P\) required for the \(N-\) by- \(N\) matrix \(A\) is \(N+1\) by \(N / 2\) for even \(N\), and \(N\) by \((N+1) / 2\) for odd \(N\).

These examples illustrate the rectangular full packed storage method.
- Upper triangular - uplo = 'U'

Consider a matrix \(A\) with \(N=6\) :
\(A=\left(\begin{array}{cccccc}a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} & a_{0,4} & a_{0,5} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\ a_{4,0} & a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4} & a_{4,5} \\ a_{5,0} & a_{5,1} & a_{5,2} & a_{5,3} & a_{5,4} & a_{5,5}\end{array}\right)\)
- Not transposed - transr = 'N'

The elements of the upper triangle of \(A\) can be packed in a matrix with the dimensions \((N+1)\)-by\((N / 2)=7\) by \(3:\)
\[
A P=\left(\begin{array}{ccc}
a_{0,3} & a_{0,4} & a_{0,5} \\
a_{1,3} & a_{1,4} & a_{1,5} \\
a_{2,3} & a_{2,4} & a_{2,5} \\
a_{3,3} & a_{3,4} & a_{3,5} \\
a_{0,0} & a_{4,4} & a_{4,5} \\
a_{0,1} & a_{1,1} & a_{5,5} \\
a_{0,2} & a_{1,2} & a_{2,2}
\end{array}\right)
\]
- Transposed or conjugate transposed - transr = 'T' or transr = 'C'

The elements of the upper triangle of \(A\) can be packed in a matrix with the dimensions \((N / 2)\) by \((N+\) 1) \(=3\) by 7 :
\[
A P=\left(\begin{array}{ccccccc}
a_{0,3} & a_{1,3} & a_{2,3} & a_{3,3} & a_{0,0} & a_{0,1} & a_{0,2} \\
a_{0,4} & a_{1,4} & a_{2,4} & a_{3,4} & a_{4,4} & a_{1,1} & a_{1,2} \\
a_{0,5} & a_{1,5} & a_{2,5} & a_{3,5} & a_{4,5} & a_{5,5} & a_{2,2}
\end{array}\right)
\]

Consider a matrix \(A\) with \(N=5\) :
\(A=\left(\begin{array}{ccccc}a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} & a_{0,4} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \\ a_{4,0} & a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4}\end{array}\right)\)
- Not transposed - transr = 'N'

The elements of the upper triangle of \(A\) can be packed in a matrix with the dimensions ( \(N\) )-by-((N) \(+1) / 2\) ) \(=5\) by \(3:\)
\[
A P=\left(\begin{array}{ccc}
a_{0,2} & a_{0,3} & a_{0,4} \\
a_{1,2} & a_{1,3} & a_{1,4} \\
a_{2,2} & a_{2,3} & a_{2,4} \\
a_{0,0} & a_{3,3} & a_{3,4} \\
a_{0,1} & a_{1,1} & a_{4,4}
\end{array}\right)
\]
- Transposed or conjugate transposed - transr = 'T' or transr = ' \(C^{\prime}\)

The elements of the upper triangle of \(A\) can be packed in a matrix with the dimensions \(((N+1) / 2)\) by \((N)=5\) by 3 :
\[
A P=\left(\begin{array}{lllll}
a_{0,2} & a_{1,2} & a_{2,3} & a_{0,0} & a_{0,1} \\
a_{0,3} & a_{1,3} & a_{2,3} & a_{3,3} & a_{1,1} \\
a_{0,4} & a_{1,4} & a_{2,4} & a_{3,4} & a_{4,4}
\end{array}\right)
\]
- Lower triangular - uplo = 'L'

Consider a matrix \(A\) with \(N=6\) :
\(A=\left(\begin{array}{llllll}a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} & a_{0,4} & a_{0,5} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\ a_{4,0} & a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4} & a_{4,5} \\ a_{5,0} & a_{5,1} & a_{5,2} & a_{5,3} & a_{5,4} & a_{5,5}\end{array}\right)\)
- Not transposed - transr = 'N'

The elements of the lower triangle of \(A\) can be packed in a matrix with the dimensions \((N+1)\)-by\((N / 2)=7\) by \(3:\)
\[
A P=\left(\begin{array}{ccc}
a_{3,3} & a_{4,3} & a_{5,3} \\
a_{0,0} & a_{4,4} & a_{5,4} \\
a_{1,0} & a_{1,1} & a_{5,5} \\
a_{2,0} & a_{2,1} & a_{2,2} \\
a_{3,0} & a_{3,1} & a_{3,2} \\
a_{3,0} & a_{4,1} & a_{4,2} \\
a_{5,0} & a_{5,1} & a_{5,2}
\end{array}\right)
\]
- Transposed or conjugate transposed - transr = 'T' or transr = 'C'

The elements of the lower triangle of \(A\) can be packed in a matrix with the dimensions ( \(N / 2\) ) by \((N+\) 1) \(=3\) by 7 :
\[
A P=\left(\begin{array}{lllllll}
a_{3,3} & a_{0,0} & a_{1,0} & a_{2,0} & a_{3,0} & a_{4,0} & a_{5,0} \\
a_{4,3} & a_{4,4} & a_{1,1} & a_{2,1} & a_{3,1} & a_{4,1} & a_{5,1} \\
a_{5,3} & a_{5,4} & a_{5,5} & a_{2,2} & a_{3,2} & a_{4,2} & a_{5,2}
\end{array}\right)
\]

Consider a matrix \(A\) with \(N=5\) :
\(A=\left(\begin{array}{ccccc}a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} & a_{0,4} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \\ a_{4,0} & a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4}\end{array}\right)\)
- Not transposed - transr = 'N'

The elements of the lower triangle of \(A\) can be packed in a matrix with the dimensions ( \(N\) )-by-( \((N\) \(+1) / 2)=5\) by \(3:\)
\[
A P=\left(\begin{array}{ccc}
a_{0,0} & a_{3,3} & a_{4,3} \\
a_{1,0} & a_{1,1} & a_{4,4} \\
a_{2,0} & a_{2,1} & a_{2,2} \\
a_{3,0} & a_{3,1} & a_{3,2} \\
a_{4,0} & a_{4,1} & a_{4,2}
\end{array}\right)
\]
- Transposed or conjugate transposed - transr \(=\) ' \(T\) ' or transr \(=\) ' \(C^{\prime}\)

The elements of the lower triangle of \(A\) can be packed in a matrix with the dimensions \(((N+1) / 2)\) by \((N)=5\) by 3 :
\[
A P=\left(\begin{array}{ccccc}
a_{0,0} & a_{1,0} & a_{2,0} & a_{3,0} & a_{4,0} \\
a_{3,3} & a_{1,1} & a_{2,1} & a_{3,1} & a_{4,1} \\
a_{4,3} & a_{4,4} & a_{2,2} & a_{3,2} & a_{4,2}
\end{array}\right)
\]

The packed matrix \(A P\) can be stored using column major layout or row major layout.

\section*{NOTE}

The matrix_layout and transr parameters can specify the same storage scheme: for example, the storage scheme for matrix_layout = LAPACK_COL_MAJOR and transr = ' N ' is the same as that for matrix_layout \(=\) LAPACK_ROW_MAJOR and transr \(=\) ' T '.

Element \(a_{i, j}\) is stored as array element \(a p[1]\) where the mapping of \(I(i, j)\) is defined in the following tables.
- Column major layout: matrix_layout = LAPACK_COL_MAJOR a
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
trans \\
\(r\)
\end{tabular} & uplo & \(N\) & \(1(i, j)=\) & i & j \\
\hline \multirow[t]{8}{*}{'N'} & \multirow[t]{4}{*}{'U'} & \multirow[t]{2}{*}{\(2 * k\)} & \((j-k) *(N+1)+i\) & \(0 \leq i<N\) & \[
\begin{aligned}
& \max (i, k) \leq j \\
& <N
\end{aligned}
\] \\
\hline & & & \(i^{*}(N+1)+j+k+1\) & \(0 \leq i<k\) & \(i \leq j<k\) \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2 \star k+ \\
& 1
\end{aligned}
\]} & \((j-k) * N+i\) & \(0 \leq i<N\) & \[
\begin{aligned}
& \max (i, k) \leq j \\
& <N
\end{aligned}
\] \\
\hline & & & \(i^{\star} N+j+k+1\) & \(0 \leq i<k\) & \(i \leq j<k\) \\
\hline & \multirow[t]{4}{*}{'L'} & \multirow[t]{2}{*}{\(2 * k\)} & \(j^{*}(N+1)+i+1\) & \(0 \leq i<N\) & \[
\begin{aligned}
& 0 \leq j \leq \min (i, ~ \\
& k)
\end{aligned}
\] \\
\hline & & & \((i-k) *(N+1)+j-k\) & \(k \leq i<N\) & \(k \leq j \leq i\) \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2 * k+ \\
& 1
\end{aligned}
\]} & \(j * N+i\) & \(0 \leq i<N\) & \[
\begin{aligned}
& 0 \leq j \leq \min (i, ~ \\
& k)
\end{aligned}
\] \\
\hline & & & \((i-k) * N+j-k-1\) & \(k+1 \leq i<N\) & \(k+1 \leq j \leq i\) \\
\hline \multirow[t]{6}{*}{'T' or 'C'} & \multirow[t]{4}{*}{'U'} & \multirow[t]{2}{*}{\(2 * k\)} & i*k \(+j-k\) & \(0 \leq i<N\) & \[
\begin{aligned}
& \max (i, k) \leq j \\
& <N
\end{aligned}
\] \\
\hline & & & \((j+k+1) * k+i\) & \(0 \leq i<k\) & \(i \leq j<k\) \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2 * k+ \\
& 1
\end{aligned}
\]} & \(i^{*}(k+1)+j-k\) & \(0 \leq i<N\) & \[
\begin{aligned}
& \max (i, k) \leq j \\
& <N
\end{aligned}
\] \\
\hline & & & \((j+k+1) *(k+1)+i\) & \(0 \leq i<k\) & \(i \leq j<k\) \\
\hline & \multirow[t]{2}{*}{'L'} & \multirow[t]{2}{*}{\(2 * k\)} & \((i+1) * k+j\) & \(0 \leq i<N\) & \[
0 \leq j \leq \min (i,
\] \\
\hline & & & \((j-k) * k+i-k\) & \(k \leq i<N\) & \(k \leq j \leq i\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline trans
r & uplo & \(N\) & \(1(i, j)=\) & i & j \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2 \star k+ \\
& 1
\end{aligned}
\]} & \(i^{\star}(k+1)+j\) & \(0 \leq i<N\) & \[
0 \leq j \leq \min (i,
\] \\
\hline & & & \((j-k-1) *(k+1)+i-k\) & \(k+1 \leq i<N\) & \(k+1 \leq j \leq i\) \\
\hline
\end{tabular}
- Row major layout: matrix_layout = LAPACK_ROW_MAJOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
trans \\
r
\end{tabular} & uplo & \(N\) & \(1(i, j)=\) & i & j \\
\hline \multirow[t]{8}{*}{'N'} & \multirow[t]{4}{*}{'U'} & \multirow[t]{2}{*}{\(2 * k\)} & \(i^{*} k+j-k\) & \(0 \leq i<N\) & \[
\begin{aligned}
& \max (i, k) \leq j \\
& <N
\end{aligned}
\] \\
\hline & & & \((k+j+1) * k+i\) & \(0 \leq i<k\) & \(i \leq j<k\) \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2 * k+ \\
& 1
\end{aligned}
\]} & \(i^{*}(k+1)+j-k\) & \(0 \leq i<N\) & \[
\begin{aligned}
& \max (i, k) \leq j \\
& <N
\end{aligned}
\] \\
\hline & & & \((k+j+1) *(k+1)+i\) & \(0 \leq i<k\) & \(i \leq j<k\) \\
\hline & \multirow[t]{4}{*}{'L'} & \multirow[t]{2}{*}{\(2 * k\)} & \((i+1) * k+j\) & \(0 \leq i<N\) & \[
0 \leq j \leq \min (i,
\] \\
\hline & & & \((j-k) * k+i-k\) & \(k \leq i<N\) & \(k \leq j \leq i\) \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2 * k+ \\
& 1
\end{aligned}
\]} & \(i^{*}(k+1)+j\) & \(0 \leq i<N\) & \[
\begin{aligned}
& 0 \leq j \leq \min (i, \\
& k)
\end{aligned}
\] \\
\hline & & & \((j-k-1) *(k+1)+i-k\) & \(k+1 \leq i<N\) & \(k+1 \leq j \leq i\) \\
\hline \multirow[t]{8}{*}{'T' or 'C'} & \multirow[t]{4}{*}{'U'} & \multirow[t]{2}{*}{\(2 * k\)} & \((j-k) *(N+1)+i\) & \(0 \leq i<N\) & \[
\begin{aligned}
& \max (i, k) \leq j \\
& <N
\end{aligned}
\] \\
\hline & & & \(i^{*}(N+1)+k+j+1\) & \(0 \leq i<k\) & \(i \leq j<k\) \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2 * k+ \\
& 1
\end{aligned}
\]} & \((j-k) * N+i\) & \(0 \leq i<N\) & \[
\begin{aligned}
& \max (i, k) \leq j \\
& <N
\end{aligned}
\] \\
\hline & & & \(i * N+k+j+1\) & \(0 \leq i<k\) & \(i \leq j<k\) \\
\hline & \multirow[t]{4}{*}{'L'} & \multirow[t]{2}{*}{\(2 * k\)} & \(j^{*}(N+1)+i+1\) & \(0 \leq i<N\) & \[
0 \leq j \leq \min (i,
\] \\
\hline & & & \((i-k) *(N+1)+j-k\) & \(k \leq i<N\) & \(k \leq j \leq i\) \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2 * k+ \\
& 1
\end{aligned}
\]} & \(j * N+i\) & \(0 \leq i<N\) & \[
\begin{aligned}
& 0 \leq j \leq \min (i, ~ \\
& k)
\end{aligned}
\] \\
\hline & & & \((i-k) * N+j-k-1\) & \(k+1 \leq i<N\) & \(k+1 \leq j \leq i\) \\
\hline
\end{tabular}

\section*{NOTE}

Although LAPACK accepts parameter values of zero for matrix size, in general the size of the array should be greater than or equal to \(\max \left(1, N^{*}(N+1) / 2\right)\).

\section*{Mathematical Notation for LAPACK Routines}

Descriptions of LAPACK routines use the following notation:
\(A^{\mathrm{H}}\)
\(x \cdot y\)
\(A x=b\)
\(A X=B\)
\(|x|\)
| A|
\(||x||_{\infty}=\max _{i}\left|x_{i}\right|\)
\(||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\)
\(||A|| 1=\max _{j} \Sigma_{i}\left|a_{i j}\right|\)
\(||x||_{2}\)
\(||A||_{2}\)
\(||A||_{E}\)
\(\kappa(A)=||A|| \cdot| | A^{-1}| |\)
\(\lambda_{i}\)
\(\sigma_{i}\)

For an \(M\)-by \(-N\) matrix \(A\), denotes the conjugate transposed \(N\)-by- \(M\) matrix with elements:
\[
a_{i, j}^{\mathrm{H}}=\overline{a_{j, t}}
\]

For a real-valued matrix, \(A^{H}=A^{T}\).
The dot product of two vectors, defined as:
\[
x \cdot y=\sum_{i} x_{i} \overline{y_{i}}
\]

A system of linear equations with an \(n\)-by- \(n\) matrix \(A=\left\{a_{i j}\right\}\), a right-hand side vector \(b=\left\{b_{i}\right\}\), and an unknown vector \(x=\left\{x_{i}\right\}\).

A set of systems with a common matrix \(A\) and multiple right-hand sides. The columns of \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.
the vector with elements \(\left|x_{i}\right|\) (absolute values of \(x_{i}\) ).
the matrix with elements \(\left|a_{i j}\right|\) (absolute values of \(a_{i j}\) ).
The infinity-norm of the vector \(x\).
The infinity-norm of the matrix \(A\).
The one-norm of the matrix \(A .||A||_{1}=\left|\left|A^{T}\right|\right|_{\infty}=\left|\left|A^{H}\right|\right|_{\infty}\)
The 2-norm of the vector \(x\) : \(||x||_{2}=\left(\Sigma_{i}\left|x_{i}\right|^{2}\right)^{1 / 2}=||x||_{E}\) (see the definition for Euclidean norm in this topic).
The 2 -norm (or spectral norm) of the matrix \(A\).
\[
\|A\|_{2}=\max _{i} \sigma_{i},\|A\|_{2}^{2}=\max _{\|\mathrm{x}\|_{2}=1}(A x \cdot A x)
\]

The Euclidean norm of the matrix \(A\) : \(||A||_{E}^{2}=\Sigma_{i} \Sigma_{j}\left|a_{i j}\right|^{2}\).
The condition number of the matrix \(A\).
Eigenvalues of the matrix \(A\) (for the definition of eigenvalues, see Eigenvalue Problems).

Singular values of the matrix \(A\). They are equal to square roots of the eigenvalues of \(A^{H} A\). (For more information, see Singular Value Decomposition).

\section*{Error Analysis}

In practice, most computations are performed with rounding errors. Besides, you often need to solve a system \(A x=b\), where the data (the elements of \(A\) and \(b\) ) are not known exactly. Therefore, it is important to understand how the data errors and rounding errors can affect the solution \(x\).

Data perturbations. If \(x\) is the exact solution of \(A x=b\), and \(x+\delta x\) is the exact solution of a perturbed problem \((A+\delta A)(x+\delta x)=(b+\delta b)\), then this estimate, given up to linear terms of perturbations, holds:

where \(A+\delta A\) is nonsingular and
\[
\kappa(A)=\|A\|\left\|A^{-1}\right\|
\]

In other words, relative errors in \(A\) or \(b\) may be amplified in the solution vector \(x\) by a factor \(\kappa(A)=\| A| |\) \(\left|\left|A^{-1}\right|\right|\) called the condition number of \(A\).
Rounding errors have the same effect as relative perturbations \(c(n) \varepsilon\) in the original data. Here \(\varepsilon\) is the machine precision, defined as the smallest positive number \(x\) such that \(1+x>1\); and \(c(n)\) is a modest function of the matrix order \(n\). The corresponding solution error is
\(||\delta x|| /||x|| \leq c(n) \kappa(A) \varepsilon\). (The value of \(c(n)\) is seldom greater than \(10 n\).)

\section*{NOTE}

Machine precision depends on the data type used. For example, it is usually defined in the float. h file as FLT_EPSILON the float datatype and DBL_EPSILON for the double datatype.

Thus, if your matrix \(A\) is ill-conditioned (that is, its condition number \(\kappa(A)\) is very large), then the error in the solution \(x\) can also be large; you might even encounter a complete loss of precision. LAPACK provides routines that allow you to estimate \(\kappa(A)\) (see Routines for Estimating the Condition Number) and also give you a more precise estimate for the actual solution error (see Refining the Solution and Estimating Its Error).

\section*{LAPACK Linear Equation Routines}

This section describes routines for performing the following computations:
- factoring the matrix (except for triangular matrices)
- equilibrating the matrix (except for RFP matrices)
- solving a system of linear equations
- estimating the condition number of a matrix (except for RFP matrices)
- refining the solution of linear equations and computing its error bounds (except for RFP matrices)
- inverting the matrix.

To solve a particular problem, you can call two or more computational routines or call a corresponding driver routine that combines several tasks in one call. For example, to solve a system of linear equations with a general matrix, call ?getrf ( \(L U\) factorization) and then ?getrs (computing the solution). Then, call ?gerfs to refine the solution and get the error bounds. Alternatively, use the driver routine ?gesvx that performs all these tasks in one call.

\section*{LAPACK Linear Equation Computational Routines}

Table "Computational Routines for Systems of Equations with Real Matrices" lists the LAPACK computational routines for factorizing, equilibrating, and inverting real matrices, estimating their condition numbers, solving systems of equations with real matrices, refining the solution, and estimating its error. Table "Computational Routines for Systems of Equations with Complex Matrices" lists similar routines for complex matrices.
Computational Routines for Systems of Equations with Real Matrices
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Matrix type, storage scheme & Factorize matrix & Equilibrate matrix & Solve system & Condition number & Estimate error & Invert matrix \\
\hline general & ? getrf & ? geequ, & ? getrs & ? gecon & ? gerfs, & ? getri \\
\hline & & ? geequb & & & ? gerfsx & \\
\hline \multirow[t]{2}{*}{general band} & \multirow[t]{2}{*}{? gbtrf} & ? gbequ, & \multirow[t]{2}{*}{? gbtrs} & \multirow[t]{2}{*}{? gbcon} & ? gbrfs , & \\
\hline & & \multirow[t]{3}{*}{? gbequb} & & & ?gbrfsx & \\
\hline general tridiagonal & ? gttrf & & ? gttrs & ? gtcon & ? gtrfs & \\
\hline diagonally dominant tridiagonal & ? dttrfb & & ?dttrsb & & & \\
\hline symmetric positive-definite & ?potrf & ?poequ, ?poequb & ?potrs & ? pocon & \[
\begin{aligned}
& \text { ?porfs, } \\
& \text { ?porfsx }
\end{aligned}
\] & ?potri \\
\hline symmetric positive-definite, packed storage & ?pptrf & ?ppequ & ?pptrs & \multirow[t]{2}{*}{? ppcon} & \multirow[t]{2}{*}{?pprfs} & ?pptri \\
\hline symmetric positive-definite, RFP storage & ?pftrf & & ?pftrs & & & ?pftri \\
\hline symmetric positive-definite, band & ?pbtrf & \multirow[t]{2}{*}{?pbequ} & ?pbtrs & ? pbcon & ?pbrfs & \\
\hline symmetric positive-definite, tridiagonal & ?pttrf & & ?pttrs & ?ptcon & ?ptrfs & \\
\hline \multirow[t]{4}{*}{symmetric indefinite} & ?sytrf & \multirow[t]{4}{*}{?syequb} & ?sytrs & ?sycon & ?syrfs, & ?sytri \\
\hline & ?sytrf_rk & & ?sytrs2 & ?sycon_3 & ?syrfsx & ?sytri2 \\
\hline & \multirow[t]{2}{*}{?sytrf_aa} & & ?sytrs3 & & & ?sytri2x \\
\hline & & & ?sytrs_aa & & & ?sytri_3 \\
\hline symmetric indefinite, packed storage & \multicolumn{2}{|l|}{?sptrf
mkl_?spffrt2, mkl_?sp} & \[
\begin{aligned}
& \text { ?sptrs } \\
& \text { Ertx }
\end{aligned}
\] & ? spcon & ? sprfs & ? sptri \\
\hline
\end{tabular}
\begin{tabular}{llllll}
\hline \begin{tabular}{l} 
Matrix type, \\
storage scheme
\end{tabular} & \begin{tabular}{l} 
Factorize \\
matrix
\end{tabular} & \begin{tabular}{l} 
Equilibrate \\
matrix
\end{tabular} & \begin{tabular}{l} 
Solve \\
system
\end{tabular} & \begin{tabular}{l} 
Condition \\
number
\end{tabular} & \begin{tabular}{l} 
Estimate \\
error
\end{tabular}
\end{tabular} Invert matrix
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Matrix type, storage scheme & Factorize matrix & Equilibrate matrix & Solve system & Condition number & Estimate error & Invert matrix \\
\hline \multirow[t]{2}{*}{general} & \multirow[t]{2}{*}{? getrf} & ? geequ, & \multirow[t]{2}{*}{? getrs} & \multirow[t]{2}{*}{? gecon} & ? gerfs, & \multirow[t]{4}{*}{? getri} \\
\hline & & ? geequb & & & ? gerfsx & \\
\hline \multirow[t]{2}{*}{general band} & \multirow[t]{2}{*}{? gbtrf} & ? gbequ, & \multirow[t]{2}{*}{? gbtrs} & \multirow[t]{2}{*}{? gbcon} & ? gbrfs , & \\
\hline & & ? gbequb & & & ? gbrfsx & \\
\hline general tridiagonal & ? gttrf & & ? gttrs & ? gtcon & ? gtrfs & \\
\hline \multirow[t]{2}{*}{Hermitian positive-definite} & \multirow[t]{2}{*}{? potrf} & ?poequ, & \multirow[t]{2}{*}{?potrs} & \multirow[t]{2}{*}{?pocon} & ?porfs, & \multirow[t]{2}{*}{?potri} \\
\hline & & ?poequb & & & ?porfsx & \\
\hline Hermitian positive-definite, packed storage & ?pptrf & ?ppequ & ?pptrs & ?ppcon & ?pprfs & ?pptri \\
\hline Hermitian positive-definite, RFP storage & ?pftrf & & ?pftrs & & & ?pftri \\
\hline Hermitian positive-definite, band & ?pbtrf & ?pbequ & ?pbtrs & ? pbcon & ? pbrfs & \\
\hline Hermitian positive-definite, tridiagonal & ?pttrf & & ?pttrs & ?ptcon & ?ptrfs & \\
\hline \multirow[t]{4}{*}{Hermitian indefinite} & ?hetrf & \multirow[t]{4}{*}{? heequib} & ?hetrs & ?hecon & ?herfs, & ?hetri \\
\hline & ?hetrf_rk & & ?hetrs2 & ?hecon_3 & ?herfsx & ?hetri2 \\
\hline & \multirow[t]{2}{*}{?hetrf_aa} & & ?hetrs_3 & & & ?hetri2x \\
\hline & & & ?hetrs_aa & & & ?hetri_3 \\
\hline \multirow[t]{4}{*}{symmetric indefinite} & ?sytrf & \multirow[t]{4}{*}{?syequb} & ?sytrs & ?sycon & ?syrfs, & ?sytri \\
\hline & \multirow[t]{3}{*}{?sytrf_rk} & & ?sytrs2 & ?sycon_3 & ?syrfsx & ?sytri2 \\
\hline & & & ?sytrs3 & & & ?sytri2x \\
\hline & & & & & & ?sytri_3 \\
\hline Hermitian indefinite, packed storage & ?hptrf & & ?hptrs & ?hpcon & ?hprfs & ?hptri \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Matrix type, storage scheme & Factorize matrix & Equilibrate matrix & Solve system & Condition number & Estimate error & Invert matrix \\
\hline symmetric indefinite, packed storage & \multicolumn{6}{|l|}{mkl_?spffrt2, mkl_?spffrtx} \\
\hline triangular & & & ?trtrs & ?trcon & ?trrfs & ?trtri \\
\hline triangular, packed storage & & & ?tptrs & ?tpcon & ?tprfs & ?tptri \\
\hline triangular, RFP storage & & & & & & ?tftri \\
\hline triangular band & & & ?tbtrs & ? tbcon & ?tbrfs & \\
\hline
\end{tabular}

\section*{Matrix Factorization: LAPACK Computational Routines}

This section describes the LAPACK routines for matrix factorization. The following factorizations are supported:
- LU factorization
- Cholesky factorization of real symmetric positive-definite matrices
- Cholesky factorization of real symmetric positive-definite matrices with pivoting
- Cholesky factorization of Hermitian positive-definite matrices
- Cholesky factorization of Hermitian positive-definite matrices with pivoting
- Bunch-Kaufman factorization of real and complex symmetric matrices
- Bunch-Kaufman factorization of Hermitian matrices.

You can compute:
- the \(L U\) factorization using full and band storage of matrices
- the Cholesky factorization using full, packed, RFP, and band storage
- the Bunch-Kaufman factorization using full and packed storage.
```

?getrf
Computes the LU factorization of a general m-by-n
matrix.

```

\section*{Syntax}
```

lapack_int LAPACKE_sgetrf (int matrix_layout , lapack_int m, lapack_int n , float *

```
lapack_int LAPACKE_sgetrf (int matrix_layout , lapack_int m, lapack_int n , float *
a , lapack_int lda , lapack_int * ipiv );
a , lapack_int lda , lapack_int * ipiv );
lapack_int LAPACKE_dgetrf (int matrix_layout, lapack_int m, lapack_int n , double *
lapack_int LAPACKE_dgetrf (int matrix_layout, lapack_int m, lapack_int n , double *
a , lapack_int lda , lapack_int * ipiv );
a , lapack_int lda , lapack_int * ipiv );
lapack_int LAPACKE_cgetrf (int matrix_layout , lapack_int m, lapack_int n ,
lapack_int LAPACKE_cgetrf (int matrix_layout , lapack_int m, lapack_int n ,
lapack_complex_float * a , lapack_int lda , lapack_int * ipiv );
lapack_complex_float * a , lapack_int lda , lapack_int * ipiv );
lapack_int LAPACKE_zgetrf (int matrix_layout, lapack_int m, lapack_int n ,
lapack_int LAPACKE_zgetrf (int matrix_layout, lapack_int m, lapack_int n ,
lapack_complex_double * a , lapack_int lda , lapack_int * ipiv );
```

lapack_complex_double * a , lapack_int lda , lapack_int * ipiv);

```

Include Files
- mkl.h

Description

The routine computes the \(L U\) factorization of a general \(m\)-by-n matrix \(A\) as
\[
A=P^{\star} L^{*} U,
\]
where \(P\) is a permutation matrix, \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>\) \(n\) ) and \(U\) is upper triangular (upper trapezoidal if \(m<n\) ). The routine uses partial pivoting, with row interchanges.

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK ROW MAJOR) or column major (LAPACK COL MAJOR). \\
\hline m & The number of rows in the matrix \(A(m \geq 0)\). \\
\hline n & The number of columns in \(A ; n \geq 0\). \\
\hline a & Array, size at least \(\max \left(1, I d^{*}{ }_{n}\right)\) for column-major layout or \(\max (1\), \(I d a *_{m}\) ) for row-major layout. Contains the matrix \(A\). \\
\hline Ida & The leading dimension of array \(a\), which must be at least max \((1, m)\) for column-major layout or \(\max (1, n)\) for row-major layout. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
ipiv

Overwritten by \(L\) and \(U\). The unit diagonal elements of \(L\) are not stored.

Array, size at least max \((1, \min (m, n))\). Contains the pivot indices; for
\(1 \leq i \leq \min (m, n)\), row \(i\) was interchanged with row ipiv(i).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), parameter \(i\) had an illegal value.
If info \(=i\), \(u_{i i}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{Application Notes}

The computed \(L\) and \(U\) are the exact factors of a perturbed matrix \(A+E\), where
\(|E| \leq C(\min (m, n)) \varepsilon P|L||U|\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations for real flavors is
\((2 / 3) n^{3}\)
If \(m=n\),
\((1 / 3) n^{2}(3 m-n)\)
If \(m>n\),
\((1 / 3) m^{2}(3 n-m)\)
If \(m<n\).

The number of operations for complex flavors is four times greater. After calling this routine with \(m=n\), you can call the following:
\begin{tabular}{ll} 
?getrs & to solve \(A^{\star} X=B\) or \(A^{T} X=B\) or \(A^{H} X=B\) \\
?gecon & to estimate the condition number of \(A\) \\
?getri & to compute the inverse of \(A\).
\end{tabular}

\author{
See Also \\ mkl_progress
}
```

Matrix Storage Schemes
mkl_?getrfnp
Computes the LU factorization of a general m-by-n
matrix without pivoting.

```
Syntax
lapack_int LAPACKE_mkl_sgetrfnp (int matrix_layout , lapack_int m, lapack_int n,
float * a , lapack_int lda );
lapack_int LAPACKE_mkl_dgetrfnp (int matrix_layout , lapack_int m, lapack_int n,
double * a , lapack_int lda );
lapack_int LAPACKE_mkl_cgetrfnp (int matrix_layout , lapack_int m, lapack_int n,
lapack_complex_float * a , lapack_int lda );
lapack_int LAPACKE_mkl_zgetrfnp (int matrix_layout , lapack_int m, lapack_int n,
lapack_complex_double * a , lapack_int lda );

Include Files
- mkl.h

\section*{Description}

The routine computes the \(L U\) factorization of a general \(m\)-by- \(n\) matrix \(A\) as
\[
A=L^{*} U,
\]
where \(L\) is lower triangular with unit-diagonal elements (lower trapezoidal if \(m>n\) ) and \(U\) is upper triangular (upper trapezoidal if \(m<n\) ). The routine does not use pivoting.

\section*{Input Parameters}
\begin{tabular}{ll} 
matrix_layout & \begin{tabular}{l} 
Specifies whether matrix storage layout is row major \\
(LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
\end{tabular} \\
\(m\) & \begin{tabular}{l} 
The number of rows in the matrix \(A(m \geq 0)\).
\end{tabular} \\
\(n\) & \begin{tabular}{l} 
The number of columns in \(A ; n \geq 0\).
\end{tabular} \\
\(a\) & \begin{tabular}{l} 
Array, size at least \(\max \left(1, I d a^{*} n\right)\) for column-major layout or max \((1\), \\
\(\left.l d a^{*} m\right)\) for row-major layout. Contains the matrix \(A\).
\end{tabular}
\end{tabular}

The leading dimension of array \(a\), which must be at least max \((1, m)\) for column-major layout or \(\max (1, n)\) for row-major layout.

\section*{Output Parameters}
a
Overwritten by \(L\) and \(U\). The unit diagonal elements of \(L\) are not stored.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), parameter \(i\) had an illegal value.
If info \(=i, u_{i i}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{Application Notes}

The approximate number of floating-point operations for real flavors is
\begin{tabular}{ll}
\((2 / 3) n^{3}\) & If \(m=n\), \\
\((1 / 3) n^{2}(3 m-n)\) & If \(m>n\), \\
\((1 / 3) m^{2}(3 n-m)\) & If \(m<n\).
\end{tabular}

The number of operations for complex flavors is four times greater.
After calling this routine with \(m=n\), you can call the following:
```

mkl_?getrinp to compute the inverse of A

```

\section*{See Also}
mkl_progress
Matrix Storage Schemes
mkl_?getrfnpi
Performs LU factorization (complete or incomplete) of
a general matrix without pivoting.

\section*{Syntax}
```

lapack_int LAPACKE_mkl_sgetrfnpi (int matrix_layout, lapack_int m, lapack_int n,
lapack_int nfact, float* a, lapack_int lda);
lapack_int LAPACKE_mkl_dgetrfnpi (int matrix_layout, lapack_int m, lapack_int n,
lapack_int nfact, double* a, lapack_int lda);
lapack_int LAPACKE_mkl_cgetrfnpi (int matrix_layout, lapack_int m, lapack_int n,
lapack_int nfact, lapack_complex_float* a, lapack_int lda);
lapack_int LAPACKE_mkl_zgetrfnpi (int matrix_layout, lapack_int m, lapack_int n,
lapack_int nfact, lapack_complex_double* a, lapack_int lda);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes the LU factorization of a general \(m\)-by- \(n\) matrix \(A\) without using pivoting. It supports incomplete factorization. The factorization has the form:
\(A=L^{*} U\),
where \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>n\) ) and \(U\) is upper triangular (upper trapezoidal if \(m<n\) ).

Incomplete factorization has the form:
\[
A=L * U+\tilde{A}
\]
where \(L\) is lower trapezoidal with unit diagonal elements, \(U\) is upper trapezoidal, and
\[
\tilde{A}
\]
is the unfactored part of matrix \(A\). See the application notes section for further details.

\section*{NOTE}

Use ?getrf if it is possible that the matrix is not diagonal dominant.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
```

matrix_layout
m
n
nfact
a
lda
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
The number of rows in matrix $A ; m \geq 0$.
The number of columns in matrix $A ; n \geq 0$.
The number of rows and columns to factor; $0 \leq n f a c t \leq \min (m, n)$. Note that if $n f$ fact $<\min (m, n)$, incomplete factorization is performed.
Array of size at least $l d a^{*} n$ for column major layout and at least $l d^{*}{ }^{*} m$ for row major layout. Contains the matrix A.
The leading dimension of array a. Id $a \geq \max (1, m)$ for column major layout and $I d a \geq \max (1, n)$ for row major layout.

```

\section*{Output Parameters}
a
Overwritten by \(L\) and \(U\). The unit diagonal elements of \(L\) are not stored.
When incomplete factorization is specified by setting nfact \(<\min (m, n), a\) also contains the unfactored submatrix
\[
\tilde{A}_{22}
\]
. See the application notes section for further details.

\section*{Return Values}

This function returns a value info.
If infor 0 , the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, u_{i i}\) is 0 . The requested factorization has been completed, but \(U\) is exactly singular. Division by 0 will occur if factorization is completed and factor \(U\) is used for solving a system of linear equations.

\section*{Application Notes}

The computed \(L\) and \(U\) are the exact factors of a perturbed matrix \(A+E\), with
```

|E| \leqC(min(m, n)) \varepsilon| L||U|

```
where \(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations for real flavors is
\((2 / 3) n^{3}\)
If \(m=n=n\) fact
\((1 / 3) n^{2}(3 m-n)\)
If \(m>n=n f a c t\)
\((1 / 3) m^{2}(3 n-m)\)
If \(m=n f a c t<n\)
\((2 / 3) n^{3}-(n-n f a c t)^{3}\)
If \(m=n, n f a c t<\min (m, n)\)
\((1 / 3)\left(n^{2}(3 m-n)-(n-n f a c t)^{2}(3 m-\quad\right.\) If \(m>n>n f a c t\)
2nfact-n))
\((1 / 3)\left(m^{2}(3 n-m)-(m-n f a c t)^{2}(3 n-\quad\right.\) If \(n f a c t<m<n\)
2nfact-m))

The number of operations for complex flavors is four times greater.
When incomplete factorization is specified, the first nfact rows and columns are factored, with the update of the remaining rows and columns of \(A\) as follows:


If matrix \(A\) is represented as a block 2-by-2 matrix:
\[
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
\]
where
- \(A_{11}\) is a square matrix of order nfact,
- \(A_{21}\) is an ( \(m\)-nfact)-by-nfact matrix,
- \(A_{12}\) is an nfact-by-( \(n\)-nfact) matrix, and
- \(A_{22}\) is an ( \(m-n f a c t\) )-by-( \(n-n f a c t\) ) matrix.

The result is
\[
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{l}
L_{1} \\
L_{2}
\end{array}\right] \cdot\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & \tilde{A}_{22}
\end{array}\right]
\]
\(L_{1}\) is a lower triangular square matrix of order nfact with unit diagonal and \(U_{1}\) is an upper triangular square matrix of order nfact. \(L_{1}\) and \(U_{1}\) result from LU factorization of matrix \(A_{11}: A_{11}=L_{1} U_{1}\).
\(L_{2}\) is an \((m-n f a c t)\)-by-nfact matrix and \(L_{2}=A_{21} U_{1}{ }^{-1} . U_{2}\) is an nfact-by- \((n-n f a c t)\) matrix and \(U_{2}=\) \(L_{1}^{-1} A_{12}\).
\[
\tilde{A}_{22}
\]
is an (m-nfact)-by-( \(n-n f a c t\) ) matrix and
\[
\tilde{A}_{22}
\]
\(=A_{22}-L_{2} U_{2}\).
On exit, elements of the upper triangle \(U_{1}\) are stored in place of the upper triangle of block \(A_{11}\) in array a; elements of the lower triangle \(L_{1}\) are stored in the lower triangle of block \(A_{11}\) in array a (unit diagonal elements are not stored). Elements of \(L_{2}\) replace elements of \(A_{21} ; U_{2}\) replaces elements of \(A_{12}\) and
\[
\tilde{A}_{22}
\]
replaces elements of \(A_{22}\).

output


\section*{?getrf2}

Computes LU factorization using partial pivoting with row interchanges.

\section*{Syntax}
lapack_int LAPACKE_sgetrf2 (int matrix_layout, lapack_int m, lapack_int \(n\), float \(*\) a, lapack_int lda, lapack_int * ipiv);
```

lapack_int LAPACKE_dgetrf2 (int matrix_layout, lapack_int m, lapack_int n, double * a,
lapack_int lda, lapack_int * ipiv);
lapack_int LAPACKE_cgetrf2 (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_float * a, lapack_int lda, lapack_int * ipiv);
lapack_int LAPACKE_zgetrf2 (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_double * a, lapack_int lda, lapack_int * ipiv);

```

Include Files
- mkl.h

\section*{Description}
? getrf2 computes an LU factorization of a general m-by-n matrix \(A\) using partial pivoting with row interchanges.
The factorization has the form
\(A=P * L * U\)
where \(P\) is a permutation matrix, \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>\) \(n\) ), and \(U\) is upper triangular (upper trapezoidal if \(m<n\) ).

This is the recursive version of the algorithm. It divides the matrix into four submatrices:
\(A=\left(\begin{array}{ll}A 11 & A 12 \\ A 21 & A 22\end{array}\right)\)
where \(A 11\) is \(n 1\) by \(n 1\) and \(A 22\) is \(n 2\) by \(n 2\) with \(n 1=\min (m, n)\), and \(n 2=n-n 1\).
The subroutine calls itself to factor \(\binom{A 11}{A 12}\),
do the swaps on \(\binom{A 12}{A 22}\), solve \(A 12\), update \(A 22\), then it calls itself to factor \(A 22\) and do the swaps on \(A 21\).

\section*{Input Parameters}
```

matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
The number of rows of the matrix A. m>=0.
The number of columns of the matrix A. n >=0}0\mathrm{ .
Array, size lda*n.
On entry, the m-by-n matrix to be factored.
The leading dimension of the array a. Ida >= max (1,m).

```

\section*{Output Parameters}
a
ipiv
On exit, the factors \(L\) and \(U\) from the factorization \(A=P * L * U\); the unit diagonal elements of \(L\) are not stored.

Array, size \((\min (m, n))\).
The pivot indices; for \(1<=i<=\min (m, n)\), row \(i\) of the matrix was interchanged with row ipiv[i-1].

\section*{Return Values}

This function returns a value info.
= 0: successful exit
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value.
\(>0\) : if info \(=i, U_{i, i}\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, and division by zero will occur if it is used to solve a system of equations.
```

?gbtrf
Computes the LU factorization of a general m-by-n
band matrix.

```
Syntax
lapack_int LAPACKE_sgbtrf (int matrix_layout, lapack_int m, lapack_int \(n\), lapack_int

lapack_int LAPACKE_dgbtrf (int matrix_layout, lapack_int \(m\), lapack_int \(n\), lapack_int

lapack_int LAPACKE_cgbtrf (int matrix_layout, lapack_int m, lapack_int n, lapack_int
\(\left.k l, ~ l a p a c k \_i n t ~ k u, ~ l a p a c k \_c o m p l e x \_f l o a t ~ * ~ a b, ~ l a p a c k \_i n t ~ l d a b, ~ l a p a c k \_i n t ~ * ~ i p i v ~\right) ; ~\)
lapack_int LAPACKE_zgbtrf (int matrix_layout, lapack_int m, lapack_int \(n\), lapack_int
\(k l\), lapack_int \(k u\), lapack_complex_double * ab, lapack_int ldab, lapack_int *
ipiv );

\section*{Include Files}
- mkl.h

\section*{Description}

The routine forms the \(L U\) factorization of a general \(m\)-by- \(n\) band matrix \(A\) with \(k l\) non-zero subdiagonals and \(k u\) non-zero superdiagonals, that is,
\[
A=P^{\star} L^{\star} U,
\]
where \(P\) is a permutation matrix; \(L\) is lower triangular with unit diagonal elements and at most \(k /\) non-zero elements in each column; \(U\) is an upper triangular band matrix with \(k l+k u\) superdiagonals. The routine uses partial pivoting, with row interchanges (which creates the additional \(k l\) superdiagonals in \(U\) ).

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}
```

matrix_layout
m
n
kl

```

Specifies whether matrix storage layout is row major
(LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
The number of rows in matrix \(A ; m \geq 0\).
The number of columns in matrix \(A ; n \geq 0\).
The number of subdiagonals within the band of \(A ; k l \geq 0\).
```

ku
ab
ldab
The number of superdiagonals within the band of $A ; k u \geq 0$.
Array, size at least $\max \left(1, I d_{a} *_{n}\right)$ for column-major layout or $\max \left(1\right.$, ldab $\left.^{*}\right)$ for row-major layout.
The array $a b$ contains the matrix A in band storage as described in Band Storage.
The leading dimension of the array $a b$. (Idab $\geq 2 * k I+k u+1)$

```

\section*{Output Parameters}
```

ab

```

Overwritten with elements of \(L\) and \(U . U\) is stored as an upper triangular band matrix with \(k l+k u\) superdiagonals, and \(L\) is stored as a lower triangular band matrix with kl subdiagonals (diagonal unit values are not stored). Since the output array has more nonzero elements than the initial matrix \(A\), there are limitations on the value of ldab and the placement of elements of \(A\) in array \(a b\).

See Application Notes below for further details.
Array, size at least \(\max (1, \min (m, n))\). The pivot indices; for \(1 \leq i \leq\) \(\min (m, n)\), row \(i\) was interchanged with row ipiv(i).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), parameter \(i\) had an illegal value.
If info \(=i\), \(u_{i i}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{Application Notes}

The computed \(L\) and \(U\) are the exact factors of a perturbed matrix \(A+E\), where
```

|E| \leqc(kl+ku+1) \varepsilonP|L||U|

```
\(c(k)\) is a modest linear function of \(k\), and \(\varepsilon\) is the machine precision.
The total number of floating-point operations for real flavors varies between approximately \(2 n(k u+1) k I\) and \(2 n(k l+k u+1) k l\). The number of operations for complex flavors is four times greater. All these estimates assume that \(k l\) and \(k u\) are much less than \(\min (m, n)\).

As described in Band Storage, storage of a band matrix can be considered in two steps: packing band matrix elements into a matrix \(A B\), then storing the elements in a linear array ab using a full storage scheme. The effect of the ? gbtrf routine on matrix \(A B\) is illustrated by this example, for \(m=n=6, k l=2, k u=1\).
- matrix_layout \(=\) LAPACK_COL_MAJOR

On entry:
On exit:
\[
A B=\left[\begin{array}{cccccc}
* & * & * & + & + & + \\
* & * & + & + & + & + \\
* & a_{1,2} & a_{2,3} & a_{3,4} & a_{4,5} & a_{5,6} \\
a_{1,1} & a_{2,2} & a_{3,3} & a_{4,4} & a_{5,5} & a_{6,6} \\
a_{2,1} & a_{3,2} & a_{4,3} & a_{5,4} & a_{6,5} & * \\
a_{3,1} & a_{4,2} & a_{5,3} & a_{6,4} & * & *
\end{array}\right] \quad A B=\left[\begin{array}{cccccc}
* & * & * & u_{1,4} & u_{2,5} & u_{3,6} \\
* & * & u_{1,3} & u_{2,4} & u_{3,5} & u_{4,6} \\
* & u_{1,2} & u_{2,3} & u_{3,4} & u_{4,5} & u_{5,6} \\
u_{1,1} & u_{2,2} & u_{3,3} & u_{4,4} & u_{5,5} & u_{6,6} \\
l_{2,1} & l_{3,2} & l_{4,3} & l_{5,4} & l_{6,5} & * \\
l_{3,1} & l_{4,2} & l_{5,3} & l_{6,4} & * & *
\end{array}\right]
\]
- matrix_layout = LAPACK_ROW_MAJOR
\begin{tabular}{|c|c|}
\hline On entry: & On exit: \\
\hline \(A B=\left[\begin{array}{cccccc}* & * & a_{11} & a_{1,2} & + & + \\ * & a_{2,1} & a_{2,2} & a_{2,3} & + & + \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & + & + \\ a_{4,2} & a_{4,3} & a_{4,4} & a_{4,5} & + & * \\ a_{5,3} & a_{5,4} & a_{5,5} & a_{5,6} & * & * \\ a_{6,4} & a_{6,5} & a_{6,6} & * & * & *\end{array}\right]\) & \(A B=\left[\begin{array}{cccccc}* & * & u_{1,1} & u_{1,2} & u_{1,3} & u_{1,4} \\ * & l_{2,1} & u_{2,2} & u_{2,3} & u_{2,4} & u_{2,5} \\ l_{3,1} & l_{3,2} & u_{3,3} & u_{3,4} & u_{3,5} & u_{3,6} \\ l_{4,2} & l_{4,3} & u_{4,4} & u_{4,5} & u_{4,6} & * \\ l_{5,3} & l_{5,4} & u_{5,5} & u_{5,6} & * & * \\ l_{6,4} & l_{6,5} & u_{6,6} & * & * & *\end{array}\right]\) \\
\hline
\end{tabular}

Elements marked * are not used; elements marked + need not be set on entry, but are required by the routine to store elements of \(U\) because of fill-in resulting from the row interchanges.

After calling this routine with \(m=n\), you can call the following routines:
```

gbtrs to solve }A*X=B\mathrm{ or }\mp@subsup{A}{}{T}*X=B\mathrm{ or }\mp@subsup{A}{}{H}*X=
gbcon
to estimate the condition number of A.

```

\section*{See Also}
mkl_progress

\section*{Matrix Storage Schemes}

\section*{?gttrf}

Computes the LU factorization of a tridiagonal matrix.

\section*{Syntax}
```

lapack_int LAPACKE_sgttrf (lapack_int n , float * dl , float * d, float * du , float *
du2 , lapack_int * ipiv);
lapack_int LAPACKE_dgttrf (lapack_int n, double * dl, double * d, double * du ,
double * du2 , lapack_int * ipiv);
lapack_int LAPACKE_cgttrf (lapack_int n , lapack_complex_float * dl ,
lapack_complex_float * d , lapack_complex_float * du , lapack_complex_float * du2 ,
lapack_int * ipiv);
lapack_int LAPACKE_zgttrf (lapack_int n , lapack_complex_double * dl ,
lapack_complex_double * d , lapack_complex_double * du , lapack_complex_double * du2 ,
lapack_int * ipiv);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes the \(L U\) factorization of a real or complex tridiagonal matrix \(A\) using elimination with partial pivoting and row interchanges.
The factorization has the form
\[
A=L^{*} U,
\]
where \(L\) is a product of permutation and unit lower bidiagonal matrices and \(U\) is upper triangular with nonzeroes in only the main diagonal and first two superdiagonals.

\section*{Input Parameters}
```

n
$d l, d, d u$

```

The order of the matrix \(A ; n \geq 0\).
Arrays containing elements of \(A\).
The array \(d l\) of dimension ( \(n-1\) ) contains the subdiagonal elements of \(A\).

The array \(d\) of dimension \(n\) contains the diagonal elements of \(A\).
The array \(d u\) of dimension ( \(n-1\) ) contains the superdiagonal elements of \(A\).

\section*{Output Parameters}
dl Overwritten by the ( \(n-1\) ) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\).

Overwritten by the \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of \(A\).

Overwritten by the \((n-1)\) elements of the first superdiagonal of \(U\).
Array, dimension ( \(n-2\) ). On exit, du2 contains ( \(n-2\) ) elements of the second superdiagonal of \(U\).

Array, dimension ( \(n\) ). The pivot indices: for \(1 \leq i \leq n\), row \(i\) was interchanged with row ipiv[i-1]. ipiv[i-1] is always \(i\) or \(i+1\); ipiv[i-1] \(=i\) indicates a row interchange was not required.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), parameter \(i\) had an illegal value.
If info \(=i, u_{i i}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by zero will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{Application Notes}
```

?gbtrs
?gbcon
to estimate the condition number of }A\mathrm{ .

```
```

to solve A* X = B or AT*X = B or A A}\mp@subsup{A}{}{H}*X=

```
```

to solve A* X = B or AT*X = B or A A}\mp@subsup{A}{}{H}*X=

```
?dttrfb
Computes the factorization of a diagonally dominant tridiagonal matrix.

\section*{Syntax}
```

void sdttrfb (const MKL_INT * n , float * dl , float * d, const float * du , MKL_INT *
info);
void ddttrfb (const MKL_INT * n , double * dl , double * d , const double * du ,
MKL_INT * info);
void cdttrfb (const MKL_INT * n , MKL_Complex8 * dl , MKL_Complex8 * d , const
MKL_Complex8 * du , MKL_INT * info);
void zdttrfb_ (const MKL_INT * n , MKL_Complex16 * dl , MKL_Complexl6 * d , const
MKL_Complex16 * du , MKL_INT * info);

```

Include Files
- mkl.h

\section*{Description}

The ?dttrfb routine computes the factorization of a real or complex tridiagonal matrix \(A\) with the BABE (Burning At Both Ends) algorithm without pivoting. The factorization has the form
\[
A=L_{1} \star U^{\star} L_{2}
\]
where
- \(L_{1}\) and \(L_{2}\) are unit lower bidiagonal with \(k\) and \(n-k-1\) subdiagonal elements, respectively, where \(k=\) \(n / 2\), and
- \(U\) is an upper bidiagonal matrix with nonzeroes in only the main diagonal and first superdiagonal.

\section*{Input Parameters}
n
\(d l, d, d u\)

The order of the matrix \(A ; n \geq 0\).
Arrays containing elements of \(A\).
The array \(d l\) of dimension ( \(n-1\) ) contains the subdiagonal elements of \(A\).

The array \(d\) of dimension \(n\) contains the diagonal elements of \(A\).
The array du of dimension ( \(n-1\) ) contains the superdiagonal elements of \(A\).

\section*{Output Parameters}
dl

Overwritten by the ( \(n-1\) ) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\).
```

d Overwritten by the n diagonal element reciprocals of the upper triangular matrix U from the factorization of A.
Overwritten by the $(n-1)$ elements of the superdiagonal of U.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, u_{i i}$ is 0 . The factorization has been completed, but U is exactly singular. Division by zero will occur if you use the factor U for solving a system of linear equations.

```

\section*{Application Notes}

A diagonally dominant tridiagonal system is defined such that \(\left|d_{i}\right|>\left|d l_{i-1}\right|+\left|d u_{i}\right|\) for any \(i\) :
\(1<i<n\), and \(\left|d_{1}\right|>\left|d u_{1}\right|,\left|d_{n}\right|>\left|d l_{n-1}\right|\)
The underlying BABE algorithm is designed for diagonally dominant systems. Such systems are free from the numerical stability issue unlike the canonical systems that use elimination with partial pivoting (see ?gttrf). The diagonally dominant systems are much faster than the canonical systems.

\section*{NOTE}
- The current implementation of BABE has a potential accuracy issue on very small or large data close to the underflow or overflow threshold respectively. Scale the matrix before applying the solver in the case of such input data.
- Applying the ?dttrfb factorization to non-diagonally dominant systems may lead to an accuracy loss, or false singularity detected due to no pivoting.
```

?potrf
Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite matrix.

```

\section*{Syntax}
```

lapack_int LAPACKE_spotrf (int matrix_layout, char uplo, lapack_int n , float * a ,

```
lapack_int LAPACKE_spotrf (int matrix_layout, char uplo, lapack_int n , float * a ,
lapack_int lda );
lapack_int lda );
lapack_int LAPACKE_dpotrf (int matrix_layout, char uplo, lapack_int n , double * a ,
lapack_int LAPACKE_dpotrf (int matrix_layout, char uplo, lapack_int n , double * a ,
lapack_int lda );
lapack_int lda );
lapack_int LAPACKE_cpotrf (int matrix_layout, char uplo, lapack_int n ,
lapack_int LAPACKE_cpotrf (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_float * a , lapack_int lda );
lapack_complex_float * a , lapack_int lda );
lapack_int LAPACKE_zpotrf (int matrix_layout , char uplo , lapack_int n ,
lapack_int LAPACKE_zpotrf (int matrix_layout , char uplo , lapack_int n ,
lapack_complex_double * a , lapack_int lda );
```

lapack_complex_double * a , lapack_int lda);

```

Include Files
- mkl.h

\section*{Description}

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, Hermitian positive-definite matrix \(A\) :
\(A=U^{T \star} U\) for real data, \(A=U^{H_{\star}}\) U for complex data
if uplo='U'
\(A=L^{\star} L^{T}\) for real data, \(A=L^{\star} L^{H}\) for complex data
if uplo='L'
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}
```

matrix_layout
uplo
n
a
lda
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored and how A is factored:
If uplo = 'U', the array a stores the upper triangular part of the matrix A, and the strictly lower triangular part of the matrix is not referenced.
If uplo = 'L', the array a stores the lower triangular part of the matrix A, and the strictly upper triangular part of the matrix is not referenced.
Specifies the order of the matrix A. The value of n must be at least zero.
Array, size $\max \left(1, I d a^{*} n\right.$. The array a contains either the upper or the lower triangular part of the matrix A (see uplo).
The leading dimension of a. Must be at least $\max (1, n)$.

```

\section*{Output Parameters}
a
The upper or lower triangular part of \(a\) is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), parameter \(i\) had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix \(A\).

\section*{Application Notes}

If uplo \(=\) ' \(U\) ', the computed factor \(U\) is the exact factor of a perturbed matrix \(A+E\), where
\(C(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo = 'L'.

The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors or \((4 / 3) n^{3}\) for complex flavors.
After calling this routine, you can call the following routines:
```

?potrs to solve }A*X=
?pocon to estimate the condition number of }
?potri to compute the inverse of }A\mathrm{ .

```

\section*{See Also}
mkl_progress

\section*{Matrix Storage Schemes}
?potrf2
Computes Cholesky factorization using a recursive algorithm.

\section*{Syntax}
```

lapack_int LAPACKE_spotrf2 (int matrix_layout, char uplo, lapack_int n, float * a,
lapack_int lda);
lapack_int LAPACKE_dpotrf2 (int matrix_layout, char uplo, lapack_int n, double * a,
lapack_int lda);
lapack_int LAPACKE_cpotrf2 (int matrix_layout, char uplo, lapack_int n,
lapack_complex_float * a, lapack_int lda);
lapack_int LAPACKE_zpotrf2 (int matrix_layout, char uplo, lapack_int n,
lapack_complex_double * a, lapack_int lda);

```

Include Files
- mkl.h

\section*{Description}
?potrf2 computes the Cholesky factorization of a real or complex symmetric positive definite matrix \(A\) using the recursive algorithm.
The factorization has the form
for real flavors:
\(A=U^{\top} * U\), if uplo \(=\) 'U', or
\(A=L * L^{\top}\), if uplo = 'L',
for complex flavors:
\(A=U^{\mathrm{H}} * U\), if uplo \(=\) ' U ',
or \(A=L * L^{H}\), if uplo = 'L',
where \(U\) is an upper triangular matrix and \(L\) is lower triangular.
This is the recursive version of the algorithm. It divides the matrix into four submatrices:
\(A=\left(\begin{array}{ll}A 11 & A 12 \\ A 21 & A 22\end{array}\right)\)
where \(A 11\) is \(n 1\) by \(n 1\) and \(A 22\) is \(n 2\) by \(n 2\), with \(n 1=n / 2\) and \(n 2=n-n 1\).

The subroutine calls itself to factor \(A 11\). Update and scale \(A 21\) or \(A 12\), update \(A 22\) then call itself to factor A22.

\section*{Input Parameters}
```

matrix_layout
uplo = 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
The order of the matrix A.
n\geq0}
Array, size (lda*n).
On entry, the symmetric matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of a contains the
upper triangular part of the matrix A, and the strictly lower triangular part
of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of a contains the
lower triangular part of the matrix A, and the strictly upper triangular part
of a is not referenced.
The leading dimension of the array a.
lda\geq max(1,n).

```

\section*{Output Parameters}
a
On exit, if info \(=0\), the factor \(U\) or \(L\) from the Cholesky factorization.
For real flavors:
\(A=U^{\top} * U\) or \(A=L^{*} L^{\top} ;\)
For complex flavors:
\(A=U^{H} * U\) or \(A=L^{*} L^{H}\).

\section*{Return Values}

This function returns a value info.
\(=0\) : successful exit
< 0: if info \(=-i\), the \(i\)-th argument had an illegal value
\(>0\) : if info \(=i\), the leading minor of order \(i\) is not positive definite, and the factorization could not be completed.

\section*{?pstrf}

Computes the Cholesky factorization with complete
pivoting of a real symmetric (complex Hermitian)
positive semidefinite matrix.

\section*{Syntax}
lapack_int LAPACKE_spstrf( int matrix_layout, char uplo, lapack_int n, float* a, lapack_int lda, lapack_int* piv, lapack_int* rank, float tol );
```

lapack_int LAPACKE_dpstrf(int matrix_layout, char uplo, lapack_int n, double* a,
lapack_int lda, lapack_int* piv, lapack_int* rank, double tol);
lapack_int LAPACKE_cpstrf(int matrix_layout, char uplo, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_int* piv, lapack_int* rank, float tol);
lapack_int LAPACKE_zpstrf(int matrix_layout, char uplo, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_int* piv, lapack_int* rank, double
tol);

```

Include Files
- mkl.h

\section*{Description}

The routine computes the Cholesky factorization with complete pivoting of a real symmetric (complex Hermitian) positive semidefinite matrix. The form of the factorization is:
\[
\begin{aligned}
& P^{T} \star A * P=U^{T} * U, \text { if uplo='U' for real flavors, } \\
& P^{T} \star A * P=U^{H} \star U, \text { if uplo='U' for complex flavors, } \\
& P^{T} \star A * P=L \star L^{T}, \text { if uplo='L' for real flavors, } \\
& P^{T} \star A * P=L \star L^{H}, \text { if uplo='L' for complex flavors, }
\end{aligned}
\]
where \(P\) is a permutation matrix stored as vector piv, and \(U\) and \(L\) are upper and lower triangular matrices, respectively.

This algorithm does not attempt to check that \(A\) is positive semidefinite. This version of the algorithm calls level 3 BLAS.

\section*{Input Parameters}
```

matrix_layout
uplo
n
a
tol
Ida

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored:
If uplo = 'U', the array a stores the upper triangular part of the matrix \(A\), and the strictly lower triangular part of the matrix is not referenced.

If uplo = 'L', the array a stores the lower triangular part of the matrix \(A\), and the strictly upper triangular part of the matrix is not referenced.

The order of matrix \(A ; n \geq 0\).
Array \(a\), size \(\max \left(1, I d a_{n}\right)\). The array a contains either the upper or the lower triangular part of the matrix \(A\) (see uplo). .

User defined tolerance. If tol \(<0\), then \(n^{*} \varepsilon^{*} \max \left(A_{k, k}\right)\), where \(\varepsilon\) is the machine precision, will be used (see Error Analysis for the definition of machine precision). The algorithm terminates at the ( \(k-1\) ) -st step, if the pivot \(\leq t \circ\) l.

The leading dimension of \(a\); at least max \((1, n)\).

\section*{Output Parameters}
a
If info \(=0\), the factor \(U\) or \(L\) from the Cholesky factorization is as described in Description.
piv
rank
Array, size at least max \((1, n)\). The array piv is such that the nonzero entries are \(P_{\text {piv }}[k-1], k(1 \leq k \leq n)\).

The rank of a given by the number of steps the algorithm completed.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-k\), the \(k\)-th argument had an illegal value.
If info \(>0\), the matrix \(A\) is either rank deficient with a computed rank as returned in rank, or is not positive semidefinite.
See Also
Matrix Storage Schemes
?pftrf
Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite matrix using the
Rectangular Full Packed (RFP) format .

\section*{Syntax}
```

lapack_int LAPACKE_spftrf (int matrix_layout, char transr, char uplo, lapack_int n ,
float * a);
lapack_int LAPACKE_dpftrf (int matrix_layout, char transr, char uplo, lapack_int n ,
double * a);
lapack_int LAPACKE_cpftrf (int matrix_layout, char transr, char uplo, lapack_int n,
lapack_complex_float * a);
lapack_int LAPACKE_zpftrf (int matrix_layout, char transr, char uplo, lapack_int n ,
lapack_complex_double * a);

```

Include Files
- mkl.h

\section*{Description}

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, a Hermitian positive-definite matrix \(A\) :
\[
\begin{array}{ll}
A=U^{T} \star U \text { for real data, } A=U^{H} \star U \text { for complex data } & \text { if uplo='U' } \\
A=L^{\star} L^{T} \text { for real data, } A=L^{\star} L^{H} \text { for complex data } & \text { if uplo='L' }
\end{array}
\]
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.
The matrix \(A\) is in the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.
This is the block version of the algorithm, calling Level 3 BLAS.

\section*{Input Parameters}
```

matrix_layout
transr
uplo
n
a
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'N', 'T' (for real data) or 'C' (for complex data).
If transr = 'N', the Normal transr of RFP A is stored.
If transr $=$ 'T', the Transpose transr of RFP A is stored.
If transr $=$ ' C', the Conjugate-Transpose transr of RFP A is stored.
Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the array a stores the upper triangular part of the matrix A.
If uplo = 'L', the array a stores the lower triangular part of the matrix A.
The order of the matrix $A ; n \geq 0$.
Array, size $\left(n^{\star}(n+1) / 2\right)$. The array a contains the matrix A in the RFP format.

```

\section*{Output Parameters}
a
\(a\) is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo and trans.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), parameter \(i\) had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix \(A\).

\section*{See Also}

Matrix Storage Schemes
?pptrf
Computes the Cholesky factorization of a symmetric (Hermitian) positive-definite matrix using packed storage.

\section*{Syntax}
```

lapack_int LAPACKE_spptrf (int matrix_layout, char uplo, lapack_int n , float * ap);
lapack_int LAPACKE_dpptrf (int matrix_layout, char uplo, lapack_int n , double *
ap);
lapack_int LAPACKE_cpptrf (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_float * ap);

```
```

lapack_int LAPACKE_zpptrf (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_double * ap);

```

Include Files
- mkl.h

\section*{Description}

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, Hermitian positive-definite packed matrix \(A\) :
```

A = U'T*U for real data, }A=\mp@subsup{U}{}{H*U}\mathrm{ for complex data if uplo='U'
A = L* LT for real data, A = L* L'H}\mathrm{ for complex data if uplo='L'

```
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{4}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular part of \(A\) is packed in the array ap, and how \(A\) is factored: \\
\hline & If uplo = 'U', the array ap stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(U^{H * U}\). \\
\hline & If uplo \(=\) ' L' , the array ap stores the lower triangular part of the matrix \(A\); \(A\) is factored as \(L^{*} L^{H}\). \\
\hline \(n\) & The order of matrix \(A ; n \geq 0\). \\
\hline \(a p\) & Array, size at least max \((1, n(n+1) / 2)\). The array ap contains either the upper or the lower triangular part of the matrix \(A\) (as specified by uplo) in packed storage (see Matrix Storage Schemes). \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), parameter \(i\) had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix \(A\).

\section*{Application Notes}

If uplo \(=\) ' \(U\) ', the computed factor \(U\) is the exact factor of a perturbed matrix \(A+E\), where
\[
|\underline{W}| \leq C(n) \varepsilon\left|U^{H}\right||U|,\left|e_{i j}\right| \leq C(n) \varepsilon_{\sqrt{ }} \sqrt{a_{i j} a_{j j}}
\]
\(C(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo = 'L'.
The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors and \((4 / 3) n^{3}\) for complex flavors.
After calling this routine, you can call the following routines:
```

?pptrs to solve }A*X=
?ppcon to estimate the condition number of }
?pptri to compute the inverse of }A\mathrm{ .

```

\section*{See Also}
mkl_progress

\section*{Matrix Storage Schemes}
?pbtrf
Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite band matrix.

\section*{Syntax}
```

lapack_int LAPACKE_spbtrf (int matrix_layout, char uplo, lapack_int n , lapack_int
kd , float * ab , lapack_int ldab);
lapack_int LAPACKE_dpbtrf (int matrix_layout, char uplo, lapack_int n , lapack_int
kd , double * ab , lapack_int ldab);
lapack_int LAPACKE_cpbtrf (int matrix_layout, char uplo, lapack_int n , lapack_int
kd , lapack_complex_float * ab , lapack_int ldab);
lapack_int LAPACKE_zpbtrf (int matrix_layout, char uplo, lapack_int n , lapack_int
kd , lapack_complex_double * ab , lapack_int ldab);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, Hermitian positive-definite band matrix \(A\) :
\[
\begin{array}{ll}
A=U^{T} \star U \text { for real data, } A=U^{H} \star U \text { for complex data } & \text { if uplo='U' } \\
A=L^{\star} L^{T} \text { for real data, } A=L^{\star} L^{H} \text { for complex data } & \text { if uplo='L' }
\end{array}
\]
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}
```

matrix_layout
uplo Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored in
the array ab, and how A is factored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
The order of matrix A; n\geq0.
The number of superdiagonals or subdiagonals in the matrix A; kd\geq0.
Array, size max(1, Idab*n). The array ab contains either the upper or
the lower triangular part of the matrix A (as specified by uplo) in band
storage (see Matrix Storage Schemes).
The leading dimension of the array ab. (ldab\geqkd + 1)

```

\section*{Output Parameters}

\section*{\(a b\)}

The upper or lower triangular part of \(A\) (in band storage) is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo.

\section*{Return Values}

This function returns a value info.
If info=0, the execution is successful.
If \(i n f 0=-i\), parameter \(i\) had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix \(A\).

\section*{Application Notes}

If uplo = 'U', the computed factor \(U\) is the exact factor of a perturbed matrix \(A+E\), where
\[
|E| \leq c(k d+1) \varepsilon\left|U^{H}\right||U|,\left|e_{i j}\right| \leq c(k d+1) \varepsilon \sqrt{a_{i i} a_{j j}}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo = 'L'.
The total number of floating-point operations for real flavors is approximately \(n(k d+1)^{2}\). The number of operations for complex flavors is 4 times greater. All these estimates assume that \(k d\) is much less than \(n\).
After calling this routine, you can call the following routines:
?pbtrs to solve \(A * X=B\)
```

?pbcon
to estimate the condition number of A.

```

\section*{See Also}
mkl_progress
Matrix Storage Schemes
?pttrf
Computes the factorization of a symmetric (Hermitian) positive-definite tridiagonal matrix.

\section*{Syntax}
```

lapack_int LAPACKE_spttrf(lapack_int n, float* d, float* e);
lapack_int LAPACKE_dpttrf(lapack_int n, double* d, double* e);
lapack_int LAPACKE_cpttrf(lapack_int n, float* d, lapack_complex_float* e);
lapack_int LAPACKE_zpttrf(lapack_int n, double* d, lapack_complex_double* e);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine forms the factorization of a symmetric positive-definite or, for complex data, Hermitian positivedefinite tridiagonal matrix \(A\) :
\(A=L \star D * L^{T}\) for real flavors, or
\(A=L \star D^{\star} L^{H}\) for complex flavors,
where \(D\) is diagonal and \(L\) is unit lower bidiagonal. The factorization may also be regarded as having the form \(A=U^{T} \star D * U\) for real flavors, or \(A=U^{H} \star D * U\) for complex flavors, where \(U\) is unit upper bidiagonal.

\section*{Input Parameters}
\(n\)
d
e

\section*{Output Parameters}
d
e
The order of the matrix \(A ; n \geq 0\).
Array, dimension ( \(n\) ). Contains the diagonal elements of \(A\).
Array, dimension (n-1). Contains the subdiagonal elements of \(A\).

Overwritten by the \(n\) diagonal elements of the diagonal matrix \(D\) from the \(L^{*} D^{*} L^{T}\) (for real flavors) or \(L^{*} D^{*} L^{H}\) (for complex flavors) factorization of \(A\).

Overwritten by the ( \(n-1\) ) sub-diagonal elements of the unit bidiagonal factor \(L\) or \(U\) from the factorization of \(A\).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.

If info \(=-i\), parameter \(i\) had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite; if \(i<n\), the factorization could not be completed, while if \(i=n\), the factorization was completed, but \(d[n-1] \leq\) 0 .

\section*{?sytrf \\ Computes the Bunch-Kaufman factorization of a symmetric matrix.}

\section*{Syntax}
```

lapack_int LAPACKE_ssytrf (int matrix_layout, char uplo, lapack_int n , float * a ,
lapack_int lda , lapack_int * ipiv);
lapack_int LAPACKE_dsytrf (int matrix_layout, char uplo, lapack_int n , double * a ,
lapack_int lda , lapack_int * ipiv);
lapack_int LAPACKE_csytrf (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_float * a , lapack_int lda , lapack_int * ipiv);
lapack_int LAPACKE_zsytrf (int matrix_layout , char uplo, lapack_int n ,
lapack_complex_double * a , lapack_int lda , lapack_int * ipiv);

```

Include Files
- mkl.h

\section*{Description}

The routine computes the factorization of a real/complex symmetric matrix \(A\) using the Bunch-Kaufman diagonal pivoting method. The form of the factorization is:
\[
\begin{aligned}
& \text { if uplo='U', } A=U^{*} D^{*} U^{\top} \\
& \text { if uplo= 'L', } A=L^{*} D^{*} L^{\top}
\end{aligned}
\]
where \(A\) is the input matrix, \(U\) and \(L\) are products of permutation and triangular matrices with unit diagonal (upper triangular for \(U\) and lower triangular for \(L\) ), and \(D\) is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

NOTE This routine supports the Progress Routine feature. See Progress Routine for details.

\section*{Input Parameters}

\author{
matrix_layout \\ uplo
}

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored:

If uplo = 'U', the array a stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(U^{\star} D * U^{T}\).
\(n\)
a
lda

\section*{Output Parameters}
a
ipiv

If uplo = 'L', the array a stores the lower triangular part of the matrix \(A\), and \(A\) is factored as \(L^{\star} D^{\star} L^{T}\).

The order of matrix \(A ; n \geq 0\).
Array, size \(\max \left(1, I d^{*} *_{n}\right)\). The array a contains either the upper or the lower triangular part of the matrix \(A\) (see uplo).

The leading dimension of \(a\); at least max \((1, n)\).

The upper or lower triangular part of a is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or L).

Array, size at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\). If ipiv[i-1] \(=k>0\), then \(d_{i i}\) is a 1-by- 1 block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.

If uplo = ' U' and \(\operatorname{ipiv}[i]=\operatorname{ipiv}[i-1]=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and \(i\)-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

If uplo \(=\) 'L' and \(\operatorname{ipiv}[i]=\operatorname{ipiv}[i-1]=-m<0\), then \(D\) has a \(2-\) by-2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), parameter \(i\) had an illegal value.
If info \(=i, D_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Application Notes}

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) are stored in the corresponding columns of the array \(a\), but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).

If \(i p i v[i-1]=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in the corresponding elements of the array \(a\).

If uplo = 'U', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
```

|E| \leqc(n) \&P|U||D|| UT | PT

```
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision. A similar estimate holds for the computed \(L\) and \(D\) when uplo \(=\) 'L'.

The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors or \((4 / 3) n^{3}\) for complex flavors.

After calling this routine, you can call the following routines:
```

?sytrs to solve }A*X=
?sycon to estimate the condition number of }
?sytri to compute the inverse of }A\mathrm{ .

```

If uplo \(=\) 'U', then \(A=U * D * U '\), where
\[
U=P(n) * U(n) * \ldots * P(k) * U(k) * \ldots,
\]
that is, U is a product of terms \(\mathrm{P}(k){ }^{*} \mathrm{U}(k)\), where
- \(k\) decreases from \(n\) to 1 in steps of 1 and 2 .
- \(D\) is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks \(D(k)\).
- \(\mathrm{P}(k)\) is a permutation matrix as defined by ipiv[k-1].
- \(U(k)\) is a unit upper triangular matrix, such that if the diagonal block \(D(k)\) is of order \(s(s=1\) or 2\()\), then


If \(s=1, \mathrm{D}(k)\) overwrites \(A(k, k)\), and \(v\) overwrites \(A(1: k-1, k)\).
If \(s=2\), the upper triangle of \(D(k)\) overwrites \(A(k-1, k-1), A(k-1, k)\) and \(A(k, k)\), and \(v\) overwrites \(A(1: k-2, k\) \(-1: k)\).

If uplo = 'L', then \(A=L^{*} D^{\star} L\) ', where
```

L = P(1)*L(1)* ...* *P(k)*L (k)*···,

```
that is, L is a product of terms \(\mathrm{P}(k) * \mathrm{~L}(k)\), where
- \(k\) increases from 1 to \(n\) in steps of 1 and 2 .
- \(D\) is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks \(\mathrm{D}(k)\).
- \(\mathrm{P}(k)\) is a permutation matrix as defined by ipiv \((k)\).
- \(L(k)\) is a unit lower triangular matrix, such that if the diagonal block \(D(k)\) is of order \(s(s=1\) or 2\()\), then
\[
L(k)=\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & I & 0 \\
0 & V & I \\
k-1 & s & n-k-s+1
\end{array}\right) \begin{gathered}
k-1 \\
s \\
n-k-s+1
\end{gathered}
\]

If \(s=1, \mathrm{D}(k)\) overwrites \(A(k, k)\), and \(v\) overwrites \(A(k+1: n, k)\).
If \(s=2\), the lower triangle of \(D(k)\) overwrites \(A(k, k), A(k+1, k)\), and \(A(k+1, k+1)\), and \(v\) overwrites \(A(k\) \(+2: n, k: k+1)\).

\section*{See Also}
mkl_progress
Matrix Storage Schemes
?sytrf_aa
Computes the factorization of a symmetric matrix
using Aasen's algorithm.
```

lapack_int LAPACKE_ssytrf_aa (int matrix_layout, char uplo, lapack_int n, float * A,
lapack_int lda, lapack_int * ipiv);
lapack_int LAPACKE_dsytrf_aa (int matrix_layout, char uplo, lapack_int n, double * A,
lapack_int lda, lapack_int * ipiv);
lapack_int LAPACKE_csytrf_aa (int matrix_layout, char uplo, lapack_int n,
lapack_complex_float * A, lapack_int lda, lapack_int * ipiv);
lapack_int LAPACKE_zsytrf_aa (int matrix_layout, char uplo, lapack_int n,
lapack_complex_double * A, lapack_int lda, lapack_int * ipiv);

```

\section*{Description}
?sytrf_aa computes the factorization of a symmetric matrix A using Aasen's algorithm. The form of the factorization is \(A=U * T * U^{\top}\) or \(A=L * T^{*} L^{\top}\) where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and T is a complex symmetric tridiagonal matrix.
This is the blocked version of the algorithm, calling Level 3 BLAS.

\section*{Input Parameters}
```

matrix_layout
uplo \bullet = 'U': The upper triangle of A is stored.

- = 'L': The lower triangle of A is stored.
n
A
lda
The order of the matrix A. $n \geq 0$.
Array of size $\max \left(1, I d *_{n}\right)$. The array A contains either the upper or the lower triangular part of the matrix A (see uplo).
The leading dimension of the array A.

```

\section*{Output Parameters}

A
On exit, the tridiagonal matrix is stored in the diagonals and the subdiagonals of \(A\) just below (or above) the diagonals, and \(L\) is stored below (or above) the subdiagonals, when uplo is 'L' (or 'U').
ipiv
Array of size \(n\). On exit, it contains the details of the interchanges; that is, the row and column \(k\) of A were interchanged with the row and column ipiv(k).

\section*{Return Values}

This function returns a value info.
= 0: Successful exit.
< 0: If info \(=-i\), the \(i^{\text {th }}\) argument had an illegal value.
\(>0\) : If info \(=i, \mathrm{D}(i, i)\) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations.

\section*{?sytrf_rook \\ Computes the bounded Bunch-Kaufman factorization of a symmetric matrix.}

\section*{Syntax}
```

lapack_int LAPACKE_ssytrf_rook (int matrix_layout, char uplo, lapack_int n, float * a,
lapack_int lda, lapack_int * ipiv);
lapack_int LAPACKE_dsytrf_rook (int matrix_layout, char uplo, lapack_int n, double * a,
lapack_int lda, lapack_int * ipiv);
lapack_int LAPACKE_csytrf_rook (int matrix_layout, char uplo, lapack_int n,
lapack_complex_float * a, lapack_int lda, lapack_int * ipiv);
lapack_int LAPACKE_zsytrf_rook (int matrix_layout, char uplo, lapack_int n,
lapack_complex_double * a, lapack_int lda, lapack_int * ipiv);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes the factorization of a real/complex symmetric matrix \(A\) using the bounded BunchKaufman ("rook") diagonal pivoting method. The form of the factorization is:
```

if uplo='U', A = U*D*U'
if uplo='L', A = L*D*L',

```
where \(A\) is the input matrix, \(U\) and \(L\) are products of permutation and triangular matrices with unit diagonal (upper triangular for \(U\) and lower triangular for \(L\) ), and \(D\) is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

\section*{Input Parameters}
```

matrix_layout
uplo
n
a
lda

```

\section*{Output Parameters}
a
ipiv
The upper or lower triangular part of \(a\) is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or L).

If \(\operatorname{ipiv}(k)>0\), then rows and columns \(k\) and \(\operatorname{ipiv}(k)\) were interchanged and \(D_{k, k}\) is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) \(<0\) and ipiv(k - 1) \(<0\), then rows and columns \(k\) and \(-\operatorname{ipiv}(k)\) were interchanged, rows and columns \(k-\) 1 and -ipiv(k-1) were interchanged, and \(D_{k-1: k, k-1: k}\) is a 2-by-2 diagonal block.
If uplo = 'L' and ipiv(k) < 0 and ipiv(k+1)<0, then rows and columns \(k\) and \(-\operatorname{ipiv}(k)\) were interchanged, rows and columns \(k+\) 1 and -ipiv \((k+1)\) were interchanged, and \(D_{k: k+1, k: k+1}\) is a 2-by-2 diagonal block.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, D_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Application Notes}

The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors or \((4 / 3) n^{3}\) for complex flavors.
After calling this routine, you can call the following routines:
?sytrs_rook to solve \(A * X=B\)
```

?sycon_rook (Fortran only) to estimate the condition number of }
?sytri_rook (Fortran only) to compute the inverse of }A\mathrm{ .

```

If uplo = 'U', then \(A=U * D * U '\), where
```

U = P (n)*U(n)* . . * * P (k)*U(k)* ...,

```
that is, U is a product of terms \(\mathrm{P}(k){ }^{*} \mathrm{U}(k)\), where
- \(k\) decreases from \(n\) to 1 in steps of 1 and 2 .
- \(D\) is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks \(\mathrm{D}(k)\).
- \(\mathrm{P}(k)\) is a permutation matrix as defined by ipiv[k-1].
- \(\mathrm{U}(k)\) is a unit upper triangular matrix, such that if the diagonal block \(\mathrm{D}(k)\) is of order \(s(s=1\) or 2\()\), then
\[
U(k)=\left(\begin{array}{ccc}
I & \mathrm{~V} & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right) \begin{gathered}
k-s \\
s \\
k-s \\
s
\end{gathered}
\]

If \(s=1, \mathrm{D}(k)\) overwrites \(A(k, k)\), and \(v\) overwrites \(A(1: k-1, k)\).
If \(s=2\), the upper triangle of \(\mathrm{D}(k)\) overwrites \(A(k-1, k-1), A(k-1, k)\) and \(A(k, k)\), and \(v\) overwrites \(A(1: k-2, k\) -1:k).

If uplo = 'L', then \(A=L * D * L '\), where
\[
\mathrm{L}=\mathrm{P}(1) * \mathrm{~L}(1) * \ldots * \mathrm{P}(k) * \mathrm{~L}(k) * \ldots,
\]
that is, L is a product of terms \(\mathrm{P}(k) * \mathrm{~L}(k)\), where
- \(k\) increases from 1 to \(n\) in steps of 1 and 2 .
- \(D\) is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks \(\mathrm{D}(k)\).
- \(P(k)\) is a permutation matrix as defined by ipiv \((k)\).
- \(\mathrm{L}(k)\) is a unit lower triangular matrix, such that if the diagonal block \(\mathrm{D}(k)\) is of order \(s(s=1\) or 2\()\), then
\[
L(k)=\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & I & 0 \\
0 & V & I \\
k-1 & s & n-k-s+1
\end{array}\right) \begin{gathered}
k-1 \\
s \\
n-k-s+1
\end{gathered}
\]

If \(s=1, \mathrm{D}(k)\) overwrites \(A(k, k)\), and \(v\) overwrites \(A(k+1: n, k)\).

If \(s=2\), the lower triangle of \(\mathrm{D}(k)\) overwrites \(A(k, k), A(k+1, k)\), and \(A(k+1, k+1)\), and \(v\) overwrites \(A(k\) \(+2: n, k: k+1)\).

\section*{See Also}

Matrix Storage Schemes
?sytrf_rk
Computes the factorization of a real or complex symmetric indefinite matrix using the bounded Bunch-
Kaufman (rook) diagonal pivoting method (BLAS3
blocked algorithm).
```

lapack_int LAPACKE_ssytrf_rk (int matrix_layout, char uplo, lapack_int n, float * A,
lapack_int lda, flōat * e, lapack_int * ípiv);
lapack_int LAPACKE_dsytrf_rk (int matrix_layout, char uplo, lapack_int n, double * A,
lapack_int lda, double * e, lapack_int * ipiv);
lapack_int LAPACKE_csytrf_rk (int matrix_layout, char uplo, lapack_int n,
lapack_complex_floàt * A,
lapack_int LAPACKE_zsytrf_rk (int matrix_layout, char uplo, lapack_int n,
lapack_complex_double * A, lapack_int lda, lapack_complex_double * e, lapack_int *
ipiv);

```

\section*{Description}
?sytrf_rk computes the factorization of a real or complex symmetric matrix A using the bounded BunchKaufman (rook) diagonal pivoting method: \(\mathrm{A}=\mathrm{P}^{*} \mathrm{U}^{*} \mathrm{D}^{*}\left(\mathrm{U}^{\top}\right) *\left(\mathrm{P}^{\top}\right)\) or \(\mathrm{A}=\mathrm{P}^{*} \mathrm{~L}^{*} \mathrm{D}^{*}\left(\mathrm{~L}^{\top}\right) *\left(\mathrm{P}^{\top}\right)\), where \(\mathrm{U}(\) or L\()\) is unit upper (or lower) triangular matrix, \(\mathrm{U}^{\top}\) (or \(\mathrm{L}^{\top}\) ) is the transpose of U (or L ), P is a permutation matrix, \(\mathrm{P}^{\top}\) is the transpose of P , and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the blocked version of the algorithm, calling Level-3 BLAS.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline uplo & Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored: \\
\hline & \begin{tabular}{l}
- = 'U': Upper triangular \\
- = 'L': Lower triangular
\end{tabular} \\
\hline \(n\) & The order of the matrix A. \(n \geq 0\). \\
\hline A & Array of size \(\max \left(1, I d a_{n}\right)\). On entry, the symmetric matrix A. If uplo \(=\) ' U ', the leading \(n\)-by- \(n\) upper triangular part of \(A\) contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(A\) is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(A\) contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of A is not referenced. \\
\hline Ida & The leading dimension of the array \(A\). \\
\hline
\end{tabular}

\section*{Output Parameters}

A
On exit, contains:
- Only diagonal elements of the symmetric block diagonal matrix D on the diagonal of A ; that is, \(\mathrm{D}(k, k)=\mathrm{A}(k, k)\); (superdiagonal (or subdiagonal) elements of \(D\) are stored on exit in array e).
- If uplo = 'U', factor \(U\) in the superdiagonal part of \(A\). If uplo = 'L', factor \(L\) in the subdiagonal part of \(A\).

Array of size \(n\). On exit, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix \(D\) with 1-by-1 or 2-by-2 diagonal blocks. If uplo \(=\) ' U ', \(\mathrm{e}(i)=\mathrm{D}(i-1, i), i=2: \mathrm{N}\), and \(\mathrm{e}(1)\) is set to 0 . If uplo \(=\) 'L', \(\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1\), and \(\mathrm{e}(n)\) is set to 0 .

NOTE For 1-by-1 diagonal block \(\mathrm{D}(k)\), where \(1 \leq k \leq n\), the element \(e[k-1]\) is set to 0 in both the uplo = 'U' and uplo \(=\) 'L' cases.

Array of size n.ipiv describes the permutation matrix \(P\) in the factorization of matrix \(A\) as follows: The absolute value of \(\operatorname{ipiv}(k)\) represents the index of the row and column that were interchanged with the \(k^{\text {th }}\) row and column. The value of uplo describes the order in which the interchanges were applied. Also, the sign of ipiv represents the block structure of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, which correspond to 1 or 2 interchanges at each factorization step. If uplo \(=\) 'U' (in factorization order, \(k\) decreases from \(n\) to 1 ):
1. A single positive entry \(\operatorname{ipiv}(k)>0\) means that \(\mathrm{D}(k, k)\) is a 1-by-1 diagonal block. If \(\operatorname{ipiv}(k)!=k\), rows and columns \(k\) and \(\operatorname{ipiv}(k)\) were interchanged in the matrix \(\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})\). If \(\operatorname{ipiv}(k)=k\), no interchange occurred.
2. A pair of consecutive negative entries \(\operatorname{ipiv}(k)<0\) and \(\operatorname{ipiv}(k-1) .<0\) means that \(\mathrm{D}(k-1: k, k-1: k)\) is a 2 -by- 2 diagonal block. (Note that negative entries in ipiv appear only in pairs.)
- If \(-\operatorname{ipiv}(k)!=k\), rows and columns \(k\) and \(-\operatorname{ipiv}(k)\) were interchanged in the matrix \(\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})\). If \(-\operatorname{ipiv}(k)=k\), no interchange occurred.
- If -ipiv \((k-1)!=k-1\), rows and columns \(k-1\) and -ipiv \((k-1)\) were interchanged in the matrix \(\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})\). If \(-\operatorname{ipiv}(k-1)=k-1\), no interchange occurred.
3. In both cases 1 and 2, always \(\operatorname{ABS}(\operatorname{ipiv}(k)) \leq k\).

NOTE Any entry \(\operatorname{ipiv}(k)\) is always nonzero on output.

If uplo = 'L' (in factorization order, \(k\) increases from 1 to \(n\) ):
1. A single positive entry \(\operatorname{ipiv}(k)>0\) means that \(\mathrm{D}(k, k)\) is a 1-by-1 diagonal block. If \(\operatorname{ipiv}(k)!=k\), rows and columns \(k\) and \(\operatorname{ipiv}(k)\) were interchanged in the matrix \(\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})\). If \(\operatorname{ipiv}(k)=k\), no interchange occurred.
2. A pair of consecutive negative entries \(\operatorname{ipiv}(k)<0\) and \(\operatorname{ipiv}(k+1)<0\) means that \(\mathrm{D}(k: k+1, k: k+1)\) is a 2-by-2 diagonal block. (Note that negative entries in ipiv appear only in pairs.)
- If \(-\operatorname{ipiv}(k)!=k\), rows and columns \(k\) and \(-\operatorname{ipiv}(k)\) were interchanged in the matrix \(\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})\). If \(-\operatorname{ipiv}(k)=k\), no interchange occurred.
- If \(-\operatorname{ipiv}(k+1)!=k+1\), rows and columns \(k-1\) and \(-\operatorname{ipiv}(k-1)\) were interchanged in the matrix \(\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})\). If \(-\operatorname{ipiv}(k+1)=k+1\), no interchange occurred.
3. In both cases 1 and 2 , always \(\operatorname{ABS}(\operatorname{ipiv}(k)) \geq k\).

NOTE Any entry \(\operatorname{ipiv}(k)\) is always nonzero on output.

\section*{Return Values}

This function returns a value info.
\(=0\) : Successful exit.
< 0: If info \(=-k\), the \(k^{\text {th }}\) argument had an illegal value.
> 0: If info \(=k\), the matrix \(A\) is singular. If uplo \(=' U\) ', column \(k\) in the upper triangular part of \(A\) contains all zeros. If uplo \(=\) ' L ', column \(k\) in the lower triangular part of A contains all zeros. Therefore, \(\mathrm{D}(k, k)\) is exactly zero, and superdiagonal elements of column \(k\) of \(U\) (or subdiagonal elements of column \(k\) of \(L\) ) are all zeros. The factorization has been completed, but the block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations.
```

?hetrf
Computes the Bunch-Kaufman factorization of a
complex Hermitian matrix.
Syntax
lapack_int LAPACKE_chetrf (int matrix_layout , char uplo, lapack_int n,
lapack_complex_float * a , lapack_int lda , lapack_int * ipiv);
lapack_int LAPACKE_zhetrf (int matrix_layout , char uplo, lapack_int n ,
lapack_complex_double * a , lapack_int lda , lapack_int * ipiv);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes the factorization of a complex Hermitian matrix \(A\) using the Bunch-Kaufman diagonal pivoting method:
```

if uplo='U',A = U*D* U
if uplo='L',A = L* D* L',

```
where \(A\) is the input matrix, \(U\) and \(L\) are products of permutation and triangular matrices with unit diagonal (upper triangular for \(U\) and lower triangular for \(L\) ), and \(D\) is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Routine for details.

\section*{Input Parameters}
```

matrix_layout
uplo Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored and
how A is factored:
If uplo = 'U', the array a stores the upper triangular part of the
matrix A, and A is factored as U*D* U}\mp@subsup{U}{}{H}\mathrm{ .
If uplo = 'L', the array a stores the lower triangular part of the
matrix A, and A is factored as L*D* L'H.
The order of matrix A; n\geq0.
Array, size max(1, lda*n).
The array a contains the upper or the lower triangular part of the
matrix A (see uplo).
The leading dimension of a; at least max (1, n).

```

\section*{Output Parameters}
```

 a
    ```
ipiv

The upper or lower triangular part of \(a\) is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or L).

Array, size at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\). If \(\operatorname{ipiv}[i-1]=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.

If uplo \(=\) ' U' and \(\operatorname{ipiv}[i]=\operatorname{ipiv}[i-1]=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and \(i\)-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

If uplo \(=\) 'L' and \(\operatorname{ipiv}[i]=\operatorname{ipiv}[i-1]=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), parameter \(i\) had an illegal value.
If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Application Notes}

This routine is suitable for Hermitian matrices that are not known to be positive-definite. If \(A\) is in fact positive-definite, the routine does not perform interchanges, and no 2-by-2 diagonal blocks occur in \(D\).

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) are stored in the corresponding columns of the array \(a\), but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).
Ifipiv \([i-1]=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in the corresponding elements of the array \(a\).
If uplo \(=\) 'U', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
```

|E| \leqC(n)\varepsilonP|U||D||U}\mp@subsup{U}{}{T}|\mp@subsup{P}{}{T

```
\(C(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for the computed \(L\) and \(D\) when uplo \(=\) 'L'.
The total number of floating-point operations is approximately \((4 / 3) n^{3}\).
After calling this routine, you can call the following routines:
\begin{tabular}{ll} 
?hetrs & to solve \(A \star X=B\) \\
?hecon & to estimate the condition number of \(A\) \\
?hetri & to compute the inverse of \(A\).
\end{tabular}

\section*{See Also}
mkl_progress

\section*{Matrix Storage Schemes}

\section*{?hetrf_aa}

Computes the factorization of a complex hermitian matrix using Aasen's algorithm.
```

LAPACK_DECL lapack_int LAPACKE_chetrf_aa (int matrix_layout, char uplo, lapack_int n,
lapack_complex_floàt * a, lapack_int lda, lapack_int * ipiv);
LAPACK_DECL lapack_int LAPACKE_zhetrf_aa (int matrix_layout, char uplo, lapack_int n,
lapack_complex_double * a, lapack_int lda, lapack_int * ipiv);

```

\section*{Description}
?hetrf_aa computes the factorization of a complex Hermitian matrix \(A\) using Aasen's algorithm. The form of the factorization is \(A=U^{*} T^{*} U^{H}\) or \(a=L^{*} T^{*} \mathrm{~L}^{H}\) where \(U(\) or L\()\) is a product of permutation and unit upper (lower) triangular matrices, and \(T\) is a Hermitian tridiagonal matrix. This is the blocked version of the algorithm, calling Level 3 BLAS.

\section*{Input Parameters}
```

matrix_layout
uplo
n
a

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
\(=\) 'U': Upper triangle of \(A\) is stored; = 'L': Lower triangle of \(a\) is stored.
The order of the matrix \(A . n \geq 0\).
Array of size \(l d^{*}{ }^{n}\). On entry, the Hermitian matrix \(A\).

If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced.

If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

The leading dimension of the array \(a . I d a \geq \max (1, n)\).
See Syntax - Workspace. The length of work. lwork \(\geq 2 *_{n}\). For optimum performance 1 wor \(k \geq n^{*}(1+n b)\), where \(n b\) is the optimal block size. If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

\section*{Output Parameters}
a
On exit, the tridiagonal matrix is stored in the diagonals and the subdiagonals of a just below (or above) the diagonals, and \(L\) is stored below (or above) the subdiagonals, when uplo is 'L' (or 'U').
array, dimension ( \(n\) ) On exit, it contains the details of the interchanges: the row and column \(k\) of a were interchanged with the row and column ipiv[k].

See Syntax - Workspace. Array of size (max(1, lwork)). On exit, if info = 0 , work[0] returns the optimal lwork.

\section*{Return Values}

This function returns a value info.
If info \(=0\) : successful exit \(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value,
If info > 0: if info \(=i, D_{i, i}\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, and division by zero will occur if it is used to solve a system of equations.

\section*{Syntax - Workspace}

Use this interface if you want to explicitly provide the workspace array.
```

LAPACK_DECL lapack_int LAPACKE_chetrf_aa_work (int matrix_layout, char uplo, lapack_int
n, lapack_complex_float * a, lapack_int lda, lapack_int * ipiv, lapack_complex_float *
work, lapack_int lwork);
LAPACK_DECL lapack_int LAPACKE_zhetrf_aa_work (int matrix_layout, char uplo, lapack_int
n, lapack_complex_double * a, lapack_int lda, lapack_int * ipiv, lapack_complex_double

* work, lapack_int lwork);
?hetrf_rook
Computes the bounded Bunch-Kaufman factorization
of a complex Hermitian matrix.

```

\section*{Syntax}
```

lapack_int LAPACKE_chetrf_rook (int matrix_layout, char uplo, lapack_int n,

```
lapack_int LAPACKE_chetrf_rook (int matrix_layout, char uplo, lapack_int n,
lapack_complex_float * a, lapack_int lda, lapack_int * ipiv);
```

lapack_complex_float * a, lapack_int lda, lapack_int * ipiv);

```
```

lapack_int LAPACKE_zhetrf_rook (int matrix_layout, char uplo, lapack_int n,
lapack_complex_double * a, lapack_int lda, lapack_int * ipiv);

```

Include Files
- mkl.h

\section*{Description}

The routine computes the factorization of a complex Hermitian matrix \(A\) using the bounded Bunch-Kaufman diagonal pivoting method:
```

if uplo='U', $A=U^{\star} D^{*} U^{H}$
if uplo=' $L^{\prime}, A=L^{\star} D^{*} L^{H}$,

```
where \(A\) is the input matrix, \(U\) (or \(L\) ) is a product of permutation and unit upper (or lower) triangular matrices, and \(D\) is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks.

This is the blocked version of the algorithm, calling Level 3 BLAS.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout for array b is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular part of \(A\) is stored: If uplo = 'U', the array a stores the upper triangular part of the matrix \(A\). \\
\hline & If uplo = 'L', the array a stores the lower triangular part of the matrix \(A\). \\
\hline \(n\) & The order of matrix \(A ; n \geq 0\). \\
\hline \multirow[t]{3}{*}{a} & Array \(a\), size (lda* \(n\) ) \\
\hline & The array a contains the upper or the lower triangular part of the matrix \(A\) (see uplo). \\
\hline & If uplo \(=\) 'U', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo \(=\) 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced. \\
\hline Ida & The leading dimension of \(a\); at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
ipiv
The block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) (see Application Notes for further details).
- If uplo = 'U':

If ipiv(k) > 0 , then rows and columns \(k\) and ipiv(k) were interchanged and \(D_{k, k}\) is a 1-by-1 diagonal block.

If ipiv(k) < 0 and ipiv(k-1)<0, then rows and columns \(k\) and -ipiv(k) were interchanged and rows and columns \(k-1\) and ipiv( \(k-1\) ) were interchanged, \(D_{k-1: k, k-1: k}\) is a 2-by-2 diagonal block.
- If uplo = 'L':

If \(\operatorname{ipiv}(k)>0\), then rows and columns \(k\) and ipiv(k) were interchanged and \(D_{k, k}\) is a 1-by-1 diagonal block.
If ipiv(k) < 0 and \(\operatorname{ipiv}(k+1)<0\), then rows and columns \(k\) and -ipiv(k) were interchanged and rows and columns \(k+1\) and ipiv \((k+1)\) were interchanged, \(D_{k: k+1, k: k+1}\) is a 2 -by- 2 diagonal block.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, D_{i i}\) is exactly 0 . The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, and division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Application Notes}

If uplo \(=\) ' \(U\) ', then \(A=U^{\star} D^{\star} U^{H}\), where
\(U=P(n) * U(n)^{*} \ldots{ }^{*} P(k) U(k)^{*} \ldots\),
i.e., \(U\) is a product of terms \(P(k)^{*} U(k)\), where \(k\) decreases from \(n\) to 1 in steps of 1 or 2 , and \(D\) is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks \(D(k) . P(k)\) is a permutation matrix as defined by ipiv \((k)\), and \(U(k)\) is a unit upper triangular matrix, such that if the diagonal block \(D(k)\) is of order \(s(s=1\) or 2 ), then
\(U(k)=\begin{gathered}k-s \\ k-s \\ n-k \\ n \\ k\end{gathered}\left(\begin{array}{llr}I & v & 0 \\ 0 & I & 0 \\ 0 & 0 & I\end{array}\right)\)
If \(s=1, D(k)\) overwrites \(A(k, k)\), and \(v\) overwrites \(A(1: k-1, k)\).
If \(s=2\), the upper triangle of \(D(k)\) overwrites \(A(k-1, k-1), A(k-1, k)\), and \(A(k, k)\), and \(v\) overwrites \(A(1: k-2, k-1: k)\).
If uplo \(=\) ' \(L^{\prime}\), then \(A=L^{\star} D^{\star} L^{H}\), where
\(L=P(1) * L(1)^{*} \ldots * P(k) * L(k)^{*} \ldots\),
i.e., \(L\) is a product of terms \(P(k)^{*} L(k)\), where \(k\) increases from 1 to \(n\) in steps of 1 or 2 , and \(D\) is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks \(D(k) . P(k)\) is a permutation matrix as defined by \(\operatorname{ipiv}(k)\), and \(L(k)\) is a unit lower triangular matrix, such that if the diagonal block \(D(k)\) is of order \(s(s=1\) or 2), then
\(L(k)=\begin{gathered} \\ k-1 \\ s \\ n-k-s+1\end{gathered} \quad\left(\begin{array}{lll}I & n-k-s+1 \\ 0 & I & 0 \\ 0 & v & I\end{array}\right)\)
If \(s=1, D(k)\) overwrites \(A(k, k)\), and \(v\) overwrites \(A(k+1: n, k)\).

If \(s=2\), the lower triangle of \(D(k)\) overwrites \(A(k, k), A(k+1, k)\), and \(A(k+1, k+1)\), and \(v\) overwrites \(A(k\) \(+2: n, k: k+1)\).

\section*{See Also}
mkl_progress

\section*{Matrix Storage Schemes}

\section*{?hetrf_rk}

Computes the factorization of a complex Hermitian
indefinite matrix using the bounded Bunch-Kaufman
(rook) diagonal pivoting method (BLAS3 blocked
algorithm).
```

lapack_int LAPACKE_chetrf_rk (int matrix_layout, char uplo, lapack_int n,
lapack_complex_float * A, lapack_int lda, lapack_complex_float * e, lapack_int * ipiv);
lapack_int LAPACKE_zhetrf_rk (int matrix_layout, char uplo, lapack_int n,
lapack_complex_double * A, lapack_int lda, lapack_complex_double * e, lapack_int *
ipiv);

```

\section*{Description}
?hetrf_rk computes the factorization of a complex Hermitian matrix A using the bounded Bunch-Kaufman (rook) diagonal pivoting method: \(A=P^{*} U^{*} D^{*}\left(U^{H}\right)^{*}\left(P^{\top}\right)\) or \(A=P * L^{*} D^{*}\left(L^{H}\right)^{*}\left(P^{\top}\right)\), where \(U\) (or \(L\) ) is unit upper (or lower) triangular matrix, \(U^{H}\) (or \(L^{H}\) ) is the conjugate of \(U\) (or \(L\) ), \(P\) is a permutation matrix, \(\mathrm{P}^{\top}\) is the transpose of \(P\), and \(D\) is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the blocked version of the algorithm, calling Level 3 BLAS.

\section*{Input Parameters}
```

matrix_layout
uplo
n
A
lda

```

\section*{Output Parameters}

A
On exit, contains:
- Only diagonal elements of the Hermitian block diagonal matrix \(D\) on the diagonal of \(A\); that is, \(\mathrm{D}(k, k)=\mathrm{A}(k, k)\). Superdiagonal (or subdiagonal) elements of \(D\) are stored on exit in array \(e\).
-and-
- If uplo = 'U', factor \(U\) in the superdiagonal part of \(A\). If uplo = 'L', factor \(L\) in the subdiagonal part of \(A\).

Array of size \(n\). On exit, contains the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix \(D\) with 1-by-1 or 2-by-2 diagonal blocks. If uplo \(=\) ' U ', \(\mathrm{e}(i)=\mathrm{D}(i-1, i), i=2: \mathrm{N}\), and \(\mathrm{e}(1)\) is set to 0 . If uplo \(=\) 'L', \(\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1\), and \(\mathrm{e}(n)\) is set to 0 .

NOTE For 1-by-1 diagonal block \(\mathrm{D}(\mathrm{k})\), where \(1 \leq \mathrm{k} \leq n\), the element \(e[k-1]\) is set to 0 in both the uplo = ' U ' and uplo \(=\) 'L' cases.

Array of size \(n\). ipiv describes the permutation matrix \(P\) in the factorization of matrix A as follows: The absolute value of ipiv[k-1] represents the index of row and column that were interchanged with the \(k^{\text {th }}\) row and column. The value of uplo describes the order in which the interchanges were applied. Also, the sign of ipiv represents the block structure of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks that correspond to 1 or 2 interchanges at each factorization step. If uplo \(=\) 'U' (in factorization order, \(k\) decreases from \(n\) to 1 ):
1. A single positive entry \(\operatorname{ipiv}(k)>0\) means that \(D(k, k)\) is a 1-by-1 diagonal block. If \(\operatorname{ipiv}(k)!=k\), rows and columns \(k\) and \(\operatorname{ipiv}(k)\) were interchanged in the matrix \(\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})\). If \(\operatorname{ipiv}(k)=k\), no interchange occurred.
2. A pair of consecutive negative entries \(\operatorname{ipiv}(k)<0\) and \(\operatorname{ipiv}(k-1)<0\) means that \(\mathrm{D}(k-1: k, k-1: k)\) is a 2 -by-2 diagonal block. (Note that negative entries in ipiv appear only in pairs.)
- If \(-\operatorname{ipiv}(k)!=k\), rows and columns \(k\) and \(-\operatorname{ipiv}(k)\) were interchanged in the matrix \(\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})\). If \(-\operatorname{ipiv}(k)=k\), no interchange occurred.
- If \(-\operatorname{ipiv}(k-1)!=k-1\), rows and columns \(k-1\) and \(-\operatorname{ipiv}(k-1)\) were interchanged in the matrix \(\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})\). If \(-\operatorname{ipiv}(k-1)=k-1\), no interchange occurred.
3. In both cases 1 and 2 , always \(\operatorname{ABS}(\operatorname{ipiv}(k)) \leq k\).

NOTE Any entry \(\operatorname{ipiv}(k)\) is always nonzero on output.

If uplo = 'L' (in factorization order, \(k\) increases from 1 to \(n\) ):
1. A single positive entry \(\operatorname{ipiv}(k)>0\) means that \(\mathrm{D}(k, k)\) is a 1-by-1 diagonal block. If \(\operatorname{ipiv}(k)!=k\), rows and columns \(k\) and \(\operatorname{ipiv}(k)\) were interchanged in the matrix \(\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})\). If \(\operatorname{ipiv}(k)=k\), no interchange occurred.
2. A pair of consecutive negative entries \(\operatorname{ipiv}(k)<0\) and \(\operatorname{ipiv}(k+1)<0\) means that \(\mathrm{D}(k: k+1, k: k+1)\) is a 2-by-2 diagonal block. (Note that negative entries in ipiv appear only in pairs.)
- If \(-\operatorname{ipiv}(k)!=k\), rows and columns \(k\) and \(-\operatorname{ipiv}(k)\) were interchanged in the matrix \(\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})\). If \(-\operatorname{ipiv}(k)=k\), no interchange occurred.
- If \(-\operatorname{ipiv}(k+1)!=k+1\), rows and columns \(k-1\) and \(-\operatorname{ipiv}(k-1)\) were interchanged in the matrix \(\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})\). If \(-\operatorname{ipiv}(k+1)=k+1\), no interchange occurred.
3. In both cases 1 and 2 , always \(\operatorname{ABS}(\operatorname{ipiv}(k)) \geq k\).

NOTE Any entry \(\operatorname{ipiv}(k)\) is always nonzero on output.

\section*{Return Values}

This function returns a value info.
\(=0\) : Successful exit.
< 0: If info \(=-k\), the \(k^{\text {th }}\) argument had an illegal value.
\(>0\) : If info \(=k\), the matrix \(A\) is singular. If uplo \(=\) ' \(U\) ', the column \(k\) in the upper triangular part of \(A\) contains all zeros. If uplo \(=\) ' L ', the column \(k\) in the lower triangular part of \(A\) contains all zeros. Therefore \(D(k, k)\) is exactly zero, and superdiagonal elements of column \(k\) of \(U\) (or subdiagonal elements of column \(k\) of \(L\) ) are all zeros. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, and division by zero will occur if it is used to solve a system of equations.
```

?sptrf
Computes the Bunch-Kaufman factorization of a
symmetric matrix using packed storage.
Syntax
lapack_int LAPACKE_ssptrf (int matrix_layout, char uplo, lapack_int n , float * ap ,
lapack_int * ipiv);
lapack_int LAPACKE_dsptrf (int matrix_layout, char uplo, lapack_int n , double * ap ,
lapack_int * ipiv);
lapack_int LAPACKE_csptrf (int matrix_layout , char uplo , lapack_int n ,
lapack_complex_float * ap , lapack_int * ipiv);
lapack_int LAPACKE_zsptrf (int matrix_layout , char uplo , lapack_int n ,
lapack_complex_double * ap , lapack_int * ipiv);

```

Include Files
- mkl.h

\section*{Description}

The routine computes the factorization of a real/complex symmetric matrix \(A\) stored in the packed format using the Bunch-Kaufman diagonal pivoting method. The form of the factorization is:
```

if uplo='U',A = U*D* UT
if uplo='L',A = L*D* L',

```
where \(U\) and \(L\) are products of permutation and triangular matrices with unit diagonal (upper triangular for \(U\) and lower triangular for \(L\) ), and \(D\) is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of \(D\).

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}
```

matrix_layout Specifies whether matrix storage layout is row major
(LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is packed in
the array ap and how A is factored:
If uplo = 'U', the array ap stores the upper triangular part of the
matrix A, and A is factored as U*D* U'T}\mathrm{ .
If uplo = 'L', the array ap stores the lower triangular part of the
matrix A, and A is factored as L*D* LT
The order of matrix A; n\geq0.
Array, size at least max(1,n(n+1)/2). The array ap contains the upper
or the lower triangular part of the matrix A (as specified by uplo) in
packed storage (see Matrix Storage Schemes).

```

\section*{Output Parameters}
ap
ipiv
The upper or lower triangle of \(A\) (as specified by uplo) is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\) ).

Array, size at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\). If \(\operatorname{ipiv}[i-1]=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.
If uplo \(=\) ' U' and \(\operatorname{ipiv}[i]=\operatorname{ipiv}[i-1]=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and \(i\)-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo \(=\) 'L' and \(\operatorname{ipiv}[i]=\operatorname{ipiv}[i-1]=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), parameter \(i\) had an illegal value.
If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Application Notes}

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) overwrite elements of the corresponding columns of the array ap, but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).

If \(i p i v(i)=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in packed form. If uplo = 'U', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
```

 |E| \leqc(n)\varepsilonP|U||D|| UT}|\mp@subsup{P}{}{T
    ```
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision. A similar estimate holds for the computed \(L\) and \(D\) when uplo \(=\) 'L'.

The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors or \((4 / 3) n^{3}\) for complex flavors.

After calling this routine, you can call the following routines:
```

?sptrs to solve }A*X=
?spcon to estimate the condition number of }
?sptri to compute the inverse of }A\mathrm{ .

```

\section*{See Also}
mkl_progress

\section*{Matrix Storage Schemes}
```

?hptrf
Computes the Bunch-Kaufman factorization of a
complex Hermitian matrix using packed storage.

```

\section*{Syntax}
```

lapack_int LAPACKE_chptrf (int matrix_layout , char uplo, lapack_int n,
lapack_complex_float * ap , lapack_int * ipiv);
lapack_int LAPACKE_zhptrf (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_double * ap , lapack_int * ipiv);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes the factorization of a complex Hermitian packed matrix \(A\) using the Bunch-Kaufman diagonal pivoting method:
```

if uplo='U', $A=U * D * U^{H}$
if uplo='L', $A=L^{\star} D^{\star} L^{\mathrm{H}}$,

```
where \(A\) is the input matrix, \(U\) and \(L\) are products of permutation and triangular matrices with unit diagonal (upper triangular for \(U\) and lower triangular for \(L\) ), and \(D\) is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}
```

matrix_layout

```
uplo Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of \(A\) is packed and how \(A\) is factored:
If uplo = 'U', the array ap stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(U^{*} D^{*} U^{H}\).
If uplo = 'L', the array ap stores the lower triangular part of the matrix \(A\), and \(A\) is factored as \(L^{*} D^{*} L^{H}\).

The order of matrix \(A ; n \geq 0\).
Array, size at least \(\max (1, n(n+1) / 2)\). The array ap contains the upper or the lower triangular part of the matrix \(A\) (as specified by uplo) in packed storage (see Matrix Storage Schemes).

\section*{Output Parameters}
ap
ipiv
The upper or lower triangle of \(A\) (as specified by up/o) is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\) ).

Array, size at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\). If \(\operatorname{ipiv}[i-1]=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.
If uplo \(=\) ' U ' and \(\operatorname{ipiv}[i]=i p i v[i-1]=-m<0\), then \(D\) has a 2 -by-2 block in rows/columns \(i\) and \(i+1\), and \(i\)-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo \(=\) ' L ' and \(\operatorname{ipiv}[i]=i p i v[i-1]=-m<0\), then \(D\) has a 2 -by-2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If \(i n f 0=-i\), parameter \(i\) had an illegal value.
If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Application Notes}

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) are stored in the array ap, but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).
If \(i p i v[i-1]=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in the corresponding elements of the array \(a\).

If uplo = 'U', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
```

|E| \leqC(n)\varepsilonP|U||D||UT}|\mp@subsup{|}{}{T

```
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for the computed \(L\) and \(D\) when uplo \(=\) 'L'.
The total number of floating-point operations is approximately \((4 / 3) n^{3}\).
After calling this routine, you can call the following routines:
\begin{tabular}{ll} 
?hptrs & to solve \(A * X=B\) \\
?hpcon & to estimate the condition number of \(A\) \\
?hptri & to compute the inverse of \(A\).
\end{tabular}

\section*{See Also \\ mkl_progress}

\section*{Matrix Storage Schemes}
mkl_?spffrt2, mkl_?spffrtx
Computes the partial \(L D L^{T}\) factorization of a symmetric matrix using packed storage.

\section*{Syntax}
```

void mkl_sspffrt2 (float *ap, const MKL_INT *n , const MKL_INT *ncolm, float *work,
float *work2);
void mkl_dspffrt2 (double *ap , const MKL_INT *n , const MKL_INT *ncolm, double
*work , double *work2);
void mkl_cspffrt2 (MKL_Complex8 *ap , const MKL_INT *n , const MKL_INT *ncolm,
MKL_Complex8 *work , MKL_Complex8 *work2);
void mkl_zspffrt2 (MKL_Complex16 *ap , const MKL_INT *n , const MKL_INT *ncolm ,
MKL_Complex16 *work , MKL_Complex16 *Work2);
void mkl_sspffrtx (float *ap, const MKL_INT *n, const MKL_INT *ncolm, float *work,
float *work2);
void mkl_dspffrtx (double *ap , const MKL_INT *n , const MKL_INT *ncolm, double
*Work , double *Work2);
void mkl_cspffrtx (MKL_Complex8 *ap , const MKL_INT *n , const MKL_INT *ncolm,
MKL_Complex8 *work , MKL_Complex8 *work2);
void mkl_zspffrtx (MKL_Complex16 *ap , const MKL_INT *n , const MKL_INT *ncolm,
MKL_Complex16 *work , MKL_Complex16 *work2);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes the partial factorization \(A=L D L^{\top}\), where \(L\) is a lower triangular matrix and \(D\) is a diagonal matrix.

\section*{Caution}

The routine assumes that the matrix \(A\) is factorizable. The routine does not perform pivoting and does not handle diagonal elements which are zero, which cause the routine to produce incorrect results without any indication.

Consider the matrix \(A=\left(\begin{array}{ll}a & b^{T} \\ b & C\end{array}\right)\), where \(a\) is the element in the first row and first column of \(A, b\) is a column vector of size \(n-1\) containing the elements from the second through n-th column of \(A, C\) is the lower-right square submatrix of \(A\), and \(I\) is the identity matrix.

The mkl_?spffrt2 routine performs ncolm successive factorizations of the form
\[
A=\left(\begin{array}{ll}
a & b^{\mathrm{T}} \\
b & C
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
b & I
\end{array}\right)\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & C-b a^{-1} b^{\mathrm{T}}
\end{array}\right)\left(\begin{array}{cc}
a & b^{\mathrm{T}} \\
0 & I
\end{array}\right) .
\]

The mkl_?spffrtx routine performs ncolm successive factorizations of the form
\[
A=\left(\begin{array}{ll}
a & b^{\mathrm{T}} \\
b & C
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
b a^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & C-b a^{-1} b^{\mathrm{T}}
\end{array}\right)\left(\begin{array}{cc}
1\left(b a^{-1}\right)^{\mathrm{T}} \\
0 & I
\end{array}\right)
\]

The approximate number of floating point operations performed by real flavors of these routines is \((1 / 6)^{*} n_{n c o l m}{ }^{*}\left(2^{*} n c o l m^{2}-6^{*} n c o l m *_{n}+3 *_{n c o l m}+6^{*} n^{2}-6 *_{n}+7\right)\).

The approximate number of floating point operations performed by complex flavors of these routines is \((1 / 3) *_{n c o l m}{ }^{*}\left(4^{*} n c o l m^{2}-12 *_{n c o l m}{ }_{n}+9 *_{n c o l m}+12^{*} n^{2}-18_{n}+8\right)\).

\section*{Input Parameters}
\(a p\)
\(n\)
ncolm
work, work2

\section*{Output Parameters}

\section*{\(a p\)}

Array, size at least \(\max (1, n(n+1) / 2)\). The array ap contains the lower triangular part of the matrix \(A\) in packed storage (see Matrix Storage Schemes for uplo = 'L').

The order of matrix \(A ; n \geq 0\).
The number of columns to factor, ncolm \(\leq n\).
Workspace arrays, size of each at least \(n\).

Overwritten by the factor \(L\). The first ncolm diagonal elements of the input matrix \(A\) are replaced with the diagonal elements of \(D\). The subdiagonal elements of the first \(n c o l m\) columns are replaced with the corresponding elements of \(L\). The rest of the input array is updated as indicated in the Description section.

\section*{NOTE}

Specifying ncolm \(=n\) results in complete factorization \(A=\) \(L D L^{\top}\).

\author{
See Also \\ mkl_progress
}

\section*{Matrix Storage Schemes}

\section*{Solving Systems of Linear Equations: LAPACK Computational Routines}

This section describes the LAPACK routines for solving systems of linear equations. Before calling most of these routines, you need to factorize the matrix of your system of equations (see Routines for Matrix Factorization). However, the factorization is not necessary if your system of equations has a triangular matrix.
```

?getrs
Solves a system of linear equations with an LU-
factored square coefficient matrix, with multiple right-
hand sides.

```

\section*{Syntax}
```

lapack_int LAPACKE_sgetrs (int matrix_layout, char trans, lapack_int n , lapack_int

```
lapack_int LAPACKE_sgetrs (int matrix_layout, char trans, lapack_int n , lapack_int
nrhs , const float * a , lapack_int lda , const lapack_int * ipiv , float * b ,
lapack_int ldb );
lapack_int LAPACKE_dgetrs (int matrix_layout, char trans, lapack_int n , lapack_int
nrhs, const double * a , lapack_int lda, const lapack_int * ipiv, double * b ,
lapack_int ldb );
lapack_int LAPACKE_cgetrs (int matrix_layout, char trans, lapack_int n , lapack_int
nrhs, const lapack_complex_float * a , lapack_int lda, const lapack_int * ipiv ,
lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zgetrs (int matrix_layout, char trans, lapack_int n , lapack_int
nrhs , const lapack_complex_double * a , lapack_int lda , const lapack_int * ipiv ,
lapack_complex_double * b , lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves for X the following systems of linear equations:

```
A*X = B if trans='N',
A T*X = B if trans='T',
A H}*X=B if trans='C' (for complex matrices only).
```

Before calling this routine, you must call ? getrf to compute the $L U$ factorization of A.

Input Parameters

```
matrix_layout
trans
n
nrhs
a
b
Ida
ldb
ipiv
```


Output Parameters

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans $=$ ' N ', then $A * X=B$ is solved for X.
If trans $=' T$ ', then $A^{T} * X=B$ is solved for X.
If trans $=' C '$, then $A^{H} * X=B$ is solved for X.
The order of A; the number of rows in $B(n \geq 0)$.
The number of right-hand sides; nrhs ≥ 0.
Array of size $\max \left(1, I d a *_{n}\right)$.
The array a contains $L U$ factorization of matrix A resulting from the call of ? getrf.

Array of size $\max \left(1, / d b^{*} n r h s\right)$ for column major layout, and $\max \left(1, / d b^{*} n\right)$ for row major layout.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $a ; 1 d a \geq \max (1, n)$.
The leading dimension of $b ; l d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Array, size at least $\max (1, n)$. The ipiv array, as returned by ?getrf.

Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A $+E) x=b$, where
$|E| \leq c(n) \varepsilon P|L||U|$
$c(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

where $\operatorname{cond}(A, x)=\left|\left|\left|A^{-1}\right|\right| A\right||x|| |_{\infty} /||x||_{\infty} \leq\left|\left|A^{-1}\right|\right|_{\infty}| | A| |_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$; the condition number of A^{T} and A^{H} might or might not be equal to $\kappa_{\infty}(A)$.

The approximate number of floating-point operations for one right-hand side vector b is $2 n^{2}$ for real flavors and $8 n^{2}$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?gecon.
To refine the solution and estimate the error, call ?gerfs.

See Also

Matrix Storage Schemes
?gbtrs
Solves a system of linear equations with an LUfactored band coefficient matrix, with multiple righthand sides.

Syntax

```
lapack_int LAPACKE_sgbtrs (int matrix_layout, char trans, lapack_int n , lapack_int
kl, lapack_int ku , lapack_int nrhs , const float * ab, lapack_int ldab , const
lapack_int * ipiv , float * b , lapack_int ldb );
lapack_int LAPACKE_dgbtrs (int matrix_layout, char trans, lapack_int n , lapack_int
kl , lapack_int ku , lapack_int nrhs, const double * ab, lapack_int ldab , const
lapack_int * ipiv , double * b , lapack_int ldb );
lapack_int LAPACKE_cgbtrs (int matrix_layout, char trans, lapack_int n , lapack_int
kl, lapack_int ku , lapack_int nrhs , const lapack_complex_float * ab , lapack_int
ldab , const lapack_int * ipiv , lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zgbtrs (int matrix_layout, char trans, lapack_int n , lapack_int
kl , lapack_int ku , lapack_int nrhs , const lapack_complex_double * ab , lapack_int
ldab , const lapack_int * ipiv , lapack_complex_double * b , lapack_int ldb );
```


Include Files

- mkl.h

Description

The routine solves for X the following systems of linear equations:

```
A*X=B
    if trans='N',
AT*X = B if trans='T',
A H}\mp@subsup{}{}{H}X=B\quad if trans='C' (for complex matrices only)
```

Here A is an $L U$-factored general band matrix of order n with $k l$ non-zero subdiagonals and $k u$ nonzero superdiagonals. Before calling this routine, call ?gbtrf to compute the $L U$ factorization of A.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
trans	Must be 'N' or 'T' or 'C'.
n	The order of A; the number of rows in $B ; n \geq 0$.
kl	The number of subdiagonals within the band of $A ; k l \geq 0$.
ku	The number of superdiagonals within the band of $A ; k u \geq 0$.
nrhs	The number of right-hand sides; nrhs ≥ 0.
ab	Array ab size max (1, Idab*n)
	The array $a b$ contains elements of the LU factors of the matrix A as returned by gbtrf.
b	Array b size max(1, ldb*nrhs) for column major layout and max(1, ldb*n) for row major layout.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
Idab	The leading dimension of the array $a b ; \mid$ dab $\geq 2 * k I+k u+1$.
1 db	The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.
ipiv	Array, size at least max (1, n). The ipiv array, as returned by ?gbtrf

Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A
$+E) x=b$, where

```
    |E|\leqc(kl + ku + 1)\varepsilonP| L||U|
```

$c(k)$ is a modest linear function of k, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(k I+k u+1) \operatorname{cond}(A, x) \varepsilon
$$

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|\left\|_{\infty}\right\| A \|_{\infty}=\kappa_{\infty}(A)$.
Note that $\operatorname{cond}(A, x)$ can be much smaller than $\kappa_{\infty}(A)$; the condition number of A^{T} and A^{H} might or might not be equal to $\kappa_{\infty}(A)$.
The approximate number of floating-point operations for one right-hand side vector is $2 n(k u+2 k l)$ for real flavors. The number of operations for complex flavors is 4 times greater. All these estimates assume that $k l$ and $k u$ are much less than $\min (m, n)$.
To estimate the condition number $\kappa_{\infty}(A)$, call ?gbcon.
To refine the solution and estimate the error, call ?gbrfs.

See Also
 Matrix Storage Schemes

?gttrs

Solves a system of linear equations with a tridiagonal coefficient matrix using the LU factorization computed by ?gttrf.

Syntax

```
lapack_int LAPACKE_sgttrs (int matrix_layout, char trans, lapack_int n , lapack_int
nrhs, const float * dl , const float * d , const float * du , const float * du2 ,
const lapack_int * ipiv, float * b , lapack_int ldb );
lapack_int LAPACKE_dgttrs (int matrix_layout , char trans, lapack_int n , lapack_int
nrhs, const double * dl, const double * d, const double * du , const double * du2 ,
const lapack_int * ipiv, double * b , lapack_int ldb );
lapack_int LAPACKE_cgttrs (int matrix_layout, char trans, lapack_int n , lapack_int
nrhs, const lapack_complex_float * dl , const lapack_complex_float * d , const
lapack_complex_float * du , const lapack_complex_float * du2 , const lapack_int *
ipiv, lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zgttrs (int matrix_layout, char trans, lapack_int n , lapack_int
nrhs , const lapack_complex_double * dl , const lapack_complex_double * d , const
lapack_complex_double * du , const lapack_complex_double * du2 , const lapack_int *
ipiv , lapack_complex_double * b , lapack_int ldb );
```


Include Files

- mkl.h

Description

The routine solves for X the following systems of linear equations with multiple right hand sides:

$$
\begin{array}{ll}
A * X=B & \text { if trans='N', } \\
A^{T} * X=B & \text { if trans }=' T^{\prime},
\end{array}
$$

```
A}\mp@subsup{A}{}{H*X = B if trans='C' (for complex matrices only).
Before calling this routine, you must call ?gttrf to compute the LU factorization of A.
Input Parameters
trans
n
nrhs
dl,d,du,du2
b
Idb
ipiv
```

```
matrix_layout
```

```
matrix_layout
```

Specifies whether matrix storage layout for array b is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans $=$ ' N ', then $A * X=B$ is solved for X.
If trans $=$ ' T ', then $A^{T *} X=B$ is solved for X.
If trans $=$ ' C', then $A^{H *} X=B$ is solved for X.
The order of A; $n \geq 0$.
The number of right-hand sides, that is, the number of columns in B; nrhs ≥ 0.

Arrays: $d l(n-1), d(n), d u(n-1), d u 2(n-2)$.
The array $d l$ contains the $(n-1)$ multipliers that define the matrix L from the $L U$ factorization of A.

The array d contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.
The array $d u$ contains the $(n-1)$ elements of the first superdiagonal of U.

The array du2 contains the $(n-2)$ elements of the second superdiagonal of U.

Array of size $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and max(1, $\left.n^{*} I d b\right)$ for row major layout. Contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $b ; 1 d b \geq \max (1, n)$ for column major layout and $l d b \geq n r h s$ for row major layout.

Array, size (n). The ipiv array, as returned by ?gttrf.

Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A $+E) x=b$, where
$|E| \leq C(n) \varepsilon P|L||U|$
$c(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty s}}{\|x\|_{\infty s}} \leq c(k I+k u+1) \operatorname{cond}(A, x) \varepsilon
$$

where cont $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that con (A, x) can be much smaller than $\kappa_{\infty}(A)$; the condition number of A^{T} and A^{H} might or might not be equal to $\kappa_{\infty}(A)$.

The approximate number of floating-point operations for one right-hand side vector b is $7 n$ (including n divisions) for real flavors and $34 n$ (including $2 n$ divisions) for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?gtcon.
To refine the solution and estimate the error, call ?gtrfs.

See Also

Matrix Storage Schemes

?dttrsb

Solves a system of linear equations with a diagonally dominant tridiagonal coefficient matrix using the LU factorization computed by ?dttrfb.

Syntax

```
void sdttrsb (const char * trans, const MKL_INT * n, const MKL_INT * nrhs, const float
* dl, const float * d, const float * du, float * b, const MKL_INT * ldb, MKL_INT *
info );
void ddttrsb (const char * trans, const MKL_INT * n, const MKL_INT * nrhs, const double
* dl, const double * d, const double * du, double * b, const MKL_INT * Idb, MKL_INT *
info );
void cdttrsb (const char * trans, const MKL_INT * n, const MKL_INT * nrhs, const
MKL_Complex8 * dl, const MKL_Complex8 * d, const MKL_Complex8 * du, MKL_Complex8 * b,
const MKL_INT * ldb, MKL_INT * info );
void zdttrsb (const char * trans, const MKL_INT * n, const MKL_INT * nrhs, const
MKL_Complex16 * dl, const MKL_Complex16 * d, const MKL_Complex16 * du, MKL_Complex16 *
b, const MKL_INT * ldb, MKL_INT * info );
```


Include Files

- mkl.h

Description

The ? dttrsb routine solves the following systems of linear equations with multiple right hand sides for X :

$$
\begin{array}{ll}
A^{*} X=B & \text { if } \operatorname{trans}=' \mathrm{~N} ', \\
A^{T *} X=B & \text { if } \operatorname{trans}={ }^{\prime} \mathrm{T} ', \\
A^{H *} X=B & \text { if } \operatorname{tran}=\text { 'C' (for complex matrices only). }
\end{array}
$$

Before calling this routine, call ?dttrfb to compute the factorization of A.

Input Parameters

trans	Must be 'N' or 'T' or 'C'.
	Indicates the form of the equations solved for X :
	If trans $=$ ' N ', then $A^{\star} X=B$.
	If trans $=$ ' T ', then $A^{T *} X=B$.
	If trans $=$ ' C ', then $A^{H *} X=B$.
n	The order of $A ; n \geq 0$.
nrhs	The number of right-hand sides, that is, the number of columns in B; nrhs ≥ 0.
$d l, d, d u$	Arrays: $d l(n-1), d(n), d u(n-1)$.
	The array $d l$ contains the $(n-1)$ multipliers that define the matrices L_{1}, L_{2} from the factorization of A.
	The array d contains the n diagonal elements of the upper triangular matrix U from the factorization of A.
	The array du contains the ($n-1$) elements of the superdiagonal of U.
b	Array of size $\max \left(1, I d b^{*} n r h s\right)$. Contains the matrix B whose columns are the right-hand sides for the systems of equations.
1 db	The leading dimension of $b ; 1 d b \geq \max (1, n)$.

Output Parameters

b
info

Overwritten by the solution matrix X.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
?potrs
Solves a system of linear equations with a Choleskyfactored symmetric (Hermitian) positive-definite coefficient matrix.

Syntax

```
lapack_int LAPACKE_spotrs (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs , const float * a , lapack_int lda , float * b , lapack_int ldb );
lapack_int LAPACKE_dpotrs (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs , const double * a , lapack_int lda, double * b , lapack_int ldb );
```

```
lapack_int LAPACKE_cpotrs (int matrix_layout , char uplo , lapack_int n , lapack_int
nrhs , const lapack_complex_float * a , lapack_int lda , lapack_complex_float * b ,
lapack_int ldb );
lapack_int LAPACKE_zpotrs (int matrix_layout , char uplo , lapack_int n , lapack_int
nrhs, const lapack_complex_double * a , lapack_int lda , lapack_complex_double * b ,
lapack_int ldb );
```


Include Files

- mkl.h

Description

The routine solves for X the system of linear equations $A * X=B$ with a symmetric positive-definite or, for complex data, Hermitian positive-definite matrix A, given the Cholesky factorization of A :
$A=U^{T} * U$ for real data, $A=U^{H} * U$ for complex data
if uplo='U'
$A=L \star L^{T}$ for real data, $A=L \star L^{H}$ for complex data
if uplo='L'
where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?potrf to compute the Cholesky factorization of A.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', U is stored, where $A=U^{\top *} U$ for real data, $A=U^{H * U}$ for complex data.
	If uplo = 'L', L is stored, where $A=L^{*} L^{\top}$ for real data, $A=L^{*} L^{H}$ for complex data.
n	The order of matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides ($n r h s \geq 0$).
a	Array A of size at least max $\left(1, I d a *_{n}\right)$
	The array a contains the factor U or L (see uplo) as returned by potrf. .
lda	The leading dimension of a . $1 \mathrm{da} \geq \mathrm{max}(1, n)$.
b	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The size of b must be at least $\max \left(1,1 d b^{*} n r h s\right)$ for column major layout and $\max \left(1, l d b_{n}\right)$ for row major layout.
1 db	The leading dimension of b. $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

If uplo = 'U', the computed solution for each right-hand side b is the exact solution of a perturbed system of equations $(A+E) x=b$, where
$|E| \leq C(n) \varepsilon\left|U^{H}\right||U|$
$C(n)$ is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for uplo $=^{\prime} L^{\prime}$. If x_{0} is the true solution, the computed solution x satisfies this error bound:

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$. The approximate number of floating-point operations for one right-hand side vector b is $2 n^{2}$ for real flavors and $8 n^{2}$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?pocon.
To refine the solution and estimate the error, call ?porfs.

See Also

Matrix Storage Schemes
?pftrs
Solves a system of linear equations with a Choleskyfactored symmetric (Hermitian) positive-definite coefficient matrix using the Rectangular Full Packed (RFP) format.

Syntax

```
lapack_int LAPACKE_spftrs (int matrix_layout, char transr, char uplo , lapack_int n ,
lapack_int nrhs , const float * a , float * b , lapack_int ldb );
lapack_int LAPACKE_dpftrs (int matrix_layout, char transr, char uplo, lapack_int n ,
lapack_int nrhs , const double * a , double * b , lapack_int ldb );
lapack_int LAPACKE_cpftrs (int matrix_layout , char transr, char uplo, lapack_int n ,
lapack_int nrhs , const lapack_complex_float * a , lapack_complex_float * b ,
lapack_int ldb );
```

```
lapack_int LAPACKE_zpftrs (int matrix_layout, char transr, char uplo, lapack_int n ,
lapack_int nrhs , const lapack_complex_double * a , lapack_complex_double * b ,
lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves a system of linear equations $A * X=B$ with a symmetric positive-definite or, for complex data, Hermitian positive-definite matrix A using the Cholesky factorization of A :
$A=U^{T} * U$ for real data, $A=U^{H} * U$ for complex data
if uplo='U'
$A=L \star L^{T}$ for real data, $A=L^{\star} L^{H}$ for complex data
if uplo='L'

Before calling ?pftrs, you must call ?pftrf to compute the Cholesky factorization of A. L stands for a lower triangular matrix and U for an upper triangular matrix.

The matrix A is in the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

Input Parameters

```
matrix_layout
transr
uplo
n
nrhs
a
b
```

The leading dimension of b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Output Parameters

b
The solution matrix X.

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, parameter i had an illegal value.

See Also

Matrix Storage Schemes

?pptrs

Solves a system of linear equations with a packed Cholesky-factored symmetric (Hermitian) positivedefinite coefficient matrix.

Syntax

```
lapack_int LAPACKE_spptrs (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, const float * ap , float * b , lapack_int ldb );
lapack_int LAPACKE_dpptrs (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, const double * ap , double * b , lapack_int ldb );
lapack_int LAPACKE_cpptrs (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, const lapack_complex_float * ap , lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zpptrs (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, const lapack_complex_double * ap , lapack_complex_double * b , lapack_int ldb );
```


Include Files

- mkl.h

Description

The routine solves for X the system of linear equations $A * X=B$ with a packed symmetric positive-definite or, for complex data, Hermitian positive-definite matrix A, given the Cholesky factorization of A :
$A=U^{T} * U$ for real data, $A=U^{H} * U$ for complex data
if uplo='U'
$A=L \star L^{T}$ for real data, $A=L \star L^{H}$ for complex data
if uplo='L'
where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix B.
Before calling this routine, you must call ?pptrf to compute the Cholesky factorization of A.

Input Parameters

```
matrix_layout Specifies whether matrix storage layout is row major
    (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
    Must be 'U' or'L'.
```

n
nrhs
$a p, b$
b

1 db

Indicates how the input matrix A has been factored:
If uplo = 'U', U is stored, where $A=U^{\top *} U$ for real data, $A=U^{H *} U$ for complex data.
If uplo = 'L', L is stored, where $A=L^{*} L^{\top}$ for real data, $A=L^{*} L^{H}$ for complex data

The order of matrix $A ; n \geq 0$.
The number of right-hand sides ($n r h s \geq 0$).
The size of $a p$ must be at least $\max (1, n(n+1) / 2)$.
The array ap contains the factor U or L, as specified by uplo, in packed storage (see Matrix Storage Schemes).

The array b of size $\max \left(1, l d b^{*} n r h s\right)$ for column major layout and $\max \left(1, I d *_{n}\right)$ for row major layout contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

If uplo = 'U', the computed solution for each right-hand side b is the exact solution of a perturbed system of equations $(A+E) x=b$, where

$|E| \leq C(n) \varepsilon\left|U^{H}\right||U|$

$c(n)$ is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for uplo = 'L'.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that $\operatorname{cond}(A, x)$ can be much smaller than $\kappa_{\infty}(A)$.

The approximate number of floating-point operations for one right-hand side vector b is $2 n^{2}$ for real flavors and $8 n^{2}$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?ppcon.
To refine the solution and estimate the error, call ?pprfs.

See Also

Matrix Storage Schemes
?pbtrs
Solves a system of linear equations with a Choleskyfactored symmetric (Hermitian) positive-definite band coefficient matrix.

Syntax

```
lapack_int LAPACKE_spbtrs (int matrix_layout, char uplo, lapack_int n , lapack_int
kd, lapack_int nrhs , const float * ab , lapack_int ldab, float * b , lapack_int
ldb );
lapack_int LAPACKE_dpbtrs (int matrix_layout , char uplo, lapack_int n , lapack_int
kd, lapack_int nrhs, const double * ab, lapack_int ldab, double * b , lapack_int
ldb );
lapack_int LAPACKE_cpbtrs (int matrix_layout, char uplo, lapack_int n , lapack_int
kd , lapack_int nrhs , const lapack_complex_float * ab , lapack_int ldab ,
lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zpbtrs (int matrix_layout , char uplo, lapack_int n , lapack_int
kd , lapack_int nrhs , const lapack_complex_double * ab , lapack_int ldab ,
lapack_complex_double * b , lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves for real data a system of linear equations $A \star X=B$ with a symmetric positive-definite or, for complex data, Hermitian positive-definite band matrix A, given the Cholesky factorization of A :

$$
\begin{array}{ll}
A=U^{T} \star U \text { for real data, } A=U^{H} \star U \text { for complex data } & \text { if uplo='U' } \\
A=L^{\star} L^{T} \text { for real data, } A=L^{\star} L^{H} \text { for complex data } & \text { if uplo='L' }
\end{array}
$$

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?pbtrf to compute the Cholesky factorization of A in the band storage form.

Input Parameters

```
matrix_layout
uplo Must be 'U' or 'L'.
Indicates how the input matrix \(A\) has been factored:
```

	If uplo = 'U', U is stored in $a b$, where $A=U^{\top} * U$ for real matrices and $A=U^{\mathrm{H} *} U$ for complex matrices.
	If uplo $=$ 'L', L is stored in $a b$, where $A=L^{*} L^{\top}$ for real matrices and $A=L^{*} L^{\mathrm{H}}$ for complex matrices.
n	The order of matrix $A ; n \geq 0$.
$k d$	The number of superdiagonals or subdiagonals in the matrix $A ; k d \geq 0$.
nrhs	The number of right-hand sides; nrhs ≥ 0.
$a b$	Array $a b$ is of size max ($\left.1, / d a b^{*} n\right)$.
	The array $a b$ contains the Cholesky factor, as returned by the factorization routine, in band storage form.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
b	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
	The size of b is at least $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and $\max \left(1, l d b^{*}\right)$ for row major layout.
Idab	The leading dimension of the array $a b ; / d a b \geq k d+1$.
1 db	The leading dimension of b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A
$+E) x=b$, where

```
    |E| \leqc(kd + 1)\varepsilonP| U'H}||U| or |E| \leqc(kd + 1)\varepsilonP| L L'| | L|
```

$c(k)$ is a modest linear function of k, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(k d+1) \operatorname{cond}(A, x) \varepsilon
$$

where $\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$.
The approximate number of floating-point operations for one right-hand side vector is $4 n^{*} k d$ for real flavors and $16 n^{*} k d$ for complex flavors.
To estimate the condition number $\kappa_{\infty}(A)$, call ?pbcon.
To refine the solution and estimate the error, call ?pbrfs.

See Also

Matrix Storage Schemes

?pttrs

Solves a system of linear equations with a symmetric (Hermitian) positive-definite tridiagonal coefficient matrix using the factorization computed by ?pttrf.

Syntax

```
lapack_int LAPACKE_spttrs( int matrix_layout, lapack_int n, lapack_int nrhs, const
float* d, const float* e, float* b, lapack_int ldb );
lapack_int LAPACKE_dpttrs( int matrix_layout, lapack_int n, lapack_int nrhs, const
double* d, const double* e, double* b, lapack_int ldb );
lapack_int LAPACKE_cpttrs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const float* d, const lapack_complex_float* e, lapack_complex_float* b, lapack_int
ldb );
lapack_int LAPACKE_zpttrs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const double* d, const lapack_complex_double* e, lapack_complex_double* b, lapack_int
ldb );
```

Include Files

- mkl.h

Description

The routine solves for X a system of linear equations $A * X=B$ with a symmetric (Hermitian) positive-definite
 and the $L^{\star} D^{\star} L^{H}$ or $U^{H} D^{\star}$ Ufactorization of A for complex data.

Input Parameters

```
matrix_layout
uplo
```

Specifies whether matrix storage layout is row major
(LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Used for cpttrs/zpttrs only. Must be 'U' or 'L'.
Specifies whether the superdiagonal or the subdiagonal of the tridiagonal matrix A is stored and how A is factored:
If uplo = 'U', the array e stores the conjugated values of the superdiagonal of U, and A is factored as $U^{H}{ }^{*} D * U$.
If uplo = 'L', the array e stores the subdiagonal of L, and A is factored as $L{ }^{\star} D^{\star} L^{\mathrm{H}}$.

Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

See Also

Matrix Storage Schemes
?sytrs
Solves a system of linear equations with a UDU ${ }^{T}$ - or
$L D L^{T}$-factored symmetric coefficient matrix.

Syntax

```
lapack_int LAPACKE_ssytrs (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs , const float * a , lapack_int lda , const lapack_int * ipiv , float * b ,
lapack_int ldb );
lapack_int LAPACKE_dsytrs (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, const double * a , lapack_int lda, const lapack_int * ipiv, double * b ,
lapack_int ldb );
lapack_int LAPACKE_csytrs (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, const lapack_complex_float * a , lapack_int lda , const lapack_int * ipiv ,
lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zsytrs (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, const lapack_complex_double * a , lapack_int lda, const lapack_int * ipiv,
lapack_complex_double * b , lapack_int ldb );
```


Include Files

- mkl.h

Description

The routine solves for X the system of linear equations $A * X=B$ with a symmetric matrix A, given the BunchKaufman factorization of A :
if uplo='U',
$A=U * D * U^{T}$
if uplo='L',
$A=L * D^{*} L^{T}$,
where U and L are upper and lower triangular matrices with unit diagonal and D is a symmetric blockdiagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix B. You must supply to this routine the factor $U(\operatorname{or} L)$ and the array ipiv returned by the factorization routine ?sytrf.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = ' U ', the array a stores the upper triangular factor U of the factorization $A=U^{\star} D^{*} U^{\mathrm{T}}$.
	If uplo = 'L', the array a stores the lower triangular factor L of the factorization $A=L^{\star} D^{\star} L^{T}$.
n	The order of matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides; nrhs ≥ 0.
ipiv	Array, size at least max (1, n). The ipiv array, as returned by ?sytrf.
a	The array aof size $\max \left(1, I d a^{*} n\right)$ contains the factor U or L (see uplo). .
b	The array b contains the matrix B whose columns are the right-hand sides for the system of equations.
	The size of b is at least $\max \left(1, l d b^{*} n r h s\right)$ for column major layout and $\max \left(1, l d b^{*}\right)$ for row major layout.
lda	The leading dimension of $a ; 1 d a \geq \max (1, n)$.
1 db	The leading dimension of b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A $+E) x=b$, where
$|E| \leq C(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T}$ or $|E| \leq C(n) \varepsilon P|L||D|\left|U^{T}\right| P^{T}$
$C(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

where $\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$.
The total number of floating-point operations for one right-hand side vector is approximately $2 n^{2}$ for real flavors or $8 n^{2}$ for complex flavors.
To estimate the condition number $\kappa_{\infty}(A)$, call ?sycon.
To refine the solution and estimate the error, call ?syrfs.

See Also

Matrix Storage Schemes

?sytrs_aa

Solves a system of linear equations $A * X=B$ with a symmetric matrix.

```
lapack_int LAPACKE_ssytrs_aa (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, const float * A, lapack_int lda, const lapack_int * ipiv, float * B, lapack_int
ldb);
lapack_int LAPACKE_dsytrs_aa (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, const double * A, lapack_int lda, const lapack_int * ipiv, double * B, lapack_int
ldb);
lapack_int LAPACKE_csytrs_aa (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, const lapack_complex_float * A, lapack_int lda, const lapack_int * ipiv,
lapack_complex_float * B, lapack_int ldb);
lapack_int LAPACKE_zsytrs_aa (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, const lapack_complex_double * A, lapack_int lda, const lapack_int * ipiv,
lapack_complex_double * B, lapack_int ldb);
```


Description

?sytrs_a solves a system of linear equations $A * X=B$ with a symmetric matrix A using the factorization A $=U * T * U^{\top}$ or $A=L * T * L^{\top}$ computed by ?sytrf_aa.

Input Parameters

```
matrix_layout
uplo
```

n
nrhs
A
Ida
ipiv
B
1 db

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Specifies whether the details of the factorization are stored as an upper or lower triangular matrix.

- = 'U': Upper triangular; the form is $A=U^{*} T^{*} U^{\top}$.
- = 'L': Lower triangular; the form is $A=L^{*} T^{*} L^{\top}$.

The order of the matrix A. $n \geq 0$.
The number of right-hand sides; that is, the number of columns of the matrix B. nrhs ≥ 0.

Array of size $\max \left(1, I d a_{n}\right)$. Details of factors computed by ?sytrf_aa.
The leading dimension of the array A.
Array of size n. Details of the interchanges as computed by ?sytrf_aa.
Array of size $\max \left(1, I d b^{*} n r h s\right)$. On entry, the right-hand side matrix B.
The leading dimension of the array $B . l d b \geq \max (1, n)$ for column-major layout and $1 d b \geq n r h s$ for row-major layout.

Output Parameters

B
On exit, the solution matrix X .

Return Values

This function returns a value info.
= 0: Successful exit.
<0: If info $=-i$, the $i^{\text {th }}$ argument had an illegal value.
?sytrs_rook
Solves a system of linear equations with a UDU- or
LDL-factored symmetric coefficient matrix.

Syntax

```
lapack_int LAPACKE_ssytrs_rook (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, const float * a, lapack_int lda, const lapack_int * ipiv, float * b, lapack_int
ldb);
lapack_int LAPACKE_dsytrs_rook (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, const double * a, lapack_int lda, const lapack_int * ipiv, double * b, lapack_int
ldb);
```

```
lapack_int LAPACKE_csytrs_rook (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, const lapack_complex_float * a, lapack_int lda, const lapack_int * ipiv,
lapack_complex_float * b, lapack_int ldb);
lapack_int LAPACKE_zsytrs_rook (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, const lapack_complex_double * a, lapack_int lda, const lapack_int * ipiv,
lapack_complex_double * b, lapack_int ldb);
```

Include Files

- mkl.h

Description

The routine solves a system of linear equations $A * X=B$ with a symmetric matrix A, using the factorization A $=U^{\star} D^{\star} U^{\mathrm{T}}$ or $A=L^{\star} D^{\star} L^{\mathrm{T}}$ computed by ?sytrf_rook.

Input Parameters

matrix_layout	Specifies whether matrix storage layout for array b is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the factorization is of the form $A=U^{\star} D^{*} U^{\mathrm{T}}$.
	If uplo = 'L', the factorization is of the form $A=L * D * L^{T}$.
n	The order of matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides; nrhs ≥ 0.
ipiv	Array, size at least max $(1, n)$. The ipiv array, as returned by ?sytrf_rook.
a, b	Arrays: a, size (lda*n), b size (ldb*nrhs).
	The array a contains the block diagonal matrix D and the multipliers used to obtain U or L as computed by ?sytrf_rook (see uplo).
	The array b contains the matrix B whose columns are the right-hand sides for the system of equations.
Ida	The leading dimension of a; lda $\geq \max (1, n)$.
1 db	The leading dimension of b; $l d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$) for row major layout.

Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.

If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The total number of floating-point operations for one right-hand side vector is approximately $2 n^{2}$ for real flavors or $8 n^{2}$ for complex flavors.

See Also
Matrix Storage Schemes

?hetrs
Solves a system of linear equations with a UDU ${ }^{T}$ - or LDL ${ }^{T}$-factored Hermitian coefficient matrix.

Syntax

```
lapack_int LAPACKE_chetrs (int matrix_layout , char uplo , lapack_int n , lapack_int
nrhs , const lapack_complex_float * a , lapack_int lda , const lapack_int * ipiv,
lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zhetrs (int matrix_layout , char uplo , lapack_int n , lapack_int
nrhs , const lapack_complex_double * a , lapack_int lda , const lapack_int * ipiv ,
lapack_complex_double * b , lapack_int ldb );
```


Include Files

- mkl.h

Description

The routine solves for X the system of linear equations $A * X=B$ with a Hermitian matrix A, given the BunchKaufman factorization of A :

```
if uplo='U',
A = U*D* U
if uplo='L',
A = L*D* 故,
```

where U and L are upper and lower triangular matrices with unit diagonal and D is a symmetric blockdiagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix B. You must supply to this routine the factor $U($ or $L)$ and the array ipiv returned by the factorization routine ?hetrf.

Input Parameters

```
matrix_layout
uplo
n
```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the factorization $A=U * D * U^{H}$.

If uplo = 'L', the array a stores the lower triangular factor L of the factorization $A=L \star D^{\star} L^{\mathrm{H}}$.

The order of matrix $A ; n \geq 0$.

```
nrhs
ipiv
a
b
    I da
Idb
```


Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info=0, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A
$+E) x=b$, where
$|E| \leq C(n) \varepsilon P|U||D|\left|U^{H}\right| P^{T}$ or $|E| \leq_{C}(n) \varepsilon P|L||D|\left|L^{H}\right| P^{T}$
$c(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$.
The total number of floating-point operations for one right-hand side vector is approximately $8 n^{2}$.
To estimate the condition number $\kappa_{\infty}(A)$, call ?hecon.
To refine the solution and estimate the error, call ?herfs.

See Also
Matrix Storage Schemes

?hetrs_aa
BSolves a system of linear equations $A^{*} X=$ with a complex Hermitian matrix.

```
LAPACK_DECL lapack_int LAPACKE_chetrs_aa (int matrix_layout, char uplo, lapack_int n,
lapack_int nrhs, cōnst lapack_complex_float * a, lapāck_int lda, const lapack_int *
ipiv, lapack_complex_float * b, lapack_int ldb );
LAPACK_DECL lapack_int LAPACKE_zhetrs_aa (int matrix_layout, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_double * a, lapack_int lda, const lapack_int *
ipiv, lapack_complex_double * b, lapack_int ldb );
```


Description

?hetrs_aa solves a system of linear equations $A^{*} X=X$ with a complex Hermitian matrix A using the factorization $A=U * T * U^{\mathrm{H}}$ or $A=L * T * L^{\mathrm{H}}$ computed by ?hetrf_aa.

Input Parameters

```
matrix_layout
uplo
n
nrhs
a
lda
ipiv
b
ldb
work
lwork
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Specifies whether the details of the factorization are stored as an upper or lower triangular matrix.
If uplo = 'U': Upper triangular of the form \(A=U * T * U^{H}\).
If uplo= 'L': Lower triangular of the form \(A=L * T * L^{H}\).
The order of the matrix \(A\). \(n \geq 0\).
The number of right hand sides: the number of columns of the matrix \(b\). nrhs 0 .
Array of size \(l d a^{*} n\). Details of factors computed by ?hetrf_aa.
The leading dimension of the array \(a\). \(I d a \geq \max (1, n)\).
Array of size ( \(n\) ). Details of the interchanges as computed by ?hetrf_aa.
Array of size \(1 d b^{*} n r h s\). On entry, the right hand side matrix \(B\).
The leading dimension of the array \(b\). \(1 d b \geq \max (1, n)\).
See Syntax - Workspace. Array of size (max (1, 1 work) ).
See Syntax - Workspace. 1work \(\max \left(1,3^{*} n-2\right)\).
```


Output Parameters

b
On exit, the solution matrix X.

Return Values

This function returns a value info.
If info $=0$: successful exit.

If info <0 : if info $=-i$, the i-th argument had an illegal value.

Syntax - Workspace

Use this interface if you want to explicitly provide the workspace array.

```
LAPACK_DECL lapack_int LAPACKE_chetrs_aa_work (int matrix_layout, char uplo, lapack_int
n, lapack_int nrhs, const lapack_complex_float * a, lapack_int lda, const lapack_int *
ipiv, lapack_complex_float * b, lapack_int ldb, lapack_complex_float * work, lapack_int
lwork );
LAPACK_DECL lapack_int LAPACKE_zhetrs_aa_work (int matrix_layout, char uplo, lapack_int
n, lapack_int nrhs, const lapack_complex_double * a, lapack_int lda, const lapack_int *
ipiv, lapack_complex_double * b, lapack_int ldb, lapack_complex_double * work,
lapack_int lwork );
```

?hetrs_rook
Solves a system of linear equations with a UDU- or LDL-factored Hermitian coefficient matrix.

Syntax

```
lapack_int LAPACKE_chetrs_rook (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, const lapack_complex_float * a, lapack_int lda, const lapack_int * ipiv,
lapack_complex_float * b, lapack_int ldb);
lapack_int LAPACKE_zhetrs_rook (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, const lapack_complex_double * a, lapack_int lda, const lapack_int * ipiv,
lapack_complex_double * b, lapack_int ldb);
```


Include Files

- mkl.h

Description

The routine solves for a system of linear equations $A * X=B$ with a complex Hermitian matrix A using the factorization $A=U \star D * U^{H}$ or $A=L^{\star} D^{*} L^{H}$ computed by ?hetrf_rook.

Input Parameters

```
matrix_layout
uplo Must be 'U' or 'L'.
    Indicates how the input matrix }A\mathrm{ has been factored:
    If uplo = 'U', the factorization is of the form A = U* D* U'.
    If uplo = 'L', the factorization is of the form A=L*D* LH
    The order of matrix A; n\geq0.
    The number of right-hand sides; nrhs }\geq0\mathrm{ .
    Array, size at least max (1, n).
    The ipiv array, as returned by ?hetrf_rook.
```

```
a,b
lda
ldb
Arrays: a (lda*n)), b(ldb*nrhs).
The array a contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) as computed by ?hetrf_rook (see uplo).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the system of equations.
The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
The leading dimension of \(b ; I d b \geq \max (1, n)\) for column major layout and \(I d b \geq n r h s\) ) for row major layout.
```


Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
?sytrs2
Solves a system of linear equations with a UDU- or LDL-factored symmetric coefficient matrix.

Syntax

```
lapack_int LAPACKE_ssytrs2 (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs , const float * a , lapack_int lda, const lapack_int * ipiv , float * b ,
lapack_int ldb );
lapack_int LAPACKE_dsytrs2 (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, const double * a , lapack_int lda , const lapack_int * ipiv, double * b ,
lapack_int ldb );
lapack_int LAPACKE_csytrs2 (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, const lapack_complex_float * a , lapack_int lda, const lapack_int * ipiv ,
lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zsytrs2 (int matrix_layout , char uplo, lapack_int n , lapack_int
nrhs , const lapack_complex_double * a , lapack_int lda , const lapack_int * ipiv ,
lapack_complex_double * b , lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves a system of linear equations $A * X=B$ with a symmetric matrix A using the factorization of A:
if uplo='U',
$A=U * D * U^{\mathbb{T}}$
if uplo='L',
$A=L^{*} D^{*} L^{T}$
where

- U and L are upper and lower triangular matrices with unit diagonal
- D is a symmetric block-diagonal matrix.

The factorization is computed by ?sytrf.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array a stores the upper triangular factor U of the factorization $A=U \star D^{\star} U^{T}$.
	If uplo = 'L', the array a stores the lower triangular factor L of the factorization $A=L^{\star} D^{\star} L^{T}$.
n	The order of matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides; nrhs ≥ 0.
a	The array aof size $\max \left(1, I d^{*} *_{n}\right)$ contains the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ?sytrf.
b	The array b contains the right-hand side matrix B.
	The size of b is at least $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and $\max \left(1,1 d b^{*}\right)$ for row major layout.
Ida	The leading dimension of a; lda $\geq \max (1, n)$.
1 db	The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq$ nrhs for row major layout.
ipiv	Array of size n. The ipiv array contains details of the interchanges and the block structure of D as determined by ?sytrf.

Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If $i n f o=-i$, parameter i had an illegal value.

See Also

?sytrf
Matrix Storage Schemes

?hetrs2

Solves a system of linear equations with a UDU- or
LDL-factored Hermitian coefficient matrix.

Syntax

```
lapack_int LAPACKE_chetrs2 (int matrix_layout , char uplo, lapack_int n , lapack_int
nrhs , const lapack_complex_float * a , lapack_int lda , const lapack_int * ipiv ,
lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zhetrs2 (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs , const lapack_complex_double * a , lapack_int lda , const lapack_int * ipiv ,
lapack_complex_double * b , lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves a system of linear equations $A \star X=B$ with a complex Hermitian matrix A using the factorization of A :

```
if uplo='U',
    A=U*D* U'H
if uplo='L',
A = L*D* L }\mp@subsup{}{}{H
```

where

- U and L are upper and lower triangular matrices with unit diagonal
- D is a Hermitian block-diagonal matrix.

The factorization is computed by ?hetrf.

Input Parameters

```
matrix_layout
uplo
n
nrhs
a
b
```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the factorization $A=U \star D^{\star} U^{H}$.

If uplo = 'L', the array a stores the lower triangular factor L of the factorization $A=L^{\star} D^{\star} L^{H}$.

The order of matrix $A ; n \geq 0$.
The number of right-hand sides; nrhs ≥ 0.
The array a of size $\max \left(1, I d^{*} n\right)$ contains the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ?hetrf.

The array b of size $\max \left(1,1 d b^{*} n r h s\right)$ for column major layout and $\max \left(1, l d b^{*}\right)^{2}$) for row major layout contains the right-hand side matrix B.

```
Ida The leading dimension of a; lda\geq max (1, n).
ldb
ipiv
The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
The leading dimension of \(b\); \(I d b \geq \max (1, n)\) for column major layout and \(I d b \geq\) nrhs for row major layout.
Array of size \(n\). The ipiv array contains details of the interchanges and the block structure of \(D\) as determined by ?hetrf.
```


Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

See Also

?hetrf
Matrix Storage Schemes
?sytrs_3
Solves a system of linear equations $A * X=B$ with a
real or complex symmetric matrix.

```
lapack_int LAPACKE_ssytrs_3 (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, \overline{const float }\overline{\star}A, lapack_int lda, \overline{const float * e, const lapack_int * ipiv, float}
* B, lapack_int ldb);
lapack_int LAPACKE_dsytrs_3 (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, const double * A, lapack_int lda, const double * e, const lapack_int * ipiv,
double * B, lapack_int ldb);
lapack_int LAPACKE_csytrs_3 (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, \overline{const lapack_complex_float * A, lapack_int lda, const lapack_complex_float * e,}
const lapack_int * ipiv, lapack_complex_float * B, lapack_int ldb);
lapack_int LAPACKE_zsytrs_3 (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, const lapack_complex_double * A, lapack_int lda, const lapack_complex_double * e,
const lapack_int * ipiv, lapack_complex_doubl\overline{e * B, lapack_int ldb);}
```


Description

?sytrs_3 solves a system of linear equations $A * X=B$ with a real or complex symmetric matrix A using the factorization computed by ?sytrf_rk: $A=P^{*} U^{*} D^{*}\left(U^{\top}\right) *\left(P^{\top}\right)$ or $A=P^{*} L^{*} D^{*}\left(L^{\top}\right) *\left(P^{\top}\right)$, where U (or L) is unit upper (or lower) triangular matrix, U^{\top} (or L^{\top}) is the transpose of U (or L), P is a permutation matrix, P^{\top} is the transpose of P, and D is a symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This algorithm uses Level 3 BLAS.
Input Parameters
matrix_layout
uplo

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Specifies whether the details of the factorization are stored as an upper or lower triangular matrix:

- = ' U': Upper triangular; the form is $A=P^{*} U^{*} D^{*}\left(U^{\top}\right)^{*}\left(P^{\top}\right)$.
- = 'L': Lower triangular; the form is $A=P * L^{*} D^{*}\left(L^{\top}\right) *\left(P^{\top}\right)$.
n
nrhs

A
da
e
ipiv

B
$1 d b$

The order of the matrix A. $n \geq 0$.
The number of right-hand sides; that is, the number of columns of the matrix B. nrhs ≥ 0.

Array of size $\max \left(1, I d a^{*} n\right)$. Diagonal of the block diagonal matrix D and factors U or L as computed by ?sytrf_rk:

- Only diagonal elements of the symmetric block diagonal matrix D on the diagonal of A; that is, $\mathrm{D}(k, k)=\mathrm{A}(k, k)$. Superdiagonal (or subdiagonal) elements of D should be provided on entry in array e.
-and-
- If uplo = 'U', factor U in the superdiagonal part of A. If uplo = 'L', factor L in the subdiagonal part of A.

The leading dimension of the array A.
Array of size n. On entry, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks. If uplo $=$ ' U ', $\mathrm{e}(i)=\mathrm{D}(i-1, i), i=2: \mathrm{N}$, and $\mathrm{e}(1)$ is not referenced. If uplo $=$ ' L ', $\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1$, and $\mathrm{e}(n)$ is not referenced.

NOTE For 1-by-1 diagonal block $\mathrm{D}(k)$, where $1 \leq \mathrm{k} \leq n$, the element $e[k-1]$ is not referenced in both the uplo = 'U' and uplo = 'L' cases.

Array of size n. Details of the interchanges and the block structure of D as determined by ?sytrf_rk.

On entry, the right-hand side matrix B.
The size of B is at least $\max \left(1, I d b^{*} n r h s\right)$ for column-major layout and $\max \left(1, I d b^{*}\right)$ for row-major layout.

The leading dimension of the array B. $1 d b \geq \max (1, n)$ for column-major layout and $1 d b \geq$ nrhs for row-major layout.

Output Parameters

B
On exit, the solution matrix X .

Return Values

This function returns a value info.
= 0: Successful exit.
<0: If info $=-i$, the $i^{\text {th }}$ argument had an illegal value.

?hetrs_3

Solves a system of linear equations $A * X=B$ with a complex Hermitian matrix using the factorization computed by ?hetrf_rk.

```
lapack_int LAPACKE_chetrs_3 (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, const lapack_complex_float * A, lapack_int lda, const lapack_complex_float * e,
const lapack_int * ipiv, lapack_complex_float * B, lapack_int ldb);
lapack_int LAPACKE_zhetrs_3 (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, const lapack_complex_double * A, lapack_int lda, const lapack_complex_double * e,
const lapack_int * ipiv, lapack_complex_double * B, lapack_int ldb);
```


Description

?hetrs_3 solves a system of linear equations $A * X=B$ with a complex Hermitian matrix A using the factorization computed by ?hetrf_rk: $A=P^{*} U^{*} D^{*}\left(U^{H}\right)^{*}\left(P^{\top}\right)$ or $A=P^{*} L^{*} D^{*}\left(L^{H}\right) *\left(P^{\top}\right)$, where U (or L) is unit upper (or lower) triangular matrix, U^{H} (or L^{H}) is the conjugate of U (or L), P is a permutation matrix, P^{\top} is the transpose of P, and D is a Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

This algorithm uses Level 3 BLAS.

Input Parameters

```
matrix_layout
uplo
```

n
nrhs

A

Ida
e

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Specifies whether the details of the factorization are stored as an upper or lower triangular matrix:

- = 'U': Upper triangular; form is $A=P^{*} U^{*} D^{*}\left(U^{H}\right)^{*}\left(P^{\top}\right)$.
- = 'L': Lower triangular; form is $A=P * L^{*} D^{*}\left(L^{H}\right) *\left(P^{\top}\right)$.

The order of the matrix A. $n \geq 0$.
The number of right-hand sides; that is, the number of columns in the matrix B. nrhs ≥ 0.

Array of size $\max \left(1, I d a^{*} n\right)$. Diagonal of the block diagonal matrix D and factor U or L as computed by ?hetrf_rk:

- Only diagonal elements of the Hermitian block diagonal matrix D on the diagonal of A; that is, $\mathrm{D}(k, k)=\mathrm{A}(k, k)$. Superdiagonal (or subdiagonal) elements of D should be provided on entry in array e.
- If uplo = 'U', factor U in the superdiagonal part of A. If uplo = 'L', factor L in the subdiagonal part of A.

The leading dimension of the array A.
Array of size n. On entry, contains the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks. If uplo $=$ ' U ', $\mathrm{e}(i)=\mathrm{D}(i-1, i), i=2: \mathrm{N}$, and $\mathrm{e}(1)$ is not referenced. If uplo $=$ ' L ', $\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1$, and $\mathrm{e}(n)$ is not referenced.

NOTE For 1-by-1 diagonal block $\mathrm{D}(k)$, where $1 \leq k \leq n$, the element $e[k-1]$ is not referenced in both the uplo = 'U' and uplo = 'L' cases.

```
ipiv Array of size (n. Details of the interchanges and the block structure of D as
    determined by ?hetrf_rk.
    On entry, the right-hand side matrix B.
    The size of B is at least max(1,Idb*nrhs) for column-major layout and \(\max \left(1, I d b_{n}\right)\) for row-major layout.
The leading dimension of the array \(B . l d b \geq \max (1, n)\) for column-major layout and \(l d b \geq n r h s\) for row-major layout.
```


Output Parameters

B
On exit, the solution matrix X .

Return Values

This function returns a value info.
= 0: Successful exit.
< 0: If info $=-i$, the $i^{\text {th }}$ argument had an illegal value.

?sptrs

Solves a system of linear equations with a UDU- or
LDL-factored symmetric coefficient matrix using packed storage.

Syntax

```
lapack_int LAPACKE_ssptrs (int matrix_layout , char uplo , lapack_int n , lapack_int
nrhs , const float * ap , const lapack_int * ipiv , float * b , lapack_int ldb );
lapack_int LAPACKE_dsptrs (int matrix_layout , char uplo , lapack_int n , lapack_int
nrhs , const double * ap , const lapack_int * ipiv, double * b , lapack_int ldb );
lapack_int LAPACKE_csptrs (int matrix_layout , char uplo, lapack_int n , lapack_int
nrhs , const lapack_complex_float * ap , const lapack_int * ipiv , lapack_complex_float
* b , lapack_int ldb );
lapack_int LAPACKE_zsptrs (int matrix_layout , char uplo , lapack_int n , lapack_int
nrhs , const lapack_complex_double * ap , const lapack_int * ipiv,
lapack_complex_double * b , lapack_int ldb );
```


Include Files

- mkl.h

Description

The routine solves for X the system of linear equations $A * X=B$ with a symmetric matrix A, given the BunchKaufman factorization of A :
if $u p l o=' U '$,

$$
\begin{aligned}
& A=U \star D^{\star} U^{\mathrm{T}} \\
& A=L^{\star} D^{\star} L^{\mathrm{T}}
\end{aligned}
$$

if uplo='L',
where U and L are upper and lower packed triangular matrices with unit diagonal and D is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix B. You must supply the factor U (or L) and the array ipiv returned by the factorization routine ?sptrf.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array ap stores the packed factor U of the factorization $A=U{ }^{*} D^{*} U^{\mathrm{T}}$. If uplo $=$ 'L', the array ap stores the packed factor L of the factorization $A=L \star D^{\star} L^{T}$.
n	The order of matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides; $n r h s \geq 0$.
ipiv	Array, size at least max $(1, n)$. The ipiv array, as returned by ? sptrf.
ap	The dimension of array ap must be at least max $(1, n(n+1) / 2)$. The array ap contains the factor U or L, as specified by uplo, in packed storage (see Matrix Storage Schemes).
b	The array b contains the matrix B whose columns are the right-hand sides for the system of equations. The size of b is $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and $\max \left(1, I d{ }^{*}{ }_{n}\right)$ for row major layout.
1 db	The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info = -i, parameter i had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A
$+E) x=b$, where
$|E| \leq C(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T}$ or $|E| \leq C(n) \varepsilon P|L||D|\left|L^{T}\right| P^{T}$
$c(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon
$$

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$.
The total number of floating-point operations for one right-hand side vector is approximately $2 \mathrm{n}^{2}$ for real flavors or $8 \mathrm{n}^{2}$ for complex flavors.
To estimate the condition number $\kappa_{\infty}(A)$, call ?spcon.
To refine the solution and estimate the error, call ?sprfs.

See Also

Matrix Storage Schemes

```
?hptrs
Solves a system of linear equations with a UDU- or
LDL-factored Hermitian coefficient matrix using
packed storage.
Syntax
lapack_int LAPACKE_chptrs (int matrix_layout , char uplo, lapack_int n, lapack_int
nrhs , const lapack_complex_float * ap , const lapack_int * ipiv , lapack_complex_float
* b , lapack_int ldb );
lapack_int LAPACKE_zhptrs (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, const lapack_complex_double * ap , const lapack_int * ipiv,
lapack_complex_double * b , lapack_int ldb );
```


Include Files

- mkl.h

Description

The routine solves for X the system of linear equations $A * X=B$ with a Hermitian matrix A, given the BunchKaufman factorization of A :

```
if uplo='U',
A = U*D* U
if uplo='L',
A = L*D* L'H,
```

where U and L are upper and lower packed triangular matrices with unit diagonal and D is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix B.

You must supply to this routine the arrays ap (containing U or L) and ipiv in the form returned by the factorization routine ?hptrf.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array ap stores the packed factor U of the factorization $A=U * D^{*} U^{H}$. If uplo $=$ 'L', the array ap stores the packed factor L of the factorization $A=L \star D \star L^{\mathrm{H}}$.
n	The order of matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides; $n r h s \geq 0$.
ipiv	Array, size at least max $(1, n)$. The ipiv array, as returned by ?hptrf.
ap	The dimension of array ap must be at least $\max (1, n(n+1) / 2)$. The array ap contains the factor U or L, as specified by uplo, in packed storage (see Matrix Storage Schemes).
b	The array b contains the matrix B whose columns are the right-hand sides for the system of equations. The size of b is $\max \left(1, l d b^{*} n r h s\right)$ for column major layout and $\max \left(1, I d *_{n}\right)$ for row major layout.
1 db	The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A
$+E) x=b$, where

```
|E| \leqC(n)\varepsilonP|U||D|| U H}|\mp@subsup{P}{}{T}\mathrm{ or |E| SC(n)&P|L||D|| L'H}|\mp@subsup{P}{}{T
```

$c(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$.
The total number of floating-point operations for one right-hand side vector is approximately $8 n^{2}$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?hpcon.
To refine the solution and estimate the error, call ?hprfs.

See Also

Matrix Storage Schemes

?trtrs

Solves a system of linear equations with a triangular coefficient matrix, with multiple right-hand sides.

Syntax

```
lapack_int LAPACKE_strtrs (int matrix_layout, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const float * a , lapack_int lda , float * b ,
lapack_int ldb );
lapack_int LAPACKE_dtrtrs (int matrix_layout, char uplo, char trans, char diag ,
lapack_int n , lapack_int nrhs, const double * a , lapack_int lda, double * b ,
lapack_int ldb );
lapack_int LAPACKE_ctrtrs (int matrix_layout, char uplo, char trans , char diag ,
lapack_int n , lapack_int nrhs , const lapack_complex_float * a , lapack_int lda ,
lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_ztrtrs (int matrix_layout, char uplo, char trans , char diag ,
lapack_int n , lapack_int nrhs , const lapack_complex_double * a , lapack_int lda ,
lapack_complex_double * b , lapack_int ldb );
```


Include Files

- mkl.h

Description

The routine solves for X the following systems of linear equations with a triangular matrix A, with multiple right-hand sides stored in B :

```
A*X = B
    if trans='N',
AT*X = B if trans='T',
A H*X=B if trans='C' (for complex matrices only).
```


Input Parameters

```
matrix_layout
uplo
trans
diag
n
nrhs
    a
    b
    lda
ldb
```


Output Parameters

b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If inforo, the execution is successful.
If $i n f o=-i$, parameter i had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A $+E) x=b$, where

```
|E| SC(n)\varepsilon |A|
```

$c(n)$ is a modest linear function of n, and ε is the machine precision. If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \text { cond }(A, x) \varepsilon \text { provided } c(n) \text { cond }(A, x) \varepsilon<1
$$

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$; the condition number of A^{T} and A^{H} might or might not be equal to $\kappa_{\infty}(A)$.
The approximate number of floating-point operations for one right-hand side vector b is n^{2} for real flavors and $4 n^{2}$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?trcon.
To estimate the error in the solution, call ?trrfs.

See Also

Matrix Storage Schemes

?tptrs

Solves a system of linear equations with a packed triangular coefficient matrix, with multiple right-hand sides.

Syntax

```
lapack_int LAPACKE_stptrs (int matrix_layout, char uplo, char trans , char diag ,
lapack_int n , lapack_int nrhs , const float * ap , float * b , lapack_int ldb );
lapack_int LAPACKE_dtptrs (int matrix_layout, char uplo, char trans , char diag ,
lapack_int n , lapack_int nrhs , const double * ap, double * b , lapack_int ldb );
lapack_int LAPACKE_ctptrs (int matrix_layout, char uplo, char trans, char diag,
lapack_int n , lapack_int nrhs , const lapack_complex_float * ap , lapack_complex_float
* b , lapack_int ldb );
lapack_int LAPACKE_ztptrs (int matrix_layout, char uplo, char trans , char diag ,
lapack_int n , lapack_int nrhs , const lapack_complex_double * ap ,
lapack_complex_double * b , lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves for X the following systems of linear equations with a packed triangular matrix A, with multiple right-hand sides stored in B :

```
A*X=B if trans='N',
AT*X = B if trans='T',
A H*X = B if trans='C' (for complex matrices only).
```


Input Parameters

```
matrix_layout
uplo
```

trans
diag
n
$a p$
b
$1 d b$

Output Parameters

Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If infolo, the execution is successful.
If $i n f o=-i$, parameter i had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A $+E) x=b$, where

```
|E| \leqC(n)\varepsilon |A|
```

$C(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty s}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon \text { provided } c(n) \text { cond }(A, x) \varepsilon<1
$$

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$; the condition number of A^{T} and A^{H} might or might not be equal to $\kappa_{\infty}(A)$.
The approximate number of floating-point operations for one right-hand side vector b is n^{2} for real flavors and $4 n^{2}$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?tpcon.
To estimate the error in the solution, call ?tprfs.

See Also

Matrix Storage Schemes

?tbtrs

Solves a system of linear equations with a band triangular coefficient matrix, with multiple right-hand sides.

Syntax

```
lapack_int LAPACKE_stbtrs (int matrix_layout , char uplo, char trans , char diag ,
lapack_int n , lapack_int kd, lapack_int nrhs, const float * ab , lapack_int ldab,
float * b , lapack_int ldb );
lapack_int LAPACKE_dtbtrs (int matrix_layout, char uplo, char trans , char diag ,
lapack_int n , lapack_int kd, lapack_int nrhs, const double * ab , lapack_int ldab,
double * b , lapack_int ldb );
lapack_int LAPACKE_ctbtrs (int matrix_layout, char uplo, char trans, char diag,
lapack_int n , lapack_int kd , lapack_int nrhs , const lapack_complex_float * ab ,
lapack_int ldab, lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_ztbtrs (int matrix_layout, char uplo, char trans, char diag ,
lapack_int n , lapack_int kd, lapack_int nrhs , const lapack_complex_double * ab ,
lapack_int ldab , lapack_complex_double * b , lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves for X the following systems of linear equations with a band triangular matrix A, with multiple right-hand sides stored in B :

```
A*X=B if trans='N',
AT*X = B if trans='T',
A}\mp@subsup{}{H*X}{*}=B\quad if trans='C' (for complex matrices only)
```


Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates whether A is upper or lower triangular:
	If uplo = 'U', then A is upper triangular.
	If uplo = 'L', then A is lower triangular.
trans	Must be 'N' or 'T' or 'C'.
	If trans $=$ ' N', then $A * X=B$ is solved for X.
	If trans $=$ ' T ', then $A^{T *} X=B$ is solved for X.
	If trans $=$ ' C', then $A^{H * X}=B$ is solved for X.
diag	Must be 'N' or 'U'.
	If diag $=$ ' N ', then A is not a unit triangular matrix.
	If diag = 'U', then A is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array $a b$.
n	The order of A; the number of rows in $B ; n \geq 0$.
kd	The number of superdiagonals or subdiagonals in the matrix $A ; k d \geq 0$.
nrhs	The number of right-hand sides; nrhs ≥ 0.
$a b$	The array ab contains the matrix A in band storage form.
	The size of ab must be max (1,1 dab* n)
b	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
	The size of b is $\max \left(1, l d b^{*} n r h s\right)$ for column major layout and $\max \left(1, l d b_{n}\right)$ for row major layout.
Idab	The leading dimension of $a b ; / d a b \geq k d+1$.
1 db	The leading dimension of b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Output Parameters

Return Values

This function returns a value info.
If info=0, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A $+E) x=b$, where

$|E| \leq C(n) \varepsilon|A|$

$c(n)$ is a modest linear function of n, and ε is the machine precision. If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty s}}{\|x\|_{\infty s}} \leq C(n) \text { cond }(A, x) \varepsilon \text { provided } C(n) \text { cond }(A, x) \varepsilon<1
$$

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$; the condition number of A^{T} and A^{H} might or might not be equal to $\kappa_{\infty}(A)$.

The approximate number of floating-point operations for one right-hand side vector b is $2 n^{\star} k d$ for real flavors and $8 n^{*} k d$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?tbcon.
To estimate the error in the solution, call ? tbrfs.

See Also

Matrix Storage Schemes

Estimating the Condition Number: LAPACK Computational Routines

This section describes the LAPACK routines for estimating the condition number of a matrix. The condition number is used for analyzing the errors in the solution of a system of linear equations (see Error Analysis). Since the condition number may be arbitrarily large when the matrix is nearly singular, the routines actually compute the reciprocal condition number.

?gecon

Estimates the reciprocal of the condition number of a general matrix in the 1-norm or the infinity-norm.

Syntax

```
lapack_int LAPACKE_sgecon( int matrix_layout, char norm, lapack_int n, const float* a,
lapack_int lda, float anorm, float* rcond );
lapack_int LAPACKE_dgecon( int matrix_layout, char norm, lapack_int n, const double* a,
lapack_int lda, double anorm, double* rcond );
lapack_int LAPACKE_cgecon( int matrix_layout, char norm, lapack_int n, const
lapack_complex_float* a, lapack_int lda, float anorm, float* rcond );
lapack_int LAPACKE_zgecon( int matrix_layout, char norm, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double anorm, double* rcond );
```


Include Files

- mkl.h

Description

The routine estimates the reciprocal of the condition number of a general matrix A in the 1-norm or infinitynorm:
$\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right)$
$\kappa_{\infty}(A)=\|A\|_{\infty}| | A^{-1} \|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right)$.
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm (either $||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ? getrf to compute the $L U$ factorization of A.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
norm	Must be '1' or 'O' or 'I'.
	If norm $=$ '1' or ' O^{\prime} ', then the routine estimates the condition number of matrix A in 1-norm.
	If norm = 'I', then the routine estimates the condition number of matrix A in infinity-norm.
n	The order of the matrix $A ; n \geq 0$.
a	The array a contains the $L U$-factored matrix A, as returned by ?getrf.
anorm	The norm of the original matrix A (see Description).
Ida	The leading dimension of $a ; 1 d a \geq \max (1, n)$.

Output Parameters

rcond
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.

Return Values

This function returns a value info.
If inforo, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{*} x_{x}=b$ or $A^{H *_{X}}=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $2 * n^{2}$ floating-point operations for real flavors and $8 * n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes

?gbcon

Estimates the reciprocal of the condition number of a band matrix in the 1-norm or the infinity-norm.

Syntax

```
lapack_int LAPACKE_sgbcon( int matrix_layout, char norm, lapack_int n, lapack_int kl,
lapack_int ku, const float* ab, lapack_int ldab, const lapack_int* ipiv, float anorm,
float* rcond );
lapack_int LAPACKE_dgbcon( int matrix_layout, char norm, lapack_int n, lapack_int kl,
lapack_int ku, const double* ab, lapack_int ldab, const lapack_int* ipiv, double anorm,
double* rcond );
lapack_int LAPACKE_cgbcon( int matrix_layout, char norm, lapack_int n, lapack_int kl,
lapack_int ku, const lapack_complex_float* ab, lapack_int ldab, const lapack_int* ipiv,
float anorm, float* rcond );
lapack_int LAPACKE_zgbcon( int matrix_layout, char norm, lapack_int n, lapack_int kl,
lapack_int ku, const lapack_complex_double* ab, lapack_int ldab, const lapack_int*
ipiv, double anorm, double* rcond );
```


Include Files

- mkl.h

Description

The routine estimates the reciprocal of the condition number of a general band matrix A in the 1 -norm or infinity-norm:
$\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right)$
$\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right)$.
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ? gbtrf to compute the $L U$ factorization of A.

Input Parameters

```
matrix_layout
norm
```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be '1' or 'O' or 'I'.

```
n
kl
ku
Idab
ipiv
ab
```

anorm

If norm $=$ ' 1 ' or ' O ', then the routine estimates the condition number of matrix A in 1-norm.

If norm = 'I', then the routine estimates the condition number of matrix A in infinity-norm.

The order of the matrix $A ; n \geq 0$.
The number of subdiagonals within the band of $A ; k l \geq 0$.
The number of superdiagonals within the band of $A ; k u \geq 0$.
The leading dimension of the array $a b$. (Idab $\left.\geq 2^{*} k I+k u+1\right)$.
Array, size at least max $(1, n)$. The ipiv array, as returned by ?gbtrf.
The array $a b$ of size $\max \left(1, I d a b_{n}\right)$ contains the factored band matrix A, as returned by ?gbtrf.

The norm of the original matrix A (see Description).

Output Parameters

rcond
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{*} x=b$ or $A^{H{ }^{*}}{ }_{x}=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n(k u+2 k l)$ floating-point operations for real flavors and $8 n(k u+2 k l)$ for complex flavors.

See Also

Matrix Storage Schemes
?gtcon
Estimates the reciprocal of the condition number of a tridiagonal matrix.

Syntax

```
lapack_int LAPACKE_sgtcon( char norm, lapack_int n, const float* dl, const float* d,
const float* du, const float* du2, const lapack_int* ipiv, float anorm, float* rcond );
lapack_int LAPACKE_dgtcon( char norm, lapack_int n, const double* dl, const double* d,
const double* du, const double* du2, const lapack_int* ipiv, double anorm, double*
rcond );
```

```
lapack_int LAPACKE_cgtcon( char norm, lapack_int n, const lapack_complex_float* dl,
const lapack_complex_float* d, const lapack_complex_float* du, const
lapack_complex_float* du2, const lapack_int* ipiv, float anorm, float* rcond );
lapack_int LAPACKE_zgtcon( char norm, lapack_int n, const lapack_complex_double* dl,
const lapack_complex_double* d, const lapack_complex_double* du, const
lapack_complex_double* du2, const lapack_int* ipiv, double anorm, double* rcond );
```


Include Files

- mkl.h

Description

The routine estimates the reciprocal of the condition number of a real or complex tridiagonal matrix A in the 1-norm or infinity-norm:
$\kappa_{1}(A)=\left\|A\left|\left\|_{1}| | A^{-1}\right\|_{1}\right.\right.$
$\kappa_{\infty}(A)=\|A\|_{\infty}| | A^{-1} \|_{\infty}$
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.
Before calling this routine:

- compute anorm (either $||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?gttrf to compute the $L U$ factorization of A.

Input Parameters

norm	Must be '1' or 'O' or 'I'.
	If norm = '1' or 'O', then the routine estimates the condition number of matrix A in 1-norm.
	If norm = 'I', then the routine estimates the condition number of matrix A in infinity-norm.
n	The order of the matrix $A ; n \geq 0$.
$d 1, d, d u, d u 2$	Arrays: $d l(n-1), d(n), d u(n-1), d u 2(n-2)$.
	The array $d l$ contains the $(n-1)$ multipliers that define the matrix L from the $L U$ factorization of A as computed by
	The array d contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.
	The array $d u$ contains the $(n-1)$ elements of the first superdiagonal of U.
	The array du2 contains the $(n-2)$ elements of the second superdiagonal of U.
ipiv	Array, size (n). The array of pivot indices, as returned by ? gttrf.
anorm	The norm of the original matrix A (see Description).

Output Parameters

rcond
An estimate of the reciprocal of the condition number. The routine sets rcond=0 if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 n^{2}$ for complex flavors.

?pocon
 Estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite matrix.

Syntax

```
lapack_int LAPACKE_spocon( int matrix_layout, char uplo, lapack_int n, const float* a,
lapack_int lda, float anorm, float* rcond );
lapack_int LAPACKE_dpocon( int matrix_layout, char uplo, lapack_int n, const double* a,
lapack_int lda, double anorm, double* rcond );
lapack_int LAPACKE_cpocon( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_float* a, lapack_int lda, float anorm, float* rcond );
lapack_int LAPACKE_zpocon( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double anorm, double* rcond );
```

Include Files

- mkl.h

Description

The routine estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite matrix A :
$\kappa_{1}(A)=\|A\|_{1}| | A^{-1} \|_{1}$ (since A is symmetric or Hermitian, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm (either $||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?potrf to compute the Cholesky factorization of A.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo $=$ ' U ', A is factored as $A=U^{\mathbb{T}} \star U$ for real flavors or $A=U^{H} \star U$ for complex flavors, and U is stored.
	If uplo $=$ ' L ', A is factored as $A=L^{\star} L^{T}$ for real flavors or $A=L^{\star} L^{H}$ for complex flavors, and L is stored.
n	The order of the matrix $A ; n \geq 0$.
a	The array a of size $\max \left(1, I d a_{n}\right)$ contains the factored matrix A, as returned by ?potrf.
Ida	The leading dimension of $a ; 1 d a \geq \max (1, n)$.
anorm	The norm of the original matrix A (see Description).

Output Parameters

An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 \mathrm{n}^{2}$ for complex flavors.

```
See Also
Matrix Storage Schemes
?ppcon
Estimates the reciprocal of the condition number of a
packed symmetric (Hermitian) positive-definite
matrix.
Syntax
lapack_int LAPACKE_sppcon( int matrix_layout, char uplo, lapack_int n, const float* ap,
float anorm, float* rcond );
```

```
lapack_int LAPACKE_dppcon( int matrix_layout, char uplo, lapack_int n, const double*
ap, double anorm, double* rcond );
lapack_int LAPACKE_cppcon( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_float* ap, float anorm, float* rcond);
lapack_int LAPACKE_zppcon( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_double* ap, double anorm, double* rcond );
```

Include Files

- mkl.h

Description

The routine estimates the reciprocal of the condition number of a packed symmetric (Hermitian) positivedefinite matrix A :
$\kappa_{1}(A)=\left\|A| |_{1}| | A^{-1} \mid\right\|_{1}$ (since A is symmetric or Hermitian, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm (either $||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?pptrf to compute the Cholesky factorization of A.

Input Parameters

```
matrix_layout
uplo
n
ap
anorm
```


Output Parameters

rcond

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo $=$ ' U', A is factored as $A=U^{\mathrm{T}} * U$ for real flavors or $A=U^{\mathrm{H}} * U$ for complex flavors, and U is stored.
If uplo = 'L', A is factored as $A=L^{\star} L^{T}$ for real flavors or $A=L^{\star} L^{H}$ for complex flavors, and L is stored.

The order of the matrix $A ; n \geq 0$.
The array ap contains the packed factored matrix A, as returned by ?pptrf. The dimension of ap must be at least max $(1, n(n+1) / 2)$.

The norm of the original matrix A (see Description).

An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} X=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 n^{2}$ for complex flavors.

See Also
 Matrix Storage Schemes

?pbcon

Estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite band matrix.

Syntax

```
lapack_int LAPACKE_spbcon( int matrix_layout, char uplo, lapack_int n, lapack_int kd,
const float* ab, lapack_int ldab, float anorm, float* rcond );
lapack_int LAPACKE_dpbcon( int matrix_layout, char uplo, lapack_int n, lapack_int kd,
const double* ab, lapack_int ldab, double anorm, double* rcond );
lapack_int LAPACKE_cpbcon( int matrix_layout, char uplo, lapack_int n, lapack_int kd,
const lapack_complex_float* ab, lapack_int ldab, float anorm, float* rcond );
lapack_int LAPACKE_zpbcon( int matrix_layout, char uplo, lapack_int n, lapack_int kd,
const lapack_complex_double* ab, lapack_int ldab, double anorm, double* rcond );
```

Include Files

- mkl.h

Description

The routine estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite band matrix A :
$\kappa_{1}(A)=\left\|\left.A\right|_{1}| | A^{-1} \mid\right\|_{1}$ (since A is symmetric or Hermitian, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm (either $||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?pbtrf to compute the Cholesky factorization of A.

Input Parameters

matrix_layout

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo $=$ ' U ', A is factored as $A=U^{\mathbb{T}} * U$ for real flavors or $A=U^{\mathrm{H}} * U$ for complex flavors, and U is stored.
	If uplo = 'L', A is factored as $A=L^{\star} L^{T}$ for real flavors or $A=L^{\star} L^{H}$ for complex flavors, and L is stored.
n	The order of the matrix $A ; n \geq 0$.
$k d$	The number of superdiagonals or subdiagonals in the matrix $A ; k d \geq 0$.
Idab	The leading dimension of the array $a b$. (/dab $\geq k d+1$).
$a b$	The array $a b$ of size $\max \left(1, I d a b^{*} n\right)$ contains the factored matrix A in band form, as returned by ?pbtrf.
anorm	The norm of the original matrix A (see Description).

Output Parameters

rcond
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

Return Values

This function returns a value info.
If inforo, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{*} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $4{ }^{*} n(k d+1)$ floating-point operations for real flavors and $16{ }^{*} n(k d+1)$ for complex flavors.

```
See Also
Matrix Storage Schemes
?ptcon
Estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite tridiagonal
matrix.
```


Syntax

```
lapack_int LAPACKE_sptcon( lapack_int n, const float* d, const float* e, float anorm,
```

lapack_int LAPACKE_sptcon(lapack_int n, const float* d, const float* e, float anorm,
float* rcond);
float* rcond);
lapack_int LAPACKE_dptcon(lapack_int n, const double* d, const double* e, double
lapack_int LAPACKE_dptcon(lapack_int n, const double* d, const double* e, double
anorm, double* rcond);

```
anorm, double* rcond );
```

```
lapack_int LAPACKE_cptcon( lapack_int n, const float* d, const lapack_complex_float* e,
float anorm, float* rcond );
lapack_int LAPACKE_zptcon( lapack_int n, const double* d, const lapack_complex_double*
e, double anorm, double* rcond );
```


Include Files

- mkl.h

Description

The routine computes the reciprocal of the condition number (in the 1-norm) of a real symmetric or complex Hermitian positive-definite tridiagonal matrix using the factorization $A=L^{\star} D^{\star} L^{T}$ for real flavors and $A=$ $L^{\star} D^{\star} L^{H}$ for complex flavors or $A=U^{T} \star D^{\star} U$ for real flavors and $A=U^{H}{ }^{*} D^{\star} U$ for complex flavors computed by ?pttrf:
$\kappa_{1}(A)=\|\left. A\right|_{1}| | A^{-1}| |_{1}$ (since A is symmetric or Hermitian, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
The norm $\left|\left|A^{-1}\right|\right|$ is computed by a direct method, and the reciprocal of the condition number is computed as rcond $=1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm as $||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$
- call ?pttrf to compute the factorization of A.

Input Parameters

n	The order of the matrix $A ; n \geq 0$.
d	Arrays, dimension (n).
e	The array d contains the n diagonal elements of the diagonal matrix D from the factorization of A, as computed by ?pttrf ;
	Array, size $(n-1)$.
anorm	Contains off-diagonal elements of the unit bidiagonal factor U or L from the factorization computed by ?pttrf.
	The 1- norm of the original matrix A (see Description).

Output Parameters

rcond
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $4^{*} n(k d+1)$ floating-point operations for real flavors and $16 * n(k d+1)$ for complex flavors.

?sycon
 Estimates the reciprocal of the condition number of a symmetric matrix.

Syntax

```
lapack_int LAPACKE_ssycon( int matrix_layout, char uplo, lapack_int n, const float* a,
lapack_int lda, const lapack_int* ipiv, float anorm, float* rcond );
lapack_int LAPACKE_dsycon( int matrix_layout, char uplo, lapack_int n, const double* a,
lapack_int lda, const lapack_int* ipiv, double anorm, double* rcond );
lapack_int LAPACKE_csycon( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_float* a, lapack_int lda, const lapack_int* ipiv, float anorm, float*
rcond );
lapack_int LAPACKE_zsycon( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_double* a, lapack_int lda, const lapack_int* ipiv, double anorm, double*
rcond );
```

Include Files

- mkl.h

Description

The routine estimates the reciprocal of the condition number of a symmetric matrix A :
$\kappa_{1}(A)=\left\|A| |_{1}| | A^{-1}\right\|_{1}$ (since A is symmetric, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?sytrf to compute the factorization of A.

Input Parameters

```
matrix_layout
uplo
```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the factorization $A=U * D * U^{\mathrm{T}}$.

	If upIo = 'L', the array a stores the lower triangular factor L of the factorization $A=L^{\star} D^{\star} L^{T}$.
n	The order of matrix A; $n \geq 0$.
a	The array a of size $\max \left(1, I d a *_{n}\right)$ contains the factored matrix A, as returned by ?sytrf.
lda	The leading dimension of $a ; 1 d a \geq \max (1, n)$.
ipiv	Array, size at least max ($1, n$) .
	The array ipiv, as returned by ?sytrf.
anorm	The norm of the original matrix A (see Description).

Output Parameters

rcond
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes

?sycon_3
Estimates the reciprocal of the condition number (in the 1-norm) of a real or complex symmetric matrix A using the factorization computed by ?sytrf_rk.

```
lapack_int LAPACKE_ssycon_3 (int matrix_layout, char uplo, lapack_int n, const float *
A, lapack_int lda, const float * e, const lapack_int * ipiv, float anorm, float *
rcond);
lapack_int LAPACKE_dsycon_3 (int matrix_layout, char uplo, lapack_int n, const double *
A, lapack_int lda, const double * e, const lapack_int * ipiv, double anorm, double *
rcond);
lapack_int LAPACKE_csycon_3 (int matrix_layout, char uplo, lapack_int n, const
lapack_complex_float * A, lapack_int lda, const lapack_complex_float * e, const
lapack_int * ipiv, float anorm, float * rcond);
```

```
lapack_int LAPACKE_zsycon_3 (int matrix_layout, char uplo, lapack_int n, const
lapack_complex_double * A, lapack_int lda, const lapack_complex_double * e, const
lapack_int * ipiv, double anorm, double * rcond);
```


Description

?sycon_3 estimates the reciprocal of the condition number (in the 1-norm) of a real or complex symmetric matrix A using the factorization computed by ?sytrf_rk. $A=P^{*} U^{*} D^{*}\left(U^{\top}\right) *\left(P^{\top}\right)$ or $A=P^{*} L^{*} D^{*}\left(L^{\top}\right) *\left(P^{\top}\right)$, where U (or L) is unit upper (or lower) triangular matrix, U^{\top} (or L^{\top}) is the transpose of U (or L), P is a permutation matrix, P^{\top} is the transpose of P , and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
An estimate is obtained for norm($\operatorname{inv}(A)$), and the reciprocal of the condition number is computed as rcond $=1 /\left(\right.$ anorm ${ }^{*}$ norm $\left.(\operatorname{inv}(A))\right)$.

This routine uses BLAS3 solver ?sytrs_3.

Input Parameters

```
matrix_layout
uplo
n
A
lda
e
```

ipiv
anorm

Array of size n. Details of the interchanges and the block structure of D as determined by ?sytrf_rk.

The 1-norm of the original matrix A.

Output Parameters

rcond

The reciprocal of the condition number of the matrix A, computed as rcond $=1 /($ anorm $*$ AINVNM), where AINVNM is an estimate of the 1 -norm of $\operatorname{inv}(\mathrm{A})$ computed in this routine.

Return Values

This function returns a value info.
$=0$: Successful exit.
<0: If info $=-i$, the $i^{\text {th }}$ argument had an illegal value.

?hecon

Estimates the reciprocal of the condition number of a Hermitian matrix.

Syntax

```
lapack_int LAPACKE_checon( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_float* a, lapack_int lda, const lapack_int* ipiv, float anorm, float*
rcond );
lapack_int LAPACKE_zhecon( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_double* a, lapack_int lda, const lapack_int* ipiv, double anorm, double*
rcond );
```


Include Files

- mkl.h

Description

The routine estimates the reciprocal of the condition number of a Hermitian matrix A :
$\kappa_{1}(A)=\left\|A| |_{1}| | A^{-1} \mid\right\|_{1}$ (since A is Hermitian, $\left.\kappa_{\infty}(A)=\kappa_{1}(A)\right)$.
Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\left.\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)$
- call ?hetrf to compute the factorization of A.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo $=U^{\prime} U^{\prime}$, the array a stores the upper triangular factor U of the
	factorization $A=U^{\star} D^{*} U^{H}$.

a
Ida
ipiv
anorm

Output Parameters

rcond

The array a of size $\max \left(1, I d a_{n}\right)$ contains the factored matrix A, as returned by ?hetrf.

The leading dimension of $a ; 1 d a \geq \max (1, n)$.
Array, size at least max $(1, n)$.
The array ipiv, as returned by ?hetrf.
The norm of the original matrix A (see Description).

An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} x=b$; the number is usually 5 and never more than 11 . Each solution requires approximately $8 n^{2}$ floating-point operations.

See Also

Matrix Storage Schemes
?hecon_3
Estimates the reciprocal of the condition number (in the 1-norm) of a complex Hermitian matrix A.

```
lapack_int LAPACKE_checon_3 (int matrix_layout, char uplo, lapack_int n, const
lapack_complex_float * A, lapack_int lda, const lapack_complex_float * e, const
lapack_int * ipiv, float anorm, float * rcond);
lapack_int LAPACKE_zhecon_3 (int matrix_layout, char uplo, lapack_int n, const
lapack_complex_double * A, lapack_int l\overline{da, const lapack_complex_double * e, const}
lapack_int * i\overline{p}iv, double anorm, \overline{double * rcond);}
```


Description

?hecon_3 estimates the reciprocal of the condition number (in the 1-norm) of a complex Hermitian matrix A using the factorization computed by ?hetrf_rk: $A=P * U^{*} D^{*}\left(U^{H}\right)^{*}\left(P^{\top}\right)$ or $A=P^{*} L^{*} D^{*}\left(L^{H}\right)^{*}\left(P^{\top}\right)$, where U (or L) is unit upper (or lower) triangular matrix, U^{H} (or L^{H}) is the conjugate of U (or L), P is a permutation matrix, P^{\top} is the transpose of P, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. An estimate is obtained for norm $(\operatorname{inv}(A))$, and the reciprocal of the condition number is computed as rcond $=1 /(\operatorname{anorm} * \operatorname{norm}(\operatorname{inv}(A)))$.
This routine uses BLAS3 solver ?hetrs_3.

Input Parameters

```
matrix_layout
uplo
n
A
lda
e
```

ipiv
anorm

Output Parameters

rcond
The reciprocal of the condition number of the matrix A, computed as rcond $=1 /($ anorm $* \operatorname{AINVNM})$, where AINVNM is an estimate of the 1 -norm of $\operatorname{inv}(\mathrm{A})$ computed in this routine.

Return Values

This function returns a value info.
= 0: Successful exit.
<0: If info $=-i$, the $t^{\text {th }}$ argument had an illegal value.
?spcon
Estimates the reciprocal of the condition number of a packed symmetric matrix.

Syntax

```
lapack_int LAPACKE_sspcon( int matrix_layout, char uplo, lapack_int n, const float* ap,
const lapack_int* ipiv, float anorm, float* rcond );
lapack_int LAPACKE_dspcon( int matrix_layout, char uplo, lapack_int n, const double*
ap, const lapack_int* ipiv, double anorm, double* rcond );
lapack_int LAPACKE_cspcon( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_float* ap, const lapack_int* ipiv, float anorm, float* rcond );
lapack_int LAPACKE_zspcon( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_double* ap, const lapack_int* ipiv, double anorm, double* rcond );
```

Include Files

- mkl.h

Description

The routine estimates the reciprocal of the condition number of a packed symmetric matrix A : $\kappa_{1}(A)=||A||_{1}| | A^{-1}| |_{1}$ (since A is symmetric, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.
Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\left.\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)$
- call ? sptrf to compute the factorization of A.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array ap stores the packed upper triangular factor U of the factorization $A=U^{*} D^{*} U^{\mathbb{T}}$.
	If uplo = 'L', the array ap stores the packed lower triangular factor L of the factorization $A=L * D^{*} L^{\mathrm{T}}$.
n	The order of matrix $A ; n \geq 0$.
$a p$	The array ap contains the packed factored matrix A, as returned by ?sptrf. The dimension of ap must be at least $\max (1, n(n+1) / 2)$.
ipiv	Array, size at least max ($1, n$).
	The array ipiv, as returned by ?sptrf.
anorm	The norm of the original matrix A (see Description).

Output Parameters

rcond
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value .

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 n^{2}$ for complex flavors.

See Also
Matrix Storage Schemes

?hpcon
Estimates the reciprocal of the condition number of a packed Hermitian matrix.

Syntax

```
lapack_int LAPACKE_chpcon( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_float* ap, const lapack_int* ipiv, float anorm, float* rcond);
lapack_int LAPACKE_zhpcon( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_double* ap, const lapack_int* ipiv, double anorm, double* rcond );
```

Include Files

- mkl.h

Description

The routine estimates the reciprocal of the condition number of a Hermitian matrix A :
$\kappa_{1}(A)=\left\|A| |_{1}| | A^{-1} \mid\right\|_{1}$ (since A is Hermitian, $\left.\kappa_{\infty}(A)=\mathrm{k}_{1}(A)\right)$.
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm (either $\left\|A\left|\|_{1}=\max _{j} \Sigma_{i}\right| a_{i j} \mid\right.$ or $\| A \|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?hptrf to compute the factorization of A.

Input Parameters

```
matrix_layout
uplo
n
ap
ipiv
anorm
```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the packed upper triangular factor U of the factorization $A=U^{*} D^{\star} U^{\mathbb{T}}$.
If uplo = 'L', the array ap stores the packed lower triangular factor L of the factorization $A=L * D^{*} L^{\mathrm{T}}$.

The order of matrix $A ; n \geq 0$.
The array $a p$ contains the packed factored matrix A, as returned by ?hptrf. The dimension of ap must be at least $\max (1, n(n+1) / 2)$.

Array, size at least $\max (1, n)$. The array ipiv, as returned by ?hptrf.
The norm of the original matrix A (see Description).

Output Parameters

rcond

An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than 10r. A call to this routine involves solving a number of systems of linear equations $A^{\star}{ }_{x}=b$; the number is usually 5 and never more than 11. Each solution requires approximately $8 n^{2}$ floating-point operations.

See Also

Matrix Storage Schemes
?trcon
Estimates the reciprocal of the condition number of a triangular matrix.

Syntax

```
lapack_int LAPACKE_strcon( int matrix_layout, char norm, char uplo, char diag,
lapack_int n, const float* a, lapack_int lda, float* rcond );
lapack_int LAPACKE_dtrcon( int matrix_layout, char norm, char uplo, char diag,
lapack_int n, const double* a, lapack_int lda, double* rcond );
```

```
lapack_int LAPACKE_ctrcon( int matrix_layout, char norm, char uplo, char diag,
lapack_int n, const lapack_complex_float* a, lapack_int lda, float* rcond );
lapack_int LAPACKE_ztrcon( int matrix_layout, char norm, char uplo, char diag,
lapack_int n, const lapack_complex_double* a, lapack_int lda, double* rcond );
```

Include Files

- mkl.h

Description

The routine estimates the reciprocal of the condition number of a triangular matrix A in either the 1-norm or infinity-norm:

```
\kappa
\kappa
```


Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
norm	Must be '1' or 'O' or 'I'.
	If norm = '1' or 'O', then the routine estimates the condition number of matrix A in 1-norm.
	If norm = 'I', then the routine estimates the condition number of matrix A in infinity-norm.
uplo	Must be 'U' or 'L'.
	Indicates whether A is upper or lower triangular:
	If uplo = 'U', the array a stores the upper triangle of A, other array elements are not referenced.
	If uplo = 'L', the array a stores the lower triangle of A, other array elements are not referenced.
diag	Must be 'N' or 'U'.
	If diag = 'N', then A is not a unit triangular matrix.
	If diag = 'U', then A is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array a.
n	The order of the matrix $A ; n \geq 0$.
a	The array a of size max $\left(1, I d a^{*} n\right)$ contains the matrix A.
Ida	The leading dimension of a; $1 d a \geq \max (1, n)$.

Output Parameters

rcond
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value .

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} X=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately n^{2} floating-point operations for real flavors and $4 n^{2}$ operations for complex flavors.

See Also
Matrix Storage Schemes

?tpcon
Estimates the reciprocal of the condition number of a packed triangular matrix.

Syntax

```
lapack_int LAPACKE_stpcon( int matrix_layout, char norm, char uplo, char diag,
lapack_int n, const float* ap, float* rcond );
lapack_int LAPACKE_dtpcon( int matrix_layout, char norm, char uplo, char diag,
lapack_int n, const double* ap, double* rcond );
lapack_int LAPACKE_ctpcon( int matrix_layout, char norm, char uplo, char diag,
lapack_int n, const lapack_complex_float* ap, float* rcond );
lapack_int LAPACKE_ztpcon( int matrix_layout, char norm, char uplo, char diag,
lapack_int n, const lapack_complex_double* ap, double* rcond );
```


Include Files

- mkl.h

Description

The routine estimates the reciprocal of the condition number of a packed triangular matrix A in either the 1norm or infinity-norm:
$\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right)$
$\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right)$.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
norm	Must be '1' or 'O' or 'I'.
	If norm $=$ ' 1 ' or ' O ', then the routine estimates the condition number of matrix A in 1 -norm.
	If norm $=$ 'I', then the routine estimates the condition number of matrix A in infinity-norm.
uplo	Must be 'U' or 'L'. Indicates whether A is upper or lower triangular:
	If uplo = 'U', the array ap stores the upper triangle of A in packed form.
	If uplo = 'L', the array ap stores the lower triangle of A in packed form.
diag	Must be 'N' or 'U'.
	If diag = 'N', then A is not a unit triangular matrix.
	If diag = 'U', then A is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array ap.
n	The order of the matrix $A ; n \geq 0$.
ap	The array ap contains the packed matrix A. The dimension of ap must be at least $\max (1, n(n+1) / 2)$.

Output Parameters

rcond
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately n^{2} floating-point operations for real flavors and $4 n^{2}$ operations for complex flavors.

See Also
Matrix Storage Schemes

```
?tbcon
Estimates the reciprocal of the condition number of a
triangular band matrix.
```


Syntax

```
lapack_int LAPACKE_stbcon( int matrix_layout, char norm, char uplo, char diag,
lapack_int n, lapack_int kd, const float* ab, lapack_int ldab, float* rcond );
lapack_int LAPACKE_dtbcon( int matrix_layout, char norm, char uplo, char diag,
lapack_int n, lapack_int kd, const double* ab, lapack_int ldab, double* rcond );
lapack_int LAPACKE_ctbcon( int matrix_layout, char norm, char uplo, char diag,
lapack_int n, lapack_int kd, const lapack_complex_float* ab, lapack_int ldab, float*
rcond );
lapack_int LAPACKE_ztbcon( int matrix_layout, char norm, char uplo, char diag,
lapack_int n, lapack_int kd, const lapack_complex_double* ab, lapack_int ldab, double*
rcond );
```

Include Files

- mkl.h

Description

The routine estimates the reciprocal of the condition number of a triangular band matrix A in either the 1norm or infinity-norm:
$\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right)$
$\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right)$.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
norm	Must be '1' or 'O' or 'I'.
	If norm = '1' or 'O', then the routine estimates the condition number of matrix A in 1 -norm.
	If norm = 'I', then the routine estimates the condition number of matrix A in infinity-norm.
uplo	Must be 'U' or 'L'. Indicates whether A is upper or lower triangular:
	If uplo = 'U', the array ap stores the upper triangle of A in packed form.
	If uplo = 'L', the array ap stores the lower triangle of A in packed form.
diag	Must be 'N' or 'U'.
	If diag $=$ ' N ', then A is not a unit triangular matrix.
	If diag = 'U', then A is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array $a b$.

```
n
kd
ab
Idab
The order of the matrix \(A ; n \geq 0\).
The number of superdiagonals or subdiagonals in the matrix \(A ; k d \geq 0\).
The array \(a b\) of size \(\max \left(1, I d a b^{*} n\right)\) contains the band matrix \(A\).
The leading dimension of the array \(a b\). (Idab \(\geq k d+1\) ).
```


Output Parameters

rcond
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} X=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2{ }^{*} n(k d+1)$ floating-point operations for real flavors and $8 * n(k d+1)$ operations for complex flavors.

See Also

Matrix Storage Schemes

Refining the Solution and Estimating Its Error: LAPACK Computational Routines

This section describes the LAPACK routines for refining the computed solution of a system of linear equations and estimating the solution error. You can call these routines after factorizing the matrix of the system of equations and computing the solution (see Routines for Matrix Factorization and Routines for Solving Systems of Linear Equations).

?gerfs

Refines the solution of a system of linear equations with a general coefficient matrix and estimates its error.

Syntax

```
lapack_int LAPACKE_sgerfs( int matrix_layout, char trans, lapack_int n, lapack_int
nrhs, const float* a, lapack_int lda, const float* af, lapack_int ldaf, const
lapack_int* ipiv, const float* b, lapack_int ldb, float* x, lapack_int ldx, float* ferr,
float* berr );
lapack_int LAPACKE_dgerfs( int matrix_layout, char trans, lapack_int n, lapack_int
nrhs, const double* a, lapack_int lda, const double* af, lapack_int ldaf, const
lapack_int* ipiv, const double* b, lapack_int ldb, double* x, lapack_int ldx, double*
ferr, double* berr );
```

```
lapack_int LAPACKE_cgerfs( int matrix_layout, char trans, lapack_int n, lapack_int
nrhs, const lapack_complex_float* a, lapack_int lda, const lapack_complex_float* af,
lapack_int ldaf, const lapack_int* ipiv, const lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_zgerfs( int matrix_layout, char trans, lapack_int n, lapack_int
nrhs, const lapack_complex_double* a, lapack_int lda, const lapack_complex_double* af,
lapack_int ldaf, const lapack_int* ipiv, const lapack_complex_double* b, lapack_int
ldb, lapack_complex_double* x, lapack_int ldx, double* ferr, double* berr );
```


Include Files

- mkl.h

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ or $A^{T} * X$ $=B$ or $A^{H * X}=B$ with a general matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:

Finally, the routine estimates the component-wise forward error in the computed solution \| $\left|x-x_{e}\right| l_{\infty} / \|$ $x \mid \|_{\infty}$ (here x_{e} is the exact solution).
Before calling this routine:

- call the factorization routine ?getrf
- call the solver routine ?getrs.

Input Parameters

```
matrix_layout
trans
n
nrhs
a,af,b,x
```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans $=$ ' N ', the system has the form $A * X=B$.
If trans $=$ ' T ', the system has the form $A^{T *} X=B$.
If trans $=$ ' C', the system has the form $A^{H *} X=B$.
The order of the matrix $A ; n \geq 0$.
The number of right-hand sides; nrhs ≥ 0.
Arrays:
a(size $\left.\max \left(1, I d^{*}{ }_{n}\right)\right)$ contains the original matrix A, as supplied to ? getrf.
$a f\left(\right.$ size $\left.\max \left(1, \operatorname{ldaf}^{*} n\right)\right)$ contains the factored matrix A, as returned by ?getrf.
bof size $\max \left(1, l d b^{*} n r h s\right)$ for column major layout and max(1, $l d{ }^{*}{ }_{n}$) for row major layout contains the right-hand side matrix B.
xof size $\max \left(1, l d x^{*} n r h s\right)$ for column major layout and max $(1$, $l d x^{*} n$) for row major layout contains the solution matrix X.

Ida
Idaf
1 db
$1 d x$
ipiv

The leading dimension of $a ; 1 d a \geq \max (1, n)$.
The leading dimension of $a f ; l d a f \geq \max (1, n)$.
The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

The leading dimension of x; $I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Array, size at least max $(1, n)$.
The ipiv array, as returned by ?getrf.

Output Parameters

x
ferr, berr

The refined solution matrix X.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations $A^{*} x=b$ with the same coefficient matrix A and different right hand sides b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes
?gerfsx
Uses extra precise iterative refinement to improve the solution to the system of linear equations with a general coefficient matrix A and provides error bounds and backward error estimates.

Syntax

```
lapack_int LAPACKE_sgerfsx( int matrix_layout, char trans, char equed, lapack_int n,
lapack_int nrhs, const float* a, lapack_int lda, const float* af, lapack_int ldaf,
const lapack_int* ipiv, const float* r, const float* c, const float* b, lapack_int ldb,
float* x, lapack_int ldx, float* rcond, float* berr, lapack_int n_err_bnds, float*
err_bnds_norm, float* err_bnds_comp, lapack_int nparams, float* params );
lapack_int LAPACKE_dgerfsx( int matrix_layout, char trans, char equed, lapack_int n,
lapack_int nrhs, const double* a, lapack_int lda, const double* af, lapack_int ldaf,
const lapack_int* ipiv, const double* r, const double* c, const double* b, lapack_int
ldb, double* x, lapack_int ldx, double* rcond, double* berr, lapack_int n_err_bnds,
double* err_bnds_norm, double* err_bnds_comp, lapack_int nparams, double* params );
lapack_int LAPACKE_cgerfsx( int matrix_layout, char trans, char equed, lapack_int n,
lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* af, lapack_int ldaf, const lapack_int* ipiv, const float* r,
const float* c, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x,
lapack_int ldx, float* rcond, float* berr, lapack_int n_err_bnds, float* err_bnds_norm,
float* err_bnds_comp, lapack_int nparams, float* params );
lapack_int LAPACKE_zgerfsx( int matrix_layout, char trans, char equed, lapack_int n,
lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* af, lapack_int ldaf, const lapack_int* ipiv, const double* r,
const double* c, const lapack_complex_double* b, lapack_int ldb, lapack_complex_double*
x, lapack_int ldx, double* rcond, double* berr, lapack_int n_err_bnds, double*
err_bnds_norm, double* err_bnds_comp, lapack_int nparams, double* params );
```

Include Files

- mkl.h

Description

The routine improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed, r, and c below. In this case, the solution and error bounds returned are for the original unequilibrated system.

Input Parameters

```
matrix_layout
```

trans Must be 'N', 'T', or 'C'.

Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $A \star X=B$ (No transpose).
If trans $=$ 'T', the system has the form $A^{T} * X=B$ (Transpose).
If trans $=$ 'C', the system has the form $A^{\mathrm{H}} * X=B$ (Conjugate transpose for complex flavors, Transpose for real flavors).

```
equed
n
nrhs
a, af,b
lda
ldaf
ipiv
r,c
Must be 'N', 'R', 'C', or 'B'.
Specifies the form of equilibration that was done to \(A\) before calling this routine.
If equed \(=\) ' \(N\) ', no equilibration was done.
If equed = 'R', row equilibration was done, that is, \(A\) has been premultiplied by diag(r).
If equed \(=\) ' C ', column equilibration was done, that is, \(A\) has been postmultiplied by diag(c).
If equed = 'B', both row and column equilibration was done, that is, \(A\) has been replaced by \(\operatorname{diag}(r) * A * \operatorname{diag}(C)\). The right-hand side \(B\) has been changed accordingly.
The number of linear equations; the order of the matrix \(A ; n \geq 0\).
The number of right-hand sides; the number of columns of the matrices \(B\) and \(X\); nrhs \(\geq 0\).
```



``` \(\max \left(1, I d^{*} n_{n h s}\right)\) for column major layout and \(\max \left(1, I b^{*} *_{n}\right)\) for row major layout).
The array a contains the original \(n\)-by- \(n\) matrix \(A\).
The array af contains the factored form of the matrix \(A\), that is, the factors \(L\) and \(U\) from the factorization \(A=P * L * U\) as computed by ?getrf.
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
The leading dimension of \(a f ; l d a \geq \geq \max (1, n)\).
Array, size at least max \((1, n)\). Contains the pivot indices as computed by ? getrf; for row \(1 \leq i \leq n\), row \(i\) of the matrix was interchanged with row ipiv(i).
Arrays: \(r\) (size \(n\) ), \(c\) (size \(n\) ). The array \(r\) contains the row scale factors for \(A\), and the array \(C\) contains the column scale factors for \(A\).
equed \(=\) ' R ' or ' B ', \(A\) is multiplied on the left by diag \((r)\); if equed \(=\) 'N' or 'C', \(r\) is not accessed.
If equed \(=\) ' R ' or ' B ', each element of \(r\) must be positive.
If equed \(=\) ' C ' or ' B ', \(A\) is multiplied on the right by \(\operatorname{diag}(c)\); if equed \(=\) 'N' or 'R', \(c\) is not accessed.
If equed \(=\) ' C ' or ' B ', each element of \(c\) must be positive.
Each element of \(r\) or \(c\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or
```

1 db
x
$1 d x$
n_err_bnds
nparams
params
overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

The leading dimension of the array $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Array, of size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and max(1, $l d x_{n}$) for row major layout.

The solution matrix X as computed by ?getrs
The leading dimension of the output array $x ; I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

Array, size nparams. Specifies algorithm parameters. If an entry is less than 0.0, that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams $=0$, which prevents the source code from accessing the params argument.
params [0] : Whether to perform iterative refinement or not. Default:
1.0
$=0.0 \quad$ No refinement is performed and no error bounds are computed.
$=1.0 \quad$ Use the double-precision refinement algorithm, possibly with doubled-single computations if the compilation environment does not support double precision.
(Other values are reserved for future use.)
params [1] : Maximum number of residual computations allowed for refinement.

Default
Aggressive

10.0

Set to 100.0 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params [2] : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the doubleprecision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

Output Parameters

X
rcond
berr
err_bnds_norm

The improved solution matrix X.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If $r c o n d$ is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

Array, size at least max ($1, n r h s$). Contains the componentwise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:
Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
err=1
err=2
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors.
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and sqrt(n) *dlamch (ε) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
err=3

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and sqrt(n) *dlamch (ε) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{0} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1 .

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in:

- Column major layout: err_bnds_norm[(err - 1)*nrhs + i 1].
- Row major layout: err_bnds_norm[err - 1 + (i -

```
1)*n_err_bnds]
```

Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

$$
\max _{j} \frac{\left|X t r u e_{j i}-X_{j i}\right|}{\left|X_{j i}\right|}
$$

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params[2] $=0.0$), then err_bnds_comp is not accessed. If n_err_bnds < 3, then at most the first n_err_bnds columns of the err_bnds_comp array are returned.
err=1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors.
err $=2$
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double
precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{0} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{\star}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of $a *$ diag (x) by a power of the radix so all absolute row sums of z are approximately 1 .

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in:

- Column major layout: err_bnds_comp[(err - 1)*nrhs + i 1].
- Row major layout: err_bnds_comp[err - 1 + (i -

1) *n_err_bnds]
params
Output parameter only if the input contains erroneous values, namely, in params [0], params [1], params [2]. In such a case, the corresponding elements of params are filled with default values on output.

Return Values

This function returns a value info.
If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, parameter i had an illegal value.
If 0 < infosn: $U_{i n f o, i n f o}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with $k>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params [2] $=0.0$, then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that for column major layout err_bnds_norm[j-1] $=0.0$ or err_bnds_comp $[j-1]=0.0$; or for row major layout err_bnds_norm[(j-1)*n_err_bnds] $=0.0$ or err_bnds_comp [(j-1)*n_err_bnds] = 0.0). See the definition of err_bnds_norm and err_bnds_comp for err = 1. To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

See Also

Matrix Storage Schemes

?gbrfs

Refines the solution of a system of linear equations with a general band coefficient matrix and estimates its error.

Syntax

```
lapack_int LAPACKE_sgbrfs( int matrix_layout, char trans, lapack_int n, lapack_int kl,
lapack_int ku, lapack_int nrhs, const float* ab, lapack_int ldab, const float* afb,
lapack_int ldafb, const lapack_int* ipiv, const float* b, lapack_int ldb, float* x,
lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dgbrfs( int matrix_layout, char trans, lapack_int n, lapack_int kl,
lapack_int ku, lapack_int nrhs, const double* ab, lapack_int ldab, const double` afb,
lapack_int ldafb, const lapack_int* ipiv, const double* b, lapack_int ldb, double* x,
lapack_int ldx, double* ferr, double* berr );
lapack_int LAPACKE_cgbrfs( int matrix_layout, char trans, lapack_int n, lapack_int kl,
lapack_int ku, lapack_int nrhs, const lapack_complex_float* ab, lapack_int ldab, const
lapack_complex_float* afb, lapack_int ldafb, const lapack_int* ipiv, const
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* ferr, float* berr );
lapack_int LAPACKE_zgbrfs( int matrix_layout, char trans, lapack_int n, lapack_int kl,
lapack_int ku, lapack_int nrhs, const lapack_complex_double* ab, lapack_int ldab, const
lapack_complex_double* afb, lapack_int ldafb, const lapack_int* ipiv, const
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx,
double* ferr, double* berr );
```


Include Files

- mkl.h

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ or $A^{T} * X$ $=B$ or $A^{H *} X=B$ with a band matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} / \|$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).
Before calling this routine:

- call the factorization routine ?gbtrf
- call the solver routine ? gbtrs.

Input Parameters

```
matrix_layout
trans
```

Specifies whether matrix storage layout is row major
(LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:

	If trans $=$ ' N ', the system has the form $A * X=B$.
	If trans $=$ ' T ', the system has the form $A^{T *} X=B$.
	If trans $=$ ' C ', the system has the form $A^{H * X}=B$.
n	The order of the matrix A; $n \geq 0$.
kI	The number of sub-diagonals within the band of $A ; k l \geq 0$.
ku	The number of super-diagonals within the band of $A ; k u \geq 0$.
nrhs	The number of right-hand sides; nrhs ≥ 0.
$a b, a f b, b, x$	Arrays:
	$a b\left(\right.$ size $\left.\max \left(1, l d a b^{*} n\right)\right)$ contains the original band matrix A, as supplied to ? gbtrf, but stored in rows from 1 to $k l+k u+1$ for column major layout, and columns from 1 to $k l+k u+1$ for row major layout.
	$a f b\left(\right.$ size $\left.\max \left(1, \operatorname{ldafb}^{*}\right)\right)$ contains the factored band matrix A, as returned by ?gbtrf.
	bof size max(1, ldb*nrhs) for column major layout and max(1, $l d b_{n}$) for row major layout contains the right-hand side matrix B.
	xof size $\max \left(1, l d x^{*} n r h s\right)$ for column major layout and max(1, $l d x^{*} n$) for row major layout contains the solution matrix X.
Idab	The leading dimension of $a b, l d a b \geq k l+k u+1$.
Idafb	The leading dimension of $a f b, l d a f b \geq 2 * k l+k u+1$.
1 db	The leading dimension of b; Id $b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.
$1 d x$	The leading dimension of $x ; 1 d x \geq \max (1, n)$.
ipiv	Array, size at least max $(1, n)$. The ipiv array, as returned by ? gbtrf.

Output Parameters

X
ferr, berr

The refined solution matrix X.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n(k l+k u)$ floatingpoint operations (for real flavors) or $16 n(k l+k u$) operations (for complex flavors). In addition, each step of iterative refinement involves $2 n(4 k l+3 k u)$ operations (for real flavors) or $8 n(4 k l+3 k u)$ operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations $A^{\star} X=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes

?gbrfsx

Uses extra precise iterative refinement to improve the solution to the system of linear equations with a banded coefficient matrix A and provides error bounds and backward error estimates.

Syntax

lapack_int LAPACKE_sgbrfsx(int matrix_layout, char trans, char equed, lapack_int n,
 float* $a f b, l a p a c k _i n t ~ l d a f b, ~ c o n s t ~ l a p a c k _i n t * ~ i p i v, ~ c o n s t ~ f l o a t * ~ r, ~ c o n s t ~ f l o a t * ~ c, ~$ const float* $b, ~ l a p a c k _i n t ~ l d b, ~ f l o a t * ~ x, ~ l a p a c k _i n t ~ l d x, ~ f l o a t * ~ r c o n d, ~ f l o a t * ~ b e r r, ~$ lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, float* params);
lapack_int LAPACKE_dgbrfsx(int matrix_layout, char trans, char equed, lapack_int n,
 double* afb, lapack_int ldafb, const lapack_int* ipiv, const double* r, const double* c, const double* $b, ~ l a p a c k _i n t ~ l d b, ~ d o u b l e * ~ x, ~ l a p a c k _i n t ~ l d x, ~ d o u b l e * ~ r c o n d, ~ d o u b l e * ~$ berr, lapack_int n_err_bnds, double* err_bnds_norm, double* err_bnds_comp, lapack_int nparams, double* params);
lapack_int LAPACKE_cgbrfsx(int matrix_layout, char trans, char equed, lapack_int n, lapack_int kl, lapack_int ku, lapack_int nrhs, const lapack_complex_float* ab, lapack_int ldab, const lapack_complex_float* afb, lapack_int ldafb, const lapack_int* ipiv, const float* r, const float* c, const lapack_complex_float* b, lapack_int ldb,
 n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams, float* params);
lapack_int LAPACKE_zgbrfsx(int matrix_layout, char trans, char equed, lapack_int n, lapack_int $k l, ~ l a p a c k _i n t ~ k u, ~ l a p a c k _i n t ~ n r h s, ~ c o n s t ~ l a p a c k _c o m p l e x ~ d o u b l e * ~ a b, ~$ lapack_int ldab, const lapack_complex_double* afb, lapack_int ldafb, const lapack_int* ipiv, const double* r, const double* c, const lapack_complex_double* b, lapack_int ldb,
 n_err_bnds, double* err_bnds_norm, double* err_bnds_comp, lapack_int nparams, double* params);

Include Files

- mkl.h

Description

The routine improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed, r, and c below. In this case, the solution and error bounds returned are for the original unequilibrated system.

Input Parameters

matrix_layout	Specifies whether two-dimensional array storage is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
trans	Must be 'N', 'T', or 'C'.
	Specifies the form of the system of equations:
	If trans $=$ ' N ', the system has the form $A^{\star} X=B$ (No transpose).
	If trans $=$ 'T', the system has the form $A^{T} * X=B$ (Transpose).
	If trans $=$ ' C', the system has the form $A^{\mathrm{H}} * X=B$ (Conjugate transpose for complex flavors, Transpose for real flavors).
equed	Must be 'N', 'R', 'C', or 'B'.
	Specifies the form of equilibration that was done to A before calling this routine.
	If equed = 'N', no equilibration was done.
	If equed = 'R', row equilibration was done, that is, A has been premultiplied by $\operatorname{diag}(r)$.
	If equed $=$ ' C', column equilibration was done, that is, A has been postmultiplied by diag(c).
	If equed = 'B', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(r) * A * \operatorname{diag}(C)$. The right-hand side B has been changed accordingly.
n	The number of linear equations; the order of the matrix A; $n \geq 0$.
kl	The number of subdiagonals within the band of $A ; k l \geq 0$.
ku	The number of superdiagonals within the band of $A ; k u \geq 0$.
nrhs	The number of right-hand sides; the number of columns of the matrices B and X; nrhs ≥ 0.
$a b, a f b, b$	The array abof size $\max \left(1, I \mathrm{dab}^{*} n\right)$ contains the original matrix A in band storage, in rows from 1 to $k l+k u+1$ for column major layout, and in columns from 1 to $k l+k u+1$ for row major layout.
	The array $a f b o f$ size $\max \left(1, I d a f b_{n}\right)$ contains details of the LU factorization of the banded matrix A as computed by ?gbtrf.

```
Idab
Idafb
ipiv
```

r, c
1 db

X
ldx
nparams
params

The array bof size $\max \left(1, l d b^{*} n r h s\right)$ for column major layout and max $(1$, $I d b_{n}$) for row major layout contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of the array $a b ; l d a b \geq k l+k u+1$.
The leading dimension of the array $a f b ; l d a f b \geq 2 * k l+k u+1$.
Array, size at least max $(1, n)$. Contains the pivot indices as computed by ? gbtrf; for row $1 \leq i \leq n$, row i of the matrix was interchanged with row ipiv[i-1].

Arrays: $r(n), c(n)$. The array r contains the row scale factors for A, and the array c contains the column scale factors for A.

If equed $=$ 'R' or 'B', A is multiplied on the left by $\operatorname{diag}(r)$; if equed = ' N ' or 'C', r is not accessed.

If equed $=$ ' R ' or ' B ', each element of r must be positive.
If equed $=$ ' C' or ' B ', A is multiplied on the right by diag(c; if equed = ' N ' or 'R', c is not accessed.

If equed $=$ ' C ' or ' B ', each element of c must be positive.
Each element of r or c should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

The leading dimension of the array $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Array, size $\max \left(1, I d x_{n r h s}\right)$ for column major layout and $\max \left(1, I d x_{n}\right)$) for row major layout.
The solution matrix X as computed by sgbtrs/dgbtrs for real flavors or cgbtrs/zgbtrs for complex flavors.

The leading dimension of the output array $x ; I d x \geq \max (1, n)$ for column major layout and $/ d x \geq n r h s$ for row major layout.

Number of error bounds to return for each right-hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

Array, size nparams. Specifies algorithm parameters. If an entry is less than 0.0 , that entry will be filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for highernumbered parameters. If defaults are acceptable, you can pass nparams $=$ 0 , which prevents the source code from accessing the params argument.
params [0] : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).

$$
\begin{array}{ll}
=0.0 & \begin{array}{l}
\text { No refinement is performed and no error bounds } \\
\text { are computed. }
\end{array} \\
=1.0 & \begin{array}{l}
\text { Use the double-precision refinement algorithm, } \\
\text { possibly with doubled-single computations if the } \\
\text { compilation environment does not support } \\
\text { double precision. }
\end{array}
\end{array}
$$

(Other values are reserved for future use.)
params [1] : Maximum number of residual computations allowed for refinement.

Default 10.0
Aggressive Set to 100.0 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params[2]: Flag determining if the code will attempt to find a solution with a small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

Output Parameters

X
rcond
berr
err_bnds_norm

The improved solution matrix X.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

Array, size at least max ($1, n r h s$). Contains the componentwise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:
Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
err=1
err=2
err=3
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and sqrt(n)*dlamch(ε) for double precision flavors.
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1.

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in:

- Column major layout: err_bnds_norm[(err - 1)*nrhs + i - 1].
- Row major layout: err_bnds_norm[err - 1 + (i - 1)*n_err_bnds]

```
err_bnds_comp
```

Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params [2] = $0.0)$, then err_bnds_comp is not accessed.
err=1
err=2
err=3
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors.
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) *$ dlamch (ε) for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are

$$
\|z\|_{1} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of $a^{*} \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1 .

Output parameter only if the input contains erroneous values, namely, in params[0], params[1], and params [2]. In such a case, the corresponding elements of params are filled with default values on output.

Return Values

This function returns a value info.
If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, parameter i had an illegal value.
If 0 < info $\leq n$: $U_{\text {info, info }}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with $k>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params[2] $=0.0$, then the j-th
right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that for column major layout err_bnds_norm[j-1] = 0.0 or err_bnds_comp[j-1] = 0.0; or for row major layout err_bnds_norm[(j - 1)*n_err_bnds] = 0.0 or err_bnds_comp[(j-1)*n_err_bnds] = 0.0). See the definition of err_bnds_norm and err_bnds_comp for err = 1. To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

See Also

Matrix Storage Schemes

?gtrfs

Refines the solution of a system of linear equations
with a tridiagonal coefficient matrix and estimates its error.

Syntax

```
lapack_int LAPACKE_sgtrfs( int matrix_layout, char trans, lapack_int n, lapack_int
nrhs, const float* dl, const float* d, const float* du, const float* dlf, const float*
df, const float* duf, const float* du2, const lapack_int* ipiv, const float* b,
lapack_int ldb, float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dgtrfs( int matrix_layout, char trans, lapack_int n, lapack_int
nrhs, const double* dl, const double* d, const double* du, const double* dlf, const
double* df, const double* duf, const double* du2, const lapack_int* ipiv, const double*
b, lapack_int ldb, double* x, lapack_int ldx, double* ferr, double* berr );
lapack_int LAPACKE_cgtrfs( int matrix_layout, char trans, lapack_int n, lapack_int
nrhs, const lapack_complex_float* dl, const lapack_complex_float* d, const
lapack_complex_float* du, const lapack_complex_float* dlf, const lapack_complex_float*
df, const lapack_complex_float* duf, const lapack_complex_float* du2, const lapack_int*
ipiv, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x,
lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_zgtrfs( int matrix_layout, char trans, lapack_int n, lapack_int
nrhs, const lapack_complex_double* dl, const lapack_complex_double* d, const
lapack_complex_double* du, const lapack_complex_double* dlf, const
lapack_complex_double* df, const lapack_complex_double* duf, const
lapack_complex_double* du2, const lapack_int* ipiv, const lapack_complex_double* b,
lapack_int ldb, lapack_complex_double* x, lapack_int ldx, double* ferr, double* berr );
```


Include Files

- mkl.h

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ or $A^{T} * X$ $=B$ or $A^{H *} X=B$ with a tridiagonal matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| /\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} / \|$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?gttrf
- call the solver routine ?gttrs.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
trans	Must be 'N' or 'T' or 'C'.
	Indicates the form of the equations:
	If trans $=$ ' N ', the system has the form $A * X=B$.
	If trans $=$ ' T ', the system has the form $A^{T * X}=B$.
	If trans $=$ ' C', the system has the form $A^{H * X}=B$.
n	The order of the matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides, that is, the number of columns of the matrix $B ; n r h s \geq 0$.
dl	Array dl of size n-1 contains the subdiagonal elements of A.
d	Array d of size n contains the diagonal elements of A.
$d u$	Array du of size $n-1$ contains the superdiagonal elements of A.
dlf	Array dlf of size $n-1$ contains the $(n-1)$ multipliers that define the matrix L from the $L U$ factorization of A as computed by ?gttrf.
$d f$	Array $d f$ of size n contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.
duf	Array duf of size $n-1$ contains the $(n-1)$ elements of the first superdiagonal of U.
du2	Array du2 of size $n-2$ contains the $(n-2)$ elements of the second superdiagonal of U.
b	Array b (size $\max \left(1, l d b^{*} n r h s\right)$ for column major layout and $\max (1$, $l d b^{*} n$) for row major layout) contains the right-hand side matrix B.
x	Array x (size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and $\max (1$, $I d x^{*} n$) contains the solution matrix X, as computed by ?gttrs.
1 db	The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.
$1 d x$	The leading dimension of x; $I d x \geq \max (1, n)$ for column major layout and $I d x \geqq n r h s$ for row major layout.
ipiv	Array, size at least max (1, n). The ipiv array, as returned by ? gttrf.

Output Parameters

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans $=' N$ ', the system has the form $A * X=B$.
If trans $=$ ' T ', the system has the form $A^{T *} X=B$.
If trans $=' C$ ', the system has the form $A^{H * X}=B$.
The order of the matrix $A ; n \geq 0$.
The number of right-hand sides, that is, the number of columns of the matrix $B ; n r h s \geq 0$.

Array $d l$ of size $n-1$ contains the subdiagonal elements of A.
Array d of size n contains the diagonal elements of A.
Array du of size $n-1$ contains the superdiagonal elements of A.
Array dlf of size $n-1$ contains the ($n-1$) multipliers that define the matrix L from the $L U$ factorization of A as computed by ? gttrf.

Array $d f$ of size n contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.

Array duf of size $n-1$ contains the ($n-1$) elements of the first superdiagonal of U.

Array du2 of size $n-2$ contains the $(n-2)$ elements of the second superdiagonal of U.

Array b (size $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and $\max (1$, $I d b^{*} n$) for row major layout) contains the right-hand side matrix B.

Array x (size $\max \left(1, / d x^{*} n r h s\right)$ for column major layout and max(1, $l d x^{*} n$) contains the solution matrix X, as computed by ?gttrs.

The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

The leading dimension of x; $I d x \geq \max (1, n)$ for column major layout Array, size at least max $(1, n)$. The ipiv array, as returned by ? gttrf.

The refined solution matrix X.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

See Also

Matrix Storage Schemes

?porfs

Refines the solution of a system of linear equations with a symmetric (Hermitian) positive-definite coefficient matrix and estimates its error.

Syntax

```
lapack_int LAPACKE_sporfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const float* a, lapack_int lda, const float* af, lapack_int ldaf, const float* b,
lapack_int ldb, float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dporfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const double* a, lapack_int lda, const double* af, lapack_int ldaf, const double* b,
lapack_int ldb, double* x, lapack_int ldx, double* ferr, double* berr );
lapack_int LAPACKE_cporfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_float* a, lapack_int lda, const lapack_complex_float* af,
lapack_int ldaf, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float*
x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_zporfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_double* a, lapack_int lda, const lapack_complex_double* af,
lapack_int ldaf, const lapack_complex_double* b, lapack_int ldb, lapack_complex_double*
x, lapack_int ldx, double* ferr, double* berr );
```


Include Files

- mkl.h

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a symmetric (Hermitian) positive definite matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} / \|$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).
Before calling this routine:

- call the factorization routine ?potrf
- call the solver routine ?potrs.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	The order of the matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides; $n r h s \geq 0$.
a	Array a (size $\max \left(1, I d a_{n}\right)$) contains the original matrix A, as supplied to ?potrf.
af	Array af (size max $\left.\left(1, I d a f^{*} n\right)\right)$ contains the factored matrix A, as returned by ?potrf.
b	Array bof size max(1, ldb*nrhs) for column major layout and max(1, $l d b^{*}$) for row major layout contains the right-hand side matrix B. The second dimension of b must be at least max ($1, \quad n r h s$).
x	Array x of size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and max(1, $I d x_{n}$) for row major layout contains the solution matrix X.
Ida	The leading dimension of $a ; 1 d a \geq \max (1, n)$.
Idaf	The leading dimension of $a f ; 1 d a \pm \geq \max (1, n)$.
1 db	The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.
$1 d x$	The leading dimension of x; $I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Output Parameters

X
ferr, berr

The refined solution matrix X.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 \mathrm{n}^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations $A^{\star} X=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes

?porfsx
 Uses extra precise iterative refinement to improve the solution to the system of linear equations with a symmetric/Hermitian positive-definite coefficient matrix A and provides error bounds and backward error estimates.

Syntax

```
lapack_int LAPACKE_sporfsx( int matrix_layout, char uplo, char equed, lapack_int n,
lapack_int nrhs, const float* a, lapack_int lda, const float* af, lapack_int ldaf,
const float* s, const float* b, lapack_int ldb, float* x, lapack_int ldx, float* rcond,
float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp,
lapack_int nparams, float* params );
lapack_int LAPACKE_dporfsx( int matrix_layout, char uplo, char equed, lapack_int n,
lapack_int nrhs, const double* a, lapack_int lda, const double* af, lapack_int ldaf,
const double* s, const double* b, lapack_int ldb, double* x, lapack_int ldx, double*
rcond, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double*
err_bnds_comp, lapack_int nparams, double* params );
lapack_int LAPACKE_cporfsx( int matrix_layout, char uplo, char equed, lapack_int n,
lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* af, lapack_int ldaf, const float* s, const lapack_complex_float*
b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx, float* rcond, float* berr,
lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams,
float* params );
lapack_int LAPACKE_zporfsx( int matrix_layout, char uplo, char equed, lapack_int n,
lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* af, lapack_int ldaf, const double* s, const
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx,
double* rcond, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double*
err_bnds_comp, lapack_int nparams, double* params );
```


Include Files

- mkl.h

Description

The routine improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed and s below. In this case, the solution and error bounds returned are for the original unequilibrated system.

Input Parameters

matrix_layout	Specifies whether two-dimensional array storage is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored:
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
equed	Must be 'N' or 'Y'.
	Specifies the form of equilibration that was done to A before calling this routine.
	If equed = ' N ', no equilibration was done.
	If equed = 'Y', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$. The right-hand side B has been changed accordingly.
n	The number of linear equations; the order of the matrix A; $n \geq 0$.
nrhs	The number of right-hand sides; the number of columns of the matrices B and X; $n r h s \geq 0$.
a	The array a (size $\max \left(1, I d a_{n}\right)$) contains the symmetric/Hermitian matrix A as specified by uplo. If uplo $=$ ' U ', the leading n-by- n upper triangular part of a contains the upper triangular part of the matrix A and the strictly lower triangular part of a is not referenced. If uplo = 'L', the leading n -by- n lower triangular part of a contains the lower triangular part of the matrix A and the strictly upper triangular part of a is not referenced.
af	The array $a f\left(\right.$ size $\left.\max \left(1, I d^{\prime} f_{n}\right)\right)$ contains the triangular factor L or U from the Cholesky factorization $A=U^{\top *} U$ or $A=L^{*} L^{\top}$ as computed by spotrf for real flavors or dpotrf for complex flavors.
b	The array b (size $\max \left(1, I d b^{*} n r h s\right.$ for column major layout and max $(1$, $l d{ }^{*}{ }_{n}$) for row major layout) contains the matrix B whose columns are the right-hand sides for the systems of equations.
Ida	The leading dimension of a; $1 d a \geq \max (1, n)$.
Idaf	The leading dimension of $a f ; 1 d a \leq$ max $(1, n)$.
s	Array of size n. The array s contains the scale factors for A.
	If equed $=$ 'N', s is not accessed.
	If equed $=$ 'Y', each element of s must be positive.
	Each element of s should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

```
ldb
x
ldx
n_err_bnds
```

nparams
params

The leading dimension of the array b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Array, size $\max \left(1, I d x_{n r h s}\right)$ for column major layout and $\max \left(1, I d x_{n}\right)^{\prime}$ for row major layout.
The solution matrix X as computed by ?potrs
The leading dimension of the output array $x ; I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

Array, size nparams. Specifies algorithm parameters. If an entry is less than 0.0 , that entry will be filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for highernumbered parameters. If defaults are acceptable, you can pass nparams = 0 , which prevents the source code from accessing the params argument.
params [0] : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).
$=0.0 \quad$ No refinement is performed and no error bounds are computed.
=1.0 Use the double-precision refinement algorithm, possibly with doubled-single computations if the compilation environment does not support double precision.
(Other values are reserved for future use.)
params [1] : Maximum number of residual computations allowed for refinement.

Default
Aggressive

10.0

Set to 100.0 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params[2]: Flag determining if the code will attempt to find a solution with a small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

The improved solution matrix X.

```
rcond
berr
err_bnds_norm
```

Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

Array, size at least max ($1, n r h s$). Contains the componentwise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:

Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.

```
err=1
err=2
err=3
```

"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors.
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are

$$
\|z\|_{0} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1 .

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in:

- Column major layout: err_bnds_norm[(err - 1)*nrhs +i-1].
- Row major layout: err_bnds_norm[err - $1+(i-1) \star n_{-} e r r_{\text {_ }}$ bnds]

Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the i-th solution vector:

$$
\max _{j} \frac{\left|X t r u e_{j i}-X_{j i}\right|}{\left|X_{j i}\right|}
$$

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params [2] = $0.0)$, then err_bnds_comp is not accessed.

$e r r=1$	"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n)*slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors.				
err $=2$	"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.				
err=3	Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * s l a m c h(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are				
	$\\|Z\\|_{\infty} \cdot\left\\|Z^{-1}\right\\|_{\infty}$				
	Let $z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of a^{\star} diag (x) by a power of the radix so all absolute row sums of z are approximately 1 .				

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in:

- Column major layout: err_bnds_comp[(err - 1)*nrhs + i - 1].
- Row major layout: err_bnds_comp[err - 1 + (i - 1)*n_err_bnds]
params
Output parameter only if the input contains erroneous values, namely in params [0], params [1], or params [2]. In such a case, the corresponding elements of params are filled with default values on output.

Return Values

This function returns a value info.
If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, parameter i had an illegal value.
If 0 < info n : $U_{\text {info, info }}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with $k>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params [2] $=0.0$, then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that for column major layout err_bnds_norm[j-1] = 0.0 or err_bnds_comp[j-1] = 0.0; or for row major
 See the definition of err_bnds_norm and err_bnds_comp for err $=1$. To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

See Also

Matrix Storage Schemes

?pprfs

Refines the solution of a system of linear equations with a symmetric (Hermitian) positive-definite coefficient matrix stored in a packed format and estimates its error.

Syntax

```
lapack_int LAPACKE_spprfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const float* ap, const float* afp, const float* b, lapack_int ldb, float* x, lapack_int
ldx, float* ferr, float* berr );
lapack_int LAPACKE_dpprfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const double* ap, const double* afp, const double* b, lapack_int ldb, double* x,
lapack_int ldx, double* ferr, double* berr );
lapack_int LAPACKE_cpprfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_float* ap, const lapack_complex_float* afp, const
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* ferr, float* berr );
lapack_int LAPACKE_zpprfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_double* ap, const lapack_complex_double* afp, const
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx,
double* ferr, double* berr );
```


Include Files

- mkl.h

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a symmetric (Hermitian) positive definite matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:

$$
\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right| \text { such that }(A+\delta A) x=(b+\delta b) .
$$

Finally, the routine estimates the component-wise forward error in the computed solution

```
|x - xe| | | /||x||\infty
```

where x_{e} is the exact solution.
Before calling this routine:

- call the factorization routine ?pptrf
- call the solver routine ?pptrs.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	The order of the matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides; nrhs ≥ 0.
$a p$	$a p$ contains the original matrix A in a packed format, as supplied to ?pptrf. The dimension of ap must be at least $\max (1, n(n+1) / 2)$.
$a f p$	afp contains the factored matrix A in a packed format, as returned by ?pptrf. The dimension of afp must be at least max $(1, n(n+1) / 2)$.
b	Array b of size $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and $\max \left(1, l d b^{*}\right)$ for row major layout contains the right-hand side matrix B.
x	Array x of size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and max(1, $I d x^{*} n$) for row major layout contains the solution matrix X.
1 db	The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq$ nrhs for row major layout.
$1 d x$	The leading dimension of x; $I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Output Parameters

```
x
ferr, berr
```

The refined solution matrix X.
Arrays, size at least max (1, nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.

Return Values

This function returns a value info.
If inforo, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 .

Estimating the forward error involves solving a number of systems of linear equations $A^{\star} X=b$; the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

See Also
 Matrix Storage Schemes

?pbrfs

Refines the solution of a system of linear equations
with a band symmetric (Hermitian) positive-definite coefficient matrix and estimates its error.

Syntax

```
lapack_int LAPACKE_spbrfs( int matrix_layout, char uplo, lapack_int n, lapack_int kd,
lapack_int nrhs, const float* ab, lapack_int ldab, const float* afb, lapack_int ldafb,
const float* b, lapack_int ldb, float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dpbrfs( int matrix_layout, char uplo, lapack_int n, lapack_int kd,
lapack_int nrhs, const double* ab, lapack_int ldab, const double* afb, lapack_int
ldafb, const double* b, lapack_int ldb, double* x, lapack_int ldx, double* ferr, double*
berr );
lapack_int LAPACKE_cpbrfs( int matrix_layout, char uplo, lapack_int n, lapack_int kd,
lapack_int nrhs, const lapack_complex_float* ab, lapack_int ldab, const
lapack_complex_float* afb, lapack_int ldafb, const lapack_complex_float* b, lapack_int
ldb, lapack_complex_float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_zpbrfs( int matrix_layout, char uplo, lapack_int n, lapack_int kd,
lapack_int nrhs, const lapack_complex_double* ab, lapack_int ldab, const
lapack_complex_double* afb, lapack_int ldafb, const lapack_complex_double* b,
lapack_int ldb, lapack_complex_double* x, lapack_int ldx, double* ferr, double* berr );
```


Include Files

- mkl.h

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a symmetric (Hermitian) positive definite band matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\left.\left|\left|x-x_{e}\right|\right|\right|_{\infty} /| |$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?p.btrf
- call the solver routine ?pbtrs.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	The order of the matrix $A ; n \geq 0$.
$k d$	The number of superdiagonals or subdiagonals in the matrix $A ; k d \geq 0$.
nrhs	The number of right-hand sides; $n r h s \geq 0$.
$a b$	Array $a b$ (size $\max \left(I d a b^{*} n\right)$) contains the original band matrix A, as supplied to ?pbtrf.
$a f b$	Array $a f b$ (size $\max \left(\operatorname{ldafb}^{*}\right)$) contains the factored band matrix A, as returned by ?pbtrf.
b	Array b of size max(1, ldb* nrhs) for column major layout and $\max \left(1, l d b^{*}\right)$ for row major layout contains the right-hand side matrix B.
x	Array x of size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and max(1, $I d x^{*} n$) for row major layout contains the solution matrix X.
Idab	The leading dimension of $a b ; / 2 a b \geq k d+1$.
Idafb	The leading dimension of $a f b$; Idafb $\geq k d+1$.
1 db	The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $l d b \geq n r h s$ for row major layout.

$1 d x$

Output Parameters

x
ferr, berr

The leading dimension of x; $I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

The refined solution matrix X.
Arrays, size at least max (1, nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
For each right-hand side, computation of the backward error involves a minimum of $8 n^{*} k d$ floating-point operations (for real flavors) or $32 n^{\star} k d$ operations (for complex flavors). In addition, each step of iterative refinement involves $12 n^{\star} k d$ operations (for real flavors) or $48 n^{\star} k d$ operations (for complex flavors); the number of iterations may range from 1 to 5 .
Estimating the forward error involves solving a number of systems of linear equations $A^{*}{ }_{X}=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $4 n^{*} k d$ floating-point operations for real flavors or $16 n^{\star} k d$ for complex flavors.

See Also

Matrix Storage Schemes
?ptrfs
Refines the solution of a system of linear equations with a symmetric (Hermitian) positive-definite tridiagonal coefficient matrix and estimates its error.

Syntax

```
lapack_int LAPACKE_sptrfs( int matrix_layout, lapack_int n, lapack_int nrhs, const
float* d, const float* e, const float* df, const float* ef, const float* b, lapack_int
ldb, float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dptrfs( int matrix_layout, lapack_int n, lapack_int nrhs, const
double* d, const double* e, const double* df, const double* ef, const double* b,
lapack_int ldb, double* x, lapack_int ldx, double* ferr, double* berr );
lapack_int LAPACKE_cptrfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const float* d, const lapack_complex_float* e, const float* df, const
lapack_complex_float* ef, const lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_zptrfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const double* d, const lapack_complex_double* e, const double* df, const
lapack_complex_double* ef, const lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* x, lapack_int ldx, double* ferr, double* berr );
```


Include Files

- mkl.h

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a symmetric (Hermitian) positive definite tridiagonal matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right| \infty /| |$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?pttrf
- call the solver routine ?pttrs.

Input Parameters

matrix_layout uplo
n
nrhs
d
$d f$
$e, e f, b, x$

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Used for complex flavors only. Must be 'U' or 'L'.
Specifies whether the superdiagonal or the subdiagonal of the tridiagonal matrix A is stored and how A is factored:

If uplo = 'U', the array e stores the superdiagonal of A, and A is factored as $U^{H *} D * U$.

If uplo = 'L', the array e stores the subdiagonal of A, and A is factored as $L^{\star} D^{\star} L^{H}$.

The order of the matrix $A ; n \geq 0$.
The number of right-hand sides; nrhs ≥ 0.
The array d (size n) contains the n diagonal elements of the tridiagonal matrix A.

The array $d f$ (size n) contains the n diagonal elements of the diagonal matrix D from the factorization of A as computed by ?pttrf.

The array e (size $n-1$) contains the ($n-1$) off-diagonal elements of the tridiagonal matrix A (see uplo).

The array ef (size $n-1$) contains the ($n-1$) off-diagonal elements of the unit bidiagonal factor U or L from the factorization computed by ?pttrf (see uplo).

The array b of size $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and $\max \left(1, l d b_{n}\right)$ for row major layout contains the matrix B whose columns are the right-hand sides for the systems of equations.

1 db
$1 d x$

The array x of size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and $\max \left(1, l d x_{n}\right)$ for row major layout contains the solution matrix X as computed by ?pttrs.

The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

The leading dimension of x; $I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Output Parameters

X
ferr, berr

The refined solution matrix X.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

See Also

Matrix Storage Schemes

?syrfs

Refines the solution of a system of linear equations with a symmetric coefficient matrix and estimates its error.

Syntax

```
lapack_int LAPACKE_ssyrfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const float* a, lapack_int lda, const float* af, lapack_int ldaf, const lapack_int*
ipiv, const float* b, lapack_int ldb, float* x, lapack_int ldx, float* ferr, float*
berr );
lapack_int LAPACKE_dsyrfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const double* a, lapack_int lda, const double* af, lapack_int ldaf, const lapack_int*
ipiv, const double* b, lapack_int ldb, double* x, lapack_int ldx, double* ferr, double*
berr );
lapack_int LAPACKE_csyrfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_float* a, lapack_int lda, const lapack_complex_float* af,
lapack_int ldaf, const lapack_int* ipiv, const lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_zsyrfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_double* a, lapack_int lda, const lapack_complex_double* af,
lapack_int ldaf, const lapack_int* ipiv, const lapack_complex_double* b, lapack_int
ldb, lapack_complex_double* x, lapack_int ldx, double* ferr, double* berr );
```


Include Files

- mkl.h

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a symmetric full-storage matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:

```
| \deltaa ij| \leq | | aij|, | \deltabi
```

Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} / \|$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?sytrf
- call the solver routine ?sytrs.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	The order of the matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides; nrhs ≥ 0.
a	Array $a\left(\right.$ size $\left.\max \left(1, l d a_{n}\right)\right)$ contains the original matrix A, as supplied to ?sytrf.
af	Array $a f\left(\right.$ size $\left.\max \left(1, ~ l d a f^{*}\right)\right)$ contains the factored matrix A, as returned by ?sytrf.
b	Array b of size $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and $\max \left(1, l d b^{*}\right)$ for row major layout contains the right-hand side matrix B.
x	Array x of size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and max(1, $l d x^{*} n$) for row major layout contains the solution matrix X.
Ida	The leading dimension of a; lda $\geq \max (1, n)$.
ldaf	The leading dimension of $a f ; 1 d a \pm \geq \max (1, n)$.
1 db	The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.
$1 d x$	The leading dimension of x; $I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.
ipiv	Array, size at least max $(1, n)$. The ipiv array, as returned by ?sytrf.

Output Parameters

```
x
ferr, berr
```

The refined solution matrix X.
Arrays, size at least max (1, nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations $A^{\star} X=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes

?syrfsx

Uses extra precise iterative refinement to improve the solution to the system of linear equations with a symmetric indefinite coefficient matrix A and provides error bounds and backward error estimates.

Syntax

```
lapack_int LAPACKE_ssyrfsx( int matrix_layout, char uplo, char equed, lapack_int n,
lapack_int nrhs, const float* a, lapack_int lda, const float* af, lapack_int ldaf,
const lapack_int* ipiv, const float* s, const float* b, lapack_int ldb, float* x,
lapack_int ldx, float* rcond, float* berr, lapack_int n_err_bnds, float* err_bnds_norm,
float* err_bnds_comp, lapack_int nparams, float* params );
lapack_int LAPACKE_dsyrfsx( int matrix_layout, char uplo, char equed, lapack_int n,
lapack_int nrhs, const double* a, lapack_int lda, const double* af, lapack_int ldaf,
const lapack_int* ipiv, const double* s, const double* b, lapack_int ldb, double* x,
lapack_int ldx, double* rcond, double* berr, lapack_int n_err_bnds, double*
err_bnds_norm, double* err_bnds_comp, lapack_int nparams, double* params );
lapack_int LAPACKE_csyrfsx( int matrix_layout, char uplo, char equed, lapack_int n,
lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* af, lapack_int ldaf, const lapack_int* ipiv, const float* s,
const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* rcond, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float*
err_bnds_comp, lapack_int nparams, float* params );
lapack_int LAPACKE_zsyrfsx( int matrix_layout, char uplo, char equed, lapack_int n,
lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* af, lapack_int ldaf, const lapack_int* ipiv, const double* s,
```

```
const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int
ldx, double* rcond, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double*
err_bnds_comp, lapack_int nparams, double* params );
```

Include Files

- mkl.h

Description

The routine improves the computed solution to a system of linear equations when the coefficient matrix is symmetric indefinite, and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed and s below. In this case, the solution and error bounds returned are for the original unequilibrated system.

Input Parameters

matrix_layout
uplo
equed
n
nrhs af, b
a,

Specifies whether two-dimensional array storage is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
Must be 'N' or 'Y'.
Specifies the form of equilibration that was done to A before calling this routine.

If equed $=$ ' N ', no equilibration was done.
If equed = 'Y', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$. The right-hand side B has been changed accordingly.

The number of linear equations; the order of the matrix $A ; n \geq 0$.
The number of right-hand sides; the number of columns of the matrices B and X; nrhs ≥ 0.

The array a (size $\max \left(1, I d a^{*} n\right)$) contains the symmetric/Hermitian matrix A as specified by uplo. If uplo $=$ ' U ', the leading n-by- n upper triangular part of a contains the upper triangular part of the matrix A and the strictly lower triangular part of a is not referenced. If uplo = 'L', the leading n -by- n lower triangular part of a contains the lower triangular part of the matrix A and the strictly upper triangular part of a is not referenced.
The array $a f\left(\right.$ size $\left.\max \left(1, I \operatorname{daf}_{n}\right)\right)$ contains the triangular factor L or U from the Cholesky factorization $A=U^{\top} * U$ or $A=L^{*} L^{\top}$ as computed by ssytrf for real flavors or dsytrf for complex flavors.

The array b (size $\max \left(1, I d b^{*} n r h s\right.$) for column major layout and max(1, $I d b_{n}$) for row major layout) contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $a ; 1 d a \geq \max (1, n)$.
The leading dimension of $a f ; l d a f \geq \max (1, n)$.
Array, size at least max $(1, n)$. Contains details of the interchanges and the block structure of D as determined by ssytrf for real flavors or dsytrf for complex flavors.

Array, size (n). The array s contains the scale factors for A.
If equed $=$ ' N ', s is not accessed.
If equed $=$ ' Y', each element of s must be positive.
Each element of s should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

The leading dimension of the array $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq$ nrhs for row major layout.

Array, of size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and max(1, $l d x_{n}$) for row major layout.

The solution matrix X as computed by ?sytrs
The leading dimension of the output array $x ; I d x \geq \max (1, n)$ for column major layout and $/ d x \geq n r h s$ for row major layout.

Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

Array, size nparams. Specifies algorithm parameters. If an entry is less than 0.0 , that entry will be filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for highernumbered parameters. If defaults are acceptable, you can pass nparams $=$ 0 , which prevents the source code from accessing the params argument.
params [0] : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).
$=0.0 \quad$ No refinement is performed and no error bounds are computed.
$=1.0$
Use the double-precision refinement algorithm, possibly with doubled-single computations if the compilation environment does not support double precision.
(Other values are reserved for future use.)
params [1] : Maximum number of residual computations allowed for refinement.

Default
Aggressive
10.0

Set to 100.0 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params [2] : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

Output Parameters

x
rcond
berr
err_bnds_norm
The improved solution matrix X.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

Array, size at least max ($1, n r h s$). Contains the componentwise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:
Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
$e r r=1$
err $=2$
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors.
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is
greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * s l a m c h(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{6} \cdot\left\|z^{-1}\right\|_{0}
$$

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in:

- Column major layout: err_bnds_norm[(err - 1)*nrhs + i - 1].
- Row major layout: err_bnds_norm[err - $\left.1+(i-1) \star n_{-} e r r_{\text {_bnds }}\right]$

Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the i-th solution vector:

$$
\max _{j} \frac{\left|X t r u e_{j i}-X_{j i}\right|}{\left|X_{j i}\right|}
$$

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params [2] = 0.0), then err_bnds_comp is not accessed.
$e r r=1$
err=2
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors.
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{1} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of $a^{\star} \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1 .

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in:

- Column major layout: err_bnds_comp[(err - 1)*nrhs + i - 1].
- Row major layout: err_bnds_comp[err - 1 + (i - 1)*n_err_bnds]
params
Output parameter only if the input contains erroneous values, namely, in params[0], params[1], params[2]. In such a case, the corresponding elements of params are filled with default values on output.

Return Values

This function returns a value info.
If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, parameter i had an illegal value.
If 0 < info $\leq n: U_{\text {info, info }}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with $k>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params [2] $=0.0$, then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that for column major layout err_bnds_norm[j-1] $=0.0$ or err_bnds_comp $[j-1]=0.0$; or for row major layout err_bnds_norm[(j-1)*n_err_bnds] $=0.0$ or err_bnds_comp $\left.\left[(j-1){ }^{*} n_{-} e r r_{-} b n d s\right]=0.0\right)$. See the definition of err_bnds_norm and err_bnds_comp for err = 1. To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

See Also

Matrix Storage Schemes

?herfs
Refines the solution of a system of linear equations with a complex Hermitian coefficient matrix and estimates its error.

Syntax

```
lapack_int LAPACKE_cherfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_float* a, lapack_int lda, const lapack_complex_float* af,
lapack_int ldaf, const lapack_int* ipiv, const lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_zherfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_double* a, lapack_int lda, const lapack_complex_double* af,
lapack_int ldaf, const lapack_int* ipiv, const lapack_complex_double* b, lapack_int
ldb, lapack_complex_double* x, lapack_int ldx, double* ferr, double* berr );
```


Include Files

- mkl.h

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a complex Hermitian full-storage matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} /| |$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).
Before calling this routine:

- call the factorization routine ?hetrf
- call the solver routine ?hetrs.

Input Parameters

```
matrix_layout
uplo
n
nrhs
a,af,b,x
```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
The order of the matrix $A ; n \geq 0$.
The number of right-hand sides; nrhs ≥ 0.
Arrays:
$a\left(\right.$ size $\left.\max \left(1, I d a^{*} n\right)\right)$ contains the original matrix A, as supplied to ?hetrf.
$a f\left(\right.$ size $\left.\max \left(1, I d a f^{*} n\right)\right)$ contains the factored matrix A, as returned by ?hetrf.
bof size $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and max(1, $l d b^{*}$) for row major layout contains the right-hand side matrix B.

	xof size $\max \left(1, l d x^{*} n r h s\right)$ for column major layout and max(1, $l d x^{*} n$) for row major layout contains the solution matrix X.
Ida	The leading dimension of $a ; 1 d a \geq \max (1, n)$.
ldaf	The leading dimension of $a f ; 1 d a \geq \max (1, n)$.
$l d b$	The leading dimension of b; Id $b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.
$1 d x$	The leading dimension of x; $I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.
ipiv	Array, size at least max $(1, n)$. The ipiv array, as returned by ?hetrf.

Output Parameters

```
X
ferr, berr
```

The refined solution matrix X.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $16 n^{2}$ operations. In addition, each step of iterative refinement involves $24 n^{2}$ operations; the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations $A^{*} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $8 n^{2}$ floating-point operations.

The real counterpart of this routine is ?ssyrfs/?dsyrfs

See Also

Matrix Storage Schemes
?herfsx
Uses extra precise iterative refinement to improve the solution to the system of linear equations with a symmetric indefinite coefficient matrix A and provides error bounds and backward error estimates.

Syntax

```
lapack_int LAPACKE_cherfsx( int matrix_layout, char uplo, char equed, lapack_int n,
lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* af, lapack_int ldaf, const lapack_int* ipiv, const float* s,
```

```
const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* rcond, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float*
err_bnds_comp, lapack_int nparams, float* params );
lapack_int LAPACKE_zherfsx( int matrix_layout, char uplo, char equed, lapack_int n,
lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* af, lapack_int ldaf, const lapack_int* ipiv, const double* s,
const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int
ldx, double* rcond, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double*
err_bnds_comp, lapack_int nparams, double* params );
```


Include Files

- mkl.h

Description

The routine improves the computed solution to a system of linear equations when the coefficient matrix is Hermitian indefinite, and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed and s below. In this case, the solution and error bounds returned are for the original unequilibrated system.

Input Parameters

```
matrix_layout
uplo Must be 'U' or 'L'.
    Indicates whether the upper or lower triangular part of A is stored:
    If uplo = 'U', the upper triangle of A is stored.
    If uplo = 'L', the lower triangle of A is stored.
    Must be 'N' or 'Y'.
    Specifies the form of equilibration that was done to A before calling this
    routine.
    If equed = 'N', no equilibration was done.
    If equed = 'Y', both row and column equilibration was done, that is, A has
    been replaced by diag(s)*A* diag(s).The right-hand side B has been
    changed accordingly.
    The number of linear equations; the order of the matrix A; n\geq0.
    The number of right-hand sides; the number of columns of the matrices B
    and X; nrhs\geq0.
The array a of size \(\max \left(1, I d a^{*}\right)\) contains the Hermitian matrix \(A\) as specified by uplo. If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\) and the strictly lower
```

Ida
Idaf
ipiv

S

1 db

X

Idx
n_err_bnds
nparams
params
triangular part of a is not referenced. If uplo $=$ ' L' , the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A and the strictly upper triangular part of a is not referenced.
The array $a f$ of size $\max \left(1, I d a f_{n}\right)$ contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A $=U^{\star} D^{\star} U^{\mathbb{T}}$ or $A=L^{\star} D^{\star} L^{\mathrm{T}}$ as computed by ssytrf for cherfsx or dsytrf for zherfsx.

The array b of size $\max \left(1, I d b^{*} n r h s\right)$ for row major layout and max(1, $I d^{*}{ }_{n}$) for column major layout contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $a ; 1 d a \geq \max (1, n)$.
The leading dimension of $a f ; l d a f \geq \max (1, n)$.
Array, size at least max $(1, n)$. Contains details of the interchanges and the block structure of D as determined by ssytrf for real flavors or dsytrf for complex flavors.

Array, size (n). The array s contains the scale factors for A.
If equed $=$ ' N ', s is not accessed.
If equed $=$ ' Y ', each element of s must be positive.
Each element of s should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

The leading dimension of the array $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq$ nrhs for row major layout.

Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and $\max \left(1, I d x^{*} n\right)$ for row major layout.

The solution matrix X as computed by ?hetrs
The leading dimension of the output array $x ; I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

Array, size nparams. Specifies algorithm parameters. If an entry is less than 0.0 , that entry will be filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for highernumbered parameters. If defaults are acceptable, you can pass nparams $=$ 0 , which prevents the source code from accessing the params argument.
params [0] : Whether to perform iterative refinement or not. Default: 1.0 (for cherfsx), 1.0D+0 (for zherfsx).

$$
\begin{array}{ll}
=0.0 & \begin{array}{l}
\text { No refinement is performed and no error bounds } \\
\text { are computed. }
\end{array} \\
=1.0 & \begin{array}{l}
\text { Use the double-precision refinement algorithm, } \\
\text { possibly with doubled-single computations if the } \\
\text { compilation environment does not support } \\
\text { double precision. }
\end{array}
\end{array}
$$

(Other values are reserved for future use.)
params [1] : Maximum number of residual computations allowed for refinement.

Default 10
Aggressive Set to 100 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params[2]: Flag determining if the code will attempt to find a solution with a small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

Output Parameters

X
rcond
berr
err_bnds_norm

The improved solution matrix X.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

Array, size at least max ($1, n r h s$). Contains the componentwise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.
Array of size $n r h s^{*} n _e r r _b n d s$. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:
Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
err=1
err=2
err $=3$
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for cherfsx and $\operatorname{sqrt}(n) * \operatorname{damch}(\varepsilon)$ for zherfsx.
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for cherfsx and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for zherfsx. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{6} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1.

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in:

- Column major layout: err_bnds_norm[(err - 1)*nrhs + i - 1].
- Row major layout: err_bnds_norm[err - $\left.1+(i-1) * n_{-} e r r _b n d s\right]$
err_bnds_comp
Array of size $n r h s^{*} n _e r r _b n d s$. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

$$
\max _{j} \frac{\left|X t r u e_{j i}-X_{j i}\right|}{\left|X_{j i}\right|}
$$

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params [2] = $0.0)$, then err_bnds_comp is not accessed.
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (n) *slamch (ε) for cherfsx and $\operatorname{sqrt}(n) * \operatorname{dlamch}(\varepsilon)$ for zherfsx.
err $=2$
err=3
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for cherfsx and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for zherfsx. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * s l a m c h(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{1} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{\star}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of $a \star \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1 .

Output parameter only if the input contains erroneous values, namely, in params [0], params [1], params [2]. In such a case, the corresponding elements of params are filled with default values on output.

Return Values

This function returns a value info.
If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, parameter i had an illegal value.
If $0<i n f o \leq n: U_{i n f o, i n f o}$ is exactly zero. The factorization has been completed, but the factor D is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with $k>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params [2] $=0.0$, then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that for column major layout err_bnds_norm[j-1] $=0.0$ or err_bnds_comp[j-1] = 0.0; or for row major layout err_bnds_norm[(j-1)*n_err_bnds] = 0.0 or err_bnds_comp [(j-1)*n_err_bnds] = 0.0). See the definition of err_bnds_norm and err_bnds_comp for err = 1. To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

See Also

Matrix Storage Schemes

?sprfs

Refines the solution of a system of linear equations with a packed symmetric coefficient matrix and estimates the solution error.

Syntax

```
lapack_int LAPACKE_ssprfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const float* ap, const float* afp, const lapack_int* ipiv, const float* b, lapack_int
ldb, float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dsprfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const double* ap, const double* afp, const lapack_int* ipiv, const double* b,
lapack_int ldb, double* x, lapack_int ldx, double* ferr, double* berr );
lapack_int LAPACKE_csprfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_float* ap, const lapack_complex_float* afp, const lapack_int*
ipiv, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x,
lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_zsprfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_double* ap, const lapack_complex_double* afp, const lapack_int*
ipiv, const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x,
lapack_int ldx, double* ferr, double* berr );
```


Include Files

- mkl.h

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a packed symmetric matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} / \|$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).
Before calling this routine:

- call the factorization routine ?sptrf
- call the solver routine ?sptrs.

Input Parameters

```
matrix_layout
uplo Must be 'U' or 'L'.
    If uplo = 'U', the upper triangle of A is stored.
    If uplo = 'L', the lower triangle of A is stored.
    The order of the matrix A; n\geq0.
    The number of right-hand sides; nrhs }\geq0\mathrm{ .
```

```
ap,afp,b,x
ldb
ldx
ipiv
```

Arrays:
ap of size $\max (1, n(n+1) / 2)$ contains the original packed matrix A, as supplied to ?sptrf.
afp of size $\max (1, n(n+1) / 2)$ contains the factored packed matrix A, as returned by ?sptrf.
bof size $\max \left(1,1 d b^{*} n r h s\right)$ for column major layout and max(1, $l d{ }^{*}{ }_{n}$) for row major layout contains the right-hand side matrix B.
xof size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and max(1, $I d x^{*} n$) for row major layout contains the solution matrix X.

The leading dimension of b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

The leading dimension of x; $I d x \geq \max (1, n)$ for column major layout and $I d x \geq \max (1, n r h s)$ for row major layout.

Array, size at least max $(1, n)$. The ipiv array, as returned by ?sptrf.

The refined solution matrix X.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

Output Parameters

x
ferr, berr

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 .
Estimating the forward error involves solving a number of systems of linear equations $A^{*}{ }_{X}=b$; the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 \mathrm{n}^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes
?hprfs
Refines the solution of a system of linear equations with a packed complex Hermitian coefficient matrix and estimates the solution error.

Syntax

```
lapack_int LAPACKE_chprfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_float* ap, const lapack_complex_float* afp, const lapack_int*
ipiv, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x,
lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_zhprfs( int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
const lapack_complex_double* ap, const lapack_complex_double* afp, const lapack_int*
ipiv, const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x,
lapack_int ldx, double* ferr, double* berr );
```


Include Files

- mkl.h

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a packed complex Hermitian matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} /| |$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).
Before calling this routine:

- call the factorization routine ?hptrf
- call the solver routine ?hptrs.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	The order of the matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides; $n r h s \geq 0$.
$a p, a f p, b, x$	Arrays:
	$\operatorname{apmax}(1, n(n+1) / 2)$ contains the original packed matrix A, as supplied to ?hptrf.
	afpmax $(1, n(n+1) / 2)$ contains the factored packed matrix A, as returned by ?hptrf.
	bof size $\max \left(1, l d b^{*} n r h s\right)$ for column major layout and max(1, $l d b_{n}$) for row major layout contains the right-hand side matrix B.

xof size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and max(1, $I d x^{*}$) for row major layout contains the solution matrix X.
$1 d b$
The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

The leading dimension of x; Id $x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Array, size at least max $(1, n)$. The ipiv array, as returned by ?hptrf.

Output Parameters

X
ferr, berr

The refined solution matrix X.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $16 n^{2}$ operations. In addition, each step of iterative refinement involves $24 n^{2}$ operations; the number of iterations may range from 1 to 5.
Estimating the forward error involves solving a number of systems of linear equations $A^{*} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $8 n^{2}$ floating-point operations.
The real counterpart of this routine is ?ssprfs/?dsprfs.

See Also

Matrix Storage Schemes

?trrfs

Estimates the error in the solution of a system of
linear equations with a triangular coefficient matrix.

Syntax

```
lapack_int LAPACKE_strrfs( int matrix_layout, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const float* a, lapack_int lda, const float* b,
lapack_int ldb, const float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dtrrfs( int matrix_layout, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const double* a, lapack_int lda, const double* b,
lapack_int ldb, const double* x, lapack_int ldx, double* ferr, double* berr );
```

```
lapack_int LAPACKE_ctrrfs( int matrix_layout, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* b, lapack_int ldb, const lapack_complex_float* x, lapack_int ldx,
float* ferr, float* berr );
lapack_int LAPACKE_ztrrfs( int matrix_layout, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* b, lapack_int ldb, const lapack_complex_double* x, lapack_int
ldx, double* ferr, double* berr );
```


Include Files

- mkl.h

Description

The routine estimates the errors in the solution to a system of linear equations $A * X=B$ or $A^{T} * X=B$ or $A^{H *} X=B$ with a triangular matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:

$$
\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right| \text { such that }(A+\delta A) x=(b+\delta b) .
$$

The routine also estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} /| |$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine, call the solver routine ?trtrs.
Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates whether A is upper or lower triangular:
	If uplo = 'U', then A is upper triangular.
	If uplo = 'L', then A is lower triangular.
trans	Must be 'N' or 'T' or 'C'.
	Indicates the form of the equations:
	If trans $=$ ' N ', the system has the form $A * X=B$.
	If trans $=$ ' T ', the system has the form $A^{T *} X=B$.
	If trans $=$ ' C', the system has the form $A^{H * X}=B$.
diag	Must be 'N' or 'U'.
	If diag $=$ ' N ', then A is not a unit triangular matrix.
	If diag = 'U', then A is unit triangular: diagonal elements of A are assumed to be 1 and not referenced in the array a.
n	The order of the matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides; nrhs ≥ 0.

```
a,b,x
```

lda
$1 d b$
$I d x$

Arrays:
$a\left(\right.$ size $\left.\max \left(1, l d a_{n}\right)\right)$ contains the upper or lower triangular matrix A, as specified by uplo.
bof size $\max \left(1, l d b^{*} n r h s\right)$ for column major layout and max(1, $l d b^{*}$) for row major layout contains the right-hand side matrix B.
xof size $\max \left(1, l d x^{*} n r h s\right)$ for column major layout and max(1, $I d x_{n}$) for row major layout contains the solution matrix X.

The leading dimension of $a ; I d a \geq \max (1, n)$.
The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq$ nrhs for row major layout.

The leading dimension of x; $I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Output Parameters

ferr, berr
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value .

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear equations $A^{\star} X$ $=b$; the number of systems is usually 4 or 5 and never more than 11. Each solution requires approximately n^{2} floating-point operations for real flavors or $4 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes

?tprfs

Estimates the error in the solution of a system of linear equations with a packed triangular coefficient matrix.

Syntax

```
lapack_int LAPACKE_stprfs( int matrix_layout, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const float* ap, const float* b, lapack_int ldb, const
float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dtprfs( int matrix_layout, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const double* ap, const double* b, lapack_int ldb, const
double* x, lapack_int ldx, double* ferr, double* berr );
```

```
lapack_int LAPACKE_ctprfs( int matrix_layout, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const lapack_complex_float* ap, const
lapack_complex_float* b, lapack_int ldb, const lapack_complex_float* x, lapack_int ldx,
float* ferr, float* berr );
lapack_int LAPACKE_ztprfs( int matrix_layout, char uplo, char trans, char diag,
lapack_int n, lapack_int nrhs, const lapack_complex_double* ap, const
lapack_complex_double* b, lapack_int ldb, const lapack_complex_double* x, lapack_int
ldx, double* ferr, double* berr );
```


Include Files

- mkl.h

Description

The routine estimates the errors in the solution to a system of linear equations $A \star X=B$ or $A^{T} \star X=B$ or $A^{H *} X=B$ with a packed triangular matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:

$$
\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right| \text { such that }(A+\delta A) x=(b+\delta b) .
$$

The routine also estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} /| |$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine, call the solver routine ?tptrs.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates whether A is upper or lower triangular:
	If uplo = 'U', then A is upper triangular.
	If uplo = 'L', then A is lower triangular.
trans	Must be 'N' or 'T' or 'C'.
	Indicates the form of the equations:
	If trans $=$ ' N ', the system has the form $A \star X=B$.
	If trans $=$ ' T ', the system has the form $A^{T * X}=B$.
	If trans $=$ ' C', the system has the form $A^{H * X}=B$.
diag	Must be 'N' or 'U'.
	If diag = 'N', A is not a unit triangular matrix.
	If diag $=$ 'U', A is unit triangular: diagonal elements of A are assumed to be 1 and not referenced in the array ap.
n	The order of the matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides; $n r h s \geq 0$.

```
ap,b, x
```

Arrays:
$\operatorname{apmax}(1, n(n+1) / 2)$ contains the upper or lower triangular matrix A, as specified by uplo.
bof size $\max \left(1, l d b^{*} n r h s\right)$ for column major layout and max(1, $l d b^{*}$) for row major layout contains the right-hand side matrix B. xof size $\max \left(1, l d x^{*} n r h s\right)$ for column major layout and max(1, $I d x_{n}$) for row major layout contains the solution matrix X.

The leading dimension of b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

The leading dimension of x; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear equations $A^{\star} x$ $=b$; the number of systems is usually 4 or 5 and never more than 11. Each solution requires approximately n^{2} floating-point operations for real flavors or $4 n^{2}$ for complex flavors.

See Also
 Matrix Storage Schemes

?tbrfs
Estimates the error in the solution of a system of linear equations with a triangular band coefficient matrix.

Syntax

```
lapack_int LAPACKE_stbrfs( int matrix_layout, char uplo, char trans, char diag,
lapack_int n, lapack_int kd, lapack_int nrhs, const float* ab, lapack_int ldab, const
float* b, lapack_int ldb, const float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_dtbrfs( int matrix_layout, char uplo, char trans, char diag,
lapack_int n, lapack_int kd, lapack_int nrhs, const double* ab, lapack_int ldab, const
double* b, lapack_int ldb, const double* x, lapack_int ldx, double* ferr, double*
berr );
```

```
lapack_int LAPACKE_ctbrfs( int matrix_layout, char uplo, char trans, char diag,
lapack_int n, lapack_int kd, lapack_int nrhs, const lapack_complex_float* ab,
lapack_int ldab, const lapack_complex_float* b, lapack_int ldb, const
lapack_complex_float* x, lapack_int ldx, float* ferr, float* berr );
lapack_int LAPACKE_ztbrfs( int matrix_layout, char uplo, char trans, char diag,
lapack_int n, lapack_int kd, lapack_int nrhs, const lapack_complex_double* ab,
lapack_int ldab, const lapack_complex_double* b, lapack_int ldb, const
lapack_complex_double* x, lapack_int ldx, double* ferr, double* berr );
```

Include Files

- mkl.h

Description

The routine estimates the errors in the solution to a system of linear equations $A * X=B$ or $A^{T} * X=B$ or $A^{H *} X=B$ with a triangular band matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
The routine also estimates the component-wise forward error in the computed solution $\left\|x-x_{e}| |_{\infty} /\right\|$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine, call the solver routine ?tbtrs.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates whether A is upper or lower triangular:
	If uplo = 'U', then A is upper triangular.
	If uplo = 'L', then A is lower triangular.
trans	Must be 'N' or 'T' or 'C'.
	Indicates the form of the equations:
	If trans $=$ ' N ', the system has the form $A * X=B$.
	If trans $=$ ' T ', the system has the form $A^{T *} X=B$.
	If trans $=$ ' C', the system has the form $A^{H * X}=B$.
diag	Must be 'N' or 'U'.
	If diag = 'N', A is not a unit triangular matrix.
	If diag = 'U', A is unit triangular: diagonal elements of A are assumed to be 1 and not referenced in the array $a b$.
n	The order of the matrix $A ; n \geq 0$.
$k d$	The number of super-diagonals or sub-diagonals in the matrix $A ; k d \geq$ 0.

```
nrhs
ab,b,x
ldab
Idb
ldx
The number of right-hand sides; nrhs \(\geq 0\).
Arrays:
\(a b\left(\right.\) size \(\left.\max \left(1, I d a b^{*} n\right)\right)\) contains the upper or lower triangular matrix \(A\), as specified by uplo, in band storage format.
bof size \(\max \left(1,1 d b^{*} n r h s\right)\) for column major layout and \(\max (1\), \(l d b^{*}\) ) for row major layout contains the right-hand side matrix \(B\).
xof size \(\max \left(1, l d x^{*} n r h s\right)\) for column major layout and \(\max (1\), \(l d x^{*} n\) ) for row major layout contains the solution matrix \(X\).
The leading dimension of the array \(a b ; l d a b \geq k d+1\).
The leading dimension of \(b ; I d b \geq \max (1, n)\) for column major layout and \(I d b \geq n r h s\) for row major layout.
The leading dimension of \(x\); \(l d b \geq \max (1, n)\) for column major layout and \(I d b \geq n r h s\) for row major layout.
```


Output Parameters

ferr, berr
Arrays, size at least max (1, nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
A call to this routine involves, for each right-hand side, solving a number of systems of linear equations $A^{\star} X$ $=b$; the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{\star} k d$ floating-point operations for real flavors or $8 n^{\star} k d$ operations for complex flavors.

See Also

Matrix Storage Schemes

Matrix Inversion: LAPACK Computational Routines

It is seldom necessary to compute an explicit inverse of a matrix. In particular, do not attempt to solve a system of equations $A x=b$ by first computing A^{-1} and then forming the matrix-vector product $x=A^{-1} b$. Call a solver routine instead (see Routines for Solving Systems of Linear Equations); this is more efficient and more accurate.
However, matrix inversion routines are provided for the rare occasions when an explicit inverse matrix is needed.

[^0]
Syntax

```
lapack_int LAPACKE_sgetri (int matrix_layout, lapack_int n , float * a , lapack_int
lda , const lapack_int * ipiv );
lapack_int LAPACKE_dgetri (int matrix_layout, lapack_int n , double * a , lapack_int
lda , const lapack_int * ipiv );
lapack_int LAPACKE_cgetri (int matrix_layout, lapack_int n , lapack_complex_float *
a , lapack_int lda, const lapack_int * ipiv );
lapack_int LAPACKE_zgetri (int matrix_layout , lapack_int n , lapack_complex_double *
a , lapack_int lda, const lapack_int * ipiv );
```

Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a general matrix A. Before calling this routine, call ? getrf to factorize A.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
n	The order of the matrix $A ; n \geq 0$.
a	Array $a\left(\right.$ size $\left.\max \left(1, I d a_{n}\right)\right)$ contains the factorization of the matrix A, as returned by ?getrf: $A=P^{\star} L \star U$. The second dimension of a must be at least max $(1, n)$.
Ida	The leading dimension of $a ; 1 d a \geq \max (1, n)$.
ipiv	Array, size at least max (1, n) .
	The ipiv array, as returned by ?getrf.

Output Parameters

a
Overwritten by the n-by- n matrix inv (A).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the i-th diagonal element of the factor U is zero, U is singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bound:

```
|XA - I| \leqC(n)\varepsilon|X|P|L||U|,
```

where $c(n)$ is a modest linear function of $n ; \varepsilon$ is the machine precision; I denotes the identity matrix; P, L, and U are the factors of the matrix factorization $A=P^{\star} L \star U$.

The total number of floating-point operations is approximately $(4 / 3) n^{3}$ for real flavors and $(16 / 3) n^{3}$ for complex flavors.

See Also

Matrix Storage Schemes
mkl_?getrinp
Computes the inverse of an LU-factored general matrix without pivoting.

Syntax

```
lapack_int LAPACKE_mkl_sgetrinp (int matrix_layout, lapack_int n , float * a ,
lapack_int lda );
lapack_int LAPACKE_mkl_dgetrinp (int matrix_layout, lapack_int n , double * a ,
lapack_int lda );
lapack_int LAPACKE_mkl_cgetrinp (int matrix_layout, lapack_int n,
lapack_complex_float * a , lapack_int lda );
lapack_int LAPACKE_mkl_zgetrinp (int matrix_layout, lapack_int n,
lapack_complex_double * a , lapack_int lda );
```


Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a general matrix A. Before calling this routine, call $m k l_{-}$?getrfnp to factorize A.

Input Parameters

```
matrix_layout Specifies whether matrix storage layout is row major
    (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
    The order of the matrix A; n\geq0
    Array a(size max(1, lda*n)) contains the factorization of the matrix
    A, as returned by mkl_?getrfnp: A = L*U. The second dimension of
    a must be at least max (1,n).
lda The leading dimension of a; lda\geq max (1, n).
```


Output Parameters

a
Overwritten by the n-by-n matrix inv (A).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value .

If info $=i$, the i-th diagonal element of the factor U is zero, U is singular, and the inversion could not be completed.

Application Notes

The total number of floating-point operations is approximately $(4 / 3) n^{3}$ for real flavors and $(16 / 3) n^{3}$ for complex flavors.

```
See Also
Matrix Storage Schemes
?potri
Computes the inverse of a symmetric (Hermitian)
positive-definite matrix using the Cholesky
factorization.
```

Syntax
lapack_int LAPACKE_spotri (int matrix_layout, char uplo, lapack_int n, float \star,
lapack_int lda);
lapack_int LAPACKE_dpotri (int matrix_layout, char uplo, lapack_int n, double * a ,
lapack_int lda);
lapack_int LAPACKE_cpotri (int matrix_layout, char uplo, lapack_int n,
lapack_complex_float * a , lapack_int lda);
lapack_int LAPACKE_zpotri (int matrix_layout, char uplo, lapack_int n,
lapack_complex_double * a , lapack_int lda);

Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a symmetric positive definite or, for complex flavors, Hermitian positive-definite matrix A. Before calling this routine, call ?potrf to factorize A.

Input Parameters

```
matrix_layout
uplo
n
a
Ida
```

Specifies whether matrix storage layout is row major
(LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
The order of the matrix $A ; n \geq 0$.
Array $a\left(\right.$ size $\left.\max \left(1, I d^{*} n\right)\right)$. Contains the factorization of the matrix A, as returned by ?potrf.

The leading dimension of $a . l d a \geq \max (1, n)$.

Output Parameters

a
Overwritten by the upper or lower triangle of the inverse of A.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info = i, the i-th diagonal element of the Cholesky factor (and therefore the factor itself) is zero, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

$$
||X A-I||_{2} \leq C(n) \varepsilon \kappa_{2}(A), \quad| | A X-I| |_{2} \leq C(n) \varepsilon \kappa_{2}(A),
$$

where $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.
The 2-norm $||A||_{2}$ of a matrix A is defined by $||A||_{2}=\max _{x \cdot x=1}(A x \cdot A x)^{1 / 2}$, and the condition number $\kappa_{2}(A)$ is defined by $\kappa_{2}(A)=||A||_{2}| | A^{-1}| |_{2}$.

The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

See Also

Matrix Storage Schemes
?pftri
Computes the inverse of a symmetric (Hermitian) positive-definite matrix in RFP format using the Cholesky factorization.

Syntax

```
lapack_int LAPACKE_spftri (int matrix_layout, char transr, char uplo, lapack_int n ,
float * a );
lapack_int LAPACKE_dpftri (int matrix_layout, char transr, char uplo, lapack_int n ,
double * a );
lapack_int LAPACKE_cpftri (int matrix_layout, char transr, char uplo , lapack_int n ,
lapack_complex_float * a );
lapack_int LAPACKE_zpftri (int matrix_layout, char transr, char uplo, lapack_int n ,
lapack_complex_double * a );
```

Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a symmetric positive definite or, for complex data, Hermitian positive-definite matrix A using the Cholesky factorization:

$$
A=U^{T} * U \text { for real data, } A=U^{H} * U \text { for complex data if uplo='U' }
$$

$$
A=L \star L^{T} \text { for real data, } A=L^{*} L^{H} \text { for complex data } \quad \text { if up } I 0=L^{\prime}
$$

Before calling this routine, call ?pftrf to factorize A.
The matrix A is in the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
transr	Must be 'N', 'T' (for real data) or 'C' (for complex data). If transr = 'N', the Normal transr of RFP U (if uplo = 'U') or L (if uplo = 'L') is stored.
	If transr $=$ 'T', the Transpose transr of RFP U (if uplo = 'U') or L (if uplo = 'L' is stored. If transr $=$ ' C ', the Conjugate-Transpose transr of RFP U (if uplo $=$ 'U') or L (if uplo = 'L' is stored.
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo $=$ 'U', $A=U^{\top *} U$ for real data or $A=U^{H *} U$ for complex data, and U is stored.
	If uplo = 'L', $A=L^{*} L^{\top}$ for real data or $A=L^{*} L^{H}$ for complex data, and L is stored.
n	The order of the matrix $A ; n \geq 0$.
a	Array, size $\left(n^{\star}(n+1) / 2\right)$. The array a contains the factor U or L matrix A in the RFP format.

Output Parameters

a
The symmetric/Hermitian inverse of the original matrix in the same storage format.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the (i, i) element of the factor U or L is zero, and the inverse could not be computed.

See Also

Matrix Storage Schemes
?pptri
Computes the inverse of a packed symmetric
(Hermitian) positive-definite matrix using Cholesky
factorization.

Syntax

```
lapack_int LAPACKE_spptri (int matrix_layout, char uplo, lapack_int n , float * ap );
lapack_int LAPACKE_dpptri (int matrix_layout, char uplo, lapack_int n , double *
ap );
lapack_int LAPACKE_cpptri (int matrix_layout, char uplo, lapack_int n,
lapack_complex_float * ap );
lapack_int LAPACKE_zpptri (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_double * ap );
```

Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a symmetric positive definite or, for complex flavors, Hermitian positive-definite matrix A in packed form. Before calling this routine, call ?pptrf to factorize A.

Input Parameters

```
matrix_layout Specifies whether matrix storage layout is row major
    (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
    Must be 'U' or 'L'.
    Indicates whether the upper or lower triangular factor is stored in ap:
    If uplo = 'U', then the upper triangular factor is stored.
    If uplo = 'L', then the lower triangular factor is stored.
    The order of the matrix A; n\geq0.
    Array, size at least max(1, n(n+1)/2).
    Contains the factorization of the packed matrix }A\mathrm{ , as returned
    by ?pptrf.
    The dimension ap must be at least max(1,n(n+1)/2).
```


Output Parameters

$a p$
Overwritten by the packed n-by- n matrix inv (A).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value .
If info = i, the i-th diagonal element of the Cholesky factor (and therefore the factor itself) is zero, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

$$
\|X A-I\|_{2} \leq C(n) \varepsilon \kappa_{2}(A),\|A X-I\|_{2} \leq C(n) \varepsilon \kappa_{2}(A),
$$

where $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.
The 2-norm $||A||_{2}$ of a matrix A is defined by $||A||_{2}=\max _{x \cdot x=1}(A x \cdot A x)^{1 / 2}$, and the condition number $\kappa_{2}(A)$ is defined by $\kappa_{2}(A)=||A||_{2}| | A^{-1}| |_{2}$.

The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

See Also

Matrix Storage Schemes
?sytri
Computes the inverse of a symmetric matrix using
$U^{*} D^{*} U^{\top}$ or $L^{*} D^{*} L^{T}$ Bunch-Kaufman factorization.

Syntax

```
lapack_int LAPACKE_ssytri (int matrix_layout, char uplo, lapack_int n , float * a ,
lapack_int lda , const lapack_int * ipiv );
lapack_int LAPACKE_dsytri (int matrix_layout, char uplo, lapack_int n , double * a ,
lapack_int lda , const lapack_int * ipiv );
lapack_int LAPACKE_csytri (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_float * a , lapack_int lda, const lapack_int * ipiv );
lapack_int LAPACKE_zsytri (int matrix_layout , char uplo , lapack_int n ,
lapack_complex_double * a , lapack_int lda, const lapack_int * ipiv );
```

Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a symmetric matrix A. Before calling this routine, call ?sytrf to factorize A.

Input Parameters

```
matrix_layout
uplo
n
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'U' or 'L'.
Indicates how the input matrix \(A\) has been factored:
If uplo = 'U', the array a stores the Bunch-Kaufman factorization \(A\)
\(=U^{\star} D^{*} U^{\mathbb{T}}\).
If uplo = 'L', the array a stores the Bunch-Kaufman factorization \(A\)
\(=L^{\star} D^{\star} L^{T}\).
The order of the matrix \(A ; n \geq 0\).
```

n
a

Ida
ipiv
$a\left(\right.$ size $\left.\max \left(1, I d a^{*} n\right)\right)$ contains the factorization of the matrix A, as returned by ?sytrf.

The leading dimension of $a ; 1 d a \geq \max (1, n)$.
Array, size at least max $(1, n)$.
The ipiv array, as returned by ?sytrf.

Output Parameters

a
Overwritten by the n-by-n matrix inv (A).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the i-th diagonal element of D is zero, D is singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

$$
\left|D * U^{T} \star P^{T} \star X^{\star} P^{\star} U-I\right| \leq C(n) \varepsilon\left(|D|\left|U^{T}\right| P^{T}|X| P|U|+|D|\left|D^{-1}\right|\right)
$$

for uplo = 'U', and

```
\(\left|D^{\star} L^{T} \star P^{T} \star X^{\star} P^{\star} L-I\right| \leq C(n) \varepsilon\left(|D|\left|L^{T}\right| P^{T}|X| P|L|+|D|\left|D^{-1}\right|\right)\)
```

for uplo $=$ 'L'. Here $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.

The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

See Also

Matrix Storage Schemes
?hetri
Computes the inverse of a complex Hermitian matrix
using $U * D * U^{H}$ or $L * D * L^{H}$ Bunch-Kaufman
factorization.

Syntax

```
lapack_int LAPACKE_chetri (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_float * a , lapack_int lda , const lapack_int * ipiv );
lapack_int LAPACKE_zhetri (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_double * a , lapack_int lda, const lapack_int * ipiv );
```

Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a complex Hermitian matrix A. Before calling this routine, call ?hetrf to factorize A.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array a stores the Bunch-Kaufman factorization A $=U \star D * U^{\mathrm{H}}$.
	If uplo = 'L', the array a stores the Bunch-Kaufman factorization A $=L^{*} D^{*} L^{\mathrm{H}}$.
n	The order of the matrix $A ; n \geq 0$.
a,	Array $a\left(\right.$ size $\max \left(1, I d^{*} *_{n}\right)$) contains the factorization of the matrix A, as returned by ?hetrf. The second dimension of a must be at least $\max (1, n)$.
lda	The leading dimension of a; $1 \mathrm{~d} a \geq \max (1, n)$.
ipiv	Array, size at least max $(1, n)$. The ipiv array, as returned by ?hetrf.

Output Parameters

Overwritten by the n-by- n matrix $\operatorname{inv}(A)$.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the i-th diagonal element of D is zero, D is singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

```
| D*U** P P
```

for uplo = 'U', and

```
| D L L
```

for uplo $=$ 'L'. Here $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.

The total number of floating-point operations is approximately $(8 / 3) n^{3}$ for complex flavors.
The real counterpart of this routine is ?sytri.

See Also

Matrix Storage Schemes

```
?sytri2
Computes the inverse of a symmetric indefinite matrix
through allocating memory and calling ?sytri2x.
```


Syntax

```
lapack_int LAPACKE_ssytri2 (int matrix_layout, char uplo, lapack_int n , float * a ,
```

lapack_int LAPACKE_ssytri2 (int matrix_layout, char uplo, lapack_int n , float * a ,
lapack_int lda , const lapack_int * ipiv);
lapack_int lda , const lapack_int * ipiv);
lapack_int LAPACKE_dsytri2 (int matrix_layout , char uplo, lapack_int n , double * a ,
lapack_int LAPACKE_dsytri2 (int matrix_layout , char uplo, lapack_int n , double * a ,
lapack_int lda , const lapack_int * ipiv);
lapack_int lda , const lapack_int * ipiv);
lapack_int LAPACKE_csytri2 (int matrix_layout , char uplo, lapack_int n ,
lapack_int LAPACKE_csytri2 (int matrix_layout , char uplo, lapack_int n ,
lapack_complex_float * a , lapack_int lda , const lapack_int * ipiv);
lapack_complex_float * a , lapack_int lda , const lapack_int * ipiv);
lapack_int LAPACKE_zsytri2 (int matrix_layout , char uplo, lapack_int n ,
lapack_int LAPACKE_zsytri2 (int matrix_layout , char uplo, lapack_int n ,
lapack_complex_double * a , lapack_int lda , const lapack_int * ipiv);

```
lapack_complex_double * a , lapack_int lda , const lapack_int * ipiv );
```


Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a symmetric indefinite matrix A using the factorization $A=$ $U^{\star} D^{*} U^{T}$ or $A=L^{\star} D^{\star} L^{T}$ computed by ?sytrf.

The ?sytri2 routine allocates a temporary buffer before calling ?sytri2x that actually computes the inverse.

Input Parameters

```
matrix_layout
uplo
n
a
lda
ipiv
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'U' or 'L'.
Indicates how the input matrix \(A\) has been factored:
If uplo = 'U', the array a stores the factorization \(A=U \star D * U^{T}\).
If uplo = 'L', the array a stores the factorization \(A=L^{\star} D^{\star} L^{T}\).
The order of the matrix \(A ; n \geq 0\).
Array \(a\left(\right.\) size \(\left.\max \left(1, I d *_{n}\right)\right)\) contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) as returned by ?sytrf.
The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
Array, size at least max \((1, n)\).
Details of the interchanges and the block structure of \(D\) as returned by ?sytrf.
```


Output Parameters

a
If info $=0$, the symmetric inverse of the original matrix.
If uplo = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced.

If uplo = 'L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, D(i, i)=0 ; D$ is singular and its inversion could not be computed.

See Also

?sytrf
?sytri2x
Matrix Storage Schemes
?hetri2
Computes the inverse of a Hermitian indefinite matrix
through allocating memory and calling ?hetri2x.

Syntax

```
lapack_int LAPACKE_chetri2 (int matrix_layout , char uplo, lapack_int n ,
lapack_complex_float * a , lapack_int lda , const lapack_int * ipiv );
lapack_int LAPACKE_zhetri2 (int matrix_layout , char uplo, lapack_int n ,
lapack_complex_double * a , lapack_int lda , const lapack_int * ipiv );
```


Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a Hermitian indefinite matrix A using the factorization $A=$ $U * D^{*} U^{\mathrm{H}}$ or $A=L^{*} D^{*} L^{\mathrm{H}}$ computed by ?hetrf.
The ?hetri2 routine allocates a temporary buffer before calling ?hetri2x that actually computes the inverse.

Input Parameters

```
matrix_layout
uplo
n
a
```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the factorization $A=U * D * U^{H}$. If uplo = 'L', the array a stores the factorization $A=L^{\star} D^{\star} L^{H}$.

The order of the matrix $A ; n \geq 0$.
Array $a\left(\right.$ size $\left.\max \left(1, I d a^{*} n\right)\right)$ contains the block diagonal matrix D and the multipliers used to obtain the factor U or L as returned by ?sytrf.

```
lda The leading dimension of a; lda\geq max (1, n).
ipiv
Array, size at least max (1, n).
Details of the interchanges and the block structure of \(D\) as returned by ?hetrf.
```


Output Parameters

a
If info $=0$, the inverse of the original matrix.
If uplo = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced.

If uplo = 'L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i, D(i, i)=0 ; D$ is singular and its inversion could not be computed.

See Also

?hetrf
?hetri2x
Matrix Storage Schemes
?sytri2x
Computes the inverse of a symmetric indefinite matrix after ?sytri2allocates memory.

Syntax

```
lapack_int LAPACKE_ssytri2x (int matrix_layout, char uplo, lapack_int n , float * a ,
lapack_int lda , const lapack_int * ipiv , lapack_int nb );
lapack_int LAPACKE_dsytri2x (int matrix_layout, char uplo, lapack_int n , double *
a , lapack_int lda, const lapack_int * ipiv, lapack_int nb );
lapack_int LAPACKE_csytri2x (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_float * a , lapack_int lda, const lapack_int * ipiv , lapack_int nb );
lapack_int LAPACKE_zsytri2x (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_double * a , lapack_int lda, const lapack_int * ipiv, lapack_int nb );
```

Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a symmetric indefinite matrix A using the factorization $A=$ $U * D * U^{T}$ or $A=L * D * L^{T}$ computed by ?sytrf.
The ?sytri2x actually computes the inverse after the ?sytri2 routine allocates memory before calling ?sytri2x.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array a stores the factorization $A=U \star D * U^{T}$.
	If uplo = 'L', the array a stores the factorization $A=L^{\star} D^{\star} L^{T}$.
n	The order of the matrix $A ; n \geq 0$.
a	Array a (size $\max \left(1, I d^{*} n\right)$) contains the $n b$ (block size) diagonal matrix D and the multipliers used to obtain the factor U or L as returned by ?sytrf. The second dimension of a must be at least $\max (1, n)$.
Ida	The leading dimension of $a ; 1 d a \geq \max (1, n)$.
ipiv	Array, size at least max ($1, n$.
	Details of the interchanges and the $n b$ structure of D as returned by ?sytrf.
nb	Block size.

Output Parameters

a
If info $=0$, the symmetric inverse of the original matrix.
If info = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced.

If info = 'L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i, D_{i i}=0 ; D$ is singular and its inversion could not be computed.

See Also

?sytrf
?sytri2
Matrix Storage Schemes
?hetri2x
Computes the inverse of a Hermitian indefinite matrix
after ? hetri2allocates memory.

Syntax

```
lapack_int LAPACKE_chetri2x (int matrix_layout , char uplo, lapack_int n ,
lapack_complex_float * a , lapack_int lda, const lapack_int * ipiv, lapack_int nb );
lapack_int LAPACKE_zhetri2x (int matrix_layout , char uplo , lapack_int n ,
lapack_complex_double * a , lapack_int lda , const lapack_int * ipiv , lapack_int nb );
```


Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a Hermitian indefinite matrix A using the factorization $A=$ $U^{*} D^{*} U^{H}$ or $A=L^{*} D^{*} L^{H}$ computed by ?hetrf.

The ?hetri2x actually computes the inverse after the ?hetri2 routine allocates memory before calling ?hetri2x.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array a stores the factorization $A=U^{*} D^{*} U^{H}$.
	If uplo = 'L', the array a stores the factorization $A=L^{*} D^{*} L^{H}$.
n	The order of the matrix $A ; n \geq 0$.
a	Arrays $a\left(\right.$ size $\left.\max \left(1, l d a^{*} n\right)\right)$ contains the $n b$ (block size) diagonal matrix D and the multipliers used to obtain the factor U or L as returned by ?hetrf.
Ida	The leading dimension of $a ; l d a \geq \max (1, n)$.
ipiv	Array, size at least max (1, n).
	Details of the interchanges and the $n b$ structure of D as returned by ?hetrf.
nb	Block size.

Output Parameters

a
If info $=0$, the symmetric inverse of the original matrix.
If info = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced.
If info = 'L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.

Return Values

This function returns a value info.

If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i, D_{i i}=0 ; D$ is singular and its inversion could not be computed.

See Also

?hetrf
?hetri2
Matrix Storage Schemes
?sytri_3
Computes the inverse of a real or complex symmetric matrix.

```
lapack_int LAPACKE_ssytri_3 (int matrix_layout, char uplo, lapack_int n, float * A,
lapack_int lda, coñst floàt * e, const lapack_int * ipiv);
lapack_int LAPACKE_dsytri_3 (int matrix_layout, char uplo, lapack_int n, double * A,
lapack_int lda, const double * e, const lapack_int * ipiv);
lapack_int LAPACKE_csytri_3 (int matrix_layout, char uplo, lapack_int n,
lapack_complex_flo\overline{at * A,}\mp@subsup{}{}{-}lapack_int ld\overline{a}, const lapack_complex_flōat * e, const
lapack_int * ipiv);
lapack_int LAPACKE_zsytri_3 (int matrix_layout, char uplo, lapack_int n,
lapack_complex_double * A, lapack_int lda, const lapack_complex_double * e, const
lapack_int * ipiv);
```


Description

?sytri_3 computes the inverse of a real or complex symmetric matrix A using the factorization computed by ?sytrf_rk: $A=P^{*} U^{*} D^{*}\left(U^{\top}\right)^{*}\left(P^{\top}\right)$ or $A=P^{*} L^{*} D^{*}\left(L^{\top}\right)^{*}\left(P^{\top}\right)$, where U (or L) is a unit upper (or lower) triangular matrix, U^{\top} (or L^{\top}) is the transpose of U (or L), P is a permutation matrix, P^{\top} is the transpose of P, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
?sytri_3 sets the leading dimension of the workspace before calling ?sytri_3x, which actually computes the inverse. This is the blocked version of the algorithm, calling Level-3 BLAS.

Input Parameters

```
matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
    or column major (LAPACK_COL_MAJOR).
Specifies whether the details of the factorization are stored as an upper or lower triangular matrix.
- = 'U': The upper triangle of \(A\) is stored.
- = 'L': The lower triangle of \(A\) is stored.
The order of the matrix A. \(n \geq 0\).
Array of size \(\max \left(1, I d^{*}{ }_{n}\right)\). On entry, diagonal of the block diagonal matrix \(D\) and factors \(U\) or \(L\) as computed by ?sytrf_rk:
- Only diagonal elements of the symmetric block diagonal matrix \(D\) on the diagonal of \(A\); that is, \(\mathrm{D}(k, k)=\mathrm{A}(k, k)\). Superdiagonal (or subdiagonal) elements of \(D\) should be provided on entry in array e.
-and-
```

- If uplo = 'U', factor U in the superdiagonal part of A. If uplo = 'L', factor L in the subdiagonal part of A.

Ida
e
ipiv

Output Parameters

A
On exit, if info $=0$, the symmetric inverse of the original matrix. If uplo $=$ 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced. If uplo='L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.

Return Values

This function returns a value info.
$=0$: Successful exit.
<0 : If info $=-i$, the $i^{\text {th }}$ argument had an illegal value.
>0 : If info $=i, \mathrm{D}(i, i)=0$; the matrix is singular and its inverse could not be computed.

?hetri_3

Computes the inverse of a complex Hermitian matrix
using the factorization computed by ?hetrf_rk.

```
lapack_int LAPACKE_chetri_3 (int matrix_layout, char uplo, lapack_int n,
lapack_complex_floät * A, lapack_int lda, const lapack_complex_flōat * e, const
lapack_int * ipiv);
lapack_int LAPACKE_zhetri_3 (int matrix_layout, char uplo, lapack_int n,
lapack_complex_double * A, lapack_int lda, const lapack_complex_double * e, const
lapack_int * ipiv);
```


Description

?hetri_3 computes the inverse of a complex Hermitian matrix A using the factorization computed by ?hetrf_rk: $A=P^{*} U^{*} D^{*}\left(U^{H}\right)^{*}\left(P^{\top}\right)$ or $A=P^{*} L^{*} D^{*}\left(L^{H}\right) *\left(P^{\top}\right)$, where U (or L) is a unit upper (or lower) triangular matrix, $U^{H}\left(\right.$ or $\left.L^{H}\right)$ is the conjugate of U (or L), P is a permutation matrix, P^{\top} is the transpose of P, and D is a Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
?hetri_3 sets the leading dimension of the workspace before calling ?hetri_3x, which actually computes the inverse.

This is the blocked version of the algorithm, calling Level-3 BLAS.

Input Parameters

```
matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
    or column major (LAPACK_COL_MAJOR).
    Specifies whether the details of the factorization are stored as an upper or
    lower triangular matrix.
    - = 'U': The upper triangle of A is stored.
    - = 'L': The lower triangle of A is stored.
The order of the matrix A. \(n \geq 0\).
Array of size \(\max \left(1, I d a_{n}\right)\). On entry, diagonal of the block diagonal matrix \(D\) and factor \(U\) or \(L\) as computed by ?hetrf_rk:
- Only diagonal elements of the Hermitian block diagonal matrix D on the diagonal of \(A\); that is, \(\mathrm{D}(k, k)=\mathrm{A}(k, k)\). Superdiagonal (or subdiagonal) elements of \(D\) should be provided on entry in array e.
- If uplo = 'U', factor \(U\) in the superdiagonal part of \(A\). If uplo = 'L', factor \(L\) is the subdiagonal part of \(A\).
The leading dimension of the array \(A\).
Array of size \(n\). On entry, contains the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks. If uplo \(=\) ' U ', \(\mathrm{e}(i)=\mathrm{D}(i-1, i), i=2: \mathrm{N}\), and \(\mathrm{e}(1)\) is not referenced. If uplo \(=\) ' L ', \(\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1\), and \(\mathrm{e}(n)\) is not referenced.
```

NOTE For 1-by-1 diagonal block $\mathrm{D}(k)$, where $1 \leq k \leq n$, the element $e[k-1]$ is not referenced in both the uplo $=$ 'U' and uplo = 'L' cases.

Array of size n. Details of the interchanges and the block structure of D as determined by ?hetrf_rk.

Output Parameters

A
On exit, if info $=0$, the Hermitian inverse of the original matrix. If uplo $=$ ' U ', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced. If uplo = 'L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.

Return Values

This function returns a value info.
$=0$: Successful exit.
< 0: If info $=-i$, the $i^{\text {th }}$ argument had an illegal value.
>0 : If info $=i, \mathrm{D}(i, i)=0$; the matrix is singular and its inverse could not be computed.

```
?sptri
Computes the inverse of a symmetric matrix using
U*D*UT}\mathrm{ or L* D**L
matrix in packed storage.
```


Syntax

```
lapack_int LAPACKE_ssptri (int matrix_layout, char uplo, lapack_int n , float * ap ,
const lapack_int * ipiv);
lapack_int LAPACKE_dsptri (int matrix_layout, char uplo, lapack_int n, double * ap ,
const lapack_int * ipiv );
lapack_int LAPACKE_csptri (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_float * ap , const lapack_int * ipiv );
lapack_int LAPACKE_zsptri (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_double * ap , const lapack_int * ipiv );
```


Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a packed symmetric matrix A. Before calling this routine, call ?sptrf to factorize A.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array ap stores the Bunch-Kaufman factorization A $=U{ }^{*} D^{*} U^{\mathbb{T}}$.
	If uplo = 'L', the array ap stores the Bunch-Kaufman factorization A $=L^{*} D^{*} L^{T}$.
n	The order of the matrix $A ; n \geq 0$.
ap	Arrays ap (size $\max (1, n(n+1) / 2)$) contains the factorization of the matrix A, as returned by ?sptrf.
ipiv	Array, size at least max $(1, n)$. The ipiv array, as returned by ?sptrf.

Output Parameters

$a p$
Overwritten by the matrix inv (A) in packed form.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.

If info $=-i$, parameter i had an illegal value.
If info $=i$, the i-th diagonal element of D is zero, D is singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

```
| D* U'T* P
```

for uplo = 'U', and

```
| D* L'* * P
```

for uplo $=$ 'L'. Here $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.

The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

See Also

Matrix Storage Schemes
?hptri
Computes the inverse of a complex Hermitian matrix using $U^{*} D^{*} U^{H}$ or $L^{*} D^{*} L^{H}$ Bunch-Kaufman factorization of matrix in packed storage.

Syntax

```
lapack_int LAPACKE_chptri (int matrix_layout , char uplo, lapack_int n ,
lapack_complex_float * ap , const lapack_int * ipiv );
lapack_int LAPACKE_zhptri (int matrix_layout , char uplo , lapack_int n ,
lapack_complex_double * ap , const lapack_int * ipiv );
```

Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a complex Hermitian matrix A using packed storage. Before calling this routine, call ?hptrf to factorize A.

Input Parameters

```
matrix_layout
uplo
n
```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the packed Bunch-Kaufman factorization $A=U * D * U^{H}$.

If uplo = 'L', the array ap stores the packed Bunch-Kaufman factorization $A=L^{\star} D^{*} L^{H}$.

The order of the matrix $A ; n \geq 0$.
$a p$
ipiv

Array ap (size max $(1, n(n+1) / 2)$) contains the factorization of the matrix A, as returned by ?hptrf.

Array, size at least max $(1, n)$.
The ipiv array, as returned by ?hptrf.

Output Parameters

$a p$
Overwritten by the matrix inv (A).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the i-th diagonal element of D is zero, D is singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

for uplo = 'U', and

for uplo $=$ 'L'. Here $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.

The total number of floating-point operations is approximately $(8 / 3) n^{3}$.
The real counterpart of this routine is ?sptri.

See Also

Matrix Storage Schemes
?trtri
Computes the inverse of a triangular matrix.

Syntax

```
lapack_int LAPACKE_strtri (int matrix_layout, char uplo, char diag , lapack_int n ,
float * a , lapack_int lda );
lapack_int LAPACKE_dtrtri (int matrix_layout, char uplo, char diag, lapack_int n ,
double * a , lapack_int lda );
lapack_int LAPACKE_ctrtri (int matrix_layout, char uplo, char diag , lapack_int n ,
lapack_complex_float * a , lapack_int lda );
lapack_int LAPACKE_ztrtri (int matrix_layout, char uplo, char diag, lapack_int n ,
lapack_complex_double * a , lapack_int lda );
```

Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a triangular matrix A.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates whether A is upper or lower triangular:
	If uplo = 'U', then A is upper triangular.
	If uplo = 'L', then A is lower triangular.
diag	Must be 'N' or 'U'.
	If diag = 'N', then A is not a unit triangular matrix.
	If diag = 'U', A is unit triangular: diagonal elements of A are assumed to be 1 and not referenced in the array a.
n	The order of the matrix $A ; n \geq 0$.
a	Array: . Contains the matrix A.
Ida	The first dimension of $a ; 1 d a \geq \max (1, n)$.

Output Parameters

a
Overwritten by the matrix inv (A).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the i-th diagonal element of A is zero, A is singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

```
|XA - I| \leqC(n)\varepsilon |X| |A|
|A - I| \leqc(n)\varepsilon | A-1 | | | |X|,
```

where $c(n)$ is a modest linear function of $n ; \varepsilon$ is the machine precision; I denotes the identity matrix.
The total number of floating-point operations is approximately $(1 / 3) n^{3}$ for real flavors and $(4 / 3) n^{3}$ for complex flavors.

See Also
Matrix Storage Schemes

```
?tftri
Computes the inverse of a triangular matrix stored in
the Rectangular Full Packed (RFP) format.
Syntax
```

```
lapack_int LAPACKE_stftri (int matrix_layout, char transr, char uplo, char diag ,
```

lapack_int LAPACKE_stftri (int matrix_layout, char transr, char uplo, char diag ,
lapack_int n , float * a);
lapack_int n , float * a);
lapack_int LAPACKE_dtftri (int matrix_layout, char transr, char uplo, char diag ,
lapack_int LAPACKE_dtftri (int matrix_layout, char transr, char uplo, char diag ,
lapack_int n , double * a);
lapack_int n , double * a);
lapack_int LAPACKE_ctftri (int matrix_layout, char transr, char uplo, char diag ,
lapack_int LAPACKE_ctftri (int matrix_layout, char transr, char uplo, char diag ,
lapack_int n , lapack_complex_float * a);
lapack_int n , lapack_complex_float * a);
lapack_int LAPACKE_ztftri (int matrix_layout, char transr, char uplo, char diag ,
lapack_int LAPACKE_ztftri (int matrix_layout, char transr, char uplo, char diag ,
lapack_int n , lapack_complex_double * a);

```
lapack_int n , lapack_complex_double * a );
```

Include Files

- mkl.h

Description

Computes the inverse of a triangular matrix A stored in the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

This is the block version of the algorithm, calling Level 3 BLAS.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
transr	Must be 'N', 'T' (for real data) or 'C' (for complex data).
	If transr $=$ 'N', the Normal transr of RFP A is stored.
	If transr $=$ 'T', the Transpose transr of RFP A is stored.
	If transr $=$ ' C', the Conjugate-Transpose transr of RFP A is stored.
uplo	Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of RFP A is stored:
	If uplo = 'U', the array a stores the upper triangular part of the matrix A.
	If uplo = 'L', the array a stores the lower triangular part of the matrix A.
diag	Must be 'N' or 'U'.
	If diag $=$ ' N ', then A is not a unit triangular matrix.
	If diag $=$ 'U', A is unit triangular: diagonal elements of A are assumed to be 1 and not referenced in the array a.
n	The order of the matrix $A ; n \geq 0$.

a
Array, size $\max \left(1, n^{*}(n+1) / 2\right)$. The array a contains the matrix A in the RFP format.

Output Parameters

a
The (triangular) inverse of the original matrix in the same storage format.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i, A_{i, i}$ is exactly zero. The triangular matrix is singular and its inverse cannot be computed.

See Also

Matrix Storage Schemes
?tptri
Computes the inverse of a triangular matrix using
packed storage.

Syntax

```
lapack_int LAPACKE_stptri (int matrix_layout, char uplo, char diag , lapack_int n ,
float * ap );
lapack_int LAPACKE_dtptri (int matrix_layout, char uplo, char diag, lapack_int n ,
double * ap );
lapack_int LAPACKE_ctptri (int matrix_layout, char uplo, char diag , lapack_int n ,
lapack_complex_float * ap );
lapack_int LAPACKE_ztptri (int matrix_layout, char uplo, char diag, lapack_int n ,
lapack_complex_double * ap );
```

Include Files

- mkl.h

Description

The routine computes the inverse inv (A) of a packed triangular matrix A.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates whether A is upper or lower triangular:
	If uplo $=' U '$, then A is upper triangular.
	If uplo $=' L '$, then A is lower triangular.

```
diag Must be 'N' or 'U'.
    If diag = 'N', then A is not a unit triangular matrix.
    If diag = 'U', A is unit triangular: diagonal elements of A are
    assumed to be 1 and not referenced in the array ap.
    The order of the matrix A; n\geq0.
    Array, size at least max(1,n(n+1)/2).
    Contains the packed triangular matrix A.
```


Output Parameters

ap
Overwritten by the packed n-by- n matrix inv (A).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the i-th diagonal element of A is zero, A is singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

```
|XA - I| SC(n)\varepsilon | X||A|
| - A- A}|\leqC(n)\varepsilon|\mp@subsup{A}{}{-1}||A||X|
```

where $c(n)$ is a modest linear function of $n ; \varepsilon$ is the machine precision; I denotes the identity matrix.
The total number of floating-point operations is approximately $(1 / 3) n^{3}$ for real flavors and $(4 / 3) n^{3}$ for complex flavors.

See Also

Matrix Storage Schemes

Matrix Equilibration: LAPACK Computational Routines

Routines described in this section are used to compute scaling factors needed to equilibrate a matrix. Note that these routines do not actually scale the matrices.

```
?geequ
Computes row and column scaling factors intended to
equilibrate a general matrix and reduce its condition
number.
```


Syntax

```
lapack_int LAPACKE_sgeequ( int matrix_layout, lapack_int m, lapack_int n, const float*
```

lapack_int LAPACKE_sgeequ(int matrix_layout, lapack_int m, lapack_int n, const float*
a, lapack_int lda, float* r, float* c, float* rowcnd, float* colcnd, float* amax);
a, lapack_int lda, float* r, float* c, float* rowcnd, float* colcnd, float* amax);
lapack_int LAPACKE_dgeequ(int matrix_layout, lapack_int m, lapack_int n, const double*
lapack_int LAPACKE_dgeequ(int matrix_layout, lapack_int m, lapack_int n, const double*
a, lapack_int lda, double* r, double* c, double* rowcnd, double* colcnd, double* amax);

```
a, lapack_int lda, double* r, double* c, double* rowcnd, double* colcnd, double* amax );
```

```
lapack_int LAPACKE_cgeequ( int matrix_layout, lapack_int m, lapack_int n, const
lapack_complex_float* a, lapack_int lda, float* r, float* c, float* rowcnd, float*
colcnd, float* amax );
lapack_int LAPACKE_zgeequ( int matrix_layout, lapack_int m, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double* r, double* c, double* rowcnd, double*
colcnd, double* amax );
```


Include Files

- mkl.h

Description

The routine computes row and column scalings intended to equilibrate an m-by- n matrix A and reduce its condition number. The output array r returns the row scale factors and the array c the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix B with elements $b_{i j}=r[i-1] * a_{i j}{ }^{*} c[j-1]$ have absolute value 1 .

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
m	The number of rows of the matrix $A ; m \geq 0$.
n	The number of columns of the matrix $A ; n \geq 0$.
a	Array: size $\max \left(1, I d a_{n}\right)$ for column major layout and $\max (1$, lda*m) for row major layout.
	Contains the m-by- n matrix A whose equilibration factors are to be computed.
Ida	The leading dimension of a; $1 \mathrm{da} \geq \mathrm{max}(1, m)$.

Output Parameters

r, c	Arrays: $r($ size $m), c($ size $n)$.
	If info $=0$, or info $>m$, the array r contains the row scale factors of
the matrix A.	
rowcnd	If info $=0$, the array c contains the column scale factors of the
	matrix A.
colcnd	If info $=0$ or info>m, rowcnd contains the ratio of the smallest
	$r[i]$ to the largest $r[i]$.
amax	If info $=0$, colcnd contains the ratio of the smallest $c[i]$ to the
	largest $c[i]$.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.

If info $=-i$, parameter i had an illegal value.
If info $=i$, $i>0$, and
$i \leq m$, the i-th row of A is exactly zero;
$i>m$, the ($i-m$)th column of A is exactly zero.

Application Notes

All the components of r and c are restricted to be between SMLNUM $=$ smallest safe number and BIGNUM= largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice.

SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision values of SMLNUM and BIGNUM as follows:

```
SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM
```

If rowcnd ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by r.
If colcnd 0.1 , it is not worth scaling by c.
If amax is very close to SMLNUM or very close to BIGNUM, the matrix A should be scaled.

See Also

Error Analysis
Matrix Storage Schemes
?geequb
Computes row and column scaling factors restricted to a power of radix to equilibrate a general matrix and reduce its condition number.

Syntax

```
lapack_int LAPACKE_sgeequb( int matrix_layout, lapack_int m, lapack_int n, const float*
a, lapack_int lda, float* r, float* c, float* rowcnd, float* colcnd, float* amax );
lapack_int LAPACKE_dgeequb( int matrix_layout, lapack_int m, lapack_int n, const
double^ a, lapack_int lda, double* r, double* c, double* rowcnd, double* colcnd, double*
amax );
lapack_int LAPACKE_cgeequb( int matrix_layout, lapack_int m, lapack_int n, const
lapack_complex_float* a, lapack_int lda, float* r, float* c, float* rowcnd, float*
colcnd, float* amax );
lapack_int LAPACKE_zgeequb( int matrix_layout, lapack_int m, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double* r, double* c, double* rowcnd, double*
colcnd, double* amax );
```

Include Files

- mkl.h

Description

The routine computes row and column scalings intended to equilibrate an m-by- n general matrix A and reduce its condition number. The output array r returns the row scale factors and the array c - the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix B with elements $b_{i, j}=r[i-1] * a_{i, j}{ }^{*} c[j-1]$ have an absolute value of at most the radix.
$r[i-1]$ and $c[j-1]$ are restricted to be a power of the radix between SMLNUM $=$ smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of a but works well in practice.
SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision values of SMLNUM and BIGNUM as follows:

```
SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM
```

This routine differs from ? geequ by restricting the scaling factors to a power of the radix. Except for overand underflow, scaling by these factors introduces no additional rounding errors. However, the scaled entries' magnitudes are no longer equal to approximately 1 but lie between sqrt(radix) and $1 /$ sqrt (radix).

Input Parameters

```
matrix_layout
```

m
n
a
lda

Output Parameters

r, c
rowend
colcnd
amax

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

The number of rows of the matrix $A ; m \geq 0$.
The number of columns of the matrix $A ; n \geq 0$.
Array: size $\max \left(1, I d^{*}{ }_{n}\right)$ for column major layout and $\max (1$, lda* ${ }_{m}$) for row major layout.

Contains the m-by- n matrix A whose equilibration factors are to be computed.

The leading dimension of $a ; 1 d a \geq \max (1, m)$.

Arrays: $r(m), c(n)$.
If info $=0$, or info>m, the array r contains the row scale factors for the matrix A.

If info $=0$, the array c contains the column scale factors for the matrix A.

If info $=0$ or info>m, rowend contains the ratio of the smallest r [i] to the largest r [i]. If rowend ≥ 0.1, and amax is neither too large nor too small, it is not worth scaling by r.

If info $=0$, colcnd contains the ratio of the smallest c [i] to the largest $c[i]$. If colcno 0.1 , it is not worth scaling by c.

Absolute value of the largest element of the matrix A. If amax is very close to SMLNUM or very close to BIGNUM, the matrix should be scaled.

Return Values

This function returns a value info.

If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i, i>0$, and
$i \leq m$, the i-th row of A is exactly zero;
$i>m$, the $(i-m)$-th column of A is exactly zero.

See Also

Error Analysis
Matrix Storage Schemes
?gbequ
Computes row and column scaling factors intended to equilibrate a banded matrix and reduce its condition number.

Syntax

```
lapack_int LAPACKE_sgbequ( int matrix_layout, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku, const float* ab, lapack_int ldab, float* r, float* c, float* rowcnd,
float* colcnd, float* amax );
lapack_int LAPACKE_dgbequ( int matrix_layout, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku, const double* ab, lapack_int ldab, double* r, double* c, double*
rowcnd, double* colcnd, double* amax );
lapack_int LAPACKE_cgbequ( int matrix_layout, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku, const lapack_complex_float* ab, lapack_int ldab, float* r, float* c,
float* rowcnd, float* colcnd, float* amax );
lapack_int LAPACKE_zgbequ( int matrix_layout, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku, const lapack_complex_double* ab, lapack_int ldab, double* r, double*
c, double* rowcnd, double* colcnd, double* amax );
```


Include Files

- mkl.h

Description

The routine computes row and column scalings intended to equilibrate an m-by- n band matrix A and reduce its condition number. The output array r returns the row scale factors and the array c the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix B with elements $b_{i j}=r[i-1] * a_{i j}{ }^{*} c[j-1]$ have absolute value 1.

Input Parameters

```
matrix_layout
```

m
n
$k I$

Specifies whether matrix storage layout is row major
(LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
The number of rows of the matrix $A ; m \geq 0$.
The number of columns of the matrix $A ; n \geq 0$.
The number of subdiagonals within the band of $A ; k l \geq 0$.
$k u$
$a b$

Idab

Output Parameters

$$
r, c
$$

rowend
colcnd
amax

The number of superdiagonals within the band of $A ; k u \geq 0$.
Array, size $\max \left(1, ~ I d^{*}{ }^{*} n\right)$ for column major layout and max(1, ldab* ${ }^{*}$) for row major layout. Contains the original band matrix A.

The leading dimension of $a b ;|d a b \geq k|+k u+1$.

Arrays: r (size m), c (size n).
If info $=0$, or info>m, the array r contains the row scale factors of the matrix A.
If info $=0$, the array c contains the column scale factors of the matrix A.

If info $=0$ or info>m, rowcnd contains the ratio of the smallest $r[i]$ to the largest r [i].

If info $=0$, colcnd contains the ratio of the smallest $c[i]$ to the largest c [i].

Absolute value of the largest element of the matrix A.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$ and
$i \leq m$, the i-th row of A is exactly zero;
$i>m$, the ($i-m$)th column of A is exactly zero.

Application Notes

All the components of r and c are restricted to be between SMLNUM = smallest safe number and BIGNUM= largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice.
SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision values of SMLNUM and BIGNUM as follows:

```
SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM
```

If rowend ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by r.
If colcn $₫ \geqq 0.1$, it is not worth scaling by c.
If amax is very close to SMLNUM or very close to BIGNUM, the matrix A should be scaled.

See Also

Error Analysis
Matrix Storage Schemes

?gbequb

Computes row and column scaling factors restricted to a power of radix to equilibrate a banded matrix and reduce its condition number.

Syntax

```
lapack_int LAPACKE_sgbequb( int matrix_layout, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku, const float* ab, lapack_int ldab, float* r, float* c, float* rowcnd,
float* colcnd, float* amax );
lapack_int LAPACKE_dgbequb( int matrix_layout, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku, const double* ab, lapack_int ldab, double* r, double* c, double*
rowcnd, double* colcnd, double* amax );
lapack_int LAPACKE_cgbequb( int matrix_layout, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku, const lapack_complex_float* ab, lapack_int ldab, float* r, float* c,
float* rowcnd, float* colcnd, float* amax );
lapack_int LAPACKE_zgbequb( int matrix_layout, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku, const lapack_complex_double* ab, lapack_int ldab, double* r, double*
c, double* rowcnd, double* colcnd, double* amax );
```


Include Files

- mkl.h

Description

The routine computes row and column scalings intended to equilibrate an m-by- n banded matrix A and reduce its condition number. The output array r returns the row scale factors and the array c - the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix B with elements $b_{i}, j=r[i-1] * a_{i}, j^{*} c[j-1]$ have an absolute value of at most the radix.
r [i] and $c[j]$ are restricted to be a power of the radix between $S M L N U M=$ smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of a but works well in practice.
SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision values of SMLNUM and BIGNUM as follows:

```
SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM
```

This routine differs from ?gbequ by restricting the scaling factors to a power of the radix. Except for overand underflow, scaling by these factors introduces no additional rounding errors. However, the scaled entries' magnitudes are no longer equal to approximately 1 but lie between sqrt(radix) and $1 /$ sqrt (radix).

Input Parameters

```
matrix_layout
m
n
kl
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
The number of rows of the matrix \(A ; m \geq 0\).
The number of columns of the matrix \(A ; n \geq 0\).
The number of subdiagonals within the band of \(A ; k l \geq 0\).
```

$k u$
$a b$

Idab

Output Parameters

r, C	Arrays: $r($ size $m), c($ size $n)$.
	If info $=0$, or info>m, the array r contains the row scale factors for the matrix A.
	If info $=0$, the array c contains the column scale factors for the matrix A.
rowend	If info $=0$ or info>m, rowend contains the ratio of the smallest r (i) to the largest $r(i)$. If rowend ≥ 0.1, and amax is neither too large nor too small, it is not worth scaling by r.
colcnd	If info $=0$, colcnd contains the ratio of the smallest $c[i]$ to the largest $c[i]$. If colcn $d \geq 0.1$, it is not worth scaling by c.
amax	Absolute value of the largest element of the matrix A. If amax is very close to SMLNUM or BIGNUM, the matrix should be scaled.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the i-th diagonal element of A is nonpositive.
$i \leq m$, the i-th row of A is exactly zero;
$i>m$, the $(i-m)$-th column of A is exactly zero.

See Also

Error Analysis
Matrix Storage Schemes
?poequ
Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite matrix and reduce its condition number.

Syntax

```
lapack_int LAPACKE_spoequ( int matrix_layout, lapack_int n, const float* a, lapack_int
lda, float* s, float* scond, float* amax );
lapack_int LAPACKE_dpoequ( int matrix_layout, lapack_int n, const double* a, lapack_int
lda, double* s, double* scond, double* amax );
lapack_int LAPACKE_cpoequ( int matrix_layout, lapack_int n, const lapack_complex_float*
a, lapack_int lda, float* s, float* scond, float* amax );
```

```
lapack_int LAPACKE_zpoequ( int matrix_layout, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double* s, double* scond, double* amax );
```

Include Files

- mkl.h

Description

The routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positivedefinite matrix A and reduce its condition number (with respect to the two-norm). The output array s returns scale factors such that contains

$$
1 / \sqrt{a_{i, i}}
$$

These factors are chosen so that the scaled matrix B with elements $B_{i, j}=s[i-1] * A_{i, j}{ }^{*}[j-1]$ has diagonal elements equal to 1.

This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
n	The order of the matrix $A ; n \geq 0$.
a	Array: size max $\left(1, I d a^{*} n\right)$.
	Contains the $n-b y-n$ symmetric or Hermitian positive definite matrix A whose scaling factors are to be computed. Only the diagonal elements of A are referenced.
$l d a$	The leading dimension of $a ; I d a \geq \max (1, n)$.

Output Parameters

S
Array, size n.
If info $=0$, the array s contains the scale factors for A.
If info $=0$, scond contains the ratio of the smallest s [i] to the largest $s[i]$.

Absolute value of the largest element of the matrix A.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the i-th diagonal element of A is nonpositive.

Application Notes

If $s c o n d \geq 0.1$ and amax is neither too large nor too small, it is not worth scaling by s.
If amax is very close to SMLNUM or very close to BIGNUM, the matrix A should be scaled.

See Also
 Error Analysis
 Matrix Storage Schemes
 ?poequb
 Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite matrix and reduce its condition number.

Syntax

```
lapack_int LAPACKE_spoequb( int matrix_layout, lapack_int n, const float* a, lapack_int
lda, float* s, float* scond, float* amax );
lapack_int LAPACKE_dpoequb( int matrix_layout, lapack_int n, const double* a,
lapack_int lda, double* s, double* scond, double* amax );
lapack_int LAPACKE_cpoequb( int matrix_layout, lapack_int n, const
lapack_complex_float* a, lapack_int lda, float* s, float* scond, float* amax );
lapack_int LAPACKE_zpoequb( int matrix_layout, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double* s, double* scond, double* amax );
```


Include Files

- mkl.h

Description

The routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positivedefinite matrix A and reduce its condition number (with respect to the two-norm).

These factors are chosen so that the scaled matrix B with elements $B_{i, j}=s[i-1] \star A_{i, j}{ }^{*}[j-1]$ has diagonal elements equal to $1 . s[i-1]$ is a power of two nearest to, but not exceeding $1 / \operatorname{sqrt}\left(A_{i, i}\right)$.

This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.

Input Parameters

```
matrix_layout
n
a
```

Ida

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

The order of the matrix $A ; n \geq 0$.
Array: size $\max \left(1, I d^{*}{ }_{n}\right)$.
Contains the n-by- n symmetric or Hermitian positive definite matrix A whose scaling factors are to be computed. Only the diagonal elements of A are referenced.

The leading dimension of $a ; 1 d a \geq \max (1, m)$.

Output Parameters

S
Array, size (n).
If info $=0$, the array s contains the scale factors for A.
If info $=0$, scond contains the ratio of the smallest s [i] to the largest s [i]. If scond ≥ 0.1, and amax is neither too large nor too small, it is not worth scaling by s.

Absolute value of the largest element of the matrix A. If amax is very close to SMLNUM or BIGNUM, the matrix should be scaled.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the i-th diagonal element of A is nonpositive.

```
See Also
Error Analysis
Matrix Storage Schemes
?ppequ
Computes row and column scaling factors intended to
equilibrate a symmetric (Hermitian) positive definite
matrix in packed storage and reduce its condition
number.
```


Syntax

```
lapack_int LAPACKE_sppequ( int matrix_layout, char uplo, lapack_int n, const float* ap,
```

lapack_int LAPACKE_sppequ(int matrix_layout, char uplo, lapack_int n, const float* ap,
float* s, float* scond, float* amax);
float* s, float* scond, float* amax);
lapack_int LAPACKE_dppequ(int matrix_layout, char uplo, lapack_int n, const double*
lapack_int LAPACKE_dppequ(int matrix_layout, char uplo, lapack_int n, const double*
ap, double* s, double* scond, double* amax);
ap, double* s, double* scond, double* amax);
lapack_int LAPACKE_cppequ(int matrix_layout, char uplo, lapack_int n, const
lapack_int LAPACKE_cppequ(int matrix_layout, char uplo, lapack_int n, const
lapack_complex_float* ap, float* s, float* scond, float* amax);
lapack_complex_float* ap, float* s, float* scond, float* amax);
lapack_int LAPACKE_zppequ(int matrix_layout, char uplo, lapack_int n, const
lapack_int LAPACKE_zppequ(int matrix_layout, char uplo, lapack_int n, const
lapack_complex_double* ap, double* s, double* scond, double* amax);

```
lapack_complex_double* ap, double* s, double* scond, double* amax );
```


Include Files

- mkl.h

Description

The routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positive definite matrix A in packed storage and reduce its condition number (with respect to the two-norm). The output array s returns scale factors such that contains

These factors are chosen so that the scaled matrix B with elements $b_{i j}=s[i-1] * a_{i j}{ }^{\star} s[j-1]$ has diagonal elements equal to 1.
This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.

Input Parameters

```
matrix_layout
uplo
n
ap
```


Output Parameters

Array, size (n).
If info $=0$, the array s contains the scale factors for A.

If info $=0$, scond contains the ratio of the smallest $s[i]$ to the largest $s[i]$.

Absolute value of the largest element of the matrix A.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the i-th diagonal element of A is nonpositive.

Application Notes

If scond 0.1 and amax is neither too large nor too small, it is not worth scaling by s.
If amax is very close to SMLNUM or very close to BIGNUM, the matrix A should be scaled.

See Also

Error Analysis
Matrix Storage Schemes
?pbequ
Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive-definite band matrix and reduce its condition number.

Syntax

```
lapack int LAPACKE spbequ( int matrix layout, char uplo, lapack int n, lapack int kd,
const float* ab, lapack_int ldab, float* s, float* scond, float* amax );
lapack_int LAPACKE_dpbequ( int matrix_layout, char uplo, lapack_int n, lapack_int kd,
const double* ab, lapack_int ldab, double* s, double* scond, double* amax );
lapack_int LAPACKE_cpbequ( int matrix_layout, char uplo, lapack_int n, lapack_int kd,
const lapack_complex_float* ab, lapack_int ldab, float* s, float* scond, float* amax );
lapack_int LAPACKE_zpbequ( int matrix_layout, char uplo, lapack_int n, lapack_int kd,
const lapack_complex_double* ab, lapack_int ldab, double* s, double* scond, double*
amax );
```

Include Files

- mkl.h

Description

The routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positive definite band matrix A and reduce its condition number (with respect to the two-norm). The output array s returns scale factors such that contains

$$
s(i)=\frac{1}{\sqrt{a_{i, i}}}
$$

These factors are chosen so that the scaled matrix B with elements $b_{i j}=s[i-1] * a_{i j}{ }^{*} s[j-1]$ has diagonal elements equal to 1 . This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored in the array $a b$:
	If uplo = 'U', the array $a b$ stores the upper triangular part of the matrix A.
	If uplo = 'L', the array $a b$ stores the lower triangular part of the matrix A.
n	The order of matrix $A ; n \geq 0$.
$k d$	The number of superdiagonals or subdiagonals in the matrix $A ; k d \geq 0$.
$a b$	Array, size max (1, Idab* ${ }^{\text {a }}$) .
	The array ap contains either the upper or the lower triangular part of the matrix A (as specified by uplo) in band storage (see Matrix Storage Schemes).
Idab	The leading dimension of the array $a b ; / d a b \geq k d+1$.

Output Parameters

s
scond
amax

Array, size (n).
If info $=0$, the array s contains the scale factors for A.
If info $=0$, scond contains the ratio of the smallest s [i] to the largest $s[i]$.

Absolute value of the largest element of the matrix A.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the i-th diagonal element of A is nonpositive.

Application Notes

If scond 0.1 and amax is neither too large nor too small, it is not worth scaling by s.
If amax is very close to SMLNUM or very close to BIGNUM, the matrix A should be scaled.

See Also

Error Analysis
Matrix Storage Schemes

?syequb

Computes row and column scaling factors intended to equilibrate a symmetric indefinite matrix and reduce its condition number.

Syntax

```
lapack_int LAPACKE_ssyequb( int matrix_layout, char uplo, lapack_int n, const float* a,
lapack_int lda, float* s, float* scond, float* amax );
lapack_int LAPACKE_dsyequb( int matrix_layout, char uplo, lapack_int n, const double*
a, lapack_int lda, double* s, double* scond, double* amax );
lapack_int LAPACKE_csyequb( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_float* a, lapack_int lda, float* s, float* scond, float* amax );
lapack_int LAPACKE_zsyequb( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double* s, double* scond, double* amax );
```


Include Files

- mkl.h

Description

The routine computes row and column scalings intended to equilibrate a symmetric indefinite matrix A and reduce its condition number (with respect to the two-norm).
The array s contains the scale factors, $s[i-1]=1 / \operatorname{sqrt}(A(i, i))$. These factors are chosen so that the scaled matrix B with elements $b_{i, j}=s[i-1] * a_{i}, j * s[j-1]$ has ones on the diagonal.
This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored:
	If uplo = 'U', the array a stores the upper triangular part of the matrix A.
	If uplo = 'L', the array a stores the lower triangular part of the matrix A.
n	The order of the matrix A; $n \geq 0$.
a	Array a: max $\left(1, I d a *_{n}\right)$.
	Contains the n-by- n symmetric indefinite matrix A whose scaling factors are to be computed. Only the diagonal elements of A are referenced.
Ida	The leading dimension of a; lda \geq max $(1, m)$.

Output Parameters

S
scond
amax

Array, size (n).
If info $=0$, the array s contains the scale factors for A.
If info $=0$, scond contains the ratio of the smallest s [i] to the largest s [i]. If scond ≥ 0.1, and amax is neither too large nor too small, it is not worth scaling by s.

Absolute value of the largest element of the matrix A. If amax is very close to SMLNUM or BIGNUM, the matrix should be scaled.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the i-th diagonal element of A is nonpositive.

```
See Also
Error Analysis
Matrix Storage Schemes
?heequb
Computes row and column scaling factors intended to equilibrate a Hermitian indefinite matrix and reduce its condition number.
```


Syntax

```
lapack_int LAPACKE_cheequb( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_float* a, lapack_int lda, float* s, float* scond, float* amax );
lapack_int LAPACKE_zheequb( int matrix_layout, char uplo, lapack_int n, const
lapack_complex_double* a, lapack_int lda, double* s, double* scond, double* amax );
```

Include Files

- mkl.h

Description

The routine computes row and column scalings intended to equilibrate a Hermitian indefinite matrix A and reduce its condition number (with respect to the two-norm).

The array s contains the scale factors, $s[i-1]=1 / \operatorname{sqrt}\left(a_{i, i}\right)$. These factors are chosen so that the scaled matrix B with elements $b_{i, j}=s[i-1] * a_{i, j} * s[j-1]$ has ones on the diagonal.

This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.

Input Parameters

```
matrix_layout
```

Specifies whether matrix storage layout is row major
(LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

```
uplo
n
a
lda
```


Output Parameters

Array, size (n).
If info $=0$, the array s contains the scale factors for A.
If info $=0$, scond contains the ratio of the smallest $s[i]$ to the largest s [i]. If scono ≥ 0.1, and amax is neither too large nor too small, it is not worth scaling by s.

Absolute value of the largest element of the matrix A. If amax is very close to SMLNUM or BIGnum, the matrix should be scaled.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the i-th diagonal element of A is nonpositive.

See Also

Error Analysis
Matrix Storage Schemes

LAPACK Linear Equation Driver Routines

Table "Driver Routines for Solving Systems of Linear Equations" lists the LAPACK driver routines for solving systems of linear equations with real or complex matrices.
Driver Routines for Solving Systems of Linear Equations

Matrix type, storage scheme	Simple Driver	Expert Driver	Expert Driver using Extra-Precise Interative Refinement
general	?gesv	?gesvx	?gesvxx
general band	$? g \mathrm{bsv}$?gbsvx	?g.bsvxx

Matrix type, storage scheme	Simple Driver	Expert Driver	Expert Driver using Extra-Precise Interative Refinement
general tridiagonal	? gtsv	? gtsvx	
diagonally dominant tridiagonal	? dtsvb		
symmetric/Hermitian positive-definite	?posv	?posvx	? posvxx
symmetric/Hermitian positive-definite, storage	?ppsv	?ppsvx	
symmetric/Hermitian positive-definite, band	? pbsv	?pbsvx	
symmetric/Hermitian positive-definite, tridiagonal	?ptsv	?ptsvx	
symmetric/Hermitian indefinite	?sysv/?hesv	?sysvx/?hesvx	?sysvxx/?hesvxx
	$\begin{aligned} & \text { ?sysv_rook/?sysv_rk/ } \\ & \text { ?hesv_rk } \end{aligned}$		
	?sysv_aa/?hesv_aa		
symmetric/Hermitian indefinite, packed storage	?spsv/?hpsv	?spsvx/?hpsvx	
complex symmetric	?sysv	?sysvx	
	?sysv_rook		
complex symmetric, packed storage	?spsv	?spsvx	

In this table ? stands for s (single precision real), d (double precision real), c (single precision complex), or z (double precision complex). In the description of ?gesv and ?posv routines, the ? sign stands for combined character codes ds and zc for the mixed precision subroutines.

?gesv

Computes the solution to the system of linear equations with a square coefficient matrix A and multiple right-hand sides.

Syntax

```
lapack_int LAPACKE_sgesv (int matrix_layout , lapack_int n , lapack_int nrhs , float *
a , lapack_int lda , lapack_int * ipiv , float * b , lapack_int ldb );
lapack_int LAPACKE_dgesv (int matrix_layout, lapack_int n , lapack_int nrhs, double *
a , lapack_int lda , lapack_int * ipiv , double * b , lapack_int ldb );
lapack_int LAPACKE_cgesv (int matrix_layout , lapack_int n , lapack_int nrhs ,
lapack_complex_float * a , lapack_int lda , lapack_int * ipiv , lapack_complex_float *
b , lapack_int ldb );
```

```
lapack_int LAPACKE_zgesv (int matrix_layout, lapack_int n , lapack_int nrhs ,
lapack_complex_double * a , lapack_int lda, lapack_int * ipiv , lapack_complex_double
* b , lapack_int ldb );
lapack_int LAPACKE_dsgesv (int matrix_layout, lapack_int n, lapack_int nrhs, double *
a, lapack_int lda, lapack_int * ipiv, double * b, lapack_int ldb, double * x, lapack_int
ldx, lapack_int * iter);
lapack_int LAPACKE_zcgesv (int matrix_layout, lapack_int n, lapack_int nrhs,
lapack_complex_double * a, lapack_int lda, lapack_int * ipiv, lapack_complex_double *
b, lapack_int ldb, lapack_complex_double * x, lapack_int ldx, lapack_int * iter);
```

Include Files

- mkl.h

Description

The routine solves for X the system of linear equations $A * X=B$, where A is an n-by-n matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The $L U$ decomposition with partial pivoting and row interchanges is used to factor A as $A=P^{\star} L \star U$, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations $A * X=B$.

The dsgesv and zcgesv are mixed precision iterative refinement subroutines for exploiting fast single precision hardware. They first attempt to factorize the matrix in single precision (dsgesv) or single complex precision (zcgesv) and use this factorization within an iterative refinement procedure to produce a solution with double precision (dsgesv) / double complex precision (zcgesv) normwise backward error quality (see below). If the approach fails, the method switches to a double precision or double complex precision factorization respectively and computes the solution.

The iterative refinement is not going to be a winning strategy if the ratio single precision performance over double precision performance is too small. A reasonable strategy should take the number of right-hand sides and the size of the matrix into account. This might be done with a call to ilaenv in the future. At present, iterative refinement is implemented.

The iterative refinement process is stopped if

```
iter > itermax
```

or for all the right-hand sides:

```
rnmr < sqrt(n)*xnrm*anrm*eps*bwdmax
```

where

- iter is the number of the current iteration in the iterativerefinement process
- rnmr is the infinity-norm of the residual
- xnrm is the infinity-norm of the solution
- anrm is the infinity-operator-norm of the matrix A
- eps is the machine epsilon returned by dlamch ('Epsilon').

The values itermax and bwdmax are fixed to 30 and $1.0 \mathrm{~d}+00$ respectively.

Input Parameters

matrix_layout
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

```
n
nrhs
a
b
Ida
Idb
Idx
```


Output Parameters

The number of linear equations, that is, the order of the matrix A; $n \geq$ 0.

The number of right-hand sides, that is, the number of columns of the matrix $B ; n r h s \geq 0$.

The array $a\left(\right.$ size $\left.\max \left(1, I d a_{n}\right)\right)$ contains the n-by- n coefficient matrix A.

The array bof size max($1, I d b^{*} n r h s$) for column major layout and $\max \left(1, l d b_{n}\right)$ for row major layout contains the n-by-nrhs matrix of right hand side matrix B.

The leading dimension of the array $a ; 1 d a \geq \max (1, n)$.
The leading dimension of the array $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

The leading dimension of the array $x ; l d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Overwritten by the factors L and U from the factorization of $A=$ $P * L * U$; the unit diagonal elements of L are not stored.

If iterative refinement has been successfully used (info $=0$ and iter ≥ 0), then A is unchanged.

If double precision factorization has been used (info= 0 and iter < 0), then the array A contains the factors L and U from the factorization $A=P \star L^{*} U$; the unit diagonal elements of L are not stored.

Overwritten by the solution matrix X for dgesv, sgesv,zgesv,zgesv. Unchanged for dsgesv and zcgesv.

Array, size at least max $(1, n)$. The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row ipiv[i-1]. Corresponds to the single precision factorization (if info $=0$ and iter ≥ 0) or the double precision factorization (if info= 0 and iter <0).

Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and $\max (1$, $l d x_{n}$) for row major layout. If info $=0$, contains the n-by-nrhs solution matrix X.

If iter < 0: iterative refinement has failed, double precision factorization has been performed

- If iter $=-1$: the routine fell back to full precision for implementation- or machine-specific reason
- If iter $=-2$: narrowing the precision induced an overflow, the routine fell back to full precision
- If iter $=-3$: failure of sgetrf for dsgesv, or cgetrf for zcgesv
- If iter $=-31$: stop the iterative refinement after the 30th iteration.

If iter > 0: iterative refinement has been successfully used. Returns the number of iterations.

Return Values

This function returns a value info.
If inforo, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i, U_{i, ~}$ (computed in double precision for mixed precision subroutines) is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

See Also

dlamch
sgetrf
Matrix Storage Schemes

?gesvx

Computes the solution to the system of linear equations with a square coefficient matrix A and multiple right-hand sides, and provides error bounds on the solution.

Syntax

```
lapack_int LAPACKE_sgesvx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int nrhs, float* a, lapack_int lda, float* af, lapack_int ldaf, lapack_int* ipiv,
char* equed, float* r, float* c, float* b, lapack_int ldb, float* x, lapack_int ldx,
float* rcond, float* ferr, float* berr, float* rpivot );
lapack_int LAPACKE_dgesvx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int nrhs, double* a, lapack_int lda, double* af, lapack_int ldaf, lapack_int*
ipiv, char* equed, double* r, double* c, double* b, lapack_int ldb, double* x,
lapack_int ldx, double* rcond, double* ferr, double* berr, double* rpivot );
lapack_int LAPACKE_cgesvx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, float* r, float* c,
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* rcond, float* ferr, float* berr, float* rpivot );
lapack_int LAPACKE_zgesvx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, double* r, double* c,
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx,
double* rcond, double* ferr, double* berr, double* rpivot );
```


Include Files

- mkl.h

Description

The routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A * X=B$, where A is an n-by- n matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ? gesvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors r and c are computed to equilibrate the system:
```
trans = 'N': diag(r)*A*diag(C)*inv(diag(c))*X = diag(r)*B
trans = 'T':(diag(r)*A* diag(c)) T*inv(diag(r))*X = diag(c)*B
trans = 'C': (diag(r)*A* diag(C)) 'H*inv(diag(r))*X = diag(c)*B
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(r){ }^{\star} A^{\star} \operatorname{diag}(c)$ and B by $\operatorname{diag}(r){ }^{*} B$ (if trans='N') or $\operatorname{diag}(c) * B$ (if trans $=$ 'T' or 'C').
2. If fact $=$ ' N ' or ' E ', the $L U$ decomposition is used to factor the matrix A (after equilibration if fact $=' E '$) as $A=P^{\star} L^{\star} U$, where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.
3. If some $U_{i, i}=0$, so that U is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form of A.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(c)$ (if $\operatorname{trans}=$ ' N ') or diag(r) (if trans $=$ 'T' or 'C') so that it solves the original system before equilibration.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
fact	Must be 'F', 'N', or 'E'.
	Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.
	If fact $=$ ' F ': on entry, af and ipiv contain the factored form of A. If equed is not ' N ', the matrix A has been equilibrated with scaling factors given by r and c. $a, a f$, and ipiv are not modified.
	If fact = 'N', the matrix A will be copied to af and factored.
	If fact $=$ ' E ', the matrix A will be equilibrated if necessary, then copied to af and factored.
trans	Must be 'N', 'T', or 'C'.
	Specifies the form of the system of equations:
	If trans $=$ ' N ', the system has the form $A \star X=B$ (No transpose).
	If trans $=$ ' T ', the system has the form $A^{T *} X=B$ (Transpose).
	If trans $=$ ' C', the system has the form $A^{H *} X=B$ (Transpose for real flavors, conjugate transpose for complex flavors).
n	The number of linear equations; the order of the matrix A; $n \geq 0$.

nrhs
a
$a f$
b
Ida
Idaf
$1 d b$
ipiv
equed

r, c

The number of right hand sides; the number of columns of the matrices B and $X ; n r h s \geq 0$.

The array $a\left(\right.$ size $\left.\max \left(1, I d a_{n}\right)\right)$ contains the matrix A. If fact $=$ ' F ' and equed is not ' N ', then A must have been equilibrated by the scaling factors in r and/or c.

The array $\operatorname{afaf}\left(\right.$ size $\left.\max \left(1, I \operatorname{daf}_{n}\right)\right)$ is an input argument if fact $=$ ' F '. It contains the factored form of the matrix A, that is, the factors L and U from the factorization $A=P^{\star} L \star U$ as computed by ?getrf. If equed is not ' N ', then af is the factored form of the equilibrated matrix A.

The array bbof size $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and $\max \left(1, I d{ }^{*}{ }_{n}\right)$ for row major layout contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $a ; 1 d a \geq \max (1, n)$.
The leading dimension of $a f ; I d a \geq \max (1, n)$.
The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Array, size at least max $(1, n)$. The array ipiv is an input argument if fact $=$ ' F '. It contains the pivot indices from the factorization $A=$ $P^{\star} L \star U$ as computed by ?getrf; row i of the matrix was interchanged with row ipiv[i-1].

Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact $={ }^{\prime} F^{\prime}$. It specifies the form of equilibration that was done:

If equed = 'N', no equilibration was done (always true if fact = 'N').

If equed = 'R', row equilibration was done, that is, A has been premultiplied by diag(r).
If equed $=$ ' C', column equilibration was done, that is, A has been postmultiplied by diag(c).
If equed = 'B', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(r) * A * \operatorname{diag}(c)$.

Arrays: r (size n), c (size n). The array r contains the row scale factors for A, and the array c contains the column scale factors for A. These arrays are input arguments if fact = 'F' only; otherwise they are output arguments.
If equed $=$ 'R' or 'B', A is multiplied on the left by $\operatorname{diag}(r)$; if equed $=$ ' N^{\prime} or 'C', r is not accessed.

If fact $=$ ' F ' and equed $=$ ' R ' or ' B ', each element of r must be positive.
If equed $=$ ' C ' or ' B ', A is multiplied on the right by $\operatorname{diag}(c)$; if equed $=$ ' N ' or 'R', c is not accessed.

If fact $=$ ' F ' and equed $=$ ' C ' or ' B ', each element of c must be positive.

The leading dimension of the output array $x ; \operatorname{ldx} \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Output Parameters

X
a
$a f$
b
r, c
rcond
ferr

Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and $\max (1$, $l d x_{n}$) for row major layout.
If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the original system of equations. Note that A and B are modified on exit if equed \neq ' N ', and the solution to the equilibrated system is:
$\operatorname{diag}(C)^{-1 \star} X$, if trans $=$ ' N ' and equed $=$ ' C ' or ' B ';
$\operatorname{diag}(R)^{-1 \star} X$, if trans $=$ ' T ' or ' C' and equed $=$ ' R ' or ' B '. The second dimension of x must be at least max ($1, n r h s$).

Array a is not modified on exit if fact $={ }^{\prime} \mathrm{F}^{\prime}$ or 'N', or if fact $=$ ' E ' and equed $=$ ' N '. If equed \neq ' N ', A is scaled on exit as follows:
equed $=$ 'R': $A=\operatorname{diag}(R) * A$
equed $=$ 'C': $A=A * \operatorname{diag}(C)$
equed $=$ ' $\mathrm{B}^{\prime}: A=\operatorname{diag}(R) \star A * \operatorname{diag}(C)$.
If fact $=$ 'N' or 'E', then $a f$ is an output argument and on exit returns the factors L and U from the factorization $A=P L U$ of the original matrix A (if fact $=N^{\prime} N^{\prime}$) or of the equilibrated matrix A (if fact $=$ ' E '). See the description of a for the form of the equilibrated matrix.

Overwritten by diag $(r) * B$ if trans $=$ 'N' and equed = 'R'or 'B';
overwritten by diag $(C) * B$ if trans $=$ ' T ' or ' C ' and equed $=' \mathrm{C}$ ' or 'B';
not changed if equed $=$ ' N '.
These arrays are output arguments if fact $\neq \mathcal{F}^{\prime} \mathrm{F}^{\prime}$. See the description of r, c in Input Arguments section.

An estimate of the reciprocal condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. This condition is indicated by a return code of info >0.

Array, size at least max ($1, n r h s$). Contains the estimated forward error bound for each solution vector x_{j} (the j-th column of the solution matrix X). If x true is the true solution corresponding to x_{j}, ferr $[j-1]$ is an estimated upper bound for the magnitude of the largest element in ($x_{j}-x$ rrue) divided by the magnitude of the largest element in x_{j}. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

```
berr Array, size at least max(1, nrhs). Contains the component-wise relative backward error for each solution vector \(x_{j}\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x_{j}\) an exact solution.
If fact \(=\) 'N'or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization \(A=P * L * U\) of the original matrix \(A\) (if fact \(=' N\) ') or of the equilibrated matrix \(A\) (if fact \(=\) 'E').
If \(f a c t \neq ' F^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
On exit, rpivot contains the reciprocal pivot growth factor:
```

$$
\|A\|\|\|\|
$$

If rpivot is much less than 1 , then the stability of the $L U$ factorization of the (equilibrated) matrix A could be poor. This also means that the solution x, condition estimator rcond, and forward error bound ferr could be unreliable. If factorization fails with $0<$ info $\leq n$, then rpivot contains the reciprocal pivot growth factor for the leading info columns of A.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, and $i \leq n$, then $U(i, i)$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=n+1$, then U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

See Also

Matrix Storage Schemes

?gesvxx

Uses extra precise iterative refinement to compute the solution to the system of linear equations with a square coefficient matrix A and multiple right-hand sides

Syntax

```
lapack_int LAPACKE_sgesvxx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int nrhs, float* a, lapack_int lda, float* af, lapack_int ldaf, lapack_int* ipiv,
char* equed, float* r, float* c, float* b, lapack_int ldb, float* x, lapack_int ldx,
float* rcond, float* rpvgrw, float* berr, lapack_int n_err_bnds, float* err_bnds_norm,
float* err_bnds_comp, lapack_int nparams, const float* params );
```

```
lapack_int LAPACKE_dgesvxx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int nrhs, double* a, lapack_int lda, double* af, lapack_int ldaf, lapack_int*
ipiv, char* equed, double* r, double* c, double* b, lapack_int ldb, double* x,
lapack_int ldx, double* rcond, double* rpvgrw, double* berr, lapack_int n_err_bnds,
double* err_bnds_norm, double* err_bnds_comp, lapack_int nparams, const double*
params );
lapack_int LAPACKE_cgesvxx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, float* r, float* c,
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* rcond, float* rpvgrw, float* berr, lapack_int n_err_bnds, float* err_bnds_norm,
float* err_bnds_comp, lapack_int nparams, const float* params );
lapack_int LAPACKE_zgesvxx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, double* r, double* c,
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx,
double* rcond, double* rpvgrw, double* berr, lapack_int n_err_bnds, double*
err_bnds_norm, double* err_bnds_comp, lapack_int nparams, const double* params );
```

Include Files

- mkl.h

Description

The routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A * X=B$, where A is an n-by-n matrix, the columns of the matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error (0 (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.

The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with 0 (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.

The routine ?gesvxx performs the following steps:

1. If fact $=$ ' E ', scaling factors r and c are computed to equilibrate the system:
```
trans = 'N': diag(r)*A*diag(c)*inv(diag(c))*X = diag(r)*B
trans = 'T': (diag(r)*A*diag(c)) T*inv(diag(r))*X = diag(c)*B
trans = 'C': (diag(r)*A*diag(c)) H\starinv(diag(r))*X = diag(c)*B
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(r) \star A \star \operatorname{diag}(c)$ and B by diag(r)*B (if trans='N') or $\operatorname{diag}(c) * B$ (if trans $=' T$ ' or 'C').
2. If fact $=$ ' N ' or ' E ', the $L U$ decomposition is used to factor the matrix A (after equilibration if fact $=$ ' E^{\prime}) as $A=P^{\star} L^{\star} U$, where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.
3. If some $U_{i, i}=0$, so that U is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for X and compute error bounds.
4. The system of equations is solved for X using the factored form of A.
5. By default, unless is set to zero, the routine applies iterative refinement to improve the computed solution matrix and calculate error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix X is premultiplied by diag(c) (if trans $=$ ' N ') or diag(r) (if trans $=$ ' T ' or 'C') so that it solves the original system before equilibration.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
fact	Must be 'F', 'N', or 'E'.
	Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.
	If fact $=$ ' F ', on entry, af and ipiv contain the factored form of A. If equed is not ' N ', the matrix A has been equilibrated with scaling factors given by r and c. Parameters $a, ~ a f$, and ipiv are not modified.
	If fact $=$ ' N ', the matrix A will be copied to af and factored.
	If fact $=$ ' E ', the matrix A will be equilibrated, if necessary, copied to af and factored.
trans	Must be 'N', 'T', or 'C'.
	Specifies the form of the system of equations:
	If trans $=$ ' N ', the system has the form $A^{*} X=B$ (No transpose).
	If trans $=$ 'T', the system has the form $A^{\top *} X=B$ (Transpose).
	If trans $=$ ' C', the system has the form $A^{\mathrm{H} *} X=B$ (Conjugate Transpose $=$ Transpose for real flavors, Conjugate Transpose for complex flavors).
n	The number of linear equations; the order of the matrix A; $n \geq 0$.
nrhs	The number of right hand sides; the number of columns of the matrices B and X; nrhs ≥ 0.
$a, a f, b$	Arrays: $a\left(\right.$ size $\left.\max \left(I d a^{*} n\right)\right), a f\left(\right.$ size $\left.\max \left(l d a f^{*} n\right)\right), b($ size $\max (1$, ldb*nrhs) for column major layout and $\max \left(1, I d b_{n}\right)$ for row major layout).
	The array a contains the matrix A. If fact $={ }^{\prime} F$ ' and equed is not ' N ', then A must have been equilibrated by the scaling factors in r and/or c. .

```
lda
ldaf
ipiv
```

equed
r, c

The array af is an input argument if fact $={ }^{\prime} F^{\prime}$. It contains the factored form of the matrix A, that is, the factors L and U from the factorization $A=P^{\star} L \star U$ as computed by ?getrf. If equed is not ' N ', then $a f$ is the factored form of the equilibrated matrix A.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $a ; 1 d a \geq \max (1, n)$.
The leading dimension of $a f ; l d a \geq \max (1, n)$.
Array, size at least max $(1, n)$. The array ipiv is an input argument if fact $=$ ' F '. It contains the pivot indices from the factorization $A=$ $P \star L \star U$ as computed by ?getrf; row i of the matrix was interchanged with row ipiv[i-1].

Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact $={ }^{\prime} F^{\prime}$. It specifies the form of equilibration that was done:
If equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N').

If equed = 'R', row equilibration was done, that is, A has been premultiplied by $\operatorname{diag}(r)$.
If equed $=$ ' C ', column equilibration was done, that is, A has been postmultiplied by diag(c).

If equed = 'B', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(r) \star A \star \operatorname{diag}(c)$.

Arrays: r (size n), c (size n). The array r contains the row scale factors for A, and the array c contains the column scale factors for A. These arrays are input arguments if fact = 'F' only; otherwise they are output arguments.
If equed $=$ ' R ' or ' B ', A is multiplied on the left by $\operatorname{diag}(r)$; if equed $={ }^{\prime} N^{\prime}$ or ' C^{\prime}, r is not accessed.

If fact $=$ ' F ' and equed $=$ ' R 'or ' B ', each element of r must be positive.
If equed $=$ ' C ' or ' B ', A is multiplied on the right by $\operatorname{diag}(c)$; if equed $=$ ' N ' or ' R ', c is not accessed.

If fact $=$ ' F ' and equed $=$ ' C ' or ' B ', each element of c must be positive.

Each element of r or c should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

The leading dimension of the array b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.
$1 d x$
n_err_bnds
nparams
params

The leading dimension of the output array $x ; I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

Array, size max(1, nparams). Specifies algorithm parameters. If an entry is less than 0.0 , that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams $=0$, which prevents the source code from accessing the params argument.
params[0] : Whether to perform iterative refinement or not. Default: 1.0
$=0.0 \quad$ No refinement is performed and no error bounds are computed.
$=1.0 \quad$ Use the double-precision refinement algorithm, possibly with doubled-single computations if the compilation environment does not support double precision.
(Other values are reserved for future use.)
params [1] : Maximum number of residual computations allowed for refinement.

Default
Aggressive
10.0

Set to 100.0 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params [2] : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the doubleprecision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

Output Parameters

Array, size $\max \left(1, l d x_{n r h s}\right)$ for column major layout and $\max \left(1, I d x_{n}\right)$ for row major layout.
If info $=0$, the array x contains the solution n-by-nrhs matrix X to the original system of equations. Note that A and B are modified on exit if equed \neq 'N', and the solution to the equilibrated system is:

```
inv(diag(C))*X, if trans = 'N' and equed = 'C' or 'B'; or
inv(diag(r))*X, if trans = 'T' or 'C' and equed = 'R' or 'B'.
```

a
$a f$
b

Array a is not modified on exit if fact $=$ 'F' or 'N', or if fact $=$ ' E ' and equed = 'N'.
If equed $\neq{ }^{\prime} \mathrm{N}^{\prime}, A$ is scaled on exit as follows:

```
equed = 'R':A = diag(r)*A
equed = 'C':A = A* diag(C)
equed = 'B':A = diag(r)*A* diag(c).
```

If fact $=$ 'N' or ' E ', then af is an output argument and on exit returns the factors L and U from the factorization $A=P L U$ of the original matrix A (if fact $=$ 'N') or of the equilibrated matrix A (if fact $=$ ' E '). See the description of a for the form of the equilibrated matrix.

Overwritten by $\operatorname{diag}(r) *_{B}$ if trans $=$ 'N' and equed $=$ 'R' or 'B'; overwritten by trans $=$ ' T ' or 'C' and equed $=$ 'C' or 'B'; not changed if equed $=$ ' N '.

These arrays are output arguments if $f a c t \neq ' F^{\prime}$. Each element of these arrays is a power of the radix. See the description of r, c in Input Arguments section.

Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if r cond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.
Contains the reciprocal pivot growth factor:

$$
\|A\|\|\|\|
$$

If this is much less than 1 , the stability of the $L U$ factorization of the (equlibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. If factorization fails with $0<$ info $\leq n$, this parameter contains the reciprocal pivot growth factor for the leading info columns of A. In ?gesvx, this quantity is returned in rpivot.

Array, size at least $\max (1, n r h s)$. Contains the componentwise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:
Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.

```
err=1
```

err=2
err=3
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (n) *slamch (ε) for single precision flavors and sqrt (n) *dlamch (ε) for double precision flavors.
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) *$ dlamch (ε) for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{0} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1.

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in err_bnds_norm[(err-1)*nrhs + i - 1].
err_bnds_comp
Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params [2] = $0.0)$, then err_bnds_comp is not accessed.

err=1
 err=2

err=3
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors.
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n)*slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * s l a m c h(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{1} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{\star}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of $a * \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1.

If fact $=$ 'N' or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization $A=P^{\star} L^{\star} U$ of the original matrix A (if fact $=$ 'N') or of the equilibrated matrix A (if fact $=' E '$).

If fact $\neq ' F^{\prime}$, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

If an entry is less than 0.0 , that entry is filled with the default value used for that parameter, otherwise the entry is not modified

Return Values

This function returns a value info.
If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.

If info $=-i$, parameter i had an illegal value.
If 0 < info $\leq n: U_{\text {info, info }}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with $k>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params [2] $=0.0$, then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that for column major layout err_bnds_norm[j-1] $=0.0$ or err_bnds_comp[j-1] = 0.0; or for row major layout err_bnds_norm[(j-1)*n_err_bnds] = 0.0 or err_bnds_comp[(j-1)*n_err_bnds] = 0.0). See the definition of err_bnds_norm and err_bnds_comp for err = 1. To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

See Also

Matrix Storage Schemes

?gbsv

Computes the solution to the system of linear equations with a band coefficient matrix A and multiple right-hand sides.

Syntax

```
lapack_int LAPACKE_sgbsv (int matrix_layout , lapack_int n , lapack_int kl , lapack_int
ku , lapack_int nrhs , float * ab , lapack_int ldab, lapack_int * ipiv , float * b ,
lapack_int ldb );
lapack_int LAPACKE_dgbsv (int matrix_layout , lapack_int n , lapack_int kl , lapack_int
ku , lapack_int nrhs, double * ab , lapack_int ldab, lapack_int * ipiv, double * b ,
lapack_int ldb );
lapack_int LAPACKE_cgbsv (int matrix_layout , lapack_int n , lapack_int kl , lapack_int
ku , lapack_int nrhs , lapack_complex_float * ab , lapack_int ldab , lapack_int *
ipiv , lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zgbsv (int matrix_layout , lapack_int n , lapack_int kl , lapack_int
ku , lapack_int nrhs , lapack_complex_double * ab , lapack_int ldab , lapack_int *
ipiv , lapack_complex_double * b , lapack_int ldb );
```


Include Files

- mkl.h

Description

The routine solves for X the real or complex system of linear equations $A * X=B$, where A is an n-by- n band matrix with $k l$ subdiagonals and $k u$ superdiagonals, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
The $L U$ decomposition with partial pivoting and row interchanges is used to factor A as $A=L * U$, where L is a product of permutation and unit lower triangular matrices with $k l$ subdiagonals, and U is upper triangular with $k l+k u$ superdiagonals. The factored form of A is then used to solve the system of equations $A * X=B$.

Input Parameters

```
matrix_layout
n
kl
ku
nrhs
ab,b
Idab
Idb
```


Output Parameters

```
ab
b
ipiv
```


Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i, U_{i, i}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

See Also
 Matrix Storage Schemes

?gbsvx
Computes the solution to the real or complex system of linear equations with a band coefficient matrix A and multiple right-hand sides, and provides error bounds on the solution.

Syntax

```
lapack_int LAPACKE_sgbsvx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int kl, lapack_int ku, lapack_int nrhs, float* ab, lapack_int ldab, float* afb,
lapack_int ldafb, lapack_int* ipiv, char* equed, float* r, float* c, float* b,
lapack_int ldb, float* x, lapack_int ldx, float* rcond, float* ferr, float* berr, float*
rpivot );
lapack_int LAPACKE_dgbsvx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int kl, lapack_int ku, lapack_int nrhs, double* ab, lapack_int ldab, double* afb,
lapack_int ldafb, lapack_int* ipiv, char* equed, double* r, double* c, double* b,
lapack_int ldb, double* x, lapack_int ldx, double* rcond, double* ferr, double* berr,
double* rpivot );
lapack_int LAPACKE_cgbsvx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int kl, lapack_int ku, lapack_int nrhs, lapack_complex_float* ab, lapack_int
ldab, lapack_complex_float* afb, lapack_int ldafb, lapack_int* ipiv, char* equed,
float* r, float* c, lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x,
lapack_int ldx, float* rcond, float* ferr, float* berr, float* rpivot );
lapack_int LAPACKE_zgbsvx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int kl, lapack_int ku, lapack_int nrhs, lapack_complex_double* ab, lapack_int
ldab, lapack_complex_double* afb, lapack_int ldafb, lapack_int* ipiv, char* equed,
double* r, double* c, lapack_complex_double* b, lapack_int ldb, lapack_complex_double*
x, lapack_int ldx, double* rcond, double* ferr, double* berr, double* rpivot );
```

Include Files

- mkl.h

Description

The routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A^{*} X=B, A^{T *} X=B$, or $A^{H * X}=B$, where A is a band matrix of order n with $k l$ subdiagonals and $k u$ superdiagonals, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?gbsvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors r and c are computed to equilibrate the system:
trans $=$ 'N': diag(r)*A*diag(c) *inv(diag(c))*X $=\operatorname{diag}(r) * B$
trans $=$ 'T': $(\operatorname{diag}(r) * A * \operatorname{diag}(c))^{T} * \operatorname{inv}(\operatorname{diag}(r)) * X=\operatorname{diag}(c) * B$
trans $='^{\prime} C^{\prime}:\left(\operatorname{diag}(r) * A^{*} \operatorname{diag}(C)\right)^{H} * \operatorname{inv}(\operatorname{diag}(r)) * X=\operatorname{diag}(c) * B$
Whether the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(r) * A * \operatorname{diag}(c)$ and B by $\operatorname{diag}(r) * B$ (if trans='N') or $\operatorname{diag}(c) * B$ (if trans = 'T'or 'C').
2. If fact = 'N'or ' E ', the $L U$ decomposition is used to factor the matrix A (after equilibration if fact $=$ ' E^{\prime}) as $A=L^{*} U$, where L is a product of permutation and unit lower triangular matrices with kl subdiagonals, and U is upper triangular with $k l+k u$ superdiagonals.
3. If some $U_{i, i}=0$, so that U is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form of A.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix X is premultiplied by diag(c) (if trans = 'N') or diag(r) (if trans $=$ ' T ' or ' C ') so that it solves the original system before equilibration.

Input Parameters

Specifies whether matrix storage layout is row major
(LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'F', 'N', or 'E'.
Specifies whether the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.
If fact $=$ ' F': on entry, afb and ipiv contain the factored form of A. If equed is not ' N ', the matrix A is equilibrated with scaling factors given by r and c.
$a b, a f b$, and ipiv are not modified.
If fact $=$ ' N ', the matrix A will be copied to $a f b$ and factored.
If fact $=$ ' E ', the matrix A will be equilibrated if necessary, then copied to $a f b$ and factored.

Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans $=' N$ ', the system has the form $A \star X=B$ (No transpose).
If trans $=$ ' T ', the system has the form $A^{T *} X=B$ (Transpose).
If trans $=$ ' C', the system has the form $A^{H *} X=B$ (Transpose for real flavors, conjugate transpose for complex flavors).

The number of linear equations, the order of the matrix $A ; n \geq 0$.
The number of subdiagonals within the band of $A ; k l \geq 0$.
The number of superdiagonals within the band of $A ; k u \geq 0$.
The number of right hand sides, the number of columns of the matrices B and X; nrhs ≥ 0.

Arrays: $a b\left(\max \left(I d^{2} b^{*}\right)\right), a f b\left(\max \left(\operatorname{ldafb}_{n}\right)\right), b(\max (1$, $l d{ }^{*}{ }_{n r h s}$) for column major layout and $\max \left(1, I d b^{*} n\right)$ for row major layout).

The array $a b$ contains the matrix A in band storage (see Matrix Storage Schemes). If fact $=$ ' F^{\prime} ' and equed is not ' N ', then A must have been equilibrated by the scaling factors in r and/or c.

The array $a f b$ is an input argument if fact $={ }^{\prime} F^{\prime}$. It contains the factored form of the matrix A, that is, the factors L and U from the factorization $A=P \star L \star U$ as computed by ?gbtrf. U is stored as an upper triangular band matrix with $k l+k u$ superdiagonals. L is stored as lower triangular band matrix with $k l$ subdiagonals. If equed is not ' N ', then $a f b$ is the factored form of the equilibrated matrix A.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $a b ;|d a b \geq k|+k u+1$.
The leading dimension of $a f b ; I d a f b \geq 2 * k I+k u+1$.
The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq$ nrhs for row major layout.

Array, size at least max $(1, n)$. The array ipiv is an input argument if fact $=$ ' F^{\prime}. It contains the pivot indices from the factorization $A=$ $P^{\star} L^{\star} U$ as computed by ?gbtrf; row i of the matrix was interchanged with row ipiv[i-1].

Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact $={ }^{\prime} \mathrm{F}^{\prime}$. It specifies the form of equilibration that was done:
If equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N').

If equed = 'R', row equilibration was done, that is, A has been premultiplied by diag(r).
If equed $=$ ' C ', column equilibration was done, that is, A has been postmultiplied by diag(c).
if equed $=$ ' B ', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(r) \star A * \operatorname{diag}(c)$.

Arrays: r (size n), c (size $n)$.
The array r contains the row scale factors for A, and the array c contains the column scale factors for A. These arrays are input arguments if fact $=$ ' F ' only; otherwise they are output arguments.

If equed $=$ 'R'or 'B', A is multiplied on the left by $\operatorname{diag}(r)$; if equed $=$ ' N ' or ' C ', r is not accessed.

If fact $=$ ' F ' and equed $=$ ' R ' or ' B ', each element of r must be positive.
If equed $=$ ' C'or ' B ', A is multiplied on the right by $\operatorname{diag}(C)$; if equed $=$ 'N'or 'R', c is not accessed.

If fact $=$ ' F ' and equed $=$ 'C'or 'B', each element of c must be positive.

The leading dimension of the output array $x ; \operatorname{ldx} \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Output Parameters

Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and $\max (1$, $l d x_{n}$) for row major layout.

If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the original system of equations. Note that A and B are modified on exit if equed $\neq{ }^{\prime} N^{\prime}$, and the solution to the equilibrated system is:
$\operatorname{inv}(\operatorname{diag}(c)) * X$, if trans $='^{N}$ ' and equed $=$ 'C'or 'B'; $\operatorname{inv}(\operatorname{diag}(r)) * X$, if trans $=$ 'T' or 'C' and equed = 'R' or 'B'.
$a b$

b
r, c
rcond
ferr
berr
ipiv

Array $a b$ is not modified on exit if fact $={ }^{\prime} F^{\prime}$ or 'N', or if fact $=$ 'E' and equed = 'N'.

If equed \neq ' N ', A is scaled on exit as follows:
equed $=$ 'R': $A=\operatorname{diag}(r) * A$
equed $=' C ': A=A * \operatorname{diag}(C)$
equed $=$ ' $\mathrm{B}^{\prime}: A=\operatorname{diag}(r) \star A \star \operatorname{diag}(C)$.
If fact $=$ 'N' or 'E', then $a f b$ is an output argument and on exit returns details of the $L U$ factorization of the original matrix A (if fact $=' N$ ') or of the equilibrated matrix A (if fact $=' E '$). See the description of $a b$ for the form of the equilibrated matrix.

Overwritten by $\operatorname{diag}(r) * b$ if trans $=$ ' N ' and equed = 'R' or 'B'; overwritten by $\operatorname{diag}(C) * b$ if trans $=$ ' T ' or ' C ' and equed $=$ ' C ' or 'B';
not changed if equed $=$ ' N '.
These arrays are output arguments if $f a c t \neq ' F^{\prime}$. See the description of r, c in Input Arguments section.

An estimate of the reciprocal condition number of the matrix A after equilibration (if done).
If rcond is less than the machine precision (in particular, if rcond $=0$), the matrix is singular to working precision. This condition is indicated by a return code of info >0.

Array, size at least max ($1, \mathrm{nrhs}$). Contains the estimated forward error bound for each solution vector x_{j} (the j-th column of the solution matrix X). If x true is the true solution corresponding to x_{j}, ferr [j-1] is an estimated upper bound for the magnitude of the largest element in ($x_{j}-x t r u e$) divided by the magnitude of the largest element in x_{j}. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

Array, size at least max ($1, n r h s$). Contains the component-wise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

If fact $=$ 'N' or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization $A=L^{*} U$ of the original matrix A (if fact $=' N$ ') or of the equilibrated matrix A (if fact $=$ 'E').
equed
rpivot

If $f a c t \neq ' F^{\prime}$, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

On exit, rpivot contains the reciprocal pivot growth factor:

$$
\|A\||\mid\| \|
$$

If rpivot is much less than 1 , then the stability of the $L U$ factorization of the (equilibrated) matrix A could be poor. This also means that the solution x, condition estimator rcond, and forward error bound ferr could be unreliable. If factorization fails with $0<$ info n, then rpivot contains the reciprocal pivot growth factor for the leading info columns of A.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, and $i \leq n$, then $U_{i, i}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned. If info $=$ i, and $i=n+1$, then U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

See Also

Matrix Storage Schemes
?gbsvxx
Uses extra precise iterative refinement to compute the
solution to the system of linear equations with a
banded coefficient matrix A and multiple right-hand
sides

Syntax

```
lapack_int LAPACKE_sgbsvxx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int kl, lapack_int ku, lapack_int nrhs, float* ab, lapack_int ldab, float* afb,
lapack_int ldafb, lapack_int* ipiv, char* equed, float* r, float* c, float* b,
lapack_int ldb, float* x, lapack_int ldx, float* rcond, float* rpvgrw, float* berr,
lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams,
const float* params );
lapack_int LAPACKE_dgbsvxx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int kl, lapack_int ku, lapack_int nrhs, double* ab, lapack_int ldab, double* afb,
lapack_int ldafb, lapack_int* ipiv, char* equed, double* r, double* c, double* b,
lapack_int ldb, double* x, lapack_int ldx, double* rcond, double* rpvgrw, double* berr,
lapack_int n_err_bnds, double* err_bnds_norm, double* err_bnds_comp, lapack_int
nparams, const double* params );
lapack_int LAPACKE_cgbsvxx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int kl, lapack_int ku, lapack_int nrhs, lapack_complex_float* ab, lapack_int
ldab, lapack_complex_float* afb, lapack_int ldafb, lapack_int* ipiv, char* equed,
```

```
float* r, float* c, lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x,
lapack_int ldx, float* rcond, float* rpvgrw, float* berr, lapack_int n_err_bnds, float*
err_bnds_norm, float* err_bnds_comp, lapack_int nparams, const float* params );
lapack_int LAPACKE_zgbsvxx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int kl, lapack_int ku, lapack_int nrhs, lapack_complex_double* ab, lapack_int
ldab, lapack_complex_double* afb, lapack_int ldafb, lapack_int* ipiv, char* equed,
double* r, double* c, lapack_complex_double* b, lapack_int ldb, lapack_complex_double*
x, lapack_int ldx, double* rcond, double* rpvgrw, double* berr, lapack_int n_err_bnds,
double* err_bnds_norm, double* err_bnds_comp, lapack_int nparams, const double*
params );
```


Include Files

- mkl.h

Description

The routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A{ }^{*} X=B, A^{\mathbb{T}} * X=B$, or $A^{H} * X=B$, where A is an n-by- n banded matrix, the columns of the matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error (0 (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.

The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with O (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.

The routine ?gbsvxx performs the following steps:

1. If fact $=$ ' E ', scaling factors r and c are computed to equilibrate the system:
```
trans = 'N': diag(r)*A* diag(c)*inv(diag(c))*X = diag(r)*B
trans = 'T':(diag(r)*A* diag(c)) T*inv(diag(r))*X = diag(c)*B
trans = 'C':(diag(r)*A* diag(C) )}\mp@subsup{}{}{H*}\operatorname{inv}(\operatorname{diag}(r))*X=\operatorname{diag}(C)*
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(r) * A * \operatorname{diag}(c)$ and B by $\operatorname{diag}(r) * B$ (if $\operatorname{trans}={ }^{\prime} N^{\prime}$) or $\operatorname{diag}(c) * B$ (if trans $=$ ' T ' or 'C').
2. If fact = 'N' or ' E ', the $L U$ decomposition is used to factor the matrix A (after equilibration if fact $=' E '$) as $A=P^{*} L^{\star} U$, where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.
3. If some $U_{i, i}=0$, so that U is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for X and compute error bounds.
4. The system of equations is solved for X using the factored form of A.
5. By default, unless params [0] is set to zero, the routine applies iterative refinement to improve the computed solution matrix and calculate error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(c)$ (if trans $=$ ' N ') or diag(r) (if trans $=$ 'T' or 'C') so that it solves the original system before equilibration.

Input Parameters

Idab

Specifies whether two-dimensional array storage is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'F', 'N', or 'E'.
Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.
If fact $=$ ' F ', on entry, $a f b$ and ipiv contain the factored form of A. If equed is not ' N ', the matrix A has been equilibrated with scaling factors given by r and c. Parameters $a b, a f b$, and ipiv are not modified.
If fact $=$ ' N ', the matrix A will be copied to $a f b$ and factored.
If fact $=$ ' E ', the matrix A will be equilibrated, if necessary, copied to $a f b$ and factored.

Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans $=' N$ ', the system has the form $A \star X=B$ (No transpose).
If trans $=$ ' T ', the system has the form $A^{\top *} X=B$ (Transpose).
If trans $=$ ' C ', the system has the form $A^{\mathrm{H} *} X=B$ (Conjugate
Transpose $=$ Transpose for real flavors, Conjugate Transpose for complex flavors).

The number of linear equations; the order of the matrix $A ; n \geq 0$.
The number of subdiagonals within the band of $A ; k l \geq 0$.
The number of superdiagonals within the band of $A ; k u \geq 0$.
The number of right-hand sides; the number of columns of the matrices B and X; nrhs ≥ 0.

Arrays: $a b\left(\max \left(I d a b^{*}\right)\right), a f b\left(\max \left(I d a f b^{*}\right)\right), b(\max (1$, $\left.I d b^{*} n r h s\right)$ for column major layout and $\max \left(1, I d b^{*}\right)^{\prime}$ for row major layout).
The array $a b$ contains the matrix A in band storage.
If fact $=$ ' F ' and equed is not ' N ', then $A B$ must have been equilibrated by the scaling factors in r and/or c.

The array $a f b$ is an input argument if fact $={ }^{\prime} F^{\prime}$. It contains the factored form of the banded matrix A, that is, the factors L and U from the factorization $A=P^{*} L^{\star} U$ as computed by ? gbtrf. U is stored as an upper triangular banded matrix with $k l+k u$ superdiagonals. L is stored as lower triangular band matrix with kl subdiagonals. If equed is not ' N ', then $a f b$ is the factored form of the equilibrated matrix A.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of the array $a b ; 1 d a b \geq k l+k u+1$.

```
ldafb
```

ipiv
equed
r, c
1 db
$1 d x$
n_err_bnds

The leading dimension of the array $a f b ; l d a f b \geq 2 * k l+k u+1$.
Array, size at least max $(1, n)$. The array ipiv is an input argument if fact $=' F^{\prime}$. It contains the pivot indices from the factorization $A=$ $P^{*} L^{\star} U$ as computed by ?gbtrf; row i of the matrix was interchanged with row ipiv[i-1].

Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact $={ }^{\prime} F^{\prime}$. It specifies the form of equilibration that was done:
If equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N').

If equed = 'R', row equilibration was done, that is, A has been premultiplied by $\operatorname{diag}(r)$.

If equed $=$ ' C ', column equilibration was done, that is, A has been postmultiplied by diag(c).
If equed = 'B', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(r) * A * \operatorname{diag}(C)$.

Arrays: r (size n), c (size n). The array r contains the row scale factors for A, and the array c contains the column scale factors for A. These arrays are input arguments if fact $=$ ' F ' only; otherwise they are output arguments.

If equed $=$ ' R ' or ' B ', A is multiplied on the left by diag(r); if equed $='^{N}$ 'or 'C', r is not accessed.

If fact $=$ ' F ' and equed $=$ ' R ' or ' B ', each element of r must be positive.
If equed $=$ ' C ' or ' B ', A is multiplied on the right by $\operatorname{diag}(c)$; if equed $=$ ' N ' or 'R', c is not accessed.
If fact $=$ ' F ' and equed $=$ ' C ' or ' B ', each element of c must be positive.
Each element of r or c should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

The leading dimension of the array $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

The leading dimension of the output array $x ; \operatorname{ldx} \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.
params

Array, size max(1, nparams). Specifies algorithm parameters. If an entry is less than 0.0, that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams $=0$, which prevents the source code from accessing the params argument.
params[0] : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).
$=0.0 \quad$ No refinement is performed and no error bounds are computed.
$=1.0 \quad$ Use the extra-precise refinement algorithm.
(Other values are reserved for future use.)
params [1] : Maximum number of residual computations allowed for refinement.

Default
Aggressive
10.0

Set to 100.0 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params [2] : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the doubleprecision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

Output Parameters

X
$a b$

Array, size $\max \left(1, l d x^{*} r h s\right)$ for column major layout and $\max \left(1, l d x_{n}\right)$ for row major layout.

If info $=0$, the array x contains the solution n-by-nrhs matrix X to the original system of equations. Note that A and B are modified on exit if equed \neq ' N ', and the solution to the equilibrated system is:

```
inv(diag(c))*X, if trans = 'N' and equed = 'C' or 'B'; or
inv(diag(r))*X, if trans = 'T' or 'C' and equed = 'R' or 'B'.
```

Array $a b$ is not modified on exit if fact $=$ ' F^{\prime} or ' N ', or if fact $=$ ' E ' and equed $=$ ' N '.

If equed $\neq{ }^{\prime} N^{\prime}$, A is scaled on exit as follows:

```
equed = 'R':A = diag(r)*A
equed = 'C':A = A* diag(C)
equed = 'B':A = diag(r)*A*diag(c).
```

```
afb If fact = 'N' or 'E', then afb is an output argument and on exit returns the factors \(L\) and \(U\) from the factorization \(A=P L U\) of the original matrix \(A\) (if fact \(=\) 'N') or of the equilibrated matrix \(A\) (if fact \(=\) ' \(E\) ').
b
Overwritten by \(\operatorname{diag}(r) * B\) if trans \(=\) ' \(N\) ' and equed \(=\) ' \(R^{\prime}\) or ' \(B\) '; overwritten by trans = 'T' or 'C' and equed = 'C' or 'B'; not changed if equed \(=\) ' \(N\) '.
These arrays are output arguments if \(f a c t \neq ' F^{\prime}\). Each element of these arrays is a power of the radix. See the description of \(r, c\) in Input Arguments section.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.
Contains the reciprocal pivot growth factor:
```

$$
\|\|\|\|\|\|
$$

If this is much less than 1 , the stability of the $L U$ factorization of the (equlibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. If factorization fails with $0<i n f o \leq n$, this parameter contains the reciprocal pivot growth factor for the leading info columns of A. In ?gbsvx, this quantity is returned in rpivot.

Array, size at least max ($1, n r h s$). Contains the componentwise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

Array of size $n r h s^{*} n _e r r _b n d s$. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:

Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
$e r r=1$
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) *slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * \operatorname{lamch}(\varepsilon)$ for double precision flavors.
err=2
err=3
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{0} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1 .

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in err_bnds_norm[(err-1)*nrhs + i - 1].
err_bnds_comp
Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

$$
\max _{j} \frac{\left|X t r u e_{j i}-X_{j i}\right|}{\left|X_{j i}\right|}
$$

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params [2] = 0.0), then err_bnds_comp is not accessed.

```
err=1
```

err=2
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n)*slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors.
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and
$\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * s l a m c h(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{0} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of $a^{\star} \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1 .
err=3
and
The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in err_bnds_comp[(err-1)*nrhs + i - 1].

If fact $=$ 'N' or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization $A=P^{\star} L \star U$ of the original matrix A (if fact $=$ 'N') or of the equilibrated matrix A (if fact $=' E '$).

If fact $\neq ' F^{\prime}$, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

If an entry is less than 0.0, that entry is filled with the default value used for that parameter, otherwise the entry is not modified.

If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, the i-th parameter had an illegal value.
If 0 < infosn: $U_{i n f o, i n f o}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with k $>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params [2] = 0.0 , then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that err_bnds_norm[j-1] = 0.0 or err_bnds_comp[j-1] $=0.0$. See the definition of err_bnds_norm and err_bnds_comp for err = 1. To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

Return Values

This function returns a value info.
If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, parameter i had an illegal value.
If 0 < info n : $U_{\text {info, info }}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with $k>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params [2] $=0.0$, then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that for column major layout err_bnds_norm[j-1] = 0.0 or err_bnds_comp[j-1] = 0.0; or for row major layout err_bnds_norm[$\left.\left.\overline{(j-\overline{1})} \star_{n_{-}} e r r_{-} b n d s\right]=0.0 \operatorname{or} \overline{e r} r_{-} b n \bar{d} s_{-} \operatorname{comp}\left[(j-1) n_{n} e r r_{-} b n d s\right]=0.0\right)$. See the definition of err_bnds_norm and err_bnds_comp for err $=1$. To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

See Also
Matrix Storage Schemes

?gtsv
 Computes the solution to the system of linear equations with a tridiagonal coefficient matrix A and multiple right-hand sides.

Syntax

```
lapack_int LAPACKE_sgtsv (int matrix_layout , lapack_int n , lapack_int nrhs , float *
dl , float * d, float * du , float * b , lapack_int ldb );
lapack_int LAPACKE_dgtsv (int matrix_layout , lapack_int n , lapack_int nrhs , double *
dl , double * d , double * du , double * b , lapack_int ldb );
lapack_int LAPACKE_cgtsv (int matrix_layout , lapack_int n , lapack_int nrhs ,
lapack_complex_float * dl , lapack_complex_float * d , lapack_complex_float * du ,
lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zgtsv (int matrix_layout , lapack_int n , lapack_int nrhs ,
lapack_complex_double * dl , lapack_complex_double * d , lapack_complex_double * du ,
lapack_complex_double * b , lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves for X the system of linear equations $A * X=B$, where A is an n-by- n tridiagonal matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions. The routine uses Gaussian elimination with partial pivoting.
Note that the equation $A^{T *} X=B$ may be solved by interchanging the order of the arguments $d u$ and $d l$.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
n	The order of A, the number of rows in $B ; n \geq 0$.
nrhs	The number of right-hand sides, the number of columns in B; nrhs \geq 0.
$d \mathrm{l}$	The array $d l$ (size $n-1$) contains the $(n-1)$ subdiagonal elements of A.
d	The array d (size n) contains the diagonal elements of A.
du	The array $d u$ (size $n-1$) contains the ($n-1$) superdiagonal elements of A.
b	The array b of size $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and $\max \left(1, I d b^{*}\right)$ for row major layout contains the matrix B whose columns are the right-hand sides for the systems of equations.
1 db	The leading dimension of b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Output Parameters

Overwritten by the ($n-2$) elements of the second superdiagonal of the upper triangular matrix U from the $L U$ factorization of A. These elements are stored in $d l[0], \ldots, d l[n-3]$.

Overwritten by the n diagonal elements of U.
Overwritten by the $(n-1)$ elements of the first superdiagonal of U.
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i, U_{i, i}$ is exactly zero, and the solution has not been computed. The factorization has not been completed unless $i=n$.

See Also

Matrix Storage Schemes
?gtsvx
Computes the solution to the real or complex system of linear equations with a tridiagonal coefficient matrix A and multiple right-hand sides, and provides error bounds on the solution.

Syntax

```
lapack_int LAPACKE_sgtsvx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int nrhs, const float* dl, const float* d, const float* du, float* dlf, float*
df, float* duf, float* du2, lapack_int* ipiv, const float* b, lapack_int ldb, float* x,
lapack_int ldx, float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_dgtsvx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int nrhs, const double* dl, const double* d, const double* du, double* dlf,
double* df, double* duf, double* du2, lapack_int* ipiv, const double* b, lapack_int ldb,
double* x, lapack_int ldx, double* rcond, double* ferr, double* berr );
lapack_int LAPACKE_cgtsvx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int nrhs, const lapack_complex_float* dl, const lapack_complex_float* d, const
lapack_complex_float* du, lapack_complex_float* dlf, lapack_complex_float* df,
lapack_complex_float* duf, lapack_complex_float* du2, lapack_int* ipiv, const
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_zgtsvx( int matrix_layout, char fact, char trans, lapack_int n,
lapack_int nrhs, const lapack_complex_double* dl, const lapack_complex_double* d, const
lapack_complex_double* du, lapack_complex_double* dlf, lapack_complex_double* df,
lapack_complex_double* duf, lapack_complex_double* du2, lapack_int* ipiv, const
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx,
double* rcond, double* ferr, double* berr );
```

Include Files

- mkl.h

Description

The routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A * X=B, A^{T *} X=B$, or $A^{H *} X=B$, where A is a tridiagonal matrix of order n, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?gtsvx performs the following steps:

1. If fact $=$ ' N ', the $L U$ decomposition is used to factor the matrix A as $A=L * U$, where L is a product of permutation and unit lower bidiagonal matrices and U is an upper triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals.
2. If some $U_{i, i}=0$, so that U is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form of A.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

Input Parameters

matrix_layout
fact

Specifies whether matrix storage layout is row major
(LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'F' or 'N'.
trans
n
$n r h s$
$d l, d, d u, d l f, d f, d u f, d u 2, b$

Idb

Idx
ipiv

Specifies whether or not the factored form of the matrix A has been supplied on entry.

If fact $=$ ' F ': on entry, dlf, df, duf, du2, and ipiv contain the factored form of A; arrays $d l, d, d u, d l f, d f, d u f, d u 2$, and ipiv will not be modified.

If fact $=$ 'N', the matrix A will be copied to $d l f, d f$, and duf and factored.

Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $A^{\star} X=B$ (No transpose).
If trans $=$ ' T ', the system has the form $A^{T *} X=B$ (Transpose).
If trans $=$ ' C ', the system has the form $A^{H * X}=B$ (Conjugate transpose).

The number of linear equations, the order of the matrix $A ; n \geq 0$.
The number of right hand sides, the number of columns of the matrices B and X; nrhs ≥ 0.

Arrays:
$d l$, size ($n-1$), contains the subdiagonal elements of A.
d, size (n), contains the diagonal elements of A.
$d u$, size ($n-1$), contains the superdiagonal elements of A.
dlf, size ($n-1$). If fact $=$ ' F^{\prime}, then dlf is an input argument and on entry contains the ($n-1$) multipliers that define the matrix L from the $L U$ factorization of A as computed by ?gttrf.
$d f$, size (n). If fact $=' F^{\prime}$, then $d f$ is an input argument and on entry contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.
duf, size ($n-1$). If fact $=$ ' F ', then duf is an input argument and on entry contains the ($n-1$) elements of the first superdiagonal of U.
$d u 2$, size ($n-2$). If fact $=' \mathrm{~F}$ ', then du2 is an input argument and on entry contains the $(n-2)$ elements of the second superdiagonal of U.
b, size $\max \left(I d b^{*} n r h s\right)$ for column major layout and $\max \left(I d b_{n}\right)$ for row major layout, contains the right-hand side matrix B.

The leading dimension of b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

The leading dimension of $x ; 1 d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Array, size at least max $(1, n)$. If fact $=' F^{\prime}$, then ipiv is an input argument and on entry contains the pivot indices, as returned by ?gttrf.

Output Parameters

x
berr

Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and max(1, $l d x^{*} n$) for row major layout.

If info $=0$ or info $=n+1$, the array x contains the solution matrix X.

If fact $=$ 'N', then $d l f$ is an output argument and on exit contains the ($n-1$) multipliers that define the matrix L from the $L U$ factorization of A.

If fact $=$ ' N ', then $d f$ is an output argument and on exit contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.

If fact $=$ ' N ', then duf is an output argument and on exit contains the $(n-1)$ elements of the first superdiagonal of U.

If fact $=$ 'N', then $d u 2$ is an output argument and on exit contains the $(n-2)$ elements of the second superdiagonal of U.

The array ipiv is an output argument if fact = 'N'and, on exit, contains the pivot indices from the factorization $A=L^{*} U$; row i of the matrix was interchanged with row ipiv[i-1]. The value of ipiv[i-1] will always be i or $i+1$; ipiv $[i-1]=i$ indicates a row interchange was not required.

An estimate of the reciprocal condition number of the matrix A. If r cond is less than the machine precision (in particular, if r cond $=0$), the matrix is singular to working precision. This condition is indicated by a return code of info >0.

Array, size at least max ($1, n r h s$). Contains the estimated forward error bound for each solution vector x_{j} (the j-th column of the solution matrix X). If x true is the true solution corresponding to x_{j}, ferr $[j-1]$ is an estimated upper bound for the magnitude of the largest element in $x_{j}-x$ true divided by the magnitude of the largest element in x_{j}. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

Array, size at least max ($1, n r h s$). Contains the component-wise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, and $i \leq n$, then $U_{i, i}$ is exactly zero. The factorization has not been completed unless $i=n$, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned. If info $=i$, and $i=n+1$, then U is nonsingular, but rcond is less than machine precision,
meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

See Also

Matrix Storage Schemes

?dtsvb
 Computes the solution to the system of linear equations with a diagonally dominant tridiagonal coefficient matrix A and multiple right-hand sides.

Syntax

```
void sdtsvb (const MKL_INT * n, const MKL_INT * nrhs, float * dl, float * d, const
float * du, float * b, const MKL_INT * ldb, MKL_INT * info );
void ddtsvb (const MKL_INT * n, const MKL_INT * nrhs, double * dl, double * d, const
double * du, double * b, const MKL_INT * ldb, MKL_INT * info );
void cdtsvb (const MKL_INT * n, const MKL_INT * nrhs, MKL_Complex8 * dl, MKL_Complex8 *
d, const MKL_Complex8 * du, MKL_Complex8 * b, const MKL_INT * ldb, MKL_INT * info );
void zdtsvb (const MKL_INT * n, const MKL_INT * nrhs, MKL_Complex16 * dl, MKL_Complex16
* d, const MKL_Complex16 * du, MKL_Complex16 * b, const MKL_INT * ldb, MKL_INT *
info );
```

Include Files

- mkl.h

Description

The ? dtsvb routine solves a system of linear equations $A \star X=B$ for X, where A is an n-by- n diagonally dominant tridiagonal matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions. The routine uses the BABE (Burning At Both Ends) algorithm.
Note that the equation $A^{T *} X=B$ may be solved by interchanging the order of the arguments $d u$ and $d l$.

Input Parameters

```
n
nrhs
dl, d, du, b
```

1 db

The order of A, the number of rows in $B ; n \geq 0$.
The number of right-hand sides, the number of columns in $B ; n r h s \geq$ 0.

Arrays: $d l$ (size $n-1$), $d($ size $n)$, $d u($ size $n-1), b\left(\max \left(l d b^{*} n r h s\right)\right.$ for column major layout and $\max \left(1 d^{*} *_{n}\right)$ for row major layout).

The array $d l$ contains the $(n-1)$ subdiagonal elements of A.
The array d contains the diagonal elements of A.
The array $d u$ contains the $(n-1)$ superdiagonal elements of A.
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $b ; 1 d b \geq \max (1, n)$.

Output Parameters

dl	Overwritten by the $(n-1)$ elements of the subdiagonal of the lower triangular matrices L_{1}, L_{2} from the factorization of A (see dttrfb).
d	
Overwritten by the n diagonal element reciprocals of U.	
Overwritten by the solution matrix X.	

Application Notes

A diagonally dominant tridiagonal system is defined such that $\left|d_{i}\right|>\left|d l_{i-1}\right|+\left|d u_{i}\right|$ for any i :
$1<i<n$, and $\left|d_{1}\right|>\left|d u_{1}\right|,\left|d_{n}\right|>\left|d l_{n-1}\right|$
The underlying BABE algorithm is designed for diagonally dominant systems. Such systems have no numerical stability issue unlike the canonical systems that use elimination with partial pivoting (see ?gtsv). The diagonally dominant systems are much faster than the canonical systems.

NOTE

- The current implementation of BABE has a potential accuracy issue on very small or large data close to the underflow or overflow threshold respectively. Scale the matrix before applying the solver in the case of such input data.
- Applying the ? dtsvb factorization to non-diagonally dominant systems may lead to an accuracy loss, or false singularity detected due to no pivoting.

?posv

Computes the solution to the system of linear equations with a symmetric or Hermitian positivedefinite coefficient matrix A and multiple right-hand sides.

Syntax

```
lapack_int LAPACKE_sposv (int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
float * a, lapack_int lda, float * b, lapack_int ldb);
lapack_int LAPACKE_dposv (int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
double * a, lapack_int lda, double * b, lapack_int ldb);
lapack_int LAPACKE_cposv (int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
lapack_complex_float * a, lapack_int lda, lapack_complex_float * b, lapack_int ldb);
lapack_int LAPACKE_zposv (int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
lapack_complex_double * a, lapack_int lda, lapack_complex_double * b, lapack_int ldb);
lapack_int LAPACKE_dsposv (int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
double * a, lapack_int lda, double * b, lapack_int ldb, double * x, lapack_int ldx,
lapack_int * iter);
```

```
lapack_int LAPACKE_zcposv (int matrix_layout, char uplo, lapack_int n, lapack_int nrhs,
lapack_complex_double * a, lapack_int lda, lapack_complex_double * b, lapack_int ldb,
lapack_complex_double * x, lapack_int ldx, lapack_int * iter);
```

Include Files

- mkl.h

Description

The routine solves for X the real or complex system of linear equations $A * X=B$, where A is an n-by- n symmetric/Hermitian positive-definite matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
The Cholesky decomposition is used to factor A as

```
A = UT*U (real flavors) and A = U'H*U (complex flavors), if uplo = 'U'
or A = L\star LT' (real flavors) and A = L\star L'H (complex flavors), if uplo = 'L',
```

where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations $A * X=B$.

The dsposv and zcposv are mixed precision iterative refinement subroutines for exploiting fast single precision hardware. They first attempt to factorize the matrix in single precision (dsposv) or single complex precision (zcposv) and use this factorization within an iterative refinement procedure to produce a solution with double precision (dsposv) / double complex precision (zcposv) normwise backward error quality (see below). If the approach fails, the method switches to a double precision or double complex precision factorization respectively and computes the solution.

The iterative refinement is not going to be a winning strategy if the ratio single precision/complex performance over double precision/double complex performance is too small. A reasonable strategy should take the number of right-hand sides and the size of the matrix into account. This might be done with a call to ilaenv in the future. At present, iterative refinement is implemented.

The iterative refinement process is stopped if
iter > itermax
or for all the right-hand sides:
rnmr < sqrt(n)*xnrm*anrm*eps*bwdmax,
where

- iter is the number of the current iteration in the iterative refinement process
- rnmr is the infinity-norm of the residual
- $x n r m$ is the infinity-norm of the solution
- anrm is the infinity-operator-norm of the matrix A
- eps is the machine epsilon returned by dlamch ('Epsilon').

The values itermax and bwdmax are fixed to 30 and $1.0 \mathrm{~d}+00$ respectively.

Input Parameters

```
matrix_layout
uplo
```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.

If uplo = 'L', the lower triangle of A is stored.
n
nrhs

Output Parameters

The order of matrix $A ; n \geq 0$.
The number of right-hand sides, the number of columns in B; nrhs \geq 0.

Arrays: $a($ size $\max (1, I d a)), b$, size $\max \left(1 d b^{*} n r h s\right)$ for column major layout and $\max \left(I d b_{n}\right)$ for row major layout,. The array a contains the upper or the lower triangular part of the matrix A (see uplo).
Note that in the case of zcposv the imaginary parts of the diagonal elements need not be set and are assumed to be zero.
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $a ; ~ l d a \geq \max (1, n)$.
The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $/ d b \geq n r h s$ for row major layout.

The leading dimension of the array $x ; 1 d x \geq \max (1, n)$ for column major layout and $/ d x \geq n r h s$ for row major layout.

If info $=0$, the upper or lower triangular part of a is overwritten by the Cholesky factor U or L, as specified by uplo.

If iterative refinement has been successfully used (info $=0$ and iter ≥ 0), then A is unchanged.

If double precision factorization has been used (info=0 and iter < 0), then the array A contains the factors L or U from the Cholesky factorization.

Overwritten by the solution matrix X.
Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and max(1, $l d x_{n}$) for row major layout. If info $=0$, contains the n-by-nrhs solution matrix X.

If iter < 0: iterative refinement has failed, double precision factorization has been performed

- If iter $=-1$: the routine fell back to full precision for implementation- or machine-specific reason
- If iter $=-2$: narrowing the precision induced an overflow, the routine fell back to full precision
- If iter $=-3$: failure of spotrf for dsposv, or cpotrf for zcposv
- If iter $=-31$: stop the iterative refinement after the 30th iteration.
If iter >0 : iterative refinement has been successfully used. Returns the number of iterations.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the leading minor of order i (and therefore the matrix A itself) is not positive definite, so the factorization could not be completed, and the solution has not been computed.

See Also

Matrix Storage Schemes

?posvx

Uses the Cholesky factorization to compute the solution to the system of linear equations with a symmetric or Hermitian positive-definite coefficient matrix A, and provides error bounds on the solution.

Syntax

```
lapack_int LAPACKE_sposvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, float* a, lapack_int lda, float* af, lapack_int ldaf, char* equed,
float* s, float* b, lapack_int ldb, float* x, lapack_int ldx, float* rcond, float* ferr,
float* berr );
lapack_int LAPACKE_dposvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, double* a, lapack_int lda, double* af, lapack_int ldaf, char* equed,
double* s, double* b, lapack_int ldb, double* x, lapack_int ldx, double* rcond, double*
ferr, double* berr );
lapack_int LAPACKE_cposvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* af,
lapack_int ldaf, char* equed, float* s, lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* x, lapack_int ldx, float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_zposvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* af,
lapack_int ldaf, char* equed, double* s, lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* x, lapack_int ldx, double* rcond, double* ferr, double* berr );
```

Include Files

- mkl.h

Description

The routine uses the Cholesky factorization $A=U^{T} \star U$ (real flavors) / $A=U^{H} \star U$ (complex flavors) or $A=L \star L^{T}$ (real flavors) / $A=L^{\star} L^{H}$ (complex flavors) to compute the solution to a real or complex system of linear equations $A * X=B$, where A is a n-by- n real symmetric/Hermitian positive definite matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?posvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors s are computed to equilibrate the system:
```
diag(s)*A* diag(s)*inv(diag(s))*X = diag(s)*B.
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$ and B by $\operatorname{diag}(s) * B$.
2. If fact $=$ ' N ' or ' E ', the Cholesky decomposition is used to factor the matrix A (after equilibration if fact $=$ 'E') as
$A=U^{T} * U$ (real), $A=U^{H} * U$ (complex), if uplo $=U^{\prime}$,
or $A=L \star L^{T}$ (real), $A=L^{\star} L^{H}$ (complex), if uplo $=' L '$,
where U is an upper triangular matrix and L is a lower triangular matrix.
3. If the leading i-by- principal minor is not positive-definite, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form of A.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(s)$ so that it solves the original system before equilibration.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
fact	Must be 'F', 'N', or 'E'.
	Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.
	If fact $=$ ' F ': on entry, af contains the factored form of A. If equed $=$ ' Y ', the matrix A has been equilibrated with scaling factors given by s. a and $a f$ will not be modified.
	If fact = 'N', the matrix A will be copied to af and factored.
	If fact = 'E', the matrix A will be equilibrated if necessary, then copied to af and factored.
uplo	Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored:
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	The order of matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides, the number of columns in $B ; n r h s \geq$ 0.
$a, a f, b$	Arrays: $a\left(\right.$ size $\left.\max \left(1, I d a_{n}\right)\right), a f\left(\right.$ size $\left.\max \left(1, I d a f_{n}\right)\right), b$, size $\max \left(1 d b^{*} n r h s\right)$ for column major layout and $\max \left(1 d b^{*} n\right)$ for row major layout, .

Ida
Idaf
Idb
equed

S
$1 d x$

Output Parameters

a

The array a contains the matrix A as specified by uplo. If fact $={ }^{\prime} \mathrm{F}^{\prime}$ and equed $=$ ' Y ', then A must have been equilibrated by the scaling factors in s, and a must contain the equilibrated matrix $\operatorname{diag}(s) * A^{\star} \operatorname{diag}(s)$.

The array of is an input argument if fact $={ }^{\prime} \mathrm{F}$ '. It contains the triangular factor U or L from the Cholesky factorization of A in the same storage format as A. If equed is not ' N ', then $a f$ is the factored form of the equilibrated matrix $\operatorname{diag}(s) * A \star \operatorname{diag}(s)$.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $a ; 1 d a \geq \max (1, n)$.
The leading dimension of $a f ; l d a f \geq \max (1, n)$.
The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Must be 'N' or 'Y'.
equed is an input argument if fact $={ }^{\prime} F^{\prime}$. It specifies the form of equilibration that was done:
if equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N');
if equed $=$ ' Y ', equilibration was done, that is, A has been replaced by $\operatorname{diag}(s) * A \star \operatorname{diag}(s)$.

Array, size (n). The array s contains the scale factors for A. This array is an input argument if fact $=$ ' F ' only; otherwise it is an output argument.
If equed $=$ ' N ', s is not accessed.
If fact $=$ ' F ' and equed $=$ ' Y ', each element of s must be positive.
The leading dimension of the output array $x ; \operatorname{ldx} \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and $\max (1$, $l d x^{*} n$) for row major layout.

If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the original system of equations. Note that if equed $=$ ' Y ', A and B are modified on exit, and the solution to the equilibrated system is inv $(\operatorname{diag}(s)) * X$.

Array a is not modified on exit if fact $={ }^{\prime} \mathrm{F}^{\prime}$ or 'N', or if fact $=$ ' E ' and equed = 'N'.

If fact $=$ 'E' and equed $=$ 'Y', A is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

af	If fact $=$ 'N' or 'E', then af is an output argument and on exit returns the triangular factor U or L from the Cholesky factorization $A=U^{\mathbb{T}} \star U$ or $A=L^{\star} L^{T}$ (real routines), $A=U^{H} * U$ or $A=L^{\star} L^{H}$ (complex routines) of the original matrix A (if fact $=' \mathrm{~N}$ '), or of the equilibrated matrix A (if fact $=$ ' E '). See the description of a for the form of the equilibrated matrix.
b	Overwritten by $\operatorname{diag}(s) * B$, if equed $=' Y$ '; not changed if equed $=$ 'N'.
s	This array is an output argument if $f a c t \neq{ }^{\prime} F^{\prime}$. See the description of s in Input Arguments section.
rcond	An estimate of the reciprocal condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond $=0$), the matrix is singular to working precision. This condition is indicated by a return code of info >0.
ferr	Array, size at least max ($1, \mathrm{nrhs}$). Contains the estimated forward error bound for each solution vector x_{j} (the j-th column of the solution matrix X). If x true is the true solution corresponding to x_{j}, ferr $[j-1]$ is an estimated upper bound for the magnitude of the largest element in $\left.\left(x_{j}\right)-x t r u e\right)$ divided by the magnitude of the largest element in x_{j}. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
berr	Array, size at least $\max (1, n r h s)$. Contains the component-wise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

If fact \neq ' F ', then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If $i n f o=-i$, parameter i had an illegal value.
If info $=i$, and $i \leq n$, the leading minor of order i (and therefore the matrix A itself) is not positive-definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=i$, and $i=n+1$, then U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

See Also

Matrix Storage Schemes

?posvxx

Uses extra precise iterative refinement to compute the solution to the system of linear equations with a symmetric or Hermitian positive-definite coefficient matrix A applying the Cholesky factorization.

Syntax

```
lapack_int LAPACKE_sposvxx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, float* a, lapack_int lda, float* af, lapack_int ldaf, char* equed,
float* s, float* b, lapack_int ldb, float* x, lapack_int ldx, float* rcond, float*
rpvgrw, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp,
lapack_int nparams, const float* params );
lapack_int LAPACKE_dposvxx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, double* a, lapack_int lda, double* af, lapack_int ldaf, char* equed,
double* s, double* b, lapack_int ldb, double* x, lapack_int ldx, double* rcond, double*
rpvgrw, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double*
err_bnds_comp, lapack_int nparams, const double* params );
lapack_int LAPACKE_cposvxx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* af,
lapack_int ldaf, char* equed, float* s, lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* x, lapack_int ldx, float* rcond, float* rpvgrw, float* berr,
lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp, lapack_int nparams,
const float* params );
lapack_int LAPACKE_zposvxx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* af,
lapack_int ldaf, char* equed, double* s, lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* x, lapack_int ldx, double* rcond, double* rpvgrw, double* berr,
lapack_int n_err_bnds, double* err_bnds_norm, double* err_bnds_comp, lapack_int
nparams, const double* params );
```


Include Files

- mkl.h

Description

The routine uses the Cholesky factorization $A=U^{T} * U$ (real flavors) / $A=U^{H} * U$ (complex flavors) or $A=L * L^{T}$ (real flavors) / $A=L^{*} L^{H}$ (complex flavors) to compute the solution to a real or complex system of linear equations $A * X=B$, where A is an n-by- n real symmetric/Hermitian positive definite matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error (0 (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.
The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with O (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.
The routine ?posvxx performs the following steps:

1. If fact $=$ ' E ', scaling factors are computed to equilibrate the system:
```
diag(s)*A* diag(s) *inv(diag(s))*X = diag(s)*B
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$ and B by $\operatorname{diag}(s) * B$.
2. If fact $=$ ' N ' or ' E ', the Cholesky decomposition is used to factor the matrix A (after equilibration if fact $=$ 'E') as
$A=U^{T} * U$ (real), $A=U^{H} * U$ (complex), if uplo $=' U '$,
or $A=L \star L^{T}$ (real), $A=L^{\star} L^{H}$ (complex), if uplo $=' L '$,
where U is an upper triangular matrix and L is a lower triangular matrix.
3. If the leading i-by- i principal minor is not positive-definite, the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for X and compute error bounds.
4. The system of equations is solved for X using the factored form of A.
5. By default, unless params [0] is set to zero, the routine applies iterative refinement to get a small error and error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(s)$ so that it solves the original system before equilibration.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
fact	Must be 'F', 'N', or 'E'.
	Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.
	If fact $=$ ' F ', on entry, af contains the factored form of A. If equed is not ' N ', the matrix A has been equilibrated with scaling factors given by s. Parameters a and af are not modified.
	If fact $=$ 'N', the matrix A will be copied to af and factored.
	If fact $=$ ' E ', the matrix A will be equilibrated, if necessary, copied to af and factored.
uplo	Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored:
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	The number of linear equations; the order of the matrix A; $n \geq 0$.
nrhs	The number of right-hand sides; the number of columns of the matrices B and X; nrhs ≥ 0.
$a, a f, b$	Arrays: $a\left(\right.$ size $\left.\max \left(I d^{*}{ }_{n}\right)\right), a f\left(\right.$ size $\left.\left.\max \left(I d^{\prime} f^{*}\right)\right), b\right)$ size $\max (1$, ldb*nrhs) for column major layout and $\max \left(1, I d b_{n}\right)$ for row major layout).

lda
Idaf
equed
S
$1 d b$
$1 d x$
n_err_bnds
nparams
params

The array a contains the matrix A as specified by uplo. If fact $=$ ' F ' and equed $=$ ' Y ', then A must have been equilibrated by the scaling factors in s, and a must contain the equilibrated matrix $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

The array af is an input argument if fact $={ }^{\prime} \mathrm{F}^{\prime}$. It contains the triangular factor U or L from the Cholesky factorization of A in the same storage format as A. If equed is not ' N ', then af is the factored form of the equilibrated matrix $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of the array $a ; 1 d a \geq \max (1, n)$.
The leading dimension of the array $a f ; l d a \geq \max (1, n)$.
Must be 'N' or 'Y'.
equed is an input argument if fact $={ }^{\prime} F^{\prime}$. It specifies the form of equilibration that was done:

If equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N').
if equed = 'Y', both row and column equilibration was done, that is,
A has been replaced by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.
Array, size (n). The array s contains the scale factors for A. This array is an input argument if fact $={ }^{\prime} \mathrm{F}^{\prime}$ only; otherwise it is an output argument.
If equed $=$ ' N ', s is not accessed.
If fact $=$ ' F ' and equed $=$ 'Y', each element of s must be positive.
Each element of s should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

The leading dimension of the array b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

The leading dimension of the output array $x ; I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in the Output Arguments section below.

Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

Array, size max(1,nparams). Specifies algorithm parameters. If an entry is less than 0.0 , that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed;
defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams $=0$, which prevents the source code from accessing the params argument.
params [0] : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).
$=0.0 \quad$ No refinement is performed and no error bounds are computed.
$=1.0 \quad$ Use the extra-precise refinement algorithm.
(Other values are reserved for future use.) params [1] : Maximum number of residual computations allowed for refinement.
Default 10.0

Aggressive Set to 100.0 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params [2]: Flag determining if the code will attempt to find a solution with a small componentwise relative error in the doubleprecision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

Output Parameters

a
b

Array, size $\max \left(1, l d x^{*} n r h s\right)$ for column major layout and $\max \left(1, l d x^{*} n\right)$ for row major layout.

If info $=0$, the array x contains the solution n-by-nrhs matrix X to the original system of equations. Note that A and B are modified on exit if equed \neq ' N^{\prime}, and the solution to the equilibrated system is:
inv(diag(s))*X.
Array a is not modified on exit if fact $='^{\prime}$ ' or 'N', or if fact $=$ 'E' and equed $=$ ' N '.

If fact $=$ 'E' and equed $=$ 'Y', A is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.
If fact $=$ ' N ' or ' E ', then $a f$ is an output argument and on exit returns the triangular factor U or L from the Cholesky factorization $A=U^{\mathrm{T}} * U$ or $A=L^{\star} L^{\mathrm{T}}$ (real routines), $A=U^{\mathrm{H}} \star U$ or $A=L^{\star} L^{\mathrm{H}}$ (complex routines) of the original matrix A (if fact $=' N^{\prime}$), or of the equilibrated matrix A (if fact $=' \mathrm{E}^{\prime}$). See the description of a for the form of the equilibrated matrix.

If equed $=' N$ ', B is not modified.
If equed $=$ ' Y ', B is overwritten by $\operatorname{diag}(s) * B$.

S
err_bnds_norm

This array is an output argument if $f a c t \neq ' F^{\prime}$. Each element of this array is a power of the radix. See the description of s in Input Arguments section.

Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

Contains the reciprocal pivot growth factor:

$\||A|| | v \mid$

If this is much less than 1 , the stability of the $L U$ factorization of the (equlibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. If factorization fails with $0<$ info $\leq n$, this parameter contains the reciprocal pivot growth factor for the leading info columns of A.

Array, size at least max ($1, \mathrm{nrhs}$). Contains the componentwise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:

Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.

```
err=1
err=2
err=3
```

"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) *slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors.
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt (n) * slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold
$\operatorname{sqrt}(n)$ *slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{6} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1 .

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in err_bnds_norm[(err-1)*nrhs + i - 1].

Array of size $n r h s^{*} n _e r r$ _bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params [2] = $0.0)$, then err_bnds_comp is not accessed.
err=1
err=2
err=3
"Trust/don't trust" boolean. Trust the answer if
the reciprocal condition number is less than the
threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single
precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for
double precision flavors.
"Guaranteed" error bpound. The estimated
forward error, almost certainly within a factor of
10 of the true error so long as the next entry is
greater than the threshold sqrt (n) * $\operatorname{slamch}(\varepsilon)$
for single precision flavors and
$\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision
flavors. This error bound should only be trusted
if the previous boolean is true.
Reciprocal condition number. Estimated
componentwise reciprocal condition number.
Compared with the threshold
$\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors
and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision
flavors to determine if the error estimate is
"guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{0} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{\star}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of a^{\star} diag (x) by a power of the radix so all absolute row sums of z are approximately 1 .

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in err_bnds_comp[(err-1)*nrhs +i-1].
equed
params

If factキ' F^{\prime}, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

If an entry is less than 0.0 , that entry is filled with the default value used for that parameter, otherwise the entry is not modified.

Return Values

This function returns a value info.
If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If $i n f o=-i$, parameter i had an illegal value.
If 0 < info n : $U_{\text {info, info }}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with $k>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params [2] $=0.0$, then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that for column major layout err_bnds_norm[j-1] = 0.0 or err_bnds_comp[j-1] = 0.0; or for row major layout err_bnds_norm[(j - 1)*n_err_bnds] = 0.0 or err_bnds_comp [(j - 1)*n_err_bnds] = 0.0). See the definition of err_bnds_norm and err_bnds_comp for err $=1$. To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

See Also

Matrix Storage Schemes

?ppsv

Computes the solution to the system of linear equations with a symmetric (Hermitian) positive definite packed coefficient matrix A and multiple righthand sides.

Syntax

```
lapack_int LAPACKE_sppsv (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, float * ap , float * b , lapack_int ldb );
lapack_int LAPACKE_dppsv (int matrix_layout , char uplo, lapack_int n , lapack_int
nrhs , double * ap , double * b , lapack_int ldb );
```

```
lapack_int LAPACKE_cppsv (int matrix_layout , char uplo, lapack_int n , lapack_int
nrhs , lapack_complex_float * ap , lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zppsv (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs , lapack_complex_double * ap , lapack_complex_double * b , lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves for X the real or complex system of linear equations $A * X=B$, where A is an n-by- n real symmetric/Hermitian positive-definite matrix stored in packed format, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
The Cholesky decomposition is used to factor A as

```
A = UT*U (real flavors) and A = U U'UU (complex flavors), if uplo = 'U'
or A = L* LT
```

where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations $A * X=B$.

Input Parameters

```
matrix_layout
```

uplo Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
The order of matrix $A ; n \geq 0$.
The number of right-hand sides, the number of columns in B; nrhs \geq
0 .
Arrays: ap (size $\max \left(1, n^{*}(n+1) / 2\right)$, b, size $\max \left(1 d b^{*} n r h s\right)$ for
column major layout and $\max \left(1 d b^{*} n\right)$ for row major layout,. The
array ap contains the upper or the lower triangular part of the matrix
A (as specified by uplo) in packed storage (see Matrix Storage
Schemes). .

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Output Parameters

If info $=0$, the upper or lower triangular part of A in packed storage is overwritten by the Cholesky factor U or L, as specified by uplo.
b
Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If $i n f o=-i$, parameter i had an illegal value.
If info $=i$, the leading minor of order i (and therefore the matrix A itself) is not positive-definite, so the factorization could not be completed, and the solution has not been computed.

See Also
 Matrix Storage Schemes

?ppsvx

Uses the Cholesky factorization to compute the solution to the system of linear equations with a symmetric (Hermitian) positive definite packed coefficient matrix A, and provides error bounds on the solution.

Syntax

```
lapack_int LAPACKE_sppsvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, float* ap, float* afp, char* equed, float* s, float* b, lapack_int ldb,
float* x, lapack_int ldx, float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_dppsvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, double* ap, double* afp, char* equed, double* s, double* b, lapack_int
ldb, double* x, lapack_int ldx, double* rcond, double* ferr, double* berr );
lapack_int LAPACKE_cppsvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_float* ap, lapack_complex_float* afp, char* equed,
float* s, lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int
ldx, float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_zppsvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_double* ap, lapack_complex_double* afp, char* equed,
double* s, lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x,
lapack_int ldx, double* rcond, double* ferr, double* berr );
```

Include Files

- mkl.h

Description

The routine uses the Cholesky factorization $A=U^{T} * U$ (real flavors) / $A=U^{H} * U$ (complex flavors) or $A=L^{\star} L^{T}$ (real flavors) / $A=L^{*} L^{H}$ (complex flavors) to compute the solution to a real or complex system of linear equations $A * X=B$, where A is a n-by- n symmetric or Hermitian positive-definite matrix stored in packed format, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?ppsvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors s are computed to equilibrate the system:
```
diag(s)*A* diag(s)*inv(diag(s))*X = diag(s)*B.
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(s) * A^{*} \operatorname{diag}(s)$ and B by $\operatorname{diag}(s) * B$.
2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the matrix A (after equilibration if fact = 'E') as
$A=U^{T} * U$ (real), $A=U^{H} * U$ (complex), if uplo = 'U',
or $A=L * L^{T}$ (real), $A=L^{*} L^{H}$ (complex), if uplo = 'L',
where U is an upper triangular matrix and L is a lower triangular matrix.
3. If the leading i-by- i principal minor is not positive-definite, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form of A.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(s)$ so that it solves the original system before equilibration.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
fact	Must be 'F', 'N', or 'E'.
	Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.
	If fact $=$ ' F^{\prime} : on entry, afp contains the factored form of A. If equed $=$ ' Y ', the matrix A has been equilibrated with scaling factors given by s. $a p$ and $a f p$ will not be modified.
	If fact $=$ ' N ', the matrix A will be copied to afp and factored.
	If fact $=$ ' E ', the matrix A will be equilibrated if necessary, then copied to afp and factored.
uplo	Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored: If uplo = 'U', the upper triangle of A is stored.
	If uplo ${ }^{\prime}$ 'L', the lower triangle of A is stored.
n	The order of matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides; the number of columns in B; nrhs \geq 0 .
$a p, a f p, b$	Arrays: (size $\max \left(1, n^{*}(n+1) / 2\right)$, afp (size max($\left.1, n^{*}(n+1) / 2\right)$, bof size $\max \left(1, l d b^{*} n r h s\right)$ for column major layout and $\max \left(1, l d b_{n}\right)$ for row major layout.

1 db
equed

S
ldx

Output Parameters

X
$a p$
$a f p$

The array ap contains the upper or lower triangle of the original symmetric/Hermitian matrix A in packed storage (see Matrix Storage Schemes). In case when fact $=$ ' F ' and equed $=$ ' Y ', ap must contain the equilibrated matrix $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

The array afp is an input argument if fact $={ }^{\prime} \mathrm{F}$ ' and contains the triangular factor U or L from the Cholesky factorization of A in the same storage format as A. If equed is not ' N ', then afp is the factored form of the equilibrated matrix A.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Must be 'N' or 'Y'.
equed is an input argument if fact $={ }^{\prime} \mathrm{F}^{\prime}$. It specifies the form of equilibration that was done:
if equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N');
if equed $=$ ' Y ', equilibration was done, that is, A has been replaced by $\operatorname{diag}(s) A^{*} \operatorname{diag}(s)$.

Array, size (n). The array s contains the scale factors for A. This array is an input argument if fact $=$ ' F ' only; otherwise it is an output argument.
If equed $=$ ' N ', s is not accessed.
If fact $=$ 'F' and equed $=$ 'Y', each element of s must be positive.
The leading dimension of the output array $x ; \operatorname{ldx} \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and $\max (1$, $l d x_{n}$) for row major layout.

If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the original system of equations. Note that if equed $=$ ' Y ', A and B are modified on exit, and the solution to the equilibrated system is inv $(\operatorname{diag}(s)) * X$.

Array ap is not modified on exit if fact = 'F' or 'N', or if fact = ' E 'and equed $=$ 'N'.

If fact $=$ 'E' and equed $=$ 'Y', ap is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

If fact $=$ 'N'or 'E', then afp is an output argument and on exit returns the triangular factor U or L from the Cholesky factorization $A=U^{T} * U$ or $A=L \star L^{T}$ (real routines), $A=U^{H} * U$ or $A=L * L^{H}$ (complex
b

S
rcond
ferr
berr
equed
routines) of the original matrix A (if fact $={ }^{\prime} N^{\prime}$), or of the equilibrated matrix A (if fact $=' E '$). See the description of $a p$ for the form of the equilibrated matrix.

Overwritten by diag(s)*B, if equed = 'Y'; not changed if equed $=$ 'N'.

This array is an output argument if $f a c t \neq ' F^{\prime}$. See the description of s in Input Arguments section.

An estimate of the reciprocal condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond $=0$), the matrix is singular to working precision. This condition is indicated by a return code of info >0.

Array, size at least max ($1, n r h s$). Contains the estimated forward error bound for each solution vector x_{j} (the j-th column of the solution matrix X). If x true is the true solution corresponding to x_{j},
ferr [j-1] is an estimated upper bound for the magnitude of the largest element in ($x_{j}-x$ true) divided by the magnitude of the largest element in x_{j}. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

Array, size at least max (1, nrhs). Contains the component-wise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

If $f a c t \neq ' F^{\prime}$, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, and $i \leq n$, the leading minor of order i (and therefore the matrix A itself) is not positive-definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=i$, and $i=n+1$, then U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

See Also
 Matrix Storage Schemes
 ?pbsv
 Computes the solution to the system of linear equations with a symmetric or Hermitian positivedefinite band coefficient matrix A and multiple righthand sides.

Syntax

```
lapack_int LAPACKE_spbsv (int matrix_layout, char uplo, lapack_int n , lapack_int
kd , lapack_int nrhs , float * ab , lapack_int ldab , float * b , lapack_int ldb );
lapack_int LAPACKE_dpbsv (int matrix_layout, char uplo, lapack_int n , lapack_int
kd , lapack_int nrhs , double * ab , lapack_int ldab, double * b , lapack_int ldb );
lapack_int LAPACKE_cpbsv (int matrix_layout, char uplo, lapack_int n , lapack_int
kd , lapack_int nrhs , lapack_complex_float * ab , lapack_int ldab ,
lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zpbsv (int matrix_layout, char uplo, lapack_int n , lapack_int
kd, lapack_int nrhs , lapack_complex_double * ab , lapack_int ldab ,
lapack_complex_double * b , lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves for X the real or complex system of linear equations $A * X=B$, where A is an n-by- n symmetric/Hermitian positive definite band matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The Cholesky decomposition is used to factor A as
$A=U^{T *} U$ (real flavors) and $A=U^{H *} U$ (complex flavors), if uplo $='^{\prime}$
or $A=L \star L^{T}$ (real flavors) and $A=L \star L^{H}$ (complex flavors), if uplo = 'L',
where U is an upper triangular band matrix and L is a lower triangular band matrix, with the same number of superdiagonals or subdiagonals as A. The factored form of A is then used to solve the system of equations $A * X=B$.

Input Parameters

matrix_layout
uplo
n
kd
nrhs

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
The order of matrix $A ; n \geq 0$.
The number of superdiagonals of the matrix A if uplo = 'U', or the number of subdiagonals if uplo $=$ 'L'; $k d \geq 0$.

The number of right-hand sides, the number of columns in B; nrhs \geq 0 .

```
ab,b Arrays: ab(size max(1, ldab*n)), bof size max(1, ldb*nrhs) for
    column major layout and max(1,ldb*n) for row major layout. The
    array ab contains the upper or the lower triangular part of the matrix
    A (as specified by uplo) in band storage (see Matrix Storage
    Schemes).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
The leading dimension of the array \(a b ; I d a b \geq k d+1\).
The leading dimension of \(b ; I d b \geq \max (1, n)\) for column major layout and \(I d b \geq n r h s\) for row major layout.
```


Output Parameters

$a b$
b

The upper or lower triangular part of A (in band storage) is overwritten by the Cholesky factor U or L, as specified by uplo, in the same storage format as A.

Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the leading minor of order i (and therefore the matrix A itself) is not positive-definite, so the factorization could not be completed, and the solution has not been computed.

See Also

Matrix Storage Schemes

?pbsvx

Uses the Cholesky factorization to compute the solution to the system of linear equations with a symmetric (Hermitian) positive-definite band coefficient matrix A, and provides error bounds on the solution.

Syntax

```
lapack_int LAPACKE_spbsvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int kd, lapack_int nrhs, float* ab, lapack_int ldab, float* afb, lapack_int
ldafb, char* equed, float* s, float* b, lapack_int ldb, float* x, lapack_int ldx, float*
rcond, float* ferr, float* berr );
lapack_int LAPACKE_dpbsvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int kd, lapack_int nrhs, double* ab, lapack_int ldab, double* afb, lapack_int
ldafb, char* equed, double* s, double* b, lapack_int ldb, double* x, lapack_int ldx,
double* rcond, double* ferr, double* berr );
lapack_int LAPACKE_cpbsvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int kd, lapack_int nrhs, lapack_complex_float* ab, lapack_int ldab,
lapack_complex_float* afb, lapack_int ldafb, char* equed, float* s,
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* rcond, float* ferr, float* berr );
```

```
lapack_int LAPACKE_zpbsvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int kd, lapack_int nrhs, lapack_complex_double* ab, lapack_int ldab,
lapack_complex_double* afb, lapack_int ldafb, char* equed, double* s,
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int ldx,
double* rcond, double* ferr, double* berr );
```

Include Files

- mkl.h

Description

The routine uses the Cholesky factorization $A=U^{T} * U$ (real flavors) / $A=U^{H} * U$ (complex flavors) or $A=L^{\star} L^{T}$ (real flavors) / $A=L^{\star} L^{H}$ (complex flavors) to compute the solution to a real or complex system of linear equations $A * X=B$, where A is a n-by- n symmetric or Hermitian positive definite band matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?pbsvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors s are computed to equilibrate the system:
```
diag(s)*A* diag(s)*inv(diag(s))*X = diag(s)*B.
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$ and B by $\operatorname{diag}(s) * B$.
2. If fact $=$ ' N ' or ' E ', the Cholesky decomposition is used to factor the matrix A (after equilibration if fact $=$ 'E') as
$A=U^{T} *_{U}$ (real), $A=U^{H} * U$ (complex), if uplo $=' U '$,
or $A=L \star L^{T}$ (real), $A=L^{\star} L^{H}$ (complex), if uplo $=' L '$,
where U is an upper triangular band matrix and L is a lower triangular band matrix.
3. If the leading i-by- i principal minor is not positive definite, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form of A.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the original system before equilibration.

Input Parameters

```
matrix_layout
```

fact Must be ' F^{\prime}, ' N^{\prime}, or 'E'.

Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.
If fact $=$ ' F^{\prime} : on entry, afb contains the factored form of A. If equed $=$ ' Y ', the matrix A has been equilibrated with scaling factors given by s.
$a b$ and $a f b$ will not be modified.
If fact $=$ ' N ', the matrix A will be copied to $a f b$ and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then copied to $a f b$ and factored.

Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
The order of matrix $A ; n \geq 0$.
The number of superdiagonals or subdiagonals in the matrix $A ; k d \geq 0$.
The number of right-hand sides, the number of columns in B; nrhs \geq 0 .
 $\max \left(1, l d b^{*} n r h s\right)$ for column major layout and $\max \left(1, I d b_{n}\right)$ for row major layout.

The array $a b$ contains the upper or lower triangle of the matrix A in band storage (see Matrix Storage Schemes).

If fact $=$ ' F ' and equed $=$ 'Y', then $a b$ must contain the equilibrated matrix $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

The array afb is an input argument if fact $={ }^{\prime} F^{\prime}$. It contains the triangular factor U or L from the Cholesky factorization of the band matrix A in the same storage format as A. If equed $=$ ' Y ', then $a f b$ is the factored form of the equilibrated matrix A.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $a b ; I d a b \geq k d+1$.
The leading dimension of $a f b ; I d a f b \geq k d+1$.
The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Must be 'N' or 'Y'.
equed is an input argument if fact $={ }^{\prime} F^{\prime}$. It specifies the form of equilibration that was done:
if equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N')
if equed $=$ ' Y ', equilibration was done, that is, A has been replaced by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

Array, size (n). The array s contains the scale factors for A. This array is an input argument if fact $=$ ' F ' only; otherwise it is an output argument.
If equed $=$ ' N ', s is not accessed.
$1 d x$

Output Parameters

X
$a b$
b

S
rcond
ferr
berr
equed

If fact $=$ ' F ' and equed $=$ 'Y', each element of s must be positive.
The leading dimension of the output array $x ; \operatorname{ldx} \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and max(1, $l d x^{*} n$) for row major layout.
If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the original system of equations. Note that if equed $=' Y$ ', A and B are modified on exit, and the solution to the equilibrated system is inv(diag(s))*X.

On exit, if fact $=$ 'E'and equed $=' Y$ ', A is overwritten by $\operatorname{diag}(s) \star A^{*} \operatorname{diag}(s)$.

If fact = 'N'or 'E', then $a f b$ is an output argument and on exit returns the triangular factor U or L from the Cholesky factorization $A=U^{T} * U$ or $A=L \star L^{T}$ (real routines), $A=U^{H} * U$ or $A=L * L^{H}$ (complex routines) of the original matrix A (if fact $=$ ' N '), or of the equilibrated matrix A (if fact $=' E$ '). See the description of $a b$ for the form of the equilibrated matrix.

Overwritten by diag(s * B, if equed $=$ 'Y'; not changed if equed $=$ 'N'.

This array is an output argument if $f a c t \neq ' F^{\prime}$. See the description of s in Input Arguments section.

An estimate of the reciprocal condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond $=0$), the matrix is singular to working precision. This condition is indicated by a return code of info >0.

Array, size at least max ($1, n r h s$). Contains the estimated forward error bound for each solution vector x_{j} (the j-th column of the solution matrix X). If x true is the true solution corresponding to x_{j}, ferr [j-1] is an estimated upper bound for the magnitude of the largest element in ($x_{j}-x t r u e$) divided by the magnitude of the largest element in x_{j}. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

Array, size at least max ($1, n r h s$). Contains the component-wise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

If $f a c t \neq ' F^{\prime}$, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

Return Values

This function returns a value info.

If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, and $i \leq n$, the leading minor of order i (and therefore the matrix A itself) is not positive definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond $=0$ is returned. If info $=i$, and $i=n+1$, then U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

See Also

Matrix Storage Schemes

?ptsv

Computes the solution to the system of linear equations with a symmetric or Hermitian positive definite tridiagonal coefficient matrix A and multiple right-hand sides.

Syntax

```
lapack_int LAPACKE_sptsv( int matrix_layout, lapack_int n, lapack_int nrhs, float* d,
float* e, float* b, lapack_int ldb );
lapack_int LAPACKE_dptsv( int matrix_layout, lapack_int n, lapack_int nrhs, double* d,
double* e, double* b, lapack_int ldb );
lapack_int LAPACKE_cptsv( int matrix_layout, lapack_int n, lapack_int nrhs, float* d,
lapack_complex_float* e, lapack_complex_float* b, lapack_int ldb );
lapack_int LAPACKE_zptsv( int matrix_layout, lapack_int n, lapack_int nrhs, double* d,
lapack_complex_double* e, lapack_complex_double* b, lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves for X the real or complex system of linear equations $A * X=B$, where A is an n-by- n symmetric/Hermitian positive-definite tridiagonal matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
A is factored as $A=L^{*} D^{\star} L^{T}$ (real flavors) or $A=L^{*} D^{*} L^{H}$ (complex flavors), and the factored form of A is then used to solve the system of equations $A * X=B$.

Input Parameters

```
matrix_layout
n
nrhs
```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

The order of matrix $A ; n \geq 0$.
The number of right-hand sides, the number of columns in B; nrhs \geq 0 .
d
e, b

1 db

Array, dimension at least max $(1, n)$. Contains the diagonal elements of the tridiagonal matrix A.

Arrays: e (size $n-1$), bof size $\max \left(1,1 d b^{*} n r h s\right)$ for column major layout and $\max \left(1, l d b^{*} n\right)$ for row major layout. The array e contains the $(n-1)$ subdiagonal elements of A.
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of b; $I d b \geq \max (1, n)$ for column major layout and $/ d b \geq n r h s$ for row major layout.

Output Parameters

d

Overwritten by the n diagonal elements of the diagonal matrix D from the $L^{\star} D^{\star} L^{T}$ (real)/ $L^{\star} D^{\star} L^{H}$ (complex) factorization of A.

Overwritten by the $(n-1)$ subdiagonal elements of the unit bidiagonal factor L from the factorization of A.

Overwritten by the solution matrix X.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, the leading minor of order i (and therefore the matrix A itself) is not positive-definite, and the solution has not been computed. The factorization has not been completed unless $i=n$.

See Also
 Matrix Storage Schemes

?ptsvx

Uses factorization to compute the solution to the system of linear equations with a symmetric (Hermitian) positive definite tridiagonal coefficient matrix A, and provides error bounds on the solution.

Syntax

```
lapack_int LAPACKE_sptsvx( int matrix_layout, char fact, lapack_int n, lapack_int nrhs,
const float* d, const float* e, float* df, float* ef, const float* b, lapack_int ldb,
float* x, lapack_int ldx, float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_dptsvx( int matrix_layout, char fact, lapack_int n, lapack_int nrhs,
const double* d, const double* e, double* df, double* ef, const double* b, lapack_int
ldb, double* x, lapack_int ldx, double* rcond, double* ferr, double* berr );
lapack_int LAPACKE_cptsvx( int matrix_layout, char fact, lapack_int n, lapack_int nrhs,
const float* d, const lapack_complex_float* e, float* df, lapack_complex_float* ef,
const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x, lapack_int ldx,
float* rcond, float* ferr, float* berr );
```

```
lapack_int LAPACKE_zptsvx( int matrix_layout, char fact, lapack_int n, lapack_int nrhs,
const double* d, const lapack_complex_double* e, double* df, lapack_complex_double* ef,
const lapack_complex_double* b, lapack_int ldb, lapack_complex_double* x, lapack_int
ldx, double* rcond, double* ferr, double* berr );
```

Include Files

- mkl.h

Description

The routine uses the Cholesky factorization $A=L^{\star} D^{\star} L^{T}$ (real)/A $=L^{\star} D^{\star} L^{H}$ (complex) to compute the solution to a real or complex system of linear equations $A * X=B$, where A is a n-by- n symmetric or Hermitian positive definite tridiagonal matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?ptsvx performs the following steps:

1. If fact $=$ ' N ', the matrix A is factored as $A=L^{\star} D^{\star} L^{T}$ (real flavors)/ $A=L^{\star} D^{\star} L^{H}$ (complex flavors), where L is a unit lower bidiagonal matrix and D is diagonal. The factorization can also be regarded as having the form $A=U^{T} \star^{*} * U$ (real flavors) $/ A=U^{H} *^{*} * U$ (complex flavors).
2. If the leading i-by-i principal minor is not positive-definite, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form of A.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

Input Parameters

matrix_layout
fact
n
nrhs
d, df

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'F' or 'N'.
Specifies whether or not the factored form of the matrix A is supplied on entry.

If fact $=$ ' F^{\prime} : on entry, df and ef contain the factored form of A.
Arrays $d, e, d f$, and ef will not be modified.
If fact $=$ ' N ', the matrix A will be copied to $d f$ and ef, and factored.
The order of matrix $A ; n \geq 0$.
The number of right-hand sides, the number of columns in B; nrhs \geq 0 .

Arrays: d (size n), $d f$ (size n).
The array d contains the n diagonal elements of the tridiagonal matrix A.

The array $d f$ is an input argument if fact $=$ ' F ' and on entry contains the n diagonal elements of the diagonal matrix D from the $L^{\star} D^{\star} L^{T}$ (real)/ $L^{\star} D^{\star} L^{H}$ (complex) factorization of A.

```
e,ef,b
```

1 db
ldx

Output Parameters

X
$d f, e f$
rcond
ferr
berr

Arrays: e (size $n-1$), ef (size $n-1$), b, size $\max \left(1 d b^{*} n r h s\right.$) for column major layout and $\max \left(I d b^{*}\right)$ for row major layout. The array e contains the $(n-1)$ subdiagonal elements of the tridiagonal matrix A.

The array ef is an input argument if fact $=$ ' F ' and on entry contains the $(n-1)$ subdiagonal elements of the unit bidiagonal factor L from the $L \star D * L^{T}$ (real)/ $L^{\star} D^{\star} L^{H}$ (complex) factorization of A.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

The leading dimension of $x ; I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and $\max (1$, $l d x^{*} n$) for row major layout.

If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the system of equations.

These arrays are output arguments if fact $=$ ' N '. See the description of $d f$, ef in Input Arguments section.

An estimate of the reciprocal condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond $=0$), the matrix is singular to working precision. This condition is indicated by a return code of info >0.

Array, size at least max ($1, n r h s$). Contains the estimated forward error bound for each solution vector x_{j} (the j-th column of the solution matrix X). If x true is the true solution corresponding to x_{j}, $f e r r_{j}$ is an estimated upper bound for the magnitude of the largest element in ($x_{j}-x t r u e$) divided by the magnitude of the largest element in x_{j}. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

Array, size at least max ($1, n r h s$). Contains the component-wise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, and $i \leq n$, the leading minor of order i (and therefore the matrix A itself) is not positive-definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=i$, and $i=n+1$, then U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

See Also

Matrix Storage Schemes
?sysv
Computes the solution to the system of linear equations with a real or complex symmetric coefficient matrix A and multiple right-hand sides.

Syntax

```
lapack_int LAPACKE_ssysv (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs , float * a , lapack_int lda , lapack_int * ipiv, float * b , lapack_int ldb );
lapack_int LAPACKE_dsysv (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, double * a , lapack_int lda , lapack_int * ipiv, double * b , lapack_int ldb );
lapack_int LAPACKE_csysv (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs , lapack_complex_float * a , lapack_int lda , lapack_int * ipiv ,
lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zSysv (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs , lapack_complex_double * a , lapack_int lda , lapack_int * ipiv ,
lapack_complex_double * b , lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves for X the real or complex system of linear equations $A * X=B$, where A is an n-by- n symmetric matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
The diagonal pivoting method is used to factor A as $A=U^{\star} D^{*} U^{T}$ or $A=L^{\star} D^{\star} L^{T}$, where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations $A * X=B$.

Input Parameters

```
matrix_layout
uplo
```

n

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
The order of matrix $A ; n \geq 0$.

```
nrhs
a,b
lda
ldb
```


Output Parameters

a

b
ipiv
If info $=0, a$ is overwritten by the block-diagonal matrix D and the multipliers used to obtain the factor U (or L) from the factorization of A as computed by ?sytrf.

If info $=0, b$ is overwritten by the solution matrix X.
Array, size at least max $(1, n)$. Contains details of the interchanges and the block structure of D, as determined by ?sytrf.

If ipiv[i-1] $=k>0$, then $d_{i i}$ is a 1-by-1 diagonal block, and the i th row and column of A was interchanged with the k-th row and column.

If uplo = 'U' and $\operatorname{ipiv}[i]=\operatorname{ipiv}[i-1]=-m<0$, then D has a $2-$ by-2 block in rows/columns i and $i+1$, and (i)-th row and column of A was interchanged with the m-th row and column.
If uplo = 'L'and $\operatorname{ipiv}[i]=\operatorname{ipiv}[i-1]=-m<0$, then D has a $2-$ by-2 block in rows/columns i and $i+1$, and ($i+1$)-th row and column of A was interchanged with the m-th row and column.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If $i n f o=i, d_{i i}$ is 0 . The factorization has been completed, but D is exactly singular, so the solution could not be computed.

See Also
 Matrix Storage Schemes

?sysv_aa
Computes the solution to a system of linear equations
A * $X=B$ for symmetric matrices.
lapack_int LAPACKE_ssysv_aa (int matrix_layout, char uplo, lapack_int n, lapack_int


```
lapack_int LAPACKE_dsysv_aa (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, double * A, lapack_int lda, lapack_int * ipiv, double * B, lapack_int ldb);
lapack_int LAPACKE_csysv_aa (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, lapack_complex_float * A, lapack_int lda, lapack_int * ipiv, lapack_complex_float
* B, lapack_int ldb);
lapack_int LAPACKE_zSysv_aa (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, lapack_complex_double * A, lapack_int lda, lapack_int * ipiv,
lapack_complex_double * B, lapack_int ldb);
```


Description

The ?sysv routine computes the solution to a complex system of linear equations $A * X=B$, where A is an n-by- n symmetric matrix and X and B are n-by- $n r h s$ matrices.
Aasen's algorithm is used to factor A as $A=U * T * U^{\top}$, if uplo $=$ 'U', or $A=L * T * L^{\top}$, if uplo = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and T is symmetric tridiagonal. The factored form of A is then used to solve the system of equations $A * X=B$.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	- = 'U': The upper triangle of A is stored. - = 'L': The lower triangle of A is stored.
n	The number of linear equations; that is, the order of the matrix A. $n \geq 0$.
nrhs	The number of right-hand sides; that is, the number of columns of the matrix B. nrhs ≥ 0.
A	Array of size $\max \left(1, I d a_{n}\right)$. On entry, the symmetric matrix A. If uplo $=$ 'U', the leading n-by- n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If uplo $=$ 'L', the leading $n-b y-n$ lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
Ida	The leading dimension of the array A.
B	Array of size $\max \left(1, I d *^{*} n r h s\right)$ for column-major layout and max(1, ldb*n) for row-major layout. On entry, the n-by-nrhs right-hand side matrix B.
1 db	The leading dimension of the array B. $1 d b \geq \max (1, n)$ for column-major layout and $l \mathrm{db} \geq$ nrhs for row-major layout.

Output Parameters

A
ipiv
On exit, if info $=0$, the tridiagonal matrix T and the multipliers used to obtain the factor U or L from the factorization $A=U * T^{*} U^{\top}$ or $A=L^{*} T^{*} L^{\top}$ as computed by ?sytrf.

Array of size n. On exit, it contains the details of the interchanges; that is, the row and column k of A were interchanged with the row and column $\operatorname{ipiv}(k)$.

On exit, if info $=0$, the n-by-nrhs solution matrix X.

Return Values

This function returns a value info.
$=0$: Successful exit.
< 0: If info $=-i$, the $i^{\text {th }}$ argument had an illegal value.
> 0: If info $=i, \mathrm{D}(i, i)$ is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution could not be computed.

```
?sysv_rook
Computes the solution to the system of linear equations with a real or complex symmetric coefficient matrix \(A\) and multiple right-hand sides.
```


Syntax

```
lapack_int LAPACKE_ssysv_rook (int matrix_layout , char uplo , lapack_int n ,
lapack_int nrhs, float * a , lapack_int lda, lapack_int * ipiv, float * b ,
lapack_int ldb );
lapack_int LAPACKE_dsysv_rook (int matrix_layout, char uplo , lapack_int n ,
lapack_int nrhs , double * a , lapack_int lda, lapack_int * ipiv , double * b ,
lapack_int ldb );
lapack_int LAPACKE_csysv_rook (int matrix_layout , char uplo , lapack_int n ,
lapack_int nrhs , lapack_complex_float * a , lapack_int lda, lapack_int * ipiv ,
lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zsysv_rook (int matrix_layout , char uplo, lapack_int n ,
lapack_int nrhs , lapack_complex_double * a , lapack_int lda , lapack_int * ipiv ,
lapack_complex_double * b , lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves for X the real or complex system of linear equations $A * X=B$, where A is an n-by- n symmetric matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor A as $A=U^{\star} D^{*} U^{T}$ or $A=L^{\star} D^{\star} L^{\mathrm{T}}$, where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The ?sysv_rook routine is called to compute the factorization of a complex symmetric matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.

The factored form of A is then used to solve the system of equations $A * X=B$.

Input Parameters

matrix_layout
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

uplo	Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored:
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	The order of matrix A; $n \geq 0$.
nrhs	The number of right-hand sides; the number of columns in B; nrhs \geq 0 .
a, b	Arrays: $a\left(\right.$ size $\left.\max \left(1, I d a_{n}\right)\right)$, bof size $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and $\max \left(1, I d{ }^{*}{ }_{n}\right)$ for row major layout.
	The array a contains the upper or the lower triangular part of the symmetric matrix A (see uplo). The second dimension of a must be at least max $(1, n)$.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).
Ida	The leading dimension of a; $1 \mathrm{~d} a \geq \max (1, n)$.
1 db	The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$) for row major layout.

Output Parameters

a
b
ipiv

If info $=0, a$ is overwritten by the block-diagonal matrix D and the multipliers used to obtain the factor $U(\operatorname{or} L)$ from the factorization of A.

If info $=0, b$ is overwritten by the solution matrix X.
Array, size at least max $(1, n)$. Contains details of the interchanges and the block structure of D.

If ipiv[k-1] > 0 , then rows and columns k and $\operatorname{ipiv[k-1]~were~}$ interchanged and $D_{k, k}$ is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv[k-1] < 0 and ipiv[k - 2] < 0, then rows and columns k and -ipiv[k-1] were interchanged, rows and columns $k-1$ and -ipiv[k-2] were interchanged, and $D_{k-1: k, k-1: k}$ is a 2-by-2 diagonal block.
If uplo = 'L' and ipiv[k-1] < 0 and ipiv[k] < 0, then rows and columns k and -ipiv[k-1] were interchanged, rows and columns $k+1$ and -ipiv[k] were interchanged, and $D_{k: k+1, k: k+1}$ is a 2-by-2 diagonal block.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

If info $=i, d_{i i}$ is 0 . The factorization has been completed, but D is exactly singular, so the solution could not be computed.

See Also

Matrix Storage Schemes
?sysv_rk
Computes the solution to system of linear equations A
$* X=B$ for SY matrices.
lapack_int LAPACKE_ssysv_rk (int matrix_layout, char uplo, lapack_int n, lapack_int nrhs, float * A, lapack_int lda, float * e, lapack_int * ipiv, float * B, lapack_int ldb);
lapack_int LAPACKE_dsysv_rk (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, double * A, lapack_int lda, double * e, lapack_int * ipiv, double * B, lapack_int ldb);

```
lapack_int LAPACKE_cSysv_rk (int matrix_layout, char uplo, lapack_int n, lapack_int
```

nrhs, $\bar{l} a p a c k _c o m p l e \overline{e x} f l o \overline{a t ~ * ~ A, ~ l a p a c k _i n t ~ l d a, ~ l a p a c k _c o m p l e x _f l o ̄ a t ~ * ~ e, ~ l a p a c k ~} i n t ~ * ~$
ipiv, lapack_complex_float * B, lapack_int ldb);
lapack_int LAPACKE_zsysv_rk (int matrix_layout, char uplo, lapack_int n, lapack_int nrhs, lapack_complex_double * A, lapack_int lda, lapack_complex_double * e, lapack_int * ipiv, lapack_complex_double * B, lapack_int ldb);

Description

?sysv_rk computes the solution to a real or complex system of linear equations $A * X=B$, where A is an n -by-n symmetric matrix and X and B are n-by-nrhs matrices.
The bounded Bunch-Kaufman (rook) diagonal pivoting method is used to factor A as $A=P^{*} U^{*} D^{*}\left(U^{\top}\right) *\left(P^{\top}\right)$, if uplo $=$ 'U', or $A=P^{*} L^{*} D^{*}\left(L^{\top}\right) *\left(P^{\top}\right)$, if uplo $=' L '$, where $U(o r L$) is unit upper (or lower) triangular matrix, U^{\top} (or L^{\top}) is the transpose of U (or L), P is a permutation matrix, P^{\top} is the transpose of P, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
?sytrf_rk is called to compute the factorization of a real or complex symmetric matrix. The factored form of A is then used to solve the system of equations $A * X=B$ by calling BLAS3 routine ?sytrs_3.

Input Parameters

```
matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
    or column major (LAPACK_COL_MAJOR).
    Specifies whether the upper or lower triangular part of the symmetric
    matrix A is stored:
    - = 'U': The upper triangle of A is stored.
    - = 'L':The lower triangle of A is stored.
The number of linear equations; that is, the order of the matrix \(A . n \geq 0\).
The number of right-hand sides; that is, the number of columns of the matrix B. nrhs \(\geq 0\).
Array of size \(\max \left(1, I d *_{n}\right)\). On entry, the symmetric matrix A. If uplo \(=\) 'U', the leading \(n\)-by- \(n\) upper triangular part of A contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(A\) is
```

not referenced. If uplo $=$ ' L ', the leading $n-b y-n$ lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
lda
B
$1 d b$

Output Parameters

A
e
Array of size n. On exit, contains the output computed by the factorization routine ?sytrf_rk; that is, the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks. If uplo $=$ ' U ', $\mathrm{e}(i)=\mathrm{D}(i-1, i), i=1: \mathrm{N}-1$, and $\mathrm{e}(1)$ is set to 0 . If uplo $=$ ' L ', $\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1$, and $\mathrm{e}(n)$ is set to 0 .

NOTE For 1-by-1 diagonal block $\mathrm{D}(\mathrm{k})$, where $1 \leq \mathrm{k} \leq n$, the element $\mathrm{e}(k)$ is set to 0 in both the uplo $=$ 'U' and uplo $=$ ' L' cases. For more information, see the description of the?sytrf_rk routine.
On exit, if info $=0$, the diagonal of the block diagonal matrix D and factors U or L as computed by ?sytrf_rk:

- Only diagonal elements of the symmetric block diagonal matrix D on the diagonal of A; that is, $\mathrm{D}(k, k)=\mathrm{A}(k, k)$. Superdiagonal (or subdiagonal) elements of D are stored on exit in array e.
- If uplo = 'U', factor U in the superdiagonal part of A. If uplo = 'L', factor L in the subdiagonal part of A. For more information, see the description of the ?sytrf_rk routine.

B
Array of size n. Details of the interchanges and the block structure of D, as determined by ?sytrf_rk. For more information, see the description of the ?sytrf_rk routine.

On exit, if info $=0$, the n-by-nrhs solution matrix X.

Return Values

This function returns a value info.
= 0: Successful exit.
< 0: If info $=-k$, the $k^{\text {th }}$ argument had an illegal value.
> 0: If info $=k$, the matrix A is singular. If uplo $=$ ' U ', column k in the upper triangular part of A contains all zeros. If uplo $=$ ' L', column k in the lower triangular part of A contains all zeros. Therefore $\mathrm{D}(k, k)$ is exactly zero, and superdiagonal elements of column k of U (or subdiagonal elements of column k of L) are all zeros. The factorization has been completed, but the block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations.

?sysvx

Uses the diagonal pivoting factorization to compute the solution to the system of linear equations with a real or complex symmetric coefficient matrix A, and provides error bounds on the solution.

Syntax

```
lapack_int LAPACKE_ssysvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, const float* a, lapack_int lda, float* af, lapack_int ldaf,
lapack_int* ipiv, const float* b, lapack_int ldb, float* x, lapack_int ldx, float*
rcond, float* ferr, float* berr );
lapack_int LAPACKE_dsysvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, const double* a, lapack_int lda, double* af, lapack_int ldaf,
lapack_int* ipiv, const double* b, lapack_int ldb, double* x, lapack_int ldx, double*
rcond, double* ferr, double* berr );
lapack_int LAPACKE_csysvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, lapack_complex_float*
af, lapack_int ldaf, lapack_int* ipiv, const lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* x, lapack_int ldx, float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_zsysvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, lapack_complex_double*
af, lapack_int ldaf, lapack_int* ipiv, const lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* x, lapack_int ldx, double* rcond, double* ferr, double* berr );
```

Include Files

- mkl.h

Description

The routine uses the diagonal pivoting factorization to compute the solution to a real or complex system of linear equations $A * X=B$, where A is a n-by- n symmetric matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?sysvx performs the following steps:

1. If fact $=$ ' N ', the diagonal pivoting method is used to factor the matrix A. The form of the factorization is $A=U^{\star} D^{\star} U^{T}$ or $A=L^{\star} D^{\star} L^{T}$, where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some $d_{i, i}=0$, so that D is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form of A.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

Input Parameters

matrix_layout
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

fact	Must be 'F' or 'N'.
	Specifies whether or not the factored form of the matrix A has been supplied on entry.
	If fact $=$ ' F^{\prime} : on entry, af and ipiv contain the factored form of A. Arrays a, af, and ipiv will not be modified.
	If fact $=$ ' N ', the matrix A will be copied to af and factored.
uplo	Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored:
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	The order of matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides, the number of columns in B; nrhs \geq 0.
$a, a f, b$	Arrays: $a\left(\right.$ size $\left.\max \left(1, I d a_{n}\right)\right), a f\left(\right.$ size $\left.\max \left(1, I d^{*} *_{n}\right)\right)$, bof size $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and $\max \left(1, I b^{*} *_{n}\right)$ for row major layout.
	The array a contains the upper or the lower triangular part of the symmetric matrix A (see uplo).
	The array $a f$ is an input argument if fact $={ }^{\prime} F^{\prime}$. It contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization $A=U \star D^{\star} U^{\mathrm{T}}$ or $A=L^{\star} D^{\star} L^{\mathrm{T}}$ as computed by ?sytrf.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
Ida	The leading dimension of a; lda $\geq \max (1, n)$.
Idaf	The leading dimension of $a f ; l d a f \geq \max (1, n)$.
1 db	The leading dimension of b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.
ipiv	Array, size at least max $(1, n)$. The array ipiv is an input argument if fact $=$ ' F '. It contains details of the interchanges and the block structure of D, as determined by ?sytrf.
	If ipiv[i-1] $=k>0$, then $d_{i i}$ is a 1-by-1 diagonal block, and the i-th row and column of A was interchanged with the k-th row and column.
	If uplo = 'U'and ipiv[i] = ipiv[i-1] $=-m<0$, then D has a 2-by-2 block in rows/columns i and $i+1$, and (i)-th row and column of A was interchanged with the m-th row and column.
	If uplo = 'L'and ipiv[i] = ipiv[i-1] $=-m<0$, then D has a 2-by-2 block in rows/columns i and $i+1$, and ($i+1$)-th row and column of A was interchanged with the m-th row and column.

The leading dimension of the output array $x ; \operatorname{ldx} \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Output Parameters

X
af, ipiv
rcond
ferr
berr

Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and max(1, $l d x^{*} n$) for row major layout.

If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the system of equations.

These arrays are output arguments if fact $={ }^{\prime} \mathrm{N}$ '.
See the description of af, ipiv in Input Arguments section.
An estimate of the reciprocal condition number of the matrix A. If rcond is less than the machine precision (in particular, if rcond $=0$), the matrix is singular to working precision. This condition is indicated by a return code of info >0.

Array, size at least max (1, nrhs). Contains the estimated forward error bound for each solution vector x_{j} (the j-th column of the solution matrix X). If x true is the true solution corresponding to x_{j}, ferr $[j-1]$ is an estimated upper bound for the magnitude of the largest element in (x_{j}-xtrue) divided by the magnitude of the largest element in x_{j}. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

Array, size at least max (1, nrhs). Contains the component-wise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, and $i \leq n$, then $d_{i i}$ is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=i$, and $i=n+1$, then D is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

See Also

Matrix Storage Schemes

?sysvxx

Uses extra precise iterative refinement to compute the solution to the system of linear equations with a symmetric indefinite coefficient matrix A applying the diagonal pivoting factorization.

Syntax

```
lapack_int LAPACKE_ssysvxx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, float* a, lapack_int lda, float* af, lapack_int ldaf, lapack_int* ipiv,
char* equed, float* s, float* b, lapack_int ldb, float* x, lapack_int ldx, float* rcond,
float* rpvgrw, float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float*
err_bnds_comp, lapack_int nparams, const float* params );
lapack_int LAPACKE_dsysvxx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, double* a, lapack_int lda, double* af, lapack_int ldaf, lapack_int*
ipiv, char* equed, double* s, double* b, lapack_int ldb, double* x, lapack_int ldx,
double* rcond, double* rpvgrw, double* berr, lapack_int n_err_bnds, double*
err_bnds_norm, double* err_bnds_comp, lapack_int nparams, const double* params );
lapack_int LAPACKE_csysvxx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, float* s, lapack_complex_float* b,
lapack_int ldb, lapack_complex_float* x, lapack_int ldx, float* rcond, float* rpvgrw,
float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp,
lapack_int nparams, const float* params );
lapack_int LAPACKE_zsysvxx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, double* s, lapack_complex_double* b,
lapack_int ldb, lapack_complex_double* x, lapack_int ldx, double* rcond, double*
rpvgrw, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double*
err_bnds_comp, lapack_int nparams, const double* params );
```

Include Files

- mkl.h

Description

The routine uses the diagonal pivoting factorization to compute the solution to a real or complex system of linear equations $A * X=B$, where A is an n-by- n real symmetric/Hermitian matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error (O (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.

The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with O (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.

The routine ?sysvxx performs the following steps:

1. If fact $=$ ' E ', scaling factors are computed to equilibrate the system:
$\operatorname{diag}(s) * A * \operatorname{diag}(s) * \operatorname{inv}(\operatorname{diag}(s)) * X=\operatorname{diag}(s) * B$
Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$ and B by $\operatorname{diag}(s) * B$.
2. If fact $=$ 'N' or 'E', the LU decomposition is used to factor the matrix A (after equilibration if fact = 'E') as
$A=U^{\star} D^{\star} U^{T}$, if uplo = 'U',
or $A=L^{\star} D^{\star} L^{T}$, if uplo = 'L',
where U or L is a product of permutation and unit upper (lower) triangular matrices, and D is a symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
3. If some $D(i, i)=0$, so that D is exactly singular, the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for X and compute error bounds.
4. The system of equations is solved for X using the factored form of A.
5. By default, unless params [0] is set to zero, the routine applies iterative refinement to get a small error and error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(r)$ so that it solves the original system before equilibration.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
fact	Must be 'F', 'N', or 'E'.
	Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.
	If fact $=$ ' F ', on entry, $a f$ and ipiv contain the factored form of A. If equed is not ' N ', the matrix A has been equilibrated with scaling factors given by s. Parameters a, af, and ipiv are not modified.
	If fact $=$ 'N', the matrix A will be copied to af and factored.
	If fact $=$ ' E ', the matrix A will be equilibrated, if necessary, copied to $a f$ and factored.
uplo	Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored:
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	The number of linear equations; the order of the matrix A; $n \geq 0$.
nrhs	The number of right-hand sides; the number of columns of the matrices B and X; nrhs ≥ 0.
$a, a f, b$	Arrays: $a\left(\right.$ size $\left.\max \left(1, I d^{*} *_{n}\right)\right), a f\left(\right.$ size $\left.\max \left(1, ~ l d a f_{n}\right)\right)$, b, size $\max \left(I d b^{*} n r h s\right)$ for column major layout and $\max \left(I d b^{*} n\right)$ for row major layout,
	The array a contains the symmetric matrix A as specified by uplo. If uplo = 'U', the leading n-by- n upper triangular part of a contains the upper triangular part of the matrix A and the strictly lower triangular part of a is not referenced. If uplo = 'L', the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A and the strictly upper triangular part of a is not referenced.

The array af is an input argument if fact $={ }^{\prime} F^{\prime}$. It contains the block diagonal matrix D and the multipliers used to obtain the factor U and L from the factorization $A=U^{\star} D^{\star} U^{T}$ or $A=L^{\star} D^{\star} L^{T}$ as computed by ?sytrf.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of the array $a ; 1 d a \geq \max (1, n)$.
The leading dimension of the array $a f ; l d a f \geq \max (1, n)$.
Array, size at least max $(1, n)$. The array ipiv is an input argument if fact $={ }^{\prime} F^{\prime}$. It contains details of the interchanges and the block structure of D as determined by ?sytrf. If ipiv[k-1] >0, rows and columns k and ipiv[k-1] were interchanged and $D(k, k)$ is a 1-by-1 diagonal block.

If uplo = 'U' and ipiv[i] = ipiv[i-1] $=m<0, D$ has a 2-by- 2 diagonal block in rows and columns i and $i+1$, and the i-th row and column of A were interchanged with the m-th row and column.

If uplo = 'L' and ipiv[i] = ipiv[i - 1] $=m<0, D$ has a 2 -by-2 diagonal block in rows and columns i and $i+1$, and the ($i+1$)-st row and column of A were interchanged with the m-th row and column.

Must be 'N' or 'Y'.
equed is an input argument if fact $=$ ' F '. It specifies the form of equilibration that was done:

If equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N').
if equed = 'Y', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

Array, size (n). The array s contains the scale factors for A. If equed $=' Y$ ', A is multiplied on the left and right by diag (s).

This array is an input argument if fact $=$ ' F^{\prime} ' only; otherwise it is an output argument.

If fact $=$ ' F ' and equed $=$ 'Y', each element of s must be positive.
Each element of s should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

The leading dimension of the array $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

The leading dimension of the output array $x ; I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.
n_err_bnds
nparams
params

Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in the Output Arguments section below.

Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

Array, size max(1,nparams). Specifies algorithm parameters. If an entry is less than 0.0, that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams $=0$, which prevents the source code from accessing the params argument.
params [0] : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).
$=0.0 \quad$ No refinement is performed and no error bounds are computed.
$=1.0 \quad$ Use the extra-precise refinement algorithm.
(Other values are reserved for future use.)
params [1] : Maximum number of residual computations allowed for refinement.

Default
Aggressive
10.0

Set to 100.0 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params [2] : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the doubleprecision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

Output Parameters

Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and $\max \left(1, I d x_{n}\right)$ for row major layout).
If info $=0$, the array x contains the solution n-by-nrhs matrix X to the original system of equations. Note that A and B are modified on exit if equed \neq ' N ', and the solution to the equilibrated system is:
inv(diag(s))*X.
If fact $=$ 'E' and equed $=$ 'Y', overwritten by diag(s)*A*diag(s).

af	If fact $={ }^{\prime} \mathrm{N}$ ', af is an output argument and on exit returns the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization $A=U^{\star} D^{\star} U^{\mathbb{T}}$ or $A=L^{\star} D^{\star} L^{\mathrm{T}}$.
b	If equed $={ }^{\prime} \mathrm{N}^{\prime}, B$ is not modified.
	If equed $=$ 'Y', B is overwritten by diag $(s) * B$.
s	This array is an output argument if $f a c t \neq{ }^{\prime} F^{\prime}$. Each element of this array is a power of the radix. See the description of s in Input Arguments section.
rcond	Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if r cond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.
rpvgrw	Contains the reciprocal pivot growth factor:

$$
\|A\| /\|V\|
$$

If this is much less than 1 , the stability of the $L U$ factorization of the (equlibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. If factorization fails with $0<$ info $\leq n$, this parameter contains the reciprocal pivot growth factor for the leading info columns of A.

Array, size at least max (1, nrhs). Contains the componentwise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:
Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. Up to three pieces of information are returned.

```
err=1
err=2
```

"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (n) *slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors.
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and
$\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * s l a m c h(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{6} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1.

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in err_bnds_norm[(err-1)*nrhs + i - 1].
err_bnds_comp
Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params [2] = 0.0), then err_bnds_comp is not accessed.

```
err=1
err=2
```

"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors.
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt (n) * $\operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n)$ *dlamch (ε) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
err=3

Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{0} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{\star}(a * \operatorname{diag}(x))$, where x is the solution for the current right-hand side and s scales each row of $a^{\star} \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1 .

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in err_bnds_comp $[(e r r-1) * n r h s+i-1]$.
ipiv
equed
params

If fact $=$ ' N ', ipiv is an output argument and on exit contains details of the interchanges and the block structure D, as determined by ssytrf for single precision flavors and dsytrf for double precision flavors.

If fact $\neq ' F^{\prime}$, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

If an entry is less than 0.0 , that entry is filled with the default value used for that parameter, otherwise the entry is not modified.

Return Values

This function returns a value info.
If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, parameter i had an illegal value.
If $0<i n f o \leq n: U_{i n f o, i n f o}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with $k>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params [2] $=0.0$, then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that for column major layout err_bnds_norm[j-1] = 0.0 or err_bnds_comp[j-1] = 0.0; or for row major layout err_bnds_norm [(j-1)*n_err_bnds] $=0.0$ or err_bnds_comp $\left.\left[(j-1){ }^{*} n_{-} e r r_{-} b n d s\right]=0.0\right)$. See the definition of err_bnds_norm and err_bnds_comp for err = 1. To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

See Also
Matrix Storage Schemes

?hesv

Computes the solution to the system of linear equations with a Hermitian matrix A and multiple right-hand sides.

Syntax

```
lapack_int LAPACKE_chesv (int matrix_layout , char uplo, lapack_int n , lapack_int
nrhs , lapack_complex_float * a , lapack_int lda , lapack_int * ipiv ,
lapack_complex_float * b , lapack_int ldb );
lapack_int LAPACKE_zhesv (int matrix_layout , char uplo, lapack_int n, lapack_int
nrhs , lapack_complex_double * a , lapack_int lda , lapack_int * ipiv ,
lapack_complex_double * b , lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves for X the complex system of linear equations $A * X=B$, where A is an n-by- n symmetric matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor A as $A=U^{\star} D^{*} U^{H}$ or $A=L^{\star} D^{\star} L^{H}$, where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations $A * X=B$.

Input Parameters

```
matrix_layout
```

uplo Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored and
how A is factored:
If uplo = 'U', the array a stores the upper triangular part of the
matrix A, and A is factored as $U^{\star} D^{\star} U^{H}$.
If uplo = 'L', the array a stores the lower triangular part of the
matrix A, and A is factored as $L^{\star} D^{\star} L^{H}$.
The order of matrix $A ; n \geq 0$.
The number of right-hand sides, the number of columns in B; nrhs \geq
0 .

Arrays: $a\left(\right.$ size $\left.\max \left(1, I d a *_{n}\right)\right)$, bbof size $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and $\max \left(1, l d b^{*} n\right)$ for row major layout. The array a contains the upper or the lower triangular part of the Hermitian matrix A (see uplo).
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

Ida
1 db

Output Parameters

a
b
ipiv

The leading dimension of $a ; 1 d a \geq \max (1, n)$.
The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

If info $=0, a$ is overwritten by the block-diagonal matrix D and the multipliers used to obtain the factor U (or L) from the factorization of A as computed by ?hetrf.

If info $=0, b$ is overwritten by the solution matrix X.
Array, size at least max $(1, n)$. Contains details of the interchanges and the block structure of D, as determined by ?hetrf.
If ipiv[i-1] $=k>0$, then $d_{i i}$ is a 1-by-1 diagonal block, and the i-th row and column of A was interchanged with the k-th row and column.

If uplo $=$ 'U'and $\operatorname{ipiv}[i]=\operatorname{ipiv}[i-1]=-m<0$, then D has a 2-by-2 block in rows/columns i and $i+1$, and (i) -th row and column of A was interchanged with the m-th row and column.

If uplo $=$ 'L'and $\operatorname{ipiv}[i]=\operatorname{ipiv}[i-1]=-m<0$, then D has a 2-by-2 block in rows/columns i and $i+1$, and ($i+1$) -th row and column of A was interchanged with the m-th row and column.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i, d_{i i}$ is 0 . The factorization has been completed, but D is exactly singular, so the solution could not be computed.

See Also

Matrix Storage Schemes
?hesv_aa
Computes the solution to system of linear equations for HE matrices.

```
LAPACK_DECL lapack_int LAPACKE_chesv_aa (int matrix_layout, char uplo, lapack_int n,
lapack_int nrhs, lapack_comple\overline{x_float * a, lapack_iñt lda, lapack_int * ipiv,}
lapack_complex_float * \overline{b}, lapac\overline{k}_int ldb );
LAPACK_DECL lapack_int LAPACKE_chesv_aa_work (int matrix_layout, char uplo, lapack_int
n, lapack_int nrhs, lapack_complex_float * a, lapack_int lda, lapack_int * ipiv,
lapack_complex_float * b, lapack_int ldb, lapack_complex_float * work, lapack_int
IWork );
```


Description

?hesv_aa computes the solution to a complex system of linear equations $A * X=B$, where A is an n-by- n Hermitian matrix and X and B are n-by-nrhs matrices. Aasen's algorithm is used to factor A as
$A=U * T * U^{H}$ if uplo $=$ 'U', or
$A=L * T * L^{H}$ if uplo = 'L',
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and T is Hermitian and tridiagonal. The factored form of A is then used to solve the system of equations $A{ }^{*} X=B$.

Input Parameters

```
matrix_layout
uplo
n
nrhs
a
Ida
b
ldb
lwork
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
If uplo = 'U': The upper triangle of \(A\) is stored.
If uplo = 'L': the lower triangle of \(A\) is stored.
The number of linear equations or the order of the matrix \(A . n \geq 0\).
The number of right hand sides or the number of columns of the matrix \(B\). \(n r h s \geq 0\).
Array of size \(l d^{*}{ }_{n}\). On entry, the Hermitian matrix \(A\).
If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced.
If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.
The leading dimension of the array \(a\). Id \(a \geq \max (1, n)\).
Array of size \(1 d b^{*} n r h s\). On entry, the \(n\)-by-nrhs right hand side matrix \(B\).
The leading dimension of the array \(b . l d b \geq \max (1, n)\).
The length of work. lwork \(\geq \max \left(1,2 *_{n}, 3_{n}-2\right)\), and for best performance lwork \(\geq \max \left(1, n^{*} n b\right)\), where \(n b\) is the optimal blocksize for ?hetrf.
If 1 work \(<n\), TRS is done with Level BLAS 2. If 1 wor \(k \geq n\), TRS is done with Level BLAS 3.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
```


Output Parameters

a
ipiv
b
work
On exit, if info $=0$, the tridiagonal matrix T and the multipliers used to obtain the factor U or L from the factorization $A=U^{*} T^{*} U^{H}$ or $A=L^{*} T^{*} L^{H}$ as computed by ?hetrf_aa.

Array of size (n) On exit, it contains the details of the interchanges: row and column k of A were interchanged with the row and column ipiv[k].

On exit, if info $=0$, the n-by-nrhs solution matrix X.
Array of size $(\max (1, l$ work $))$. On exit, if info $=0$, work[0] returns the optimal lwork.

Return Values

This function returns a value info.
If info $=0$: successful exit.
If info < 0 : if info $=-i$, the i-th argument had an illegal value.
If info >0 : if info $=i, D_{i, i}$ is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution could not be computed.

```
?hesv_rk
?hesv_rk computes the solution to a system of linear
equations A* X = B for Hermitian matrices.
```

```
lapack_int LAPACKE_chesv_rk (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, lapack_complex_floàt * A, lapack_int lda, lapack_complex_float * e, lapack_int *
ipiv, lapack_complex_float * B, lapack_int ldb);
lapack_int LAPACKE_zhesv_rk (int matrix_layout, char uplo, lapack_int n, lapack_int
nrhs, lapack_complex_double * A, lapack_int lda, lapack_complex_double * e, lapack_int
* ipiv, lapack_complex_double * B, lapack_int ldb);
```


Description

?hesv_rk computes the solution to a complex system of linear equations $A * X=B$, where A is an n-by- n Hermitian matrix and X and B are n-by-nrhs matrices.

The bounded Bunch-Kaufman (rook) diagonal pivoting method is used to factor A as $\mathrm{A}=\mathrm{P}^{*} \mathrm{U}^{*} \mathrm{D}^{*}\left(\mathrm{U}^{H}\right) *\left(\mathrm{P}^{\mathrm{T}}\right)$, if uplo = 'U', or A = P*L*D*(L')*(PT), if uplo = 'L', where $U($ or L) is unit upper (or lower) triangular matrix, $\mathrm{U}^{\mathrm{H}}\left(\right.$ or $\left.\mathrm{L}^{\mathrm{H}}\right)$ is the conjugate of $\mathrm{U}($ or L$), \mathrm{P}$ is a permutation matrix, P^{\top} is the transpose of P , and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
?hetrf_rk is called to compute the factorization of a complex Hermitian matrix. The factored form of A is then used to solve the system of equations A * X = B by calling BLAS3 routine ?hetrs_3.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK COL MAJOR).
uplo	Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored:
	- = ' U ' : The upper triangle of A is stored. - = ' L ': The lower triangle of A is stored.
n	The number of linear equations; that is, the order of the matrix A. $n \geq 0$.
nrhs	The number of right-hand sides; that is, the number of columns of the matrix B. $n r h s \geq 0$.
A	Array of size $\max \left(1, I d a^{*} n\right)$. On entry, the Hermitian matrix A. If up $10=$ ' U ': the leading n-by $-n$ upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If $u p l o=$ ' L ': the leading n-by- n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
Ida	The leading dimension of the array A.

B

1 db

Output Parameters

A
e
ipiv

B

On entry, the n-by-nrhs right-hand side matrix B.
The size of B is $\max \left(1, I d b^{*} n r h s\right)$ for column-major layout and max(1, $l d b^{*}$) for row-major layout.

The leading dimension of the array B. $1 d b \geq \max (1, n)$ for column-major layout and $1 d b \geq$ nrhs for row-major layout.

On exit, if info $=0$, diagonal of the block diagonal matrix D and factors U or L as computed by ?hetrf_rk:

- Only diagonal elements of the Hermitian block diagonal matrix D on the diagonal of A ; that is, $\mathrm{D}(k, k)=A(k, k)$; (superdiagonal (or subdiagonal) elements of D are stored on exit in array e).
-and-
- If uplo = 'U', factor U in the superdiagonal part of A. If uplo = 'L', factor L in the subdiagonal part of A.

For more information, see the description of the ?hetrf_rk routine.
Array of size n. On exit, contains the output computed by the factorization routine ?hetrf_rk; that is, the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks:

- If uplo $=$ ' U ', $\mathrm{e}(i)=\mathrm{D}(i-1, i), i=2: \mathrm{N}, \mathrm{e}(1)$ is set to 0 .
- If uplo $=$ 'L', $\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1, \mathrm{e}(n)$ is set to 0 .

NOTE For a 1-by-1 diagonal block $\mathrm{D}(k)$, where $1 \leq k \leq n$, the element $\mathrm{e}(k)$ is set to 0 in both the uplo = 'U' and uplo = 'L' cases.

For more information, see the description of the ?hetrf_rk routine.
Array of size n. Details of the interchanges and the block structure of D, as determined by ?hetrf_rk.

On exit, if info $=0$, the n-by-nrhs solution matrix X.

Return Values

This function returns a value info.
$=0$: Successful exit.
<0: If info $=-k$, the $k^{\text {th }}$ argument had an illegal value.
>0 : If info $=k$, the matrix A is singular. If uplo $=$ ' U', column k in the upper triangular part of A contains all zeros. If uplo $=$ ' L', column k in the lower triangular part of A contains all zeros. Therefore $\mathrm{D}(k, k)$ is exactly zero, and superdiagonal elements of column k of U (or subdiagonal elements of column k of L) are all zeros. The factorization has been completed, but the block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations.

```
?hesvx
Uses the diagonal pivoting factorization to compute
the solution to the complex system of linear equations
with a Hermitian coefficient matrix A, and provides
error bounds on the solution.
```


Syntax

```
lapack_int LAPACKE_chesvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_float* a, lapack_int lda, lapack_complex_float*
af, lapack_int ldaf, lapack_int* ipiv, const lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* x, lapack_int ldx, float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_zhesvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_double* a, lapack_int lda, lapack_complex_double*
af, lapack_int ldaf, lapack_int* ipiv, const lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* x, lapack_int ldx, double* rcond, double* ferr, double* berr );
```


Include Files

- mkl.h

Description

The routine uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations $A * X=B$, where A is an n-by- n Hermitian matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?hesvx performs the following steps:

1. If fact $=$ ' N ', the diagonal pivoting method is used to factor the matrix A. The form of the factorization is $A=U^{\star} D^{\star} U^{H}$ or $A=L^{\star} D^{\star} L^{H}$, where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some $d_{i, i}=0$, so that D is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form of A.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

Input Parameters

```
matrix_layout
```

fact Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix A has been supplied on entry.

If fact $=$ ' F ': on entry, af and ipiv contain the factored form of A. Arrays $a, a f$, and ipiv are not modified.

If fact $=$ ' N ', the matrix A is copied to $a f$ and factored.

uplo	Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored and how A is factored:
	If uplo = 'U', the array a stores the upper triangular part of the Hermitian matrix A, and A is factored as $U^{\star} D^{\star} U^{H}$.
	If uplo = 'L', the array a stores the lower triangular part of the Hermitian matrix A; A is factored as $L^{\star} D^{\star} L^{H}$.
n	The order of matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides, the number of columns in B; nrhs \geq 0.
$a, a f, b$	Arrays: $a\left(\right.$ size $\left.\max \left(1, I d a_{n}\right)\right), a f\left(\right.$ size $\left.\max \left(1, I d a f_{n}\right)\right)$, bof size $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and $\max \left(1, I b^{*} *_{n}\right)$ for row major layout.
	The array a contains the upper or the lower triangular part of the Hermitian matrix A (see uplo).
	The array of is an input argument if fact $={ }^{\prime} \mathrm{F}$ '. It contains he block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization $A=U * D^{*} U^{H}$ or $A=L \star D^{*} L^{H}$ as computed by ?hetrf.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
Ida	The leading dimension of $a ; 1 d a \geq \max (1, n)$.
Idaf	The leading dimension of $a f ; l d a \leq \geq \max (1, n)$.
1 db	The leading dimension of b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.
ipiv	Array, size at least max $(1, n)$. The array ipiv is an input argument if fact $=$ ' F '. It contains details of the interchanges and the block structure of D, as determined by
	If ipiv[i-1] $=k>0$, then $d_{i i}$ is a 1-by-1 diagonal block, and the i-th row and column of A was interchanged with the k-th row and column.
	If uplo $=$ 'U'and $\operatorname{ipiv}[i]=\operatorname{ipiv}[i-1]=-m<0$, then D has a $2-$ by-2 block in rows/columns i and $i+1$, and (i) -th row and column of A was interchanged with the m-th row and column.
	If uplo = 'L'and ipiv[i]=ipiv[i-1]=-m<0, then D has a 2-by-2 block in rows/columns i and $i+1$, and ($i+1$) -th row and column of A was interchanged with the m-th row and column.
$1 d x$	The leading dimension of the output array $x ; \operatorname{ld} x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Output Parameters

X
af, ipiv
rcond
ferr
berr

Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and $\max (1$, $l d x^{*} n$) for row major layout.

If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the system of equations.

These arrays are output arguments if fact $=$ 'N'. See the description of af, ipiv in Input Arguments section.

An estimate of the reciprocal condition number of the matrix A. If rcond is less than the machine precision (in particular, if rcond $=0$), the matrix is singular to working precision. This condition is indicated by a return code of info >0.

Array, size at least max ($1, \operatorname{nrhs}$). Contains the estimated forward error bound for each solution vector x_{j} (the j-th column of the solution matrix X). If x true is the true solution corresponding to x_{j}, ferr $[j-1]$ is an estimated upper bound for the magnitude of the largest element in $\left(x_{j}\right)$ - xtrue) divided by the magnitude of the largest element in x_{j}. The estimate is as reliable as the estimate for rcon, and is almost always a slight overestimate of the true error.

Array, size at least max ($1, n r h s$). Contains the component-wise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, and $i \leq n$, then $d_{i i}$ is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=i$, and $i=n+1$, then D is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

See Also

Matrix Storage Schemes

?hesvxx

Uses extra precise iterative refinement to compute the solution to the system of linear equations with a Hermitian indefinite coefficient matrix A applying the diagonal pivoting factorization.

Syntax

```
lapack_int LAPACKE_chesvxx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_flöat* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, float* s, lapack_complex_float* b,
```

```
lapack_int ldb, lapack_complex_float* x, lapack_int ldx, float* rcond, float* rpvgrw,
float* berr, lapack_int n_err_bnds, float* err_bnds_norm, float* err_bnds_comp,
lapack_int nparams, const float* params );
lapack_int LAPACKE_zhesvxx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* af,
lapack_int ldaf, lapack_int* ipiv, char* equed, double* s, lapack_complex_double* b,
lapack_int ldb, lapack_complex_double* x, lapack_int ldx, double* rcond, double*
rpvgrw, double* berr, lapack_int n_err_bnds, double* err_bnds_norm, double*
err_bnds_comp, lapack_int nparams, const double* params );
```


Include Files

- mkl.h

Description

The routine uses the diagonal pivoting factorization to compute the solution to a complex/double complex system of linear equations $A * X=B$, where A is an n-by- n Hermitian matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error (0 (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.

The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with O (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.

The routine ?hesvxx performs the following steps:

1. If fact $=$ ' E ', scaling factors are computed to equilibrate the system:
```
diag(s) *A*diag(s) *inv(diag(s))*X = diag(s)*B
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$ and B by $\operatorname{diag}(s) * B$.
2. If fact $=$ ' N ' or ' E ', the LU decomposition is used to factor the matrix \boldsymbol{A} (after equilibration if fact = 'E') as
$A=U^{\star} D^{\star} U^{T}$, if uplo = 'U',
or $A=L^{\star} D^{\star} L^{T}$, if uplo = 'L',
where U or L is a product of permutation and unit upper (lower) triangular matrices, and D is a symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
3. If some $D(i, i)=0$, so that D is exactly singular, the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for X and compute error bounds.
4. The system of equations is solved for X using the factored form of A.
5. By default, unless params [0] is set to zero, the routine applies iterative refinement to get a small error and error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(r)$ so that it solves the original system before equilibration.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
fact	Must be 'F', 'N', or 'E'.
	Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.
	If fact $=$ ' F ', on entry, af and ipiv contain the factored form of A. If equed is not ' N ', the matrix A has been equilibrated with scaling factors given by s. Parameters a, af, and ipiv are not modified.
	If fact $=$ ' N ', the matrix A will be copied to af and factored.
	If fact = 'E', the matrix A will be equilibrated, if necessary, copied to $a f$ and factored.
uplo	Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored:
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	The number of linear equations; the order of the matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides; the number of columns of the matrices B and X; nrhs ≥ 0.
$a, a f, b$	Arrays: $a\left(\right.$ size $\left.\max \left(I d a_{n}\right)\right), a f\left(\right.$ size $\left.\max \left(I d a f_{n}\right)\right), b$, (size $\max \left(I d b^{*} n r h s\right)$ for column major layout and $\max \left(I d b^{*} n\right)$ for row major layout),.
	The array a contains the Hermitian matrix A as specified by uplo. If uplo = 'U', the leading n-by- n upper triangular part of a contains the upper triangular part of the matrix A and the strictly lower triangular part of a is not referenced. If uplo $=$ 'L', the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A and the strictly upper triangular part of a is not referenced.
	The array $a f$ is an input argument if fact $='^{\prime} F^{\prime}$. It contains the block diagonal matrix D and the multipliers used to obtain the factor U and L from the factorization $A=U^{\star} D^{\star} U^{T}$ or $A=L^{\star} D^{\star} L^{T}$ as computed by ?hetrf.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
Ida	The leading dimension of the array $a ; 1 d a \geq \max (1, n)$.
Idaf	The leading dimension of the array $a f ; 1 d a f \geq \max (1, n)$.
ipiv	Array, size at least max $(1, n)$. The array ipiv is an input argument if fact $=$ ' F'. It contains details of the interchanges and the block structure of D as determined by ?sytrf.

If ipiv[k-1] >0, rows and columns k and ipiv[k-1] were interchanged and $D_{k, k}$) is a 1-by-1 diagonal block.

If uplo = 'U' and ipiv[i] = ipiv[i - 1] $=m<0, D$ has a 2-by- 2 diagonal block in rows and columns i and $i+1$, and the i-th row and column of A were interchanged with the m-th row and column.

If uplo = 'L' and ipiv[i] = ipiv[i - 1] $=m<0, D$ has a 2 -by-2 diagonal block in rows and columns i and $i+1$, and the $(i+1)$-st row and column of A were interchanged with the m-th row and column.

Must be 'N' or 'Y'.
equed is an input argument if fact $=$ ' F^{\prime}. It specifies the form of equilibration that was done:

If equed = 'N', no equilibration was done (always true if fact = 'N').
if equed = 'Y', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

Array, size (n). The array s contains the scale factors for A. If equed $=' Y$ ', A is multiplied on the left and right by diag (s).

This array is an input argument if fact = ' F ' only; otherwise it is an output argument.

If fact $=$ ' F ' and equed $=$ 'Y', each element of s must be positive.
Each element of s should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows.
Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

The leading dimension of the array $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

The leading dimension of the output array x; $I d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in the Output Arguments section below.

Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

Array, size max(1,nparams). Specifies algorithm parameters. If an entry is less than 0.0 , that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams $=0$, which prevents the source code from accessing the params argument.
params[0] : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).

$$
\begin{array}{ll}
=0.0 & \begin{array}{l}
\text { No refinement is performed and no error } \\
\text { bounds are computed. }
\end{array} \\
=1.0 & \text { Use the extra-precise refinement algorithm. }
\end{array}
$$

(Other values are reserved for future use.)
params [1] : Maximum number of residual computations allowed for refinement.

Default 10
Aggressive Set to 100 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params [2] : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the doubleprecision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

Output Parameters

x
a
$a f$
b

S
rcond

Array, size $\max \left(1, l d x_{n r h s}\right)$ for column major layout and $\max \left(1, I d x_{n}\right)$ for row major layout.

If info $=0$, the array x contains the solution n-by-nrhs matrix X to the original system of equations. Note that A and B are modified on exit if equed \neq ' N ', and the solution to the equilibrated system is:
inv(diag(s))*X.
If fact $=$ 'E' and equed $=$ 'Y', overwritten by diag(s)*A*diag(s).
If fact $=$ 'N', af is an output argument and on exit returns the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization $A=U^{\star} D^{\star} U^{\mathbb{T}}$ or $A=L^{\star} D^{\star} L^{\mathrm{T}}$.

If equed $=$ ' N ', B is not modified.
If equed $=$ ' Y ', B is overwritten by $\operatorname{diag}(s) * B$.
This array is an output argument if $f a c t \neq ' F^{\prime}$. Each element of this array is a power of the radix. See the description of s in Input Arguments section.

Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.
rpvgrw
berr
err_bnds_norm

Contains the reciprocal pivot growth factor:
$||4|||v|$
If this is much less than 1 , the stability of the $L U$ factorization of the (equlibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. If factorization fails with $0<i n f o \leq n$, this parameter contains the reciprocal pivot growth factor for the leading info columns of A.

Array, size at least max ($1, n r h s$). Contains the component-wise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

Array of size nrhs*n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:

Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
err $=1$
err $=2$
err=3
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (n) *slamch (ε) for chesvxx and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for zhesvxx.
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for chesvxx and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for zhesvxx. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold
$\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for chesvxx and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for zhesvxx to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{1} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1.

```
err_bnds_comp
```

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in err_bnds_norm [(err-1)*nrhs +i-1].

Array of size $n r h s^{*} n _e r r$ _bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params [2] = 0.0), then err_bnds_comp is not accessed.

err=1	"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for chesvxx and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for zhesvxx.
err=2	"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for chesvxx and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for zhesvxx. This error bound should only be trusted if the previous boolean is true.
err=3	Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for chesvxx and $\operatorname{sqrt}(n) * \operatorname{dlamch}(\varepsilon)$ for zhesvxx to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{0} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of $a^{*} \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1 .

The information for right-hand side i, where $1 \leq i \leq n r h s$, and type of error err is stored in err_bnds_comp [(err-1)*nrhs +i-1].

If fact = 'N', ipiv is an output argument and on exit contains details of the interchanges and the block structure D, as determined by ssytrf for single precision flavors and dsytrf for double precision flavors.

```
equed If fact\not='F', then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
params
If an entry is less than 0.0, that entry is filled with the default value used for that parameter, otherwise the entry is not modified.
```


Return Values

This function returns a value info.
If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, the i-th parameter had an illegal value.
If 0 < info n : $U_{\text {info, info }}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with $k>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params [2] $=0.0$, then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that for column major layout err_bnds_norm[j-1] = 0.0 or err_bnds_comp [j-1] = 0.0; or for row major layout err_bnds_norm[(j-1)*n_err_bnds] = 0.0 or err_bnds_comp $\left.\left[(j-1) * n_{-} e r r_{-} b n d s\right]=0.0\right)$. See the definition of err_bnds_norm and err_bnds_comp for err $=1$. To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

See Also

Matrix Storage Schemes

?spsv
Computes the solution to the system of linear equations with a real or complex symmetric coefficient matrix A stored in packed format, and multiple righthand sides.

Syntax

```
lapack_int LAPACKE_sspsv (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs , float * ap , lapack_int * ipiv, float * b , lapack_int ldb );
lapack_int LAPACKE_dspsv (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, double * ap, lapack_int * ipiv, double * b , lapack_int ldb );
lapack_int LAPACKE_cspsv (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, lapack_complex_float * ap , lapack_int * ipiv, lapack_complex_float * b ,
lapack_int ldb );
lapack_int LAPACKE_zspsv (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs, lapack_complex_double * ap , lapack_int * ipiv, lapack_complex_double * b ,
lapack_int ldb );
```

Include Files

- mkl.h

Description

The routine solves for X the real or complex system of linear equations $A * X=B$, where A is an n-by- n symmetric matrix stored in packed format, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
The diagonal pivoting method is used to factor A as $A=U^{\star} D^{\star} U^{T}$ or $A=L^{\star} D^{\star} L^{T}$, where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
The factored form of A is then used to solve the system of equations $A * X=B$.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo	Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored:
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	The order of matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides, the number of columns in $B ; n r h s \geq$ 0.
$a p, b$	Arrays: ap (size $\max \left(1, n^{*}(n+1) / 2\right)$, bof size $\max \left(1, l d b^{*} n r h s\right)$ for column major layout and $\max \left(1, l d b^{*} n\right)$ for row major layout.
	The array ap contains the factor U or L, as specified by uplo, in packed storage (see Matrix Storage Schemes).
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
1 db	The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq$ nrhs for row major layout.

Output Parameters

$a p$
b
ipiv
The block-diagonal matrix D and the multipliers used to obtain the factor U (or L) from the factorization of A as computed by ?sptrf, stored as a packed triangular matrix in the same storage format as A.

If info $=0, b$ is overwritten by the solution matrix X.
Array, size at least max $(1, n)$. Contains details of the interchanges and the block structure of D, as determined by ?sptrf.
If ipiv[i-1] $=k>0$, then $d_{i j}$ is a 1-by-1 block, and the i-th row and column of A was interchanged with the k-th row and column.
If uplo = 'U'and $\operatorname{ipiv}[i]=\operatorname{ipiv}[i-1]=-m<0$, then D has a 2-by-2 block in rows/columns i and $i+1$, and i-th row and column of A was interchanged with the m-th row and column.
If uplo $=$ 'L'and $\operatorname{ipiv}[i-1]=\operatorname{ipiv}[i]=-m<0$, then D has a 2-by-2 block in rows/columns i and $i+1$, and ($i+1$)-th row and column of A was interchanged with the m-th row and column.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i, d_{i i}$ is 0 . The factorization has been completed, but D is exactly singular, so the solution could not be computed.

See Also

Matrix Storage Schemes

?spsvx

Uses the diagonal pivoting factorization to compute the solution to the system of linear equations with a real or complex symmetric coefficient matrix A stored in packed format, and provides error bounds on the solution.

Syntax

```
lapack_int LAPACKE_sspsvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, const float* ap, float* afp, lapack_int* ipiv, const float* b,
lapack_int ldb, float* x, lapack_int ldx, float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_dspsvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, const double* ap, double* afp, lapack_int* ipiv, const double* b,
lapack_int ldb, double* x, lapack_int ldx, double* rcond, double* ferr, double* berr );
lapack_int LAPACKE_cspsvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_float* ap, lapack_complex_float* afp, lapack_int*
ipiv, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x,
lapack_int ldx, float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_zspsvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_double* ap, lapack_complex_double* afp,
lapack_int* ipiv, const lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* x, lapack_int ldx, double* rcond, double* ferr, double* berr );
```

Include Files

- mkl.h

Description

The routine uses the diagonal pivoting factorization to compute the solution to a real or complex system of linear equations $A{ }^{*} X=B$, where A is a n-by- n symmetric matrix stored in packed format, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?spsvx performs the following steps:

1. If fact $=$ ' N ', the diagonal pivoting method is used to factor the matrix A. The form of the factorization is $A=U^{*} D^{*} U^{T}$ or $A=L^{*} D^{\star} L^{T}$, where $U($ or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some $d_{i, i}=0$, so that D is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form of A.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
fact	Must be 'F' or 'N'.
	Specifies whether or not the factored form of the matrix A has been supplied on entry.
	If fact $=$ ' F ': on entry, afp and ipiv contain the factored form of A. Arrays ap, afp, and ipiv are not modified.
	If fact $=$ ' N ', the matrix A is copied to afp and factored.
uplo	Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored and how A is factored:
	If uplo = 'U', the array ap stores the upper triangular part of the symmetric matrix A, and A is factored as $U^{\star} D^{\star} U^{T}$.
	If uplo = 'L', the array ap stores the lower triangular part of the symmetric matrix $A ; A$ is factored as $L \star D^{\star} L^{T}$.
n	The order of matrix $A ; n \geq 0$.
nrhs	The number of right-hand sides, the number of columns in B; nrhs \geq 0 .
$a p, a f p, b$	Arrays: ap (size $\max \left(1, n^{*}(n+1) / 2\right)$, afp (size $\max \left(1, n^{*}(n+1) / 2\right)$, bof size $\max \left(1, I d{ }^{*}{ }_{n r h s}\right)$ for column major layout and $\max \left(1, l d b_{n}\right)$ for row major layout.
	The array ap contains the upper or lower triangle of the symmetric matrix A in packed storage (see Matrix Storage Schemes).
	The array afp is an input argument if fact $=$ ' F^{\prime}. It contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization $A=U \star D * U^{T}$ or $A=L \star D * L^{T}$ as computed by ?sptrf, in the same storage format as A.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
1 db	The leading dimension of b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq$ nrhs for row major layout.
ipiv	Array, size at least max $(1, n)$. The array ipiv is an input argument if fact $=$ ' F'. It contains details of the interchanges and the block structure of D, as determined by ?sptrf.

If ipiv[i-1] $=k>0$, then $d_{i j}$ is a 1-by- 1 block, and the i-th row and column of A was interchanged with the k-th row and column.

If uplo $=$ 'U'and $\operatorname{ipiv}[i]=\operatorname{ipiv}[i-1]=-m<0$, then D has a 2-by-2 block in rows/columns i and $i+1$, and i-th row and column of A was interchanged with the m-th row and column.

If uplo $=$ 'L'and $\operatorname{ipiv}[i-1]=\operatorname{ipiv}[i]=-m<0$, then D has a 2-by-2 block in rows/columns i and $i+1$, and ($i+1$)-th row and column of A was interchanged with the m-th row and column.

The leading dimension of the output array $x ; \operatorname{ldx} \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Output Parameters

X
Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and max(1, $l d x_{n}$) for row major layout.

If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the system of equations.

These arrays are output arguments if fact $=$ 'N'. See the description of afp, ipiv in Input Arguments section.

An estimate of the reciprocal condition number of the matrix A. If rcond is less than the machine precision (in particular, if rcond $=0$), the matrix is singular to working precision. This condition is indicated by a return code of info >0.

Arrays, size at least max (1, nrhs). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, and $i \leq n$, then $d_{i i}$ is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=i$, and $i=n+1$, then D is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

See Also

Matrix Storage Schemes

?hpsv

Computes the solution to the system of linear equations with a Hermitian coefficient matrix A stored in packed format, and multiple right-hand sides.

Syntax

```
lapack_int LAPACKE_chpsv (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs , lapack_complex_float * ap , lapack_int * ipiv, lapack_complex_float * b ,
lapack_int ldb );
lapack_int LAPACKE_zhpsv (int matrix_layout, char uplo, lapack_int n , lapack_int
nrhs , lapack_complex_double * ap , lapack_int * ipiv, lapack_complex_double * b ,
lapack_int ldb );
```


Include Files

- mkl.h

Description

The routine solves for X the system of linear equations $A * X=B$, where A is an n-by- n Hermitian matrix stored in packed format, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
The diagonal pivoting method is used to factor A as $A=U^{\star} D^{\star} U^{H}$ or $A=L^{\star} D^{\star} L^{H}$, where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
The factored form of A is then used to solve the system of equations $A * X=B$.

Input Parameters

matrix_layout
uplo
n
$n r h s$
$a p, b$
lab

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
The order of matrix $A ; n \geq 0$.
The number of right-hand sides; the number of columns in B; nrhs \geq 0.

Arrays: ap (size $\max \left(1, n^{*}(n+1) / 2\right)$, bof size $\max \left(1, I d b^{*} n r h s\right)$ for column major layout and $\max \left(1, l d b^{*} n\right)$ for row major layout.

The array ap contains the factor U or L, as specified by uplo, in packed storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of $b ; I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Output Parameters

ap
The block-diagonal matrix D and the multipliers used to obtain the factor U (or L) from the factorization of A as computed by ?hptrf, stored as a packed triangular matrix in the same storage format as A.
If info $=0, b$ is overwritten by the solution matrix X.
Array, size at least $\max (1, n)$. Contains details of the interchanges and the block structure of D, as determined by ?hptrf.

If ipiv[i-1] $=k>0$, then $d_{i j}$ is a 1-by- 1 block, and the i-th row and column of A was interchanged with the k-th row and column.
If uplo = 'U'and $i p i v[i]=i p i v[i-1]=-m<0$, then D has a $2-b y-2$ block in rows/columns i and $i+1$, and i-th row and column of A was interchanged with the m-th row and column.
If uplo = 'L'and ipiv[i-1] =ipiv[i] =-m<0, then D has a 2-by-2 block in rows/columns i and $i+1$, and ($i+1$)-th row and column of A was interchanged with the m-th row and column.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If $i n f o=-i$, parameter i had an illegal value.
If info $=i, d_{i i}$ is 0 . The factorization has been completed, but D is exactly singular, so the solution could not be computed.

See Also

Matrix Storage Schemes
?hpsvx
Uses the diagonal pivoting factorization to compute
the solution to the system of linear equations with a
Hermitian coefficient matrix A stored in packed
format, and provides error bounds on the solution.

Syntax

```
lapack_int LAPACKE_chpsvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_float* ap, lapack_complex_float* afp, lapack_int*
ipiv, const lapack_complex_float* b, lapack_int ldb, lapack_complex_float* x,
lapack_int ldx, float* rcond, float* ferr, float* berr );
lapack_int LAPACKE_zhpsvx( int matrix_layout, char fact, char uplo, lapack_int n,
lapack_int nrhs, const lapack_complex_double* ap, lapack_complex_double* afp,
lapack_int* ipiv, const lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* x, lapack_int ldx, double* rcond, double* ferr, double* berr );
```

Include Files

- mkl.h

Description

The routine uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations $A * X=B$, where A is a n-by- n Hermitian matrix stored in packed format, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?hpsvx performs the following steps:

1. If fact $=$ ' N ', the diagonal pivoting method is used to factor the matrix A. The form of the factorization is $A=U^{*} D^{*} U^{H}$ or $A=L^{*} D^{\star} L^{H}$, where $U($ or $L)$ is a product of permutation and unit upper (lower) triangular matrices, and D is a Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some $d_{i, i}=0$, so that D is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form of A.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

Input Parameters

Specifies whether matrix storage layout is row major
(LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'F' or 'N'.
Specifies whether or not the factored form of the matrix A has been supplied on entry.

If fact $=$ ' F^{\prime} : on entry, afp and ipiv contain the factored form of A.
Arrays ap, afp, and ipiv are not modified.
If fact $=$ 'N', the matrix A is copied to afp and factored.
Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored and how A is factored:

If uplo = 'U', the array ap stores the upper triangular part of the Hermitian matrix A, and A is factored as $U \star D * U^{H}$.

If uplo = 'L', the array ap stores the lower triangular part of the Hermitian matrix A, and A is factored as $L \star D^{\star} L^{H}$.

The order of matrix $A ; n \geq 0$.
The number of right-hand sides, the number of columns in B; nrhs \geq 0 .

Arrays: ap (size max(1, $\left.n^{*}(n+1) / 2\right)$, afp (size max(1, $\left.n^{*}(n+1) / 2\right)$, bof size $\max \left(1, l d b^{*} n r h s\right)$ for column major layout and $\max \left(1, l d b_{n}\right)$ for row major layout.

The array ap contains the upper or lower triangle of the Hermitian matrix A in packed storage (see Matrix Storage Schemes).

1 db
$1 d x$

Output Parameters

X
afp, ipiv
rcond
ferr
berr

The array afp is an input argument if fact $={ }^{\prime} \mathrm{F}^{\prime}$. It contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization $A=U^{\star} D^{\star} U^{H}$ or $A=L \star D^{\star} L^{H}$ as computed by ?hptrf, in the same storage format as A.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

The leading dimension of b; $I d b \geq \max (1, n)$ for column major layout and $I d b \geq n r h s$ for row major layout.

Array, size at least max $(1, n)$. The array ipiv is an input argument if fact $=$ ' F^{\prime}. It contains details of the interchanges and the block structure of D, as determined by ?hptrf.

If ipiv[i-1] $=k>0$, then $d_{i i}$ is a 1-by-1 block, and the i-th row and column of A was interchanged with the k-th row and column.
If uplo = 'U'and $\operatorname{ipiv}[i]=\operatorname{ipiv}[i-1]=-m<0$, then D has a $2-$ by-2 block in rows/columns i and $i+1$, and i-th row and column of A was interchanged with the m-th row and column.
If uplo $=$ 'L'and $\operatorname{ipiv}[i-1]=\operatorname{ipiv}[i]=-m<0$, then D has a 2-by-2 block in rows/columns i and $i+1$, and ($i+1$)-th row and column of A was interchanged with the m-th row and column.

The leading dimension of the output array $x ; 1 d x \geq \max (1, n)$ for column major layout and $I d x \geq n r h s$ for row major layout.

Array, size $\max \left(1, I d x^{*} n r h s\right)$ for column major layout and max(1, $l d x_{n}$) for row major layout.

If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the system of equations.

These arrays are output arguments if fact $=$ ' N'. See the description of afp, ipiv in Input Arguments section.

An estimate of the reciprocal condition number of the matrix A. If $r c o n d$ is less than the machine precision (in particular, if r cond $=0$), the matrix is singular to working precision. This condition is indicated by a return code of info >0.

Array, size at least max ($1, \mathrm{nrhs}$). Contains the estimated forward error bound for each solution vector x_{j} (the j-th column of the solution matrix X). If x true is the true solution corresponding to x_{j}, ferr $[j-1]$ is an estimated upper bound for the magnitude of the largest element in ($x_{j}-x t r u e$) divided by the magnitude of the largest element in x_{j}. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

Array, size at least max ($1, n r h s$). Contains the component-wise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, parameter i had an illegal value.
If info $=i$, and $i \leq n$, then $d_{i i}$ is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=i$, and $i=n+1$, then D is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

See Also

Matrix Storage Schemes

LAPACK Least Squares and Eigenvalue Problem Routines

This section includes descriptions of LAPACK computational routines and driver routines for solving linear least squares problems, eigenvalue and singular value problems, and performing a number of related computational tasks. For a full reference on LAPACK routines and related information see [LUG].

Least Squares Problems. A typical least squares problem is as follows: given a matrix A and a vector b, find the vector x that minimizes the sum of squares $\Sigma_{i}\left((A x)_{i}-b_{i}\right)^{2}$ or, equivalently, find the vector x that minimizes the 2-norm $||A x-b||_{2}$.
In the most usual case, A is an m-by- n matrix with $m \geq n$ and $\operatorname{rank}(A)=n$. This problem is also referred to as finding the least squares solution to an overdetermined system of linear equations (here we have more equations than unknowns). To solve this problem, you can use the $Q R$ factorization of the matrix A (see $Q R$ Factorization).
If $m<n$ and $\operatorname{rank}(A)=m$, there exist an infinite number of solutions x which exactly satisfy $A x=b$, and thus minimize the norm $||A x-b||_{2}$. In this case it is often useful to find the unique solution that minimizes $\left||x|_{2}\right.$. This problem is referred to as finding the minimum-norm solution to an underdetermined system of linear equations (here we have more unknowns than equations). To solve this problem, you can use the $L Q$ factorization of the matrix A (see LQ Factorization).
In the general case you may have a rank-deficient least squares problem, with rank $(A)<m i n(m, n)$: find the minimum-norm least squares solution that minimizes both $\left.\left||x|_{2}\right.$ and $||A x-b|\right|^{2}$. In this case (or when the rank of A is in doubt) you can use the $Q R$ factorization with pivoting or singular value decomposition (see Singular Value Decomposition).

Eigenvalue Problems. The eigenvalue problems (from German eigen "own") are stated as follows: given a matrix A, find the eigenvalues λ and the corresponding eigenvectorsz that satisfy the equation
$A z=\lambda z$ (right eigenvectors z)
or the equation
$z^{H} A=\lambda z^{H}$ (left eigenvectors z).
If A is a real symmetric or complex Hermitian matrix, the above two equations are equivalent, and the problem is called a symmetric eigenvalue problem. Routines for solving this type of problems are described in the topic Symmetric Eigenvalue Problems.
Routines for solving eigenvalue problems with nonsymmetric or non-Hermitian matrices are described in the topic Nonsymmetric Eigenvalue Problems.

The library also includes routines that handle generalized symmetric-definite eigenvalue problems: find the eigenvalues λ and the corresponding eigenvectors x that satisfy one of the following equations:
$A z=\lambda B z, A B z=\lambda z$, or $B A z=\lambda z$,
where A is symmetric or Hermitian, and B is symmetric positive-definite or Hermitian positive-definite. Routines for reducing these problems to standard symmetric eigenvalue problems are described in the topic Generalized Symmetric-Definite Eigenvalue Problems.
To solve a particular problem, you usually call several computational routines. Sometimes you need to combine the routines of this chapter with other LAPACK routines described in "LAPACK Routines: Linear Equations" as well as with BLAS routines described in "BLAS and Sparse BLAS Routines".
For example, to solve a set of least squares problems minimizing $||A x-b||^{2}$ for all columns b of a given matrix B (where A and B are real matrices), you can call ? geqre to form the factorization $A=Q R$, then call ?ormqr to compute $C=Q^{H} B$ and finally call the BLAS routine ?trsm to solve for X the system of equations $R X=C$.
Another way is to call an appropriate driver routine that performs several tasks in one call. For example, to solve the least squares problem the driver routine ?gels can be used.

LAPACK Least Squares and Eigenvalue Problem Computational Routines

In the topics that follow, the descriptions of LAPACK computational routines are given. These routines perform distinct computational tasks that can be used for:
Orthogonal Factorizations
Singular Value Decomposition
Symmetric Eigenvalue Problems
Generalized Symmetric-Definite Eigenvalue Problems
Nonsymmetric Eigenvalue Problems
Generalized Nonsymmetric Eigenvalue Problems
Generalized Singular Value Decomposition
See also the respective driver routines.

Orthogonal Factorizations: LAPACK Computational Routines

This topic describes the LAPACK routines for the $Q R(R Q)$ and $L Q(Q L)$ factorization of matrices. Routines for the $R Z$ factorization as well as for generalized $Q R$ and $R Q$ factorizations are also included.
QR Factorization. Assume that A is an m-by- n matrix to be factored.
If $m \geq n$, the $Q R$ factorization is given by

$$
A=Q\binom{R}{0}=\left(Q_{1}, Q_{2}\right)\binom{R}{0}
$$

where R is an n-by- n upper triangular matrix with real diagonal elements, and Q is an m-by- m orthogonal (or unitary) matrix.
You can use the $Q R$ factorization for solving the following least squares problem: minimize $||A x-b||^{2}$ where A is a full-rank m-by- n matrix $(m \geq n)$. After factoring the matrix, compute the solution x by solving $R x$ $=\left(Q_{1}\right)^{T} b$.
If $m<n$, the $Q R$ factorization is given by
$A=Q R=Q\left(R_{1} R_{2}\right)$
where R is trapezoidal, R_{1} is upper triangular and R_{2} is rectangular.
Q is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with Q in this representation.
LQ Factorization LQ factorization of an m-by- n matrix A is as follows. If $m \leq n$,

$$
A=(L, 0) Q=(L, 0)\binom{Q_{1}}{\varrho_{2}}=\left(L Q_{1}\right)
$$

where L is an m-by- m lower triangular matrix with real diagonal elements, and Q is an n-by- n orthogonal (or unitary) matrix.

If $m>n$, the $L Q$ factorization is

where L_{1} is an n-by- n lower triangular matrix, L_{2} is rectangular, and Q is an n-by- n orthogonal (or unitary) matrix.

You can use the $L Q$ factorization to find the minimum-norm solution of an underdetermined system of linear equations $A x=b$ where A is an m-by- n matrix of rank $m(m<n)$. After factoring the matrix, compute the solution vector x as follows: solve $L y=b$ for y, and then compute $x=\left(Q_{1}\right)^{H} y$.
Table "Computational Routines for Orthogonal Factorization" lists LAPACK routines that perform orthogonal factorization of matrices.
Computational Routines for Orthogonal Factorization

Matrix type, factorization	Factorize without pivoting	Factorize with pivoting	Generate matrix Q	Apply matrix Q
general matrices, QR factorization	geqrf	geqpf	orgqr	ormqr
	geqrfp	geqp3	ungqr	unmqr
general matrices, blocked QR factorization	geqrt		gemara	
general matrices, RQ factorization	gerqf		orgrq	ormrq
			ungrq	unmrq

Matrix type, factorization	Factorize without pivoting	Factorize with pivoting	Generate matrix Q
general matrices, LQ factorization	gelqf	Apply matrix Q	
general matrices, QL factorization	geqlf	unglq	ormlq
		orgql	unmlq
trapezoidal matrices, RZ	tzrzf	ungql	unmql
factorization			ormrz
pair of matrices, generalized QR factorization pair of matrices, generalized RQ factorization triangular-pentagonal matrices, blocked QR factorization	ggqrf	tpqrt	

```
?geqrf
Computes the QR factorization of a general m-by-n
matrix.
Syntax
```

```
lapack_int LAPACKE_sgeqrf (int matrix_layout, lapack_int m, lapack_int n, float* a,
```

lapack_int LAPACKE_sgeqrf (int matrix_layout, lapack_int m, lapack_int n, float* a,
lapack_int lda, float* tau);
lapack_int lda, float* tau);
lapack_int LAPACKE_dgeqrf (int matrix_layout, lapack_int m, lapack_int n, double* a,
lapack_int LAPACKE_dgeqrf (int matrix_layout, lapack_int m, lapack_int n, double* a,
lapack_int lda, double* tau);
lapack_int lda, double* tau);
lapack_int LAPACKE_cgeqrf (int matrix_layout, lapack_int m, lapack_int n,
lapack_int LAPACKE_cgeqrf (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* tau);
lapack_complex_float* a, lapack_int lda, lapack_complex_float* tau);
lapack_int LAPACKE_zgeqrf (int matrix_layout, lapack_int m, lapack_int n,
lapack_int LAPACKE_zgeqrf (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* tau);

```
lapack_complex_double* a, lapack_int lda, lapack_complex_double* tau);
```


Include Files

- mkl.h

Description

The routine forms the $Q R$ factorization of a general m-by-n matrix A (see Orthogonal Factorizations). No pivoting is performed.
The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min (m, n) elementary reflectors. Routines are provided to work with Q in this representation.

NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

Input Parameters

```
matrix_layout
m
\(n\)
a
Ida
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
The number of rows in the matrix \(A(m \geq 0)\).
The number of columns in \(A(n \geq 0)\).
Array a of size max \(\left(1, I d a^{*} n\right)\) for column major layout and max(1, \(1 \mathrm{da}^{*} \mathrm{~m}_{\mathrm{m}}\) ) for row major layout contains the matrix \(A\).
The leading dimension of \(a\); at least \(\max (1, m)\) for column major layout and at least \(\max (1, n)\) for row major layout.
```


Output Parameters

a
Overwritten by the factorization data as follows:
The elements on and above the diagonal of the array contain the $\min (m, n)$ -by- n upper trapezoidal matrix R (R is upper triangular if $m \geq n$); the elements below the diagonal, with the array tau, present the orthogonal matrix Q as a product of $\min (m, n)$ elementary reflectors (see Orthogonal Factorizations).

Array, size at least $\max (1, \min (m, n))$. Contains scalars that define elementary reflectors for the matrix Q in its decomposition in a product of elementary reflectors (see Orthogonal Factorizations).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed factorization is the exact factorization of a matrix $A+E$, where

```
||E| | = O(\varepsilon)||A| | .
```

The approximate number of floating-point operations for real flavors is
$(4 / 3) n^{3}$
if $m=n$,
$(2 / 3) n^{2}(3 m-n)$
if $m>n$,
$(2 / 3) m^{2}(3 n-m)$
if $m<n$.

The number of operations for complex flavors is 4 times greater.
To solve a set of least squares problems minimizing $\left|\left|A^{*} X-b\right|\right|_{2}$ for all columns b of a given matrix B, you can call the following:

```
?geqrf (this routine) to factorize A = QR;
ormqr to compute C = Q T*B (for real matrices);
unmqr to compute C = Q 目 (for complex matrices);
```

```
trsm (a BLAS routine) to solve R*X=C.
```

(The columns of the computed X are the least squares solution vectors x.)
To compute the elements of Q explicitly, call

orgqr	(for real matrices)
ungqr	(for complex matrices).

See Also

mkl_progress

Matrix Storage Schemes

?geqrfp

Computes the $Q R$ factorization of a general m-by-n matrix with non-negative diagonal elements.

Syntax

```
lapack_int LAPACKE_sgeqrfp (int matrix_layout, lapack_int m, lapack_int n, float* a,
lapack_int lda, float* tau);
lapack_int LAPACKE_dgeqrfp (int matrix_layout, lapack_int m, lapack_int n, double* a,
lapack_int lda, double* tau);
lapack_int LAPACKE_cgeqrfp (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* tau);
lapack_int LAPACKE_zgeqrfp (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* tau);
```

Include Files

- mkl.h

Description

The routine forms the $Q R$ factorization of a general m-by-n matrix A (see Orthogonal Factorizations). No pivoting is performed. The diagonal entries of R are real and nonnegative.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min (m, n) elementary reflectors. Routines are provided to work with Q in this representation.

NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

Input Parameters

```
matrix_layout
m
n
    Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
    or column major (LAPACK_COL_MAJOR).
    The number of rows in the matrix A(m\geq0).
    The number of columns in A(n\geq0).
```

a

Ida

Array, size $\max \left(1, I d^{*}{ }_{n}\right)$ for column major layout and $\max \left(1, I d^{*} *_{m}\right)$ for row major layout, containing the matrix A.

The leading dimension of a; at least $\max (1, m)$ for column major layout and at least $\max (1, n)$ for row major layout.

Output Parameters

a
Overwritten by the factorization data as follows:
The elements on and above the diagonal of the array contain the $\min (m, n)$ -by- n upper trapezoidal matrix R (R is upper triangular if $m \geq n$); the elements below the diagonal, with the array tau, present the orthogonal matrix Q as a product of $\min (m, n)$ elementary reflectors (see Orthogonal Factorizations).

The diagonal elements of the matrix R are real and non-negative.
Array, size at least max $(1, \min (m, n))$. Contains scalars that define elementary reflectors for the matrix Qin its decomposition in a product of elementary reflectors (see Orthogonal Factorizations).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed factorization is the exact factorization of a matrix $A+E$, where

```
| | | | 2 =O(\varepsilon)||A||2.
```

The approximate number of floating-point operations for real flavors is
$(4 / 3) n^{3}$
if $m=n$,
$(2 / 3) n^{2}(3 m-n)$
if $m>n$,
$(2 / 3) m^{2}(3 n-m)$
if $m<n$.

The number of operations for complex flavors is 4 times greater.
To solve a set of least squares problems minimizing $\left|\left|A^{*} x-b\right|\right|_{2}$ for all columns b of a given matrix B, you can call the following:

```
?geqrfp (this routine) to factorize A = QR;
ormqr to compute C = Q Q*B (for real matrices);
unmqr to compute C = Q A*B (for complex matrices);
trsm (a BLAS routine) to solve R*X = C.
```

(The columns of the computed X are the least squares solution vectors x.)
To compute the elements of Q explicitly, call

```
orgqr (for real matrices)
```

```
ungqr (for complex matrices).
```

See Also
mkl_progress
Matrix Storage Schemes

```
?geqrt
Computes a blocked QR factorization of a general real
or complex matrix using the compact WY
representation of Q.
```

Syntax

```
lapack_int LAPACKE_sgeqrt (int matrix_layout, lapack_int m, lapack_int n, lapack_int
nb, float* a, lapack_int lda, float* t, lapack_int ldt);
lapack_int LAPACKE_dgeqrt (int matrix_layout, lapack_int m, lapack_int n, lapack_int
nb, double* a, lapack_int lda, double* t, lapack_int ldt);
lapack_int LAPACKE_cgeqrt (int matrix_layout, lapack_int m, lapack_int n, lapack_int
nb, lapack_complex_float* a, lapack_int lda, lapack_complex_float* t, lapack_int ldt);
lapack_int LAPACKE_zgeqrt (int matrix_layout, lapack_int m, lapack_int n, lapack_int
nb, lapack_complex_double* a, lapack_int lda, lapack_complex_double* t, lapack_int
ldt);
```


Include Files

- mkl.h

Description

The strictly lower triangular matrix V contains the elementary reflectors $H(i)$ in the i th column below the diagonal. For example, if $m=5$ and $n=3$, the matrix V is

where v_{i} represents one of the vectors that define $H(i)$. The vectors are returned in the lower triangular part of array a.

NOTE

The 1 s along the diagonal of V are not stored in a.

Let $k=\min (m, n)$. The number of blocks is $b=\operatorname{ceiling}(k / n b)$, where each block is of order nb except for the last block, which is of order $i b=k-(b-1) * n b$. For each of the b blocks, a upper triangular block reflector factor is computed: $t 1, t 2, \ldots, t b$. The $n b-b y-n b$ (and $i b-b y-i b$ for the last block) t s are stored in the $n b-b y-n$ array t as

```
t = (t1t2 ... tb).
```


Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK COL MAJOR).
m	The number of rows in the matrix $A(m \geq 0)$.
n	The number of columns in $A(n \geq 0)$.
nb	The block size to be used in the blocked $\mathrm{QR}(\min (m, n) \geq n b \geq 1)$.
a	Array a of size $\max \left(1, I d^{*}{ }_{n}\right)$ for column major layout and $\max \left(1, ~ I d^{*}{ }_{m}\right)$ for row major layout contains the m-by-n matrix A.
Ida	The leading dimension of a; at least $\max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.
$1 d t$	The leading dimension of t; at least $n b$ for column major layout and max(1, $\min (m, n)$) for row major layout.

Output Parameters

a
Overwritten by the factorization data as follows:
The elements on and above the diagonal of the array contain the $\min (m, n)$ -by-n upper trapezoidal matrix R (R is upper triangular if $m \geq n$); the elements below the diagonal, with the array t, present the orthogonal matrix Q as a product of $\min (m, n)$ elementary reflectors (see Orthogonal Factorizations).
t
Array, size $\max \left(1, l d t^{*} \min (m, n)\right)$ for column major layout and max(1, ldt* n b) for row major layout.

The upper triangular block reflector's factors stored as a sequence of upper triangular blocks.

Return Values

This function returns a value info.
If inforo, the execution is successful.
If info <0 and info $=-i$, the i-th parameter had an illegal value.

?gemqrt
 Multiplies a general matrix by the orthogonal/unitary matrix Q of the $Q R$ factorization formed by ?geqrt.

Syntax

```
lapack_int LAPACKE_sgemqrt (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, lapack_int nb, const float* v, lapack_int ldv, const float*
t, lapack_int ldt, float* c, lapack_int ldc);
lapack_int LAPACKE_dgemqrt (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, lapack_int nb, const double* v, lapack_int ldv, const
double* t, lapack_int ldt, double* c, lapack_int ldc);
lapack_int LAPACKE_cgemqrt (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, lapack_int nb, const lapack_complex_float* v, lapack_int
ldv, const lapack_complex_float* t, lapack_int ldt, lapack_complex_float* c, lapack_int
ldc);
lapack_int LAPACKE_zgemqrt (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, lapack_int nb, const lapack_complex_double* v, lapack_int
ldv, const lapack_complex_double* t, lapack_int ldt, lapack_complex_double* c,
lapack_int ldc);
```


Include Files

- mkl.h

Description

The ? gemqrt routine overwrites the general real or complex m-by- n matrix C with

	side $=$ 'L'	side $={ }^{\prime} \mathrm{R}^{\prime}$
trans $=$ 'N':	$Q^{*} C$	$C^{*} Q$
trans $=$ 'T':	$Q^{\top *} C$	$C^{*} Q^{\top}$
trans $=$ 'C': $^{\text {T }}$	$Q^{H * C}$	$C^{*} Q^{H}$

where Q is a real orthogonal (complex unitary) matrix defined as the product of k elementary reflectors
$Q=H(1) H(2) \ldots H(k)=I-V^{*} T^{*} V^{\top}$ for real flavors, and
$Q=H(1) H(2) \ldots H(k)=I-V^{*} T^{*} V^{H}$ for complex flavors,
generated using the compact $W Y$ representation as returned by geqrt. Q is of order m if side $=$ ' L ' and of order n if side $=$ 'R'.

Input Parameters

```
matrix_layout
side
trans
m
    Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
    or column major (LAPACK_COL_MAJOR).
    ='L': apply Q, Q', or Q }\mp@subsup{Q}{}{\textrm{H}}\mathrm{ from the left.
```



```
    ='N', no transpose, apply Q.
    ='T', transpose, apply Q'.
    ='C', transpose, apply Q'.
    The number of rows in the matrix C, (m\geq0).
```

The number of columns in the matrix $C,(n \geq 0)$.
The number of elementary reflectors whose product defines the matrix Q. Constraints:

If side $=$ 'L', $m \geq k \geq 0$
If side $=$ 'R', $n \geq k \geq 0$.
The block size used for the storage of $t, k \geq n b \geq 1$. This must be the same value of $n b$ used to generate t in geqrt.

Array of size $\max \left(1, I d v^{*} k\right)$ for column major layout, $\max \left(1, I d v^{*} m\right)$ for row major layout and side $=$ 'L', and $\max \left(1, I d v^{*} n\right)$ for row major layout and side = 'R'.
The ith column must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by geqrt in the first k columns of its array argument a.

The leading dimension of the array v .
if side = 'L', $1 d v$ must be at least $\max (1, m)$ for column major layout and $\max (1, k)$ for row major layout;
if side $=$ ' R ', $1 d v$ must be at least $\max (1, n)$ for column major layout and $\max (1, k)$ for row major layout.

Array, size $\max \left(1, l d t^{*} \min (m, n)\right)$ for column major layout and $\max (1$, $1 d t^{*} n b$) for row major layout.
The upper triangular factors of the block reflectors as returned by geqrt.
The leading dimension of the array t. Idt must be at least $n b$ for column major layout and $\max (1, k)$ for row major layout.

The m-by-n matrix C.
The leadinng dimension of the array $c . l d c$ must be at least $\max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

Overwritten by the product $Q^{*} C, C^{*} Q, Q^{\top *} C, C^{*} Q^{\top}, Q^{H *} C$, or $C^{*} Q^{H}$ as specified by side and trans.

Return Values

This function returns a value info.
If info=0, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

?geqpf

Computes the QR factorization of a general m-by-n matrix with pivoting.

Syntax

```
lapack_int LAPACKE_sgeqpf (int matrix_layout, lapack_int m, lapack_int n, float* a,
lapack_int lda, lapack_int* jpvt, float* tau);
lapack_int LAPACKE_dgeqpf (int matrix_layout, lapack_int m, lapack_int n, double* a,
lapack_int lda, lapack_int* jpvt, double* tau);
lapack_int LAPACKE_cgeqpf (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_int* jpvt, lapack_complex_float* tau);
lapack_int LAPACKE_zgeqpf (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_int* jpvt, lapack_complex_double*
tau);
```

Include Files

- mkl.h

Description

The routine is deprecated and has been replaced by routine geqp3.
The routine ? geqpf forms the $Q R$ factorization of a general m-by- n matrix A with column pivoting: $A \star P=$ $Q \star R$ (see Orthogonal Factorizations). Here P denotes an n-by- n permutation matrix.
The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

```
matrix_layout
m
n
a
Ida
jpvt
```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

The number of rows in the matrix $A(m \geq 0)$.
The number of columns in $A(n \geq 0)$.
Array a of size $\max \left(1, I d a *_{n}\right)$ for column major layout and max $\left(1, I d a *_{m}\right)$ for row major layout contains the matrix A.

The leading dimension of a; at least max $(1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Array, size at least $\max (1, n)$.
On entry, if jpvt[i-1]>0, the i-th column of A is moved to the beginning of $A * P$ before the computation, and fixed in place during the computation.
If jpvt[i-1] = 0 , the i th column of A is a free column (that is, it may be interchanged during the computation with any other free column).

Output Parameters

a
Overwritten by the factorization data as follows:
The elements on and above the diagonal of the array contain the $\min (m, n)$ -by- n upper trapezoidal matrix R (R is upper triangular if $m \geq n$); the elements below the diagonal, with the array tau, present the orthogonal matrix Q as a product of $\min (m, n)$ elementary reflectors (see Orthogonal Factorizations).
tau
jpvt

Array, size at least max $(1, \min (m, n))$. Contains additional information on the matrix Q.

Overwritten by details of the permutation matrix P in the factorization $A * P$ $=Q^{\star} R$. More precisely, the columns of $A^{*} P$ are the columns of A in the following order:

```
jpvt[0], jpvt[1], ..., jpvt[n - 1].
```


Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed factorization is the exact factorization of a matrix $A+E$, where

```
||E||2 = O(\varepsilon)||A| | .
```

The approximate number of floating-point operations for real flavors is
$(4 / 3) n^{3}$
if $m=n$,
$(2 / 3) n^{2}(3 m-n)$
if $m>n$,
$(2 / 3) m^{2}(3 n-m)$
if $m<n$.

The number of operations for complex flavors is 4 times greater.
To solve a set of least squares problems minimizing $\left|\left|A^{*} X-b\right|\right|_{2}$ for all columns b of a given matrix B, you can call the following:

```
?geqpf (this routine) to factorize A*P = Q*R;
ormqr to compute C = Q Q * (for real matrices);
```



```
trsm (a BLAS routine) to solve R*X = C.
```

(The columns of the computed X are the permuted least squares solution vectors x; the output array jpvt specifies the permutation order.)
To compute the elements of Q explicitly, call

orgqr	(for real matrices)
ungqr	(for complex matrices).

```
?geqp3
Computes the QR factorization of a general m-by-n
matrix with column pivoting using level 3 BLAS.
Syntax
lapack_int LAPACKE_sgeqp3 (int matrix_layout, lapack_int m, lapack_int n, float* a,
lapack_int lda, lapack_int* jpvt, float* tau);
```

```
lapack_int LAPACKE_dgeqp3 (int matrix_layout, lapack_int m, lapack_int n, double* a,
lapack_int lda, lapack_int* jpvt, double* tau);
lapack_int LAPACKE_cgeqp3 (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_int* jpvt, lapack_complex_float* tau);
lapack_int LAPACKE_zgeqp3 (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_int* jpvt, lapack_complex_double*
tau);
```

Include Files

- mkl.h

Description

The routine forms the $Q R$ factorization of a general m-by-n matrix A with column pivoting: $A \star P=Q^{\star} R$ (see Orthogonal Factorizations) using Level 3 BLAS. Here P denotes an n-by-n permutation matrix. Use this routine instead of geqpf for better performance.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min (m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
m	The number of rows in the matrix $A(m \geq 0)$.
n	The number of columns in $A(n \geq 0)$.
a	Array a of size $\max \left(1, I d a *_{n}\right)$ for column major layout and $\max \left(1, I a^{*} *_{m}\right)$ for row major layout contains the matrix A.
Ida	The leading dimension of a; at least max(1, m)for column major layout and $\max (1, n)$ for row major layout.
jpvt	Array, size at least max (1, n) .
	On entry, if jpvt[i-1] $; 0$, the i-th column of A is moved to the beginning of $A P$ before the computation, and fixed in place during the computation.
	If jpvt[i-1] $=0$, the i-th column of A is a free column (that is, it may be interchanged during the computation with any other free column).

Output Parameters

a
Overwritten by the factorization data as follows:
The elements on and above the diagonal of the array contain the $\min (m, n)$ -by- n upper trapezoidal matrix R (R is upper triangular if $m \geq n$); the elements below the diagonal, with the array tau, present the orthogonal matrix Q as a product of $\min (m, n)$ elementary reflectors (see Orthogonal Factorizations).

Array, size at least max $(1, \min (m, n))$. Contains scalar factors of the elementary reflectors for the matrix Q.

Overwritten by details of the permutation matrix P in the factorization $A * P$ $=Q * R$. More precisely, the columns of $A P$ are the columns of A in the following order:

```
jpvt[0], jpvt[1], ..., jpvt[n - 1].
```


Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

To solve a set of least squares problems minimizing $\left|\left|A^{*} x_{x}-b\right|\right|_{2}$ for all columns b of a given matrix B, you can call the following:

```
?geqp3 (this routine) to factorize A*P = Q*R;
ormqr to compute C = Q Q * (for real matrices);
unmqr to compute C = Q Q * (for complex matrices);
trsm (a BLAS routine) to solve R*X = C.
```

(The columns of the computed X are the permuted least squares solution vectors x; the output array jpvt specifies the permutation order.)
To compute the elements of Q explicitly, call

orgqr	(for real matrices)
ungqr	(for complex matrices).

?orgqr
Generates the real orthogonal matrix Q of the $Q R$
factorization formed by ?geqre.

Syntax

```
lapack_int LAPACKE_sorgqr (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
float* a, lapack_int lda, const float* tau);
lapack_int LAPACKE_dorgqr (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
double* a, lapack_int lda, const double* tau);
```


Include Files

- mkl.h

Description

The routine generates the whole or part of m-by- m orthogonal matrix Q of the $Q R$ factorization formed by the routine ? geqrf or geqpf. Use this routine after a call to sgeqrf/dgeqrf or sgeqpf/dgeqpf.

Usually Q is determined from the $Q R$ factorization of an m by p matrix A with $m \geq p$. To compute the whole matrix Q, use:

```
LAPACKE_?orgqr(matrix_layout, m, m, p, a, lda, tau)
```

To compute the leading p columns of Q (which form an orthonormal basis in the space spanned by the columns of A):

```
LAPACKE_?orgqr(matrix_layout, m, p, p, a, lda)
```

To compute the matrix Q^{k} of the $Q R$ factorization of leading k columns of the matrix A :

```
LAPACKE_?orgqr(matrix_layout, m, m, k, a, lda, tau)
```

To compute the leading k columns of Q^{k} (which form an orthonormal basis in the space spanned by leading k columns of the matrix A):

```
LAPACKE_?orgqr(matrix_layout, m, k, k, a, lda, tau)
```


Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
m	The order of the orthogonal matrix $Q(m \geq 0)$.
n	The number of columns of Q to be computed ($0 \leq n \leq m$).
k	The number of elementary reflectors whose product defines the matrix Q (0 $\leq k \leq n$).
a, tau	Arrays:
	a and tau are the arrays returned by sgeqrf / dgeqrf or sgeqpf / dgeqpf. The size of a is $\max \left(1, I d a *_{n}\right)$ for column major layout and max($1, I d^{*} *_{m}$) for row major layout.
	The size of tau must be at least max(1,k).
Ida	The leading dimension of a; at least $\max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

a
Overwritten by n leading columns of the m-by- m orthogonal matrix Q.

Return Values

This function returns a value info.
If info=0, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed Q differs from an exactly orthogonal matrix by a matrix E such that
$||E||_{2}=O(\varepsilon)|*| A| |_{2}$ where ε is the machine precision.
The total number of floating-point operations is approximately $4{ }^{\star} m^{\star} n^{\star} k-2 \star(m+n) \star k^{2}+(4 / 3) \star k^{3}$.

If $n=k$, the number is approximately $(2 / 3) * n^{2} *(3 m-n)$.
The complex counterpart of this routine is ungqr.

?ormqr

Multiplies a real matrix by the orthogonal matrix Q of the $Q R$ factorization formed by ? geqre or ?geqpf.

Syntax

```
lapack_int LAPACKE_sormqr (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const float* a, lapack_int lda, const float* tau, float* c,
lapack_int ldc);
lapack_int LAPACKE_dormqr (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const double* a, lapack_int lda, const double* tau, double*
c, lapack_int ldc);
```

Include Files

- mkl.h

Description

The routine multiplies a real matrix C by Q or Q^{T}, where Q is the orthogonal matrix Q of the $Q R$ factorization formed by the routine ? geqrf or ?geqpf.
Depending on the parameters sideleft_right and trans, the routine can form one of the matrix products $Q^{\star} C, Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (overwriting the result on C).

Input Parameters

```
matrix_layout
side
trans
m
n
k
    a, tau,c
```

The size of a is $\max \left(1, I d a *_{k}\right)$ for column major layout, $\max \left(1, I d^{*} *_{m}\right)$ for row major layout and side $=$ 'L', and $\max \left(1, I d^{*} *_{n}\right)$ for row major layout and side = 'R'.

The size of tau must be at least max $(1, k)$.
Array c of size $\max \left(1, I d c^{*} n\right)$ for column major layout and $\max \left(1, I d c^{*}\right)$) for row major layout contains the m-by-n matrix C.

The leading dimension of a. Constraints:
if side $=$ 'L', $I d a \geq \max (1, m)$ for column major layout and $\max (1, k)$ for row major layout ;
if side $=$ ' $\mathrm{R}^{\prime}, ~ I d a \geq \max (1, n)$ for column major layout and $\max (1, k)$ for row major layout.

The leading dimension of c. Constraint:
$I d c \geq \max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

c
Overwritten by the product $Q^{\star} C, Q^{T} C_{,} C^{\star} Q$, or $C^{\star} Q^{T}$ (as specified by side and trans).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The complex counterpart of this routine is unmqr.

?ungqr

Generates the complex unitary matrix Q of the $Q R$
factorization formed by ?geqre.

Syntax

lapack_int LAPACKE_cungqr (int matrix_layout, lapack_int m, lapack_int n, lapack_int k, lapack_complex_float* a, lapack_int lda, const lapack_complex_float* tau);
lapack_int LAPACKE_zungqr (int matrix_layout, lapack_int m, lapack_int n, lapack_int k, lapack_complex_double* a, lapack_int lda, const lapack_complex_double* tau);

Include Files

- mkl.h

Description

The routine generates the whole or part of m-by- m unitary matrix Q of the $Q R$ factorization formed by the routines ? geqrf or geqpf. Use this routine after a call to cgeqrf/zgeqrf or cgeqpf/zgeqpf.

Usually Q is determined from the $Q R$ factorization of an m by p matrix A with $m \geq p$. To compute the whole matrix Q, use:

```
LAPACKE_?ungqr(matrix_layout, m, m, p, a, lda, tau)
```

To compute the leading p columns of Q (which form an orthonormal basis in the space spanned by the columns of A):

```
LAPACKE_?ungqr(matrix_layout, m, p, p, a, lda, tau)
```

To compute the matrix Q^{k} of the $Q R$ factorization of the leading k columns of the matrix A :

```
LAPACKE_?ungqr(matrix_layout, m, m, k, a, lda, tau)
```

To compute the leading k columns of Q^{k} (which form an orthonormal basis in the space spanned by the leading k columns of the matrix A):

```
LAPACKE_?ungqr(matrix_layout, m, k, k, a, lda, tau)
```


Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
m	The order of the unitary matrix $Q(m \geq 0)$.
n	The number of columns of Q to be computed
	($0 \leq n \leq m$)
k	The number of elementary reflectors whose product defines the matrix Q (0 $\leq k \leq n$).
a, tau	Arrays: a and tau are the arrays returned by cgeqrf/zgeqrf or cgeqpf/ zgeqpf.
	The size of a is $\max \left(1, I d a *_{n}\right)$ for column major layout and $\max \left(1, I d^{*} *_{m}\right)$ for row major layout.
	The size of tau must be at least max(1,k).
Ida	The leading dimension of a; at least $\max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

a

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed Q differs from an exactly unitary matrix by a matrix E such that $||E||_{2}=O(\varepsilon) *| | A| |_{2}$, where ε is the machine precision.
The total number of floating-point operations is approximately $16^{*} m^{\star} n^{\star} k-8^{*}(m+n) * k 2+(16 / 3) \star k^{3}$. If $n=k$, the number is approximately $(8 / 3) * n^{2} *(3 m-n)$.

The real counterpart of this routine is orgqr.

?unmqr

Multiplies a complex matrix by the unitary matrix Q of the QR factorization formed by ?geqre.

Syntax

```
lapack_int LAPACKE_cunmqr (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* tau, lapack_complex_float* c, lapack_int ldc);
lapack_int LAPACKE_zunmqr (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* tau, lapack_complex_double* c, lapack_int ldc);
```


Include Files

- mkl.h

Description

The routine multiplies a rectangular complex matrix C by Q or Q^{H}, where Q is the unitary matrix Q of the $Q R$ factorization formed by the routines ?geqrf or geqpf.
Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{*} C, Q^{H *} C$, $C^{*} Q$, or $C^{*} Q^{H}$ (overwriting the result on C).

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
side	Must be either 'L' or 'R'.
	If side = 'L', Q or Q^{H} is applied to C from the left.
	If side = 'R', Q or Q^{H} is applied to C from the right.
trans	Must be either 'N' or 'C'.
	If trans $=$ 'N', the routine multiplies C by Q.
	If trans $=$ ' C ', the routine multiplies C by Q^{H}.
m	The number of rows in the matrix $C(m \geq 0)$.
n	The number of columns in $C(n \geq 0)$.
k	The number of elementary reflectors whose product defines the matrix Q. Constraints:
	$0 \leq k \leq m$ if side = 'L';
	$0 \leq k \leq n$ if side $=$ ' R '.
a, c, tau	Arrays:

a size $\max \left(1, I \mathrm{da}_{k}\right)$ for column major layout, $\max \left(1, I d^{*} *_{m}\right)$ for row major layout when side $=$ 'L', and $\max \left(1, I d^{*} *_{n}\right)$ for row major layout when side ='R' and tau are the arrays returned by cgeqre / zgeqre or cgeqpf / zgeqpf.

The size of tau must be at least max $(1, k)$.
c (size $\max \left(1, I d c^{*}\right)$ for column major layout and $\max \left(1, I d c^{*} m\right.$ for row major layout) contains the m-by- n matrix C.

Ida
ldc

The leading dimension of a. Constraints:
$I d a \geq \max (1, m)$ for column major layout and $I d a \geq \max (1, k)$ for row major layout if side = 'L';
$I d a \geq \max (1, n)$ for column major layout and $I d a \geq \max (1, k)$ for row major layout if side $=$ 'R'.

The leading dimension of c. Constraint:
$I d c \geq \max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

c
Overwritten by the product $Q^{*} C, Q^{H *} C, C^{*} Q$, or $C^{*} Q^{H}$ (as specified by side and trans).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The real counterpart of this routine is ormqr.

?gelqf
 Computes the LQ factorization of a general m-by-n matrix.

Syntax

```
lapack_int LAPACKE_sgelqf (int matrix_layout, lapack_int m, lapack_int n, float* a,
lapack_int lda, float* tau);
lapack_int LAPACKE_dgelqf (int matrix_layout, lapack_int m, lapack_int n, double* a,
lapack_int lda, double* tau);
lapack_int LAPACKE_cgelqf (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* tau);
lapack_int LAPACKE_zgelqf (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* tau);
```

Include Files

- mkl.h

Description

The routine forms the $L Q$ factorization of a general m-by-n matrix A (see Orthogonal Factorizations). No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min (m, n) elementary reflectors. Routines are provided to work with Q in this representation.

NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

Input Parameters

```
matrix_layout
m
    The number of rows in the matrix \(A(m \geq 0)\).
    The number of columns in \(A(n \geq 0)\).
    Array a of size max \(\left(1, I d a^{*} n\right)\) for column major layout and \(\max \left(1, I d^{*}{ }_{m}\right)\)
    for row major layout contains the matrix \(A\).
    The leading dimension of \(a\); at least \(\max (1, m)\) for column major layout and
    \(\max (1, n)\) for row major layout.
```


Output Parameters

a
tau

Overwritten by the factorization data as follows:
The elements on and below the diagonal of the array contain the m-by$\min (m, n)$ lower trapezoidal matrix L (L is lower triangular if $m \leq n$); the elements above the diagonal, with the array tau, represent the orthogonal matrix Q as a product of elementary reflectors.

Array, size at least max $(1, \min (m, n))$.
Contains scalars that define elementary reflectors for the matrix Q (see Orthogonal Factorizations).

Return Values

This function returns a value info.
If info=0, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed factorization is the exact factorization of a matrix $A+E$, where

```
||E||2 = O(\varepsilon) ||A|| .
```

The approximate number of floating-point operations for real flavors is
$(4 / 3) n^{3}$
if $m=n$,
$(2 / 3) n^{2}(3 m-n)$
if $m>n$,
$(2 / 3) m^{2}(3 n-m)$
if $m<n$.

The number of operations for complex flavors is 4 times greater.
To find the minimum-norm solution of anderdetermined least squares problem minimizing $\left|\left|A A_{X}-b\right|\right|_{2}$ for all columns b of a given matrix B, you can call the following:

```
?gelqf (this routine) to factorize A = L*Q;
trsm (a BLAS routine) to solve L*Y = B for Y;
ormlq to compute }X=(\mp@subsup{Q}{1}{}\mp@subsup{)}{}{T}*Y\mathrm{ (for real matrices);
unmlq to compute X = (睹)}\mp@subsup{)}{}{H*Y}\mathrm{ (for complex matrices).
```

(The columns of the computed X are the minimum-norm solution vectors x. Here A is an m-by- n matrix with $m<n ; Q_{1}$ denotes the first m columns of Q).

To compute the elements of Q explicitly, call

```
orglq (for real matrices)
unglq (for complex matrices).
```


See Also

mkl_progress

Matrix Storage Schemes

?orglq

Generates the real orthogonal matrix Q of the $L Q$ factorization formed by ?gelqf.

Syntax

```
lapack_int LAPACKE_sorglq (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
float* a, lapack_int lda, const float* tau);
lapack_int LAPACKE_dorglq (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
double* a, lapack_int lda, const double* tau);
```

Include Files

- mkl.h

Description

The routine generates the whole or part of n-by- n orthogonal matrix Q of the $L Q$ factorization formed by the routines gelqf. Use this routine after a call to sgelqf/dgelqf.

Usually Q is determined from the $L Q$ factorization of an p-by- n matrix A with $n \geq p$. To compute the whole matrix Q, use:

```
info = LAPACKE_?orglq(matrix_layout, n, n, p, a, lda, tau)
```

To compute the leading p rows of Q, which form an orthonormal basis in the space spanned by the rows of A, use:

```
info = LAPACKE_?orglq(matrix_layout, p, n, p, a, lda, tau)
```

To compute the matrix Q^{k} of the $L Q$ factorization of the leading k rows of A, use:

```
info = LAPACKE_?orglq(matrix_layout, n, n, k, a, lda, tau)
```

To compute the leading k rows of Q^{k}, which form an orthonormal basis in the space spanned by the leading k rows of A, use:

```
info = LAPACKE_?orgqr(matrix_layout, k, n, k, a, lda, tau)
```


Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
m	The number of rows of Q to be computed
	$(0 \leq m \leq n)$.
n	The order of the orthogonal matrix $Q(n \geq m)$.
k	The number of elementary reflectors whose product defines the matrix Q (0 $\leq k \leq m$).
a, tau	Arrays: a (size $\max \left(1, I d^{*} *_{n}\right)$ for column major layout and $\max \left(1, I d^{*} *_{m}\right)$ for row major layout) and tau are the arrays returned by sgelqf/dgelqf. The size of tau must be at least max $(1, k)$.
lda	The leading dimension of a; at least $\max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

a
Overwritten by m leading rows of the n-by- n orthogonal matrix Q.

Return Values

This function returns a value info.
If inforo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed Q differs from an exactly orthogonal matrix by a matrix E such that $\left.\left||E|_{2}=O(\varepsilon) *\right||A|\right|_{2}$, where ε is the machine precision.

The total number of floating-point operations is approximately $4 * m^{\star} n * k-2 \star(m+n) \star k^{2}+(4 / 3) \star k^{3}$.
If $m=k$, the number is approximately $(2 / 3) * m^{2} *(3 n-m)$.
The complex counterpart of this routine is unglq.

?ormlq

Multiplies a real matrix by the orthogonal matrix Q of
the $L Q$ factorization formed by ?gelqf.

Syntax

```
lapack_int LAPACKE_sormlq (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const float* a, lapack_int lda, const float* tau, float* c,
lapack_int ldc);
```

```
lapack_int LAPACKE_dormlq (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const double* a, lapack_int lda, const double* tau, double*
c, lapack_int ldc);
```

Include Files

- mkl.h

Description

The routine multiplies a real m-by- n matrix C by Q or Q^{T}, where Q is the orthogonal matrix Q of the $L Q$ factorization formed by the routine gelqf.
Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{\star} C, Q^{T \star} C$, $C^{\star} Q$, or $C^{\star} Q^{T}$ (overwriting the result on C).

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
side	Must be either 'L' or 'R'.
	If side = 'L', Q or Q^{T} is applied to C from the left.
	If side $=$ 'R', Q or Q^{T} is applied to C from the right.
trans	Must be either 'N' or 'T'.
	If trans $=$ ' N ', the routine multiplies C by Q.
	If trans $=$ ' T ', the routine multiplies C by Q^{T}.
m	The number of rows in the matrix $C(m \geq 0)$.
n	The number of columns in $C(n \geq 0)$.
k	The number of elementary reflectors whose product defines the matrix Q. Constraints:
	$0 \leq k \leq m$ if side = 'L';
	$0 \leq k \leq n$ if side $=$ ' R '.
a, c, tau	Arrays:
	a and tau are arrays returned by ? gelqf.
	The size of a must be:
	For side = 'L' and column major layout, max $(1,1 d a * m$).
	For side $=$ 'R' and column major layout, max (1, Ida*n).
	For row major layout regardless of side, $\max \left(1,1 d a^{*} k\right)$.
	The dimension of tau must be at least $\max (1, k)$. c (size $\max \left(1, I d c^{*} n\right)$ for column major layout and $\max \left(1, I d c^{*} m\right.$ for row major layout) contains the m-by- n matrix C.

The leading dimension of a. For column major layout, Ida $\geq \max (1, k)$. For row major layout, if side $=$ ' L ', Ida $\geq \max (1, m)$, or, if side $=$ 'R', Ida \geq $\max (1, n)$.

The leading dimension of c; Id $c \geq \max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

c
Overwritten by the product $Q^{\star} C, Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (as specified by side and trans).

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The complex counterpart of this routine is unmlq.

?unglq
 Generates the complex unitary matrix Q of the $L Q$
 factorization formed by ?gelqf.

Syntax

```
lapack_int LAPACKE_cunglq (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
lapack_complex_float* a, lapack_int lda, const lapack_complex_float* tau);
lapack_int LAPACKE_zunglq (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
lapack_complex_double* a, lapack_int lda, const lapack_complex_double* tau);
```


Include Files

- mkl.h

Description

The routine generates the whole or part of n-by- n unitary matrix Q of the $L Q$ factorization formed by the routines gelqf. Use this routine after a call to cgelqf/zgelqf.

Usually Q is determined from the $L Q$ factorization of an p-by- n matrix A with $n<p$. To compute the whole matrix Q, use:

```
info = LAPACKE_?unglq(matrix_layout, n, n, p, a, lda, tau)
```

To compute the leading p rows of Q, which form an orthonormal basis in the space spanned by the rows of A, use:

```
info = LAPACKE_?unglq(matrix_layout, p, n, p, a, lda, tau)
```

To compute the matrix Q^{k} of the $L Q$ factorization of the leading k rows of A, use:

```
info = LAPACKE_?unglq(matrix_layout, n, n, k, a, lda, tau)
```

To compute the leading k rows of Q^{k}, which form an orthonormal basis in the space spanned by the leading k rows of A, use:

```
info = LAPACKE_?ungqr(matrix_layout, k, n, k, a, lda, tau)
```


Input Parameters

```
matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
    or column major (LAPACK_COL_MAJOR).
    The number of rows of Q to be computed (0 \leqm\leqn).
    The order of the unitary matrix Q ( }n\geqm)\mathrm{ .
    The number of elementary reflectors whose product defines the matrix Q (0
    \leqk\leqm).
    Arrays: a (size max(1, lda*n) for column major layout and max(1, lda*m)
    for row major layout) and tau are the arrays returned by cgelqf/zgelqf.
    The dimension of tau must be at least max(1,k).
    The leading dimension of a; at least max(1,m)for column major layout and
    max}(1,n)\mathrm{ for row major layout.
```


Output Parameters

a
Overwritten by m leading rows of the n-by- n unitary matrix Q.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed Q differs from an exactly unitary matrix by a matrix E such that $\left||E| I_{2}=O(\varepsilon) *\right||A| I_{2}$, where ε is the machine precision.
The total number of floating-point operations is approximately $16{ }^{*} m^{\star} n \star k-8 *(m+n) * k^{2}+(16 / 3) * k^{3}$.
If $m=k$, the number is approximately $(8 / 3){ }^{*} m^{2} *(3 n-m)$.
The real counterpart of this routine is orglq.

?unmlq

Multiplies a complex matrix by the unitary matrix Q of the $L Q$ factorization formed by ?gelqf.

Syntax

```
lapack_int LAPACKE_cunmlq (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* tau, lapack_complex_float* c, lapack_int ldc);
lapack_int LAPACKE_zunmlq (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* tau, lapack_complex_double* c, lapack_int ldc);
```


Include Files

- mkl.h

Description

The routine multiplies a real m-by-n matrix C by Q or Q^{H}, where Q is the unitary matrix Q of the $L Q$ factorization formed by the routine gelqf.

Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{*} C, Q^{H *} C$, $C^{*} Q$, or $C^{*} Q^{H}$ (overwriting the result on C).

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
side	Must be either 'L' or 'R'.
	If side = 'L', Q or Q^{H} is applied to C from the left.
	If side = 'R', Q or Q^{H} is applied to C from the right.
trans	Must be either 'N' or 'C'.
	If trans $=$ ' N ', the routine multiplies C by Q.
	If trans $=$ ' C ', the routine multiplies C by Q^{H}.
m	The number of rows in the matrix $C(m \geq 0)$.
n	The number of columns in $C(n \geq 0)$.
k	The number of elementary reflectors whose product defines the matrix Q. Constraints:
	$0 \leq k \leq m$ if side = 'L';
	$0 \leq k \leq n$ if side $=$ ' R^{\prime}.
a, c, tau	Arrays:
	a and tau are arrays returned by ? gelqf.
	The size of a must be:
	For side = 'L' and column major layout, max (1, lda*m).
	For side $=$ 'R' and column major layout, $\max \left(1,1 a^{*} *_{n}\right)$.
	For row major layout regardless of side, max (1, Ida*k).
	The size of tau must be at least max $(1, k)$.
	c (size $\max \left(1, I d c^{*} n\right)$ for column major layout and $\max \left(1, I d c^{*} m\right.$ for row major layout) contains the m-by- n matrix C.
Ida	The leading dimension of a. For column major layout, Ida $\geq \max (1, k)$. For row major layout, if side $=$ 'L', Ida $\geq \max (1, m)$, or, if side $=$ 'R', $I d a \geq$ $\max (1, n)$.
$1 d c$	The leading dimension of c; $I d c \geq \max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

C
Overwritten by the product $Q^{*} C, Q^{H *} C, C^{*} Q$, or $C^{*} Q^{H}$ (as specified by side and trans).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The real counterpart of this routine is ormlq.

?geqlf
 Computes the QL factorization of a general m-by-n matrix.

Syntax

```
lapack_int LAPACKE_sgelqf (int matrix_layout, lapack_int m, lapack_int n, float* a,
lapack_int lda, float* tau);
lapack_int LAPACKE_dgelqf (int matrix_layout, lapack_int m, lapack_int n, double* a,
lapack_int lda, double* tau);
lapack_int LAPACKE_cgelqf (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* tau);
lapack_int LAPACKE_zgelqf (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* tau);
```

Include Files

- mkl.h

Description

The routine forms the $Q L$ factorization of a general m-by- n matrix A (see Orthogonal Factorizations). No pivoting is performed.
The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with Q in this representation.

NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

Input Parameters

matrix_layout
m

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

The number of rows in the matrix $A(m \geq 0)$.
n
a
lda

The number of columns in $A(n \geq 0)$.
Array a of size $\max \left(1, I d^{*}{ }_{n}\right)$ for column major layout and max(1, $1 \mathrm{da}^{*} \mathrm{~m}_{\mathrm{m}}$) for row major layout contains the matrix A.

The leading dimension of a; at least max($1, m$)for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

a
Overwritten on exit by the factorization data as follows:
if $m \geq n$, the lower triangle of the subarray $a(m-n+1: m, 1: n)$ contains the n -by- n lower triangular matrix L; if $m \leq n$, the elements on and below the (n m)-th superdiagonal contain the m-by- n lower trapezoidal matrix L; in both cases, the remaining elements, with the array tau, represent the orthogonal/unitary matrix Q as a product of elementary reflectors.

Array, size at least $\max (1, \min (m, n))$. Contains scalar factors of the elementary reflectors for the matrix Q (see Orthogonal Factorizations).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

Related routines include:

```
orgql to generate matrix Q (for real matrices);
ungql to generate matrix Q (for complex matrices);
ormql to apply matrix Q (for real matrices);
unmql to apply matrix Q (for complex matrices).
```


See Also

mkl_progress

Matrix Storage Schemes

?orgql
Generates the real matrix Q of the QL factorization
formed by ?geqle.

Syntax

```
lapack_int LAPACKE_sorgql (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
float* a, lapack_int lda, const float* tau);
lapack_int LAPACKE_dorgql (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
double* a, lapack_int lda, const double* tau);
```


Include Files

- mkl.h

Description

The routine generates an m-by- n real matrix Q with orthonormal columns, which is defined as the last n columns of a product of k elementary reflectors $H(i)$ of order $m: Q=H(k) * \ldots * H(2) \star H(1)$ as returned by the routines geqlf. Use this routine after a call to sgeqlf/dgeqle.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
m	The number of rows of the matrix Q (mı0).
n	The number of columns of the matrix $Q(m \geq n \geq 0)$.
k	The number of elementary reflectors whose product defines the matrix Q ($n \geq k \geq 0$).
a, tau	Arrays: a (size $\max \left(1, I d a_{n}\right)$ for column major layout and $\max \left(1, I d^{*} *_{m}\right)$ for row major layout), tau.
	On entry, the ($n-k+i$)th column of a must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by sgeqlf/dgeqlf in the last k columns of its array argument a; tau[i-1] must contain the scalar factor of the elementary reflector $H(i)$, as returned by sgeqlf/dgeqlf;
	The size of tau must be at least max (1,k).
Ida	The leading dimension of a; at least $\max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

a
Overwritten by the last n columns of the m-by- m orthogonal matrix Q.

Return Values

This function returns a value info.
If inforo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The complex counterpart of this routine is ungql.
?ungql
Generates the complex matrix Q of the QL
factorization formed by ?geqle.

Syntax

```
lapack_int LAPACKE_cungql (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
lapack_complex_float* a, lapack_int lda, const lapack_complex_float* tau);
lapack_int LAPACKE_zungql (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
lapack_complex_double* a, lapack_int lda, const lapack_complex_double* tau);
```


Include Files

- mkl.h

Description

The routine generates an m-by- n complex matrix Q with orthonormal columns, which is defined as the last n columns of a product of k elementary reflectors $H(i)$ of order $m: Q=H(k) * \ldots * H(2) * H(1)$ as returned by the routines geqlf/geqlf. Use this routine after a call to cgeqlf/zgeqlf.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
m	The number of rows of the matrix $Q(m \geq 0)$.
n	The number of columns of the matrix $Q(m \geq n \geq 0)$.
k	The number of elementary reflectors whose product defines the matrix Q ($n \geq k \geq 0$).
a, tau	Arrays: a (size max(1, $\left.1 d a_{n}\right)$ for column major layout and max(1, $1 \mathrm{da}^{*} \mathrm{~m}_{\text {) }}$ for row major layout), tau.
	On entry, the ($n-k+i$)th column of a must contain the vector which defines the elementary reflector $H(i)$, for $\mathrm{i}=1,2, \ldots, k$, as returned by cgeqlf/zgeqlf in the last k columns of its array argument a; $\operatorname{tau}[i-1]$ must contain the scalar factor of the elementary reflector $H(i)$, as returned by cgeqlf/zgeqlf;
	The size of tau must be at least max ($1, k$).
Ida	The leading dimension of a; at least $\max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

Overwritten by the last n columns of the m-by- m unitary matrix Q.

Return Values

This function returns a value info.
If inforo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The real counterpart of this routine is orgql.

```
?ormql
Multiplies a real matrix by the orthogonal matrix Q of
the QL factorization formed by ?geqlf.
```


Syntax

```
lapack_int LAPACKE_sormql (int matrix_layout, char side, char trans, lapack_int m,
```

lapack_int LAPACKE_sormql (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const float* a, lapack_int lda, const float* tau, float* c,
lapack_int n, lapack_int k, const float* a, lapack_int lda, const float* tau, float* c,
lapack_int ldc);
lapack_int ldc);
lapack_int LAPACKE_dormql (int matrix_layout, char side, char trans, lapack_int m,
lapack_int LAPACKE_dormql (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const double* a, lapack_int lda, const double* tau, double*
lapack_int n, lapack_int k, const double* a, lapack_int lda, const double* tau, double*
c, lapack_int ldc);

```
c, lapack_int ldc);
```

Include Files

- mkl.h

Description

The routine multiplies a real m-by- n matrix C by Q or Q^{T}, where Q is the orthogonal matrix Q of the $Q L$ factorization formed by the routine geqlf.
Depending on the parameters side and trans, the routine ormql can form one of the matrix products $Q^{\star} C$, $Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (overwriting the result over C).

Input Parameters

```
matrix_layout
side
trans
m
n
k
a, tau, c
Arrays: a, tau, c.
The size of a must be:
For column major layout regardless of side, \(\max \left(1, I d^{*} k\right)\).
For side \(=\) 'L' and row major layout, \(\max (1, I d a * m)\).
For side \(=\) ' R ' and row major layout, \(\max \left(1, I d^{*}{ }_{n}\right)\).
```

Ida
ldc

On entry, the i th column of a must contain the vector which defines the elementary reflector H_{i}, for $i=1,2, \ldots, k$, as returned by sgeqlf/dgeqlf in the last k columns of its array argument a.
$\operatorname{tau}[i-1]$ must contain the scalar factor of the elementary reflector H_{i}, as returned by sgeqlf/dgeqlf.

The size of tau must be at least max $(1, k)$.
c (size $\max \left(1, I d c^{*} n\right)$ for column major layout and $\max \left(1, I d c^{*}\right)$) for row major layout) contains the m-by-n matrix C.

The leading dimension of a;
if side $=$ 'L', lda $\geq \max (1, m)$ for column major layout and $\max (1, k)$ for row major layout ;
if side $=$ ' R ', $l d a \geq \max (1, n)$ for column major layout and $\max (1, k)$ for row major layout.

The leading dimension of $c ; l d c \geq \max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

c
Overwritten by the product $Q^{\star} C, Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (as specified by side and trans).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The complex counterpart of this routine is unmql.

?unmql

Multiplies a complex matrix by the unitary matrix Q of the QL factorization formed by ?geqle.

Syntax

```
lapack_int LAPACKE_cunmql (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* tau, lapack_complex_float* c, lapack_int ldc);
lapack_int LAPACKE_zunmql (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* tau, lapack_complex_double* c, lapack_int ldc);
```

Include Files

- mkl.h

Description

The routine multiplies a complex m-by- n matrix C by Q or Q^{H}, where Q is the unitary matrix Q of the $Q L$ factorization formed by the routine geqlf.
Depending on the parameters side and trans, the routine unmql can form one of the matrix products $Q^{*} C$, $Q^{H *} C, C^{*} Q$, or $C^{*} Q^{H}$ (overwriting the result over C).

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
side	Must be either 'L' or 'R'.
	If side = 'L', Q or Q^{H} is applied to C from the left.
	If side $=$ 'R', Q or Q^{H} is applied to C from the right.
trans	Must be either 'N' or ' C '.
	If trans $=$ ' N ', the routine multiplies C by Q.
	If trans $=$ ' C', the routine multiplies C by Q^{H}.
m	The number of rows in the matrix $C(m \geq 0)$.
n	The number of columns in $C(n \geq 0)$.
k	The number of elementary reflectors whose product defines the matrix Q. Constraints:
	$0 \leq k \leq m$ if side = 'L';
	$0 \leq k \leq n$ if side $=$ ' R '.
a, tau, c	Arrays: a, tau, c.
	The size of a must be:
	For column major layout regardless of side, max (1, $1 \mathrm{da}^{*} k$).
	For side = 'L' and row major layout, max (1, Ida*m).
	For side = 'R' and row major layout, max(1, lda*n).
	On entry, the i-th column of a must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by cgeqlf/zgeqlf in the last k columns of its array argument a.
	tau[i-1] must contain the scalar factor of the elementary reflector $H(i)$, as returned by cgeqlf/zgeqlf.
	The size of tau must be at least max $(1, k)$.
	c (size $\max \left(1, I d c^{*} n\right)$ for column major layout and max(1, $1 d c^{*} m_{m}$ for row major layout) contains the m-by-n matrix C.
lda	The leading dimension of a.
	If side $=$ 'L', $l d a \geq \max (1, m)$ for column major layout and max $(1, k)$ for row major layout.
	If side = 'R', lda $\geq \max (1, n)$ for column major layout and max $(1, k)$ for row major layout.

The leading dimension of $c ; l d c \geq \max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

C
Overwritten by the product $Q^{*} C, Q^{H *} C, C^{*} Q$, or $C^{*} Q^{H}$ (as specified by side and trans).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The real counterpart of this routine is ormql.

```
?gerqf
Computes the RQ factorization of a general m-by-n
matrix.
Syntax
lapack_int LAPACKE_sgerqf (int matrix_layout, lapack_int m, lapack_int n, float* a,
lapack_int lda, float* tau);
lapack_int LAPACKE_dgerqf (int matrix_layout, lapack_int m, lapack_int n, double* a,
lapack_int lda, double* tau);
lapack_int LAPACKE_cgerqf (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* tau);
lapack_int LAPACKE_zgerqf (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* tau);
```

Include Files

- mkl.h

Description

The routine forms the $R Q$ factorization of a general m-by- n matrix A (see Orthogonal Factorizations). No pivoting is performed.
The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with Q in this representation.

NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

Input Parameters

matrix_layout
m
n
a

Ida

Output Parameters

a
tau

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

The number of rows in the matrix $A(m \geq 0)$.
The number of columns in $A(n \geq 0)$.
Array a of size $\max \left(1, I d^{*}{ }_{n}\right)$ for column major layout and $\max \left(1, I a^{*}{ }_{m}\right)$ for row major layout contains the m-by-n matrix A.

The leading dimension of a; at least $\max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Overwritten on exit by the factorization data as follows:
if $m \leq n$, the upper triangle of the subarray
$a(1: m, n-m+1: n)$ contains the m-by- m upper triangular matrix R;
if $m \geq n$, the elements on and above the ($m-n$)th subdiagonal contain the m -by- n upper trapezoidal matrix R;
in both cases, the remaining elements, with the array tau, represent the orthogonal/unitary matrix Q as a product of $\min (m, n)$ elementary reflectors.

Array, size at least $\max (1, \min (m, n))$. (See Orthogonal Factorizations.) Contains scalar factors of the elementary reflectors for the matrix Q.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

Related routines include:

```
orgrq to generate matrix Q (for real matrices);
ungrq to generate matrix Q (for complex matrices);
ormrq to apply matrix Q (for real matrices);
unmrq to apply matrix Q (for complex matrices).
```


See Also

mkl_progress
Matrix Storage Schemes

```
?orgrq
Generates the real matrix Q of the RQ factorization
formed by ?gerqf.
```


Syntax

```
lapack_int LAPACKE_sorgrq (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
```

lapack_int LAPACKE_sorgrq (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
float* a, lapack_int lda, const float* tau);
float* a, lapack_int lda, const float* tau);
lapack_int LAPACKE_dorgrq (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
lapack_int LAPACKE_dorgrq (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
double* a, lapack_int lda, const double* tau);

```
double* a, lapack_int lda, const double* tau);
```

Include Files

- mkl.h

Description

The routine generates an m-by- n real matrix with orthonormal rows, which is defined as the last m rows of a product of k elementary reflectors $H(i)$ of order n : $Q=H(1) * H(2){ }^{*} \ldots{ }^{*} H(k)$ as returned by the routines gerqf. Use this routine after a call to sgerqf/dgerqf.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
m	The number of rows of the matrix $Q(m \geq 0)$.
n	The number of columns of the matrix $Q(n \geq m)$.
k	The number of elementary reflectors whose product defines the matrix Q ($m \geq k \geq 0$).
a, tau	Arrays: $a\left(\right.$ size $\max \left(1, l d a_{n}\right)$ for column major layout and max(1, $1 \mathrm{da}^{*}{ }_{m}$) for row major layout), tau.
	On entry, the ($m-k+i$)-th row of a must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by sgerqf/ dgerqf in the last k rows of its array argument a; $\operatorname{tau}[i-1]$ must contain the scalar factor of the elementary reflector $H(i)$, as returned by sgerqf/dgerqf;
	The size of tau must be at least max $(1, k)$.
$I d a$	The leading dimension of a; at least $\max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

a
Overwritten by the last m rows of the n-by- n orthogonal matrix Q.

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The complex counterpart of this routine is ungrq.

?ungra

Generates the complex matrix Q of the $R Q$ factorization formed by ?gerqf.

Syntax

```
lapack_int LAPACKE_cungrq (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
lapack_complex_float* a, lapack_int lda, const lapack_complex_float* tau);
lapack_int LAPACKE_zungrq (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
lapack_complex_double* a, lapack_int lda, const lapack_complex_double* tau);
```

Include Files

- mkl.h

Description

The routine generates an m-by- n complex matrix with orthonormal rows, which is defined as the last m rows of a product of k elementary reflectors $H(i)$ of order n : $Q=H(1)^{H_{*}} H(2)^{H_{*}} \ldots .^{*} H(k)^{H}$ as returned by the routines gerqf. Use this routine after a call to cgerqf/zgerqf.

Input Parameters

```
matrix_layout
m
n
k
a, tau
lda
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
The number of rows of the matrix \(Q(m \geq 0)\).
The number of columns of the matrix \(Q(n \geq m)\).
The number of elementary reflectors whose product defines the matrix \(Q\) ( \(m \geq k \geq 0\) ).
Arrays: a(size \(\max \left(1, l d a *_{n}\right)\) for column major layout and \(\max \left(1, l \mathrm{da}^{*}{ }_{m}\right)\) for row major layout), tau.
On entry, the ( \(m-k+i\) )th row of a must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by cgerqf/
zgerqf in the last \(k\) rows of its array argument \(a\);
\(\operatorname{tau}[i-1]\) must contain the scalar factor of the elementary reflector \(H(i)\), as returned by cgerqf/zgerqf;
The size of tau must be at least \(\max (1, k)\).
The leading dimension of \(a\); at least max( \(1, m\) )for column major layout and \(\max (1, n)\) for row major layout.
```


Output Parameters

Overwritten by the m last rows of the n-by- n unitary matrix Q.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The real counterpart of this routine is orgrq.

?ormrq

Multiplies a real matrix by the orthogonal matrix Q of the $R Q$ factorization formed by ?gerqf.

Syntax

```
lapack_int LAPACKE_sormrq (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const float* a, lapack_int lda, const float* tau, float* c,
lapack_int ldc);
lapack_int LAPACKE_dormrq (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const double* a, lapack_int lda, const double* tau, double*
c, lapack_int ldc);
```

Include Files

- mkl.h

Description

The routine multiplies a real m-by-n matrix C by Q or Q^{T}, where Q is the real orthogonal matrix defined as a product of k elementary reflectors $H_{i}: Q=H_{1} H_{2} \ldots H_{k}$ as returned by the $R Q$ factorization routine gerqf.

Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{\star} C, Q^{T \star} C$, $C^{\star} Q$, or $C^{\star} Q^{T}$ (overwriting the result over C).

Input Parameters

```
matrix_layout
side Must be either 'L' or 'R'.
    If side = 'L',Q or Q ' is applied to C from the left.
    If side = 'R', Q or Q}\mp@subsup{Q}{}{T}\mathrm{ is applied to C from the right.
trans Must be either 'N' or 'T'.
    If trans = 'N', the routine multiplies C by Q.
    If trans = 'T', the routine multiplies C by QT
    The number of rows in the matrix C(m\geq0).
    The number of columns in C(n\geq0).
```

k
a, tau, c

Ida
ldc

Output Parameters

c
Overwritten by the product $Q^{\star} C, Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (as specified by side and trans).

Return Values

This function returns a value info.
If info=0, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The complex counterpart of this routine is unmrq.

?unmrq

Multiplies a complex matrix by the unitary matrix Q of the $R Q$ factorization formed by ?gerqf.

Syntax

```
lapack_int LAPACKE_cunmrq (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* tau, lapack_complex_float* c, lapack_int ldc);
lapack_int LAPACKE_zunmrq (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* tau, lapack_complex_double* c, lapack_int ldc);
```


Include Files

- mkl.h

Description

The routine multiplies a complex m-by- n matrix C by Q or Q^{H}, where Q is the complex unitary matrix defined as a product of k elementary reflectors $H(i)$ of order $n: Q=H(1)^{H_{\star}} H(2)^{H_{\star}} \ldots{ }^{\star} H(k)^{H}$ as returned by the $R Q$ factorization routine gerqf .

Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{*} C, Q^{H *} C$, $C^{*} Q$, or $C^{*} Q^{H}$ (overwriting the result over C).

Input Parameters

a, tau, c

```
matrix layout
side
trans
m
n
k
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be either 'L' or 'R'.
If side \(=\) 'L', \(Q\) or \(Q^{H}\) is applied to \(C\) from the left.
If side \(=\) 'R', \(Q\) or \(Q^{H}\) is applied to \(C\) from the right.
Must be either 'N' or 'C'.
If trans \(=\) ' \(N\) ', the routine multiplies \(C\) by \(Q\).
If trans \(=\) ' C', the routine multiplies \(C\) by \(Q^{H}\).
The number of rows in the matrix \(C(m \geq 0)\).
The number of columns in \(C(n \geq 0)\).
The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
\(0 \leq k \leq m\), if side \(=\) 'L';
\(0 \leq k \leq n\), if side \(=\) ' \(R\) '.
```

Arrays: a (size for side $=$ 'L': $\max \left(1, I d a^{*}\right)$ for column major layout and $\max \left(1, l d a^{*} k\right)$ for row major layout; for side $=$ 'R': $\max \left(1, I a^{*}{ }_{n}\right)$ for column major layout and $\max \left(1, I d a^{*} k\right.$) for row major layout), tau, c (size $\max \left(1, l d c^{*} n\right)$ for column major layout and $\max \left(1, l d c^{*} m\right.$) for row major layout).

On entry, the ith row of a must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by cgerqf/zgerqf in the last k rows of its array argument a.
$\operatorname{tau}[i-1]$ must contain the scalar factor of the elementary reflector $H(i)$, as returned by cgerqf/zgerqf.

The size of tau must be at least max $(1, k)$.
c (size $\max \left(1, I d c^{*} n\right)$ for column major layout and $\max \left(1, I d c^{*} m\right.$ for row major layout) contains the m-by-n matrix C.
lda
ldc

The leading dimension of a; Id $a \geq \max (1, k)$ for column major layout. For row major layout, $l d a \geq \max (1, m)$ if side $=$ ' L ', and $\operatorname{lda} \geq \max (1, n)$ if side = 'R'.

The leading dimension of c; $I d c \geq \max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

c
Overwritten by the product $Q^{*} C, Q^{H *} C, C * Q$, or $C^{*} Q^{H}$ (as specified by side and trans).

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The real counterpart of this routine is ormrq.
?tzrzf
Reduces the upper trapezoidal matrix A to upper triangular form.

Syntax

```
lapack_int LAPACKE_stzrzf (int matrix_layout, lapack_int m, lapack_int n, float* a,
lapack_int lda, float* tau);
lapack_int LAPACKE_dtzrzf (int matrix_layout, lapack_int m, lapack_int n, double* a,
lapack_int lda, double* tau);
lapack_int LAPACKE_ctzrzf (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* tau);
lapack_int LAPACKE_ztzrzf (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* tau);
```

Include Files

- mkl.h

Description

The routine reduces the m-by- $n(m \leq n)$ real/complex upper trapezoidal matrix A to upper triangular form by means of orthogonal/unitary transformations. The upper trapezoidal matrix $A=[A 1 A 2]=\left[A_{1: m}, 1: m, A_{1: m}, m\right.$ $+1: n]$ is factored as
$A=[R 0] * Z$,
where Z is an n-by- n orthogonal/unitary matrix, R is an m-by- m upper triangular matrix, and 0 is the m-by($n-m$) zero matrix.

The ?tzrzf routine replaces the deprecated ?tzrqf routine.

Input Parameters

matrix_layout
m
n
a
lda

Output Parameters

a
tau

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

The number of rows in the matrix $A(m \geq 0)$.
The number of columns in $A(n \geq m)$.
Array a is of size $\max \left(1, I d^{*}{ }_{n}\right)$ for column major layout and max(1, lda*m) for row major layout.

The leading m-by- n upper trapezoidal part of the array a contains the matrix A to be factorized.

The leading dimension of a; at least $\max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Overwritten on exit by the factorization data as follows:
the leading m-by- m upper triangular part of a contains the upper triangular matrix R, and elements $m+1$ to n of the first m rows of a, with the array tau, represent the orthogonal matrix Z as a product of m elementary reflectors.

Array, size at least max $(1, m)$. Contains scalar factors of the elementary reflectors for the matrix Z.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The factorization is obtained by Householder's method. The k-th transformation matrix, $Z(k)$, which is used to introduce zeros into the $(m-k+1)$-th row of A, is given in the form

where for real flavors

$$
T(k)=I-t a u^{*} u(k)^{*} u(k)^{T}, \quad u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
$$

and for complex flavors

$$
T(k)=I-t a u^{*} u(k)^{*} u(k)^{H}, \quad u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
$$

tau is a scalar and $z(k)$ is an $/$-element vector. tau and $z(k)$ are chosen to annihilate the elements of the k-th row of $A 2$.
The scalar tau is returned in the k-th element of tau and the vector $u(k)$ in the k-th row of A, such that the elements of $z(k)$ are stored in the last $m-n$ elements of the k-th row of array a.
The elements of R are returned in the upper triangular part of A.
The matrix Z is given by
$Z=Z(1) * Z(2) * \ldots * Z(m)$.
Related routines include:
ormrz
to apply matrix Q (for real matrices)
unmrz to apply matrix Q (for complex matrices).

?ormrz

Multiplies a real matrix by the orthogonal matrix
defined from the factorization formed by ?tzrzf.

Syntax

```
lapack_int LAPACKE_sormrz (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, lapack_int l, const float* a, lapack_int lda, const float*
tau, float* c, lapack_int ldc);
lapack_int LAPACKE_dormrz (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, lapack_int l, const double* a, lapack_int lda, const
double* tau, double* c, lapack_int ldc);
```

Include Files

- mkl.h

Description

The ?ormrz routine multiplies a real m-by-n matrix C by Q or Q^{T}, where Q is the real orthogonal matrix defined as a product of k elementary reflectors $H(i)$ of order n : $Q=H(1)^{*} H(2) * \ldots{ }^{*} H(k)$ as returned by the factorization routine tzrzf .

Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{\star} C, Q^{T \star} C$, $C^{\star} Q$, or $C^{\star} Q^{T}$ (overwriting the result over C).

The matrix Q is of order m if side = 'L' and of order n if side = 'R'.
The ?ormrz routine replaces the deprecated ?latzm routine.

Input Parameters

```
matrix_layout
side Must be either 'L' or 'R'.
    If side = 'L',Q or Q Q is applied to C from the left.
    If side = 'R', Q or Q}\mp@subsup{Q}{}{T}\mathrm{ is applied to C from the right.
trans Must be either 'N' or 'T'.
    If trans = 'N', the routine multiplies C by Q.
    If trans = 'T', the routine multiplies C by QT
    The number of rows in the matrix C (m\geq0).
    The number of columns in C(n\geq0).
    The number of elementary reflectors whose product defines the matrix Q.
    Constraints:
    0\leqk\leqm, if side = 'L';
0 \leqk\leqn, if side = 'R'.
The number of columns of the matrix \(A\) containing the meaningful part of the Householder reflectors. Constraints:
\(0 \leq 1 \leq m\), if side \(=\) 'L';
\(0 \leq 1 \leq n\), if side \(=\) ' \(R^{\prime}\).
Arrays: a(size for side = 'L': \(\max \left(1, I d a^{*} m\right)\) for column major layout and \(\max \left(1, I d a^{*} k\right)\) for row major layout; for side = 'R': \(\max \left(1, I d a^{*} b\right)\) for column major layout and max(1, \(1 d a^{*} k\) ) for row major layout), tau, c (size \(\max \left(1, I d c_{n}\right)\) for column major layout and \(\max \left(1, I d^{*}{ }_{m}\right)\) for row major layout).
On entry, the \(i\) th row of a must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by stzrzf/dtzrzf in the last \(k\) rows of its array argument \(a\).
tau[i-1] must contain the scalar factor of the elementary reflector \(H(i)\), as returned by stzrzf/dtzrzf.
```

The size of tau must be at least max $(1, k)$.
c contains the m-by- n matrix C.
lda
ldc

The leading dimension of a; Id $a \geq \max (1, k)$ for column major layout. For row major layout, $l d a \geq \max (1, m)$ if $s i d e=' L '$, and $l d a \geq \max (1, n)$ if side $=$ 'R'.

The leading dimension of c; $I d c \geq \max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

c

Overwritten by the product $Q^{\star} C, Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (as specified by side and trans).

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The complex counterpart of this routine is unmrz.

?unmrz

Multiplies a complex matrix by the unitary matrix defined from the factorization formed by ?tzrzf.

Syntax

```
lapack_int LAPACKE_cunmrz (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, lapack_int l, const lapack_complex_float* a, lapack_int
lda, const lapack_complex_float* tau, lapack_complex_float* c, lapack_int ldc);
lapack_int LAPACKE_zunmrz (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, lapack_int l, const lapack_complex_double* a, lapack_int
lda, const lapack_complex_double* tau, lapack_complex_double* c, lapack_int ldc);
```

Include Files

- mkl.h

Description

The routine multiplies a complex m-by- n matrix C by Q or Q^{H}, where Q is the unitary matrix defined as a product of k elementary reflectors $H(i)$:
$Q=H(1)^{H_{\star}} H(2)^{H_{\star}} \ldots{ }^{\star} H(k)^{H}$ as returned by the factorization routine tzrzf.
Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{*} C, Q^{H *} C$, $C^{*} Q$, or $C^{*} Q^{H}$ (overwriting the result over C).
The matrix Q is of order m if side $=$ 'L' and of order n if side $=$ 'R'.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
side	Must be either 'L' or 'R'.
	If side $=$ 'L', Q or Q^{H} is applied to C from the left.
	If side $=$ 'R', Q or Q^{H} is applied to C from the right.
trans	Must be either 'N' or 'C'.
	If trans $=$ ' N ', the routine multiplies C by Q.
	If trans $=$ ' C', the routine multiplies C by Q^{H}.
m	The number of rows in the matrix $C(m \geq 0)$.
n	The number of columns in $C(n \geq 0)$.
k	The number of elementary reflectors whose product defines the matrix Q. Constraints:
	$0 \leq k \leq m$, if side $=$ 'L';
	$0 \leq k \leq n$, if side $=$ ' R '.
1	The number of columns of the matrix A containing the meaningful part of the Householder reflectors. Constraints:
	$0 \leq 1 \leq m$, if side = 'L';
	$0 \leq 1 \leq n$, if side $=$ ' R^{\prime}.
a, tau, c	Arrays: a(size for side = 'L': $\max \left(1, I d{ }^{*} *_{m}\right)$ for column major layout and $\max \left(1, l d a^{*} k\right)$ for row major layout; for side = 'R': $\max (1, ~ l d a * b)$ for column major layout and max(1, lda*k) for row major layout), tau, c (size $\max \left(1, I d C_{n}\right)$ for column major layout and $\max \left(1, I d C_{m}\right)$ for row major layout).
	On entry, the i th row of a must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ctzrzf/ztzrzf in the last k rows of its array argument a.
	tau[i-1] must contain the scalar factor of the elementary reflector $H(i)$, as returned by ctzrzf/ztzrzf.
	The size of tau must be at least max ($1, k$).
	c contains the m-by-n matrix C.
Ida	The leading dimension of a; $l d a \geq \max (1, k)$ for column major layout. For row major layout, $I d a \geq \max (1, m)$ if $s i d e=' L '$, and $l d a \geq \max (1, n)$ if side = 'R'.
ldc	The leading dimension of $c ; I d c \geq \max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

Output Parameters

C
Overwritten by the product $Q^{*} C, Q^{H *} C, C^{*} Q$, or $C^{*} Q^{H}$ (as specified by side and trans).

Return Values

This function returns a value info.
If infolo the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The real counterpart of this routine is ormrz.

?ggqrf
 Computes the generalized $Q R$ factorization of two matrices.

Syntax

lapack_int LAPACKE_sggqrf (int matrix_layout, lapack_int n, lapack_int m, lapack_int p,

lapack_int LAPACKE_dggqrf (int matrix_layout, lapack_int $n, ~ l a p a c k _i n t ~ m, ~ l a p a c k _i n t ~ p, ~$ double* $\left.a, ~ l a p a c k _i n t ~ l d a, ~ d o u b l e * ~ t a u a, ~ d o u b l e * ~ b, ~ l a p a c k ~ i n t ~ l d b, ~ d o u b l e * ~ t a u b\right) ; ~$
lapack_int LAPACKE_cggqrf (int matrix_layout, lapack_int n, lapack_int m, lapack_int p, lapack_complex_float* $a, ~ l a p a c k _i n t ~ l d a, ~ l a p a c k _c o m p l e x ~ f l o a t * ~ t a u a, ~$ lapack_complex_float* b, lapack_int ldb, lapack_complex_float* taub);

```
lapack_int LAPACKE_zggqrf (int matrix_layout, lapack_int n, lapack_int m, lapack_int p,
```

lapack_complex_double* a, lapack_int lda, lapack_complex_double* taua,
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* taub);

Include Files

- mkl.h

Description

The routine forms the generalized $Q R$ factorization of an n-by-m matrix A and an n-by- p matrix B as $A=$ $Q^{\star} R, B=Q^{\star} T^{\star} Z$, where Q is an n-by- n orthogonal/unitary matrix, Z is a p-by- p orthogonal/unitary matrix, and R and T assume one of the forms:

$$
R=\quad \begin{array}{r}
m\left(\begin{array}{c}
m \\
R_{1 l} \\
0
\end{array}\right), \quad \text { if } n \geq m
\end{array}
$$

or

$$
R=n \begin{array}{cr}
n & m-n \\
\left(R_{11}\right. & \left.R_{12}\right)
\end{array} \quad \text { if } n<m
$$

where R_{11} is upper triangular, and

$$
\begin{gathered}
\left.T=n \begin{array}{cc}
p-n & n \\
(0 & T_{12}
\end{array}\right), \text { if } n \leq p \\
T=n-p\left(\begin{array}{c}
T \\
P \\
T_{11}
\end{array}\right), \quad \text { if } n>\rho
\end{gathered}
$$

where T_{12} or T_{21} is a p-by- p upper triangular matrix.
In particular, if B is square and nonsingular, the GQR factorization of A and B implicitly gives the $Q R$ factorization of $B^{-1} A$ as:
$B^{-1 *} A=Z^{T_{\star}}\left(T^{-1 *} R\right)$ (for real flavors) or $B^{-1 *} A=Z^{H_{\star}}\left(T^{-1 *} R\right)$ (for complex flavors).

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
n	The number of rows of the matrices A and $B(n \geq 0)$.
m	The number of columns in $A(m \geq 0)$.
p	The number of columns in $B(p \geq 0)$.
a, b	Array a of size $\max \left(1, I d^{*}{ }^{*}\right)$ for column major layout and $\max \left(1, I d a_{n}\right)$ for row major layout contains the matrix A.
	Array b of size $\max \left(1, I d b^{*} p\right)$ for column major layout and $\max \left(1, I d b^{*} n\right)$ for row major layout contains the matrix B.
lda	The leading dimension of a; at least $\max (1, n)$ for column major layout and at least $\max (1, m)$ for row major layout.
1 db	The leading dimension of b; at least $\max (1, n)$ for column major layout and at least $\max (1, p)$ for row major layout.

Output Parameters

Overwritten by the factorization data as follows:
on exit, the elements on and above the diagonal of the array a contain the $\min (n, m)$-by- m upper trapezoidal matrix R (R is upper triangular if $n \geq m$); the elements below the diagonal, with the array taua, represent the orthogonal/ unitary matrix Q as a product of $\min (n, m)$ elementary reflectors ;
if $n \leq p$, the upper triangle of the subarray $b(1: n, p-n+1: p)$ contains the n -by-n upper triangular matrix T;
if $n>p$, the elements on and above the ($n-p$)th subdiagonal contain the n -by- p upper trapezoidal matrix T; the remaining elements, with the array taub, represent the orthogonal/unitary matrix Z as a product of elementary reflectors.

Arrays, size at least max $(1, \min (n, m))$ for taua and at least max (1, $\min (n, p))$ for taub. The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix Q.
The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix Z.

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The matrix Q is represented as a product of elementary reflectors
$Q=H(1) H(2) \ldots H(k)$, where $k=\min (\mathrm{n}, \mathrm{m})$.
Each $H(\mathrm{i})$ has the form
$H(i)=I-\tau_{a}{ }^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-\tau_{a}{ }^{\star} V^{\star} V^{H}$ for complex flavors,
where τ_{a} is a real/complex scalar, and v is a real/complex vector with $v_{j}=0$ for $1 \leq j \leq i-1, v_{i}=1$.
On exit, fori $+1 \leq j \leq n, v_{j}$ is stored in $a[(j-1)+(i-1) * I d a]$ for column major layout and in $a[(j-$ $1) *$ Ida $+(i-1)]$ for row major layout and T_{a} is stored in taua[i-1]

The matrix Z is represented as a product of elementary reflectors
$Z=H(1) H(2) \ldots H(k)$, where $k=\min (\mathrm{n}, \mathrm{p})$.
Each $H(\mathrm{i})$ has the form
$H(i)=I-\tau_{b}{ }^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-\tau_{b}{ }^{\star} V^{\star} V^{H}$ for complex flavors,
where τ_{b} is a real/complex scalar, and v is a real/complex vector with $v_{p-k+1}=1, v_{j}=0$ for $p-k+1 \leq j \leq p-$ 1, .
On exit, for $1 \leq j \leq p-k+i-1, v_{j}$ is stored in $b[(n-k+i-1)+(j-1) * I d b]$ for column major layout and in $b[(n-k+i-1) * 1 d b+(j-1)]$ for row major layout and T_{b} is stored in taub[i-1].

```
?ggrqf
Computes the generalized RQ factorization of two
matrices.
```


Syntax

```
lapack_int LAPACKE_sggrqf (int matrix_layout, lapack_int m, lapack_int p, lapack_int n,
float* a, lapack_int lda, float* taua, float* b, lapack_int ldb, float* taub);
lapack_int LAPACKE_dggrqf (int matrix_layout, lapack_int m, lapack_int p, lapack_int n,
double* a, lapack_int lda, double* taua, double* b, lapack_int ldb, double* taub);
lapack_int LAPACKE_cggrqf (int matrix_layout, lapack_int m, lapack_int p, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* taua,
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* taub);
lapack_int LAPACKE_zggrqf (int matrix_layout, lapack_int m, lapack_int p, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* taua,
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* taub);
```

Include Files

- mkl.h

Description

The routine forms the generalized $R Q$ factorization of an m-by-n matrix A and an p-by-n matrix B as $A=$ $R^{\star} Q, B=Z^{\star} T^{\star} Q$, where Q is an n-by- n orthogonal/unitary matrix, Z is a p-by- p orthogonal/unitary matrix, and R and T assume one of the forms:

$$
\left.R=\begin{array}{cc}
n-m & m \\
m & (0
\end{array} \quad R_{10}\right) \quad \text { if } m \leq n
$$

or

$$
\left.\begin{array}{c}
\text { m }-n \\
n
\end{array} \quad \begin{array}{c}
n \\
R_{11} \\
R_{21}
\end{array}\right) \quad, \quad \text { if } m>n
$$

where R_{11} or R_{21} is upper triangular, and

$$
T=\begin{gathered}
n \\
p-n\left(\begin{array}{c}
n \\
T_{11} \\
0
\end{array}\right)
\end{gathered} \quad, \quad \text { if } p \geq n
$$

or

$$
T=p \begin{array}{cc}
p & n-p \\
\left(T_{11}\right. & \left.T_{12}\right) \quad, \quad \text { if } p<n
\end{array}
$$

where T_{11} is upper triangular.
In particular, if B is square and nonsingular, the $G R Q$ factorization of A and B implicitly gives the $R Q$ factorization of $A^{*} B^{-1}$ as:
$A^{\star} B^{-1}=\left(R^{\star} T^{-1}\right) \star Z^{T}$ (for real flavors) or $A^{\star} B^{-1}=\left(R^{\star} T^{-1}\right) \star Z^{H}$ (for complex flavors).

Input Parameters

```
matrix_layout
m
p
n
a,b
Ida
ldb
```


Output Parameters

a, b
Overwritten by the factorization data as follows:
on exit, if $m \leq n$, element $R_{i j}(1<=i \leq j \leq m)$ of upper triangular matrix R is stored in $a[(i-1)+(n-m+j-1) * l d a]$ for column major layout and in $a[(i-1) * l d a+(n-m+j-1)]$ for row major layout.
if $m>n$, the elements on and above the (m-n)th subdiagonal contain the m-by- n upper trapezoidal matrix R;
the remaining elements, with the array taua, represent the orthogonal/ unitary matrix Q as a product of elementary reflectors.
The elements on and above the diagonal of the array b contain the $\min (p, n)$-by- n upper trapezoidal matrix T (T is upper triangular if $p \geq n$); the elements below the diagonal, with the array taub, represent the orthogonal/ unitary matrix Z as a product of elementary reflectors.

Arrays, size at least $\max (1, \min (m, n))$ for taua and at least max $(1$, $\min (p, n))$ for taub.
The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix Q.

The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix Z.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The matrix Q is represented as a product of elementary reflectors
$Q=H(1) H(2) \ldots H(k)$, where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(i)=I-t^{2 u a}{ }^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-t^{2} a^{\star} V^{\star} V^{H}$ for complex flavors,
where taua is a real/complex scalar, and v is a real/complex vector with $v_{n-k+i}=1, v_{n-k+i+1: n}=0$.
On exit, $v_{1: n-k+i-1}$ is stored in a(m-k+i,1:n-k+i-1) and taua is stored in taua $\left.i=1\right]$.
The matrix Z is represented as a product of elementary reflectors
$Z=H(1) H(2) \ldots H(k)$, where $k=\min (\mathrm{p}, \mathrm{n})$.
Each $H(i)$ has the form
$H(i)=I-t a u b^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{H}$ for complex flavors,
where taub is a real/complex scalar, and v is a real/complex vector with $v_{1: i-1}=0, v_{i}=1$.
On exit, $v_{i+1: p}$ is stored in b(i+1:p, i) and taub is stored in taub[i-1].
?tpqrt
Computes a blocked QR factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.

Syntax

```
lapack_int LAPACKE_stpqrt (int matrix_layout, lapack_int m, lapack_int n, lapack_int l,
lapack_int nb, float* a, lapack_int lda, float* b, lapack_int ldb, float* t, lapack_int
Idt);
lapack_int LAPACKE_dtpqrt (int matrix_layout, lapack_int m, lapack_int n, lapack_int l,
lapack_int nb, double* a, lapack_int lda, double* b, lapack_int ldb, double* t,
lapack_int ldt);
lapack_int LAPACKE_ctpqrt (int matrix_layout, lapack_int m, lapack_int n, lapack_int l,
lapack_int nb, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b,
lapack_int ldb, lapack_complex_float* t, lapack_int ldt);
lapack_int LAPACKE_ztpqrt (int matrix_layout, lapack_int m, lapack_int n, lapack_int l,
lapack_int nb, lapack_complex_double* a, lapack_int lda, lapack_complex_double* b,
lapack_int ldb, lapack_complex_double* t, lapack_int ldt);
```

Include Files

- mkl.h

Description

The input matrix C is an $(n+m)$-by- n matrix

$$
C=\left[\begin{array}{c}
A \\
B
\end{array}\right] \leftarrow n \times n \times n \text { upper triangular }
$$

where A is an n-by- n upper triangular matrix, and B is an $m-$ by $-n$ pentagonal matrix consisting of an ($m-1$)-by- n rectangular matrix $B 1$ on top of an 1 -by- n upper trapezoidal matrix $B 2$:

$$
\left.B=\left[\begin{array}{c}
B 1 \\
B 2
\end{array}\right] \begin{array}{l}
\\
B
\end{array} \leftarrow l \times n-l\right) \times n \text { rectangular }
$$

The upper trapezoidal matrix $B 2$ consists of the first 1 rows of an n-by- n upper triangular matrix, where $0 \leq$ $l \leq \min (m, n)$. If $l=0, B$ is an $m-$ by $-n$ rectangular matrix. If $m=l=n, B$ is upper triangular. The elementary reflectors H (i) are stored in the i th column below the diagonal in the $(n+m)$-by- n input matrix C. The structure of vectors defining the elementary reflectors is illustrated by:

The elements of the unit matrix I are not stored. Thus, V contains all of the necessary information, and is returned in array b.

NOTE

Note that V has the same form as B :

$$
V=\left[\begin{array}{c}
V 1 \\
V 2
\end{array}\right] \leftarrow(m-l) \times n \text { rectangular }
$$

The columns of V represent the vectors which define the $H(i)$ s.
The number of blocks is $k=$ ceiling $(n / n b)$, where each block is of order $n b$ except for the last block, which is of order $i b=n-(k-1)^{*} n b$. For each of the k blocks, an upper triangular block reflector factor is computed: $T 1, T 2, \ldots, T k$. The nb-by-nb (ib-by-ib for the last block) Tis are stored in the $n b$-by-n array t as

```
t = [T1T2 ... Tk].
```


Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
m	The total number of rows in the matrix $B(m \geq 0)$.
n	The number of columns in B and the order of the triangular matrix A ($n \geq$ 0).
1	The number of rows of the upper trapezoidal part of $B(\min (m, n) \geq 1 \geq 0)$.
nb	The block size to use in the blocked $Q R$ factorization ($n \geq n b \geq 1$).
a, b	Arrays: a size $1 \mathrm{da}^{*} n$ contains the n-by-n upper triangular matrix A.
	b size $\max \left(1, l d b_{n}\right)$ for column major layout and $\max \left(1, I d b *_{m}\right)$ for row major layout, the pentagonal m-by-n matrix B. The first ($m-1$) rows contain the rectangular $B 1$ matrix, and the next 1 rows contain the upper trapezoidal B2 matrix.
1da	The leading dimension of a; at least max $(1, n)$.

Output Parameters

a
b
t

The leading dimension of b; at least $\max (1, m)$ for column major layout and at least $\max (1, n)$ for row major layout.

The leading dimension of t; at least nb for column major layout and at least $\max (1, n)$ for row major layout.

The elements on and above the diagonal of the array contain the upper triangular matrix R.

The pentagonal matrix V.
Array, size $l d t_{n}$ for column major layout and $l d t^{*}$ bb for row major layout.

The upper triangular block reflectors stored in compact form as a sequence of upper triangular blocks.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

?tpmqrt

Applies a real or complex orthogonal matrix obtained
from a "triangular-pentagonal" complex block reflector to a general real or complex matrix, which consists of two blocks.

Syntax

```
lapack_int LAPACKE_stpmqrt (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, lapack_int l, lapack_int nb, const float* v, lapack_int ldv,
const float* t, lapack_int ldt, float* a, lapack_int lda, float* b, lapack_int ldb);
lapack_int LAPACKE_dtpmqrt (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, lapack_int l, lapack_int nb, const double* v, lapack_int
ldv, const double* t, lapack_int ldt, double* a, lapack_int lda, double* b, lapack_int
ldb);
lapack_int LAPACKE_ctpmqrt (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, lapack_int l, lapack_int nb, const lapack_complex_float* v,
lapack_int ldv, const lapack_complex_float* t, lapack_int ldt, lapack_complex_float* a,
lapack_int lda, lapack_complex_float* b, lapack_int ldb);
lapack_int LAPACKE_ztpmqrt (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int k, lapack_int l, lapack_int nb, const lapack_complex_double*
v, lapack_int ldv, const lapack_complex_double* t, lapack_int ldt,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb);
```


Include Files

- mkl.h

Description

The columns of the pentagonal matrix V contain the elementary reflectors $H(1), H(2), \ldots, H(k) ; V$ is composed of a rectangular block $V 1$ and a trapezoidal block $V 2$:

The size of the trapezoidal block $V 2$ is determined by the parameter 1 , where $0 \leq 1 \leq k$. $V 2$ is upper trapezoidal, consisting of the first l rows of a k-by- k upper triangular matrix.
If $l=k, V 2$ is upper triangular;
If $l=0$, there is no trapezoidal block, so $V=V 1$ is rectangular.
If side = 'L':

where A is $k-$ by- n, B is $m-$ by- n and V is $m-b y-k$.
If side = 'R':

where A is m-by- k, B is m-by- n and V is $n-b y-k$.
The real/complex orthogonal matrix Q is formed from V and T.
If trans='N' and side='L', c contains $Q * C$ on exit.
If trans='T' and side='L', c contains $Q^{\top} * C$ on exit.
If trans='C' and side $=$ 'L', C contains $Q^{H} * C$ on exit.
If trans $=$ ' N ' and side='R', C contains $C * Q$ on exit.
If trans $=$ ' T ' and side='R', C contains $C * Q^{\top}$ on exit.

If trans='C' and side='R', c contains $C * Q^{H}$ on exit.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
side	$=$ 'L' : apply Q, Q^{\top}, or Q^{H} from the left.
	= 'R' : apply Q, Q^{\top}, or Q^{H} from the right.
trans	= 'N', no transpose, apply Q.
	$=$ ' T ', transpose, apply Q^{\top}.
	= ' ' ', transpose, apply Q^{H}.
m	The number of rows in the matrix $B,(m \geq 0)$.
n	The number of columns in the matrix $B,(n \geq 0)$.
k	The number of elementary reflectors whose product defines the matrix Q, ($k \geq 0$).
1	The order of the trapezoidal part of $V(k \geq 1 \geq 0)$.
nb	The block size used for the storage of $t, k \geq n b \geq 1$. This must be the same value of $n b$ used to generate t in tpqrt.
v	Size $l d v^{*} k$ for column major layout; $l d v^{*} m$ for row major layout and side = 'L', $I d v^{*} n$ for row major layout and side = 'R'.
	The i th column must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by tpqrt in array argument b.
$I d v$	The leading dimension of the array v.
	If side = 'L', $I d v$ must be at least $\max (1, m)$ for column major layout and max(1, k for row major layout;
	If side = 'R', ldv must be at least max $(1, n)$ for column major layout and $\max (1, k$ for row major layout.
t	Array, size $l d t^{*} k$ for column major layout and $l d t^{*} n b$ for row major layout.
	The upper triangular factors of the block reflectors as returned by tpqrt
$1 d t$	The leading dimension of the array t. Idt must be at least $n b$ for column major layout and max (1, k for row major layout.
a	If side $=$ 'L', size $I d^{*} n$ for column major layout and $l d a * k$ for row major layout..
	If side $=$ 'R', size $l d a^{*} k$ for column major layout and $l d a^{*} m$ for row major layout..
	The k-by-n or m-by- k matrix A.
Ida	The leading dimension of the array a.

[^1]The leading dimension of the array a.

If side = 'L', Ida must be at least max $(1, k)$ for column major layout and $\max (1, n$ for row major layout.

If side = 'R', Ida must be at least $\max (1, m)$ for column major layout and $\max (1, k$ for row major layout.
b
Size $I d b_{n}$ for column major layout and $I d b_{m}$ for row major layout.
The m-by- n matrix B.
The leading dimension of the array b. Idb must be at least max $(1, m)$ for column major layout and $\max (1, n$ for row major layout.

Output Parameters

a
Overwritten by the corresponding block of the product $Q^{*} C, C^{*} Q, Q^{\top *} C$, $C^{*} Q^{\top}, Q^{H *} C$, or $C^{*} Q^{H}$.

Overwritten by the corresponding block of the product $Q^{*} C, C^{*} Q, Q^{\top} C$, $C^{*} Q^{\top}, Q^{H *} C$, or $C^{*} Q^{H}$.

Return Values

This function returns a value info.
If inforo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Singular Value Decomposition: LAPACK Computational Routines

This topic describes LAPACK routines for computing the singular value decomposition (SVD) of a general m-by-n matrix A :
$A=U \Sigma V^{H}$.
In this decomposition, U and V are unitary (for complex A) or orthogonal (for real A); Σ is an m-by- n diagonal matrix with real diagonal elements σ_{i} :
$\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{\min (m, n)} \geq 0$.
The diagonal elements σ_{i} are singular values of A. The first min (m, n) columns of the matrices U and V are, respectively, left and right singular vectors of A. The singular values and singular vectors satisfy
$A v_{i}=\sigma_{i} u_{i}$ and $A^{H} u_{i}=\sigma_{i} v_{i}$
where u_{i} and v_{i} are the i-th columns of U and V, respectively.
To find the SVD of a general matrix A, call the LAPACK routine ? gebrd or ? gbbrd for reducing A to a bidiagonal matrix B by a unitary (orthogonal) transformation: $A=Q B P^{H}$. Then call ?bdsqr, which forms the SVD of a bidiagonal matrix: $B=U_{1} \Sigma V_{1}{ }^{H}$.
Thus, the sought-for SVD of A is given by $A=U \Sigma V^{H}=\left(Q U_{1}\right) \Sigma\left(V_{1}{ }^{H} P^{H}\right)$.
Table "Computational Routines for Singular Value Decomposition (SVD)" lists LAPACK routines that perform singular value decomposition of matrices.
Computational Routines for Singular Value Decomposition (SVD)

Operation	Real matrices	Complex matrices
Reduce A to a bidiagonal matrix $B: A=Q B P^{H}$ (full storage)	?gebrd	?gebrd

Operation	Real matrices	Complex matrices
Reduce A to a bidiagonal matrix $B: A=Q B P^{H}$ (band storage)	?gbbrd	?gbbrd
Generate the orthogonal (unitary) matrix Q or P	?orgbr	?ungbr
Apply the orthogonal (unitary) matrix Q or P	?ormbr	?unmbr
Form singular value decomposition of the bidiagonal matrix $B: B=U \Sigma V^{H}$?bdsqr ?bdsdc	?bdsqr

Decision Tree: Singular Value Decomposition

Figure "Decision Tree: Singular Value Decomposition" presents a decision tree that helps you choose the right sequence of routines for SVD, depending on whether you need singular values only or singular vectors as well, whether A is real or complex, and so on.
You can use the SVD to find a minimum-norm solution to a (possibly) rank-deficient least squares problem of minimizing $||A x-b||^{2}$. The effective rank k of the matrix A can be determined as the number of singular values which exceed a suitable threshold. The minimum-norm solution is
$x=V_{k}\left(\Sigma_{k}\right)^{-1} C$
where Σ_{k} is the leading k-by- k submatrix of $\Sigma_{\text {, the }}$ the matrix V_{k} consists of the first k columns of $V=P V_{1}$, and the vector c consists of the first k elements of $U^{H} b=U_{1}{ }^{H} Q^{H} b$.

?gebrd
 Reduces a general matrix to bidiagonal form.

Syntax

```
lapack_int LAPACKE_sgebrd( int matrix_layout, lapack_int m, lapack_int n, float* a,
lapack_int lda, float* d, float* e, float* tauq, float* taup );
lapack_int LAPACKE_dgebrd( int matrix_layout, lapack_int m, lapack_int n, double* a,
lapack_int lda, double* d, double* e, double* tauq, double* taup );
lapack_int LAPACKE_cgebrd( int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_float* a, lapack_int lda, float* d, float* e, lapack_complex_float*
tauq, lapack_complex_float* taup );
lapack_int LAPACKE_zgebrd( int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_double* a, lapack_int lda, double* d, double* e, lapack_complex_double*
tauq, lapack_complex_double* taup );
```

Include Files

- mkl.h

Description

The routine reduces a general m-by-n matrix A to a bidiagonal matrix B by an orthogonal (unitary) transformation.

If $m \geq n$, the reduction is given by $A=Q B P^{H}=\binom{B_{1}}{0} P^{H}=Q_{1} B_{1} P_{H}$,
where B_{1} is an n-by-n upper diagonal matrix, Q and P are orthogonal or, for a complex A, unitary matrices; Q_{1} consists of the first n columns of Q.
If $m<n$, the reduction is given by
$A=Q^{*} B^{\star} P^{H}=Q^{\star}\left(B_{1} 0\right) * P^{H}=Q_{1}{ }^{*} B_{1}{ }^{\star} P_{1}{ }^{H}$,
where B_{1} is an m-by- m lower diagonal matrix, Q and P are orthogonal or, for a complex A, unitary matrices; P_{1} consists of the first m columns of P.

The routine does not form the matrices Q and P explicitly, but represents them as products of elementary reflectors. Routines are provided to work with the matrices Q and P in this representation:
If the matrix A is real,

- to compute Q and P explicitly, call orgbr.
- to multiply a general matrix by Q or P, call ormbr.

If the matrix A is complex,

- to compute Q and P explicitly, call ungbr.
- to multiply a general matrix by Q or P, call unmbr.

Input Parameters

```
matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
    or column major (LAPACK_COL_MAJOR).
    The number of rows in the matrix A(m\geq0).
    The number of columns in A(n\geq0).
```

a
lda

Arrays:
a (size $\max \left(1, I d a_{n}\right)$ for column major layout and $\max \left(1, I a^{*} *_{m}\right)$ for row major layout) contains the matrix A.

The leading dimension of a; at least $\max (1, m)$ for column major layout and at least $\max (1, n)$ for row major layout.

Output Parameters

a
d
e
tauq, taup

If $m \geq n$, the diagonal and first super-diagonal of a are overwritten by the upper bidiagonal matrix B. The elements below the diagonal, with the array tauq, represent the orthogonal matrix Q as a product of elementary reflectors, and the elements above the first superdiagonal, with the array taup, represent the orthogonal matrix P as a product of elementary reflectors.

If $m<n$, the diagonal and first sub-diagonal of a are overwritten by the lower bidiagonal matrix B. The elements below the first subdiagonal, with the array tauq, represent the orthogonal matrix Q as a product of elementary reflectors, and the elements above the diagonal, with the array taup, represent the orthogonal matrix P as a product of elementary reflectors.

Array, size at least max $(1, \min (m, n))$.
Contains the diagonal elements of B.
Array, size at least $\max (1, \min (m, n)-1)$. Contains the off-diagonal elements of B.

Arrays, size at least max (1, $\min (m, n)$). The scalar factors of the elementary reflectors which represent the orthogonal or unitary matrices P and Q.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed matrices Q, B, and P satisfy $Q B P^{H}=A+E$, where $\left|\left|E\left\|_{2}=C(n) \varepsilon\right\| A\right| \|_{2}, C(n)\right.$ is a modestly increasing function of n, and ε is the machine precision.

The approximate number of floating-point operations for real flavors is

```
(4/3)* n}\mp@subsup{}{2*}{*}(3*m-n) for m\geqn
(4/3)* m}\mp@subsup{}{2}{*}(3*n-m) for m<n
```

The number of operations for complex flavors is four times greater.
If n is much less than m, it can be more efficient to first form the $Q R$ factorization of A by calling geqrf and then reduce the factor R to bidiagonal form. This requires approximately $2 \star n^{2} *(m+n)$ floating-point operations.

If m is much less than n, it can be more efficient to first form the $L Q$ factorization of A by calling gelqf and then reduce the factor L to bidiagonal form. This requires approximately $2 * m^{2} *(m+n)$ floating-point operations.

?gbbrd
 Reduces a general band matrix to bidiagonal form.

Syntax

```
lapack_int LAPACKE_sgbbrd( int matrix_layout, char vect, lapack_int m, lapack_int n,
lapack_int ncc, lapack_int kl, lapack_int ku, float* ab, lapack_int ldab, float* d,
float* e, float* q, lapack_int ldq, float* pt, lapack_int ldpt, float* c, lapack_int
ldc );
lapack_int LAPACKE_dgbbrd( int matrix_layout, char vect, lapack_int m, lapack_int n,
lapack_int ncc, lapack_int kl, lapack_int ku, double* ab, lapack_int ldab, double* d,
double* e, double* q, lapack_int ldq, double* pt, lapack_int ldpt, double* c, lapack_int
ldc );
lapack_int LAPACKE_cgbbrd( int matrix_layout, char vect, lapack_int m, lapack_int n,
lapack_int ncc, lapack_int kl, lapack_int ku, lapack_complex_float* ab, lapack_int
ldab, float* d, float* e, lapack_complex_float* q, lapack_int ldq,
lapack_complex_float* pt, lapack_int ldpt, lapack_complex_float* c, lapack_int ldc );
lapack_int LAPACKE_zgbbrd( int matrix_layout, char vect, lapack_int m, lapack_int n,
lapack_int ncc, lapack_int kl, lapack_int ku, lapack_complex_double* ab, lapack_int
ldab, double* d, double* e, lapack_complex_double* q, lapack_int ldq,
lapack_complex_double* pt, lapack_int ldpt, lapack_complex_double* c, lapack_int ldc );
```

Include Files

- mkl.h

Description

The routine reduces an m-by- n band matrix A to upper bidiagonal matrix $B: A=Q^{\star} B \star P^{H}$. Here the matrices Q and P are orthogonal (for real A) or unitary (for complex A). They are determined as products of Givens rotation matrices, and may be formed explicitly by the routine if required. The routine can also update a matrix C as follows: $C=Q^{H}{ }^{*} C$.

Input Parameters

```
matrix_layout
vect Must be 'N' or 'Q' or 'P' or 'B'.
    If vect = 'N', neither Q nor PH}\mathrm{ is generated.
    If vect = 'Q', the routine generates the matrix Q
    If vect = 'P', the routine generates the matrix PH
    If vect = 'B', the routine generates both Q and PH}\mathrm{ .
    The number of rows in the matrix A(m\geq0).
    The number of columns in A(n\geq0).
```

```
nCc The number of columns in C (ncc\geq0).
kl
ku
ab, c
ldab
ldq
ldpt
ldc
The leading dimension of the array \(c\).
```

```
ldc\geq max(1, m) if ncc > 0; ldc\geq 1 if ncc = 0.
```

```
ldc\geq max(1, m) if ncc > 0; ldc\geq 1 if ncc = 0.
```


Output Parameters

d
e
c

Overwritten by values generated during the reduction.
Array, size at least $\max (1, \min (m, n))$. Contains the diagonal elements of the matrix B.

Array, size at least max $(1, \min (m, n)-1)$.
Contains the off-diagonal elements of B.
Arrays:
q size $\max \left(1, l d q^{*} m\right)$ contains the output m-by- m matrix Q.
p size $\max \left(1, I d p t^{*} n\right)$ contains the output n-by- n matrix P^{T}.
Overwritten by the product $Q^{H \star} C$.
c is not referenced if $n c c=0$.

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed matrices Q, B, and P satisfy $Q^{\star} B^{\star} P^{H}=A+E$, where $\left|\left|E\left\|_{2}=C(n) \varepsilon\right\| A\right|\right|_{2}, C(n)$ is a modestly increasing function of n, and ε is the machine precision.

If $m=n$, the total number of floating-point operations for real flavors is approximately the sum of:

```
6* n}\mp@subsup{n}{}{2*}(kl + ku) if vect = 'N' and ncc = 0
3* n}\mp@subsup{n}{}{2*}nC\mp@subsup{C}{}{*}(kl+ku - 1)/(kl + ku) if C is updated, and
3* 的*(kl + ku - 1)/(kl + ku) if either Q or PH}\mathrm{ is generated (double this if both).
```

To estimate the number of operations for complex flavors, use the same formulas with the coefficients 20 and 10 (instead of 6 and 3).

```
?orgbr
Generates the real orthogonal matrix Q or P}\mp@subsup{P}{}{T
determined by ?gebrd.
```


Syntax

```
lapack_int LAPACKE_sorgbr (int matrix_layout, char vect, lapack_int m, lapack_int n,
lapack_int k, float* a, lapack_int lda, const float* tau);
lapack_int LAPACKE_dorgbr (int matrix_layout, char vect, lapack_int m, lapack_int n,
lapack_int k, double* a, lapack_int lda, const double* tau);
```


Include Files

- mkl.h

Description

The routine generates the whole or part of the orthogonal matrices Q and P^{T} formed by the routines gebrd. Use this routine after a call to sgebrd/dgebrd. All valid combinations of arguments are described in Input parameters. In most cases you need the following:

To compute the whole m-by- m matrix Q :

```
LAPACKE_?orgbr(matrix_layout, 'Q', m, m, n, a, lda, tau )
```

(note that the array a must have at least m columns).
To form the n leading columns of Q if $m>n$:

```
LAPACKE_?orgbr(matrix_layout, 'Q', m, n, n, a, lda, tau )
```

To compute the whole n-by-n matrix P^{T} :

```
LAPACKE_?orgbr(matrix_layout, 'P', n, n, m, a, lda, tau )
```

(note that the array a must have at least n rows).
To form the m leading rows of P^{T} if $m<n$:

```
LAPACKE_?orgbr(matrix_layout, 'P', m, n, m, a, lda, tau )
```


Input Parameters

```
matrix_layout
vect Must be 'Q' or 'P'.
    If vect = 'Q', the routine generates the matrix Q .
    If vect = 'P', the routine generates the matrix PT
```

```
m, n
k
a
Ida
tau
The number of rows ( \(m\) ) and columns ( \(n\) ) in the matrix \(Q\) or \(P^{T}\) to be returned ( \(m \geq 0, n \geq 0\) ).
If vect \(=\) ' \(Q\) ', \(m \geq n \geq \min (m, k)\).
If vect \(=' P^{\prime}, n \geq m \geq \min (n, k)\).
```

k
a

Ida
tau

```
If vect \(=\) ' \(Q\) ', the number of columns in the original \(m\)-by- \(k\) matrix reduced by gebrd.
If vect \(=\) ' \(P\) ', the number of rows in the original \(k\)-by- \(n\) matrix reduced by gebrd.
Array, size at least \(I d a_{n}\) for column major layout and \(I d^{*} *_{m}\) for row major layout. The vectors which define the elementary reflectors, as returned by gebrd.
The leading dimension of the array \(a\). \(1 d a \geq \max (1, m)\) for column major layout and at least max \((1, n)\) for row major layout .
Array, size min \((m, k)\) if vect \(=\) ' \(Q\) ', min \((n, k)\) if vect \(=\) ' \(P^{\prime}\). Scalar factor of the elementary reflector \(H(i)\) or \(G(i)\), which determines \(Q\) and \(P^{T}\) as returned by gebrd in the array tauq or taup.
```


Output Parameters

a
Overwritten by the orthogonal matrix Q or P^{T} (or the leading rows or columns thereof) as specified by vect, m, and n.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that $||E||_{2}=O(\varepsilon)$.
The approximate numbers of floating-point operations for the cases listed in Description are as follows:
To form the whole of Q :

```
(4/3)* n* (3m}\mp@subsup{}{}{2}-3\mp@subsup{m}{}{\star}n+\mp@subsup{n}{}{2})\mathrm{ if }m>n
(4/3)* * m
```

To form the n leading columns of Q when $m>n$:

$$
(2 / 3) * n^{2} \star(3 m-n) \text { if } m>n
$$

To form the whole of P^{T} :
$(4 / 3) * n^{3}$ if $m \geq n$;
$(4 / 3) \star m^{\star}\left(3 n^{2}-3 m^{\star} n+m^{2}\right)$ if $m<n$.
To form the m leading columns of P^{T} when $m<n$:
$(2 / 3) \star n^{2 \star}(3 m-n)$ if $m>n$.
The complex counterpart of this routine is ungbr.

```
?ormbr
Multiplies an arbitrary real matrix by the real
orthogonal matrix Q or }\mp@subsup{P}{}{T}\mathrm{ determined by ?gebrd.
```


Syntax

```
lapack_int LAPACKE_sormbr (int matrix_layout, char vect, char side, char trans,
```

lapack_int LAPACKE_sormbr (int matrix_layout, char vect, char side, char trans,
lapack_int m, lapack_int n, lapack_int k, const float* a, lapack_int lda, const float*
lapack_int m, lapack_int n, lapack_int k, const float* a, lapack_int lda, const float*
tau, float* c, lapack_int ldc);
tau, float* c, lapack_int ldc);
lapack_int LAPACKE_dormbr (int matrix_layout, char vect, char side, char trans,
lapack_int LAPACKE_dormbr (int matrix_layout, char vect, char side, char trans,
lapack_int m, lapack_int n, lapack_int k, const double* a, lapack_int lda, const
lapack_int m, lapack_int n, lapack_int k, const double* a, lapack_int lda, const
double* tau, double* c, lapack_int ldc);

```
double* tau, double* c, lapack_int ldc);
```


Include Files

- mkl.h

Description

Given an arbitrary real matrix C, this routine forms one of the matrix products $Q^{\star} C, Q^{T} C_{1} C^{\star} Q, C^{\star} Q^{T}, P^{\star} C$, $P^{T \star} C, C^{\star} P, C^{\star} P^{T}$, where Q and P are orthogonal matrices computed by a call to gebrd. The routine overwrites the product on C.

Input Parameters

In the descriptions below, r denotes the order of Q or P^{T} :

```
If side = 'L',r = m; if side = 'R', r = n.
```

vect Must be 'Q' or 'P'.
m
n
k
matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
If vect $=$ ' Q ', then Q or Q^{T} is applied to C.
If vect $=$ ' P ', then P or P_{T} is applied to C.
Must be 'L' or 'R'.
If side $=$ 'L', multipliers are applied to C from the left.
If side $=$ ' R ', they are applied to C from the right.
Must be 'N' or 'T'.
If trans $=$ ' N ', then Q or P is applied to C.
If trans $=$ ' T ', then Q^{T} or P^{T} is applied to C.

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'Q' or 'P'.
If vect $=$ ' Q ', then Q or Q^{T} is applied to C.
If vect $=$ ' P ', then P or P_{T} is applied to C.
Must be 'L' or 'R'.
If side $=$ 'L', multipliers are applied to C from the left.
If side $=$ ' R ', they are applied to C from the right.
Must be 'N' or 'T'.
If trans $=$ ' N ', then Q or P is applied to C.
If trans $=$ ' T ', then Q^{T} or P^{T} is applied to C.
The number of rows in C.
The number of columns in C.
One of the dimensions of A in ? gebrd:
If vect $=$ ' Q ', the number of columns in A;
If vect $=$ ' P ', the number of rows in A.
Constraints: $m \geq 0, n \geq 0, k \geq 0$.
a, c

Ida
ldC
tau

Arrays:
a is the array a as returned by ?gebrd.
The size of a depends on the value of the matrix_layout, vect, and side parameters:

matrix_layout	vect	side	size
column major	'Q'	-	$\max \left(1, I a^{*} k\right)$
column major	'P'	'L'	$\max \left(1, I d^{*} *_{m}\right)$
column major	'P'	'R'	$\max \left(1, I d^{*}{ }_{n}\right)$
row major	'Q'	'L'	$\max \left(1, I d a^{*}\right)$
row major	'Q'	'R'	$\max \left(1, I d^{*}{ }_{n}\right)$
row major	'P'	-	$\max \left(1, I a^{*} k\right)$

$c\left(\right.$ size $\max \left(1, I d c_{n}\right)$ for column major layout and $\max \left(1, I d c^{*} m\right)$ for row major layout) holds the matrix C.

The leading dimension of a. Constraints:
Ida $\geq \max (1, r)$ for column major layout and at least $\max (1, k)$ for row major layout if vect = 'Q';
$I d a \geq \max (1, \min (r, k))$ for column major layout and at least $\max (1, r)$ for row major layout if vect $=$ ' P'.

The leading dimension of c; $I d c \geq \max (1, m)$ for column major layout and $l d c \geq \max (1, n)$ for row major layout .

Array, size at least $\max (1, \min (r, k))$.
For vect $=$ ' Q ', the array tauq as returned by ? gebrd. For vect $=$ ' P ', the array taup as returned by ? gebrd.

Output Parameters

C
Overwritten by the product $Q^{\star} C, Q^{T *} C, C^{\star} Q, C^{\star} Q,{ }^{T}, P^{\star} C, P^{T *} C, C^{\star} P$, or $C^{\star} P^{T}$, as specified by vect, side, and trans.

Return Values

This function returns a value info.
If info=0, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed product differs from the exact product by a matrix E such that $\left||E|_{2}=O(\varepsilon) *\right||C| I_{2}$.
The total number of floating-point operations is approximately

```
2* n* k(2*m - k) if side = 'L' and m\geqk;
2*m*k(2*n - k) if side = 'R' and n\geqk;
```

```
2* m}\mp@subsup{}{2}{*}n\mathrm{ if side = 'L' and m<k;
2* n}\mp@subsup{}{}{2
```

The complex counterpart of this routine is unmbr.

```
?ungbr
Generates the complex unitary matrix Q or PH
determined by ?gebrd.
```


Syntax

```
lapack_int LAPACKE_cungbr (int matrix_layout, char vect, lapack_int m, lapack_int n,
lapack_int k, lapack_complex_float* a, lapack_int lda, const lapack_complex_float*
tau);
lapack_int LAPACKE_zungbr (int matrix_layout, char vect, lapack_int m, lapack_int n,
lapack_int k, lapack_complex_double* a, lapack_int lda, const lapack_complex_double*
tau);
```

Include Files

- mkl.h

Description

The routine generates the whole or part of the unitary matrices Q and P^{H} formed by the routines gebrd. Use this routine after a call to cgebrd/zgebrd. All valid combinations of arguments are described in Input Parameters; in most cases you need the following:
To compute the whole m-by- m matrix Q, use:

```
LAPACKE_?ungbr(matrix_layout, 'Q', m, m, n, a, lda, tau)
```

(note that the arraya must have at least m columns).
To form the n leading columns of Q if $m>n$, use:

```
LAPACKE_?ungbr(matrix_layout, 'Q', m, n, n, a, lda, tau)
```

To compute the whole n-by-n matrix P^{H}, use:

```
LAPACKE_?ungbr(matrix_layout, 'P', n, n, m, a, lda, tau)
```

(note that the array a must have at least n rows).
To form the m leading rows of P^{H} if $m<n$, use:

```
LAPACKE_?ungbr(matrix_layout, 'P', m, m, n, a, lda, tau)
```


Input Parameters

```
matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
    or column major (LAPACK_COL_MAJOR).
    Must be 'Q' or 'P'.
    If vect = 'Q', the routine generates the matrix Q
    If vect = 'P', the routine generates the matrix PH
    The number of required rows of Q or PH
    The number of required columns of Q or PH
```

k
a

Ida
tau

One of the dimensions of A in ? gebrd:
If vect $=$ ' Q ', the number of columns in A;
If vect $=$ ' P ', the number of rows in A.
Constraints: $m \geq 0, n \geq 0, k \geq 0$.
For vect $=$ ' Q ': $k \leq n \leq m$ if $m>k$, or $m=n$ if $m \leq k$.
For vect $=$ ' $\mathrm{P}^{\prime}: k \leq m \leq n$ if $n>k$, or $m=n$ if $n \leq k$.
Arrays:
a, size at least $I d^{*}{ }_{n}$ for column major layout and $I d^{*} *_{m}$ for row major layout, is the array a as returned by ?gebrd.

The leading dimension of a; at least $\max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.

For vect = 'Q', the array tauq as returned by ?gebrd. For vect = 'P', the array taup as returned by ?gebrd.

The dimension of tau must be at least $\max (1, \min (m, k))$ for vect $=1 Q$ ', or $\max (1, \min (m, k))$ for vect $=' \mathrm{P}$ '.

Output Parameters

a
Overwritten by the orthogonal matrix Q or P^{T} (or the leading rows or columns thereof) as specified by vect, m, and n.

Return Values

This function returns a value info.
If infor 0 , the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that $\left|\mid E \|_{2}=O(\varepsilon)\right.$.
The approximate numbers of possible floating-point operations are listed below:
To compute the whole matrix Q :
$(16 / 3) n\left(3 m^{2}-3 m^{\star} n+n^{2}\right)$ if $m>n$;
$(16 / 3) m^{3}$ if $m \leq n$.
To form the n leading columns of Q when $m>n$:
$(8 / 3) n^{2}\left(3 m-n^{2}\right)$.
To compute the whole matrix P^{H} :
$(16 / 3) n^{3}$ if $m \geq n$;
$(16 / 3) m\left(3 n^{2}-3 m^{\star} n+m^{2}\right)$ if $m<n$.
To form the m leading columns of P^{H} when $m<n$:
$(8 / 3) n^{2}\left(3 m-n^{2}\right)$ if $m>n$.
The real counterpart of this routine is orgbr.

```
?unmbr
Multiplies an arbitrary complex matrix by the unitary
matrix Q or P determined by ?gebrd.
```


Syntax

```
lapack_int LAPACKE_cunmbr (int matrix_layout, char vect, char side, char trans,
```

lapack_int LAPACKE_cunmbr (int matrix_layout, char vect, char side, char trans,
lapack_int m, lapack_int n, lapack_int k, const lapack_complex_float* a, lapack_int
lapack_int m, lapack_int n, lapack_int k, const lapack_complex_float* a, lapack_int
lda, const lapack_complex_float* tau, lapack_complex_float* c, lapack_int ldc);
lda, const lapack_complex_float* tau, lapack_complex_float* c, lapack_int ldc);
lapack_int LAPACKE_zunmbr (int matrix_layout, char vect, char side, char trans,
lapack_int LAPACKE_zunmbr (int matrix_layout, char vect, char side, char trans,
lapack_int m, lapack_int n, lapack_int k, const lapack_complex_double* a, lapack_int
lapack_int m, lapack_int n, lapack_int k, const lapack_complex_double* a, lapack_int
lda, const lapack_complex_double* tau, lapack_complex_double* c, lapack_int ldc);

```
lda, const lapack_complex_double* tau, lapack_complex_double* c, lapack_int ldc);
```


Include Files

- mkl.h

Description

Given an arbitrary complex matrix C, this routine forms one of the matrix products $Q^{*} C, Q^{H *} C, C * Q, C^{*} Q^{H}$, $P^{*} C, P^{H *} C, C^{*} P$, or $C^{*} P^{H}$, where Q and P are unitary matrices computed by a call to gebrd/gebrd. The routine overwrites the product on C.

Input Parameters

In the descriptions below, r denotes the order of Q or P^{H} :

$$
\text { If side }=\text { 'L', } r=m \text {; if side }=\text { 'R', } r=n \text {. }
$$

```
matrix_layout
vect Must be 'Q'or 'P'.
    If vect = 'Q', then Q or QH}\mathrm{ is applied to C.
    If vect = 'P', then P or PH}\mathrm{ is applied to C.
    Must be 'L' or 'R'.
    If side = 'L', multipliers are applied to C from the left.
    If side = 'R', they are applied to C from the right.
    Must be 'N' or 'C'.
    If trans = 'N', then Q or P is applied to C.
    If trans = 'C', then QH}\mathrm{ or PH}\mathrm{ is applied to C.
    The number of rows in C.
    The number of columns in C.
    One of the dimensions of A in ?gebrd:
    If vect = 'Q', the number of columns in A;
    If vect = 'P', the number of rows in A.
```

 Constraints: \(m \geq 0, n \geq 0, k \geq 0\).
 a, c

Ida

IdC
tau

Arrays:
a is the array a as returned by ?gebrd.
The size of a depends on the value of the matrix_layout, vect, and side parameters:

matrix_layout	vect	side	size
column major	'Q'	-	$\max \left(1, I d a *_{k}\right)$
column major	'P'	'L'	$\max \left(1, I d a *_{m}\right)$
column major	'P'	'R'	$\max \left(1, I d a *_{n}\right)$
row major	'Q'	'L'	$\max \left(1, I d a *_{m}\right)$
row major	'Q'	'R'	$\max \left(1, I d a *_{n}\right)$
row major	'P'	-	$\max \left(1, I d a *_{k}\right)$

c (size $\max \left(1, I d c^{*} n\right.$) for column major layout and $\max \left(1, I d c^{*} m\right.$ for row major layout) holds the matrix C.

The leading dimension of a. Constraints:
Ida $\geq \max (1, r)$ for column major layout and at least max($1, k$) for row major layout if vect = 'Q';
$I d a \geq \max (1, \min (r, k))$ for column major layout and at least $\max (1, r)$ for row major layout if vect $=$ ' P '.

The leading dimension of $c ; l d c \geq \max (1, m)$.
Array, size at least max $(1, \min (r, k))$.
For vect = 'Q', the array tauq as returned by ?gebrd. For vect = 'P', the array taup as returned by ?gebrd.

Output Parameters

c

Overwritten by the product $Q^{*} C, Q^{H *} C, C^{*} Q, C^{*} Q^{H}, P^{*} C, P^{H *} C, C^{*} P$, or $C * P^{H}$, as specified by vect, side, and trans.

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed product differs from the exact product by a matrix E such that $\left.\left||E|_{2}=O(\varepsilon)^{*}\right||C|\right|_{2}$. The total number of floating-point operations is approximately

$$
8 * n * k(2 * m-k) \text { if side }=\text { 'L' and } m \geq k \text {; }
$$

```
8*m*k(2*n - k) if side = 'R' and n\geqk;
8* m}\mp@subsup{}{2}{*}n\mathrm{ n if side = 'L' and m < k;
8* n}\mp@subsup{n}{}{*
```

The real counterpart of this routine is ormbr.

?bdsqr

Computes the singular value decomposition of a general matrix that has been reduced to bidiagonal form.

Syntax

```
lapack_int LAPACKE_sbdsqr( int matrix_layout, char uplo, lapack_int n, lapack_int ncvt,
lapack_int nru, lapack_int ncc, float* d, float* e, float* vt, lapack_int ldvt, float*
u, lapack_int ldu, float* c, lapack_int ldc );
lapack_int LAPACKE_dbdsqr( int matrix_layout, char uplo, lapack_int n, lapack_int ncvt,
lapack_int nru, lapack_int ncc, double* d, double* e, double* vt, lapack_int ldvt,
double* u, lapack_int ldu, double* c, lapack_int ldc );
lapack_int LAPACKE_cbdsqr( int matrix_layout, char uplo, lapack_int n, lapack_int ncvt,
lapack_int nru, lapack_int ncc, float* d, float* e, lapack_complex_float* vt,
lapack_int ldvt, lapack_complex_float* u, lapack_int ldu, lapack_complex_float* c,
lapack_int ldc );
lapack_int LAPACKE_zbdsqr( int matrix_layout, char uplo, lapack_int n, lapack_int ncvt,
lapack_int nru, lapack_int ncc, double* d, double* e, lapack_complex_double* vt,
lapack_int ldvt, lapack_complex_double* u, lapack_int ldu, lapack_complex_double* c,
lapack_int ldc );
```


Include Files

- mkl.h

Description

The routine computes the singular values and, optionally, the right and/or left singular vectors from the Singular Value Decomposition (SVD) of a real n-by- n (upper or lower) bidiagonal matrix B using the implicit zero-shift $Q R$ algorithm. The SVD of B has the form $B=Q^{\star} S^{\star} P^{H}$ where S is the diagonal matrix of singular values, Q is an orthogonal matrix of left singular vectors, and P is an orthogonal matrix of right singular vectors. If left singular vectors are requested, this subroutine actually returns $U * Q$ instead of Q, and, if right singular vectors are requested, this subroutine returns $p^{H} * V T$ instead of p^{H}, for given real/complex input matrices U and $V T$. When U and $V T$ are the orthogonal/unitary matrices that reduce a general matrix A to bidiagonal form: $A=U^{\star} B^{\star} V T$, as computed by ?gebrd, then
$A=\left(U^{\star} Q\right)^{\star} S^{\star}\left(P^{H \star} V T\right)$
is the SVD of A. Optionally, the subroutine may also compute $Q^{H} * C$ for a given real/complex input matrix C.

Input Parameters

```
matrix_layout
uplo Must be 'U' or 'L'.
```

If uplo = 'U', B is an upper bidiagonal matrix.
If uplo = 'L', B is a lower bidiagonal matrix.
The order of the matrix $B(n \geq 0)$.
The number of columns of the matrix $V T$, that is, the number of right singular vectors (ncvt ≥ 0).

Set ncvt $=0$ if no right singular vectors are required.
The number of rows in U, that is, the number of left singular vectors ($n r u \geq$ 0).

Set $n r u=0$ if no left singular vectors are required.
The number of columns in the matrix C used for computing the product $Q^{H *} C(n c c \geq 0)$. Set $n c c=0$ if no matrix C is supplied.

Arrays:
d contains the diagonal elements of B.
The size of d must be at least max $(1, n)$.
e contains the $(n-1)$ off-diagonal elements of B.
The size of e must be at least $\max (1, n-1)$.

Arrays:

$v t$, size $\max \left(1, l d v t^{*}{ }_{n c v t}\right)$ for column major layout and $\max \left(1, l d v t^{*}{ }_{n}\right)$ for row major layout, contains an n-by-ncvt matrix $V T$.
$v t$ is not referenced if $n c v t=0$.
u, size $\max \left(1, I d u^{*}\right)^{2}$ for column major layout and max $\left(1, I d u^{*} n r u\right)$ for row major layout, contains an nru by n matrix U.
u is not referenced if nru $=0$.
c, size $\max \left(1, l d^{*}{ }_{n c c}\right)$ for column major layout and $\max \left(1, I d_{C} *_{n}\right)$ for row major layout, contains the n-by-ncc matrix C for computing the product $Q^{H \star} C$.

The leading dimension of $v t$. Constraints:
$l d v t \geq \max (1, n)$ if $n c v t>0$ for column major layout and $I d v t \geq \max (1$, $n c v t$) for row major layout;
$l d v t \geq 1$ if $n c v t=0$.
The leading dimension of u. Constraint:
$I d u \geq \max (1, n r u)$ for column major layout and $I d u \geq \max (1, n)$ for row major layout.

The leading dimension of c. Constraints:
$I d c \geq \max (1, n)$ if $n c c>0$ for column major layout and $I d c \geq \max (1, n c c)$ for row major layout; $I d c \geq 1$ otherwise.

Output Parameters

d
On exit, if info $=0$, overwritten by the singular values in decreasing order (see info).

On exit, if info $=0, e$ is destroyed. See also info below.
Overwritten by the product $Q^{H *} C$.
On exit, this array is overwritten by $P^{H} * V T$. Not referenced if $n c v t=0$.
On exit, this array is overwritten by $U * Q$. Not referenced if nru $=0$.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info > 0,
If ncvt $=n r u=n c c=0$,

- info $=1$, a split was marked by a positive value in e
- info $=2$, the current block of z not diagonalized after $100 * n$ iterations (in the inner while loop)
- info $=3$, termination criterion of the outer while loop is not met (the program created more than n unreduced blocks).

In all other cases when ncvt, nru, or ncc > 0 , the algorithm did not converge; d and e contain the elements of a bidiagonal matrix that is orthogonally similar to the input matrix B; if info $=i, i$ elements of e have not converged to zero.

Application Notes

Each singular value and singular vector is computed to high relative accuracy. However, the reduction to bidiagonal form (prior to calling the routine) may decrease the relative accuracy in the small singular values of the original matrix if its singular values vary widely in magnitude.

If s_{i} is an exact singular value of B, and s_{i} is the corresponding computed value, then
$\left|s_{i}-\sigma_{i}\right| \leq p^{*}(m, n) * \varepsilon^{\star} \sigma_{i}$
where $p(m, n)$ is a modestly increasing function of m and n, and ε is the machine precision.
If only singular values are computed, they are computed more accurately than when some singular vectors are also computed (that is, the function $p(m, n)$ is smaller).
If u_{i} is the corresponding exact left singular vector of B, and w_{i} is the corresponding computed left singular vector, then the angle $\theta\left(u_{i}, w_{i}\right)$ between them is bounded as follows:
$\theta\left(u_{i}, w_{i}\right) \leq p(m, n) * \varepsilon / \min \underset{i \neq j}{ }\left(|\sigma i-\sigma j| /\left|\sigma_{i}+\sigma j\right|\right)$.
Here $\min _{i \neq j}\left(\left|\sigma_{i}-\sigma_{j}\right| /\left|\sigma_{i}+\sigma_{j}\right|\right)$ is the relative gap between σ_{i} and the other singular values. A similar error bound holds for the right singular vectors.
The total number of real floating-point operations is roughly proportional to n^{2} if only the singular values are computed. About $6 n^{2 *} n r u$ additional operations ($12 n^{2 \star} n r u$ for complex flavors) are required to compute the left singular vectors and about $6 n^{2} * n c v t$ operations ($12 n^{2} n^{2} n v t$ for complex flavors) to compute the right singular vectors.

```
?bdsdc
Computes the singular value decomposition of a real
bidiagonal matrix using a divide and conquer method.
Syntax
```

```
lapack_int LAPACKE_sbdsdc (int matrix_layout, char uplo, char compq, lapack_int n,
```

lapack_int LAPACKE_sbdsdc (int matrix_layout, char uplo, char compq, lapack_int n,
float* d, float* e, float* u, lapack_int ldu, float* vt, lapack_int ldvt, float* q,
float* d, float* e, float* u, lapack_int ldu, float* vt, lapack_int ldvt, float* q,
lapack_int* iq);
lapack_int* iq);
lapack_int LAPACKE_dbdsdc (int matrix_layout, char uplo, char compq, lapack_int n,
lapack_int LAPACKE_dbdsdc (int matrix_layout, char uplo, char compq, lapack_int n,
double* d, double* e, double* u, lapack_int ldu, double* vt, lapack_int ldvt, double* q,
double* d, double* e, double* u, lapack_int ldu, double* vt, lapack_int ldvt, double* q,
lapack_int* iq);
lapack_int* iq);
Include Files

```
- mkl.h

\section*{Description}

The routine computes the Singular Value Decomposition (SVD) of a real \(n\)-by- \(n\) (upper or lower) bidiagonal matrix \(B\) : \(B=U^{\star} \Sigma^{\star} V^{T}\), using a divide and conquer method, where \(\Sigma\) is a diagonal matrix with non-negative diagonal elements (the singular values of \(B\) ), and \(U\) and \(V\) are orthogonal matrices of left and right singular vectors, respectively. ?bdsdc can be used to compute all singular values, and optionally, singular vectors or singular vectors in compact form.
This rotuine
uses ?lasd0, ?lasd1, ?lasd2, ?lasd3, ?lasd4, ?lasd5, ?lasd6, ?lasd7, ?lasd8, ?lasd9, ?lasda, ?lasdq, ?lasdt.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', B is an upper bidiagonal matrix. \\
\hline & If uplo = 'L', B is a lower bidiagonal matrix. \\
\hline \multirow[t]{4}{*}{compq} & Must be 'N', 'P', or 'I'. \\
\hline & If compq = 'N', compute singular values only. \\
\hline & If compq = ' \(\mathrm{P}^{\prime}\), compute singular values and compute singular vectors in compact form. \\
\hline & If compq = 'I', compute singular values and singular vectors. \\
\hline \(n\) & The order of the matrix \(B(n \geq 0)\). \\
\hline \multirow[t]{3}{*}{\(d, e\)} & Arrays: \\
\hline & \(d\) contains the \(n\) diagonal elements of the bidiagonal matrix \(B\). The size of \(d\) must be at least \(\max (1, n)\). \\
\hline & \(e\) contains the off-diagonal elements of the bidiagonal matrix \(B\). The size of \(e\) must be at least \(\max (1, n)\). \\
\hline \(1 d u\) & The leading dimension of the output array \(u\); Id \(u \geq 1\). \\
\hline
\end{tabular}

If singular vectors are desired, then \(I d u \geq \max (1, n)\), regardless of the value of matrix_layout.
ldvt
The leading dimension of the output array \(v t\); \(/ d v t \geq 1\).
If singular vectors are desired, then \(I d v t \geq \max (1, n)\), regardless of the value of matrix_layout.

\section*{Output Parameters}
d
If info \(=0\), overwritten by the singular values of \(B\).
On exit, e is overwritten.
Arrays: \(u\left(\right.\) size \(\left.l d u^{*} n\right), v t\left(\right.\) size \(\left.l d v t^{*} n\right), q\left(\right.\) size \(\geq n^{*}\left(11+2^{*} \operatorname{smlsiz}+\right.\) \(\left.8 * \operatorname{int}\left(\log _{2}(n /(\operatorname{smlsiz}+1))\right)\right)\) where smlsiz is returned by ilaenv and is equal to maximum size of the subproblems at the bottom of the computation tree )..
If compq = 'I', then on exit \(u\) contains the left singular vectors of the bidiagonal matrix \(B\), unless info \(\neq 0\) (seeinfo). For other values of compq, \(u\) is not referenced.
if compq = 'I', then on exit \(v t^{T}\) contains the right singular vectors of the bidiagonal matrix \(B\), unless info \(\neq 0\) (seeinfo). For other values of compq, \(v t\) is not referenced.
If compq \(=\) ' \(P^{\prime}\), then on exit, if info \(=0, q\) and iq contain the left and right singular vectors in a compact form. Specifically, \(q\) contains all the float (for sbdsdc) or double (for dbdsdc) data for singular vectors. For other values of compq, \(q\) is not referenced.

Array: \(i q\left(\right.\) size \(\geq n^{*}\left(3+3 * \operatorname{int}\left(\log _{2}(n /(s m l s i z+1))\right)\right)\) where smlsiz is returned by ilaenv and is equal to maximum size of the subproblems at the bottom of the computation tree.).
If compq \(=\) ' \(P^{\prime}\), then on exit, if info \(=0, q\) and \(i q\) contain the left and right singular vectors in a compact form. Specifically, iq contains all the lapack_int data for singular vectors. For other values of compq, iq is not referenced.

\section*{Return Values}

This function returns a value info.
If inforo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If \(\operatorname{info}=i\), the algorithm failed to compute a singular value. The update process of divide and conquer failed.

\section*{Symmetric Eigenvalue Problems: LAPACK Computational Routines}

Symmetric eigenvalue problems are posed as follows: given an \(n\)-by- \(n\) real symmetric or complex Hermitian matrix \(A\), find the eigenvalues \(\lambda\) and the corresponding eigenvectors \(z\) that satisfy the equation \(A z=\lambda z\) (or, equivalently, \(z^{H} A=\lambda z^{H}\) ).

In such eigenvalue problems, all \(n\) eigenvalues are real not only for real symmetric but also for complex Hermitian matrices \(A\), and there exists an orthonormal system of \(n\) eigenvectors. If \(A\) is a symmetric or Hermitian positive-definite matrix, all eigenvalues are positive.

To solve a symmetric eigenvalue problem with LAPACK, you usually need to reduce the matrix to tridiagonal form and then solve the eigenvalue problem with the tridiagonal matrix obtained. LAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or unitary) similarity transformation \(A=\) \(Q T Q^{H}\) as well as for solving tridiagonal symmetric eigenvalue problems. These routines are listed in Table "Computational Routines for Solving Symmetric Eigenvalue Problems".

There are different routines for symmetric eigenvalue problems, depending on whether you need all eigenvectors or only some of them or eigenvalues only, whether the matrix \(A\) is positive-definite or not, and so on.

These routines are based on three primary algorithms for computing eigenvalues and eigenvectors of symmetric problems: the divide and conquer algorithm, the QR algorithm, and bisection followed by inverse iteration. The divide and conquer algorithm is generally more efficient and is recommended for computing all eigenvalues and eigenvectors. Furthermore, to solve an eigenvalue problem using the divide and conquer algorithm, you need to call only one routine. In general, more than one routine has to be called if the QR algorithm or bisection followed by inverse iteration is used.

Computational Routines for Solving Symmetric Eigenvalue Problems
\begin{tabular}{|c|c|c|}
\hline Operation & Real symmetric matrices & Complex Hermitian matrices \\
\hline Reduce to tridiagonal form \(A=Q T Q^{H}\) (full storage) & sytrd & hetrd \\
\hline Reduce to tridiagonal form \(A=Q T Q^{H}\) (packed storage) & sptrd & hptrd \\
\hline Reduce to tridiagonal form \(A=Q T Q^{H}\) (band storage). & sbtrd & hbtrd \\
\hline Generate matrix \(Q\) (full storage) & orgtr & ungtr \\
\hline Generate matrix \(Q\) (packed storage) & opgtr & upgtr \\
\hline Apply matrix \(Q\) (full storage) & ormtr & unmtr \\
\hline Apply matrix \(Q\) (packed storage) & opmtr & upmtr \\
\hline Find all eigenvalues of a tridiagonal matrix \(T\) & sterf & \\
\hline Find all eigenvalues and eigenvectors of a tridiagonal matrix \(T\) & steqr stedc & steqr stedc \\
\hline Find all eigenvalues and eigenvectors of a tridiagonal positive-definite matrix \(T\). & pteqr & pteqr \\
\hline Find selected eigenvalues of a tridiagonal matrix \(T\) & stebz stegr & stegr \\
\hline Find selected eigenvectors of a tridiagonal matrix \(T\) & stein stegr & stein stegr \\
\hline Find selected eigenvalues and eigenvectors of f a real symmetric tridiagonal matrix \(T\) & stemr & stemr \\
\hline Compute the reciprocal condition numbers for the eigenvectors & disna & disna \\
\hline
\end{tabular}
?sytrd
Reduces a real symmetric matrix to tridiagonal form.

\section*{Syntax}
```

lapack_int LAPACKE_ssytrd (int matrix_layout, char uplo, lapack_int n, float* a,
lapack_int lda, float* d, float* e, float* tau);
lapack_int LAPACKE_dsytrd (int matrix_layout, char uplo, lapack_int n, double* a,
lapack_int lda, double* d, double* e, double* tau);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine reduces a real symmetric matrix \(A\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation: \(A=Q{ }^{\star} T^{*} Q^{T}\). The orthogonal matrix \(Q\) is not formed explicitly but is represented as a product of \(n\)-1 elementary reflectors. Routines are provided for working with \(Q\) in this representation (see Application Notes below).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & The order of the matrix \(A(n \geq 0)\). \\
\hline a & a (size \(\max \left(1, l d a_{n}\right)\) ) is an array containing either upper or lower triangular part of the matrix \(A\), as specified by uplo. If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(A\) is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(A\) is not referenced. \\
\hline Ida & The leading dimension of \(a\); at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{a}

On exit,
if uplo = 'U', the diagonal and first superdiagonal of \(A\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements above the first superdiagonal, with the array tau, represent the orthogonal matrix \(Q\) as a product of elementary reflectors;
if uplo = 'L', the diagonal and first subdiagonal of \(A\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements below the first subdiagonal, with the array tau, represent the orthogonal matrix \(Q\) as a product of elementary reflectors.

Arrays:
\(d\) contains the diagonal elements of the matrix \(T\).
The size of \(d\) must be at least \(\max (1, n)\).
\(e\) contains the off-diagonal elements of \(T\).
The size of \(e\) must be at least max \((1, n-1)\).
tau stores ( \(n-1\) ) scalars that define elementary reflectors in decomposition of the orthogonal matrix \(Q\) in a product of \(n-1\) elementary reflectors. tau( \(n\) ) is used as workspace.

The size of tau must be at least max \((1, n)\).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\left.\left||E|_{I_{2}}=C(n) * \varepsilon^{\star}\right||A|\right|_{2}, C(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((4 / 3) n^{3}\).
After calling this routine, you can call the following:
```

orgtr to form the computed matrix Q explicitly
ormtr to multiply a real matrix by Q.

```

The complex counterpart of this routine is ?hetrd.
?orgtr
Generates the real orthogonal matrix \(Q\) determined
by ?sytrd.

\section*{Syntax}
```

lapack_int LAPACKE_sorgtr (int matrix_layout, char uplo, lapack_int n, float* a,
lapack_int lda, const float* tau);
lapack_int LAPACKE_dorgtr (int matrix_layout, char uplo, lapack_int n, double* a,
lapack_int lda, const double* tau);

```

Include Files
- mkl.h

\section*{Description}

The routine explicitly generates the \(n\)-by-n orthogonal matrix \(Q\) formed by ?sytrd when reducing a real symmetric matrix \(A\) to tridiagonal form: \(A=Q^{*} T^{*} Q^{T}\). Use this routine after a call to ?sytrd.

\section*{Input Parameters}
```

matrix_layout
uplo
n
a, tau
lda
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
Must be 'U' or 'L'.
Use the same uplo as supplied to ?sytrd.
The order of the matrix Q (}n\geq0)\mathrm{ .

```

\section*{Arrays:}
```

a (size $\max \left(1, I d a^{*} n\right)$) is the array a as returned by ?sytrd.
tau is the array tau as returned by ?sytrd.
The size of tau must be at least $\max (1, n-1)$.
The leading dimension of a; at least $\max (1, n)$.

```

\section*{Output Parameters}
a
Overwritten by the orthogonal matrix \(Q\).

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((4 / 3) n^{3}\).
The complex counterpart of this routine is ungtr.

\section*{?ormtr}

Multiplies a real matrix by the real orthogonal matrix \(Q\) determined by ?sytrd.

\section*{Syntax}
```

lapack_int LAPACKE_sormtr (int matrix_layout, char side, char uplo, char trans,
lapack_int m, lapack_int n, const float* a, lapack_int lda, const float* tau, float* c,
lapack_int ldc);
lapack_int LAPACKE_dormtr (int matrix_layout, char side, char uplo, char trans,
lapack_int m, lapack_int n, const double* a, lapack_int lda, const double* tau, double*
c, lapack_int ldc);

```

Include Files
- mkl.h

Description

The routine multiplies a real matrix \(C\) by \(Q\) or \(Q^{T}\), where \(Q\) is the orthogonal matrix \(Q\) formed by sytrd when reducing a real symmetric matrix \(A\) to tridiagonal form: \(A=Q^{*} T^{*} Q^{T}\). Use this routine after a call to ?sytrd.
Depending on the parameters side and trans, the routine can form one of the matrix products \(Q^{\star} C, Q^{T \star} C\), \(C^{\star} Q\), or \(C^{\star} Q^{T}\) (overwriting the result on \(C\) ).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) :


\section*{Output Parameters}
c
Overwritten by the product \(Q^{\star} C, Q^{T \star} C, C^{\star} Q\), or \(C^{\star} Q^{T}\) (as specified by side and trans).

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed product differs from the exact product by a matrix \(E\) such that \(\left.\left||E|_{2}=O(\varepsilon)^{*}\right||C|\right|_{2}\).

The total number of floating-point operations is approximately \(2 \star m^{2 \star} n\), if side \(=\) 'L', or \(2 \star n^{2} \star m\), if side \(=\) 'R'.

The complex counterpart of this routine is unmtr.

\section*{?hetrd}

Reduces a complex Hermitian matrix to tridiagonal form.

\section*{Syntax}
```

lapack_int LAPACKE_chetrd(int matrix_layout, char uplo, lapack_int n,
lapack_complex_float* a, lapack_int lda, float* d, float* e, lapack_complex_float*
tau);
lapack_int LAPACKE_zhetrd(int matrix_layout, char uplo, lapack_int n,
lapack_complex_double* a, lapack_int lda, double* d, double* e, lapack_complex_double*
tau);

```

Include Files
- mkl.h

\section*{Description}

The routine reduces a complex Hermitian matrix \(A\) to symmetric tridiagonal form \(T\) by a unitary similarity transformation: \(A=Q^{*} T * Q^{H}\). The unitary matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided to work with \(Q\) in this representation. (They are described later in this topic.)

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & The order of the matrix \(A(n \geq 0)\). \\
\hline a & a (size \(\max \left(1, I d a_{n}\right)\) ) is an array containing either upper or lower triangular part of the matrix \(A\), as specified by uplo. If uplo \(=\) ' \(U\) ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(A\) is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(A\) is not referenced. \\
\hline Ida & The leading dimension of \(a\); at least max (1, \(n\) ) . \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{a}

On exit,
if uplo = 'U', the diagonal and first superdiagonal of \(A\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements above the first superdiagonal, with the array tau, represent the orthogonal matrix \(Q\) as a product of elementary reflectors;
if uplo = 'L', the diagonal and first subdiagonal of \(A\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements below the first subdiagonal, with the array tau, represent the orthogonal matrix \(Q\) as a product of elementary reflectors.
\(d, e\)
tau

Arrays:
\(d\) contains the diagonal elements of the matrix \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e\) contains the off-diagonal elements of \(T\).
The dimension of \(e\) must be at least \(\max (1, n-1)\).
Array, size at least \(\max (1, n-1)\). Stores \((n-1)\) scalars that define elementary reflectors in decomposition of the unitary matrix \(Q\) in a product of \(n-1\) elementary reflectors.

\section*{Return Values}

This function returns a value info.
If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\left.\left||E|_{I_{2}}=C(n) * \varepsilon^{\star}\right||A|\right|_{2}, C(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is \((16 / 3) n^{3}\).
After calling this routine, you can call the following:
\begin{tabular}{ll} 
ungtr & to form the computed matrix \(Q\) explicitly \\
unmtr & to multiply a complex matrix by \(Q\).
\end{tabular}

The real counterpart of this routine is ?sytrd.
?ungtr
Generates the complex unitary matrix \(Q\) determined
by ?hetrd.

\section*{Syntax}
```

lapack_int LAPACKE_cungtr (int matrix_layout, char uplo, lapack_int n,
lapack_complex_float* a, lapack_int lda, const lapack_complex_float* tau);
lapack_int LAPACKE_zungtr (int matrix_layout, char uplo, lapack_int n,
lapack_complex_double* a, lapack_int lda, const lapack_complex_double* tau);

```

Include Files
- mkl.h

\section*{Description}

The routine explicitly generates the \(n\)-by- \(n\) unitary matrix \(Q\) formed by ?hetrd when reducing a complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q^{*} T^{*} Q^{H}\). Use this routine after a call to ?hetrd.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{2}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & Use the same uplo as supplied to ? hetrd. \\
\hline \(n\) & The order of the matrix \(Q(n \geq 0)\). \\
\hline \multirow[t]{4}{*}{a, tau} & Arrays: \\
\hline & \(a\) (size \(\max \left(1, I d a^{*}\right)\) ) is the array \(a\) as returned by ?hetrd. \\
\hline & tau is the array tau as returned by ?hetrd. \\
\hline & The dimension of tau must be at least max \((1, n-1)\). \\
\hline Ida & The leading dimension of \(a\); at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
Overwritten by the unitary matrix \(Q\).

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(Q\) differs from an exactly unitary matrix by a matrix \(E\) such that \(\left||E| I_{2}=O(\varepsilon)\right.\), where \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is \((16 / 3) n^{3}\).
The real counterpart of this routine is orgtr.
?unmtr
Multiplies a complex matrix by the complex unitary matrix \(Q\) determined by ?hetrd.

\section*{Syntax}
```

lapack_int LAPACKE_cunmtr (int matrix_layout, char side, char uplo, char trans,
lapack_int m, lapack_int n, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* tau, lapack_complex_float* c, lapack_int ldc);
lapack_int LAPACKE_zunmtr (int matrix_layout, char side, char uplo, char trans,
lapack_int m, lapack_int n, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* tau, lapack_complex_double* c, lapack_int ldc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine multiplies a complex matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix \(Q\) formed by ?hetrd when reducing a complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q^{*} T^{*} Q^{H}\). Use this routine after a call to ?hetrd.

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q^{*} C, Q^{H *} C\), \(C * Q\), or \(C^{*} Q^{H}\) (overwriting the result on \(C\) ).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) :
```

If side = 'L', r = m; if side = 'R', r = n.

```
matrix_layout
side
m
\(n\)
a, c, tau

Ida
ldc

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be either 'L' or 'R'.
If side \(=\) 'L', \(Q\) or \(Q^{H}\) is applied to \(C\) from the left.
If side \(=\) 'R', \(Q\) or \(Q^{H}\) is applied to \(C\) from the right.
Must be 'U' or 'L'.
Use the same uplo as supplied to ?hetrd.
Must be either 'N' or 'T'.
If trans \(=\) ' \(N\) ', the routine multiplies \(C\) by \(Q\).
If trans \(=\) ' C', the routine multiplies \(C\) by \(Q^{H}\).
The number of rows in the matrix \(C(m \geq 0)\).
The number of columns in \(C(n \geq 0)\).
a (size \(\max \left(1, I d a^{*} r\right)\) ) and tau are the arrays returned by ?hetrd.
The dimension of tau must be at least max \((1, r-1)\).
\(c\) (size \(\max \left(1, I d c^{*}\right)\) for column major layout and \(\max \left(1, I d c^{*} m\right.\) ) for row major layout) contains the matrix \(C\).

The leading dimension of \(a ; 1 d a \geq \max (1, r)\).
The leading dimension of \(c ; 1 d c \geq \max (1, n)\) for column major layout and \(I d c \geq \max (1, m)\) for row major layout .

\section*{Output Parameters}
c

Overwritten by the product \(Q^{*} C, Q^{H *} C, C^{*} Q\), or \(C^{*} Q^{H}\) (as specified by side and trans).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed product differs from the exact product by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)^{*}| | C| |_{2}\), where \(\varepsilon\) is the machine precision.
The total number of floating-point operations is approximately \(8{ }^{\star} m^{2}{ }^{*} n\) if side \(=\) 'L' or \(8 * n^{2}{ }^{\prime} m\) if side \(=\) 'R'.

The real counterpart of this routine is ormtr.
?sptrd
Reduces a real symmetric matrix to tridiagonal form
using packed storage.

\section*{Syntax}
```

lapack_int LAPACKE_ssptrd (int matrix_layout, char uplo, lapack_int n, float* ap,
float* d, float* e, float* tau);
lapack_int LAPACKE_dsptrd (int matrix_layout, char uplo, lapack_int n, double* ap,
double* d, double* e, double* tau);

```

Include Files
- mkl.h

\section*{Description}

The routine reduces a packed real symmetric matrix \(A\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation: \(A=Q^{*} T^{*} Q^{T}\). The orthogonal matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided for working with \(Q\) in this representation. See Application Notes below for details.

\section*{Input Parameters}
```

matrix_layout
uplo
n
ap
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
Must be 'U' or 'L'.
If uplo = 'U',ap stores the packed upper triangle of A.
If uplo = 'L', ap stores the packed lower triangle of }A\mathrm{ .
The order of the matrix $A(n \geq 0)$.
Array, size at least $\max (1, n(n+1) / 2)$. Contains either upper or lower triangle of A (as specified by uplo) in the packed form described in Matrix Storage Schemes.

```

\section*{Output Parameters}
ap
Overwritten by the tridiagonal matrix \(T\) and details of the orthogonal matrix \(Q\), as specified by uplo.
d, e, tau

\section*{Arrays:}
\(d\) contains the diagonal elements of the matrix \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e\) contains the off-diagonal elements of \(T\).
The dimension of \(e\) must be at least \(\max (1, n-1)\).
tau Stores ( \(n-1\) ) scalars that define elementary reflectors in decomposition of the matrix \(Q\) in a product of \(n-1\) reflectors.

The dimension of tau must be at least \(\max (1, n-1)\).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The matrix \(Q\) is represented as a product of \(n-1\) elementary reflectors, as follows :
- If uplo = 'U', \(Q=H(n-1) \quad \ldots \quad H(2) H(1)\)

Each \(H(\mathrm{i})\) has the form
\(H(i)=I-t a u^{\star} V^{\star} V^{T}\)
where tau is a real scalar and \(v\) is a real vector with \(v(i+1: n)=0\) and \(v(i)=1\).
On exit, tau is stored in tau[i-1], and \(v(1: i-1)\) is stored in \(A P\), overwriting \(A(1: i-1, i+1)\).
- If uplo = 'L', \(Q=H(1) H(2) \ldots H(n-1)\)

Each \(H(i)\) has the form
\(H(i)=I-t a u^{*} V^{\star} V^{T}\)
where tau is a real scalar and \(v\) is a real vector with \(v(1: i)=0\) and \(v(i+1)=1\).
On exit, tau is stored in tau[i-1], and \(v(i+2: n)\) is stored in \(A P\), overwriting \(A(i+2: n, i)\).
The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\left.\left||E|_{I_{2}}=C(n) \star \varepsilon^{\star}\right||A|\right|_{2}, C(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision. The approximate number of floating-point operations is \((4 / 3) n^{3}\).

After calling this routine, you can call the following:
opgtr to form the computed matrix \(Q\) explicitly
opmtr to multiply a real matrix by \(Q\).
The complex counterpart of this routine is hptrd.
```

?opgtr
Generates the real orthogonal matrix Q determined
by ?sptrd.

```

\section*{Syntax}
```

lapack_int LAPACKE_sopgtr (int matrix_layout, char uplo, lapack_int n, const float* ap,

```
lapack_int LAPACKE_sopgtr (int matrix_layout, char uplo, lapack_int n, const float* ap,
const float* tau, float* q, lapack_int ldq);
const float* tau, float* q, lapack_int ldq);
lapack_int LAPACKE_dopgtr (int matrix_layout, char uplo, lapack_int n, const double*
lapack_int LAPACKE_dopgtr (int matrix_layout, char uplo, lapack_int n, const double*
ap, const double* tau, double* q, lapack_int ldq);
```

ap, const double* tau, double* q, lapack_int ldq);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine explicitly generates the \(n\)-by- \(n\) orthogonal matrix \(Q\) formed by sptrd when reducing a packed real symmetric matrix \(A\) to tridiagonal form: \(A=Q^{\star} T^{*} Q^{T}\). Use this routine after a call to ?sptrd.

\section*{Input Parameters}
```

matrix_layout
uplo Must be 'U' or 'L'. Use the same uplo as supplied to ?sptrd.
n The order of the matrix Q (}n\geq0)\mathrm{ .
ap, tau
ldq
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'U' or 'L'. Use the same uplo as supplied to ?sptrd.
The order of the matrix $Q(n \geq 0)$.
Arrays ap and tau, as returned by ?sptrd.
The size of ap must be at least $\max (1, n(n+1) / 2)$.
The size of tau must be at least $\max (1, n-1)$.
The leading dimension of the output array q; at least $\max (1, n)$.

```

\section*{Output Parameters}
\(q\)
Array, size (size max(1, \(\left.1 d q^{*} n\right)\) ).
Contains the computed matrix \(Q\).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((4 / 3) n^{3}\).
The complex counterpart of this routine is upgtr.

\section*{?opmtr \\ Multiplies a real matrix by the real orthogonal matrix \(Q\) determined by ?sptrd.}

\section*{Syntax}
```

lapack_int LAPACKE_sopmtr (int matrix_layout, char side, char uplo, char trans,
lapack_int m, lapack_int n, const float* ap, const float* tau, float* c, lapack_int
ldc);
lapack_int LAPACKE_dopmtr (int matrix_layout, char side, char uplo, char trans,
lapack_int m, lapack_int n, const double* ap, const double* tau, double* c, lapack_int
ldc);

```

Include Files
- mkl.h

\section*{Description}

The routine multiplies a real matrix \(C\) by \(Q\) or \(Q^{T}\), where \(Q\) is the orthogonal matrix \(Q\) formed by sptrd when reducing a packed real symmetric matrix \(A\) to tridiagonal form: \(A=Q^{\star} T^{\star} Q^{T}\). Use this routine after a call to ?sptrd.
Depending on the parameters side and trans, the routine can form one of the matrix products \(Q^{\star} C, Q^{T \star} C\), \(C^{\star} Q\), or \(C^{\star} Q^{T}\) (overwriting the result on \(C\) ).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) :
```

If side = 'L',r = m; if side = 'R', r = n.
matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
Must be either 'L' or 'R'.
If side = 'L', Q or Q Q is applied to C from the left.
If side = 'R', Q or Q }\mp@subsup{Q}{}{T}\mathrm{ is applied to C from the right.
Must be 'U' or 'L'.
Use the same uplo as supplied to ?sptrd.
Must be either 'N' or 'T'.
If trans = 'N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by Q'.
The number of rows in the matrix C (m\geq0).
The number of columns in C(n\geq0).
ap and tau are the arrays returned by ?sptrd.
The dimension of ap must be at least max(1,r(r+1)/2).
The dimension of tau must be at least max(1,r-1).

```
\(c\left(\right.\) size \(\max \left(1, I d c^{*} n\right)\) for column major layout and \(\max \left(1, I d c^{*} m\right.\) for row major layout) contains the matrix \(C\).

Idc
The leading dimension of \(c ; l d c \geq \max (1, n)\) for column major layout and \(l d c \geq \max (1, m)\) for row major layout .

\section*{Output Parameters}
c
Overwritten by the product \(Q^{\star} C, Q^{T \star} C, C^{\star} Q\), or \(C^{\star} Q^{T}\) (as specified by side and trans).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed product differs from the exact product by a matrix \(E\) such that \(\left||E|_{2}=O(\varepsilon)\right||C|_{2}\), where \(\varepsilon\) is the machine precision.
The total number of floating-point operations is approximately \(2 \star m^{2}{ }^{*} n\) if side \(=\) 'L', or \(2 \star n^{2 \star}\) m if side \(=\) 'R'.

The complex counterpart of this routine is upmtr.
?hptrd
Reduces a complex Hermitian matrix to tridiagonal
form using packed storage.

\section*{Syntax}
```

lapack_int LAPACKE_chptrd(int matrix_layout, char uplo, lapack_int n,
lapack_complex_float* ap, float* d, float* e, lapack_complex_float* tau);
lapack_int LAPACKE_zhptrd(int matrix_layout, char uplo, lapack_int n,
lapack_complex_double* ap, double* d, double* e, lapack_complex_double* tau);

```

Include Files
- mkl.h

\section*{Description}

The routine reduces a packed complex Hermitian matrix \(A\) to symmetric tridiagonal form \(T\) by a unitary similarity transformation: \(A=Q \star T^{*} Q^{H}\). The unitary matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided for working with \(Q\) in this representation (see Application Notes below).

Input Parameters
```

matrix_layout
uplo
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
uplo
Must be 'U' or 'L'.

```
\begin{tabular}{|c|c|}
\hline & If uplo = 'U', ap stores the packed upper triangle of \(A\). \\
\hline & If uplo = 'L', ap stores the packed lower triangle of \(A\). \\
\hline \(n\) & The order of the matrix \(A(n \geq 0)\). \\
\hline \(a p\) & Array, size at least \(\max (1, n(n+1) / 2)\). Contains either upper or lower triangle of \(A\) (as specified by uplo) in the packed form described in "Matrix Storage Schemes. \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten by the tridiagonal matrix \(T\) and details of the unitary matrix \(Q\), as specified by uplo.

\section*{Arrays:}
\(d\) contains the diagonal elements of the matrix \(T\).
The size of \(d\) must be at least \(\max (1, n)\).
\(e\) contains the off-diagonal elements of \(T\).
The size of e must be at least \(\max (1, n-1)\).
Array, size at least max(1,n-1). Stores (n-1) scalars that define elementary reflectors in decomposition of the unitary matrix \(Q\) in a product of reflectors.

\section*{Return Values}

This function returns a value info.
If inforo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\left.\left||E|_{I_{2}}=C(n) \star \varepsilon^{\star}\right||A|\right|_{2}, C(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((16 / 3) n^{3}\).
After calling this routine, you can call the following:
```

upgtr to form the computed matrix Q explicitly
upmtr to multiply a complex matrix by Q.

```

The real counterpart of this routine is sptrd.
?upgtr
Generates the complex unitary matrix \(Q\) determined
by ?hptrd.

\section*{Syntax}
```

lapack_int LAPACKE_cupgtr (int matrix_layout, char uplo, lapack_int n, const
lapack_complex_float* ap, const lapack_complex_float* tau, lapack_complex_float* q,
lapack_int ldq);

```
```

lapack_int LAPACKE_zupgtr (int matrix_layout, char uplo, lapack_int n, const
lapack_complex_double* ap, const lapack_complex_double* tau, lapack_complex_double* q,
lapack_int ldq);

```

Include Files
- mkl.h

\section*{Description}

The routine explicitly generates the \(n\)-by- \(n\) unitary matrix \(Q\) formed by hptrd when reducing a packed complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q^{*} T^{*} Q^{H}\). Use this routine after a call to ?hptrd.

\section*{Input Parameters}
```

matrix_layout
uplo
n
ap, tau
ldq

```

\section*{Output Parameters}
\(q\)
Array, size (size \(\max \left(1, I d q^{*} n\right)\) ).
Contains the computed matrix \(Q\).

\section*{Return Values}

This function returns a value info.
If inforo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((16 / 3) \mathrm{n} 3\).
The real counterpart of this routine is opgtr.
?upmtr
Multiplies a complex matrix by the unitary matrix \(Q\)
determined by ?hptrd.

\section*{Syntax}
```

lapack_int LAPACKE_cupmtr (int matrix_layout, char side, char uplo, char trans,
lapack_int m, lapack_int n, const lapack_complex_float* ap, const lapack_complex_float*
tau, lapack_complex_float* c, lapack_int ldc);
lapack_int LAPACKE_zupmtr (int matrix_layout, char side, char uplo, char trans,
lapack_int m, lapack_int n, const lapack_complex_double* ap, const
lapack_complex_double* tau, lapack_complex_double* c, lapack_int ldc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine multiplies a complex matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix formed by hptrd when reducing a packed complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q^{*} T^{*} Q^{H}\). Use this routine after a call to ?hptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q^{*} C, Q^{H *} C\), \(C^{*} Q\), or \(C^{*} Q^{H}\) (overwriting the result on \(C\) ).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) :
If side \(=\) 'L', \(r=m\); if side \(=' R ', r=n\).
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline side & Must be either 'L' or 'R'. \\
\hline & If side = 'L', \(Q\) or \(Q^{H}\) is applied to \(C\) from the left. \\
\hline & If side = 'R', \(Q\) or \(Q^{H}\) is applied to \(C\) from the right. \\
\hline uplo & Must be 'U' or 'L'. \\
\hline & Use the same uplo as supplied to ?hptrd. \\
\hline trans & Must be either 'N' or 'T'. \\
\hline & If trans \(=\) ' \(N\) ', the routine multiplies \(C\) by \(Q\). \\
\hline & If trans \(=\) ' T ', the routine multiplies \(C\) by \(Q^{H}\). \\
\hline m & The number of rows in the matrix \(C(m \geq 0)\). \\
\hline \(n\) & The number of columns in \(C(n \geq 0)\). \\
\hline ap, tau, c, & ap and tau are the arrays returned by ?hptrd. \\
\hline & The size of \(a p\) must be at least max (1, r(r+1)/2). \\
\hline & The size of tau must be at least max ( \(1, r-1\) ). \\
\hline
\end{tabular}
\(c\left(\right.\) size \(\max \left(1, I d c^{*} n\right)\) for column major layout and \(\max \left(1, I d c^{*}\right)\) for row major layout) contains the matrix \(C\).

Idc The leading dimension of \(c\); \(l d c \geq \max (1, m)\) for column major layout and \(\mid d c \geq \max (1, n)\) for row major layout .

\section*{Output Parameters}

C
Overwritten by the product \(Q^{*} C, Q^{H *} C, C * Q\), or \(C^{*} Q^{H}\) (as specified by side and trans).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed product differs from the exact product by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)^{*}| | C| |_{2}\), where \(\varepsilon\) is the machine precision.
The total number of floating-point operations is approximately \(8{ }^{\star} m^{2 \star} n\) if side \(=\) 'L' or \(8 \star n^{2 \star} m\) if side \(=\) 'R'.
The real counterpart of this routine is opmtr.
?sbtrd
Reduces a real symmetric band matrix to tridiagonal
form.

\section*{Syntax}
```

lapack_int LAPACKE_ssbtrd (int matrix_layout, char vect, char uplo, lapack_int n,
lapack_int kd, float* ab, lapack_int ldab, float* d, float* e, float* q, lapack_int
ldq);
lapack_int LAPACKE_dsbtrd (int matrix_layout, char vect, char uplo, lapack_int n,
lapack_int kd, double* ab, lapack_int ldab, double* d, double* e, double* q, lapack_int
Idq);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine reduces a real symmetric band matrix \(A\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation: \(A=Q^{*} T * Q^{T}\). The orthogonal matrix \(Q\) is determined as a product of Givens rotations.

If required, the routine can also form the matrix \(Q\) explicitly.

\section*{Input Parameters}
```

matrix_layout
vect Must be 'V','N',or 'U'.

```
\begin{tabular}{|c|c|}
\hline & If vect \(=\) ' V ', the routine returns the explicit matrix \(Q\). \\
\hline & If vect \(=\) ' N ', the routine does not return \(Q\). \\
\hline & If vect \(=\) 'U', the routine updates matrix \(X\) by forming \(X^{*} Q\). \\
\hline uplo & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', \(a b\) stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', \(a b\) stores the lower triangular part of \(A\). \\
\hline \(n\) & The order of the matrix \(A(n \geq 0)\). \\
\hline \(k d\) & The number of super- or sub-diagonals in \(A\) \\
\hline & ( \(k \Delta \geq 0\) ). \\
\hline ab, q & \(a b\) (size at least \(\max \left(1, I\right.\) dab \(\left._{n}\right)\) for column major layout and at least \(\max \left(1, \operatorname{ldab^{*}}(k d+1)\right)\) for row major layout) is an array containing either upper or lower triangular part of the matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & \(q\left(\right.\) size max \(\left.\left(1, l d q^{*} n\right)\right)\) is an array. \\
\hline & If vect \(=\) ' U', the q array must contain an \(n\)-by-n matrix \(X\). \\
\hline & If vect = 'N' or 'V', the q parameter need not be set. \\
\hline ldab & The leading dimension of \(a b\); at least \(k d+1\) for column major layout and \(n\) for row major layout . \\
\hline \(1 d q\) & The leading dimension of \(q\). Constraints: \\
\hline & \(l d q \geq \max (1, n)\) if vect \(=\) 'V' or 'U'; \\
\hline & \(1 d q \geq 1\) if vect = 'N'. \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, the diagonal elements of the array \(a b\) are overwritten by the diagonal elements of the tridiagonal matrix \(T\). If \(k d>0\), the elements on the first superdiagonal (if uplo = 'U') or the first subdiagonal (if uplo = 'L') are ovewritten by the off-diagonal elements of \(T\). The rest of \(a b\) is overwritten by values generated during the reduction.

\section*{Arrays:}
\(d\) contains the diagonal elements of the matrix \(T\).
The size of \(d\) must be at least \(\max (1, n)\).
\(e\) contains the off-diagonal elements of \(T\).
The size of e must be at least \(\max (1, n-1)\).
\(q\) is not referenced if vect \(={ }^{\prime} N^{\prime}\).
If vect \(=' \mathrm{~V}\) ', \(q\) contains the \(n\)-by-n matrix \(Q\).
If vect \(=\) 'U', \(q\) contains the product \(X^{*} Q\).

\section*{Return Values}

This function returns a value info.

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(||E||_{2}=C(n) * \varepsilon^{\star}| | A| |_{2}, C(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision. The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(\left|\mid E \|_{2}=O(\varepsilon)\right.\).
The total number of floating-point operations is approximately \(6 n^{2 \star} k d\) if vect \(=\) ' \(N\) ', with \(3 n^{3 \star}(k d-1) / k d\) additional operations if vect \(=' \mathrm{~V}\) '.

The complex counterpart of this routine is hbtrd.
?hbtrd
Reduces a complex Hermitian band matrix to tridiagonal form.

\section*{Syntax}
```

lapack_int LAPACKE_chbtrd(int matrix_layout, char vect, char uplo, lapack_int n,
lapack_int kd, lapack_complex_float* ab, lapack_int ldab, float* d, float* e,
lapack_complex_float* q, lapack_int ldq);
lapack_int LAPACKE_zhbtrd(int matrix_layout, char vect, char uplo, lapack_int n,
lapack_int kd, lapack_complex_double* ab, lapack_int ldab, double* d, double* e,
lapack_complex_double* q, lapack_int ldq);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine reduces a complex Hermitian band matrix \(A\) to symmetric tridiagonal form \(T\) by a unitary similarity transformation: \(A=Q^{*} T^{*} Q^{H}\). The unitary matrix \(Q\) is determined as a product of Givens rotations.

If required, the routine can also form the matrix \(Q\) explicitly.

\section*{Input Parameters}
```

matrix_layout
vect Must be 'V','N',or 'U'.
If vect = 'V', the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q
If vect = 'U', the routine updates matrix X by forming Q*X.
Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.
n

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'V', 'N', or 'U'.
If vect \(=\) ' \(V\) ', the routine returns the explicit matrix \(Q\).
If vect \(=\) ' \(N\) ', the routine does not return \(Q\).
If vect \(=\) ' \(U\) ', the routine updates matrix \(X\) by forming \(Q^{*} X\).
Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of \(A\).
If uplo = 'L', \(a b\) stores the lower triangular part of \(A\).
The order of the matrix \(A(n \geq 0)\).
```

kd The number of super- or sub-diagonals in A
(ka\geq0).
$a b$ (size at least max $\left(1, I d^{2} b_{n}\right)$ for column major layout and at least $\max \left(1, l d a b^{*}(k d+1)\right)$ for row major layout) is an array containing either upper or lower triangular part of the matrix A (as specified by uplo) in band storage format.
$q\left(\right.$ size $\left.\max \left(1, l d q^{*} n\right)\right)$ is an array.
If vect $=$ ' U ', the q array must contain an n-by- n matrix X.
If vect $=$ ' N ' or ' V ', the q parameter need not be set.'
The leading dimension of $a b$; at least $k d+1$ for column major layout and n for row major layout.
The leading dimension of q. Constraints:
$l d q \geq \max (1, n)$ if vect $=$ 'V' or 'U';
$l d q \geq 1$ if vect $='^{\prime}$ '.

```

\section*{Output Parameters}
\(q\)
On exit, the diagonal elements of the array \(a b\) are overwritten by the diagonal elements of the tridiagonal matrix \(T\). If \(k d>0\), the elements on the first superdiagonal (if uplo = 'U') or the first subdiagonal (if uplo = 'L') are ovewritten by the off-diagonal elements of \(T\). The rest of \(a b\) is overwritten by values generated during the reduction.

Arrays:
\(d\) contains the diagonal elements of the matrix \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e\) contains the off-diagonal elements of \(T\).
The dimension of \(e\) must be at least \(\max (1, n-1)\).
If vect \(=\) ' \(N\) ', \(q\) is not referenced.
If vect \(=\) ' V ', \(q\) contains the \(n\)-by-n matrix \(Q\).
If vect \(=\) 'U', \(q\) contains the product \(X^{*} Q\).

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\left.\left||E|_{2}=C(n) \star \varepsilon^{\star}\right||A|\right|_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision. The computed matrix \(Q\) differs from an exactly unitary matrix by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\).

The total number of floating-point operations is approximately \(20 n^{2} * k d\) if vect \(=' N^{\prime}\), with \(10 n^{3} \star(k d-1) /\) \(k d\) additional operations if vect \(=\) ' V '.

The real counterpart of this routine is sbtrd.

\section*{?sterf}

Computes all eigenvalues of a real symmetric tridiagonal matrix using \(Q R\) algorithm.

Syntax
```

lapack_int LAPACKE_ssterf (lapack_int n, float* d, float* e);
lapack_int LAPACKE_dsterf (lapack_int n, double* d, double* e);

```

Include Files
- mkl.h

\section*{Description}

The routine computes all the eigenvalues of a real symmetric tridiagonal matrix \(T\) (which can be obtained by reducing a symmetric or Hermitian matrix to tridiagonal form). The routine uses a square-root-free variant of the \(Q R\) algorithm.
If you need not only the eigenvalues but also the eigenvectors, call steqr.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & The order of the matrix \(T(n \geq 0)\). \\
\(d, e\) & Arrays: \\
& \(d\) contains the diagonal elements of \(T\). \\
& The dimension of \(d\) must be at least \(\max (1, n)\). \\
& \(e\) contains the off-diagonal elements of \(T\). \\
& The dimension of \(e\) must be at least \(\max (1, n-1)\).
\end{tabular}

\section*{Output Parameters}
d
The \(n\) eigenvalues in ascending order, unless info \(>0\).
See also info.
e
On exit, the array is overwritten; see info.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=i\), the algorithm failed to find all the eigenvalues after \(30 n\) iterations:
\(i\) off-diagonal elements have not converged to zero. On exit, \(d\) and \(e\) contain, respectively, the diagonal and off-diagonal elements of a tridiagonal matrix orthogonally similar to \(T\).

If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(||E||_{2}=O(\varepsilon) *| | T| |_{2}\), where \(\varepsilon\) is the machine precision.

If \(\lambda_{i}\) is an exact eigenvalue, and \(m_{i}\) is the corresponding computed value, then
```

|\mui - \lambdai| \leqc(n)*\&*||T||

```
where \(c(n)\) is a modestly increasing function of \(n\).
The total number of floating-point operations depends on how rapidly the algorithm converges. Typically, it is about \(14 n^{2}\).

\section*{?steqr}

Computes all eigenvalues and eigenvectors of a symmetric or Hermitian matrix reduced to tridiagonal form (QR algorithm).

\section*{Syntax}
```

lapack_int LAPACKE_ssteqr(int matrix_layout, char compz, lapack_int n, float* d,
float* e, float* z, lapack_int ldz);
lapack_int LAPACKE_dsteqr(int matrix_layout, char compz, lapack_int n, double* d,
double* e, double* z, lapack_int ldz);
lapack_int LAPACKE_csteqr(int matrix_layout, char compz, lapack_int n, float* d,
float* e, lapack_complex_float* z, lapack_int ldz);
lapack_int LAPACKE_zsteqr(int matrix_layout, char compz, lapack_int n, double* d,
double* e, lapack_complex_double* z, lapack_int ldz);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric tridiagonal matrix \(T\). In other words, the routine can compute the spectral factorization: \(T=Z^{\star} \Lambda^{\star} Z^{T}\). Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i} ; Z\) is an orthogonal matrix whose columns are eigenvectors. Thus,
```

T* }\mp@subsup{z}{i}{}=\mp@subsup{\lambda}{i}{*}\mp@subsup{z}{i}{}\mathrm{ for i = 1, 2, ..., n.

```

The routine normalizes the eigenvectors so that \(\left|\mid z_{i} \|_{2}=1\right.\).
You can also use the routine for computing the eigenvalues and eigenvectors of an arbitrary real symmetric (or complex Hermitian) matrix \(A\) reduced to tridiagonal form \(T\) : \(A=Q^{*} T^{*} Q^{H}\). In this case, the spectral factorization is as follows: \(A=Q^{\star} T^{*} Q^{H}=(Q \star Z)^{\star} \Lambda^{\star}\left(Q^{*} Z\right)^{H}\). Before calling ?steqr, you must reduce \(A\) to tridiagonal form and generate the explicit matrix \(Q\) by calling the following routines:
\begin{tabular}{l|l|l}
\hline & for real matrices: & for complex matrices: \\
\hline full storage & ?sytrd, ?orgtr & ?hetrd, ?ungtr \\
\hline packed storage & ?sptrd, ?opgtr & ?hptrd, ?upgtr \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline & for real matrices: & for complex matrices: \\
\hline band storage & ?sbtrd \((v e c t=' \mathrm{~V}\) ' \()\) & ?hbtrd \(\left(v e c t=' \mathrm{~V}^{\prime}\right)\) \\
\hline
\end{tabular}

If you need eigenvalues only, it's more efficient to call sterf. If \(T\) is positive-definite, pteqr can compute small eigenvalues more accurately than ?steqr.

To solve the problem by a single call, use one of the divide and conquer routines stevd, syevd, spevd, or sbevd for real symmetric matrices or heevd, hpevd, or hbevd for complex Hermitian matrices.

\section*{Input Parameters}
```

matrix_layout
compz
n
d,e
Z
ldz
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'N' or 'I' or 'V'.
If compz = 'N', the routine computes eigenvalues only.
If compz = 'I', the routine computes the eigenvalues and eigenvectors of the tridiagonal matrix T.
If compz = ' V ', the routine computes the eigenvalues and eigenvectors of the original symmetric matrix. On entry, z must contain the orthogonal matrix used to reduce the original matrix to tridiagonal form.
The order of the matrix $T(n \geq 0)$.

```

\section*{Arrays:}
```

d contains the diagonal elements of T.
The size of d must be at least $\max (1, n)$.
e contains the off-diagonal elements of T.
The size of e must be at least $\max (1, n-1)$.
Array, size $\max \left(1, I d z^{*} n\right)$.
If compz = 'N' or 'I', z need not be set.
If vect $=$ ' V ', z must contain the orthogonal matrix used in the reduction to tridiagonal form.
The leading dimension of z. Constraints:
$l d z \geq 1$ if $c o m p z=' N ' ;$
$I d z \geq \max (1, n)$ if $c o m p z=' V '$ or 'I'.

```

\section*{Output Parameters}

The \(n\) eigenvalues in ascending order, unless info \(>0\).
See also info.
On exit, the array is overwritten; see info.
If info \(=0\), contains the \(n\)-by-n matrix the columns of which are orthonormal eigenvectors (the \(i\)-th column corresponds to the \(i\)-th eigenvalue).

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=i\), the algorithm failed to find all the eigenvalues after \(30 n\) iterations: \(i\) off-diagonal elements have not converged to zero. On exit, \(d\) and \(e\) contain, respectively, the diagonal and off-diagonal elements of a tridiagonal matrix orthogonally similar to \(T\).

If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(||E||_{2}=O(\varepsilon) *| | T| |_{2}\), where \(\varepsilon\) is the machine precision.

If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then
\(\left|\mu_{i}-\lambda_{i}\right| \leq c(n) * \varepsilon^{\star}| | T| |_{2}\)
where \(c(n)\) is a modestly increasing function of \(n\).
If \(z_{i}\) is the corresponding exact eigenvector, and \(w_{i}\) is the corresponding computed vector, then the angle \(\theta\left(z_{i}, w_{i}\right)\) between them is bounded as follows:
\(\theta\left(z_{i}, W_{j}\right) \leq C(n) \star \varepsilon^{\star}| | T| |_{2} / \min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right|\).
The total number of floating-point operations depends on how rapidly the algorithm converges. Typically, it is about
\(24 n^{2}\) if compz = 'N';
\(7 n^{3}\) (for complex flavors, \(14 n^{3}\) ) if compz \(=\) 'V' or 'I'.

\section*{?stemr}

Computes selected eigenvalues and eigenvectors of a
real symmetric tridiagonal matrix.

\section*{Syntax}
```

lapack_int LAPACKE_sstemr(int matrix_layout, char jobz, char range, lapack_int n,
const float* d, float* e, float vl, float vu, lapack_int il, lapack_int iu, lapack_int*
m, float* w, float* z, lapack_int ldz, lapack_int nzc, lapack_int* isuppz,
lapack_logical* tryrac);
lapack_int LAPACKE_dstemr(int matrix_layout, char jobz, char range, lapack_int n,
const double* d, double* e, double vl, double vu, lapack_int il, lapack_int iu,
lapack_int* m, double* w, double* z, lapack_int ldz, lapack_int nzc, lapack_int* isuppz,
lapack_logical* tryrac);
lapack_int LAPACKE_cstemr(int matrix_layout, char jobz, char range, lapack_int n,
const float* d, float* e, float vl, float vu, lapack_int il, lapack_int iu, lapack_int*
m, float* w, lapack_complex_float* z, lapack_int ldz, lapack_int nzc, lapack_int*
isuppz, lapack_logical* tryrac);
lapack_int LAPACKE_zstemr(int matrix_layout, char jobz, char range, lapack_int n,
const double* d, double* e, double vl, double vu, lapack_int il, lapack_int iu,
lapack_int* m, double* w, lapack_complex_double* z, lapack_int ldz, lapack_int nzc,
lapack_int* isuppz, lapack_logical* tryrac);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(T\). Any such unreduced matrix has a well defined set of pairwise different real eigenvalues, the corresponding real eigenvectors are pairwise orthogonal.

The spectrum may be computed either completely or partially by specifying either an interval (vl, vu] or a range of indices il:iu for the desired eigenvalues.

Depending on the number of desired eigenvalues, these are computed either by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are computed by the use of various suitable \(L^{*} D^{*} L^{T}\) factorizations near clusters of close eigenvalues (referred to as RRRs, Relatively Robust Representations). An informal sketch of the algorithm follows.

For each unreduced block (submatrix) of \(T\),
a. Compute \(T-\operatorname{sigma}^{\star} I=L^{\star} D^{\star} L^{T}\), so that \(L\) and \(D\) define all the wanted eigenvalues to high relative accuracy. This means that small relative changes in the entries of \(L\) and \(D\) cause only small relative changes in the eigenvalues and eigenvectors. The standard (unfactored) representation of the tridiagonal matrix \(T\) does not have this property in general.
b. Compute the eigenvalues to suitable accuracy. If the eigenvectors are desired, the algorithm attains full accuracy of the computed eigenvalues only right before the corresponding vectors have to be computed, see steps c and d.
C. For each cluster of close eigenvalues, select a new shift close to the cluster, find a new factorization, and refine the shifted eigenvalues to suitable accuracy.
d. For each eigenvalue with a large enough relative separation compute the corresponding eigenvector by forming a rank revealing twisted factorization. Go back to step c for any clusters that remain.

Normal execution of ?stemr may create NaNs and infinities and may abort due to a floating point exception in environments that do not handle NaNs and infinities in the IEEE standard default manner.

For more details, see: [Dhillon04], [Dhillon04-02], [Dhillon97]

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{jobz} & Must be 'N' or 'V'. \\
\hline & If jobz = ' N ', then only eigenvalues are computed. \\
\hline & If jobz = 'V', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{range} & Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' V ', the routine computes all eigenvalues in the half-open interval: (vl, vu]. \\
\hline & If range = 'I', the routine computes eigenvalues with indices il to iu. \\
\hline \(n\) & The order of the matrix \(T(n \geq 0)\). \\
\hline d & Array, size \(n\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Contains \(n\) diagonal elements of the tridiagonal matrix \(T\). \\
\hline \multirow[t]{2}{*}{\(e\)} & Array, size \(n\). \\
\hline & Contains ( \(n-1\) ) off-diagonal elements of the tridiagonal matrix \(T\) in elements 0 to \(n-2\) of \(e\). e[n-1] need not be set on input, but is used internally as workspace. \\
\hline \multirow[t]{2}{*}{vi, vu} & If range = 'V', the lower and upper bounds of the interval to be searched for eigenvalues. Constraint: vl<vu. \\
\hline & If range = 'A' or 'I', vl and vu are not referenced. \\
\hline \multirow[t]{3}{*}{il, iu} & If range = ' I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\). \\
\hline & If range \(=\) ' \(\mathrm{A}^{\prime}\) ' or ' V ', il and \(i u\) are not referenced. \\
\hline \multirow[t]{3}{*}{\(1 d z\)} & The leading dimension of the output array \(z\). \\
\hline & if \(j o b z=' \mathrm{~V}\) ', then \(l d z \geq \max (1, n)\) for column major layout and \(I d z \geq\) \(\max (1, m)\) for row major layout ; \\
\hline & \(1 d z \geq 1\) otherwise. \\
\hline \multirow[t]{6}{*}{nzc} & The number of eigenvectors to be held in the array \(z\). \\
\hline & If range \(=\) 'A', then \(n z c \geq \max (1, n)\); \\
\hline & If range \(=\) ' V ', then \(n z c\) is greater than or equal to the number of eigenvalues in the half-open interval: ( \(v \mathcal{l}, \mathrm{vu}\) ]. \\
\hline & If range = 'I', then \(n z c \geq i u-i l+1\). \\
\hline & If \(n z c=-1\), then a workspace query is assumed; the routine calculates the number of columns of the array \(z\) that are needed to hold the eigenvectors. \\
\hline & This value is returned as the first entry of the array \(z\), and no error message related to \(n z c\) is issued by the routine xerbla. \\
\hline \multirow[t]{2}{*}{tryrac} & If tryrac is true, it indicates that the code should check whether the tridiagonal matrix defines its eigenvalues to high relative accuracy. If so, the code uses relative-accuracy preserving algorithms that might be (a bit) slower depending on the matrix. If the matrix does not define its eigenvalues to high relative accuracy, the code can uses possibly faster algorithms. \\
\hline & If tryrac is not true, the code is not required to guarantee relatively accurate eigenvalues and can use the fastest possible techniques. \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, the array \(d\) is overwritten.
On exit, the array \(e\) is overwritten.
The total number of eigenvalues found, \(0 \leq m \leq n\).
If range \(=\) 'A', then \(m=n\), and if range \(=\) 'I', then \(m=i u-i l+1\).
w
z
isuppz
tryrac

Array, size \(n\).
The first \(m\) elements contain the selected eigenvalues in ascending order.
Array \(z\) (size \(\max \left(1, I d z^{*}\right)\) for column major layout and \(\max \left(1, I d z_{n}\right)\) for row major layout).
If jobz \(=\) ' V ', and info \(=0\), then the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the selected eigenvalues, with the i-th column of \(z\) holding the eigenvector associated with w(i).
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
Note: the exact value of \(m\) is not known in advance and can be computed with a workspace query by setting \(n z c=-1\), see description of the parameter nzc.

Array, size \((2 * \max (1, m))\).
The support of the eigenvectors in \(z\), that is the indices indicating the nonzero elements in \(z\). The i-th computed eigenvector is nonzero only in elements isuppz[2*i - 2] through isuppz[2*i - 1]. This is relevant in the case when the matrix is split. isuppz is only accessed when jobz = ' \(V\) ' and \(n>0\).

On exit, , set to true. tryrac is set to false if the matrix does not define its eigenvalues to high relative accuracy.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(>0\), an internal error occurred.
?stedc
Computes all eigenvalues and eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.

\section*{Syntax}
```

lapack_int LAPACKE_sstedc(int matrix_layout, char compz, lapack_int n, float* d,
float* e, float* z, lapack_int ldz);
lapack_int LAPACKE_dstedc(int matrix_layout, char compz, lapack_int n, double* d,
double* e, double* z, lapack_int ldz);
lapack_int LAPACKE_cstedc(int matrix_layout, char compz, lapack_int n, float* d,
float* e, lapack_complex_float* z, lapack_int ldz);
lapack_int LAPACKE_zstedc(int matrix_layout, char compz, lapack_int n, double* d,
double* e, lapack_complex_double* z, lapack_int ldz);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes all the eigenvalues and (optionally) all the eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method. The eigenvectors of a full or band real symmetric or complex Hermitian matrix can also be found if sytrd/hetrd or sptrd/hptrd or sbtrd/hbtrd has been used to reduce this matrix to tridiagonal form.

\section*{Input Parameters}
```

matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
Must be 'N' or 'I' or 'V'.
If compz = 'N', the routine computes eigenvalues only.
If compz = 'I', the routine computes the eigenvalues and eigenvectors of
the tridiagonal matrix.
If compz = 'V', the routine computes the eigenvalues and eigenvectors of
original symmetric/Hermitian matrix. On entry, the array z must contain the
orthogonal/unitary matrix used to reduce the original matrix to tridiagonal
form.
The order of the symmetric tridiagonal matrix (}n\geq0)\mathrm{ .
Arrays:
d contains the diagonal elements of the tridiagonal matrix.
The dimension of d must be at least max (1,n).
e contains the subdiagonal elements of the tridiagonal matrix.
The dimension of e must be at least max(1, n-1).
Array z is of size max (1, ldz*n).
If compz = 'V', then, on entry, z must contain the orthogonal/unitary
matrix used to reduce the original matrix to tridiagonal form.
The leading dimension of z. Constraints:
Idz}\geq1\mathrm{ if compz = 'N';
Idz\geq max(1,n) if compz = 'V' or'I'.

```

\section*{Output Parameters}

The \(n\) eigenvalues in ascending order, unless info \(\neq 0\).
See also info.
On exit, the array is overwritten; see info.
If info \(=0\), then if \(c o m p z=' \mathrm{~V}\) ', \(z\) contains the orthonormal eigenvectors of the original symmetric/Hermitian matrix, and if compz='I', z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If compz \(=' N\) ', \(z\) is not referenced.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns \(i /(n+1)\) through \(\bmod (i, n+1)\).

\section*{?stegr \\ Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.}

\section*{Syntax}
```

lapack_int LAPACKE_sstegr(int matrix_layout, char jobz, char range, lapack_int n,
float* d, float* e, float vl, float vu, lapack_int il, lapack_int iu, float abstol,
lapack_int* m, float* w, float* z, lapack_int ldz, lapack_int* isuppz);
lapack_int LAPACKE_dstegr(int matrix_layout, char jobz, char range, lapack_int n,
double* d, double* e, double vl, double vu, lapack_int il, lapack_int iu, double abstol,
lapack_int* m, double* w, double* z, lapack_int ldz, lapack_int* isuppz);
lapack_int LAPACKE_cstegr(int matrix_layout, char jobz, char range, lapack_int n,
float* d, float* e, float vl, float vu, lapack_int il, lapack_int iu, float abstol,
lapack_int* m, float* w, lapack_complex_float* z, lapack_int ldz, lapack_int* isuppz);
lapack_int LAPACKE_zstegr(int matrix_layout, char jobz, char range, lapack_int n,
double* d, double* e, double vl, double vu, lapack_int il, lapack_int iu, double abstol,
lapack_int* m, double* w, lapack_complex_double* z, lapack_int ldz, lapack_int*
isuppz);

```

Include Files
- mkl.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(T\).

The spectrum may be computed either completely or partially by specifying either an interval (vl, vu] or a range of indices \(i l\) :iu for the desired eigenvalues.
?stegr is a compatibility wrapper around the improved stemr routine. See its description for further details.
Note that the abstol parameter no longer provides any benefit and hence is no longer used.

\section*{Input Parameters}
```

matrix_layout
jobz

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'N' or 'V'.
If job \(=\) ' \(N\) ', then only eigenvalues are computed.
If job \(=\) ' \(V\) ', then eigenvalues and eigenvectors are computed.
```

range
n
d,e
vl, vu
il, iu
abstol
ldz
Must be 'A' or 'V' or 'I'.
If range $=$ ' A ', the routine computes all eigenvalues.
If range $=$ ' V ', the routine computes eigenvalues w [i] in the half-open interval:
$v l<w[i] \leq v u$.
If range = 'I', the routine computes eigenvalues with indices il to iu.
The order of the matrix $T(n \geq 0)$.

```

\section*{Arrays:}
```

d contains the diagonal elements of T.
The dimension of d must be at least $\max (1, n)$.
e contains the subdiagonal elements of T in elements 1 to $n-1$; $e(n)$ need not be set on input, but it is used as a workspace.
The dimension of e must be at least $\max (1, n)$.
If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and $v u$ are not referenced.
If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$.
If range $=$ ' A ' or ' V ', il and $i u$ are not referenced.
Unused. Was the absolute error tolerance for the eigenvalues/eigenvectors in previous versions.
The leading dimension of the output array z. Constraints:
$I d z \geq 1$ if jobz = 'N';
$l d z \geq \max (1, n)$ if $j o b z=' V '$.

```

\section*{Output Parameters}
\(d, e\)
m

W
z

On exit, \(d\) and \(e\) are overwritten.
The total number of eigenvalues found,
\(0 \leq m \leq n\).
If range \(=\) 'A', \(m=n\), and if range \(=\) 'I', m = iu-il+1.
Array, size at least max \((1, n)\).
The selected eigenvalues in ascending order, stored in w[0] to w[m-1].
Array \(z\left(\right.\) size \(\left.\max \left(1, I d z^{*}\right)\right)\).

If jobz \(=\) ' \(V\) ', and if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w[i - 1].

If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
Note: if range \(=\) ' V ', the exact value of \(m\) is not known in advance and an upper bound must be used. Using \(n=m\) is always safe.

Array, size at least \((2 * \max (1, m))\).
The support of the eigenvectors in \(z\), that is the indices indicating the nonzero elements in \(z\). The \(i\)-th computed eigenvector is nonzero only in elements isuppz[2*i - 2] through isuppz[2*i - 1]. This is relevant in the case when the matrix is split. isuppz is only accessed when jobz = 'V', and \(n>0\).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0, an internal error occurred.
```

?pteqr
Computes all eigenvalues and (optionally) all
eigenvectors of a real symmetric positive-definite
tridiagonal matrix.

```
Syntax
lapack_int LAPACKE_spteqr( int matrix_layout, char compz, lapack_int n, float* d,
float* e, float* \(z\), lapack_int ldz );
lapack_int LAPACKE_dpteqr ( int matrix_layout, char compz, lapack_int \(n\), double* \(d\),
double* e, double* z, lapack_int ldz );
lapack_int LAPACKE_cpteqr( int matrix_layout, char compz, lapack_int n, float* d,
float* e, lapack_complex_float* z, lapack_int ldz );
lapack_int LAPACKE_zpteqr ( int matrix_layout, char compz, lapack_int \(n\), double* \(d\),
double* e, lapack_complex_double* z, lapack_int ldz );

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric positivedefinite tridiagonal matrix \(T\). In other words, the routine can compute the spectral factorization: \(T=\) \(Z \star \Lambda * Z^{T}\).

Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i} ; Z\) is an orthogonal matrix whose columns are eigenvectors. Thus,
\(T^{\star} z_{i}=\lambda_{i}{ }^{*} z_{i}\) for \(i=1,2, \ldots, n\).
(The routine normalizes the eigenvectors so that \(\left|\left|z_{i}\right|_{\|_{2}}=1\right.\).)
You can also use the routine for computing the eigenvalues and eigenvectors of real symmetric (or complex Hermitian) positive-definite matrices \(A\) reduced to tridiagonal form \(T: A=Q^{\star} T^{*} Q^{H}\). In this case, the spectral factorization is as follows: \(A=Q^{*} T * Q^{H}=(Q Z) * \Lambda^{*}(Q Z)^{H}\). Before calling ?pteqr, you must reduce \(A\) to tridiagonal form and generate the explicit matrix \(Q\) by calling the following routines:
\begin{tabular}{l|l|l}
\hline & for real matrices: & for complex matrices: \\
\hline full storage & ?sytrd, ?orgtr & ?hetrd, ?ungtr \\
\hline packed storage & ?sptrd, ?opgtr & ?hptrd, ?upgtr \\
\hline band storage & ?sbtrd(vect='V') & ?hbtrd(vect='V') \\
\hline
\end{tabular}

The routine first factorizes \(T\) as \(L^{*} D^{*} L^{H}\) where \(L\) is a unit lower bidiagonal matrix, and \(D\) is a diagonal matrix. Then it forms the bidiagonal matrix \(B=L^{\star} D^{1 / 2}\) and calls ?bdsqr to compute the singular values of \(B\), which are the square roots of the eigenvalues of \(T\).

\section*{Input Parameters}
```

matrix_layout
compz
n
d,e
z
ldz
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'N' or 'I' or 'V'.
If compz = ' N ', the routine computes eigenvalues only.
If compz = 'I', the routine computes the eigenvalues and eigenvectors of the tridiagonal matrix T.
If compz = ' V ', the routine computes the eigenvalues and eigenvectors of A (and the array z must contain the matrix Q on entry).
The order of the matrix $T(n \geq 0)$.
Arrays:
d contains the diagonal elements of T.
The size of d must be at least $\max (1, n)$.
e contains the off-diagonal elements of T.
The size of e must be at least $\max (1, n-1)$.
Array, size $\max \left(1, I d z^{*}\right)$
If compz = 'N' or 'I', z need not be set.
If compz $=$ ' V ', z must contain the orthogonal matrix used in the reduction to tridiagonal form..
The leading dimension of z. Constraints:
$I d z \geq 1$ if compz = 'N';
$I d z \geq \max (1, n)$ if $c o m p z=' \mathrm{~V}$ ' or 'I'.

```

\section*{Output Parameters}
\(d\)
The \(n\) eigenvalues in descending order, unless info \(>0\). See also info.

On exit, the array is overwritten.
If info \(=0\), contains an \(n\)-byn matrix the columns of which are orthonormal eigenvectors. (The \(i\)-th column corresponds to the \(i\)-th eigenvalue.)

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=i\), the leading minor of order \(i\) (and hence \(T\) itself) is not positive-definite.
If info \(=n+i\), the algorithm for computing singular values failed to converge; \(i\) off-diagonal elements have not converged to zero.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then
\(\left|\mu_{i}-\lambda_{i}\right| \leq c(n) \star \varepsilon^{\star} K^{\star} \lambda_{i}\)
where \(c(n)\) is a modestly increasing function of \(n, \varepsilon\) is the machine precision, and \(K=\|D T D\|_{2}\) * \(\|\) \((D T D)^{-1}| |_{2}, D\) is diagonal with \(d_{i i}=t_{i i}^{-1 / 2}\).

If \(z_{i}\) is the corresponding exact eigenvector, and \(w_{i}\) is the corresponding computed vector, then the angle \(\theta\left(z_{i}\right.\), \(w_{i}\) ) between them is bounded as follows:
\(\theta\left(u_{i}, w_{i}\right) \leq c(n) \varepsilon K / \min _{i \neq j}\left(\left|\lambda_{i}-\lambda_{j}\right| /\left|\lambda_{i}+\lambda_{j}\right|\right)\).
Here \(\min _{i \neq j}\left(\left|\lambda_{i}-\lambda_{j}\right| /\left|\lambda_{i}+\lambda_{j}\right|\right)\) is the relative gap between \(\lambda_{i}\) and the other eigenvalues.
The total number of floating-point operations depends on how rapidly the algorithm converges.
Typically, it is about
\(30 n^{2}\) if compz = 'N';
\(6 n^{3}\) (for complex flavors, \(12 n^{3}\) ) if compz \(=\) 'V' or 'I'.
?stebz
Computes selected eigenvalues of a real symmetric
tridiagonal matrix by bisection.

\section*{Syntax}
```

lapack_int LAPACKE_sstebz (char range, char order, lapack_int n, float vl, float vu,
lapack_int il, lapack_int iu, float abstol, const float* d, const float* e, lapack_int*
m, lapack_int* nsplit, float* w, lapack_int* iblock, lapack_int* isplit);
lapack_int LAPACKE_dstebz (char range, char order, lapack_int n, double vl, double vu,
lapack_int il, lapack_int iu, double abstol, const double* d, const double* e,
lapack_int* m, lapack_int* nsplit, double* w, lapack_int* iblock, lapack_int* isplit);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes some (or all) of the eigenvalues of a real symmetric tridiagonal matrix \(T\) by bisection. The routine searches for zero or negligible off-diagonal elements to see if \(T\) splits into block-diagonal form \(T\) \(=\operatorname{diag}\left(T_{1}, T_{2}, \ldots\right)\). Then it performs bisection on each of the blocks \(T_{i}\) and returns the block index of each computed eigenvalue, so that a subsequent call to stein can also take advantage of the block structure.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{range} & Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' \(V\) ', the routine computes eigenvalues \(w[i]\) in the half-open interval: vl < w[i] \(\leq v u\). \\
\hline & If range = 'I', the routine computes eigenvalues with indices il to iu. \\
\hline \multirow[t]{3}{*}{order} & Must be 'B' or 'E'. \\
\hline & If order = ' B', the eigenvalues are to be ordered from smallest to largest within each split-off block. \\
\hline & If order = 'E', the eigenvalues for the entire matrix are to be ordered from smallest to largest. \\
\hline \(n\) & The order of the matrix \(T(n \geq 0)\). \\
\hline \multirow[t]{3}{*}{vl, vu} & If range \(=\) ' \(V\) ', the routine computes eigenvalues \(w[i]\) in the half-open interval: \\
\hline & \(v l<w[i]) \leq v u\). \\
\hline & If range \(=\) 'A' or 'I', v/ and vu are not referenced. \\
\hline \multirow[t]{3}{*}{il, iu} & Constraint: \(1 \leq i l \leq i u \leq n\). \\
\hline & If range \(=\) 'I', the routine computes eigenvalues \(w[i]\) such that \(i l \leq i \leq i u\) (assuming that the eigenvalues w[i] are in ascending order). \\
\hline & If range \(=\) ' A ' or ' V ', il and \(i u\) are not referenced. \\
\hline \multirow[t]{2}{*}{abstol} & The absolute tolerance to which each eigenvalue is required. An eigenvalue (or cluster) is considered to have converged if it lies in an interval of width abstol. \\
\hline & If abstol \(\leq 0.0\), then the tolerance is taken as eps*|T|, where eps is the machine precision, and \(|T|\) is the 1 -norm of the matrix \(T\). \\
\hline \multirow[t]{5}{*}{\(d, e\)} & Arrays: \\
\hline & \(d\) contains the diagonal elements of \(T\). \\
\hline & The size of \(d\) must be at least max \((1, n)\). \\
\hline & \(e\) contains the off-diagonal elements of \(T\). \\
\hline & The size of e must be at least max \((1, n-1)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

m
nsplit
W
iblock, isplit

```

The actual number of eigenvalues found.
The number of diagonal blocks detected in \(T\).
Array, size at least \(\max (1, n)\). The computed eigenvalues, stored in \(w[0]\) to \(w[m-1]\).

Arrays, size at least \(\max (1, n)\).
A positive value iblock[i] is the block number of the eigenvalue stored in \(w[i]\) (see also info).

The leading nsplit elements of isplit contain points at which \(T\) splits into blocks \(T_{i}\) as follows: the block \(T_{1}\) contains rows/columns 1 to isplit[0]; the block \(T_{2}\) contains rows/columns isplit[0]+1 to isplit[1], and so on.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=1\), for range \(=\) ' \(A\) ' or ' \(V\) ', the algorithm failed to compute some of the required eigenvalues to the desired accuracy; iblock[i] < 0 indicates that the eigenvalue stored in \(w[i]\) failed to converge.

If info \(=2\), for range \(=\) 'I', the algorithm failed to compute some of the required eigenvalues. Try calling the routine again with range \(=\) ' A '.
If info \(=3\) :
for range \(=\) 'A' or 'V', same as info \(=1\);
for range \(=\) 'I', same as info \(=2\).
If info \(=4\), no eigenvalues have been computed. The floating-point arithmetic on the computer is not behaving as expected.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The eigenvalues of \(T\) are computed to high relative accuracy which means that if they vary widely in magnitude, then any small eigenvalues will be computed more accurately than, for example, with the standard \(Q R\) method. However, the reduction to tridiagonal form (prior to calling the routine) may exclude the possibility of obtaining high relative accuracy in the small eigenvalues of the original matrix if its eigenvalues vary widely in magnitude.

\section*{?stein}

Computes the eigenvectors corresponding to specified eigenvalues of a real symmetric tridiagonal matrix.

\section*{Syntax}
```

lapack_int LAPACKE_sstein(int matrix_layout, lapack_int n, const float* d, const
float* e, lapack_int m, const float* w, const lapack_int* iblock, const lapack_int*
isplit, float* z, lapack_int ldz, lapack_int* ifailv);

```
```

lapack_int LAPACKE_dstein(int matrix_layout, lapack_int n, const double* d, const
double* e, lapack_int m, const double* w, const lapack_int* iblock, const lapack_int*
isplit, double* z, lapack_int ldz, lapack_int* ifailv);
lapack_int LAPACKE_cstein(int matrix_layout, lapack_int n, const float* d, const
float* e, lapack_int m, const float* w, const lapack_int* iblock, const lapack_int*
isplit, lapack_complex_float* z, lapack_int ldz, lapack_int* ifailv);
lapack_int LAPACKE_zstein(int matrix_layout, lapack_int n, const double* d, const
double* e, lapack_int m, const double* w, const lapack_int* iblock, const lapack_int*
isplit, lapack_complex_double* z, lapack_int ldz, lapack_int* ifailv);

```

Include Files
- mkl.h

\section*{Description}

The routine computes the eigenvectors of a real symmetric tridiagonal matrix \(T\) corresponding to specified eigenvalues, by inverse iteration. It is designed to be used in particular after the specified eigenvalues have been computed by ?stebz with order = 'B', but may also be used when the eigenvalues have been computed by other routines.

If you use this routine after ?stebz, it can take advantage of the block structure by performing inverse iteration on each block \(T_{i}\) separately, which is more efficient than using the whole matrix \(T\).

If \(T\) has been formed by reduction of a full symmetric or Hermitian matrix \(A\) to tridiagonal form, you can transform eigenvectors of \(T\) to eigenvectors of \(A\) by calling ?ormtr or ?opmtr (for real flavors) or by calling ?unmtr or ?upmtr (for complex flavors).

\section*{Input Parameters}
```

matrix_layout
n
m
d,e,w
iblock, isplit

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

The order of the matrix \(T(n \geq 0)\).
The number of eigenvectors to be returned.

\section*{Arrays:}
\(d\) contains the diagonal elements of \(T\).
The size of \(d\) must be at least \(\max (1, n)\).
e contains the sub-diagonal elements of \(T\) stored in elements 1 to \(n-1\)
The size of e must be at least \(\max (1, n-1)\).
\(w\) contains the eigenvalues of \(T\), stored in \(w[0]\) to \(w[m-1]\) (as returned by stebz). Eigenvalues of \(T_{1}\) must be supplied first, in non-decreasing order; then those of \(T_{2}\), again in non-decreasing order, and so on. Constraint:
if iblock[i] = iblock[i+1], w[i] \(\leq w[i+1]\).
The size of \(w\) must be at least \(\max (1, n)\).

Arrays, size at least \(\max (1, n)\). The arrays iblock and isplit, as returned by ?stebz with order \(=\) ' \(\mathrm{B}^{\prime}\).

If you did not call ?stebz with order = 'B', set all elements of iblock to 1, and isplit[0] to n.)
\(1 d z\)
The leading dimension of the output array \(z ; 1 d z \geq \max (1, n)\) for column major layout and \(1 d z>=\max (1, m)\) for row major layout.

\section*{Output Parameters}

Z
Array, size at least \(\max \left(1, I d z^{*} m\right)\) for column major layout and \(\max \left(1, I d z^{*} n\right)\) for row major layout.
If info \(=0, z\) contains an \(n\)-by- \(n\) matrix the columns of which are orthonormal eigenvectors. (The \(i\)-th column corresponds to the \(i\) th eigenvalue.)

Array, size at least \(\max (1, m)\).
If info \(=i>0\), the first \(i\) elements of ifailv contain the indices of any eigenvectors that failed to converge.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=i\), then \(i\) eigenvectors (as indicated by the parameter ifailv) each failed to converge in 5 iterations. The current iterates are stored in the corresponding columns/rows of the array \(z\).
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

Each computed eigenvector \(z_{i}\) is an exact eigenvector of a matrix \(T+E_{i}\), where \(\left|\left|E_{i}\right|\right|_{2}=O(\varepsilon) *| | T| |_{2}\). However, a set of eigenvectors computed by this routine may not be orthogonal to so high a degree of accuracy as those computed by ?steqr.

\section*{?disna}

Computes the reciprocal condition numbers for the eigenvectors of a symmetric/ Hermitian matrix or for the left or right singular vectors of a general matrix.

Syntax
```

lapack_int LAPACKE_sdisna (char job, lapack_int m, lapack_int n, const float* d, float*
sep);
lapack_int LAPACKE_ddisna (char job, lapack_int m, lapack_int n, const double* d,
double* sep);

```

Include Files
- mkl.h

\section*{Description}

The routine computes the reciprocal condition numbers for the eigenvectors of a real symmetric or complex Hermitian matrix or for the left or right singular vectors of a general \(m\)-by- \(n\) matrix.

The reciprocal condition number is the 'gap' between the corresponding eigenvalue or singular value and the nearest other one.
The bound on the error, measured by angle in radians, in the \(i\)-th computed vector is given by
?lamch('E')*(anorm/sep(i))
where anorm \(=||A||_{2}=\max (|d(j)|) . \operatorname{sep}(i)\) is not allowed to be smaller than slamch('E')*anorm in order to limit the size of the error bound.
?disna may also be used to compute error bounds for eigenvectors of the generalized symmetric definite eigenproblem.

\section*{Input Parameters}
job
m
n
\(d\)

Must be 'E','L', or 'R'. Specifies for which problem the reciprocal condition numbers should be computed:
\(j o b=\) ' E ': for the eigenvectors of a symmetric/Hermitian matrix;
\(j o b=\) 'L': for the left singular vectors of a general matrix;
\(j o b=\) ' R ': for the right singular vectors of a general matrix.
The number of rows of the matrix \((m \geq 0)\).

If job \(=\) 'L', or 'R', the number of columns of the matrix \((n \geq 0)\). Ignored if job \(=\) 'E'.

Array, dimension at least \(\max (1, m)\) if \(j o b=' E\) ', and at least max(1, \(\min (m, n))\) if job \(=\) 'L' or ' R '.

This array must contain the eigenvalues (if \(j o b=' E '\) ) or singular values (if job = 'L' or 'R') of the matrix, in either increasing or decreasing order.

If singular values, they must be non-negative.

\section*{Output Parameters}
sep
Array, dimension at least \(\max (1, m)\) if \(j o b=' E\) ', and at least max(1, \(\min (m, n)\) ) if job \(=\) 'L' or ' R '. The reciprocal condition numbers of the vectors.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

Generalized Symmetric-Definite Eigenvalue Problems: LAPACK Computational Routines
Generalized symmetric-definite eigenvalue problems are as follows: find the eigenvalues \(\lambda\) and the corresponding eigenvectors \(z\) that satisfy one of these equations:
\(A z=\lambda B z, A B z=\lambda z\), or \(B A z=\lambda z\),
where \(A\) is an \(n\)-by-n symmetric or Hermitian matrix, and \(B\) is an \(n\)-by-n symmetric positive-definite or Hermitian positive-definite matrix.

In these problems, there exist \(n\) real eigenvectors corresponding to real eigenvalues (even for complex Hermitian matrices \(A\) and \(B\) ).
Routines described in this topic allow you to reduce the above generalized problems to standard symmetric eigenvalue problem \(C y=\lambda y\), which you can solve by calling LAPACK routines described earlier in this chapter (see Symmetric Eigenvalue Problems).
Different routines allow the matrices to be stored either conventionally or in packed storage. Prior to reduction, the positive-definite matrix \(B\) must first be factorized using either potrf or pptrf.
The reduction routine for the banded matrices \(A\) and \(B\) uses a split Cholesky factorization for which a specific routine pbstf is provided. This refinement halves the amount of work required to form matrix \(C\).

Table "Computational Routines for Reducing Generalized Eigenproblems to Standard Problems" lists LAPACK routines that can be used to solve generalized symmetric-definite eigenvalue problems.
Computational Routines for Reducing Generalized Eigenproblems to Standard Problems
\begin{tabular}{lllll}
\hline Matrix type & \begin{tabular}{l} 
Reduce to standard \\
problems (full \\
storage)
\end{tabular} & \begin{tabular}{l} 
Reduce to standard \\
problems (packed \\
storage)
\end{tabular} & \begin{tabular}{l} 
Reduce to standard \\
problems (band \\
matrices)
\end{tabular} & \begin{tabular}{l} 
Factorize \\
band \\
matrix
\end{tabular} \\
\hline \begin{tabular}{l} 
real \\
symmetric \\
matrices
\end{tabular} & sygst & spgst & sbgst & pbstf \\
\begin{tabular}{l} 
complex \\
Hermitian \\
matrices
\end{tabular} & hegst & hpgst & hbgst & \\
\hline
\end{tabular}
```

?sygst
Reduces a real symmetric-definite generalized eigenvalue problem to the standard form.

```

\section*{Syntax}
```

lapack_int LAPACKE_ssygst (int matrix_layout, lapack_int itype, char uplo, lapack_int $\left.n, f l o a t * ~ a, ~ l a p a c k _i n t ~ l d a, ~ c o n s t ~ f l o a t * ~ b, ~ l a p a c k _i n t ~ l d b\right) ; ~$
lapack_int LAPACKE_dsygst (int matrix_layout, lapack_int itype, char uplo, lapack_int

```


\section*{Include Files}
- mkl.h

\section*{Description}

The routine reduces real symmetric-definite generalized eigenproblems

to the standard form \(C^{\star} y=\lambda^{\star} y\). Here \(A\) is a real symmetric matrix, and \(B\) is a real symmetric positivedefinite matrix. Before calling this routine, call ?potrf to compute the Cholesky factorization: \(B=U^{T} * U\) or \(B\) \(=L^{\star} L^{T}\).

\section*{Input Parameters}
```

matrix_layout

```
itype

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 1 or 2 or 3.
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& \text { If itype }=1 \text {, the generalized eigenproblem is } A \star_{z}=\operatorname{lambda} \star^{*} \star_{z} \\
& \text { for uplo }=' U ': C=\operatorname{inv}\left(U^{T}\right) \star A \star \operatorname{inv}(U), z=\operatorname{inv}(U) * y ;
\end{aligned}
\] \\
\hline & for uplo \(=\) 'L': \(C=\operatorname{inv}(L) \star A * \operatorname{inv}\left(L^{T}\right), z=\operatorname{inv}\left(L^{T}\right) * y\). \\
\hline & \begin{tabular}{l}
If itype \(=2\), the generalized eigenproblem is \(A^{\star} B^{\star} z=\operatorname{lambda}{ }^{\star} z\) \\
for uplo = 'U': C = \(U^{\star} A^{\star} U^{T}, z=\operatorname{inv}(U){ }^{\star} y\);
\end{tabular} \\
\hline & for uplo = 'L': \(C=L^{T \star} A^{\star} L, z=\operatorname{inv}\left(L^{T}\right) * y\). \\
\hline & If itype \(=3\), the generalized eigenproblem is \(B^{\star} A^{\star} z=\operatorname{lambda*} z\) \\
\hline & for uplo = 'U': \(C=U^{\star} A^{\star} U^{T}, z=U^{T \star} y\); \\
\hline & for uplo = 'L': \(C=L^{T \star} A \star L, z=L^{\star} y\). \\
\hline \multirow[t]{3}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', the array a stores the upper triangle of \(A\); you must supply \(B\) in the factored form \(B=U^{T} * U\). \\
\hline & If uplo = 'L', the array a stores the lower triangle of \(A\); you must supply \(B\) in the factored form \(B=L^{\star} L^{T}\). \\
\hline \(n\) & The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \multirow[t]{4}{*}{\(a, b\)} & Arrays: \\
\hline & \(a\left(\right.\) size \(\max \left(1, I d a_{n}\right)\) ) contains the upper or lower triangle of \(A\). \\
\hline & \(b\) (size max \(\left(1, I d b^{*}\right)\) ) contains the Cholesky-factored matrix \(B\) : \\
\hline & \(B=U^{T} * U\) or \(B=L \star L^{T}\) (as returned by ?potrf). \\
\hline Ida & The leading dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & The leading dimension of \(b\); at least \(\max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
The upper or lower triangle of \(A\) is overwritten by the upper or lower triangle of \(C\), as specified by the arguments itype and uplo.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

Forming the reduced matrix \(C\) is a stable procedure. However, it involves implicit multiplication by inv ( \(B\) ) (if itype \(=1\) ) or \(B\) (if itype \(=2\) or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is \(n^{3}\).
```

?hegst
Reduces a complex Hermitian positive-definite
generalized eigenvalue problem to the standard form.

```

\section*{Syntax}
```

lapack_int LAPACKE_chegst (int matrix_layout, lapack_int itype, char uplo, lapack_int n, lapack_complex_float* a, lapack_int lda, const lapack_complex_float* b, lapack_int Idb) ;
lapack_int LAPACKE_zhegst (int matrix_layout, lapack_int itype, char uplo, lapack_int n, lapack_complex_double* a, lapack_int lda, const lapack_complex_double* b, lapack_int Idb) ;

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine reduces a complex Hermitian positive-definite generalized eigenvalue problem to standard form.
\begin{tabular}{|lll|}
\hline itype & Problem & Result \\
\hline 1 & \(A^{\star} X=\lambda^{\star} B^{\star} X\) & \(A\) overwritten by inv \(\left(U^{\mathrm{H}}\right) \star A^{\star}\) inv \((U)\) or \\
2 & \(A^{\star} B^{\star} X=\lambda{ }^{\star} X\) & inv \((L)^{\star} A^{\star} \operatorname{inv}\left(L^{\mathrm{H}}\right)\)
\end{tabular}

Before calling this routine, you must call ?potrf to compute the Cholesky factorization: \(B=U^{H *} U\) or \(B=\) \(L^{\star} L^{H}\).

\section*{Input Parameters}
itype
Must be 1 or 2 or 3 .
If itype \(=1\), the generalized eigenproblem is \(A \star z=\operatorname{lambda}{ }^{\star} B^{\star} z\)
for uplo \(=\) 'U': \(C=\left(U^{H}\right)^{-1 \star} A \star U^{-1}\);
for uplo \(=\) 'L': \(C=L^{-1 \star} A^{\star}\left(L^{H}\right)^{-1}\).
If itype \(=2\), the generalized eigenproblem is \(A^{\star} B^{\star} z=\operatorname{lambda\star } z\)
for uplo = 'U': C = \(U^{\star} A^{\star} U^{H}\);
for uplo \(=\) 'L': C \(=L^{H \star} A \star L\).
If itype \(=3\), the generalized eigenproblem is \(B^{\star} A^{\star} z=\operatorname{lambda}{ }_{z}\)
for uplo = 'U': C = \(U^{\star} A^{\star} U^{H}\);
for uplo \(=\) 'L': C \(=L^{H \star} A^{\star} L\).
Must be 'U' or 'L'.
If uplo = 'U', the array a stores the upper triangle of \(A\); you must supply \(B\) in the factored form \(B=U^{H} * U\).
\begin{tabular}{|c|c|}
\hline & If uplo = 'L', the array a stores the lower triangle of \(A\); you must supply \(B\) in the factored form \(B=L * L^{H}\). \\
\hline \(n\) & The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \multirow[t]{4}{*}{\(a, b\)} & Arrays: \\
\hline & \(a\) (size max \(\left(1, I d a_{n}\right)\) ) contains the upper or lower triangle of \(A\). \\
\hline & \(b\) (size max \(\left.\left(1, I d b^{*}\right)\right)\) contains the Cholesky-factored matrix \(B\) : \\
\hline & \(B=U^{H} \star U\) or \(B=L^{\star} L^{H}\) (as returned by ?potrf). \\
\hline lda & The leading dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & The leading dimension of \(b\); at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
The upper or lower triangle of \(A\) is overwritten by the upper or lower triangle of \(C\), as specified by the arguments itype and uplo.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

Forming the reduced matrix \(C\) is a stable procedure. However, it involves implicit multiplication by \(B^{-1}\) (if itype \(=1\) ) or \(B\) (if itype \(=2\) or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is \(n^{3}\).
```

?spgst
Reduces a real symmetric-definite generalized
eigenvalue problem to the standard form using packed
storage.
Syntax
lapack_int LAPACKE_sspgst (int matrix_layout, lapack_int itype, char uplo, lapack_int
n, float* ap, const float* bp);
lapack_int LAPACKE_dspgst (int matrix_layout, lapack_int itype, char uplo, lapack_int
n, double* ap, const double* bp);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine reduces real symmetric-definite generalized eigenproblems
\(A^{\star} X=\lambda{ }^{\star} B^{\star} X, A^{\star} B^{\star} X=\lambda^{\star} X\), or \(B^{\star} A^{\star} X=\lambda^{\star} X\)
to the standard form \(C^{\star} y=\lambda^{\star} y\), using packed matrix storage. Here \(A\) is a real symmetric matrix, and \(B\) is a real symmetric positive-definite matrix. Before calling this routine, call ?pptrf to compute the Cholesky factorization: \(B=U^{T} \star U\) or \(B=L^{\star} L^{T}\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{7}{*}{itype} & Must be 1 or 2 or 3 . \\
\hline & \[
\begin{aligned}
& \text { If itype }=1 \text {, the generalized eigenproblem is } A \star z=\operatorname{lambda} \star^{\star} z \\
& \text { for uplo }=' U ': C=\operatorname{inv}\left(U^{T}\right) \star A \star \operatorname{inv}(U), z=\operatorname{inv}(U) \star y ;
\end{aligned}
\] \\
\hline & for uplo \(=\) 'L': \(C=\operatorname{inv}(L) * A * \operatorname{inv}\left(L^{T}\right), z=\operatorname{inv}\left(L^{T}\right) * y\). \\
\hline & \begin{tabular}{l}
If itype \(=2\), the generalized eigenproblem is \(A^{\star} B^{\star} z=\operatorname{lambda}{ }_{z}\) \\
for uplo = 'U': \(C=U^{\star} A^{\star} U^{T}, z=\operatorname{inv}(U){ }^{*} y\);
\end{tabular} \\
\hline & for uplo = 'L': \(C=L^{T \star} A^{\star} L, z=\operatorname{inv}\left(L^{T}\right) \star y\). \\
\hline & \begin{tabular}{l}
If itype \(=3\), the generalized eigenproblem is \(B^{\star} A^{\star} z=\operatorname{lambda}{ }^{*} z\) \\
for uplo = 'U': \(C=U^{\star} A \star U^{T}, z=U^{T \star} y\);
\end{tabular} \\
\hline & for uplo = 'L': \(C=L^{T \star} A \star L, z=L^{\star} y\). \\
\hline \multirow[t]{5}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', ap stores the packed upper triangle of \(A\); \\
\hline & you must supply \(B\) in the factored form \(B=U^{T} * U\). \\
\hline & If uplo = 'L', ap stores the packed lower triangle of \(A\); \\
\hline & you must supply \(B\) in the factored form \(B=L^{\star} L^{T}\). \\
\hline \(n\) & The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{\(a p, b p\)} & Arrays: \\
\hline & ap contains the packed upper or lower triangle of \(A\). \\
\hline & The dimension of \(a p\) must be at least max \(\left(1, n^{*}(n+1) / 2\right)\). \\
\hline & \(b p\) contains the packed Cholesky factor of \(B\) (as returned by ?pptrf with the same uplo value). \\
\hline & The dimension of \(b p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
ap
The upper or lower triangle of \(A\) is overwritten by the upper or lower triangle of \(C\), as specified by the arguments itype and uplo.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

Forming the reduced matrix \(C\) is a stable procedure. However, it involves implicit multiplication by inv ( \(B\) ) (if itype \(=1\) ) or \(B\) (if itype \(=2\) or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is \(n^{3}\).
```

?hpgst
Reduces a generalized eigenvalue problem with a
Hermitian matrix to a standard eigenvalue problem
using packed storage.
Syntax
lapack_int LAPACKE_chpgst (int matrix_layout, lapack_int itype, char uplo, lapack_int
n, lapack_complex_float* ap, const lapack_complex_float* bp);
lapack_int LAPACKE_zhpgst (int matrix_layout, lapack_int itype, char uplo, lapack_int
n, lapack_complex_double* ap, const lapack_complex_double* bp);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine reduces generalized eigenproblems with Hermitian matrices
```

A*}z=\mp@subsup{\lambda}{}{\star}\mp@subsup{B}{}{\star}z,\mp@subsup{A}{}{\star}\mp@subsup{B}{}{\star}z=\mp@subsup{\lambda}{}{\star}z\mathrm{ , or }\mp@subsup{B}{}{\star}\mp@subsup{A}{}{\star}z=\mp@subsup{\lambda}{}{\star}z

```
to standard eigenproblems \(C^{\star} y=\lambda^{\star} y\), using packed matrix storage. Here \(A\) is a complex Hermitian matrix, and \(B\) is a complex Hermitian positive-definite matrix. Before calling this routine, you must call ?pptrf to compute the Cholesky factorization: \(B=U^{H} * U\) or \(B=L * L^{H}\).

\section*{Input Parameters}
```

matrix_layout
itype
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 1 or 2 or 3.
If itype $=1$, the generalized eigenproblem is $A{ }^{*} z=\operatorname{lambda}{ }^{*} B^{\star} z$
for uplo = 'U': C = inv($\left.U^{H}\right) * A * \operatorname{inv}(U), z=\operatorname{inv(U)*y;~}$
for uplo $=$ 'L': $C=\operatorname{inv}(L) * A * \operatorname{inv}\left(L^{H}\right), z=\operatorname{inv}\left(L^{H}\right) \star y$.
If itype $=2$, the generalized eigenproblem is $A^{\star} B^{\star} z=\operatorname{lambda} z$
for uplo $=$ 'U':C $=U^{\star} A^{\star} U^{H}, z=\operatorname{inv}(U)^{*} y ;$
for uplo $=$ 'L': $C=L^{H \star} A^{\star} L, z=\operatorname{inv}\left(L^{H}\right) * y$.
If itype $=3$, the generalized eigenproblem is $B^{\star} A^{\star} z=\operatorname{lambda}{ }_{z}$
for uplo = 'U': C = $U^{\star} A^{\star} U^{H}, z=U^{H \star} y$;
for uplo = 'L': C = $L^{H \star} A \star L, z=L^{\star} y$.

```
```

uplo
n
ap,bp
Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangle of A; you must supply B in the factored form $B=U^{H} \star U$.
If uplo = 'L', ap stores the packed lower triangle of A; you must supply B in the factored form $B=L^{\star} L^{H}$.
The order of the matrices A and $B(n \geq 0)$.

```

\section*{Arrays:}
```

ap contains the packed upper or lower triangle of A.
The dimension of a must be at least $\max \left(1, n^{*}(n+1) / 2\right)$.
$b p$ contains the packed Cholesky factor of B (as returned by ?pptrf with the same uplo value).
The dimension of b must be at least $\max \left(1, n^{*}(n+1) / 2\right)$.

```

\section*{Output Parameters}

The upper or lower triangle of \(A\) is overwritten by the upper or lower triangle of \(C\), as specified by the arguments itype and uplo.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

Forming the reduced matrix \(C\) is a stable procedure. However, it involves implicit multiplication by inv \((B)\) (if itype \(=1\) ) or \(B\) (if itype \(=2\) or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is \(n^{3}\).

\section*{?sbgst}

Reduces a real symmetric-definite generalized
eigenproblem for banded matrices to the standard
form using the factorization performed by ?pbstf.

\section*{Syntax}
```

lapack_int LAPACKE_ssbgst (int matrix_layout, char vect, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, float* ab, lapack_int ldab, const float* bb, lapack_int
ldbb, float* x, lapack_int ldx);
lapack_int LAPACKE_dsbgst (int matrix_layout, char vect, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, double* ab, lapack_int ldab, const double* bb, lapack_int
ldbb, double* x, lapack_int ldx);

```

Include Files
- mkl.h

\section*{Description}

To reduce the real symmetric-definite generalized eigenproblem \(A^{\star} z=\lambda \star B^{\star} z\) to the standard form \(C^{\star} y=\lambda^{\star} y\), where \(A, B\) and \(C\) are banded, this routine must be preceded by a call to pbstf, which computes the split Cholesky factorization of the positive-definite matrix \(B: B=S^{T} * S\). The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to be approximately halved.
This routine overwrites \(A\) with \(C=X^{T} \star^{*} * X\), where \(X=\operatorname{inv}(S) * Q\) and \(Q\) is an orthogonal matrix chosen (implicitly) to preserve the bandwidth of \(A\). The routine also has an option to allow the accumulation of \(X\), and then, if \(z\) is an eigenvector of \(C, X^{\star} z\) is an eigenvector of the original system.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline vect & Must be 'N' or 'V'. \\
\hline & If vect \(=\) ' N ', then matrix \(X\) is not returned; \\
\hline & If vect \(=\) ' V ', then matrix \(X\) is returned. \\
\hline uplo & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', \(a b\) stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', \(a b\) stores the lower triangular part of \(A\). \\
\hline \(n\) & The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ka & The number of super- or sub-diagonals in \(A\) \\
\hline & ( \(k a \geq 0\) ). \\
\hline kb & The number of super- or sub-diagonals in \(B\) \\
\hline & ( \(k a \geq k b \geq 0)\). \\
\hline \(a b, b . b\) & \(a b\) (size at least max(1, ldab*n) for column major layout and at least \(\max \left(1, ~ l d a b^{*}(k a+1)\right)\) for row major layout) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & \(b b\) (size at least \(\max \left(1, I d b b^{*} n\right)\) for column major layout and at least \(\max \left(1, l d b b^{*}(k b+1)\right)\) for row major layout) is an array containing the banded split Cholesky factor of \(B\) as specified by uplo, \(n\) and \(k b\) and returned by pbstf/pbstf. \\
\hline Idab & The leading dimension of the array \(a b\); must be at least \(k a+1\) for column major layout and \(\max (1, n)\) for row major layout. \\
\hline 1 dbb & The leading dimension of the array \(b b\); must be at least \(k b+1\) for column major layout and \(\max (1, n)\) for row major layout. \\
\hline \(1 d x\) & The leading dimension of the output array x . Constraints: if vect \(=\) ' N ', then \(I d x \geq 1\); \\
\hline & if vect \(=\) ' V', then \(1 d x \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a b\)

X
On exit, this array is overwritten by the upper or lower triangle of \(C\) as specified by uplo.

Array.
If vect \(=' \mathrm{~V}\) ', then \(x\) (size at least \(\left.\max \left(1, I d x_{n}\right)\right)\) contains the \(n\)-by- \(n\) matrix \(X=\operatorname{inv}(S) * Q\).
If vect \(=\) ' \(N\) ', then \(x\) is not referenced.

\section*{Return Values}

This function returns a value info.
If inforo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

Forming the reduced matrix \(C\) involves implicit multiplication by inv ( \(B\) ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion.

If \(k a\) and \(k b\) are much less than \(n\) then the total number of floating-point operations is approximately \(6 n^{2} * k b\), when vect \(=' N^{\prime}\). Additional (3/2) \(n^{3 *}(k b / k a)\) operations are required when vect \(=\) ' \(V\) '.

\section*{?hbgst}

Reduces a complex Hermitian positive-definite generalized eigenproblem for banded matrices to the standard form using the factorization performed
by ?pbstf.

\section*{Syntax}
```

lapack_int LAPACKE_chbgst (int matrix_layout, char vect, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, lapack_complex_float* ab, lapack_int ldab, const
lapack_complex_float* bb, lapack_int ldbb, lapack_complex_float* x, lapack_int ldx);
lapack_int LAPACKE_zhbgst (int matrix_layout, char vect, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, lapack_complex_double* ab, lapack_int ldab, const
lapack_complex_double* bb, lapack_int ldbb, lapack_complex_double* x, lapack_int ldx);

```

Include Files
- mkl.h

\section*{Description}

To reduce the complex Hermitian positive-definite generalized eigenproblem \(A^{\star} z=\lambda \star B^{\star} z\) to the standard form \(C^{\star} X=\lambda^{\star} y\), where \(A, B\) and \(C\) are banded, this routine must be preceded by a call to pbstf/pbstf, which computes the split Cholesky factorization of the positive-definite matrix \(B\) : \(B=S^{H \star}\). The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to be approximately halved.
This routine overwrites \(A\) with \(C=X^{H} \star^{A} * X\), where \(X=\operatorname{inv}(S) * Q\), and \(Q\) is a unitary matrix chosen (implicitly) to preserve the bandwidth of \(A\). The routine also has an option to allow the accumulation of \(X\), and then, if \(z\) is an eigenvector of \(C, X^{*} z\) is an eigenvector of the original system.

\section*{Input Parameters}
```

matrix_layout
vect
uplo
n
ka
kb
ab, b.b
Idab
ldbb
ldx

```

\section*{Output Parameters}

On exit, this array is overwritten by the upper or lower triangle of \(C\) as specified by uplo.

Array.
If vect \(=\) ' \(V\) ', then \(x\left(\right.\) size at least \(\left.\max \left(1, I d x^{*} n\right)\right)\) contains the \(n\)-by-n matrix \(x=\operatorname{inv}(S) * Q\).

If vect \(=\) ' \(N\) ', then \(x\) is not referenced.

\section*{Return Values}

This function returns a value info.
If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

Forming the reduced matrix \(C\) involves implicit multiplication by \(\operatorname{inv}(B)\). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion. The total number of floating-point operations is approximately \(20 n^{2} * k b\), when vect \(=\) ' \(N\) '. Additional \(5 n^{3} *(k b / k a)\) operations are required when vect \(=\) ' V '. All these estimates assume that both \(k a\) and \(k b\) are much less than \(n\).
?pbstf
Computes a split Cholesky factorization of a real
symmetric or complex Hermitian positive-definite
banded matrix used in ?sbgst/?hbgst .

\section*{Syntax}
```

lapack_int LAPACKE_spbstf (int matrix_layout, char uplo, lapack_int n, lapack_int kb,
float* bb, lapack_int ldbb);
lapack_int LAPACKE_dpbstf (int matrix_layout, char uplo, lapack_int n, lapack_int kb,
double* bb, lapack_int ldbb);
lapack_int LAPACKE_cpbstf (int matrix_layout, char uplo, lapack_int n, lapack_int kb,
lapack_complex_float* bb, lapack_int labb);
lapack_int LAPACKE_zpbstf (int matrix_layout, char uplo, lapack_int n, lapack_int kb,
lapack_complex_double* bb, lapack_int ldbb);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes a split Cholesky factorization of a real symmetric or complex Hermitian positivedefinite band matrix \(B\). It is to be used in conjunction with sbgst/hbgst.
The factorization has the form \(B=S^{T} * S\) (or \(B=S^{H} * S\) for complex flavors), where \(S\) is a band matrix of the same bandwidth as \(B\) and the following structure: \(S\) is upper triangular in the first \((n+k b) / 2\) rows and lower triangular in the remaining rows.

\section*{Input Parameters}
```

matrix_layout
uplo
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'U' or 'L'.
If uplo $=$ ' U', $b b$ stores the upper triangular part of B.
If uplo = 'L', bb stores the lower triangular part of B.

```
\[
\begin{array}{ll}
n \\
k b & \text { The order of the matrix } B(n \geq 0) . \\
& \text { The number of super- or sub-diagonals in } B \\
(k b \geq 0) .
\end{array}
\]

\section*{Output Parameters}
bb
On exit, this array is overwritten by the elements of the split Cholesky factor \(S\).

\section*{Return Values}

This function returns a value info.
If info=0, the execution is successful.
If info \(=i\), then the factorization could not be completed, because the updated element \(b_{i i}\) would be the square root of a negative number; hence the matrix \(B\) is not positive-definite.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed factor \(S\) is the exact factor of a perturbed matrix \(B+E\), where
\[
|E| \leq c(k b+1) \varepsilon\left|S^{H}\right||S|,\left|e_{i j}\right| \leq c(k b+1) \varepsilon \sqrt{b_{i i} b_{j j}}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
The total number of floating-point operations for real flavors is approximately \(n(k b+1)^{2}\). The number of operations for complex flavors is 4 times greater. All these estimates assume that \(k b\) is much less than \(n\).
After calling this routine, you can call sbgst/hbgst to solve the generalized eigenproblem \(A z=\lambda B z\), where \(A\) and \(B\) are banded and \(B\) is positive-definite.

\section*{Nonsymmetric Eigenvalue Problems: LAPACK Computational Routines}

This topic describes LAPACK routines for solving nonsymmetric eigenvalue problems, computing the Schur factorization of general matrices, as well as performing a number of related computational tasks.

A nonsymmetric eigenvalue problem is as follows: given a nonsymmetric (or non-Hermitian) matrix \(A\), find the eigenvalues \(\lambda\) and the corresponding eigenvectorsz that satisfy the equation
\(A z=\lambda z\) (right eigenvectors \(z\) )
or the equation
\(z^{H} A=\lambda z^{H}\) (left eigenvectors \(z\) ).
Nonsymmetric eigenvalue problems have the following properties:
- The number of eigenvectors may be less than the matrix order (but is not less than the number of distinct eigenvalues of \(A\) ).
- Eigenvalues may be complex even for a real matrix \(A\).
- If a real nonsymmetric matrix has a complex eigenvalue \(a+b i\) corresponding to an eigenvector \(z\), then \(a-\) \(b_{i}\) is also an eigenvalue. The eigenvalue \(a-b i\) corresponds to the eigenvector whose elements are complex conjugate to the elements of \(z\).
To solve a nonsymmetric eigenvalue problem with LAPACK, you usually need to reduce the matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg matrix obtained. Table "Computational Routines for Solving Nonsymmetric Eigenvalue Problems" lists LAPACK routines to reduce the matrix to the upper Hessenberg form by an orthogonal (or unitary) similarity transformation \(A=Q H Q^{H}\) as well as routines to solve eigenvalue problems with Hessenberg matrices, forming the Schur factorization of such matrices and computing the corresponding condition numbers.
The decision tree in Figure "Decision Tree: Real Nonsymmetric Eigenvalue Problems" helps you choose the right routine or sequence of routines for an eigenvalue problem with a real nonsymmetric matrix. If you need to solve an eigenvalue problem with a complex non-Hermitian matrix, use the decision tree shown in Figure "Decision Tree: Complex Non-Hermitian Eigenvalue Problems".
Computational Routines for Solving Nonsymmetric Eigenvalue Problems
\begin{tabular}{lll}
\hline Operation performed & Routines for real matrices & Routines for complex matrices \\
\hline \begin{tabular}{l} 
Reduce to Hessenberg form \\
\(A=Q H Q^{H}\)
\end{tabular} & ?gehrd, & ?gehrd \\
Generate the matrix Q & ?orghr & ?unghr \\
Apply the matrix Q & ?ormhr & ?unmhr \\
Balance matrix & ?gebal & ?gebal \\
\begin{tabular}{l} 
Transform eigenvectors of \\
balanced matrix to those of \\
the original matrix
\end{tabular} & ?gebak & ?gebak \\
\begin{tabular}{l} 
Find eigenvalues and Schur \\
factorization (QR algorithm)
\end{tabular} & ?hseqr & ?hseqr \\
\begin{tabular}{l} 
Find eigenvectors from \\
Hessenberg form (inverse \\
iteration)
\end{tabular} & ?hsein & ?hsein \\
\begin{tabular}{l} 
Find eigenvectors from \\
Schur factorization
\end{tabular} & ?trevc & ?trevc \\
Estimate sensitivities of & ?trsna & ?trsna \\
eigenvalues and \\
eigenvectors & & ?trexc \\
Reorder Schur factorization & ?trexc & ?trsen \\
\begin{tabular}{l} 
Reorder Schur factorization, \\
find the invariant subspace \\
and estimate sensitivities \\
Solves Sylvester's equation.
\end{tabular} & ?trsyl & \\
\hline
\end{tabular}


Decision Tree: Complex Non-Hermitian Eigenvalue Problems

?gehrd
Reduces a general matrix to upper Hessenberg form.

\section*{Syntax}
```

lapack_int LAPACKE_sgehrd (int matrix_layout, lapack_int n, lapack_int ilo, lapack_int
ihi, float* a, lapack_int lda, float* tau);
lapack_int LAPACKE_dgehrd (int matrix_layout, lapack_int n, lapack_int ilo, lapack_int
ihi, double* a, lapack_int lda, double* tau);
lapack_int LAPACKE_cgehrd (int matrix_layout, lapack_int n, lapack_int ilo, lapack_int
ihi, lapack_complex_float* a, lapack_int lda, lapack_complex_float* tau);
lapack_int LAPACKE_zgehrd (int matrix_layout, lapack_int n, lapack_int ilo, lapack_int
ihi, lapack_complex_double* a, lapack_int lda, lapack_complex_double* tau);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine reduces a general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal or unitary similarity transformation \(A=Q^{*} H^{*} Q^{H}\). Here \(H\) has real subdiagonal elements.

The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of elementary reflectors. Routines are provided to work with \(Q\) in this representation.

\section*{Input Parameters}
```

matrix_layout
n
ilo, ihi

```
a

Ida

\section*{Output Parameters}
a
tau

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

The order of the matrix \(A(n \geq 0)\).
If \(A\) is an output by ? gebal, then ilo and ihi must contain the values returned by that routine. Otherwise ilo = 1 and \(i\) hi \(=n\). (If \(n>0\), then \(1 \leq i l o \leq i h i \leq n ;\) if \(n=0\), ilo \(=1\) and ihi \(=0\).)

Arrays:
a (size \(\left.\max \left(1, l d a^{*} n\right)\right)\) contains the matrix \(A\).
The leading dimension of \(a\); at least \(\max (1, n)\).

The elements on and above the subdiagonal contain the upper Hessenberg matrix \(H\). The subdiagonal elements of \(H\) are real. The elements below the subdiagonal, with the array tau, represent the orthogonal matrix \(Q\) as a product of \(n\) elementary reflectors.

Array, size at least max \((1, n-1)\).
Contains scalars that define elementary reflectors for the matrix \(Q\).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.

If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed Hessenberg matrix \(H\) is exactly similar to a nearby matrix \(A+E\), where \(||E||_{2}<C(n) \varepsilon| |\) \(A\left|\left.\right|_{2}, C(n)\right.\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations for real flavors is (2/3)* (ihi -ilo) \({ }^{2}(2 i h i+2 i l o\) \(+3 n\) ) ; for complex flavors it is 4 times greater.

\section*{?orghr}

Generates the real orthogonal matrix \(Q\) determined
by ? gehrd.

\section*{Syntax}
```

lapack_int LAPACKE_sorghr (int matrix_layout, lapack_int n, lapack_int ilo, lapack_int
ihi, float* a, lapack_int lda, const float* tau);
lapack_int LAPACKE_dorghr (int matrix_layout, lapack_int n, lapack_int ilo, lapack_int
ihi, double* a, lapack_int lda, const double* tau);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine explicitly generates the orthogonal matrix \(Q\) that has been determined by a preceding call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal similarity transformation, \(A=Q^{\star} H^{\star} Q^{T}\), and represents the matrix \(Q\) as a product of ihiiloelementary reflectors. Here ilo and ihi are values determined by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, ilo \(=1\) and \(i h i=n\).)
The matrix \(Q\) generated by ?orghr has the structure:

where \(Q_{22}\) occupies rows and columns ilo to ihi.

\section*{Input Parameters}
\begin{tabular}{ll} 
matrix_layout & \begin{tabular}{l} 
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) \\
or column major (LAPACK_COL_MAJOR).
\end{tabular} \\
\(n\) & The order of the matrix \(Q(n \geq 0)\). \\
\(i l o, ~ i h i\) & These must be the same parameters ilo and ihi, respectively, as supplied \\
to ? gehrd. (If \(n>0\), then \(1 \leq i l o \leq i h i \leq n ;\) if \(n=0, i l o=1\) and ihi \(=\) \\
0.)
\end{tabular}
a, tau

Ida

Arrays: a (size \(\max \left(1, I d a_{n}\right)\) ) contains details of the vectors which define the elementary reflectors, as returned by ?gehrd.
tau contains further details of the elementary reflectors, as returned by ? gehrd.

The dimension of tau must be at least max \((1, n-1)\).
The leading dimension of \(a\); at least \(\max (1, n)\).

\section*{Output Parameters}
a
Overwritten by the \(n\)-by-n orthogonal matrix \(Q\).

\section*{Return Values}

This function returns a value info.
If inforo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(\|E\| I_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is (4/3)(ihi-ilo) \({ }^{3}\).
The complex counterpart of this routine is unghr.

\section*{?ormhr}

Multiplies an arbitrary real matrix C by the real orthogonal matrix \(Q\) determined by ?gehrd.

\section*{Syntax}
```

lapack_int LAPACKE_sormhr (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int ilo, lapack_int ihi, const float* a, lapack_int lda, const
float* tau, float* c, lapack_int ldc);
lapack_int LAPACKE_dormhr (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int ilo, lapack_int ihi, const double* a, lapack_int lda, const
double* tau, double* c, lapack_int ldc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine multiplies a matrix \(C\) by the orthogonal matrix \(Q\) that has been determined by a preceding call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal similarity transformation, \(A=Q^{\star} H^{\star} Q^{T}\), and represents the matrix \(Q\) as a product of ihiiloelementary reflectors. Here ilo and ihi are values determined by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, ilo \(=1\) and \(i\) hi \(=n\).)

With ?ormhr, you can form one of the matrix products \(Q^{\star} C, Q^{T *} C, C^{\star} Q\), or \(C^{\star} Q^{T}\), overwriting the result on \(C\) (which may be any real rectangular matrix).
A common application of ?ormhr is to transform a matrix \(V\) of eigenvectors of \(H\) to the matrix \(Q V\) of eigenvectors of \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{side} & Must be 'L' or 'R'. \\
\hline & If side \(=\) ' L', then the routine forms \(Q^{*} C\) or \(Q^{T *} C\). \\
\hline & If side \(=\) ' R ', then the routine forms \(C^{\star} Q\) or \(C^{\star} Q^{T}\). \\
\hline \multirow[t]{3}{*}{trans} & Must be 'N' or 'T'. \\
\hline & If trans= ' N ', then \(Q\) is applied to \(C\). \\
\hline & If trans= 'T', then \(Q^{T}\) is applied to \(C\). \\
\hline m & The number of rows in \(C\) ( \(m \geq 0)\). \\
\hline \(n\) & The number of columns in \(C(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{ilo, ihi} & These must be the same parameters ilo and ihi, respectively, as supplied to ?gehrd. \\
\hline & If \(m>0\) and side \(=\) 'L', then \(1 \leq i l o \leq i h i \leq m . ~\) \\
\hline & If \(m=0\) and side \(=\) 'L', then ilo = 1 and ihi \(=0\). \\
\hline & If \(n>0\) and side \(=\) 'R', then \(1 \leq i l o \leq i h i \leq n\). \\
\hline & If \(n=0\) and side \(=\) 'R', then ilo = 1 and ihi \(=0\). \\
\hline \multirow[t]{5}{*}{a, tau, c} & Arrays: \\
\hline & \(a\) (size \(\max \left(1, I d a_{n}\right)\) for side='R' and size \(\max \left(1, I a^{*} *_{m}\right)\) for side='L') contains details of the vectors which define the elementary reflectors, as returned by ?gehrd. \\
\hline & tau contains further details of the elementary reflectors, as returned by ? gehrd. \\
\hline & The dimension of tau must be at least max \((1, m-1)\) if side \(=\) 'L' and at least max \((1, n-1)\) if side \(=\) ' R '. \\
\hline & \(c\) (size \(\max \left(1, I d c_{n}\right)\) for column major layout and \(\max \left(1, I d c^{*}{ }_{m}\right.\) for row major layout) contains the \(m\) by \(n\) matrix \(C\). \\
\hline
\end{tabular}

Ida The leading dimension of \(a\); at least \(\max (1, m)\) if side \(=\) ' \(L\) ' and at least \(\max (1, n)\) if side \(=\) ' \(\mathrm{R}^{\prime}\).

The leading dimension of \(c\); at least \(\max (1, m)\) for column major layout and at least \(\max (1, n)\) for row major layout.

\section*{Output Parameters}
c
\(C\) is overwritten by product \(Q^{\star} C, Q^{T \star} C, C^{\star} Q\), or \(C^{\star} Q^{T}\) as specified by side and trans.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(\left||E|_{\left.\right|_{2}}=O(\varepsilon)\right|\) *|C| \(\left.\right|_{2}\), where \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is
```

2n(ihi-ilo)}\mp@subsup{}{}{2}\mathrm{ if side = 'L';
2m(ihi-ilo)}\mp@subsup{}{}{2}\mathrm{ if side = 'R'.

```

The complex counterpart of this routine is unmhr.

\section*{?unghr}

Generates the complex unitary matrix \(Q\) determined
by ? gehrd.

\section*{Syntax}
```

lapack_int LAPACKE_cunghr (int matrix_layout, lapack_int n, lapack_int ilo, lapack_int
ihi, lapack_complex_float* a, lapack_int lda, const lapack_complex_float* tau);
lapack_int LAPACKE_zunghr (int matrix_layout, lapack_int n, lapack_int ilo, lapack_int
ihi, lapack_complex_double* a, lapack_int lda, const lapack_complex_double* tau);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine is intended to be used following a call to cgehrd/zgehrd, which reduces a complex matrix \(A\) to upper Hessenberg form \(H\) by a unitary similarity transformation: \(A=Q^{\star} H^{\star} Q^{H}\). ? gehrd represents the matrix \(Q\) as a product of ihi-iloelementary reflectors. Here ilo and ihi are values determined by cgebal/zgebal when balancing the matrix; if the matrix has not been balanced, ilo \(=1\) and \(i h i=n\).
Use the routine unghr to generate \(Q\) explicitly as a square matrix. The matrix \(Q\) has the structure:

where \(Q_{22}\) occupies rows and columns ilo to ihi.
Input Parameters
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \(n\) & The order of the matrix \(Q(n \geq 0)\). \\
\hline ilo, ihi & These must be the same parameters ilo and ihi, respectively, as supplied to ?gehrd. (If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\). If \(n=0\), then ilo \(=1\) and ihi \(=0\).) \\
\hline \multirow[t]{4}{*}{a, tau} & Arrays: \\
\hline & \(a\left(\right.\) size \(\left.\max \left(1, I d a^{*}\right)\right)\) contains details of the vectors which define the elementary reflectors, as returned by ?gehrd. \\
\hline & tau contains further details of the elementary reflectors, as returned by ?gehrd. \\
\hline & The dimension of tau must be at least max ( \(1, n-1\) ). \\
\hline lda & The leading dimension of \(a\); at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a\)
Overwritten by the \(n\)-by- \(n\) unitary matrix \(Q\).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.

The approximate number of real floating-point operations is \((16 / 3)\) (ihi-ilo) \({ }^{3}\).
The real counterpart of this routine is orghr.

\section*{?unmhr \\ Multiplies an arbitrary complex matrix \(C\) by the complex unitary matrix \(Q\) determined by ?gehrd.}

\section*{Syntax}
```

lapack_int LAPACKE_cunmhr (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int ilo, lapack_int ihi, const lapack_complex_float* a, lapack_int
lda, const lapack_complex_float* tau, lapack_complex_float* c, lapack_int ldc);
lapack_int LAPACKE_zunmhr (int matrix_layout, char side, char trans, lapack_int m,
lapack_int n, lapack_int ilo, lapack_int ihi, const lapack_complex_double* a,
lapack_int lda, const lapack_complex_double* tau, lapack_complex_double* c, lapack_int
ldc);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine multiplies a matrix \(C\) by the unitary matrix \(Q\) that has been determined by a preceding call to cgehrd/zgehrd. (The routine ?gehrd reduces a real general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal similarity transformation, \(A=Q^{\star} H^{\star} Q^{H}\), and represents the matrix \(Q\) as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined by cgebal/zgebal when balancing the matrix; if the matrix has not been balanced, ilo \(=1\) and ihi \(=n\).)

With ? unmhr, you can form one of the matrix products \(Q^{*} C, Q^{H *} C, C^{*} Q\), or \(C^{*} Q^{H}\), overwriting the result on \(C\) (which may be any complex rectangular matrix). A common application of this routine is to transform a matrix \(V\) of eigenvectors of \(H\) to the matrix \(Q V\) of eigenvectors of \(A\).

\section*{Input Parameters}
```

matrix_layout
side
trans
m

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'L' or 'R'.
If side \(=\) 'L', then the routine forms \(Q^{*} C\) or \(Q^{H *} C\).
If side \(=\) ' \(R^{\prime}\), then the routine forms \(C^{*} Q\) or \(C^{*} Q^{H}\).
Must be 'N' or 'C'.
If trans \(=\) ' \(N\) ', then \(Q\) is applied to \(C\).
If trans \(=\) 'T', then \(Q^{H}\) is applied to \(C\).
The number of rows in \(C(m \geq 0)\).
\(n\)
\(1 d C\)

\section*{Output Parameters}

The number of columns in \(C(n \geq 0)\).
These must be the same parameters ilo and ihi, respectively, as supplied to ? gehrd.
If \(m>0\) and side \(=\) 'L', then \(1 \leq i l o \leq i h i \leq m\).
If \(m=0\) and side \(=\) 'L', then ilo = 1 and ihi \(=0\).
If \(n>0\) and side \(=\) 'R', then \(1 \leq i l o \leq i h i \leq n\).
If \(n=0\) and side \(=\) 'R', then ilo =1 and ihi \(=0\).

\section*{Arrays:}
\(a\left(\right.\) size \(\max \left(1, I d a^{*} n\right)\) for side='R' and size \(\max \left(1, I d a^{*}\right)_{\text {}}\) for side='L') contains details of the vectors which define the elementary reflectors, as returned by ? gehrd.
tau contains further details of the elementary reflectors, as returned by ?gehrd.
The dimension of tau must be at least max (1, m-1)
if side \(=\) 'L' and at least max \((1, n-1)\) if side \(=\) 'R'.
\(c\) (size \(\max \left(1, I d c^{*}\right)\) for column major layout and \(\max \left(1, I d c^{*} m\right.\) for row major layout) contains the \(m\)-by-n matrix \(C\).

The leading dimension of \(a\); at least \(\max (1, m)\) if side \(=\) ' L' and at least \(\max (1, n)\) if side \(=\) ' \(\mathrm{R}^{\prime}\).

The leading dimension of \(c\); at least \(\max (1, m)\) for column major layout and at least \(\max (1, n)\) for row major layout.
\(C\) is overwritten by \(Q^{*} C\), or \(Q^{H *} C\), or \(C^{*} Q^{H}\), or \(C^{*} Q\) as specified by side and trans.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(\left.\left||E|_{\left.\right|_{2}}=O(\varepsilon) *\right||C|\right|_{2}\), where \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is
```

8n(ihi-ilo)}\mp@subsup{}{}{2}\mathrm{ if side = 'L';
8m(ihi-ilo)}\mp@subsup{}{}{2}\mathrm{ if side = 'R'.

```

The real counterpart of this routine is ormhr.
```

?gebal
Balances a general matrix to improve the accuracy of
computed eigenvalues and eigenvectors.
Syntax
lapack_int LAPACKE_sgebal(int matrix_layout, char job, lapack_int n, float* a,
lapack_int lda, lapack_int* ilo, lapack_int* ihi, float* scale);
lapack_int LAPACKE_dgebal(int matrix_layout, char job, lapack_int n, double* a,
lapack_int lda, lapack_int* ilo, lapack_int* ihi, double* scale);
lapack_int LAPACKE_cgebal(int matrix_layout, char job, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_int* ilo, lapack_int* ihi, float*
scale);
lapack_int LAPACKE_zgebal(int matrix_layout, char job, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_int* ilo, lapack_int* ihi, double*
scale);

```

Include Files
- mkl.h

\section*{Description}

The routine balances a matrix \(A\) by performing either or both of the following two similarity transformations: (1) The routine first attempts to permute \(A\) to block upper triangular form:

where \(P\) is a permutation matrix, and \(A_{11}^{\prime}\) and \(A^{\prime}{ }_{33}\) are upper triangular. The diagonal elements of \(A^{\prime}{ }_{11}\) and \(A^{\prime}{ }_{33}\) are eigenvalues of \(A\). The rest of the eigenvalues of \(A\) are the eigenvalues of the central diagonal block \(A^{\prime}{ }_{22}\), in rows and columns ilo to ihi. Subsequent operations to compute the eigenvalues of \(A\) (or its Schur factorization) need only be applied to these rows and columns; this can save a significant amount of work if ilo > 1 and ihi < n.

If no suitable permutation exists (as is often the case), the routine sets ilo \(=1\) and \(i h i=n\), and \(A^{\prime} 22\) is the whole of \(A\).
(2) The routine applies a diagonal similarity transformation to \(A^{\prime}\), to make the rows and columns of \(A_{22}^{\prime}\) as close in norm as possible:
\[
A^{\prime \prime}=D A^{\prime} D^{-1}=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & D_{22} & 0 \\
0 & 0 & I
\end{array}\right] \times\left[\begin{array}{ccc}
A_{11}^{\prime} & A_{12}^{\prime} & A_{13}^{\prime} \\
0 & A_{22}^{\prime} & A_{23}^{\prime} \\
0 & 0 & A_{33}^{\prime}
\end{array}\right] \times\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & D_{22}^{-1} & 0 \\
0 & 0 & I
\end{array}\right]
\]

This scaling can reduce the norm of the matrix (that is, \(\| A^{\prime} '_{22}| |<\left|\left|A^{\prime}{ }_{22}\right|\right|\) ), and hence reduce the effect of rounding errors on the accuracy of computed eigenvalues and eigenvectors.

\section*{Input Parameters}
matrix_layout
job
n
a
lda

\section*{Output Parameters}
\(a\)
ilo, ihi
scale

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'N' or 'P' or 'S' or 'B'.
If job \(=\) ' \(N\) ', then \(A\) is neither permuted nor scaled (but ilo, ihi, and scale get their values).
If job \(=\) ' \(P^{\prime}\), then \(A\) is permuted but not scaled.
If job \(=\) 'S', then \(A\) is scaled but not permuted.
If job \(=\) ' \(B\) ', then \(A\) is both scaled and permuted.
The order of the matrix \(A(n \geq 0)\).
Array \(a\left(\right.\) size \(\left.\max \left(1, I d a^{*}\right)\right)\) contains the matrix \(A\).
The leading dimension of \(a\); at least \(\max (1, n)\).

Overwritten by the balanced matrix ( \(a\) is not referenced if job \(={ }^{\prime} N^{\prime}\) ).
The values ilo and ihi such that on exit \(a(i, j)\) is zero if \(i>j\) and \(1 \leq j<\) ilo or ihi < j \(\leq n\).

If job \(=\) 'N' or 'S', then ilo \(=1\) and ihi \(=n\).
Array, size at least \(\max (1, n)\).
Contains details of the permutations and scaling factors.
More precisely, if \(p_{j}\) is the index of the row and column interchanged with row and column \(j\), and \(d_{j}\) is the scaling factor used to balance row and column \(j\), then
```

scale[j - 1] = pjfor j = 1, 2,..., ilo-1, ihi+1,..., n;
scale[j - 1] = djfor j = ilo, ilo + 1,..., ihi.

```

The order in which the interchanges are made is \(n\) to \(i h i+1\), then 1 to ilo-1.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The errors are negligible, compared with those in subsequent computations.
If the matrix \(A\) is balanced by this routine, then any eigenvectors computed subsequently are eigenvectors of the matrix \(A^{\prime \prime}\) and hence you must call gebak to transform them back to eigenvectors of \(A\).
If the Schur vectors of \(A\) are required, do not call this routine with job = 'S' or 'B', because then the balancing transformation is not orthogonal (not unitary for complex flavors).
If you call this routine with job \(=\) ' \(\mathrm{P}^{\prime}\), then any Schur vectors computed subsequently are Schur vectors of the matrix \(A^{\prime \prime}\), and you need to call gebak (with side \(=\) 'R') to transform them back to Schur vectors of \(A\).
The total number of floating-point operations is proportional to \(n^{2}\).

\section*{?gebak}

Transforms eigenvectors of a balanced matrix to those
of the original nonsymmetric matrix.

\section*{Syntax}
```

lapack_int LAPACKE_sgebak(int matrix_layout, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const float* scale, lapack_int m, float* v, lapack_int
ldv);
lapack_int LAPACKE_dgebak(int matrix_layout, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const double* scale, lapack_int m, double* v,
lapack_int ldv);
lapack_int LAPACKE_cgebak(int matrix_layout, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const float* scale, lapack_int m, lapack_complex_float*
v, lapack_int ldv);
lapack_int LAPACKE_zgebak(int matrix_layout, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const double* scale, lapack_int m,
lapack_complex_double* v, lapack_int ldv);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine is intended to be used after a matrix \(A\) has been balanced by a call to ? gebal, and eigenvectors of the balanced matrix \(A^{\prime \prime} 22\) have subsequently been computed. For a description of balancing, see gebal. The balanced matrix \(A^{\prime \prime}\) is obtained as \(A^{\prime}=D^{\star} P^{\star} A \star P^{T \star} \operatorname{inv}(D)\), where \(P\) is a permutation matrix and \(D\) is a diagonal scaling matrix. This routine transforms the eigenvectors as follows:
if \(x\) is a right eigenvector of \(A^{\prime \prime}\), then \(P^{T *} \operatorname{inv}(D) * x\) is a right eigenvector of \(A\); if \(y\) is a left eigenvector of \(A^{\prime \prime}\), then \(P^{T \star} D^{\star} y\) is a left eigenvector of \(A\).

\section*{Input Parameters}
```

matrix_layout
job
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'N' or 'P' or 'S' or 'B'. The same parameter job as supplied to ? gebal.

```
```

side Must be 'L' or 'R'.
If side = 'L', then left eigenvectors are transformed.
If side = 'R', then right eigenvectors are transformed.
The number of rows of the matrix of eigenvectors (}n\geq0)\mathrm{ .
The values ilo and ihi, as returned by ?gebal. (If n > 0, then 1
<ilo\leqihi\leqn;
if n = 0, then ilo = 1 and ihi = 0.)
Array, size at least max(1,n).
Contains details of the permutations and/or the scaling factors used to
balance the original general matrix, as returned by ?gebal.
The number of columns of the matrix of eigenvectors (m\geq0).
Arrays:
v(size max(1, ldv*}n) for column major layout and max(1, ldv*m) for row
major layout) contains the matrix of left or right eigenvectors to be
transformed.
The leading dimension of v; at least max(1,n) for column major layout and
at least max (1,m) for row major layout .

```

\section*{Output Parameters}

Overwritten by the transformed eigenvectors.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The errors in this routine are negligible.
The approximate number of floating-point operations is approximately proportional to \(m^{\star} n\).
```

?hseqr
Computes all eigenvalues and (optionally) the Schur
factorization of a matrix reduced to Hessenberg form.
Syntax

```
```

lapack_int LAPACKE_shseqr(int matrix_layout, char job, char compz, lapack_int n,

```
lapack_int LAPACKE_shseqr( int matrix_layout, char job, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, float* h, lapack_int ldh, float* wr, float* wi, float*
lapack_int ilo, lapack_int ihi, float* h, lapack_int ldh, float* wr, float* wi, float*
z, lapack_int ldz );
z, lapack_int ldz );
lapack_int LAPACKE_dhseqr( int matrix_layout, char job, char compz, lapack_int n,
lapack_int LAPACKE_dhseqr( int matrix_layout, char job, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, double* h, lapack_int ldh, double* wr, double* wi,
lapack_int ilo, lapack_int ihi, double* h, lapack_int ldh, double* wr, double* wi,
double* z, lapack_int ldz );
```

double* z, lapack_int ldz);

```
```

lapack_int LAPACKE_chseqr(int matrix_layout, char job, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, lapack_complex_float* h, lapack_int ldh,
lapack_complex_float* w, lapack_complex_float* z, lapack_int ldz);
lapack_int LAPACKE_zhseqr(int matrix_layout, char job, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, lapack_complex_double* h, lapack_int ldh,
lapack_complex_double* w, lapack_complex_double* z, lapack_int ldz);

```

Include Files
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally the Schur factorization, of an upper Hessenberg matrix \(H\) : \(H=Z^{\star} T^{\star} Z^{H}\), where \(T\) is an upper triangular (or, for real flavors, quasi-triangular) matrix (the Schur form of \(H\) ), and \(Z\) is the unitary or orthogonal matrix whose columns are the Schur vectors \(z_{i}\).
You can also use this routine to compute the Schur factorization of a general matrix \(A\) which has been reduced to upper Hessenberg form \(H\) :
\(A=Q^{\star} H^{\star} Q^{H}\), where \(Q\) is unitary (orthogonal for real flavors);
\(A=(Q Z) * T^{*}(Q Z)^{H}\).
In this case, after reducing \(A\) to Hessenberg form by gehrd, call orghr to form \(Q\) explicitly and then pass \(Q\) to ?hseqr with compz = 'V'.

You can also call gebal to balance the original matrix before reducing it to Hessenberg form by ?hseqr, so that the Hessenberg matrix \(H\) will have the structure:

where \(H_{11}\) and \(H_{33}\) are upper triangular.

If so, only the central diagonal block \(\mathrm{H}_{22}\) (in rows and columns ilo to ihi) needs to be further reduced to Schur form (the blocks \(H_{12}\) and \(H_{23}\) are also affected). Therefore the values of ilo and ihi can be supplied to ?hseqr directly. Also, after calling this routine you must call gebak to permute the Schur vectors of the balanced matrix to those of the original matrix.
If ?gebal has not been called, however, then ilo must be set to 1 and ihi to \(n\). Note that if the Schur factorization of \(A\) is required, ? gebal must not be called with job = 'S' or ' B ', because the balancing transformation is not unitary (for real flavors, it is not orthogonal).
?hseqr uses a multishift form of the upper Hessenberg \(Q R\) algorithm. The Schur vectors are normalized so that \(\left|\mid z_{i} \|_{2}=1\right.\), but are determined only to within a complex factor of absolute value 1 (for the real flavors, to within a factor \(\pm 1\) ).

\section*{Input Parameters}
```

job Must be 'E' or 'S'.
If job = 'E', then eigenvalues only are required.
If job = 'S', then the Schur form T is required.
Must be 'N' or 'I' or 'V'.
If compz = 'N', then no Schur vectors are computed (and the array z is not
referenced).
If compz = ' I', then the Schur vectors of H are computed (and the array z
is initialized by the routine).
If compz = 'V', then the Schur vectors of A are computed (and the array z
must contain the matrix Q on entry).
The order of the matrix H(n\geq0).
If A has been balanced by ?gebal, then ilo and ihi must contain the values
returned by ?gebal. Otherwise, ilo must be set to 1 and ihi to n.
Arrays:
h(size max(1, ldh*n))) The n-by-n upper Hessenberg matrix H.
z (size max(1, ldz*n))
If compz = 'V', then z must contain the matrix Q from the reduction to
Hessenberg form.
If compz = 'I', then z need not be set.
If compz = 'N', then z is not referenced.
The leading dimension of }h\mathrm{ ; at least max (1,n).
The leading dimension of z;
If compz = 'N',then ldz\geq 1.
If compz = 'V' or'I',then ldz\geq max(1, n).

```

\section*{Output Parameters}

Array, size at least max \((1, n)\). Contains the computed eigenvalues, unless info>0. The eigenvalues are stored in the same order as on the diagonal of the Schur form \(T\) (if computed).
```

wr, wi Arrays, size at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the computed
eigenvalues, unless info > 0. Complex conjugate pairs of eigenvalues
appear consecutively with the eigenvalue having positive imaginary part
first. The eigenvalues are stored in the same order as on the diagonal of the
Schur form T (if computed).
If info = 0 and job = 'S',h contains the upper quasi-triangular matrix T
from the Schur decomposition (the Schur form).
If info = 0 and job = 'E', the contents of h are unspecified on exit. (The
output value of h when info > 0 is given under the description of info
below.)
If compz = 'V' and info = 0, then z contains Q* Z.
If compz = 'I' and info = 0, then z contains the unitary or orthogonal
matrix }Z\mathrm{ of the Schur vectors of H.
If compz = 'N', then z is not referenced.

```

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), ?hseqr failed to compute all of the eigenvalues. Elements \(1,2, \ldots, i l o-1\) and \(i+1, i+2, \ldots, n\) of the eigenvalue arrays ( \(w r\) and wi for real flavors and \(w\) for complex flavors) contain the real and imaginary parts of those eigenvalues that have been successfully found.

If info \(>0\), and job \(=\) 'E', then on exit, the remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix rows and columns ilo through info of the final output value of \(H\).

If info \(>0\), and job \(=\) 'S', then on exit (initial value of \(H\) ) \(* U=U^{*}\) (final value of \(H\) ), where \(U\) is a unitary matrix. The final value of \(H\) is upper Hessenberg and triangular in rows and columns info+1 through ihi.

If info \(>0\), and compz \(=\) ' V ', then on exit (final value of \(Z\) ) \(=\) (initial value of \(Z\) )* \(U\), where \(U\) is the unitary matrix (regardless of the value of job).

If info \(>0\), and \(\operatorname{compz}=\) 'I', then on exit (final value of \(Z\) ) \(=U\), where \(U\) is the unitary matrix (regardless of the value of \(j o b\) ).
If info \(>0\), and compz \(=\) 'N', then \(Z\) is not accessed.

\section*{Application Notes}

The computed Schur factorization is the exact factorization of a nearby matrix \(H+E\), where \(\left|\mid E \|_{2}<O(\varepsilon)\right.\) \(||H||_{2} / s_{i}\), and \(\varepsilon\) is the machine precision.

If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{j}\) is the corresponding computed value, then \(\left|\lambda_{i}-\mu_{i}\right| \leq C(n) * \varepsilon^{\star}| | H \mid I_{2} / s_{i}\), where \(c(n)\) is a modestly increasing function of \(n\), and \(s_{i}\) is the reciprocal condition number of \(\lambda_{i}\). The condition numbers \(s_{i}\) may be computed by calling trsna.

The total number of floating-point operations depends on how rapidly the algorithm converges; typical numbers are as follows.

If only eigenvalues are computed: \(\quad 7 n^{3}\) for real flavors
\(25 n^{3}\) for complex flavors.

If the Schur form is computed: \(\quad 10 n^{3}\) for real flavors \(35 n^{3}\) for complex flavors.
\(20 n^{3}\) for real flavors
\(70 n^{3}\) for complex flavors.

\begin{abstract}
?hsein
Computes selected eigenvectors of an upper
Hessenberg matrix that correspond to specified
eigenvalues.
\end{abstract}

\section*{Syntax}
```

lapack_int LAPACKE_shsein(int matrix_layout, char side, char eigsrc, char initv,
lapack_logical* select, lapack_int n, const float* h, lapack_int ldh, float* wr, const
float* wi, float* vl, lapack_int ldvl, float* vr, lapack_int ldvr, lapack_int mm,
lapack_int* m, lapack_int* ifaill, lapack_int* ifailr);
lapack_int LAPACKE_dhsein(int matrix_layout, char side, char eigsrc, char initv,
lapack_logical* select, lapack_int n, const double* h, lapack_int ldh, double* wr,
const double* wi, double* vl, lapack_int ldvl, double* vr, lapack_int ldvr, lapack_int
mm, lapack_int* m, lapack_int* ifaill, lapack_int* ifailr);
lapack_int LAPACKE_chsein(int matrix_layout, char side, char eigsrc, char initv, const
lapack_logical* select, lapack_int n, const lapack_complex_float* h, lapack_int ldh,
lapack_complex_float* w, lapack_complex_float* vl, lapack_int ldvl,
lapack_complex_float* vr, lapack_int ldvr, lapack_int mm, lapack_int* m, lapack_int*
ifaill, lapack_int* ifailr);
lapack_int LAPACKE_zhsein(int matrix_layout, char side, char eigsrc, char initv, const
lapack_logical* select, lapack_int n, const lapack_complex_double* h, lapack_int ldh,
lapack_complex_double* w, lapack_complex_double* vl, lapack_int ldvl,
lapack_complex_double* vr, lapack_int ldvr, lapack_int mm, lapack_int* m, lapack_int*
ifaill, lapack_int* ifailr);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes left and/or right eigenvectors of an upper Hessenberg matrix \(H\), corresponding to selected eigenvalues.

The right eigenvector \(x\) and the left eigenvector \(y\), corresponding to an eigenvalue \(\lambda\), are defined by: \(H^{\star} x=\) \(\lambda^{\star} x\) and \(y^{H *} H=\lambda \star y^{H}\) (or \(H^{H *} y=\lambda^{*}{ }^{\star} y\) ). Here \(\lambda^{*}\) denotes the conjugate of \(\lambda\).

The eigenvectors are computed by inverse iteration. They are scaled so that, for a real eigenvector \(x, \max \mid\) \(x_{i} \mid=1\), and for a complex eigenvector, \(\max \left(\left|\operatorname{Re} x_{i}\right|+\left|\operatorname{Im} x_{i}\right|\right)=1\).

If \(H\) has been formed by reduction of a general matrix \(A\) to upper Hessenberg form, then eigenvectors of \(H\) may be transformed to eigenvectors of \(A\) by ormhr or unmhr.

\section*{Input Parameters}
side
eigsrc
initv
select
n
\(h\), vl, vr

Must be 'R' or 'L' or 'B'.
If side = 'R', then only right eigenvectors are computed.
If side = 'L', then only left eigenvectors are computed.
If side \(=\) ' B ', then all eigenvectors are computed.
Must be 'Q' or 'N'.
If eigsrc = 'Q', then the eigenvalues of \(H\) were found using hseqr; thus if \(H\) has any zero sub-diagonal elements (and so is block triangular), then the \(j\)-th eigenvalue can be assumed to be an eigenvalue of the block containing the \(j\)-th row/column. This property allows the routine to perform inverse iteration on just one diagonal block. If eigsrc \(=\) ' \(N\) ', then no such assumption is made and the routine performs inverse iteration using the whole matrix.

Must be 'N' or 'U'.
If initv = 'N', then no initial estimates for the selected eigenvectors are supplied.
If initv = 'U', then initial estimates for the selected eigenvectors are supplied in \(v /\) and/or vr.

Array, size at least max \((1, n)\). Specifies which eigenvectors are to be computed.
For real flavors:
To obtain the real eigenvector corresponding to the real eigenvalue \(w r[j]\), set select[j] to 1

To select the complex eigenvector corresponding to the complex eigenvalue ( \(w r[j-1]\), wi[ \(j-1]\) ) with complex conjugate ( \(w r[j]\), wi \([j]\) ), set select[ \(j-1]\) and/or select \([j]\) to 1 ; the eigenvector corresponding to the first eigenvalue in the pair is computed.

\section*{For complex flavors:}

To select the eigenvector corresponding to the eigenvalue \(w[j]\), set select \([j]\) to 1

The order of the matrix \(H(n \geq 0)\).

\section*{Arrays:}
\(h\left(\right.\) size \(\left.\max \left(1, l d h^{*}\right)\right)\) The \(n\)-by- \(n\) upper Hessenberg matrix \(H\). If an NAN value is detected in \(h\), the routine returns with info \(=-6\).
\(v /\left(\right.\) size \(\max \left(1, l d v l^{*} m m\right.\) ) for column major layout and \(\max \left(1, l d v l_{n}\right)\) for row major layout)
If initv = 'V' and side = 'L' or 'B', then vl must contain starting vectors for inverse iteration for the left eigenvectors. Each starting vector must be stored in the same column or columns as will be used to store the corresponding eigenvector.
If initv = 'N', then \(v /\) need not be set.

The array \(v /\) is not referenced if side \(=\) ' \(R\) '.
\(v r\) (size \(\max \left(1, I d v r^{*} m m\right.\) ) for column major layout and \(\max \left(1, I d v r_{n}\right)\) for row major layout)

If initv = 'V' and side = 'R' or 'B', then vr must contain starting vectors for inverse iteration for the right eigenvectors. Each starting vector must be stored in the same column or columns as will be used to store the corresponding eigenvector.
If initv = 'N', then vr need not be set.
The array \(v r\) is not referenced if side \(=\) 'L'.
The leading dimension of \(h\); at least \(\max (1, n)\).
Array, size at least max \((1, n)\).
Contains the eigenvalues of the matrix \(H\).
If eigsrc = 'Q', the array must be exactly as returned by ?hseqr.
Arrays, size at least max \((1, n)\) each.
Contain the real and imaginary parts, respectively, of the eigenvalues of the matrix \(H\). Complex conjugate pairs of values must be stored in consecutive elements of the arrays. If eigsrc = ' \(Q\) ', the arrays must be exactly as returned by ?hseqr.

The leading dimension of v .
If side \(=\) 'L' or 'B', \(I d v l \geq \max (1, n)\) for column major layout and \(|d v| \geq\) \(\max (1, \mathrm{~mm})\) for row major layout.

If side = 'R', ldvl \(\geq 1\).
The leading dimension of \(v r\).
If side \(=\) 'R' or 'B', ldvr \(\geq \max (1, n)\) for column major layout and \(/ d v r \geq\) \(\max (1, \mathrm{~mm})\) for row major layout.

If side = 'L', Idvr \(\geq 1\).
The number of columns in \(v /\) and/or vr.
Must be at least \(m\), the actual number of columns required (see Output Parameters below).

For real flavors, \(m\) is obtained by counting 1 for each selected real eigenvector and 2 for each selected complex eigenvector (see select).
For complex flavors, \(m\) is the number of selected eigenvectors (see select).
Constraint:
\(0 \leq m m \leq n\).

\section*{Output Parameters}
select
Overwritten for real flavors only.
If a complex eigenvector was selected as specified above, then select[j-1] is set to 1 and select \([j]\) to 0

W
wr
vl, vr
m
ifaill, ifailr

The real parts of some elements of \(w\) may be modified, as close eigenvalues are perturbed slightly in searching for independent eigenvectors.

Some elements of wr may be modified, as close eigenvalues are perturbed slightly in searching for independent eigenvectors.

If side \(=\) 'L' or 'B', vl contains the computed left eigenvectors (as specified by select).
If side \(=\) ' R ' or ' B ', vr contains the computed right eigenvectors (as specified by select).
The eigenvectors treated column-wise form a rectangular \(n\)-by-mm matrix.
For real flavors: a real eigenvector corresponding to a real eigenvalue occupies one column of the matrix; a complex eigenvector corresponding to a complex eigenvalue occupies two columns: the first column holds the real part of the eigenvector and the second column holds the imaginary part of the eigenvector. The matrix is stored in a one-dimensional array as described by matrix_layout (using either column major or row major layout).

For real flavors: the number of columns of \(v /\) and/or vr required to store the selected eigenvectors.

For complex flavors: the number of selected eigenvectors.
Arrays, size at least \(\max (1, m m)\) each.
ifaill[i-1] = 0 if the \(i\) th column of \(v /\) converged;
ifaill[i-1] \(=j>0\) if the eigenvector stored in the \(i\)-th column of vl (corresponding to the \(j\) th eigenvalue) failed to converge.
ifailr [i-1] = 0 if the \(i\) th column of \(v r\) converged;
ifailr \(i-1]=j>0\) if the eigenvector stored in the \(i\)-th column of \(v r\) (corresponding to the \(j\) th eigenvalue) failed to converge.

For real flavors: if the \(i\) th and \((i+1)\) th columns of \(v /\) contain a selected complex eigenvector, then ifaill[i-1] and ifaill[i] are set to the same value. A similar rule holds for vr and ifailr.

The array ifaill is not referenced if side = 'R'. The array ifailr is not referenced if side \(=\) 'L'.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0 , then \(i\) eigenvectors (as indicated by the parameters ifaill and/or ifailr above) failed to converge. The corresponding columns of \(v /\) and/or \(v r\) contain no useful information.

\section*{Application Notes}

Each computed right eigenvector \(x\) is the exact eigenvector of a nearby matrix \(A+E_{i}\), such that \(\left|\left|E_{i}\right|\right|<\) \(O(\varepsilon)||A||\). Hence the residual is small:
```

||A\mp@subsup{x}{i}{}-\mp@subsup{\lambda}{i}{}\mp@subsup{x}{i}{}||=O(\varepsilon)||A||.

```

However, eigenvectors corresponding to close or coincident eigenvalues may not accurately span the relevant subspaces.
Similar remarks apply to computed left eigenvectors.
?trevc
Computes selected eigenvectors of an upper (quasi-)
triangular matrix computed by ?hseqr.

\section*{Syntax}
```

lapack_int LAPACKE_strevc(int matrix_layout, char side, char howmny, lapack_logical*
select, lapack_int n, const float* t, lapack_int ldt, float* vl, lapack_int ldvl, float*
vr, lapack_int ldvr, lapack_int mm, lapack_int* m);
lapack_int LAPACKE_dtrevc(int matrix_layout, char side, char howmny, lapack_logical*
select, lapack_int n, const double* t, lapack_int ldt, double* vl, lapack_int ldvl,
double* vr, lapack_int ldvr, lapack_int mm, lapack_int* m);
lapack_int LAPACKE_ctrevc(int matrix_layout, char side, char howmny, const
lapack_logical* select, lapack_int n, lapack_complex_float* t, lapack_int ldt,
lapack_complex_float* vl, lapack_int ldvl, lapack_complex_float* vr, lapack_int ldvr,
lapack_int mm, lapack_int* m);
lapack_int LAPACKE_ztrevc(int matrix_layout, char side, char howmny, const
lapack_logical* select, lapack_int n, lapack_complex_double* t, lapack_int ldt,
lapack_complex_double* vl, lapack_int ldvl, lapack_complex_double* vr, lapack_int ldvr,
lapack_int mm, lapack_int* m);

```

Include Files
- mkl.h

\section*{Description}

The routine computes some or all of the right and/or left eigenvectors of an upper triangular matrix \(T\) (or, for real flavors, an upper quasi-triangular matrix \(T\) ). Matrices of this type are produced by the Schur factorization of a general matrix: \(A=Q^{\star} T^{\star} Q^{H}\), as computed by hseqr.

The right eigenvector \(x\) and the left eigenvector \(y\) of \(T\) corresponding to an eigenvalue \(w\), are defined by: \(T^{\star} x=w^{\star} X, y^{H \star} T=w^{\star} y^{H}\), where \(y^{H}\) denotes the conjugate transpose of \(y\).
The eigenvalues are not input to this routine, but are read directly from the diagonal blocks of \(T\).
This routine returns the matrices \(X\) and/or \(Y\) of right and left eigenvectors of \(T\), or the products \(Q^{*} X\) and/or \(Q^{*} Y\), where \(Q\) is an input matrix.

If \(Q\) is the orthogonal/unitary factor that reduces a matrix \(A\) to Schur form \(T\), then \(Q^{*} X\) and \(Q^{*} Y\) are the matrices of right and left eigenvectors of \(A\).

\section*{Input Parameters}
```

matrix_layout
side
side

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'R' or 'L' or 'B'.
If side = 'R', then only right eigenvectors are computed.

If side = 'L', then only left eigenvectors are computed.
If side \(=\) 'B', then all eigenvectors are computed.
howmny
n
\(t, v l, v r\)

Must be 'A' or 'B' or 'S'.
If howmny = 'A', then all eigenvectors (as specified by side) are computed.
If howmny = ' B ', then all eigenvectors (as specified by side) are computed and backtransformed by the matrices supplied in \(v /\) and \(v r\).

If howmny = 'S', then selected eigenvectors (as specified by side and select) are computed.

Array, size at least max \((1, n)\).
If howmny = 'S', select specifies which eigenvectors are to be computed.
If howmny = 'A' or 'B', select is not referenced.

\section*{For real flavors:}

If omega[j] is a real eigenvalue, the corresponding real eigenvector is computed if select[j] is 1 .
If omega[j-1] and omega[j] are the real and imaginary parts of a complex eigenvalue, the corresponding complex eigenvector is computed if either select \([j-1]\) or select \([j]\) is 1 , and on exit select \([j-1]\) is set to 1 and select[ \(j]\) is set to 0 .
For complex flavors:
The eigenvector corresponding to the \(j\)-th eigenvalue is computed if select[ \(j\) -1] is 1.

The order of the matrix \(T(n \geq 0)\).

\section*{Arrays:}
\(t\) (size \(\max \left(1, I d t^{*} n\right)\) ) contains the \(n\)-by- \(n\) matrix \(T\) in Schur canonical form. For complex flavors ctrevc and ztrevc, contains the upper triangular matrix \(T\).
\(v /\left(\right.\) size \(\max \left(1, I d v l^{*} m m\right)\) for column major layout and \(\max \left(1, I d v l *_{n}\right)\) for row major layout)
If howmny \(=\) ' B' and side \(=\) 'L' or 'B', then \(v /\) must contain an \(n\)-by-n matrix \(Q\) (usually the matrix of Schur vectors returned by ?hseqr).
If howmny = 'A' or 'S', then \(v /\) need not be set.
The array \(v /\) is not referenced if side \(=\) ' R '.
\(v r\left(\right.\) size \(\max \left(1, I d v r^{*} m_{m}\right)\) for column major layout and \(\max \left(1, I d v r^{*}{ }_{n}\right)\) for row major layout)

If howmny \(=\) ' B ' and side \(=\) ' R ' or ' B ', then \(v r\) must contain an \(n\)-by-n matrix \(Q\) (usually the matrix of Schur vectors returned by ?hseqr). .

If howmny = 'A' or 'S', then vr need not be set.
The array \(v r\) is not referenced if side \(=\) 'L'.
```

ldt The leading dimension of t; at least max(1,n).

```
```

The leading dimension of t; at least $\max (1, n)$.
The leading dimension of $v /$.
If side $=$ 'L' or 'B', $1 d v l \geq n$.
If side = 'R', ldvl≥ 1.
The leading dimension of $v r$.
If side $=$ 'R' or 'B', ldvr $\geq n$.
If side $=$ 'L', ldvr ≥ 1.
The number of columns in the arrays $v /$ and/or $v r$. Must be at least m (the precise number of columns required).
If howmny = 'A' or ' B ', mm $=\mathrm{n}$.
If howmny = 'S': for real flavors, $m m$ is obtained by counting 1 for each selected real eigenvector and 2 for each selected complex eigenvector;
for complex flavors, mm is the number of selected eigenvectors (see select).
Constraint: $0 \leq m m \leq n$.

```

\section*{Output Parameters}
```

select
t
vl, vr

```
m
If a complex eigenvector of a real matrix was selected as specified above, then select \([j]\) is set to 1 and select \([j+1]\) to 0
ctrevc/ztrevc modify the \(t\) array, which is restored on exit.
If side \(=\) 'L' or 'B', \(v /\) contains the computed left eigenvectors (as specified by howmny and select).
If side = 'R' or 'B', vr contains the computed right eigenvectors (as specified by howmny and select).
The eigenvectors treated column-wise form a rectangular \(n\)-by-mm matrix.
For real flavors: a real eigenvector corresponding to a real eigenvalue occupies one column of the matrix; a complex eigenvector corresponding to a complex eigenvalue occupies two columns: the first column holds the real part of the eigenvector and the second column holds the imaginary part of the eigenvector. The matrix is stored in a one-dimensional array as described by matrix_layout (using either column major or row major layout).

For complex flavors: the number of selected eigenvectors.
\[
\text { If howmny = 'A' or 'B', } m \text { is set to } n \text {. }
\]

For real flavors: the number of columns of \(v /\) and/or \(v r\) actually used to store the selected eigenvectors.
If howmny \(=\) ' A ' or ' B ', \(m\) is set to \(n\).

\section*{Return Values}

This function returns a value info.

If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

If \(x_{i}\) is an exact right eigenvector and \(y_{i}\) is the corresponding computed eigenvector, then the angle \(\theta\) ( \(y_{i}\), \(x_{i}\) ) between them is bounded as follows: \(\theta\left(y_{i}, x_{i}\right) \leq\left(c(n) \varepsilon| | T| |_{2}\right) / \operatorname{sep}_{i}\) where \(\operatorname{sep}_{i}\) is the reciprocal condition number of \(x_{i}\). The condition number sep \({ }_{i}\) may be computed by calling ?trsna.
?trevc3
Computes selected eigenvectors of an upper (quasi-)
triangular matrix computed by ?hseqr using Level 3 BLAS

Syntax
```

call strevc3(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, lwork,
info)
call dtrevc3(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, lwork,
info)
call ctrevc3(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, lwork,
rwork, lrwork, info)
call ztrevc3(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, lwork,
rwork, lrwork, info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

This routine computes some or all of the right and left eigenvectors of an upper triangular matrix \(T\) (or, for real flavors, an upper quasi-triangular matrix \(T\) ) using Level 3 BLAS. Matrices of this type are produced by the Schur factorization of a general matrix: \(A=Q * T * Q H\), as computed by hseqr.

The right eigenvector \(x\) and the left eigenvector \(y\) of \(T\) corresponding to an eigenvalue \(w\) are defined by the following:
```

T*x = w*x, y }\mp@subsup{}{}{H}*T=\mp@subsup{w}{}{*}\mp@subsup{y}{}{H

```
where \(y^{H}\) denotes the conjugate transpose of \(y\).
The eigenvalues are not passed to this routine but are read directly from the diagonal blocks of \(T\).
This routine returns one or both of the matrices \(X\) and \(Y\) of the right and left eigenvectors of \(T\), or one or both of the products \(Q * X\) and \(Q * Y\), where \(Q\) is an input matrix.

If \(Q\) is the orthogonal/unitary factor that reduces a matrix \(A\) to Schur form \(T\), then \(Q * X\) and \(Q * Y\) are the matrices of the right and left eigenvectors of \(A\).

Input Parameters
side
CHARACTER*1
Must be 'R', 'L', or 'B'.
- If side = 'R', only right eigenvectors are computed.
- If side = 'L', only left eigenvectors are computed.
- If side \(=\) 'B', all eigenvectors are computed.
howmny
select
\(n\)
t, vl, vr, work

CHARACTER*1
Must be 'A', 'B', or 'S'.
- If howmny = 'A', all eigenvectors (as specified by side) are computed.
- If howmny = ' B ', all eigenvectors (as specified by side) are computed and back-transformed by the matrices supplied in \(v l\) and vr.
- If howmny = 'S', selected eigenvectors (as specified by side and select) are computed.

Array with a size of at least max (1, n)
If howmny = 'S', select specifies which eigenvectors are to be computed. If howmny = 'A' or howmny = 'B', select is not referenced.

For real flavors:
- If omega ( \(j\) ) is a real eigenvalue and select ( \(j\) ) is .TRUE., the corresponding real eigenvector is computed.
- If omega ( \(j\) ) and omega ( \(j+1\) ) are the real and imaginary parts of a complex eigenvalue and either select ( \(j\) ) or select ( \(j+1\) ) is .TRUE., the corresponding complex eigenvector is computed, and on exit select ( \(j\) ) is set to .TRUE. and select ( \(j+1\) ) is set to .FALSE..

For complex flavors:
- If select ( \(j\) ) is .TRUE., the eigenvector corresponding to the \(j^{\text {th }}\) eigenvalue is computed.

\section*{INTEGER}

The order of the matrix \(T(n \geq 0)\).
- REAL for strevc3
- DOUBLE PRECISION for dtrevc3
- COMPLEX for ctrevc3
- DOUBLE COMPLEX for ztrevc3

Arrays:
- \(t(l d t, *)\) contains the \(n-b y-n\) matrix \(T\) in Schur canonical form. For complex flavors ctrevc3 and ztrevc3, the array contains the upper triangular matrix \(T\).

The second dimension of \(t\) must be at least max \((1, n)\).
- vl(ldvl,*)

If howmny = 'B' and side = 'L' or 'B', then vl must contain an \(n\)-by-n matrix \(Q\) (usually the matrix of Schur vectors returned by ?hseqr).

If howmny = 'A' or 'S', vl need not be set.
- REAL for ctrevc3
lrwork
- DOUBLE PRECISION for ztrevc3

The workspace array is used in complex flavors only. Its dimensionis max (1, lrwork).

INTEGER
The size of the rwork array. It must be at least max \((1, n)\).
If lrwork \(=-1\), a workspace query is assumed; the routine calculates only the optimal size of the work array and returns this value as the first entry of the rwork array, and no error message related to lrwork is issued by xerbla. For details, see "Application Notes" below.

\section*{Output Parameters}

If a complex eigenvector of a real matrix was selected as specified above, then select ( \(j\) ) is set to .TRUE. and select ( \(j+1\) ) is set to .FALSE..

COMPLEX for ctrevc3
DOUBLE COMPLEX for ztrevc3
ctrevc3 or ztrevc3 modifies the \(t(1 d t, *)\) array, which is restored on exit.

If side = 'L' or 'B', vl contains the computed left eigenvectors (as specified by howmny and select).
If side = 'R' or 'B', vr contains the computed right eigenvectors (as specified by howmny and select).
Treated column-wise, the eigenvectors form a rectangular \(n\)-by-mm matrix.

For real flavors A real eigenvector corresponding to a real eigenvalue occupies one column of the matrix; a complex eigenvector corresponding to a complex eigenvalue occupies two columns. The first column holds the real part of the eigenvector, and the second column holds the imaginary part of the eigenvector. The matrix is stored in a one-dimensional array as described by matrix_layout (using either column major or row major layout).

INTEGER

For complex flavors The number of selected eigenvectors. If howmny \(=\) ' A ' or ' B ', \(m\) is set to \(n\).

For real flavors The number of columns of one or both of \(v l\) and \(v r\) actually used to store the selected eigenvectors. If howmny = 'A' or 'B', \(m\) is set to \(n\).
work(1)
rwork(1)
info

On exit, if info \(=0\), work (1) returns the required optimal size of Iwork.

On exit, if info \(=0\), then rwork (1) returns the required optimal size of Irwork.

INTEGER
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i^{\text {th }}\) parameter contained an illegal value.

\section*{Application Notes}

If \(x i\) is an exact right eigenvector and \(y i\) is the corresponding computed eigenvector, the angle \(\theta\) (yi, xi) between them is bounded as follows:
\[
\theta(y i, x i) \leq(c(n) \varepsilon| | T| | 2) / \text { sepi }
\]
where sepi is the reciprocal condition number of xi. You can compute the condition number sepi by calling ?trsna.

\section*{See Also}

Matrix Storage Schemes
?trsna
Estimates condition numbers for specified eigenvalues and right eigenvectors of an upper (quasi-) triangular matrix.

\section*{Syntax}
```

lapack_int LAPACKE_strsna(int matrix_layout, char job, char howmny, const
lapack_logical* select, lapack_int n, const float* t, lapack_int ldt, const float* vl,
lapack_int ldvl, const float* vr, lapack_int ldvr, float* s, float* sep, lapack_int mm,
lapack_int* m);
lapack_int LAPACKE_dtrsna(int matrix_layout, char job, char howmny, const
lapack_logical* select, lapack_int n, const double* t, lapack_int ldt, const double*
vl, lapack_int ldvl, const double* vr, lapack_int ldvr, double* s, double* sep,
lapack_int mm, lapack_int* m);
lapack_int LAPACKE_ctrsna(int matrix_layout, char job, char howmny, const
lapack_logical* select, lapack_int n, const lapack_complex_float* t, lapack_int ldt,
const lapack_complex_float* vl, lapack_int ldvl, const lapack_complex_float* vr,
lapack_int ldvr, float* s, float* sep, lapack_int mm, lapack_int* m);
lapack_int LAPACKE_ztrsna(int matrix_layout, char job, char howmny, const
lapack_logical* select, lapack_int n, const lapack_complex_double* t, lapack_int ldt,
const lapack_complex_double* vl, lapack_int ldvl, const lapack_complex_double* vr,
lapack_int ldvr, double* s, double* sep, lapack_int mm, lapack_int* m);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine estimates condition numbers for specified eigenvalues and/or right eigenvectors of an upper triangular matrix \(T\) (or, for real flavors, upper quasi-triangular matrix \(T\) in canonical Schur form). These are the same as the condition numbers of the eigenvalues and right eigenvectors of an original matrix \(A=\) \(Z^{\star} T^{\star} Z^{H}\) (with unitary or, for real flavors, orthogonal \(Z\) ), from which \(T\) may have been derived.

The routine computes the reciprocal of the condition number of an eigenvalue \(\lambda_{i}\) as \(s_{i}=\left|v^{T} \star u\right| /(||u|| E| |\) \(v\left|\left.\right|_{E}\right)\) for real flavors and \(s_{i}=\left|v^{H \star} u\right| /\left(||u||_{E}| | v| |_{E}\right)\) for complex flavors,
where:
- \(u\) and \(v\) are the right and left eigenvectors of \(T\), respectively, corresponding to \(\lambda_{i}\).
- \(v^{T} / v^{H}\) denote transpose/conjugate transpose of \(v\), respectively.

This reciprocal condition number always lies between zero (ill-conditioned) and one (well-conditioned).
An approximate error estimate for a computed eigenvalue \(\lambda_{i}\) is then given by \(\varepsilon^{\star}| | T| | / s_{i}\), where \(\varepsilon\) is the machine precision.

To estimate the reciprocal of the condition number of the right eigenvector corresponding to \(\lambda_{i}\), the routine first calls trexc to reorder the diagonal elements of matrix \(T\) so that \(\lambda_{i}\) is in the leading position:


The reciprocal condition number of the eigenvector is then estimated as \(\operatorname{sep}_{i}\), the smallest singular value of the matrix \(T_{22}-\lambda_{i}{ }^{*} I\).

An approximate error estimate for a computed right eigenvector u corresponding to \(\lambda_{i}\) is then given by \(\varepsilon^{\star} \|\) Tl|/ sep \(_{i}\).

\section*{Input Parameters}
```

matrix_layout
job

```
howmny

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'E' or 'V' or 'B'.
If job \(=\) ' E ', then condition numbers for eigenvalues only are computed.
If job \(=\) ' \(V\) ', then condition numbers for eigenvectors only are computed.
If job = 'B', then condition numbers for both eigenvalues and eigenvectors are computed.

Must be 'A' or 'S'.
If howmny = 'A', then the condition numbers for all eigenpairs are computed.

If howmny = 'S', then condition numbers for selected eigenpairs (as specified by select) are computed.


The number of elements in the arrays \(s\) and sep, and the number of columns in \(v /\) and \(v r\) (if used). Must be at least \(m\) (the precise number required).
If howmny = 'A', mm = n;
if howmny = 'S', for real flavorsmm is obtained by counting 1 for each selected real eigenvalue and 2 for each selected complex conjugate pair of eigenvalues.
for complex flavorsmm is the number of selected eigenpairs (see select). Constraint:
\(0 \leq m m \leq n\).

\section*{Output Parameters}

S
m

Array, size at least \(\max (1, m m)\) if job \(='^{\prime} \mathrm{E}^{\prime}\) or ' \(\mathrm{B}^{\prime}\) and at least 1 if job \(=\) 'v'.

Contains the reciprocal condition numbers of the selected eigenvalues if job \(=\) 'E' or 'B', stored in consecutive elements of the array. Thus \(s[j-1]\), \(\operatorname{sep}[j-1]\) and the \(j\)-th columns of \(v /\) and \(v r\) all correspond to the same eigenpair (but not in general the \(j\) th eigenpair unless all eigenpairs have been selected).
For real flavors: for a complex conjugate pair of eigenvalues, two consecutive elements of \(s\) are set to the same value. The array \(s\) is not referenced if job \(=\) ' \(V\) '.

Array, size at least \(\max (1, m m)\) if job \(=' V\) ' or ' \(B\) ' and at least 1 if job \(=\) ' E '. Contains the estimated reciprocal condition numbers of the selected right eigenvectors if job \(=\) ' \(V\) ' or ' B ', stored in consecutive elements of the array.

For real flavors: for a complex eigenvector, two consecutive elements of sep are set to the same value; if the eigenvalues cannot be reordered to compute \(\operatorname{sep}[j-1]\), then \(\operatorname{sep}[j-1]\) is set to zero; this can only occur when the true value would be very small anyway. The array sep is not referenced if job = 'E'.

For complex flavors: the number of selected eigenpairs.
If howmny = 'A', \(m\) is set to \(n\).
For real flavors: the number of elements of \(s\) and/or sep actually used to store the estimated condition numbers.
If howmny = 'A', \(m\) is set to \(n\).

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed values sep \(\boldsymbol{p}_{i}\) may overestimate the true value, but seldom by a factor of more than 3 .

\section*{?trexc}

Reorders the Schur factorization of a general matrix.

\section*{Syntax}
```

lapack_int LAPACKE_strexc(int matrix_layout, char compq, lapack_int n, float* t,
lapack_int ldt, float* q, lapack_int ldq, lapack_int* ifst, lapack_int* ilst);
lapack_int LAPACKE_dtrexc(int matrix_layout, char compq, lapack_int n, double* t,
lapack_int ldt, double* q, lapack_int ldq, lapack_int* ifst, lapack_int* ilst);
lapack_int LAPACKE_ctrexc(int matrix_layout, char compq, lapack_int n,
lapack_complex_float* t, lapack_int ldt, lapack_complex_float* q, lapack_int ldq,
lapack_int ifst, lapack_int ilst);
lapack_int LAPACKE_ztrexc(int matrix_layout, char compq, lapack_int n,
lapack_complex_double* t, lapack_int ldt, lapack_complex_double* q, lapack_int ldq,
lapack_int ifst, lapack_int ilst);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine reorders the Schur factorization of a general matrix \(A=Q * T * Q^{H}\), so that the diagonal element or block of \(T\) with row index ifst is moved to row ilst.

The reordered Schur form \(S\) is computed by an unitary (or, for real flavors, orthogonal) similarity transformation: \(S=Z^{H} T^{*} Z\). Optionally the updated matrix \(P\) of Schur vectors is computed as \(P=Q^{\star} Z\), giving \(A=P^{\star} S^{\star} P^{H}\).

\section*{Input Parameters}
```

matrix_layout
compq
n
t, q
ldt The leading dimension of t; at least max(1,n).
ldq The leading dimension of q;
If compq = 'N', then ldq\geq 1.
If compq = 'V', then ldq\geq max (1, n).
1 \leqifst\leqn; 1 \leqilst\leqn.

```

Must specify the reordering of the diagonal elements (or blocks, which is possible for real flavors) of the matrix \(T\). The element (or block) with row index ifst is moved to row ilst by a sequence of exchanges between adjacent elements (or blocks).

\section*{Output Parameters}
```

t
q
ifst, ilst

```

Overwritten by the updated matrix \(S\).
If compq \(=\) ' \(V\) ', \(q\) contains the updated matrix of Schur vectors.
Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on entry, it is changed to point to the first row; ilst always points to the first row of the block in its final position (which may differ from its input value by \(\pm 1\) ).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(S\) is exactly similar to a matrix \(T+E\), where \(\left.\left||E|_{I_{2}}=O(\varepsilon) *\right||T|\right|_{2}\), and \(\varepsilon\) is the machine precision.
Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are in general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of complex eigenvalues to become purely real.

The approximate number of floating-point operations is
```

for real flavors: 6n(ifst-ilst) if compq = 'N';
12n(ifst-ilst) if compq = 'V';
for complex flavors: 20n(ifst-ilst) if compq = 'N';
40n(ifst-ilst) if compq = 'V'.

```
```

?trsen
Reorders the Schur factorization of a matrix and
(optionally) computes the reciprocal condition
numbers for the selected cluster of eigenvalues and
respective invariant subspace.

```

\section*{Syntax}
```

lapack_int LAPACKE_strsen(int matrix_layout, char job, char compq, const

```
lapack_int LAPACKE_strsen( int matrix_layout, char job, char compq, const
lapack_logical* select, lapack_int n, float* t, lapack_int ldt, float* q, lapack_int
lapack_logical* select, lapack_int n, float* t, lapack_int ldt, float* q, lapack_int
ldq, float* wr, float* wi, lapack_int* m, float* s, float* sep );
ldq, float* wr, float* wi, lapack_int* m, float* s, float* sep );
lapack_int LAPACKE_dtrsen( int matrix_layout, char job, char compq, const
lapack_int LAPACKE_dtrsen( int matrix_layout, char job, char compq, const
lapack_logical* select, lapack_int n, double* t, lapack_int ldt, double* q, lapack_int
lapack_logical* select, lapack_int n, double* t, lapack_int ldt, double* q, lapack_int
ldq, double* wr, double* wi, lapack_int* m, double* s, double* sep );
```

ldq, double* wr, double* wi, lapack_int* m, double* s, double* sep);

```
```

lapack_int LAPACKE_ctrsen(int matrix_layout, char job, char compq, const
lapack_logical* select, lapack_int n, lapack_complex_float* t, lapack_int ldt,
lapack_complex_float* q, lapack_int ldq, lapack_complex_float* w, lapack_int* m, float*
s, float* sep);
lapack_int LAPACKE_ztrsen(int matrix_layout, char job, char compq, const
lapack_logical* select, lapack_int n, lapack_complex_double* t, lapack_int ldt,
lapack_complex_double* q, lapack_int ldq, lapack_complex_double* w, lapack_int* m,
double* s, double* sep);

```

Include Files
- mkl.h

\section*{Description}

The routine reorders the Schur factorization of a general matrix \(A=Q^{*} T^{*} Q^{T}\) (for real flavors) or \(A=Q^{*} T^{*} Q^{H}\) (for complex flavors) so that a selected cluster of eigenvalues appears in the leading diagonal elements (or, for real flavors, diagonal blocks) of the Schur form. The reordered Schur form \(R\) is computed by a unitary (orthogonal) similarity transformation: \(R=Z^{H}{ }^{*} T^{*} Z\). Optionally the updated matrix \(P\) of Schur vectors is computed as \(P=Q^{\star} Z\), giving \(A=P^{*} R^{*} P^{H}\).

Let

where the selected eigenvalues are precisely the eigenvalues of the leading \(m\)-by- \(m\) submatrix \(T_{11}\). Let \(P\) be correspondingly partitioned as \(\left(Q_{1} Q_{2}\right)\) where \(Q_{1}\) consists of the first \(m\) columns of \(Q\). Then \(A^{\star} Q_{1}=Q_{1} \star T_{11}\), and so the \(m\) columns of \(Q_{1}\) form an orthonormal basis for the invariant subspace corresponding to the selected cluster of eigenvalues.
Optionally the routine also computes estimates of the reciprocal condition numbers of the average of the cluster of eigenvalues and of the invariant subspace.

\section*{Input Parameters}
matrix_layout
job

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'N' or 'E' or 'V' or 'B'.
If job \(=\) ' \(N\) ', then no condition numbers are required.

If job = 'E', then only the condition number for the cluster of eigenvalues is computed.

If job = 'V', then only the condition number for the invariant subspace is computed.

If job \(=\) ' B ', then condition numbers for both the cluster and the invariant subspace are computed.

Must be 'V' or 'N'.
If compq \(=\) ' \(V\) ', then \(Q\) of the Schur vectors is updated.
If compq \(=\) ' \(N\) ', then no Schur vectors are updated.
Array, size at least max \((1, n)\).
Specifies the eigenvalues in the selected cluster. To select an eigenvalue \(\lambda_{j}\), select[j] must be 1

For real flavors: to select a complex conjugate pair of eigenvalues \(\lambda_{j}\) and \(\lambda_{j}\) +1 (corresponding 2 by 2 diagonal block), select[ \(j-1\) ] and/or select[j] must be 1 ; the complex conjugate \(\lambda_{j}\) and \(\lambda_{j+1}\) must be either both included in the cluster or both excluded.

The order of the matrix \(T(n \geq 0)\).
Arrays:
\(t\) (size \(\max \left(1, I d t^{*} n\right)\) ) Theupper quasi-triangular \(n\)-by- \(n\) matrix \(T\), in Schur canonical form.
\(q\left(\right.\) size \(\left.\max \left(1, I d q^{*}\right)\right)\)
If compq \(=\) ' V ', then \(q\) must contain the matrix \(Q\) of Schur vectors.
If compq \(=\) ' \(N\) ', then \(q\) is not referenced.
The leading dimension of \(t\); at least \(\max (1, n)\).
The leading dimension of \(q\);
If compq \(=\) ' \(N\) ', then \(l d q \geq 1\).
If compq \(=\) ' \(V\) ', then \(l d q \geq \max (1, n)\).

\section*{Output Parameters}
t
\(q\)
w

Overwritten by the reordered matrix \(R\) in Schur canonical form with the selected eigenvalues in the leading diagonal blocks.

If compq \(=\) ' \(V\) ', \(q\) contains the updated matrix of Schur vectors; the first m columns of the \(Q\) form an orthogonal basis for the specified invariant subspace.

Array, size at least max \((1, n)\). The recorded eigenvalues of \(R\). The eigenvalues are stored in the same order as on the diagonal of \(R\).
wr, wi
m

S
sep

Arrays, size at least \(\max (1, n)\). Contain the real and imaginary parts, respectively, of the reordered eigenvalues of \(R\). The eigenvalues are stored in the same order as on the diagonal of \(R\). Note that if a complex eigenvalue is sufficiently ill-conditioned, then its value may differ significantly from its value before reordering.

For complex flavors: the dimension of the specified invariant subspaces, which is the same as the number of selected eigenvalues (see select).
For real flavors: the dimension of the specified invariant subspace. The value of \(m\) is obtained by counting 1 for each selected real eigenvalue and 2 for each selected complex conjugate pair of eigenvalues (see select).
Constraint: \(0 \leq m \leq n\).
If job = 'E' or 'B', s is a lower bound on the reciprocal condition number of the average of the selected cluster of eigenvalues.
If \(m=0\) or \(n\), then \(s=1\).
For real flavors: if info \(=1\), then \(s\) is set to zero.s is not referenced if job \(={ }^{\prime} N^{\prime}\) or 'V'.

If job \(=\) ' \(V\) ' or ' \(B\) ', sep is the estimated reciprocal condition number of the specified invariant subspace.
If \(m=0\) or \(n\), then \(s e p=|T|\).
For real flavors: if info \(=1\), then sep is set to zero.
sep is not referenced if job \(=\) ' \(N\) ' or ' \(E\) '.

\section*{Return Values}

This function returns a value info.
If inforo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1\), the reordering of \(T\) failed because some eigenvalues are too close to separate (the problem is very ill-conditioned); \(T\) may have been partially reordered, and wr and wi contain the eigenvalues in the same order as in \(T\); s and sep (if requested) are set to zero.

\section*{Application Notes}

The computed matrix \(R\) is exactly similar to a matrix \(T+E\), where \(\left.\left||E|_{I_{2}}=O(\varepsilon) *\right||T|\right|_{2}\), and \(\varepsilon\) is the machine precision. The computed \(s\) cannot underestimate the true reciprocal condition number by more than a factor of \((\min (m, n-m))_{1 / 2}\); sep may differ from the true value by \(\left(m^{*} n-m^{2}\right)_{1 / 2}\). The angle between the computed invariant subspace and the true subspace is \(O(\varepsilon) *||A||_{2} / s e p\). Note that if a 2-by-2 diagonal block is involved in the re-ordering, its off-diagonal elements are in general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2-by-2 block to break into two 1-by-1 blocks, that is, for a pair of complex eigenvalues to become purely real.

\footnotetext{
?trsyl
Solves Sylvester equation for real quasi-triangular or complex triangular matrices.
}

\section*{Syntax}
```

lapack_int LAPACKE_strsyl(int matrix_layout, char trana, char tranb, lapack_int isgn,
lapack_int m, lapack_int n, const float* a, lapack_int lda, const float* b, lapack_int
ldb, float* c, lapack_int ldc, float* scale);
lapack_int LAPACKE_dtrsyl(int matrix_layout, char trana, char tranb, lapack_int isgn,
lapack_int m, lapack_int n, const double* a, lapack_int lda, const double* b,
lapack_int ldb, double* c, lapack_int ldc, double* scale);
lapack_int LAPACKE_ctrsyl(int matrix_layout, char trana, char tranb, lapack_int isgn,
lapack_int m, lapack_int n, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* c, lapack_int ldc,
float* scale);
lapack_int LAPACKE_ztrsyl(int matrix_layout, char trana, char tranb, lapack_int isgn,
lapack_int m, lapack_int n, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* c, lapack_int ldc,
double* scale);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine solves the Sylvester matrix equation \(\mathrm{op}(A) \star X \pm X^{\star} \mathrm{op}(B)=\alpha^{\star} C\), where \(\mathrm{op}(A)=A\) or \(A^{H}\), and the matrices \(A\) and \(B\) are upper triangular (or, for real flavors, upper quasi-triangular in canonical Schur form); \(\alpha \leq\) 1 is a scale factor determined by the routine to avoid overflow in \(X ; A\) is \(m\)-by- \(m, B\) is \(n\)-by- \(n\), and \(C\) and \(X\) are both \(m\)-by- \(n\). The matrix \(X\) is obtained by a straightforward process of back substitution.
The equation has a unique solution if and only if \(\alpha_{i} \pm \beta_{i} \neq 0\), where \(\left\{\alpha_{i}\right\}\) and \(\left\{\beta_{i}\right\}\) are the eigenvalues of \(A\) and \(B\), respectively, and the sign ( + or - ) is the same as that used in the equation to be solved.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline trana & Must be 'N' or 'T' or 'C'. \\
\hline & If trana \(=\) ' N ', then \(\mathrm{op}(A)=A\). \\
\hline & If trana \(=\) ' \(T\) ', then op \((A)=A^{T}\) (real flavors only). \\
\hline & If trana \(=\) 'C' then op \((A)=A^{H}\). \\
\hline tranb & Must be 'N' or 'T' or 'C'. \\
\hline & If tranb \(=\) ' N ', then \(\mathrm{op}(B)=B\). \\
\hline & If tranb \(=\) ' \(T\) ', then \(\mathrm{op}(B)=B^{T}\) (real flavors only). \\
\hline & If tranb \(=\) ' C', then op \((B)=B^{H}\). \\
\hline isgn & Indicates the form of the Sylvester equation. \\
\hline & If isgn \(=+1, \mathrm{op}(A) * X+X^{\star} \mathrm{op}(B)=\) alpha \(^{\star} C\). \\
\hline & If isgn \(=-1, \mathrm{op}(A) * X-X^{*} \mathrm{op}(B)=\) alpha \(^{\star} C\). \\
\hline
\end{tabular}
```

m
n
a,b,c
lda
I db
ldc

```

The order of \(A\), and the number of rows in \(X\) and \(C(m \geq 0)\).
The order of \(B\), and the number of columns in \(X\) and \(C(n \geq 0)\).

\section*{Arrays:}
\(a\left(\right.\) size \(\left.\max \left(1, I d a^{*} m\right)\right)\) contains the matrix \(A\).
\(b\left(\right.\) size \(\left.\max \left(1, I d b *_{n}\right)\right)\) contains the matrix \(B\).
\(c\left(\right.\) size \(\max \left(1, I d c_{n}\right)\) for column major layout and \(\max \left(1, I d c^{*} m\right.\) for row major layout) contains the matrix \(C\).

The leading dimension of \(a\); at least \(\max (1, m)\) for column major layout and \(\max (1, n)\) for row major layout.

The leading dimension of \(b\); at least \(\max (1, n)\).
The leading dimension of \(c\); at least \(\max (1, m)\) for column major layout and at least \(\max (1, n)\) for row major layout.

\section*{Output Parameters}
c
scale

Overwritten by the solution matrix \(X\).
The value of the scale factor \(\alpha\).

\section*{Return Values}

This function returns a value info.
If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1, A\) and \(B\) have common or close eigenvalues; perturbed values were used to solve the equation.

\section*{Application Notes}

Let \(X\) be the exact, \(Y\) the corresponding computed solution, and \(R\) the residual matrix: \(R=C-(A Y \pm Y B)\). Then the residual is always small:
```

| |R| | F =O(\varepsilon)* (| |A| | F + | B| | F)*||Y| | F.

```

However, \(Y\) is not necessarily the exact solution of a slightly perturbed equation; in other words, the solution is not backwards stable.

For the forward error, the following bound holds:
\(||Y-X||_{F} \leq||R||_{F} / \operatorname{sep}(A, B)\)
but this may be a considerable overestimate. See [Golub96] for a definition of \(\operatorname{sep}(A, B)\).
The approximate number of floating-point operations for real flavors is \(m^{\star} n^{\star}(m+n)\). For complex flavors it is 4 times greater.

\section*{Generalized Nonsymmetric Eigenvalue Problems: LAPACK Computational Routines}

This topic describes LAPACK routines for solving generalized nonsymmetric eigenvalue problems, reordering the generalized Schur factorization of a pair of matrices, as well as performing a number of related computational tasks.
A generalized nonsymmetric eigenvalue problem is as follows: given a pair of nonsymmetric (or nonHermitian) \(n\)-by- \(n\) matrices \(A\) and \(B\), find the generalized eigenvalues \(\lambda\) and the corresponding generalized eigenvectorsx and \(y\) that satisfy the equations
```

Ax = \lambdaBx (right generalized eigenvectors x)
and
y H}A=\lambda\mp@subsup{y}{}{H}B\mathrm{ (left generalized eigenvectors y).
Table "Computational Routines for Solving Generalized Nonsymmetric Eigenvalue Problems" lists LAPACK
routines used to solve the generalized nonsymmetric eigenvalue problems and the generalized Sylvester
equation.
Computational Routines for Solving Generalized Nonsymmetric Eigenvalue Problems

Routine name	Operation performed
gghrd	Reduces a pair of matrices to generalized upper Hessenberg form using orthogonal/ unitary transformations.
ggbal	Balances a pair of general real or complex matrices.
gghd3	Forms the right or left eigenvectors of a generalized eigenvalue problem.
hgeqz	Reduces a pair of matrices to generalized upper Hessenberg form. (H,T).
tgevc	Computes some or all of the right and/or left generalized eigenvectors of a pair of upper triangular matrices
tgexc	Reorders the generalized Schur decomposition of a pair of matrices (A,B) so that one diagonal block of (A,B) moves to another row index.
tgsen	Reorders the generalized Schur decomposition of a pair of matrices (A,B) so that a selected cluster of eigenvalues appears in the leading diagonal blocks of (A,B). tgsyl
tgsyl	Solves the generalized Sylvester equation. Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a pair of matrices in generalized real Schur canonical form.

```

\section*{?gghrd}

Reduces a pair of matrices to generalized upper Hessenberg form using orthogonal/unitary transformations.

\section*{Syntax}
```

lapack_int LAPACKE_sgghrd (int matrix_layout, char compq, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, float* a, lapack_int lda, float* b, lapack_int ldb,
float* q, lapack_int ldq, float* z, lapack_int ldz);
lapack_int LAPACKE_dgghrd (int matrix_layout, char compq, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, double* a, lapack_int lda, double* b, lapack_int ldb,
double* q, lapack_int ldq, double* z, lapack_int ldz);
lapack_int LAPACKE_cgghrd (int matrix_layout, char compq, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, lapack_complex_float* a, lapack_int lda,
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* q, lapack_int ldq,
lapack_complex_float* z, lapack_int ldz);

```
```

lapack_int LAPACKE_zgghrd (int matrix_layout, char compq, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, lapack_complex_double* a, lapack_int lda,
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* q, lapack_int ldq,
lapack_complex_double* z, lapack_int ldz);

```

Include Files
- mkl.h

\section*{Description}

The routine reduces a pair of real/complex matrices \((A, B)\) to generalized upper Hessenberg form using orthogonal/unitary transformations, where \(A\) is a general matrix and \(B\) is upper triangular. The form of the generalized eigenvalue problem is \(A^{\star} X=\lambda{ }^{\star} B^{\star}{ }_{X}\), and \(B\) is typically made upper triangular by computing its \(Q R\) factorization and moving the orthogonal matrix \(Q\) to the left side of the equation.
This routine simultaneously reduces \(A\) to a Hessenberg matrix \(H\) :
\(Q^{H *} A * Z=H\)
and transforms \(B\) to another upper triangular matrix \(T\) :
\(Q^{H \star} B^{\star} Z=T\)
in order to reduce the problem to its standard form \(H^{\star} y=\lambda^{\star} T^{\star} y\), where \(y=Z^{H \star}{ }_{x}\).
The orthogonal/unitary matrices \(Q\) and \(Z\) are determined as products of Givens rotations. They may either be formed explicitly, or they may be postmultiplied into input matrices \(Q_{1}\) and \(Z_{1}\), so that



If \(Q_{1}\) is the orthogonal/unitary matrix from the \(Q R\) factorization of \(B\) in the original equation \(A^{\star}{ }_{X}=\lambda{ }^{\star} B^{\star} X^{\prime}\), then the routine ? gghrd reduces the original problem to generalized Hessenberg form.

\section*{Input Parameters}
matrix_layout
compq
compz
n

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'N', 'I', or 'V'.
If compq \(=\) ' N ', matrix \(Q\) is not computed.
If compq \(=\) 'I', \(Q\) is initialized to the unit matrix, and the orthogonal/ unitary matrix \(Q\) is returned;
If compq \(=\) ' V ', \(Q\) must contain an orthogonal/unitary matrix \(Q_{1}\) on entry, and the product \(Q_{1} * Q\) is returned.

Must be 'N', 'I', or 'V'.
If compz \(=\) ' \(N\) ', matrix \(Z\) is not computed.
If compz = 'I', \(Z\) is initialized to the unit matrix, and the orthogonal/ unitary matrix \(Z\) is returned;
If compz = ' V ', \(Z\) must contain an orthogonal/unitary matrix \(Z_{1}\) on entry, and the product \(Z_{1} * Z\) is returned.
The order of the matrices \(A\) and \(B(n \geq 0)\).
ilo, ihi
\(a, b, q, z\)

Ida
1 db
\(1 d q\)
\(I d z\)

\section*{Output Parameters}
a
b
q
z
a
ilo and ihi mark the rows and columns of \(A\) which are to be reduced. It is assumed that \(A\) is already upper triangular in rows and columns 1:ilo-1 and \(i h i+1: n\). Values of ilo and ihi are normally set by a previous call to ggbal; otherwise they should be set to 1 and \(n\) respectively.

\section*{Constraint:}

If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\);
if \(n=0\), then ilo \(=1\) and \(i h i=0\).
Arrays:
a (size \(\max \left(1, I d a^{*} n\right)\) ) contains the \(n\)-by- \(n\) general matrix \(A\).
\(b\) (size \(\max \left(1, l d b^{*} n\right)\) ) contains the \(n\)-by-n upper triangular matrix \(B\).
\(q\left(\right.\) size \(\left.\max \left(1, I d q^{*}\right)\right)\)
If compq = ' N ', then \(q\) is not referenced.
If compq \(=\) ' V ', then \(q\) must contain the orthogonal/unitary matrix \(Q_{1}\), typically from the \(Q R\) factorization of \(B\).
\(z\left(\right.\) size \(\left.\max \left(1, I d z^{*}\right)\right)\)
If compz \(=\) ' \(N\) ', then \(z\) is not referenced.
If compz \(=\) ' V ', then \(z\) must contain the orthogonal/unitary matrix \(Z_{1}\).
The leading dimension of \(a\); at least \(\max (1, n)\).
The leading dimension of \(b\); at least \(\max (1, n)\).
The leading dimension of \(q\);
If compq \(=\) ' \(N\) ', then \(I d q \geq 1\).
If compq \(=\) 'I'or ' V ', then \(I d q \geq \max (1, n)\).
The leading dimension of \(z\);
If \(c o m p z=' N\) ', then \(I d z \geq 1\).
If \(c o m p z=' I\) 'or ' \(V\) ', then \(I d z \geq \max (1, n)\).

On exit, the upper triangle and the first subdiagonal of \(A\) are overwritten with the upper Hessenberg matrix \(H\), and the rest is set to zero.

On exit, overwritten by the upper triangular matrix \(T=Q^{H *} B * Z\). The elements below the diagonal are set to zero.

If compq \(=\) 'I', then \(q\) contains the orthogonal/unitary matrix \(Q\), ;
If compq \(=\) ' V ', then \(q\) is overwritten by the product \(Q_{1} * Q\).
If compz \(=\) 'I', then \(z\) contains the orthogonal/unitary matrix \(Z\);
If compz \(=\) ' V ', then \(z\) is overwritten by the product \(Z_{1} * Z\).

\section*{Return Values}

This function returns a value info.

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{?ggbal \\ Balances a pair of general real or complex matrices.}

\section*{Syntax}
```

lapack_int LAPACKE_sggbal(int matrix_layout, char job, lapack_int n, float* a,
lapack_int lda, float* b, lapack_int ldb, lapack_int* ilo, lapack_int* ihi, float*
lscale, float* rscale);
lapack_int LAPACKE_dggbal(int matrix_layout, char job, lapack_int n, double* a,
lapack_int lda, double* b, lapack_int ldb, lapack_int* ilo, lapack_int* ihi, double*
lscale, double* rscale);
lapack_int LAPACKE_cggbal(int matrix_layout, char job, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int ldb,
lapack_int* ilo, lapack_int* ihi, float* lscale, float* rscale);
lapack_int LAPACKE_zggbal(int matrix_layout, char job, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb,
lapack_int* ilo, lapack_int* ihi, double* lscale, double* rscale);

```

Include Files
- mkl.h

\section*{Description}

The routine balances a pair of general real/complex matrices \((A, B)\). This involves, first, permuting \(A\) and \(B\) by similarity transformations to isolate eigenvalues in the first 1 to ilo-1 and last ihi+1 to \(n\) elements on the diagonal; and second, applying a diagonal similarity transformation to rows and columns ilo to ihi to make the rows and columns as close in norm as possible. Both steps are optional. Balancing may reduce the 1-norm of the matrices, and improve the accuracy of the computed eigenvalues and/or eigenvectors in the generalized eigenvalue problem \(A^{\star} X=\lambda \star B^{\star} X\).

Input Parameters
```

matrix_layout
job
n
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Specifies the operations to be performed on A and B. Must be 'N' or 'P' or 'S' or 'B'.
If job = ' N ', then no operations are done; simply set ilo =1, ihi=n,
lscale[i] $=1.0$ and rscale[i]=1.0 for
i $=0, . . ., n-1$.
If job $=$ ' P ', then permute only.
If job $=$ 'S', then scale only.
If job $=$ ' B ', then both permute and scale.
n
The order of the matrices A and $B(n \geq 0)$.

```
\(a, b\)
lda
\(1 d b\)

Arrays:
a (size \(\left.\max \left(1, I d^{*} *_{n}\right)\right)\) contains the matrix \(A\).
\(b\) (size \(\left.\max \left(1, I d b^{*} n\right)\right)\) contains the matrix \(B\).
If job \(=\) 'N', \(a\) and \(b\) are not referenced.
The leading dimension of \(a\); at least \(\max (1, n)\).
The leading dimension of \(b\); at least \(\max (1, n)\).

\section*{Output Parameters}
```

a, b
ilo, ihi

```

Iscale, rscale

Overwritten by the balanced matrices \(A\) and \(B\), respectively.
ilo and ihi are set to integers such that on exit \(A_{i, j}=0\) and \(B_{i, j}=0\) if \(i>j\)
and \(j=1, \ldots, i l o-1\) or \(i=i h i+1, \ldots, n\).
If job = 'N'or'S', then ilo = 1 and ihi \(=n\).
Arrays, size at least \(\max (1, n)\).
Iscale contains details of the permutations and scaling factors applied to the left side of \(A\) and \(B\).

If \(P_{j}\) is the index of the row interchanged with row \(j\), and \(D_{j}\) is the scaling factor applied to row \(j\), then

Iscale[j - 1] \(=P_{j}\), for \(j=1, \ldots\), ilo-1
\(=D_{j}\), for \(j=i l o, \ldots\) ihi
\(=P_{j}\), for \(j=i h i+1, \ldots, n\).
rscale contains details of the permutations and scaling factors applied to the right side of \(A\) and \(B\).
If \(P_{j}\) is the index of the column interchanged with column \(j\), and \(D_{j}\) is the scaling factor applied to column \(j\), then
```

rscale[j - 1] $=P_{j}$, for $j=1, \ldots$, ilo-1
$=D_{j}$, for $j=i l o, \ldots, i h i$
$=P_{j}$, for $j=i h i+1, \ldots, n$

```

The order in which the interchanges are made is \(n\) to \(i h i+1\), then 1 to ilo-1.

\section*{Return Values}

This function returns a value info.
If inforo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{?ggbak}

Forms the right or left eigenvectors of a generalized eigenvalue problem.

\section*{Syntax}
```

lapack_int LAPACKE_sggbak(int matrix_layout, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const float* lscale, const float* rscale, lapack_int m,
float* v, lapack_int ldv);
lapack_int LAPACKE_dggbak(int matrix_layout, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const double* lscale, const double* rscale, lapack_int
m, double* v, lapack_int ldv);
lapack_int LAPACKE_cggbak(int matrix_layout, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const float* lscale, const float* rscale, lapack_int m,
lapack_complex_float* v, lapack_int ldv);
lapack_int LAPACKE_zggbak(int matrix_layout, char job, char side, lapack_int n,
lapack_int ilo, lapack_int ihi, const double* lscale, const double* rscale, lapack_int
m, lapack_complex_double* v, lapack_int ldv);

```

Include Files
- mkl.h

\section*{Description}

The routine forms the right or left eigenvectors of a real/complex generalized eigenvalue problem \(A^{\star} X=\lambda{ }^{\star} B^{\star}{ }_{X}\)
by backward transformation on the computed eigenvectors of the balanced pair of matrices output by ggbal.

\section*{Input Parameters}
```

matrix_layout
job
side
n
ilo, ihi
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Specifies the type of backward transformation required. Must be 'N', 'P', 'S', or 'B'.
If job $=$ ' N ', then no operations are done; return.
If job $=$ ' P ', then do backward transformation for permutation only.
If job = 'S', then do backward transformation for scaling only.
If job = 'B', then do backward transformation for both permutation and scaling. This argument must be the same as the argument job supplied to ?ggbal.
Must be 'L' or 'R'.
If side $=$ 'L', then v contains left eigenvectors.
If side $=$ ' R ', then v contains right eigenvectors.
The number of rows of the matrix $V(n \geq 0)$.
The integers ilo and ihi determined by ?gebal. Constraint:
If $n>0$, then $1 \leq i l o \leq i h i \leq n ;$
if $n=0$, then ilo $=1$ and ihi $=0$.

```
```

lscale, rscale

```
m

V
\(l d v\)

Arrays, size at least \(\max (1, n)\).
The array Iscale contains details of the permutations and/or scaling factors applied to the left side of \(A\) and \(B\), as returned by ?ggbal.

The array rscale contains details of the permutations and/or scaling factors applied to the right side of \(A\) and \(B\), as returned by ?ggbal.

The number of columns of the matrix \(V\)
( \(m \geq 0\) ).
Array \(v\left(\right.\) size \(\max \left(1, I d v^{*} m\right)\) for column major layout and \(\max \left(1, I d v^{*} n\right)\) for row major layout). Contains the matrix of right or left eigenvectors to be transformed, as returned by tgevc.

The leading dimension of \(v\); at least \(\max (1, n)\) for column major layout and at least \(\max (1, m)\) for row major layout .

\section*{Output Parameters}
v
Overwritten by the transformed eigenvectors

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{?gghd3}

Reduces a pair of matrices to generalized upper
Hessenberg form.

\section*{Syntax}
```

lapack_int LAPACKE_sgghd3 (int matrix_layout, char compq, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, float * a, lapack_int lda, float * b, lapack_int ldb,
float * q, lapack_int ldq, float * z, lapack_int Idz);
lapack_int LAPACKE_dgghd3 (int matrix_layout, char compq, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, double * a, lapack_int lda, double * b, lapack_int ldb,
double * q, lapack_int ldq, double * z, lapack_int ldz);
lapack_int LAPACKE_cgghd3 (int matrix_layout, char compq, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, lapack_complex_float * a, lapack_int lda,
lapack_complex_float * b, lapack_int ldb, lapack_complex_float * q, lapack_int ldq,
lapack_complex_float * z, lapack_int ldz);
lapack_int LAPACKE_zgghd3 (int matrix_layout, char compq, char compz, lapack_int n,
lapack_int ilo, lapack_int ihi, lapack_complex_double * a, lapack_int lda,
lapack_complex_double * b, lapack_int ldb, lapack_complex_double * q, lapack_int ldq,
lapack_complex_double * z, lapack_int ldz);

```

Include Files
- mkl.h

\section*{Description}
? gghd3 reduces a pair of real or complex matrices \((A, B)\) to generalized upper Hessenberg form using orthogonal/unitary transformations, where \(A\) is a general matrix and \(B\) is upper triangular. The form of the generalized eigenvalue problem is
\(A^{*} x=\lambda^{*} B^{*} x\),
and \(B\) is typically made upper triangular by computing its \(Q R\) factorization and moving the orthogonal/unitary matrix \(Q\) to the left side of the equation.
This subroutine simultaneously reduces \(A\) to a Hessenberg matrix \(H\) :
\(Q^{\top} * A^{*} Z=H\) for real flavors
or
\(Q^{\top *} A^{*} Z=H\) for complex flavors
and transforms \(B\) to another upper triangular matrix \(T\) :
\(Q^{\top *} B^{*} Z=T\) for real flavors
or
\(Q^{\top *} B^{*} Z=T\) for complex flavors
in order to reduce the problem to its standard form
\(H^{*} y=\lambda^{*} T^{*} y\)
where \(y=Z^{\top} *_{x}\) for real flavors
or
\(y=Z^{\top * x}\) for complex flavors.
The orthogonal/unitary matrices \(Q\) and \(Z\) are determined as products of Givens rotations. They may either be formed explicitly, or they may be postmultiplied into input matrices \(Q_{1}\) and \(Z_{1}\), so that
for real flavors:
\(Q_{1} * A * Z_{1}^{\top}=\left(Q_{1} * Q\right) * H *\left(Z_{1} * Z\right)^{\top}\)
\(Q_{1} * B * Z_{1}^{\top}=\left(Q_{1} * Q\right) * T *\left(Z_{1} * Z\right)^{\top}\)
for complex flavors:
\(Q_{1} * A * Z_{1}{ }^{H}=\left(Q_{1} * Q\right) * H *\left(Z_{1} * Z\right)^{\top}\)
\(Q_{1} * B * Z_{1}^{\top}=\left(Q_{1} * Q\right) * T *\left(Z_{1} * Z\right)^{\top}\)
If \(Q_{1}\) is the orthogonal/unitary matrix from the \(Q R\) factorization of \(B\) in the original equation \(A^{*} x=\lambda^{*} B^{*} x\), then ?gghd3 reduces the original problem to generalized Hessenberg form.

This is a blocked variant of ? gghrd, using matrix-matrix multiplications for parts of the computation to enhance performance.

\section*{Input Parameters}
matrix_layout
compq

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
\(=\) ' N ': do not compute \(q\);
\(=\) ' I ': \(q\) is initialized to the unit matrix, and the orthogonal/unitary matrix \(Q\) is returned;
\(=\) ' V ': q must contain an orthogonal/unitary matrix \(Q_{1}\) on entry, and the product \(Q_{1} * q\) is returned.
\(=\) ' N ': do not compute \(z\);
\(=\) 'I': \(z\) is initialized to the unit matrix, and the orthogonal/unitary matrix \(Z\) is returned;
\(=\) ' \(\mathrm{V}^{\prime}\) : z must contain an orthogonal/unitary matrix \(Z_{1}\) on entry, and the product \(Z_{1} *_{z}\) is returned.

The order of the matrices \(A\) and \(B\).
\(n \geq 0\).
ilo and ihi mark the rows and columns of a which are to be reduced. It is assumed that \(a\) is already upper triangular in rows and columns 1:ilo-1
and ihi +1 :n. ilo and ihi are normally set by a previous call to ?ggbal; otherwise they should be set to 1 and \(n\), respectively.
\(1 \leq i l o \leq i h i \leq n\), if \(n>0\); ilo=1 and ihi=0, if \(n=0\).
Array, size \(\left(I_{\text {da }} *_{n}\right)\).
On entry, the \(n-b y-n\) general matrix to be reduced.
The leading dimension of the array \(a\).
\(I d a \geq \max (1, n)\).
Array, ( \(1 \mathrm{db}^{*}{ }_{n}\) ).
On entry, the \(n-b y-n\) upper triangular matrix \(B\).
The leading dimension of the array \(b\).
\(I d b \geq \max (1, n)\).
Array, size ( \(1 d q^{*} n\) ).
On entry, if compq \(=\) ' \(V\) ', the orthogonal/unitary matrix \(Q_{1}\), typically from the QR factorization of \(b\).

The leading dimension of the array \(q\).
\(l d q \geq n\) if compq='V' or 'I'; ldq \(\geq 1\) otherwise.
Array, size \(\left(I d z^{*} n\right)\).
On entry, if compz \(=\) ' V ', the orthogonal/unitary matrix \(Z_{1}\).
Not referenced if compz='N'.
The leading dimension of the array \(z\). \(I d z \geq n\) if \(c o m p z=\) 'V' or ' I '; \(I d z \geq 1\) otherwise.

\section*{Output Parameters}

\section*{a}

On exit, the upper triangle and the first subdiagonal of a are overwritten with the upper Hessenberg matrix \(H\), and the rest is set to zero.
b
\(q\)
z

On exit, the upper triangular matrix \(T=Q^{\top} B Z\) for real flavors or \(T=\) \(Q^{H} B Z\) for complex flavors. The elements below the diagonal are set to zero.

On exit, if compq='I', the orthogonal/unitary matrix \(Q\), and if compq \(=\) ' V ', the product \(Q_{1}{ }^{*} Q\).
Not referenced if compq='N'.
On exit, if compz='I', the orthogonal/unitary matrix \(Z\), and if compz \(=\) ' \(V\) ', the product \(Z_{1} * Z\).
Not referenced if compz='N'.

\section*{Return Values}

This function returns a value info.
\(=0\) : successful exit.
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value.

\section*{Application Notes}

This routine reduces \(A\) to Hessenberg form and maintains \(B\) in using a blocked variant of Moler and Stewart's original algorithm, as described by Kagstrom, Kressner, Quintana-Orti, and Quintana-Orti (BIT 2008).

\section*{?hgeqz}

Implements the QZ method for finding the generalized eigenvalues of the matrix pair \((H, T)\).

\section*{Syntax}
```

lapack_int LAPACKE_shgeqz(int matrix_layout, char job, char compq, char compz,
lapack_int n, lapack_int ilo, lapack_int ihi, float* h, lapack_int ldh, float* t,
lapack_int ldt, float* alphar, float* alphai, float* beta, float* q, lapack_int ldq,
float* z, lapack_int ldz);
lapack_int LAPACKE_dhgeqz(int matrix_layout, char job, char compq, char compz,
lapack_int n, lapack_int ilo, lapack_int ihi, double* h, lapack_int ldh, double* t,
lapack_int ldt, double* alphar, double* alphai, double* beta, double* q, lapack_int ldq,
double* z, lapack_int ldz);
lapack_int LAPACKE_chgeqz(int matrix_layout, char job, char compq, char compz,
lapack_int n, lapack_int ilo, lapack_int ihi, lapack_complex_float* h, lapack_int ldh,
lapack_complex_float* t, lapack_int ldt, lapack_complex_float* alpha,
lapack_complex_float* beta, lapack_complex_float* q, lapack_int ldq,
lapack_complex_float* z, lapack_int ldz);
lapack_int LAPACKE_zhgeqz(int matrix_layout, char job, char compq, char compz,
lapack_int n, lapack_int ilo, lapack_int ihi, lapack_complex_double* h, lapack_int ldh,
lapack_complex_double* t, lapack_int ldt, lapack_complex_double* alpha,
lapack_complex_double* beta, lapack_complex_double* q, lapack_int ldq,
lapack_complex_double* z, lapack_int ldz);

```

Include Files
- mkl.h

\section*{Description}

The routine computes the eigenvalues of a real/complex matrix pair \((H, T)\), where \(H\) is an upper Hessenberg matrix and \(T\) is upper triangular, using the double-shift version (for real flavors) or single-shift version (for complex flavors) of the \(Q Z\) method. Matrix pairs of this type are produced by the reduction to generalized upper Hessenberg form of a real/complex matrix pair \((A, B)\) :
\(A=Q_{1}{ }^{\star} H^{\star} Z_{1}{ }^{H}, B=Q_{1}{ }^{\star} T^{\star} Z_{1}{ }^{H}\),
as computed by ?gghrd.

\section*{For real flavors:}

If job = 'S', then the Hessenberg-triangular pair \((H, T)\) is reduced to generalized Schur form,
\(H=Q^{\star} S^{\star} Z^{T}, T=Q^{\star} P^{\star} Z^{T}\),
where \(Q\) and \(Z\) are orthogonal matrices, \(P\) is an upper triangular matrix, and \(S\) is a quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal blocks. The 1-by-1 blocks correspond to real eigenvalues of the matrix pair ( \(H, T\) ) and the 2-by-2 blocks correspond to complex conjugate pairs of eigenvalues.
Additionally, the 2-by-2 upper triangular diagonal blocks of \(P\) corresponding to 2-by-2 blocks of \(S\) are reduced to positive diagonal form, that is, if \(S_{j+1, j}\) is non-zero, then \(P_{j}+1, j=P_{j}, j+1=0, P_{j}, j>0\), and \(P_{j}+\)
\(1, j+1>0\).
For complex flavors:
If job = 'S', then the Hessenberg-triangular pair \((H, T)\) is reduced to generalized Schur form,

where \(Q\) and \(Z\) are unitary matrices, and \(S\) and \(P\) are upper triangular.
For all function flavors:
Optionally, the orthogonal/unitary matrix \(Q\) from the generalized Schur factorization may be post-multiplied by an input matrix \(Q_{1}\), and the orthogonal/unitary matrix \(Z\) may be post-multiplied by an input matrix \(Z_{1}\).

If \(Q_{1}\) and \(Z_{1}\) are the orthogonal/unitary matrices from ? gghrd that reduced the matrix pair \((A, B)\) to generalized upper Hessenberg form, then the output matrices \(Q_{1} Q\) and \(Z_{1} Z\) are the orthogonal/unitary factors from the generalized Schur factorization of \((A, B)\) :
\(A=\left(Q_{1} Q\right) * S *\left(Z_{1} Z\right)^{H}, B=\left(Q_{1} Q\right) * P^{\star}\left(Z_{1} Z\right)^{H}\).
To avoid overflow, eigenvalues of the matrix pair \((H, T)\) (equivalently, of \((A, B)\) ) are computed as a pair of values (alpha,beta). For chgeqz/zhgeqz, alpha and beta are complex, and for shgeqz/dhgeqz, alpha is complex and beta real. If beta is nonzero, \(\lambda=\) alpha/beta is an eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)
\(A^{\star} X=\lambda{ }^{\star} B^{\star} X\)
and if alpha is nonzero, \(\mu=\) beta/alpha is an eigenvalue of the alternate form of the GNEP
\(\mu^{\star} A^{\star} y=B^{\star} y\).
Real eigenvalues (for real flavors) or the values of alpha and beta for the i-th eigenvalue (for complex flavors) can be read directly from the generalized Schur form:
alpha \(=S_{i, ~}\), beta \(=P_{i, ~}\).
Input Parameters
```

matrix_layout
job

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Specifies the operations to be performed. Must be 'E' or 'S'.

If job = 'E', then compute eigenvalues only;
If job = 'S', then compute eigenvalues and the Schur form.
compq
compz
n
\(1 d q\)

Must be 'N', 'I', or 'V'.
If compq = ' \(N\) ', left Schur vectors ( \(q\) ) are not computed;
If compq \(=\) ' \(I ', q\) is initialized to the unit matrix and the matrix of left Schur vectors of \((H, T)\) is returned;
If compq = ' V ', \(q\) must contain an orthogonal/unitary matrix \(Q_{1}\) on entry and the product \(Q_{1}{ }^{*} Q\) is returned.

Must be 'N','I', or 'V'.
If compz \(=\) ' \(N\) ', right Schur vectors ( \(z\) ) are not computed;
If compz \(=\) ' \(I\) ', \(z\) is initialized to the unit matrix and the matrix of right Schur vectors of \((H, T)\) is returned;
If compz = ' V ', \(z\) must contain an orthogonal/unitary matrix \(Z_{1}\) on entry and the product \(Z_{1} * Z\) is returned.

The order of the matrices \(H, T, Q\), and \(Z\)
( \(n \geq 0\) ).
ilo and ihi mark the rows and columns of \(H\) which are in Hessenberg form. It is assumed that \(H\) is already upper triangular in rows and columns 1 :ilo- 1 and ihi+1:n.
Constraint:
If \(n>0\), then \(1 \leq i l o \leq i h i \leq n ;\)
if \(n=0\), then \(i l o=1\) and ihi \(=0\).
Arrays:
On entry, \(h\left(\right.\) size \(\left.\max \left(1, I d h^{*} n\right)\right)\) contains the \(n\)-by- \(n\) upper Hessenberg matrix \(H\).

On entry, \(t\) (size \(\max \left(1, l d t^{*} n\right)\) ) contains the \(n\)-by- \(n\) upper triangular matrix \(T\).
\(q\left(\right.\) size \(\left.\max \left(1, I d q^{*} n\right)\right):\)
On entry, if compq = ' V ', this array contains the orthogonal/unitary matrix \(Q_{1}\) used in the reduction of \((A, B)\) to generalized Hessenberg form.
If compq \(=\) ' N ', then \(q\) is not referenced.
\(z\left(\right.\) size \(\left.\max \left(1, l d z^{*} n\right)\right):\)
On entry, if compz = ' V ', this array contains the orthogonal/unitary matrix \(Z_{1}\) used in the reduction of \((A, B)\) to generalized Hessenberg form.
If compz \(=\) ' N ', then \(z\) is not referenced.
The leading dimension of \(h\); at least \(\max (1, n)\).
The leading dimension of \(t\); at least \(\max (1, n)\).
The leading dimension of \(q\);

If compq \(=\) ' \(N\) ', then \(l d q \geq 1\).
If compq \(=\) 'I'or ' \(V\) ', then \(I d q \geq \max (1, n)\).
The leading dimension of \(z\);
If compq \(=\) ' \(N\) ', then \(l d z \geq 1\).
If compq \(=\) 'I'or ' \(V\) ', then \(I d z \geq \max (1, n)\).

\section*{Output Parameters}
h
\(t\)
alphar, alphai
alpha
beta

For real flavors:
If job \(=\) 'S', then on exit \(h\) contains the upper quasi-triangular matrix \(S\) from the generalized Schur factorization.
If job \(=\) ' \(E\) ', then on exit the diagonal blocks of \(h\) match those of \(S\), but the rest of \(h\) is unspecified.
For complex flavors:
If job = 'S', then, on exit, \(h\) contains the upper triangular matrix \(S\) from the generalized Schur factorization.
If job \(=\) 'E', then on exit the diagonal of \(h\) matches that of \(S\), but the rest of \(h\) is unspecified.

If job \(=\) ' \(S\) ', then, on exit, \(t\) contains the upper triangular matrix \(P\) from the generalized Schur factorization.
For real flavors:
2-by-2 diagonal blocks of \(P\) corresponding to 2-by-2 blocks of \(S\) are reduced to positive diagonal form, that is, if \(h(j+1, j)\) is non-zero, then \(t(j\)
\(+1, j)=t(j, j+1)=0\) and \(t(j, j)\) and \(t(j+1, j+1)\) will be positive.
If job \(=\) ' \(E\) ', then on exit the diagonal blocks of \(t\) match those of \(P\), but the rest of \(t\) is unspecified.
For complex flavors:
if job \(=\) ' \(E\) ', then on exit the diagonal of \(t\) matches that of \(P\), but the rest of \(t\) is unspecified.

Arrays, size at least \(\max (1, n)\). The real and imaginary parts, respectively, of each scalar alpha defining an eigenvalue of GNEP.

If alphai \([j-1]\) is zero, then the \(j\)-th eigenvalue is real; if positive, then the \(j\)-th and \((j+1)\)-th eigenvalues are a complex conjugate pair, with
alphai[j] = -alphai[j - 1].
Array, size at least \(\max (1, n)\).
The complex scalars alpha that define the eigenvalues of GNEP. alphai [i - 1] \(=S_{i, i}\) in the generalized Schur factorization.

Array, size at least \(\max (1, n)\).
For real flavors:
The scalars beta that define the eigenvalues of GNEP.

Together, the quantities alpha = (alphar[j-1], alphai[j-1]) and beta \(=\) beta \([j-1]\) represent the \(j\)-th eigenvalue of the matrix pair \((A, B)\), in one of the forms lambda \(=\) alpha/beta or \(m u=\) beta/alpha. Since either lambda or mu may overflow, they should not, in general, be computed.

For complex flavors:
The real non-negative scalars beta that define the eigenvalues of GNEP.
beta[i-1] = \(P_{i, i}\) in the generalized Schur factorization. Together, the quantities alpha \(=\) alpha[j - 1] and beta \(=\) beta[j - 1] represent the \(j\)-th eigenvalue of the matrix pair \((A, B)\), in one of the forms lambda \(=\) alpha/beta or mu = beta/alpha. Since either lambda or mu may overflow, they should not, in general, be computed.

On exit, if compq = 'I', \(q\) is overwritten by the orthogonal/unitary matrix of left Schur vectors of the pair \((H, T)\), and if compq \(=\) ' V ', \(q\) is overwritten by the orthogonal/unitary matrix of left Schur vectors of \((A, B)\).
z
On exit, if compz = 'I', z is overwritten by the orthogonal/unitary matrix of right Schur vectors of the pair \((H, T)\), and if compz = ' V ', \(z\) is overwritten by the orthogonal/unitary matrix of right Schur vectors of \((A, B)\).

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1, \ldots, n\), the \(Q Z\) iteration did not converge.
\((H, T)\) is not in Schur form, but alphar[i-1], alphai[i-1] (for real flavors), alpha[i-1] (for complex flavors), and beta[i-1], \(i=i n f o+1, \ldots, n\) should be correct.

If info \(=n+1, \ldots, 2 n\), the shift calculation failed.
( \(H, T\) ) is not in Schur form, but alphar[i-1], alphai[i-1] (for real flavors), alpha[i-1] (for complex flavors), and beta[i-1], i =info-n+1,..., n should be correct.

\section*{?tgevc}

Computes some or all of the right and/or left generalized eigenvectors of a pair of upper triangular matrices.

\section*{Syntax}
```

lapack_int LAPACKE_stgevc (int matrix_layout, char side, char howmny, const
lapack_logical* select, lapack_int n, const float* s, lapack_int lds, const float* p,
lapack_int ldp, float* vl, lapack_int ldvl, float* vr, lapack_int ldvr, lapack_int mm,
lapack_int* m);
lapack_int LAPACKE_dtgevc (int matrix_layout, char side, char howmny, const
lapack_logical* select, lapack_int n, const double* s, lapack_int lds, const double* p,
lapack_int ldp, double* vl, lapack_int ldvl, double* vr, lapack_int ldvr, lapack_int mm,
lapack_int* m);

```
```

lapack_int LAPACKE_ctgevc (int matrix_layout, char side, char howmny, const
lapack_logical* select, lapack_int n, const lapack_complex_float* s, lapack_int lds,
const lapack_complex_float* p, lapack_int ldp, lapack_complex_float* vl, lapack_int
ldvl, lapack_complex_float* vr, lapack_int ldvr, lapack_int mm, lapack_int* m);
lapack_int LAPACKE_ztgevc (int matrix_layout, char side, char howmny, const
lapack_logical* select, lapack_int n, const lapack_complex_double* s, lapack_int lds,
const lapack_complex_double* p, lapack_int ldp, lapack_complex_double* vl, lapack_int
ldvl, lapack_complex_double* vr, lapack_int ldvr, lapack_int mm, lapack_int* m);

```

Include Files
- mkl.h

\section*{Description}

The routine computes some or all of the right and/or left eigenvectors of a pair of real/complex matrices \((S, P)\), where \(S\) is quasi-triangular (for real flavors) or upper triangular (for complex flavors) and \(P\) is upper triangular.

Matrix pairs of this type are produced by the generalized Schur factorization of a real/complex matrix pair \((A, B)\) :
\(A=Q^{\star} S^{\star} Z^{H}, B=Q^{\star} P^{\star} Z^{H}\)
as computed by ?gghrd plus ?hgeqz.
The right eigenvector \(x\) and the left eigenvector \(y\) of \((S, P)\) corresponding to an eigenvalue \(w\) are defined by:
\(S^{\star} X=W^{\star} P^{\star} x, y^{H \star} S=w^{\star} y^{H \star} P\)
The eigenvalues are not input to this routine, but are computed directly from the diagonal blocks or diagonal elements of \(S\) and \(P\).

This routine returns the matrices \(X\) and/or \(Y\) of right and left eigenvectors of (S,P), or the products \(Z^{*} X\) and/or \(Q^{*} Y\), where \(Z\) and \(Q\) are input matrices.

If \(Q\) and \(Z\) are the orthogonal/unitary factors from the generalized Schur factorization of a matrix pair \((A, B)\), then \(Z^{*} X\) and \(Q^{*} Y\) are the matrices of right and left eigenvectors of \((A, B)\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{4}{*}{side} & Must be 'R', 'L', or 'B'. \\
\hline & If side \(=\) 'R', compute right eigenvectors only. \\
\hline & If side \(=\) 'L', compute left eigenvectors only. \\
\hline & If side \(=\) ' \({ }^{\prime}\) ', compute both right and left eigenvectors. \\
\hline \multirow[t]{4}{*}{howmny} & Must be 'A', 'B', or 'S'. \\
\hline & If howmny = 'A', compute all right and/or left eigenvectors. \\
\hline & If howmny = 'B', compute all right and/or left eigenvectors, backtransformed by the matrices in vr and/or v/. \\
\hline & If howmny = 'S', compute selected right and/or left eigenvectors, specified by the logical array select. \\
\hline
\end{tabular}
```

select
n
s,p,vl,vr
lds
ldp
ldvl
ldvr
Array, size at least max $(1, n)$.
If howmny $=$ 'S', select specifies the eigenvectors to be computed.
If howmny = 'A'or 'B', select is not referenced.
For real flavors:
If $w[j]$ is a real eigenvalue, the corresponding real eigenvector is computed if select[j] is 1 .
If $w[j]$ and omega[$j+1]$ are the real and imaginary parts of a complex eigenvalue, the corresponding complex eigenvector is computed if either select $[j]$ or select $[j+1]$ is 1 , and on exit select $[j]$ is set to 1 and select $[j+$ $1]$ is set to 0 .
For complex flavors:
The eigenvector corresponding to the j-th eigenvalue is computed if select $[j]$ is 1 .
The order of the matrices S and $P(n \geq 0)$.

```

\section*{Arrays:}
```

s (size $\max \left(1, l d s^{*} n\right)$) contains the matrix S from a generalized Schur factorization as computed by ?hgeqz. This matrix is upper quasi-triangular for real flavors, and upper triangular for complex flavors.
p (size $\max \left(1, I d p *_{n}\right)$) contains the upper triangular matrix P from a generalized Schur factorization as computed by ?hgeqz.
For real flavors, 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S must be in positive diagonal form.
For complex flavors, P must have real diagonal elements.
If side $=$ 'L' or 'B' and howmny $=$ ' B ', $v /\left(\right.$ size $\max \left(1, ~ I d v I^{*} m m\right)$ for column major layout and $\max \left(1, I d v l^{*}{ }_{n}\right)$ for row major layout) must contain an n-by-n matrix Q (usually the orthogonal/unitary matrix Q of left Schur vectors returned by ?hgeqz).
If side = 'R', v/ is not referenced.
If side $=$ 'R' or 'B' and howmny = 'B', vr(size max(1, ldvr*mm) for column major layout and $\max \left(1, I d v r^{*} n_{n}\right)$ for row major layout) must contain an n-by- n matrix Z (usually the orthogonal/unitary matrix Z of right Schur vectors returned by ?hgeqz).
If side = 'L', vr is not referenced.
The leading dimension of s; at least $\max (1, n)$.
The leading dimension of p; at least max $(1, n)$.
The leading dimension of $\mathrm{v} /$;
If side $=$ 'L' or 'B', then $l d v l \geq n$ for column major layout and $|d v| \geq$ $\max (1, \mathrm{~mm})$ for row major layout.
If side $=$ ' R ', then $|d v| \geq 1$.
The leading dimension of $v r$;

```

If side \(=\) 'R' or 'B', then \(l d v r \geq n\) for column major layout and \(/ d v r \geq\) \(\max (1, \mathrm{~mm})\) for row major layout.

If side \(=\) 'L', then \(/ d v r \geq 1\).
The number of columns in the arrays \(v /\) and/or \(v r(m m \geq m)\).

\section*{Output Parameters}
vI
vr
m
On exit, if side \(=\) 'L' or 'B', v/ contains:
if howmny \(=\) ' A ', the matrix \(Y\) of left eigenvectors of \((S, P)\);
if howmny \(=\) ' B ', the matrix \(Q^{*} Y\);
if howmny \(=\) ' \(S\) ', the left eigenvectors of \((S, P)\) specified by select, stored consecutively in the columns of \(v /\), in the same order as their eigenvalues.

For real flavors:
A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive columns, the first holding the real part, and the second the imaginary part.

On exit, if side = 'R' or 'B', vr contains:
if howmny \(=\) ' \(A\) ', the matrix \(X\) of right eigenvectors of \((S, P)\);
if howmny \(=\) ' B ', the matrix \(Z^{*} X\);
if howmny \(=\) ' S ', the right eigenvectors of \((S, P)\) specified by select, stored consecutively in the columns of \(v r\), in the same order as their eigenvalues.
For real flavors:
A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive columns, the first holding the real part, and the second the imaginary part.

The number of columns in the arrays \(v /\) and/or vr actually used to store the eigenvectors.

If howmny = 'A' or 'B', \(m\) is set to \(n\).
For real flavors:
Each selected real eigenvector occupies one column and each selected complex eigenvector occupies two columns.
For complex flavors:
Each selected eigenvector occupies one column.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
For real flavors:
if info \(=i>0\), the 2 -by-2 block \((i: i+1)\) does not have a complex eigenvalue.

\section*{?tgexc}

Reorders the generalized Schur decomposition of a pair of matrices \((A, B)\) so that one diagonal block of \((A, B)\) moves to another row index.

\section*{Syntax}
```

lapack_int LAPACKE_stgexc (int matrix_layout, lapack_logical wantq, lapack_logical
wantz, lapack_int n, float* a, lapack_int lda, float* b, lapack_int ldb, float* q,
lapack_int ldq, float* z, lapack_int ldz, lapack_int* ifst, lapack_int* ilst);
lapack_int LAPACKE_dtgexc (int matrix_layout, lapack_logical wantq, lapack_logical
wantz, lapack_int n, double* a, lapack_int lda, double* b, lapack_int ldb, double* q,
lapack_int ldq, double* z, lapack_int ldz, lapack_int* ifst, lapack_int* ilst);
lapack_int LAPACKE_ctgexc (int matrix_layout, lapack_logical wantq, lapack_logical
wantz, lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b,
lapack_int ldb, lapack_complex_float* q, lapack_int ldq, lapack_complex_float* z,
lapack_int ldz, lapack_int ifst, lapack_int ilst);
lapack_int LAPACKE_ztgexc (int matrix_layout, lapack_logical wantq, lapack_logical
wantz, lapack_int n, lapack_complex_double* a, lapack_int lda, lapack_complex_double*
b, lapack_int ldb, lapack_complex_double* q, lapack_int ldq, lapack_complex_double* z,
lapack_int ldz, lapack_int ifst, lapack_int ilst);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix pair \((A, B)\) using an orthogonal/unitary equivalence transformation
\[
(A, B)=Q^{\star}(A, B) * Z^{H}
\]
so that the diagonal block of \((A, B)\) with row index ifst is moved to row ilst. Matrix pair \((A, B)\) must be in a generalized real-Schur/Schur canonical form (as returned by gges), that is, \(A\) is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks and \(B\) is upper triangular. Optionally, the matrices \(Q\) and \(Z\) of generalized Schur vectors are updated.
\[
\begin{aligned}
& Q_{\text {in }} \star A_{\text {in }} \star Z_{\text {in }}{ }^{T}=Q_{\text {out }} \star A_{\text {out }} \star Z_{\text {out }}{ }^{\mathrm{T}} \\
& Q_{\text {in }}{ }^{\star} B_{\text {in }}{ }^{\star} Z_{\text {in }}{ }^{T}=Q_{\text {out }}{ }^{\star} B_{\text {out }} \star Z_{\text {out }}{ }^{\mathrm{T}} .
\end{aligned}
\]

\section*{Input Parameters}
```

matrix_layout
wantq, wantz If wantq = 1, update the left transformation matrix Q;
If wantq = 0, do not update Q;
If wantz = 1, update the right transformation matrix Z;
If wantz = 0, do not update Z.
n

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

If wantq \(=1\), update the left transformation matrix \(Q\);
If wantq \(=0\), do not update \(Q\);
If wantz \(=1\), update the right transformation matrix \(Z\);
If wantz \(=0\), do not update \(Z\).
The order of the matrices \(A\) and \(B(n \geq 0)\).
```

a,b,q,z
Ida
Idb
ldq
ldz
Arrays:
a (size $\left.\max \left(1, I d^{*} *_{n}\right)\right)$ contains the matrix A.
b (size $\left.\max \left(1, l d b^{*} n\right)\right)$ contains the matrix B.
q (size at least 1 if want $q=0$ and at least $\max \left(1, l d q^{*} n\right)$ if want $q=1$)
If want $q=0$, then q is not referenced.
If wantq $=1$, then q must contain the orthogonal/unitary matrix Q.
z (size at least 1 if wantz $=0$ and at least $\max \left(1, I d z_{n}\right)$ if want $z=1$)
If wantz $=0$, then z is not referenced.
If wantz $=1$, then z must contain the orthogonal/unitary matrix Z.
The leading dimension of a; at least $\max (1, n)$.
The leading dimension of b; at least $\max (1, n)$.
The leading dimension of q;
If wantq $=0$, then $I d q \geq 1$.
If want $q=1$, then $I d q \geq \max (1, n)$.
The leading dimension of z;
If want $z=0$, then $I d z \geq 1$.
If wantz $=1$, then $I d z \geq \max (1, n)$.

```
ifst, ilst

Specify the reordering of the diagonal blocks of \((A, B)\). The block with row index ifst is moved to row ilst, by a sequence of swapping between adjacent blocks. Constraint: 1 ifst, ilst \(\leq n\).

\section*{Output Parameters}
```

a,b, q, z
ifst,ilst

```

Overwritten by the updated matrices \(A, B, Q\), and \(Z\) respectively.
Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on entry, it is changed to point to the first row; ilst always points to the first row of the block in its final position (which may differ from its input value by \(\pm 1\) ).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1\), the transformed matrix pair \((A, B)\) would be too far from generalized Schur form; the problem is ill-conditioned. \((A, B)\) may have been partially reordered, and ilst points to the first row of the current position of the block being moved.

\section*{?tgsen}

Reorders the generalized Schur decomposition of a pair of matrices \((A, B)\) so that a selected cluster of eigenvalues appears in the leading diagonal blocks of ( \(A, B\) ).

\section*{Syntax}
```

lapack_int LAPACKE_stgsen(int matrix_layout, lapack_int ijob, lapack_logical wantq,
lapack_logical wantz, const lapack_logical* select, lapack_int n, float* a, lapack_int
lda, float* b, lapack_int ldb, float* alphar, float* alphai, float* beta, float* q,
lapack_int ldq, float* z, lapack_int ldz, lapack_int* m, float* pl, float* pr, float*
dif);
lapack_int LAPACKE_dtgsen(int matrix_layout, lapack_int ijob, lapack_logical wantq,
lapack_logical wantz, const lapack_logical* select, lapack_int n, double* a, lapack_int
lda, double* b, lapack_int ldb, double* alphar, double* alphai, double* beta, double* q,
lapack_int ldq, double* z, lapack_int ldz, lapack_int* m, double* pl, double* pr,
double* dif);
lapack_int LAPACKE_ctgsen(int matrix_layout, lapack_int ijob, lapack_logical wantq,
lapack_logical wantz, const lapack_logical* select, lapack_int n, lapack_complex_float*
a, lapack_int lda, lapack_complex_float* b, lapack_int ldb, lapack_complex_float*
alpha, lapack_complex_float* beta, lapack_complex_float* q, lapack_int ldq,
lapack_complex_float* z, lapack_int ldz, lapack_int* m, float* pl, float* pr, float*
dif);
lapack_int LAPACKE_ztgsen(int matrix_layout, lapack_int ijob, lapack_logical wantq,
lapack_logical wantz, const lapack_logical* select, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* alpha, lapack_complex_double* beta, lapack_complex_double* q,
lapack_int ldq, lapack_complex_double* z, lapack_int ldz, lapack_int* m, double* pl,
double* pr, double* dif);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix pair ( \(A, B\) ) (in terms of an orthogonal/unitary equivalence transformation \(Q^{T \star}(A, B) * Z\) for real flavors or \(Q^{H \star}(A, B) * Z\) for complex flavors), so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the pair \((A, B)\). The leading columns of \(Q\) and \(Z\) form orthonormal/unitary bases of the corresponding left and right eigenspaces (deflating subspaces).
\((A, B)\) must be in generalized real-Schur/Schur canonical form (as returned by gges), that is, \(A\) and \(B\) are both upper triangular.
?tgsen also computes the generalized eigenvalues
\(\omega_{j}=(\operatorname{alphar}(j)+\operatorname{alphai}(j) * i) / \operatorname{beta}(j)\) (for real flavors)
\(\omega_{j}=\operatorname{alpha}(j) /\) beta \((j)\) (for complex flavors)
of the reordered matrix pair \((A, B)\).

Optionally, the routine computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces. These are \(\operatorname{Difu}\left[\left(A_{11}, B_{11}\right),\left(A_{22}, B_{22}\right)\right]\) and \(\operatorname{Difl}\left[\left(A_{11}, B_{11}\right),\left(A_{22}, B_{22}\right)\right]\), that is, the separation(s) between the matrix pairs \(\left(A_{11}, B_{11}\right)\) and \(\left(A_{22}, B_{22}\right)\) that correspond to the selected cluster and the eigenvalues outside the cluster, respectively, and norms of "projections" onto left and right eigenspaces with respect to the selected cluster in the \((1,1)\)-block.

\section*{Input Parameters}
```

matrix_layout
ijob

```
wantq, wantz
select
n

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Specifies whether condition numbers are required for the cluster of eigenvalues ( \(p /\) and \(p r\) ) or the deflating subspaces Difu and Difl.
If ijob \(=0\), only reorder with respect to select;
If \(i\) job \(=1\), reciprocal of norms of "projections" onto left and right eigenspaces with respect to the selected cluster ( \(p /\) and \(p r\) );
If ijob \(=2\), compute upper bounds on Difu and Difl, using F-norm-based estimate (dif (1:2));
If ijob \(=3\), compute estimate of Difu and Difl, using 1-norm-based estimate (dif (1:2)). This option is about 5 times as expensive as ijob \(=2\);

If \(i\) job \(=4,>\) compute \(p l\), pr and dif (i.e., options 0,1 and 2 above). This is an economic version to get it all;

If ijob \(=5\), compute \(p l, p r\) and dif (i.e., options 0,1 and 3 above).

If wantq \(=1\), update the left transformation matrix \(Q\);
If wantq \(=0\), do not update \(Q\);
If wantz \(=1\), update the right transformation matrix \(Z\);
If wantz \(=0\), do not update \(Z\).

Array, size at least max \((1, n)\). Specifies the eigenvalues in the selected cluster.

To select an eigenvalue \(\omega_{j}\), select[j-1] must be 1 For real flavors: to select a complex conjugate pair of eigenvalues \(\omega_{j}\) and \(\omega_{j+1}\) (corresponding 2 by 2 diagonal block), select[j-1] and/or select[j] must be set to 1 ; the complex conjugate \(\omega_{j}\) and \(\omega_{j+1}\) must be either both included in the cluster or both excluded.

The order of the matrices \(A\) and \(B(n \geq 0)\).
Arrays:
a (size \(\left.\max \left(1, I d a^{*} n\right)\right)\) contains the matrix \(A\).
For real flavors: \(A\) is upper quasi-triangular, with \((A, B)\) in generalized real Schur canonical form.
For complex flavors: \(A\) is upper triangular, in generalized Schur canonical form.
\(b\) (size \(\left.\max \left(1, I d b^{*} n\right)\right)\) contains the matrix \(B\).
For real flavors: \(B\) is upper triangular, with \((A, B)\) in generalized real Schur canonical form.

For complex flavors: \(B\) is upper triangular, in generalized Schur canonical form.
\(q\) (size at least 1 if want \(q=0\) and at least \(\max \left(1, l d q^{*}{ }_{n}\right)\) if want \(q=1\) )
If want \(q=1\), then \(q\) is an \(n\)-by- \(n\) matrix;
If want \(q=0\), then \(q\) is not referenced.
\(z\) (size at least 1 if wantz \(=0\) and at least \(\max \left(1, I d z_{n}\right)\) if wantz \(=1\) )
If want \(z=1\), then \(z\) is an \(n\)-by- \(n\) matrix;
If want \(z=0\), then \(z\) is not referenced.
The leading dimension of \(a\); at least \(\max (1, n)\).
The leading dimension of \(b\); at least \(\max (1, n)\).
The leading dimension of \(q\); \(I d q \geq 1\).
If want \(q=1\), then \(I d q \geq \max (1, n)\).
The leading dimension of \(z ; I d z \geq 1\).
If want \(z=1\), then \(I d z \geq \max (1, n)\).

\section*{Output Parameters}
```

a,b
alphar, alphai

```
alpha
beta

Overwritten by the reordered matrices \(A\) and \(B\), respectively.
Arrays, size at least \(\max (1, n)\). Contain values that form generalized eigenvalues in real flavors.

See beta.
Array, size at least \(\max (1, n)\). Contain values that form generalized eigenvalues in complex flavors.

See beta.
Array, size at least max \((1, n)\).
For real flavors:
On exit, (alphar[j] + alphai[j]*i)/beta[j], \(j=0, \ldots, n-1\), will be the generalized eigenvalues.
alphar[j] + alphai[j]*i and beta[j], \(j=0, \ldots, n-1\) are the diagonals of the complex Schur form \((S, T)\) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of \((A, B)\) were further reduced to triangular form using complex unitary transformations.
If alphai[j-1] is zero, then the \(j\)-th eigenvalue is real; if positive, then the \(j\)-th and \((j+1)\)-st eigenvalues are a complex conjugate pair, with alphai[j] negative.

For complex flavors:
The diagonal elements of \(A\) and \(B\), respectively, when the pair \((A, B)\) has been reduced to generalized Schur form. alpha[i]/beta[i], \(i=0, \ldots, n-1\) are the generalized eigenvalues.
q

Z
m
pl, pr
dif

If wantq \(=1\), then, on exit, \(Q\) has been postmultiplied by the left orthogonal transformation matrix which reorder \((A, B)\). The leading \(m\) columns of \(Q\) form orthonormal bases for the specified pair of left eigenspaces (deflating subspaces).

If wantz \(=1\), then, on exit, \(Z\) has been postmultiplied by the left orthogonal transformation matrix which reorder \((A, B)\). The leading \(m\) columns of \(Z\) form orthonormal bases for the specified pair of left eigenspaces (deflating subspaces).

The dimension of the specified pair of left and right eigen-spaces (deflating subspaces); \(0 \leq m \leq n\).

If ijob \(=1,4\), or \(5, p l\) and \(p r\) are lower bounds on the reciprocal of the norm of "projections" onto left and right eigenspaces with respect to the selected cluster.
```

0 < pl, pr\leq 1. If m=0 or m = n, pl = pr = 1.

```

If ijob \(=0,2\) or \(3, p l\) and \(p r\) are not referenced
Array, size (2).
If \(i j o b \geq 2, \operatorname{dif}(1: 2)\) store the estimates of Difu and Difl.
If ijob \(=2\) or \(4, \operatorname{dif}(1: 2)\) are F-norm-based upper bounds on Difu and Difl.
If \(i\) job \(=3\) or 5, \(\operatorname{dif}(1: 2)\) are 1-norm-based estimates of Difu and Difl.
If \(m=0\) or \(m=n\), \(\operatorname{dif}(1: 2)=\operatorname{F-norm}([A, B])\).
If \(i\) job \(=0\) or 1 , dif is not referenced.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1\), Reordering of \((A, B)\) failed because the transformed matrix pair \((A, B)\) would be too far from generalized Schur form; the problem is very ill-conditioned. \((A, B)\) may have been partially reordered.
If \(i j o b>0,0\) is returned in dif, pl and pr.

Solves the generalized Sylvester equation.

\section*{Syntax}
```

lapack_int LAPACKE_stgsyl(int matrix_layout, char trans, lapack_int ijob, lapack_int
m, lapack_int n, const float* a, lapack_int lda, const float* b, lapack_int ldb, float*
c, lapack_int ldc, const float* d, lapack_int ldd, const float* e, lapack_int lde,
float* f, lapack_int ldf, float* scale, float* dif);
lapack_int LAPACKE_dtgsyl(int matrix_layout, char trans, lapack_int ijob, lapack_int
m, lapack_int n, const double* a, lapack_int lda, const double* b, lapack_int ldb,
double* c, lapack_int ldc, const double* d, lapack_int ldd, const double* e, lapack_int
lde, double* f, lapack_int ldf, double* scale, double* dif);

```
```

lapack_int LAPACKE_ctgsyl(int matrix_layout, char trans, lapack_int ijob, lapack_int
m, lapack_int n, const lapack_complex_float* a, lapack_int lda, const
lapack_complex_float* b, lapack_int ldb, lapack_complex_float* c, lapack_int ldc, const
lapack_complex_float* d, lapack_int ldd, const lapack_complex_float* e, lapack_int lde,
lapack_complex_float* f, lapack_int ldf, float* scale, float* dif);
lapack_int LAPACKE_ztgsyl(int matrix_layout, char trans, lapack_int ijob, lapack_int
m, lapack_int n, const lapack_complex_double* a, lapack_int lda, const
lapack_complex_double* b, lapack_int ldb, lapack_complex_double* c, lapack_int ldc,
const lapack_complex_double* d, lapack_int ldd, const lapack_complex_double* e,
lapack_int lde, lapack_complex_double* f, lapack_int ldf, double* scale, double* dif);

```

Include Files
- mkl.h

\section*{Description}

The routine solves the generalized Sylvester equation:
```

A* R-L*B = scale* C
D*}R-\mp@subsup{L}{}{\star}E=scale* F

```
where \(R\) and \(L\) are unknown \(m\)-by-n matrices, \((A, D),(B, E)\) and \((C, F)\) are given matrix pairs of size \(m\)-by\(m, n\)-by- \(n\) and \(m\)-by- \(n\), respectively, with real/complex entries. \((A, D)\) and \((B, E)\) must be in generalized realSchur/Schur canonical form, that is, \(A, B\) are upper quasi-triangular/triangular and \(D, E\) are upper triangular.

The solution \((R, L)\) overwrites \((C, F)\). The factor scale, \(0 \leq s c a l e \leq 1\), is an output scaling factor chosen to avoid overflow.

In matrix notation the above equation is equivalent to the following: solve \(Z^{\star}{ }_{x}=\operatorname{scale}{ }^{\star} b\), where \(Z\) is defined as
\[
Z=\left(\begin{array}{ll}
\operatorname{kron}\left(I_{n}, A\right) & -\operatorname{kron}\left(B^{T}, I_{m}\right) \\
\operatorname{kron}\left(I_{n}, D\right) & -\operatorname{kron}\left(E^{T}, I_{m}\right)
\end{array}\right)
\]

Here \(I_{k}\) is the identity matrix of size \(k\) and \(X^{\top}\) is the transpose/conjugate-transpose of \(X . k r o n(X, Y)\) is the Kronecker product between the matrices \(X\) and \(Y\).

If trans = 'T' (for real flavors), or trans = 'C' (for complex flavors), the routine ? tgsyl solves the transposed/conjugate-transposed system \(Z^{T} \star y=s c a l e^{\star} b\), which is equivalent to solve for \(R\) and \(L\) in
\(A^{\mathrm{T}} * R+D^{\mathrm{T}} \star L=\) scale \({ }^{*} C\)
\(R^{\star} B^{T}+L^{\star} E^{T}=\) scale \(^{\star}(-F)\)
This case (trans = 'T' for stgsyl/dtgsyl or trans = 'C' for ctgsyl/ztgsyl) is used to compute an one-norm-based estimate of \(\operatorname{Dif}[(A, D),(B, E)]\), the separation between the matrix pairs \((A, D)\) and \((B, E)\).
If ijob \(\geq 1\), ? tgsyl computes a Frobenius norm-based estimate of \(\operatorname{Dif}[(A, D),(B, E)]\). That is, the reciprocal of a lower bound on the reciprocal of the smallest singular value of \(Z\). This is a level 3 BLAS algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{4}{*}{trans} & Must be 'N', 'T', or 'C'. \\
\hline & If trans = 'N', solve the generalized Sylvester equation. \\
\hline & If trans = 'T', solve the 'transposed' system (for real flavors only). \\
\hline & If trans = 'C', solve the ' conjugate transposed' system (for complex flavors only). \\
\hline \multirow[t]{6}{*}{ijob} & Specifies what kind of functionality to be performed: \\
\hline & If ijob \(=0\), solve the generalized Sylvester equation only; \\
\hline & If \(i\) job \(=1\), perform the functionality of \(i j o b=0\) and \(i j o b=3\); \\
\hline & If \(i\) job \(=2\), perform the functionality of \(i j o b=0\) and \(i j o b=4\); \\
\hline & If \(i\) job \(=3\), only an estimate of \(\operatorname{Dif}[(A, D),(B, E)]\) is computed (look ahead strategy is used); \\
\hline & If ijob \(=4\), only an estimate of \(\operatorname{Dif}[(A, D),(B, E)]\) is computed (?gecon on sub-systems is used). If trans \(=\) ' \(T\) ' or ' C ', ijob is not referenced. \\
\hline m & The order of the matrices \(A\) and \(D\), and the row dimension of the matrices \(C, F, R\) and \(L\). \\
\hline \(n\) & The order of the matrices \(B\) and \(E\), and the column dimension of the matrices \(C, F, R\) and \(L\). \\
\hline \multirow[t]{7}{*}{\(a, b, c, d, e, f\)} & Arrays: \\
\hline & a (size \(\max \left(1, I d^{*} *_{m}\right)\) ) contains the upper quasi-triangular (for real flavors) or upper triangular (for complex flavors) matrix \(A\). \\
\hline & \(b\) (size \(\max \left(1, I d b^{*} n\right)\) ) contains the upper quasi-triangular (for real flavors) or upper triangular (for complex flavors) matrix \(B\). \\
\hline & \(c\) (size \(\max \left(1, I d c^{*} n\right)\) for column major layout and \(\max \left(1, I d c^{*} m\right.\) ) for row major layout) contains the right-hand-side of the first matrix equation in the generalized Sylvester equation (as defined by trans) \\
\hline & \(d\) (size max \(\left(1, I d d^{*} m\right)\) ) contains the upper triangular matrix \(D\). \\
\hline & \(e\left(\right.\) size \(\left.\max \left(1, l d e^{*}\right)^{\prime}\right)\) contains the upper triangular matrix \(E\). \\
\hline & \(f\left(\right.\) size \(\max \left(1, l d f_{n}\right)\) for column major layout and \(\max \left(1, ~ l d f^{*}\right)\) ) for row major layout) contains the right-hand-side of the second matrix equation in the generalized Sylvester equation (as defined by trans) \\
\hline Ida & The leading dimension of \(a\); at least max \((1, m)\). \\
\hline 1 db & The leading dimension of \(b\); at least max \((1, n)\). \\
\hline \(1 d c\) & The leading dimension of \(c\); at least \(\max (1, m)\) for column major layout and at least \(\max (1, n)\) for row major layout. \\
\hline \(1 d d\) & The leading dimension of \(d\); at least max \((1, m)\). \\
\hline Ide & The leading dimension of \(e\); at least \(\max (1, n)\). \\
\hline
\end{tabular}

The leading dimension of \(f\); at least \(\max (1, m)\) for column major layout and at least \(\max (1, n)\) for row major layout.

\section*{Output Parameters}
c
If ijob=0, 1 , or 2 , overwritten by the solution \(R\).
If \(i j o b=3\) or 4 and trans \(=\) ' \(N\) ', \(c\) holds \(R\), the solution achieved during the computation of the Dif-estimate.

If \(i\) job \(=0,1\), or 2 , overwritten by the solution \(L\).
If \(i j o b=3\) or 4 and trans \(=\) ' \(N\) ', \(f\) holds \(L\), the solution achieved during the computation of the Dif-estimate.

On exit, dif is the reciprocal of a lower bound of the reciprocal of the Diffunction, that is, dif is an upper bound of \(\operatorname{Dif}[(A, D),(B, E)]=\) sigma_min ( \(Z\) ), where \(Z\) as defined in the description.
If ijob \(=0\), or trans \(=\) 'T' (for real flavors), or trans \(='^{\prime} C^{\prime}\) (for complex flavors), dif is not touched.

On exit, scale is the scaling factor in the generalized Sylvester equation.
If \(0<\) scale \(<1, c\) and \(f\) hold the solutions \(R\) and \(L\), respectively, to a slightly perturbed system but the input matrices \(A, B, D\) and \(E\) have not been changed.
If scale \(=0, c\) and \(f\) hold the solutions \(R\) and \(L\), respectively, to the homogeneous system with \(C=F=0\). Normally, scale \(=1\).

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(>0,(A, D)\) and \((B, E)\) have common or close eigenvalues.

\section*{?tgsna}

Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a pair of matrices in generalized real Schur canonical form.

\section*{Syntax}
```

lapack_int LAPACKE_stgsna(int matrix_layout, char job, char howmny, const
lapack_logical* select, lapack_int n, const float* a, lapack_int lda, const float* b,
lapack_int ldb, const float* vl, lapack_int ldvl, const float* vr, lapack_int ldvr,
float* s, float* dif, lapack_int mm, lapack_int* m);
lapack_int LAPACKE_dtgsna(int matrix_layout, char job, char howmny, const
lapack_logical* select, lapack_int n, const double* a, lapack_int lda, const double* b,
lapack_int ldb, const double* vl, lapack_int ldvl, const double* vr, lapack_int ldvr,
double\star s, double* dif, lapack_int mm, lapack_int* m);

```
```

lapack_int LAPACKE_ctgsna(int matrix_layout, char job, char howmny, const
lapack_logical* select, lapack_int n, const lapack_complex_float* a, lapack_int lda,
const lapack_complex_float* b, lapack_int ldb, const lapack_complex_float* vl,
lapack_int ldvl, const lapack_complex_float* vr, lapack_int ldvr, float* s, float* dif,
lapack_int mm, lapack_int* m);
lapack_int LAPACKE_ztgsna(int matrix_layout, char job, char howmny, const
lapack_logical* select, lapack_int n, const lapack_complex_double* a, lapack_int lda,
const lapack_complex_double* b, lapack_int ldb, const lapack_complex_double* vl,
lapack_int ldvl, const lapack_complex_double* vr, lapack_int ldvr, double* s, double*
dif, lapack_int mm, lapack_int* m);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The real flavors stgsna/dtgsna of this routine estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair \((A, B)\) in generalized real Schur canonical form (or of any matrix pair \(\left(Q^{*} A^{*} Z^{\top}, Q^{*} B^{*} Z^{\top}\right)\) with orthogonal matrices \(Q\) and \(Z\).
\((A, B)\) must be in generalized real Schur form (as returned by gges/gges), that is, \(A\) is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper triangular.

The complex flavors ctgsna/ztgsna estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair \((A, B) .(A, B)\) must be in generalized Schur canonical form, that is, \(A\) and \(B\) are both upper triangular.

Input Parameters
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{4}{*}{job} & Specifies whether condition numbers are required for eigenvalues or eigenvectors. Must be ' E ' or ' V ' or ' B '. \\
\hline & If job = 'E', for eigenvalues only (compute s). \\
\hline & If job = 'V', for eigenvectors only (compute dif ). \\
\hline & If job = 'B', for both eigenvalues and eigenvectors (compute both \(s\) and dif). \\
\hline \multirow[t]{3}{*}{howmny} & Must be 'A' or 'S'. \\
\hline & If howmny = 'A', compute condition numbers for all eigenpairs. \\
\hline & If howmny = 'S', compute condition numbers for selected eigenpairs specified by the logical array select. \\
\hline \multirow[t]{4}{*}{select} & Array, size at least max ( \(1, n\) ). \\
\hline & If howmny = 'S', select specifies the eigenpairs for which condition numbers are required. \\
\hline & If howmny = 'A', select is not referenced. \\
\hline & For real flavors: \\
\hline
\end{tabular}
n
\(a, b, V I, V I\)

Ida
1 db
\(I d v I\)
ldvr
mm

\section*{Output Parameters}

To select condition numbers for the eigenpair corresponding to a real eigenvalue \(\omega_{j}\), select \([j-1]\) must be set to 1 ; to select condition numbers corresponding to a complex conjugate pair of eigenvalues \(\omega_{j}\) and \(\omega_{j+1}\), either select \([j-1]\) or select[ \(j]\) must be set to 1 .

For complex flavors:
To select condition numbers for the corresponding \(j\)-th eigenvalue and/or eigenvector, select[j-1] must be set to 1 .

The order of the square matrix pair \((A, B)\)
( \(n \geq 0\) ).
Arrays:
a (size \(\max \left(1, l d a_{n}\right)\) ) contains the upper quasi-triangular (for real flavors) or upper triangular (for complex flavors) matrix \(A\) in the pair \((A, B)\).
\(b\) (size \(\left.\max \left(1, I d b^{*} n\right)\right)\) contains the upper triangular matrix \(B\) in the pair ( \(A, B\) ).
If job \(=\) ' E' or 'B', \(v /\left(\right.\) size \(\max \left(1, I d v I^{*} m\right)\) for column major layout and \(\max \left(1, I d v l^{*} n\right)\) for row major layout) must contain left eigenvectors of ( \(A\), \(B)\), corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of \(v /\), as returned by ?tgevc.

If job \(=\) ' \(V\) ', \(v /\) is not referenced.
If job = 'E' or 'B', vr(size max \(\left(1, I d v r^{*} m\right.\) ) for column major layout and \(\max \left(1, I d v r^{*}\right)\) for row major layout) must contain right eigenvectors of ( \(A, B\) ), corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of \(v r\), as returned by ?tgevc.

If job \(=\) ' \(V\) ', \(v r\) is not referenced.
The leading dimension of \(a\); at least \(\max (1, n)\).
The leading dimension of \(b\); at least \(\max (1, n)\).
The leading dimension of \(v l ; l d v l \geq 1\).
If job \(=\) ' E ' or ' B ', then \(\mid d v I \geq \max (1, n)\) for column major layout and \(|d v| \geq \max (1, m)\) for row major layout .

The leading dimension of \(v r ; \operatorname{ldvr} \geq 1\).
If job \(=\) ' \(E\) ' or ' \(B\) ', then \(l d v r \geq \max (1, n)\) for column major layout and \(I d v r \geq \max (1, m)\) for row major layout.

The number of elements in the arrays \(s\) and \(\operatorname{dif}(m m \geq m\) ).

Array, size mm.
If job \(=\) ' \(E\) ' or ' \(B\) ', contains the reciprocal condition numbers of the selected eigenvalues, stored in consecutive elements of the array.
If job \(=\) ' V ', s is not referenced.

For real flavors:
For a complex conjugate pair of eigenvalues two consecutive elements of \(s\) are set to the same value. Thus, \(s[j-1], \operatorname{dif}[j-1]\), and the \(j\)-th columns of \(v /\) and \(v r\) all correspond to the same eigenpair (but not in general the \(j\)-th eigenpair, unless all eigenpairs are selected).
m
Array, size mm.
If job \(=\) ' \(V\) ' or ' B ', contains the estimated reciprocal condition numbers of the selected eigenvectors, stored in consecutive elements of the array.

If the eigenvalues cannot be reordered to compute dif[j], dif[j] is set to 0 ; this can only occur when the true value would be very small anyway.
If job = 'E', dif is not referenced.
For real flavors:
For a complex eigenvector, two consecutive elements of dif are set to the same value.

For complex flavors:
For each eigenvalue/vector specified by select, dif stores a Frobenius normbased estimate of Difl.

The number of elements in the arrays \(s\) and dif used to store the specified condition numbers; for each selected eigenvalue one element is used.
If howmny = 'A', \(m\) is set to \(n\).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Generalized Singular Value Decomposition: LAPACK Computational Routines}

This topic describes LAPACK computational routines used for finding the generalized singular value decomposition (GSVD) of two matrices \(A\) and \(B\) as
\(U^{H} A Q=D_{1}^{*}\left(\begin{array}{ll}0 & R\end{array}\right)\),
\(V^{H} B Q=D_{2}^{*}\left(\begin{array}{ll}0 & R\end{array}\right)\),
where \(U, V\), and \(Q\) are orthogonal/unitary matrices, \(R\) is a nonsingular upper triangular matrix, and \(D_{1}, D_{2}\) are "diagonal" matrices of the structure detailed in the routines description section.
Table "Computational Routines for Generalized Singular Value Decomposition" lists LAPACK routines that perform generalized singular value decomposition of matrices.
Computational Routines for Generalized Singular Value Decomposition
\begin{tabular}{ll}
\hline Routine name & Operation performed \\
\hline ggsvp & Computes the preprocessing decomposition for the generalized SVD \\
ggsvp3 & Performs preprocessing for a generalized SVD. \\
ggsvd3 & Computes generalized SVD.
\end{tabular}
\begin{tabular}{ll}
\hline Routine name & Operation performed \\
\hline tgsja & \begin{tabular}{l} 
Computes the generalized SVD of two upper triangular or trapezoidal \\
matrices
\end{tabular} \\
\hline
\end{tabular}

You can use routines listed in the above table as well as the driver routine ggsvd to find the GSVD of a pair of general rectangular matrices.

\section*{?ggsvp \\ Computes the preprocessing decomposition for the generalized SVD (deprecated).}

\section*{Syntax}
```

lapack_int LAPACKE_sggsvp(int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int p, lapack_int n, float* a, lapack_int lda, float* b, lapack_int
ldb, float tola, float tolb, lapack_int* k, lapack_int* l, float* u, lapack_int ldu,
float* v, lapack_int ldv, float* q, lapack_int ldq);
lapack_int LAPACKE_dggsvp(int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int p, lapack_int n, double* a, lapack_int lda, double* b,
lapack_int ldb, double tola, double tolb, lapack_int* k, lapack_int* l, double* u,
lapack_int ldu, double* v, lapack_int ldv, double* q, lapack_int ldq);
lapack_int LAPACKE_cggsvp(int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int p, lapack_int n, lapack_complex_float* a, lapack_int lda,
lapack_complex_float* b, lapack_int ldb, float tola, float tolb, lapack_int* k,
lapack_int* l, lapack_complex_float* u, lapack_int ldu, lapack_complex_float* v,
lapack_int ldv, lapack_complex_float* q, lapack_int ldq);
lapack_int LAPACKE_zggsvp(int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int p, lapack_int n, lapack_complex_double* a, lapack_int lda,
lapack_complex_double* b, lapack_int ldb, double tola, double tolb, lapack_int* k,
lapack_int* l, lapack_complex_double* u, lapack_int ldu, lapack_complex_double* v,
lapack_int ldv, lapack_complex_double* q, lapack_int ldq);

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine is deprecated; use ggsvp3.
The routine computes orthogonal matrices \(U, V\) and \(Q\) such that
\[
\begin{aligned}
& n-k-1 \quad k \quad I \\
& U^{H} A Q=\begin{array}{r}
k\left(\begin{array}{ccc}
0 & A_{12} & A_{13} \\
I\left(\begin{array}{l}
\text { a }
\end{array}\right. \\
0 & 0 & A_{23} \\
0 & 0 & 0
\end{array}\right), \quad \text { if } m-k-I \geq 0
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& n-k-1 \quad k \quad 1 \\
& =\begin{array}{rcc}
k \\
m-k & \left(\begin{array}{ccc}
0 & A_{12} & A_{13} \\
0 & 0 & A_{23}
\end{array}\right), \quad \text { if } m-k-1<0
\end{array} \\
& n-k-1 \quad l \\
& V^{H} B Q=\begin{array}{r}
I \\
O-I\left(\begin{array}{lll}
0 & 0 & B_{13} \\
0 & 0 & 0
\end{array}\right), ~\left(\begin{array}{l}
0
\end{array}\right) .
\end{array}
\end{aligned}
\]
where the \(k\)-by- \(k\) matrix \(A_{12}\) and \(l\)-by-I matrix \(B_{13}\) are nonsingular upper triangular; \(A_{23}\) is \(/\)-by- \(/\) upper triangular if \(m-k-1 \geq 0\), otherwise \(A_{23}\) is \((m-k)\)-by-l upper trapezoidal. The sum \(k+l\) is equal to the effective numerical rank of the \((m+p)\)-by-n matrix \(\left(A^{H}, B^{H}\right)^{H}\).
This decomposition is the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see subroutine ?tgsja.
Input Parameters
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{jobu} & Must be 'U' or 'N'. \\
\hline & If jobu = 'U', orthogonal/unitary matrix \(U\) is computed. \\
\hline & If jobu = ' N ', \(U\) is not computed. \\
\hline \multirow[t]{3}{*}{jobv} & Must be 'V' or 'N'. \\
\hline & If jobv = ' V ', orthogonal/unitary matrix \(V\) is computed. \\
\hline & If jobv = 'N', V is not computed. \\
\hline \multirow[t]{3}{*}{jobq} & Must be 'Q' or 'N'. \\
\hline & If jobq = 'Q', orthogonal/unitary matrix \(Q\) is computed. \\
\hline & If jobq = ' \({ }^{\prime}\) ', \(Q\) is not computed. \\
\hline \(m\) & The number of rows of the matrix \(A(m \geq 0)\). \\
\hline \(p\) & The number of rows of the matrix \(B(p \geq 0)\). \\
\hline \(n\) & The number of columns of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \multirow[t]{2}{*}{\(a, b\)} & Arrays: \\
\hline & \(a\) (size at least \(\max \left(1, I d a_{n}\right)\) for column major layout and \(\max \left(1, I d^{*} *_{m}\right)\) for row major layout) contains the \(m\)-by- \(n\) matrix \(A\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \(b\) (size at least max \(\left(1, I d b^{*} n\right)\) for column major layout and \(\max \left(1, I d b^{*} p\right)\) for row major layout) contains the \(p\)-by-n matrix \(B\). \\
\hline lda & The leading dimension of \(a\); at least \(\max (1, m)\) for column major layout and \(\max (1, n)\) for row major layout. \\
\hline 1 db & The leading dimension of \(b\); at least \(\max (1, p)\) for column major layout and \(\max (1, n)\) for row major layout. \\
\hline \multirow[t]{4}{*}{tola, tolb} & tola and tolb are the thresholds to determine the effective numerical rank of matrix \(B\) and a subblock of \(A\). Generally, they are set to \\
\hline & tola \(=\max (m, n) *| | A| | * M A C H E P S\), \\
\hline & tolb \(=\max (p, n) *| | B| | * M A C H E P S\). \\
\hline & The size of tola and tolb may affect the size of backward errors of the decomposition. \\
\hline \(1 d u\) & The leading dimension of the output array \(u . l d u \geq \max (1, m)\) if \(j o b u=\) 'U'; ldu 1 otherwise. \\
\hline \(l d v\) & The leading dimension of the output array \(v . l d v \geq \max (1, p)\) if jobv \(=\) 'V'; ldv 1 otherwise. \\
\hline \(l d q\) & The leading dimension of the output array \(q\). \(I d q \geq \max (1, n)\) if \(j o b q=\) 'Q'; ldq叉 1 otherwise. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline a & Overwritten by the triangular (or trapezoidal) matrix described in the Description section. \\
\hline b & Overwritten by the triangular matrix described in the Description section. \\
\hline \(k, 1\) & On exit, \(k\) and \(/\) specify the dimension of subblocks. The sum \(k+l\) is equal to effective numerical rank of \(\left(A^{H}, B^{H}\right)^{H}\). \\
\hline \multirow[t]{7}{*}{\(u, v, q\)} & Arrays: \\
\hline & If jobu = 'U', \(u\left(\right.\) size \(\max \left(1, I d u^{*} m\right)\) ) contains the orthogonal/unitary matrix \(U\). \\
\hline & If jobu = 'N', \(u\) is not referenced. \\
\hline & If jobv \(=\) ' \(V\) ', \(v\left(\right.\) size \(\left.\max \left(1, I d v^{*} p\right)\right)\) contains the orthogonal/unitary matrix \(V\). \\
\hline & If jobv = 'N', v is not referenced. \\
\hline & If jobq \(=\) ' \(Q^{\prime}, q\left(\right.\) size \(\left.\max \left(1, I d q^{*} n\right)\right)\) contains the orthogonal/unitary matrix \(Q\). \\
\hline & If \(j 0 b q={ }^{\prime} N^{\prime}, q\) is not referenced. \\
\hline
\end{tabular}

\section*{Return Values}

This function returns a value info.
If inforo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{?ggsvp3}

Performs preprocessing for a generalized SVD.

\section*{Syntax}
```

lapack_int LAPACKE_sggsvp3 (int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int p, lapack_int n, float * a, lapack_int lda, float * b,
lapack_int ldb, float tola, float tolb, lapack_int * k, lapack_int * l, float * u,
lapack_int ldu, float * v, lapack_int ldv, float * q, lapack_int ldq);
lapack_int LAPACKE_dggsvp3 (int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int p, lapack_int n, double * a, lapack_int lda, double * b,
lapack_int ldb, double tola, double tolb, lapack_int * k, lapack_int * l, double * u,
lapack_int ldu, double * v, lapack_int ldv, double * q, lapack_int ldq);
lapack_int LAPACKE_cggsvp3 (int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int p, lapack_int n, lapack_complex_float * a, lapack_int lda,
lapack_complex_float * b, lapack_int ldb, float tola, float tolb, lapack_int * k,
lapack_int * l, lapack_complex_float * u, lapack_int ldu, lapack_complex_float * v,
lapack_int ldv, lapack_complex_float * q, lapack_int ldq);
lapack_int LAPACKE_zggsvp3 (int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int p, lapack_int n, lapack_complex_double * a, lapack_int lda,
lapack_complex_double * b, lapack_int ldb, double tola, double tolb, lapack_int * k,
lapack_int * l, lapack_complex_double * u, lapack_int ldu, lapack_complex_double * v,
lapack_int ldv, lapack_complex_double * q, lapack_int ldq);

```

\section*{Include Files}
- mkl_lapack.h

\section*{Include Files}
- mkl.h

\section*{Description}
? ggsvp3 computes orthogonal or unitary matrices \(U, V\), and \(Q\) such that
for real flavors:
\[
\begin{aligned}
& n-k-l k l \\
& U^{T} A Q=\begin{array}{c}
k \\
l \\
m-k-l \\
0
\end{array}\left(\begin{array}{ccc}
0 & A 12 & A 13 \\
0 & 0 & A 23 \\
0 & 0 & 0
\end{array}\right) \text { if } m-k-l \geq 0 \text {; } \\
& n-k-l k l \\
& U^{T} A Q=\begin{array}{c}
k \\
m-k \\
\left(\begin{array}{lll}
0 & A 12 & A 13 \\
0 & 0 & A 23
\end{array}\right) \text { if } m-k-l<0 ; ~
\end{array} \\
& n-k-l k l \\
& V^{T} B Q=\begin{array}{l}
l \\
p-l
\end{array} \quad\left(\begin{array}{ccc}
0 & 0 & B 13 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
\]
for complex flavors:
\(U^{H} A Q=\begin{gathered}k-k-l k l \\ k \\ m-k-l\end{gathered}\left(\begin{array}{ccc}0 & A 12 & A 13 \\ 0 & 0 & A 23 \\ 0 & 0 & 0\end{array}\right)\) if \(m-k-l \geq 0\);
\[
\begin{aligned}
U^{H} A Q= & \begin{array}{c}
n-k-l k l \\
m-k \\
k
\end{array}\left(\begin{array}{ccc}
0 & A 12 & A 13 \\
0 & 0 & A 23
\end{array}\right) \text { if } m-k-1<0 ; \\
V^{H} B Q= & \left.\begin{array}{l}
n-k-l
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & B 13 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
\]
where the \(k\)-by- \(k\) matrix \(A 12\) and l-by-l matrix \(B 13\) are nonsingular upper triangular; \(A 23\) is l-by-l upper triangular if \(m-k-1 \geq 0\), otherwise \(A 23\) is ( \(m\) - \(k\)-by- 1 upper trapezoidal. \(k+1=\) the effective numerical rank of the \((m+p)\)-by-n matrix \(\left(A^{\top}, B^{\top}\right)^{\top}\) for real flavors or \(\left(A^{\mathrm{H}}, B^{\mathrm{H}}\right)^{\mathrm{H}}\) for complex flavors.

This decomposition is the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see ?ggsvd3.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK COL MAJOR). \\
\hline \multirow[t]{2}{*}{jobu} & \(=\) ' \(U\) ': Orthogonal/unitary matrix \(U\) is computed; \\
\hline & \(=\) ' N ': \(U\) is not computed. \\
\hline \multirow[t]{2}{*}{jobv} & \(={ }^{\prime} \mathrm{V}\) ': Orthogonal/unitary matrix \(V\) is computed; \\
\hline & \(=\) ' N ': V is not computed. \\
\hline \multirow[t]{2}{*}{jobq} & \(=\) 'Q': Orthogonal/unitary matrix \(Q\) is computed; \\
\hline & \(=\) ' N ': \(Q\) is not computed. \\
\hline \multirow[t]{2}{*}{m} & The number of rows of the matrix \(A\). \\
\hline & \(m \geq 0\). \\
\hline \multirow[t]{2}{*}{\(p\)} & The number of rows of the matrix \(B\). \\
\hline & \(p \geq 0\). \\
\hline \multirow[t]{2}{*}{\(n\)} & The number of columns of the matrices \(A\) and \(B\). \\
\hline & \(n \geq 0\). \\
\hline \multirow[t]{2}{*}{a} & Array, size ( \(\left.1 \mathrm{da}^{*}{ }_{n}\right)\). \\
\hline & On entry, the m-by-n matrix \(A\). \\
\hline \multirow[t]{2}{*}{Ida} & The leading dimension of the array \(a\). \\
\hline & \(I d a \geq \max (1, m)\). \\
\hline \multirow[t]{2}{*}{b} & Array, size ( \(1 \mathrm{db}{ }^{*}{ }_{n}\) ). \\
\hline & On entry, the \(p\)-by-n matrix \(B\). \\
\hline \multirow[t]{2}{*}{1 db} & The leading dimension of the array \(b\). \\
\hline & \(1 \mathrm{db} \geq \mathrm{max}(1, \mathrm{p})\). \\
\hline \multirow[t]{2}{*}{tola, tolb} & tola and tolb are the thresholds to determine the effective numerical rank of matrix \(B\) and a subblock of \(A\). Generally, they are set to \\
\hline & tola \(=\max (m, n) * \operatorname{norm}(a) * M A C H E P S\), \\
\hline
\end{tabular}
tolb \(=\max (p, n) * \operatorname{norm}(b) * M A C H E P S\).
The size of tola and tolb may affect the size of backward errors of the decomposition.

Idu
\(I d v\)
\(I d q\)

The leading dimension of the array \(u\).
\(I d u \geq \max (1, m)\) if \(j o b u=\) ' \(U\) '; \(I d u \geq 1\) otherwise.
The leading dimension of the array \(v\).
\(I d v \geq \max (1, p)\) if jobv \(=\) ' \(V\) '; \(I d v \geq 1\) otherwise.
The leading dimension of the array \(q\).
\(I d q \geq \max (1, n)\) if \(j o b q=\) ' \(Q\) '; \(I d q \geq 1\) otherwise.

\section*{Output Parameters}
\(a\)
b
k, 1
u

V
q

On exit, a contains the triangular (or trapezoidal) matrix described in the Description section.

On exit, b contains the triangular matrix described in the Description section.

On exit, \(k\) and \(l\) specify the dimension of the subblocks described in Description section.
\(k+I=\) effective numerical rank of \(\left(A^{\top}, B^{\top}\right)^{\top}\) for real flavors or \(\left(A^{\mathrm{H}}, B^{\mathrm{H}}\right)^{\mathrm{H}}\) for complex flavors.

Array, size ( \(1 d^{*}{ }^{*} m\) ).
If jobu = 'U', u contains the orthogonal/unitary matrix \(U\).
If jobu \(=\) ' N ', \(u\) is not referenced.
Array, size ( \(1 d v^{*} p\) ).
If jobv \(=\) ' \(V\) ', \(v\) contains the orthogonal/unitary matrix \(V\).
If jobv = ' N ', \(v\) is not referenced.
Array, size ( \(1 d q^{*} n\) ).
If \(j o b q=\) ' \(Q\) ', \(q\) contains the orthogonal/unitary matrix \(Q\).
If \(j o b q=\) ' \(N\) ', \(q\) is not referenced.

\section*{Return Values}

This function returns a value info.
= 0: successful exit.
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value.

\section*{Application Notes}

The subroutine uses LAPACK subroutine ? geqp3 for the QR factorization with column pivoting to detect the effective numerical rank of the \(A\) matrix. It may be replaced by a better rank determination strategy.
?ggsvp3 replaces the deprecated subroutine ?ggsvp.

\section*{?ggsvd3 \\ Computes generalized SVD.}

\section*{Syntax}
```

lapack_int LAPACKE_sggsvd3 (int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int n, lapack_int p, lapack_int * k, lapack_int * l, float * a,
lapack_int lda, float * b, lapack_int ldb, float * alpha, float * beta, float * u,
lapack_int ldu, float * v, lapack_int ldv, float * q, lapack_int ldq, lapack_int *
iwork);
lapack_int LAPACKE_dggsvd3 (int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int n, lapack_int p, lapack_int * k, lapack_int * l, double * a,
lapack_int lda, double * b, lapack_int ldb, double * alpha, double * beta, double * u,
lapack_int ldu, double * v, lapack_int ldv, double * q, lapack_int ldq, lapack_int *
iwork);
lapack_int LAPACKE_cggsvd3 (int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int n, lapack_int p, lapack_int * k, lapack_int * l,
lapack_complex_float * a, lapack_int lda, lapack_complex_float * b, lapack_int ldb,
float * alpha, float * beta, lapack_complex_float * u, lapack_int ldu,
lapack_complex_float * v, lapack_int ldv, lapack_complex_float * q, lapack_int ldq,
lapack_int * iwork);
lapack_int LAPACKE_zggsvd3 (int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int n, lapack_int p, lapack_int * k, lapack_int * l,
lapack_complex_double * a, lapack_int lda, lapack_complex_double * b, lapack_int ldb,
double * alpha, double * beta, lapack_complex_double * u, lapack_int ldu,
lapack_complex_double * v, lapack_int ldv, lapack_complex_double * q, lapack_int ldq,
lapack_int * iwork);

```

\section*{Include Files}
- mkl.h

\section*{Description}
? g gsvd3 computes the generalized singular value decomposition (GSVD) of an m-by-n real or complex matrix \(A\) and \(p\)-by- \(n\) real or complex matrix \(B\) :
\(U^{\top *} A^{*} Q=D_{1}^{*}(0 R), V^{\top *} B^{*} Q=D_{2}^{*}(0 R)\) for real flavors
or
\(U^{H *} A^{*} Q=D_{1}{ }^{*}(0 R), V^{H *} B^{*} Q=D_{2}^{*}(0 R)\) for complex flavors
where \(U, V\) and \(Q\) are orthogonal/unitary matrices.
Let \(k+l=\) the effective numerical rank of the matrix \(\left(A^{\top} B^{\top}\right)^{\top}\) for real flavors or the matrix \(\left(A^{\mathrm{H}}, B^{\mathrm{H}}\right)^{\mathrm{H}}\) for complex flavors, then \(R\) is a \((k+1)\)-by- \((k+1)\) nonsingular upper triangular matrix, \(D_{1}\) and \(D_{2}\) are m-by- \((k+\) 1) and \(p\)-by- \((k+1)\) "diagonal" matrices and of the following structures, respectively:

If \(m-k-l \geq 0\),
\(D_{1}=\begin{gathered}k \\ l \\ m-k-l\end{gathered}\left(\begin{array}{cc}k & l \\ I & 0 \\ 0 & C \\ 0 & 0\end{array}\right)\)
\[
\begin{aligned}
& \left.D_{2}=\begin{array}{c}
k \\
p-l \\
l
\end{array} \begin{array}{l}
k \\
0
\end{array} \quad \begin{array}{l}
l \\
0
\end{array}\right) \\
& \left(\begin{array}{ll}
0 & R
\end{array}\right)=k\left(\begin{array}{c}
n-k-l k l \\
l
\end{array} \begin{array}{cc}
n 11 & R 12 \\
0 & 0
\end{array} \quad R 22\right)
\end{aligned}
\]
where
C = diag( \(\operatorname{alpha(k+1),~...~,~alpha(k+1)~),~}\)
\(S=\operatorname{diag}(\operatorname{beta}(k+1), \ldots, \operatorname{beta}(k+1))\),
\(C^{2}+S^{2}=I\).
If \(m-k-1<0\),
\(D_{1}=\underset{m-k}{ }\left(\begin{array}{ccc}k & m-k k+l-m \\ I & 0 & 0 \\ 0 & C & 0\end{array}\right)\)
\(D_{2}=\begin{gathered}\quad \begin{array}{c}k \\ m-k-k \\ k+l-m+l-m \\ p-l\end{array}\left(\begin{array}{lll}0 & S & 0 \\ 0 & 0 & I \\ 0 & 0 & 0\end{array}\right)\end{gathered}\)
\((0 R)=\begin{gathered}k \\ m-k \\ k+l-m\end{gathered}\left(\begin{array}{cccc}0 & n-k-l k m-k k+l-m \\ 0 & R 11 & R 12 & R 13 \\ 0 & 0 & R 22 & R 23 \\ 0 & 0 & 0 & R 33\end{array}\right)\)
where
\(C=\operatorname{diag}(\operatorname{alpha}(k+1), \ldots, \operatorname{alpha}(m))\),
\(S=\operatorname{diag}(\operatorname{beta}(k+1), \ldots, \operatorname{beta}(m))\),
\(C^{2}+S^{2}=I\).
The routine computes \(C, S, R\), and optionally the orthogonal/unitary transformation matrices \(U, V\) and \(Q\).
In particular, if \(B\) is an \(n\)-by- \(n\) nonsingular matrix, then the GSVD of \(A\) and \(B\) implicitly gives the SVD of \(A^{*} \operatorname{inv}(B)\) :
\(A^{*} \operatorname{inv}(B)=U^{*}\left(D_{1} * \operatorname{inv}\left(D_{2}\right)\right)^{*} V^{\top}\) for real flavors
or
\(A^{*} \operatorname{inv}(B)=U^{*}\left(D_{1} * \operatorname{inv}\left(D_{2}\right)\right)^{* V^{H}}\) for complex flavors.
If \(\left(A^{\top}, B^{\top}\right)^{\top}\) for real flavors or \(\left(A^{H}, B^{H}\right)^{H}\) for complex flavors has orthonormal columns, then the GSVD of \(A\) and \(B\) is also equal to the CS decomposition of \(A\) and \(B\). Furthermore, the GSVD can be used to derive the solution of the eigenvalue problem:
\(A^{\top} * A X=\lambda^{*} B^{\top} * B X\) for real flavors
or
\(A^{\mathrm{H} *} A X=\lambda^{*} B^{\mathrm{H} *} B X\) for complex flavors
In some literature, the GSVD of \(A\) and \(B\) is presented in the form
\(U^{\top} A^{*} X=\left(0 D_{1}\right), V^{\top *} B^{*} X=\left(0 D_{2}\right)\) for real \((A, B)\)
or
```

$U^{H *} A^{*} X=\left(0 D_{1}\right), V^{H *} B^{*} X=\left(0 D_{2}\right)$ for complex (A, B)

```
where \(U\) and \(V\) are orthogonal and \(X\) is nonsingular, \(D_{1}\) and \(D_{2}\) are "diagonal". The former GSVD form can be converted to the latter form by taking the nonsingular matrix \(X\) as
\(X=Q *\left(\begin{array}{l}I \\ 0 \\ 0 \\ \operatorname{inv}(R)\end{array}\right)\)

\section*{Input Parameters}
```

matrix_layout
jobu
jobv
jobq
m
n
p
a
lda
b
ldb
ldu
ldv
ldq

Output Parameters

$k, 1$
a
b
alpha
beta
u

V
q

On exit, k and l specify the dimension of the subblocks described in the Description section.
$k+I=$ effective numerical rank of $\left(A^{\top}, B^{\top}\right)^{\top}$ for real flavors or $\left(A^{\mathrm{H}}, B^{\mathrm{H}}\right)^{\mathrm{H}}$ for complex flavors.

On exit, a contains the triangular matrix R, or part of R.
If $m-k-1 \geq 0, R$ is stored in the elements of array a corresponding to A_{1} :
$k+l, n-k-l+1: n$.
If $m-k-1<0,\left(\begin{array}{ccc}R 11 & R 12 & R 13 \\ 0 & R 22 & R 23\end{array}\right)$ is stored in the elements of array a corresponding to $A_{(1: m, n-k-I+1: n}$, and $R 33$ is stored in bthe elements of array a corresponding to $A_{m}-k+1: l, n+m-k-I+1: n$ on exit.

On exit, b contains part of the triangular matrix R if $m-k-I<0$.
See Description for details.
Array, size (n)
Array, size (n)
On exit, alpha and beta contain the generalized singular value pairs of a and b;

```
alpha[0: k - 1] = 1,
beta[0: k - 1] = 0,
and if m-k-l\geq0,
alpha[k:k + l - 1] = C,
beta[k:k + l - 1] = S,
or if m-k-l< 0,
alpha[k:m - 1] = C, alpha[m: k + l - 1] = 0
beta[k: m - 1] =S, beta[m: k + l - 1] = 1
and
alpha[k+1: \(n-1]=0\)
beta[k+1:n-1]=0
```

Array, size ($1 d u^{*}{ }^{m}$).
If jobu = 'U', u contains the m-by-m orthogonal/unitary matrix U.
If jobu = ' N ', u is not referenced.
Array, size (ldv*p).
If jobv $=$ ' V ', v contains the $p-b y-p$ orthogonal/unitary matrix V.
If jobv $=$ ' N ', v is not referenced.
Array, size ($1 d q^{*} n$).

If jobq $=$ ' Q ', q contains the n-by- n orthogonal/unitary matrix Q.
If $j o b q=$ ' N ', q is not referenced.
On exit, iwork stores the sorting information. More precisely, the following loop uses iwork to sort alpha:

```
for (i = k; i<min(m,k + l); i++) {
    swap (alpha[i], alpha[iwork[i] - 1]);
}
```

such that alpha[0] \geq alpha[1] $\geq \ldots \geq$ alpha[n-1].

Return Values

This function returns a value info.
$=0$: successful exit.
<0 : if info $=-i$, the i-th argument had an illegal value.
> 0: if info $=1$, the Jacobi-type procedure failed to converge.
For further details, see subroutine ?tgsja.

Application Notes

? ggsvd3 replaces the deprecated subroutine ? ggsvd.

?tgsja

Computes the generalized SVD of two upper triangular or trapezoidal matrices.

Syntax

lapack_int LAPACKE_stgsja(int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int p, lapack_int $n, ~ l a p a c k _i n t ~ k, ~ l a p a c k _i n t ~ l, ~ f l o a t * ~ a, ~$
lapack_int lda, float* b, lapack_int ldb, float tola, float tolb, float* alpha, float*
beta, float* u, lapack_int ldu, float* v, lapack_int ldv, float* q, lapack_int ldq,
lapack_int* ncycle);
lapack_int LAPACKE_dtgsja(int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int p, lapack_int $n, ~ l a p a c k _i n t ~ k, ~ l a p a c k _i n t ~ l, ~ d o u b l e * ~ a, ~$
lapack_int lda, double* b, lapack_int ldb, double tola, double tolb, double* alpha, double* beta, double* u, lapack_int ldu, double* v, lapack_int ldv, double* q, lapack_int ldq, lapack_int* ncycle);
lapack_int LAPACKE_ctgsja(int matrix_layout, char jobu, char jobv, char jobq, lapack_int m, lapack_int p, lapack_int $n, ~ l a p a c k _i n t ~ k, ~ l a p a c k _i n t ~ l, ~$
 tola, float tolb, float* alpha, float* beta, lapack_complex_float* u, lapack_int ldu, lapack_complex_float* v, lapack_int ldv, lapack_complex_float* q, lapack_int ldq, lapack_int* ncycle);
lapack_int LAPACKE_ztgsja(int matrix_layout, char jobu, char jobv, char jobq, lapack_int m, lapack_int p, lapack_int n, lapack_int k, lapack_int 1 , lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb, double tola, double tolb, double* alpha, double* beta, lapack_complex_double* u, lapack_int ldu, lapack_complex_double* v, lapack_int ldv, lapack_complex_double* q, lapack_int ldq, lapack_int* ncycle);

Include Files

- mkl.h

Description

The routine computes the generalized singular value decomposition (GSVD) of two real/complex upper triangular (or trapezoidal) matrices A and B. On entry, it is assumed that matrices A and B have the following forms, which may be obtained by the preprocessing subroutine ggsvp from a general m-by- n matrix A and p -by-n matrix B :

$$
\begin{aligned}
& n-k-1 \quad k \quad I \\
& A=\begin{array}{r}
k\left(\begin{array}{ccc}
0 & A_{12} & A_{13} \\
I \\
0 & 0 & A_{23} \\
0 & 0 & 0
\end{array}\right), \quad \text { if } m-k-I \geq 0
\end{array} \\
& n-k-1 \quad k \quad 1 \\
& =\begin{array}{r}
k \\
m-k\left(\begin{array}{ccc}
0 & A_{12} & A_{13} \\
0 & 0 & A_{23}
\end{array}\right), \quad \text { if } m-k-I<0
\end{array} \\
& n-k-1 \\
& \text { k } \\
& 1
\end{aligned}
$$

where the k-by- k matrix A_{12} and $/$-by-/ matrix B_{13} are nonsingular upper triangular; A_{23} is $/$-by-/ upper triangular if $m-k-l \geq 0$, otherwise A_{23} is $(m-k)$-by-/ upper trapezoidal.
On exit,
$U^{H \star} A \star Q=D_{1}^{*}\left(\begin{array}{ll}0 & R\end{array}\right), V^{H \star} B^{\star} Q=D_{2}^{*}\left(\begin{array}{ll}0 & R\end{array}\right)$,
where U, V and Q are orthogonal/unitary matrices, R is a nonsingular upper triangular matrix, and D_{1} and D_{2} are "diagonal" matrices, which are of the following structures:

If $m-k-1 \geq 0$,

where

```
C = diag(alpha[k],...,alpha[k+l-1])
S = diag(beta[k],...,beta[k+l-1])
C
```

R is stored in $a(1: k+l, n-k-l+1: n)$ on exit.
If $m-k-1<0$,

$$
\begin{aligned}
& \begin{array}{cccc}
k & m-k & k+1-m \\
m-k
\end{array} \quad\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & C & 0
\end{array}\right) \\
& k \quad m-k \quad k+l-m \\
& D_{2}=\begin{array}{c}
m-k \\
k+l-m \\
p-l
\end{array}\left(\begin{array}{lll}
0 & S & 0 \\
0 & 0 & I \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

where

```
C = diag(alpha[k],...,alpha[m-1]),
S = diag(beta[k],...,beta[m-1]),
C
```

On exit,

$$
\left(\begin{array}{ccc}
R_{11} & R_{12} & R_{13} \\
0 & R_{22} & R_{23}
\end{array}\right)
$$

is stored in $a(1: m, n-k-l+1: n)$ and R_{33} is stored in $b(m-k+1: I, n+m-k-l+1: n)$.
The computation of the orthogonal/unitary transformation matrices U, V or Q is optional. These matrices may either be formed explicitly, or they may be postmultiplied into input matrices U_{1}, V_{1}, or Q_{1}.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
jobu	Must be 'U', 'I', or 'N'.
	If jobu = 'U', u must contain an orthogonal/unitary matrix U_{1} on entry.
	If jobu = 'I', u is initialized to the unit matrix.
	If jobu = 'N', u is not computed.
jobv	Must be 'V', 'I', or 'N'.
	If jobv = ' V ', v must contain an orthogonal/unitary matrix V_{1} on entry.
	If jobv = 'I', v is initialized to the unit matrix.
	If jobv = 'N', v is not computed.
jobq	Must be 'Q', 'I', or 'N'.
	If jobq = 'Q', q must contain an orthogonal/unitary matrix Q_{1} on entry.
	If jobq = 'I', q is initialized to the unit matrix.
	If jobq = 'N', q is not computed.
m	The number of rows of the matrix $A(m \geq 0)$.
p	The number of rows of the matrix $B(p \geq 0)$.
n	The number of columns of the matrices A and B ($n \geq 0$).
$k, 1$	Specify the subblocks in the input matrices A and B, whose GSVD is computed.
a, b, u, v, q	Arrays:
	a (size at least $\max \left(1, I d a^{*} n\right)$ for column major layout and $\max \left(1, I d a^{*} m\right)$ for row major layout) contains the m-by- n matrix A.
	b (size at least $\max \left(1, I d b^{*}\right)$ for column major layout and $\max \left(1, I d b^{*} p\right.$) for row major layout) contains the p-by-n matrix B.
	If jobu $=$ ' U', u (size $\max \left(1, I d u^{*}\right.$)) must contain a matrix U_{1} (usually the orthogonal/unitary matrix returned by ?ggsvp).
	If jobv $={ }^{\prime} V^{\prime}, v\left(\right.$ size at least $\left.\max \left(1, I d v^{*} p\right)\right)$ must contain a matrix V_{1} (usually the orthogonal/unitary matrix returned by ?ggsvp).
	If jobq $=' Q$ ', q (size at least $\max \left(1, I d q^{*} n\right)$) must contain a matrix Q_{1} (usually the orthogonal/unitary matrix returned by ?ggsvp).
Ida	The leading dimension of a; at least $\max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.
1 db	The leading dimension of b; at least $\max (1, p)$ for column major layout and $\max (1, n)$ for row major layout.
Idu	The leading dimension of the array u.
	$I d u \geq \max (1, m)$ if jobu = 'U'; $I d u \geq 1$ otherwise.

IdV
ldq
tola, tolb

The leading dimension of the array v.
$l d v \geq \max (1, p)$ if jobv $=$ ' V '; $l d v \geq 1$ otherwise.
The leading dimension of the array q.
$l d q \geq \max (1, n)$ if $j o b q=$ ' Q '; $l d q \geq 1$ otherwise.
tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz iteration procedure. Generally, they are the same as used in ? ggsvp:

```
tola}=\operatorname{max}(m,n)*|A|*MACHEPS
```

tolb $=\max (p, n) *|B| * \operatorname{MACHEPS}$.

Output Parameters

a
b
alpha, beta
u

V
q

On exit, $a(n-k+1: n, 1: \min (k+l, m))$ contains the triangular matrix R or part of R.

On exit, if necessary, $b(m-k+1: l, n+m-k-l+1: n))$ contains a part of R.
Arrays, size at least $\max (1, n)$. Contain the generalized singular value pairs of A and B :

```
alpha(1:k) = 1,
beta(1:k) = 0,
and if m-k-l\geq0,
alpha(k+1:k+l) = diag(C),
beta(k+1:k+l) = diag(S),
or if m-k-l < 0,
alpha(k+1:m)=\operatorname{diag}(C), alpha(m+1:k+l)=0
beta(k+1:m) = diag(S),
beta(m+1:k+l) = 1.
```

Furthermore, if $k+1<n$,
alpha $(k+1+1: n)=0$ and
beta $(k+1+1: n)=0$.
If jobu = 'I', u contains the orthogonal/unitary matrix U.
If jobu $=$ 'U', u contains the product $U_{1} * U$.
If jobu = 'N', u is not referenced.
If jobv = 'I', v contains the orthogonal/unitary matrix U.
If jobv $=$ ' V ', v contains the product $V_{1} * V$.
If jobv = 'N', v is not referenced.
If jobq = 'I', q contains the orthogonal/unitary matrix U.
If jobq = 'Q', q contains the product $Q_{1}{ }^{*} Q$.
If $j o b q=$ ' N ', q is not referenced.

```
ncycle
```

The number of cycles required for convergence.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=1$, the procedure does not converge after MAXIT cycles.

Cosine-Sine Decomposition: LAPACK Computational Routines

This topic describes LAPACK computational routines for computing the cosine-sine decomposition (CS decomposition) of a partitioned unitary/orthogonal matrix. The algorithm computes a complete 2-by-2 CS decomposition, which requires simultaneous diagonalization of all the four blocks of a unitary/orthogonal matrix partitioned into a 2-by-2 block structure.

The computation has the following phases:

1. The matrix is reduced to a bidiagonal block form.
2. The blocks are simultaneously diagonalized using techniques from the bidiagonal SVD algorithms.

Table "Computational Routines for Cosine-Sine Decomposition (CSD)" lists LAPACK routines that perform CS decomposition of matrices.
Computational Routines for Cosine-Sine Decomposition (CSD)

Operation	Real matrices	Complex matrices
Compute the CS decomposition of an orthogonal/unitary matrix in bidiagonal-block form	$\mathrm{bbcsd} / \mathrm{bbcsd}$	$\mathrm{bbcsd} / \mathrm{bbcsd}$
Simultaneously bidiagonalize the blocks of a partitioned orthogonal matrix	orbdb unbdb	
Simultaneously bidiagonalize the blocks of a partitioned unitary matrix		orbdb unbdb

See Also

CS Driver Routine
?bbcsd
Computes the CS decomposition of an orthogonal/ unitary matrix in bidiagonal-block form.

Syntax

```
lapack_int LAPACKE_sbbcsd( int matrix_layout, char jobul, char jobu2, char jobv1t, char
jobv2t, char trans, lapack_int m, lapack_int p, lapack_int q, float* theta, float* phi,
float* ul, lapack_int ldu1, float* u2, lapack_int ldu2, float* v1t, lapack_int ldv1t,
float* v2t, lapack_int ldv2t, float* b11d, float* b11e, float* b12d, float* b12e, float*
b21d, float* b21e, float* b22d, float* b22e );
lapack_int LAPACKE_dbbcsd( int matrix_layout, char jobul, char jobu2, char jobv1t, char
jobv2t, char trans, lapack_int m, lapack_int p, lapack_int q, double* theta, double*
phi, double* u1, lapack_int ldu1, double* u2, lapack_int ldu2, double* v1t, lapack_int
ldv1t, double* v2t, lapack_int ldv2t, double* b11d, double* b11e, double* b12d, double*
b12e, double* b21d, double* b21e, double* b22d, double* b22e );
```

```
lapack_int LAPACKE_cbbcsd( int matrix_layout, char jobul, char jobu2, char jobvlt, char
jobv2t, char trans, lapack_int m, lapack_int p, lapack_int q, float* theta, float* phi,
lapack_complex_float* ul, lapack_int ldul, lapack_complex_float* u2, lapack_int ldu2,
lapack_complex_float* vlt, lapack_int ldvlt, lapack_complex_float* v2t, lapack_int
ldv2t, float* bl1d, float* blle, float* bl2d, float* bl2e, float* b2ld, float* b2le,
float* b22d, float* b22e );
lapack_int LAPACKE_zbbcsd( int matrix_layout, char jobul, char jobu2, char jobvlt, char
jobv2t, char trans, lapack_int m, lapack_int p, lapack_int q, double* theta, double*
phi, lapack_complex_double* ul, lapack_int ldul, lapack_complex_double* u2, lapack_int
ldu2, lapack_complex_double* vlt, lapack_int ldv1t, lapack_complex_double* v2t,
lapack_int ldv2t, double* b11d, double* bl1e, double* b12d, double* bl2e, double* b21d,
double* b21e, double* b22d, double* b22e );
```

Include Files

- mkl.h

Description

mkl_lapack.fiThe routine ?bbcsd computes the CS decomposition of an orthogonal or unitary matrix in bidiagonal-block form:

$$
X=\left(\begin{array}{ccc}
b_{11} \mid b_{12} & 0 & 0 \\
0 \mid 0 & -I & 0 \\
\hline b_{21} \mid b_{22} & 0 & 0 \\
0 \mid 0 & 0 & I
\end{array}\right)=\left(\begin{array}{lll}
u_{1} & \mid \\
\hline & \mid & u_{2}
\end{array}\right)\left(\begin{array}{c|ccc}
C & -S & 0 & 0 \\
0 & 0 & -I & 0 \\
\hline S & C & 0 & 0 \\
0 & \mid 0 & 0 & I
\end{array}\right)\left(\begin{array}{lll}
v_{1} & \mid & \\
\hline & \mid & v_{2}
\end{array}\right)^{T}
$$

or

$$
X=\left(\begin{array}{ccc}
b_{11} \mid b_{12} & 0 & 0 \\
0 \mid 0 & -I & 0 \\
\hline b_{21} \mid b_{22} & 0 & 0 \\
0 \mid 0 & 0 & I
\end{array}\right)=\left(\begin{array}{lll}
u_{1} & \mid \\
\hline & \mid & u_{2}
\end{array}\right)\left(\begin{array}{c|ccc}
C & -S & 0 & 0 \\
0 \mid 0 & -I & 0 \\
\hline S \mid C & 0 & 0 \\
0 & 0 & 0 & I
\end{array}\right)\left(\begin{array}{lll}
v_{1} & \mid \\
\hline & \mid & v_{2}
\end{array}\right)^{H}
$$

respectively.
x is m-by- m with the top-left block p-by- q. Note that q must not be larger than $p, m-p$, or $m-q$. If q is not the smallest index, x must be transposed and/or permuted in constant time using the trans option.
See ?orcsd/?uncsd for details.
The bidiagonal matrices b_{11}, b_{12}, b_{21}, and b_{22} are represented implicitly by angles theta(1:q) and phi(1:q-1).
The orthogonal/unitary matrices $u_{1}, u_{2}, v_{1}{ }^{t}$, and $v_{2}{ }^{t}$ are input/output. The input matrices are pre- or postmultiplied by the appropriate singular vector matrices.

Input Parameters

matrix_layout
jobul

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

If equals Y, then u_{1} is updated. Otherwise, u_{1} is not updated.

```
jobu2
jobv1t
jobv2t
trans
m
p
q
theta
phi
ul
ldu1
u2
ldu2
v1t
ldv1t
v2t
ldv2t
```

If equals Y, then u_{2} is updated. Otherwise, u_{2} is not updated.
If equals Y, then $v_{1}{ }^{t}$ is updated. Otherwise, $v_{1}{ }^{t}$ is not updated.
If equals Y, then $v_{2}{ }^{t}$ is updated. Otherwise, $v_{2}{ }^{t}$ is not updated.
$=$ 'T': $\quad x, u_{1}, u_{2}, v_{1}{ }^{t}, v_{2}{ }^{t}$ are stored in row-major order.
otherwise $\quad x, u_{1}, u_{2}, v_{1}{ }^{t}, v_{2}{ }^{t}$ are stored in column-major order.

The number of rows and columns of the orthogonal/unitary matrix X in bidiagonal-block form.

The number of rows in the top-left block of $x .0 \leq p \leq m$.
\leq
The number of columns in the top-left block of $x .0 q \leq \min (p, m-p, m-q)$.
Array, size q.
On entry, the angles theta[0], ..., theta[q-1] that, along with phi[0], ..., phi[q-2], define the matrix in bidiagonal-block form as returned by orbdb/unbdb.

Array, size $q-1$.
The angles phi[0], ..., phi[q-2] that, along with theta[0],..., theta[q-1], define the matrix in bidiagonal-block form as returned by orbdb/unbdb.

Array, size at least max(1, lduI*p).
On entry, a $p-\mathrm{by}-p$ matrix.
The leading dimension of the array $u_{1}, I d u 1 \leq \max (1, p)$.
Array, size $\max \left(1, I d u 2^{*}(m-p)\right)$.
On entry, an (m-p)-by-(m-p) matrix.
The leading dimension of the array $u_{2}, I d u 2 \leq \max (1, m-p)$.
Array, size $\max \left(1, I d v 1 t^{*} q\right)$.
On entry, a q-by- q matrix.
The leading dimension of the array $v 1 t, 1 d v 1 t \leq \max (1, q)$.
Array, size.
On entry, an ($m-q$)-by-($m-q$) matrix.
The leading dimension of the array $v 2 t, 1 d v 2 t \leq \max (1, m-q)$.

On exit, the angles whose cosines and sines define the diagonal blocks in the CS decomposition.

On exit, u1 is postmultiplied by the left singular vector matrix common to [b11 ; 0] and [b12 00 ; $0-\mathrm{I} 0$].

Output Parameters

u2	On exit, $u 2$ is postmultiplied by the left singular vector matrix common to [b21 ; 0] and [b22 0 0 ; 0 I].
v1t	Array, size q.
	On exit, v1t is premultiplied by the transpose of the right singular vector matrix common to [b11 ; 0] and [b21 ; 0].
v2t	On exit, v2t is premultiplied by the transpose of the right singular vector matrix common to [b12 00 ; $0-\mathrm{I} 0$] and [b22 00 ; 0 I].
b11d	Array, size q.
	When ?bbcsd converges, blld contains the cosines of theta[0],..., theta[q-1]. If ?bbcsd fails to converge, blld contains the diagonal of the partially reduced top left block.
b11e	Array, size q-1.
	When ?bbcsd converges, blle contains zeros. If ?bbcsd fails to converge, blle contains the superdiagonal of the partially reduced top left block.
b12d	Array, size q.
	When ?bbcsd converges, $b 12 d$ contains the negative sines of theta[0], ..., theta[q-1]. If ?bbcsd fails to converge, b12d contains the diagonal of the partially reduced top right block.
b12e	Array, size q-1.
	When ?bbcsd converges, b12e contains zeros. If ?bbcsd fails to converge, b11e contains the superdiagonal of the partially reduced top right block.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info > 0 and if ?bbcsd did not converge, info specifies the number of nonzero entries in phi, and b11d, b11e, etc. contain the partially reduced matrix.

```
See Also
?orcsd/?uncsd
xerbla
?orbdb/?unbdb
Simultaneously bidiagonalizes the blocks of a
partitioned orthogonal/unitary matrix.
Syntax
```

```
lapack_int LAPACKE_sorbdb( int matrix_layout, char trans, char signs, lapack_int m,
```

lapack_int LAPACKE_sorbdb(int matrix_layout, char trans, char signs, lapack_int m,
lapack_int p, lapack_int q, float* xll, lapack_int ldx11, float* x12, lapack_int ldxl2,
lapack_int p, lapack_int q, float* xll, lapack_int ldx11, float* x12, lapack_int ldxl2,
float* x21, lapack_int ldx21, float* x22, lapack_int ldx22, float* theta, float* phi,
float* x21, lapack_int ldx21, float* x22, lapack_int ldx22, float* theta, float* phi,
float* taup1, float* taup2, float* tauq1, float* tauq2);

```
float* taup1, float* taup2, float* tauq1, float* tauq2 );
```

lapack_int LAPACKE_dorbdb(int matrix_layout, char trans, char signs, lapack_int m, lapack_int p, lapack_int q, double* x11, lapack_int ldx11, double* x12, lapack_int ldx12, double* x21, lapack_int ldx21, double* x22, lapack_int ldx22, double* theta, double* phi, double* taup1, double* taup2, double* tauq1, double* tauq);
lapack_int LAPACKE_cunbdb(int matrix_layout, char trans, char signs, lapack_int m, lapack_int p, lapack_int q, lapack_complex_float* x11, lapack_int ldx11, lapack_complex_float* x12, lapack_int ldx12, lapack_complex_float* x21, lapack_int ldx21, lapack_complex_float* x22, lapack_int ldx22, float* theta, float* phi, lapack_complex_float* taup1, lapack_complex_float* taup2, lapack_complex_float* tauql, lapack_complex_float* tauq2);
lapack_int LAPACKE_zunbdb(int matrix_layout, char trans, char signs, lapack_int m, lapack_int p, lapack_int q, lapack_complex_double* xll, lapack_int ldxll, lapack_complex_double* x12, lapack_int ldx12, lapack_complex_double* x21, lapack_int ldx21, lapack_complex_double* x22, lapack_int ldx22, double* theta, double* phi, lapack_complex_double* taup1, lapack_complex_double* taup2, lapack_complex_double* tauq1, lapack_complex_double* tauq2);

Include Files

- mkl.h

Description

The routines ?orbdb/?unbdb simultaneously bidiagonalizes the blocks of an m-by- m partitioned orthogonal matrix X :

$$
X=\left(\begin{array}{lll}
x_{11} & \mid & x_{12} \\
x_{21} & \mid & x_{22}
\end{array}\right)=\left(\begin{array}{lll}
p_{1} & \mid \\
\hline & \mid & p_{2}
\end{array}\right)\left(\begin{array}{cccc}
b_{11} \mid b_{12} & 0 & 0 \\
0 \mid 0 & -I & 0 \\
b_{21} \mid b_{22} & 0 & 0 \\
0 \mid 0 & 0 & I
\end{array}\right)\left(\begin{array}{lll}
q_{1} & \mid \\
\hline & \mid & q_{2}
\end{array}\right)^{T}
$$

or unitary matrix:

$$
X=\left(\begin{array}{lll}
x_{11} & x_{12} \\
\hline x_{21} & \mid & x_{22}
\end{array}\right)=\left(\begin{array}{lll}
p_{1} & \mid \\
\hline & \mid & p_{2}
\end{array}\right)\left(\begin{array}{ccc}
b_{11} \mid b_{12} & 0 & 0 \\
0 \mid 0 & -I & 0 \\
\hline b_{21} \mid b_{22} & 0 & 0 \\
0 \mid 0 & 0 & I
\end{array}\right)\left(\begin{array}{lll}
q_{1} & \mid \\
\hline & \mid & q_{2}
\end{array}\right)^{H}
$$

x_{11} is p-by- q. q must not be larger than $p, m-p$, or $m-q$. Otherwise, x must be transposed and/or permuted in constant time using the trans and signs options.

The orthogonal/unitary matrices p_{1}, p_{2}, q_{1}, and q_{2} are p-by- $p,(m-p)$-by- $(m-p), q$-by- $q,(m-q)$-by- $(m-q)$, respectively. They are represented implicitly by Housholder vectors.
The bidiagonal matrices b_{11}, b_{12}, b_{21}, and b_{22} are q-by- q bidiagonal matrices represented implicitly by angles theta[0],.. , theta[q-1] and phi[0], ..., phi[q-2]. b_{11} and b_{12} are upper bidiagonal, while b_{21} and b_{22} are lower bidiagonal. Every entry in each bidiagonal band is a product of a sine or cosine of theta with a sine or cosine of phi. See [Sutton09] for details.
p_{1}, p_{2}, q_{1}, and q_{2} are represented as products of elementary reflectors. .

Input Parameters

Output Parameters

x11	On exit, the form depends on trans:	
	If trans=' N ',	the columns of the lower triangle of $x 11$ specify reflectors for p_{1}, the rows of the upper triangle of x11(1:q-1, q:q-1) specify reflectors for q_{1}
	otherwise $\operatorname{trans}=$ 'T',	the rows of the upper triangle of $x 11$ specify reflectors for p_{1}, the columns of the lower triangle of $\mathrm{x11}(1: q-$ 1, $q: q$ - 1) specify reflectors for q_{1}
x12	On exit, the form depends on trans:	
	If trans=' N ', the columns of the upper triangle of $x 12$ specify the first p reflectors for q_{2}	
	otherwise trans='T',	the columns of the lower triangle of $x 12$ specify the first p reflectors for q_{2}
x21	On exit, the form depends on trans:	
	If $\operatorname{trans}=$ ' N ',	the columns of the lower triangle of $x 21$ specify the reflectors for p_{2}
	otherwise trans='T',	the columns of the upper triangle of $x 21$ specify the reflectors for p_{2}
x22	On exit, the form depends on trans:	
	If trans='N',	the rows of the upper triangle of $x 22(q+1: m-p, p+1: m-$ q) specify the last $m-p-q$ reflectors for q_{2}
	otherwise trans='T',	the columns of the lower triangle of $\times 22(p+1: m-q, q$ $+1: m-p$) specify the last $m-p-q$ reflectors for p_{2}
theta	Array, size q. The entries of bidiagonal blocks b_{11}, b_{12}, b_{21}, and b_{22} can be computed from the angles theta and phi. See the Description section for details.	
phi	Array, size $q-1$. The entries of bidiagonal blocks b_{11}, b_{12}, b_{21}, and b_{22} can be computed from the angles theta and phi. See the Description section for details.	
taup1	Array, size p.	
	Scalar factors of the elementary reflectors that define p_{1}.	
taup2	Array, size $m-p$.	
	Scalar factors of the elementary reflectors that define p_{2}.	
tauq1	Array, size q.	
	Scalar factors of the elementary reflectors that define q_{1}.	
tauq2	Array, size m-q.	
	Scalar factors of the elementary reflectors that define q_{2}.	

Return Values

This function returns a value info.
If info $=0$, the execution is successful.

If info $=-i$, the i-th parameter had an illegal value.

See Also

?orcsd/?uncsd
?orgqr
?ungqr
?orglq
?unglq
xerbla

LAPACK Least Squares and Eigenvalue Problem Driver Routines

Each of the LAPACK driver routines solves a complete problem. To arrive at the solution, driver routines typically call a sequence of appropriate computational routines.

Driver routines are described in the following topics:
Linear Least Squares (LLS) Problems
Generalized LLS Problems
Symmetric Eigenproblems
Nonsymmetric Eigenproblems
Singular Value Decomposition
Cosine-Sine Decomposition
Generalized Symmetric Definite Eigenproblems
Generalized Nonsymmetric Eigenproblems

Linear Least Squares (LLS) Problems: LAPACK Driver Routines

This topic describes LAPACK driver routines used for solving linear least squares problems. Table "Driver Routines for Solving LLS Problems" lists all such routines.

Driver Routines for Solving LLS Problems

Routine Name	Operation performed
gels	Uses QR or LQ factorization to solve a overdetermined or underdetermined linear system with full rank matrix.
gelsy	Computes the minimum-norm solution to a linear least squares problem using a complete orthogonal factorization of A.
gelsd	Computes the minimum-norm solution to a linear least squares problem using the singular value decomposition of A.
Computes the minimum-norm solution to a linear least squares problem using the singular value decomposition of A and a divide and conquer method.	

```
?gels
Uses QR or LQ factorization to solve a overdetermined
or underdetermined linear system with full rank
matrix.
Syntax
lapack_int LAPACKE_sgels (int matrix_layout, char trans, lapack_int m, lapack_int n,
lapack_int nrhs, float* a, lapack_int lda, float* b, lapack_int ldb);
```

```
lapack_int LAPACKE_dgels (int matrix_layout, char trans, lapack_int m, lapack_int n,
lapack_int nrhs, double* a, lapack_int lda, double* b, lapack_int ldb);
lapack_int LAPACKE_cgels (int matrix_layout, char trans, lapack_int m, lapack_int n,
lapack_int nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b,
lapack_int ldb);
lapack_int LAPACKE_zgels (int matrix_layout, char trans, lapack_int m, lapack_int n,
lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* b,
lapack_int ldb);
```

Include Files

- mkl.h

Description

The routine solves overdetermined or underdetermined real/ complex linear systems involving an m-by- n matrix A, or its transpose/ conjugate-transpose, using a $Q R$ or $L Q$ factorization of A. It is assumed that A has full rank.

The following options are provided:

1. If trans $=$ ' N ' and $m \geq n$: find the least squares solution of an overdetermined system, that is, solve the least squares problem
```
minimize ||b - A*x||2
```

2. If trans $=$ ' N ' and $m<n$: find the minimum norm solution of an underdetermined system $A \star X=B$.
3. If trans $=$ ' T ' or ' C ' and $m \geq n$: find the minimum norm solution of an undetermined system $A^{\mathrm{H}} * X=B$.
4. If trans $=$ ' T ' or ' C ' and $m<n$: find the least squares solution of an overdetermined system, that is, solve the least squares problem
minimize ||b $-A^{H \star} X| |_{2}$
Several right hand side vectors b and solution vectors x can be handled in a single call; they are formed by the columns of the right hand side matrix B and the solution matrix X (when coefficient matrix is A, B is m -by-nrhs and X is n-by-nrhs; if the coefficient matrix is A^{\top} or A^{H}, B isn-by-nrhs and X is m-by-nrhs.

Input Parameters

```
matrix_layout
trans Must be 'N','T',or'C'.
    If trans = 'N', the linear system involves matrix A;
    If trans = 'T', the linear system involves the transposed matrix }\mp@subsup{A}{}{T}\mathrm{ (for
    real flavors only);
    If trans = 'C', the linear system involves the conjugate-transposed
    matrix }\mp@subsup{A}{}{H}\mathrm{ (for complex flavors only).
    The number of rows of the matrix A(m\geq0).
    The number of columns of the matrix }
    ( }n\geq0)
```

```
nrhs The number of right-hand sides; the number of columns in B (nrhs\geq0).
a,b
Ida
Idb
The number of right-hand sides; the number of columns in \(B(n r h s \geq 0)\).
```


Arrays:

```
\(a\left(\right.\) size \(\max \left(1, I d a *_{n}\right)\) for column major layout and \(\max \left(1, I d^{*}{ }_{m}\right)\) for row major layout) contains the \(m\)-by-n matrix \(A\).
\(b\) (size \(\max \left(1, I d b^{*} n r h s\right)\) for column major layout and \(\max \left(1, I d b^{*} \max (m\right.\), \(n\) )) for row major layout) contains the matrix \(B\) of right hand side vectors.
The leading dimension of \(a\); at least \(\max (1, m)\) for column major layout and at least \(\max (1, n)\) for row major layout.
The leading dimension of \(b\); must be at least \(\max (1, m, n)\) for column major layout if trans='N' and at least max \((1, n)\) if trans='T' and at least \(\max (1, n r h s)\) for row major layout regardless of the value of trans.
```


Output Parameters

a
On exit, overwritten by the factorization data as follows:
if $m \geq n$, array a contains the details of the $Q R$ factorization of the matrix A as returned by ?geqrf;
if $m<n$, array a contains the details of the $L Q$ factorization of the matrix A as returned by ?gelqf.

If info $=0, b$ overwritten by the solution vectors, stored columnwise:
if trans $=$ ' N ' and $m \geq n$, rows 1 to n of b contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of modulus of elements $n+1$ to m in that column;
if trans $=$ ' N ' and $m<n$, rows 1 to n of b contain the minimum norm solution vectors;
if trans $=$ ' T ' or ' C ' and $m \geq n$, rows 1 to m of b contain the minimum norm solution vectors;
if trans $=$ ' T ' or ' C ' and $m<n$, rows 1 to m of b contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of modulus of elements $m+1$ to n in that column.

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of the triangular factor of A is zero, so that A does not have full rank; the least squares solution could not be computed.

?gelsy

Computes the minimum-norm solution to a linear least squares problem using a complete orthogonal factorization of A.

Syntax

```
lapack_int LAPACKE_sgelsy( int matrix_layout, lapack_int m, lapack_int n, lapack_int
nrhs, float* a, lapack_int lda, float* b, lapack_int ldb, lapack_int* jpvt, float rcond,
lapack_int* rank );
lapack_int LAPACKE_dgelsy( int matrix_layout, lapack_int m, lapack_int n, lapack_int
nrhs, double* a, lapack_int lda, double* b, lapack_int ldb, lapack_int* jpvt, double
rcond, lapack_int* rank );
lapack_int LAPACKE_cgelsy( int matrix_layout, lapack_int m, lapack_int n, lapack_int
nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int ldb,
lapack_int* jpvt, float rcond, lapack_int* rank );
lapack_int LAPACKE_zgelsy( int matrix_layout, lapack_int m, lapack_int n, lapack_int
nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int
ldb, lapack_int* jpvt, double rcond, lapack_int* rank );
```

Include Files

- mkl.h

Description

The ?gelsy routine computes the minimum-norm solution to a real/complex linear least squares problem:

```
minimize ||b - A*x||
```

using a complete orthogonal factorization of $A . A$ is an m-by-n matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the m-by-nrhs right hand side matrix B and the n-by-nrhs solution matrix X.

The routine first computes a $Q R$ factorization with column pivoting:

with R_{11} defined as the largest leading submatrix whose estimated condition number is less than $1 /$ rcond. The order of R_{11}, rank, is the effective rank of A. Then, R_{22} is considered to be negligible, and R_{12} is annihilated by orthogonal/unitary transformations from the right, arriving at the complete orthogonal factorization:

The minimum-norm solution is then

$$
X=P Z^{\mathrm{T}}\binom{T_{11}{ }^{-1} Q_{1}{ }^{\mathrm{T}} B}{0}
$$

for real flavors and

$$
X=P Z^{\mathrm{H}}\binom{T_{11}{ }^{-1} Q_{1}{ }^{\mathrm{H}} \mathrm{~B}}{0}
$$

for complex flavors,
where Q_{1} consists of the first rank columns of Q.
The ?gelsy routine is identical to the original deprecated ?gelsx routine except for the following differences:

- The call to the subroutine ? geqpf has been substituted by the call to the subroutine ?geqp3, which is a BLAS-3 version of the $Q R$ factorization with column pivoting.
- The matrix B (the right hand side) is updated with BLAS-3.
- The permutation of the matrix B (the right hand side) is faster and more simple.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
m	The number of rows of the matrix $A(m \geq 0)$.
n	The number of columns of the matrix A
	$(n \geq 0)$.

```
ldb The leading dimension of b; must be at least max(1,m,n) for column
    major layout and at least max(1, nrhs) for row major layout.
Array, size at least max \((1, n)\).
On entry, if \(j p v t[i-1] \neq 0\), the \(i\)-th column of \(A\) is permuted to the front of \(A P\), otherwise the \(i\)-th column of \(A\) is a free column.
rcond is used to determine the effective rank of \(A\), which is defined as the order of the largest leading triangular submatrix \(R_{11}\) in the \(Q R\) factorization with pivoting of \(A\), whose estimated condition number \(<1 /\) rcond.
```


Output Parameters

a
On exit, overwritten by the details of the complete orthogonal factorization of A.

Overwritten by the n-by-nrhs solution matrix X.
On exit, if $j p v t[i-1]=k$, then the i-th column of $A P$ was the k-th column of A.

The effective rank of A, that is, the order of the submatrix R_{11}. This is the same as the order of the submatrix T_{11} in the complete orthogonal factorization of A.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

```
?gelss
Computes the minimum-norm solution to a linear least
squares problem using the singular value
decomposition of A.
```


Syntax

```
lapack_int LAPACKE_sgelss( int matrix_layout, lapack_int m, lapack_int n, lapack_int
nrhs, float* a, lapack_int lda, float* b, lapack_int ldb, float* s, float rcond,
lapack_int* rank );
lapack_int LAPACKE_dgelss( int matrix_layout, lapack_int m, lapack_int n, lapack_int
nrhs, double* a, lapack_int lda, double* b, lapack_int ldb, double* s, double rcond,
lapack_int* rank );
lapack_int LAPACKE_cgelss( int matrix_layout, lapack_int m, lapack_int n, lapack_int
nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int ldb,
float* s, float rcond, lapack_int* rank );
lapack_int LAPACKE_zgelss( int matrix_layout, lapack_int m, lapack_int n, lapack_int
nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int
ldb, double* s, double rcond, lapack_int* rank );
```


Include Files

- mkl.h

Description

The routine computes the minimum norm solution to a real linear least squares problem:

```
minimize ||b - A*X||
```

using the singular value decomposition (SVD) of A. A is an m-by-n matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the m-by-nrhs right hand side matrix B and the n-by-nrhs solution matrix X. The effective rank of A is determined by treating as zero those singular values which are less than rcond times the largest singular value.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
m	The number of rows of the matrix $A(m \geq 0)$.
n	The number of columns of the matrix A
	($n \geq 0$).
nrhs	The number of right-hand sides; the number of columns in B
	(nrhs ≥ 0).
a, b	Arrays:
	a (size $\max \left(1, ~ l d a *_{n}\right)$ for column major layout and $\max \left(1, ~ l d a *_{m}\right)$ for row major layout) contains the m-by-n matrix A.
	b (size $\max \left(1, I d b_{n r h s}\right)$ for column major layout and $\max \left(1, I d b^{*} \max (m\right.$, $n)$) for row major layout) contains the m-by-nrhs right hand side matrix B.
Ida	The leading dimension of a; at least $\max (1, m)$ for column major layout and $\max (1, n)$ for row major layout.
1 db	The leading dimension of b; must be at least $\max (1, m, n)$ for column major layout and at least max(1, nrhs) for row major layout.
rcond	rcond is used to determine the effective rank of A. Singular values $s(i)$ $\leq r c o n d{ }^{*} s(1)$ are treated as zero.
	If rcond <0, machine precision is used instead.

Output Parameters

a
b
On exit, the first $\min (m, n)$ rows of a are overwritten with the matrix of right singular vectors of A, stored row-wise.

Overwritten by the n-by-nrhs solution matrix X.
If $m \geq n$ and rank $=n$, the residual sum-of-squares for the solution in the i th column is given by the sum of squares of modulus of elements $n+1: m$ in that column.

Array, size at least $\max (1, \min (m, n))$. The singular values of A in decreasing order. The condition number of A in the 2-norm is
$k_{2}(A)=s(1) / s(\min (m, n))$.
rank
The effective rank of A, that is, the number of singular values which are greater than rcond ${ }^{*} s(1)$.

Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, then the algorithm for computing the SVD failed to converge; i indicates the number of offdiagonal elements of an intermediate bidiagonal form which did not converge to zero.

```
?gelsd
Computes the minimum-norm solution to a linear least
squares problem using the singular value
decomposition of A and a divide and conquer method.
```


Syntax

```
lapack_int LAPACKE_sgelsd( int matrix_layout, lapack_int m, lapack_int n, lapack_int
nrhs, float* a, lapack_int lda, float* b, lapack_int ldb, float* s, float rcond,
lapack_int* rank );
lapack_int LAPACKE_dgelsd( int matrix_layout, lapack_int m, lapack_int n, lapack_int
nrhs, double* a, lapack_int lda, double* b, lapack_int ldb, double* s, double rcond,
lapack_int* rank );
lapack_int LAPACKE_cgelsd( int matrix_layout, lapack_int m, lapack_int n, lapack_int
nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int ldb,
float* s, float rcond, lapack_int* rank );
lapack_int LAPACKE_zgelsd( int matrix_layout, lapack_int m, lapack_int n, lapack_int
nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int
ldb, double* s, double rcond, lapack_int* rank );
```

Include Files

- mkl.h

Description

The routine computes the minimum-norm solution to a real linear least squares problem:
minimize $\left|\left|b-A^{\star} X\right|\right|_{2}$
using the singular value decomposition (SVD) of A. A is an m-by-n matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the m-by-nrhs right hand side matrix B and the n-by-nrhs solution matrix X.

The problem is solved in three steps:

1. Reduce the coefficient matrix A to bidiagonal form with Householder transformations, reducing the original problem into a "bidiagonal least squares problem" (BLS).
2. Solve the BLS using a divide and conquer approach.
3. Apply back all the Householder transformations to solve the original least squares problem.

The effective rank of A is determined by treating as zero those singular values which are less than rcond times the largest singular value.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
m	The number of rows of the matrix $A(m \geq 0)$.
n	The number of columns of the matrix A
	$(n \geq 0)$.

Output Parameters

a
On exit, A has been overwritten.
Overwritten by the n-by-nrhs solution matrix X.
If $m \geq n$ and rank $=n$, the residual sum-of-squares for the solution in the i th column is given by the sum of squares of modulus of elements $n+1: m$ in that column.

Array, size at least $\max (1, \min (m, n))$. The singular values of A in decreasing order. The condition number of A in the 2 -norm is
$k_{2}(A)=s(1) / s(\min (m, n))$.
The effective rank of A, that is, the number of singular values which are greater than rcond ${ }^{*} s(1)$.

Return Values

This function returns a value info.
If inforo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

If info $=i$, then the algorithm for computing the SVD failed to converge; i indicates the number of offdiagonal elements of an intermediate bidiagonal form that did not converge to zero.

Generalized Linear Least Squares (LLS) Problems: LAPACK Driver Routines

This topic describes LAPACK driver routines used for solving generalized linear least squares problems. Table "Driver Routines for Solving Generalized LLS Problems" lists all such routines.

Driver Routines for Solving Generalized LLS Problems

Routine Name	Operation performed
gglse	Solves the linear equality-constrained least squares problem using a generalized RQ factorization.
ggglm	Solves a general Gauss-Markov linear model problem using a generalized QR factorization.

```
?gglse
Solves the linear equality-constrained least squares
problem using a generalized RQ factorization.
Syntax
lapack_int LAPACKE_sgglse (int matrix_layout, lapack_int m, lapack_int n, lapack_int p,
float* a, lapack_int lda, float* b, lapack_int ldb, float* c, float* d, float* x);
lapack_int LAPACKE_dgglse (int matrix_layout, lapack_int m, lapack_int n, lapack_int p,
double* a, lapack_int lda, double* b, lapack_int ldb, double* c, double* d, double* x);
lapack_int LAPACKE_cgglse (int matrix_layout, lapack_int m, lapack_int n, lapack_int p,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* c, lapack_complex_float* d, lapack_complex_float* x);
lapack_int LAPACKE_zgglse (int matrix_layout, lapack_int m, lapack_int n, lapack_int p,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* c, lapack_complex_double* d, lapack_complex_double* x);
```

Include Files

- mkl.h

Description

The routine solves the linear equality-constrained least squares (LSE) problem:
minimize $\left|\left|C-A^{\star} X\right|\right|^{2}$ subject to $B^{\star} X=d$
where A is an m-by- n matrix, B is a p-by- n matrix, c is a given m-vector, and d is a given p-vector. It is assumed that $p \leq n \leq m+p$, and

These conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized $R Q$ factorization of the matrices (B, A) given by

```
B=(0 R)*Q, A= Z* T* Q
```


Input Parameters

```
matrix_layout
m
n
p
a,b,c,d
Ida
ldb
```


Output Parameters

a
x
b
d
c
The elements on and above the diagonal contain the $\min (m, n)$-by- n upper trapezoidal matrix T as returned by ?ggrqf.

The solution of the LSE problem.
On exit, the upper right triangle contains the p-by-p upper triangular matrix R as returned by ?ggrqf.

On exit, d is destroyed.
On exit, the residual sum-of-squares for the solution is given by the sum of squares of elements $n-p+1$ to m of vector c.

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

If info $=1$, the upper triangular factor R associated with B in the generalized RQ factorization of the pair (B, A) is singular, so that $\operatorname{rank}(B)<p$; the least squares solution could not be computed.

If info $=2$, the $(n-p)$-by- $(n-p)$ part of the upper trapezoidal factor T associated with A in the generalized RQ factorization of the pair (B, A) is singular, so that

; the least squares solution could not be computed.

?ggglm

Solves a general Gauss-Markov linear model problem

 using a generalized $Q R$ factorization.
Syntax

```
lapack_int LAPACKE_sggglm (int matrix_layout, lapack_int n, lapack_int m, lapack_int p,
float* a, lapack_int lda, float* b, lapack_int ldb, float* d, float* x, float* y);
lapack_int LAPACKE_dggglm (int matrix_layout, lapack_int n, lapack_int m, lapack_int p,
double* a, lapack_int lda, double* b, lapack_int ldb, double* d, double* x, double* y);
lapack_int LAPACKE_cggglm (int matrix_layout, lapack_int n, lapack_int m, lapack_int p,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* d, lapack_complex_float* x, lapack_complex_float* y);
lapack_int LAPACKE_zggglm (int matrix_layout, lapack_int n, lapack_int m, lapack_int p,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* d, lapack_complex_double* x, lapack_complex_double* y);
```

Include Files

- mkl.h

Description

The routine solves a general Gauss-Markov linear model (GLM) problem:

```
minimize}\mp@subsup{x}{x}{}|y|\mp@subsup{|}{2}{}\mathrm{ subject to }d=\mp@subsup{A}{}{*}x+\mp@subsup{B}{}{*}
```

where A is an n-by- m matrix, B is an n-by- p matrix, and d is a given n-vector. It is assumed that $m \leq n \leq m+p$, and $\operatorname{rank}(A)=m$ and $\operatorname{rank}(A B)=n$.

Under these assumptions, the constrained equation is always consistent, and there is a unique solution x and a minimal 2 -norm solution y, which is obtained using a generalized $Q R$ factorization of the matrices (A, B) given by

$$
A=Q\binom{R}{0} ; \quad B=Q * T * Z .
$$

In particular, if matrix B is square nonsingular, then the problem GLM is equivalent to the following weighted linear least squares problem
minimize $x_{x}| | B^{-1}\left(d-A^{\star} x\right)| |_{2}$.

Input Parameters

Output Parameters

```
matrix_layout
n
m
p
a,b,d
lda
ldb
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
The number of rows of the matrices \(A\) and \(B(n \geq 0)\).
The number of columns in \(A(m \geq 0)\).
The number of columns in \(B(p \geq n-m)\).
```


Arrays:

```
\(a\left(\right.\) size \(\max \left(1, l d a^{*} m\right)\) for column major layout and \(\max \left(1, I d a^{*} n\right)\) for row major layout) contains the \(n\)-by- \(m\) matrix \(A\).
\(b\) (size \(\max \left(1, I d b^{*} p\right)\) for column major layout and \(\max \left(1, I d b^{*} n\right)\) for row major layout) contains the \(n\)-by- \(p\) matrix \(B\).
\(d\), size at least \(\max (1, n)\), contains the left hand side of the GLM equation.
The leading dimension of \(a\); at least \(\max (1, n)\) for column major layout and \(\max (1, m)\) for row major layout.
The leading dimension of \(b\); at least \(\max (1, n)\) for column major layout and \(\max (1, p)\) for row major layout.
```

Arrays x, y. size at least $\max (1, m)$ for x and at least $\max (1, p)$ for y. On exit, x and y are the solutions of the GLM problem.

On exit, the upper triangular part of the array a contains the m-by- m upper triangular matrix R.

On exit, if $n \leq p$, the upper right triangle contains the n-by- n upper triangular matrix T as returned by ?ggrqf; if $n>p$, the elements on and above the $(n-p)$-th subdiagonal contain the n-by- p upper trapezoidal matrix T.

On exit, d is destroyed

Return Values

This function returns a value info.
If info=0, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=1$, the upper triangular factor R associated with A in the generalized QR factorization of the pair (A, B) is singular, so that rank $(A)<m$; the least squares solution could not be computed.

If info $=2$, the bottom $(n-m)-$ by $(n-m)$ part of the upper trapezoidal factor T associated with B in the generalized QR factorization of the pair (A, B) is singular, so that $\operatorname{rank}(A B)<n$; the least squares solution could not be computed.

Symmetric Eigenvalue Problems: LAPACK Driver Routines

This topic describes LAPACK driver routines used for solving symmetric eigenvalue problems. See also computational routines that can be called to solve these problems. Table "Driver Routines for Solving Symmetric Eigenproblems" lists all such driver routines.

Driver Routines for Solving Symmetric Eigenproblems

Routine Name	Operation performed
syev/heev	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix.
syevd/heevd	Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric / Hermitian matrix using divide and conquer algorithm.
syevx/heevx	Computes selected eigenvalues and, optionally, eigenvectors of a symmetric / Hermitian matrix.
syevr/heevr	Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix using the Relatively Robust Representations.
spev/hpev	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix in packed storage.
spevd/hpevd	Uses divide and conquer algorithm to compute all eigenvalues and (optionally) all eigenvectors of a real symmetric / Hermitian matrix held in packed storage.
spevx/hpevx	Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix in packed storage.
sbev /hbev	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian band matrix.
sbevd/hbevd	Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric / Hermitian band matrix using divide and conquer algorithm.
sbevx/hbevx	Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian band matrix.
stev	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix.
stevd	Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric tridiagonal matrix using divide and conquer algorithm.
stevx	Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.

Routine Name	Operation performed
stevr	Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix using the Relatively Robust Representations.

```
?syev
Computes all eigenvalues and, optionally,
eigenvectors of a real symmetric matrix.
Syntax
lapack_int LAPACKE_ssyev (int matrix_layout, char jobz, char uplo, lapack_int n, float*
a, lapack_int lda, float* w);
lapack_int LAPACKE_dsyev (int matrix_layout, char jobz, char uplo, lapack_int n,
double* a, lapack_int lda, double* w);
```


Include Files

- mkl.h

Description

The routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.
Note that for most cases of real symmetric eigenvalue problems the default choice should be syevr function as its underlying algorithm is faster and uses less workspace.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
jobz	Must be 'N' or 'V'.
	If jobz = ' N ', then only eigenvalues are computed.
	If jobz = 'V', then eigenvalues and eigenvectors are computed.
uplo	Must be 'U' or 'L'.
	If uplo $=$ 'U', a stores the upper triangular part of A.
	If uplo $=$ 'L', a stores the lower triangular part of A.
n	The order of the matrix $A(n \geq 0)$.
a	a (size $\max \left(1, I d a^{*} n\right)$) is an array containing either upper or lower triangular part of the symmetric matrix A, as specified by uplo.
Ida	The leading dimension of the array a.
	Must be at least max $(1, n)$.

Output Parameters

a
On exit, if jobz = 'V', then if info $=0$, array a contains the orthonormal eigenvectors of the matrix A.
If jobz = 'N', then on exit the lower triangle
(if uplo = 'L') or the upper triangle (if uplo ='U') of A, including the diagonal, is overwritten.
w
Array, size at least $\max (1, n)$.
If info $=0$, contains the eigenvalues of the matrix A in ascending order.

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, then the algorithm failed to converge; i indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
?heev
Computes all eigenvalues and, optionally, eigenvectors of a Hermitian matrix.

Syntax

```
lapack_int LAPACKE_cheev( int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_complex_float* a, lapack_int lda, float* w );
lapack_int LAPACKE_zheev( int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_complex_double* a, lapack_int lda, double* w );
```

Include Files

- mkl.h

Description

The routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A.
Note that for most cases of complex Hermitian eigenvalue problems the default choice should be heevr function as its underlying algorithm is faster and uses less workspace.

Input Parameters

```
matrix_layout
jobz
uplo
n
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of \(A\).
If uplo = 'L', a stores the lower triangular part of \(A\).
\(n\)
The order of the matrix \(A(n \geq 0)\).
```

a (size $\max \left(1, I d a^{*}\right)$) is an array containing either upper or lower triangular part of the Hermitian matrix A, as specified by uplo.
lda
The leading dimension of the array a. Must be at least max $(1, n)$.

Output Parameters

a
On exit, if $j o b z=$ ' V ', then if info $=0$, array a contains the orthonormal eigenvectors of the matrix A.

If jobz = 'N', then on exit the lower triangle
(if uplo = 'L') or the upper triangle (if uplo = 'U') of A, including the diagonal, is overwritten.

Array, size at least max $(1, n)$.
If info $=0$, contains the eigenvalues of the matrix A in ascending order.

Return Values

This function returns a value info.
If infolo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, then the algorithm failed to converge; i indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
?syevd
Computes all eigenvalues and, optionally, all eigenvectors of a real symmetric matrix using divide and conquer algorithm.

Syntax

```
lapack_int LAPACKE_ssyevd (int matrix_layout, char jobz, char uplo, lapack_int n,
float* a, lapack_int lda, float* w);
lapack_int LAPACKE_dsyevd (int matrix_layout, char jobz, char uplo, lapack_int n,
double* a, lapack_int lda, double* w);
```


Include Files

- mkl.h

Description

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric matrix A. In other words, it can compute the spectral factorization of A as: $A=Z^{\star} \lambda \star Z^{T}$.
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ_{i}, and Z is the orthogonal matrix whose columns are the eigenvectors z_{i}. Thus,

```
A\star}\mp@subsup{z}{i}{}=\mp@subsup{\lambda}{i}{*}\mp@subsup{z}{i}{}\mathrm{ for i = 1, 2, ..., n.
```

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the $Q L$ or $Q R$ algorithm.

Note that for most cases of real symmetric eigenvalue problems the default choice should be syevr function as its underlying algorithm is faster and uses less workspace. ?syevd requires more workspace but is faster in some cases, especially for large matrices.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
jobz	Must be 'N' or 'V'.
	If jobz = 'N', then only eigenvalues are computed.
	If jobz = 'V', then eigenvalues and eigenvectors are computed.
uplo	Must be 'U' or 'L'.
	If uplo = 'U', a stores the upper triangular part of A.
	If uplo = 'L', a stores the lower triangular part of A.
n	The order of the matrix $A(n \geq 0)$.
a	Array, size (/da, *).
	a (size $\max \left(1, l d a_{n}\right)$) is an array containing either upper or lower triangular part of the symmetric matrix A, as specified by uplo.
Ida	The leading dimension of the array a.
	Must be at least max $(1, n)$.

Output Parameters

Array, size at least max $(1, n)$.
If info $=0$, contains the eigenvalues of the matrix A in ascending order. See also info.

If jobz = ' V ', then on exit this array is overwritten by the orthogonal matrix Z which contains the eigenvectors of A.

Return Values

This function returns a value info.
If inforo, the execution is successful.
If info $=i$, and $j o b z=$ ' N ', then the algorithm failed to converge; i indicates the number of off-diagonal elements of an intermediate tridiagonal form which did not converge to zero.
If info $=i$, and $j o b z=$ ' V ', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns infol ($n+1$) through mod (info, $n+1$).
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix $A+E$ such that $||E||_{2}=O(\varepsilon) *| | A| |_{2}$, where ε is the machine precision.
The complex analogue of this routine is heevd

```
?heevd
Computes all eigenvalues and, optionally, all
eigenvectors of a complex Hermitian matrix using
divide and conquer algorithm.
Syntax
lapack_int LAPACKE_cheevd( int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_complex_float* a, lapack_int lda, float* w );
lapack_int LAPACKE_zheevd( int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_complex_double* a, lapack_int lda, double* w );
```

Include Files

- mkl.h

Description

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian matrix A. In other words, it can compute the spectral factorization of A as: $A=Z^{\star} \Lambda^{\star} Z^{H}$.

Here Λ is a real diagonal matrix whose diagonal elements are the eigenvalues λ_{i}, and Z is the (complex) unitary matrix whose columns are the eigenvectors z_{i}. Thus,
$A^{\star} z_{i}=\lambda_{i}{ }^{\star} z_{i}$ for $i=1,2, \ldots, n$.
If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the $Q L$ or $Q R$ algorithm.
Note that for most cases of complex Hermetian eigenvalue problems the default choice should be heevr function as its underlying algorithm is faster and uses less workspace. ?heevd requires more workspace but is faster in some cases, especially for large matrices.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
jobz	Must be 'N' or 'V'.
	If $j 0 b z=$ ' N ', then only eigenvalues are computed.
	If jobz = 'V', then eigenvalues and eigenvectors are computed.
uplo	Must be 'U' or 'L'.
	If uplo = 'U', a stores the upper triangular part of A.
	If uplo = 'L', a stores the lower triangular part of A.
n	The order of the matrix $A(n \geq 0)$.
a	a (size $\max \left(1, I d^{*} *_{n}\right)$) is an array containing either upper or lower triangular part of the Hermitian matrix A, as specified by uplo.
Ida	The leading dimension of the array a. Must be at least max $(1, n)$.

Output Parameters

W
Array, size at least $\max (1, n)$.
If info $=0$, contains the eigenvalues of the matrix A in ascending order. See also info.
a
If $j o b z=$ ' V ', then on exit this array is overwritten by the unitary matrix Z which contains the eigenvectors of A.

Return Values

This function returns a value info.
If inforo, the execution is successful.
If info = i, and $j o b z=$ ' N ', then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero;
if info $=i$, and jobz = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns infol ($n+1$) through mod (info, $n+1$).
If info $=-i$, the i-th parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix $A+E$ such that $||E||_{2}=O(\varepsilon) *| | A| |_{2}$, where ε is the machine precision.

The real analogue of this routine is syevd. See also hpevd for matrices held in packed storage, and hbevd for banded matrices.
?syevx
Computes selected eigenvalues and, optionally, eigenvectors of a symmetric matrix.

Syntax

```
lapack_int LAPACKE_ssyevx (int matrix_layout, char jobz, char range, char uplo,
lapack_int n, float* a, lapack_int lda, float vl, float vu, lapack_int il, lapack_int
iu, float abstol, lapack_int* m, float* w, float* z, lapack_int ldz, lapack_int* ifail);
lapack_int LAPACKE_dsyevx (int matrix_layout, char jobz, char range, char uplo,
lapack_int n, double* a, lapack_int lda, double vl, double vu, lapack_int il, lapack_int
iu, double abstol, lapack_int* m, double* w, double* z, lapack_int ldz, lapack_int*
ifail);
```


Include Files

- mkl.h

Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Note that for most cases of real symmetric eigenvalue problems the default choice should be syevr function as its underlying algorithm is faster and uses less workspace. ?syevx is faster for a few selected eigenvalues.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
jobz	Must be 'N' or 'V'.
	If jobz = 'N', then only eigenvalues are computed.
	If $j 0 b z=$ 'V', then eigenvalues and eigenvectors are computed.
range	Must be 'A', 'V', or 'I'.
	If range = 'A', all eigenvalues will be found.
	If range $=$ ' V ', all eigenvalues in the half-open interval ($v /, v u$] will be found.
	If range $=$ 'I', the eigenvalues with indices il through iu will be found.
uplo	Must be 'U' or 'L'.
	If uplo = 'U', a stores the upper triangular part of A.
	If uplo = 'L', a stores the lower triangular part of A.
n	The order of the matrix $A(n \geq 0)$.
a	a (size $\max \left(1, I d^{*} *_{n}\right)$) is an array containing either upper or lower triangular part of the symmetric matrix A, as specified by uplo.
Ida	The leading dimension of the array a. Must be at least max $(1, n)$.
vl, vu	If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues; $v l \leq v u$. Not referenced if range $=$ 'A'or 'I'.
il, iu	If range = 'I', the indices of the smallest and largest eigenvalues to be returned.
	Constraints: $1 \leq i l \leq i u \leq n$, if $n>0$;
	$i l=1$ and $i u=0$, if $n=0$.
	Not referenced if range $=$ 'A'or 'V'.
abstol	The absolute error tolerance for the eigenvalues. See Application Notes for more information.
$I d z$	The leading dimension of the output array $z ; 1 d z \geq 1$.
	If jobz $=$ ' V ', then $l d z \geq \max (1, n)$ for column major layout and $I d a \geq$ $\max (1, m)$ for row major layout .

Output Parameters

a
m
On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo = ' U ') of A, including the diagonal, is overwritten.

The total number of eigenvalues found;
$0 \leq m \leq n$.

$$
\text { If range }=\text { 'A', } m=n \text {, and if range }=' I ', m=i u-i l+1 .
$$

Array, size at least $\max (1, n)$. The first m elements contain the selected eigenvalues of the matrix A in ascending order.

Array z (size $\max \left(1, I d z^{*} m\right)$ for column major layout and $\max \left(1, I d z^{*} n\right)$ for row major layout) contains eigenvectors.
If jobz $=$ ' V ', then if info $=0$, the first m columns of z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of z holding the eigenvector associated with $w(\mathrm{i})$.
If an eigenvector fails to converge, then that column of z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

If jobz = ' N ', then z is not referenced.
Note: you must ensure that at least $\max (1, m)$ columns are supplied in the array z; if range $=$ ' V ', the exact value of m is not known in advance and an upper bound must be used.

Array, size at least $\max (1, n)$.
If jobz = ' V ', then if info $=0$, the first m elements of ifail are zero; if info > 0 , then ifail contains the indices of the eigenvectors that failed to converge.
If jobz = 'V', then ifail is not referenced.

Return Values

This function returns a value info.
If info=0, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, then i eigenvectors failed to converge; their indices are stored in the array ifail.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $[\mathrm{a}, \mathrm{b}]$ of width less than or equal to abstol $+\varepsilon^{\star} \max (|a|,|b|)$, where ε is the machine precision.

If abstol is less than or equal to zero, then $\left.\varepsilon^{\star}| | T \mid\right\}$ is used as tolerance, where $\|T\|$ is the 1 -norm of the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues are computed most accurately when abstol is set to twice the underflow threshold 2*? 1 amch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? 1amch('S').
?heevx
Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix.

Syntax

```
lapack_int LAPACKE_cheevx( int matrix_layout, char jobz, char range, char uplo,
lapack_int n, lapack_complex_float* a, lapack_int lda, float vl, float vu, lapack_int
il, lapack_int iu, float abstol, lapack_int* m, float* w, lapack_complex_float* z,
lapack_int ldz, lapack_int* ifail );
lapack_int LAPACKE_zheevx( int matrix_layout, char jobz, char range, char uplo,
lapack_int n, lapack_complex_double* a, lapack_int lda, double vl, double vu,
lapack_int il, lapack_int iu, double abstol, lapack_int* m, double* w,
lapack_complex_double* z, lapack_int ldz, lapack_int* ifail );
```


Include Files

- mkl.h

Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.
Note that for most cases of complex Hermetian eigenvalue problems the default choice should be heevr function as its underlying algorithm is faster and uses less workspace. ?heevx is faster for a few selected eigenvalues.

Input Parameters

matrix_layout	Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
jobz	Must be 'N' or 'V'.
	If jobz = 'N', then only eigenvalues are computed.
	If $\mathrm{jobz}=$ 'V', then eigenvalues and eigenvectors are computed.
range	Must be 'A', 'V', or 'I'.
	If range = 'A', all eigenvalues will be found.
	If range $=$ ' V ', all eigenvalues in the half-open interval $(v l, v u$] will be found.
	If range $=$ 'I', the eigenvalues with indices il through iu will be found.
uplo	Must be 'U' or 'L'.
	If uplo = 'U', a stores the upper triangular part of A.
	If uplo = 'L', a stores the lower triangular part of A.
n	The order of the matrix $A(n \geq 0)$.
a	a (size $\max \left(1, I d a_{n}\right)$) is an array containing either upper or lower triangular part of the Hermitian matrix A, as specified by uplo.
Ida	The leading dimension of the array a. Must be at least max $(1, n)$.

```
vl, vu If range = 'V', the lower and upper bounds of the interval to be searched
    for eigenvalues; vI\leqvu. Not referenced if range = 'A'or 'I'.
    If range = 'I', the indices of the smallest and largest eigenvalues to be returned. Constraints:
\(1 \leq i l \leq i u \leq n\), if \(n>0 ; i l=1\) and \(i u=0\), if \(n=0\). Not referenced if range \(=\) 'A'or 'V'.
```

abstol
$l d z$
The leading dimension of the output array $z ; l d z \geq 1$.
If $j o b z=' V$ ', then $l d z \geq \max (1, n)$ for column major layout and $/ d a \geq$ $\max (1, m)$ for row major layout.

Output Parameters

a
On exit, the lower triangle (if uplo $=$ 'L') or the upper triangle (if uplo= ' U ') of A, including the diagonal, is overwritten.

The total number of eigenvalues found; $0 \leq m \leq n$.
If range $=$ 'A', $m=n$, and if range $=$ 'I', $m=i u-i l+1$.

W
z
ifail
Array, size $\max (1, n)$. The first m elements contain the selected eigenvalues of the matrix A in ascending order.

Array z (size $\max \left(1, I d z^{*}\right)$ for column major layout and $\max \left(1, I d z_{n}\right)$ for row major layout) contains eigenvectors.

If jobz $=$ ' V ', then if info $=0$, the first m columns of z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of z holding the eigenvector associated with $w(\mathrm{i})$.

If an eigenvector fails to converge, then that column of z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If $j o b z=$ 'N', then z is not referenced.

Array, size at least max $(1, n)$.
If jobz $=$ ' V ', then if info $=0$, the first m elements of ifail are zero; if info > 0, then ifail contains the indices of the eigenvectors that failed to converge.
If jobz $=$ ' V ', then ifail is not referenced.

Return Values

This function returns a value info.
If info=0, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are stored in the array ifail.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ $\varepsilon^{\star} \max (|a|,|b|)$, where ε is the machine precision.

If abstol is less than or equal to zero, then $\varepsilon^{\star}| | T| |$ will be used in its place, where $||T||$ is the 1-norm of the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*? lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').
?syevr
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix using the Relatively Robust Representations.

Syntax

lapack_int LAPACKE_ssyevr (int matrix_layout, char jobz, char range, char uplo,

isuppz);
lapack_int LAPACKE_dsyevr (int matrix_layout, char jobz, char range, char uplo,
 iu, double abstol, lapack_int* m, double* w, double* z, lapack_int ldz, lapack_int* isuppz);

Include Files

- mkl.h

Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.
The routine first reduces the matrix A to tridiagonal form T. Then, whenever possible, ?syevr calls stemr to compute the eigenspectrum using Relatively Robust Representations. stemr computes eigenvalues by the $d q d s$ algorithm, while orthogonal eigenvectors are computed from various "good" $L^{*} D^{*} L^{T}$ representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the each unreduced block of T :
a. Compute $T-\sigma^{\star} I=L^{\star} D^{\star} L^{T}$, so that L and D define all the wanted eigenvalues to high relative accuracy. This means that small relative changes in the entries of D and L cause only small relative changes in the eigenvalues and eigenvectors. The standard (unfactored) representation of the tridiagonal matrix T does not have this property in general.
b. Compute the eigenvalues to suitable accuracy. If the eigenvectors are desired, the algorithm attains full accuracy of the computed eigenvalues only right before the corresponding vectors have to be computed, see Steps c) and d).
c. For each cluster of close eigenvalues, select a new shift close to the cluster, find a new factorization, and refine the shifted eigenvalues to suitable accuracy.
d. For each eigenvalue with a large enough relative separation, compute the corresponding eigenvector by forming a rank revealing twisted factorization. Go back to Step c) for any clusters that remain.

The desired accuracy of the output can be specified by the input parameter abstol.
The routine ?syevr calls stemr when the full spectrum is requested on machines that conform to the IEEE-754 floating point standard. ?syevr calls stebz and stein on non-IEEE machines and when partial spectrum requests are made.
Normal execution of ? dsyevr may create NaNs and infinities and may abort due to a floating point exception in environments that do not handle NaNs and infinities in the IEEE standard default manner.

Note that ?syevr is preferable for most cases of real symmetric eigenvalue problems as its underlying algorithm is fast and uses less workspace.

Input Parameters

```
matrix_layout
jobz
range
uplo
n
a
lda
vl, vu
il, iu
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'N' or 'V'.
If jobz = ' N ', then only eigenvalues are computed.
If \(j o b z=' \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed.
Must be 'A' or 'V' or 'I'.
If range \(=\) ' A ', the routine computes all eigenvalues.
If range \(=\) ' \(V\) ', the routine computes eigenvalues \(w[i]\) in the half-open interval:
```

```
vl < w[i]\leqvu.
```

vl < w[i]\leqvu.
If range $=$ 'I', the routine computes eigenvalues with indices il to iu.
For range $=$ 'V'or 'I' and iu-il < n-1, sstebz/dstebz and sstein/ dstein are called.
Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.
The order of the matrix $A(n \geq 0)$.
a (size $\max \left(1, I d a^{*} n\right)$) is an array containing either upper or lower triangular part of the symmetric matrix A, as specified by uplo.
The leading dimension of the array a. Must be at least $\max (1, n)$.
If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues.
Constraint: vl< vu.
If range $=$ 'A' or 'I', v/ and $v u$ are not referenced.
If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint:
$1 \leq i l \leq i u \leq n$, if $n>0$;
$i l=1$ and $i u=0$, if $n=0$.

```

If range \(=\) ' A ' or ' V ', il and \(i u\) are not referenced.
abstol
\(1 d z\)

If \(j o b z=\) ' \(V\) ', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by abstol.
If abstol < \(n\) *eps*||T||, then \(n * e p s *||T||\) is used instead, where eps is the machine precision, and \(||T||\) is the 1 -norm of the matrix \(T\). The eigenvalues are computed to an accuracy of eps*||T|| irrespective of abstol.
If high relative accuracy is important, set abstol to ? lamch('S').
The leading dimension of the output array \(z\).

\section*{Constraints:}
\(I d z \geq 1\) if jobz = 'N' and
\(I d z \geq \max (1, n)\) for column major layout and \(I d z \geq \max (1, m)\) for row major layout if \(j o b z=' \mathrm{~V}\) '.

\section*{Output Parameters}
\(a\)
m
\(W, Z\)
isuppz
On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo = ' U ') of \(A\), including the diagonal, is overwritten.

The total number of eigenvalues found, \(0 \leq m \leq n\).
If range \(=\) 'A', \(m=n\), if range \(=\) 'I', \(m=i u-i l+1\), and if range \(=\) ' \(V\) ' the exact value of \(m\) is not known in advance.

Arrays:
\(w\), size at least \(\max (1, n)\), contains the selected eigenvalues in ascending order, stored in w[0] to w[m-1];
\(z\) (size \(\max \left(1, I d z^{*}\right)\) for column major layout and \(\max \left(1, I d z_{n}\right)\) for row major layout) .
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w[i - 1].

If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.

Array, size at least \(2{ }^{*} \max (1, m)\).
The support of the eigenvectors in \(z\), i.e., the indices indicating the nonzero elements in \(z\). The \(i\)-th eigenvector is nonzero only in elements isuppz[2i
- 2] through isuppz[2i - 1]. Referenced only if eigenvectors are needed (jobz \(=\) 'V') and all eigenvalues are needed, that is, range \(=\) 'A' or range \(=\) 'I' and \(i l=1\) and \(i u=n\).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.

If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), an internal error has occurred.

\section*{Application Notes}
?heevr
Computes selected eigenvalues and, optionally,
eigenvectors of a Hermitian matrix using the
Relatively Robust Representations.

\section*{Syntax}
lapack_int LAPACKE_cheevr( int matrix_layout, char jobz, char range, char uplo, lapack_int \(n\), lapack_complex_float* a, lapack_int lda, float vl, float vu, lapack_int il, lapack_int iu, float abstol, lapack_int* m, float* w, lapack_complex_float* \(z\), lapack_int ldz, lapack_int* isuppz );
lapack_int LAPACKE_zheevr( int matrix_layout, char jobz, char range, char uplo, lapack_int \(n\), lapack_complex_double* \(a, ~ l a p a c k \_i n t ~ l d a, ~ d o u b l e ~ v l, ~ d o u b l e ~ v u, ~\) lapack_int il, lapack_int iu, double abstol, lapack_int* m, double* w, lapack_complex_double* z, lapack_int ldz, lapack_int* isuppz );

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.
The routine first reduces the matrix \(A\) to tridiagonal form \(T\) with a call to hetrd. Then, whenever possible, ?heevr calls stegr to compute the eigenspectrum using Relatively Robust Representations. ?stegr computes eigenvalues by the \(d q d s\) algorithm, while orthogonal eigenvectors are computed from various "good" \(L * D^{*} L^{T}\) representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For each unreduced block (submatrix) of \(T\) :
a. Compute \(T-\sigma^{\star} I=L^{\star} D^{\star} L^{T}\), so that \(L\) and \(D\) define all the wanted eigenvalues to high relative accuracy. This means that small relative changes in the entries of \(D\) and \(L\) cause only small relative changes in the eigenvalues and eigenvectors. The standard (unfactored) representation of the tridiagonal matrix \(T\) does not have this property in general.
b. Compute the eigenvalues to suitable accuracy. If the eigenvectors are desired, the algorithm attains full accuracy of the computed eigenvalues only right before the corresponding vectors have to be computed, see Steps c) and d).
c. For each cluster of close eigenvalues, select a new shift close to the cluster, find a new factorization, and refine the shifted eigenvalues to suitable accuracy.
d. For each eigenvalue with a large enough relative separation, compute the corresponding eigenvector by forming a rank revealing twisted factorization. Go back to Step c) for any clusters that remain.
The desired accuracy of the output can be specified by the input parameter abstol.
The routine ?heevr calls stemr when the full spectrum is requested on machines which conform to the IEEE-754 floating point standard, or stebz and stein on non-IEEE machines and when partial spectrum requests are made.

Note that the routine ? heevr is preferable for most cases of complex Hermitian eigenvalue problems as its underlying algorithm is fast and uses less workspace.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{jobz} & Must be 'N' or 'V'. \\
\hline & If job = 'N', then only eigenvalues are computed. \\
\hline & If job = 'V', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{5}{*}{range} & Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' V ', the routine computes eigenvalues lambda \((i)\) in the halfopen interval: vl< lambda(i) \(\leq v u\). \\
\hline & If range = 'I', the routine computes eigenvalues with indices il to iu. \\
\hline & For range \(=\) 'V'or 'I', sstebz/dstebz and cstein/zstein are called. \\
\hline \multirow[t]{3}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & The order of the matrix \(A(n \geq 0)\). \\
\hline a & a (size \(\max \left(1, I d^{*} *_{n}\right)\) ) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\), as specified by uplo. \\
\hline \multirow[t]{2}{*}{Ida} & The leading dimension of the array \(a\). \\
\hline & Must be at least max \((1, n)\). \\
\hline \multirow[t]{3}{*}{vl, vu} & If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) 'A' or 'I', v/ and vu are not referenced. \\
\hline \multirow[t]{3}{*}{il, iu} & If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) if \(n=0\). \\
\hline & If range \(=\) ' A ' or ' V ', il and \(i u\) are not referenced. \\
\hline \multirow[t]{2}{*}{abstol} & The absolute error tolerance to which each eigenvalue/eigenvector is required. \\
\hline & If jobz = 'V', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by abstol. \\
\hline
\end{tabular}

If abstol < \(n\) *eps*||T||, then \(n * e p s *||T||\) is used instead, where eps is the machine precision, and \(||T||\) is the 1 -norm of the matrix \(T\). The eigenvalues are computed to an accuracy of eps*||T|| irrespective of abstol.

If high relative accuracy is important, set abstol to ? lamch('S').
The leading dimension of the output array \(z\). Constraints:
```

ldz\geq 1 if jobz = 'N';

```
\(l d z \geq \max (1, n)\) for column major layout and \(I d z \geq \max (1, m)\) for row major layout if jobz = ' V '.

\section*{Output Parameters}
a
m

W
z
isuppz
On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo = ' \(U\) ') of \(A\), including the diagonal, is overwritten.

The total number of eigenvalues found,
\(0 \leq m \leq n\).
If range \(=\) 'A', \(m=n\), if range \(=\) 'I', \(m=i u-i l+1\), and if range \(=\) ' \(V\) ' the exact value of \(m\) is not known in advance.

Array, size at least \(\max (1, n)\), contains the selected eigenvalues in ascending order, stored in w[0] to w[m-1].

Array \(z\) (size \(\max \left(1, I d z^{*} m\right.\) ) for column major layout and \(\max \left(1, I d z^{*}\right)\) for row major layout).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w[i-1].

If \(j o b z=' N\) ', then \(z\) is not referenced.

Array, size at least 2 *max \((1, m)\).
The support of the eigenvectors in \(z\), i.e., the indices indicating the nonzero elements in \(z\). The \(i\)-th eigenvector is nonzero only in elements isuppz[2i - 2] through isuppz[2i - 1]. Referenced only if eigenvectors are needed (jobz \(=\) 'V') and all eigenvalues are needed, that is, range = 'A' or range \(=\) 'I' and \(i l=1\) and \(i u=n\).

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), an internal error has occurred.

\section*{Application Notes}

Normal execution of ?stemr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the IEEE standard default manner.

For more details, see ?stemr and these references:
- Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices," Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
- Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, 2004. Also LAPACK Working Note 154.
- Inderjit Dhillon: "A new \(\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)\) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem", Computer Science Division Technical Report No. UCB/CSD-97-971, UC Berkeley, May 1997.
```

?spev
Computes all eigenvalues and, optionally,
eigenvectors of a real symmetric matrix in packed
storage.
Syntax
lapack_int LAPACKE_sspev (int matrix_layout, char jobz, char uplo, lapack_int n, float*
ap, float* w, float* z, lapack_int ldz);
lapack_int LAPACKE_dspev (int matrix_layout, char jobz, char uplo, lapack_int n,
double* ap, double* w, double* z, lapack_int ldz);

```

Include Files
- mkl.h

\section*{Description}

The routine computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) in packed storage.

Input Parameters
```

matrix_layout
jobz Must be 'N' or 'V'.
If job = 'N', then only eigenvalues are computed.
If job = 'V', then eigenvalues and eigenvectors are computed.
Must be 'U' or 'L'.
If uplo = 'U',ap stores the packed upper triangular part of A.
If uplo = 'L',ap stores the packed lower triangular part of A.
The order of the matrix A(n\geq0).
Array ap contains the packed upper or lower triangle of symmetric matrix A,
as specified by uplo.
The size of ap must be at least max(1, n*(n+1)/2).
The leading dimension of the output array z. Constraints:
if jobz = 'N', then ldz\geq 1;
if jobz = 'V', then ldz\geq max(1, n).

```

\section*{Output Parameters}

\section*{W, Z}
ap

\section*{Arrays:}
\(w\), size at least \(\max (1, n)\).
If info \(=0, w\) contains the eigenvalues of the matrix \(A\) in ascending order.
\(z\left(\right.\) size \(\left.\max \left(1, l d z^{*}\right)\right)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with w[i - 1].

If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
```

?hpev
Computes all eigenvalues and, optionally,
eigenvectors of a Hermitian matrix in packed storage.

```

\section*{Syntax}
```

lapack_int LAPACKE_chpev(int matrix_layout, char jobz, char uplo, lapack_int n,

```
lapack_int LAPACKE_chpev( int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_complex_float* ap, float* w, lapack_complex_float* z, lapack_int ldz );
lapack_complex_float* ap, float* w, lapack_complex_float* z, lapack_int ldz );
lapack_int LAPACKE_zhpev( int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int LAPACKE_zhpev( int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_complex_double* ap, double* w, lapack_complex_double* z, lapack_int ldz );
```

lapack_complex_double* ap, double* w, lapack_complex_double* z, lapack_int ldz);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\) in packed storage.

Input Parameters
```

matrix_layout
jobz Must be 'N' or 'V'.

```

If job \(=\) ' \(N\) ', then only eigenvalues are computed.
If job \(=\) ' \(V\) ', then eigenvalues and eigenvectors are computed.
uplo
n
\(a p\)
\(I d z\)

Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular part of \(A\).
If uplo = 'L', ap stores the packed lower triangular part of \(A\).
The order of the matrix \(A(n \geq 0)\).
Array ap contains the packed upper or lower triangle of Hermitian matrix A, as specified by uplo.
The size of \(a p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
The leading dimension of the output array \(z\).
Constraints:
if jobz = 'N', then \(1 d z \geq 1\);
if \(j o b z=' V '\), then \(I d z \geq \max (1, n)\).

\section*{Output Parameters}

Array, size at least max \((1, n)\).
If info \(=0, w\) contains the eigenvalues of the matrix \(A\) in ascending order.
Array \(z\left(\right.\) size at least \(\left.\max \left(1, I d z_{n}\right)\right)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with w[i - 1].

If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
?spevd
Uses divide and conquer algorithm to compute all eigenvalues and (optionally) all eigenvectors of a real symmetric matrix held in packed storage.

\section*{Syntax}
```

lapack_int LAPACKE_sspevd (int matrix_layout, char jobz, char uplo, lapack_int n,
float* ap, float* w, float* z, lapack_int ldz);
lapack_int LAPACKE_dspevd (int matrix_layout, char jobz, char uplo, lapack_int n,
double* ap, double* w, double* z, lapack_int ldz);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric matrix \(A\) (held in packed storage). In other words, it can compute the spectral factorization of \(A\) as:
\(A=Z^{\star} \Lambda^{\star} Z^{T}\).
Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the orthogonal matrix whose columns are the eigenvectors \(z_{i}\). Thus,
```

A*}\mp@subsup{z}{i}{}=\mp@subsup{\lambda}{i}{*}\mp@subsup{z}{i}{}\mathrm{ for i = 1, 2, ..., n.

```

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
```

matrix_layout
jobz
uplo
n
ap
ldz
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
Must be 'N' or 'V'.
If jobz = ' N ', then only eigenvalues are computed.
If $j o b z=$ ' V ', then eigenvalues and eigenvectors are computed.
Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular part of A.
If uplo = 'L', ap stores the packed lower triangular part of A.
The order of the matrix $A(n \geq 0)$.
ap contains the packed upper or lower triangle of symmetric matrix A, as specified by uplo.
The dimension of ap must be $\max \left(1, n^{*}(n+1) / 2\right)$
The leading dimension of the output array z.
Constraints:
if jobz $=$ ' N ', then $I d z \geq 1$;
if $j o b z=' V$ ', then $I d z \geq \max (1, n)$.

```

\section*{Output Parameters}

\section*{W, Z}
ap

\section*{Arrays:}
\(w\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info.
z (size \(\max \left(1, I d z^{*} n\right)\) ).
If jobz = ' \(V\) ', then this array is overwritten by the orthogonal matrix \(Z\) which contains the eigenvectors of \(A\). If jobz \(={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

\section*{Return Values}

This function returns a value info.
If inforo, the execution is successful.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(A+E\) such that \(||E||_{2}=O(\varepsilon) *| | A| |_{2}\), where \(\varepsilon\) is the machine precision.
The complex analogue of this routine is hpevd.
See also syevd for matrices held in full storage, and sbevd for banded matrices.
?hpevd
Uses divide and conquer algorithm to compute all eigenvalues and, optionally, all eigenvectors of a complex Hermitian matrix held in packed storage.

\section*{Syntax}
```

lapack_int LAPACKE_chpevd(int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_complex_float* ap, float* w, lapack_complex_float* z, lapack_int ldz);
lapack_int LAPACKE_zhpevd(int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_complex_double* ap, double* w, lapack_complex_double* z, lapack_int ldz);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian matrix \(A\) (held in packed storage). In other words, it can compute the spectral factorization of \(A\) as: \(A=Z^{\star} \Lambda^{\star} Z^{H}\).

Here \(\Lambda\) is a real diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the (complex) unitary matrix whose columns are the eigenvectors \(z_{i}\). Thus,
```

A*}\mp@subsup{z}{i}{}=\mp@subsup{\lambda}{i}{*}\mp@subsup{z}{i}{}\mathrm{ for i = 1, 2, ..., n.

```

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
```

matrix_layout
jobz
uplo
n
ap
ldz
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
Must be 'N' or 'V'.
If $j o b z=$ ' N ', then only eigenvalues are computed.
If jobz = ' V ', then eigenvalues and eigenvectors are computed.
Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular part of A.
If uplo = 'L', ap stores the packed lower triangular part of A.
The order of the matrix $A(n \geq 0)$.
ap contains the packed upper or lower triangle of Hermitian matrix A, as specified by uplo.
The dimension of $a p$ must be at least $\max \left(1, n^{*}(n+1) / 2\right)$.
The leading dimension of the output array z.
Constraints:
if jobz = 'N', then $1 d z \geq 1 ;$
if $j o b z=' V '$, then $l d z \geq \max (1, n)$.

```

\section*{Output Parameters}
w
z
\(a p\)

Array, size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info.

Array, size 1 if \(j o b z=' N '\) and \(\max \left(1, l d z_{n}\right)\) if \(j o b z=' V '\).
If \(j o b z=\) ' \(V\) ', then this array is overwritten by the unitary matrix \(Z\) which contains the eigenvectors of \(A\).
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

\section*{Return Values}

This function returns a value info.

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(A+E\) such that \(||E||_{2}=O(\varepsilon) *| | A| |_{2}\), where \(\varepsilon\) is the machine precision.
The real analogue of this routine is spevd.
See also heevd for matrices held in full storage, and hbevd for banded matrices.

\section*{?spevx}

Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix in packed storage.

\section*{Syntax}
```

lapack_int LAPACKE_sspevx (int matrix_layout, char jobz, char range, char uplo,
lapack_int n, float* ap, float vl, float vu, lapack_int il, lapack_int iu, float abstol,
lapack_int* m, float* w, float* z, lapack_int ldz, lapack_int* ifail);
lapack_int LAPACKE_dspevx (int matrix_layout, char jobz, char range, char uplo,
lapack_int n, double* ap, double vl, double vu, lapack_int il, lapack_int iu, double
abstol, lapack_int* m, double* w, double* z, lapack_int ldz, lapack_int* ifail);

```

Include Files
- mkl.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) in packed storage. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{jobz} & Must be 'N' or 'V'. \\
\hline & If job = 'N', then only eigenvalues are computed. \\
\hline & If job \(=\) 'V', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{range} & Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' V ', the routine computes eigenvalues \(w[i]\) in the half-open interval: vl< w[i]<vu. \\
\hline & If range = 'I', the routine computes eigenvalues with indices il to iu. \\
\hline
\end{tabular}
```

uplo
n
ap
vl, vu
il, iu
abstol
ldz

```

\section*{Output Parameters}

Arrays:
\(w\), size at least \(\max (1, n)\).
If info \(=0\), contains the selected eigenvalues of the matrix \(A\) in ascending order.
\(z\left(\right.\) size \(\max \left(1, l d z^{*} m\right)\) for column major layout and \(\max \left(1, I d z^{*} n\right)\) for row major layout).

If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w[i - 1].

If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

If jobz = 'N', then \(z\) is not referenced.
ifail
Array, size at least max \((1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices the eigenvectors that failed to converge.
If jobz \(=\) ' \(N\) ', then ifail is not referenced.

\section*{Return Values}

This function returns a value info.
If inforo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If \(a b s t o l\) is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').
?hpevx
Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix in packed storage.

\section*{Syntax}
```

lapack_int LAPACKE_chpevx(int matrix_layout, char jobz, char range, char uplo,
lapack_int n, lapack_complex_float* ap, float vl, float vu, lapack_int il, lapack_int
iu, float abstol, lapack_int* m, float* w, lapack_complex_float* z, lapack_int ldz,
lapack_int* ifail);
lapack_int LAPACKE_zhpevx(int matrix_layout, char jobz, char range, char uplo,
lapack_int n, lapack_complex_double* ap, double vl, double vu, lapack_int il,
lapack_int iu, double abstol, lapack_int* m, double* w, lapack_complex_double* z,
lapack_int ldz, lapack_int* ifail);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\) in packed storage. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{jobz} & Must be 'N' or 'V'. \\
\hline & If job = 'N', then only eigenvalues are computed. \\
\hline & If job \(=\) 'V', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{range} & Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' \(V\) ', the routine computes eigenvalues \(w[i]\) in the half-open interval: vl< w[i]svu. \\
\hline & If range = 'I', the routine computes eigenvalues with indices il to iu. \\
\hline \multirow[t]{3}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', ap stores the packed upper triangular part of \(A\). \\
\hline & If uplo = 'L', ap stores the packed lower triangular part of \(A\). \\
\hline \(n\) & The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{2}{*}{\(a p\)} & Array ap contains the packed upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo. \\
\hline & The size of ap must be at least max \(\left(1, n^{*}(n+1) / 2\right)\). \\
\hline \multirow[t]{3}{*}{vl, vu} & If range \(=\) ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) 'A' or 'I', v/ and vu are not referenced. \\
\hline \multirow[t]{3}{*}{il, iu} & If range = 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) if \(n=0\). \\
\hline & If range \(=\) ' A ' or ' V ', il and \(i u\) are not referenced. \\
\hline abstol & The absolute error tolerance to which each eigenvalue is required. See Application notes for details on error tolerance. \\
\hline \multirow[t]{3}{*}{\(1 d z\)} & The leading dimension of the output array \(z\). \\
\hline & Constraints: \\
\hline & if jobz = 'N', then \(1 d z \geq 1\); \\
\hline
\end{tabular}

> if \(j o b z=' V\) ', then \(l d z \geq \max (1, n)\) for column major layout and \(I d z \geq\) max \((1, m)\) for row major layout.

\section*{Output Parameters}

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

The total number of eigenvalues found, \(0 \leq m \leq n\).
\(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), if range \(=\) 'I', \(m=i u-i l+1\), and if range \(=\) ' \(V\) ' the exact value of \(m\) is not known in advance..

Array, size at least \(\max (1, n)\).
If info \(=0\), contains the selected eigenvalues of the matrix \(A\) in ascending order.

Array \(z\) (size \(\max \left(1, I d z^{*}\right)\) for column major layout and \(\max \left(1, I d z_{n}\right)\) for row major layout).
If jobz \(=\) ' V ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\).
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

If jobz = 'N', then \(z\) is not referenced.

Array, size at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0, the ifail contains the indices the eigenvectors that failed to converge.

If jobz = 'N', then ifail is not referenced.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.
If abstol is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*? lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').
?sbev
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix.

\section*{Syntax}
```

lapack_int LAPACKE_ssbev (int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int kd, float* ab, lapack_int ldab, float* w, float* z, lapack_int ldz);
lapack_int LAPACKE_dsbev (int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int kd, double* ab, lapack_int ldab, double* w, double* z, lapack_int ldz);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{jobz} & Must be 'N' or 'V'. \\
\hline & If jobz = ' N ', then only eigenvalues are computed. \\
\hline & If jobz = 'V', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', \(a b\) stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', \(a b\) stores the lower triangular part of \(A\). \\
\hline \(n\) & The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{2}{*}{\(k d\)} & The number of super- or sub-diagonals in \(A\) \\
\hline & ( \(k a \geq 0\) ). \\
\hline \(a b\) & \(a b\) (size at least \(\max \left(1, I\right.\) dab \(\left._{n}\right)\) for column major layout and at least \(\max \left(1, l d a b^{*}(k d+1)\right)\) for row major layout) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format. \\
\hline Idab & The leading dimension of \(a b\); must be at least \(k d+1\) for column major layout and \(n\) for row major layout. \\
\hline \multirow[t]{3}{*}{\(1 d z\)} & The leading dimension of the output array \(z\). \\
\hline & Constraints: \\
\hline & if jobz = 'N', then \(1 d z \geq 1\); \\
\hline
\end{tabular}
```

if jobz = 'V', then Idz\geq max(1, n).

```

\section*{Output Parameters}

\section*{Arrays:}
\(w\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order.
\(z\) (size \(\max \left(1, I d z^{*} n\right)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with w[i-1].

If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form (see the description of ?sbtrd).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{?hbev}

Computes all eigenvalues and, optionally, eigenvectors of a Hermitian band matrix.

\section*{Syntax}
```

lapack_int LAPACKE_chbev(int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int kd, lapack_complex_float* ab, lapack_int ldab, float* w,
lapack_complex_float* z, lapack_int ldz);
lapack_int LAPACKE_zhbev(int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int kd, lapack_complex_double* ab, lapack_int ldab, double* w,
lapack_complex_double* z, lapack_int ldz);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix \(A\).

\section*{Input Parameters}
```

matrix_layout
jobz
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
Must be 'N' or 'V'.
If $j o b z=$ ' N ', then only eigenvalues are computed.

```
\begin{tabular}{|c|c|}
\hline \multirow{4}{*}{uplo} & If \(j 0 . b z=\) 'V', then eigenvalues and eigenvectors are computed. \\
\hline & Must be 'U' or 'L'. \\
\hline & If uplo = ' U ', ab stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', ab stores the lower triangular part of \(A\). \\
\hline n & The order of the matrix \(A(n \geq 0)\). \\
\hline kd & The number of super- or sub-diagonals in \(A\) \\
\hline & ( \(k a \geq 0\) ). \\
\hline \(a b\) & \(a b\) (size at least \(\max \left(1, I d a b *_{n}\right)\) for column major layout and at least \(\max \left(1,1 \operatorname{dab}^{*}(k d+1)\right)\) for row major layout) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format. \\
\hline 1 dab & The leading dimension of \(a b\); must be at least \(k d+1\) for column major layout and \(n\) for row major layout. \\
\hline \multirow[t]{4}{*}{\(1 d z\)} & The leading dimension of the output array \(z\). \\
\hline & Constraints: \\
\hline & if \(j 0 . b z=\) ' N ', then \(1 d z \geq 1\); \\
\hline & if \(j\) obz \(=\) ' V ', then \(I d z \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
w
z
\(a b\)

Array, size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
Array \(\mathrm{z}\left(\right.\) size \(\max \left(1, l d z^{*} n\right)\).
If \(j o b z=\) ' V ', then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with w[i-1].
If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form(see the description of hbtrd).

\section*{Return Values}

This function returns a value info.
If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge;
\(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
```

?sbevd
Computes all eigenvalues and, optionally, all
eigenvectors of a real symmetric band matrix using
divide and conquer algorithm.

```

\section*{Syntax}
```

lapack_int LAPACKE_ssbevd (int matrix_layout, char jobz, char uplo, lapack_int n,

```
lapack_int LAPACKE_ssbevd (int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int kd, float* ab, lapack_int ldab, float* w, float* z, lapack_int ldz);
lapack_int kd, float* ab, lapack_int ldab, float* w, float* z, lapack_int ldz);
lapack_int LAPACKE_dsbevd (int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int LAPACKE_dsbevd (int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int kd, double* ab, lapack_int ldab, double* w, double* z, lapack_int ldz);
```

lapack_int kd, double* ab, lapack_int ldab, double* w, double* z, lapack_int ldz);

```

Include Files
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric band matrix \(A\). In other words, it can compute the spectral factorization of \(A\) as:
\(A=Z^{\star} \Lambda^{\star} Z^{T}\)
Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the orthogonal matrix whose columns are the eigenvectors \(z_{i}\). Thus,
```

A*}\mp@subsup{z}{i}{}=\mp@subsup{\lambda}{i}{*}\mp@subsup{z}{i}{\prime}\mathrm{ for i = 1, 2, ..., n.

```

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
```

matrix_layout
jobz
uplo
n
kd
ab
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If $j o b z=$ ' V ', then eigenvalues and eigenvectors are computed.
Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.
The order of the matrix $A(n \geq 0)$.
The number of super- or sub-diagonals in A
($k d \geq 0$).
$a b$ (size at least $\max \left(1, I \operatorname{dab}^{*} n\right.$) for column major layout and at least $\max \left(1,1 d a b^{*}(k d+1)\right)$ for row major layout) is an array containing either upper or lower triangular part of the symmetric matrix A (as specified by up/o) in band storage format.

```
```

ldab The leading dimension of ab; must be at least kd+1 for column major
layout and n for row major layout.
The leading dimension of the output array z.
Constraints:
if jobz = 'N', then ldz\geq 1;
if jobz = 'V', then Idz\geq max(1,n).

```

\section*{Output Parameters}
```

W, Z
ab

```

\section*{Arrays:}
\(w\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info.
\(z\left(\right.\) size \(\max \left(1, l d z^{*} n\right.\) if \(j o b=' V\) ' and at least 1 if \(\left.j o b={ }^{\prime} N^{\prime}\right)\).
If job = ' V ', then this array is overwritten by the orthogonal matrix \(Z\) which contains the eigenvectors of \(A\). The \(i\)-th column of \(Z\) contains the eigenvector which corresponds to the eigenvalue w[i-1].

If job = 'N', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form.

\section*{Return Values}

This function returns a value info.
If info=0, the execution is successful.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(A+E\) such that \(||E||_{2}=O(\varepsilon) *| | A \mid \|_{2}\), where \(\varepsilon\) is the machine precision.

The complex analogue of this routine is hbevd.
See also syevd for matrices held in full storage, and spevd for matrices held in packed storage.
?hbevd
Computes all eigenvalues and, optionally, all
eigenvectors of a complex Hermitian band matrix using divide and conquer algorithm.

\section*{Syntax}
```

lapack_int LAPACKE_chbevd(int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int kd, lapack_complex_float* ab, lapack_int ldab, float* w,
lapack_complex_float* z, lapack_int ldz);

```
```

lapack_int LAPACKE_zhbevd(int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int kd, lapack_complex_double* ab, lapack_int ldab, double* w,
lapack_complex_double* z, lapack_int ldz);

```

Include Files
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian band matrix \(A\). In other words, it can compute the spectral factorization of \(A\) as: \(A=Z^{*} \Lambda^{*} Z^{H}\).

Here \(\Lambda\) is a real diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the (complex) unitary matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\(A{ }^{\star} z_{i}=\lambda_{i}{ }^{\star} z_{i}\) for \(i=1,2, \ldots, n\).
If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{jobz} & Must be 'N' or 'V'. \\
\hline & If jobz = 'N', then only eigenvalues are computed. \\
\hline & If jobz = 'V', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', \(a b\) stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', \(a b\) stores the lower triangular part of \(A\). \\
\hline \(n\) & The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{2}{*}{kd} & The number of super- or sub-diagonals in \(A\) \\
\hline & ( \(k d \geq 0\) ). \\
\hline \(a b\) & \(a b\) (size at least \(\max \left(1, I \operatorname{dab}_{n}\right)\) for column major layout and at least \(\max \left(1, \operatorname{ldab}{ }^{*}(k d+1)\right)\) for row major layout) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format. \\
\hline Idab & The leading dimension of \(a b\); must be at least \(k d+1\) for column major layout and \(n\) for row major layout. \\
\hline \multirow[t]{4}{*}{\(1 d z\)} & The leading dimension of the output array \(z\). \\
\hline & Constraints: \\
\hline & if jobz = 'N', then \(1 d z \geq 1\); \\
\hline & if jobz = ' V ', then \(I d z \geq \max (1, n)\) \\
\hline
\end{tabular}

\section*{Output Parameters}

W

Z
\(a b\)

Array, size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info.

Array, size \(\max \left(1, I d z_{n}\right.\) if job \(=' V\) ' and at least 1 if job \(=' N\) '.
If jobz = ' \(V\) ', then this array is overwritten by the unitary matrix \(Z\) which contains the eigenvectors of \(A\). The \(i\)-th column of \(Z\) contains the eigenvector which corresponds to the eigenvalue w[i-1].
If \(j o b z=' N\) ', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form.

\section*{Return Values}

This function returns a value info.
If inforo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(A+E\) such that \(||E||_{2}=O(\varepsilon)| | A| |_{2}\), where \(\varepsilon\) is the machine precision.
The real analogue of this routine is sbevd.
See also heevd for matrices held in full storage, and hpevd for matrices held in packed storage.

\section*{?sbevx \\ Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix.}

\section*{Syntax}
```

lapack_int LAPACKE_ssbevx (int matrix_layout, char jobz, char range, char uplo,
lapack_int n, lapack_int kd, float* ab, lapack_int ldab, float* q, lapack_int ldq, float
vl, float vu, lapack_int il, lapack_int iu, float abstol, lapack_int* m, float* w,
float* z, lapack_int ldz, lapack_int* ifail);
lapack_int LAPACKE_dsbevx (int matrix_layout, char jobz, char range, char uplo,
lapack_int n, lapack_int kd, double* ab, lapack_int ldab, double* q, lapack_int ldq,
double vl, double vu, lapack_int il, lapack_int iu, double abstol, lapack_int* m,
double* w, double* z, lapack_int ldz, lapack_int* ifail);

```

Include Files
- mkl.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{jobz} & Must be 'N' or 'V'. \\
\hline & If jobz = 'N', then only eigenvalues are computed. \\
\hline & If jobz = ' V ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{range} & Must be 'A' or 'V' or 'I'. \\
\hline & If range = 'A', the routine computes all eigenvalues. \\
\hline & \begin{tabular}{l}
If range = ' V ', the routine computes eigenvalues \(w[i]\) in the half-open \\

\end{tabular} \\
\hline & If range = 'I', the routine computes eigenvalues with indices in range il to \(i u\). \\
\hline \multirow[t]{3}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', \(a b\) stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', \(a b\) stores the lower triangular part of \(A\). \\
\hline \(n\) & The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{2}{*}{\(k d\)} & The number of super- or sub-diagonals in \(A\) \\
\hline & ( \(k d \geq 0\) ). \\
\hline \multirow[t]{2}{*}{\(a . b\)} & Arrays: \\
\hline & Array \(a b\) (size at least \(\max \left(1, I d a b_{n}\right)\) for column major layout and at least \(\max \left(1, l d a b^{*}(k d+1)\right)\) for row major layout) contains either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format. \\
\hline Idab & The leading dimension of \(a b\); must be at least \(k d+1\) for column major layout and \(n\) for row major layout. \\
\hline \multirow[t]{3}{*}{vl, vu} & If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) ' A ' or ' \(I\) ', v/ and \(v u\) are not referenced. \\
\hline \multirow[t]{4}{*}{il, iu} & If range = 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0 ; i l=1\) and \(i u=0\) \\
\hline & if \(n=0\). \\
\hline & If range \(=\) ' A ' or ' V ', il and \(i u\) are not referenced. \\
\hline abstol & The absolute error tolerance to which each eigenvalue is required. See Application notes for details on error tolerance. \\
\hline \(1 d q, I d z\) & The leading dimensions of the output arrays \(q\) and \(z\), respectively. \\
\hline
\end{tabular}

\section*{Constraints:}
\(l d q \geq 1, \quad l d z \geq 1 ;\)
If \(j o b z=' V '\), then \(l d q \geq \max (1, n)\) and \(l d z \geq \max (1, n)\) for column major layout and \(I d z \geq \max (1, m)\) for row major layout.

\section*{Output Parameters}
q
m

Array, size \(\max \left(1, l d z^{*} n\right)\).
If \(j o b z=\) ' \(V\) ', the \(n\)-by-n orthogonal matrix is used in the reduction to tridiagonal form.
If \(j o b z=\) ' \(N\) ', the array \(q\) is not referenced.
The total number of eigenvalues found, \(0 \leq m \leq n\).
If range \(=\) 'A', \(m=n\), if range \(=\) 'I', \(m=i u-i l+1\), and if range \(=\) ' V ', the exact value of \(m\) is not known in advance.

Arrays:
\(w\), size at least \(\max (1, n)\). The first \(m\) elements of \(w\) contain the selected eigenvalues of the matrix \(A\) in ascending order.
\(z\) (size at least max \(\left(1, I d z^{*}\right)\) for column major layout and \(\max \left(1, I d z^{*}\right)\) for row major layout).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w[i-1].
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form.

Array, size at least \(\max (1, n)\).
If jobz = 'V', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices the eigenvectors that failed to converge.
If jobz \(=\) ' \(N\) ', then ifail is not referenced.

\section*{Return Values}

This function returns a value info.
If infor 0 , the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info = i, then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to \(a b s t o l+\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If abstol is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) is used as tolerance, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').
?hbevx
Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian band matrix.

\section*{Syntax}
```

lapack_int LAPACKE_chbevx(int matrix_layout, char jobz, char range, char uplo,
lapack_int n, lapack_int kd, lapack_complex_float* ab, lapack_int ldab,
lapack_complex_float* q, lapack_int ldq, float vl, float vu, lapack_int il, lapack_int
iu, float abstol, lapack_int* m, float* w, lapack_complex_float* z, lapack_int ldz,
lapack_int* ifail);
lapack_int LAPACKE_zhbevx(int matrix_layout, char jobz, char range, char uplo,
lapack_int n, lapack_int kd, lapack_complex_double* ab, lapack_int ldab,
lapack_complex_double* q, lapack_int ldq, double vl, double vu, lapack_int il,
lapack_int iu, double abstol, lapack_int* m, double* w, lapack_complex_double* z,
lapack_int ldz, lapack_int* ifail);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{jobz} & Must be 'N' or 'V'. \\
\hline & If job = 'N', then only eigenvalues are computed. \\
\hline & If job \(=\) 'V', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{range} & Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' V ', the routine computes eigenvalues \(w[i]\) in the half-open interval: vl< w[i]svu. \\
\hline
\end{tabular}

If range \(=\) 'I', the routine computes eigenvalues with indices il to iu.
Must be 'U' or 'L'.
If uplo = 'U', \(a b\) stores the upper triangular part of \(A\).
If uplo = 'L', \(a b\) stores the lower triangular part of \(A\).
The order of the matrix \(A(n \geq 0)\).
The number of super- or sub-diagonals in \(A\)
( \(k a \geq 0\) ).
\(a b\) (size at least \(\max \left(1, I d a b_{n}\right)\) for column major layout and at least \(\max \left(1, l d a b^{*}(k d+1)\right)\) for row major layout) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format.

The leading dimension of \(a b\); must be at least \(k d+1\) for column major layout and \(n\) for row major layout.

If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues.
Constraint: vl< vu.
If range \(=\) 'A' or 'I', vl and \(v u\) are not referenced.

If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); \(i l=1\) and \(i u=0\) if \(n=0\).
If range \(=\) 'A' or ' V ', il and \(i u\) are not referenced.
The absolute error tolerance to which each eigenvalue is required. See Application notes for details on error tolerance.

The leading dimensions of the output arrays \(q\) and \(z\), respectively.
Constraints:
\(1 d q \geq 1, \quad l d z \geq 1 ;\)
If \(j o b z=' V\) ', then \(l d q \geq \max (1, n)\) and \(l d z \geq \max (1, n)\) for column major layout and \(I d z \geq \max (1, m)\) for row major layout.

\section*{Output Parameters}

Array, size \(\max \left(1, I d z_{n}\right)\).
If jobz = 'V', the \(n\)-by-n unitary matrix is used in the reduction to tridiagonal form.
If \(j o b z=\) ' \(N\) ', the array \(q\) is not referenced.
The total number of eigenvalues found,
\(0 \leq m \leq n\).
If range \(=\) 'A', \(m=n\), if range \(=\) 'I', \(m=i u-i l+1\), and if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance..
w
z
\(a b\)
ifail

Array, size at least \(\max (1, n)\). The first \(m\) elements contain the selected eigenvalues of the matrix \(A\) in ascending order.

Array \(z\) (size at least \(\max \left(1, I d z^{*}\right)\) ) for column major layout and max \((1\), \(\left.l d z_{n}\right)\) for row major layout).
If \(j o b z=' V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w[i-1].
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz = 'N', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form.
If uplo = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix \(T\) are returned in rows \(k d\) and \(k d+1\) of \(a b\), and if uplo = 'L', the diagonal and first subdiagonal of \(T\) are returned in the first two rows of \(a b\).

Array, size at least max \((1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge.

If jobz = 'N', then ifail is not referenced.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol \(+\varepsilon * \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.
If \(a b s t o l\) is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to \(2^{*}\) ? lamch('S').
?stev
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix.

\section*{Syntax}
```

lapack_int LAPACKE_sstev (int matrix_layout, char jobz, lapack_int n, float* d, float*
e, float* z, lapack_int ldz);
lapack_int LAPACKE_dstev (int matrix_layout, char jobz, lapack_int n, double* d,
double* e, double* z, lapack_int ldz);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{jobz} & Must be 'N' or 'V'. \\
\hline & If jobz = 'N', then only eigenvalues are computed. \\
\hline & If \(j 0 b z=\) ' V ', then eigenvalues and eigenvectors are computed. \\
\hline \(n\) & The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{\(d, e\)} & Arrays: \\
\hline & Array \(d\) contains the \(n\) diagonal elements of the tridiagonal matrix \(A\). \\
\hline & The size of \(d\) must be at least max ( \(1, n\) ). \\
\hline & Array e contains the \(n-1\) subdiagonal elements of the tridiagonal matrix \(A\). \\
\hline & The size of e must be at least \(\max (1, n)\). The \(n\)-th element of this array is used as workspace. \\
\hline \(1 d z\) & The leading dimension of the output array \(z ; 1 d z \geq 1\). If jobz \(=\) ' \(V\) ' then \(I d z \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
d
z
e

On exit, if info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order.

Array, size (size \(\max \left(1, l d z^{*}\right)\) ).
If jobz = ' \(V\) ', then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with the eigenvalue returned in \(d[i-1]\).

If job \(=\) ' \(N\) ', then \(z\) is not referenced.
On exit, this array is overwritten with intermediate results.

\section*{Return Values}

This function returns a value info.

If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge;
\(i\) elements of \(e\) did not converge to zero.

\section*{?stevd}

Computes all eigenvalues and, optionally, all eigenvectors of a real symmetric tridiagonal matrix using divide and conquer algorithm.

\section*{Syntax}
```

lapack_int LAPACKE_sstevd (int matrix_layout, char jobz, lapack_int n, float* d, float*
e, float* z, lapack_int ldz);
lapack_int LAPACKE_dstevd (int matrix_layout, char jobz, lapack_int n, double* d,
double* e, double* z, lapack_int ldz);

```

Include Files
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric tridiagonal matrix \(T\). In other words, the routine can compute the spectral factorization of \(T\) as: \(T=Z^{\star} \Lambda^{\star} Z^{T}\).

Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the orthogonal matrix whose columns are the eigenvectors \(z_{i}\). Thus,
```

T* zi

```

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.
There is no complex analogue of this routine.
Input Parameters
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{jobz} & Must be 'N' or 'V'. \\
\hline & If \(j 0 b z=\) ' N ', then only eigenvalues are computed. \\
\hline & If \(j o b z=\) ' V ', then eigenvalues and eigenvectors are computed. \\
\hline \(n\) & The order of the matrix \(T(n \geq 0)\). \\
\hline \multirow[t]{4}{*}{\(d, e\)} & Arrays: \\
\hline & \(d\) contains the \(n\) diagonal elements of the tridiagonal matrix \(T\). \\
\hline & The dimension of \(d\) must be at least max \((1, n)\). \\
\hline & e contains the \(n\)-1 off-diagonal elements of \(T\). \\
\hline
\end{tabular}

The dimension of \(e\) must be at least \(\max (1, n)\). The \(n\)-th element of this array is used as workspace.

The leading dimension of the output array \(z\). Constraints:
\(I d z \geq 1\) if job = 'N';
\(l d z \geq \max (1, n)\) if job \(=\) ' \(V\) '.

\section*{Output Parameters}
d

Z
e
On exit, if info \(=0\), contains the eigenvalues of the matrix \(T\) in ascending order.

See also info.
Array, size \(\max \left(1, l d z_{n}\right)\) if \(j o b z=' V '\) and 1 if jobz \(=' N\) '.
If jobz = ' \(V\) ', then this array is overwritten by the orthogonal matrix \(Z\) which contains the eigenvectors of \(T\).
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
On exit, this array is overwritten with intermediate results.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(||E||_{2}=O(\varepsilon) *| | T| |_{2}\), where \(\varepsilon\) is the machine precision.
If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then
\[
\left|\mu_{i}-\lambda_{i}\right| \leq c(n) * \varepsilon^{\star}| | T| |_{2}
\]
where \(c(n)\) is a modestly increasing function of \(n\).
If \(z_{i}\) is the corresponding exact eigenvector, and \(w_{i}\) is the corresponding computed vector, then the angle \(\theta\left(z_{i}, w_{i}\right)\) between them is bounded as follows:
\(\theta\left(z_{i}, w_{j}\right) \leq c(n) \star \varepsilon^{\star}| | T| |_{2} / \mathrm{min}_{i \neq j}\left|\lambda_{i}-\lambda_{j}\right|\).
Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the other eigenvalues.

\section*{?stevx}

Computes selected eigenvalues and eigenvectors of a
real symmetric tridiagonal matrix.

\section*{Syntax}
```

lapack_int LAPACKE_sstevx (int matrix_layout, char jobz, char range, lapack_int n,
float* d, float* e, float vl, float vu, lapack_int il, lapack_int iu, float abstol,
lapack_int* m, float* w, float* z, lapack_int ldz, lapack_int* ifail);

```
```

lapack_int LAPACKE_dstevx (int matrix_layout, char jobz, char range, lapack_int n,
double* d, double* e, double vl, double vu, lapack_int il, lapack_int iu, double abstol,
lapack_int* m, double* w, double* z, lapack_int ldz, lapack_int* ifail);

```

Include Files
- mkl.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Input Parameters
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{jobz} & Must be ' N ' or 'V'. \\
\hline & If job \(=\) ' N ', then only eigenvalues are computed. \\
\hline & If job \(=\) 'V', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{range} & Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) 'A', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' \(V\) ', the routine computes eigenvalues \(w[i]\) in the half-open interval: vl<w[i] \(\leq v u\). \\
\hline & If range \(=\) 'I', the routine computes eigenvalues with indices il to iu. \\
\hline \(n\) & The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{\(d, e\)} & Arrays: \\
\hline & \(d\) contains the \(n\) diagonal elements of the tridiagonal matrix \(A\). \\
\hline & The dimension of \(d\) must be at least \(\max (1, n)\). \\
\hline & e contains the \(n-1\) subdiagonal elements of \(A\). \\
\hline & The dimension of e must be at least \(\max (1, n-1)\). The \(n\)-th element of this array is used as workspace. \\
\hline \multirow[t]{3}{*}{vl, vu} & If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) 'A' or 'I', vl and vu are not referenced. \\
\hline \multirow[t]{3}{*}{il, iu} & If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and iu=0 if \(n=0\). \\
\hline & If range \(=\) 'A' or 'V', il and iu are not referenced. \\
\hline
\end{tabular}
abstol

The leading dimensions of the output array \(z ; I d z \geq 1\). If jobz \(=\) ' \(V\) ', then \(I d z \geq \max (1, n)\) for column major layout and \(I d z \geq \max (1, m)\) for row major layout.

\section*{Output Parameters}
m
The total number of eigenvalues found,
\(0 \leq m \leq n\).
If range \(=\) ' \(A\) ', \(m=n\), if range \(=' I ', m=i u-i l+1\), and if range \(=\) ' \(V\) ' the exact value of \(m\) is unknown.
\(W, Z\)
\(d, e\)
ifail
Arrays:
\(w\), size at least \(\max (1, n)\).
The first \(m\) elements of \(w\) contain the selected eigenvalues of the matrix \(A\) in ascending order.
\(z\) (size at least max \(\left(1, I d z^{*} m\right.\) ) for column major layout and \(\max \left(1, I d z^{*}\right)\) for row major layout).
If \(j o b z=' V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w[i - 1].

If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
On exit, these arrays may be multiplied by a constant factor chosen to avoid overflow or underflow in computing the eigenvalues.

Array, size at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge.
If jobz \(=\) ' \(N\) ', then ifail is not referenced.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If abstol is less than or equal to zero, then \(\varepsilon^{\star}|A|_{1}\) is used instead. Eigenvalues are computed most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, set abstol to 2*? lamch('S').
```

?stevr
Computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric tridiagonal matrix
using the Relatively Robust Representations.
Syntax
lapack_int LAPACKE_sstevr (int matrix_layout, char jobz, char range, lapack_int n,
float* d, float* e, float vl, float vu, lapack_int il, lapack_int iu, float abstol,
lapack_int* m, float* w, float* z, lapack_int ldz, lapack_int* isuppz);
lapack_int LAPACKE_dstevr (int matrix_layout, char jobz, char range, lapack_int n,
double* d, double* e, double vl, double vu, lapack_int il, lapack_int iu, double abstol,
lapack_int* m, double* w, double* z, lapack_int ldz, lapack_int* isuppz);

```

Include Files
- mkl.h

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(T\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Whenever possible, the routine calls stemr to compute the eigenspectrum using Relatively Robust Representations. stegr computes eigenvalues by the dqds algorithm, while orthogonal eigenvectors are computed from various "good" \(L^{*} D^{*} L^{\top}\) representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the \(i\)-th unreduced block of \(T\) :
a. Compute \(T-\sigma_{i}=L_{i}{ }^{*} D_{i} * L_{i}{ }^{T}\), such that \(L_{i}{ }^{*} D_{i}{ }^{*} L_{i}{ }^{T}\) is a relatively robust representation.
b. Compute the eigenvalues, \(\lambda_{j}\), of \(L_{i}{ }^{*} D_{i}{ }^{*} L_{i}{ }^{T}\) to high relative accuracy by the dqds algorithm.
c. If there is a cluster of close eigenvalues, "choose" \(\sigma_{i}\) close to the cluster, and go to Step (a).
d. Given the approximate eigenvalue \(\lambda_{j}\) of \(L_{i}{ }^{*} D_{i}{ }^{*} L_{i}{ }^{T}\), compute the corresponding eigenvector by forming a rank-revealing twisted factorization.
The desired accuracy of the output can be specified by the input parameter abstol.
The routine ?stevr calls stemr when the full spectrum is requested on machines which conform to the IEEE-754 floating point standard. ?stevr calls stebz and stein on non-IEEE machines and when partial spectrum requests are made.

\section*{Input Parameters}
```

matrix_layout
jobz

```
range

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
Must be 'A' or 'V' or 'I'.

If range \(=\) ' A ', the routine computes all eigenvalues.
If range \(=\) ' \(V\) ', the routine computes eigenvalues \(w[i]\) in the half-open interval:
vl<w[i]svu.
If range \(=\) 'I', the routine computes eigenvalues with indices il to iu.
For range \(=\) 'V'or 'I' and iu-il < n-1, sstebz/dstebz and sstein/ dstein are called.

The order of the matrix \(T(n \geq 0)\).

\section*{Arrays:}
\(d\) contains the \(n\) diagonal elements of the tridiagonal matrix \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
econtains the \(n-1\) subdiagonal elements of \(A\).
The dimension of \(e\) must be at least \(\max (1, n-1)\). The \(n\)-th element of this array is used as workspace.

If range \(=\) ' V ', the lower and upper bounds of the interval to be searched for eigenvalues.

Constraint: vl< vu.
If range \(=\) 'A' or 'I', v/ and \(v u\) are not referenced.

If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.

Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); \(i l=1\) and \(i u=0\) if \(n=0\).
If range \(=\) ' A ' or ' V ', il and \(i u\) are not referenced.
The absolute error tolerance to which each eigenvalue/eigenvector is required.
If \(j o b z=\) ' \(V\) ', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by abstol. If abstol < \(n\) *eps*||T||, then \(n\) *eps*||T|| will be used in its place, where eps is the machine precision, and \(||T||\) is the 1 -norm of the matrix \(T\). The eigenvalues are computed to an accuracy of eps*||T|| irrespective of abstol.

If high relative accuracy is important, set abstol to ? lamch('S').
The leading dimension of the output array \(z\).
Constraints:
\(I d z \geq 1\) if \(j o b z=\) 'N';
\(I d z \geq \max (1, n)\) for column major layout and \(I d z \geq \max (1, m)\) for row major layout if \(j o b z=' \mathrm{~V}\) '.

\section*{Output Parameters}
\(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), if range \(=\) 'I', \(m=i u-i l+1\), and if range \(=\) ' \(V\) ' the exact value of \(m\) is unknown..

W, Z
\(d, e\)
isuppz

Arrays:
\(w\), size at least \(\max (1, n)\).
The first \(m\) elements of \(w\) contain the selected eigenvalues of the matrix \(T\) in ascending order.
\(z\) (size at least \(\max \left(1, I d z^{*}\right)\) for column major layout and \(\max \left(1, I d z_{n}\right)\) for row major layout).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w[i-1].

If jobz = 'N', then \(z\) is not referenced.
On exit, these arrays may be multiplied by a constant factor chosen to avoid overflow or underflow in computing the eigenvalues.

Array, size at least \(2 * \max (1, m)\).
The support of the eigenvectors in \(z\), i.e., the indices indicating the nonzero elements in \(z\). The \(i\)-th eigenvector is nonzero only in elements isuppz[2i
- 2] through isuppz[2i - 1].

Implemented only for range \(=\) 'A' or 'I' and iu-il \(=n-1\).

\section*{Return Values}

This function returns a value info.
If inforo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), an internal error has occurred.

\section*{Application Notes}

Normal execution of the routine ?stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the IEEE standard default manner.

\section*{Nonsymmetric Eigenvalue Problems: LAPACK Driver Routines}

This topic describes LAPACK driver routines used for solving nonsymmetric eigenproblems. See also computational routines that can be called to solve these problems.
Table "Driver Routines for Solving Nonsymmetric Eigenproblems" lists all such driver routines.
Driver Routines for Solving Nonsymmetric Eigenproblems
\begin{tabular}{ll} 
Routine Name & Operation performed \\
\hline gees & \begin{tabular}{l} 
Computes the eigenvalues and Schur factorization of a general matrix, and orders \\
the factorization so that selected eigenvalues are at the top left of the Schur form.
\end{tabular} \\
geesx & \begin{tabular}{l} 
Computes the eigenvalues and Schur factorization of a general matrix, orders the \\
factorization and computes reciprocal condition numbers.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
\hline Routine Name & Operation performed \\
\hline geev & Computes the eigenvalues and left and right eigenvectors of a general matrix. \\
geevx & \begin{tabular}{l} 
Computes the eigenvalues and left and right eigenvectors of a general matrix, with \\
preliminary matrix balancing, and computes reciprocal condition numbers for the \\
eigenvalues and right eigenvectors.
\end{tabular} \\
\hline
\end{tabular}

\section*{?gees \\ Computes the eigenvalues and Schur factorization of a general matrix, and orders the factorization so that selected eigenvalues are at the top left of the Schur form.}

\section*{Syntax}
```

lapack_int LAPACKE_sgees(int matrix_layout, char jobvs, char sort, LAPACK_S_SELECT2
select, lapack_int n, float* a, lapack_int lda, lapack_int* sdim, float* wr, float* wi,
float* vs, lapack_int ldvs);
lapack_int LAPACKE_dgees(int matrix_layout, char jobvs, char sort, LAPACK_D_SELECT2
select, lapack_int n, double* a, lapack_int lda, lapack_int* sdim, double* wr, double*
wi, double* vs, lapack_int ldvs);
lapack_int LAPACKE_cgees(int matrix_layout, char jobvs, char sort, LAPACK_C_SELECT1
select, lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_int* sdim,
lapack_complex_float* w, lapack_complex_float* vs, lapack_int ldvs);
lapack_int LAPACKE_zgees(int matrix_layout, char jobvs, char sort, LAPACK_Z_SELECT1
select, lapack_int n, lapack_complex_double* a, lapack_int lda, lapack_int* sdim,
lapack_complex_double* w, lapack_complex_double* vs, lapack_int ldvs);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes for an \(n\)-by- \(n\) real/complex nonsymmetric matrix \(A\), the eigenvalues, the real Schur form \(T\), and, optionally, the matrix of Schur vectors \(Z\). This gives the Schur factorization \(A=Z^{\star} T^{\star} Z^{H}\).

Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that selected eigenvalues are at the top left. The leading columns of \(Z\) then form an orthonormal basis for the invariant subspace corresponding to the selected eigenvalues.
A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the form

where \(b^{*} c<0\). The eigenvalues of such a block are
\[
a \pm i \sqrt{b c}
\]

A complex matrix is in Schur form if it is upper triangular.

\section*{Input Parameters}
matrix_layout
jobvs
sort
select

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'N' or 'V'.
If jobvs = 'N', then Schur vectors are not computed.
If jobvs = 'V', then Schur vectors are computed.
Must be 'N' or 'S'. Specifies whether or not to order the eigenvalues on the diagonal of the Schur form.

If sort \(=\) ' \(N\) ', then eigenvalues are not ordered.
If sort = 'S', eigenvalues are ordered (see select).
If sort = 'S', select is used to select eigenvalues to sort to the top left of the Schur form.
\(n\)
a

Ida
ldvs

If sort \(=\) ' \(N\) ', select is not referenced.
For real flavors:
An eigenvalue wr[j]+sqrt (-1)*wi[j] is selected if select(wr[j],wi[j]) is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.

For complex flavors:
An eigenvalue \(w[j]\) is selected if \(\operatorname{select}(w[j])\) is true.
Note that a selected complex eigenvalue may no longer satisfy select(wr[j], \(w i[j])=1\) after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info may be set to \(n+2\) (see info below).

The order of the matrix \(A(n \geq 0)\).

\section*{Arrays:}
\(a\) (size at least \(\max \left(1, I d a_{n}\right)\) ) is an array containing the \(n\)-by- \(n\) matrix \(A\).
The leading dimension of the array \(a\). Must be at least max \((1, n)\).
The leading dimension of the output array vs. Constraints:
\(1 d v s \geq 1 ;\)
\(l d v s \geq \max (1, n)\) if jobvs \(=\) ' \(V\) '.

\section*{Output Parameters}
a
sdim
wr, wi
w
vs
On exit, this array is overwritten by the real-Schur/Schur form \(T\).

If sort = 'N', sdim= 0 .
If sort \(=\) ' S ', sdim is equal to the number of eigenvalues (after sorting) for which select is true.
Note that for real flavors complex conjugate pairs for which select is true for either eigenvalue count as 2.

Arrays, size at least max \((1, n)\) each. Contain the real and imaginary parts, respectively, of the computed eigenvalues, in the same order that they appear on the diagonal of the output real-Schur form \(T\). Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.

Array, size at least \(\max (1, n)\). Contains the computed eigenvalues. The eigenvalues are stored in the same order as they appear on the diagonal of the output Schur form \(T\).

Array vs (size at least max(1, ldvs* \(n\) ) ).
If jobvs = 'V', vs contains the orthogonal/unitary matrix \(Z\) of Schur vectors.
If jobvs = 'N', vs is not referenced.

\section*{Return Values}

This function returns a value info.

If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and
\(i \leq n\) :
the \(Q R\) algorithm failed to compute all the eigenvalues; elements 1:ilo-1 and \(i+1: n\) of \(w r\) and \(w i\) (for real flavors) or \(w\) (for complex flavors) contain those eigenvalues which have converged; if jobvs = 'V', vs contains the matrix which reduces \(A\) to its partially converged Schur form;
```

i = n+1:

```
the eigenvalues could not be reordered because some eigenvalues were too close to separate (the problem is very ill-conditioned);
\(i=n+2\) :
after reordering, round-off changed values of some complex eigenvalues so that leading eigenvalues in the Schur form no longer satisfy select \(=1\). This could also be caused by underflow due to scaling.

\section*{?geesx \\ Computes the eigenvalues and Schur factorization of a general matrix, orders the factorization and computes reciprocal condition numbers.}

\section*{Syntax}
```

lapack_int LAPACKE_sgeesx(int matrix_layout, char jobvs, char sort, LAPACK_S_SELECT2
select, char sense, lapack_int n, float* a, lapack_int lda, lapack_int* sdim, float* wr,
float* wi, float* vs, lapack_int ldvs, float* rconde, float* rcondv);
lapack_int LAPACKE_dgeesx(int matrix_layout, char jobvs, char sort, LAPACK_D_SELECT2
select, char sense, lapack_int n, double* a, lapack_int lda, lapack_int* sdim, double*
wr, double* wi, double* vS, lapack_int ldvs, double* rconde, double* rcondv);
lapack_int LAPACKE_cgeesx(int matrix_layout, char jobvs, char sort, LAPACK_C_SELECT1
select, char sense, lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_int*
sdim, lapack_complex_float* w, lapack_complex_float* vs, lapack_int ldvs, float*
rconde, float* rcondv);
lapack_int LAPACKE_zgeesx(int matrix_layout, char jobvs, char sort, LAPACK_Z_SELECT1
select, char sense, lapack_int n, lapack_complex_double* a, lapack_int lda, lapack_int*
sdim, lapack_complex_double* w, lapack_complex_double* vs, lapack_int ldvs, double*
rconde, double* rcondv);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes for an \(n\)-by- \(n\) real/complex nonsymmetric matrix \(A\), the eigenvalues, the real-Schur/ Schur form \(T\), and, optionally, the matrix of Schur vectors \(Z\). This gives the Schur factorization \(A=Z^{\star} T^{\star} Z^{H}\).

Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that selected eigenvalues are at the top left; computes a reciprocal condition number for the average of the selected eigenvalues (rconde); and computes a reciprocal condition number for the right invariant subspace corresponding to the selected eigenvalues (rcondv). The leading columns of \(Z\) form an orthonormal basis for this invariant subspace.

For further explanation of the reciprocal condition numbers rconde and rcondv, see [LUG], Section 4.10 (where these quantities are called \(s\) and sep respectively).
A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the form

where \(b^{*} c<0\). The eigenvalues of such a block are
\[
a \pm i \sqrt{b c}
\]

A complex matrix is in Schur form if it is upper triangular.
Input Parameters
matrix_layout
jobvs
sort

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'N' or 'V'.
If jobvs = 'N', then Schur vectors are not computed.
If jobvs = 'V', then Schur vectors are computed.
Must be 'N' or 'S'. Specifies whether or not to order the eigenvalues on the diagonal of the Schur form.

If sort \(=\) ' \(N\) ', then eigenvalues are not ordered.
If sort \(=\) 'S', eigenvalues are ordered (see select).

sense
\(n\)
a
lda
ldvs

If sort = 'S', select is used to select eigenvalues to sort to the top left of the Schur form.

If sort \(=\) ' N ', select is not referenced.
For real flavors:
An eigenvalue \(w r[j]+\) sqrt \((-1) * w i[j]\) is selected if select \((w r[j], w i[j])\) is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.

For complex flavors:
An eigenvalue \(w[j]\) is selected if \(\operatorname{select}(w[j])\) is true.
Note that a selected complex eigenvalue may no longer satisfy select(wr[j], \(w i[j])=1\) after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info may be set to \(n+2\) (see info below).

Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed.

If sense \(=\) ' N ', none are computed;
If sense = 'E', computed for average of selected eigenvalues only;
If sense \(=\) 'V', computed for selected right invariant subspace only;
If sense = 'B', computed for both.
If sense is 'E', 'V', or 'B', then sort must equal 'S'.
The order of the matrix \(A(n \geq 0)\).

\section*{Arrays:}
\(a\) (size at least \(\max \left(1, I d a_{n}\right)\) ) is an array containing the \(n\)-by- \(n\) matrix \(A\).
The leading dimension of the array \(a\). Must be at least max \((1, n)\).
The leading dimension of the output array vs. Constraints:
\(1 d v s \geq 1 ;\)
\(I d v s \geq \max (1, n)\) if jobvs \(=\) ' \(V\) '.

\section*{Output Parameters}
a
sdim

On exit, this array is overwritten by the real-Schur/Schur form \(T\).

If sort \(=\) ' N ', sdim \(=0\).
If sort \(=\) ' S ', sdim is equal to the number of eigenvalues (after sorting) for which select is true.

Note that for real flavors complex conjugate pairs for which select is true for either eigenvalue count as 2 .
```

wr, wi Arrays, size at least max (1, n) each. Contain the real and imaginary parts,
respectively, of the computed eigenvalues, in the same order that they
appear on the diagonal of the output real-Schur form T. Complex conjugate
pairs of eigenvalues appear consecutively with the eigenvalue having
positive imaginary part first.
Array, size at least max(1,n). Contains the computed eigenvalues. The
eigenvalues are stored in the same order as they appear on the diagonal of
the output Schur form T.
Array vs (size at least max(1, ldvs*n))
If jobvs = 'V',vs contains the orthogonal/unitary matrix Z of Schur
vectors.
If jobvs = 'N',vs is not referenced.
If sense = 'E' or 'B', rconde contains the reciprocal condition number for
the average of the selected eigenvalues.
If sense = 'N' or 'V', rconde is not referenced.
If sense = 'V' or 'B', rcondv contains the reciprocal condition number for
the selected right invariant subspace.
If sense = 'N' or 'E',rcondv is not referenced.

```

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and
\(i \leq n\) :
the \(Q R\) algorithm failed to compute all the eigenvalues; elements 1:ilo-1 and \(i+1: n\) of \(w r\) and \(w i\) (for real flavors) or \(w\) (for complex flavors) contain those eigenvalues which have converged; if jobvs = 'V', vs contains the transformation which reduces \(A\) to its partially converged Schur form;
```

i = n+1:

```
the eigenvalues could not be reordered because some eigenvalues were too close to separate (the problem is very ill-conditioned);
```

i = n+2:

```
after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the Schur form no longer satisfy select \(=1\). This could also be caused by underflow due to scaling.

\section*{?geev}

Computes the eigenvalues and left and right
eigenvectors of a general matrix.

\section*{Syntax}
```

lapack_int LAPACKE_sgeev(int matrix_layout, char jobvl, char jobvr, lapack_int n,
float* a, lapack_int lda, float* wr, float* wi, float* vl, lapack_int ldvl, float* vr,
lapack_int ldvr);

```
```

lapack_int LAPACKE_dgeev(int matrix_layout, char jobvl, char jobvr, lapack_int n,
double* a, lapack_int lda, double* wr, double* wi, double* vl, lapack_int ldvl, double*
vr, lapack_int ldvr);
lapack_int LAPACKE_cgeev(int matrix_layout, char jobvl, char jobvr, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* w, lapack_complex_float*
vl, lapack_int ldvl, lapack_complex_float* vr, lapack_int ldvr);
lapack_int LAPACKE_zgeev(int matrix_layout, char jobvl, char jobvr, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* w,
lapack_complex_double* vl, lapack_int ldvl, lapack_complex_double* vr, lapack_int
ldvr);

```

Include Files
- mkl.h

\section*{Description}

The routine computes for an \(n-b y-n\) real/complex nonsymmetric matrix \(A\), the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector \(v\) of \(A\) satisfies
```

A*V = \lambda*V

```
where \(\lambda\) is its eigenvalue.
The left eigenvector \(u\) of \(A\) satisfies
\[
u^{\mathrm{H} *} A=\lambda^{\star} u^{\mathrm{H}}
\]
where \(u^{H}\) denotes the conjugate transpose of \(u\). The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

\section*{Input Parameters}
```

matrix_layout
jobvl
jobvr Must be 'N' or 'V'.
If jobvr = 'N', then right eigenvectors of A are not computed.
If jobvr = 'V', then right eigenvectors of A are computed.
The order of the matrix A (}n\geq0)\mathrm{ .
a (size at least max (1, lda*n)) is an array containing the n-by-n matrix A.
The leading dimension of the array a. Must be at least max (1, n).
The leading dimensions of the output arrays vI and vr, respectively.
Constraints:
ldvl\geq 1; ldvr\geq 1.
If jobvl = 'V', ldvl\geq max(1, n);

```
```

If jobvr = 'V', ldvr\geq max(1, n).

```

\section*{Output Parameters}
\(a\)
```

wr, wi

```
w
vl, vr

On exit, this array is overwritten.
Arrays, size at least max \((1, n)\) each.
Contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.

Array, size at least max \((1, n)\).
Contains the computed eigenvalues.
Arrays:
\(v l\left(\right.\) size at least \(\left.\max \left(1, I d v \|_{n}\right)\right)\).
If jobvl = 'N', vl is not referenced.

\section*{For real flavors:}

If the \(j\)-th eigenvalue is real, the \(i\)-th component of the \(j\)-th eigenvector \(u_{j}\) is stored in \(v l[(i-1)+(j-1) * l d v l]\) for column major layout and in vl[(i-1)*ldvl + (j - 1)] for row major layout..

If the \(j\)-th and \((j+1)\)-st eigenvalues form a complex conjugate pair, then for \(i=\operatorname{sqrt}(-1)\), the \(k\)-th component of the \(j\)-th eigenvector \(u_{j}\) is \(v l[(k-1)\) \(\left.+(j-1)^{*} l d v l\right]+i^{*} v l\left[(k-1)+j^{*} l d v l\right]\) for column major layout and as \(v l[(k-1) * l d v l+(j-1)]+i^{*} v l[(k-1) * l d v l+j]\) for row major layout. Similarly, the \(k\)-th component of vector \((j+1) u_{j+1}\) is \(v 1[(k-1)+(j-\)
\(\left.1)^{*} l d v l\right]-i^{*} v l\left[(k-1)+j^{*} l d v l\right]\) for column major layout and as \(v l[(k-\) \(\left.1)^{*} l d v l+(j-1)\right]-i^{*} v l[(k-1) * l d v l+j]\) for row major layout. .

For complex flavors:
The \(i\)-th component of the \(j\)-th eigenvector \(u_{j}\) is stored in \(v l[(i-1)+\) (j - 1)*ldvl] for column major layout and in vl[(i - 1)*ldvl+(j 1)] for row major layout.
\(v r\left(\right.\) size at least \(\left.\max \left(1, l d v r_{n}\right)\right)\).
If jobvr = 'N', vr is not referenced.
For real flavors:
If the \(j\)-th eigenvalue is real, then the \(i\)-th component of \(j\)-th eigenvector \(v_{j}\) is stored in \(\operatorname{vr}[(i-1)+(j-1) * I d v r]\) for column major layout and in \(\operatorname{vr}[(i-1) * l d v r+(j-1)]\) for row major layout..

If the \(j\)-th and \((j+1)\)-st eigenvalues form a complex conjugate pair, then for \(i=\operatorname{sqrt}(-1)\), the \(k\)-th component of the \(j\)-th eigenvector \(v_{j}\) is \(\operatorname{vr}[(k-1)\) \(\left.+(j-1)^{*} I d v r\right]+i^{*} v_{V r}\left[(k-1)+j^{*} I d v r\right]\) for column major layout and as \(\operatorname{vr}\left[(k-1)^{*} l d v r+(j-1)\right]+i^{*} \operatorname{vr}\left[(k-1)^{*} l d v r+j\right]\) for row major layout. Similarly, the \(k\)-th component of vector \(j+1) v_{j+1}\) is \(\operatorname{vr}[(k-1)+(j-\)
\(\left.1)^{*} I d v r\right]-i^{*} \operatorname{vr}\left[(k-1)+j^{*} I d v r\right]\) for column major layout and as \(\operatorname{vr}[(k-\) \(\left.1)^{*} l d v r+(j-1)\right]-i^{*} \operatorname{vr}[(k-1) * I d v r+j]\) for row major layout.

For complex flavors:

The \(i\)-th component of the \(j\)-th eigenvector \(v_{j}\) is stored in \(\operatorname{vr}[(i-1)+(j\) - 1)*Idvr] for column major layout and in \(\operatorname{vr}[(i-1) * I d v r+(j-\) 1)] for row major layout.

\section*{Return Values}

This function returns a value info.
If infor \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the \(Q R\) algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements \(i+1\) : \(n\) of wr and wi (for real flavors) or \(w\) (for complex flavors) contain those eigenvalues which have converged.

\begin{abstract}
?geevx
Computes the eigenvalues and left and right eigenvectors of a general matrix, with preliminary matrix balancing, and computes reciprocal condition numbers for the eigenvalues and right eigenvectors.
\end{abstract}

\section*{Syntax}
```

lapack_int LAPACKE_sgeevx(int matrix_layout, char balanc, char jobvl, char jobvr, char
sense, lapack_int n, float* a, lapack_int lda, float* wr, float* wi, float* vl,
lapack_int ldvl, float* vr, lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, float*
scale, float* abnrm, float* rconde, float* rcondv);
lapack_int LAPACKE_dgeevx(int matrix_layout, char balanc, char jobvl, char jobvr, char
sense, lapack_int n, double* a, lapack_int lda, double* wr, double* wi, double* vl,
lapack_int ldvl, double* vr, lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, double*
scale, double* abnrm, double* rconde, double* rcondv);
lapack_int LAPACKE_cgeevx(int matrix_layout, char balanc, char jobvl, char jobvr, char
sense, lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_complex_float* w,
lapack_complex_float* vl, lapack_int ldvl, lapack_complex_float* vr, lapack_int ldvr,
lapack_int* ilo, lapack_int* ihi, float* scale, float* abnrm, float* rconde, float*
rcondv);
lapack_int LAPACKE_zgeevx(int matrix_layout, char balanc, char jobvl, char jobvr, char
sense, lapack_int n, lapack_complex_double* a, lapack_int lda, lapack_complex_double*
w, lapack_complex_double* vl, lapack_int ldvl, lapack_complex_double* vr, lapack_int
ldvr, lapack_int* ilo, lapack_int* ihi, double* scale, double* abnrm, double* rconde,
double* rcondv);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes for an \(n\)-by- \(n\) real/complex nonsymmetric matrix \(A\), the eigenvalues and, optionally, the left and/or right eigenvectors.

Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors (ilo, ihi, scale, and abnrm), reciprocal condition numbers for the eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).

The right eigenvector \(v\) of \(A\) satisfies
\(A \cdot v=\lambda \cdot v\)
where \(\lambda\) is its eigenvalue.
The left eigenvector \(u\) of \(A\) satisfies
\(u^{H} A=\lambda u^{H}\)
where \(u^{H}\) denotes the conjugate transpose of \(u\). The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

Balancing a matrix means permuting the rows and columns to make it more nearly upper triangular, and applying a diagonal similarity transformation \(D^{*} A^{*} \operatorname{inv}(D)\), where \(D\) is a diagonal matrix, to make its rows and columns closer in norm and the condition numbers of its eigenvalues and eigenvectors smaller. The computed reciprocal condition numbers correspond to the balanced matrix. Permuting rows and columns will not change the condition numbers in exact arithmetic) but diagonal scaling will. For further explanation of balancing, see [LUG], Section 4.10.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{6}{*}{balanc} & Must be 'N', 'P', 'S', or 'B'. Indicates how the input matrix should be diagonally scaled and/or permuted to improve the conditioning of its eigenvalues. \\
\hline & If balanc = 'N', do not diagonally scale or permute; \\
\hline & If balanc = 'P', perform permutations to make the matrix more nearly upper triangular. Do not diagonally scale; \\
\hline & If balanc = 'S', diagonally scale the matrix, i.e. replace \(A\) by \(D^{*} A^{*}{ }_{\text {inv }}(D)\), where \(D\) is a diagonal matrix chosen to make the rows and columns of \(A\) more equal in norm. Do not permute; \\
\hline & If balanc = 'B', both diagonally scale and permute \(A\). \\
\hline & Computed reciprocal condition numbers will be for the matrix after balancing and/or permuting. Permuting does not change condition numbers (in exact arithmetic), but balancing does. \\
\hline \multirow[t]{4}{*}{jobvl} & Must be 'N' or 'V'. \\
\hline & If jobvl = ' N ', left eigenvectors of \(A\) are not computed; \\
\hline & If jobvl = 'V', left eigenvectors of \(A\) are computed. \\
\hline & If sense = 'E' or 'B', then jobvl must be 'V'. \\
\hline \multirow[t]{4}{*}{jobvr} & Must be 'N' or 'V'. \\
\hline & If jobvr = 'N', right eigenvectors of \(A\) are not computed; \\
\hline & If jobvr = 'V', right eigenvectors of \(A\) are computed. \\
\hline & If sense = 'E' or 'B', then jobvr must be 'V'. \\
\hline \multirow[t]{2}{*}{sense} & Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed. \\
\hline & If sense = 'N', none are computed; \\
\hline
\end{tabular}

If sense \(=\) ' \(E\) ', computed for eigenvalues only;
If sense \(=\) ' \(V\) ', computed for right eigenvectors only;
If sense \(=\) ' \(B\) ', computed for eigenvalues and right eigenvectors.
If sense is ' E ' or ' B ', both left and right eigenvectors must also be computed (jobvl = 'V' and jobvr = 'V').

The order of the matrix \(A(n \geq 0)\).
Arrays:
\(a\) (size at least \(\max \left(1, I d a_{n}\right)\) ) is an array containing the \(n\)-by- \(n\) matrix \(A\).
The leading dimension of the array \(a\). Must be at least max \((1, n)\).
The leading dimensions of the output arrays \(v /\) and \(v r\), respectively.
Constraints:
\(\operatorname{ldv} \geq \geq 1 ; ~ l d v r \geq 1\).
If jobvl = 'V', \(l d v l \geq \max (1, n)\);
If jobvr = 'V', \(\operatorname{ldvr} \geq \max (1, n)\).

\section*{Output Parameters}
a
wr, wi
w
vl, vr
On exit, this array is overwritten.
If jobvl = 'V' or jobvr = 'V', it contains the real-Schur/Schur form of the balanced version of the input matrix \(A\).

Arrays, size at least max \((1, n)\) each. Contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.

Array, size at least \(\max (1, n)\). Contains the computed eigenvalues.
Arrays:
vl (size at least max \(\left.\left(1, I d v I_{n}\right)\right)\).
If jobvl = 'N', vl is not referenced.
For real flavors:
If the \(j\)-th eigenvalue is real, the \(i\)-th component of the \(j\)-th eigenvector \(u_{j}\) is stored in vl[(i-1) + (j-1)*ldvl] for column major layout and in vl[(i-1)*ldvl + (j-1)] for row major layout..
If the \(j\)-th and \((j+1)\)-st eigenvalues form a complex conjugate pair, then for \(i=\operatorname{sqrt}(-1)\), the \(k\)-th component of the \(j\)-th eigenvector \(u_{j}\) is \(v \beth[(k-1)\) \(\left.+(j-1)^{*} l d v l\right]+i^{*} v l\left[(k-1)+j^{*} l d v l\right]\) for column major layout and as \(v I[(k-1) * I d v I+(j-1)]+i^{*} v I\left[(k-1)^{*} I d v I+j\right]\) for row major layout. Similarly, the \(k\)-th component of vector \((j+1) u_{j+1}\) is \(v 1[(k-1)+(j-\)
\(\left.1)^{*} l d v l\right]-i^{*} v l\left[(k-1)+j^{*} \_d v l\right]\) for column major layout and as \(v l[(k-\)
\(\left.1)^{*} l d v l+(j-1)\right]-i^{*} v l[(k-1) * l d v l+j]\) for row major layout. .
For complex flavors:
ilo, ihi
scale
abnrm
rconde, rcondv

The \(i\)-th component of the \(j\)-th eigenvector \(u_{j}\) is stored in \(v l[(i-1)+\) (j - 1)*ldvl] for column major layout and in \(v l[(i-1) * l d v l+(j-\) 1)] for row major layout.
vr (size at least \(\max \left(1, I d v r_{n}\right)\) ).
If jobvr = 'N', vr is not referenced.
For real flavors:
If the \(j\)-th eigenvalue is real, then the \(i\)-th component of \(j\)-th eigenvector \(v_{j}\) is stored in \(\operatorname{vr}[(i-1)+(j-1) * l d v r]\) for column major layout and in \(\operatorname{vr}[(i-1) * l d v r+(j-1)]\) for row major layout..

If the \(j\)-th and \((j+1)\)-st eigenvalues form a complex conjugate pair, then for \(i=\operatorname{sqrt}(-1)\), the \(k\)-th component of the \(j\)-th eigenvector \(v_{j}\) is \(\operatorname{vr}[(k-1)\) \(\left.+(j-1)^{*} I d v r\right]+i^{*} v_{r r}\left[(k-1)+j^{*} l d v r\right]\) for column major layout and as \(\operatorname{vr}[(k-1) * l d v r+(j-1)]+i^{*} v_{v r}[(k-1) * l d v r+j]\) for row major layout. Similarly, the \(k\)-th component of vector \(j+1) v_{j+1}\) is \(\operatorname{vr}[(k-1)+(j-\)
1)* \(1 d v r]-i^{*} \operatorname{vr}\left[(k-1)+j^{*} l d v r\right]\) for column major layout and as \(\operatorname{vr}[(k-\) \(\left.1)^{*} l d v r+(j-1)\right]-\mathrm{i}^{*} \operatorname{vr}\left[(k-1)^{*} l d v r+j\right]\) for row major layout.

\section*{For complex flavors:}

The \(i\)-th component of the \(j\)-th eigenvector \(v_{j}\) is stored in \(\operatorname{vr}[(i-1)+(j\) - 1)*ldvr] for column major layout and in \(\operatorname{vr}[(i-1) * l d v r+(j-\) 1) ] for row major layout.
ilo and ihi are integer values determined when \(A\) was balanced.
The balanced \(A(i, j)=0\) if \(i>j\) and \(j=1, \ldots, i l o-1\) or \(i=\) ihi +1,..., n.

If balanc \(=\) 'N' or 'S', ilo = 1 and ihi = n.
Array, size at least max \((1, n)\). Details of the permutations and scaling factors applied when balancing \(A\).

If \(P[j-1]\) is the index of the row and column interchanged with row and column \(j\), and \(D[j-1]\) is the scaling factor applied to row and column \(j\), then
scale[j - 1] \(=P[j-1]\), for \(j=1, \ldots, i l o-1\)
\(=D[j-1]\), for \(j=i l o, \ldots, i h i\)
\(=P[j-1]\) for \(j=i h i+1, \ldots, n\).
The order in which the interchanges are made is \(n\) to \(i h i+1\), then 1 to ilo-1.
The one-norm of the balanced matrix (the maximum of the sum of absolute values of elements of any column).

Arrays, size at least \(\max (1, n)\) each.
rconde[ \(j-1]\) is the reciprocal condition number of the \(j\)-th eigenvalue.
rcondv[j-1] is the reciprocal condition number of the \(j\)-th right eigenvector.

\section*{Return Values}

This function returns a value info.

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the \(Q R\) algorithm failed to compute all the eigenvalues, and no eigenvectors or condition numbers have been computed; elements 1:ilo-1 and \(i+1\) :n of wr and wi (for real flavors) or \(w\) (for complex flavors) contain eigenvalues which have converged.

\section*{Singular Value Decomposition: LAPACK Driver Routines}

Table "Driver Routines for Singular Value Decomposition" lists the LAPACK driver routines that perform singular value decomposition.

\section*{Driver Routines for Singular Value Decomposition}
\begin{tabular}{ll}
\hline Routine Name & Operation performed \\
\hline ?gesvd & \begin{tabular}{l} 
Computes the singular value decomposition of a general rectangular matrix. \\
?gesdd \\
?gejsv \\
divide and conquer method.
\end{tabular} \\
?gesvj & \begin{tabular}{l} 
Computes the singular value decomposition of a real matrix using a preconditioned \\
Jacobi SVD method.
\end{tabular} \\
?ggsvd & \begin{tabular}{l} 
Computes the singular value decomposition of a real matrix using Jacobi plane \\
rotations.
\end{tabular} \\
?gesvdx & \begin{tabular}{l} 
Computes the generalized singular value decomposition of a pair of general \\
rectangular matrices.
\end{tabular} \\
?bdsvdx & Computes the SVD and left and right singular vectors for a matrix. \\
\hline
\end{tabular}

\section*{Singular Value Decomposition - LAPACK Computational Routines}

\section*{?gesvd}

Computes the singular value decomposition of a
general rectangular matrix.

\section*{Syntax}
```

lapack_int LAPACKE_sgesvd(int matrix_layout, char jobu, char jobvt, lapack_int m,
lapack_int n, float* a, lapack_int lda, float* s, float* u, lapack_int ldu, float* vt,
lapack_int ldvt, float* superb);
lapack_int LAPACKE_dgesvd(int matrix_layout, char jobu, char jobvt, lapack_int m,
lapack_int n, double* a, lapack_int lda, double* s, double* u, lapack_int ldu, double*
vt, lapack_int ldvt, double* superb);
lapack_int LAPACKE_cgesvd(int matrix_layout, char jobu, char jobvt, lapack_int m,
lapack_int n, lapack_complex_float* a, lapack_int lda, float* s, lapack_complex_float*
u, lapack_int ldu, lapack_complex_float* vt, lapack_int ldvt, float* superb);
lapack_int LAPACKE_zgesvd(int matrix_layout, char jobu, char jobvt, lapack_int m,
lapack_int n, lapack_complex_double* a, lapack_int lda, double* s,
lapack_complex_double* u, lapack_int ldu, lapack_complex_double* vt, lapack_int ldvt,
double* superb);

```

Include Files
- mkl.h

\section*{Description}

The routine computes the singular value decomposition (SVD) of a real/complex \(m\)-by- \(n\) matrix \(A\), optionally computing the left and/or right singular vectors. The SVD is written as
\(A=U^{\star} \Sigma^{\star} V^{T}\) for real routines
\(A=U^{\star} \Sigma^{\star} V^{H}\) for complex routines
where \(\Sigma\) is an \(m\)-by- \(n\) matrix which is zero except for its \(\min (m, n)\) diagonal elements, \(U\) is an \(m\)-by- \(m\) orthogonal/unitary matrix, and \(V\) is an \(n\)-by- \(n\) orthogonal/unitary matrix. The diagonal elements of \(\Sigma\) are the singular values of \(A\); they are real and non-negative, and are returned in descending order. The first min \((m\), \(n\) ) columns of \(U\) and \(V\) are the left and right singular vectors of \(A\).

The routine returns \(V^{T}\) (for real flavors) or \(V^{H}\) (for complex flavors), not \(V\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{4}{*}{jobu} & Must be 'A', 'S', 'O', or 'N'. Specifies options for computing all or part of the matrix \(U\). \\
\hline & \begin{tabular}{l}
If jobu = 'A', all \(m\) columns of \(U\) are returned in the array \(u\); \\
if jobu \(=\) ' S ', the first \(\min (m, n)\) columns of \(U\) (the left singular vectors) are returned in the array \(u\);
\end{tabular} \\
\hline & if jobu = 'O', the first \(\min (m, n)\) columns of \(U\) (the left singular vectors) are overwritten on the array \(a\); \\
\hline & if jobu = 'N', no columns of U (no left singular vectors) are computed. \\
\hline \multirow[t]{6}{*}{jobvt} & Must be 'A', 'S', 'O', or 'N'. Specifies options for computing all or part of the matrix \(V^{\top} / V^{H}\). \\
\hline & If jobvt = 'A', all \(n\) rows of \(V^{T} / V^{H}\) are returned in the array \(v t\); \\
\hline & if jobvt \(=\) ' \(S\) ', the first \(\min (m, n)\) rows of \(V^{T} / V^{H}\) (the right singular vectors) are returned in the array \(v t\); \\
\hline & if jobvt \(=' O^{\prime}\), the first \(\min (m, n)\) rows of \(V^{\top} / V^{H}\) ) (the right singular vectors) are overwritten on the array \(a\); \\
\hline & if jobvt \(=\) ' \(N\) ', no rows of \(V^{T} / V^{H}\) (no right singular vectors) are computed. \\
\hline & jobvt and jobu cannot both be '0'. \\
\hline m & The number of rows of the matrix \(A(m \geq 0)\). \\
\hline \(n\) & The number of columns in \(A(n \geq 0)\). \\
\hline \multirow[t]{2}{*}{a} & Arrays: \\
\hline & \(a\) (size at least \(\max \left(1, I d a *_{n}\right)\) for column major layout and \(\max \left(1, I d^{*} *_{m}\right)\) for row major layout) is an array containing the \(m\)-by-n matrix \(A\). \\
\hline \multirow[t]{2}{*}{Ida} & The leading dimension of the array \(a\). \\
\hline & Must be at least max(1,m) for column major layout and at least max(1, \(n\) ) for row major layout. \\
\hline
\end{tabular}
ldu, ldvt
la,

Output Parameters
a

S
\(u, v t\)

The leading dimensions of the output arrays \(u\) and \(v t\), respectively. Constraints:
\(1 d u \geq 1 ; ~ l d v t \geq 1\).
If jobu = 'A', Idu \(\geq m\);
If jobu = 'S', Idu \(\geq m\) for column major layout and \(I d u \geq \min (m, n)\) for row major layout;

If jobvt = 'A', ldvt \(\geq \mathrm{n}\);
If jobvt \(=' S ', l d v t \geq \min (m, n)\) for column major layout and \(/ d v t \geq n\) for row major layout.

On exit,
If jobu = ' \(O\) ', \(a\) is overwritten with the first \(\min (m, n)\) columns of \(U\) (the left singular vectors stored columnwise);

If jobvt = 'O', a is overwritten with the first \(\min (m, n)\) rows of \(V^{T} / V^{H}\) (the right singular vectors stored rowwise);
If jobuキ'O' and jobvtキ'O', the contents of a are destroyed.
Array, size at least \(\max (1, \min (m, n))\). Contains the singular values of \(A\) sorted so that \(s[i] \geq s[i+1]\).

Arrays:
Array u minimum size:
\begin{tabular}{|lll|}
\hline & \begin{tabular}{l} 
Column major \\
layout
\end{tabular} & Row major layout \\
\hline jobu = 'A' & \(\max \left(1, I d u^{*} m\right)\) & \(\max \left(1, I d u^{*} m\right)\) \\
jobu \(=\) 'S' & \begin{tabular}{l}
\(\max \left(1, I d u^{*} \min (m\right.\), \\
\(n))\)
\end{tabular} & \(\max \left(1, I d u^{*} m\right)\) \\
\hline
\end{tabular}

If jobu = 'A', \(u\) contains the \(m\)-by- \(m\) orthogonal/unitary matrix \(U\).
If jobu = 'S', \(u\) contains the first \(\min (m, n)\) columns of \(U\) (the left singular vectors stored column-wise).
If jobu = 'N' or 'O', \(u\) is not referenced.
Array v minimum size:
\begin{tabular}{|c|c|c|}
\hline & Column major layout & Row major layout \\
\hline jobvt = 'A' & \(\max \left(1,1 d v t^{*}{ }_{n}\right)\) & \(\max \left(1,1 d v t^{*}{ }_{n}\right)\) \\
\hline jobvt = 'S' & \[
\begin{aligned}
& \max (1, l d v t * \min (m, \\
& n))
\end{aligned}
\] & \(\max \left(1,1 d v t^{*}{ }_{n}\right)\) \\
\hline
\end{tabular}

If jobvt = 'A', vt contains the \(n\)-by-n orthogonal/unitary matrix \(V^{\top} / V^{H}\).
If jobvt \(=\) ' S ', vt contains the first \(\min (m, n)\) rows of \(V^{T} / V^{H}\) (the right singular vectors stored row-wise).

If jobvt = 'N'or 'O', vt is not referenced.
superb
If ?bdsqr does not converge (indicated by the return value info \(>0\) ), on exit superb \((0: \min (m, n)-2)\) contains the unconverged superdiagonal elements of an upper bidiagonal matrix \(B\) whose diagonal is in \(s\) (not necessarily sorted). \(B\) satisfies \(A=u^{\star} B^{\star} V^{T}\) (real flavors) or \(A=u^{\star} B^{\star} V^{H}\) (complex flavors), so it has the same singular values as \(A\), and singular vectors related by \(u\) and \(v t\).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then if ?bdsqr did not converge, \(i\) specifies how many superdiagonals of the intermediate bidiagonal form \(B\) did not converge to zero (see the description of the superb parameter for details).

\section*{?gesdd}

Computes the singular value decomposition of a general rectangular matrix using a divide and conquer method.

\section*{Syntax}
```

lapack_int LAPACKE_sgesdd(int matrix_layout, char jobz, lapack_int m, lapack_int n,
float* a, lapack_int lda, float* s, float* u, lapack_int ldu, float* vt, lapack_int
ldvt);
lapack_int LAPACKE_dgesdd(int matrix_layout, char jobz, lapack_int m, lapack_int n,
double* a, lapack_int lda, double* s, double* u, lapack_int ldu, double* vt, lapack_int
ldvt);
lapack_int LAPACKE_cgesdd(int matrix_layout, char jobz, lapack_int m, lapack_int n,
lapack_complex_float* a, lapack_int lda, float* s, lapack_complex_float* u, lapack_int
ldu, lapack_complex_float* vt, lapack_int ldvt);
lapack_int LAPACKE_zgesdd(int matrix_layout, char jobz, lapack_int m, lapack_int n,
lapack_complex_double* a, lapack_int lda, double* s, lapack_complex_double* u,
lapack_int ldu, lapack_complex_double* vt, lapack_int ldvt);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes the singular value decomposition (SVD) of a real/complex m-by-n matrix \(A\), optionally computing the left and/or right singular vectors.

If singular vectors are desired, it uses a divide-and-conquer algorithm. The SVD is written
\(A=U^{\star} \Sigma^{\star} V^{\mathbb{T}}\) for real routines,
\(A=U^{\star} \Sigma^{\star} V^{H}\) for complex routines,
where \(\Sigma\) is an \(m\)-by- \(n\) matrix which is zero except for its \(\min (m, n)\) diagonal elements, \(U\) is an \(m\)-by- \(m\) orthogonal/unitary matrix, and \(V\) is an \(n\)-by- \(n\) orthogonal/unitary matrix. The diagonal elements of \(\Sigma\) are the singular values of \(A\); they are real and non-negative, and are returned in descending order. The first \(\min (m\), \(n\) ) columns of \(U\) and \(V\) are the left and right singular vectors of \(A\).
Note that the routine returns \(v t=V^{\top}\) (for real flavors) or \(v t=V^{H}\) (for complex flavors), not \(V\).

\section*{Input Parameters}
matrix_layout
jobz
m
n
a

Ida

Idu, Idvt

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'A', 'S', 'O', or 'N'.
Specifies options for computing all or part of the matrices \(U\) and \(V\).
If jobz = 'A', all \(m\) columns of \(U\) and all \(n\) rows of \(V^{\top}\) or \(V^{H}\) are returned in the arrays \(u\) and \(v t\);
if jobz \(=\) 'S', the first \(\min (m, n)\) columns of \(U\) and the first \(\min (m, n)\) rows of \(V^{\top}\) or \(V^{H}\) are returned in the arrays \(u\) and \(v t\);
if jobz = 'O', then
if \(m \geq n\), the first \(n\) columns of \(U\) are overwritten in the array a and all rows of \(V^{\top}\) or \(V^{H}\) are returned in the array \(v t\);
if \(m<n\), all columns of \(U\) are returned in the array \(u\) and the first \(m\) rows of \(V^{\top}\) or \(V^{H}\) are overwritten in the array \(a\);
if jobz \(=\) 'N', no columns of \(U\) or rows of \(V^{\top}\) or \(V^{H}\) are computed.
The number of rows of the matrix \(A(m \geq 0)\).
The number of columns in \(A(n \geq 0)\).
\(a\left(\right.\) size \(\max \left(1, I d a *_{n}\right)\) for column major layout and \(\max \left(1, I d a *_{m}\right)\) for row major layout) is an array containing the \(m\)-by-n matrix \(A\).

The leading dimension of the array \(a\). Must be at least max \((1, m)\) for column major layout and at least \(\max (1, n)\) for row major layout.

The leading dimensions of the output arrays \(u\) and \(v t\), respectively.
The minimum size of \(I d u\) is
\begin{tabular}{|lll|}
\hline jobz & \(m \geq n\) & \(m<n\) \\
\hline 'N' & 1 & 1 \\
'A' & \(m\) & \(m\) \\
' ' ' \(^{\prime}\) & \begin{tabular}{l} 
m for column major \\
layout; n for row \\
major layout
\end{tabular} & \(m\) \\
& 1 & \(m\) \\
\hline
\end{tabular}

The minimum size of \(l d v t\) is
\begin{tabular}{|lll|}
\hline jobz & \(m \geq n\) & \(m<n\) \\
\hline\('^{\prime} N^{\prime}\) & 1 & 1
\end{tabular}
\begin{tabular}{|lll|}
\hline jobz & \(m \geq n\) & \(m<n\) \\
\hline 'A' \(S^{\prime}\) & \(n\) & \(n\) \\
\('^{\prime}\) & \(n\) & \begin{tabular}{l} 
m for column major \\
layout; \(n\) for row \\
major layout
\end{tabular} \\
& \(n\) & 1 \\
\hline
\end{tabular}

\section*{Output Parameters}
a
\(s\)
\(u, v t\)
On exit:
If jobz \(=\) ' \(O^{\prime}\), then if \(m \geq n\), \(a\) is overwritten with the first \(n\) columns of \(U\) (the left singular vectors, stored columnwise). If \(m<n\), \(a\) is overwritten with the first \(m\) rows of \(V^{T}\) (the right singular vectors, stored rowwise);
If \(j 0 b z \neq ' O^{\prime}\), the contents of \(a\) are destroyed.
Array, size at least \(\max (1, \min (m, n))\). Contains the singular values of \(A\) sorted so that \(s(i) \geq s(i+1)\).

Arrays:
Array \(u\) is of size:
\begin{tabular}{|c|c|c|}
\hline jobz & \(m \geq n\) & \(m<n\) \\
\hline 'N' & 1 & 1 \\
\hline 'A' & \(\max \left(1, I d u^{*}\right)\) & \(\max \left(1, ~ I d u^{*}{ }^{( }\right)\) \\
\hline 'S' & \(\max \left(1, I d u^{*}\right)\) for column major layout; \(\max \left(1, l d u^{*}\right)\) for row major layout & \(\max \left(1, I d u^{*}\right)\) \\
\hline '0' & 1 & \(\max \left(1,1 d u^{*}\right)\) \\
\hline
\end{tabular}

If jobz = 'A' or jobz = 'O' and \(m<n, u\) contains the \(m\)-by- \(m\) orthogonal/unitary matrix \(U\).
If jobz = 'S', \(u\) contains the first \(\min (m, n)\) columns of \(U\) (the left singular vectors, stored columnwise).
If jobz = 'O' and \(m \geq n\), or jobz = 'N', \(u\) is not referenced.
Array \(v t\) is of size:
\begin{tabular}{|c|c|c|}
\hline jobz & \(m \geq n\) & \(m<n\) \\
\hline 'N' & 1 & 1 \\
\hline 'A' & \(\max \left(1,1 d v t^{*}{ }_{n}\right)\) & \(\max \left(1, ~ I d v t^{*}{ }_{n}\right)\) \\
\hline 'S' & \(\max \left(1,1 d v t^{*}{ }_{n}\right)\) & \(\max \left(1, l_{d v t^{*}}^{n}\right)\) for column major layout; \(\max \left(1, l_{d v t^{*}}\right)\) for row major layout; \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline jobz & \(m \geq n\) & \(m<n\) \\
\hline\(' O^{\prime}\) & \(\max \left(1\right.\), ldvt \(\left._{n}\right)\) & 1 \\
\hline
\end{tabular}

If jobz = 'A'or jobz = 'O' and \(m \geq n\), vt contains the \(n\)-by- \(n\) orthogonal/ unitary matrix \(V^{T}\).

If \(j o b z=\) 'S', vt contains the first \(\min (m, n)\) rows of \(V^{T}\) (the right singular vectors, stored rowwise).
If jobz = 'O' and \(m<n\), or jobz = 'N', vt is not referenced.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=-4, A\) had a NAN entry.
If info \(=i\), then ?bdsdc did not converge, updating process failed.

\section*{?gejsv \\ Computes the singular value decomposition using a preconditioned Jacobi SVD method.}

\section*{Syntax}
```

lapack_int LAPACKE_sgejsv (int matrix_layout, char joba, char jobu, char jobv, char
jobr, char jobt, char jobp, lapack_int m, lapack_int n, float * a, lapack_int lda, float

* sva, float * u, lapack_int ldu, float * v, lapack_int ldv, float * stat, lapack_int *
istat);
lapack_int LAPACKE_dgejsv (int matrix_layout, char joba, char jobu, char jobv, char
jobr, char jobt, char jobp, lapack_int m, lapack_int n, double * a, lapack_int lda,
double * sva, double * u, lapack_int ldu, double * v, lapack_int ldv, double * stat,
lapack_int * istat);
lapack_int LAPACKE_cgejsv (int matrix_layout, char joba, char jobu, char jobv, char
jobr, char jobt, char jobp, lapack_int m, lapack_int n, lapack_complex_float * a,
lapack_int lda, float * sva, lapack_complex_float * u, lapack_int ldu,
lapack_complex_float * v, lapack_int ldv, float * stat, lapack_int * istat);
lapack_int LAPACKE_zgejsv (int matrix_layout, char joba, char jobu, char jobv, char
jobr, char jobt, char jobp, lapack_int m, lapack_int n, lapack_complex_double * a,
lapack_int lda, double * sva, lapack_complex_double * u, lapack_int ldu,
lapack_complex_double * v, lapack_int ldv, double * stat, lapack_int * istat);

```

Include Files
- mkl.h

\section*{Description}

The routine computes the singular value decomposition (SVD) of a real/complex \(m\)-by-n matrix \(A\), where \(m \geq n\).
The SVD is written as
\(A=U \star \Sigma^{\star} V^{T}\), for real routines
```

$A=U \star \Sigma \star V^{H}$, for complex routines

```
where \(\Sigma\) is an m-by-n matrix which is zero except for its \(n\) diagonal elements, \(U\) is an \(m\)-by- \(n\) (or \(m\)-by- \(m\) ) orthonormal matrix, and \(V\) is an \(n\)-by- \(n\) orthogonal matrix. The diagonal elements of \(\Sigma\) are the singular values of \(A\); the columns of \(U\) and \(V\) are the left and right singular vectors of \(A\), respectively. The matrices \(U\) and \(V\) are computed and stored in the arrays \(u\) and \(v\), respectively. The diagonal of \(\Sigma\) is computed and stored in the array sva.

The ? gejsv routine can sometimes compute tiny singular values and their singular vectors much more accurately than other SVD routines.

The routine implements a preconditioned Jacobi SVD algorithm. It uses ?geqp3, ?geqrf, and ?gelqf as preprocessors and preconditioners. Optionally, an additional row pivoting can be used as a preprocessor, which in some cases results in much higher accuracy. An example is matrix \(A\) with the structure \(A=D 1 * C\) * D2, where D1, D2 are arbitrarily ill-conditioned diagonal matrices and C is a well-conditioned matrix. In that case, complete pivoting in the first QR factorizations provides accuracy dependent on the condition number of C, and independent of D1, D2. Such higher accuracy is not completely understood theoretically, but it works well in practice.

If \(A\) can be written as \(A=B * D\), with well-conditioned \(B\) and some diagonal \(D\), then the high accuracy is guaranteed, both theoretically and in software, independent of \(D\). For more details see [Drmac08-1], [Drmac08-2].
The computational range for the singular values can be the full range ( UNDERFLOW,OVERFLOW), provided that the machine arithmetic and the BLAS and LAPACK routines called by ?gejsv are implemented to work in that range. If that is not the case, the restriction for safe computation with the singular values in the range of normalized IEEE numbers is that the spectral condition number kappa (A) =sigma_max (A)/sigma_min(A) does not overflow. This code (?gejsv) is best used in this restricted range, meaning that singular values of magnitude below ||A||_2 / slamch('O') (for single precision) or ||A||_2 / dlamch('O') (for double precision) are returned as zeros. See jobr for details on this.

This implementation is slower than the one described in [Drmac08-1], [Drmac08-2] due to replacement of some non-LAPACK components, and because the choice of some tuning parameters in the iterative part (?gesvj) is left to the implementer on a particular machine.

The rank revealing QR factorization (in this code: ?geqp3) should be implemented as in [Drmac08-3].
If \(m\) is much larger than \(n\), it is obvious that the inital QRF with column pivoting can be preprocessed by the QRF without pivoting. That well known trick is not used in ?gejsv because in some cases heavy row weighting can be treated with complete pivoting. The overhead in cases much larger than \(n\) is then only due to pivoting, but the benefits in accuracy have prevailed. You can incorporate this extra QRF step easily and also improve data movement (matrix transpose, matrix copy, matrix transposed copy) - this implementation of ?gejsv uses only the simplest, naive data movement.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
```

matrix_layout
joba

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'C', 'E', 'E', 'G', 'A', or 'R'.
Specifies the level of accuracy:

If joba \(=\) ' \(C\) ', high relative accuracy is achieved if \(A=B^{\star} D\) with wellconditioned \(B\) and arbitrary diagonal matrix \(D\). The accuracy cannot be spoiled by column scaling. The accuracy of the computed output depends on the condition of \(B\), and the procedure aims at the best theoretical accuracy. The relative error max_\{i=1:N\}|d sigma_i| / sigma_i is bounded by \(f(M, N)\) *epsilon* cond (B), independent of \(D\). The input matrix is preprocessed with the QRF with column pivoting. This initial preprocessing and preconditioning by a rank revealing QR factorization is common for all values of joba. Additional actions are specified as follows:

If joba = 'E', computation as with 'C' with an additional estimate of the condition number of \(B\). It provides a realistic error bound.

If joba = ' \(F\) ', accuracy higher than in the ' \(C\) ' option is achieved, if \(A=\) \(D 1 * C^{\star} D 2\) with ill-conditioned diagonal scalings \(D 1, D 2\), and a wellconditioned matrix \(C\). This option is advisable, if the structure of the input matrix is not known and relative accuracy is desirable. The input matrix \(A\) is preprocessed with QR factorization with full (row and column) pivoting.
If joba = 'G', computation as with ' F ' with an additional estimate of the condition number of \(B\), where \(A=B^{\star} D\). If \(A\) has heavily weighted rows, using this condition number gives too pessimistic error bound.
If joba = 'A', small singular values are the noise and the matrix is treated as numerically rank defficient. The error in the computed singular values is bounded by \(f(m, n) * e p s i l o n *||A||\). The computed SVD A \(=U * S * V * * t\) (for real flavors) or \(A=U * S * V^{*}{ }^{*} H\) (for complex flavors) restores \(A\) up to \(f(m, n)\) *epsilon* \(||A||\). This enables the procedure to set all singular values below \(n * e p s i l o n *||A||\) to zero.

If joba = 'R', the procedure is similar to the 'A' option. Rank revealing property of the initial QR factorization is used to reveal (using triangular factor) a gap sigma_ \(\{r+1\}<\) epsilon * sigma_r, in which case the numerical rank is declared to be \(r\). The SVD is computed with absolute error bounds, but more accurately than with 'A'.

Must be 'U','F', 'W', or 'N'.
Specifies whether to compute the columns of the matrix \(U\) :
If jobu \(=\) ' \(U\) ', \(n\) columns of \(U\) are returned in the array \(u\)
If jobu = ' \(F\) ', a full set of \(m\) left singular vectors is returned in the array \(u\).
If jobu = 'W', u may be used as workspace of length \(m^{*} n\). See the description of \(u\).
If jobu = ' \(N\) ', \(u\) is not computed.
Must be 'V','J','W', or 'N'.
Specifies whether to compute the matrix \(V\) :
If jobv \(=\) ' \(V\) ', \(n\) columns of \(V\) are returned in the array \(v\); Jacobi rotations are not explicitly accumulated.
If jobv = 'J', \(n\) columns of \(V\) are returned in the array \(v\) but they are computed as the product of Jacobi rotations. This option is allowed only if jobuキ'N'

If jobv = 'W', v may be used as workspace of length \(n * n\). See the description of \(v\).

If jobv = ' N ', v is not computed.
Must be 'N' or 'R'.
Specifies the range for the singular values. If small positive singular values are outside the specified range, they may be set to zero. If \(A\) is scaled so that the largest singular value of the scaled matrix is around sqrt (big), big = ?lamch('O'), the function can remove columns of \(A\) whose norm in the scaled matrix is less than sqrt (?lamch('S')) (for jobr = 'R'), or less than small = ?lamch('S')/?lamch('E').

If jobr = ' N ', the function does not remove small columns of the scaled matrix. This option assumes that BLAS and QR factorizations and triangular solvers are implemented to work in that range. If the condition of \(A\) if greater that big, use ?gesvj.

If jobr = 'R', restricted range for singular values of the scaled matrix \(A\) is [sqrt(?lamch('S'), sqrt(big)], roughly as described above. This option is recommended.
For computing the singular values in the full range [?lamch('S'),big], use ? gesvj.

Must be 'T' or 'N'.
If the matrix is square, the procedure may determine to use a transposed \(A\) if \(A^{\mathrm{T}}\) (for real flavors) or \(A^{\mathrm{H}}\) (for complex flavors) seems to be better with respect to convergence. If the matrix is not square, jobt is ignored.
The decision is based on two values of entropy over the adjoint orbit of \(A^{T} *\) \(A\) (for real flavors) or \(A^{H} * A\) (for complex flavors). See the descriptions of stat[5] and stat[6].

If jobt \(=\) ' T ', the function performs transposition if the entropy test indicates possibly faster convergence of the Jacobi process, if \(A\) is taken as input. If \(A\) is replaced with \(A^{\mathrm{T}}\) or \(A^{\mathrm{H}}\), the row pivoting is included automatically.
If jobt \(=\) ' \(N\) ', the functions attempts no speculations. This option can be used to compute only the singular values, or the full SVD ( \(u\), sigma, and \(v\) ). For only one set of singular vectors ( \(u\) or \(v\) ), the caller should provide both \(u\) and \(v\), as one of the arrays is used as workspace if the matrix \(A\) is transposed. The implementer can easily remove this constraint and make the code more complicated. See the descriptions of \(u\) and \(v\).

\section*{Caution}

The jobt = 'T' option is experimental and its effect might not be the same in subsequent releases. Consider using the jobt \(=\) 'N' instead.
jobp

Must be 'P' or 'N'.

Enables structured perturbations of denormalized numbers. This option should be active if the denormals are poorly implemented, causing slow computation, especially in cases of fast convergence. For details, see [Drmac08-1], [Drmac08-2]. For simplicity, such perturbations are included only when the full SVD or only the singular values are requested. You can add the perturbation for the cases of computing one set of singular vectors.
If jobp = 'P', the function introduces perturbation.
If jobp = 'N', the function introduces no perturbation.
The number of rows of the input matrix \(A ; m \geq 0\).
The number of columns in the input matrix \(A ; m \geq n \geq 0\).
Array a(size \(l d a_{n}\) for column major layout and \(l d^{*} *_{m}\) for row major layout) is an array containing the \(m\)-by-n matrix \(A\).
\(u\) is a workspace array, its size for column major layout is \(I d u^{*}{ }_{n}\) for jobu='U' or 'W' and \(1 d u^{*} m\) for jobu='F'; for row major layout its size is at least \(l d u^{*} m\). When jobt \(=\) ' \(T\) ' and \(m=n, u\) must be provided even though jobu = 'N'.
\(v\) is a workspace array, its size is \(l d v^{*} n\). When jobt \(=\) ' \(T\) ' and \(m=n, v\) must be provided even though jobv = ' N '.

The leading dimension of the array \(a\). Must be at least max \((1, m)\) for column major layout and at least \(\max (1, n)\) for row major layout.
sva is a workspace array, its size is \(n\).
The leading dimension of the array \(u ; 1 d u \geq 1\).
jobu = 'U' or 'F' or 'W', ldu \(\geq m\) for column major layout; for row major layout if jobu = 'U' or jobu = 'W'ldu \(n\) and if jobu = 'F'ldu \(\geq m\).

The leading dimension of the array \(v ; I d v \geq 1\).
jobv = 'V' or 'J' or 'w', Idvミn.

Cwork is a workspace array of size max (2, lwork).
rwork is an array of size at least max(7, lrwork) for real flavors and at least max(7, lwork) for complex flavors.

\section*{Output Parameters}

On exit:
For stat [0]/stat [1] = 1: the singular values of \(A\). During the computation sva contains Euclidean column norms of the iterated matrices in the array \(a\).
For stat [0] \(\neq \operatorname{stat}[1]\) : the singular values of \(A\) are (stat[0]/stat[1]) * sva[0:n-1]. This factored form is used if sigma_max \((A)\) overflows or if small singular values have been saved from underflow by scaling the input matrix \(A\).
jobr = 'R', some of the singular values may be returned as exact zeros obtained by 'setting to zero' because they are below the numerical rank threshold or are denormalized numbers.

On exit:
If jobu = 'U', contains the m-by-n matrix of the left singular vectors.
If jobu = ' F ', contains the \(m\)-by-m matrix of the left singular vectors, including an orthonormal basis of the orthogonal complement of the range of \(A\).

If jobu = 'W' and jobv = 'V', jobt = 'T', and \(m=n\), then \(u\) is used as workspace if the procedure replaces \(A\) with \(A^{\top}\) (for real flavors) or \(A^{\mathrm{H}}\) (for complex flavors). In that case, \(v\) is computed in \(u\) as left singular vectors of \(A^{\top}\) or \(A^{\mathrm{H}}\) and copied back to the \(v\) array. This ' \(W\) ' option is just a reminder to the caller that in this case \(u\) is reserved as workspace of length \(n^{*} n\).

If jobu = 'N', u is not referenced.
On exit:
If jobv = 'V' or 'J', contains the \(n\)-by-n matrix of the right singular vectors.

If jobv = 'W' and jobu = 'U', jobt = 'T', and \(m=n\), then \(v\) is used as workspace if the procedure replaces \(A\) with \(A^{\top}\) (for real flavors) or \(A^{\mathrm{H}}\) (for complex flavors). In that case, \(u\) is computed in \(v\) as right singular vectors of \(A^{\top}\) or \(A^{\mathrm{H}}\) and copied back to the \(u\) array. This ' \(W\) ' option is just a reminder to the caller that in this case \(v\) is reserved as workspace of length \(n * n\).

If jobv = 'N', v is not referenced.
On exit,
stat [0] \(=\) scale \(=\operatorname{stat}[1] /\) stat [0] is the scaling factor such that scale*sva(1:n) are the computed singular values of \(A\). See the description of sva.
stat [1] = see the description of stat [0].
stat [2] = sconda is an estimate for the condition number of column equilibrated \(A\). If joba \(=\) ' \(E\) ' or ' \(G\) ', sconda is an estimate of sqrt (\|) ( \(R^{T}\) * \(\left.R)^{-1}| | \_1\right)\). It is computed using ?pocon. It holds \(n^{-1 / 4} *\) sconda \(|\mid\) \(R^{-1}| | \_^{2} \leq n^{-1 / 4}\) * sconda, where \(R\) is the triangular factor from the QRF of \(A\). However, if \(R\) is truncated and the numerical rank is determined to be strictly smaller than \(n\), sconda is returned as -1 , indicating that the smallest singular values might be lost.
If full SVD is needed, the following two condition numbers are useful for the analysis of the algorithm. They are provied for a user who is familiar with the details of the method.
stat [3] = an estimate of the scaled condition number of the triangular factor in the first QR factorization.
stat [4] = an estimate of the scaled condition number of the triangular factor in the second \(Q R\) factorization.

The following two parameters are computed if jobt \(=\) ' \(T\) '. They are provided for a user who is familiar with the details of the method.
stat [5] = the entropy of \(A^{T *} A\) : : this is the Shannon entropy of diag \(\left(A^{\mathrm{T}} \star A\right) / \operatorname{Trace}\left(A^{\mathrm{T}} \star A\right)\) taken as point in the probability simplex. stat \([6]=\) the entropy of \(A^{\star} A^{\star *}\) t.
istat
On exit,
istat [0] = the numerical rank determined after the initial QR factorization with pivoting. See the descriptions of joba and jobr.
istat [1] = the number of the computed nonzero singular value.
istat [2] \(=\) if nonzero, a warning message. If istat [2]=1, some of the column norms of \(A\) were denormalized floats. The requested high accuracy is not warranted by the data.

For complex flavors, istat [3] = 1 or -1. If istat [3] = 1, then the procedure used \(A^{\mathrm{H}}\) to do the job as specified by the job parameters.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0 , the function did not converge in the maximal number of sweeps. The computed values may be inaccurate.

\section*{See Also}
```

? geqp3

```
?geqrf
?gelqf
?gesvj
?lamch
?pocon
?ormlq
?gesvj
Computes the singular value decomposition of a real matrix using Jacobi plane rotations.

\section*{Syntax}
```

lapack_int LAPACKE_sgesvj (int matrix_layout, char joba, char jobu, char jobv,
lapack_int m, lapack_int n, float * a, lapack_int lda, float * sva, lapack_int mv, float

* v, lapack_int ldv, float * stat);
lapack_int LAPACKE_dgesvj (int matrix_layout, char joba, char jobu, char jobv,
lapack_int m, lapack_int n, double * a, lapack_int lda, double * sva, lapack_int mv,
double * v, lapack_int ldv, double * stat);
lapack_int LAPACKE_cgesvj (int matrix_layout, char joba, char jobu, char jobv,
lapack_int m, lapack_int n, lapack_complex_float * a, lapack_int lda, float * sva,
lapack_int mv, lapack_complex_float * v, lapack_int ldv, float * stat);

```
```

lapack_int LAPACKE_zgesvj (int matrix_layout, char joba, char jobu, char jobv,
lapack_int m, lapack_int n, lapack_complex_double * a, lapack_int lda, double * sva,
lapack_int mv, lapack_complex_double * v, lapack_int ldv, double * stat);

```

Include Files
- mkl.h

\section*{Description}

The routine computes the singular value decomposition (SVD) of a real or complex m-by-n matrix \(A\), where \(m \geq n\).

The SVD of \(A\) is written as
\(A=U \star \Sigma^{\star} V^{\mathbb{T}}\) for real flavors, or
\(A=U \star \Sigma \star V^{H}\) for complex flavors,
where \(\Sigma\) is an \(m\)-by- \(n\) diagonal matrix, \(U\) is an m-by- \(n\) orthonormal matrix, and \(V\) is an \(n\)-by- \(n\) orthogonal/ unitary matrix. The diagonal elements of \(\Sigma\) are the singular values of \(A\); the columns of \(U\) and \(V\) are the left and right singular vectors of \(A\), respectively. The matrices \(U\) and \(V\) are computed and stored in the arrays \(u\) and \(v\), respectively. The diagonal of \(\Sigma\) is computed and stored in the array sva.
The ?gesvj routine can sometimes compute tiny singular values and their singular vectors much more accurately than other SVD routines.
The \(n-b y-n\) orthogonal matrix \(V\) is obtained as a product of Jacobi plane rotations. The rotations are implemented as fast scaled rotations of Anda and Park [AndaPark94]. In the case of underflow of the Jacobi angle, a modified Jacobi transformation of Drmac ([Drmac08-4]) is used. Pivot strategy uses column interchanges of de Rijk ([deRijk98]). The relative accuracy of the computed singular values and the accuracy of the computed singular vectors (in angle metric) is as guaranteed by the theory of Demmel and Veselic [Demmel92]. The condition number that determines the accuracy in the full rank case is essentially
\[
\{+11+4
\]
where \(\kappa(\).\() is the spectral condition number. The best performance of this Jacobi SVD procedure is achieved if\) used in an accelerated version of Drmac and Veselic [Drmac08-1], [Drmac08-2].

The computational range for the nonzero singular values is the machine number interval ( UNDERFLOW,OVERFLOW ). In extreme cases, even denormalized singular values can be computed with the corresponding gradual loss of accurate digit.

\section*{Input Parameters}
```

matrix_layout
joba

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'L', 'U' or 'G'.
Specifies the structure of \(A\) :
If joba \(=\) ' L', the input matrix \(A\) is lower triangular.

If joba = 'U', the input matrix \(A\) is upper triangular. If joba \(=\) ' G', the input matrix \(A\) is a general \(m-b y-n, m \geq n\).

Must be 'U', 'C' or 'N'.
Specifies whether to compute the left singular vectors (columns of \(U\) ):
If jobu = 'U', the left singular vectors corresponding to the nonzero singular values are computed and returned in the leading columns of \(A\). See more details in the description of \(a\). The default numerical orthogonality threshold is set to approximately TOL=CTOL*EPS, CTOL=sqrt (m), EPS = ?lamch('E')

If jobu = 'C', analogous to jobu = 'U', except that you can control the level of numerical orthogonality of the computed left singular vectors. TOL can be set to TOL=CTOL*EPS, where CTOL is given on input in the array stat. No CTOL smaller than ONE is allowed. CTOL greater than \(1 /\) EPS is meaningless. The option ' \(C\) ' can be used if \(m \star\) EPS is satisfactory orthogonality of the computed left singular vectors, so CTOL=m could save a few sweeps of Jacobi rotations. See the descriptions of a and stat [0].
If jobu = ' \(N\) ', \(u\) is not computed. However, see the description of \(a\).
Must be 'V', 'A' or 'N'.
Specifies whether to compute the right singular vectors, that is, the matrix \(V\) :
If jobv \(=\) ' \(V\) ', the matrix \(V\) is computed and returned in the array \(V\).
If jobv = 'A', the Jacobi rotations are applied to the \(m v\)-by \(n\) array \(v\). In other words, the right singular vector matrix \(V\) is not computed explicitly, instead it is applied to an mv-by \(n\) matrix initially stored in the first mv rows of \(V\).
If jobv \(=\) ' \(N\) ', the matrix \(V\) is not computed and the array \(v\) is not referenced.

The number of rows of the input matrix \(A\).
```

1/slamch('E')> m\geq 0 for sgesvj.
1/dlamch('E')> m\geq 0 for dgesvj.

```

The number of columns in the input matrix \(A ; m \geq n \geq 0\).
Array \(a\) (size at least \(l d a_{n}\) for column major layout and \(l d^{*} *_{m}\) for row major layout) is an array containing the \(m\)-by-n matrix \(A\).

Array \(v\left(\right.\) size at least \(\max \left(1, I d v^{*} n\right)\) ) contains, if jobv \(=\) 'A' the mv-by-n matrix to be post-multiplied by Jacobi rotations.

The leading dimension of the array \(a\). Must be at least max \((1, m)\) for column major layout and at least \(\max (1, n)\) for row major layout .

If jobv = 'A', the product of Jacobi rotations in ?gesvj is applied to the first \(m v\) rows of \(v\). See the description of jobv. \(0 \leq m v \leq l d v\).

The leading dimension of the array \(v ; 1 d v \geq 1\).
jobv = 'v', ldv \(\geq \max (1, n)\).
jobv = 'A', \(I d v \geq \max (1, m v)\) for column major layout and \(I d v \geq \max (1\), n) for row major layout.

Array size 6. If jobu = 'C', stat[0] = CTOL, where CTOL defines the threshold for convergence. The process stops if all columns of \(A\) are mutually orthogonal up to CTOL*EPS, where EPS = ?lamch ('E'). It is required that \(C T O L \geq 1\) - that is, it is not allowed to force the routine to obtain orthogonality below \(\varepsilon\).

\section*{Output Parameters}
a
sva

On exit:
If jobu = 'U' or jobu = 'C':
- if info \(=0\), the leading columns of \(A\) contain left singular vectors corresponding to the computed singular values of \(a\) that are above the underflow threshold ?lamch('S'), that is, non-zero singular values. The number of the computed non-zero singular values is returned in stat [1]. Also see the descriptions of sva and stat. The computed columns of \(u\) are mutually numerically orthogonal up to approximately TOL=sqrt (m)*EPS (default); or TOL=CTOL*EPSjobu = 'C', see the description of jobu.
- if info > 0 , the procedure ? gesvj did not converge in the given number of iterations (sweeps). In that case, the computed columns of \(u\) may not be orthogonal up to TOL. The output \(u\) (stored in a), sigma (given by the computed singular values in \(\operatorname{sva}(1: n)\) ) and \(v\) is still a decomposition of the input matrix \(A\) in the sense that the residual \| \| \(A\) scale* \(U^{\star}\) sigma* \(V^{\mathrm{T}}| |_{2} / \| A| |_{2}\) for real flavors or ||Ascale* \(U^{\star}\) sigma* \(V^{H}| |_{2} /||A||_{2}\) for complex flavors (where scale = stat[0]) is small.

If jobu = 'N':
- if info \(=0\), note that the left singular vectors are 'for free' in the onesided Jacobi SVD algorithm. However, if only the singular values are needed, the level of numerical orthogonality of \(u\) is not an issue and iterations are stopped when the columns of the iterated matrix are numerically orthogonal up to approximately \(m \star\) EPS. Thus, on exit, a contains the columns of \(u\) scaled with the corresponding singular values.
- if info > 0, the procedure ?gesvj did not converge in the given number of iterations (sweeps).

Array size \(n\).
If info \(=0\), depending on the value scale \(=\) stat [0], where scale is the scaling factor:
- if scale \(=1\), sva[0:n - 1] contains the computed singular values of a.
- if scale \(\neq 1\), the singular values of a are scale*sva (1:n), and this factored representation is due to the fact that some of the singular values of a might underflow or overflow.

If info > 0, the procedure ?gesvj did not converge in the given number of iterations (sweeps) and scale*sva(1:n) may not be accurate.

\section*{\(V\) On exit:}

If jobv = 'V', contains the \(n\)-by-n matrix of the right singular vectors.
If jobv = 'A', then \(v\) contains the product of the computed right singular vector matrix and the initial matrix in the array \(v\).
If jobv = 'N', \(v\) is not referenced.
stat
On exit,
stat [0] = scale is the scaling factor such that scale*sva(1:n) are the computed singular values of \(A\). See the description of sva.
stat [1] is the number of the computed nonzero singular values.
stat [2] is the number of the computed singular values that are larger than the underflow threshold.
stat [3] is the number of sweeps of Jacobi rotations needed for numerical convergence.
stat \([4]=\max _{\_}\{i \neq j\}|\operatorname{COS}(A(:, i), A(:, j))|\) in the last sweep. This is useful information in cases when ?gesvj did not converge, as it can be used to estimate whether the output is still useful and for post festum analysis.
stat [5] is the largest absolute value over all sines of the Jacobi rotation angles in the last sweep. It can be useful in a post festum analysis.

\section*{Return Values}

This function returns a value info.
If inforo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(>0\), the function did not converge in the maximal number (30) of sweeps. The output may still be useful. See the description of stat.

\section*{?ggsvd \\ Computes the generalized singular value decomposition of a pair of general rectangular matrices (deprecated).}

\section*{Syntax}
```

lapack_int LAPACKE_sggsvd(int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int n, lapack_int p, lapack_int* k, lapack_int* l, float* a,
lapack_int lda, float* b, lapack_int ldb, float* alpha, float* beta, float* u,
lapack_int ldu, float* v, lapack_int ldv, float* q, lapack_int ldq, lapack_int* iwork);
lapack_int LAPACKE_dggsvd(int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int n, lapack_int p, lapack_int* k, lapack_int* l, double* a,
lapack_int lda, double* b, lapack_int ldb, double* alpha, double* beta, double* u,
lapack_int ldu, double* v, lapack_int ldv, double* q, lapack_int ldq, lapack_int*
iwork);
lapack_int LAPACKE_cggsvd(int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int n, lapack_int p, lapack_int* k, lapack_int* l,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int ldb,

```
```

float* alpha, float* beta, lapack_complex_float* u, lapack_int ldu,
lapack_complex_float* v, lapack_int ldv, lapack_complex_float* q, lapack_int ldq,
lapack_int* iwork);
lapack_int LAPACKE_zggsvd(int matrix_layout, char jobu, char jobv, char jobq,
lapack_int m, lapack_int n, lapack_int p, lapack_int* k, lapack_int* l,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb,
double* alpha, double* beta, lapack_complex_double* u, lapack_int ldu,
lapack_complex_double* v, lapack_int ldv, lapack_complex_double* q, lapack_int ldq,
lapack_int* iwork);

```

Include Files
- mkl.h

\section*{Description}

This routine is deprecated; use ggsvd3.
The routine computes the generalized singular value decomposition (GSVD) of an \(m\)-by- \(n\) real/complex matrix \(A\) and \(p\)-by- \(n\) real/complex matrix \(B\) :
```

U'*}A*Q=\mp@subsup{D}{1}{**((0r R

```
where \(U, V\) and \(Q\) are orthogonal/unitary matrices and \(U^{\prime}, V^{\prime}\) mean transpose/conjugate transpose of \(U\) and \(V\) respectively.

Let \(k+l=\) the effective numerical rank of the matrix \(\left(A^{\prime}, B^{\prime}\right)^{\prime}\), then \(R\) is a \((k+l)\)-by- \((k+l)\) nonsingular upper triangular matrix, \(D_{1}\) and \(D_{2}\) are \(m\)-by- \((k+l)\) and \(p\)-by- \((k+l)\) "diagonal" matrices and of the following structures, respectively:
If \(m-k-l \geq 0\),


where
\(C=\operatorname{diag}(a l p h a[k], \ldots, \quad a l p h a[k+1-1])\)
\(S=\operatorname{diag}(\operatorname{beta}[k], \ldots, \operatorname{beta}[k+1-1])\)
\(C^{2}+S^{2}=I\)
Nonzero element \(r_{i j}(1 \leq i \leq j \leq k+l)\) of \(R\) is stored in \(a[(i-1)+(n-k-1+j-1) * I d a]\) for column major layout and in \(a[(i-1) * l d a+(n-k-1+j-1)]\) for row major layout.

If \(m-k-1<0\),
\[
\left.D_{1}=\begin{array}{ccc}
k & m-k & k+I-m \\
m-k\left(\begin{array}{cc}
I & 0
\end{array}\right. & 0 \\
0 & C & 0
\end{array}\right)
\]
\[
\begin{aligned}
& D_{i}=k+I-m\left(\begin{array}{c}
k-k \\
m-k+I-m \\
p-I\left(\begin{array}{ccc}
0 & S & 0 \\
0 & 0 & I \\
0 & 0 & 0
\end{array}\right)
\end{array}\right. \\
& n-k-1 \quad k \quad m-k k+1-m \\
& \begin{array}{r}
k \\
m-k\left(\begin{array}{llll}
0 & R_{11} & R_{12} & R_{13} \\
k+I-m & 0 & R_{22} & R_{23} \\
0 & 0 & 0 & R_{33}
\end{array}\right) .
\end{array}
\end{aligned}
\]
where
```

C = diag(alpha[k],..., alpha(m)),
S = diag(beta[k],...,beta[m - 1]),
C2}+\mp@subsup{S}{2}{}=\textrm{I

```

On exit, the location of nonzero element \(r_{i j}(1 \leq i \leq j \leq k+l)\) of \(R\) depends on the value of \(i\). For \(i \leq m\) this element is stored in \(a[(i-1)+(n-k-1+j-1) * l d a]\) for column major layout and in \(a[(i-1) * l d a+\) \((n-k-1+j-1)]\) for row major layout. For \(m<i \leq k+l\) it is stored in \(b[(i-k-1)+(n-k-\) \(1+j-1) * l d b]\) for column major layout and in \(b[(i-k-1) * l d b+(n-k-1+j-1)]\) for row major layout.
The routine computes \(C, S, R\), and optionally the orthogonal/unitary transformation matrices \(U, V\) and \(Q\). In particular, if \(B\) is an \(n\)-by- \(n\) nonsingular matrix, then the GSVD of \(A\) and \(B\) implicitly gives the SVD of \(A^{*} B^{-1}\) :
\(A^{*} B^{-1}=U^{\star}\left(D_{1} * D_{2}^{-1}\right) * V^{\prime}\).
If ( \(A^{\prime}, B^{\prime}\) )' has orthonormal columns, then the GSVD of \(A\) and \(B\) is also equal to the CS decomposition of \(A\) and \(B\). Furthermore, the GSVD can be used to derive the solution of the eigenvalue problem:
\(A^{\prime} \star{ }^{*} A^{\star} X=\lambda{ }^{\star} B^{\prime \star} B^{\star} X\).

\section*{Input Parameters}
```

matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
Must be 'U' or 'N'.
If jobu = 'U', orthogonal/unitary matrix U is computed.
If jobu = 'N',U is not computed.
Must be 'V' or 'N'.
If jobv = 'V', orthogonal/unitary matrix V is computed.

```

If jobv = 'N', \(V\) is not computed.
Must be 'Q' or 'N'.
If jobq = ' \(Q\) ', orthogonal/unitary matrix \(Q\) is computed.
If \(j o b q=\) ' \(N\) ', \(Q\) is not computed.
The number of rows of the matrix \(A(m \geq 0)\).
The number of columns of the matrices \(A\) and \(B(n \geq 0)\).
The number of rows of the matrix \(B(p \geq 0)\).

\section*{Arrays:}
\(a\) (size at least \(\max \left(1, I d a_{n}\right)\) for column major layout and \(\max \left(1, I a^{*}{ }_{m}\right)\) for row major layout) contains the \(m\)-by- \(n\) matrix \(A\).
\(b\) (size at least \(\max \left(1, I d b^{*} n\right.\) ) for column major layout and \(\max \left(1, I d b^{*} p\right.\) ) for row major layout) contains the \(p-b y-n\) matrix \(B\).

The leading dimension of \(a\); at least max( \(1, m\) )for column major layout and \(\max (1, n)\) for row major layout.

The leading dimension of \(b\); at least \(\max (1, p)\) for column major layout and \(\max (1, n)\) for row major layout.

The leading dimension of the array \(u\).
\(I d u \geq \max (1, m)\) if \(j o b u=\) 'U'; \(I d u \geq 1\) otherwise.
The leading dimension of the array \(v\).
\(l d v \geq \max (1, p)\) if jobv \(=' V\) '; \(l d v \geq 1\) otherwise.
The leading dimension of the array \(q\).
\(l d q \geq \max (1, n)\) if \(j o b q=\) ' \(Q\) '; ld \(\geq 1\) otherwise.

\section*{Output Parameters}
k, 1
a
b
alpha, beta

On exit, \(k\) and \(/\) specify the dimension of the subblocks. The sum \(k+l\) is equal to the effective numerical rank of \(\left(A^{\prime}, B^{\prime}\right)^{\prime}\).

On exit, a contains the triangular matrix \(R\) or part of \(R\).
On exit, \(b\) contains part of the triangular matrix R if \(m-k-1<0\).
Arrays, size at least \(\max (1, n)\) each.
Contain the generalized singular value pairs of \(A\) and \(B\) :
```

alpha(1:k) = 1,
beta(1:k) = 0,
and if m-k-l\geq 0,
alpha(k+1:k+l) = C,
beta(k+1:k+l) = S,
or if m-k-l < 0,

```
```

alpha(k+1:m)=C, alpha}(m+1:k+l)=
beta(k+1:m) = S,beta(m+1:k+l) = 1

```
and
alpha \((k+1+1: n)=0\)
\(\operatorname{beta}(k+1+1: n)=0\).
u, v, q
iwork

Arrays:
\(u\), size at least \(\max \left(1, I d u^{*}\right)\).
If jobu = 'U', \(u\) contains the \(m\)-by- \(m\) orthogonal/unitary matrix \(U\).
If jobu = 'N', \(u\) is not referenced.
\(v\), size at least \(\max \left(1, I d v^{*} p\right)\).
If jobv \(=\) ' \(V\) ', \(v\) contains the \(p\)-by- \(p\) orthogonal/unitary matrix \(V\).
If jobv \(={ }^{\prime} N^{\prime}\) ', \(v\) is not referenced.
\(q\), size at least \(\max \left(1, I d q^{*} n\right)\).
If jobq = ' \(Q\) ', \(q\) contains the \(n\)-by-n orthogonal/unitary matrix \(Q\).
If \(j o b q={ }^{\prime} N^{\prime}, q\) is not referenced.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1\), the Jacobi-type procedure failed to converge. For further details, see subroutine tgsja.

\section*{?gesvdx \\ Computes the SVD and left and right singular vectors for a matrix.}

\section*{Syntax}
```

lapack_int LAPACKE_sgesvdx (int matrix_layout, char jobu, char jobvt, char range,
lapack_int m, lapack_int n, float * a, lapack_int lda, float vl, float vu, lapack_int
il, lapack_int iu, lapack_int * ns, float * s, float * u, lapack_int ldu, float * vt,
lapack_int ldvt, lapack_int * superb);
lapack_int LAPACKE_dgesvdx (int matrix_layout, char jobu, char jobvt, char range,
lapack_int m, lapack_int n, double * a, lapack_int lda, double vl, double vu, lapack_int
il, lapack_int iu, lapack_int *ns, double * s, double * u, lapack_int ldu, double * vt,
lapack_int ldvt, lapack_int * superb);
lapack_int LAPACKE_cgesvdx (int matrix_layout, char jobu, char jobvt, char range,
lapack_int m, lapack_int n, lapack_complex_float * a, lapack_int lda, float vl, float
vu, lapack_int il, lapack_int iu, lapack_int * ns, float * s, lapack_complex_float * u,
lapack_int ldu, lapack_complex_float * vt, lapack_int ldvt, lapack_int * superb);

```
```

lapack_int LAPACKE_zgesvdx (int matrix_layout, char jobu, char jobvt, char range,
lapack_int m, lapack_int n, lapack_complex_double * a, lapack_int lda, double vl,
double vu, lapack_int il, lapack_int iu, lapack_int * ns, double * s,
lapack_complex_double * u, lapack_int ldu, lapack_complex_double * vt, lapack_int ldvt,
lapack_int * superb);

```

Include Files
- mkl.h

\section*{Description}
? gesvdx computes the singular value decomposition (SVD) of a real or complex m-by-n matrix \(A\), optionally computing the left and right singular vectors. The SVD is written
\(A=U^{*} \Sigma^{*}\) transpose \((V)\)
where \(\Sigma\) is an \(m\)-by- \(n\) matrix which is zero except for its \(\min (m, n)\) diagonal elements, \(U\) is an \(m\)-by- \(m\) matrix, and \(V\) is an \(n\)-by-n matrix. The matrices \(U\) and \(V\) are orthogonal for real \(A\), and unitary for complex \(A\). The diagonal elements of \(\Sigma\) are the singular values of \(A\); they are real and non-negative, and are returned in descending order. The first \(\min (m, n)\) columns of \(U\) and \(V\) are the left and right singular vectors of \(A\).
? gesvdx uses an eigenvalue problem for obtaining the SVD, which allows for the computation of a subset of singular values and vectors. See ?bdsvdx for details.

Note that the routine returns \(V^{\top}\), not \(V\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{jobu} & Specifies options for computing all or part of the matrix \(U\) : \\
\hline & \(=\) ' \(V\) ': the first \(\min (m, n)\) columns of \(U\) (the left singular vectors) or as specified by range are returned in the array \(u\); \\
\hline & \(=\) ' N ': no columns of \(U\) (no left singular vectors) are computed. \\
\hline \multirow[t]{3}{*}{jobvt} & Specifies options for computing all or part of the matrix \(V^{\top}\) : \\
\hline & \(=\) ' V ': the first \(\min (m, n)\) rows of \(V^{\top}\) (the right singular vectors) or as specified by range are returned in the array vt; \\
\hline & \(=\) ' N ': no rows of \(V^{\top}\) (no right singular vectors) are computed. \\
\hline \multirow[t]{3}{*}{range} & \(=\) ' A ': find all singular values. \\
\hline & \(=\) 'V': all singular values in the half-open interval ( \(\mathrm{vl}, \mathrm{vu}\) ] are found. \\
\hline & \(=\) 'I': the il-th through iu-th singular values are found. \\
\hline m & The number of rows of the input matrix \(A . m \geq 0\). \\
\hline \(n\) & The number of columns of the input matrix \(A . n \geq 0\). \\
\hline \multirow[t]{2}{*}{a} & Array, size \(1 \mathrm{da}^{*}{ }_{n}\) \\
\hline & On entry, the m-by-n matrix \(A\). \\
\hline \multirow[t]{2}{*}{1 da} & The leading dimension of the array \(a\). \\
\hline & \(I d a \geq \max (1, m)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline vl & \(v 1 \geq 0\). \\
\hline vu & If range \(=\) ' V ', the lower and upper bounds of the interval to be searched for singular values. vu > vl. Not referenced if range = 'A' or 'I'. \\
\hline \multicolumn{2}{|l|}{i1} \\
\hline iu & If range=' I ', the indices (in ascending order) of the smallest and largest singular values to be returned. \(1 \leq i \leq i u \leq \min (m, n)\), if \(\min (m, n)>0\). Not referenced if range \(=\) 'A' or 'V'. \\
\hline \(1 d u\) & The leading dimension of the array \(u\). 1 du \(\geq 1\); if \(j 0 b u=\) 'V', 1 du \(\geq\) m. \\
\hline ldvt & The leading dimension of the array \(v t .1 d v t \geq 1\); if jobvt \(=\) ' \(V\) ', \(1 d v t \geq n s\) (see above). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a\)
ns

S
\(u\)
vt
superb

On exit, the contents of a are destroyed.
The total number of singular values found,
\(0 \leq n s \leq \min (m, n)\).
If range \(=\) ' A ', \(n s=\min (m, n)\); if range \(=\) 'I', ns \(=i u-i l+1\).
Array, size \((\min (m, n))\)
The singular values of \(A\), sorted so that \(s[i] \geq s[i+1]\).
Array, size \(1 d u^{*} u c o l\)
If jobu \(=\) ' \(V\) ', \(u\) contains columns of \(U\) (the left singular vectors, stored columnwise) as specified by range; if jobu = ' N ', \(u\) is not referenced.

\section*{NOTE}

Make sure that \(u c o l \geq n s\); if range \(=\) ' \(V\) ', the exact value of \(n s\) is not known in advance and an upper bound must be used.

Array, size \(1 d v t^{*}{ }_{n}\)
If jobvt \(=\) ' \(V\) ', vt contains the rows of \(V^{\top}\) (the right singular vectors, stored rowwise) as specified by range; if jobvt \(=\) ' N ', vt is not referenced.

\section*{NOTE}

Make sure that \(l d v t \geq n s\); if range \(=\) ' \(V\) ', the exact value of ns is not known in advance and an upper bound must be used.

Array, size (12* \(\min (m, n)\) ).
If info \(=0\), the first \(n s\) elements of superb are zero. If info \(>0\), then superb contains the indices of the eigenvectors that failed to converge in ?bdsvdx/?stevx.

\section*{Return Values}

This function returns a value info.
\(=0\) : successful exit.
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value.
\(>0\) : if info \(=i\), then \(i\) eigenvectors failed to converge in ? \(b \mathrm{bdsvdx} /\) ? stevx. if info \(=n * 2+1\), an internal error occurred in ?bdsvdx.

\section*{?bdsvdx}

Computes the SVD of a bidiagonal matrix.

\section*{Syntax}
```

lapack_int LAPACKE_sbdsvdx (int matrix_layout, char uplo, char jobz, char range,
lapack_int n, float * d, float * e, float vl, float vu, lapack_int il, lapack_int iu,
lapack_int * ns, float * s, float * z, lapack_int ldz, lapack_int * superb);
lapack_int LAPACKE_dbdsvdx (int matrix_layout, char uplo, char jobz, char range,
lapack_int n, double * d, double * e, double vl, double vu, lapack_int il, lapack_int
iu, lapack_int * ns, double * s, double * z, lapack_int ldz, lapack_int * superb);

```

\section*{Include Files}
- mkl.h

\section*{Description}
?bdsvdx computes the singular value decomposition (SVD) of a real \(n\)-by-n (upper or lower) bidiagonal matrix \(B, B=U * S * V T\), where \(S\) is a diagonal matrix with non-negative diagonal elements (the singular values of \(B\) ), and \(U\) and \(V T\) are orthogonal matrices of left and right singular vectors, respectively.
Given an upper bidiagonal \(B\) with diagonal \(d=\left[d_{1} d_{2} \ldots d_{n}\right]\) and superdiagonal \(e=\left[e_{1} e_{2} \ldots e_{n-1}\right]\), ?bdsvdx computes the singular value decompositon of \(B\) through the eigenvalues and eigenvectors of the \(n * 2-b y-n * 2\) tridiagonal matrix
\(T G K=\left(\begin{array}{cccccc}0 & d_{1} & & & & \\ d_{1} & 0 & e_{1} & & \\ & e_{1} & 0 & d_{2} & \\ & & d_{2} & \ddots & \ddots \\ & & & \ddots & \ddots\end{array}\right)\)
If \((s, u, v)\) is a singular triplet of \(B\) with \(\|u\|=\|v\|=1\), then \(( \pm s, q),\|q\|=1\), are eigenpairs of TGK, with \(q=P * \frac{\left(u^{\prime} \pm v^{\prime}\right)}{\sqrt{2}}=\frac{\left(v_{1} u_{1} v_{2} u_{2} \cdots v_{n} u_{n}\right)}{\sqrt{2}}\), and \(P=\left(e_{n+1} e_{1} e_{n+2} e_{2} \cdots\right)\).
Given a TGK matrix, one can either
1. compute \(-s,-v\) and change signs so that the singular values (and corresponding vectors) are already in descending order (as in ?gesvd/?gesdd) or
2. compute \(s, v\) and reorder the values (and corresponding vectors).
?bdsvdx implements (1) by calling ?stevx (bisection plus inverse iteration, to be replaced with a version of the Multiple Relative Robust Representation algorithm. (See P. Willems and B. Lang, A framework for the \(M R \wedge 3\) algorithm: theory and implementation, SIAM J. Sci. Comput., 35:740-766, 2013.)

\section*{Input Parameters}
```

matrix_layout
uplo
jobz
range
n
d
e
vI
vu
il,iu
ldz

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
\(=\) ' U ': \(B\) is upper bidiagonal;
= 'L': B is lower bidiagonal.
\(=\) ' N ': Compute singular values only;
\(=\) ' V ': Compute singular values and singular vectors.
\(=\) ' A ': Find all singular values.
\(=\) ' V ': all singular values in the half-open interval \([v], v u)\) are found.
\(=\) 'I': the il-th through iu-th singular values are found.
The order of the bidiagonal matrix.
\(n>=0\).
Array, size \(n\).
The \(n\) diagonal elements of the bidiagonal matrix \(B\).
Array, size \((\max (1, n-1))\)
The ( \(n-1\) ) superdiagonal elements of the bidiagonal matrix \(B\) in elements 1 to \(n-1\).
\(v l \geq 0\).
If range='V', the lower and upper bounds of the interval to be searched for singular values. \(v u>v l\).

Not referenced if range \(=\) 'A' or 'I'.
If range='I', the indices (in ascending order) of the smallest and largest singular values to be returned.
\(1 \leq i l \leq i u \leq \min (m, n)\), if \(\min (m, n)>0\).
Not referenced if range \(=\) ' A ' or ' V '.
The leading dimension of the array \(z\).
\(l d z \geq 1\), and if \(j o b z=' V ', I d z \geq \max \left(2, n^{*} 2\right)\).

\section*{Output Parameters}

The total number of singular values found. \(0 \leq n s \leq n\).
If range \(=\) ' A ', \(n s=n\), and if range \(=\) ' I ', \(n s=i u-i l+1\).
Array, size ( \(n\) )
The first \(n s\) elements contain the selected singular values in ascending order.

Array, size \(2 *_{n}{ }^{*} k\)

If jobz \(=\) ' \(V\) ', then if info \(=0\) the first \(n s\) columns of \(z\) contain the singular vectors of the matrix \(B\) corresponding to the selected singular values, with \(U\) in rows 1 to \(n\) and \(V\) in rows \(n+1\) to \(n * 2\), i.e.
\(z=\binom{U}{V}\)
If jobz \(=\) ' N ', then \(z\) is not referenced.

\section*{NOTE}

Make sure that at least \(k=n s+1\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(n s\) is not known in advance and an upper bound must be used.
superb
Array, size \(\left(12 *_{n}\right)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first ns elements of iwork are zero. If info > 0 , then iwork contains the indices of the eigenvectors that failed to converge in ?stevx.

\section*{Return Values}

This function returns a value info.
\(=0\) : successful exit.
< 0: if info \(=-i\), the \(i\)-th argument had an illegal value.
> 0:
if info \(=i\), then \(i\) eigenvectors failed to converge in ?stevx. The indices of the eigenvectors (as returned by ?stevx) are stored in the array iwork.
if info \(=n^{*} 2+1\), an internal error occurred.

\section*{Cosine-Sine Decomposition: LAPACK Driver Routines}

This topic describes LAPACK driver routines for computing the cosine-sine decomposition (CS decomposition). You can also call the corresponding computational routines to perform the same task.
The computation has the following phases:
1. The matrix is reduced to a bidiagonal block form.
2. The blocks are simultaneously diagonalized using techniques from the bidiagonal SVD algorithms.

Table "Driver Routines for Cosine-Sine Decomposition (CSD)" lists LAPACK routines that perform CS decomposition of matrices.
Computational Routines for Cosine-Sine Decomposition (CSD)
\begin{tabular}{lll}
\hline Operation & Real matrices & Complex matrices \\
\hline \begin{tabular}{l} 
Compute the CS decomposition of a block- \\
partitioned orthogonal matrix
\end{tabular} & orcsd uncsd & \\
\begin{tabular}{l} 
Compute the CS decomposition of a block- \\
partitioned unitary matrix
\end{tabular} & & orcsd uncsd \\
\hline
\end{tabular}

\footnotetext{
See Also
CS Computational Routines
}

\section*{?orcsd/?uncsd \\ Computes the CS decomposition of a block-partitioned orthogonal/unitary matrix.}

\section*{Syntax}
lapack_int LAPACKE_sorcsd( int matrix_layout, char jobul, char jobu2, char jobvlt, char jobv2t, char trans, char signs, lapack_int m, lapack_int p, lapack_int q, float* xll, lapack_int ldx11, float* x12, lapack_int ldx12, float* x21, lapack_int ldx21, float* x22, lapack_int ldx22, float* theta, float* u1, lapack_int ldul, float* u2, lapack_int ldu2, float* v1t, lapack_int ldv1t, float* v2t, lapack_int ldv2t );
lapack_int LAPACKE_dorcsd( int matrix_layout, char jobul, char jobu2, char jobvlt, char jobv2t, char trans, char signs, lapack_int m, lapack_int p, lapack_int q, double* xll, lapack_int ldx11, double* x12, lapack_int ldx12, double* x21, lapack_int ldx21, double* x22, lapack_int ldx22, double* theta, double* u1, lapack_int ldul, double* u2, lapack_int ldu2, double* vlt, lapack_int ldv1t, double* v2t, lapack_int ldv2t );
lapack_int LAPACKE_cuncsd( int matrix_layout, char jobul, char jobu2, char jobvlt, char jobv2t, char trans, char signs, lapack_int \(m\), lapack_int \(p\), lapack_int \(q\), lapack_complex_float* x11, lapack_int ldx11, lapack_complex_float* x12, lapack_int ldx12, lapack_complex_float* x21, lapack_int ldx21, lapack_complex_float* x22, lapack_int ldx22, float* theta, lapack_complex_float* ul, lapack_int ldul, lapack_complex_float* u2, lapack_int ldu2, lapack_complex_float* v1t, lapack_int ldv1t, lapack_complex_float* v2t, lapack_int ldv2t );
lapack_int LAPACKE_zuncsd( int matrix_layout, char jobul, char jobu2, char jobvlt, char jobv2t, char trans, char signs, lapack_int \(m\), lapack_int \(p\), lapack_int \(q\), lapack_complex_double* xl1, lapack_int ldxl1, lapack_complex_double* xl2, lapack_int ldx12, lapack_complex_double* \(x 21, ~ l a p a c k \_i n t ~ l d x 21, ~ l a p a c k \_c o m p l e x \_d o u b l e * ~ x 22, ~\) lapack_int ldx22, double* theta, lapack_complex_double* ul, lapack_int ldul, lapack_complex_double* u2, lapack_int ldu2, lapack_complex_double* vlt, lapack_int ldvlt, lapack_complex_double* v2t, lapack_int ldv2t );

\section*{Include Files}
- mkl.h

\section*{Description}

The routines ?orcsd/?uncsd compute the CS decomposition of an \(m\)-by- \(m\) partitioned orthogonal matrix \(X\) :
\[
X=\left(\begin{array}{lll}
x_{11} & x_{12} \\
\hline x_{21} & \mid & x_{22}
\end{array}\right)=\left(\begin{array}{ll}
u_{1} & \mid \\
\hline & \mid
\end{array} u_{2}\left(\begin{array}{ccccc}
I & 0 & 0 \mid 0 & 0 & 0 \\
0 & C & 0 \mid 0 & -S & 0 \\
0 & 0 & 0 \mid 0 & 0 & -I \\
\hline 0 & 0 & 0 \mid I & 0 & 0 \\
0 & S & 0 \mid 0 & C & 0 \\
0 & 0 & I \mid 0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
v_{1} \mid & \\
\hline & \mid & v_{2}
\end{array}\right)^{T}\right.
\]
or unitary matrix:
\[
X=\left(\begin{array}{lll}
x_{11} & x_{12} \\
\hline x_{21} & \mid & x_{22}
\end{array}\right)=\left(\begin{array}{ll}
u_{1} & \mid \\
\hline & \mid
\end{array} u_{2}\right)\left(\begin{array}{ccccc}
I & 0 & 0 \mid 0 & 0 & 0 \\
0 & C & 0 \mid 0 & -S & 0 \\
0 & 0 & 0 \mid 0 & 0 & -I \\
0 & 0 & 0 \mid I & 0 & 0 \\
0 & S & 0 \mid 0 & C & 0 \\
0 & 0 & I \mid 0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
v_{1} & \mid \\
\hline & \mid & v_{2}
\end{array}\right)^{H}
\]
\(x_{11}\) is \(p\)-by- \(q\). The orthogonal/unitary matrices \(u_{1}, u_{2}, v_{1}\), and \(v_{2}\) are \(p-\) by- \(p,(m-p)\)-by- \((m-p), q-b y-q,(m-q)-\) by- \((m-q)\), respectively. \(C\) and \(S\) are \(r\)-by- \(r\) nonnegative diagonal matrices satisfying \(C^{2}+S^{2}=I\), in which \(r\) \(=\min (p, m-p, q, m-q)\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline jobu1 & If equals \(Y\), then \(u_{1}\) is computed. Otherwise, \(u_{1}\) is not computed. \\
\hline jobu2 & If equals \(Y\), then \(u_{2}\) is computed. Otherwise, \(u_{2}\) is not computed. \\
\hline jobv1t & If equals \(Y\), then \(v_{1}{ }^{t}\) is computed. Otherwise, \(v_{1}{ }^{t}\) is not computed. \\
\hline jobv2t & If equals \(Y\), then \(v_{2}{ }^{t}\) is computed. Otherwise, \(v_{2}{ }^{t}\) is not computed. \\
\hline trans & \(=\) ' \(T\) ': \(\quad x, u_{1}, u_{2}, v_{1}{ }^{t}, v_{2}{ }^{t}\) are stored in row-major order. \\
\hline & otherwise \(\quad x, u_{1}, u_{2}, v_{1}{ }^{t}, v_{2}{ }^{t}\) are stored in column-major order. \\
\hline signs & \[
\begin{array}{ll}
=\text { 'o': } & \text { The lower-left block is made nonpositive (the } \\
\text { "other" convention). }
\end{array}
\] \\
\hline & otherwise The upper-right block is made nonpositive (the "default" convention). \\
\hline m & The number of rows and columns of the matrix \(X\). \\
\hline \(p\) & The number of rows in \(x_{11}\) and \(x_{12} .0 \leq p \leq m\). \\
\hline q & The number of columns in \(x_{11}\) and \(x_{21} .0 \leq q \leq m\). \\
\hline x11, x12, x21, x22 & Arrays of size \(x 11(1 d x 11, q), x 12(1 d x 12, m-q), x 21(1 d x 21, q)\), and \(x 22\) ( \(1 \mathrm{dx} \times 22, m-q\) ). \\
\hline & Contain the parts of the orthogonal/unitary matrix whose CSD is desired. \\
\hline \(1 d x 11,1 d x 12,1 d x 21,1 d x 22\) & The leading dimensions of the parts of array \(X . I d x 11 \geq \max (1, p), I d x 12 \geq\) \(\max (1, p), 1 d x 21 \geq \max (1, m-p), l d x 22 \geq \max (1, m-p)\). \\
\hline \(1{ }^{\text {du1 }}\) & The leading dimension of the array \(u_{1}\). If jobul \(=' Y, 1\) dul \(\geq\) max \((1, p)\). \\
\hline 1 du2 & The leading dimension of the array \(u_{2}\). If jobu \(2=' Y, I \operatorname{du} 2 \geq \max (1, m-p)\). \\
\hline ldv1t & The leading dimension of the array v 1 t . If jobv1t \(=\mathrm{Y} \mathrm{Y}^{\prime}, 1 \mathrm{dv} 1 \mathrm{t} \geq\) \(\max (1, q)\). \\
\hline
\end{tabular}
\(1 d v 2 t\)

\section*{Output Parameters}
```

theta
Array, size r, in which r = min (p,m-p,q,m-q).

```
```

C= diag(cos(theta[0]), ..., cos(theta[r - 1])), and

```
C= diag( cos(theta[0]), ..., cos(theta[r - 1]) ), and
S = diag( sin(theta[0]), ..., sin(theta[r - 1]) ).
S = diag( sin(theta[0]), ..., sin(theta[r - 1]) ).
Array, size at least \(\max \left(1, I d u 1^{*} p\right)\).
If jobu1 = ' \(\gamma\), u1 contains the \(p\)-by- \(p\) orthogonal/unitary matrix \(u_{1}\).
Array, size at least \(\max \left(1, I d u 2^{*}(m-p)\right)\).
If jobu2 \(=\) ' \(r\), u2 contains the ( \(m-p\) )-by- \((m-p)\) orthogonal/unitary matrix \(u_{2}\).
Array, size at least \(\max \left(1,1 d v 1 t^{*} q\right)\).
If jobv1t = ' \(\gamma\) ', v1t contains the \(q\)-by- \(q\) orthogonal matrix \(v_{1}{ }^{\top}\) or unitary matrix \(v_{1}{ }^{H}\).
Array, size at least \(\max \left(1, l d v 2 t^{*}(m-q)\right)\).
If jobv2t \(=\) ' \(Y\), v2t contains the ( \(m-q\) )-by- \((m-q)\) orthogonal matrix \(v_{2}{ }^{T}\) or unitary matrix \(v_{2}{ }^{H}\).
```


Return Values

This function returns a value info.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
> 0: ?orcsd/?uncsd did not converge.

See Also

? bbcsd
xerbla
?orcsd2by1/?uncsd2by1
Computes the CS decomposition of a block-partitioned orthogonal/unitary matrix.

Syntax

```
lapack_int LAPACKE_sorcsd2by1 (int matrix_layout, char jobul, char jobu2, char jobvlt,
lapack_int m, lapack_int p, lapack_int q, float * xll, lapack_int ldxll, float * x2l,
lapack_int ldx21, float * theta, float * ul, lapack_int ldul, float * u2, lapack_int
ldu2, float * vlt, lapack_int ldv1t);
lapack_int LAPACKE_dorcsd2by1 (int matrix_layout, char jobul, char jobu2, char jobvlt,
lapack_int m, lapack_int p, lapack_int q, double * x11, lapack_int ldx11, double * x21,
lapack_int ldx21, double * theta, double * ul, lapack_int ldul, double * u2, lapack_int
ldu2, double * vlt, lapack_int Idvlt);
```

```
lapack_int LAPACKE_cuncsd2byl (int matrix_layout, char jobul, char jobu2, char jobvlt,
lapack_int m, lapack_int p, lapack_int q, lapack_complex_float * xll, lapack_int ldxll,
lapack_complex_float * x21, lapack_int ldx21, float * theta, lapack_complex_float * ul,
lapack_int ldul, lapack_complex_float * u2, lapack_int ldu2, lapack_complex_float *
vlt, lapack_int ldvlt);
lapack_int LAPACKE_zuncsd2by1 (int matrix_layout, char jobul, char jobu2, char jobvlt,
lapack_int m, lapack_int p, lapack_int q, lapack_complex_double * xll, lapack_int
ldx11, lapack_complex_double * x21, lapack_int ldx21, double * theta,
lapack_complex_double * ul, lapack_int ldul, lapack_complex_double * u2, lapack_int
ldu2, lapack_complex_double * v1t, lapack_int ldv1t);
```

Include Files

- mkl.h

Description

The routines ?orcsd2by1/?uncsd2by1 compute the CS decomposition of an m-by- q matrix X with orthonormal columns that has been partitioned into a 2-by-1 block structure:

x_{11} is p-by- q. The orthogonal/unitary matrices u_{1}, u_{2}, v_{1}, and v_{2} are p-by- $p,(m-p)$-by-($m-p$), q-by- $q,(m-q)$ -by- $(m-q)$, respectively. C and S are r-by- r nonnegative diagonal matrices satisfying $C^{2}+S^{2}=I$, in which r $=\min (p, m-p, q, m-q)$.

Input Parameters

```
matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
    or column major (LAPACK_COL_MAJOR).
jobu1 If equal to 'Y', then }\mp@subsup{u}{1}{}\mathrm{ is computed. Otherwise, }\mp@subsup{u}{1}{}\mathrm{ is not computed.
jobu2
jobv1t
m
The number of rows and columns of the matrix }X\mathrm{ .
```

```
p The number of rows in }\mp@subsup{x}{11}{}.0\leqp\leqm
q
x11
ldx11
x21
1dx21
IduI
ldu2
ldv1t
The number of rows in \(x_{11} .0 \leq p \leq m\).
The number of columns in \(x_{11} \cdot 0 \leq q \leq m\).
Array, size (/dx11*q).
On entry, the part of the orthogonal matrix whose CSD is desired.
The leading dimension of the array \(x 11.1 d x 11 \geq \max (1, p)\).
Array, size (Idx21*q).
On entry, the part of the orthogonal matrix whose CSD is desired.
The leading dimension of the array \(X .1 d \times 21 \geq \max (1, m-p)\).
The leading dimension of the array \(u_{1}\). If jobul \(=' Y\) ', 1 dul \(\geq \max (1, p)\).
The leading dimension of the array \(u_{2}\). If jobu2 \(=' Y\) ', \(I\) du \(2 \geq \max (1, m-p)\).
The leading dimension of the array v1t. If jobv1t \(=\) ' \(Y\) ', ldv1t \(\geq\) \(\max (1, q)\).
```


Output Parameters

```
theta
u1
u2
v1t
thet
u1
u2
v1t

Array, size \(r\), in which \(r=\min (p, m-p, q, m-q)\).
```

C = diag(cos(theta(1)), ..., cos(theta(r))), and

```
C = diag( cos(theta(1)), ..., cos(theta(r)) ), and
S = diag( sin(theta(1)), ..., sin(theta(r)) ).
```

```
S = diag( sin(theta(1)), ..., sin(theta(r)) ).
```

```

Array, size (Idu1*p) .
If jobul \(=\) ' \(\gamma\), ul contains the \(p\)-by- \(p\) orthogonal/unitary matrix \(u_{1}\).
Array, size (ldu2*( \(m-p\) )) .
If jobu2 \(=\) ' \(Y\) ', u2 contains the ( \(m-p\) )-by- \((m-p)\) orthogonal/unitary matrix \(u_{2}\).

Array, size (/dv1t*q).
If jobvIt \(=\) ' \(Y\) ', vIt contains the \(q\)-by- \(q\) orthogonal matrix \(v_{1}{ }^{T}\) or unitary matrix \(v_{1}{ }^{H}\).

\section*{Return Values}

This function returns a value info.
\(=0\) : successful exit
\(<0\) : if info \(=-i\), the \(i\)-th argument has an illegal value
> 0: ?orcsd2by1/?uncsd2by1 did not converge.

\section*{See Also}
?bbcsd
xerbla

\section*{Generalized Symmetric Definite Eigenvalue Problems: LAPACK Driver Routines}

This topic describes LAPACK driver routines used for solving generalized symmetric definite eigenproblems. See also computational routines that can be called to solve these problems. Table "Driver Routines for Solving Generalized Symmetric Definite Eigenproblems" lists all such driver routines.

Driver Routines for Solving Generalized Symmetric Definite Eigenproblems
\begin{tabular}{|c|c|}
\hline Routine Name & Operation performed \\
\hline sygv/hegv & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian positive-definite eigenproblem. \\
\hline sygvd/hegvd & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian positive-definite eigenproblem. If eigenvectors are desired, it uses a divide and conquer method. \\
\hline sygvx/hegvx & Computes selected eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian positive-definite eigenproblem. \\
\hline spgv/hpgv & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian positive-definite eigenproblem with matrices in packed storage. \\
\hline spgvd/hpgvd & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian positive-definite eigenproblem with matrices in packed storage. If eigenvectors are desired, it uses a divide and conquer method. \\
\hline spgvx/hpgvx & Computes selected eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian positive-definite eigenproblem with matrices in packed storage. \\
\hline sbgv/hbgv & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian positive-definite eigenproblem with banded matrices. \\
\hline sbgvd/hbgvd & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian positive-definite eigenproblem with banded matrices. If eigenvectors are desired, it uses a divide and conquer method. \\
\hline sbgvx/hbgvx & Computes selected eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian positive-definite eigenproblem with banded matrices. \\
\hline
\end{tabular}
```

?sygv
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem.

```

\section*{Syntax}
```

lapack_int LAPACKE_ssygv (int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, float* a, lapack_int lda, float* b, lapack_int ldb, float* w);
lapack_int LAPACKE_dsygv (int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, double* a, lapack_int lda, double* b, lapack_int ldb, double* w);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form


Here \(A\) and \(B\) are assumed to be symmetric and \(B\) is also positive definite.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{5}{*}{itype} & Must be 1 or 2 or 3. \\
\hline & Specifies the problem type to be solved: \\
\hline & if itype \(=1\), the problem type is \(A *^{*}=\operatorname{lambda}{ }^{*}{ }^{*}{ }^{*}\); \\
\hline & if itype \(=2\), the problem type is \(A^{*} B^{*} x=l a m b d a * x\); \\
\hline & if itype \(=3\), the problem type is \(B^{\star} A^{\star} \mathrm{X}=\operatorname{lambda}{ }^{*} \mathrm{X}\). \\
\hline \multirow[t]{3}{*}{jobz} & Must be 'N' or 'V'. \\
\hline & If jobz = 'N', then compute eigenvalues only. \\
\hline & If \(\mathrm{jobz}=\) ' V ', then compute eigenvalues and eigenvectors. \\
\hline \multirow[t]{3}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & If uplo \(=\) 'U', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo \(=\) 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \multirow[t]{3}{*}{\(a, b\)} & Arrays: \\
\hline & \(a\) (size at least \(\max \left(1, I d^{*} n\right)\) ) contains the upper or lower triangle of the symmetric matrix \(A\), as specified by uplo. \\
\hline & \(b\) (size at least \(\max \left(1, I d b^{*} n\right)\) ) contains the upper or lower triangle of the symmetric positive definite matrix \(B\), as specified by uplo. \\
\hline Ida & The leading dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & The leading dimension of \(b\); at least \(\max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
b

W

On exit, if jobz = 'V', then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{T \star} B^{\star} Z=I\);
if itype \(=3, Z^{T \star} \operatorname{inv}(B) * Z=I\);
If jobz = 'N', then on exit the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of \(A\), including the diagonal, is destroyed.

On exit, if info \(n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{T} \star U\) or \(B=\) \(L \star L^{T}\).

Array, size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0, spotrf/dpotrf or ssyev/dsyev returned an error code:
If info \(=i \leq n\), ssyev/dsyev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;

If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.
```

?hegv
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
positive-definite eigenproblem.
Syntax
lapack_int LAPACKE_chegv(int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b,
lapack_int ldb, float* w);
lapack_int LAPACKE_zhegv(int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, lapack_complex_double* a, lapack_int lda, lapack_complex_double* b,
lapack_int ldb, double* w);

```

Include Files
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem, of the form


Here \(A\) and \(B\) are assumed to be Hermitian and \(B\) is also positive definite.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{4}{*}{itype} & Must be 1 or 2 or 3 . Specifies the problem type to be solved: \\
\hline &  \\
\hline & if itype \(=2\), the problem type is \(A{ }^{*}{ }^{*} X=\) lambda* \({ }^{\text {a }}\); \\
\hline & if itype \(=3\), the problem type is \(B^{\star} A^{\star} X=\operatorname{lambda}{ }^{*}\). \\
\hline jobz & Must be 'N' or 'V'. \\
\hline & If jobz = 'N', then compute eigenvalues only. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow{4}{*}{uplo} & If \(\mathrm{jobz}=\) ' V ', then compute eigenvalues and eigenvectors. \\
\hline & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo = 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \multirow[t]{3}{*}{\(a, b\)} & Arrays: \\
\hline & a (size at least \(\max \left(1, I d a *_{n}\right)\) ) contains the upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo. \\
\hline & \(b\) (size at least \(\max \left(1, I d b^{*}\right)\) ) contains the upper or lower triangle of the Hermitian positive definite matrix \(B\), as specified by uplo. \\
\hline Ida & The leading dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & The leading dimension of \(b\); at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
On exit, if \(j o b z=' V\) ', then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{H \star} B^{\star} Z=I\);
if itype \(=3, Z^{H \star} \operatorname{inv}(B) * Z=I\);
If jobz = 'N', then on exit the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of \(A\), including the diagonal, is destroyed.
b
w
On exit, if info \(n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H *} U\) or \(B=\) \(L^{\star} L^{H}\).

Array, size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.

\section*{Return Values}

This function returns a value info.
If infor 0 , the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0, cpotrf/zpotrf or cheev/zheev return an error code:
If info \(=i \leq n\), cheev/zheev fails to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal do not converge to zero;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) can not be completed and no eigenvalues or eigenvectors are computed.
```

?sygvd
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem using a divide and conquer method.

```

\section*{Syntax}
```

lapack_int LAPACKE_ssygvd (int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, float* a, lapack_int lda, float* b, lapack_int ldb, float* w);
lapack_int LAPACKE_dsygvd (int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, double* a, lapack_int lda, double* b, lapack_int ldb, double* w);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form


Here \(A\) and \(B\) are assumed to be symmetric and \(B\) is also positive definite.
It uses a divide and conquer algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline itype & Must be 1 or 2 or 3 . Specifies the problem type to be solved: \\
\hline & if itype \(=1\), the problem type is \(A *_{X}=\operatorname{lambda}{ }^{( }{ }^{*}{ }_{X}\); \\
\hline & if itype \(=2\), the problem type is \(A^{*} B^{*} x=l a m b d a * x\); \\
\hline & if itype \(=3\), the problem type is \(B^{\star} A^{\star} \mathrm{X}=\operatorname{lambda}{ }^{*} x\). \\
\hline jobz & Must be 'N' or 'V'. \\
\hline & If jobz = ' N ', then compute eigenvalues only. \\
\hline & If \(\mathrm{jobz}=\) ' V ', then compute eigenvalues and eigenvectors. \\
\hline uplo & Must be 'U' or 'L'. \\
\hline & If uplo = ' U ', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo \(=\) 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \(a, b\) & Arrays: \\
\hline & a (size at least \(I d a_{n}\) ) contains the upper or lower triangle of the symmetric matrix \(A\), as specified by uplo. \\
\hline & \(b\) (size at least \(l d b^{*} n\) ) contains the upper or lower triangle of the symmetric positive definite matrix \(B\), as specified by uplo. \\
\hline Ida & The leading dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & The leading dimension of \(b\); at least max (1, \(n\) ). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
b

W

On exit, if \(j o b z=' V\) ', then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{T \star} B^{\star} Z=I\);
if itype \(=3, Z^{T} * \operatorname{inv}(B) * Z=I\);
If \(j o b z=\) ' \(N\) ', then on exit the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of \(A\), including the diagonal, is destroyed.

On exit, if info \(n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{T} \star U\) or \(B=\) \(L \star L^{T}\).

Array, size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(>0\), an error code is returned as specified below.
- For infón:
- If info \(=i\) and \(j o b z=\) ' \(N\) ', then the algorithm failed to converge; \(i\) off-diagonal elements of an intermediate tridiagonal form did not converge to zero.
- If jobz = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns infol ( \(n+1\) ) through mod(info, \(n+1\) ).
- For info > \(n\) :
- If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{?hegvd}

Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem using a divide and conquer method.

\section*{Syntax}
```

lapack_int LAPACKE_chegvd(int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b,
lapack_int ldb, float* w);
lapack_int LAPACKE_zhegvd(int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, lapack_complex_double* a, lapack_int lda, lapack_complex_double* b,
lapack_int ldb, double* w);

```

Include Files
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem, of the form


Here \(A\) and \(B\) are assumed to be Hermitian and \(B\) is also positive definite.
It uses a divide and conquer algorithm.
Input Parameters
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline itype & Must be 1 or 2 or 3 . Specifies the problem type to be solved: \\
\hline & if itype \(=1\), the problem type is \(A^{*} X=\operatorname{lambda}{ }^{*}{ }^{\star} X^{\prime}\); \\
\hline & if itype \(=2\), the problem type is \(A{ }^{*} \star^{\star} X=\operatorname{lambda}\) *; \\
\hline & if itype \(=3\), the problem type is \(B^{\star} A^{\star} X=\) lambda* \({ }^{\text {a }}\). \\
\hline jobz & Must be 'N' or 'V'. \\
\hline & If jobz = 'N', then compute eigenvalues only. \\
\hline & If jobz = 'V', then compute eigenvalues and eigenvectors. \\
\hline uplo & Must be 'U' or 'L'. \\
\hline & If uplo \(=\) 'U', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo \(=\) 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \(a, b\) & Arrays: \\
\hline & a (size at least \(\max \left(1, I d *_{n}\right)\) ) contains the upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo. \\
\hline & \(b\) (size at least \(\left.\max \left(1, I d *_{n}\right)\right)\) contains the upper or lower triangle of the Hermitian positive definite matrix \(B\), as specified by uplo. \\
\hline Ida & The leading dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & The leading dimension of \(b\); at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, if jobz = 'V', then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{H \star} B^{\star} Z=1\);
if itype \(=3, Z^{H \star} \operatorname{inv}(B) * Z=I\);
If jobz = 'N', then on exit the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of \(A\), including the diagonal, is destroyed.
b
w
On exit, if info \(n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H *} U\) or \(B=\) \(L^{\star} L^{H}\).

Array, size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info = \(i\), and jobz = ' \(N\) ', then the algorithm failed to converge; \(i\) off-diagonal elements of an intermediate tridiagonal form did not converge to zero;
if info \(=i\), and jobz = ' \(V\) ', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns infol \((n+1)\) through mod (info, \(n+1\) ).
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.
```

?sygvx
Computes selected eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem.

```

\section*{Syntax}
```

lapack_int LAPACKE_ssygvx (int matrix_layout, lapack_int itype, char jobz, char range,

```
lapack_int LAPACKE_ssygvx (int matrix_layout, lapack_int itype, char jobz, char range,
char uplo, lapack_int n, float* a, lapack_int lda, float* b, lapack_int ldb, float vl,
char uplo, lapack_int n, float* a, lapack_int lda, float* b, lapack_int ldb, float vl,
float vu, lapack_int il, lapack_int iu, float abstol, lapack_int* m, float* w, float* z,
float vu, lapack_int il, lapack_int iu, float abstol, lapack_int* m, float* w, float* z,
lapack_int ldz, lapack_int* ifail);
lapack_int ldz, lapack_int* ifail);
lapack_int LAPACKE_dsygvx (int matrix_layout, lapack_int itype, char jobz, char range,
lapack_int LAPACKE_dsygvx (int matrix_layout, lapack_int itype, char jobz, char range,
char uplo, lapack_int n, double* a, lapack_int lda, double* b, lapack_int ldb, double
char uplo, lapack_int n, double* a, lapack_int lda, double* b, lapack_int ldb, double
vl, double vu, lapack_int il, lapack_int iu, double abstol, lapack_int* m, double* w,
vl, double vu, lapack_int il, lapack_int iu, double abstol, lapack_int* m, double* w,
double* z, lapack_int ldz, lapack_int* ifail);
```

double* z, lapack_int ldz, lapack_int* ifail);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form

Here \(A\) and \(B\) are assumed to be symmetric and \(B\) is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline itype & Must be 1 or 2 or 3 . Specifies the problem type to be solved: \\
\hline & if itype \(=1\), the problem type is \(A *^{\prime}{ }^{\text {a }}=\lambda{ }^{*} B^{*}\); \\
\hline & if itype \(=2\), the problem type is \(A^{*} B^{*} x=\lambda^{*} x\); \\
\hline & if \(i\) type \(=3\), the problem type is \(B^{\star} A^{\star} x=\lambda^{\star} x\). \\
\hline jobz & Must be 'N' or 'V'. \\
\hline & If jobz = 'N', then compute eigenvalues only. \\
\hline & If \(\mathrm{jobz}=\) 'V', then compute eigenvalues and eigenvectors. \\
\hline range & Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' \(V\) ', the routine computes eigenvalues \(w[i]\) in the half-open interval: \\
\hline & \(v l<w[i] \leq v u\). \\
\hline & If range \(=\) 'I', the routine computes eigenvalues with indices il to iu. \\
\hline uplo & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo = 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \(a, b\) & Arrays: \\
\hline & \(a\) (size at least \(\max \left(1, I d a_{n}\right)\) ) contains the upper or lower triangle of the symmetric matrix \(A\), as specified by uplo. \\
\hline & \(b\) (size at least \(\left.\max \left(1, I d b^{*}\right)\right)\) contains the upper or lower triangle of the symmetric positive definite matrix \(B\), as specified by uplo. \\
\hline Ida & The leading dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & The leading dimension of \(b\); at least \(\max (1, n)\). \\
\hline vl, vu & If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) 'A' or 'I', v/ and vu are not referenced. \\
\hline il, iu & If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) \\
\hline & if \(n=0\). \\
\hline & If range \(=\) 'A' or 'V', il and iu are not referenced. \\
\hline
\end{tabular}

The leading dimension of the output array \(z\). Constraints:
\(I d z \geq 1\); if \(j o b z=' V ', I d z \geq \max (1, n)\) for column major layout and \(I d z \geq\) \(\max (1, m)\) for row major layout .

\section*{Output Parameters}
a
b
m

W, \(z\)
ifail

On exit, the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of \(A\), including the diagonal, is overwritten.

On exit, if info \(n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{T} \star U\) or \(B=\) \(L \star L^{T}\).

The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=\) 'A', \(m=n\), and if range \(=\) 'I',
\(m=i u-i l+1\).
Arrays:
\(w\), size at least \(\max (1, n)\).
The first \(m\) elements of \(w\) contain the selected eigenvalues in ascending order.
\(z\) (size at least max \(\left(1, I d z^{*} m\right.\) ) for column major layout and \(\max \left(1, I d z_{n}\right)\) for row major layout).

If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w[i-1]\). The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{T \star} B^{\star} Z=I\);
if itype \(=3, Z^{T}\) inv \((B) * Z=I\);
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

Array, size at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge.
If jobz \(=\) ' \(N\) ', then ifail is not referenced.

\section*{Return Values}

This function returns a value info.

If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0, spotrf/dpotrf and ssyevx/dsyevx returned an error code:
If info \(=i \leq n\), ssyevx/dsyevx failed to converge, and \(i\) eigenvectors failed to converge. Their indices are stored in the array ifail;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol \(+\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If abstol is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) is used as tolerance, where \(T\) is the tridiagonal matrix obtained by reducing \(C\) to tridiagonal form, where \(C\) is the symmetric matrix of the standard symmetric problem to which the generalized problem is transformed. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2^{*}\) ? lamch('S'), not zero.
If this routine returns with info > 0 , indicating that some eigenvectors did not converge, set abstol to 2*? lamch('S').

\section*{?hegvx \\ Computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian positive-definite eigenproblem.}

\section*{Syntax}
```

lapack_int LAPACKE_chegvx(int matrix_layout, lapack_int itype, char jobz, char range,
char uplo, lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_complex_float*
b, lapack_int ldb, float vl, float vu, lapack_int il, lapack_int iu, float abstol,
lapack_int* m, float* w, lapack_complex_float* z, lapack_int ldz, lapack_int* ifail);
lapack_int LAPACKE_zhegvx(int matrix_layout, lapack_int itype, char jobz, char range,
char uplo, lapack_int n, lapack_complex_double* a, lapack_int lda,
lapack_complex_double* b, lapack_int ldb, double vl, double vu, lapack_int il,
lapack_int iu, double abstol, lapack_int* m, double* w, lapack_complex_double* z,
lapack_int ldz, lapack_int* ifail);

```

Include Files
- mkl.h

\section*{Description}

The routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem, of the form
\(A^{\star} X=\lambda^{\star} B^{\star} X, \quad A^{\star} B^{\star}{ }_{X}=\lambda^{\star} X\), or \(B^{\star} A^{\star}{ }_{X}=\lambda^{\star}{ }_{X}\).
Here \(A\) and \(B\) are assumed to be Hermitian and \(B\) is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline itype & Must be 1 or 2 or 3 . Specifies the problem type to be solved: \\
\hline & if itype \(=1\), the problem type is \(A^{*} X=\lambda^{\star} B^{\star} X\); \\
\hline & if itype \(=2\), the problem type is \(A *{ }^{\star}{ }^{*}=\lambda^{*} X\); \\
\hline & if itype \(=3\), the problem type is \(B^{\star} A{ }^{\star} X=\lambda^{\star}\). \\
\hline jobz & Must be 'N' or 'V'. \\
\hline & If jobz = 'N', then compute eigenvalues only. \\
\hline & If \(\mathrm{jobz}=\) ' V ', then compute eigenvalues and eigenvectors. \\
\hline range & Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' V ', the routine computes eigenvalues \(w[i]\) in the half-open interval: \\
\hline & \(v l<w[i] \leq v u\). \\
\hline & If range = 'I', the routine computes eigenvalues with indices il to iu. \\
\hline uplo & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo \(=\) 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \(a, b\) & Arrays: \\
\hline & a (size at least max \(\left(1, I d a^{*} n\right)\) ) contains the upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo. \\
\hline & \(b\) (size at least \(\max \left(1, I d b^{*} n\right)\) ) contains the upper or lower triangle of the Hermitian positive definite matrix \(B\), as specified by uplo. \\
\hline Ida & The leading dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & The leading dimension of \(b\); at least max (1, \(n\) ) . \\
\hline vl, vu & If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) 'A' or 'I', v/ and vu are not referenced. \\
\hline il, iu & If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) \\
\hline & if \(n=0\). \\
\hline & If range \(=\) ' A ' or ' V ', il and iu are not referenced. \\
\hline
\end{tabular}
abstol
ldz

The absolute error tolerance for the eigenvalues. See Application Notes for more information.

The leading dimension of the output array \(z\). Constraints:
\(I d z \geq 1\); if jobz \(=' \mathrm{~V}\) ', \(I d z \geq \max (1, n)\) for column major layout and \(I d z \geq\) \(\max (1, m)\) for row major layout.

\section*{Output Parameters}
a
b
m
On exit, the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of \(A\), including the diagonal, is overwritten.

On exit, if info \(n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H} \star U\) or \(B=\) \(L^{\star} L^{H}\).

The total number of eigenvalues found,
```

0 \leqm\leqn. If range ='A',m=n, and if range = 'I',
m = iu-il+1.

```

Array, size at least \(\max (1, n)\).
The first \(m\) elements of \(w\) contain the selected eigenvalues in ascending order.

Array \(z\) (size at least \(\max \left(1, I d z^{*} m\right)\) for column major layout and max(1, \(l d z_{n}\) ) for row major layout).

If \(j o b z=' V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w[i-1]\). The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{H \star} B^{\star} Z=1\);
if itype \(=3, Z^{H \star} \operatorname{inv}(B) * Z=I\);
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

Array, size at least max \((1, n)\).

If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

\section*{Return Values}

This function returns a value info.

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0 , cpotrf/zpotrf and cheevx/zheevx returned an error code:
If info \(=i \leq n\), cheevx/zheevx failed to converge, and \(i\) eigenvectors failed to converge. Their indices are stored in the array ifail;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If abstol is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(C\) to tridiagonal form, where \(C\) is the symmetric matrix of the standard symmetric problem to which the generalized problem is transformed. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*? lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to \(2^{*}\) ? lamch('S').
```

?spgv
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem with matrices in packed storage.
Syntax
lapack_int LAPACKE_sspgv (int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, float* ap, float* bp, float* w, float* z, lapack_int ldz);
lapack_int LAPACKE_dspgv (int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, double* ap, double* bp, double* w, double* z, lapack_int ldz);

```

Include Files
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form
\(A^{\star} X=\lambda^{\star} B^{\star} X, A^{\star} B^{\star} X=\lambda^{\star} X\), or \(B^{\star} A^{\star} X=\lambda^{\star} X\).
Here \(A\) and \(B\) are assumed to be symmetric, stored in packed format, and \(B\) is also positive definite.

\section*{Input Parameters}
```

matrix_layout
itype

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 1 or 2 or 3 . Specifies the problem type to be solved:
if itype \(=1\), the problem type is \(A *_{X}=\operatorname{lambda}{ }^{\prime} B{ }^{*} X\);
if itype \(=2\), the problem type is \(A^{*} B^{*} x=l a m b d a * x\);

\section*{if itype \(=3\), the problem type is \(B^{\star} A{ }^{\star} \mathrm{x}=\operatorname{lambda}{ }^{\star} \mathrm{x}\).}
jobz
uplo
\(n\)
\(1 d z\)

\section*{Output Parameters}
ap
bp
w, z

Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
If \(j o b z=\) ' \(V\) ', then compute eigenvalues and eigenvectors.
Must be 'U' or 'L'.
If uplo = 'U', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\);
If uplo \(=\) 'L', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\).
The order of the matrices \(A\) and \(B(n \geq 0)\).
Arrays:
ap contains the packed upper or lower triangle of the symmetric matrix \(A\), as specified by uplo.

The dimension of ap must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
\(b p\) contains the packed upper or lower triangle of the symmetric matrix \(B\), as specified by uplo.
The dimension of \(b p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
The leading dimension of the output array \(z ; I d z \geq 1\). If \(j o b z=' V ', I d z \geq\) \(\max (1, n)\).

On exit, the contents of ap are overwritten.
On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{T} \star U\) or \(B=L \star L^{T}\), in the same storage format as \(B\).

\section*{Arrays:}
\(w\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
\(z\left(\right.\) size \(\left.\max \left(1, I d z_{n}\right)\right)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{T} B^{\star} Z=I\);
if itype \(=3, Z^{T *} \operatorname{inv}(B) * Z=I\);
If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0, spptrf/dpptrf and sspev/dspev returned an error code:

If info \(=i \leq n\), sspev/dspev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;

If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.
```

?hpgv
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
positive-definite eigenproblem with matrices in packed
storage.

```

\section*{Syntax}
```

lapack_int LAPACKE_chpgv(int matrix_layout, lapack_int itype, char jobz, char uplo,

```
lapack_int LAPACKE_chpgv( int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, lapack_complex_float* ap, lapack_complex_float* bp, float* w,
lapack_int n, lapack_complex_float* ap, lapack_complex_float* bp, float* w,
lapack_complex_float* z, lapack_int ldz );
lapack_complex_float* z, lapack_int ldz );
lapack_int LAPACKE_zhpgv( int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int LAPACKE_zhpgv( int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, lapack_complex_double* ap, lapack_complex_double* bp, double* w,
lapack_int n, lapack_complex_double* ap, lapack_complex_double* bp, double* w,
lapack_complex_double* z, lapack_int ldz );
```

lapack_complex_double* z, lapack_int ldz);

```

Include Files
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem, of the form


Here \(A\) and \(B\) are assumed to be Hermitian, stored in packed format, and \(B\) is also positive definite.

\section*{Input Parameters}
```

matrix_layout
itype
jobz
uplo
n
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
Must be 1 or 2 or 3 . Specifies the problem type to be solved:
if itype $=1$, the problem type is $A \star_{X}=\operatorname{lambda}{ }^{\star} B^{\star} X$;
if itype $=2$, the problem type is $A{ }^{*} B^{*} X=$ lambda ${ }^{*} x$;
if itype $=3$, the problem type is $B^{\star} A^{\star} X=$ lambda* x.
Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
If jobz $=$ ' V ', then compute eigenvalues and eigenvectors.
Must be 'U' or 'L'.
If uplo = 'U', arrays $a p$ and $b p$ store the upper triangles of A and B;
If uplo $=$ 'L', arrays $a p$ and $b p$ store the lower triangles of A and B.
The order of the matrices A and $B(n \geq 0)$.

```
```

ap, bp Arrays:
ap contains the packed upper or lower triangle of the Hermitian matrix A, as
specified by uplo.
The dimension of ap must be at least max(1, n*(n+1)/2).
bp contains the packed upper or lower triangle of the Hermitian matrix B,
as specified by uplo.
The dimension of bp must be at least max(1, n*(n+1)/2).
The leading dimension of the output array z; ldz\geq 1. If jobz = 'V',ldz\geq
max(1, n).

```

\section*{Output Parameters}
bp

W

Z

On exit, the contents of \(a p\) are overwritten.
On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H *} U\) or \(B=L^{\star} L^{H}\), in the same storage format as \(B\).

Array, size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
Array z (size max \(\left(1, I d z_{n}\right)\) ).
If jobz = 'V', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{H \star} B^{\star} Z=I\);
if itype \(=3, Z^{H *} \operatorname{inv}(B) * Z=I\);
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0, cpptrf/zpptrf and chpev/zhpev returned an error code:
If info \(=i \leq n\), chpev/zhpev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.
```

?spgvd
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem with matrices in packed storage using a
divide and conquer method.
Syntax
lapack_int LAPACKE_sspgvd (int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, float* ap, float* bp, float* w, float* z, lapack_int ldz);

```
```

lapack_int LAPACKE_dspgvd (int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, double* ap, double* bp, double* w, double* z, lapack_int ldz);

```

Include Files
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form


Here \(A\) and \(B\) are assumed to be symmetric, stored in packed format, and \(B\) is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline itype & Must be 1 or 2 or 3 . Specifies the problem type to be solved: \\
\hline & if itype \(=1\), the problem type is \(A *^{\prime}=\operatorname{lambda}{ }^{*}{ }^{*}{ }^{\prime}\); \\
\hline & if itype \(=2\), the problem type is \(A^{*} B^{*} x=l a m b d a * x\); \\
\hline & if itype \(=3\), the problem type is \(B^{*} A^{*} \mathrm{x}=\operatorname{lambda*}{ }^{\text {a }}\). \\
\hline jobz & Must be 'N' or 'V'. \\
\hline & If jobz = 'N', then compute eigenvalues only. \\
\hline & If jobz = 'V', then compute eigenvalues and eigenvectors. \\
\hline uplo & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo = 'L', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \(a p, b p\) & Arrays: \\
\hline & \(a p\) contains the packed upper or lower triangle of the symmetric matrix \(A\), as specified by uplo. \\
\hline & The dimension of \(a p\) must be at least max \(\left(1, n^{*}(n+1) / 2\right)\). \\
\hline & \(b p\) contains the packed upper or lower triangle of the symmetric matrix \(B\), as specified by uplo. \\
\hline & The dimension of \(b p\) must be at least max(1, \(\left.n^{*}(n+1) / 2\right)\). \\
\hline \(1 d z\) & The leading dimension of the output array \(z ; I d z \geq 1\). If \(j o b z=' V^{\prime}, I d z \geq\) \(\max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, the contents of \(a p\) are overwritten.
bp
w, z

On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{T}{ }^{*} U\) or \(B=L^{\star} L^{T}\), in the same storage format as \(B\).

Arrays:
\(w\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
\(z\) (size at least \(\max \left(1, I d z^{*}\right)\) ).
If \(j o b z=\) ' V ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{T} \star B^{\star} Z=1\);
if itype \(=3, Z^{T} * \operatorname{inv}(B) * Z=I\);
If \(j o b z={ }^{\prime} N\) ', then \(z\) is not referenced.

\section*{Return Values}

This function returns a value info.
If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0 , spptrf/dpptrf and sspevd/dspevd returned an error code:
If info \(=i \leq n\), sspevd/dspevd failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.
```

?hpgvd
Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian positive-definite eigenproblem with matrices in packed storage using a divide and conquer method.

```

\section*{Syntax}
```

lapack_int LAPACKE_chpgvd(int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, lapack_complex_float* ap, lapack_complex_float* bp, float* w,
lapack_complex_float* z, lapack_int ldz);
lapack_int LAPACKE_zhpgvd(int matrix_layout, lapack_int itype, char jobz, char uplo,
lapack_int n, lapack_complex_double* ap, lapack_complex_double* bp, double* w,
lapack_complex_double* z, lapack_int ldz);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem, of the form
\[
A^{\star} X=\lambda^{\star} B^{\star} X, A^{\star} B^{\star} X=\lambda^{\star} X \text {, or } B^{\star} A^{\star} X=\lambda^{\star} X \text {. }
\]

Here \(A\) and \(B\) are assumed to be Hermitian, stored in packed format, and \(B\) is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
```

matrix_layout
itype
jobz
uplo
n
ap,bp
ldz

```

\section*{Output Parameters}

On exit, the contents of ap are overwritten.
On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H *} U\) or \(B=L^{\star} L^{H}\), in the same storage format as \(B\).

Array, size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
Array \(z\left(\right.\) size at least \(\left.\max \left(1, I d z_{n}\right)\right)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
```

if itype $=1$ or $2, Z^{H \star} B^{\star} Z=1$;
if itype $=3, Z^{H \star} \operatorname{inv}(B) * Z=I$;

```
\[
\text { If } j o b z=' N^{\prime} \text {, then } z \text { is not referenced. }
\]

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0, cpptrf/zpptrf and chpevd/zhpevd returned an error code:
If info \(=i \leq n\), chpevd/zhpevd failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;

If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.
```

?spgvx
Computes selected eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem with matrices in packed storage.
Syntax
lapack_int LAPACKE_sspgvx (int matrix_layout, lapack_int itype, char jobz, char range,
char uplo, lapack_int n, float* ap, float* bp, float vl, float vu, lapack_int il,
lapack_int iu, float abstol, lapack_int* m, float* w, float* z, lapack_int ldz,
lapack_int* ifail);
lapack_int LAPACKE_dspgvx (int matrix_layout, lapack_int itype, char jobz, char range,
char uplo, lapack_int n, double* ap, double* bp, double vl, double vu, lapack_int il,
lapack_int iu, double abstol, lapack_int* m, double* w, double* z, lapack_int ldz,
lapack_int* ifail);

```

Include Files
- mkl.h

\section*{Description}

The routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form


Here \(A\) and \(B\) are assumed to be symmetric, stored in packed format, and \(B\) is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
```

matrix_layout
itype Must be 1 or 2 or 3. Specifies the problem type to be solved:
if itype = 1, the problem type is A*X = lambda* }B\mp@subsup{*}{}{*}x
if itype = 2, the problem type is A* B*x = lambda*x;

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & Must be 'N' or 'v'. \\
\hline & If jobz = 'N', then compute eigenvalues only. \\
\hline & If jobz = 'V', then compute eigenvalues and eigenvectors. \\
\hline \multirow[t]{5}{*}{range} & Must be 'A' or 'V' or 'I'. \\
\hline & If range = ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' V ', the routine computes eigenvalues \(\mathrm{w}[\mathrm{i}]\) in the half-open interval: \\
\hline & \(\mathrm{vl}<\mathrm{w}[\mathrm{i}] \leq \mathrm{vu}\). \\
\hline & If range = 'I', the routine computes eigenvalues with indices il to iu. \\
\hline \multirow[t]{3}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & If uplo = ' U ', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo = 'L', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\). \\
\hline n & The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{\(a p, b p\)} & Arrays: \\
\hline & \(a p\) contains the packed upper or lower triangle of the symmetric matrix \(A\), as specified by uplo. \\
\hline & The size of \(a p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\). \\
\hline & \(b p\) contains the packed upper or lower triangle of the symmetric matrix \(B\), as specified by uplo. \\
\hline & The size of \(b p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\). \\
\hline \multirow[t]{3}{*}{v1, vu} & If range = ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range = 'A' or 'I', v/ and vu are not referenced. \\
\hline \multirow[t]{4}{*}{il, iu} & If range = ' I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); \(i l=1\) and \(i u=0\) \\
\hline & if \(n=0\). \\
\hline & If range = 'A' or 'V', il and iu are not referenced. \\
\hline abstol & The absolute error tolerance for the eigenvalues. See Application Notes for more information. \\
\hline \multirow[t]{2}{*}{\(1 d z\)} & The leading dimension of the output array \(z\). Constraints: \\
\hline & \(I d z \geq 1\); if \(j 0 b z=' V ', I d z \geq \max (1, n)\) for column major layout and \(I d z \geq\) \(\max (1, m)\) for row major layout. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

ap
bp
m
W, Z

```

On exit, the contents of ap are overwritten.
On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{T} \star U\) or \(B=L^{\star} L^{T}\), in the same storage format as \(B\).

The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=\) ' \(A\) ',\(m=n\), and if range \(=\) ' \(I\) ',
\(m=i u-i l+1\).

\section*{Arrays:}
\(w\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
\(z\) (size at least \(\max \left(1, I d z^{*} m\right.\) ) for column major layout and \(\max \left(1, I d z^{*} n\right)\) for row major layout).
If jobz = 'V', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{T} * B^{\star} Z=1\);
if itype \(=3, Z^{T^{T}} \operatorname{inv}(B) * Z=I\);
If \(j o b z={ }^{\prime} N\) ', then \(z\) is not referenced.
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

Array, size at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info >0, the ifail contains the indices of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0, spptrf/dpptrf and sspevx/dspevx returned an error code:
If info \(=i \leq n\), sspevx/dspevx failed to converge, and \(i\) eigenvectors failed to converge. Their indices are stored in the array ifail;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If abstol is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) is used instead, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues are computed most accurately when abstol is set to twice the underflow threshold \(2^{*}\) ? lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, set abstol to 2*?lamch('S').

\section*{?hpgvx \\ Computes selected eigenvalues and, optionally, eigenvectors of a generalized Hermitian positivedefinite eigenproblem with matrices in packed storage.}

\section*{Syntax}
```

lapack_int LAPACKE_chpgvx(int matrix_layout, lapack_int itype, char jobz, char range,
char uplo, lapack_int n, lapack_complex_float* ap, lapack_complex_float* bp, float vl,
float vu, lapack_int il, lapack_int iu, float abstol, lapack_int* m, float* w,
lapack_complex_float* z, lapack_int ldz, lapack_int* ifail);
lapack_int LAPACKE_zhpgvx(int matrix_layout, lapack_int itype, char jobz, char range,
char uplo, lapack_int n, lapack_complex_double* ap, lapack_complex_double* bp, double
vl, double vu, lapack_int il, lapack_int iu, double abstol, lapack_int* m, double* w,
lapack_complex_double* z, lapack_int ldz, lapack_int* ifail);

```

Include Files
- mkl.h

\section*{Description}

The routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem, of the form
```

A*}X=\mp@subsup{\lambda}{}{\star}\mp@subsup{B}{}{\star}X,\mp@subsup{A}{}{\star}\mp@subsup{B}{}{\star}X=\mp@subsup{\lambda}{}{\star}X,\mathrm{ or }\mp@subsup{B}{}{\star}\mp@subsup{A}{}{\star}X=\lambda**X

```

Here \(A\) and \(B\) are assumed to be Hermitian, stored in packed format, and \(B\) is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
```

matrix_layout
itype Must be 1 or 2 or 3. Specifies the problem type to be solved:
if itype = 1, the problem type is A** = lambda* B*x;
if itype = 2, the problem type is A* B*
if itype = 3, the problem type is B* A*X = lambda*x.
Must be 'N' or 'V'.

```
\begin{tabular}{|c|c|}
\hline & If jobz = 'N', then compute eigenvalues only. \\
\hline & If \(\mathrm{jobz}={ }^{\prime} \mathrm{V}\) ', then compute eigenvalues and eigenvectors. \\
\hline range & Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' V ', the routine computes eigenvalues \(\mathrm{w}[\mathrm{i}]\) in the half-open interval: \\
\hline & vl < \(\mathrm{w}[\mathrm{i}] \leq \mathrm{vu}\). \\
\hline & If range = 'I', the routine computes eigenvalues with indices il to iu. \\
\hline uplo & Must be 'U' or 'L'. \\
\hline & If uplo = ' U ', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo = 'L', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \(a p, b p\) & Arrays: \\
\hline & ap contains the packed upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo. \\
\hline & The dimension of \(a p\) must be at least max(1, \(\left.n^{*}(n+1) / 2\right)\). \\
\hline & \(b p\) contains the packed upper or lower triangle of the Hermitian matrix \(B\), as specified by uplo. \\
\hline & The dimension of \(b p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\). \\
\hline vl, vu & If range \(=\) ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: \(\mathrm{vl}<^{\text {c }} \mathrm{vu}\). \\
\hline & If range = 'A' or 'I', v/ and vu are not referenced. \\
\hline il, iu & If range = ' I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0 ; i l=1\) and \(i u=0\) \\
\hline & if \(n=0\). \\
\hline & If range = 'A' or 'V', il and iu are not referenced. \\
\hline abstol & The absolute error tolerance for the eigenvalues. \\
\hline & See Application Notes for more information. \\
\hline \(1 d z\) & The leading dimension of the output array \(z ; l d z \geq 1\). If \(j o b z=' \mathrm{~V}\) ', \(l d z \geq\) \(\max (1, n)\) for column major layout and \(I d z \geq \max (1, m)\) for row major layout. \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, the contents of \(a p\) are overwritten.
bp
m
w
z
ifail

On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H \star} U\) or \(B=L^{\star} L^{H}\), in the same storage format as \(B\).

The total number of eigenvalues found,
```

0\leqm\leqn. If range = 'A',m = n, and if range = 'I',
m=iu-il+1.

```

Array, size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
Array \(z\) (size at least \(\max \left(1, I d z^{*} m\right.\) ) for column major layout and max(1, \(l d z_{n}\) ) for row major layout).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{H \star} B^{\star} Z=I\);
if itype \(=3, Z^{H_{\star}} \operatorname{inv}(B) * Z=I\);
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

Array, size at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0, the ifail contains the indices of the eigenvectors that failed to converge.
If jobz \(=\) ' \(N\) ', then ifail is not referenced.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0, cpptrf/zpptrf and chpevx/zhpevx returned an error code:
If info \(=i \leq n\), chpevx/zhpevx failed to converge, and \(i\) eigenvectors failed to converge. Their indices are stored in the array ifail;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If abstol is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) is used as tolerance, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').
```

?sbgv
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem with banded matrices.
Syntax

```
```

lapack_int LAPACKE_ssbgv (int matrix_layout, char jobz, char uplo, lapack_int n,

```
lapack_int LAPACKE_ssbgv (int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, float* ab, lapack_int ldab, float* bb, lapack_int ldbb,
lapack_int ka, lapack_int kb, float* ab, lapack_int ldab, float* bb, lapack_int ldbb,
float* w, float* z, lapack_int ldz);
float* w, float* z, lapack_int ldz);
lapack_int LAPACKE_dsbgv (int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int LAPACKE_dsbgv (int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, double* ab, lapack_int ldab, double* bb, lapack_int ldbb,
lapack_int ka, lapack_int kb, double* ab, lapack_int ldab, double* bb, lapack_int ldbb,
double* w, double* z, lapack_int ldz);
```

double* w, double* z, lapack_int ldz);

```

Include Files
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite banded eigenproblem, of the form \(A^{\star} x=\lambda^{\star} B^{\star} x\). Here \(A\) and \(B\) are assumed to be symmetric and banded, and \(B\) is also positive definite.

\section*{Input Parameters}
```

matrix_layout
jobz
uplo
n
ka
kb
ab, bb
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
If jobz $=$ ' V ', then compute eigenvalues and eigenvectors.
Must be 'U' or 'L'.
If uplo $=$ 'U', arrays $a b$ and $b b$ store the upper triangles of A and B;
If uplo $=$ 'L', arrays $a b$ and $b b$ store the lower triangles of A and B.
The order of the matrices A and $B(n \geq 0)$.
The number of super- or sub-diagonals in A
($k a \geq 0$).
The number of super- or sub-diagonals in $B(k b \geq 0)$.
Arrays:

```
\begin{tabular}{|c|c|}
\hline Idab & The leading dimension of the array \(a b\); must be at least \(k a+1\) for column major layout and at least \(\max (1, n)\) for row major layout . \\
\hline 1 dbb & The leading dimension of the array \(b b\); must be at least \(k b+1\) for column major layout and at least \(\max (1, n)\) for row major layout. \\
\hline \(1 d z\) & The leading dimension of the output array \(z ; I d z \geq 1\). If \(j o b z=' V ', l d z \geq\) \(\max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a b\)
bb

W, Z

On exit, the contents of \(a b\) are overwritten.
On exit, contains the factor \(S\) from the split Cholesky factorization \(B=\) \(S^{T} \star S\), as returned by pbstf/pbstf.

Arrays:
\(w\), size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
\(z\) (size at least max \(\left(1, I d z_{n}\right)\) ).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{T} \star^{\star} \star Z=I\).
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.

\section*{Return Values}

This function returns a value info.
If inforo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0, and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then pbstf/pbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{?hbgv}

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian positive-definite eigenproblem with banded matrices.

\section*{Syntax}
```

lapack_int LAPACKE_chbgv(int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, lapack_complex_float* ab, lapack_int ldab,
lapack_complex_float* bb, lapack_int ldbb, float* w, lapack_complex_float* z,
lapack_int ldz);
lapack_int LAPACKE_zhbgv(int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, lapack_complex_double* ab, lapack_int ldab,
lapack_complex_double* bb, lapack_int ldbb, double* w, lapack_complex_double* z,
lapack_int ldz);

```

Include Files
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite banded eigenproblem, of the form \(A^{*} x=\lambda^{*} B^{\star} x\). Here \(A\) and \(B\) are Hermitian and banded matrices, and matrix \(B\) is also positive definite.

\section*{Input Parameters}

```

ldab The leading dimension of the array ab; must be at least ka+1 for column
major layout and at least max(1, n for row major layout.
The leading dimension of the array bb; must be at least kb+1 for column
major layout and at least max(1, n for row major layout.
The leading dimension of the output array z; ldz\geq 1. If jobz = 'V', ldz\geq
max(1, n).

```

\section*{Output Parameters}
\(a b\)
bb

W
z

On exit, the contents of \(a b\) are overwritten.
On exit, contains the factor \(S\) from the split Cholesky factorization \(B=\) \(S^{H *} S\), as returned by pbstf/pbstf.

Array, size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
Array \(z\) (size at least \(\max \left(1, I d z^{*} n\right)\) ).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{H \star} B^{\star} Z=I\).

If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0, and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then pbstf/pbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.
```

?sbgvd
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem with banded matrices. If eigenvectors
are desired, it uses a divide and conquer method.

```

\section*{Syntax}
```

lapack_int LAPACKE_ssbgvd (int matrix_layout, char jobz, char uplo, lapack_int n,

```
lapack_int LAPACKE_ssbgvd (int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, float* ab, lapack_int ldab, float* bb, lapack_int ldbb,
lapack_int ka, lapack_int kb, float* ab, lapack_int ldab, float* bb, lapack_int ldbb,
float* w, float* z, lapack_int ldz);
float* w, float* z, lapack_int ldz);
lapack_int LAPACKE_dsbgvd (int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int LAPACKE_dsbgvd (int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, double* ab, lapack_int ldab, double* bb, lapack_int ldbb,
lapack_int ka, lapack_int kb, double* ab, lapack_int ldab, double* bb, lapack_int ldbb,
double* w, double* z, lapack_int ldz);
```

double* w, double* z, lapack_int ldz);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite banded eigenproblem, of the form \(A^{\star} X=\lambda^{\star} B^{\star} x\). Here \(A\) and \(B\) are assumed to be symmetric and banded, and \(B\) is also positive definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{jobz} & Must be 'N' or 'V'. \\
\hline & If jobz = ' N ', then compute eigenvalues only. \\
\hline & If jobz = 'V', then compute eigenvalues and eigenvectors. \\
\hline \multirow[t]{3}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & If uplo = 'U', arrays \(a b\) and \(b b\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo = 'L', arrays \(a b\) and \(b b\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \multirow[t]{2}{*}{ka} & The number of super- or sub-diagonals in \(A\) \\
\hline & ( \(k a \geq 0\) ). \\
\hline k.b & The number of super- or sub-diagonals in \(B(k b \geq 0)\). \\
\hline \multirow[t]{3}{*}{ab, bb} & Arrays: \\
\hline & \(a b\) (size at least \(\max \left(1, I\right.\) dab \(\left._{n}\right)\) for column major layout and max \((1\), ldab*(ka +1)) for row major layout) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & \(b b\) (size at least \(\max \left(1, I d b b^{*} n\right)\) for column major layout and max(1, ldbb* \((k b+1)\) ) for row major layout) is an array containing either upper or lower triangular part of the symmetric matrix \(B\) (as specified by uplo) in band storage format. \\
\hline ldab & The leading dimension of the array \(a b\); must be at least \(k a+1\) for column major layout and at least \(\max (1, n)\) for row major layout. \\
\hline 1 dbb & The leading dimension of the array \(b b\); must be at least \(k b+1\) for column major layout and at least \(\max (1, n)\) for row major layout. \\
\hline \(1 d z\) & The leading dimension of the output array \(z ; I d z \geq 1\). If \(j o b z=' V ', I d z \geq\) \(\max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

ab
bb
w, z
On exit, the contents of $a b$ are overwritten.
On exit, contains the factor S from the split Cholesky factorization $B=$ $S^{T} * S$, as returned by pbstf/pbstf.

```

\section*{Arrays:}
```

w, size at least max $(1, n)$.
If info $=0$, contains the eigenvalues in ascending order.
z (size at least $\max \left(1, I d z_{n}\right)$).
If jobz $=$ ' V ', then if info $=0, z$ contains the matrix Z of eigenvectors, with the i-th column of z holding the eigenvector associated with $w[i-$ 1]. The eigenvectors are normalized so that $Z^{T *} B^{*} Z=I$.
If jobz = 'N', then z is not referenced.

```

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0, and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then pbstf/pbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{?hbgvd}

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian
positive-definite eigenproblem with banded matrices.
If eigenvectors are desired, it uses a divide and
conquer method.

\section*{Syntax}
```

lapack_int LAPACKE_chbgvd(int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, lapack_complex_float* ab, lapack_int ldab,
lapack_complex_float* bb, lapack_int ldbb, float* w, lapack_complex_float* z,
lapack_int ldz);
lapack_int LAPACKE_zhbgvd(int matrix_layout, char jobz, char uplo, lapack_int n,
lapack_int ka, lapack_int kb, lapack_complex_double* ab, lapack_int ldab,
lapack_complex_double* bb, lapack_int ldbb, double* w, lapack_complex_double* z,
lapack_int ldz);

```

Include Files
- mkl.h

Description

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite banded eigenproblem, of the form \(A^{\star} x=\lambda^{\star} B^{\star} x\). Here \(A\) and \(B\) are assumed to be Hermitian and banded, and \(B\) is also positive definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
```

matrix_layout
jobz
uplo
n
ka
kb
ab, bb
ldab
ldbb
ldz

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
If jobz = ' V ', then compute eigenvalues and eigenvectors.
Must be 'U' or 'L'.
If uplo = ' U', arrays \(a b\) and \(b b\) store the upper triangles of \(A\) and \(B\);
If uplo = 'L', arrays \(a b\) and \(b b\) store the lower triangles of \(A\) and \(B\).
The order of the matrices \(A\) and \(B(n \geq 0)\).
The number of super- or sub-diagonals in \(A\)
( \(k a \geq 0\) ).
The number of super- or sub-diagonals in \(B(k b \geq 0)\).

\section*{Arrays:}
\(a b\) (size at least \(\max \left(1, I\right.\) dab \(^{*} n\) ) for column major layout and \(\max (1\), ldab*( \(k a+1\) )) for row major layout) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format.
\(b b\) (size at least \(\max \left(1, I d b b^{*} n\right)\) for column major layout and \(\max (1\), \(l d b b^{*}(k b+1)\) ) for row major layout) is an array containing either upper or lower triangular part of the Hermitian matrix \(B\) (as specified by uplo) in band storage format.

The leading dimension of the array \(a b\); must be at least \(k a+1\).
The leading dimension of the array \(b b\); must be at least \(k b+1\).
The leading dimension of the output array \(z ; l d z \geq 1\). If \(j o b z=' \mathrm{~V}\) ', \(I d z \geq\) \(\max (1, n)\).

On exit, the contents of \(a b\) are overwritten.
On exit, contains the factor \(S\) from the split Cholesky factorization \(B=\) \(s^{H * S}\), as returned by pbstf/pbstf.

Array, size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
Array \(z\left(\right.\) size at least \(\left.\max \left(1, l d z^{*}\right)\right)\).

\section*{Output Parameters}

If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{H \star} B^{\star} Z=I\).

If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0 , and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then pbstf/pbstf returned \(i n f o=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{?sbgvx}

Computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with banded matrices.

\section*{Syntax}
```

lapack_int LAPACKE_ssbgvx (int matrix_layout, char jobz, char range, char uplo,
lapack_int n, lapack_int ka, lapack_int kb, float* ab, lapack_int ldab, float* bb,
lapack_int ldbb, float* q, lapack_int ldq, float vl, float vu, lapack_int il, lapack_int
iu, float abstol, lapack_int* m, float* w, float* z, lapack_int ldz, lapack_int* ifail);
lapack_int LAPACKE_dsbgvx (int matrix_layout, char jobz, char range, char uplo,
lapack_int n, lapack_int ka, lapack_int kb, double* ab, lapack_int ldab, double* bb,
lapack_int ldbb, double* q, lapack_int ldq, double vl, double vu, lapack_int il,
lapack_int iu, double abstol, lapack_int* m, double* w, double* z, lapack_int ldz,
lapack_int* ifail);

```

Include Files
- mkl.h

\section*{Description}

The routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite banded eigenproblem, of the form \(A^{*} x=\lambda{ }^{*} B^{\star} x\). Here \(A\) and \(B\) are assumed to be symmetric and banded, and \(B\) is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.

Input Parameters
```

matrix_layout
jobz Must be 'N' or 'V'.

```

If jobz \(=\) ' N ', then compute eigenvalues only.
If jobz \(=\) ' V ', then compute eigenvalues and eigenvectors.
range
uplo
n
ka
\(k b\)
\(a b, b b\)

Idab

1 dbb
vl, vu
il, iu

Must be 'A' or 'V' or 'I'.
If range \(=\) ' A ', the routine computes all eigenvalues.
If range \(=\) ' \(V\) ', the routine computes eigenvalues \(w[i]\) in the half-open interval:
\(v l<w[i] \leq v u\).
If range \(=\) 'I', the routine computes eigenvalues in range il to \(i u\).
Must be 'U' or 'L'.
If uplo \(=\) 'U', arrays \(a b\) and \(b b\) store the upper triangles of \(A\) and \(B\);
If uplo \(=\) 'L', arrays \(a b\) and \(b b\) store the lower triangles of \(A\) and \(B\).
The order of the matrices \(A\) and \(B(n \geq 0)\).
The number of super- or sub-diagonals in \(A\)
( \(k a \geq 0\) ).
The number of super- or sub-diagonals in \(B(k b \geq 0)\).

\section*{Arrays:}
\(a b\) (size at least \(\max \left(1, I\right.\) dab \(\left._{n}\right)\) for column major layout and max \((1\), ldab* \((k a+1)\) ) for row major layout) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format.
\(b b\) (size at least max \(\left(1, I d b b_{n}\right)\) for column major layout and max \((1\), ldbb* \((k b+1)\) ) for row major layout) is an array containing either upper or lower triangular part of the symmetric matrix \(B\) (as specified by uplo) in band storage format.

The leading dimension of the array \(a b\); must be at least \(k a+1\) for column major layout and at least \(\max (1, n)\) for row major layout.

The leading dimension of the array \(b b\); must be at least \(k b+1\) for column major layout and at least \(\max (1, n)\) for row major layout.

If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues.

Constraint: vl< vu.
If range \(=\) 'A' or 'I', vl and vu are not referenced.
If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.

Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\)
if \(n=0\).
If range \(=\) ' A ' or ' V ', il and \(i u\) are not referenced.
abstol
ldz

Idq

\section*{Output Parameters}
m

The absolute error tolerance for the eigenvalues. See Application Notes for more information.

The leading dimension of the output array \(z ; I d z \geq 1\). If jobz \(=' V^{\prime}, I d z \geq\) \(\max (1, n)\).

The leading dimension of the output array \(q ; 1 d q<1\).
If jobz \(=\) ' \(V\) ', \(I d q<\max (1, n)\).

On exit, the contents of \(a b\) are overwritten.
On exit, contains the factor \(S\) from the split Cholesky factorization \(B=\) \(S^{T} * S\), as returned by pbstf/pbstf.

The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=\) 'A', \(m=n\), and if range \(=\) 'I',
\(m=i u-i l+1\).
Arrays:
\(w\), size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
\(z\) (size \(\max \left(1, I d z_{m}\right)\) for column major layout and \(\max \left(1, I d z_{n}\right)\) for row major layout) .

If jobz = 'V', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{T} \star^{\star} Z=I\).
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
\(q\left(\right.\) size \(\left.\max \left(1, I d q^{*}\right)\right)\).
If jobz = ' \(V\) ', then \(q\) contains the \(n\)-by-n matrix used in the reduction of \(A^{\star} x=\operatorname{lambda}{ }^{\star} B^{\star} x\) to standard form, that is, \(C^{\star} x=\operatorname{lambda} x\) and consequently \(C\) to tridiagonal form.
If \(j o b z=\) ' \(N\) ', then \(q\) is not referenced.

Array, size \(m\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge.

If jobz \(=\) ' \(N\) ', then ifail is not referenced.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0, and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then pbstf/pbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If \(a b s t o l\) is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) is used as tolerance, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*?lamch('S').
> ?hbgvx
> Computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian positive-definite eigenproblem with banded matrices.

\section*{Syntax}
```

lapack_int LAPACKE_chbgvx(int matrix_layout, char jobz, char range, char uplo,
lapack_int n, lapack_int ka, lapack_int kb, lapack_complex_float* ab, lapack_int ldab,
lapack_complex_float* bb, lapack_int ldbb, lapack_complex_float* q, lapack_int ldq,
float vl, float vu, lapack_int il, lapack_int iu, float abstol, lapack_int* m, float* w,
lapack_complex_float* z, lapack_int ldz, lapack_int* ifail);
lapack_int LAPACKE_zhbgvx(int matrix_layout, char jobz, char range, char uplo,
lapack_int n, lapack_int ka, lapack_int kb, lapack_complex_double* ab, lapack_int ldab,
lapack_complex_double* bb, lapack_int ldbb, lapack_complex_double* q, lapack_int ldq,
double vl, double vu, lapack_int il, lapack_int iu, double abstol, lapack_int* m,
double* w, lapack_complex_double* z, lapack_int ldz, lapack_int* ifail);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite banded eigenproblem, of the form \(A^{\star} x=\lambda{ }^{\star} B^{\star}{ }_{x}\). Here \(A\) and \(B\) are assumed to be Hermitian and banded, and \(B\) is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
```

matrix_layout
jobz
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).
jobz
Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
If $j o b z=$ ' V ', then compute eigenvalues and eigenvectors.

```
```

range Must be 'A' or 'V' or 'I'.
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues w[i] in the half-open
interval:
vl< w[i]\leqvu.
If range = 'I', the routine computes eigenvalues with indices il to iu.
Must be 'U' or 'L'.
If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays }ab\mathrm{ and }bb\mathrm{ store the lower triangles of }A\mathrm{ and }B\mathrm{ .
The order of the matrices A and B(n\geq0).
The number of super- or sub-diagonals in A
(ka\geq 0).
The number of super- or sub-diagonals in B (kb\geq0).
Arrays:
ab(size at least max(1, ldab*n) for column major layout and max(1,
ldab*(ka + 1)) for row major layout) is an array containing either upper or
lower triangular part of the Hermitian matrix A (as specified by uplo) in
band storage format.
bb(size at least max(1, Idbb*n) for column major layout and max(1,
ldbb*(kb + 1)) for row major layout) is an array containing either upper or
lower triangular part of the Hermitian matrix B (as specified by uplo) in
band storage format.
The leading dimension of the array $a b$; must be at least $k a+1$ for column major layout and at least $\max (1, n)$ for row major layout.
The leading dimension of the array $b b$; must be at least $k b+1$ for column major layout and at least max $(1, n)$ for row major layout.
If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues.
Constraint: vl< vu.
If range $=$ ' A ' or 'I', $v /$ and $v u$ are not referenced.
If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; il=1 and $i u=0$
if $n=0$.
If range $=$ ' A ' or ' V ', il and $i u$ are not referenced.

```

The absolute error tolerance for the eigenvalues. See Application Notes for more information.

\section*{Output Parameters}

\section*{\(a b\)}
bb
m

W
\(z, q\)
ifail

The leading dimension of the output array \(z ; I d z \geq 1\). If jobz \(=' \mathrm{~V}\) ', \(I d z \geq\) \(\max (1, n)\) for column major layout and at least \(\max (1, m)\) for row major layout.

The leading dimension of the output array \(q ; 1 d q \geq 1\). If \(j o b z=' V ', l d q \geq\) \(\max (1, n)\).

On exit, the contents of \(a b\) are overwritten.
On exit, contains the factor \(S\) from the split Cholesky factorization \(B=\) \(S^{H *} S\), as returned by pbstf/pbstf.

The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=' A ', m=n\), and if range \(=' I\) ',
\(m=i u-i l+1\).
Array \(w\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
Arrays:
\(z\) (size \(\max \left(1, I d z^{*} m\right.\) ) for column major layout and \(\max \left(1, I d z^{*}\right)\) for row major layout).

If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w[i-\)
1]. The eigenvectors are normalized so that \(Z^{H *} B^{\star} Z=I\).
If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.
q (size \(\max \left(1, l d q^{*} n\right)\) ).
If jobz = 'V', then \(q\) contains the \(n\)-by- \(n\) matrix used in the reduction of \(A x=\lambda B x\) to standard form, that is, \(C x=\lambda x\) and consequently \(C\) to tridiagonal form.

If \(j o b z=\) ' \(N\) ', then \(q\) is not referenced.

Array, size at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge.

If jobz = 'N', then ifail is not referenced.

\section*{Return Values}

This function returns a value info.
If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0, and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then pbstf/pbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([\mathrm{a}, \mathrm{b}]\) of width less than or equal to abstol \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If abstol is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2^{*}\) ? 1 amch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? 1 amch('S').

\section*{Generalized Nonsymmetric Eigenvalue Problems: LAPACK Driver Routines}

This topic describes LAPACK driver routines used for solving generalized nonsymmetric eigenproblems. See also computational routines that can be called to solve these problems. Table "Driver Routines for Solving Generalized Nonsymmetric Eigenproblems" lists all such driver routines.
Driver Routines for Solving Generalized Nonsymmetric Eigenproblems
\begin{tabular}{ll}
\hline Routine Name & Operation performed \\
\hline gges & \begin{tabular}{l} 
Computes the generalized eigenvalues, Schur form, and the left and/or right Schur \\
vectors for a pair of nonsymmetric matrices.
\end{tabular} \\
ggesx & \begin{tabular}{l} 
Computes the generalized eigenvalues, Schur form, and, optionally, the left and/or \\
right matrices of Schur vectors.
\end{tabular} \\
gges3 & \begin{tabular}{l} 
Computes generalized Schur factorization for a pair of matrices.
\end{tabular} \\
ggev & \begin{tabular}{l} 
Computes the generalized eigenvalues, and the left and/or right generalized \\
eigenvectors for a pair of nonsymmetric matrices. \\
ggev3
\end{tabular} \\
\hline
\end{tabular}

\section*{?gges}

Computes the generalized eigenvalues, Schur form, and the left and/or right Schur vectors for a pair of nonsymmetric matrices.

\section*{Syntax}
```

lapack_int LAPACKE_sgges(int matrix_layout, char jobvsl, char jobvsr, char sort,
LAPACK_S_SELECT3 select, lapack_int n, float* a, lapack_int lda, float* b, lapack_int
ldb, lapack_int* sdim, float* alphar, float* alphai, float* beta, float* vsl, lapack_int
ldvsl, float* vsr, lapack_int ldvsr);
lapack_int LAPACKE_dgges(int matrix_layout, char jobvsl, char jobvsr, char sort,
LAPACK_D_SELECT3 select, lapack_int n, double* a, lapack_int lda, double* b, lapack_int
ldb, lapack_int* sdim, double* alphar, double* alphai, double* beta, double* vsl,
lapack_int ldvsl, double* vsr, lapack_int ldvsr);

```
```

lapack_int LAPACKE_cgges(int matrix_layout, char jobvsl, char jobvsr, char sort,
LAPACK_C_SELECT2 select, lapack_int n, lapack_complex_float* a, lapack_int lda,
lapack_complex_float* b, lapack_int ldb, lapack_int* sdim, lapack_complex_float* alpha,
lapack_complex_float* beta, lapack_complex_float* vsl, lapack_int ldvsl,
lapack_complex_float* vsr, lapack_int ldvsr);
lapack_int LAPACKE_zgges(int matrix_layout, char jobvsl, char jobvsr, char sort,
LAPACK_Z_SELECT2 select, lapack_int n, lapack_complex_double* a, lapack_int lda,
lapack_complex_double* b, lapack_int ldb, lapack_int* sdim, lapack_complex_double*
alpha, lapack_complex_double* beta, lapack_complex_double* vsl, lapack_int ldvsl,
lapack_complex_double* vsr, lapack_int ldvsr);

```

Include Files
- mkl.h

\section*{Description}

The ?gges routine computes the generalized eigenvalues, the generalized real/complex Schur form \((S, T)\), optionally, the left and/or right matrices of Schur vectors ( \(v s /\) and \(v s r\) ) for a pair of \(n\)-by- \(n\) real/complex nonsymmetric matrices \((A, B)\). This gives the generalized Schur factorization
```

(A,B)=(VSl*S *VSIH, VSI*T*VSr }\mp@subsup{}{}{H

```

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix \(S\) and the upper triangular matrix \(T\). The leading columns of vsl and vsr then form an orthonormal/unitary basis for the corresponding left and right eigenspaces (deflating subspaces).
If only the generalized eigenvalues are needed, use the driver ggev instead, which is faster.
A generalized eigenvalue for a pair of matrices \((A, B)\) is a scalar \(w\) or a ratio alpha / beta \(=w\), such that \(A-\) \(W^{\star} B\) is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta \(=0\) or for both being zero. A pair of matrices \((S, T)\) is in the generalized real Schur form if \(T\) is upper triangular with non-negative diagonal and \(S\) is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by-2 blocks of \(S\) are "standardized" by making the corresponding elements of \(T\) have the form:

and the pair of corresponding 2-by-2 blocks in \(S\) and \(T\) will have a complex conjugate pair of generalized eigenvalues. A pair of matrices \((S, T)\) is in generalized complex Schur form if \(S\) and \(T\) are upper triangular and, in addition, the diagonal of \(T\) are non-negative real numbers.

The ?gges routine replaces the deprecated ?gegs routine.

\section*{Input Parameters}
matrix_layout
jobvsl
jobvsr
sort

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'N' or 'V'.
If jobvsl = 'N', then the left Schur vectors are not computed.
If jobvsl = 'V', then the left Schur vectors are computed.
Must be 'N' or 'V'.
If jobvsr \(=\) ' \(N\) ', then the right Schur vectors are not computed.
If jobvsr \(=\) ' V ', then the right Schur vectors are computed.
Must be 'N' or 'S'. Specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form.

If sort \(=\) ' \(N\) ', then eigenvalues are not ordered.
If sort = 'S', eigenvalues are ordered (see select).
select
n

The select parameter is a pointer to a function returning a value of lapack_logical type. For different flavors the function has different arguments:
```

LAPACKE_sgges: lapack_logical (*LAPACK_S_SELECT3) (const
float*, const float*, const float*);
LAPACKE_dgges: lapack_logical (*LAPACK_D_SELECT3) (const
double*, const double*, const double*);
LAPACKE_cgges: lapack_logical (*LAPACK_C_SELECT2) (const
lapack_complex_float*, const lapack_complex_float*);
LAPACKE_zgges: lapack_logical (*LAPACK_Z_SELECT2) (const
lapack_complex_double*, const lapack_complex_double*);

```

If sort \(=\) 'S', select is used to select eigenvalues to sort to the top left of the Schur form.

If sort = 'N', select is not referenced.

\section*{For real flavors:}

An eigenvalue (alphar[j] + alphai[j])/beta[j] is selected if select(alphar[j], alphai \([j]\), beta[j]) is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.
Note that in the ill-conditioned case, a selected complex eigenvalue may no longer satisfy select(alphar[j], alphai[j], beta[j]) = 1 after ordering. In this case info is set to \(n+2\).
For complex flavors:
An eigenvalue alpha[j] / beta[j] is selected if select(alpha[j], beta[j]) is true.

Note that a selected complex eigenvalue may no longer satisfy select(alpha[j], beta[j]) = 1 after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is illconditioned); in this case info is set to \(n+2\) (see info below).

The order of the matrices \(A, B, v s l\), and \(\operatorname{vsr}(n \geq 0)\).
Arrays:
a (size at least \(\max \left(1, I d a_{n}\right)\) ) is an array containing the \(n\)-by- \(n\) matrix \(A\) (first of the pair of matrices).
\(b\) (size at least \(\max \left(1, I d b_{n}\right)\) ) is an array containing the \(n\)-by-n matrix \(B\) (second of the pair of matrices).

The leading dimension of the array \(a\). Must be at least max \((1, n)\).
The leading dimension of the array \(b\). Must be at least max \((1, n)\).
The leading dimensions of the output matrices \(v s /\) and \(v s r\), respectively. Constraints:
\(\operatorname{ldvsl} \geq 1\). If jobvsl \(=' V ', l d v s l \geq \max (1, n)\).
\(\operatorname{ldvsr} \geq 1\). If jobvsr \(=' \mathrm{~V}\) ', \(\operatorname{ldvsr\geq \operatorname {max}(1,n).}\)

\section*{Output Parameters}
\(a\)
\(b\)
sdim
alphar, alphai
alpha
beta

VSI, VSE

On exit, this array has been overwritten by its generalized Schur form \(S\).
On exit, this array has been overwritten by its generalized Schur form \(T\).
If sort \(=\) 'N', sdim \(=0\).
If sort \(=\) ' S ', sdim is equal to the number of eigenvalues (after sorting) for which select is true.

Note that for real flavors complex conjugate pairs for which select is true for either eigenvalue count as 2 .

Arrays, size at least max \((1, n)\) each. Contain values that form generalized eigenvalues in real flavors.

See beta.
Array, size at least \(\max (1, n)\). Contain values that form generalized eigenvalues in complex flavors. See beta.

Array, size at least \(\max (1, n)\).
For real flavors:
On exit, (alphar[j] + alphai[j]*i)/beta[j], \(j=0, \ldots, n-1\), will be the generalized eigenvalues.
alphar[j] + alphai[j]*i and beta[j], \(j=0, \ldots, n-1\) are the diagonals of the complex Schur form ( \(S, T\) ) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of \((A, B)\) were further reduced to triangular form using complex unitary transformations. If alphai[ \(j]\) is zero, then the \(j\) th eigenvalue is real; if positive, then the \(j\)-th and \((j+1)\)-st eigenvalues are a complex conjugate pair, with alphai \([j+1]\) negative.
For complex flavors:
On exit, alpha[j]/beta[j], \(j=0, \ldots, n-1\), will be the generalized eigenvalues. alpha[j] and beta[j], \(j=0, \ldots, n-1\) are the diagonals of the complex Schur form ( \(S, T\) ) output by cgges/zgges. The beta[j] will be non-negative real.

See also Application Notes below.
Arrays:
vsl (size at least max \(\left(1, \operatorname{ldvs} I_{n}\right)\) ).
If jobvsl \(=\) ' V', this array will contain the left Schur vectors.
If jobvsl = 'N', vs/ is not referenced.
\(v s r\) (size at least \(\max \left(1, \operatorname{ldvsr^{*}}{ }_{n}\right)\) ).
If jobvsr = ' V ', this array will contain the right Schur vectors.
If jobvsr = 'N', vsr is not referenced.

\section*{Return Values}

This function returns a value info.

If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and
\(i \leq n\) :
the \(Q Z\) iteration failed. \((A, B)\) is not in Schur form, but alphar[j], alphai[j] (for real flavors), or alpha[j] (for complex flavors), and beta[j], \(j=i n f o, . . ., n-1\) should be correct.
\(i>n\) : errors that usually indicate LAPACK problems:
\(i=n+1\) : other than \(Q Z\) iteration failed in hgeqz;
\(i=n+2\) : after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the generalized Schur form no longer satisfy select \(=1\). This could also be caused due to scaling;
\(i=n+3\) : reordering failed in tgsen.

\section*{Application Notes}

The quotients alphar[j]/beta[j] and alphai[j]/beta[j] may easily over- or underflow, and beta[j] may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai will be always less than and usually comparable with norm \((A)\) in magnitude, and beta always less than and usually comparable with norm( \(B\) ).

\section*{?ggesx \\ Computes the generalized eigenvalues, Schur form, and, optionally, the left and/or right matrices of Schur vectors.}

\section*{Syntax}
```

lapack_int LAPACKE_sggesx(int matrix_layout, char jobvsl, char jobvsr, char sort,
LAPACK_S_SELECT3 select, char sense, lapack_int n, float* a, lapack_int lda, float* b,
lapack_int ldb, lapack_int* sdim, float* alphar, float* alphai, float* beta, float* vsl,
lapack_int ldvsl, float* vsr, lapack_int ldvsr, float* rconde, float* rcondv);
lapack_int LAPACKE_dggesx(int matrix_layout, char jobvsl, char jobvsr, char sort,
LAPACK_D_SELECT3 select, char sense, lapack_int n, double* a, lapack_int lda, double* b,
lapack_int ldb, lapack_int* sdim, double* alphar, double* alphai, double* beta, double*
vsl, lapack_int ldvsl, double* vsr, lapack_int ldvsr, double* rconde, double* rcondv);
lapack_int LAPACKE_cggesx(int matrix_layout, char jobvsl, char jobvsr, char sort,
LAPACK_C_SELECT2 select, char sense, lapack_int n, lapack_complex_float* a, lapack_int
lda, lapack_complex_float* b, lapack_int ldb, lapack_int* sdim, lapack_complex_float*
alpha, lapack_complex_float* beta, lapack_complex_float* vsl, lapack_int ldvsl,
lapack_complex_float* vsr, lapack_int ldvsr, float* rconde, float* rcondv);
lapack_int LAPACKE_zggesx(int matrix_layout, char jobvsl, char jobvsr, char sort,
LAPACK_Z_SELECT2 select, char sense, lapack_int n, lapack_complex_double* a, lapack_int
lda, lapack_complex_double* b, lapack_int ldb, lapack_int* sdim, lapack_complex_double*
alpha, lapack_complex_double* beta, lapack_complex_double* vsl, lapack_int ldvsl,
lapack_complex_double* vsr, lapack_int ldvsr, double* rconde, double* rcondv);

```

Include Files
- mkl.h

\section*{Description}

The routine computes for a pair of \(n\)-by- \(n\) real/complex nonsymmetric matrices \((A, B)\), the generalized eigenvalues, the generalized real/complex Schur form ( \(S, T\) ), optionally, the left and/or right matrices of Schur vectors (vsl and vsr). This gives the generalized Schur factorization
\[
(A, B)=\left(V S l^{*} S * V S r^{H}, \operatorname{vsl}{ }^{*} T^{*} V S r^{H}\right)
\]

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix \(S\) and the upper triangular matrix \(T\); computes a reciprocal condition number for the average of the selected eigenvalues (rconde); and computes a reciprocal condition number for the right and left deflating subspaces corresponding to the selected eigenvalues (rcondv). The leading columns of vsl and vsr then form an orthonormal/unitary basis for the corresponding left and right eigenspaces (deflating subspaces).

A generalized eigenvalue for a pair of matrices \((A, B)\) is a scalar \(w\) or a ratio alpha / beta \(=w\), such that \(A\) - \(w^{\star} B\) is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta \(=0\) or for both being zero. A pair of matrices \((S, T)\) is in generalized real Schur form if \(T\) is upper triangular with non-negative diagonal and \(S\) is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by-2 blocks of \(S\) will be "standardized" by making the corresponding elements of \(T\) have the form:

and the pair of corresponding 2-by-2 blocks in \(S\) and \(T\) will have a complex conjugate pair of generalized eigenvalues. A pair of matrices \((S, T)\) is in generalized complex Schur form if \(S\) and \(T\) are upper triangular and, in addition, the diagonal of \(T\) are non-negative real numbers.

\section*{Input Parameters}
jobvsl
jobvsr
sort
```

select

```
```

matrix_layout

```
```

```
matrix_layout
```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Must be 'N' or 'V'.
If jobvsl = 'N', then the left Schur vectors are not computed.
If jobvsl = 'V', then the left Schur vectors are computed.
Must be 'N' or 'V'.
If jobvsr = 'N', then the right Schur vectors are not computed.
If jobvsr = 'V', then the right Schur vectors are computed.
Must be ' N ' or 'S'. Specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form.

If sort $=$ ' N ', then eigenvalues are not ordered.
If sort = 'S', eigenvalues are ordered (see select).
The select parameter is a pointer to a function returning a value of lapack_logical type. For different flavors the function has different arguments:

```
```

LAPACKE_sggesx: lapack_logical (*LAPACK_S_SELECT3) (const

```
```

LAPACKE_sggesx: lapack_logical (*LAPACK_S_SELECT3) (const
float*, const float*, const float*);
float*, const float*, const float*);
LAPACKE_dggesx: lapack_logical (*LAPACK_D_SELECT3) (const
LAPACKE_dggesx: lapack_logical (*LAPACK_D_SELECT3) (const
double*, const double*, const double*);
double*, const double*, const double*);
LAPACKE_cggesx: lapack_logical (*LAPACK_C_SELECT2) (const
LAPACKE_cggesx: lapack_logical (*LAPACK_C_SELECT2) (const
lapack_complex_float*, const lapack_complex_float*);
lapack_complex_float*, const lapack_complex_float*);
LAPACKE_zggesx: lapack_logical (*LAPACK_Z_SELECT2) (const
LAPACKE_zggesx: lapack_logical (*LAPACK_Z_SELECT2) (const
lapack_complex_double*, const lapack_complex_double*);

```
lapack_complex_double*, const lapack_complex_double* );
```

If sort = 'S', select is used to select eigenvalues to sort to the top left of the Schur form.

```

If sort = 'N', select is not referenced.

\section*{For real flavors:}

An eigenvalue (alphar[j] + alphai[j])/beta[j] is selected if select(alphar[j], alphai \([j]\), beta[j]) is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.

Note that in the ill-conditioned case, a selected complex eigenvalue may no longer satisfy select(alphar[j], alphai[j], beta[j]) = 1 after ordering. In this case info is set to \(n+2\).

For complex flavors:
An eigenvalue alpha[j] / beta[j] is selected if select(alpha[j], beta[j]) is true.
sense
\(n\)
\(a, b\)

Ida

1 db
ldvsl, ldvsr

Note that a selected complex eigenvalue may no longer satisfy select(alpha[j], beta[j]) = 1 after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is illconditioned); in this case info is set to \(n+2\) (see info below).

Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed.
If sense \(=\) ' N ', none are computed;
If sense = 'E', computed for average of selected eigenvalues only;
If sense \(=\) ' \(V\) ', computed for selected deflating subspaces only;
If sense \(=\) ' B ', computed for both.
If sense is 'E', 'V', or 'B', then sort must equal 'S'.
The order of the matrices \(A, B, v s l\), and \(\operatorname{vsr}(n \geq 0)\).

\section*{Arrays:}
a (size at least \(\max \left(1, I d a_{n}\right)\) ) is an array containing the \(n\)-by-n matrix \(A\) (first of the pair of matrices).
\(b\) (size at least \(\max \left(1, I d b_{n}\right)\) ) is an array containing the \(n\)-by- \(n\) matrix \(B\) (second of the pair of matrices).

The leading dimension of the array \(a\).
Must be at least \(\max (1, n)\).
The leading dimension of the array \(b\).
Must be at least \(\max (1, n)\).
The leading dimensions of the output matrices vs/ and vsr, respectively. Constraints:
\(\operatorname{ldvsl} \geq 1\). If jobvsl \(=' V^{\prime}\) ', \(\operatorname{ldvsl} \geq \max (1, n)\).
\(\operatorname{ldvsr} \geq 1\). If jobvsr \(=' V ', \operatorname{ldvsr} \geq \max (1, n)\).

\section*{Output Parameters}
a
b
sdim
alphar, alphai

On exit, this array has been overwritten by its generalized Schur form \(S\).
On exit, this array has been overwritten by its generalized Schur form \(T\).

If sort \(=\) 'N', sdim= 0 .
If sort = 'S', sdim is equal to the number of eigenvalues (after sorting) for which select is true.

Note that for real flavors complex conjugate pairs for which select is true for either eigenvalue count as 2 .

Arrays, size at least max \((1, n)\) each. Contain values that form generalized eigenvalues in real flavors.
See beta.
```

alpha Array, size at least max(1,n). Contain values that form generalized
eigenvalues in complex flavors. See beta.
Array, size at least max (1, n).
For real flavors:
On exit, (alphar[j] + alphai[j]*i)/beta[j], j=0,..., n-1 will be the
generalized eigenvalues.
alphar[j] + alphai[j]*i and beta[j], j=0,···,n-1 are the diagonals of the
complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks of
the real generalized Schur form of (A,B) were further reduced to triangular
form using complex unitary transformations. If alphai[j] is zero, then the j-
th eigenvalue is real; if positive, then the j-th and (j+1)-st eigenvalues are
a complex conjugate pair, with alphai[j+1] negative.
For complex flavors:
On exit, alpha[j]/beta[j], j=0,···,n-1 will be the generalized eigenvalues.
alpha[j] and beta[j], j=0,···,n-1 are the diagonals of the complex Schur
form (S,T) output by cggesx/zggesx. The beta[j] will be non-negative real.
See also Application Notes below.
Arrays:
vsl (size at least max(1, ldvsl*n)).
If jobvsl = 'V', this array will contain the left Schur vectors.
If jobvsl = 'N',vsl is not referenced.
vsr (size at least max(1, ldvsr*n)).
If jobvsr = 'V', this array will contain the right Schur vectors.
If jobvsr = 'N', vsr is not referenced.
Arrays, size 2 each
If sense = 'E' or 'B', rconde(1) and rconde(2) contain the reciprocal
condition numbers for the average of the selected eigenvalues.
Not referenced if sense = 'N' or 'V'.
If sense = 'V' or 'B', rcondv[0] and rcondv[1] contain the reciprocal
condition numbers for the selected deflating subspaces.
Not referenced if sense = 'N' or 'E'.

```

\section*{Return Values}

This function returns a value info.
If info=0, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and
\(i \leq n\) :
the \(Q Z\) iteration failed. \((A, B)\) is not in Schur form, but alphar[j], alphai[j] (for real flavors), or alpha[j] (for complex flavors), and beta[j], \(j=\) info,..., \(n-1\) should be correct.
i > \(n\) : errors that usually indicate LAPACK problems:
\(i=n+1\) : other than \(Q Z\) iteration failed in hgeqz;
\(i=n+2\) : after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the generalized Schur form no longer satisfy select \(=1\). This could also be caused due to scaling;
\(i=n+3\) : reordering failed in tgsen.

\section*{Application Notes}

The quotients alphar[j]/beta[j] and alphai[j]/beta[j] may easily over- or underflow, and beta[j] may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai will be always less than and usually comparable with \(\operatorname{norm}(A)\) in magnitude, and beta always less than and usually comparable with norm( \(B\) ).

\section*{?gges3 \\ Computes generalized Schur factorization for a pair of matrices.}

\section*{Syntax}
```

lapack_int LAPACKE_sgges3 (int matrix_layout, char jobvsl, char jobvsr, char sort,
LAPACK_S_SELECT3 selctg, lapack_int n, float * a, lapack_int lda, float * b, lapack_int
ldb, lapack_int * soim, float * alphar, float * alphai, float * beta, float * vsl,
lapack_int ldvsl, float * vsr, lapack_int ldvsr);
lapack_int LAPACKE_dgges3 (int matrix_layout, char jobvsl, char jobvsr, char sort,
LAPACK_D_SELECT3 selctg, lapack_int n, double * a, lapack_int lda, double * b,
lapack_int ldb, lapack_int * sdim, double * alphar, double * alphai, double * beta,
double * vsl, lapack_int ldvsl, double * vsr, lapack_int ldvsr);
lapack_int LAPACKE_cgges3 (int matrix_layout, char jobvsl, char jobvsr, char sort,
LAPACK_C_SELECT2 selctg, lapack_int n, lapack_complex_float * a, lapack_int lda,
lapack_complex_float * b, lapack_int ldb, lapack_int * sdim, lapack_complex_float *
alpha, lapack_complex_float * beta, lapack_complex_float * vsl, lapack_int ldvsl,
lapack_complex_float * vsr, lapack_int ldvsr);
lapack_int LAPACKE_zgges3 (int matrix_layout, char jobvsl, char jobvsr, char sort,
LAPACK_Z_SELECT2 selctg, lapack_int n, lapack_complex_double * a, lapack_int lda,
lapack_complex_double * b, lapack_int ldb, lapack_int * sdim, lapack_complex_double *
alpha, lapack_complex_double * beta, lapack_complex_double * vsl, lapack_int ldvsl,
lapack_complex_double * vsr, lapack_int ldvsr);

```

\section*{Include Files}
- mkl.h

\section*{Description}

For a pair of \(n\)-by- \(n\) real or complex nonsymmetric matrices \((A, B)\), ? gges 3 computes the generalized eigenvalues, the generalized real or complex Schur form ( \(S, T\) ), and optionally the left or right matrices of Schur vectors (VSL and VSR). This gives the generalized Schur factorization
\((A, B)=\left((V S L)^{*} S^{*}(V S R)^{\top},(V S L)^{*} T^{*}(V S R)^{\top}\right)\) for real \((A, B)\)
or
\((A, B)=\left((V S L) * S^{*}(V S R)^{\mathrm{H}},(V S L)^{*} T^{*}(V S R)^{\mathrm{H}}\right)\) for complex \((A, B)\)
where \((V S R)^{\mathrm{H}}\) is the conjugate-transpose of \(V S R\).

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix \(S\) and the upper triangular matrix \(T\). The leading columns of VSL and VSR then form an orthonormal basis for the corresponding left and right eigenspaces (deflating subspaces).

\section*{NOTE}

If only the generalized eigenvalues are needed, use the driver ?ggev instead, which is faster.

A generalized eigenvalue for a pair of matrices \((A, B)\) is a scalar \(w\) or a ratio alpha/beta \(=w\), such that \(A\) \(w^{*} \mathrm{~B}\) is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta \(=0\) or both being zero.
For real flavors:
A pair of matrices \((S, T)\) is in generalized real Schur form if \(T\) is upper triangular with non-negative diagonal and \(S\) is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by-2 blocks of \(S\) will be "standardized" by making the corresponding elements of \(T\) have the form:
\(\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\)
and the pair of corresponding 2-by-2 blocks in \(S\) and \(T\) have a complex conjugate pair of generalized eigenvalues.
For complex flavors:
A pair of matrices \((S, T)\) is in generalized complex Schur form if \(S\) and \(T\) are upper triangular and, in addition, the diagonal elements of \(T\) are non-negative real numbers.

Input Parameters
\begin{tabular}{ll} 
matrix_layout & \begin{tabular}{l} 
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) \\
or column major (LAPACK_COL_MAJOR).
\end{tabular} \\
jobvsl & \(=\) ' N ': do not compute the left Schur vectors; \\
jobvsr & \(=\) ' N ': do not compute the right Schur vectors; \\
& \(=\) ' V ': compute the right Schur vectors. \\
sort & Specifies whether or not to order the eigenvalues on the diagonal of the \\
& generalized Schur form. \\
& \(=\) ' N ': Eigenvalues are not ordered; \\
& \(=\) 'S': Eigenvalues are ordered (see selctg). \\
selctg & selctg is a function of three arguments for real flavors or two arguments \\
& for complex flavors. selctg must be declared EXTERNAL in the calling \\
& subroutine. If sort \(=\) ' N ', selctg is not referenced. If sort \(=\) 'S', selctg \\
is used to select eigenvalues to sort to the top left of the Schur form.
\end{tabular}
\(n\)

Note that in the ill-conditioned case, a selected complex eigenvalue may no longer satisfy selctg(alphar[j - 1],alphai[j - 1], beta[j - 1]) \(\neq 0\) after ordering. info is to be set to \(n+2\) in this case.

For complex flavors:
An eigenvalue alpha[j - 1]/beta[j - 1] is selected if selctg(alpha[j - 1],beta[j - 1]) is true.

Note that a selected complex eigenvalue may no longer satisfy \(\operatorname{selctg}(a l p h a[j-1], b e t a[j-1]) \neq 0\) after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned), in this case ?gges3 returns \(n+2\).

The order of the matrices \(A, B, V S L\), and \(V S R . n \geq 0\).
Array, size \(\left(I d^{*}{ }^{2}\right)\). On entry, the first of the pair of matrices.
The leading dimension of \(a\). \(1 d a \geq \max (1, n)\).
Array, size \(\left(I d b^{*}\right)\). On entry, the second of the pair of matrices.
The leading dimension of \(b . l d b \geq \max (1, n)\).
The leading dimension of the matrix VSL. \(1 d v s l \geq 1\), and if jobvsl = ' V ', ldvsl \(\geq \mathrm{n}\).

The leading dimension of the matrix \(V S R . I d v s r \geq 1\), and if jobvsr \(=\) ' \(V\) ', ldvs \(r \geq \mathrm{n}\).

\section*{Output Parameters}
a
b
sdim
alpha
alphar
alphai
beta

On exit, a is overwritten by its generalized Schur form S .
On exit, \(b\) is overwritten by its generalized Schur form \(T\).
If sort \(=\) ' N ', sdim \(=0\). If sort \(=\) 'S', sdim \(=\) number of eigenvalues (after sorting) for which selctg is true.

Array, size ( \(n\) ).
For real flavors:
On exit, (alphar[j - 1] + alphai[j - 1]*i)/beta[j - 1], \(j=1, \ldots, n\), are the generalized eigenvalues. alphar \([j-1]+\) alphai[j - 1]*i, and beta[j-1],j=1,..,n are the diagonals of the complex Schur form \((S, T)\) that would result if the 2-by-2 diagonal blocks of the real Schur form of \((a, b)\) were further reduced to triangular form using 2-by-2 complex unitary transformations. If alphai[ \(j-1]\) is zero, then the \(j\)-th eigenvalue is real; if positive, then the \(j\)-th and ( \(j+1\) )-st eigenvalues are a complex conjugate pair, with alphai[j] negative.

Note: the quotients alphar[j-1]/beta[j - 1] and alphai[j 1]/beta[j - 1] can easily over- or underflow, and beta[j-1] might even be zero. Thus, you should avoid computing the ratio alpha/beta by simply dividing alpha by beta. However, alphar and alphai is always less than and usually comparable with norm(a) in magnitude, and beta is always less than and usually comparable with norm(b).
For complex flavors:
On exit, alpha[j - 1][j - 1]/beta[j - 1], \(j=1, \ldots, n\), are the generalized eigenvalues. alpha[j-1], \(j=1, \ldots, n\) and beta[j-1], \(j=1, \ldots, n\) are the diagonals of the complex Schur form \((a, b)\) output by ?gges3. The beta[j-1] is non-negative real.

Note: the quotient alpha[j-1]/beta[j-1] can easily over- or underflow, and beta[j-1] might even be zero. Thus, you should avoid computing the ratio alpha/beta by simply dividing alpha by beta. However, alpha is always less than and usually comparable with norm (a) in magnitude, and beta is always less than and usually comparable with norm(b).

Array, size ( \(1 \mathrm{dvsl}^{*}{ }_{n}\) ).
If jobvsl = 'V', vsl contains the left Schur vectors. Not referenced if jobvsl = 'N'.

Array, size ( \(1 \mathrm{dvsr}{ }^{*} n\) ).
If jobvsr \(=\) ' \(V\) ', vsr contains the right Schur vectors. Not referenced if jobvsr = ' N '.

\section*{Return Values}

This function returns a value info.
\(=0\) : successful exit \(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value .
\(=1, \ldots, n\) :
for real flavors:
The QZ iteration failed. \((a, b)\) are not in Schur form, but alphar[j], alphai[j] and beta[j] should be correct for \(j=\) info,..,\(n-1\).

The QZ iteration failed. \((a, b)\) are not in Schur form, but alpha[j] and beta[j] should be correct for \(j=\) info, \(\ldots, n-1\).
for complex flavors:
\(>n\) :
\(=n+1\) : other than QZ iteration failed in ?hgeqz.
\(=n+2\) : after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the Generalized Schur form no longer satisfy selctgキ 0 This could also be caused due to scaling.
\(=n+3\) : reordering failed in ?tgsen.

\section*{?ggev}

Computes the generalized eigenvalues, and the left and/or right generalized eigenvectors for a pair of nonsymmetric matrices.

\section*{Syntax}
```

lapack_int LAPACKE_sggev(int matrix_layout, char jobvl, char jobvr, lapack_int n,
float* a, lapack_int lda, float* b, lapack_int ldb, float* alphar, float* alphai, float*
beta, float* vl, lapack_int ldvl, float* vr, lapack_int ldvr);
lapack_int LAPACKE_dggev(int matrix_layout, char jobvl, char jobvr, lapack_int n,
double* a, lapack_int lda, double* b, lapack_int ldb, double* alphar, double* alphai,
double* beta, double* vl, lapack_int ldvl, double* vr, lapack_int ldvr);
lapack_int LAPACKE_cggev(int matrix_layout, char jobvl, char jobvr, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int ldb,
lapack_complex_float* alpha, lapack_complex_float* beta, lapack_complex_float* vl,
lapack_int ldvl, lapack_complex_float* vr, lapack_int ldvr);
lapack_int LAPACKE_zggev(int matrix_layout, char jobvl, char jobvr, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb,
lapack_complex_double* alpha, lapack_complex_double* beta, lapack_complex_double* vl,
lapack_int ldvl, lapack_complex_double* vr, lapack_int ldvr);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?ggev routine computes the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors for a pair of \(n\)-by- \(n\) real/complex nonsymmetric matrices \((A, B)\).

A generalized eigenvalue for a pair of matrices \((A, B)\) is a scalar \(\lambda\) or a ratio alpha / beta \(=\lambda\), such that \(A-\) \(\lambda \star B\) is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta \(=0\) and even for both being zero.

The right generalized eigenvector \(v(j)\) corresponding to the generalized eigenvalue \(\lambda(j)\) of \((A, B)\) satisfies \(A^{\star} V(j)=\lambda(j){ }^{*} B^{\star} V(j)\).

The left generalized eigenvector \(u(j)\) corresponding to the generalized eigenvalue \(\lambda(j)\) of \((A, B)\) satisfies \(\left.u(j)^{H_{\star}} A=\lambda(j){ }^{*} u(j)\right)^{H *} B\)
where \(u(j)^{H}\) denotes the conjugate transpose of \(u(j)\).
The ?ggev routine replaces the deprecated ? gegv routine.

\section*{Input Parameters}
```

matrix_layout
jobvl Must be 'N' or 'V'.
If jobvl = 'N', the left generalized eigenvectors are not computed;
If jobvl = 'V', the left generalized eigenvectors are computed.

```
```

jobvr Must be 'N' or 'V'.
If jobvr = 'N', the right generalized eigenvectors are not computed;
If jobvr = 'V', the right generalized eigenvectors are computed.
The order of the matrices A,B,v/, and vr (n\geq0).
Arrays:
a (size at least max(1, lda*n)) is an array containing the n-by-n matrix }
(first of the pair of matrices).
b (size at least max(1, ldb*n)) is an array containing the n-by-n matrix B
(second of the pair of matrices).
The leading dimension of the array a. Must be at least max (1, n).
The leading dimension of the array b. Must be at least max (1, n).
The leading dimensions of the output matrices v/ and vr, respectively.
Constraints:
ldvl\geq 1. If jobvl = 'V', ldvl\geq max (1, n).
ldvr\geq 1. If jobvr = 'V', ldvr\geq max(1, n).

```

\section*{Output Parameters}
```

a,b
alphar, alphai

```
alpha
beta
vl, vr

On exit, these arrays have been overwritten.
Arrays, size at least max \((1, n)\) each. Contain values that form generalized eigenvalues in real flavors.

See beta.
Array, size at least max \((1, n)\). Contain values that form generalized eigenvalues in complex flavors. See beta.

Array, size at least \(\max (1, n)\).
For real flavors:
On exit, (alphar[j] + alphai[j]*i)/beta[j], \(j=0, \ldots, n-1\), are the generalized eigenvalues.
If alphai[ \(j\) ] is zero, then the \(j\)-th eigenvalue is real; if positive, then the \(j\)-th and \((j+1)\)-st eigenvalues are a complex conjugate pair, with alphai \([j+1]\) negative.

For complex flavors:
On exit, alpha[j]/beta[j], \(j=0, \ldots, n-1\), are the generalized eigenvalues.
See also Application Notes below.
Arrays:
\(v /\) (size at least \(\max \left(1, I d v I^{*} n\right)\) ). Contains the matrix of left generalized eigenvectors VL.

If jobvl = ' \(V\) ', the left generalized eigenvectors \(u_{j}\) are stored one after another in the columns of \(V L\), in the same order as their eigenvalues. Each eigenvector is scaled so the largest component has abs \((\mathrm{Re})+\mathrm{abs}(\mathrm{Im})=\) 1.

If jobvl = 'N', v/ is not referenced.

\section*{For real flavors:}

If the \(j\)-th eigenvalue is real, then the \(k\)-th component of the \(j\)-th left eigenvector \(u_{j}\) is stored in \(v l[(k-1)+(j-1) * l d v l]\) for column major layout and in \(v l[(k-1) * l d v l+(j-1)]\) for row major layout..
If the \(j\)-th and \((j+1)\)-st eigenvalues form a complex conjugate pair, then for \(i=\operatorname{sqrt}(-1)\), the \(k\)-th components of the \(j\)-th left eigenvector \(u_{j}\) are vl[(k-1) + (j - 1)*ldvl] +i*vl[(k-1) + j*ldvl] for column major layout and \(v l[(k-1) * l d v l+(j-1)]+i^{*} v l[(k-1) * l d v l\) \(+j]\) for row major layout. Similarly, the \(k\)-th components of left eigenvector \(j+1 u_{j+1}\) are \(v l[(k-1)+(j-1) * l d v l]-i^{*} v l[(k-1)\) \(+j * l d v l]\) for column major layout and \(v l[(k-1) * l d v l+(j-1)]-\) \(i^{*} v l[(k-1) * l d v l+j]\) for row major layout..

\section*{For complex flavors:}

The \(k\)-th component of the \(j\)-th left eigenvector \(u_{j}\) is stored in \(v l[(k-1)\) \(+(j-1) * l d v l]\) for column major layout and in \(v l[(k-1) * l d v l+(j\)
- 1)] for row major layout.
vr (size at least max \(\left(1, l d v r^{*} n\right)\) ). Contains the matrix of right generalized eigenvectors \(V R\).

If jobvr \(=\) ' \(V\) ', the right generalized eigenvectors \(v_{j}\) are stored one after another in the columns of \(V R\), in the same order as their eigenvalues. Each eigenvector is scaled so the largest component has abs \((\operatorname{Re})+a b s(I m)=1\).
If jobvr = ' N ', \(v r\) is not referenced.
For real flavors:
If the \(j\)-th eigenvalue is real, then The \(k\)-th component of the \(j\)-th right eigenvector \(v_{j}\) is stored in \(\operatorname{vr}[(k-1)+(j-1) * l d v r]\) for column major layout and in \(\operatorname{vr}[(k-1) * I d v r+(j-1)]\) for row major layout..

If the \(j\)-th and ( \(j+1\) )-st eigenvalues form a complex conjugate pair, then the \(k\)-th components of thej-th right eigenvector \(v_{j}\) can be computed as vr [ ( \(k\) - 1) + (j - 1)*ldvr] + i*vr[(k-1) + j*ldvr] for column major layout and \(\operatorname{vr}[(k-1) * l d v r+(j-1)]+i^{*} \operatorname{vr}[(k-1) * I d v r+j]\) for row major layout. Similarly, the \(k\)-th components of the right eigenvector \(j+1 v_{\{j+1\}}\) can be computed as vr[ \(\left.(k-1)+(j-1) * l d v r\right]\)
- \(\mathrm{i}^{*} \operatorname{vr}[(k-1)+j * l d v r]\) for column major layout and \(\operatorname{vr}[(k-\)
\(1) * \operatorname{ldvr}+(j-1)]-i^{*} \operatorname{vr}[(k-1) * \operatorname{ldvr}+j]\) for row major layout..

\section*{For complex flavors:}

The \(k\)-th component of the \(j\)-th right eigenvector \(v_{j}\) is stored in \(\operatorname{vr}[(k-1)\) \(+(j-1) * l d v r]\) for column major layout and in \(\operatorname{vr}[(k-1) * l d v r+(j\)
- 1)] for row major layout.

\section*{Return Values}

This function returns a value info.
If infolo, the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=\) i, and
\(i \leq n\) : the \(Q Z\) iteration failed. No eigenvectors have been calculated, but alphar[j], alphai[j] (for real flavors), or alpha[j] (for complex flavors), and beta[j], j=info,..., n - 1 should be correct.
\(i>n\) : errors that usually indicate LAPACK problems:
\(i=n+1\) : other than \(Q Z\) iteration failed in hgeqz;
\(i=n+2\) : error return from tgevc.

\section*{Application Notes}

The quotients alphar[j]/beta[j] and alphai[j]/beta[j] may easily over- or underflow, and beta[j] may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually comparable with norm \((A)\) in magnitude, and beta always less than and usually comparable with norm( \(B\) ).

\section*{?ggevx \\ Computes the generalized eigenvalues, and, optionally, the left and/or right generalized eigenvectors.}

\section*{Syntax}
lapack_int LAPACKE_sggevx( int matrix_layout, char balanc, char jobvl, char jobvr, char sense, lapack_int \(n, f l o a t * ~ a, ~ l a p a c k \_i n t ~ l d a, ~ f l o a t * ~ b, ~ l a p a c k \_i n t ~ l d b, ~ f l o a t * ~ a l p h a r, ~\) float* alphai, float* beta, float* vl, lapack_int ldvl, float* vr, lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, float* lscale, float* rscale, float* abnrm, float* bbnrm, float* rconde, float* rcondv );
lapack_int LAPACKE_dggevx( int matrix_layout, char balanc, char jobvl, char jobvr, char
 alphar, double* alphai, double* beta, double* vl, lapack_int ldvl, double* vr, lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, double* lscale, double* rscale, double* abnrm, double* bbnrm, double* rconde, double* rcondv );
lapack_int LAPACKE_cggevx( int matrix_layout, char balanc, char jobvl, char jobvr, char sense, lapack_int \(n\), lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int ldb, lapack_complex_float* alpha, lapack_complex_float* beta, lapack_complex_float* vl, lapack_int ldvl, lapack_complex_float* vr, lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, float* lscale, float* rscale, float* abnrm, float* bbnrm, float* rconde, float* rcondv );
lapack_int LAPACKE_zggevx( int matrix_layout, char balanc, char jobvl, char jobvr, char
 b, lapack_int ldb, lapack_complex_double* alpha, lapack_complex_double* beta, lapack_complex_double* vl, lapack_int ldvl, lapack_complex_double* vr, lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, double* lscale, double* rscale, double* abnrm, double* bbnrm, double* rconde, double* rcondv );

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes for a pair of \(n\)-by- \(n\) real/complex nonsymmetric matrices \((A, B)\), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.

Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors (ilo, ihi, Iscale, rscale, abnrm, and bbnrm), reciprocal condition numbers for the eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).

A generalized eigenvalue for a pair of matrices \((A, B)\) is a scalar \(\lambda\) or a ratio alpha / beta \(=\lambda\), such that \(A-\) \(\lambda \star B\) is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta=0 and even for both being zero. The right generalized eigenvector \(v(j)\) corresponding to the generalized eigenvalue \(\lambda(j)\) of \((A, B)\) satisfies
```

A*V(j) = \lambda(j)* ***V(j).

```

The left generalized eigenvector \(u(j)\) corresponding to the generalized eigenvalue \(\lambda(j)\) of \((A, B)\) satisfies \(u(j)^{H *} A=\lambda(j){ }^{*} u(j)^{H *} B\)
where \(u(j)^{H}\) denotes the conjugate transpose of \(u(j)\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK COL MAJOR). \\
\hline \multirow[t]{6}{*}{balanc} & Must be 'N', 'P', 'S', or 'B'. Specifies the balance option to be performed. \\
\hline & If balanc = 'N', do not diagonally scale or permute; \\
\hline & If balanc = 'P', permute only; \\
\hline & If balanc = 'S', scale only; \\
\hline & If balanc = 'B', both permute and scale. \\
\hline & Computed reciprocal condition numbers will be for the matrices after balancing and/or permuting. Permuting does not change condition numbers (in exact arithmetic), but balancing does. \\
\hline \multirow[t]{3}{*}{jobvl} & Must be 'N' or 'V'. \\
\hline & If jobvl = 'N', the left generalized eigenvectors are not computed; \\
\hline & If jobvl = 'V', the left generalized eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{jobvr} & Must be 'N' or 'V'. \\
\hline & If jobvr = ' N ', the right generalized eigenvectors are not computed; \\
\hline & If jobvr = 'V', the right generalized eigenvectors are computed. \\
\hline \multirow[t]{2}{*}{sense} & Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed. \\
\hline & If sense = 'N', none are computed; \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & If sense = 'E', computed for eigenvalues only; \\
\hline & If sense = 'V', computed for eigenvectors only; \\
\hline & If sense \(=\) ' B ', computed for eigenvalues and eigenvectors. \\
\hline \(n\) & The order of the matrices \(A, B, v /\), and \(v r(n \geq 0)\). \\
\hline \(a, b\) & Arrays: \\
\hline & \(a\left(\right.\) size at least \(\left.\max \left(1, I d a^{*} n\right)\right)\) is an array containing the \(n\)-by- \(n\) matrix \(A\) (first of the pair of matrices). \\
\hline & \(b\) (size at least \(\max \left(1, I d b^{*} n\right)\) ) is an array containing the \(n\)-by-n matrix \(B\) (second of the pair of matrices). \\
\hline Ida & The leading dimension of the array \(a\). \\
\hline & Must be at least max \((1, n)\). \\
\hline 1 db & The leading dimension of the array \(b\). \\
\hline & Must be at least \(\max (1, n)\). \\
\hline ldvl, Idvr & The leading dimensions of the output matrices \(v /\) and \(v r\), respectively. \\
\hline & Constraints: \\
\hline & \(l d v l \geq 1\). If jobvl = 'V', 1 dvl \(\geq\) max \((1, n)\). \\
\hline & \(l d v r \geq 1\). If jobvr \(={ }^{\prime} \mathrm{V}\) ', \(\operatorname{ldvr} \geq \mathrm{max}(1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a, b\)
alphar, alphai
alpha
beta
vl, vr

On exit, these arrays have been overwritten.
If jobvl = 'V' or jobvr = 'V' or both, then a contains the first part of the real Schur form of the "balanced" versions of the input \(A\) and \(B\), and \(b\) contains its second part.

Arrays, size at least max \((1, n)\) each. Contain values that form generalized eigenvalues in real flavors.

See beta.
Array, size at least max \((1, n)\). Contain values that form generalized eigenvalues in complex flavors. See beta.

Array, size at least \(\max (1, n)\).
For real flavors:
On exit, (alphar[j] + alphai[j]*i)/beta[j], \(j=0, \ldots, n-1\), will be the generalized eigenvalues.
If alphai[ \(j\) ] is zero, then the \(j\)-th eigenvalue is real; if positive, then the \(j\)-th and \((j+1)\)-st eigenvalues are a complex conjugate pair, with alphai[ \(j+1]\) negative.
For complex flavors:
On exit, alpha[j]/beta[j], \(j=0, \ldots, n-1\), will be the generalized eigenvalues. See also Application Notes below.
Arrays:
\(v /\) (size at least \(\left.\max \left(1, I d v I_{n}\right)\right)\).
If jobvl = ' \(V\) ', the left generalized eigenvectors \(u(j)\) are stored one after another in the columns of \(v /\), in the same order as their eigenvalues. Each eigenvector will be scaled so the largest component have abs(Re) + \(\operatorname{abs}(\operatorname{Im})=1\).

If jobvl = 'N', vl is not referenced.

\section*{For real flavors:}

If the \(j\)-th eigenvalue is real, then \(k\)-th component of \(j\)-th left eigenvector \(u_{j}\) is stored in \(v l[(k-1)+(j-1) * l d v l]\) for column major layout and in vl[ \((k-1) * l d v l+(j-1)]\) for row major layout..

If the \(j\)-th and ( \(j+1\) )-st eigenvalues form a complex conjugate pair, then for \(i=\operatorname{sqrt}(-1)\), the \(k\)-th components of the \(j\)-th left eigenvector \(u_{j}\) can be computed as \(v l[(k-1)+(j-1) * l d v l]+i^{*} v l[(k-1)+j * l d v l]\) for column major layout and \(v l[(k-1) * l d v l+(j-1)]+i * v l[(k-\) \(1) * l d v l+j]\) for row major layout. Similarly, the \(k\)-th components of the left eigenvector \(j+1 u_{j+1}\) can be computed as \(v l[(k-1)+(j-\)
\(1) * l d v l]-i^{*} v l[(k-1)+j * l d v l]\) for column major layout and vl[(k \(-1) * l d v l+(j-1)]-i^{*} v l[(k-1) * l d v l+j]\) for row major layout..

\section*{For complex flavors:}

The \(k\)-th component of the \(j\)-th left eigenvector \(u_{j}\) is stored in \(v l[(k-1)\) \(+(j-1) * l d v l]\) for column major layout and in \(v l[(k-1) * l d v l+(j\)
- 1)] for row major layout.
\(v r\) (size at least \(\max \left(1, I d v r^{*} n\right)\) ).
If jobvr = ' V ', the right generalized eigenvectors \(v(\mathrm{j})\) are stored one after another in the columns of \(v r\), in the same order as their eigenvalues. Each eigenvector will be scaled so the largest component have abs(Re) + \(\operatorname{abs}(\operatorname{Im})=1\).

If jobvr = 'N', vr is not referenced.

\section*{For real flavors:}

If the \(j\)-th eigenvalue is real, then the \(k\)-th component of the \(j\)-th right eigenvector \(v_{j}\) is stored in \(\operatorname{vr}[(k-1)+(j-1) * I d v r]\) for column major layout and in \(\operatorname{vr}[(k-1) * l d v r+(j-1)]\) for row major layout..
If the j -th and \((\mathrm{j}+1)\)-st eigenvalues form a complex conjugate pair, then The \(k\)-th components of the \(j\)-th right eigenvector \(v_{j}\) can be computed as \(\operatorname{vr}[(k-1)+(j-1) * l d v r]+i^{*} \operatorname{vr}[(k-1)+j * I d v r]\) for column major layout and \(\operatorname{vr}[(k-1) * I d v r+(j-1)]+i^{*} \operatorname{vr}[(k-1) * l d v r\) \(+j]\) for row major layout. Respectively, the \(k\)-th components of right eigenvector \(j+1 v_{j+1}\) can be computed as \(\operatorname{vr}[(k-1)+(j-1) * I d v r]\) - \(\mathrm{i}^{*} \operatorname{vr}[(k-1)+j * l d v r]\) for column major layout and vr[(k -
\(1) * \operatorname{ldvr}+(j-1)]-i^{*} \operatorname{vr}[(k-1) * l d v r+j]\) for row major layout..

\section*{For complex flavors:}

The \(k\)-th component of the \(j\)-th right eigenvector \(v_{j}\) is stored in \(\operatorname{vr}[(k-1)\)
\(+(j-1) * I d v r]\) for column major layout and in \(\operatorname{vr}[(k-1) * I d v r+(j\)
- 1)] for row major layout.
ilo, ihi
lscale, rscale
abnrm, bbnrm
rconde, rcondv
ilo and ihi are integer values such that on exit \(A_{i j}=0\) and \(B_{i j}=0\) if \(i>\)
j and \(j=1, \ldots\), ilo-1 or \(i=i h i+1, \ldots, n\).
If balanc \(=\) 'N' or'S', ilo \(=1\) and ihi \(=n\).
Arrays, size at least \(\max (1, n)\) each.
Iscale contains details of the permutations and scaling factors applied to the left side of \(A\) and \(B\).

If \(P L(j)\) is the index of the row interchanged with row \(\mathbf{j}\), and \(D L(j)\) is the scaling factor applied to row \(j\), then

Iscale[j - 1] = \(P L(j)\), for \(j=1, \ldots, i l o-1\)
\(=D L(j)\), for \(j=i l o, \ldots\), ihi
\(=P L(j)\) for \(j=i h i+1, \ldots, n\).
The order in which the interchanges are made is \(n\) to \(i h i+1\), then 1 to ilo- 1 . rscale contains details of the permutations and scaling factors applied to the right side of \(A\) and \(B\).
If \(P R(j)\) is the index of the column interchanged with column \(\mathbf{j}\), and \(D R(j)\) is the scaling factor applied to column \(j\), then
rscale[j - 1] = \(P R(j)\), for \(j=1, \ldots\), ilo-1
\(=D R(j)\),for \(j=i l o, \ldots, i h i\)
\(=P R(j)\) for \(j=i h i+1, \ldots, n\).
The order in which the interchanges are made is \(n\) to \(i h i+1\), then 1 to ilo-1.
The one-norms of the balanced matrices \(A\) and \(B\), respectively.
Arrays, size at least \(\max (1, n)\) each.
If sense \(=\) ' E ', or ' B ', rconde contains the reciprocal condition numbers of the eigenvalues, stored in consecutive elements of the array. For a complex conjugate pair of eigenvalues two consecutive elements of rconde are set to the same value. Thus rconde[j], rcondv[j], and the \(j\)-th columns of \(v /\) and \(v r\) all correspond to the same eigenpair (but not in general the \(j\)-th eigenpair, unless all eigenpairs are selected).
If sense \(=\) ' N ', or ' V ', rconde is not referenced.
If sense \(=\) ' \(V\) ', or ' B ', rcondv contains the estimated reciprocal condition numbers of the eigenvectors, stored in consecutive elements of the array. For a complex eigenvector two consecutive elements of rcondv are set to the same value.

If the eigenvalues cannot be reordered to compute, \(r\) condv[ \(j\) ] is set to 0 ; this can only occur when the true value would be very small anyway.
If sense \(=\) ' \(N\) ', or ' E ', rcond \(v\) is not referenced.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{If info = i, and}
\(i \leq n\) : the \(Q Z\) iteration failed. No eigenvectors have been calculated, but alphar[j], alphai[j] (for real flavors), or alpha[j] (for complex flavors), and beta[j], j=info, ..., n - 1 should be correct.
\(i>n\) : errors that usually indicate LAPACK problems:
\(i=n+1\) : other than \(Q Z\) iteration failed in hgeqz;
\(i=n+2\) : error return from tgevc.

\section*{Application Notes}

The quotients alphar[j]/beta[j] and alphai[j]/beta[j] may easily over- or underflow, and beta[j] may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually comparable with norm \((A)\) in magnitude, and beta always less than and usually comparable with norm( \(B\) ).

\section*{?ggev3}

Computes the generalized eigenvalues and the left and right generalized eigenvectors for a pair of matrices.

\section*{Syntax}
```

lapack_int LAPACKE_sggev3 (int matrix_layout, char jobvl, char jobvr, lapack_int n,
float * a, lapack_int lda, float * b, lapack_int ldb, float * alphar, float * alphai,
float * beta, float * vl, lapack_int ldvl, float * vr, lapack_int ldvr);
lapack_int LAPACKE_dggev3 (int matrix_layout, char jobvl, char jobvr, lapack_int n,
double * a, lapack_int lda, double * b, lapack_int ldb, double * alphar, double *
alphai, double * beta, double * vl, lapack_int ldvl, double * vr, lapack_int ldvr);
lapack_int LAPACKE_cggev3 (int matrix_layout, char jobvl, char jobvr, lapack_int n,
lapack_complex_float * a, lapack_int lda, lapack_complex_float * b, lapack_int ldb,
lapack_complex_float * alpha, lapack_complex_float * beta, lapack_complex_float * vl,
lapack_int ldvl, lapack_complex_float * vr, lapack_int ldvr);
lapack_int LAPACKE_zggev3 (int matrix_layout, char jobvl, char jobvr, lapack_int n,
lapack_complex_double * a, lapack_int lda, lapack_complex_double * b, lapack_int ldb,
lapack_complex_double * alpha, lapack_complex_double * beta, lapack_complex_double *
vl, lapack_int ldvl, lapack_complex_double * vr, lapack_int ldvr);

```

\section*{Include Files}
- mkl.h

\section*{Description}

For a pair of \(n\)-by-n real or complex nonsymmetric matrices \((A, B)\), ? ggev3 computes the generalized eigenvalues, and optionally, the left and right generalized eigenvectors.

A generalized eigenvalue for a pair of matrices \((A, B)\) is a scalar \(\lambda\) or a ratio alpha/beta \(=\lambda\), such that \(A\) \(\lambda^{*} B\) is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta \(=0\), and even for both being zero.
For real flavors:
The right eigenvector \(v_{\mathrm{j}}\) corresponding to the eigenvalue \(\lambda_{\mathrm{j}}\) of \((A, B)\) satisfies
\(A * v_{\mathrm{j}}=\lambda_{\mathrm{j}} * B * v_{\mathrm{j}}\).
The left eigenvector \(u_{j}\) corresponding to the eigenvalue \(\lambda_{j}\) of \((A, B)\) satisfies
\(u_{\mathrm{j}}{ }^{\mathrm{H}} * A=\lambda_{\mathrm{j}} * u_{\mathrm{j}}{ }^{\mathrm{H}} * B\)
where \(u_{j}{ }^{H}\) is the conjugate-transpose of \(u_{j}\).
For complex flavors:
The right generalized eigenvector \(v_{j}\) corresponding to the generalized eigenvalue \(\lambda_{j}\) of \((A, B)\) satisfies \(A * v_{\mathrm{j}}=\lambda_{\mathrm{j}} * B * v_{\mathrm{j}}\).
The left generalized eigenvector \(u_{j}\) corresponding to the generalized eigenvalues \(\lambda_{j}\) of \((A, B)\) satisfies
\(u_{\mathrm{j}}{ }^{\mathrm{H}} * A=\lambda_{\mathrm{j}} * u_{\mathrm{j}}{ }^{\mathrm{H}} * B\)
where \(u_{j}{ }^{H}\) is the conjugate-transpose of \(u_{j}\).

\section*{Input Parameters}
```

matrix_layout
jobvl
jobvr
n
a
lda
b
ldb
ldv1
ldvr

```

\section*{Output Parameters}
```

a
b
alphar
alphai

```

On exit, a is overwritten.
On exit, \(b\) is overwritten.
Array, size ( \(n\) ).
Array, size ( \(n\) ).
alpha

Array, size ( \(n\) ).
Array, size ( \(n\) ).
For real flavors:
On exit, (alphar[j] + alphai[j]*i)/beta[j], \(j=0, \ldots, n-1\), are the generalized eigenvalues. If alphai \([j-1]\) is zero, then the \(j\)-th eigenvalue is real; if positive, then the \(j\)-th and \((j+1)\)-st eigenvalues are a complex conjugate pair, with alphai[j] negative.
Note: the quotients alphar[j - 1]/beta[j - 1] and alphai[j 1]/beta[j - 1] can easily over- or underflow, and beta(j) might even be zero. Thus, you should avoid computing the ratio alpha/beta by simply dividing alpha by beta. However, alphar and alphai are always less than and usually comparable with norm \((A)\) in magnitude, and beta is always less than and usually comparable with norm( \(B\) ).
For complex flavors:
On exit, alpha[j]/beta[j], \(j=0, \ldots, n-1\), are the generalized eigenvalues.
Note: the quotients alpha[j - 1]/beta[j - 1] may easily over- or underflow, and beta( \(j\) ) can even be zero. Thus, you should avoid computing the ratio alpha/beta by simply dividing alpha by beta. However, alpha is always less than and usually comparable with norm \((A)\) in magnitude, and betais always less than and usually comparable with norm \((B)\).

Array, size \(\left(I d v l^{*}\right)_{n}\).
For real flavors:
If jobvl = ' \(V\) ', the left eigenvectors \(u_{j}\) are stored one after another in the columns of \(v l\), in the same order as their eigenvalues. If the \(j\)-th eigenvalue is real, then \(u_{j}=\) the \(j\)-th column of \(v l\). If the \(j\)-th and \((j\) +1 )-st eigenvalues form a complex conjugate pair, then the real part of \(u_{j}=\) the \(j\)-th column of \(v l\) and the imaginary part of \(v_{j}=\) the \((j+\) 1)-st column of \(v l\).

Each eigenvector is scaled so the largest component has abs(real part) + abs(imag. part) \(=1\).
Not referenced if jobvl = ' N '.
For complex flavors:
If jobvl \(=\) ' \(V\) ', the left generalized eigenvectors \(u_{j}\) are stored one after another in the columns of \(v l\), in the same order as their eigenvalues.
Each eigenvector is scaled so the largest component has abs(real part \()+\) abs(imag. part) \(=1\).
Not referenced if jobvl \(=\) ' N '.
Array, size ( \(1 d v r^{*} n\) ).
For real flavors:

If jobvr \(=\) ' \(V\) ', the right eigenvectors \(v_{j}\) are stored one after another in the columns of \(v r\), in the same order as their eigenvalues. If the \(j\) th eigenvalue is real, then \(v_{j}=\) the \(j\)-th column of \(v r\). If the \(j\)-th and \((j\) \(+1)\)-st eigenvalues form a complex conjugate pair, then the real part of \(v_{j}=\) the \(j\)-th column of \(v r\) and the imaginary part of \(v_{j}=\) the \((j+\) 1)-st column of \(v r\).

Each eigenvector is scaled so the largest component has abs(real part) + abs(imag. part) \(=1\).

Not referenced if jobvr = ' N '.
For complex flavors:
If jobvr = 'V', the right generalized eigenvectors \(v_{j}\) are stored one after another in the columns of \(v r\), in the same order as their eigenvalues. Each eigenvector is scaled so the largest component has abs(real part) + abs(imag. part) \(=1\).
Not referenced if jobvr = ' N '.

\section*{Return Values}

This function returns a value info.
\(=0\) : successful exit
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value.
\(=1, \ldots, n\) :
for real flavors:
The QZ iteration failed. No eigenvectors have been calculated, but alphar[j], alphar[j] and beta[j] should be correct for \(j=\) info \(, \ldots, n-1\).
for complex flavors:
The QZ iteration failed. No eigenvectors have been calculated, but alpha[j] and beta[j] should be correct for \(j=\) info,..,\(n-1\).
\(>n\) :
\(=n+1\) : other than QZ iteration failed in ?hgeqz,
\(=n+2\) : error return from ?tgevc.

\section*{LAPACK Auxiliary Routines}

Routine naming conventions, mathematical notation, and matrix storage schemes used for LAPACK auxiliary routines are the same as for the driver and computational routines described in previous chapters.

\section*{?lacgv}

Conjugates a complex vector.

\section*{Syntax}
```

lapack_int LAPACKE_clacgv (lapack_int n, lapack_complex_float* x, lapack_int incx);
lapack_int LAPACKE_zlacgv (lapack_int n, lapack_complex_double* x, lapack_int incx);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine conjugates a complex vector \(x\) of length \(n\) and increment incx (see "Vector Arguments in BLAS" in Appendix B).

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
\(n\)

X
incx

The length of the vector \(x(n \geq 0)\).
Array, dimension (1+(n-1)* |incx|).
Contains the vector of length \(n\) to be conjugated.
The spacing between successive elements of \(x\).

\section*{Output Parameters}
x
On exit, overwritten with conjg(x).

\section*{?lacrm}

Multiplies a complex matrix by a square real matrix.
Syntax
```

call clacrm(m, n, a, lda, b, ldb, c, ldc, rwork)
call zlacrm(m, n, a, lda, b, ldb, c, ldc, rwork)

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine performs a simple matrix-matrix multiplication of the form
\[
C=A \star B,
\]
where \(A\) is \(m\)-by- \(n\) and complex, \(B\) is \(n\)-by- \(n\) and real, \(C\) is \(m\)-by- \(n\) and complex.

\section*{Input Parameters}
m
\(n\)
\(a\)

INTEGER. The number of rows of the matrix \(A\) and of the matrix \(C(m \geq 0)\).
INTEGER. The number of columns and rows of the matrix \(B\) and the number of columns of the matrix \(C\)

COMPLEX for clacrm
DOUBLE COMPLEX for zlacrm

Array, DIMENSION (Ida, \(n\) ). Contains the \(m\)-by-n matrix \(A\).
```

lda
b
ldb
ldc
rwork
INTEGER. The leading dimension of the array a, lda\geqmax (1, m).
REAL for clacrm
DOUBLE PRECISION for zlacrm
Array, DIMENSION (Idb, n). Contains the n-by-n matrix B.
INTEGER. The leading dimension of the array $b, I d b \geq \max (1, n)$.
INTEGER. The leading dimension of the output array $c, I d c \geqq \max (1, n)$.
REAL for clacrm
DOUBLE PRECISION for zlacrm
Workspace array, DIMENSION ($2 * m^{\star} n$).

```

\section*{Output Parameters}
c
COMPLEX for clacrm
DOUBLE COMPLEX for zlacrm
Array, DIMENSION (Idc, \(n\) ). Contains the \(m\)-by- \(n\) matrix \(C\).

\section*{?syconv}

Converts a symmetric matrix given by a triangular
matrix factorization into two matrices and vice versa.

\section*{Syntax}
```

lapack_int LAPACKE_ssyconv (int matrix_layout, char uplo, char way, lapack_int n, float

* a, lapack_int lda, const lapack_int * ipiv, float * e);
lapack_int LAPACKE_dsyconv (int matrix_layout, char uplo, char way, lapack_int n,
double* a, lapack_int lda, const lapack_int * ipiv, double * e);
lapack_int LAPACKE_csyconv (int matrix_layout, char uplo, char way, lapack_int n,
lapack_complex_float * a, lapack_int lda, const lapack_int * ipiv, lapack_complex_float
* e);
lapack_int LAPACKE_zsyconv (int matrix_layout, char uplo, char way, lapack_int n,
lapack_complex_double* a, lapack_int lda, const lapack_int * ipiv,
lapack_complex_double * e);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine converts matrix \(A\), which results from a triangular matrix factorization, into matrices \(L\) and \(D\) and vice versa. The routine returns non-diagonalized elements of \(D\) and applies or reverses permutation done with the triangular matrix factorization.

\section*{Input Parameters}
```

matrix_layout
uplo
way
n
a
lda
ipiv
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
Must be 'U' or 'L'.
Indicates whether the details of the factorization are stored as an upper or
lower triangular matrix:
If uplo = 'U': the upper triangular, }A=U*\mp@subsup{U}{}{*}\mp@subsup{U}{}{\mathbb{T}}\mathrm{ .
If uplo = 'L': the lower triangular, A = L*D* L'.
Must be 'C' or 'R'.
The order of matrix A; n\geq0.
Array of size max(1,Ida *n).
The block diagonal matrix D and the multipliers used to obtain the factor U
or L as computed by ?sytrf.
The leading dimension of a; lda\geq max (1, n).
Array, size at least max (1, n).
Details of the interchanges and the block structure of D, as returned
by ?sytrf.

```

\section*{Output Parameters}
e
Array of size \(\max (1, n)\) containing the superdiagonal/subdiagonal of the symmetric 1-by-1 or 2-by-2 block diagonal matrix \(D\) in \(L^{*} D^{*} L^{\top}\).

\section*{Return Values}
info
\[
\begin{aligned}
& \text { If } \text { info }=0 \text {, the execution is successful. } \\
& \text { If info < } 0 \text {, the } i \text {-th parameter had an illegal value. } \\
& \text { If info }=-1011 \text {, memory allocation error occurred. }
\end{aligned}
\]

\section*{See Also}
?sytrf
?syr
Performs the symmetric rank-1 update of a complex symmetric matrix.

\section*{Syntax}
```

lapack_int LAPACKE_csyr (int matrix_layout, char uplo, lapack_int n,
lapack_complex_float alpha, const lapack_complex_float * x, lapack_int incx,
lapack_complex_float * a, lapack_int lda);
lapack_int LAPACKE_zsyr (int matrix_layout, char uplo, lapack_int n,
lapack_complex_double alpha, const lapack_complex_double * x, lapack_int incx,
lapack_complex_double * a, lapack_int lda);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine performs the symmetric rank 1 operation defined as
```

a := alpha* ** }\mp@subsup{X}{}{H}+a

```
where:
- alpha is a complex scalar.
- \(x\) is an \(n\)-element complex vector.
- \(a\) is an \(n\)-by- \(n\) complex symmetric matrix.

These routines have their real equivalents in BLAS (see ?syr in Chapter "BLAS and Sparse BLAS Routines").

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline uplo & Specifies whether the upper or lower triangular part of the array \(a\) is used: \\
\hline & If uplo = 'U' or 'u', then the upper triangular part of the array \(a\) is used. \\
\hline & If uplo = 'L' or 'l', then the lower triangular part of the array \(a\) is used. \\
\hline \(n\) & Specifies the order of the matrix \(a\). The value of \(n\) must be at least zero. \\
\hline alpha & Specifies the scalar alpha. \\
\hline \(x\) & Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector x . \\
\hline incx & Specifies the increment for the elements of \(x\). The value of incx must not be zero. \\
\hline a & Array, size max(1, lda*n). Before entry with uplo = 'U' or 'u', the leading \(n\)-by- \(n\) upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(a\) is not referenced. \\
\hline & Before entry with uplo = 'L' or 'l', the leading \(n\)-by- \(n\) lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(a\) is not referenced. \\
\hline Ida & Specifies the leading dimension of \(a\) as declared in the calling (sub)program. The value of \(I d a\) must be at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
With uplo = 'U' or 'u', the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated matrix.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info < 0 , the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{i?max1}

Finds the index of the vector element whose real part has maximum absolute value.

\section*{Syntax}
```

MKL_INT icmaxl(const MKL_INT*n, const MKL_Complex8*cx, const MKL_INT*incx)

```
MKL_INT izmaxl(const MKL_INT*n, const MKL_Complex16*cx, const MKL_INT*incx)

Include Files
- mkl.h

\section*{Description}

Given a complex vector \(c x\), the i?max1 functions return the index of the first vector element of maximum absolute value. These functions are based on the BLAS functions icamax/izamax, but using the absolute value of components. They are designed for use with clacon/zlacon.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & Specifies the number of elements in the vector \(c x\). \\
cx & Array, size at least \((1+(n-1) * a b s(\) incx \())\). \\
Contains the input vector. \\
incx & Specifies the spacing between successive elements of \(c x\).
\end{tabular}

\section*{Return Values}

Index of the vector element of maximum absolute value.

\section*{?sum1}

Forms the 1-norm of the complex vector using the
true absolute value.

\section*{Syntax}
```

float scsum1(const MKL_INT*n, const MKL_Complex8*cx, const MKL_INT*incx)
double dzsum1(const MKL_INT*n, const MKL_Complex16*cx, const MKL_INT*incx)

```

Include Files
- mkl.h

\section*{Description}

Given a complex vector cx, scsum1/dzsum1 functions take the sum of the absolute values of vector elements and return a single/double precision result, respectively. These functions are based on scasum/dzasum from Level 1 BLAS, but use the true absolute value and were designed for use with clacon/zlacon.

\section*{Input Parameters}
```

n Specifies the number of elements in the vector cx.
cx Array, size at least (1+(n-1)*abs(incx)).
Contains the input vector whose elements will be summed.
incx Specifies the spacing between successive elements of cx (incx > 0).

```

\section*{Return Values}

Sum of absolute values.
```

?gelq2
Computes the LQ factorization of a general
rectangular matrix using an unblocked algorithm.
Syntax
lapack_int LAPACKE_sgelq2 (int matrix_layout, lapack_int m, lapack_int n, float* a,
lapack_int lda, float* tau);
lapack_int LAPACKE_dgelq2 (int matrix_layout, lapack_int m, lapack_int n, double* a,
lapack_int lda, double * tau);
lapack_int LAPACKE_cgelq2 (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* tau);
lapack_int LAPACKE_zgelq2 (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* tau);

```

Include Files
- mkl.h

Description

The routine computes an \(L Q\) factorization of a real/complex \(m\)-by-n matrix \(A\) as \(A=L^{\star} Q\).
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors :
\(Q=H(k) \ldots H(2) H(1)\left(\operatorname{or} Q=H(k)^{H} \ldots H(2)^{H} H(1)^{H}\right.\) for complex flavors), where \(k=\min (m, n)\)
Each \(H(i)\) has the form
\(H(i)=I-\tan V^{\star} V^{T}\) for real flavors, or
\(H(i)=I-t a u^{\star} v^{\star} v^{H}\) for complex flavors,
where tau is a real/complex scalar stored in tau(i), and \(v\) is a real/complex vector with \(v_{1: i-1}=0\) and \(v_{i}=\) 1.

On exit, the \(j\)-th ( \(i+1 \leq j \leq n\) ) component of vector \(v\) (for real functions) or its conjugate (for complex functions) is stored in \(a[i-1+\operatorname{lda*}(j-1)]\) for column major layout or in \(a[j-1+1 d a *(i-1)]\) for row major layout.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
\begin{tabular}{ll}
\(m\) & The number of rows in the matrix \(A(m \geq 0)\). \\
\(n\) & The number of columns in \(A(n \geq 0)\). \\
\(a\) & \begin{tabular}{l} 
Array, size at least \(\max \left(1, l d a^{\star} n\right)\) for column major and max \((1, ~\) \\
for row major layout. Array a contains the \(m\)-by- \(n\) matrix \(A\).
\end{tabular} \\
\(l d a\) & \begin{tabular}{l} 
The leading dimension of \(a ;\) at least max \((1, m)\) for column major layout and \\
\\
\(m a x(1, n)\) for row major layout.
\end{tabular}
\end{tabular}

\section*{Output Parameters}
\(a\)
Overwritten by the factorization data as follows:
on exit, the elements on and below the diagonal of the array a contain the \(m\)-by- \(\min (n, m)\) lower trapezoidal matrix \(L\) ( \(L\) is lower triangular if \(n \geq m\) ); the elements above the diagonal, with the array tau, represent the orthogonal/ unitary matrix \(Q\) as a product of \(\min (n, m)\) elementary reflectors.
tau Array, size at least max \((1, \min (m, n))\).
Contains scalar factors of the elementary reflectors.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?geqr2}

Computes the \(Q R\) factorization of a general rectangular matrix using an unblocked algorithm.

\section*{Syntax}
```

lapack_int LAPACKE_sgeqr2 (int matrix_layout, lapack_int m, lapack_int n, float* a,
lapack_int lda, float* tau);
lapack_int LAPACKE_dgeqr2 (int matrix_layout, lapack_int m, lapack_int n, double* a,
lapack_int lda, double* tau);
lapack_int LAPACKE_cgeqr2 (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_complex_float* tau);
lapack_int LAPACKE_zgeqr2 (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_complex_double* tau);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes a \(Q R\) factorization of a real/complex \(m\)-by- \(n\) matrix \(A\) as \(A=Q^{\star} R\).
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors :
\(Q=H(1) \star H(2) \star \ldots \star H(k)\), where \(k=\min (m, n)\)
Each \(H(i)\) has the form
\(H(i)=I-\tan ^{\star} V^{\star} V^{T}\) for real flavors, or
\(H(i)=I-\operatorname{ta}^{\star} V^{\star} V^{H}\) for complex flavors
where tau is a real/complex scalar stored in tau[i], and \(v\) is a real/complex vector with \(v_{1: i-1}=0\) and \(v_{i}=\) 1.

On exit, \(v_{i+1: m}\) is stored in \(a(i+1: m, i)\).

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
\begin{tabular}{ll}
\(m\) & The number of rows in the matrix \(A(m \geq 0)\). \\
\(n\) & The number of columns in \(A(n \geq 0)\). \\
\(a\) & \begin{tabular}{l} 
Array, size at least max \(\left(1, \quad l d a^{\star} n\right)\) for column major and max \((1, ~\) \\
for row major layout. Array a contains the \(m\)-by- \(n\) matrix \(A\).
\end{tabular} \\
\(l d a\) & \begin{tabular}{l} 
The leading dimension of \(a ;\) at least max \((1, m)\) for column major layout and \\
\\
\(m a x(1, n)\) for row major layout.
\end{tabular}
\end{tabular}

\section*{Output Parameters}
\(a\)
Overwritten by the factorization data as follows:
on exit, the elements on and above the diagonal of the array a contain the \(\min (n, m)\)-by- \(n\) upper trapezoidal matrix \(R\) ( \(R\) is upper triangular if \(m \geq n\) ); the elements below the diagonal, with the array tau, represent the orthogonal/ unitary matrix \(Q\) as a product of elementary reflectors.

Array, size at least max \((1, \min (m, n))\).
Contains scalar factors of the elementary reflectors.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?geqrt2}

Computes a QR factorization of a general real or complex matrix using the compact WY representation of \(Q\).

\section*{Syntax}
```

lapack_int LAPACKE_sgeqrt2 (int matrix_layout, lapack_int m, lapack_int n, float * a,
lapack_int lda, float * t, lapack_int ldt);
lapack_int LAPACKE_dgeqrt2 (int matrix_layout, lapack_int m, lapack_int n, double * a,
lapack_int lda, double * t, lapack_int ldt);
lapack_int LAPACKE_cgeqrt2 (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_float * a, lapack_int lda, lapack_complex_float * t, lapack_int ldt);
lapack_int LAPACKE_zgeqrt2 (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_double * a, lapack_int lda, lapack_complex_double * t, lapack_int ldt);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The strictly lower triangular matrix \(V\) contains the elementary reflectors \(H(i)\) in the \(i\) th column below the diagonal. For example, if \(m=5\) and \(n=3\), the matrix \(V\) is

where \(v_{i}\) represents the vector that defines \(H(i)\). The vectors are returned in the lower triangular part of array a.

\section*{NOTE}

The 1s along the diagonal of \(V\) are not stored in a.

The block reflector H is then given by \(H=I-V^{\star} T^{\star} V^{\mathbb{P}}\) for real flavors, and \(H=I-V^{\star} T^{\star} V^{\text {tl }}\) for complex flavors, where \(V^{\top}\) is the transpose and \(V^{H}\) is the conjugate transpose of \(V\).

\section*{Input Parameters}
m
\(n\)
a

Ida
ldt

The number of rows in the matrix \(A(m \geq n)\).
The number of columns in \(A(n \geq 0)\).
Array, size at least max (1, lda*n) for column major and max (1, lda*m) for row major layout. Array a contains the \(m\)-by- \(n\) matrix \(A\).

The leading dimension of \(a\); at least \(\max (1, m)\) for column major layout and \(\max (1, n)\) for row major layout.

The leading dimension of \(t\); at least \(\max (1, n)\).

\section*{Output Parameters}
a
Overwritten by the factorization data as follows:
The elements on and above the diagonal of the array contain the \(n-b y-n\) upper triangular matrix \(R\). The elements below the diagonal are the columns of \(V\).

Array, size at least max (1, ldt*n).
The \(n\)-by- \(n\) upper triangular factor of the block reflector. The elements on and above the diagonal contain the block reflector \(T\). The elements below the diagonal are not used.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(<0\) and info \(=-i\), the \(i\) th argument had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?geqrt3}

Recursively computes a QR factorization of a general real or complex matrix using the compact WY representation of \(Q\).

\section*{Syntax}
```

lapack_int LAPACKE_sgeqrt3 (int matrix_layout , lapack_int m , lapack_int n , float *
a , lapack_int lda , float * t , lapack_int ldt);
lapack_int LAPACKE_dgeqrt3 (int matrix_layout , lapack_int m , lapack_int n , double *
a , lapack_int lda , double * t , lapack_int ldt);
lapack_int LAPACKE_cgeqrt3 (int matrix_layout , lapack_int m , lapack_int n ,
lapack_complex_float * a , lapack_int lda , lapack_complex_float * t , lapack_int
ldt);
lapack_int LAPACKE_zgeqrt3 (int matrix_layout , lapack_int m , lapack_int n ,
lapack_complex_double * a , lapack_int lda , lapack_complex_double * t , lapack_int
ldt);

```

Include Files
- mkl.h

\section*{Description}

The strictly lower triangular matrix \(V\) contains the elementary reflectors \(H(i)\) in the \(i\) th column below the diagonal. For example, if \(m=5\) and \(n=3\), the matrix \(V\) is

where \(v_{i}\) represents one of the vectors that define \(H(i)\). The vectors are returned in the lower part of triangular array a.

\section*{NOTE}

The 1 s along the diagonal of \(V\) are not stored in a.

The block reflector \(H\) is then given by
\(H=I-V^{*} T^{*} V^{\mathbb{T}}\) for real flavors, and
\(H=I-V^{*} T^{*} V^{H}\) for complex flavors,
where \(V^{\top}\) is the transpose and \(V^{H}\) is the conjugate transpose of \(V\).
Input Parameters
\begin{tabular}{ll}
\(m\) & The number of rows in the matrix \(A(m \geq n)\). \\
\(n\) & The number of columns in \(A(n \geq 0)\). \\
\(a\) & \begin{tabular}{l} 
Array, size at least max \(\left(1, I d a^{\star} n\right)\) for column major and max \((1, ~\) \\
for row major layout. Array a contains the \(m\)-by \(-n\) matrix \(A\).
\end{tabular} \\
\(I d t\) & \begin{tabular}{l} 
The leading dimension of \(a ;\) at least max \((1, m)\) for column major layout and \\
\\
max \((1, n)\) for row major layout.
\end{tabular} \\
& The leading dimension of \(t ;\) at least max \((1, n)\).
\end{tabular}

\section*{Output Parameters}
a
The elements on and above the diagonal of the array contain the \(n-b y-n\) upper triangular matrix \(R\). The elements below the diagonal are the columns of \(V\).

Array, size ldt by \(n\).
The \(n\)-by- \(n\) upper triangular factor of the block reflector. The elements on and above the diagonal contain the block reflector \(T\). The elements below the diagonal are not used.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(<0\) and info \(=-i\), the \(i\) th argument had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?getf2}

Computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm).

\section*{Syntax}
```

lapack_int LAPACKE_sgetf2 (int matrix_layout, lapack_int m, lapack_int n, float* a,
lapack_int lda, lapack_int * ipiv);
lapack_int LAPACKE_dgetf2 (int matrix_layout, lapack_int m, lapack_int n, double* a,
lapack_int lda, lapack_int * ipiv);

```
```

lapack_int LAPACKE_cgetf2 (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_float* a, lapack_int lda, lapack_int * ipiv);
lapack_int LAPACKE_zgetf2 (int matrix_layout, lapack_int m, lapack_int n,
lapack_complex_double* a, lapack_int lda, lapack_int * ipiv);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes the \(L U\) factorization of a general \(m\)-by- \(n\) matrix \(A\) using partial pivoting with row interchanges. The factorization has the form
```

A = P* L* U

```
where \(p\) is a permutation matrix, \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>\) \(n\) ) and \(U\) is upper triangular (upper trapezoidal if \(m<n\) ).

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
```

m The number of rows in the matrix A(m\geq0).
n The number of columns in A (n\geq0).
a Array, size at least max(1, lda\star n) for column major and max(1, lda*m)
for row major layout. Array a contains the m-by-n matrix A.
The leading dimension of a; at least max(1,m) for column major layout and $\max (1, n)$ for row major layout.

```

\section*{Output Parameters}
a
Overwritten by \(L\) and \(U\). The unit diagonal elements of \(L\) are not stored. ipiv

Array, size at least \(\max (1, \min (m, n))\).
The pivot indices: for \(1 \leq i \leq n\), row \(i\) was interchanged with row \(i p i v(i)\).

\section*{Return Values}

This function returns a value info.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i>0, u_{i i}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

If info = -1011, memory allocation error occurred.

\section*{?lacn2}

Estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.
```

Syntax
C:
lapack_int LAPACKE_slacn2 (lapack_int n, float * v, float * x, lapack_int * isgn, float

* est, lapack_int * kase, lapack_int * isave);
lapack_int LAPACKE_clacn2 (lapack_int n, lapack_complex_float * v, lapack_complex_float
* x, float * est, lapack_int * kase, lapack_int * isave);
lapack_int LAPACKE_dlacn2 (lapack_int n, double * v, double * x, lapack_int * isgn,
double * est, lapack_int * kase, lapack_int * isave);
lapack_int LAPACKE_zlacn2 (lapack_int n, lapack_complex_double * v,
lapack_complex_double * x, double * est, lapack_int * kase, lapack_int * isave);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine estimates the 1 -norm of a square, real or complex matrix \(A\). Reverse communication is used for evaluating matrix-vector products.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & The order of the matrix \(A(n \geq 1)\). \\
\hline \multirow[t]{3}{*}{\(v, x\)} & Arrays, size ( \(n\) ) each. \\
\hline & \(v\) is a workspace array. \\
\hline & \(x\) is used as input after an intermediate return. \\
\hline isgn & Workspace array, size ( \(n\) ), used with real flavors only. \\
\hline est & On entry with kase set to 1 or 2 , and isave (1) = 1 , est must be unchanged from the previous call to the routine. \\
\hline kase & On the initial call to the routine, kase must be set to 0 . \\
\hline \multirow[t]{2}{*}{isave} & Array, size (3). \\
\hline & Contains variables from the previous call to the routine. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline est & An estimate (a lower bound) for norm( \(A\) ). \\
\hline \multirow[t]{2}{*}{kase} & On an intermediate return, kase is set to 1 or 2 , indicating whether \(x\) is overwritten by \(A^{*} x\) or \(A^{T *} x\) for real flavors and \(A^{*} x\) or \(A^{H *} x\) for complex flavors. \\
\hline & On the final return, kase is set to 0 . \\
\hline v & On the final return, \(v=A^{\star} w\), where est \(=\operatorname{norm}(v) / \operatorname{norm}(w)(w\) is not returned). \\
\hline \(x\) & On an intermediate return, \(x\) is overwritten by \\
\hline & \(A^{*} X\), if kase \(=1\), \\
\hline
\end{tabular}
\[
\begin{aligned}
& A^{T} \star_{X}, \text { if } k a s e=2 \text { (for real flavors), } \\
& A^{H \star} x, \text { if kase }=2 \text { (for complex flavors), }
\end{aligned}
\]
and the routine must be re-called with all the other parameters unchanged.
isave This parameter is used to save variables between calls to the routine.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{?lacpy}

Copies all or part of one two-dimensional array to another.

\section*{Syntax}
```

lapack_int LAPACKE_slacpy (int matrix_layout, char uplo, lapack_int m, lapack_int n,
const float* a, lapack_int lda, float* b, lapack_int ldb);
lapack_int LAPACKE_dlacpy (int matrix_layout, char uplo, lapack_int m, lapack_int n,
const double* a, lapack_int lda, double* b, lapack_int ldb);
lapack_int LAPACKE_clacpy (int matrix_layout, char uplo, lapack_int m, lapack_int n,
const lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int
ldb);
lapack_int LAPACKE_zlacpy (int matrix_layout, char uplo, lapack_int m, lapack_int n,
const lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int
ldb);

```

Include Files
- mkl.h

\section*{Description}

The routine copies all or part of a two-dimensional matrix \(A\) to another matrix \(B\).

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
m
\(n\)

Specifies the part of the matrix \(A\) to be copied to \(B\).
If uplo = 'U', the upper triangular part of \(A\);
if uplo = 'L', the lower triangular part of \(A\).
Otherwise, all of the matrix \(A\) is copied.
The number of rows in the matrix \(A(m \geq 0)\).
The number of columns in \(A(n \geq 0)\).
a
Array, size at least max (1, lda* \(n\) ) for column major and max (1, Ida* \(m\) ) for row major layout. A contains the \(m\)-by- \(n\) matrix \(A\).

If uplo = 'U', only the upper triangle or trapezoid is accessed; if uplo = 'L', only the lower triangle or trapezoid is accessed.

Ida

1 db
The leading dimension of \(a\); Ida \(\max (1, m)\) for column major layout and \(\max (1, n)\) for row major layout.
The leading dimension of the output array \(b ; 1 d b \geq \max (1, m)\) for column major layout and \(\max (1, n)\) for row major layout.

\section*{Output Parameters}
b
Array, size at least max ( \(1, \quad l d b^{*} n\) ) for column major and max ( \(1, \quad l d b^{*} m\) ) for row major layout. Array a contains the \(m\)-by-n matrix \(B\).

On exit, \(B=A\) in the locations specified by uplo.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{?lakf2}

Forms a matrix containing Kronecker products
between the given matrices.

\section*{Syntax}
```

void slakf2 (lapack_int *m, lapack_int *n, float *a, lapack_int *lda, float *b, float
*d, float *e, float *z, lapack_int *ldz);
void dlakf2 (lapack_int *m, lapack_int *n, double *a, lapack_int *lda, double *b, double
*d, double *e, double *z, lapack_int *ldz);
void clakf2 (lapack_int *m, lapack_int *n, lapack_complex *a, lapack_int *lda,
lapack_complex *b, lapack_complex *d, lapack_complex *e, lapack_complex *z, lapack_int
*Idz);
void zlakf2 (lapack_int *m, lapack_int *n, lapack_complex_double *a, lapack_int *lda,
lapack_complex_double *b, lapack_complex_double *d, lapack_complex_double *e,
lapack_complex_double *z, lapack_int *ldz);

```

Include Files
- mkl.h

\section*{Description}

The routine ?lakf2 forms the \(2 * m * n\) by \(2 * m^{*} n\) matrix \(Z\).
\[
Z=\left[\begin{array}{ll}
\mathrm{kron}(I n, A) & -\mathrm{kron}\left(B^{T}, I m\right) \\
\mathrm{kron}(I n, D) & -\mathrm{kron}\left(E^{T}, I m\right)
\end{array}\right]
\]
where \(I n\) is the identity matrix of size \(n\) and \(X^{\top}\) is the transpose of \(X\). kron \((X, Y)\) is the Kronecker product between the matrices \(X\) and \(Y\).

\section*{Input Parameters}
\begin{tabular}{ll}
\(m\) & Size of matrix, \(m \geq 1\) \\
\(n\) & Size of matrix, \(n \geq 1\) \\
\(a\) & Array, size \(I d a-b y-n\). The matrix \(A\) in the output matrix \(Z\). \\
\(I d a\) & The leading dimension of \(a, b, d\), and \(e . l d a \geq m+n\). \\
\(b\) & Array, size \(I d a\) by \(n\). Matrix used in forming the output matrix \(Z\). \\
\(d\) & Array, size \(I d a\) by \(m\). Matrix used in forming the output matrix \(Z\). \\
\(e\) & Array, size \(I d a\) by \(n\). Matrix used in forming the output matrix \(Z\). \\
\(l d z\) & The leading dimension of \(Z . l d z \geq 2^{*} m^{\star} n\).
\end{tabular}

\section*{Output Parameters}
z
Array, size \(I d z-\) by- \(2 * m * n\). The resultant Kronecker \(m * n * 2\)-by- \(m * n * 2\) matrix.

\section*{?lange \\ Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.}

\section*{Syntax}
```

float LAPACKE_slange (int matrix_layout, char norm, lapack_int m, lapack_int n, const
float * a, lapack_int lda);
double LAPACKE_dlange (int matrix_layout, char norm, lapack_int m, lapack_int n, const
double * a, lapack_int lda);
float LAPACKE_clange (int matrix_layout, char norm, lapack_int m, lapack_int n, const
lapack_complex_float * a, lapack_int lda);
double LAPACKE_zlange (int matrix_layout, char norm, lapack_int m, lapack_int n, const
lapack_complex_double * a, lapack_int lda);

```

Include Files
- mkl.h

\section*{Description}

The function ?lange returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex matrix \(A\).

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
```

norm
m
n
a
Ida
Specifies the value to be returned by the routine:
$=$ 'M' or 'm': val $=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)$, largest absolute value of the matrix A.
$=$ '1' or 'O' or 'O': val = norm1 (A), 1-norm of the matrix A (maximum column sum),
$=$ 'I' or 'i': val $=$ normI (A), infinity norm of the matrix A (maximum row sum),
= 'F','f','E' or 'e': val = normF (A), Frobenius norm of the matrix A (square root of sum of squares).
The number of rows of the matrix A.
$m \geq 0$. When $m=0$, ? lange is set to zero.
The number of columns of the matrix A.
$n \geq 0$. When $n=0$, ? lange is set to zero.
Array, size at least max (1, $1 d^{*}{ }^{\star} n$) for column major and max (1, Ida*m) for row major layout. Array a contains the m-by-n matrix A.
The leading dimension of the array a.
Ida $\geq \max (n, 1)$ for column major layout and $\max (1, n)$ for row major layout.

```

\section*{?lansy}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix.

\section*{Syntax}
```

float LAPACKE_slansy (int matrix_layout, char norm, char uplo, lapack_int n, const
float * a, lapack_int lda);
double LAPACKE_dlansy (int matrix_layout, char norm, char uplo, lapack_int n, const
double * a, lapack_int lda);
float LAPACKE_clansy (int matrix_layout, char norm, char uplo, lapack_int n, const
lapack_complex_float * a, lapack_int lda);
double LAPACKE_zlansy (int matrix_layout, char norm, char uplo, lapack_int n, const
lapack_complex_double * a, lapack_int lda);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The function ?lansy returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix \(A\).

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
norm Specifies the value to be returned by the routine:
\(=' \mathrm{M}\) ' or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix
A.
\(=\) '1' or 'O' or 'O': val \(=\operatorname{norm1}(A)\), 1 -norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val \(=\) normI (A), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F', 'f', 'E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).

Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is to be referenced.
\(=\) 'U': Upper triangular part of \(A\) is referenced.
\(=\) 'L': Lower triangular part of \(A\) is referenced
The order of the matrix \(A . n \geq 0\). When \(n=0\), ? lansy is set to zero.
Array, size at least max(1,/da*n). The symmetric matrix \(A\).
If uplo = 'U', the leading \(n\)-by-n upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced.
If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

The leading dimension of the array \(a\).
```

Ida\geq max(n,1).

```

\section*{?lanhe}

Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a complex Hermitian matrix.

\section*{Syntax}
```

float LAPACKE_clanhe (int matrix_layout, char norm, char uplo, lapack_int n, const
lapack_complex_float * a, lapack_int lda);
double LAPACKE_zlanhe (int matrix_layout, char norm, char uplo, lapack_int n, const
lapack_complex_double * a, lapack_int lda);

```

Include Files
- mkl.h

Description

The function ? lanhe returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix \(A\).

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
norm Specifies the value to be returned by the routine:
\(=\) 'M' or 'm': val = max(abs \(\left.\left(A_{i j}\right)\right)\), largest absolute value of the matrix \(A\).
\(=\) '1' or '○' or '०': val = norm1 \((A)\), 1 -norm of the matrix \(A\) (maximum column sum),
= 'I' or 'i': val = normI(A), infinity norm of the matrix \(A\) (maximum row sum),
= 'F', 'f','E' or 'e': val \(=\) normF( \(A\) ), Frobenius norm of the matrix \(A\) (square root of sum of squares).

Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is to be referenced.
= 'U': Upper triangular part of \(A\) is referenced.
\(=\) ' L ': Lower triangular part of \(A\) is referenced
The order of the matrix \(A\). \(n \geq 0\). When \(n=0\), ?lanhe is set to zero.
Array, size at least \(\max \left(1, I d a^{*} n\right)\). The Hermitian matrix \(A\).
If uplo = ' U ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced.

If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

The leading dimension of the array \(a\).
```

lda\geq max(n,1).

```

\section*{?lantr}

Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a trapezoidal or triangular matrix.

\section*{Syntax}
```

float LAPACKE_slantr (char * norm, char * uplo, char * diag, lapack_int * m, lapack_int

* n, const float * a, lapack_int * lda, float * work);
double LAPACKE_dlantr (char * norm, char * uplo, char * diag, lapack_int * m,
lapack_int * n, const double * a, lapack_int * lda, double * work);
float LAPACKE_clantr (char * norm, char * uplo, char * diag, lapack_int * m, lapack_int
* n, const lapack_complex_float * a, lapack_int * lda, float * work);
double LAPACKE_zlantr (char * norm, char * uplo, char * diag, lapack_int * m,
lapack_int * n, const lapack_complex_double * a, lapack_int * lda, double * work);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The function ? lantr returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix \(A\).

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.

Specifies the value to be returned by the routine:
\(=\) 'M' or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix A.
\(=\) '1' or 'O' or 'o': val \(=\operatorname{norm1}(A), 1\)-norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F', 'f','E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).

Specifies whether the matrix \(A\) is upper or lower trapezoidal.
```

= 'U': Upper trapezoidal
= 'L':Lower trapezoidal.

```

Note that \(A\) is triangular instead of trapezoidal if \(m=n\).

Specifies whether or not the matrix \(A\) has unit diagonal.
\(=\) 'N': Non-unit diagonal
\(=\) 'U': Unit diagonal.
The number of rows of the matrix \(A . m \geq 0\), and if \(u p I_{O}=' U ', m \leq n\).
When \(m=0\), ?lantr is set to zero.
The number of columns of the matrix \(A . n \geq 0\), and if uplo = 'L', \(n \leq m\). When \(n=0\), ?lantr is set to zero.

Array, size at least max (1, lda*n) for column major and max (1, lda*m) for row major layout.

The trapezoidal matrix \(A\) ( \(A\) is triangular if \(m=n\) ).
If uplo = 'U', the leading \(m\)-by- \(n\) upper trapezoidal part of the array a contains the upper trapezoidal matrix, and the strictly lower triangular part of \(A\) is not referenced.

If uplo = 'L', the leading m-by-n lower trapezoidal part of the array a contains the lower trapezoidal matrix, and the strictly upper triangular part of \(A\) is not referenced. Note that when diag = 'U', the diagonal elements of \(A\) are not referenced and are assumed to be one.

The leading dimension of the array \(a\).
\(l d a \geq \max (m, 1)\) for column major layout and \(\geq \max (1, n)\) for row major layout.

LAPACKE_set_nancheck
Turns NaN checking off or on

LAPACKE_set_nancheck(int flag);

\section*{Description}

The routine sets a value for the LAPACKE NaN checking flag, which indicates whether or not LAPACKE routines check input matrices for NaNs.

Input Parameters
```

flag If flag= 0, NaN checking is turned OFF. Otherwise, it is turned ON.

```

LAPACKE_get_nancheck
Gets the current NaN checking flag, which indicates whether NaN checking has been turned off or on.
int flag = LAPACKE_get_nancheck ();

\section*{Description}

The function returns the current value for the LAPACKE NaN checking flag, which indicates whether or not LAPACKE routines check input matrices for NaNs .

\section*{Return Value}

An integer value is returned which indicates the current NaN checking status.
The returned flag value is either 0 (OFF) or 1 (ON), even though any integer value can be used as an input parameter for LAPACKE_set_nancheck.
For example, the following code turns on NaN checking:
```

LAPACKE_set_nancheck(100);
int flag = LAPACKE_get_nancheck(); // flag==1, not 100.

```

\section*{?lapmr}

Rearranges rows of a matrix as specified by a permutation vector.

\section*{Syntax}
```

lapack_int LAPACKE_slapmr (int matrix_layout, lapack_logical forwrd, lapack_int m,
lapack_int n, float* x, lapack_int ldx, lapack_int * k);
lapack_int LAPACKE_dlapmr (int matrix_layout, lapack_logical forwrd, lapack_int m,
lapack_int n, double* x, lapack_int ldx, lapack_int * k);

```
```

lapack_int LAPACKE_clapmr (int matrix_layout, lapack_logical forwrd, lapack_int m,
lapack_int n, lapack_complex_float* x, lapack_int ldx, lapack_int * k);
lapack_int LAPACKE_zlapmr (int matrix_layout, lapack_logical forwrd, lapack_int m,
lapack_int n, lapack_complex_double* x, lapack_int ldx, lapack_int * k);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?lapmr routine rearranges the rows of the \(m\)-by-n matrix \(X\) as specified by the permutation \(\mathrm{k}[0]\), \(\mathrm{k}[1], \ldots, k[m-1]\) of the integers \(1, \ldots, m\).
If forwrd is true, forward permutation:
\(X(k[i-1],:)\) is moved to \(X\{i,:)\) for \(i=1,2, \ldots, m\).
If forwrd is false, backward permutation:
\(X\{i,:)\) is moved to \(X(k[i-1,:)\) for \(i=1,2, \ldots, m\).

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
```

forwrd If forwrd is true, forward permutation.
If forwrd is false, backward permutation.
The number of rows of the matrix X.m\geq0.
The number of columns of the matrix X.n\geq0.
Array, size at least max (1, ldx^n) for column major and max (1, ldx*m)
for row major layout. On entry, the m-by-n matrix X.
The leading dimension of the array X,Id X\geq max(1,m)for column major
layout and Idx\geq max(1,n) for row major layout.
Array, size (m). On entry, k contains the permutation vector and is used as
internal workspace.

```

\section*{Output Parameters}

X
On exit, \(x\) contains the permuted matrix \(X\).
On exit, \(k\) is reset to its original value.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{See Also}

\section*{?lapmt}

Performs a forward or backward permutation of the columns of a matrix.

\section*{Syntax}
```

lapack_int LAPACKE_slapmt (int matrix_layout, lapack_logical forwrd, lapack_int m,
lapack_int n, float * x, lapack_int ldx, lapack_int * k);
lapack_int LAPACKE_dlapmt (int matrix_layout, lapack_logical forwrd, lapack_int m,
lapack_int n, double * x, lapack_int ldx, lapack_int * k);
lapack_int LAPACKE_clapmt (int matrix_layout, lapack_logical forwrd, lapack_int m,
lapack_int n, lapack_complex_float * x, lapack_int ldx, lapack_int * k);
lapack_int LAPACKE_zlapmt (int matrix_layout, lapack_logical forwrd, lapack_int m,
lapack_int n, lapack_complex_double * x, lapack_int ldx, lapack_int * k);

```

Include Files
- mkl.h

\section*{Description}

The routine ?lapmt rearranges the columns of the \(m\)-by-n matrix \(X\) as specified by the permutation \(k[i-\) \(1]\) for \(i=1, \ldots, n\).

If forwra \(\neq 0\), forward permutation:
\(x(*, k(j))\) is moved to \(X(*, j)\) for \(j=1,2, \ldots, n\).
If forwrd \(=0\), backward permutation:
\(x(*, j)\) is moved to \(x(*, k(j))\) for \(j=1,2, \ldots, n\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline forwrd & If forwrd \(\ddagger\) 0, forward permutation \\
\hline & If forwrd \(=0\), backward permutation \\
\hline m & The number of rows of the matrix \(X . m \geq 0\). \\
\hline \(n\) & The number of columns of the matrix \(X . n \geq 0\). \\
\hline \(x\) & Array, size \(l d x^{*} n\). On entry, the \(m\)-by-n matrix \(X\). \\
\hline \(1 d x\) & The leading dimension of the array \(x, I d x \geq \max (1, m)\). \\
\hline k & Array, size ( \(n\) ). On entry, \(k\) contains the permutation vector and is used as internal workspace. \\
\hline
\end{tabular}

\section*{Output Parameters}
x
k

On exit, \(x\) contains the permuted matrix \(X\).
On exit, \(k\) is reset to its original value.

\section*{See Also}
?lapmr
?lapy2
Returns sqrt \(\left(x^{2}+y^{2}\right)\).

\section*{Syntax}
```

float LAPACKE_slapy2 (floatx, floaty);
double LAPACKE_dlapy2 (doublex, doubley);

```

Include Files
- mkl.h

\section*{Description}

The function ?lapy2 returns sqrt \(\left(x^{2}+y^{2}\right)\), avoiding unnecessary overflow or harmful underflow.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
\(x, y \quad\) Specify the input values \(x\) and \(y\).

\section*{Return Values}

The function returns a value val.
If val=-1D0, the first argument was NaN.
If val=-2D0, the second argument was NaN .
?lapy3
Returns sqrt \(\left(x^{2}+y^{2}+z^{2}\right)\).
Syntax
float LAPACKE_slapy3 (floatx, floaty, floatz);
double LAPACKE_dlapy3 (double x, doubley, doublez);

\section*{Include Files}
- mkl.h

\section*{Description}

The function ?lapy3 returns sqrt \(\left(x^{2}+y^{2}+z^{2}\right)\), avoiding unnecessary overflow or harmful underflow.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
\(x, y, z\)
Specify the input values \(x, y\) and \(z\).

\section*{Return Values}

This function returns a value val.
If val \(=-1 \mathrm{D} 0\), the first argument was NaN .
If val \(=-2 D 0\), the second argument was NaN .
If val \(=-3 D 0\), the third argument was NaN .

\section*{?laran}

Returns a random real number from a uniform distribution.

\section*{Syntax}
```

float slaran (lapack_int *iseed);
double dlaran (lapack_int *iseed);

```

\section*{Description}

The ?laran routine returns a random real number from a uniform \((0,1)\) distribution. This routine uses a multiplicative congruential method with modulus \(2^{48}\) and multiplier 33952834046453. 48-bit integers are stored in four integer array elements with 12 bits per element. Hence the routine is portable across machines with integers of 32 bits or more.

\section*{Input Parameters}
```

iseed

```

Array, size 4. On entry, the seed of the random number generator. The array elements must be between 0 and 4095, and iseed[3] must be odd.

\section*{Output Parameters}
iseed On exit, the seed is updated.

\section*{Return Values}

The function returns a random number.

\section*{?larfb}

Applies a block reflector or its transpose/conjugatetranspose to a general rectangular matrix.

\section*{Syntax}
```

lapack_int LAPACKE_slarfb (int matrix_layout, char side , char trans , char direct ,
char storev, lapack_int m, lapack_int n , lapack_int k, const float * v , lapack_int
ldv , const float * t , lapack_int ldt , float * c , lapack_int ldc);
lapack_int LAPACKE_dlarfb (int matrix_layout, char side, char trans, char direct ,
char storev, lapack_int m, lapack_int n , lapack_int k , const double * v ,
lapack_int ldv, const double * t , lapack_int ldt, double * c , lapack_int
ldc);lapack_int LAPACKE_clarfb (int matrix_layout, char side , char trans, char
direct , char storev , lapack_int m , lapack_int n , lapack_int k , const
lapack_complex_float * v , lapack_int ldv, const lapack_complex_float * t , lapack_int
ldt , lapack_complex_float * c , lapack_int ldc);

```
```

lapack_int LAPACKE_zlarfb (int matrix_layout, char side , char trans , char direct ,
char storev, lapack_int m, lapack_int n , lapack_int k , const lapack_complex_double

* v , lapack_int ldv , const lapack_complex_double * t , lapack_int ldt ,
lapack_complex_double * c , lapack_int ldc);

```

Include Files
- mkl.h

\section*{Description}

The real flavors of the routine ?larfb apply a real block reflector \(H\) or its transpose \(H^{\top}\) to a real m-by-n matrix \(C\) from either left or right.
The complex flavors of the routine ?larfb apply a complex block reflector \(H\) or its conjugate transpose \(H^{H}\) to a complex \(m\)-by- \(n\) matrix \(C\) from either left or right.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
```

side If side = 'L': apply H or H}\mp@subsup{H}{}{T}\mathrm{ for real flavors and H or H}\mp@subsup{H}{}{H}\mathrm{ for complex
flavors from the left.
If side = 'R': apply H or H}\mp@subsup{H}{}{\top}\mathrm{ for real flavors and H or H}\mp@subsup{H}{}{H}\mathrm{ for complex
flavors from the right.
trans If trans = 'N': apply H (No transpose).
If trans = 'C': apply H}\mp@subsup{H}{}{H}\mathrm{ (Conjugate transpose).
If trans = 'T': apply H}\mp@subsup{H}{}{T}(\mathrm{ Transpose).

```
direct Indicates how \(H\) is formed from a product of elementary reflectors
If direct \(=' F^{\prime}: H=H(1) * H(2) * . . . * H(k)\) (forward)
If direct \(=\) 'B': \(H=H(k) *\). . \(H(2) * H(1)\) (backward)

Indicates how the vectors which define the elementary reflectors are stored:

If storev = 'C': Column-wise
If storev = 'R': Row-wise
m
\(n\)
k

V

The number of rows of the matrix \(C\).
The number of columns of the matrix \(C\).
The order of the matrix \(T\) (equal to the number of elementary reflectors whose product defines the block reflector).

The size limitations depend on values of parameters storev and side as described in the following table:
\begin{tabular}{lll} 
store \(\mathrm{l}=\mathrm{C}\) & store \(\mathrm{V}=\mathrm{R}\) & \\
side \(=\mathrm{L} \quad\) side \(=\mathrm{R}\) & side \(=\mathrm{L} \quad\) side \(=\mathrm{R}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Column major & \[
\max _{k)}\left(1, I d v^{*}\right.
\] & \[
\max _{k)}\left(1, l d v^{*}\right.
\] & \[
\begin{aligned}
& \max \left(1, / d v^{*}\right. \\
& m)
\end{aligned}
\] & \[
\begin{aligned}
& \max \left(1, l d v^{*}\right. \\
& n)
\end{aligned}
\] \\
\hline Row major & \[
\begin{aligned}
& \max \left(1, l d v^{*}\right. \\
& m)
\end{aligned}
\] & \[
\max _{n)}\left(1, / d v^{*}\right.
\] & \[
\max _{k)}\left(1, / d v^{*}\right.
\] & \[
\max _{k)}\left(1, / d v^{*}\right.
\] \\
\hline
\end{tabular}

The matrix \(v\). See Application Notes below.

Array, size at least max(1,Idt * k).
Contains the triangular \(k-\) by- \(k\) matrix \(T\) in the representation of the block reflector.

The leading dimension of the array \(t\).
\(I d t \geq k\).
Array, size at least \(\max (1, I d c * n)\) for column major layout and max(1, Idc * \(m\) ) for row major layout.

On entry, the \(m\)-by-n matrix \(C\).
The leading dimension of the array \(c\).
\(l d c \geq \max (1, m)\) for column major layout and \(l d c \geq \max (1, n)\) for row major layout.

\section*{Output Parameters}

C
On exit, \(c\) is overwritten by the product of the following:
- \(H^{*} C\), or \(H^{T *} C\), or \(C^{*} H\), or \(C^{*} H^{T}\) for real flavors
- \(H^{*} C\), or \(H^{H *} C\), or \(C^{*} H\), or \(C^{*} H^{H}\) for complex flavors

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{Application Notes}

The shape of the matrix \(V\) and the storage of the vectors which define the \(H(i)\) is best illustrated by the following example with \(n=5\) and \(k=3\). The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.
\[
\begin{aligned}
& \text { direct }=\text { ' } \mathrm{F}^{\prime} \text { and storev }=\text { 'C': direct }=\text { ' } \mathrm{F}^{\prime} \text { and storev }=\text { 'R': } \\
& {\left[\begin{array}{ccc}
1 & & \\
V_{1} & 1 & \\
V_{1} & v_{2} & 1 \\
V_{1} & V_{2} & v_{3} \\
V_{1} & V_{2} & V_{3}
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
1 & v_{1} & v_{1} & v_{1} & v_{1} \\
& 1 & v_{2} & v_{2} & v_{2} \\
& & 1 & v_{3} & v_{3}
\end{array}\right]} \\
& \text { direct }=\text { ' } \mathrm{B}^{\prime} \text { and storev }=\text { ' } \mathrm{C} \text { ': direct }=\text { ' } \mathrm{B}^{\prime} \text { and storev }=\text { ' } \mathrm{R} \text { ': } \\
& {\left[\begin{array}{ccc}
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3} \\
1 & v_{2} & v_{3} \\
& 1 & v_{3} \\
& & 1
\end{array}\right]} \\
& {\left[\begin{array}{lllll}
v_{1} & v_{1} & 1 & & \\
v_{2} & v_{2} & v_{2} & 1 & \\
v_{3} & v_{3} & v_{3} & v_{3} & 1
\end{array}\right]}
\end{aligned}
\]

\section*{?larfg \\ Generates an elementary reflector (Householder matrix).}

\section*{Syntax}
```

lapack_int LAPACKE_slarfg (lapack_int n , float * alpha, float * x , lapack_int incx ,
float * tau);
lapack_int LAPACKE_dlarfg (lapack_int n , double * alpha, double * x , lapack_int
incx, double * tau);
lapack_int LAPACKE_clarfg (lapack_int n , lapack_complex_float * alpha,
lapack_complex_float * x , lapack_int incx , lapack_complex_float * tau);
lapack_int LAPACKE_zlarfg (lapack_int n , lapack_complex_double * alpha ,
lapack_complex_double * x , lapack_int incx , lapack_complex_double * tau);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine ? larfg generates a real/complex elementary reflector \(H\) of order \(n\), such that
\[
H^{*}\left[\begin{array}{c}
a l p h a \\
x
\end{array}\right]=\left[\begin{array}{c}
\text { bet } a \\
0
\end{array}\right], H^{T} * H=I
\]
for real flavors and
\[
H^{X} *\left[\begin{array}{c}
\text { alpha } \\
X
\end{array}\right]=\left[\begin{array}{c}
\text { beta } \\
0
\end{array}\right], H^{x} *_{H}=I,
\]
for complex flavors,
where alpha and beta are scalars (with beta real for all flavors), and \(x\) is an ( \(n-1\) )-element real/complex vector. \(H\) is represented in the form
\[
H=I-\operatorname{ta} u^{*}\left[\begin{array}{l}
1 \\
V
\end{array}\right] *\left[\begin{array}{ll}
1 & V^{T}
\end{array}\right]
\]
for real flavors and
\[
H=I-\operatorname{tau} *\left[\begin{array}{l}
1 \\
v
\end{array}\right] *\left[\begin{array}{ll}
1 & v^{H}
\end{array}\right]
\]
for complex flavors,
where tau is a real/complex scalar and \(v\) is a real/complex ( \(n-1\) )-element vector, respectively. Note that for clarfg/zlarfg, \(H\) is not Hermitian.
If the elements of \(x\) are all zero (and, for complex flavors, alpha is real), then \(\operatorname{tau}=0\) and \(H\) is taken to be the unit matrix.
Otherwise, \(1 \leq \operatorname{tau} \leq 2\) (for real flavors), or
\(1 \leq \operatorname{Re}(t a u) \leq 2\) and abs \((t a u-1) \leq 1\) (for complex flavors).

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
```

n The order of the elementary reflector.
alpha
X
Array, size (1+(n-2)*abs(incx)).
On entry, the vector }x\mathrm{ .
incx The increment between elements of x. incx > 0.

```

\section*{Output Parameters}
alpha
\(x\)
tau

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-2\), alpha is NaN
If info \(=-3\), array \(x\) contains NaN components.

\section*{?larft}

Forms the triangular factor \(T\) of a block reflector \(H=I\)
- \(V * T^{*} V * * H\).

\section*{Syntax}
```

lapack_int LAPACKE_slarft (int matrix_layout, char direct, char storev, lapack_int
n, lapack_int k , const float * v , lapack_int ldv, const float * tau , float * t ,
lapack_int ldt);
lapack_int LAPACKE_dlarft (int matrix_layout, char direct , char storev , lapack_int
n , lapack_int k , const double * v , lapack_int ldv, const double * tau , double * t ,
lapack_int ldt);
lapack_int LAPACKE_clarft (int matrix_layout, char direct, char storev, lapack_int
n, lapack_int k , const lapack_complex_float * v, lapack_int ldv , const
lapack_complex_float * tau , lapack_complex_float * t , lapack_int ldt);
lapack_int LAPACKE_zlarft (int matrix_layout, char direct, char storev , lapack_int
n , lapack_int k , const lapack_complex_double * v , lapack_int ldv , const
lapack_complex_double * tau , lapack_complex_double * t , lapack_int ldt);

```

Include Files
- mkl.h

\section*{Description}

The routine ? larft forms the triangular factor \(T\) of a real/complex block reflector \(H\) of order \(n\), which is defined as a product of \(k\) elementary reflectors.
If direct \(=\) ' \(\mathrm{F}^{\prime}, H=H(1){ }^{*} H(2) * . . .{ }^{*} H(k)\) and \(T\) is upper triangular;
If direct \(=\) ' \(\mathrm{B}^{\prime}, H=H(k) \star . . .{ }^{\star} H(2){ }^{\star} H(1)\) and \(T\) is lower triangular.
If storev = 'C', the vector which defines the elementary reflector \(\mathrm{H}(i)\) is stored in the \(i\)-th column of the array \(v\), and \(H=I-V^{\star} T^{\star} V^{T}\) (for real flavors) or \(H=I-V^{\star} T^{\star} V^{H}\) (for complex flavors).

If storev = 'R', the vector which defines the elementary reflector \(\mathrm{H}(i)\) is stored in the \(i\)-th row of the array \(v\), and \(H=I-V^{T \star} T^{\star} V\) (for real flavors) or \(H=I-V^{H *} T^{*} V\) (for complex flavors).

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
direct Specifies the order in which the elementary reflectors are multiplied to form the block reflector:
```

= 'F':H = H(1)*H(2)*. . . * H(k) (forward)
= 'B':H=H(k)*. . .* H(2)*H(1) (backward)

```
storev Specifies how the vectors which define the elementary reflectors are stored (see also Application Notes below):
= 'C': column-wise
= 'R': row-wise.
n
The order of the block reflector \(H . n \geq 0\).
k

V
\(I d t\)

The order of the triangular factor \(T\) (equal to the number of elementary reflectors). \(k \geq 1\).

The size limitations depend on values of parameters storev and side as described in the following table:
\begin{tabular}{|lll|}
\hline & storev \(=\mathrm{C}\) & store \(v=\mathrm{R}\) \\
Column major & \(\max \left(1, / d v^{*} k\right)\) & \(\max \left(1, / d v^{*} n\right)\) \\
Row major & \(\max \left(1, / d v^{*} n\right)\) & \(\max \left(1, / d v^{*} k\right)\) \\
\hline
\end{tabular}

The matrix v. See Application Notes below.
The leading dimension of the array \(v\).
If storev \(=' C ', l d v \geq \max (1, n)\) for column major and \(l d v \geq \max (1, k)\) for row major;
if storev \(=\) 'R', \(l d v \geq k\) for column major and \(l d v \geq \max (1, n)\) for row major.

Array, size (k). tau[i-1] must contain the scalar factor of the elementary reflector \(H(i)\).

The leading dimension of the output array \(t\). \(l d t \geq k\).

\section*{Output Parameters}
t
v
Array, size \(I d t * k\). The \(k\)-by- \(k\) triangular factor \(T\) of the block reflector. If direct \(=' F^{\prime}, T\) is upper triangular; if direct \(=' B ', T\) is lower triangular. The rest of the array is not used.

The matrix \(V\).

\section*{Application Notes}

The shape of the matrix \(V\) and the storage of the vectors which define the \(H(i)\) is best illustrated by the following example with \(n=5\) and \(k=3\). The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.
\[
\begin{aligned}
& \text { direct }=\text { ' } \mathrm{F}^{\prime} \text { and storev }=\text { 'C': } \\
& {\left[\begin{array}{ccc}
1 & & \\
\mathrm{~V}_{1} & 1 & \\
\mathrm{~V}_{1} & \mathrm{~V}_{2} & 1 \\
\mathrm{~V}_{1} & \mathrm{~V}_{2} & \mathrm{~V}_{3} \\
\mathrm{~V}_{1} & \mathrm{~V}_{2} & \mathrm{~V}_{3}
\end{array}\right]}
\end{aligned}
\]
\[
\begin{aligned}
& \text { direct }=\text { ' } \mathrm{B}^{\prime} \text { and storev }=\text { 'C': } \\
& {\left[\begin{array}{ccc}
\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3} \\
\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3} \\
1 & \mathrm{v}_{2} & \mathrm{v}_{3} \\
& 1 & \mathrm{v}_{3} \\
& & 1
\end{array}\right]}
\end{aligned}
\]

\section*{?larfx}

Applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order less than or equal to 10.

\section*{Syntax}
```

lapack_int LAPACKE_slarfx (int matrix_layout, char side , lapack_int m, lapack_int
n , const float * v , float tau , float * c , lapack_int ldc , float * work);
lapack_int LAPACKE_dlarfx (int matrix_layout, char side , lapack_int m, lapack_int
n , const double * V , double tau, double * c , lapack_int ldc , double * work);
lapack_int LAPACKE_clarfx (int matrix_layout, char side , lapack_int m, lapack_int
n , const lapack_complex_float * v , lapack_complex_float tau , lapack_complex_float *
c , lapack_int ldc , lapack_complex_float * work);
lapack_int LAPACKE_zlarfx (int matrix_layout, char side , lapack_int m, lapack_int
n , const lapack_complex_double * v , lapack_complex_double tau , lapack_complex_double

* c , lapack_int ldc , lapack_complex_double * work);

```

Include Files
- mkl.h

\section*{Description}

The routine ?larfx applies a real/complex elementary reflector \(H\) to a real/complex \(m\)-by- \(n\) matrix \(C\), from either the left or the right.
\(H\) is represented in the following forms:
- \(H=I-\operatorname{tau}^{\star} V^{\star} V^{T}\), where tau is a real scalar and \(v\) is a real vector.
- \(H=I-\operatorname{tau^{\star }} V^{\star} V^{H}\), where tau is a complex scalar and \(v\) is a complex vector.

If \(\operatorname{tau}=0\), then \(H\) is taken to be the unit matrix.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
side
\[
\begin{aligned}
& \text { If side }=\text { 'L': form } H^{\star} C \\
& \text { If side }=\text { 'R': form } C^{\star} H .
\end{aligned}
\]
```

m
n
v
tau
C
ldc
work

```
m
\(n\)

V

C
ldc
work
```

The number of rows of the matrix C.
The number of columns of the matrix C.
Array, size
(m) if side $=$ 'L' or
(n) if side $=$ ' R '.
The vector v in the representation of H.
The value tau in the representation of H.
Array, size at least $\max \left(1, I d c^{*} n\right)$ for column major layout and max (1, $l d c^{*} m$) for row major layout. On entry, the m-by-n matrix C.
The leading dimension of the array c. Ida $\geq(1, m)$.
Workspace array, size
(n) if side = 'L' or
(m) if side = 'R'.
work is not referenced if H has order <11.

```

\section*{Output Parameters}
c

On exit, C is overwritten by the matrix \(H^{\star} C\) if side \(=\) 'L', or \(C^{\star} H\) if side \(=\) 'R'.

\section*{?large}

Pre- and post-multiplies a real general matrix with a random orthogonal matrix.

\section*{Syntax}
```

void slarge (lapack_int *n, float *a, lapack_int *lda, lapack_int *iseed, float * work,
lapack_int *info);
void dlarge (lapack_int *n, double *a, lapack_int *lda, lapack_int *iseed, double *
work, lapack_int *info);
void clarge (lapack_int *n, lapack_complex *a, lapack_int *lda, lapack_int *iseed,
lapack_complex * work, lapack_int *info);
void zlarge (lapack_int *n, lapack_complex_double *a, lapack_int *lda, lapack_int
*iseed, lapack_complex_double * work, lapack_int *info);

```

Include Files
- mkl.h

\section*{Description}

The routine ? large pre- and post-multiplies a general \(n\)-by-n matrix \(A\) with a random orthogonal or unitary matrix: \(A=U^{*} D^{*} U^{\top}\).

\section*{Input Parameters}

\section*{n \\ a \\ Ida}
iseed
work

\section*{Output Parameters}
a
iseed On exit, the seed is updated.
info
The order of the matrix \(A . n \geq 0\)
Array, size lda by \(n\).
On entry, the original \(n\)-by- \(n\) matrix \(A\).
The leading dimension of the array \(a\). Ida \(\geq n\).
Array, size 4.

Workspace array, size \(2 * n\).

If info \(=0\), the execution is successful.

On entry, the seed of the random number generator. The array elements must be between 0 and 4095, and iseed [3] must be odd.

On exit, \(A\) is overwritten by \(U^{*} A^{*} U^{\prime}\) for some random orthogonal matrix \(U\).

If info \(<0\), the \(i\)-th parameter had an illegal value.
```

?larnd
Returns a random real number from a uniform or normal distribution.

```

\section*{Syntax}
```

float slarnd (lapack_int *idist, lapack_int *iseed);

```
float slarnd (lapack_int *idist, lapack_int *iseed);
double dlarnd (lapack_int *idist, lapack_int *iseed);
```

double dlarnd (lapack_int *idist, lapack_int *iseed);

```

The data types for complex variations depend on whether or not the application links with Gnu Fortran (gfortran) libraries.
For non-gfortran (libmkl_intel_*) interface libraries:
```

void clarnd (lapack_complex_float *res, lapack_int *idist, lapack_int *iseed);
void zlarnd (lapack_complex_double *res, lapack_int *idist, lapack_int *iseed);

```

For gfortran (libmkl_gf_*) interface libraries:
lapack_complex_float clarnd (lapack_int *idist, lapack_int *iseed);
lapack_complex_double zlarnd (lapack_int *idist, lapack_int *iseed);
To understand the difference between the non-gfortran and gfortran interfaces and when to use each of them, see Dynamic Libraries in the lib/intel64 Directory in the oneAPI Math Kernel Library Developer Guide.

Include Files
- mkl.h

\section*{Description}

The routine ?larnd returns a random number from a uniform or normal distribution.

\section*{Input Parameters}
idist
iseed

Specifies the distribution of the random numbers. For slarnd and dlanrd:
\(=1:\) uniform \((0,1)\)
\(=2:\) uniform \((-1,1)\)
= 3: normal \((0,1)\).
For clarnd and zlanrd:
\(=1\) : real and imaginary parts each uniform \((0,1)\)
\(=2\) : real and imaginary parts each uniform \((-1,1)\)
\(=3\) : real and imaginary parts each normal \((0,1)\)
= 4: uniformly distributed on the disc \(\operatorname{abs}(z) \leq 1\)
\(=5:\) uniformly distributed on the circle \(\operatorname{abs}(z)=1\)
Array, size 4.
On entry, the seed of the random number generator. The array elements must be between 0 and 4095, and iseed [3] must be odd.

\section*{Output Parameters}
```

iseed
On exit, the seed is updated.

```

\section*{Return Values}

The function returns a random number (for complex variations libmkl_gf_* interface layer/libraries return the result as the parameter res).

\section*{?larnv}

Returns a vector of random numbers from a uniform or normal distribution.

\section*{Syntax}
```

lapack_int LAPACKE_slarnv (lapack_int idist, lapack_int * iseed, lapack_int n , float

* x);
lapack_int LAPACKE_dlarnv (lapack_int idist , lapack_int * iseed , lapack_int n ,
double * x);
lapack_int LAPACKE_clarnv (lapack_int idist , lapack_int * iseed , lapack_int n ,
lapack_complex_float * x);
lapack_int LAPACKE_zlarnv (lapack_int idist , lapack_int * iseed , lapack_int n ,
lapack_complex_double * x);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine ?larnv returns a vector of \(n\) random real/complex numbers from a uniform or normal distribution.

This routine calls the auxiliary routine ? laruv to generate random real numbers from a uniform \((0,1)\) distribution, in batches of up to 128 using vectorisable code. The Box-Muller method is used to transform numbers from a uniform to a normal distribution.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
idist Specifies the distribution of the random numbers: for slarnv and dlarnv:
\(=1\) : uniform \((0,1)\)
\(=2:\) uniform \((-1,1)\)
\(=3\) : normal \((0,1)\).
for clarnv and zlarnv:
\(=1\) : real and imaginary parts each uniform \((0,1)\)
\(=2\) : real and imaginary parts each uniform ( \(-1,1\) )
\(=3\) : real and imaginary parts each normal \((0,1)\)
= 4: uniformly distributed on the disc \(\operatorname{abs}(z)<1\)
\(=5\) : uniformly distributed on the circle \(\operatorname{abs}(z)=1\)
iseed Array, size (4).
On entry, the seed of the random number generator; the array elements must be between 0 and 4095, and iseed(4) must be odd.
n The number of random numbers to be generated.

\section*{Output Parameters}

X
Array, size ( \(n\) ). The generated random numbers.
On exit, the seed is updated.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.

\section*{?laror}

Pre- or post-multiplies an m-by-n matrix by a random orthogonal/unitary matrix.

\section*{Syntax}
```

void slaror (char *side, char *init, lapack_int *m, lapack_int *n, float *a, lapack_int
*lda, lapack_int *iseed, float *x, lapack_int *info);
void dlaror (char *side, char *init, lapack_int *m, lapack_int *n, double *a, lapack_int
*lda, lapack_int *iseed, double *x, lapack_int *info);
void claror (char *side, char *init, lapack_int *m, lapack_int *n, lapack_complex *a,
lapack_int *lda, lapack_int *iseed, lapack_complex *x, lapack_int *info);

```
```

void zlaror (char *side, char *init, lapack_int *m, lapack_int *n,
lapack_complex_double *a, lapack_int *lda, lapack_int *iseed, lapack_complex_double *x,
lapack_int *info);

```

Include Files
- mkl.h

\section*{Description}

The routine ? laror pre- or post-multiplies an \(m\)-by- \(n\) matrix \(A\) by a random orthogonal or unitary matrix \(U\), overwriting \(A\). A may optionally be initialized to the identity matrix before multiplying by \(U . U\) is generated using the method of G.W. Stewart (SIAM J. Numer. Anal. 17, 1980, 403-409).

\section*{Input Parameters}
side
init
m

Specifies whether \(A\) is multiplied by \(U\) on the left or right.
for slaror and dlaror:
If side \(=\) 'L', multiply \(A\) on the left (premultiply) by \(U\).
If side \(=\) ' R ', multiply \(A\) on the right (postmultiply) by \(U^{\top}\).
If side \(=\) 'C' or 'T', multiply \(A\) on the left by \(U\) and the right by \(U^{\top}\).
for claror and zlaror:
If side \(=\) 'L', multiply \(A\) on the left (premultiply) by \(U\).
If side \(=\) ' R ', multiply \(A\) on the right (postmultiply) by \(U C>\).
If side \(=\) ' C', multiply \(A\) on the left by \(U\) and the right by \(U C>\)
If side \(=\) ' \(T\) ', multiply \(A\) on the left by \(U\) and the right by \(U^{\top}\).
Specifies whether or not a should be initialized to the identity matrix.
If init = 'I', initialize a to (a section of) the identity matrix before applying \(U\).
If init \(=\) 'N', no initialization. Apply \(U\) to the input matrix \(A\).
init = 'I' generates square or rectangular orthogonal matrices:
For \(m=n\) and side \(=\) 'L' or 'R', the rows and the columns are orthogonal to each other.
For rectangular matrices where \(m<n\) :
- If side = 'R', ?laror produces a dense matrix in which rows are orthogonal and columns are not.
- If side= 'L', ?laror produces a matrix in which rows are orthogonal, first \(m\) columns are orthogonal, and remaining columns are zero.

For rectangular matrices where \(m>n\) :
- If side = 'L', ?laror produces a dense matrix in which columns are orthogonal and rows are not.
- If side = 'R', ?laror produces a matrix in which columns are orthogonal, first \(m\) rows are orthogonal, and remaining rows are zero.

The number of rows of \(A\).
\(n\)
a
Ida
iseed

X

\section*{Output Parameters}
a
iseed
info

The number of columns of \(A\).
Array, size Ida by \(n\).
The leading dimension of the array \(a\).
\(l d a \geq \max (1, m)\).
Array, size (4).
On entry, specifies the seed of the random number generator. The array elements must be between 0 and 4095; if not they are reduced mod 4096. Also, iseed[3] must be odd.

Workspace array, size (3*max ( \(m, n\) ) ) .
\begin{tabular}{|ll|}
\hline Value of side & Length of workspace \\
\hline 'L' & \(2 \star^{*} m+n\) \\
'R' & \(2 \star^{*} n+m\) \\
' \(^{\prime}\) or ' \(\mathrm{T}^{\prime}\) & \(3 \star^{\prime}\) \\
\hline
\end{tabular}

On exit, overwritten
by \(U A\) ( if side = 'L' ),
by \(A U\) (if side = 'R'),
by \(U A U^{\top}\) ( if side \(=\) ' C' or 'T').
The values of iseed are changed on exit, and can be used in the next call to continue the same random number sequence.

Array, size (4).
For slaror and dlaror:
If info \(=0\), the execution is successful.
If info < 0, the \(i\)-th parameter had an illegal value.
If info \(=1\), the random numbers generated by ?laror are bad.
For claror and zlaror:
If info \(=0\), the execution is successful.
If info \(=-1\), side is not 'L', 'R', 'C', or 'T'.
If info \(=-3\), if \(m\) is negative.
If info \(=-4\), if \(m\) is negative or if side is ' \(C\) ' or ' \(T\) ' and \(n\) is not equal to \(m\).

If info \(=-6\), if \(/ d a\) is less than \(m\).
?larot
Applies a Givens rotation to two adjacent rows or columns.
```

Syntax
void slarot (lapack_logical *lrows, lapack_logical *ileft, lapack_logical *iright,
lapack_int *nl, float *c, float *s, float *a, lapack_int *lda, float *xleft, float
*xright);
void dlarot (lapack_logical *lrows, lapack_logical *ileft, lapack_logical *iright,
lapack_int *nl, double *c, double *s, double *a, lapack_int *lda, double *xleft, double
*xright);
void clarot (lapack_logical *lrows, lapack_logical *ileft, lapack_logical *iright,
lapack_int *nl, lapack_complex *c, lapack_complex *s, lapack_complex *a, lapack_int
*lda, lapack_complex *xleft, lapack_complex *xright);
void zlarot (lapack_logical *lrows, lapack_logical *ileft, lapack_logical *iright,
lapack_int *nl, lapack_complex_double *C, lapack_complex_double *s,
lapack_complex_double *a, lapack_int *lda, lapack_complex_double *xleft,
lapack_complex_double *xright);

```

Include Files
- mkl.h

\section*{Description}

The routine ?larot applies a Givens rotation to two adjacent rows or columns, where one element of the first or last column or row is stored in some format other than GE so that elements of the matrix may be used or modified for which no array element is provided.
One example is a symmetric matrix in SB format (bandwidth = 4), for which uplo = 'L'. Two adjacent rows will have the format:
```

row j : C > C>C>C>C>
row j + 1 : C>C>C>C>C>....

```
' \(*\) ' indicates elements for which storage is provided.
'. ' indicates elements for which no storage is provided, but are not necessarily zero; their values are determined by symmetry.
' ' indicates elements which are required to be zero, and have no storage provided.
Those columns which have two '*' entries can be handled by srot (for slarot and clarot), or by drot( for dlarot and zlarot).
Those columns which have no '*' entries can be ignored, since as long as the Givens rotations are carefully applied to preserve symmetry, their values are determined.
Those columns which have one ' \(*\) ' have to be handled separately, by using separate variables \(p\) and \(q\) :
```

row j : C > C > C > C > C > p. . . .
row j+1 : q C>C>C>C>C>

```

If element \(p\) is set correctly, ?larot rotates the column and sets \(p\) to its new value. The next call to ?larot rotates columns \(j\) and \(j+1\), and restore symmetry. The element \(q\) is zero at the beginning, and non-zero after the rotation. Later, rotations would presumably be chosen to zero \(q\) out.

Typical Calling Sequences: rotating the \(i\)-th and ( \(i+1\) )-st rows.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{lrows} & If lrows = 1, ? larot rotates two rows. \\
\hline & If Irows \(=0\), ? larot rotates two columns. \\
\hline \multirow[t]{2}{*}{lleft} & If lleft \(=1\), xleft is used instead of the corresponding element of a for the first element in the second row (if lrows \(=0\) ) or column (if lrows=1). \\
\hline & If lleft \(=0\), the corresponding element of \(a\) is used. \\
\hline \multirow[t]{2}{*}{lright} & If lleft \(=1\), xright is used instead of the corresponding element of a for the first element in the second row (if lrows \(=0\) ) or column (if lrows=1). \\
\hline & If lright \(=0\), the corresponding element of a is used. \\
\hline \multirow[t]{3}{*}{\(n 1\)} & The length of the rows (if \(\operatorname{lrows=1)}\) ) or columns (if 1 rows \(=1\) ) to be rotated. \\
\hline & If xleft or xright are used, the columns or rows they are in should be included in \(n l\), e.g., if lleft \(=\) lright \(=1\), then \(n l\) must be at least 2 . \\
\hline & The number of rows or columns to be rotated exclusive of those involving xleft and/or xright may not be negative, i.e., nl minus how many of lleft and lright are 1 must be at least zero; if not, xerbla is called. \\
\hline \multirow[t]{2}{*}{\(c, s\)} & Specify the Givens rotation to be applied. \\
\hline & If \(\operatorname{lrows~}=1\), then the matrix \\
\hline
\end{tabular}
\[
\left[\begin{array}{cc}
c & S \\
-S & c
\end{array}\right]
\]
is applied from the left.
If lrows \(=0\), then the transpose thereof is applied from the right.
The array containing the rows or columns to be rotated. The first element of a should be the upper left element to be rotated.

The "effective" leading dimension of \(a\).
If a contains a matrix stored in GE or SY format, then this is just the leading dimension of \(A\).
If a contains a matrix stored in band (GB or SB) format, then this should be one less than the leading dimension used in the calling routine. Thus, if a in ?larot is of size \(1 d^{*}{ }^{*} n\), then \(a[(j-1) * I d a]\) would be the \(j\)-th element in the first of the two rows to be rotated, and \(a[(j-1) * I d a+\) 1] would be the \(j\)-th in the second, regardless of how the array may be stored in the calling routine. a cannot be dimensioned, because for band format the row number may exceed \(l d a\), which is not legal FORTRAN.
If lrows \(=1\), then lda must be at least 1 , otherwise it must be at least \(n\) I minus the number of 1 values in xleft and xright.
xleft
If lrows \(=1\), xleft is used and modified instead of a[1] (if lrows \(=1\) ) or a[lda +1\(]\) (if lrows \(=0\) ).
```

xright
If lright = 1, xright is used and modified instead of a[(nl - 1)*lda]
(if lrows = 1) or a[nl - 1] (if lrows = 0).

```

\section*{Output Parameters}
\(a\)
On exit, modified array \(A\).

\section*{?lartgp \\ Generates a plane rotation.}

\section*{Syntax}
lapack_int LAPACKE_slartgp (float f, floatg, float* cs, float* sn, float* r);
lapack_int LAPACKE_dlartgp (doublef, doubleg, double* cs, double* sn, double* r);
Include Files
- mkl.h

\section*{Description}

The routine generates a plane rotation so that

where \(c s^{2}+s n^{2}=1\)
This is a slower, more accurate version of the BLAS Level 1 routine ?rotg, except for the following differences:
- \(f\) and \(g\) are unchanged on return.
- If \(g=0\), then \(c s=(+/-) 1\) and \(s n=0\).
- If \(f=0\) and \(g \neq 0\), then \(c s=0\) and \(s n=(+/-) 1\).

The sign is chosen so that \(r \geq 0\).

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
f, \(g\)
The first and second component of the vector to be rotated.

\section*{Output Parameters}

The cosine of the rotation.
sn
The sine of the rotation.

\section*{Return Values}

If info \(=0\), the execution is successful.
If info \(=-1, f\) is NaN .
If info \(=-2, g\) is NaN .

\section*{See Also}
?rotg
?lartgs

\section*{?lartgs}

Generates a plane rotation designed to introduce a bulge in implicit QR iteration for the bidiagonal SVD problem.

\section*{Syntax}
lapack_int LAPACKE_slartgs (floatx, floaty, floatsigma, float* cs, float* sn);
```

lapack_int LAPACKE_dlartgs (doublex, doubley, doublesigma, double* cs, double* sn);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine generates a plane rotation designed to introduce a bulge in Golub-Reinsch-style implicit QR iteration for the bidiagonal SVD problem. \(x\) and \(y\) are the top-row entries, and sigma is the shift. The computed cs and sn define a plane rotation that satisfies the following:

with \(r\) nonnegative.
If \(x^{2}-\) sigma and \(x * y\) are 0 , the rotation is by \(\pi / 2\)

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
\(x, y\)
sigma

\section*{Output Parameters}

CS

The \((1,1)\) and \((1,2)\) entries of an upper bidiagonal matrix, respectively. Shift

The sine of the rotation.

\section*{Return Values}

If info \(=0\), the execution is successful.
If info \(=-1, x\) is NaN.
If info \(=-2, y\) is NaN .
If info \(=-3\), sigma is NaN.

\section*{See Also}
?lartgp

\section*{?lascl}

Multiplies a general rectangular matrix by a real scalar defined as \(c_{\text {to }} / c_{\text {from }}\).

\section*{Syntax}
```

lapack_int LAPACKE_slascl (int matrix_layout, char type, lapack_int kl, lapack_int ku,
float cfrom, float cto, lapack_int m, lapack_int n, float * a, lapack_int lda);
lapack_int LAPACKE_dlascl (int matrix_layout, char type, lapack_int kl, lapack_int ku,
double cfrom, double cto, lapack_int m, lapack_int n, double * a, lapack_int lda);
lapack_int LAPACKE_clascl (int matrix_layout, char type, lapack_int kl, lapack_int ku,
float cfrom, float cto, lapack_int m, lapack_int n, lapack_complex_float * a,
lapack_int lda);
lapack_int LAPACKE_zlascl (int matrix_layout, char type, lapack_int kl, lapack_int ku,
double cfrom, double cto, lapack_int m, lapack_int n, lapack_complex_double * a,
lapack_int lda);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine ? lascl multiplies the \(m\)-by- \(n\) real/complex matrix \(A\) by the real scalar \(c_{\text {to }} / c_{f r o m}\). The operation is performed without over/underflow as long as the final result \(C_{\text {to }}{ }^{\star} A(i, j) / C_{\text {from }}\) does not over/underflow. type specifies that \(A\) may be full, upper triangular, lower triangular, upper Hessenberg, or banded.

\section*{Input Parameters}
```

matrix_layout
type

```

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

This parameter specifies the storage type of the input matrix.
\(=\) ' \(\mathrm{G}^{\prime}: A\) is a full matrix.
\(=\) ' L ' \(: A\) is a lower triangular matrix.
= 'U': \(A\) is an upper triangular matrix.
\(=\) ' \(\mathrm{H}^{\prime}: A\) is an upper Hessenberg matrix.
\(=\) ' \(\mathrm{B}^{\prime}: A\) is a symmetric band matrix with lower bandwidth \(k l\) and upper bandwidth \(k u\) and with the only the lower half stored
\(=\) ' Q ': \(A\) is a symmetric band matrix with lower bandwidth \(k l\) and upper bandwidth \(k u\) and with the only the upper half stored.
\(=' Z ': A\) is a band matrix with lower bandwidth \(k l\) and upper bandwidth \(k u\). See description of the ?gbtrf function for storage details.

The lower bandwidth of \(A\). Referenced only if type \(=\) ' \(B^{\prime}\), ' \(Q^{\prime}\) or ' \(Z\) '.
The upper bandwidth of \(A\). Referenced only if type \(=\) ' \(\mathrm{B}^{\prime}\), 'Q' or ' Z '.
The matrix \(A\) is multiplied by cto/cfrom. \(A(i, j)\) is computed without over/ underflow if the final result \(c t o^{\star} A(i, j) / c f r o m\) can be represented without over/underflow. cfrom must be nonzero.

The number of rows of the matrix \(A . m \geq 0\).
The number of columns of the matrix \(A . n \geq 0\).
Array, size (/da*n). The matrix to be multiplied by cto/cfrom. See type for the storage type.

The leading dimension of the array \(a\).
\(l d a \geq \max (1, m)\).

\section*{Output Parameters}
a
info

The multiplied matrix \(A\).
If info = 0-successful exit
If info \(=-i<0\), the \(i\)-th argument had an illegal value.

\section*{See Also}
?gbtrf
?lasd0
Computes the singular values of a real upper bidiagonal n-by-m matrix \(B\) with diagonal \(d\) and offdiagonal e. Used by ?bdsdc.

\section*{Syntax}
```

void slasd0(lapack_int *n, lapack_int *sqre, float *d, float *e, float *u, lapack_int
*ldu, float *vt, lapack_int *ldvt, lapack_int *smlsiz, lapack_int *iwork, float *work,
lapack_int *info);
void dlasd0(lapack_int *n, lapack_int *sqre, double *d, double *e, double *u,
lapack_int *ldu, double *vt, lapack_int *ldvt, lapack_int *smlsiz, lapack_int *iwork,
double *work, lapack_int *info);

```

Include Files
- mkl.h

Description

Using a divide and conquer approach, the routine ?lasd0 computes the singular value decomposition (SVD) of a real upper bidiagonal \(n\)-by- \(m\) matrix \(B\) with diagonal \(d\) and offdiagonal \(e\), where \(m=n+\) sqre.
The algorithm computes orthogonal matrices \(U\) and \(V T\) such that \(B=U^{\star} S^{\star} V T\). The singular values \(S\) are overwritten on \(d\).
The related subroutine ?lasda computes only the singular values, and optionally, the singular vectors in compact form.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & On entry, the row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array \(d\). \\
\hline sqre & Specifies the column dimension of the bidiagonal matrix. \\
\hline & If sqre \(=0\) : the bidiagonal matrix has column dimension \(m=n\). \\
\hline & If sqre \(=1\) : the bidiagonal matrix has column dimension \(m=n+1\). \\
\hline d & Array, DIMENSION ( \(n\) ). On entry, \(d\) contains the main diagonal of the bidiagonal matrix. \\
\hline \(e\) & Array, DIMENSION ( \(m-1\) ). Contains the subdiagonal entries of the bidiagonal matrix. On exit, \(e\) is destroyed. \\
\hline \(1 d u\) & On entry, leading dimension of the output array \(u\). \\
\hline Idvt & On entry, leading dimension of the output array vt. \\
\hline smlsiz & On entry, maximum size of the subproblems at the bottom of the computation tree. \\
\hline iwork & Workspace array, dimension must be at least (8n) . \\
\hline work & Workspace array, dimension must be at least ( \(3 m^{2}+2 m\) ) \\
\hline
\end{tabular}

\section*{Output Parameters}
\(d\)
\(u\)
\(v t\)
info
On exit \(d\), If info \(=0\), contains singular values of the bidiagonal matrix.
Array, DIMENSION at least ( \(/ d q, n\) ). On exit, \(u\) contains the left singular vectors.

Array, DIMENSION at least ( \(/ d v t, m\) ). On exit, \(v t^{T}\) contains the right singular vectors.

If info \(=0\) : successful exit.
If info \(=-i<0\), the \(i\)-th argument had an illegal value.
If info \(=1\), a singular value did not converge.
?lasd1
Computes the SVD of an upper bidiagonal matrix B of the specified size. Used by ?bdsdc.
```

Syntax
void slasdl(lapack_int *nl, lapack_int *nr, lapack_int *sqre, float *d, float *alpha,
float *beta, float *u, lapack_int *ldu, float *vt, lapack_int *ldvt, lapack_int *idxq,
lapack_int *iwork, float *work, lapack_int *info);
void dlasdl(lapack_int *nl, lapack_int *nr, lapack_int *sqre, double *d, double *alpha,
double *beta, double *u, lapack_int *ldu, double *vt, lapack_int *ldvt, lapack_int
*idxq, lapack_int *iwork, double *Work, lapack_int *info);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes the SVD of an upper bidiagonal \(n\)-by-m matrix \(B\), where \(n=n l+n r+1\) and \(m=n\) + sqre.

The routine ?lasd1 is called from ?lasd0.
A related subroutine ?lasd7 handles the case in which the singular values (and the singular vectors in factored form) are desired.
?lasd1 computes the SVD as follows:

\(=U(\) out \() *(D\) (out) 0\() * V T\) (out)
where \(z^{T}=\left(Z 1^{T} a Z 2^{T} b\right)=u^{T} \star V T^{T}\), and \(u\) is a vector of dimension \(m\) with alpha and beta in the \(n /+1\) and nl +2 -th entries and zeros elsewhere; and the entry \(b\) is empty if sqre \(=0\).

The left singular vectors of the original matrix are stored in \(u\), and the transpose of the right singular vectors are stored in \(v t\), and the singular values are in \(d\). The algorithm consists of three stages:
1. The first stage consists of deflating the size of the problem when there are multiple singular values or when there are zeros in the \(Z\) vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine ? lasd2.
2. The second stage consists of calculating the updated singular values. This is done by finding the square roots of the roots of the secular equation via the routine ?lasd4 (as called by ? lasd3). This routine also calculates the singular vectors of the current problem.
3. The final stage consists of computing the updated singular vectors directly using the updated singular values. The singular vectors for the current problem are multiplied with the singular vectors from the overall problem.

\section*{Input Parameters}


\section*{Output Parameters}
\(d\)
alpha
beta
u
\(v t\)
idxq
info

On exit \(d(1: n)\) contains the singular values of the modified matrix.
On exit, the diagonal element associated with the added row deflated by max ( abs( alpha ), abs(beta), abs( D(I) ) ), I = 1, n.

On exit, the off-diagonal element associated with the added row deflated by max( abs( alpha ), abs( beta ), abs( D(I) ) ), I = 1,n.

On exit \(u\) contains the left singular vectors of the bidiagonal matrix.
On exit \(v t^{T}\) contains the right singular vectors of the bidiagonal matrix.
Array, DIMENSION \((n)\). Contains the permutation which will reintegrate the subproblem just solved back into sorted order, that is, \(d\) (idxq( \(i=1\), \(n\) )) will be in ascending order.

If info \(=0\) : successful exit.
If info \(=-i<0\), the \(i\)-th argument had an illegal value.
\[
\text { If } \text { info }=1 \text {, a singular value did not converge. }
\]

\section*{?lasd2 \\ Merges the two sets of singular values together into a single sorted set. Used by ?bdsdc.}

\section*{Syntax}
```

void slasd2(lapack_int *nl, lapack_int *nr, lapack_int *sqre, lapack_int *k, float *d,
float *z, float *alpha, float *beta, float *u, lapack_int *ldu, float *vt, lapack_int
*ldvt, float *dsigma, float *u2, lapack_int *ldu2, float *vt2, lapack_int *ldvt2,
lapack_int *idxp, lapack_int *idx, lapack_int *idxq, lapack_int *coltyp, lapack_int
*infO);
void dlasd2(lapack_int *nl, lapack_int *nr, lapack_int *sqre, lapack_int *k, double *d,
double *z, double *alpha, double *beta, double *u, lapack_int *ldu, double *vt,
lapack_int *ldvt, double *dsigma, double *u2, lapack_int *ldu2, double *vt2, lapack_int
*ldvt2, lapack_int *idxp, lapack_int *idx, lapack_int *idxq, lapack_int *coltyp,
lapack_int *info);

```

Include Files
- mkl.h

\section*{Description}

The routine ? lasd2 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more singular values are close together or if there is a tiny entry in the \(Z\) vector. For each such occurrence the order of the related secular equation problem is reduced by one.

The routine ?lasd2 is called from ?lasd1.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{\(n 1\)} & The row dimension of the upper block. \\
\hline & \(n \geq 1 \geq\). \\
\hline \(n \mathrm{r}\) & The row dimension of the lower block. \\
\hline & \(n r \geq 1\). \\
\hline \multirow[t]{2}{*}{sqre} & If sqre \(=0\) ): the lower block is an \(n r\)-by-nr square matrix \\
\hline & If sqre \(=1\) ): the lower block is an \(n r\)-by- \((n r+1)\) rectangular matrix. The bidiagonal matrix has \(n=n l+n r+1\) rows and \(m=n+s q r e \geq n\) columns. \\
\hline d & Array, DIMENSION ( \(n\) ). On entry \(d\) contains the singular values of the two submatrices to be combined. \\
\hline alpha & Contains the diagonal element associated with the added row. \\
\hline beta & Contains the off-diagonal element associated with the added row. \\
\hline
\end{tabular}
u
Idu
Idu2
vt
Idvt
Idvt2
idxp
idx
coltyp
\(i d x q\)

Array, DIMENSION ( \(/ d u, n\) ). On entry \(u\) contains the left singular vectors of two submatrices in the two square blocks with corners at \((1,1),(n l, n l)\), and \((n /+2, n /+2),(n, n)\).

The leading dimension of the array \(u\).
\(I d u \geq n\).
The leading dimension of the output array u2. Idu \(2 \geq\) n.
Array, DIMENSION ( \(/ d v t, m\) ). On entry, \(v t^{T}\) contains the right singular vectors of two submatrices in the two square blocks with corners at \((1,1)\), \((n /+1, n /+1)\), and \((n /+2, n /+2),(m, m)\).

The leading dimension of the array \(v t\). \(I d v t \geq m\).
The leading dimension of the output array \(v t 2\). Idvt \(2 \geq m\).
Workspace array, DIMENSION ( \(n\) ). This will contain the permutation used to place deflated values of \(D\) at the end of the array. On output \(i d x p(2: k)\) points to the nondeflated \(d\)-values and \(\operatorname{idxp}(k+1: n)\) points to the deflated singular values.

Workspace array, DIMENSION ( \(n\) ). This will contain the permutation used to sort the contents of \(d\) into ascending order.

Workspace array, DIMENSION ( \(n\) ). As workspace, this array contains a label that indicates which of the following types a column in the \(u 2\) matrix or a row in the vt2 matrix is:

1 : non-zero in the upper half only
2 : non-zero in the lower half only
3 : dense
4 : deflated.
Array, DIMENSION ( \(n\) ). This parameter contains the permutation that separately sorts the two sub-problems in \(D\) in the ascending order. Note that entries in the first half of this permutation must first be moved one position backwards and entries in the second half must have nl+1 added to their values.

\section*{Output Parameters}
k
\(d\)
u
z
dsigma

Contains the dimension of the non-deflated matrix, This is the order of the related secular equation. \(1 \leq k \leq n\).

On exit \(D\) contains the trailing ( \(n-k\) ) updated singular values (those which were deflated) sorted into increasing order.

On exit \(u\) contains the trailing ( \(n-k\) ) updated left singular vectors (those which were deflated) in its last \(n-k\) columns.

Array, DIMENSION ( \(n\) ). On exit, \(z\) contains the updating row vector in the secular equation.

Array, DIMENSION ( \(n\) ). Contains a copy of the diagonal elements ( \(k-1\) singular values and one zero) in the secular equation.
info

Array, DIMENSION (ldu2, n). Contains a copy of the first \(k-1\) left singular vectors which will be used by ?lasd3 in a matrix multiply (?gemm) to solve for the new left singular vectors. \(u 2\) is arranged into four blocks. The first block contains a column with 1 at \(n l+1\) and zero everywhere else; the second block contains non-zero entries only at and above \(n /\); the third contains non-zero entries only below \(n l+1\); and the fourth is dense.

On exit, \(v t^{T}\) contains the trailing ( \(n-k\) ) updated right singular vectors (those which were deflated) in its last \(n-k\) columns. In case sqre \(=1\), the last row of \(v t\) spans the right null space.

Array, DIMENSION (Idvt2, n). vt2 \({ }^{T}\) contains a copy of the first \(k\) right singular vectors which will be used by ?lasd3 in a matrix multiply (?gemm) to solve for the new right singular vectors. vt2 is arranged into three blocks. The first block contains a row that corresponds to the special 0 diagonal element in sigma; the second block contains non-zeros only at and before \(n l+1\); the third block contains non-zeros only at and after \(n l+2\).

Array, DIMENSION ( \(n\) ). This will contain the permutation used to arrange the columns of the deflated \(u\) matrix into three groups: the first group contains non-zero entries only at and above \(n l\), the second contains non-zero entries only below \(n l+2\), and the third is dense.

On exit, it is an array of dimension 4, with coltyp(i) being the dimension of the \(i\)-th type columns.

If info \(=0\) ): successful exit
If info \(=-i<0\), the \(i\)-th argument had an illegal value.
```

?lasd3
Finds all square roots of the roots of the secular
equation, as defined by the values in D and Z, and
then updates the singular vectors by matrix
multiplication. Used by ?bdsdc.
Syntax
void slasd3(lapack_int *nl, lapack_int *nr, lapack_int *sqre, lapack_int *k, float *d,
float *q, lapack_int *ldq, float *dsigma, float *u, lapack_int *ldu, float *u2,
lapack_int *ldu2, float *vt, lapack_int *ldvt, float *vt2, lapack_int *ldvt2,
lapack_int *idxc, lapack_int *ctot, float *z, lapack_int *info);
void dlasd3(lapack_int *nl, lapack_int *nr, lapack_int *sqre, lapack_int *k, double *d,
double *q, lapack_int *ldq, double *dsigma, double *u, lapack_int *ldu, double *u2,
lapack_int *ldu2, double *vt, lapack_int *ldvt, double *vt2, lapack_int *ldvt2,
lapack_int *idxc, lapack_int *ctot, double *z, lapack_int *info);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine ?lasd3 finds all the square roots of the roots of the secular equation, as defined by the values in \(D\) and \(Z\).

It makes the appropriate calls to ?1asd4 and then updates the singular vectors by matrix multiplication. The routine ?lasd3 is called from ?lasd1.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{n1} & The row dimension of the upper block. \\
\hline & \(n \geq \geq 1\). \\
\hline \(n r\) & The row dimension of the lower block. \\
\hline & \(n \mathrm{n} \geq 1\). \\
\hline \multirow[t]{2}{*}{sqre} & If sqre \(=0\) ): the lower block is an \(n r\)-by-nr square matrix. \\
\hline & If sqre \(=1\) ): the lower block is an \(n r\)-by- \((n r+1)\) rectangular matrix. The bidiagonal matrix has \(n=n l+n r+1\) rows and \(m=n+\) sqre \(\geq n\) columns. \\
\hline k & The size of the secular equation, \(1 \leq k \leq n\). \\
\hline q & Workspace array, DIMENSION at least ( \(/ d q, k\) ). \\
\hline \multirow[t]{2}{*}{\(1 d q\)} & The leading dimension of the array \(Q\). \\
\hline & \(1 d q \geq k\). \\
\hline
\end{tabular}

Array, DIMENSION ( \(k\) ). The first \(k\) elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation.

The leading dimension of the array \(u\).
\(l d u \geq n\).
Array, dimension (ldu2, n).
The first \(k\) columns of this matrix contain the non-deflated left singular vectors for the split problem.

The leading dimension of the array \(u 2\).
```

ldu2\geqn.

```

The leading dimension of the array \(v t\).
```

ldvt $\geq n$.

```

Array, DIMENSION (ldvt2, \(n\) ).
The first \(k\) columns of \(v t 2\) ' contain the non-deflated right singular vectors for the split problem.

The leading dimension of the array \(v t 2\).
```

ldvt 2\geqn.

```

Array, DIMENSION ( \(n\) ).
The permutation used to arrange the columns of \(u\) (and rows of \(v t\) ) into three groups: the first group contains non-zero entries only at and above (or before) \(n l+1\); the second contains non-zero entries only at and below (or after) \(n 1+2\); and the third is dense. The first column of \(u\) and the row of
\(v t\) are treated separately, however. The rows of the singular vectors found by ?lasd 4 must be likewise permuted before the matrix multiplies can take place.

Array, DIMENSION (4). A count of the total number of the various types of columns in \(u\) (or rows in \(v t\) ), as described in idxc.
The fourth column type is any column which has been deflated.
Array, DIMENSION \((k)\). The first \(k\) elements of this array contain the components of the deflation-adjusted updating row vector.

\section*{Output Parameters}
d
Array, DIMENSION ( \(k\) ). On exit the square roots of the roots of the secular equation, in ascending order.

Array, DIMENSION (Idu, n).
The last \(n-k\) columns of this matrix contain the deflated left singular vectors.

Array, DIMENSION ( \(/ d v t, m\) ).
The last \(m-k\) columns of \(v t^{\prime}\) contain the deflated right singular vectors.
Destroyed on exit.
Destroyed on exit.
If info \(=0\) ): successful exit.
If info \(=-i<0\), the \(i\)-th argument had an illegal value.
If info \(=1\), an singular value did not converge.

\section*{Application Notes}

This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

\section*{?lasd4 \\ Computes the square root of the \(i\)-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used \\ by ?bdsdc.}

\section*{Syntax}
```

void slasd4(lapack_int *n, lapack_int *i, float *d, float *z, float *delta, float *rho,
float *sigma, float *work, lapack_int *info);
void dlasd4(lapack_int *n, lapack_int *i, double *d, double *z, double *delta, double
*rho, double *sigma, double *work, lapack_int *info);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes the square root of the \(i\)-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix whose entries are given as the squares of the corresponding entries in the array \(d\), and that \(0 \leq d(i)<d(j)\) for \(i<j\) and that rho \(>0\). This is arranged by the calling routine, and is no loss in generality. The rank-one modified system is thus
```

diag(d)*diag(d) + rho* Z* Z 'T

```
where the Euclidean norm of \(Z\) is equal to 1 . The method consists of approximating the rational functions in the secular equation by simpler interpolating rational functions.

\section*{Input Parameters}
```

n The length of all arrays.
i The index of the eigenvalue to be computed. 1 \leqi\leqn.
d Array, DIMENSION (n).
The original eigenvalues. They must be in order, 0 \leqd(i) < d(j) for i<
j.
Array, DIMENSION (n).
The components of the updating vector.
The scalar in the symmetric updating formula.
Workspace array, DIMENSION (n).
If n\not= 1, work contains (d(j) + sigma_i) in its j-th component.
If n = 1, then work(1) = 1.

```

\section*{Output Parameters}
```

delta

```
sigma
info \(\quad=0\) : successful exit
    > 0: If info \(=1\), the updating process failed.
```

?lasd5
Computes the square root of the i-th eigenvalue of a
positive symmetric rank-one modification of a 2-by-2
diagonal matrix.Used by ?bdsdc.

```

\section*{Syntax}
```

void slasd5(lapack_int *i, float *d, float *z, float *delta, float *rho, float *dsigma,

```
void slasd5( lapack_int *i, float *d, float *z, float *delta, float *rho, float *dsigma,
float *work );
```

float *work);

```
```

void dlasd5(lapack_int *i, double *d, double *z, double *delta, double *rho, double
*dsigma, double *work);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine computes the square root of the \(i\)-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix diag \((d) * \operatorname{diag}(d)+r h o * Z^{\star} Z^{T}\)
The diagonal entries in the array \(d\) must satisfy \(0 \leq d(i)<d(j)\) for \(i<i\), rho mustbe greater than 0 , and that the Euclidean norm of the vector \(Z\) is equal to 1 .

\section*{Input Parameters}
```

i The index of the eigenvalue to be computed. i=1 or i = 2.
d Array, dimension (2).
The original eigenvalues, 0\leqd(1)<d(2).
Array, dimension (2).
The components of the updating vector.
The scalar in the symmetric updating formula.
Workspace array, dimension(2). Contains (d(j) + sigma_i) in its j-th
component.

```

\section*{Output Parameters}
delta
Array, dimension (2).
Contains \(\left(d(j)-s i g m a \_i\right)\) in its \(j\)-th component. The vector delta contains the information necessary to construct the eigenvectors.

The computed sigma_i, the \(i\)-th updated eigenvalue.

\section*{?lasd6}

Computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller ones by appending a row. Used by ?bdsdc.

\section*{Syntax}
```

void slasd6(lapack_int *icompq, lapack_int *nl, lapack_int *nr, lapack_int *sqre,
float *d, float *Vf, float *Vl, float *alpha, float *beta, lapack_int *idxq, lapack_int
*perm, lapack_int *givptr, lapack_int *givcol, lapack_int *ldgcol, float *givnum,
lapack_int *ldgnum, float *poles, float *difl, float *difr, float *z, lapack_int *k,
float *c, float *s, float *work, lapack_int *iwork, lapack_int *info);
void dlasd6(lapack_int *icompq, lapack_int *nl, lapack_int *nr, lapack_int *sqre,
double *d, double *vf, double *vl, double *alpha, double *beta, lapack_int *idxq,
lapack_int *perm, lapack_int *givptr, lapack_int *givcol, lapack_int *ldgcol, double

```
```

*givnum, lapack_int *ldgnum, double *poles, double *difl, double *difr, double *z,
lapack_int *k, double *c, double *s, double *work, lapack_int *iwork, lapack_int
*info);

```

Include Files
- mkl.h

\section*{Description}

The routine ?lasd6 computes the SVD of an updated upper bidiagonal matrix \(B\) obtained by merging two smaller ones by appending a row. This routine is used only for the problem which requires all singular values and optionally singular vector matrices in factored form. \(B\) is an \(n\)-by- \(m\) matrix with \(n=n l+n r+1\) and \(m\) \(=n+\) sqre. A related subroutine, ?lasd1, handles the case in which all singular values and singular vectors of the bidiagonal matrix are desired. ?lasd6 computes the SVD as follows:
\[
B=U\left(i_{n 2}\right)^{*}\left[\begin{array}{cccc}
D 1\left(i_{n n}\right) & 0 & 0 & 0 \\
z 1^{\prime} & a & z 2^{\prime} & b \\
0 & 0 & D 2\left(i_{n 2}\right) & 0
\end{array}\right] * \operatorname{VT}\left(i_{n n}\right)
\]
\(=U(\) out \() *\left(D\right.\) (out) \({ }^{*} V T\) (out)
where \(Z^{\prime}=\left(Z 1^{\prime} a Z 2^{\prime} \quad b\right)=u^{\prime} * V T^{\prime}\), and \(u\) is a vector of dimension \(m\) with alpha and beta in the \(n /+1\) and \(n l+2\)-th entries and zeros elsewhere; and the entry b is empty if sqre \(=0\).

The singular values of \(B\) can be computed using \(D 1, D 2\), the first components of all the right singular vectors of the lower block, and the last components of all the right singular vectors of the upper block. These components are stored and updated in \(v f\) and \(v l\), respectively, in ?lasd6. Hence \(U\) and \(V T\) are not explicitly referenced.
The singular values are stored in \(D\). The algorithm consists of two stages:
1. The first stage consists of deflating the size of the problem when there are multiple singular values or if there is a zero in the \(Z\) vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine ?lasd7.
2. The second stage consists of calculating the updated singular values. This is done by finding the roots of the secular equation via the routine ?lasd4 (as called by ?lasd8). This routine also updates \(v f\) and \(v /\) and computes the distances between the updated singular values and the old singular values. ?lasd6 is called from ?lasda.

\section*{Input Parameters}
icompq
\(n 1\)
\(n r\)

Specifies whether singular vectors are to be computed in factored form:
\(=0\) : Compute singular values only
\(=1\) : Compute singular vectors in factored form as well.
The row dimension of the upper block.
\(n l \geq 1\).
The row dimension of the lower block.
\(n r \geq 1\).
sqre
d
vf
vI
alpha
beta
ldgcol
ldgnum
work
iwork

\section*{Output Parameters}
\(d\)
\(v f\)
vl
alpha
beta
\(i d x q\)
perm
\(=0\) : the lower block is an \(n r\)-by- \(n r\) square matrix.
\(=1\) : the lower block is an \(n r\)-by- \((n r+1)\) rectangular matrix.
The bidiagonal matrix has row dimension \(n=n l+n r+1\), and column dimension \(m=n+\) sqre.

Array, dimension ( \(n /+n r+1\) ). On entry \(d(1: n /, 1: n /)\) contains the singular values of the upper block, and \(d(n /+2: n)\) contains the singular values of the lower block.

Array, dimension ( \(m\) ).
On entry, \(v f(1: n /+1)\) contains the first components of all right singular vectors of the upper block; and \(v f(n /+2: m)\)
contains the first components of all right singular vectors of the lower block.
Array, dimension ( \(m\) ).
On entry, \(v /(1: n /+1)\) contains the last components of all right singular vectors of the upper block; and \(v /(n /+2: m)\) contains the last components of all right singular vectors of the lower block.

Contains the diagonal element associated with the added row.
Contains the off-diagonal element associated with the added row.
The leading dimension of the output array givcol, must be at least \(n\).
The leading dimension of the output arrays givnum and poles, must be at least \(n\).

Workspace array, dimension ( \(4 m\) ).
Workspace array, dimension ( \(3 n\) ).

On exit \(d(1: n)\) contains the singular values of the modified matrix.
On exit, vf contains the first components of all right singular vectors of the bidiagonal matrix.

On exit, v/ contains the last components of all right singular vectors of the bidiagonal matrix.

On exit, the diagonal element associated with the added row deflated by max(abs(alpha), abs(beta), abs(D(I))), I = 1,n.

On exit, the off-diagonal element associated with the added row deflated by max (abs(alpha), abs(beta), abs(D(I))), I =1,n.

Array, dimension ( \(n\) ). This contains the permutation which will reintegrate the subproblem just solved back into sorted order, that is, \(d\) ( idxq( i = \(1, n\) ) , will be in ascending order.

Array, dimension ( \(n\) ). The permutations (from deflation and sorting) to be applied to each block. Not referenced if \(i c o m p q=0\).
\begin{tabular}{|c|c|}
\hline givptr & The number of Givens rotations which took place in this subproblem. Not referenced if \(i c o m p q=0\). \\
\hline givcol & Array, dimension (Idgcol, 2 ). Each pair of numbers indicates a pair of columns to take place in a Givens rotation. Not referenced if icompq \(=0\). \\
\hline givnum & Array, dimension (Idgnum, 2 ). Each number indicates the \(C\) or \(S\) value to be used in the corresponding Givens rotation. Not referenced if icompq = 0 . \\
\hline poles & Array, dimension (Idgnum, 2 ). On exit, poles( \(1, *\) ) is an array containing the new singular values obtained from solving the secular equation, and poles( \(2, *\) ) is an array containing the poles in the secular equation. Not referenced if icompq \(=0\). \\
\hline difl & Array, dimension ( \(n\) ). On exit, difl( \(i\) ) is the distance between \(i\)-th updated (undeflated) singular value and the \(i\)-th (undeflated) old singular value. \\
\hline difr & Array, dimension (Idgnum, 2 ) if icompq \(=1\) and dimension ( \(n\) ) if icompq \(=0\). \\
\hline & On exit, \(\operatorname{difr}(i, 1)\) is the distance between \(i\)-th updated (undeflated) singular value and the \(i+1\)-th (undeflated) old singular value. If \(i\) compq \(=1\), \(\operatorname{difr}(1: k, 2)\) is an array containing the normalizing factors for the right singular vector matrix. \\
\hline & See ?lasd8 for details on difl and difr. \\
\hline \(z\) & Array, dimension ( \(m\) ) . \\
\hline & The first elements of this array contain the components of the deflationadjusted updating row vector. \\
\hline k & Contains the dimension of the non-deflated matrix. This is the order of the related secular equation. \(1 \leq k \leq n\). \\
\hline c & c contains garbage if sqre \(=0\) and the \(C\)-value of a Givens rotation related to the right null space if sqre \(=1\). \\
\hline \(s\) & \(s\) contains garbage if sqre \(=0\) and the \(S\)-value of a Givens rotation related to the right null space if sqre \(=1\). \\
\hline \multirow[t]{3}{*}{info} & = 0: successful exit. \\
\hline & < 0 : if info \(=-i\), the \(i\)-th argument had an illegal value. \\
\hline & \(>0\) : if info = 1 , an singular value did not converge \\
\hline
\end{tabular}

\section*{?lasd7}

Merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. Used by ?bdsdc.
```

Syntax
void slasd7(lapack_int *icompq, lapack_int *nl, lapack_int *nr, lapack_int *sqre,
lapack_int *k, float *d, float *z, float *zw, float *Vf, float *vfw, float *vl, float
*Vlw, float *alpha, float *beta, float *dsigma, lapack_int *idx, lapack_int *idxp,
lapack_int *idxq, lapack_int *perm, lapack_int *givptr, lapack_int *givcol, lapack_int
*ldgcol, float *givnum, lapack_int *ldgnum, float *c, float *s, lapack_int *info);
void dlasd7(lapack_int *icompq, lapack_int *nl, lapack_int *nr, lapack_int *sqre,
lapack_int *k, double *d, double *z, double *zw, double *Vf, double *Vfw, double *Vl,
double *Vlw, double *alpha, double *beta, double *dsigma, lapack_int *idx, lapack_int
*idxp, lapack_int *idxq, lapack_int *perm, lapack_int *givptr, lapack_int *givcol,
lapack_int *ldgcol, double *givnum, lapack_int *ldgnum, double *c, double *s,
lapack_int *info);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine ? lasd7 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more singular values are close together or if there is a tiny entry in the \(Z\) vector. For each such occurrence the order of the related secular equation problem is reduced by one. ?lasd7 is called from ?lasd6.

\section*{Input Parameters}
icompq
nl
d
\(Z W\)
vf

Specifies whether singular vectors are to be computed in compact form, as follows:
\(=0\) : Compute singular values only.
\(=1\) : Compute singular vectors of upper bidiagonal matrix in compact form.
The row dimension of the upper block.
\(n l \geq 1\).
The row dimension of the lower block.
\(n r \geq 1\).
\(=0\) : the lower block is an \(n r\)-by- \(n r\) square matrix.
\(=1\) : the lower block is an \(n r\)-by- \((n r+1)\) rectangular matrix. The bidiagonal matrix has \(n=n l+n r+1\) rows and \(m=n+s q r e \geq n\) columns.

Array, DIMENSION ( \(n\) ). On entry \(d\) contains the singular values of the two submatrices to be combined.

Array, DIMENSION ( \(m\) ).
Workspace for \(z\).
Array, DIMENSION ( \(m\) ). On entry, \(v f(1: n l+1)\) contains the first components of all right singular vectors of the upper block; and \(v f(n I\) \(+2: m)\) contains the first components of all right singular vectors of the lower block.
```

vfw Array, DIMENSION (m).
On entry, vl(1:nl+1) contains the last components of all right singular
vectors of the upper block; and vl(nl+2:m) contains the last components
of all right singular vectors of the lower block.
Array, DIMENSION (m).
Workspace for VL.
REAL for slasd7
DOUBLE PRECISION for dlasd7.
Contains the diagonal element associated with the added row.
Contains the off-diagonal element associated with the added row.
Workspace array, DIMENSION (n). This will contain the permutation used to
sort the contents of d into ascending order.
Workspace array, DIMENSION (n). This will contain the permutation used to
place deflated values of d at the end of the array.
Array, DIMENSION (n).
This contains the permutation which separately sorts the two sub-problems in d into ascending order. Note that entries in the first half of this permutation must first be moved one position backward; and entries in the second half must first have $n l+1$ added to their values.
The leading dimension of the output array givcol, must be at least n. The leading dimension of the output array givnum, must be at least n.

```

\section*{Output Parameters}
k
\(d\)
z
\(v f\)
vl
dsigma

Contains the dimension of the non-deflated matrix, this is the order of the related secular equation.
\(1 \leq k \leq n\).
On exit, \(d\) contains the trailing ( \(n-k\) ) updated singular values (those which were deflated) sorted into increasing order.

Array, DIMENSION (m).
On exit, \(Z\) contains the updating row vector in the secular equation.
On exit, vf contains the first components of all right singular vectors of the bidiagonal matrix.

On exit, v/ contains the last components of all right singular vectors of the bidiagonal matrix.

Array, DIMENSION ( \(n\) ). Contains a copy of the diagonal elements ( \(k-1\) singular values and one zero) in the secular equation.
\begin{tabular}{|c|c|}
\hline \(i d x p\) & On output, \(i d x p(2: k)\) points to the nondeflated \(d\)-values and \(i d x p(k+1: n)\) points to the deflated singular values. \\
\hline \multirow[t]{2}{*}{perm} & Array, DIMENSION ( \(n\) ). \\
\hline & The permutations (from deflation and sorting) to be applied to each singular block. Not referenced if icompq \(=0\). \\
\hline givptr & The number of Givens rotations which took place in this subproblem. Not referenced if icompq \(=0\). \\
\hline givcol & Array, DIMENSION ( Idgcol, 2 ). Each pair of numbers indicates a pair of columns to take place in a Givens rotation. Not referenced if icompq \(=0\). \\
\hline givnum & Array, DIMENSION (Idgnum, 2 ). Each number indicates the \(C\) or \(S\) value to be used in the corresponding Givens rotation. Not referenced if icompq = 0. \\
\hline c & If sqre \(=0\), then \(c\) contains garbage, and if sqre \(=1\), then \(c\) contains \(C\) value of a Givens rotation related to the right null space. \\
\hline S & If sqre \(=0\), then \(s\) contains garbage, and if sqre \(=1\), then \(s\) contains \(S\) value of a Givens rotation related to the right null space. \\
\hline \multirow[t]{2}{*}{info} & \(=0\) : successful exit. \\
\hline & < 0 : if info \(=-i\), the \(i\)-th argument had an illegal value. \\
\hline
\end{tabular}

\section*{?lasd8}

Finds the square roots of the roots of the secular equation, and stores, for each element in \(D\), the distance to its two nearest poles. Used by ?bdsdc.

\section*{Syntax}
```

void slasd8(lapack_int *icompq, lapack_int *k, float *d, float *z, float *vf, float
*vl, float *difl, float *difr, lapack_int *lddifr, float *dsigma, float *work,
lapack_int *info);
void dlasd8(lapack_int *icompq, lapack_int *k, double *d, double *z, double *vf, double
*vl, double *difl, double *difr, lapack_int *lddifr, double *dsigma, double *work,
lapack_int *info);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine ?lasd8 finds the square roots of the roots of the secular equation, as defined by the values in dsigma and \(z\). It makes the appropriate calls to ?lasd4, and stores, for each element in \(d\), the distance to its two nearest poles (elements in dsigma). It also updates the arrays \(v f\) and \(v l\), the first and last components of all the right singular vectors of the original bidiagonal matrix. ?lasd8 is called from ?lasd6.

\section*{Input Parameters}
\begin{tabular}{ll} 
icompq & \begin{tabular}{l} 
Specifies whether singular vectors are to be computed in factored form in \\
the calling routine: \\
\\
\(=0:\) Compute singular values only. \\
\\
\(=1:\) Compute singular vectors in factored form as well.
\end{tabular} \\
\(k\) & The number of terms in the rational function to be solved by ?lasd4. \(k \geq 1\). \\
Array, DIMENSION \((k)\).
\end{tabular}

\section*{Output Parameters}
\(d\)
z
\(v f\)
vI
difl
difr
dsigma
info

Array, DIMENSION ( \(k\) ).
On output, \(D\) contains the updated singular values.
Updated on exit.
On exit, vf contains the first \(k\) components of the first components of all right singular vectors of the bidiagonal matrix.

On exit, \(v /\) contains the first \(k\) components of the last components of all right singular vectors of the bidiagonal matrix.

Array, DIMENSION ( \(k\) ). On exit, difl(i) \(=d(i)\) - dsigma(i).
Array,
DIMENSION ( /ddifr, 2 ) if icompq = 1 and
DIMENSION \((k)\) if \(i c o m p q=0\).
On exit, difr(i,1) = \(d(i)-d s i g m a(i+1), \operatorname{difr}(k, 1)\) is not defined and will not be referenced. If icompq \(=1\), \(\operatorname{difr}(1: k, 2)\) is an array containing the normalizing factors for the right singular vector matrix.

The elements of this array may be very slightly altered in value.
\(=0\) : successful exit.
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value.
\[
>0 \text { : If info }=1 \text {, an singular value did not converge. }
\]

\section*{?lasd9}

Finds the square roots of the roots of the secular equation, and stores, for each element in \(D\), the distance to its two nearest poles. Used by ?bdsdc.

\section*{Syntax}
```

void slasd9(lapack_int *icompq, lapack_int *k, float *d, float *z, float *vf, float
*vl, float *difl, float *difr, float *dsigma, float *work, lapack_int *info);
void dlasd9(lapack_int *icompq, lapack_int *k, double *d, double *z, double *vf, double
*Vl, double *difl, double *difr, double *dsigma, double *work, lapack_int *info);

```

Include Files
- mkl.h

\section*{Description}

The routine ?lasd9 finds the square roots of the roots of the secular equation, as defined by the values in \(d\) sigma and \(z\). It makes the appropriate calls to ? lasd4, and stores, for each element in \(d\), the distance to its two nearest poles (elements in dsigma). It also updates the arrays \(v f\) and \(v l\), the first and last components of all the right singular vectors of the original bidiagonal matrix. ? lasd9 is called from ?lasd7.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline icompq & Specifies whether singular vectors are to be computed in factored form in the calling routine: \\
\hline & If \(i\) compq \(=0\), compute singular values only; \\
\hline & If icompq = 1, compute singular vector matrices in factored form also. \\
\hline k & The number of terms in the rational function to be solved by slasd4. \(k \geq 1\). \\
\hline dsigma & Array, DIMENSION( \(k\) ). \\
\hline & The first \(k\) elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation. \\
\hline \(z\) & Array, DIMENSION \((k)\). The first \(k\) elements of this array contain the components of the deflation-adjusted updating row vector. \\
\hline vf & Array, DIMENSION \((k)\). On entry, vf contains information passed through sbede8. \\
\hline vl & Array, DIMENSION( \(k\) ). On entry, \(v /\) contains information passed through sbede 8. \\
\hline work & Workspace array, DIMENSION at least (3k). \\
\hline
\end{tabular}

\section*{Output Parameters}

Array, DIMENSION( \(k) . d(i)\) contains the updated singular values.
\begin{tabular}{|c|c|}
\hline \(v f\) & On exit, vf contains the first \(k\) components of the first components of all right singular vectors of the bidiagonal matrix. \\
\hline vl & On exit, \(\mathrm{v} /\) contains the first \(k\) components of the last components of all right singular vectors of the bidiagonal matrix. \\
\hline \multirow[t]{2}{*}{difl} & Array, DIMENSION (k). \\
\hline & On exit, difl(i) = d(i) - dsigma(i). \\
\hline \multirow[t]{5}{*}{difr} & Array, \\
\hline & DIMENSION (ldu, 2) if icompq =1 and \\
\hline & DIMENSION \((k)\) if \(i\) compq \(=0\). \\
\hline & On exit, \(\operatorname{difr}(i, 1)=d(i)-d s i g m a(i+1), \operatorname{difr}(k, 1)\) is not defined and will not be referenced. \\
\hline & If \(\operatorname{icompq}=1\), \(\operatorname{difr}(1: k, 2)\) is an array containing the normalizing factors for the right singular vector matrix. \\
\hline \multirow[t]{3}{*}{info} & = 0: successful exit. \\
\hline & < 0 : if info \(=-i\), the \(i\)-th argument had an illegal value. \\
\hline & > 0 : If info \(=1\), an singular value did not converge \\
\hline
\end{tabular}

\section*{?lasda}

Computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal \(d\) and offdiagonal e. Used by ?bdsdc.

\section*{Syntax}
```

void slasda(lapack_int *icompq, lapack_int *smlsiz, lapack_int *n, lapack_int *sqre,
float *d, float *e, float *u, lapack_int *ldu, float *vt, lapack_int *k, float *difl,
float *difr, float *z, float *poles, lapack_int *givptr, lapack_int *givcol, lapack_int
*ldgcol, lapack_int *perm, float *givnum, float *c, float *s, float *work, lapack_int
*iwork, lapack_int *info);
void dlasda(lapack_int *icompq, lapack_int *smlsiz, lapack_int *n, lapack_int *sqre,
double *d, double *e, double *u, lapack_int *ldu, double *vt, lapack_int *k, double
*difl, double *difr, double *z, double *poles, lapack_int *givptr, lapack_int *givcol,
lapack_int *ldgcol, lapack_int *perm, double *givnum, double *c, double *S, double
*work, lapack_int *iwork, lapack_int *info);

```

\section*{Include Files}
- mkl.h

\section*{Description}

Using a divide and conquer approach, ? lasda computes the singular value decomposition (SVD) of a real upper bidiagonal \(n\)-by- \(m\) matrix \(B\) with diagonal \(d\) and off-diagonal \(e\), where \(m=n+\) sqre.

The algorithm computes the singular values in the \(S V D B=U^{\star} S^{\star} V T\). The orthogonal matrices \(U\) and \(V T\) are optionally computed in compact form. A related subroutine ? lasdo computes the singular values and the singular vectors in explicit form.

\section*{Input Parameters}
icompq
smlsiz
n
sqre
d
e
ldu
ldgcol
work
iwork

\section*{Output Parameters}
d
\(u\)
\(v t\)
k
difl

Specifies whether singular vectors are to be computed in compact form, as follows:
\(=0\) : Compute singular values only.
\(=1\) : Compute singular vectors of upper bidiagonal matrix in compact form.
The maximum size of the subproblems at the bottom of the computation tree.

The row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array \(d\).

Specifies the column dimension of the bidiagonal matrix.
If sqre \(=0\) : the bidiagonal matrix has column dimension \(m=n\)
If sqre \(=1\) : the bidiagonal matrix has column dimension \(m=n+1\).
Array, DIMENSION ( \(n\) ). On entry, \(d\) contains the main diagonal of the bidiagonal matrix.

Array, DIMENSION ( \(m-1\) ). Contains the subdiagonal entries of the bidiagonal matrix. On exit, \(e\) is destroyed.

The leading dimension of arrays \(u, v t\), difl, difr, poles, givnum, and \(z\). \(I d u \geq n\).

The leading dimension of arrays givcol and perm. \(1 d g c o l \geq n\).
Workspace array, DIMENSION \(\left(6 n+(s m l s i z+1)^{2}\right)\).
Workspace array, Dimension must be at least (7n).

On exit \(d\), if info \(=0\), contains the singular values of the bidiagonal matrix.

Array, DIMENSION (/du, sm/siz) if icompq \(=1\).
Not referenced if \(i c o m p q=0\).
If icompq \(=1\), on exit, \(u\) contains the left singular vector matrices of all subproblems at the bottom level.

Array, DIMENSION ( \(/ d u, s m / s i z+1\) ) if \(i c o m p q=1\), and not referenced if icompq \(=0\). If \(i c o m p q=1\), on exit, \(v t^{\prime}\) contains the right singular vector matrices of all subproblems at the bottom level.

Array, DIMENSION ( \(n\) ) if icompq \(=1\) and
DIMENSION (1) if \(i\) compq \(=0\).
If \(i\) compq \(=1\), on exit, \(k(i)\) is the dimension of the \(i\)-th secular equation on the computation tree.

REAL for slasda
DOUBLE PRECISION for dlasda.

Array, DIMENSION ( \(\mid d u, n / v /\) ),
where nlvl \(=\) floor \(\left(\log _{2}(n / \operatorname{smlsiz})\right)\).
Array,
DIMENSION ( \(/ d u, 2 n / v /\) ) if \(i c o m p q=1\) and
DIMENSION ( \(n\) ) if icompq \(=0\).
If \(i c o m p q=1\), on exit, \(\operatorname{difl}(1: n, i)\) and \(\operatorname{difr}(1: n, 2 i-1)\) record distances between singular values on the \(i\)-th level and singular values on the ( \(i-1\) )th level, and \(\operatorname{difr}(1: n, 2 i)\) contains the normalizing factors for the right singular vector matrix. See ?lasd8 for details.

Array,
DIMENSION ( \(/ d u, n / v /\) ) if icompq \(=1\) and
DIMENSION \((n)\) if icompq \(=0\). The first \(k\) elements of \(z(1, i)\) contain the components of the deflation-adjusted updating row vector for subproblems on the \(i\)-th level.

Array, DIMENSION(ldu, \(2 * n l v l)\)
if \(i\) compq \(=1\), and not referenced if \(i c o m p q=0\). If \(i c o m p q=1\), on exit, poles(1, 2i-1) and poles(1, 2i) contain the new and old singular values involved in the secular equations on the \(i\)-th level.

Array, DIMENSION ( \(n\) ) if icompq \(=1\), and not referenced if \(i\) compq \(=0\). If icompq \(=1\), on exit, givptr( \(i\) ) records the number of Givens rotations performed on the \(i\)-th problem on the computation tree.

Array, DIMENSION (ldgcol, \(2 * n l v l\) ) if \(i c o m p q=1\), and not referenced if icompq \(=0\). If \(i c o m p q=1\), on exit, for each \(i, \operatorname{givcol}(1,2 i-1)\) and \(\operatorname{givcol}(1,2 i)\) record the locations of Givens rotations performed on the \(i\)-th level on the computation tree.

Array, DIMENSION ( \(/ d g c o l, n / v /\) ) if \(i c o m p q=1\), and not referenced if icompq \(=0\). If icompq \(=1\), on exit, perm \((1, i)\) records permutations done on the \(i\)-th level of the computation tree.

Array DIMENSION ( \(/ d u, 2 * n / v l\) ) if icompq \(=1\), and not referenced if icompq \(=0\). If \(i c o m p q=1\), on exit, for each \(i\), \(\operatorname{givnum}(1,2 i-1)\) and givnum ( \(1,2 i\) ) record the \(C\) - and \(S\)-values of Givens rotations performed on the \(i\)-th level on the computation tree.

Array,
DIMENSION ( \(n\) ) if icompq \(=1\), and
DIMENSION (1) if \(i c o m p q=0\).
If icompq \(=1\) and the \(i\)-th subproblem is not square, on exit, \(c(i)\) contains the \(C\)-value of a Givens rotation related to the right null space of the \(i\)-th subproblem.

Array,
DIMENSION ( \(n\) ) icompq \(=1\), and
DIMENSION (1) if \(i c o m p q=0\).

If icompq \(=1\) and the \(i\)-th subproblem is not square, on exit, \(s(i)\) contains the \(S\)-value of a Givens rotation related to the right null space of the \(i\)-th subproblem.
info \(\quad=0\) : successful exit.
< 0: if info \(=-i\), the \(i\)-th argument had an illegal value
\(>0\) : If info \(=1\), an singular value did not converge

\section*{?lasdq \\ Computes the SVD of a real bidiagonal matrix with \\ diagonal d and off-diagonal e. Used by ?bdsdc.}

\section*{Syntax}
```

void slasdq(char *uplo, lapack_int *sqre, lapack_int *n, lapack_int *ncvt, lapack_int
*nru, lapack_int *ncc, float *d, float *e, float *vt, lapack_int *ldvt, float *u,
lapack_int *ldu, float *C, lapack_int *ldc, float *work, lapack_int *info);
void dlasdq(char *uplo, lapack_int *sqre, lapack_int *n, lapack_int *ncvt, lapack_int
*nru, lapack_int *ncc, double *d, double *e, double *vt, lapack_int *ldvt, double *u,
lapack_int *ldu, double *c, lapack_int *ldc, double *work, lapack_int *info);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine ?lasdq computes the singular value decomposition (SVD) of a real (upper or lower) bidiagonal matrix with diagonal \(d\) and off-diagonal \(e\), accumulating the transformations if desired. If \(B\) is the input bidiagonal matrix, the algorithm computes orthogonal matrices \(Q\) and \(P\) such that \(B=Q^{\star} S^{\star} P^{T}\). The singular values \(S\) are overwritten on \(d\).

The input matrix \(U\) is changed to \(U^{\star} Q\) if desired.
The input matrix \(V T\) is changed to \(P^{T \star} V T\) if desired.
The input matrix \(C\) is changed to \(Q^{T \star} C\) if desired.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & On entry, uplo specifies whether the input bidiagonal matrix is upper or lower bidiagonal. \\
\hline & If uplo = 'U' or 'u', \(B\) is upper bidiagonal; \\
\hline & If uplo = 'L' or 'l', \(B\) is lower bidiagonal. \\
\hline \multirow[t]{3}{*}{sqre} & \(=0\) : then the input matrix is \(n\)-by- \(n\). \\
\hline & \(=1\) : then the input matrix is \(n\)-by- \((n+1)\) if \(u p l u=\) ' \(U\) ' and ( \(n+1\) )-by- \(n\) if uplu \\
\hline & \(=\) 'L'. The bidiagonal matrix has \(n=n l+n r+1\) rows and \(m=n+\) sqre \(\geq n\) columns. \\
\hline
\end{tabular}
n
ncvt
nru
\(n C c\)
\(d\)
e

\section*{Output Parameters}

On entry, \(n\) specifies the number of rows and columns in the matrix. \(n\) must be at least 0 .

On entry, ncvt specifies the number of columns of the matrix \(V T\). ncvt must be at least 0 .

On entry, nru specifies the number of rows of the matrix \(U\). nru must be at least 0 .

On entry, ncc specifies the number of columns of the matrix \(C\). ncc must be at least 0 .

Array, DIMENSION ( \(n\) ). On entry, \(d\) contains the diagonal entries of the bidiagonal matrix.

Array, DIMENSION is \((n-1)\) if sqre \(=0\) and \(n\) if sqre \(=1\). On entry, the entries of \(e\) contain the off-diagonal entries of the bidiagonal matrix.
Array, DIMENSION (Idvt, ncvt). On entry, contains a matrix which on exit has been premultiplied by \(P^{T}\), dimension \(n\)-by-ncvt if sqre \(=0\) and \((n+1)\) -by-ncvt if sqre \(=1\) (not referenced if ncvt=0).

On entry, Idvt specifies the leading dimension of \(v t\) as declared in the calling (sub) program. Idvt must be at least 1 . If ncvt is nonzero, Idvt must also be at least \(n\).

Array, DIMENSION (Idu, n). On entry, contains a matrix which on exit has been postmultiplied by \(Q\), dimension nru-by- \(n\) if sqre \(=0\) and \(n r u\)-by-( \(n\) \(+1)\) if sqre \(=1(\) not referenced if \(n r u=0)\).

On entry, Idu specifies the leading dimension of \(u\) as declared in the calling (sub) program. Idu must be at least max (1, nru).

Array, DIMENSION ( \(/ d c, n c c\) ). On entry, contains an \(n\)-by-ncc matrix which on exit has been premultiplied by \(Q^{\prime}\), dimension \(n\)-by-ncc if sqre \(=0\) and \((n+1)\)-by-ncc if sqre \(=1\) (not referenced if \(n c c=0\) ).

On entry, Idc specifies the leading dimension of \(C\) as declared in the calling (sub) program. Idc must be at least 1 . If ncc is non-zero, Idc must also be at least \(n\).

Array, DIMENSION (4n). This is a workspace array. Only referenced if one of \(n c v t, n r u\), or \(n c c\) is nonzero, and if \(n\) is at least 2 .

On normal exit, \(d\) contains the singular values in ascending order.
On normal exit, \(e\) will contain 0 . If the algorithm does not converge, \(d\) and \(e\) will contain the diagonal and superdiagonal entries of a bidiagonal matrix orthogonally equivalent to the one given as input.

On exit, the matrix has been premultiplied by \(P^{\prime}\).
On exit, the matrix has been postmultiplied by \(Q\).
On exit, the matrix has been premultiplied by \(Q^{\prime}\).
```

info On exit, a value of 0 indicates a successful exit. If info < 0, argument
number -info is illegal. If info > 0, the algorithm did not converge, and info specifies how many superdiagonals did not converge.

```

\section*{?lasdt}

Creates a tree of subproblems for bidiagonal divide and conquer. Used by ?bdsdc.

\section*{Syntax}
```

void slasdt(lapack_int *n, lapack_int *lvl, lapack_int *nd, lapack_int *inode,
lapack_int *ndiml, lapack_int *ndimr, lapack_int *msub);
void dlasdt(lapack_int *n, lapack_int *lvl, lapack_int *nd, lapack_int *inode,
lapack_int *ndiml, lapack_int *ndimr, lapack_int *msub);

```

Include Files
- mkl.h

\section*{Description}

The routine creates a tree of subproblems for bidiagonal divide and conquer.

\section*{Input Parameters}
```

n On entry, the number of diagonal elements of the bidiagonal matrix.
msub On entry, the maximum row dimension each subproblem at the bottom of the tree can be of.

```

\section*{Output Parameters}
```

lvl On exit, the number of levels on the computation tree.
nd On exit, the number of nodes on the tree.
inode Array, DIMENSION (}n\mathrm{). On exit, centers of subproblems.
ndiml Array, DIMENSION (}n\mathrm{). On exit, row dimensions of left children.
ndimr Array, DIMENSION (n). On exit, row dimensions of right children.

```

\section*{?laset}

Initializes the off-diagonal elements and the diagonal
elements of a matrix to given values.

\section*{Syntax}
```

lapack_int LAPACKE_slaset (int matrix_layout, char uplo, lapack_int m, lapack_int
n , float alpha, float beta, float * a , lapack_int lda);
lapack_int LAPACKE_dlaset (int matrix_layout , char uplo, lapack_int m, lapack_int
n , double alpha , double beta, double * a , lapack_int lda);

```
```

lapack_int LAPACKE_claset (int matrix_layout, char uplo, lapack_int m, lapack_int
n , lapack_complex_float alpha, lapack_complex_float beta, lapack_complex_float * a ,
lapack_int lda);
lapack_int LAPACKE_zlaset (int matrix_layout, char uplo, lapack_int m, lapack_int
n , lapack_complex_double alpha, lapack_complex_double beta, lapack_complex_double *
a , lapack_int lda);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine initializes an \(m\)-by-n matrix \(A\) to beta on the diagonal and alpha on the off-diagonals.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major ( LAPACK_COL_MAJOR ). \\
\hline \multirow[t]{4}{*}{uplo} & Specifies the part of the matrix \(A\) to be set. \\
\hline & If uplo = 'U', upper triangular part is set; the strictly lower triangular part of \(A\) is not changed. \\
\hline & If uplo = 'L': lower triangular part is set; the strictly upper triangular part of \(A\) is not changed. \\
\hline & Otherwise: All of the matrix \(A\) is set. \\
\hline m & The number of rows of the matrix \(A . m \geq 0\). \\
\hline \multirow[t]{2}{*}{\(n\)} & The number of columns of the matrix \(A\). \\
\hline & \(n \geq 0\). \\
\hline alpha, beta & The constants to which the off-diagonal and diagonal elements are to be set, respectively. \\
\hline \multirow[t]{2}{*}{a} & Array, size at least max ( \(1, I d^{*} n\) ) for column major and max ( \(1, I d^{*}{ }^{*}\) ) for row major layout. \\
\hline & The array a contains the \(m\)-by-n matrix \(A\). \\
\hline \multirow[t]{2}{*}{Ida} & The leading dimension of the array \(a\). \\
\hline & \(I d a \geq \max (1, m)\) for column major layout and Ida \(\geq \max (1, n)\) for row major layout. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
On exit, the leading \(m\)-by- \(n\) submatrix of \(A\) is set as follows:
```

if uplo = 'U', A Aj = alpha, 1\leqi\leqj-1, 1\leqj\leqn,
if uplo = 'L', Aij = alpha, j+1\leqi\leqm, 1\leqj\leqn,
otherwise, }\mp@subsup{A}{ij}{}= alpha, 1\leqi\leqm, 1\leqj\leqn, i\not=j

```
\[
\text { and, for all uplo, } A_{i i}=\text { beta, } 1 \leq i \leq \min (m, \quad n)
\]

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=i<0\), the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?lasrt}

Sorts numbers in increasing or decreasing order.

\section*{Syntax}
```

lapack_int LAPACKE_slasrt (char id, lapack_int n , float * d);
lapack_int LAPACKE_dlasrt (char id, lapack_int n , double * d);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine ? lasrt sorts the numbers in \(d\) in increasing order (if id = 'I') or in decreasing order (if id = ' \(D^{\prime}\) ). It uses Quick Sort, reverting to Insertion Sort on arrays of size \(\leq 20\). Dimension of stack limits \(n\) to about \(2^{32}\).

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
id \(=\) 'I': sort \(d\) in increasing order;
\(=\) ' D ': sort \(d\) in decreasing order.
\(n \quad\) The length of the array \(d\).
d On entry, the array to be sorted.

\section*{Output Parameters}
d
On exit, \(d\) has been sorted into increasing order
\[
\begin{aligned}
& (d[0] \leq d[1] \leq \ldots \leq d[n-1]) \text { or into decreasing order } \\
& (d[0] \geq d[1] \geq \ldots \geq d[n-1]), \text { depending on id. }
\end{aligned}
\]

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(<0\), the \(i\)-th parameter had an illegal value.
```

?laswp
Performs a series of row interchanges on a general
rectangular matrix.
Syntax
lapack_int LAPACKE_slaswp (int matrix_layout, lapack_int n , float * a , lapack_int
lda , lapack_int k1 , lapack_int k2 , const lapack_int * ipiv , lapack_int incx);
lapack_int LAPACKE_dlaswp (int matrix_layout, lapack_int n , double * a , lapack_int
lda, lapack_int k1 , lapack_int k2 , const lapack_int * ipiv, lapack_int incx);
lapack_int LAPACKE_claswp (int matrix_layout , lapack_int n , lapack_complex_float *
a , lapack_int lda , lapack_int kl , lapack_int k2 , const lapack_int * ipiv ,
lapack_int incx);
lapack_int LAPACKE_zlaswp (int matrix_layout , lapack_int n , lapack_complex_double *
a , lapack_int lda , lapack_int kl , lapack_int k2 , const lapack_int * ipiv ,
lapack int incx);

```

Include Files
- mkl.h

\section*{Description}

The routine performs a series of row interchanges on the matrix \(A\). One row interchange is initiated for each of rows \(k 1\) through \(k 2\) of \(A\).

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
```

matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
The number of columns of the matrix A.
Array, size max(1, lda*n) for column major and max(1, lda\starmm) for row
major layout. Here mm is not less than maximum of values
ipiv[k1-1+j*|incx|],0\leqj<k2-k1.
Array a contains the m-by-n matrix A.
The leading dimension of the array a.
The first element of ipiv for which a row interchange will be done.
The last element of ipiv for which a row interchange will be done.
Array, size kl+(k2-k1)*|incx|).
The vector of pivot indices. Only the elements in positions k1 through k2 of
ipiv are accessed.
ipiv(k) = I implies rows k}\mathrm{ and / are to be interchanged.

```
incx The increment between successive values of ipiv. If ipiv is negative, the pivots are applied in reverse order.

\section*{Output Parameters}
a
On exit, the permuted matrix.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?latm1}

Computes the entries of a matrix as specified.

\section*{Syntax}
```

void slatm1 (lapack_int *mode, *cond, lapack_int *irsign, lapack_int *idist, lapack_int
*iseed, float *d, lapack_int *n, lapack_int *info);
void dlatm1 (lapack_int *mode, *cond, lapack_int *irsign, lapack_int *idist, lapack_int
*iseed, double *d, lapack_int *n, lapack_int *info);
void clatm1 (lapack_int *mode, *cond, lapack_int *irsign, lapack_int *idist, lapack_int
*iseed, lapack_complex *d, lapack_int *n, lapack_int *info);
void zlatm1 (lapack_int *mode, *cond, lapack_int *irsign, lapack_int *idist, lapack_int
*iseed, lapack_complex_double *d, lapack_int *n, lapack_int *info);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ? latm1 routine computes the entries of \(D(1 . . n)\) as specified by mode, cond and irsign. idist and iseed determine the generation of random numbers.
?latm1 is called by slatmr (for slatm1 and dlatm1), and by clatmr(for clatm1 and zlatm1) to generate random test matrices for LAPACK programs.

\section*{Input Parameters}
mode
On entry describes how \(d\) is to be computed:
```

mode = 0 means do not change d.
mode = 1 sets d[0] = 1 and d[1:n - 1] = 1.0/cond
mode = 2 sets d[0:n - 2] = 1 and d[n - 1]=1.0/cond
mode = 3 sets d[i - 1]=cond** (-(i-1)/(n-1))
mode = 4 sets d[i - 1]= 1 - (i-1)/(n-1)*(1 - 1/cond)

```
cond
irsign
idist

\section*{Output Parameters}
mode \(=5\) sets \(d\) to random numbers in the range ( \(1 /\) cond, 1 ) such that their logarithms are uniformly distributed.
mode \(=6\) sets \(d\) to random numbers from same distribution as the rest of the matrix.
mode \(<0\) has the same meaning as abs (mode), except that the order of the elements of \(d\) is reversed.

Thus if mode is positive, \(d\) has entries ranging from 1 to \(1 /\) cond, if negative, from \(1 /\) cond to 1 .

On entry, used as described under mode above. If used, it must be \(\geq 1\).

On entry, if mode is not \(-6,0\), or 6 , determines sign of entries of \(d\).
If irsign \(=0\), entries of \(d\) are unchanged.
If irsign = 1 , each entry of \(d\) is multiplied by a random complex number uniformly distributed with absolute value 1 .

Specifies the distribution of the random numbers.
```

For slatm1 and dlatm1:
= 1: uniform (0,1)
=2: uniform (-1,1)
= 3: normal (0,1)
For clatm1 and zlatm1:
=1: real and imaginary parts each uniform (0,1)
=2: real and imaginary parts each uniform (-1,1)
=3: real and imaginary parts each normal (0,1)
= 4: complex number uniform in disk(0,1)

```

Array, size (4).
Specifies the seed of the random number generator. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of iseed[3] are changed on exit, and can be used in the next call to ?latm1 to continue the same random number sequence.

Array, size \(n\).
Number of entries of \(d\).
\begin{tabular}{ll} 
iseed & On exit, the seed is updated. \\
\(d\) & On exit, \(d\) is updated, unless mode \(=0\). \\
info & If info \(=0\), the execution is successful. \\
& If info \(=-1\), mode is not in range -6 to 6. \\
& If info \(=-2\), mode is neither \(-6,0\) nor 6, and irsign is neither 0 nor 1.
\end{tabular}

If info \(=-3\), mode is neither \(-6,0\) nor 6 and cond is less than 1 .
If info \(=-4\), mode equals 6 or -6 and idist is not in range 1 to 4 .
If info \(=-7, n\) is negative.
?latm2
Returns an entry of a random matrix.

\section*{Syntax}
```

float slatm2 (lapack_int *m, lapack_int *n, lapack_int *i, lapack_int *j, lapack_int
*kl, lapack_int *ku, lapack_int *idist, lapack_int *iseed, float *d, lapack_int *igrade,
float *dl, float *dr, lapack_int *ipvtng, lapack_int *iwork, float *sparse);
double dlatm2 (lapack_int *m, lapack_int *n, lapack_int *i, lapack_int *j, lapack_int
*kl, lapack_int *ku, lapack_int *idist, lapack_int *iseed, double *d, lapack_int
*igrade, double *dl, double *dr, lapack_int *ipvtng, lapack_int *iwork, double *sparse);

```

The data types for complex variations depend on whether or not the application links with Gnu Fortran (gfortran) libraries.
For non-gfortran (libmkl_intel_*) interface libraries:
```

void clatm2 (lapack_complex_float *res, lapack_int *m, lapack_int *n, lapack_int *i,
lapack_int *j, lapack_int *kl, lapack_int *ku, lapack_int *idist, lapack_int *iseed,
lapack_complex_float *d, lapack_int *igrade, lapack_complex_float *dl,
lapack_complex_float *dr, lapack_int *ipvtng, lapack_int *iwork, float *sparse);
void zlatm2 (lapack_complex_double *res, lapack_int *m, lapack_int *n, lapack_int *i,
lapack_int *j, lapack_int *kl, lapack_int *ku, lapack_int *idist, lapack_int *iseed,
lapack_complex_double *d, lapack_int *igrade, lapack_complex_double *dl,
lapack_complex_double *dr, lapack_int *ipvtng, lapack_int *iwork, double *sparse);

```

For gfortran (libmkl_gf_*) interface libraries:
```

lapack_complex_float clatm2 (lapack_int *m, lapack_int *n, lapack_int *i, lapack_int
*j, lapack_int *kl, lapack_int *ku, lapack_int *idist, lapack_int *iseed,
lapack_complex_float *d, lapack_int *igrade, lapack_complex_float *dl,
lapack_complex_float *dr, lapack_int *ipvtng, lapack_int *iwork, float *sparse);
lapack_complex_double zlatm2 (lapack_int *m, lapack_int *n, lapack_int *i, lapack_int
*j, lapack_int *kl, lapack_int *ku, lapack_int *idist, lapack_int *iseed,
lapack_complex_double *d, lapack_int *igrade, lapack_complex_double *dl,
lapack_complex_double *dr, lapack_int *ipvtng, lapack_int *iwork, double *sparse);

```

To understand the difference between the non-gfortran and gfortran interfaces and when to use each of them, see Dynamic Libraries in the lib/intel64 Directory in the oneAPI Math Kernel Library Developer Guide.

\section*{Include Files}
- mkl.h

\section*{Description}

The ? latm2 routine returns entry \((i, j)\) of a random matrix of dimension \((m, n)\). It is called by the ?latmr routine in order to build random test matrices. No error checking on parameters is done, because this routine is called in a tight loop by ?latmr which has already checked the parameters.

Use of ? latm2 differs from ? latm3 in the order in which the random number generator is called to fill in random matrix entries. With ? latm2, the generator is called to fill in the pivoted matrix columnwise. With ? latm2, the generator is called to fill in the matrix columnwise, after which it is pivoted. Thus, ? latm3 can be used to construct random matrices which differ only in their order of rows and/or columns. ?latm2 is used to construct band matrices while avoiding calling the random number generator for entries outside the band (and therefore generating random numbers).

The matrix whose \((i, j)\) entry is returned is constructed as follows (this routine only computes one entry):
- If \(i\) is outside ( \(1 \ldots \mathrm{~m}\) ) or \(j\) is outside ( \(1 \ldots \mathrm{n}\) ), returns zero (this is convenient for generating matrices in band format).
- Generate a matrix \(A\) with random entries of distribution idist.
- Set the diagonal to \(D\).
- Grade the matrix, if desired, from the left (by \(d l\) ) and/or from the right (by \(d r\) or \(d l\) ) as specified by igrade.
- Permute, if desired, the rows and/or columns as specified by ipvtng and iwork.
- Band the matrix to have lower bandwidth \(k l\) and upper bandwidth \(k u\).
- Set random entries to zero as specified by sparse.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & Number of rows of the matrix. \\
\hline \(n\) & Number of columns of the matrix. \\
\hline i & Row of the entry to be returned. \\
\hline j & Column of the entry to be returned. \\
\hline kl & Lower bandwidth. \\
\hline ku & Upper bandwidth. \\
\hline \multirow[t]{10}{*}{idist} & On entry, idist specifies the type of distribution to be used to generate a random matrix . \\
\hline & for slatm2 and dlatm2: \\
\hline & \(=1:\) uniform \((0,1)\) \\
\hline & \(=2:\) uniform ( \(-1,1\) ) \\
\hline & \(=3:\) normal \((0,1)\) \\
\hline & for clatm2 and zlatm2: \\
\hline & \(=1:\) real and imaginary parts each uniform \((0,1)\) \\
\hline & \(=2\) : real and imaginary parts each uniform ( \(-1,1\) ) \\
\hline & \(=3:\) real and imaginary parts each normal ( 0,1 ) \\
\hline & \(=4\) : complex number uniform in disk (0, 1) \\
\hline \multirow[t]{2}{*}{iseed} & Array, size 4. \\
\hline & Seed for the random number generator. \\
\hline d & Array, size (min (i, j) ) . Diagonal entries of matrix. \\
\hline \multirow[t]{3}{*}{igrade} & Specifies grading of matrix as follows: \\
\hline & = 0: no grading \\
\hline & = 1: matrix premultiplied by diag ( \(d 1\) ) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & = 2: matrix postmultiplied by diag ( \(d r\) ) \\
\hline & = 3: matrix premultiplied by diag ( \(d 1\) ) and postmultiplied by diag ( \(d x\) ) \\
\hline & = 4: matrix premultiplied by diag ( \(d l\) ) and postmultiplied by inv( diag( dl )) \\
\hline & For slatm2 and slatm2: \\
\hline & = 5: matrix premultiplied by diag ( \(d 1\) ) and postmultiplied by diag ( \(d l\) ) \\
\hline & For clatm2 and zlatm2: \\
\hline & = 5: matrix premultiplied by diag( \(d l\) ) and postmultiplied by diag ( conjg (dl )) \\
\hline & = 6: matrix premultiplied by diag ( \(d l\) ) and postmultiplied by diag ( \(d \mathrm{l}\) ) \\
\hline dl & Array, size ( \(i\) or \(j\) ), as appropriate. \\
\hline & Left scale factors for grading matrix. \\
\hline \(d r\) & Array, size ( \(i\) or \(j\) ), as appropriate. \\
\hline & Right scale factors for grading matrix. \\
\hline ipvtng & On entry specifies pivoting permutations as follows: \\
\hline & \(=0\) : none \\
\hline & = 1: row pivoting \\
\hline & \(=2\) : column pivoting \\
\hline & \(=3\) : full pivoting, i.e., on both sides \\
\hline iwork & Array, size ( \(i\) or \(j\) ), as appropriate. This array specifies the permutation used. The row (or column) in position \(k\) was originally in position iwork \([k\) - 1]. This differs from iwork for ?latm3. \\
\hline sparse & Specifies the sparsity of the matrix. If sparse matrix is to be generated, sparse should lie between 0 and 1. A uniform ( 0,1 ) random number \(x\) is generated and compared to sparse. If \(x\) is larger the matrix entry is unchanged and if \(x\) is smaller the entry is set to zero. Thus on the average a fraction sparse of the entries will be set to zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
iseed
On exit, the seed is updated.

\section*{Return Values}

The function returns an entry of a random matrix (for complex variations libmkl_gf_* interface layer/ libraries return the result as the parameter res).

\section*{?latm3}

Returns set entry of a random matrix.

\section*{Syntax}
```

float slatm3 (lapack_int *m, lapack_int *n, lapack_int *i, lapack_int *j, lapack_int
*isub, lapack_int *jsub, lapack_int *kl, lapack_int *ku, lapack_int *idist, lapack_int
*iseed, float *d, lapack_int *igrade, float *dl, float *dr, lapack_int *ipvtng,
lapack_int *iwork, float *sparse);
double dlatm3 (lapack_int *m, lapack_int *n, lapack_int *i, lapack_int *j, lapack_int
*isub, lapack_int *jsub, lapack_int *kl, lapack_int *ku, lapack_int *idist, lapack_int
*iseed, double *d, lapack_int *igrade, double *dl, double *dr, lapack_int *ipvtng,
lapack_int *iwork, double *sparse);

```

The data types for complex variations depend on whether or not the application links with Gnu Fortran (gfortran) libraries.

For non-gfortran (libmkl_intel_*) interface libraries:
```

void clatm3 (lapack_complex_float *res, lapack_int *m, lapack_int *n, lapack_int *i,
lapack_int *j, lapack_int *isub, lapack_int *jsub, lapack_int *kl, lapack_int *ku,
lapack_int *idist, lapack_int *iseed, lapack_complex_float *d, lapack_int *igrade,
lapack_complex_float *dl, lapack_complex_float *dr, lapack_int *ipvtng, lapack_int
*iwork, float *sparse);
void zlatm3 (lapack_complex_double *res, lapack_int *m, lapack_int *n, lapack_int *i,
lapack_int *j, lapack_int *isub, lapack_int *jsub, lapack_int *kl, lapack_int *ku,
lapack_int *idist, lapack_int *iseed, lapack_complex_double *d, lapack_int *igrade,
lapack_complex_double *dl, lapack_complex_double *dr, lapack_int *ipvtng, lapack_int
*iwork, double *sparse);

```

For gfortran (libmkl_gf_*) interface libraries:
lapack_complex_float clatm3 (lapack_int \(*_{m}\), lapack_int *n, lapack_int *i, lapack_int
*j, lapack_int *isub, lapack_int *jsub, lapack_int *kl, lapack_int *ku, lapack_int
*idist, lapack_int *iseed, lapack_complex_float *d, lapack_int *igrade,
lapack_complex_float *dl, lapack_complex_float *dr, lapack_int *ipvtng, lapack_int
*iwork, float *sparse);
lapack_complex_double zlatm3 (lapack_int *m, lapack_int *n, lapack_int *i, lapack_int
*j, lapack_int *isub, lapack_int *jsub, lapack_int *kl, lapack_int *ku, lapack_int
*idist, lapack_int *iseed, lapack_complex_double *d, lapack_int *igrade,
lapack_complex_double *dl, lapack_complex_double *dr, lapack_int *ipvtng, lapack_int
*iwork, double *sparse);

To understand the difference between the non-gfortran and gfortran interfaces and when to use each of them, see Dynamic Libraries in the lib/intel64 Directory in the oneAPI Math Kernel Library Developer Guide.

Include Files
- mkl.h

\section*{Description}

The ? latm3 routine returns the (isub, jsub) entry of a random matrix of dimension ( \(m, n\) ) described by the other parameters. (isub, \(j s u b\) ) is the final position of the \((i, j)\) entry after pivoting according to ipvtng and iwork. ?latm3 is called by the ? latmr routine in order to build random test matrices. No error checking on parameters is done, because this routine is called in a tight loop by ?latmr which has already checked the parameters.

Use of ? latm3 differs from ? latm2 in the order in which the random number generator is called to fill in random matrix entries. With ? latm2, the generator is called to fill in the pivoted matrix columnwise. With ? latm3, the generator is called to fill in the matrix columnwise, after which it is pivoted. Thus, ? latm3 can be used to construct random matrices which differ only in their order of rows and/or columns. ?latm2 is used to construct band matrices while avoiding calling the random number generator for entries outside the band (and therefore generating random numbers in different orders for different pivot orders).

The matrix whose (isub, jsub ) entry is returned is constructed as follows (this routine only computes one entry):
- If isub is outside ( \(1 \ldots \mathrm{~m}\) ) or \(j s u b\) is outside ( \(1 \ldots \mathrm{n}\) ), returns zero (this is convenient for generating matrices in band format).
- Generate a matrix \(A\) with random entries of distribution idist.
- Set the diagonal to \(D\).
- Grade the matrix, if desired, from the left (by \(d l\) ) and/or from the right (by \(d r\) or \(d l\) ) as specified by igrade.
- Permute, if desired, the rows and/or columns as specified by ipvtng and iwork.
- Band the matrix to have lower bandwidth \(k l\) and upper bandwidth \(k u\).
- Set random entries to zero as specified by sparse.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & Number of rows of matrix. \\
\hline \(n\) & Number of columns of matrix. \\
\hline i & Row of unpivoted entry to be returned. \\
\hline j & Column of unpivoted entry to be returned. \\
\hline isub & Row of pivoted entry to be returned. \\
\hline jsub & Column of pivoted entry to be returned. \\
\hline kl & Lower bandwidth. \\
\hline ku & Upper bandwidth. \\
\hline idist & On entry, idist specifies the type of distribution to be used to generate a random matrix. \\
\hline & for slatm2 and dlatm2: \\
\hline & \(=1:\) uniform \((0,1)\) \\
\hline & \(=2:\) uniform \((-1,1)\) \\
\hline & = 3: normal ( 0,1 ) \\
\hline & for clatm2 and zlatm2: \\
\hline & \(=1:\) real and imaginary parts each uniform ( 0,1 ) \\
\hline & \(=2\) : real and imaginary parts each uniform ( \(-1,1\) ) \\
\hline & \(=3:\) real and imaginary parts each normal ( 0,1 ) \\
\hline & \(=4:\) complex number uniform in \(\operatorname{disk}(0,1)\) \\
\hline iseed & Array, size 4. \\
\hline & Seed for random number generator. \\
\hline d & Array, size (min(i, j) ) . Diagonal entries of matrix. \\
\hline
\end{tabular}
```

igrade
dl
dr
ipvtng
sparse
iwork
Specifies grading of matrix as follows:
= 0: no grading
= 1: matrix premultiplied by diag($d l$)
= 2: matrix postmultiplied by diag ($d r$)
= 3: matrix premultiplied by diag $d I$) and postmultiplied by diag ($d r$)
= 4: matrix premultiplied by diag $d l$) and postmultiplied by inv(diag(dl))
For slatm2 and slatm2:
= 5: matrix premultiplied by diag $d l$) and postmultiplied by diag ($d l$)
For clatm2 and zlatm2:
= 5: matrix premultiplied by diag($d l$) and postmultiplied by diag(conjg(dl))
= 6: matrix premultiplied by diag $d I)$ and postmultiplied by diag $(d l)$
Array, size (i or j, as appropriate).
Left scale factors for grading matrix.
Array, size (i or j, as appropriate).
Right scale factors for grading matrix.
On entry specifies pivoting permutations as follows:
If ipvtng = 0: none.
If ipvtng $=1$: row pivoting.
If ipvtng $=2$: column pivoting.
If ipvtng $=3$: full pivoting, i.e., on both sides.
On entry, specifies the sparsity of the matrix if sparse matrix is to be generated. sparse should lie between 0 and 1. A uniform(0,1) random number x is generated and compared to sparse; if x is larger the matrix entry is unchanged and if x is smaller the entry is set to zero. Thus on the average a fraction sparse of the entries will be set to zero.
Array, size (i or j, as appropriate). This array specifies the permutation used. The row (or column) originally in position k is in position iwork [k $1]$ after pivoting. This differs from iwork for ?latm2.

```

\section*{Output Parameters}
isub
jsub
iseed

On exit, row of pivoted entry is updated.
On exit, column of pivoted entry is updated.
On exit, the seed is updated.

\section*{Return Values}

The function returns an entry of a random matrix (for complex variations libmkl_gf_* interface layer/ libraries return the result as the parameter res).

\section*{?latm5}

Generates matrices involved in the Generalized
Sy/vester equation.

\section*{Syntax}
```

void slatm5 (*prtype, lapack_int *m, lapack_int *n, float *a, lapack_int *lda, float *b,
lapack_int *ldb, float *c, lapack_int *ldc, float *d, lapack_int *ldd, float *e,
lapack_int *lde, float *f, lapack_int *ldf, float *r, lapack_int *ldr, float *l,
lapack_int *ldl, float *alpha, lapack_int *qblcka, lapack_int *qblckb);
void dlatm5 (*prtype, lapack_int *m, lapack_int *n, double *a, lapack_int *lda, double
*b, lapack_int *ldb, double *c, lapack_int *ldc, double *d, lapack_int *ldd, double *e,
lapack_int *lde, double *f, lapack_int *ldf, double *r, lapack_int *ldr, double *l,
lapack_int *ldl, double *alpha, lapack_int *qblcka, lapack_int *qblckb);
void clatm5 (*prtype, lapack_int *m, lapack_int *n, lapack_complex_float *a, lapack_int
*lda, lapack_complex_float *b, lapack_int *ldb, lapack_complex_float *c, lapack_int
*ldc, lapack_complex_float *d, lapack_int *ldd, lapack_complex_float *e, lapack_int
*lde, lapack_complex_float *f, lapack_int *ldf, lapack_complex_float *r, lapack_int
*ldr, lapack_complex_float *l, lapack_int *ldl, float *alpha, lapack_int *qblcka,
lapack_int *qblckb);
void zlatm5 (*prtype, lapack_int *m, lapack_int *n, lapack_complex_double *a,
lapack_int *lda, lapack_complex_double *b, lapack_int *ldb, lapack_complex_double *c,
lapack_int *ldc, lapack_complex_double *d, lapack_int *ldd, lapack_complex_double *e,
lapack_int *lde, lapack_complex_double *f, lapack_int *ldf, lapack_complex_double *r,
lapack_int *ldr, lapack_complex_double *l, lapack_int *ldl, float *alpha, lapack_int
*qblcka, lapack_int *qblckb);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?latm5 routine generates matrices involved in the Generalized Sylvester equation:
```

A * R - L * B = C
D * R - L * E = F

```

They also satisfy the diagonalization condition:
\[
\begin{aligned}
& {\left[\begin{array}{cc}
I & -L \\
& I
\end{array}\right]\left[\begin{array}{cc}
A & -C \\
& B
\end{array}\right]\left[\begin{array}{ll}
I & R \\
& I
\end{array}\right]=\left[\begin{array}{ll}
A & \\
& B
\end{array}\right]} \\
& {\left[\begin{array}{cc}
I & -L \\
& I
\end{array}\right]\left[\begin{array}{cc}
D & -F \\
& E
\end{array}\right]\left[\begin{array}{ll}
I & R \\
& I
\end{array}\right]=\left[\begin{array}{ll}
D & \\
& E
\end{array}\right]}
\end{aligned}
\]

\section*{Input Parameters}
prtype
Specifies the type of matrices to generate.
- If prtype \(=1, A\) and \(B\) are Jordan blocks, \(D\) and \(E\) are identity matrices.

A:
If ( \(i=j\) ) then \(A_{i, j}=1.0\).
If \((j==i+1)\) then \(A_{i, j}=-1.0\).
Otherwise \(A_{i, j}=0.0, i, j=1 \ldots m\)
\(B\) :
If ( \(i==j\) ) then \(B_{i, j}=1.0\) - alpha.
If \((j==i+1)\) then \(B_{i, j}=1.0\).
Otherwise \(B_{i, j}=0.0, i, j=1 \ldots n\).
D:
If ( \(i==j\) ) then \(D_{i, j}=1.0\).
Otherwise \(D_{i, j}=0.0, i, j=1 \ldots m\).
E:
If ( \(i==j\) ) then \(E_{i, j}=1.0\)
Otherwise \(E_{i, j}=0.0, i, j=1 \ldots n\).
\(L=R\) are chosen from [-10...10], which specifies the right hand sides ( \(C, F\) ).
- If prtype \(=2\) or 3: Triangular and/or quasi- triangular.

A:
If \((i \leq j)\) then \(A_{i, j}=[-1 \ldots 1]\).
Otherwise \(A_{i, j}=0.0, i, j=1 \ldots \mathrm{M}\).
If (prtype \(=3\) ) then \(A_{k+1, k+1}=A_{k, k}\);
\(A_{k+1, k}=[-1 \ldots 1] ;\)
\(\operatorname{sign}\left(A_{k}, k+1\right)=-\left(\operatorname{sign}\left(A_{k}+1, k\right)\right.\).
\(k=1, m-1, ~ q b l c k a\)
\(B\) :
If \((i \leq j)\) then \(B_{i, j}=[-1 \ldots 1]\).
Otherwise \(B_{i, j}=0.0, i, j=1 \ldots n\).
If (prtype \(=3\) ) then \(B_{k+1, k+1}=B_{k, k}\)
\(B_{k+1, k}=[-1 \ldots 1]\)
\(\operatorname{sign}\left(B_{k, k+1}\right)=-\left(\operatorname{sign}\left(B_{k}+1, k\right)\right.\)
\(k=1, n-1, q b l c k b\).
\(D:\)
If \((i \leq j)\) then \(D_{i, j}=[-1 \ldots 1]\).
Otherwise \(D_{i, j}=0.0\), i, \(j=1 \ldots m\).
\(E\) :
If \((i<=j)\) then \(E_{i, j}=[-1 \ldots 1]\).

Otherwise \(E_{i, j}=0.0\), i, \(j=1 \ldots N\).
\(L, R\) are chosen from \([-10 \ldots 10]\), which specifies the right hand sides ( \(C\), \(F)\).
- If prtype \(=4\) Full
\[
\begin{aligned}
A_{i, j} & =[-10 \ldots 10] \\
D_{i, j} & =[-1 \ldots 1] \text { i,j }=1 \ldots m \\
B_{i, j} & =[-10 \ldots 10] \\
E_{i, j} & =[-1 \ldots 1] \text { i, } j=1 \ldots n \\
R_{i, j} & =[-10 \ldots 10] \\
L_{i, j} & =[-1 \ldots 1] i=1 \ldots m, j=1 \ldots n
\end{aligned}
\]
\(L\) and \(R\) specifies the right hand sides ( \(C, F\) ).
- If prtype \(=5\) special case common and/or close eigs.
m
\(n\)

\section*{Output Parameters}
b
c

Specifies the order of \(A\) and \(D\) and the number of rows in \(C, F, R\) and \(L\). Specifies the order of \(B\) and \(E\) and the number of columns in \(C, F, R\) and \(L\).

The leading dimension of \(a\).
The leading dimension of \(b\).
The leading dimension of \(c\).
The leading dimension of \(d\).
The leading dimension of \(e\).
The leading dimension of \(f\).
The leading dimension of \(r\).
The leading dimension of 1 .
Parameter used in generating prtype \(=1\) and 5 matrices.
When prtype \(=3\), specifies the distance between 2-by-2 blocks on the diagonal in A. Otherwise, qblcka is not referenced. qblcka > 1 .

When prtype \(=3\), specifies the distance between 2-by-2 blocks on the diagonal in \(B\). Otherwise, \(q b l c k b\) is not referenced. \(q b l c k b>1\).

Array, size \(l d a^{\star} m\). On exit a contains them-by-m array \(A\) initialized according to prtype.

Array, size \(l d b^{*} n\). On exit b contains the \(n\)-by- \(n\) array \(B\) initialized according to prtype.

Array, size \(1 d c^{\star} n\). On exit c contains the \(m\)-by- \(n\) array \(C\) initialized according to prtype.

\begin{abstract}
d
Array, size \(l d d^{\star} m\). On exit \(d\) contains the \(m\)-by- \(m\) array \(D\) initialized according to prtype.

Array, size \(I d e^{\star} n\). On exit e contains the \(n\)-by- \(n\) array \(E\) initialized according to prtype.

Array, size \(l d f^{\star} n\). On exit \(f\) contains the \(m\)-by- \(n\) array \(F\) initialized according to prtype.

Array, size \(l d r^{\star} n\). On exit \(R\) contains the \(m\)-by- \(n\) array \(R\) initialized according to prtype.

Array, size \(I d l^{*} n\). On exit \(l\) contains the \(m\)-by-narray \(L\) initialized according to prtype.
\end{abstract}

\section*{?latm6}

Generates test matrices for the generalized eigenvalue problem, their corresponding right and left eigenvector matrices, and also reciprocal condition numbers for all eigenvalues and the reciprocal condition numbers of eigenvectors corresponding to the 1th and 5th eigenvalues.

\section*{Syntax}
```

void slatm6 (lapack_int *type, lapack_int *n, float *a, lapack_int *lda, float *b, float
*x, lapack_int *ldx, float *y, lapack_int *ldy, float *alpha, float *beta, float *wx,
float *WY, float *s, float *dif);
void dlatm6 (lapack_int *type, lapack_int *n, double *a, lapack_int *lda, double *b,
double *x, lapack_int *ldx, double *y, lapack_int *ldy, double *alpha, double *beta,
double *WX, double *WY, double *s, double *dif);
void clatm6 (lapack_int *type, lapack_int *n, lapack_complex_float *a, lapack_int *lda,
lapack_complex_float *b, lapack_complex_float *x, lapack_int *ldx, lapack_complex_float
*y, lapack_int *ldy, lapack_complex_float *alpha, lapack_complex_float *beta,
lapack_complex_float *wx, lapack_complex_float *wy, float *s, float *dif);
void zlatm6 (lapack_int *type, lapack_int *n, lapack_complex_double *a, lapack_int
*lda, lapack_complex_double *b, lapack_complex_double *x, lapack_int *ldx,
lapack_complex_double *y, lapack_int *ldy, lapack_complex_double *alpha,
lapack_complex_double *beta, lapack_complex_double *wx, lapack_complex_double *wy,
double *s, double *dif);

```

Include Files
- mkl.h

\section*{Description}

The ?latm6 routine generates test matrices for the generalized eigenvalue problem, their corresponding right and left eigenvector matrices, and also reciprocal condition numbers for all eigenvalues and the reciprocal condition numbers of eigenvectors corresponding to the 1th and 5th eigenvalues.
There two kinds of test matrix pairs:
\[
(A, B)=\operatorname{inverse}(Y H) *(D a, D b) * \operatorname{inverse}(X)
\]

Type 1:
\[
D a=\left[\begin{array}{ccccc}
1+a & 0 & 0 & 0 & 0 \\
0 & 2+a & 0 & 0 & 0 \\
0 & 0 & 3+a & 0 & 0 \\
0 & 0 & 0 & 4+a & 0 \\
0 & 0 & 0 & 0 & 5+2
\end{array}\right] \quad D b=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
\]

Type 2:
\[
D a=\left[\begin{array}{ccccc}
1+i & 0 & 0 & 0 & 0 \\
0 & 1-i & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & (1+a)+(1+b) i & 0 \\
0 & 0 & 0 & 0 & (1+a)-(1+b) i
\end{array}\right] \quad D b=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
\]

In both cases the same inverse \((Y H)\) and inverse \((X)\) are used to compute ( \(A, B\) ), giving the exact eigenvectors to \((A, B)\) as \((Y H, X)\) :
\[
Y H=\left[\begin{array}{ccccc}
1 & 0 & -y & y & -y \\
0 & 1 & -y & y & -y \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \mathrm{X}=\left[\begin{array}{ccccc}
1 & 0 & -x & -x & x \\
0 & 1 & x & -x & -x \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
\]
,
where \(a, b, x\) and \(y\) will have all values independently of each other.

\section*{Input Parameters}
\begin{tabular}{ll} 
type & Specifies the problem type. \\
\(n\) & Size of the matrices \(A\) and \(B\). \\
\(I d a\) & The leading dimension of \(a\) and of \(b\). \\
\(I d x\) & The leading dimension of \(x\). \\
\(I d y\) & The leading dimension of \(y\). \\
\(a l p h a\), beta & Weighting constants for matrix \(A\). \\
\(w x\) & Constant for right eigenvector matrix. \\
\(w y\) & Constant for left eigenvector matrix.
\end{tabular}

\section*{Output Parameters}
a
Array, size \(l d a * n\). On exit, a contains the \(n-b y-n\) matrix initialized according to type.
b
x
y
s
dif

Array, size \(I d a *_{n}\). On exit, \(b\) contains the \(n-b y-n\) matrix initialized according to type.

Array, size \(l d x^{*} n\). On exit, \(x\) contains the \(n-b y-n\) matrix of right eigenvectors.

Array, size \(l d y^{*} n\). On exit, \(y\) is the \(n-b y-n\) matrix of left eigenvectors.
Array, size (n).s[i-1] is the reciprocal condition number for eigenvalue \(i\).

Array, size(n). dif[i-1] is the reciprocal condition number for eigenvector \(i\).

\section*{?latme}

Generates random non-symmetric square matrices
with specified eigenvalues.

\section*{Syntax}
```

void slatme (lapack_int *n, char *dist, lapack_int *iseed, float *d, lapack_int *mode,
float *cond, float *dmax, char *ei, char *rsign, char *upper, char *sim, float *ds,
lapack_int *modes, float *conds, lapack_int *kl, lapack_int *ku, float *anorm, float *a,
lapack_int *lda, float *work, lapack_int *info);void dlatme (lapack_int *n, char *dist,
lapack_int *iseed, double *d, lapack_int *mode, double *cond, double *dmax, char *ei,
char *rsign, char *upper, char *sim, double *ds, lapack_int *modes, double *conds,
lapack_int *kl, lapack_int *ku, double *anorm, double *a, lapack_int *lda, double *work,
lapack_int *info);void clatme (lapack_int *n, char *dist, lapack_int *iseed,
lapack_complex_float *d, lapack_int *mode, float *cond, lapack_complex_float *dmax,
char *ei, char *rsign, char *upper, char *sim, float *ds, lapack_int *modes, float
*conds, lapack_int *kl, lapack_int *ku, float *anorm, lapack_complex_float *a,
lapack_int *lda, lapack_complex_float *work, lapack_int *info);void zlatme (lapack_int
*n, char *dist, lapack_int *iseed, lapack_complex_double *d, lapack_int *mode, double
*cond, lapack_complex_double *dmax, char *ei, char *rsign, char *upper, char *sim,
double *ds, lapack_int *modes, double *conds, lapack_int *kl, lapack_int *ku, double
*anorm, lapack_complex_double *a, lapack_int *lda, lapack_complex_double *work,
lapack_int *info);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?latme routine generates random non-symmetric square matrices with specified eigenvalues. ?latme operates by applying the following sequence of operations:
1. Set the diagonal to \(d\), where \(d\) may be input or computed according to mode, cond, dmax, and rsign as described below.
2. If upper \(=\) ' \(T\) ', the upper triangle of \(a\) is set to random values out of distribution dist.
3. If sim='T', a is multiplied on the left by a random matrix \(X\), whose singular values are specified by \(d s\), modes, and conds, and on the right by \(X\) inverse.
4. If \(k l<n-1\), the lower bandwidth is reduced to \(k l\) using Householder transformations. If \(k u<n-1\), the upper bandwidth is reduced to ku.
5. If anorm is not negative, the matrix is scaled to have maximum-element-norm anorm.

\section*{NOTE}

Since the matrix cannot be reduced beyond Hessenberg form, no packing options are available.

\section*{Input Parameters}
\(n\)
dist
iseed
\(d\)
mode
cond

The number of columns (or rows) of \(A\).
On entry, dist specifies the type of distribution to be used to generate the random eigen-/singular values, and on the upper triangle (see upper).

If dist = 'U': uniform( 0, 1 )
If dist \(=\) 'S': uniform( \(-1,1\) )
If dist \(=\) 'N': normal( 0, 1)
If dist \(=\) ' \(D\) ': uniform on the complex disc \(|z|<1\).
Array, size 4.
On entry iseed specifies the seed of the random number generator. The elements should lie between 0 and 4095 inclusive, and iseed[3] should be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers.

Array, size ( \(n\) ). This array is used to specify the eigenvalues of \(A\).
If mode \(=0\), then \(d\) is assumed to contain the eigenvalues. Otherwise they are computed according to mode, cond, dmax, and rsign and placed in \(d\).

On entry mode describes how the eigenvalues are to be specified:
mode \(=0\) means use \(d\) (with ei for slatme and dlatme) as input.
mode \(=1\) sets \(d[0]=1\) and \(d(2: n]=1.0 /\) cond.
mode \(=2\) sets \(d[0: n-2]=1\) and \(d[n-1]=1.0 /\) cond.
mode \(=3\) sets \(d[i-1]=\operatorname{cond}{ }^{*}(-(i-1) /(n-1))\).
mode \(=4\) sets \(d[i-1]=1-(i-1) /(n-1) *(1-1 /\) cond \()\).
mode \(=5\) sets \(d\) to random numbers in the range ( \(1 /\) cond, 1 ) such that their logarithms are uniformly distributed.
mode \(=6\) sets \(d\) to random numbers from same distribution as the rest of the matrix.
mode \(<0\) has the same meaning as abs (mode), except that the order of the elements of \(d\) is reversed.
Thus if mode is between 1 and \(4, d\) has entries ranging from 1 to 1 /cond, if between -1 and \(-4, d\) has entries ranging from \(1 /\) cond to 1 .

On entry, this is used as described under mode above. If used, it must be \(\geq\) 1.
\begin{tabular}{|c|c|}
\hline dmax & If mode is not \(-6,0\) or 6 , the contents of \(d\) as computed according to mode and cond are scaled by dmax \(/ \max (\operatorname{abs}(d[i-1])\) ). Note that dmax needs not be positive or real: if dmax is negative or complex (or zero), \(d\) will be scaled by a negative or complex number (or zero). If rsign=' \(\mathrm{F}^{\prime}\) then the largest (absolute) eigenvalue will be equal to dmax. \\
\hline \multirow[t]{6}{*}{ei} & Used by slatme and dlatme only. \\
\hline & Array, size ( \(n\) ). \\
\hline & If mode \(=0\), and \(e i[0]\) is not ' ' (space character), this array specifies which elements of \(d\) (on input) are real eigenvalues and which are the real and imaginary parts of a complex conjugate pair of eigenvalues. The elements of ei may then only have the values 'R' and 'I'. \\
\hline & If ei[j-1] = 'R' and ei[j] = 'I', then the \(j\)-th eigenvalue is cmplx ( \(d[j-1], d[j])\), and the \((j+1)\)-th is the complex conjugate thereof. \\
\hline & If ei[j-1] = ei[j]='R', then the \(j\)-th eigenvalue is \(d[j-1]\) (i.e., real). ei [0] may not be 'I', nor may two adjacent elements of ei both have the value 'I'. \\
\hline & If mode is not 0 , then ei is ignored. If mode is 0 and \(e i[0]=\) ' ', then the eigenvalues will all be real. \\
\hline \multirow[t]{2}{*}{rsign} & If mode is not 0,6 , or -6 , and rsign \(=' T\) ', then the elements of \(d\), as computed according to mode and cond, are multiplied by a random sign (+1 or -1 ) for slatme and dlatme or by a complex number from the unit circle \(|z|=1\) for clatme and zlatme. \\
\hline & If rsign \(=\) ' \(F\) ', the elements of \(d\) are not multiplied. rsign may only have the values 'T' or 'F'. \\
\hline \multirow[t]{2}{*}{upper} & If upper = 'T', then the elements of a above the diagonal will be set to random numbers out of dist. \\
\hline & If upper = 'F', they will not. upper may only have the values 'T' or 'F'. \\
\hline sim & If sim = 'T', then a will be operated on by a "similarity transform", i.e., multiplied on the left by a matrix \(X\) and on the right by \(X\) inverse. \(X=U S V\), where \(U\) and \(V\) are random unitary matrices and \(S\) is a (diagonal) matrix of singular values specified by \(d s\), modes, and conds. \\
\hline & If sim = 'F', then a will not be transformed. \\
\hline ds & This array is used to specify the singular values of \(X\), in the same way that \(d\) specifies the eigenvalues of \(a\). If mode \(=0\), the \(d s\) contains the singular values, which may not be zero. \\
\hline modes & Similar to mode, but for specifying the diagonal of \(S\). modes \(=-6\) and +6 are not allowed (since they would result in randomly ill-conditioned eigenvalues.) \\
\hline conds & Similar to cond, but for specifying the diagonal of \(S\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline kl & This specifies the lower bandwidth of the matrix. \(k l=1\) specifies upper Hessenberg form. If \(k l\) is at least \(n-1\), then \(A\) will have full lower bandwidth. \\
\hline ku & This specifies the upper bandwidth of the matrix. \(k u=1\) specifies lower Hessenberg form. \\
\hline & If \(k u\) is at least \(n-1\), then a will have full upper bandwidth. \\
\hline & If \(k u\) and \(k u\) are both at least \(n-1\), then a will be dense. Only one of \(k u\) and \(k l\) may be less than \(n-1\). \\
\hline anorm & If anorm is not negative, then \(a\) is scaled by a non-negative real number to make the maximum-element-norm of a to be anorm. \\
\hline Ida & Number of rows of matrix \(A\). \\
\hline work & Array, size ( \(3 * n\) ) . Workspace. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

iseed

```
d
\(d s\)
a
info

This specifies the lower bandwidth of the matrix. kl = 1 specifies upper Hessenberg form. If \(k l\) is at least \(n-1\), then \(A\) will have full lower bandwidth.

This specifies the upper bandwidth of the matrix. \(k u=1\) specifies lower Hessenberg form.
If \(k u\) is at least \(n-1\), then a will have full upper bandwidth.
If \(k u\) and \(k u\) are both at least \(n-1\), then a will be dense. Only one of \(k u\) and \(k l\) may be less than \(n-1\).

If anorm is not negative, then \(a\) is scaled by a non-negative real number to make the maximum-element-norm of a to be anorm.

Array, size \(\left(3^{*} n\right)\). Workspace.

On exit, the seed is updated.
Modified if mode is nonzero.
Modified if mode is nonzero.
Array, size \(l d^{*} n\). On exit, \(a\) is the desired test matrix.
If info \(=0\), execution is successful.

If info \(=-1, n\) is negative .
If info \(=-2\), dist is an illegal string.
If info \(=-5\), mode is not in range -6 to 6 .
If info \(=-6\), cond is less than 1.0 , and mode is not \(-6,0\), or 6 .
If info \(=-9\), rsign is not 'T' or 'F'.
If info \(=-10\), upper is not 'T' or 'F'.
If info \(=-11\), sim is not 'T' or 'F'.
If info \(=-12\), modes \(=0\) and \(d s\) has a zero singular value.
If info \(=-13\), modes is not in the range -5 to 5 .
If info \(=-14\), modes is nonzero and conds is less than 1. .
If info \(=-15, k l\) is less than 1.
If info \(=-16, k u\) is less than 1 , or \(k l\) and \(k u\) are both less than \(n-1\).
If info \(=-19\), lda is less than \(m\).
If info \(=1\), error return from ? latm1 (computing \(d\) ).
If info \(=2\), cannot scale to dmax (max. eigenvalue is 0 ).
If info \(=3\), error return from slatm1(for slatme and clatme), dlatm1 (for dlatme and zlatme).

If info \(=4\), error return from ?large.

If info \(=5\), zero singular value from slatm1(for slatme and clatme), dlatm1(for dlatme and zlatme).

\section*{?latmr}

Generates random matrices of various types.

\section*{Syntax}
```

void slatmr (lapack_int *m, lapack_int *n, char *dist, lapack_int *iseed, char *sym,
float *d, lapack_int *mode, float *cond, float *dmax, char *rsign, char *grade, float
*dl, lapack_int *model, float *condl, float *dr, lapack_int *moder, float *condr, char
*pivtng, lapack_int *ipivot, lapack_int *kl, lapack_int *ku, float *sparse, float
*anorm, char *pack, float *a, lapack_int *lda, lapack_int *iwork, lapack_int *info);
void dlatmr (lapack_int *m, lapack_int *n, char *dist, lapack_int *iseed, char *sym,
double *d, lapack_int *mode, double *cond, double *dmax, char *rsign, char *grade,
double *dl, lapack_int *model, double *condl, double *dr, lapack_int *moder, double
*condr, char *pivtng, lapack_int *ipivot, lapack_int *kl, lapack_int *ku, double
*sparse, double *anorm, char *pack, double *a, lapack_int *lda, lapack_int *iwork,
lapack_int *info);
void clatmr (lapack_int *m, lapack_int *n, char *dist, lapack_int *iseed, char *sym,
lapack_complex *d, lapack_int *mode, float *cond, lapack_complex *dmax, char *rsign,
char *grade, lapack_complex *dl, lapack_int *model, float *condl, lapack_complex *dr,
lapack_int *moder, float *condr, char *pivtng, lapack_int *ipivot, lapack_int *kl,
lapack_int *ku, float *sparse, float *anorm, char *pack, float *a, lapack_int *lda,
lapack_int *iwork, lapack_int *info);
void zlatmr (lapack_int *m, lapack_int *n, char *dist, lapack_int *iseed, char *sym,
lapack_complex_double *d, lapack_int *mode, float *cond, lapack_complex_double *dmax,
char *rsign, char *grade, lapack_complex_double *dl, lapack_int *model, float *condl,
lapack_complex_double *dr, lapack_int *moder, float *condr, char *pivtng, lapack_int
*ipivot, lapack_int *kl, lapack_int *ku, float *sparse, float *anorm, char *pack, float
*a, lapack_int *lda, lapack_int *iwork, lapack_int *info);

```

\section*{Description}

The ?latmr routine operates by applying the following sequence of operations:
1. Generate a matrix \(A\) with random entries of distribution dist:

If sym = 'S', the matrix is symmetric,
If sym = 'H', the matrix is Hermitian,
If sym \(=\) ' \(N\) ', the matrix is nonsymmetric.
2. Set the diagonal to \(D\), where \(D\) may be input or computed according to mode, cond, dmax and rsign as described below.
3. Grade the matrix, if desired, from the left or right as specified by grade. The inputs \(d l, m o d e l\), condl, \(d r\), moder and condr also determine the grading as described below.
4. Permute, if desired, the rows and/or columns as specified by pivtng and ipivot.
5. Set random entries to zero, if desired, to get a random sparse matrix as specified by sparse.
6. Make \(A\) a band matrix, if desired, by zeroing out the matrix outside a band of lower bandwidth kl and upper bandwidth ku.
7. Scale \(A\), if desired, to have maximum entry anorm.
8. Pack the matrix if desired. See options specified by the pack parameter.

\section*{NOTE}

If two calls to ? latmr differ only in the pack parameter, they generate mathematically equivalent matrices. If two calls to ? latmr both have full bandwidth ( \(k 1=m-1\) and \(k u=n-1\) ), and differ only in the pivtng and pack parameters, then the matrices generated differ only in the order of the rows and columns, and otherwise contain the same data. This consistency cannot be and is not maintained with less than full bandwidth.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & Number of rows of \(A\). \\
\hline \(n\) & Number of columns of \(A\). \\
\hline \multirow[t]{5}{*}{dist} & On entry, dist specifies the type of distribution to be used to generate a random matrix. \\
\hline & If dist = 'U', real and imaginary parts are independent uniform( 0,1 ). \\
\hline & If dist \(=\) 'S', real and imaginary parts are independent uniform( \(-1,1\) ). \\
\hline & If dist \(=\) ' N ', real and imaginary parts are independent normal 0,1\()\). \\
\hline & If dist = 'D', distribution is uniform on interior of unit disk. \\
\hline \multirow[t]{2}{*}{iseed} & Array, size 4. \\
\hline & On entry, iseed specifies the seed of the random number generator. They should lie between 0 and 4095 inclusive, and iseed[3] should be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. \\
\hline \multirow[t]{3}{*}{sym} & If sym = 'S', generated matrix is symmetric. \\
\hline & If sym = 'H', generated matrix is Hermitian. \\
\hline & If sym = ' N ', generated matrix is nonsymmetric. \\
\hline d & On entry this array specifies the diagonal entries of the diagonal of \(A . d\) may either be specified on entry, or set according to mode and cond as described below. If the matrix is Hermitian, the real part of \(d\) is taken. May be changed on exit if mode is nonzero. \\
\hline \multirow[t]{7}{*}{mode} & On entry describes how \(d\) is to be used: \\
\hline & mode \(=0\) means use \(d\) as input. \\
\hline & mode \(=1\) sets \(d[0]=1\) and \(d[1: n-1]=1.0 /\) cond. \\
\hline & mode \(=2\) sets \(d[0: n-2]=1\) and \(d[n-1]=1.0 /\) cond \\
\hline & mode \(=3\) sets \(d[i-1]=\) cond** \((-(i-1) /(n-1))\). \\
\hline & mode \(=4\) sets \(d[i-1]=1-(i-1) /(n-1) *(1-1 /\) cond \()\). \\
\hline & mode \(=5\) sets \(d\) to random numbers in the range ( \(1 /\) cond , 1 ) such that their logarithms are uniformly distributed. \\
\hline
\end{tabular}
mode \(=6\) sets \(d\) to random numbers from same distribution as the rest of the matrix.
mode < 0 has the same meaning as abs (mode), except that the order of the elements of \(d\) is reversed.

Thus if mode is between 1 and 4, \(d\) has entries ranging from 1 to 1 /cond, if between -1 and \(-4, D\) has entries ranging from \(1 /\) cond to 1 .

On entry, used as described under mode above. If used, cond must be \(\geq 1\).
If mode is not \(-6,0\), or 6 , the diagonal is scaled by dmax / \(\max (\operatorname{abs}(d[i]))\), so that maximum absolute entry of diagonal is abs (dmax). If dmax is complex (or zero), the diagonal is scaled by a complex number (or zero).

If mode is not \(-6,0\), or 6 , specifies the sign of the diagonal as follows:
For slatmr and dlatmr, if rsign \(=\) ' \(T\) ', diagonal entries are multiplied 1 or -1 with a probability of 0.5 .

For clatmr and zlatmr, if rsign = 'T', diagonal entries are multiplied by a random complex number uniformly distributed with absolute value 1.

If rsign \(=\) ' \(F\) ', diagonal entries are unchanged.
Specifies grading of matrix as follows:
If grade \(=\) ' \(N\) ', there is no grading
If grade = 'L', matrix is premultiplied by diag( dl) (only if matrix is nonsymmetric)

If grade = 'R', matrix is postmultiplied by diag( \(d r\) ) (only if matrix is nonsymmetric)
If grade = 'B', matrix is premultiplied by diag( \(d l\) ) and postmultiplied by diag ( \(d r\) ) (only if matrix is nonsymmetric)
If grade \(=\) ' H ', matrix is premultiplied by diag( dl ) and postmultiplied by diag ( conjg (dl) ) (only if matrix is Hermitian or nonsymmetric)
If grade \(=\) ' \(S\) ', matrix is premultiplied by \(\operatorname{diag}(d l)\) and postmultiplied by diag ( \(d l\) ) (only if matrix is symmetric or nonsymmetric)
If grade = 'E', matrix is premultiplied by \(\operatorname{diag}(d I)\) and postmultiplied by inv ( diag( dl ) ) (only if matrix is nonsymmetric)

\section*{NOTE}
if grade \(=\) ' \(E\) ', then \(m\) must equal \(n\).

Array, size (m).
If model \(=0\), then on entry this array specifies the diagonal entries of a diagonal matrix used as described under grade above.
If model is not zero, then \(d l\) is set according to model and condl, analogous to the way \(D\) is set according to mode and cond (except there is no dmax parameter for dl).
If grade \(=\) ' \(E\) ', then \(d l\) cannot have zero entries.

Not referenced if grade \(=\) 'N' or 'R'. Changed on exit.
model
condl
\(d r\)
moder
condr
pivtng
ipivot
sparse

This specifies how the diagonal array \(d l\) is computed, just as mode specifies how \(D\) is computed.

When model is not zero, this specifies the condition number of the computed \(d l\).

If moder \(=0\), then on entry this array specifies the diagonal entries of a diagonal matrix used as described under grade above.

If moder is not zero, then \(d r\) is set according to moder and condr, analogous to the way \(d\) is set according to mode and cond (except there is no dmax parameter for \(d r\) ).

Not referenced if grade = 'N', 'L', 'H'S' or 'E'.
This specifies how the diagonal array \(d r\) is to be computed, just as mode specifies how \(d\) is to be computed.

When moder is not zero, this specifies the condition number of the computed \(d r\).

On entry specifies pivoting permutations as follows:
If pivtng \(=\) ' \(N\) ' or ' ': no pivoting permutation.
If pivtng = 'L': left or row pivoting (matrix must be nonsymmetric).
If pivtng = 'R': right or column pivoting (matrix must be nonsymmetric).
If pivtng = 'B' or 'F': both or full pivoting, i.e., on both sides. In this case, m must equal \(n\).

If two calls to ?latmr both have full bandwidth \((k l=m-1\) and \(k u=\) \(n-1)\), and differ only in the pivtng and pack parameters, then the matrices generated differs only in the order of the rows and columns, and otherwise contain the same data. This consistency cannot be maintained with less than full bandwidth.

Array, size ( \(n\) or \(m\) ) This array specifies the permutation used. After the basic matrix is generated, the rows, columns, or both are permuted.

If row pivoting is selected, ?latmr starts with the last row and interchanges row \(m\) and row ipivot \([m-1]\), then moves to the next-to-last row, interchanging rows [m-2] and row ipivot[m-2], and so on. In terms of "2-cycles", the permutation is (1 ipivot[0]) (2 ipivot[1]) ... (mipivot[m-1]) where the rightmost cycle is applied first. This is the inverse of the effect of pivoting in LINPACK. The idea is that factoring (with pivoting) an identity matrix which has been inverse-pivoted in this way should result in a pivot vector identical to ipivot. Not referenced if pivtng \(=\) 'N'.

On entry, specifies the sparsity of the matrix if a sparse matrix is to be generated. sparse should lie between 0 and 1 . To generate a sparse matrix, for each matrix entry a uniform ( 0,1 ) random number \(x\) is generated and compared to sparse; if \(x\) is larger the matrix entry is unchanged and if \(x\) is smaller the entry is set to zero. Thus on the average a fraction sparse of the entries is set to zero.
kl
ku

On entry, specifies the lower bandwidth of the matrix. For example, \(k I=0\) implies upper triangular, \(k I=1\) implies upper Hessenberg, and \(k I\) at least \(m-1\) implies the matrix is not banded. Must equal \(k u\) if matrix is symmetric or Hermitian.

On entry, specifies the upper bandwidth of the matrix. For example, \(k u=0\) implies lower triangular, \(k u=1\) implies lower Hessenberg, and kuat least \(n-1\) implies the matrix is not banded. Must equal \(k l\) if matrix is symmetric or Hermitian.

On entry, specifies maximum entry of output matrix (output matrix is multiplied by a constant so that its largest absolute entry equal anorm) if anorm is nonnegative. If anorm is negative no scaling is done.

On entry, specifies packing of matrix as follows:
If pack = 'N': no packing
If pack = 'U': zero out all subdiagonal entries (if symmetric or Hermitian)
If pack = 'L': zero out all superdiagonal entries (if symmetric or Hermitian)
If pack = 'C': store the upper triangle columnwise (only if matrix symmetric or Hermitian or square upper triangular)
If pack = 'R': store the lower triangle columnwise (only if matrix symmetric or Hermitian or square lower triangular) (same as upper half rowwise if symmetric) (same as conjugate upper half rowwise if Hermitian)
If pack = 'B': store the lower triangle in band storage scheme (only if matrix symmetric or Hermitian)

If pack = ' \(Q\) ': store the upper triangle in band storage scheme (only if matrix symmetric or Hermitian)

If pack = ' Z': store the entire matrix in band storage scheme (pivoting can be provided for by using this option to store \(A\) in the trailing rows of the allocated storage)

Using these options, the various LAPACK packed and banded storage schemes can be obtained:
\begin{tabular}{|ll|}
\hline LAPACK storage scheme & Value of pack \\
\hline GB & 'Z' \\
\(\mathrm{PB}, \mathrm{HB}\) or TB & 'B' or ' Q ' \\
\(\mathrm{PP}, \mathrm{HP}\) or TP & 'C' or ' \(\mathrm{R}^{\prime}\) \\
\hline
\end{tabular}

If two calls to ?latmr differ only in the pack parameter, they generate mathematically equivalent matrices.

On entry, lda specifies the first dimension of a as declared in the calling program.
```

If pack = 'N', 'U' or 'L', lda must be at least max(1, m).
If pack = 'C' or 'R', Ida must be at least 1.
If pack = 'B', or 'Q', lda must be min(ku + 1, n).

```

If pack = ' Z ', lda must be at least kuu \(+k l l+1\), where kuu \(=\) \(\min (k u, n-1)\) and \(k l l=\min (k l, n-1)\).
iwork

\section*{Output Parameters}

On exit, the seed is changed.
May be changed on exit if mode is nonzero.
On exit, array is changed.
On exit, array is changed.
On exit, \(a\) is the desired test matrix. Only those entries of a which are significant on output is referenced (even if \(a\) is in packed or band storage format). The unoccupied corners of \(a\) in band format are zeroed out.

If info \(=0\), the execution is successful.
If info \(=-1, m\) is negative or unequal to \(n\) and \(s y m=\) ' \(S\) ' or ' \(H\) '.
If info \(=-2, n\) is negative .
If info \(=-3\), dist is an illegal string.
If info \(=-5\), sym is an illegal string..
If info \(=-7\), mode is not in range -6 to 6 .
If info \(=-8\), cond is less than 1.0 , and mode is neither \(-6,0\) nor 6 .
If info \(=-10\), mode is neither \(-6,0\) nor 6 and rsign is an illegal string.
If info \(=-11\), grade is an illegal string, or grade \(=\) ' \(E\) ' and \(m\) is not equal to \(n\), or grade='L', 'R', 'B', 'S' or 'E' and sym = 'H', or grade = 'L', 'R', 'B', 'H' or 'E' and sym = 'S'

If info \(=-12\),grade \(=\) ' E 'and dl contains zero.
If info \(=-13\), model is not in range -6 to 6 and grade \(=\) 'L', 'B', 'H', 'S' or 'E'.

If info = -14, condl is less than 1.0, grade = 'L', 'B', 'H', ' \(S\) ' or ' \(E\) ', and model is neither \(-6,0\) nor 6 .

If info \(=-16\), moder is not in range -6 to 6 and grade \(=\) ' R ' or 'B'.

If info \(=-17\), condr is less than 1.0 , grade \(=\) ' \(R\) ' or ' \(B\) ', and moder is neither \(-6,0\) nor 6 .
If info \(=-18\), pivtng is an illegal string, or pivtng \(={ }^{\prime} B^{\prime}\) or \({ }^{\prime} \mathrm{F}^{\prime}\) and \(m\) is not equal to \(n\), or pivtng = 'L' or 'R' and sym = 'S' or 'H'.

If info = -19, ipivot contains out of range number and pivtng is not equal to ' N '.

If info \(=-20, k l\) is negative.
If info \(=-21, k u\) is negative, or \(s y m=' S '\) or 'H' and \(k u\) not equal to \(k l\).

If info \(=-22\), sparse is not in range 0 to 1 .
If info \(=-24\), pack is an illegal string, or pack = 'U', 'L', 'B' or 'Q' and sym = 'N', or pack = 'C' and sym = 'N' and either \(k l\) is not equal to 0 or \(n\) is not equal to \(m\), or pack \(=' R\) ' and sym \(=\) ' N ', and either \(k u\) is not equal to 0 or \(n\) is not equal to \(m\).

If info \(=-26\), Ida is too small.
If info \(=1\), error return from ?latm1 (computing \(D\) ).
If info \(=2\), cannot scale to dmax (max. entry is 0 ) .
If info \(=3\), error return from ?latm1(computing \(d l\) ).
If info \(=4\), error return from ?latm1 (computing \(d r\) ).
If info = 5, anorm is positive, but matrix constructed prior to attempting to scale it to have norm anorm, is zero .

\section*{?lauum}

Computes the product \(U^{\star} U^{T}\left(U^{\star} U^{H}\right)\) or \(L^{T}{ }^{*} L\left(L^{H} \star L\right)\), where \(U\) and \(L\) are upper or lower triangular matrices (blocked algorithm).

\section*{Syntax}
```

lapack_int LAPACKE_slauum (int matrix_layout, char uplo, lapack_int n , float * a ,
lapack_int lda);
lapack_int LAPACKE_dlauum (int matrix_layout, char uplo, lapack_int n , double * a ,
lapack_int lda);
lapack_int LAPACKE_clauum (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_float * a , lapack_int lda);
lapack_int LAPACKE_zlauum (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_double * a , lapack_int lda);

```

Include Files
- mkl.h

\section*{Description}

The routine ?lauum computes the product \(U^{\star} U^{T}\) or \(L^{T \star} L\) for real flavors, and \(U^{\star} U^{H}\) or \(L^{H \star} L\) for complex flavors. Here the triangular factor \(U\) or \(L\) is stored in the upper or lower triangular part of the array \(a\).
If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor \(U\) in \(A\). If uplo = 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor \(L\) in \(A\).
This is the blocked form of the algorithm, calling BLAS Level 3 Routines.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
```

uplo
n
a
lda
Specifies whether the triangular factor stored in the array a is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular
The order of the triangular factor U or $L . n \geq 0$.
Array of size max(1,Ida*n).
On entry, the triangular factor U or L.
The leading dimension of the array a. $1 d a \geq \max (1, n)$.

```

\section*{Output Parameters}
a
On exit,
if uplo = 'U', then the upper triangle of \(a\) is overwritten with the upper triangle of the product \(U^{\star} U^{T}\left(U^{\star} U^{H}\right)\);
if uplo = 'L', then the lower triangle of \(a\) is overwritten with the lower triangle of the product \(L^{T \star} L\left(L^{H \star} L\right)\).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-k\), the \(k\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?syswapr}

Applies an elementary permutation on the rows and columns of a symmetric matrix.

\section*{Syntax}
```

lapack_int LAPACKE_ssyswapr (int matrix_layout, char uplo, lapack_int n , float * a ,
lapack_int il , lapack_int i2);
lapack_int LAPACKE_dsyswapr (int matrix_layout, char uplo, lapack_int n , double *
a , lapack_int il , lapack_int i2);
lapack_int LAPACKE_csyswapr (int matrix_layout, char uplo , lapack_int n ,
lapack_complex_float * a , lapack_int il , lapack_int i2);
lapack_int LAPACKE_zsyswapr (int matrix_layout, char uplo, lapack_int n ,
lapack_complex_double * a , lapack_int i1 , lapack_int i2);

```

Include Files
- mkl.h

\section*{Description}

The routine applies an elementary permutation on the rows and columns of a symmetric matrix.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
```

matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or
column major (LAPACK_COL_MAJOR).
Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the
factorization A =U*D**UT
If uplo = 'L', the array a stores the lower triangular factor L of the
factorization A = L* D* 焐.
The order of matrix A; n\geq0.
The number of right-hand sides; nrhs\geq0.
Array of size at least max (1,Ida* n).
The array a contains the block diagonal matrix D and the multipliers used to
obtain the factor }U\mathrm{ or }L\mathrm{ as computed by ?sytrf.
Index of the first row to swap.
Index of the second row to swap.

```

\section*{Output Parameters}
a
If info \(=0\), the symmetric inverse of the original matrix.
If info = 'U', the upper triangular part of the inverse is formed and the part of \(A\) below the diagonal is not referenced.
If info = 'L', the lower triangular part of the inverse is formed and the part of \(A\) above the diagonal is not referenced.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{See Also}
?sytrf
?heswapr
Applies an elementary permutation on the rows and columns of a Hermitian matrix.

\section*{Syntax}
lapack_int LAPACKE_cheswapr (int matrix_layout, char uplo, lapack_int \(n\),
lapack_complex_float* a, lapack_int il, lapack_int i2);
```

lapack_int LAPACKE_zheswapr (int matrix_layout, char uplo, lapack_int n,
lapack_complex_double* a, lapack_int il, lapack_int i2);

```

Include Files
- mkl.h

\section*{Description}

The routine applies an elementary permutation on the rows and columns of a Hermitian matrix.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major ( LAPACK_COL_MAJOR ). \\
\hline \multirow[t]{4}{*}{uplo} & Must be 'U' or 'L'. \\
\hline & Indicates how the input matrix \(A\) has been factored: \\
\hline & If uplo = 'U', the array a stores the upper triangular factor \(U\) of the factorization \(A=U^{\star} D^{\star} U^{H}\). \\
\hline & If uplo = 'L', the array a stores the lower triangular factor \(L\) of the factorization \(A=L^{\star} D^{*} L^{H}\). \\
\hline \(n\) & The order of matrix \(A ; n \geq 0\). \\
\hline nrhs & The number of right-hand sides; nrhs \(\geq 0\). \\
\hline \multirow[t]{2}{*}{a} & Array of size at least max (1, lda* \(n\) ). \\
\hline & The array a contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) as computed by ?hetrf. \\
\hline i1 & Index of the first row to swap. \\
\hline i2 & Index of the second row to swap. \\
\hline
\end{tabular}

\section*{Output Parameters}

If info \(=0\), the inverse of the original matrix.
If info = 'U', the upper triangular part of the inverse is formed and the part of \(A\) below the diagonal is not referenced.
If info = 'L', the lower triangular part of the inverse is formed and the part of \(A\) above the diagonal is not referenced.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{See Also}
?hetrf

\section*{?sfrk}

Performs a symmetric rank-k operation for matrix in RFP format.

\section*{Syntax}
```

lapack_int LAPACKE_ssfrk (int matrix_layout, char transr, char uplo, char trans,
lapack_int n , lapack_int k , float alpha, const float * a , lapack_int lda , float
beta , float * c);
lapack_int LAPACKE_dsfrk (int matrix_layout, char transr, char uplo, char trans,
lapack_int n, lapack_int k , double alpha, const double * a , lapack_int lda , double
beta, double * c);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?sfrk routines perform a matrix-matrix operation using symmetric matrices. The operation is defined as
\[
C:=a l p h a^{\star} A^{\star} A^{T}+b e t a^{\star} C,
\]
or
\[
C:=a l p h a^{\star} A^{T \star} A+b e t a^{\star} C,
\]
where:
alpha and beta are scalars,
\(C\) is an \(n\)-by- \(n\) symmetric matrix in rectangular full packed (RFP) format,
\(A\) is an \(n\)-by- \(k\) matrix in the first case and a \(k\)-by-n matrix in the second case.
Input Parameters
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major ( LAPACK COL MAJOR ). \\
\hline \multirow[t]{2}{*}{transr} & if transr = 'N' or 'n', the normal form of RFP C is stored; \\
\hline & if transr= 'T' or 't', the transpose form of RFP C is stored. \\
\hline \multirow[t]{3}{*}{uplo} & Specifies whether the upper or lower triangular part of the array \(c\) is used. \\
\hline & If uplo = 'U' or 'u', then the upper triangular part of the array \(c\) is used. \\
\hline & If uplo = 'L' or 'l', then the low triangular part of the array \(c\) is used. \\
\hline \multirow[t]{3}{*}{trans} & Specifies the operation: \\
\hline & if trans \(=\) 'N' or 'n', then \(C:=a l p h a \star A \star A{ }^{T}+\) beta* \(C\); \\
\hline & if trans \(=\) 'T' or 't', then \(C:=a l p h a * A^{T \star} A+\) beta* \(C\); \\
\hline
\end{tabular}
n
Specifies the order of the matrix \(C\). The value of \(n\) must be at least zero.
k
alpha
a

Ida
beta
c

On entry with trans \(=\) ' \(N\) ' or ' \(n\) ', \(k\) specifies the number of columns of the matrix \(A\), and on entry with trans \(=\) ' \(T\) ' or 't', \(k\) specifies the number of rows of the matrix \(A\).

The value of \(k\) must be at least zero.
Specifies the scalar alpha.
Array, size \(\max \left(1, I d a^{\star} k a\right)\), where \(k a\) is in the following table:
\begin{tabular}{|lll|}
\hline & Col_major & Row_major \\
trans \(={ }^{\prime} \mathrm{N}^{\prime}\) & \(k\) & \(n\) \\
trans \(={ }^{\prime} \mathrm{T}^{\prime}\) & \(n\) & \(k\) \\
\hline
\end{tabular}

Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', the leading \(n\)-by- \(k\) part of the array a must contain the matrix \(A\), otherwise the leading \(k\)-by- \(n\) part of the array a must contain the matrix \(A\).

Specifies the leading dimension of \(a\) as declared in the calling (sub)program. Ida is defined by the following table:
\begin{tabular}{|lll|}
\hline & Col_major & Row_major \\
trans \(={ }^{\prime} \mathrm{N}^{\prime}\) & \(\max (1, n)\) & \(\max (1, k)\) \\
trans \(={ }^{\prime} \mathrm{T}^{\prime}\) & \(\max (1, k)\) & \(\max (1, n)\) \\
\hline
\end{tabular}

Specifies the scalar beta.
Array, size \(\left(n^{*}(n+1) / 2\right)\). Before entry contains the symmetric matrix \(C\) in RFP format.

\section*{Output Parameters}
c
If trans \(=\) ' \(N\) ' or ' \(n\) ', then \(c\) contains \(C:=\) alpha* \(A^{*} A^{\prime}+\) beta* \(^{*} C\);
if trans \(=\) 'T' or 't', then contains \(C:=a l p h a \star A ' \star A+b e t a \star C\);

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info < 0 , the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?hfrk}

Performs a Hermitian rank-k operation for matrix in RFP format.

\section*{Syntax}
```

lapack_int LAPACKE_chfrk(int matrix_layout, char transr, char uplo, char trans,
lapack_int n, lapack_int k, float alpha, const lapack_complex_float* a, lapack_int lda,
float beta, lapack_complex_float* c);

```
```

lapack_int LAPACKE_zhfrk(int matrix_layout, char transr, char uplo, char trans,
lapack_int n, lapack_int k, double alpha, const lapack_complex_double* a, lapack_int
lda, double beta, lapack_complex_double* c);

```

Include Files
- mkl.h

\section*{Description}

The ?hfrk routines perform a matrix-matrix operation using Hermitian matrices. The operation is defined as
```

C := alpha* A\star A}\mp@subsup{A}{}{H}+\mp@subsup{b}{\mathrm{ beta* }}{

```
or
```

C := alpha* A}\mp@subsup{A}{}{H\star}A+\mathrm{ beta*C,

```
where:
alpha and beta are real scalars,
\(C\) is an \(n\)-by- \(n\) Hermitian matrix in RFP format,
\(A\) is an \(n\)-by- \(k\) matrix in the first case and a \(k\)-by- \(n\) matrix in the second case.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major ( LAPACK_COL_MAJOR ). \\
\hline \multirow[t]{2}{*}{transr} & if transr \(=\) ' \(N\) ' or 'n', the normal form of RFP C is stored; \\
\hline & if transr \(=\) ' C ' or ' C ', the conjugate-transpose form of RFP \(C\) is stored. \\
\hline \multirow[t]{3}{*}{uplo} & Specifies whether the upper or lower triangular part of the array \(c\) is used. \\
\hline & If uplo = 'U' or 'u', then the upper triangular part of the array \(c\) is used. \\
\hline & If uplo = 'L' or 'l', then the low triangular part of the array \(c\) is used. \\
\hline \multirow[t]{3}{*}{trans} & Specifies the operation: \\
\hline & if trans \(=\) ' \(N\) ' or 'n', then \(C:=a l p h a * A * A^{H}+\) beta* \({ }^{\text {a }}\); \\
\hline & if trans \(=\) ' \(C^{\prime}\) or ' \(C^{\prime}\), then \(C:=a l p h a * A^{H \star} A+\) beta* \(C\). \\
\hline \(n\) & Specifies the order of the matrix \(C\). The value of \(n\) must be at least zero. \\
\hline \multirow[t]{2}{*}{k} & On entry with trans \(=\) 'N' or 'n', \(k\) specifies the number of columns of the matrix \(a\), and on entry with trans \(=\) 'T' or 't' or 'C' or 'c', \(k\) specifies the number of rows of the matrix \(a\). \\
\hline & The value of \(k\) must be at least zero. \\
\hline alpha & Specifies the scalar alpha. \\
\hline \multirow[t]{3}{*}{a} & Array, size max ( \(1, I d a^{*} k a\), where \(k a\) is in the following table: \\
\hline & Col_major Row_major \\
\hline & trans \({ }^{\text {' }} \mathrm{N}\) ' \(k n\) \\
\hline
\end{tabular}
trans \(={ }^{\prime} \mathrm{T}^{\prime} \quad n \quad k\)

Before entry with trans \(=\) 'N' or ' \(n\) ', the leading \(n\)-by- \(k\) part of the array a must contain the matrix \(A\), otherwise the leading \(k\)-by- \(n\) part of the array a must contain the matrix \(A\).

Ida
Specifies the leading dimension of \(a\) as declared in the calling (sub)program. Ida is defined by the following table:
\begin{tabular}{|lll|}
\hline & Col_major & Row_major \\
trans \(=^{\prime} \mathrm{N}^{\prime}\) & \(\max (1, n)\) & \(\max (1, k)\) \\
trans \(={ }^{\prime} \mathrm{T}^{\prime}\) & \(\max (1, k)\) & \(\max (1, n)\) \\
\hline
\end{tabular}

Specifies the scalar beta.
Array, size \(\left(n^{*}(n+1) / 2\right)\). Before entry contains the Hermitian matrix \(C\) in in RFP format.

\section*{Output Parameters}
c
\[
\begin{aligned}
& \text { If trans }=\text { 'N' or 'n', then } c \text { contains } C:=a l p h a^{\star} A^{*} A^{H}+\text { beta* } C \text {; } \\
& \text { if trans }=\text { 'C' or ' } C \text { ', then } C \text { contains } C:=a l p h a^{*} A^{H *} A+\text { beta* } C
\end{aligned}
\]

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info < 0 , the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?tfsm}

Solves a matrix equation (one operand is a triangular matrix in RFP format).

\section*{Syntax}
```

lapack_int LAPACKE_stfsm (int matrix_layout , char transr, char side , char uplo,
char trans, char diag , lapack_int m , lapack_int n , float alpha, const float * a ,
float * b , lapack_int ldb);
lapack_int LAPACKE_dtfsm (int matrix_layout , char transr, char side , char uplo,
char trans , char diag , lapack_int m}, lapack_int n , double alpha, const double * a ,
double * b , lapack_int ldb);
lapack_int LAPACKE_ctfsm (int matrix_layout , char transr, char side , char uplo,
char trans , char diag , lapack_int m}, lapack_int n , lapack_complex_float alpha
const lapack_complex_float * a , lapack_complex_float * b , lapack_int ldb);
lapack_int LAPACKE_ztfsm (int matrix_layout , char transr, char side , char uplo,
char trans , char diag , lapack_int m , lapack_int n , lapack_complex_double alpha ,
const lapack_complex_double * a , lapack_complex_double * b , lapack_int ldb);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ?tfsm routines solve one of the following matrix equations:
\[
o p(A) * X=a l p h a * B
\]
or
\[
X^{\star} o p(A)=a l p h a^{\star} B
\]
where:
alpha is a scalar,
\(X\) and \(B\) are \(m\)-by- \(n\) matrices,
\(A\) is a unit, or non-unit, upper or lower triangular matrix in rectangular full packed (RFP) format. \(o p(A)\) can be one of the following:
- \(\mathrm{op}(A)=A\) or op \((A)=A^{T}\) for real flavors
- \(\mathrm{op}(A)=A\) or op \((A)=A^{H}\) for complex flavors

The matrix \(B\) is overwritten by the solution matrix \(X\).

\section*{Input Parameters}
```

matrix_layout Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR)
or column major (LAPACK_COL_MAJOR).
transr if transr = 'N' or 'n', the normal form of RFP A is stored;
if transr = 'T' or 't', the transpose form of RFP A is stored;
if transr = 'C' or 'c', the conjugate-transpose form of RFP A is stored.
Specifies whether op (A) appears on the left or right of X in the equation:
if side = 'L' or 'l', then op (A)*X = alpha*B;
if side = 'R' or 'r', then }\mp@subsup{X}{}{*}op(A) = alpha*B

```
uplo
trans
diag

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major ( LAPACK_COL_MAJOR ).
if transr \(=\) 'N' or 'n', the normal form of RFP \(A\) is stored;
if transr \(=\) ' \(T\) ' or 't', the transpose form of RFP \(A\) is stored;
if transr \(=\) ' C ' or ' C ', the conjugate-transpose form of RFP \(A\) is stored.
Specifies whether op (A) appears on the left or right of \(X\) in the equation:
if side \(=\) 'L' or 'l', then op \((A) * X=\) alpha* \(B\);
if side \(=\) ' \(R\) ' or 'r', then \(X^{\star} O p(A)=\) alpha* \(B\).
Specifies whether the RFP matrix \(A\) is upper or lower triangular:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or 'l', then the matrix is low triangular.
Specifies the form of op ( \(A\) ) used in the matrix multiplication:
if trans \(=\) ' \(N\) ' or ' \(n\) ', then op \((A)=A\);
if trans \(=\) 'T' or 't', then op \((A)=A\) ';
if trans \(=\) ' C' or 'C', then op \((A)=\operatorname{conjg}(A ')\).
Specifies whether the RFP matrix \(A\) is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if \(\operatorname{diag}=\) 'N' or 'n', then the matrix is not unit triangular.
```

m
n
alpha
a
b
ldb
Specifies the number of rows of B. The value of m must be at least zero. Specifies the number of columns of B. The value of n must be at least zero. Specifies the scalar alpha.
When alpha is zero, then a is not referenced and b need not be set before entry.
Array, size $\left(n^{*}(n+1) / 2\right)$. Contains the matrix A in RFP format.
Array, size $\max \left(1, \quad l d b^{\star} n\right)$ for column major and max(1, $1 d b^{*} m$) for row major.
Before entry, the leading m-by-n part of the array b must contain the righthand side matrix B.
Specifies the leading dimension of b as declared in the calling (sub) program. The value of $I d b$ must be at least max $(1, m)$ for column major and max $(1, n)$ for row major.

```

\section*{Output Parameters}
b
Overwritten by the solution matrix \(X\).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(<0\), the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?tfttp}

Copies a triangular matrix from the rectangular full packed format (TF) to the standard packed format (TP).

\section*{Syntax}
```

lapack_int LAPACKE_stfttp (int matrix_layout, char transr, char uplo, lapack_int n,
const float * arf , float * ap);
lapack_int LAPACKE_dtfttp (int matrix_layout, char transr, char uplo, lapack_int n ,
const double * arf, double * ap);
lapack_int LAPACKE_ctfttp (int matrix_layout, char transr, char uplo, lapack_int n ,
const lapack_complex_float * arf , lapack_complex_float * ap);
lapack_int LAPACKE_ztfttp (int matrix_layout, char transr, char uplo, lapack_int n ,
const lapack_complex_double * arf , lapack_complex_double * ap);

```

Include Files
- mkl.h

\section*{Description}

The routine copies a triangular matrix \(A\) from the Rectangular Full Packed (RFP) format to the standard packed format. For the description of the RFP format, see Matrix Storage Schemes.

\section*{Input Parameters}
\begin{tabular}{ll} 
matrix_layout & \begin{tabular}{l} 
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) \\
or column major ( LAPACK_COL_MAJOR ).
\end{tabular} \\
\begin{tabular}{ll} 
transr & \(=\) ' N ': arf is in the Normal format, \\
& \(=\) ' T ': arf is in the Transpose format (for stfttp and dtfttp), \\
& \(=\) 'C': arf is in the Conjugate-transpose format (for ctfttp and ztfttp). \\
uplo & Specifies whether \(A\) is upper or lower triangular: \\
& \(=\) 'U': A is upper triangular, \\
& \(=\) 'L': A is lower triangular. \\
\(n\) & The order of the matrix \(A . n \geq 0\). \\
arf & Array, size at least max \((1, n *(n+1) / 2)\).
\end{tabular} \\
& On entry, the upper or lower triangular matrix \(A\) stored in the RFP format.
\end{tabular}

\section*{Output Parameters}
ap
Array, size at least max \(\left(1, n^{*}(n+1) / 2\right)\).
On exit, the upper or lower triangular matrix \(A\), packed columnwise in a linear array.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info < 0 , the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.
?tfttr
Copies a triangular matrix from the rectangular full
packed format (TF) to the standard full format (TR) .

\section*{Syntax}
```

lapack_int LAPACKE_stfttr (int matrix_layout, char transr, char uplo , lapack_int n ,
const float * arf , float * a , lapack_int lda);
lapack_int LAPACKE_dtfttr (int matrix_layout, char transr, char uplo , lapack_int n ,
const double * arf, double * a , lapack_int lda);
lapack_int LAPACKE_ctfttr (int matrix_layout, char transr, char uplo, lapack_int n ,
const lapack_complex_float * arf, lapack_complex_float * a , lapack_int lda);
lapack_int LAPACKE_ztfttr (int matrix_layout, char transr, char uplo, lapack_int n ,
const lapack_complex_double * arf, lapack_complex_double * a , lapack_int lda);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine copies a triangular matrix A from the Rectangular Full Packed (RFP) format to the standard full format. For the description of the RFP format, see Matrix Storage Schemes.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major ( LAPACK_COL_MAJOR ). \\
\hline \multirow[t]{2}{*}{transr} & \(=\) ' N ': arf is in the Normal format, \\
\hline & \[
\begin{aligned}
& =\text { ' } T^{\prime}: \text { arf is in the Transpose format (for stfttr and dtfttr), } \\
& =\text { ' } C^{\prime}: \text { arf is in the Conjugate-transpose format (for ctfttr and ztfttr). }
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{uplo} & Specifies whether \(A\) is upper or lower triangular: \\
\hline & = ' U ': A is upper triangular, \\
\hline & = 'L': A is lower triangular. \\
\hline \(n\) & The order of the matrices arf and a. \(n \geq 0\). \\
\hline \multirow[t]{2}{*}{\(\operatorname{arf}\)} & Array, size at least \(\max \left(1, n^{*}(n+1) / 2\right)\). \\
\hline & On entry, the upper or lower triangular matrix \(A\) stored in the RFP format. \\
\hline Ida & The leading dimension of the array \(a . I d a \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
Array, size max (1, lda *n).
On exit, the triangular matrix \(A\). If uplo = 'U', the leading \(n\)-by-n upper triangular part of the array a contains the upper triangular matrix, and the strictly lower triangular part of \(a\) is not referenced. If uplo = 'L', the leading n-by-n lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of \(a\) is not referenced.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info < 0 , the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?tpqrt2}

Computes a QR factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for \(Q\).

\section*{Syntax}
```

lapack_int LAPACKE_stpqrt2 (int matrix_layout, lapack_int m, lapack_int n, lapack_int
l, float * a, lapack_int lda, float * b, lapack_int ldb, float * t, lapack_int ldt);
lapack_int LAPACKE_dtpqrt2 (int matrix_layout, lapack_int m, lapack_int n, lapack_int
l, double * a, lapack_int lda, double * b, lapack_int ldb, double * t, lapack_int ldt);
lapack_int LAPACKE_ctpqrt2 (int matrix_layout, lapack_int m, lapack_int n, lapack_int
l, lapack_complex_float * a, lapack_int lda, lapack_complex_float * b, lapack_int ldb,
lapack_complex_float * t, lapack_int ldt);
lapack_int LAPACKE_ztpqrt2 (int matrix_layout, lapack_int m, lapack_int n, lapack_int
l, lapack_complex_double * a, lapack_int lda, lapack_complex_double * b, lapack_int
ldb, lapack_complex_double * t, lapack_int ldt);

```

Include Files
- mkl.h

\section*{Description}

The input matrix \(C\) is an \((n+m)\)-by- \(n\) matrix
\[
C=\left[\begin{array}{l}
A \\
B
\end{array}\right] \leftarrow n \times n \text { upper triangular }
\]
where \(A\) is an \(n\)-by- \(n\) upper triangular matrix, and \(B\) is an m-by-n pentagonal matrix consisting of an ( \(m-1\) )-by-n rectangular matrix \(B 1\) on top of an 1 -by- \(n\) upper trapezoidal matrix \(B 2\) :
\[
B=\left[\begin{array}{c}
B 1 \\
B 2
\end{array}\right] \leftarrow(m-l) \times n \text { rectangular }
\]

The upper trapezoidal matrix \(B 2\) consists of the first 1 rows of an \(n\)-by-n upper triangular matrix, where \(0 \leq\) \(I \leq \min (m, n)\). If \(I=0, B\) is an \(m\)-by- \(n\) rectangular matrix. If \(m=l=n, B\) is upper triangular. The matrix \(W\) contains the elementary reflectors \(H(i)\) in the \(i\) th column below the diagonal (of \(A\) ) in the ( \(n+m\) )-by-n input matrix \(C\) so that \(W\) can be represented as
\[
W=\left[\begin{array}{c}
I \\
V
\end{array}\right] \leftarrow n \times n \text { identity }
\]

Thus, \(V\) contains all of the information needed for \(W\), and is returned in array \(b\).

\section*{NOTE}
\(V\) has the same form as \(B\) :
\[
V=\left[\begin{array}{c}
V 1 \\
V 2
\end{array}\right] \leftarrow(m-l) \times n \text { rectangular }
\]

The columns of \(V\) represent the vectors which define the \(H(i)\) s.
The \((m+n)\)-by- \((m+n)\) block reflector \(H\) is then given by
\(H=I-W^{\star} T^{\star} W^{\mathbb{T}}\) for real flavors, and
\(H=I-W^{*} T^{*} W^{H}\) for complex flavors
where \(W^{\top}\) is the transpose of \(W, W^{H}\) is the conjugate transpose of \(W\), and \(T\) is the upper triangular factor of the block reflector.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major ( LAPACK_COL_MAJOR ). \\
\hline m & The total number of rows in the matrix \(B(m \geq 0)\). \\
\hline \(n\) & The number of columns in \(B\) and the order of the triangular matrix \(A(n \geq\) \(0)\). \\
\hline 1 & The number of rows of the upper trapezoidal part of \(B(\min (m, n) \geq 1 \geq 0)\). \\
\hline \(a, b\) & Arrays: a, size \(\max \left(1, I d a *_{n}\right)\) contains the \(n\)-by- \(n\) upper triangular matrix A. \\
\hline & b, size \(\max \left(1, I d b^{*} n\right)\) for column major and \(\max \left(1, I d b^{*} m\right)\) for row major, the pentagonal \(m\)-by- \(n\) matrix \(B\). The first ( \(m-1\) ) rows contain the rectangular \(B 1\) matrix, and the next 1 rows contain the upper trapezoidal \(B 2\) matrix. \\
\hline lda & The leading dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & The leading dimension of \(b\); at least \(\max (1, m)\) for column major and \(\max (1, n)\) for row major. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
The elements on and above the diagonal of the array contain the upper triangular matrix \(R\).

The pentagonal matrix \(V\).
Array, size \(\max \left(1, I d t *_{n}\right)\).
The upper \(n\)-by- \(n\) upper triangular factor \(T\) of the block reflector.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(<0\) and info \(=-i\), the \(i\) th argument had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?tprfb}

Applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex matrix, which is composed of two blocks.

\section*{Syntax}
```

lapack_int LAPACKE_stprfb (int matrix_layout, char side, char trans, char direct, char
storev, lapack_int m, lapack_int n, lapack_int k, lapack_int l, const float * v,
lapack_int ldv, const float * t, lapack_int ldt, float * a, lapack_int lda, float * b,
lapack_int ldb);
lapack_int LAPACKE_dtprfb (int matrix_layout, char side, char trans, char direct, char
storev, lapack_int m, lapack_int n, lapack_int k, lapack_int l, const double * v,
lapack_int ldv, const double * t, lapack_int ldt, double * a, lapack_int lda, double *
b, lapack_int ldb);
lapack_int LAPACKE_ctprfb (int matrix_layout, char side, char trans, char direct, char
storev, lapack_int m, lapack_int n, lapack_int k, lapack_int l, const
lapack_complex_float * v, lapack_int ldv, const lapack_complex_float * t, lapack_int
ldt, lapack_complex_float * a, lapack_int lda, lapack_complex_float * b, lapack_int
Idb) ;
lapack_int LAPACKE_ztprfb (int matrix_layout, char side, char trans, char direct, char
storev, lapack_int m, lapack_int n, lapack_int k, lapack_int l, const
lapack_complex_double * v, lapack_int ldv, const lapack_complex_double * t, lapack_int
ldt, lapack_complex_double * a, lapack_int lda, lapack_complex_double * b, lapack_int
Idb);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The ? tprfb routine applies a real or complex "triangular-pentagonal" block reflector \(H, H^{\top}\), or \(H^{H}\) from either the left or the right to a real or complex matrix \(C\), which is composed of two blocks \(A\) and \(B\).
The block \(B\) is \(m-b y-n\). If side \(=\) 'R', \(A\) is \(m-b y-k\), and if side \(=\) 'L', \(A\) is of size \(k\)-by- \(n\).
\[
\begin{aligned}
& \text { direct }=\text { ' } \mathrm{F} \text { ' direct }=\text { ' } \mathrm{B} \text { ' } \\
& \text { side }=\text { ' } \mathrm{R} \text { ' } C=\left[\begin{array}{ll}
A & B
\end{array}\right] \quad C=\left[\begin{array}{ll}
B & A
\end{array}\right] \\
& \text { side }=\text { 'L' } \quad C=\left[\begin{array}{l}
A \\
B
\end{array}\right] \quad C=\left[\begin{array}{l}
B \\
A
\end{array}\right]
\end{aligned}
\]

The pentagonal matrix \(V\) is composed of a rectangular block \(V 1\) and a trapezoidal block \(V 2\). The size of the trapezoidal block is determined by the parameter \(l\), where \(0 \leq l \leq k\). if \(l=k\), the \(V 2\) block of \(V\) is triangular; if \(l=0\), there is no trapezoidal block, thus \(V=V 1\) is rectangular.
\begin{tabular}{|c|c|c|}
\hline & direct='F' & direct='В' \\
\hline storev='C' & \(V 2\) is upper trapezoidal (first \(l\) rows of \(k-b y-k\) upper triangular) & V2 is lower trapezoidal (last 1 rows of \(k\)-by- \(k\) lower triangular matrix) \\
\hline storev='R' & \begin{tabular}{l}
\[
V=\left[\begin{array}{ll}
V 1 & V 2
\end{array}\right]
\] \\
\(V 2\) is lower trapezoidal (first 1 columns of \(k\) -by- \(k\) lower triangular matrix)
\end{tabular} & \begin{tabular}{l}
\[
V=\left[\begin{array}{ll}
V 2 & V 1
\end{array}\right]
\] \\
V2 is upper trapezoidal (last l columns of \(k\) -by- \(k\) upper triangular matrix)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & side='L' & side='R' \\
\hline storev='C' & \begin{tabular}{l}
\(V\) is \(m\)-by- \(k\) \\
\(V 2\) is \(1-b y-k\)
\end{tabular} & \begin{tabular}{l}
\(V\) is \(n\)-by- \(k\) \\
V2 is \(1-b y-k\)
\end{tabular} \\
\hline storev='R' & \begin{tabular}{l}
\(V\) is \(k\)-by-m \\
V2 is \(k\)-by- 1
\end{tabular} & \begin{tabular}{l}
\(V\) is \(k\)-by-n \\
\(V 2\) is \(k\)-by-I
\end{tabular} \\
\hline
\end{tabular}

\section*{Input Parameters}
matrix_layout
side
trans
direct
storev
m
\(n\)
\(k\)

1

V
\(l d v\)

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major ( LAPACK_COL_MAJOR ).
\(=\) 'L': apply \(H, H^{\top}\), or \(H^{H}\) from the left,
\(=\) 'R': apply \(H, H^{\top}\), or \(H^{H}\) from the right.
= 'N': apply H (no transpose),
\(=\) ' T ': apply \(H^{\top}\) (transpose),
\(=\) 'C': apply \(H^{H}\) (conjugate transpose).
Indicates how \(H\) is formed from a product of elementary reflectors:
= 'F': \(H=H(1) H(2) \ldots H(k)\) (Forward),
\(=\) 'B': \(H=H(k) \ldots H(2) H(1)\) (Backward).
Indicates how the vectors that define the elementary reflectors are stored:
\(=\) 'C': Columns,
= 'R': Rows.
The total number of rows in the matrix \(B(m \geq 0)\).
The number of columns in \(B(n \geq 0)\).
The order of the matrix \(T\), which is the number of elementary reflectors whose product defines the block reflector. ( \(k \geq 0\) )

The order of the trapezoidal part of \(V .(k \geq 1 \geq 0)\).
An array containing the pentagonal matrix \(V\) (the elementary reflectors \(H(1), H(2), \ldots, H(k)\). The size limitations depend on values of parameters storev and side as described in the following table
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{storev \(=\) C} & \multicolumn{2}{|l|}{storev \(=\) R} \\
\hline & side \(=\mathrm{L}\) & side \(=\mathrm{R}\) & side \(=\mathrm{L}\) & side \(=\mathrm{R}\) \\
\hline Column & \(\max \left(1, / d v^{*}\right.\) \\
\hline major & k) & k) & m) & n) \\
\hline Row major & \(\max \left(1, / d v^{*}\right.\) \\
\hline & \(m)\) & n) & \(k)\) & k) \\
\hline
\end{tabular}

The leading dimension of the array v.It should satisfy the following conditions:
\begin{tabular}{|llll|}
\hline & storev \(=\mathrm{C}\) & & storev \(=\mathrm{R}\) \\
& side \(=\mathrm{L}\) & side \(=\mathrm{R}\) & side \(=\mathrm{L}\)
\end{tabular} side \(=\mathrm{R}\), max \((1, k)\)
```

t Array size max(1,ldt*k). The triangular k-by-k matrix T in the representation of the block reflector.
The leading dimension of the array $t(I d t \geq k)$. size should satisfy the following conditions:
k if side = 'R'.

```
\begin{tabular}{|lll|}
\hline & side \(=\mathrm{L}\) & side \(=\mathrm{R}\) \\
Column major & \(\max \left(1, / d a^{*} n\right)\) & \(\max \left(1, / d a^{*} k\right)\) \\
Row major & \(\max \left(1, / d a^{*} k\right)\) & \(\max (1, / d a * m)\) \\
\hline
\end{tabular}

The \(k\)-by- \(n\) or \(m\)-by- \(k\) matrix \(A\).
The leading dimension of the array a should satisfy the following conditions:
\begin{tabular}{|lll|}
\hline & side \(=\mathrm{L}\) & side \(=\mathrm{R}\) \\
Column major & \(\max (1, k)\) & \(\max (1, m)\) \\
Row major & \(\max (1, n)\) & \(\max (1, k)\) \\
\hline
\end{tabular}
b
\(1 d b\)
Array size at least \(\max \left(1, I d b *_{n}\right)\) for column major layout and max \((1,1 d b\) \(*_{m}\) ) for row major layout, the \(m\)-by- \(n\) matrix \(B\).

The leading dimension of the array \(b\) ( \(l d b \geq \max (1, m)\) for column major layout and \(1 d b \geq \max (1, n)\) for row major layout).

\section*{Output Parameters}

Contains the corresponding block of \(H^{*} C, H^{\top *} C, H^{H *} C, C^{*} H, C^{*} H^{\top}\), or \(C^{*} H^{H}\). Contains the corresponding block of \(H^{*} C, H^{\top} C, H^{H *} C, C^{*} H, C^{*} H^{\top}\), or \(C^{*} H^{H}\).

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info < 0 , the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?tpttf}

Copies a triangular matrix from the standard packed
format (TP) to the rectangular full packed format (TF).

\section*{Syntax}
```

lapack_int LAPACKE_stpttf (int matrix_layout, char transr, char uplo, lapack_int n ,
const float * ap , float * arf);
lapack_int LAPACKE_dtpttf (int matrix_layout, char transr, char uplo, lapack_int n,
const double * ap , double * arf);
lapack_int LAPACKE_ctpttf (int matrix_layout, char transr, char uplo, lapack_int n ,
const lapack_complex_float * ap , lapack_complex_float * arf);

```
```

lapack_int LAPACKE_ztpttf (int matrix_layout, char transr, char uplo, lapack_int n ,
const lapack_complex_double * ap , lapack_complex_double * arf);

```

Include Files
- mkl.h

\section*{Description}

The routine copies a triangular matrix A from the standard packed format to the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major ( LAPACK_COL_MAJOR). \\
\hline \multirow[t]{3}{*}{transr} & = 'N': arf must be in the Normal format, \\
\hline & \(=\) ' \(T\) ': arf must be in the Transpose format (for stpttf and dtpttf), \\
\hline & \(=\) 'C': arf must be in the Conjugate-transpose format (for ctpttf and ztpttf). \\
\hline \multirow[t]{3}{*}{uplo} & Specifies whether \(A\) is upper or lower triangular: \\
\hline & = 'U': A is upper triangular, \\
\hline & = 'L': A is lower triangular. \\
\hline \(n\) & The order of the matrix \(A\). \(n \geq 0\). \\
\hline \multirow[t]{2}{*}{\(a p\)} & Array, size at least max \(\left(1, n^{*}(n+1) / 2\right)\). \\
\hline & On entry, the upper or lower triangular matrix \(A\), packed in a linear array. See Matrix Storage Schemes for more information. \\
\hline
\end{tabular}

\section*{Output Parameters}
arf
Array, size at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
On exit, the upper or lower triangular matrix \(A\) stored in the RFP format.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
< 0 : if info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?tpttr}

Copies a triangular matrix from the standard packed format (TP) to the standard full format (TR).

\section*{Syntax}
```

lapack_int LAPACKE_stpttr (int matrix_layout, char uplo, lapack_int n , const float *
ap , float * a , lapack_int lda);
lapack_int LAPACKE_dtpttr (int matrix_layout, char uplo, lapack_int n , const double

* ap , double * a , lapack_int lda);
lapack_int LAPACKE_ctpttr (int matrix_layout, char uplo, lapack_int n , const
lapack_complex_float * ap , lapack_complex_float * a , lapack_int lda);
lapack_int LAPACKE_ztpttr (int matrix_layout, char uplo, lapack_int n , const
lapack_complex_double * ap , lapack_complex_double * a , lapack_int lda);

```

Include Files
- mkl.h

\section*{Description}

The routine copies a triangular matrix \(A\) from the standard packed format to the standard full format.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major ( LAPACK_COL_MAJOR ). \\
\hline uplo & Specifies whether \(A\) is upper or lower triangular: \\
\hline & \(=\) 'U': A is upper triangular, \\
\hline & = 'L': A is lower triangular. \\
\hline \(n\) & The order of the matrices ap and a. \(n \geq 0\). \\
\hline ap & Array, size at least \(\max \left(1, n^{*}(n+1) / 2\right)\). (see Matrix Storage Schemes). \\
\hline Ida & The leading dimension of the array \(a . I d a \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
Array, size max(1,/da*n).
On exit, the triangular matrix \(A\). If uplo \(=\) ' \(U\) ', the leading \(n\)-by- \(n\) upper triangular part of the array a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo \(=\) ' \(L\) ', the leading \(n\)-by- \(n\) lower triangular part of the array a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?trttf \\ Copies a triangular matrix from the standard full format (TR) to the rectangular full packed format (TF).}

\section*{Syntax}
```

lapack_int LAPACKE_strttf (int matrix_layout, char transr, char uplo, lapack_int n ,
const float * a , lapack_int lda, float * arf);
lapack_int LAPACKE_dtrttf (int matrix_layout, char transr, char uplo, lapack_int n ,
const double * a , lapack_int lda , double * arf);
lapack_int LAPACKE_ctrttf (int matrix_layout, char transr, char uplo, lapack_int n ,
const lapack_complex_float * a , lapack_int lda, lapack_complex_float * arf);
lapack_int LAPACKE_ztrttf (int matrix_layout, char transr, char uplo, lapack_int n ,
const lapack_complex_double * a , lapack_int lda , lapack_complex_double * arf);

```

Include Files
- mkl.h

\section*{Description}

The routine copies a triangular matrix A from the standard full format to the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major ( LAPACK_COL_MAJOR ). \\
\hline \multirow[t]{3}{*}{transr} & = 'N': arf must be in the Normal format, \\
\hline & = 'T': arf must be in the Transpose format (for strttf and dtrttf), \\
\hline & \(=\) 'C': arf must be in the Conjugate-transpose format (for ctrttf and ztrttf). \\
\hline \multirow[t]{3}{*}{uplo} & Specifies whether \(A\) is upper or lower triangular: \\
\hline & = 'U': A is upper triangular, \\
\hline & = 'L': A is lower triangular. \\
\hline \(n\) & The order of the matrix \(A\). \(n \geq 0\). \\
\hline \multirow[t]{2}{*}{a} & Array, size max(1,(lda*n)). \\
\hline & On entry, the triangular matrix \(A\). If uplo = ' \(U\) ', the leading \(n\)-by- \(n\) upper triangular part of the array a contains the upper triangular matrix, and the strictly lower triangular part of \(a\) is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of \(a\) is not referenced. \\
\hline Ida & The leading dimension of the array \(a\). Ida \(\geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

arf

```

Array, size at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
On exit, the upper or lower triangular matrix \(A\) stored in the RFP format.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info < 0 , the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?trttp \\ Copies a triangular matrix from the standard full \\ format (TR) to the standard packed format (TP) .}

\section*{Syntax}
```

lapack_int LAPACKE_strttp (int matrix_layout, char uplo, lapack_int n , const float *
a , lapack_int lda , float * ap);
lapack_int LAPACKE_dtrttp (int matrix_layout, char uplo, lapack_int n, const double

* a , lapack_int lda , double * ap);
lapack_int LAPACKE_ctrttp (int matrix_layout, char uplo, lapack_int n , const
lapack_complex_float * a , lapack_int lda, lapack_complex_float * ap);
lapack_int LAPACKE_ztrttp (int matrix_layout, char uplo, lapack_int n, const
lapack_complex_double * a , lapack_int lda , lapack_complex_double * ap);

```

Include Files
- mkl.h

\section*{Description}

The routine copies a triangular matrix \(A\) from the standard full format to the standard packed format.

\section*{Input Parameters}
```

uplo
n
The order of the matrix $A, n \geq 0$.
Array, size $\max (1, I d a * n)$.
On entry, the triangular matrix A. If uplo = ' U ', the leading n-by- n upper triangular part of the array a contains the upper triangular matrix, and the strictly lower triangular part of a is not referenced. If uplo = 'L', the leading n-by- n lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of a is not referenced.

```

The leading dimension of the array \(a . I d a \geq \max (1, n)\).

\section*{Output Parameters}
ap
Array, size at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
On exit, the upper or lower triangular matrix \(A\), packed columnwise in a linear array. (see Matrix Storage Schemes)

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info < 0 , the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?lacp2}

Copies all or part of a real two-dimensional array to a complex array.

\section*{Syntax}
```

lapack_int LAPACKE_clacp2 (int matrix_layout , char uplo , lapack_int m , lapack_int
n , const float * a , lapack_int lda , lapack_complex_float * b , lapack_int ldb);
lapack_int LAPACKE_zlacp2 (int matrix_layout , char uplo , lapack_int m , lapack_int
n , const double * a , lapack_int lda , lapack_complex_double * b , lapack_int ldb);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine copies all or part of a real matrix \(A\) to another matrix \(B\).

\section*{Input Parameters}
```

matrix_layout
uplo

```
m
\(n\)
\(a\)

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

Specifies the part of the matrix \(A\) to be copied to \(B\).
If uplo = 'U', the upper triangular part of \(A\);
if uplo = 'L', the lower triangular part of \(A\).
Otherwise, all of the matrix \(A\) is copied.
The number of rows in the matrix \(A(m \geq 0)\).
The number of columns in \(A(n \geq 0)\).
Array, size at least max (1,lda*n) for column major and max (1, \(1 d a^{\star} m\) ) for row major, contains the \(m\)-by-n matrix \(A\).

If uplo = 'U', only the upper triangle or trapezoid is accessed; if uplo = 'L', only the lower triangle or trapezoid is accessed.
lda
\(1 d b\)

The leading dimension of \(a ; I d a \geq \max (1, m)\) for column major and \(I d a \geq\) \(\max (1, n)\) for row major.

The leading dimension of the output array \(b ; 1 d b \geq \max (1, m)\) for column major and \(I d b \geq \max (1, n)\) for row major.

\section*{Output Parameters}
b
Array, size at least \(\max \left(1, / d b^{*} n\right)\) for column major layout and \(\max \left(1, I d b^{*} m\right)\) for row major layout, contains the \(m\)-by- \(n\) matrix \(B\).
On exit, \(B=A\) in the locations specified by uplo.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(<0\), the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?larcm}

Multiplies a square real matrix by a complex matrix.

\section*{Syntax}
```

lapack_int LAPACKE_clarcm(int matrix_layout,lapack_int m,lapack_int n,const float
*a,lapack_int lda,const lapack_complex_float * b,lapack_int ldb,lapack_complex_float *
c,lapack_int ldc);
lapack_int LAPACKE_zlarcm(int matrix_layout,lapack_int m,lapack_int n,const double *
a,lapack_int lda,const lapack_complex_double *b,lapack_int ldb,lapack_complex_double
*C ,lapack_int ldc);

```

\section*{Description}

The routine performs a simple matrix-matrix multiplication of the form
\[
C=A^{\star} B,
\]
where \(A\) is \(m\)-by- \(m\) and real, \(B\) is \(m\)-by- \(n\) and complex, and \(C\) is \(m\)-by- \(n\) and complex.

\section*{Input Parameters}
m
n
a

The number of rows and columns of matrix \(A\) and the number of rows of matrix \(C(m \geq 0)\).

The number of columns of matrix \(B\) and the number of columns of matrix \(C\) ( \(n \geq 0\) ).

Array, size [lda* m]. Contains the \(m\)-by- \(m\) matrix \(A\).
```

Ida The leading dimension of the array a, lda\geqmax (1, m).
b Array, size (ldb, n). Contains the m-by-n matrix B.
ldb The leading dimension of the array }b,Idb\geqmax(1,m) for column-major
layout; Idb>max(1, n) for row-major layout.
The leading dimension of the array c,Idc\geqmax (1,m) for column-major
layout; Idc>max(1, n) for row-major layout.

```

\section*{Output Parameters}
c
Array, size \((I d c, n)\). Contains the \(m\)-by- \(n\) matrix \(C\).

\section*{Return Values}

This function returns a value info. If info \(=0\), the execution is successful. If info \(=-i\), parameter \(i\) had an illegal value.

\section*{mkl_?tppack}

Copies a triangular/symmetric matrix or submatrix from standard full format to standard packed format.

\section*{Syntax}
```

lapack_int LAPACKE_mkl_stppack (int matrix_layout, char uplo, char trans, lapack_int n,
float* ap, lapack_int i, lapack_int j, lapack_int rows, lapack_int cols, const float* a,
lapack_int lda);
lapack_int LAPACKE_mkl_dtppack (int matrix_layout, char uplo, char trans, lapack_int n,
double* ap, lapack_int i, lapack_int j, lapack_int rows, lapack_int cols, const double*
a, lapack_int lda);
lapack_int LAPACKE_mkl_ctppack (int matrix_layout, char uplo, char trans, lapack_int n,
MKL_Complex8* ap, lapack_int i, lapack_int j, lapack_int rows, lapack_int cols, const
MKL_Complex8* a, lapack_int lda);
lapack_int LAPACKE_mkl_ztppack (int matrix_layout, char uplo, char trans, lapack_int n,
MKL_Complex16* ap, lapack_int i, lapack_int j, lapack_int rows, lapack_int cols, const
MKL_Complex16* a, lapack_int lda);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine copies a triangular or symmetric matrix or its submatrix from standard full format to packed format
```

AP:i+rows-1, j:j+cols-1 := op (A)

```

Standard packed formats include:
- TP: triangular packed storage
- SP: symmetric indefinite packed storage
- HP: Hermitian indefinite packed storage
- PP: symmetric or Hermitian positive definite packed storage

Full formats include:
- GE: general
- TR: triangular
- SY: symmetric indefinite
- HE: Hermitian indefinite
- PO: symmetric or Hermitian positive definite

\section*{NOTE}

Any elements of the copied submatrix rectangular outside of the triangular part of the matrix \(A P\) are skipped.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
```

uplo Specifies whether the matrix }AP\mathrm{ is upper or lower triangular.
If uplo = 'U', AP is upper triangular.
If uplo = 'L': AP is lower triangular.
trans Specifies whether or not the copied block of A is transposed or not.
If trans = 'N', no transpose: op (A) = A.
If trans = 'T',transpose: op (A) = AT
If trans = 'C',conjugate transpose: op (A) = A'. For real data this is the
same as trans = 'T'.
The order of the matrix AP;n\geq0
Coordinates of the left upper corner of the destination submatrix in AP}\mathrm{ .
If uplo='U', 1\leqi\leqj\leqn.
If uplo='L', 1\leqj\leqi\leqn.
Number of rows in the destination submatrix. $0 \leq$ rows $\leq n-i+1$.
Number of columns in the destination submatrix. $0 \leq c o l s \leq n-j+1$.
Pointer to the source submatrix.
Array a contains the rows-by-cols submatrix stored as unpacked rows-bycolumns if trans $=$ ' N ', or unpacked columns-by-rows if trans $=$ ' T ' or trans $=$ ' C^{\prime}.

```

The size of \(a\) is
\begin{tabular}{|l|l|l|}
\hline & trans = 'N' & \begin{tabular}{l} 
trans='T' or \\
trans='C'
\end{tabular} \\
\hline \begin{tabular}{l} 
matrix_layout \(=\) \\
LAPACK_COL_MAJOR
\end{tabular} & lda*cols & lda*rows \\
\hline \begin{tabular}{l} 
matrix_layout \(=\) \\
LAPACK_ROW_MAJOR
\end{tabular} & lda*rows & lda*cols \\
\hline
\end{tabular}

\section*{NOTE}

If there are elements outside of the triangular part of \(A P\), they are skipped and are not copied from a.

The leading dimension of the array \(a\).
\begin{tabular}{|c|c|c|}
\hline & \(\operatorname{trans}=\mathbf{~ ' N '}\) & \[
\begin{aligned}
& \operatorname{trans}=\text { 'T' or } \\
& \operatorname{tran}=\text { ' } \mathbf{C '}
\end{aligned}
\] \\
\hline matrix_layout = LAPACK_COL_MAJOR & \[
\begin{aligned}
& I d a \geq \max (1, \\
& \text { rows })
\end{aligned}
\] & \(l d a \geq \max (1, \operatorname{cols})\) \\
\hline matrix_layout = LAPACK_ROW_MAJOR & \[
\begin{aligned}
& I d a \geq \max (1, \\
& c o l s)
\end{aligned}
\] & \(I d a \geq \max (1\), rows \()\) \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a p\)
Array of size at least \(\max (1, n(n+1) / 2)\). The array ap contains either the upper or the lower triangular part of the matrix \(A P\) (as specified by uplo) in packed storage (see Matrix Storage Schemes). The submatrix of ap from row \(i\) to row \(i+\) rows -1 and column \(j\) to column \(j+\) cols - 1 is overwritten with a copy of the source matrix.

\section*{Return Values}

This function returns a value info. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{mkl_?tpunpack}

Copies a triangular/symmetric matrix or submatrix
from standard packed format to full format.

\section*{Syntax}
```

lapack_int LAPACKE_mkl_stpunpack (int matrix_layout, char uplo, char trans,
lapack_int n, const float* ap, lapack_int i, lapack_int j, lapack_int rows,
lapack_int cols, float* a, lapack_int lda);
lapack_int LAPACKE_mkl_dtpunpack (int matrix_layout, char uplo, char trans,
lapack_int n, const double* ap, lapack_int i, lapack_int j, lapack_int rows,
lapack_int cols, double* a, lapack_int lda);
lapack_int LAPACKE_mkl_ctpunpack (int matrix_layout, char uplo, char trans,
lapack_int n, const MKL_Complex8* ap, lapack_int i, lapack_int j, lapack_int rows,
lapack_int cols, MKL_Complex8* a, lapack_int lda);
lapack_int LAPACKE_mkl_ztpunpack (int matrix_layout, char uplo, char trans,
lapack_int n, const MKL_Complex16* ap, lapack_int i, lapack_int j, lapack_int rows,
lapack_int cols, MKL_Complexl6* a, lapack_int lda);

```

Include Files
- mkl.h

\section*{Description}

The routine copies a triangular or symmetric matrix or its submatrix from standard packed format to full format.
\[
A:=o p\left(A P_{i: i+\text { rows }-1,} ; j: j+c o l s-1\right)
\]

Standard packed formats include:
- TP: triangular packed storage
- SP: symmetric indefinite packed storage
- HP: Hermitian indefinite packed storage
- PP: symmetric or Hermitian positive definite packed storage

Full formats include:
- GE: general
- TR: triangular
- SY: symmetric indefinite
- HE: Hermitian indefinite
- PO: symmetric or Hermitian positive definite

\section*{NOTE}

Any elements of the copied submatrix rectangular outside of the triangular part of \(A P\) are skipped.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). \\
\hline uplo & Specifies whether matrix \(A P\) is upper or lower triangular. \\
\hline & If uplo = 'U', \(A P\) is upper triangular. \\
\hline & If uplo = 'L': \(A P\) is lower triangular. \\
\hline trans & Specifies whether or not the copied block of \(A P\) is transposed. \\
\hline & If trans = 'N', no transpose: op ( \(A P\) ) = AP. \\
\hline & If trans \(=\) 'T',transpose: op ( \(A P\) ) \(=A P^{T}\). \\
\hline & If trans \(=\) ' \(C^{\prime}\),conjugate transpose: \(\mathrm{op}(A P)=A P^{\mathrm{H}}\). For real data this is the same as trans \(=\) ' T '. \\
\hline n & The order of the matrix \(A P ; n \geq 0\). \\
\hline ap & Array, size at least \(\max (1, n(n+1) / 2)\). The array ap contains either the upper or the lower triangular part of the matrix \(A P\) (as specified by uplo) in packed storage (see Matrix Storage Schemes). It is the source for the submatrix of \(A P\) from row \(i\) to row \(i+\) rows -1 and column \(j\) to column \(j+\operatorname{cols}-1\) to be copied. \\
\hline i, j & Coordinates of left upper corner of the submatrix in \(A P\) to copy. \\
\hline & If uplo='U', \(1 \leq i \leq j \leq n\). \\
\hline
\end{tabular}
rows
cols
Ida

If \(u p l o=' L^{\prime}, 1 \leq j \leq i \leq n\).
Number of rows to copy. \(0 \leq r o w s \leq n-i+1\).
Number of columns to copy. \(0 \leq \operatorname{cols} \leq n-j+1\).
The leading dimension of array \(a\).
\begin{tabular}{|c|c|c|}
\hline & trans = 'N' & \[
\begin{aligned}
& \operatorname{trans}=\text { ' } \mathbf{T} \text { ' or } \\
& \operatorname{trans}=\text { ' } \mathbf{C '}
\end{aligned}
\] \\
\hline matrix_layout = LAPACK_COL_MAJOR & \(1 d a \geq \max (1\), rows \()\) & \(I d a \geq \max (1, \operatorname{cols})\) \\
\hline matrix_layout = LAPACK_ROW_MAJOR & \(l d a \geq \max (1, \operatorname{cols})\) & \(l d a \geq \max (1\), rows \()\) \\
\hline
\end{tabular}

\section*{Output Parameters}
a
Pointer to the destination matrix. On exit, array a is overwritten with a copy of the unpacked rows-by-cols submatrix of ap unpacked rows-by-columns if trans \(=\) ' N ', or unpacked columns-by-rows if trans \(=' \mathrm{~T}\) ' or trans \(=\) ' \(\mathrm{C}^{\prime}\).

The size of \(a\) is
\begin{tabular}{|l|l|l|}
\hline & trans = 'N' & \begin{tabular}{l} 
trans='T' or \\
trans='C'
\end{tabular} \\
\hline \begin{tabular}{l} 
matrix_layout \(=\) \\
LAPACK_COL_MAJOR
\end{tabular} & lda*cols & lda*rows \\
\hline \begin{tabular}{l} 
matrix_layout \(=\) \\
LAPACK_ROW_MAJOR
\end{tabular} & lda*rows & lda*cols \\
\hline
\end{tabular}

\section*{NOTE}

If there are elements outside of the triangular part of ap indicated by uplo, they are skipped and are not copied to a.

\section*{Return Values}

This function returns a value info. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK Utility Functions and Routines}

This section describes LAPACK utility functions and routines.
Summary information about these routines is given in the following table:

\section*{LAPACK Utility Routines}
\begin{tabular}{lll}
\hline Routine Name & \begin{tabular}{l} 
Data \\
Types
\end{tabular} & Description \\
\hline ilaver & & Returns the version of the Lapack library. \\
ilaenv & & \begin{tabular}{l} 
Environmental enquiry function which returns values for tuning \\
algorithmic performance.
\end{tabular} \\
?lamch & s,d & Determines machine parameters for floating-point arithmetic. \\
\hline
\end{tabular}

\section*{See Also}
lsame Tests two characters for equality regardless of the case.
lsamen Tests two character strings for equality regardless of the case.
second/dsecnd Returns elapsed time in seconds. Use to estimate real time between two calls to this function.
xerbla Error handling function called by BLAS, LAPACK, Vector Math, and Vector Statistics functions.
ilaver
Returns the version of the LAPACK library.

\section*{Syntax}
```

void LAPACKE_ilaver (lapack_int * vers_major, lapack_int * vers_minor, lapack_int *
vers_patch);

```

Include Files
- mkl.h

\section*{Description}

This routine returns the version of the LAPACK library.

\section*{Output Parameters}
\begin{tabular}{ll} 
vers_major & Returns the major version of the LAPACK library. \\
vers_minor & Returns the minor version from the major version of the LAPACK library. \\
vers_patch & Returns the patch version from the minor version of the LAPACK library.
\end{tabular}

\section*{ilaenv}

Environmental enquiry function that returns values for tuning algorithmic performance.

\section*{Syntax}

MKL_INT ilaenv (const MKL_INT *ispec, const char *name, const char *opts, const MKL_INT
*n1, const MKL_INT *n2, const MKL_INT *n3, const MKL_INT *n4);
Include Files
- mkl.h

\section*{Description}

The enquiry function ilaenv is called from the LAPACK routines to choose problem-dependent parameters for the local environment. See ispec below for a description of the parameters.

This version provides a set of parameters that should give good, but not optimal, performance on many of the currently available computers.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Input Parameters} \\
\hline \multirow[t]{13}{*}{ispec} & Specifies the parameter to be returned as the value of ilaenv: \\
\hline & \(=1\) : the optimal blocksize; if this value is 1 , an unblocked algorithm will give the best performance. \\
\hline & \(=2\) : the minimum block size for which the block routine should be used; if the usable block size is less than this value, an unblocked routine should be used. \\
\hline & = 3: the crossover point (in a block routine, for \(n\) less than this value, an unblocked routine should be used) \\
\hline & \(=4\) : the number of shifts, used in the nonsymmetric eigenvalue routines (deprecated) \\
\hline & = 5: the minimum column dimension for blocking to be used; rectangular blocks must have dimension at least \(k\)-by- \(m\), where \(k\) is given by ilaenv ( \(2, \ldots\) ) and \(m\) by ilaenv ( \(5, \ldots\) ) \\
\hline & = 6: the crossover point for the SVD (when reducing an \(m\)-by-n matrix to bidiagonal form, if \(\max (\mathrm{m}, \mathrm{n}) / \mathrm{min}(\mathrm{m}, \mathrm{n})\) exceeds this value, a \(Q R\) factorization is used first to reduce the matrix to a triangular form.) \\
\hline & \(=7\) : the number of processors \\
\hline & = 8: the crossover point for the multishift \(Q R\) and \(Q Z\) methods for nonsymmetric eigenvalue problems (deprecated). \\
\hline & = 9: maximum size of the subproblems at the bottom of the computation tree in the divide-and-conquer algorithm (used by ?gelsd and ?gesdd) \\
\hline & =10: ieee NaN arithmetic can be trusted not to trap \\
\hline & =11: infinity arithmetic can be trusted not to trap \\
\hline & \(12 \leq\) ispec \(\leq 16\) : ?hseqr or one of its subroutines, see iparmq for detailed explanation. \\
\hline name & The name of the calling subroutine, in either upper case or lower case. \\
\hline opts & The character options to the subroutine name, concatenated into a single character string. For example, uplo = 'U',trans = 'T', and diag = ' N ' for a triangular routine would be specified as opts \(=\) 'UTN'. \\
\hline
\end{tabular}

\section*{NOTE}

Use only uppercase characters for the opts string.
n1, n2, n3, n4

\section*{Output Parameters}
value

Problem dimensions for the subroutine name; these may not all be required.

> If value \(\geq 0\) : the value of the parameter specified by ispec; If value \(=-k<0\) : the \(k\)-th argument had an illegal value.

\section*{Return Values}
ilaenv returns value.
If value \(\geq 0\) : the value of the parameter specified by ispec;
If value \(=-k<0\) : the \(k\)-th argument had an illegal value.

\section*{Application Notes}

The following conventions have been used when calling ilaenv from the LAPACK routines:
1. opts is a concatenation of all of the character options to subroutine name, in the same order that they appear in the argument list for name, even if they are not used in determining the value of the parameter specified by ispec.
2. The problem dimensions \(n 1, n 2, n 3, n 4\) are specified in the order that they appear in the argument list for name. \(n 1\) is used first, \(n 2\) second, and so on, and unused problem dimensions are passed a value of -1.
3. The parameter value returned by ilaenv is checked for validity in the calling subroutine. For example, ilaenv is used to retrieve the optimal blocksize for strtri as follows:
```

nb := ilaenv(1, 'strtri', strcat (uplo, diag), n, -1, -1, -1>);
if(n.b <= 1) {
nb := max(1, n);
}

```

Below is an example of ilaenv usage in C language:
```

\#include <stdio.h>
\#include "mkl.h"
int main(void)
{
int size = 1000;
int ispec = 1;
int dummy = -1;
int blockSize1 = ilaenv(\&ispec, "dsytrd", "U", \&Size, \&dummy, \&dummy, \&dummy);
int blockSize2 = ilaenv(\&ispec, "dormtr", "LUN", \&size, \&size, \&dummy, \&dummy);
printf("DSYTRD blocksize = %d\n", blockSize1);
printf("DORMTR blocksize = %d\n", blockSize2);
return 0;
}

```

\section*{See Also}

\section*{?hseqr}

\section*{?lamch \\ Determines machine parameters for floating-point arithmetic.}

\section*{Syntax}
```

float LAPACKE_slamch (char cmach);
double LAPACKE_dlamch (char cmach);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The function ?lamch determines single precision and double precision machine parameters.

\section*{Input Parameters}

Specifies the value to be returned by ?lamch:
\[
\begin{aligned}
& =\text { 'E' or 'e', val = eps } \\
& =\text { 'S' or 's', val = sfmin } \\
& =\text { 'B' or 'b', val = base } \\
& =\text { 'P' or 'p', val = eps*base } \\
& =\text { 'n' or 'n', val = t } \\
& =\text { 'R' or 'r', val = rnd } \\
& =\text { 'M' or 'm', val = emin } \\
& =\text { 'U' or 'u', val = rmin } \\
& =\text { 'L' or 'l', val = emax } \\
& =\text { 'o' or 'o', val = rmax }
\end{aligned}
\]
where
\[
e p s=\text { relative machine precision; }
\]
\[
\text { sfmin }=\text { safe minimum, such that } 1 / \text { sfmin does not overflow; }
\]
base = base of the machine;
\[
\text { prec }=e p s^{*} \text { base; }
\]
\[
t=\text { number of (base) digits in the mantissa; }
\]
\[
r n d=1.0 \text { when rounding occurs in addition, } 0.0 \text { otherwise; }
\]
emin = minimum exponent before (gradual) underflow;
\[
\text { rmin }=\text { underflow_threshold }- \text { base**(emin-1); }
\]
emax = largest exponent before overflow;
\[
\text { rmax }=\text { overflow_threshold }-(\text { base**emax })^{*}(1-e p s) .
\]

\section*{NOTE}

You can use a character string for cmach instead of a single character in order to make your code more readable. The first character of the string determines the value to be returned. For example, 'Precision' is interpreted as ' p '.

\section*{Output Parameters}
val
Value returned by the function.

\section*{LAPACK Test Functions and Routines}

This section describes LAPACK test functions and routines.

\section*{?lagge}

Generates a general m-by-n matrix .

\section*{Syntax}
```

lapack_int LAPACKE_slagge (int matrix_layout , lapack_int m, lapack_int n , lapack_int
kl , lapack_int ku , const float * d , float * a , lapack_int lda , lapack_int *
iseed);
lapack_int LAPACKE_dlagge (int matrix_layout, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku, const double * d, double * a , lapack_int lda, lapack_int *
iseed);
lapack_int LAPACKE_clagge (int matrix_layout, lapack_int m, lapack_int n, lapack_int
kl, lapack_int ku , const float * d , lapack_complex_float * a , lapack_int lda,
lapack_int * iseed);
lapack_int LAPACKE_zlagge (int matrix_layout, lapack_int m, lapack_int n , lapack_int
kl , lapack_int ku , const double * d , lapack_complex_double * a , lapack_int lda ,
lapack_int * iseed);

```

Include Files
- mkl.h

\section*{Description}

The routine generates a general \(m\)-by- \(n\) matrix \(A\), by pre- and post- multiplying a real diagonal matrix \(D\) with random matrices \(U\) and \(V\) :
```

A := U* D*V,

```
where \(U\) and \(V\) are orthogonal for real flavors and unitary for complex flavors. The lower and upper bandwidths may then be reduced to \(k l\) and \(k u\) by additional orthogonal transformations.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
m
\(n\)
d

Ida
iseed
```

The number of rows of the matrix $A(m \geq 0)$.
The number of columns of the matrix $A(n \geq 0)$.
The number of nonzero subdiagonals within the band of $A(0 \leq k l \leq m-1)$.
The number of nonzero superdiagonals within the band of $A(0 \leq k u \leq n-1)$. The array d with the dimension of $(\min (m, n))$ contains the diagonal elements of the diagonal matrix D.
The leading dimension of the array $a(l d a \geq m$) for column major layout and (Ida $\geq n$) for row major layout.

```

The array iseed with the dimension of 4 contains the seed of the random number generator. The elements must be between 0 and 4095 and iseed must be odd.

\section*{Output Parameters}
\(a\)
The array \(a\) with size at least \(\max \left(1, / d a^{*} n\right)\) for column major layout and \(\max (1, / d a * m)\) for row major layout contains the generated \(m\)-by- \(n\) matrix A.

The array iseed contains the updated seed on exit.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info < 0 , the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?laghe}

Generates a complex Hermitian matrix .

\section*{Syntax}
```

lapack_int LAPACKE_claghe (int matrix_layout, lapack_int n , lapack_int k, const
float * d, lapack_complex_float * a , lapack_int lda , lapack_int * iseed);
lapack_int LAPACKE_zlaghe (int matrix_layout, lapack_int n , lapack_int k, const
double * d , lapack_complex_double * a , lapack_int lda , lapack_int * iseed);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine generates a complex Hermitian matrix \(A\), by pre- and post- multiplying a real diagonal matrix \(D\) with random unitary matrix:
```

A := U* D* U

```

The semi-bandwidth may then be reduced to \(k\) by additional unitary transformations.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
\begin{tabular}{|c|c|}
\hline matrix_layout & Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major ( LAPACK_COL_MAJOR ). \\
\hline \(n\) & The order of the matrix \(A(n \geq 0)\). \\
\hline k & The number of nonzero subdiagonals within the band of \(A(0 \leq k \leq n-1)\). \\
\hline d & The array \(d\) with the dimension of ( \(n\) ) contains the diagonal elements of the diagonal matrix \(D\). \\
\hline Ida & The leading dimension of the array a ( \(1 \mathrm{da} \geq \mathrm{n}\) ). \\
\hline iseed & The array iseed with the dimension of 4 contains the seed of the random number generator. The elements must be between 0 and 4095 and iseed [3] must be odd. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
The array \(a\) of size at least max \((1, / d a * n)\) contains the generated \(n\)-by- \(n\) Hermitian matrix \(D\).
iseed The array iseed contains the updated seed on exit.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info < 0 , the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?lagsy}

Generates a symmetric matrix by pre- and postmultiplying a real diagonal matrix with a random unitary matrix .

\section*{Syntax}
```

lapack_int LAPACKE_slagsy (int matrix_layout, lapack_int n , lapack_int k , const
float `d, float` a , lapack_int lda , lapack_int * iseed);
lapack_int LAPACKE_dlagsy (int matrix_layout, lapack_int n , lapack_int k , const
double * d, double * a , lapack_int lda , lapack_int * iseed);
lapack_int LAPACKE_clagsy (int matrix_layout, lapack_int n , lapack_int k, const
float * d, lapack_complex_float * a , lapack_int lda, lapack_int * iseed);
lapack_int LAPACKE_zlagsy (int matrix_layout, lapack_int n , lapack_int k , const
double * d, lapack_complex_double * a , lapack_int lda, lapack_int * iseed);

```

Include Files
- mkl.h

\section*{Description}

The ?lagsy routine generates a symmetric matrix \(A\) by pre- and post- multiplying a real diagonal matrix \(D\) with a random matrix \(U\) :
\(A:=U^{\star} D^{\star} U^{\mathrm{T}}\),
where \(U\) is orthogonal for real flavors and unitary for complex flavors. The semi-bandwidth may then be reduced to \(k\) by additional unitary transformations.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
\begin{tabular}{ll}
\(n\) & The order of the matrix \(A(n \geq 0)\). \\
\(k\) & The number of nonzero subdiagonals within the band of \(A(0 \leq k \leq n-1)\). \\
\(l d a\) & \begin{tabular}{l} 
The array \(d\) with the dimension of \((n)\) contains the diagonal elements of the \\
diagonal matrix \(D\).
\end{tabular} \\
iseed & \begin{tabular}{l} 
The leading dimension of the array \(a(l d a \geq n)\).
\end{tabular} \\
& \begin{tabular}{l} 
The array iseed with the dimension of 4 contains the seed of the random \\
number generator. The elements must be between 0 and 4095 and \\
iseed [3] must be odd.
\end{tabular}
\end{tabular}

\section*{Output Parameters}
a
The array aof size max (1,Ida*n) contains the generated symmetric \(n\)-by- \(n\) matrix \(D\).
iseed The array iseed contains the updated seed on exit.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info < 0 , the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?latms}

Generates a general m-by-n matrix with specific singular values.

\section*{Syntax}
```

lapack_int LAPACKE_slatms (int matrix_layout, lapack_int m, lapack_int n, char dist,
lapack_int * iseed, char sym, float * d, lapack_int mode, float cond, float dmax,
lapack_int kl, lapack_int ku, char pack, float * a, lapack_int lda);
lapack_int LAPACKE_dlatms (int matrix_layout, lapack_int m, lapack_int n, char dist,
lapack_int * iseed, char sym, double * d, lapack_int mode, double cond, double dmax,
lapack_int kl, lapack_int ku, char pack, double * a, lapack_int lda);

```
```

lapack_int LAPACKE_clatms (int matrix_layout, lapack_int m, lapack_int n, char dist,
lapack_int * iseed, char sym, float * d, lapack_int mode, float cond, float dmax,
lapack_int kl, lapack_int ku, char pack, lapack_complex_float * a, lapack_int lda);
lapack_int LAPACKE_zlatms (int matrix_layout, lapack_int m, lapack_int n, char dist,
lapack_int * iseed, char sym, double * d, lapack_int mode, double cond, double dmax,
lapack_int kl, lapack_int ku, char pack, lapack_complex_double * a, lapack_int lda);

```

Include Files
- mkl.h

\section*{Description}

The ?latms routine generates random matrices with specified singular values, or symmetric/Hermitian matrices with specified eigenvalues for testing LAPACK programs.

It applies this sequence of operations:
1. Set the diagonal to \(d\), where \(d\) is input or computed according to mode, cond, dmax, and sym as described in Input Parameters.
2. Generate a matrix with the appropriate band structure, by one of two methods:

Method A

Method B:
1. Generate a dense \(m-b y-n\) matrix by multiplying \(d\) on the left and the right by random unitary matrices, then:
2. Reduce the bandwidth according to \(k l\) and \(k u\), using Householder transformations.

Convert the bandwidth-0 (i.e., diagonal) matrix to a bandwidth-1 matrix using Givens rotations, "chasing" out-of-band elements back, much as in QR; then convert the bandwidth-1 to a bandwidth-2 matrix, etc.

Note that for reasonably small bandwidths (relative to \(m\) and \(n\) ) this requires less storage, as a dense matrix is not generated. Also, for symmetric or Hermitian matrices, only one triangle is generated.

Method \(A\) is chosen if the bandwidth is a large fraction of the order of the matrix, and lda is at least \(m\) (so a dense matrix can be stored.) Method \(B\) is chosen if the bandwidth is small (less than (1/2)* for symmetric or Hermitian or less than \(.3^{*} n+m\) for nonsymmetric), or \(l d a\) is less than \(m\) and not less than the bandwidth.

Pack the matrix if desired, using one of the methods specified by the pack parameter.
If Method \(B\) is chosen and band format is specified, then the matrix is generated in the band format and no repacking is necessary.

\section*{Input Parameters}

A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
matrix_layout
m
n

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major ( LAPACK_COL_MAJOR ).

The number of rows of the matrix \(A(m \geq 0)\).
The number of columns of the matrix \(A(n \geq 0)\).
```

dist

```
iseed

Specifies the type of distribution to be used to generate the random singular values or eigenvalues:
- 'U': uniform distribution \((0,1)\)
- 'S': symmetric uniform distribution \((-1,1)\)
- ' N ': normal distribution \((0,1)\)

Array with size 4.
Specifies the seed of the random number generator. Values should lie between 0 and 4095 inclusive, and iseed[3] should be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of the array are modified, and can be used in the next call to ?latms to continue the same random number sequence.

If sym='S' or 'H', the generated matrix is symmetric or Hermitian, with eigenvalues specified by \(d\), cond, mode, and dmax; they can be positive, negative, or zero.
If sym='P', the generated matrix is symmetric or Hermitian, with eigenvalues (which are singular, non-negative values) specified by \(d\), cond, mode, and dmax.

If sym='N', the generated matrix is nonsymmetric, with singular, nonnegative values specified by \(d\), cond, mode, and dmax.

Array, size ( \(\operatorname{MIN}(m, n))\)
This array is used to specify the singular values or eigenvalues of \(A\) (see the description of sym). If mode \(=0\), then \(d\) is assumed to contain the eigenvalues or singular values, otherwise elements of \(d\) are computed according to mode, cond, and dmax.

Describes how the singular/eigenvalues are specified.
- mode \(=0\) : use \(d\) as input
- mode = 1: set \(d[0]=1\) and \(d[1: n-1]=1.0 /\) cond
- mode \(=2\) : set \(d[0: n-2]=1\) and \(d[n-1]=1.0 /\) cond
- mode \(=3\) : set \(d[i]=\operatorname{cond}^{-i /(n-1)}\)
- mode \(=4\) : set \(d[i]=1-i /(n-1) *(1-1 /\) cond \()\)
- mode \(=5\) : set elements of \(d\) to random numbers in the range ( \(1 /\) cond, 1) such that their logarithms are uniformly distributed.
- mode \(=6\) : set elements of \(d\) to random numbers from same distribution as the rest of the matrix.
mode \(<0\) has the same meaning as \(A B S\) (mode), except that the order of the elements of \(d\) is reversed. Thus, if mode is positive, \(d\) has entries ranging from 1 to \(1 /\) cond, if negative, from \(1 /\) cond to 1 .

If sym='S' or 'H', and mode is not 0,6 , nor -6 , then the elements of \(d\) are also given a random sign (multiplied by +1 or -1 ).

Used in setting \(d\) as described for the mode parameter. If used, con \(a \geq 1\).
If mode is not \(-6,0\) nor 6 , the contents of \(d\), as computed according to mode and cond, are scaled by dmax / max (abs(d[i-1])); thus, the maximum absolute eigenvalue or singular value (the norm) is abs (dmax).

\section*{NOTE}
\(d\) max need not be positive: if dmax is negative (or zero), \(\alpha\) will be scaled by a negative number (or zero).

Specifies the lower bandwidth of the matrix. For example, \(k l=0\) implies upper triangular, \(k l=1\) implies upper Hessenberg, and \(k l\) being at least \(m-\) 1 means that the matrix has full lower bandwidth. \(k l\) must equal \(k u\) if the matrix is symmetric or Hermitian.

Specifies the upper bandwidth of the matrix. For example, \(k u=0\) implies lower triangular, \(k u=1\) implies lower Hessenberg, and \(k u\) being at least \(n-\) 1 means that the matrix has full upper bandwidth. \(k l\) must equal \(k u\) if the matrix is symmetric or Hermitian.

Specifies packing of matrix:
- 'N': no packing
- 'U': zero out all subdiagonal entries (if symmetric or Hermitian)
- 'L': zero out all superdiagonal entries (if symmetric or Hermitian)
- 'B': store the lower triangle in band storage scheme (only if matrix symmetric, Hermitian, or lower triangular)
- 'Q': store the upper triangle in band storage scheme (only if matrix symmetric, Hermitian, or upper triangular)
- 'Z': store the entire matrix in band storage scheme (pivoting can be provided for by using this option to store \(A\) in the trailing rows of the allocated storage)
Using these options, the various LAPACK packed and banded storage schemes can be obtained:
\begin{tabular}{|l|l|l|l|l|l|}
\hline & 'Z' & 'B' & 'Q' & 'C' & 'R' \\
\hline GB: general band & x & & & & \\
\hline PB: symmetric positive definite band & & x & x & & \\
\hline SB: symmetric band & & x & x & & \\
\hline HB: Hermitian band & & x & x & & \\
\hline TB: triangular band & & x & x & & \\
\hline PP: symmetric positive definite packed & & & & x & x \\
\hline SP: symmetric packed & & & & x & x \\
\hline HP: Hermitian packed & & & & x & x \\
\hline TP: triangular packed & & & & x & x \\
\hline
\end{tabular}

If two calls to ?latms differ only in the pack parameter, they generate mathematically equivalent matrices.
lda specifies the first dimension of a as declared in the calling program.

If pack='N', 'U', 'L', 'C', or 'R', then lda must be at least \(m\) for column major or at least \(n\) for row major.

If pack='B' or 'Q', then lda must be at least MIN ( \(k\) I, m-1) (which is equal to \(\operatorname{MIN}(k u, n-1))\).

If pack='Z', lda must be large enough to hold the packed array: MIN( ku, \(n-1)+\operatorname{MIN}(k I, m-1)+1\).

\section*{Output Parameters}

The array iseed contains the updated seed.
The array \(d\) contains the updated seed.
```

NOTE
The array d is not modified if mode =0.

```
a
Array of size lda by \(n\).
The array a contains the generated \(m\)-by- \(n\) matrix \(A\).
\(a\) is first generated in full (unpacked) form, and then packed, if so specified by pack. Thus, the first \(m\) elements of the first \(n\) columns are always modified. If pack specifies a packed or banded storage scheme, all lda elements of the first \(n\) columns are modified; the elements of the array which do not correspond to elements of the generated matrix are set to zero.

\section*{Return Values}

This function returns a value info.
If info \(=0\), the execution is successful.
If info \(<0\), the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.
If info \(=2\), cannot scale to dmax (maximum singular value is 0 ).
If info \(=3\), error return from lagge, ?laghe, or lagsy.

\section*{Additional LAPACK Routines (Included for Compatibility with Netlib LAPACK)}
```

LAPACK_DECL lapack_int LAPACKE_chesv_aa_2stage (int matrix_layout , char uplo ,
lapack_int n , lapack_int nrhs , lapack_complex_float * a , lapack_int lda ,
lapack_complex_float * tb , lapack_int ltb , lapack_int * ipiv , lapack_int * ipiv2 ,
lapack_complex_float * b , lapack_int ldb);
LAPACK_DECL lapack_int LAPACKE_dsysv_aa_2stage (int matrix_layout , char uplo ,
lapack_int n , lapack_int nrhs, double * a , lapack_int lda , double * tb , lapack_int
ltb , lapack_int * ipiv , lapack_int * ipiv2 , double * b , lapack_int ldb);
LAPACK_DECL lapack_int LAPACKE_ssysv_aa_2stage (int matrix_layout , char uplo ,
lapack_int n , lapack_int nrhs , float * a , lapack_int lda , float * tb , lapack_int
ltb, lapack_int * ipiv, lapack_int * ipiv2 , float * b , lapack_int ldb);

```

LAPACK_DECL lapack_int LAPACKE_zhesv_aa_2stage (int matrix_layout, char uplo, lapack_int \(n\), lapack_int nrhs , lapack_complex_double * a , lapack_int lda , lapack_complex_double * tb , lapack_int ltb, lāpack_int * ipiv, lāpack_int * ipiv2, lapack_complex_double * b , lapack_int ldb );

LAPACK_DECL lapack_int LAPACKE_chetrf_aa_2stage (int matrix_layout , char uplo, lapack_int \(n\), lapack_complex_float * a , lapack_int lda , lapack_complex_float * tb, lapack_int ltb , lapack_int * ipiv , lapack_int * ipiv2 );

LAPACK_DECL lapack_int LAPACKE_dsytrf_aa_2stage (int matrix_layout , char uplo,
 * ipiv , lapack_int * ipiv2 );

LAPACK_DECL lapack_int LAPACKE_ssytrf_aa_2stage (int matrix_layout , char uplo,
 ipiv , lapack_int * ipiv2 );

LAPACK_DECL lapack_int LAPACKE_zhetrf_aa_2stage (int matrix_layout , char uplo, lapack_int \(n\), lapack_complex_double * a , lapack_int lda , lapack_complex_double * tb , lapack_int ltb , lapack_int * ipiv , lapack_int * ipiv2 );

LAPACK_DECL lapack_int LAPACKE_chetrs_aa_2stage (int matrix_layout , char uplo, lapack_int \(n\), lapack_int nrhs , lapack_complex_float * a , lapack_int lda , lapack_complex_float * tb , lapack_int ltb , lapack_int * ipiv, lapack_int * ipiv2, lapack_complex_float * b , lapack_int ldb );

LAPACK_DECL lapack_int LAPACKE_dsytrs_aa_2stage (int matrix_layout , char uplo, lapack_int \(n\), lapack_int nrhs, double \({ }^{-}\)a , lapack_int lda, double * tb , lapack_int ltb , lapack_int * ipiv, lapack_int * ipiv2 , double * b , lapack_int ldb );
LAPACK_DECL lapack_int LAPACKE_ssytrs_aa_2stage (int matrix_layout, char uplo, lapack_int \(n\), lapack_int nrhs, float * a , lapack_int lda, float * tb, lapack_int ltb , lapack_int * ipiv, lapack_int * ipiv2 , float * b , lapack_int ldb );

LAPACK_DECL lapack_int LAPACKE_zhetrs_aa_2stage (int matrix_layout , char uplo, lapack_int \(n\), lapack_int nrhs , lapack_complex_double * a , lapack_int lda, lapack_complex_double * tb , lapack_int ltb , lapack_int * ipiv, lāpack_int * ipiv2, lapack_complex_double * b , lapack_int ldb );
call csysv_aa_2stage (uplo, n , nrhs , a , lda , tb , ltb, ipiv, ipiv2, b , ldb, info);

LAPACK_DECL lapack_int LAPACKE_CSysv_aa_2stage (int matrix_layout, char uplo, lapack_int \(n\), lapack_int nrhs , lapack_complex_float * a , lapack_int lda , lapack_complex_float * tb , lapack_int ltb , lapack_int * ipiv, lapack_int * ipiv2 , lapack_complex_float * b , lapack_int ldb );
call zsysv_aa_2stage (uplo, n , nrhs , a , lda , tb , ltb , ipiv, ipiv2, b , ldb, info);

LAPACK_DECL lapack_int LAPACKE_zsysv_aa_2stage (int matrix_layout , char uplo , lapack_int \(n\), lapack_int nrhs , lapack_complex_double * a , lapack_int lda, lapack_complex_double * tb , lapack_int ltb , lapack_int * ipiv, lapack_int * ipiv2 , lapack_complex_double * b , lapack_int ldb );

LAPACK_DECL lapack_int LAPACKE_csytrf_aa_2stage (int matrix_layout , char uplo, lapack_int \(n\), lapack_complex_float * a , lapack_int lda , lapack_complex_float * tb , lapack_int ltb, lapack_int * ipiv , lapack_int * ipiv2 );
LAPACK_DECL lapack_int LAPACKE_zsytrf_aa_2stage (int matrix_layout, char uplo, lapack_int \(n\), lapack_complex_double \({ }^{\text {* }} a^{\text {, }}\) lapack_int lda , lapack_complex_double * tb , lapack_int ltb , lapack_int * ipiv , lapack_int * ipiv2 );

LAPACK_DECL lapack_int LAPACKE_csytrs_aa_2stage (int matrix_layout, char uplo, lapack_int \(n, ~ l a p a c k \_i n t ~ n r h s, ~ l a p a c k \_c o m p l e x \_f l o a t ~ * ~ a, ~ l a p a c k \_i n t ~ l d a, ~\) lapack_complex_float \(\bar{*}\) tb , lapack_int \(\bar{l} t b\), lapack_int * ipiv, lāpack_int * ipiv2 , lapack_complex_float * b , lapack_int ldb );

LAPACK_DECL lapack_int LAPACKE_zsytrs_aa_2stage (int matrix_layout, char uplo, lapack_int \(n\), lapack_int nrhs , lapack_complex_double * a , lapack_int lda , lapack_complex_double * tb , lapack_int ltb , lapack_int * ipiv, lapack_int * ipiv2 , lapack_complex_double * b , lapack_int ldb );

LAPACK_DECL lapack_int LAPACKE_ssyev_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(\left.n, f l o a t ~ * ~ a, ~ l a p a c k \_i n t ~ l d a, ~ f l o a t ~ * ~ w\right) ; ~\)
LAPACK_DECL lapack_int LAPACKE_dsyev_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(n\), double * a, lapack_int lda, double * w);

LAPACK_DECL lapack_int LAPACKE_ssyevd_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(\left.n, f l o a t ~ * ~ a, ~ l a p a c k \_i n t ~ l d a, ~ f l o a t ~ * ~ w\right) ; ~\)
LAPACK_DECL lapack_int LAPACKE_dsyevd_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(n\), double * a, lapack_int lda, double * w);

LAPACK_DECL lapack_int LAPACKE_ssyevr_2stage (int matrix_layout, char jobz, char range, char uplo, lapack_int \(n\), float * \(a, ~ l a p a c k \_i n t ~ l d a, ~ f l o a t ~ v l, ~ f l o a t ~ v u, ~ l a p a c k \_i n t ~ i l, ~\) lapack_int iu, float abstol, lapack_int * m, float * w, float * z, lapack_int ldz, lapack_int * isuppz);

LAPACK_DECL lapack_int LAPACKE_dsyevr_2stage (int matrix_layout, char jobz, char range, char uplo, lapack_int \(n\), double * a, lapack_int lda, double vl, double vu, lapack_int il, lapack_int iu, double abstol, lapack_int * m, double * w, double * \(z\), lapack_int ldz, lapack_int * isuppz);

LAPACK_DECL lapack_int LAPACKE_ssyevx_2stage (int matrix_layout, char jobz, char range, char uplo, lapack_int \(n\), float * \(a, ~ l a p a c k \_i n t ~ l d a, ~ f l o a t ~ v l, ~ f l o a t ~ v u, ~ l a p a c k \_i n t ~ i l, ~\) lapack_int iu, float abstol, lapack_int * m, float * w, float * \(z\), lapack_int ldz, lapack_int * ifail);
LAPACK_DECL lapack_int LAPACKE_dsyevx_2stage (int matrix_layout, char jobz, char range, char uplo, lapack_int \(n\), double * a, lapack_int lda, double vl, double vu, lapack_int il, lapack_int iu, double abstol, lapack_int * m, double * w, double * \(z\), lapack_int ldz, lapack_int * ifail);
LAPACK_DECL lapack_int LAPACKE_ssygv_2stage (int matrix_layout, lapack_int itype, char jobz, char uplo, lapack_int \(n, f l o a t ~ * ~ a, ~ l a p a c k \_i n t ~ l d a, ~ f l o a t ~ * ~ b, ~ l a p a c k \_i n t ~ l d b, ~\) float * w);

LAPACK_DECL lapack_int LAPACKE_dsygv_2stage (int matrix_layout, lapack_int itype, char jobz, char uplo, lapack_int \(n\), double * \(a, ~ l a p a c k \_i n t ~ l d a, ~ d o u b l e ~ * ~ b, ~ l a p a c k \_i n t ~ l d b, ~\) double * w);

LAPACK_DECL lapack_int LAPACKE_cheev_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(n\), lapack_complex_float * a, lapack_int lda, float * w);
LAPACK_DECL lapack_int LAPACKE_zheev_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(n\), lapack_complex_double * a, lapack_int lda, double * w);

LAPACK_DECL lapack_int LAPACKE_cheevd_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(n\), lapack_complex_float * a, lapack_int lda, float * w);
LAPACK_DECL lapack_int LAPACKE_zheevd_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(n\), lapack_complex_double * a, lapack_int lda, double * w);

LAPACK_DECL lapack_int LAPACKE_cheevr_2stage (int matrix_layout, char jobz, char range, char uplo, lapack_int \(n\), lapack_complex_float * a, lapack_int lda, float vl, float vu, lapack_int il, lapack_int iu, float abstol, lapack_int * m, float * w, lapack_complex_float \(\star z\), lapack_int ldz, lapack_int * isuppz);

LAPACK_DECL lapack_int LAPACKE_zheevr_2stage (int matrix_layout, char jobz, char range, char uplo, lapack_int \(n\), lapack_complex_double * a, lapack_int lda, double vl, double vu, lapack_int il, lapack_int iū, doublē abstol, lapack_int * m, double * \(w\), lapack_complex_double * \(z\), lapack_int ldz, lapack_int * isuppz);

LAPACK_DECL lapack_int LAPACKE_cheevx_2stage (int matrix_layout, char jobz, char range, char uplo, lapack_int \(n\), lapack_complex_float * a, lapack_int lda, float vl, float vu, lapack_int il, lapack_int iu, float abstol, lapack_int * m, float * w, lapack_complex_float \(\bar{\star} z\), lapack_int ldz, lapack_in̄t * ifail);

LAPACK_DECL lapack_int LAPACKE_zheevx_2stage (int matrix_layout, char jobz, char range, char uplo, lapack_int \(n\), lapack_complex_double * a, lapack_int lda, double vl, double vu, lapack_int il, lapack_int iu, double abstol, lapack_int * m, double * w, lapack_complex_double * \(z\), lapack_int ldz, lapack_int * ifail);

LAPACK_DECL lapack_int LAPACKE_chegv_2stage (int matrix_layout, lapack_int itype, char jobz, char uplo, lapack_int \(n\), lapack_complex_float * a, lapack_int lda, lapack_complex_float * b, lapack_int ldb, float * w);
LAPACK_DECL lapack_int LAPACKE_zhegv_2stage (int matrix_layout, lapack_int itype, char jobz, char uplo, lapack_int \(n\), lapack_complex_double * a, lapack_int lda, lapack_complex_double * b, lapack_int ldb, double * w);

LAPACK_DECL lapack_int LAPACKE_ssbev_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(n\), lapack_int \(k d\), float * \(a b\), lapack_int ldab, float * \(w\), float * \(z\), lapack_int ldz);

LAPACK_DECL lapack_int LAPACKE_dsbev_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(n\), lapack_int kd, double * ab, lapack_int ldab, double * w, double * z, lapack_int ldz);
LAPACK_DECL lapack_int LAPACKE_ssbevd_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(n\), lapack_int kd, float * ab, lapack_int ldab, float * w, float * z, lapack_int ldz);

LAPACK_DECL lapack_int LAPACKE_dsbevd_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(n\), lapack_int \(k d\), double * \(a b, ~ l a p a c k \_i n t ~ l d a b, ~ d o u b l e ~ * ~ w, ~ d o u b l e ~ * ~ z, ~\) lapack_int ldz);

LAPACK_DECL lapack_int LAPACKE_ssbevx_2stage (int matrix_layout, char jobz, char range, char uplo, lapack_int \(n\), lapack_int kd, float * ab, lapack_int ldab, float * \(q\), lapack_int ldq, float vl, float vu, lapack_int il, lapack_int iu, float abstol, lapack_int * m, float * w, float * \(z\), lapack_int ldz, lapack_int * ifail);

LAPACK_DECL lapack_int LAPACKE_dsbevx_2stage (int matrix_layout, char jobz, char range, char uplo, lapack_int \(n\), lapack_int \(k \bar{d}\), double * ab, lapack_int ldab, double * \(q\), lapack_int ldq, double vl, double vu, lapack_int il, lapack_int iu, double abstol, lapack_int * m, double * w, double * \(z\), lapac̄k_int ldz, lapāck_int * ifail);

LAPACK_DECL lapack_int LAPACKE_chbev_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(n\), lapack_int kd, lapack_complex_float * ab, lapack_int ldab, float * w, lapack_complex_float * \(z\), lapack_int ldz);
LAPACK_DECL lapack_int LAPACKE_zhbev_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(n\), lapack_int \(k d\), lapack_complex_double * ab, lapack_int ldab, double * w, lapack_complex_double * \(z\), lapack_int ldz);

LAPACK_DECL lapack_int LAPACKE_chbevd_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(n\), lapac̄k_int \(k d\), lāpack_cōmplex_float * ab, lapack_int ldab, float * w, lapack_complex_float * \(z\), lapack_int ldz);

LAPACK_DECL lapack_int LAPACKE_zhbevd_2stage (int matrix_layout, char jobz, char uplo, lapack_int \(n\), lapack_int \(k d\), lapack_complex_double * ab, lapack_int ldab, double * w, lapack_complex_double * z, lapack_int ldz);
```

LAPACK_DECL lapack_int LAPACKE_chbevx_2stage (int matrix_layout, char jobz, char range,
char uplo, lapack_int n, lapack_int k\overline{d}, lapack_complex_float * ab, lapack_int ldab,
lapack_complex_float * q, lapack_int ldq, float vl, float vu, lapack_int il, lapack_int
iu, float abstol, lapack_int * m, float * w, lapack_complex_float * z, lapack_int ldz,
lapack_int * ifail);
LAPACK_DECL lapack_int LAPACKE_zhbevx_2stage (int matrix_layout, char jobz, char range,
char uplo, lapack_int n, lapack_int k\overline{d}, lapack_complex_double * ab, lapack_int ldab,
lapack_complex_doūble * q, lapačk_int ldq, dou\overline{ble vl, double vu, lapack_int il,}
lapack_int iu, double abstol, lapack_int * m, double * w, lapack_complex_double * z,
lapack_int ldz, lapack_int * ifail);

```

For descriptions of these functions, please see https://www.netlib.org/lapack/explore-html/files.html.

\section*{ScaLAPACK Routines}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library implements routines from the ScaLAPACK package for distributed-memory architectures. Routines are supported for both real and complex dense and band matrices to perform the tasks of solving systems of linear equations, solving linear least-squares problems, eigenvalue and singular value problems, as well as performing a number of related computational tasks.
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) ScaLAPACK routines are written in FORTRAN 77 with exception of a few utility routines written in C to exploit the IEEE arithmetic. All routines are available in all precision types: single precision, double precision, complexm, and double complex precision. See themkl_scalapack.h header file for C declarations of ScaLAPACK routines.

\section*{NOTE}

ScaLAPACK routines are provided only for Intel® 64 or Intel \({ }^{\circledR}\) Many Integrated Core architectures.

See descriptions of ScaLAPACK computational routines that perform distinct computational tasks, as well as driver routinesfor solving standard types of problems in one call. Additionally, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library implements ScaLAPACKAuxiliary Routines, Utility Functions and Routines, and Matrix Redistribution/ Copy Routines. The library includes routines for both real and complex data.
The <install_directory>/examples/scalapackf directory contains sample code demonstrating the use of ScaLAPACK routines.
Generally, ScaLAPACK runs on a network of computers using MPI as a message-passing layer and a set of prebuilt communication subprograms (BLACS), as well as a set of BLAS optimized for the target architecture. Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) version of ScaLAPACK is optimized for Intel \({ }^{\circledR}\) processors. For the detailed system and environment requirements, seeInte® oneAPI Math Kernel Library (oneMKL) Release Notes and Inte® oneAPI Math Kernel Library (oneMKL) Developer Guide.
For full reference on ScaLAPACK routines and related information, see [SLUG].

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Overview of ScaLAPACK Routines}

The model of the computing environment for ScaLAPACK is represented as a one-dimensional array of processes (for operations on band or tridiagonal matrices) or also a two-dimensional process grid (for operations on dense matrices). To use ScaLAPACK, all global matrices or vectors should be distributed on this array or grid prior to calling the ScaLAPACK routines.

ScaLAPACK is closely tied to other components, including BLAS, BLACS, LAPACK, and PBLAS.


\section*{ScaLAPACK Array Descriptors}

ScaLAPACK uses two-dimensional block-cyclic data distribution as a layout for dense matrix computations. This distribution provides good work balance between available processors, and also allows use of BLAS Level 3 routines for optimal local computations. Information about the data distribution that is required to establish the mapping between each global matrix and its corresponding process and memory location is contained in the array called the array descriptor associated with each global matrix. The size of the array descriptor is denoted as dlen_.

Let \(A\) be a two-dimensional block cyclicly distributed matrix with the array descriptor array desca. The meaning of each array descriptor element depends on the type of the matrix \(A\). The tables "Array descriptor for dense matrices" and "Array descriptor for narrow-band and tridiagonal matrices" describe the meaning of each element for the different types of matrices.

Array descriptor for dense matrices (dlen_=9)
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
Element \\
Name
\end{tabular} & Stored in & Description & \begin{tabular}{l} 
Element Index \\
Number
\end{tabular} \\
\hline dtype_a & desca[dtype_] & Descriptor type ( =1 for dense matrices). & 0 \\
\(c t x t \_a\) & desca[ctxt_] & BLACS context handle for the process grid. & 1 \\
\(m_{-} a\) & desca[m_] & Number of rows in the global matrix \(A\). & 2 \\
\(n_{-} a\) & desca[n_] \(\left[m b_{-}\right]\) & Number of columns in the global matrix \(A\). & 3 \\
\(m b=a\) & Row blocking factor. & 4
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Element \\
Name
\end{tabular} & Stored in & Description & Element Index Number \\
\hline nb_a & desca[nb_] & Column blocking factor. & 5 \\
\hline rsrc_a & desca[rsrc_] & Process row over which the first row of the global matrix \(A\) is distributed. & 6 \\
\hline csrc_a & desca[csrc_] & Process column over which the first column of the global matrix \(A\) is distributed. & 7 \\
\hline Ild_a & desca[/ld_] & Leading dimension of the local matrix \(A\). & 8 \\
\hline \multicolumn{4}{|l|}{Array descriptor for narrow-band and tridiagonal matrices (d/en_=7)} \\
\hline Element Name & Stored in & Description & Element Index Number \\
\hline dtype_a & desca[dtype_] & \begin{tabular}{l}
Descriptor type \\
- dtype_a=501: 1-by-P grid, \\
- dtype_a=502: P-by-1 grid.
\end{tabular} & 0 \\
\hline ctxt_a & desca[ctxt_] & BLACS context handle indicating the BLACS process grid over which the global matrix \(A\) is distributed. The context itself is global, but the handle (the integer value) can vary. & 1 \\
\hline n_a & desca[n_] & The size of the matrix dimension being distributed. & 2 \\
\hline \(n b \_a\) & desca[nb_] & The blocking factor used to distribute the distributed dimension of the matrix \(A\). & 3 \\
\hline src_a & desca[src_] & The process row or column over which the first row or column of the matrix \(A\) is distributed. & 4 \\
\hline Ild_a & desca[/ld_] & \begin{tabular}{l}
The leading dimension of the local matrix storing the local blocks of the distributed matrix \(A\). The minimum value of \(/ I d \_a\) depends on dtype_a. \\
- dtype_a=501: /ld_a \(\max (\) size of undistributed dimension, 1), \\
- dtype_a=502: \(/ l d \_a \geq \max \left(n b \_a, 1\right)\).
\end{tabular} & 5 \\
\hline Not applicable & & Reserved for future use. & 6 \\
\hline \multicolumn{4}{|l|}{Similar notations are used for different matrices. For example: \(/ l d \_b\) is the leading dimension of the local matrix storing the local blocks of the distributed matrix \(B\) and dtype_z is the type of the global matrix} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
The number of rows and columns of a global dense matrix that a particular process in a grid receives data distributing is denoted by \(L O C_{r}()\) and \(L O C_{C}()\), respectively. To compute these numbers, you can ScaLAPACK tool routine numroc. \\
After the block-cyclic distribution of global data is done, you may choose to perform an operation on a submatrix \(\operatorname{sub}(A)\) of the global matrix \(A\) defined by the following 6 values (for dense matrices):
\end{tabular}}} \\
\hline & & & \\
\hline m & \multicolumn{3}{|c|}{The number of rows of \(\operatorname{sub}(A)\)} \\
\hline \(n\) & \multicolumn{2}{|r|}{The number of columns of \(\operatorname{sub}(A)\)} & \\
\hline a & \multicolumn{3}{|c|}{A pointer to the local matrix containing the entire global matrix A} \\
\hline ia & \multicolumn{3}{|c|}{The row index of \(\operatorname{sub}(A)\) in the global matrix \(A\)} \\
\hline ja & \multicolumn{2}{|r|}{The column index of \(\operatorname{sub}(A)\) in the global matrix \(A\)} & \\
\hline
\end{tabular}

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Naming Conventions for ScaLAPACK Routines}

For each routine introduced in this chapter, you can use the ScaLAPACK name. The naming convention for ScaLAPACK routines is similar to that used for LAPACK routines. A general rule is that each routine name in ScaLAPACK, which has an LAPACK equivalent, is simply the LAPACK name prefixed by initial letter p.
ScaLAPACK names have the structure p?yyzzz or p?yyzz, which is described below.
The initial letter \(p\) is a distinctive prefix of ScaLAPACK routines and is present in each such routine.
The second symbol ? indicates the data type:
\begin{tabular}{ll} 
s & real, single precision \\
d & real, double precision \\
c & complex, single precision \\
\(z\) & complex, double precision
\end{tabular}

The second and third letters yy indicate the matrix type as:
\begin{tabular}{ll} 
ge & general \\
gb & general band \\
\(g g\) & a pair of general matrices (for a generalized problem) \\
\(d t\) & general tridiagonal (diagonally dominant-like) \\
db & general band (diagonally dominant-like) \\
po & symmetric or Hermitian positive-definite \\
pb & symmetric or Hermitian positive-definite band \\
pt & symmetric or Hermitian positive-definite tridiagonal \\
sy & symmetric \\
st & symmetric tridiagonal (real) \\
he & Hermitian \\
or & orthogonal \\
tr & triangular (or quasi-triangular) \\
tz & trapezoidal \\
un & unitary
\end{tabular}

For computational routines, the last three letters \(\mathbf{z z z}\) indicate the computation performed and have the same meaning as for LAPACK routines.
For driver routines, the last two letters \(\mathbf{z z}\) or three letters \(\mathbf{z z z}\) have the following meaning:
```

sv a simple driver for solving a linear system
svx an expert driver for solving a linear system
ls a driver for solving a linear least squares problem
ev a simple driver for solving a symmetric eigenvalue problem
evd
evx
svd
gvx
a simple driver for solving a linear system
an expert driver for solving a linear system
a driver for solving a linear least squares problem
a simple driver for solving a symmetric eigenvalue problem
a simple driver for solving an eigenvalue problem using a divide and conquer algorithm
an expert driver for solving a symmetric eigenvalue problem
a driver for computing a singular value decomposition
an expert driver for solving a generalized symmetric definite eigenvalue problem

```

Simple driver here means that the driver just solves the general problem, whereas an expert driver is more versatile and can also optionally perform some related computations (such, for example, as refining the solution and computing error bounds after the linear system is solved).

\section*{ScaLAPACK Computational Routines}

In the sections that follow, the descriptions of ScaLAPACK computational routines are given. These routines perform distinct computational tasks that can be used for:
- Solving Systems of Linear Equations
- Orthogonal Factorizations and LLS Problems
- Symmetric Eigenproblems
- Nonsymmetric Eigenproblems
- Singular Value Decomposition
- Generalized Symmetric-Definite Eigenproblems

See also the respective driver routines.

\section*{Systems of Linear Equations: ScaLAPACK Computational Routines}

ScaLAPACK supports routines for the systems of equations with the following types of matrices:
- general
- general banded
- general diagonally dominant-like banded (including general tridiagonal)
- symmetric or Hermitian positive-definite
- symmetric or Hermitian positive-definite banded
- symmetric or Hermitian positive-definite tridiagonal

A diagonally dominant-like matrix is defined as a matrix for which it is known in advance that pivoting is not required in the \(L U\) factorization of this matrix.
For the above matrix types, the library includes routines for performing the following computations: factoring the matrix; equilibrating the matrix; solving a system of linear equations; estimating the condition number of a matrix; refining the solution of linear equations and computing its error bounds; inverting the matrix. Note that for some of the listed matrix types only part of the computational routines are provided (for example, routines that refine the solution are not provided for band or tridiagonal matrices). See Table "Computational Routines for Systems of Linear Equations" for full list of available routines.

To solve a particular problem, you can either call two or more computational routines or call a corresponding driver routine that combines several tasks in one call. Thus, to solve a system of linear equations with a general matrix, you can first call p?getrf( \(L U\) factorization) and then \(p\) ?getrs(computing the solution). Then, you might wish to call p?gerfs to refine the solution and get the error bounds. Alternatively, you can just use the driver routine p?gesvx which performs all these tasks in one call.

Table "Computational Routines for Systems of Linear Equations" lists the ScaLAPACK computational routines for factorizing, equilibrating, and inverting matrices, estimating their condition numbers, solving systems of equations with real matrices, refining the solution, and estimating its error.
Computational Routines for Systems of Linear Equations
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Matrix type, storage scheme & Factorize matrix & Equilibrate matrix & Solve system & Condition number & Estimate error & Invert matrix \\
\hline general (partial pivoting) & p?getrf & p?geequ & p?getrs & p?gecon & p?gerfs & p?getri \\
\hline general band (partial pivoting) & p?gbtrf & & p?gbtrs & & & \\
\hline general band (no pivoting) & p?dbtrf & & p?dbtrs & & & \\
\hline general tridiagonal (no pivoting) & \(p\) ?dttrf & & p?dttrs & & & \\
\hline symmetric/Hermitian positive-definite & p?potrf & p?poequ & p?potrs & p?pocon & p?porfs & p?potri \\
\hline symmetric/Hermitian positive-definite, band & p?pbtrf & & p?pbtrs & & & \\
\hline symmetric/Hermitian positive-definite, tridiagonal & p?pttrf & & p?pttrs & & & \\
\hline triangular & & & p?trtrs & p?trcon & p?trrfs & p?trtri \\
\hline
\end{tabular}

In this table ? stands for \(s\) (single precision real), d (double precision real), c (single precision complex), or \(z\) (double precision complex).

\section*{Matrix Factorization: ScaLAPACK Computational Routines}

This section describes the ScaLAPACK routines for matrix factorization. The following factorizations are supported:
- LU factorization of general matrices
- LU factorization of diagonally dominant-like matrices
- Cholesky factorization of real symmetric or complex Hermitian positive-definite matrices

You can compute the factorizations using full and band storage of matrices.
```

p?getrf
Computes the LU factorization of a general m-by-n
distributed matrix.

```

\section*{Syntax}
```

void psgetrf (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT

```
void psgetrf (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , MKL_INT *ipiv , MKL_INT *info );
*desca , MKL_INT *ipiv , MKL_INT *info );
void pdgetrf (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
void pdgetrf (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , MKL_INT *ipiv , MKL_INT *info );
*desca , MKL_INT *ipiv , MKL_INT *info );
void pcgetrf (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a, MKL_INT *ia , MKL_INT *ja,
void pcgetrf (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a, MKL_INT *ia , MKL_INT *ja,
MKL_INT *desca , MKL_INT *ipiv , MKL_INT *info );
MKL_INT *desca , MKL_INT *ipiv , MKL_INT *info );
void pzgetrf (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
void pzgetrf (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_INT *ipiv, MKL_INT *info );
```

MKL_INT *desca , MKL_INT *ipiv, MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?getrffunction forms the \(L U\) factorization of a general \(m-b y-n\) distributed matrix \(\operatorname{sub}(A)=A\) (ia:ia \(+m-1\), ja:ja+n-1) as
\(A=P^{*} L * U\)
where \(P\) is a permutation matrix, \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>n\) ) and \(U\) is upper triangular (upper trapezoidal if \(m<n\) ). \(L\) and \(U\) are stored in \(\operatorname{sub}(A)\).

The function uses partial pivoting, with row interchanges.

\section*{NOTE}

This function supports the Progress Routine feature. See mkl_progress for details.

\section*{Input Parameters}
m
n
a
ia, ja
desca

\section*{Output Parameters}
a
info
(global) The number of rows in the distributed matrix \(\operatorname{sub}(A) ; m \geq 0\).
(global) The number of columns in the distributed matrix \(\operatorname{sub}(A) ; n \geq 0\).
(local)
Pointer into the local memory to an array of local size IId_a*LOCc(ja+n-1).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be factored.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).

Overwritten by local pieces of the factors \(L\) and \(U\) from the factorization \(A=\) \(P^{*} L * U\). The unit diagonal elements of \(L\) are not stored.
(local) Array of size \(\operatorname{LOCr}\left(m_{-} a\right)+m b \_a\).
Contains the pivoting information: local row \(i\) was interchanged with global row ipiv[i-1]. This array is tied to the distributed matrix \(A\).
(global)
If info \(=0\), the execution is successful.
info < 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

If info \(=i>0, u_{i a+i, j a+j-1}\) is 0 . The factorization has been completed, but the factor \(U\) is exactly singular. Division by zero will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?gbtrf}

Computes the LU factorization of a general n-by-n banded distributed matrix.
```

Syntax
void psgbtrf (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , float *a , MKL_INT *ja ,
MKL_INT *desca , MKL_INT *ipiv, float *af, MKL_INT *laf , float *work , MKL_INT
*lwork , MKL_INT *info);
void pdgbtrf (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , double *a , MKL_INT *ja ,
MKL_INT *desca , MKL_INT *ipiv, double *af, MKL_INT *laf , double *work , MKL_INT
*lwork , MKL_INT *info);
void pcgbtrf (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_Complex8 *a , MKL_INT
*ja , MKL_INT *desca , MKL_INT *ipiv , MKL_Complex8 *af , MKL_INT *laf , MKL_Complex8
*work , MKL_INT *lwork , MKL_INT *info);
void pzgbtrf (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_Complex16 *a , MKL_INT
*ja , MKL_INT *desca, MKL_INT *ipiv, MKL_Complexl6 *af, MKL_INT *laf , MKL_Complexl6
*work , MKL_INT *lwork , MKL_INT *info);

```

Include Files
- mkl_scalapack.h

\section*{Description}

The p?gbtrf function computes the \(L U\) factorization of a general \(n\)-by- \(n\) real/complex banded distributed matrix \(A(1: n, j a: j a+n-1)\) using partial pivoting with row interchanges.

The resulting factorization is not the same factorization as returned from the LAPACK function ?gbtrf. Additional permutations are performed on the matrix for the sake of parallelism.
The factorization has the form
\(A(1: n, j a: j a+n-1)=P^{*} L^{*} U^{*} Q\)
where \(P\) and \(Q\) are permutation matrices, and \(L\) and \(U\) are banded lower and upper triangular matrices, respectively. The matrix \(Q\) represents reordering of columns for the sake of parallelism, while \(P\) represents reordering of rows for numerical stability using classic partial pivoting.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
n
bwl
bwu
a
(global) The number of rows and columns in the distributed submatrix \(A(1: n, j a: j a+n-1) ; n \geq 0\).
(global) The number of sub-diagonals within the band of \(A\) ( \(0 \leq b w l \leq n-1)\).
(global) The number of super-diagonals within the band of \(A\) ( \(0 \leq b w u \leq n-1\) ).
(local)
Pointer into the local memory to an array of local size I/d_a*LOCc(ja+n-1) where
lld_a \(a\) *bwl + 2*bwu +1.
Contains the local pieces of the \(n-b y-n\) distributed banded matrix \(A(1: n\), ja:ja+n-1) to be factored.
ja
desca
laf
work
lwork

\section*{Output Parameters}
a
info
(global) The index in the global matrix \(A\) indicating the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\) ).
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
If dtype_a = 501, then dlen_ \(\geq 7\);
else if dtype_a = 1 , then dlen_ \(\geq 9\).
(local) The size of the array \(a f\).
Must be \(l a f \geq\left(n b \_a+b w u\right) *(b w l+b w u)+6 *(b w l+b w u) *(b w l+2 * b w u)\).
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f[0]\).
(local) Same type as a. Workspace array of size lwork.
(local or global) The size of the work array (lwork \(\geq 1\) ). If lwork is too small, the minimal acceptable size will be returned in work[0] and an error code is returned.

On exit, this array contains details of the factorization. Note that additional permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.
(local) array.
The size of ipiv must be \(\geq n b \_a\).
Contains pivot indices for local factorizations. Note that you should not alter the contents of this array between factorization and solve.
(local)
Array of size laf.
Auxiliary fill-in space. The fill-in space is created in a call to the factorization function p?gbtrf and is stored in af.
Note that if a linear system is to be solved using p?gbtrs after the factorization function, af must not be altered after the factorization.

On exit, work[0] contains the minimum value of lwork required.
(global)
If info \(=0\), the execution is successful.
info < 0 :
If the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```

info> 0:

```

If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not nonsingular, and the factorization was not completed.

If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.
```

See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.
p?dbtrf
Computes the LU factorization of a n-by-n diagonally
dominant-like banded distributed matrix.

```
Syntax
```

void psdbtrf (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , float *a , MKL_INT *ja ,
MKL_INT *desca , float *af , MKL_INT *laf , float *work , MKL_INT *lwork , MKL_INT
*info);
void pddbtrf (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , double *a , MKL_INT *ja ,
MKL_INT *desca, double *af, MKL_INT *laf, double *work, MKL_INT *lwork, MKL_INT
*info);
void pcdbtrf (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_Complex8 *a , MKL_INT
*ja , MKL_INT *desca , MKL_Complex8 *af , MKL_INT *laf , MKL_Complex8 *Work , MKL_INT
*lwork , MKL_INT *info);
void pzdbtrf (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_Complex16 *a , MKL_INT
*ja, MKL_INT *desca , MKL_Complex16 *af , MKL_INT *laf , MKL_Complex16 *Work , MKL_INT
*lwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?dbtrffunction computes the LU factorization of a \(n\)-by- \(n\) real/complex diagonally dominant-like banded distributed matrix \(A(1: n, j a: j a+n-1)\) without pivoting.

\section*{NOTE}

A matrix is called diagonally dominant-like if pivoting is not required for LU to be numerically stable.

Note that the resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
\(n\)
bwl
bwu
a
ja
desca
laf
work
lwork

\section*{Output Parameters}
a
af
work [0]
(global) The number of rows and columns in the distributed submatrix \(A(1: n, j a: j a+n-1) ; n \geq 0\).
(global) The number of sub-diagonals within the band of \(A\)
( \(0 \leq\) bwl \(\leq n-1\) ).
(global) The number of super-diagonals within the band of \(A\)
\((0 \leq\) bwu \(\leq n-1)\).
(local)
Pointer into the local memory to an array of local size IId_a*LOCc(ja+n-1).
Contains the local pieces of the \(n\)-by- \(n\) distributed banded matrix \(A(1: n\), \(j a: j a+n-1)\) to be factored.
(global) The index in the global matrix \(A\) indicating the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\) ).
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).

If dtype_a = 501, then dlen_ \(\geq\) 7;
else if dtype_a \(=1\), then \(d l e n_{-} \geq 9\).
(local) The size of the array af.
Must be \(1 a I \geq \mathrm{NB}^{*}(b w l+b w u)+6 *(\max (b w l, b w u))^{2}\).
If \(l_{a} f\) is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f[0]\).
(local) Workspace array of size lwork.
(local or global) The size of the work array, must be 1 work \(\geq\) (max (bwl, bwu) ) \({ }^{2}\). If 1 work is too small, the minimal acceptable size will be returned in work[0] and an error code is returned.

On exit, this array contains details of the factorization. Note that additional permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.
(local)
Array of size laf.
Auxiliary fill-in space. The fill-in space is created in a call to the factorization function p?dbtrf and is stored in af.

Note that if a linear system is to be solved using p?dbtrs after the factorization function, af must not be altered after the factorization.

On exit, work [0] contains the minimum value of lwork required for optimum performance.
```

info
(global)
If info=0, the execution is successful.
info < 0:
If the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

```
```

info> 0:

```
info> 0:
If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not diagonally dominant-like, and the factorization was not completed.
If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?dttrf
Computes the LU factorization of a diagonally
dominant-like tridiagonal distributed matrix.
```

Syntax

```
void psdttrf (MKL_INT *n , float *dl , float *d, float *du , MKL_INT *ja, MKL_INT
*desca , float *af, MKL_INT *laf , float *work , MKL_INT *lwork , MKL_INT *info );
void pddttrf (MKL_INT *n , double *dl , double *d, double *du , MKL_INT *ja , MKL_INT
*desca , double *af, MKL_INT *laf, double *work , MKL_INT *lwork , MKL_INT *info );
void pcdttrf (MKL_INT *n , MKL_Complex8 *dl , MKL_Complex8 *d , MKL_Complex8 *du ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *af, MKL_INT *laf, MKL_Complex8 *work ,
MKL_INT *lwork , MKL_INT *info );
void pzdttrf (MKL_INT *n , MKL_Complex16 *dl , MKL_Complex16 *d , MKL_Complex16 *du ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *af, MKL_INT *laf, MKL_Complex16 *work ,
MKL_INT *lwork , MKL_INT *info );
```

Include Files

- mkl_scalapack.h

Description

The p?dttrffunction computes the $L U$ factorization of an n-by- n real/complex diagonally dominant-like tridiagonal distributed matrix $A(1: n, j a: j a+n-1)$ without pivoting for stability.

The resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.
The factorization has the form:
$A(1: n, j a: j a+n-1)=P * L^{*} U^{*} P^{T}$,
where P is a permutation matrix, and L and U are banded lower and upper triangular matrices, respectively.

```
Product and Performance Information
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision #20201201
```


Input Parameters

n
$d l, d, d u$
ja
desca
laf
work
lwork

Output Parameters

$d l, d, d u$
$a f$
(global) The number of rows and columns to be operated on, that is, the order of the distributed submatrix $A(1: n, j a: j a+n-1)(n \geq 0)$.
(local)
Pointers to the local arrays of size nb_a each.
On entry, the array $d l$ contains the local part of the global vector storing the subdiagonal elements of the matrix. Globally, $d I[0]$ is not referenced, and $d l$ must be aligned with d.

On entry, the array d contains the local part of the global vector storing the diagonal elements of the matrix.

On entry, the array $d u$ contains the local part of the global vector storing the super-diagonal elements of the matrix. $d u[n-1]$ is not referenced, and $d u$ must be aligned with d.
(global) The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_a = 501, then dlen_ ≥ 7;
else if dtype_a = 1 , then dlen_ ≥ 9.
(local) The size of the array af.
Must be laf 2 *(NB+2).
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f[0]$.
(local) Same type as d. Workspace array of size lwork.
(local or global) The size of the work array, must be at least lwork \geq 8*NPCOL.

On exit, overwritten by the information containing the factors of the matrix. (local)
Array of size laf.
Auxiliary fill-in space. The fill-in space is created in a call to the factorization function p?dttrf and is stored in af.

Note that if a linear system is to be solved using p?dttrs after the factorization function, af must not be altered.
work[0]
info
On exit, work[0] contains the minimum value of lwork required for optimum performance.
(global)
If info=0, the execution is successful.

```
info < 0:
```

If the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-(i * 100+j)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.
info> 0 :
If info $=k \leq$ NPROCS, the submatrix stored on processor info and factored locally was not diagonally dominant-like, and the factorization was not completed.
If info $=k>$ NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?potrf

Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite distributed matrix.

Syntax

```
void pspotrf (char *uplo, MKL_INT *n , float *a, MKL_INT *ia, MKL_INT *ja , MKL_INT
*desca , MKL_INT *info );
void pdpotrf (char *uplo, MKL_INT *n , double *a, MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , MKL_INT *info );
void pcpotrf (char *uplo, MKL_INT *n , MKL_Complex8 *a, MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_INT *info );
void pzpotrf (char *uplo, MKL_INT *n , MKL_Complexl6 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_INT *info );
```

Include Files

- mkl_scalapack.h

Description

The p?potrffunction computes the Cholesky factorization of a real symmetric or complex Hermitian positivedefinite distributed n-by- n matrix $A(i a: i a+n-1, j a: j a+n-1$), denoted below as sub (A).

The factorization has the form
$\operatorname{sub}(A)=U^{H *} U$ if uplo='U', or
$\operatorname{sub}(A)=L^{*} L^{H}$ if uplo='L'
where L is a lower triangular matrix and U is upper triangular.

Input Parameters

uplo
n
a
ia, ja
desca
(global)
Indicates whether the upper or lower triangular part of $\operatorname{sub}(A)$ is stored. Must be 'u' or 'L'.

If uplo = 'U', the array a stores the upper triangular part of the matrix $\operatorname{sub}(A)$ that is factored as $U^{H *} U$.

If uplo = 'L', the array a stores the lower triangular part of the matrix $\operatorname{sub}(A)$ that is factored as $L^{*} L^{H}$.
(global) The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
Pointer into the local memory to an array of size IId_a*LOCc(ja+n-1).
On entry, this array contains the local pieces of the n-by-n symmetric/ Hermitian distributed matrix $\operatorname{sub}(A)$ to be factored.
Depending on uplo, the array a contains either the upper or the lower triangular part of the matrix $\operatorname{sub}(A)$ (see uplo).
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

Output Parameters

a
info

The upper or lower triangular part of a is overwritten by the Cholesky factor U or L, as specified by uplo.
(global) .
If info=0, the execution is successful;
info < 0: if the i-th argument is an array, and the j-th entry, indexed j 1 , had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

If info $=k>0$, the leading minor of order k, $A(i a: i a+k-1, j a: j a+k-1)$, is not positive-definite, and the factorization could not be completed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?pbtrf

Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite banded distributed matrix.

Syntax

```
void pspbtrf (char *uplo, MKL_INT *n , MKL_INT *bw, float *a , MKL_INT *ja , MKL_INT
*desca , float *af, MKL_INT *laf, float *work, MKL_INT *lwork , MKL_INT *info );
void pdpbtrf (char *uplo, MKL_INT *n , MKL_INT *bw, double *a , MKL_INT *ja , MKL_INT
*desca , double *af, MKL_INT *laf, double *work, MKL_INT *lwork , MKL_INT *info );
```

```
void pcpbtrf (char *uplo , MKL_INT *n , MKL_INT *bw, MKL_Complex8 *a , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex8 *af , MKL_INT *laf, MKL_Complex8 *work , MKL_INT
*lwork , MKL_INT *info );
void pzpbtrf (char *uplo, MKL_INT *n , MKL_INT *bw, MKL_Complex16 *a , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex16 *af , MKL_INT *laf, MKL_Complexl6 *Work , MKL_INT
*lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?pbtrffunction computes the Cholesky factorization of an n-by- n real symmetric or complex Hermitian positive-definite banded distributed matrix $A(1: n$, ja: ja+n-1).

The resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.
The factorization has the form:
$A(1: n, j a: j a+n-1)=P^{*} U^{H} * U^{*} P^{T}$, if uplo='U', or
$A(1: n, j a: j a+n-1)=P * L * L H * P^{T}$, if uplo='L',
where P is a permutation matrix and U and L are banded upper and lower triangular matrices, respectively.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

Input Parameters

uplo	(global) Must be 'U' or 'L'.
	If uplo = 'U', upper triangle of $A(1: n, j a: j a+n-1)$ is stored;
	If uplo = 'L', lower triangle of $A(1: n, j a: j a+n-1)$ is stored.
n	(global) The order of the distributed submatrix $A(1: n, j a: j a+n-1)$.
	($n \geq 0$) .
bw	(global)
	The number of superdiagonals of the distributed matrix if uplo = 'U', or the number of subdiagonals if uplo = 'L' $(b w \geq 0)$.
a	(local)
	Pointer into the local memory to an array of size Ild_a*LOCC (ja+n-1).
	On entry, this array contains the local pieces of the upper or lower triangle of the symmetric/Hermitian band distributed matrix $A(1: n, j a: j a+n-1)$ to be factored.
ja	(global) The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).

desca
laf
work
I work

Output Parameters

a
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_a = 501, then dlen_ \geq 7;
else if dtype_a $=1$, then $d l_{\text {en }} \geq 9$.
(local) The size of the array af.
Must be laf $\left(\mathrm{NB}+2 *{ }^{*} \mathrm{w}\right) *$ bw.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f[0]$.
(local) Workspace array of size lwork.
(local or global) The size of the work array, must be 1 work $\geq b w^{2}$.

On exit, if info=0, contains the permuted triangular factor U or L from the Cholesky factorization of the band matrix $A(1: n, j a: j a+n-1)$, as specified by uplo.
(local)
Array of size laf. Auxiliary fill-in space. The fill-in space is created in a call to the factorization function p?pbtrf and stored in af. Note that if a linear system is to be solved using p?pbtrs after the factorization function, af must not be altered.

On exit, work [0] contains the minimum value of lwork required for optimum performance.
(global)
If info $=0$, the execution is successful.

```
info < 0:
```

If the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.
info>0:
If info $=k \leq$ NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.

If info $=k>$ nPRocs, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?pttrf
Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite tridiagonal distributed
matrix.
```


Syntax

```
void pspttrf (MKL_INT *n , float *d , float *e , MKL_INT *ja , MKL_INT *desca , float
```

void pspttrf (MKL_INT *n , float *d , float *e , MKL_INT *ja , MKL_INT *desca , float
*af , MKL_INT *laf, float *work , MKL_INT *lwork , MKL_INT *info);
*af , MKL_INT *laf, float *work , MKL_INT *lwork , MKL_INT *info);
void pdpttrf (MKL_INT *n , double *d , double *e , MKL_INT *ja , MKL_INT *desca , double
void pdpttrf (MKL_INT *n , double *d , double *e , MKL_INT *ja , MKL_INT *desca , double
*af, MKL_INT *laf, double *work , MKL_INT *lwork, MKL_INT *info);
*af, MKL_INT *laf, double *work , MKL_INT *lwork, MKL_INT *info);
void pcpttrf (MKL_INT *n , float *d , MKL_Complex8 *e , MKL_INT *ja , MKL_INT *desca ,
void pcpttrf (MKL_INT *n , float *d , MKL_Complex8 *e , MKL_INT *ja , MKL_INT *desca ,
MKL_Complex8 *af , MKL_INT *laf, MKL_Complex8 *work , MKL_INT *lwork , MKL_INT
MKL_Complex8 *af , MKL_INT *laf, MKL_Complex8 *work , MKL_INT *lwork , MKL_INT
*info);
*info);
void pzpttrf (MKL_INT *n , double *d , MKL_Complex16 *e , MKL_INT *ja , MKL_INT
void pzpttrf (MKL_INT *n , double *d , MKL_Complex16 *e , MKL_INT *ja , MKL_INT
*desca , MKL_Complex16 *af , MKL_INT *laf , MKL_Complexl6 *work , MKL_INT *lwork ,
*desca , MKL_Complex16 *af , MKL_INT *laf , MKL_Complexl6 *work , MKL_INT *lwork ,
MKL_INT *info);

```
MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?pttrffunction computes the Cholesky factorization of an n-by- n real symmetric or complex hermitian positive-definite tridiagonal distributed matrix $A(1: n$, ja: ja+n-1).

The resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:
$A(1: n, j a: j a+n-1)=P * L * D * L^{H} * P^{T}$, or
$A(1: n, j a: j a+n-1)=P^{*} U^{H} * D^{*} U^{*} P^{T}$,
where P is a permutation matrix, and U and L are tridiagonal upper and lower triangular matrices, respectively.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Input Parameters

n
(global) The order of the distributed submatrix $A(1: n, j a: j a+n-1)$ ($n \geq 0$).
d, e
(local)
Pointers into the local memory to arrays of size nb_a each.
On entry, the array d contains the local part of the global vector storing the main diagonal of the distributed matrix A.
desca
laf
work
lwork

Output Parameters

$$
d_{1} e
$$

$$
a f
$$

work[0]
info
af
-

On entry, the array e contains the local part of the global vector storing the upper diagonal of the distributed matrix A.
(global) The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_a = 501, then dlen_ ≥ 7;
else if dtype_a $=1$, then $d l e n_{-} \geq 9$.
(local) The size of the array $a f$.
Must be laf $\geq n b$ _a+2.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f[0]$.
(local) Workspace array of size 1 work .
(local or global) The size of the work array, must be at least
lwork $\geq 8 *$ NPCOL.

On exit, overwritten by the details of the factorization.
(local)
Array of size laf.
Auxiliary fill-in space. The fill-in space is created in a call to the factorization function p?pttrf and stored in af.

Note that if a linear system is to be solved using p?pttrs after the factorization function, af must not be altered.

On exit, work[0] contains the minimum value of lwork required for optimum performance.
(global)
If infolo, the execution is successful.
info < 0 :
If the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.
info> 0:
If info $=k \leq$ NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.

If info $=k>$ NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

Solving Systems of Linear Equations: ScaLAPACK Computational Routines

This section describes the ScaLAPACK routines for solving systems of linear equations. Before calling most of these routines, you need to factorize the matrix of your system of equations (see Routines for Matrix Factorization in this chapter). However, the factorization is not necessary if your system of equations has a triangular matrix.

p?getrs

Solves a system of distributed linear equations with a general square matrix, using the LU factorization computed by p?getrf.

Syntax

```
void psgetrs (char *trans , MKL_INT *n , MKL_INT *nrhs , float *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_INT *ipiv, float *b , MKL_INT *ib , MKL_INT *jb ,
MKL_INT *descb , MKL_INT *info );
void pdgetrs (char *trans , MKL_INT *n , MKL_INT *nrhs, double *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_INT *ipiv, double *b, MKL_INT *ib , MKL_INT *jb,
MKL_INT *descb , MKL_INT *info );
void pcgetrs (char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complex8 *a , MKL_INT
*ia , MKL_INT *ja , MKL_INT *desca , MKL_INT *ipiv, MKL_Complex8 *b , MKL_INT *ib ,
MKL_INT *jb , MKL_INT *descb , MKL_INT *info );
void pzgetrs (char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complex16 *a , MKL_INT
*ia, MKL_INT *ja , MKL_INT *desca, MKL_INT *ipiv, MKL_Complexl6 *b , MKL_INT *ib ,
MKL_INT *jb , MKL_INT *descb , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p ? getrsfunction solves a system of distributed linear equations with a general n-by- n distributed matrix $\operatorname{sub}(A)=A($ ia:ia+n-1, ja:ja+n-1) using the $L U$ factorization computed by p?getrf.

The system has one of the following forms specified by trans:

```
sub(A)*X = sub(B) (no transpose),
sub(A)
sub(A)}\mp@subsup{)}{}{H*}X=\operatorname{sub}(B)\mathrm{ (conjugate transpose),
where sub(B)=B(ib:ib+n-1, jb:jb+nrhs-1).
```

Before calling this function, you must call p?getrf to compute the $L U$ factorization of $\operatorname{sub}(A)$.

Input Parameters

trans
(global) Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans $=' N$ ', then $\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$ is solved for X.
If trans $=$ ' T ', then $\operatorname{sub}(A)^{T *} X=\operatorname{sub}(B)$ is solved for X.

	If trans $=$ ' C', then $\operatorname{sub}(A)^{H} * X=\operatorname{sub}(B)$ is solved for X.
n	(global) The number of linear equations; the order of the matrix sub(A) ($n \geq 0$).
nrhs	(global) The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$.
a, b	(local)
	Pointers into the local memory to arrays of local sizes Ild_a*LOCc(ja+n-1) and I/d_b*LOCc(jb+nrhs-1), respectively.
	On entry, the array a contains the local pieces of the factors L and U from the factorization $\operatorname{sub}(A)=P * L * U$; the unit diagonal elements of L are not stored. On entry, the array b contains the right hand sides $\operatorname{sub}(B)$.
ia, ja	(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
desca	(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
ipiv	(local) Array of size of LOCr (m_a) + mb_a. Contains the pivoting information: local row i of the matrix was interchanged with the global row ipiv[i-1].
	This array is tied to the distributed matrix A.
ib, jb	(global) The row and column indices in the global matrix B indicating the first row and the first column of the matrix $\operatorname{sub}(B)$, respectively.
descb	(global and local) array of size dlen_. The array descriptor for the distributed matrix B.

Output Parameters

```
b
info
```

On exit, overwritten by the solution distributed matrix X.
If info $=0$, the execution is successful. info <0 :
If the i-th argument is an array and the j-th entry, indexed j - 1 , had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?gbtrs

Solves a system of distributed linear equations with a general band matrix, using the LU factorization
computed by p?gbtrf.

Syntax

```
void psgbtrs (char *trans , MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs ,
float *a, MKL_INT *ja, MKL_INT *desca, MKL_INT *ipiv, float *b , MKL_INT *ib,
MKL_INT *descb , float *af , MKL_INT *laf , float *work , MKL_INT *lwork , MKL_INT
*info );
```

```
void pdgbtrs (char *trans , MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs ,
double *a, MKL_INT *ja, MKL_INT *desca, MKL_INT *ipiv, double *b , MKL_INT *ib,
MKL_INT *descb, double *af, MKL_INT *laf, double *work , MKL_INT *lwork , MKL_INT
*info );
void pcgbtrs (char *trans, MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs ,
MKL_Complex8 *a , MKL_INT *ja , MKL_INT *desca, MKL_INT *ipiv, MKL_Complex8 *b,
MKL_INT *ib, MKL_INT *descb , MKL_Complex8 *af, MKL_INT *laf , MKL_Complex8 *work ,
MKL_INT *lwork , MKL_INT *info );
void pzgbtrs (char *trans , MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs ,
MKL_Complex16 *a , MKL_INT *ja , MKL_INT *desca, MKL_INT *ipiv, MKL_Complex16 *b ,
MKL_INT *ib , MKL_INT *descb , MKL_Complex16 *af, MKL_INT *laf , MKL_Complexl6 *work ,
MKL_INT *lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?gbtrs function solves a system of distributed linear equations with a general band distributed matrix $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ using the $L U$ factorization computed by p?gbtrf.

The system has one of the following forms specified by trans:

```
sub(A)*X = sub(B) (no transpose),
sub(A)
sub(A)}\mp@subsup{)}{}{H*X}=\operatorname{sub}(B)\mathrm{ (conjugate transpose),
where sub(B)=B(ib:ib+n-1, 1:nrhs).
```

Before calling this function, you must call p?gbtrf to compute the $L U$ factorization of $\operatorname{sub}(A)$.

Input Parameters

```
trans
(global) Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans \(=\) ' \(N\) ', then \(\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)\) is solved for \(X\).
If trans \(=\) ' \(T\) ', then \(\operatorname{sub}(A)^{T *} X=\operatorname{sub}(B)\) is solved for \(X\).
If trans \(=' C\) ', then \(\operatorname{sub}(A)^{H} * X=\operatorname{sub}(B)\) is solved for \(X\).
```

n
bwI
bwu
nrhs
a, b
(global) The number of linear equations; the order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global) The number of sub-diagonals within the band of $A(0 \leq b w l \leq$ n-1).
(global) The number of super-diagonals within the band of $A(0 \leq b w u \leq$ n-1).
(global) The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$.
(local)
ja
desca
i.b
descb
laf
work
lwork

Output Parameters

b
$a f$

Pointers into the local memory to arrays of local sizes IId_a*LOCc (ja+n-1) and $I I d _b^{*} \operatorname{LOCc}(n r h s)$, respectively.

The array a contains details of the $L U$ factorization of the distributed band matrix A.

On entry, the array b contains the local pieces of the right hand sides $B(i b: i b+n-1,1: n r h s)$.
(global) The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_a = 501, then dlen_ \geq 7;
else if dtype_a $=1$, then dlen_ ≥ 9.
(global) The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_b = 502, then dlen_ \geq 7;
else if dtype_b = 1 , then $d l e n_{-} \geq 9$.
(local) The size of the array $a f$.
Must be $l a f \geq n b _a^{*}(b w l+b w u)+6^{*}(b w l+b w u)^{*}\left(b w l+2^{*} b w u\right)$.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f[0]$.
(local) Same type as a. Workspace array of size lwork.
(local or global) The size of the work array, must be at least lwork $\geq n r h s^{*}\left(n b _a+2 * b w l+4 * b w u\right)$.
(local) array.
The size of ipiv must be $\geq n b _a$.
Contains pivot indices for local factorizations. Note that you should not alter the contents of this array between factorization and solve.

On exit, overwritten by the local pieces of the solution distributed matrix X.
(local)
Array of size laf.
Auxiliary Fill-in space. The fill-in space is created in a call to the factorization function p?gbtrf and is stored in af.

Note that if a linear system is to be solved using p?gbtrs after the factorization function, $a f$ must not be altered after the factorization.

```
work[0] On exit, work[0] contains the minimum value of lwork required for
    optimum performance.
info If info=0, the execution is successful.
info < 0:
If the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?dbtrs

Solves a system of linear equations with a diagonally dominant-like banded distributed matrix using the factorization computed by p?dbtrf.

Syntax

```
void psdbtrs (char *trans , MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs ,
float *a, MKL_INT *ja, MKL_INT *desca, float *b, MKL_INT *ib, MKL_INT *descb,
float *af, MKL_INT *laf, float *work, MKL_INT *lwork , MKL_INT *info );
void pddbtrs (char *trans , MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs ,
double *a , MKL_INT *ja, MKL_INT *desca , double *b , MKL_INT *ib , MKL_INT *descb ,
double *af, MKL_INT *laf, double *work , MKL_INT *lwork, MKL_INT *info );
void pcdbtrs (char *trans , MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs ,
MKL_Complex8 *a, MKL_INT *ja, MKL_INT *desca, MKL_Complex8 *b, MKL_INT *ib ,
MKL_INT *descb, MKL_Complex8 *af , MKL_INT *laf, MKL_Complex8 *work , MKL_INT
*lwork , MKL_INT *info );
void pzdbtrs (char *trans, MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs ,
MKL_Complex16 *a , MKL_INT *ja , MKL_INT *desca, MKL_Complex16 *b , MKL_INT *ib,
MKL_INT *descb , MKL_Complex16 *af , MKL_INT *laf, MKL_Complex16 *work , MKL_INT
*lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?dbtrsfunction solves for X one of the systems of equations:
$\operatorname{sub}(A) * X=\operatorname{sub}(B)$,
$(\operatorname{sub}(A))^{T *} X=\operatorname{sub}(B)$, or
$(\operatorname{sub}(A))^{H *} X=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ is a diagonally dominant-like banded distributed matrix, and $\operatorname{sub}(B)$ denotes the distributed matrix B ($i b: i b+n-1,1$: $n r h s$).
This function uses the $L U$ factorization computed by p ?dbtrf.

Input Parameters

trans
(global) Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:
If trans $=' \mathrm{~N}$ ', then $\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$ is solved for X.
If trans $=$ ' T ', then $(\operatorname{sub}(A))^{T *} X=\operatorname{sub}(B)$ is solved for X.
If trans $=' C^{\prime}$, then $(\operatorname{sub}(A))^{H * X}=\operatorname{sub}(B)$ is solved for X.
(global) The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global) The number of subdiagonals within the band of A ($0 \leq b w l \leq n-1)$.
(global) The number of superdiagonals within the band of A ($0 \leq$ bwu $\leq n-1$).
(global) The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$.
(local)
Pointers into the local memory to arrays of local sizes IId_a*LOCc(ja+n-1) and $I I d _b^{*} \operatorname{LOCc}(n r h s)$, respectively.

On entry, the array a contains details of the $L U$ factorization of the band matrix A, as computed by p?dbtrf.

On entry, the array b contains the local pieces of the right hand side distributed matrix $\operatorname{sub}(B)$.
(global) The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_a = 501, then dlen_ ≥ 7;
else if dtype_a = 1 , then dlen_ ≥ 9.
(global) The row index in the global matrix B indicating the first row of the matrix to be operated on (which may be either all of B or a submatrix of B).
(global and local) array of size dlen_. The array descriptor for the distributed matrix B.

If dtype_b = 502, then dlen_ ≥ 7;
else if dtype_b $=1$, then $d l e n_{-} \geq 9$.
(local)
Arrays of size laf and lwork, respectively The array af contains auxiliary fill-in space. The fill-in space is created in a call to the factorization function p ?dbtrf and is stored in af.
The array work is a workspace array.
(local) The size of the array af.

```
Must be laf\geqNB* (bwl+bwu)+6* (max (bwl,bwu)) 2.
```

If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f[0]$.
l work
(local or global) The size of the array work, must be at least lwork $\geq(\max (b w l, b w u))^{2}$.

Output Parameters

b
On exit, this array contains the local pieces of the solution distributed matrix X.

On exit, work[0] contains the minimum value of 1 work required for optimum performance.

If info $=0$, the execution is successful. info <0 :
If the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-(i * 100+j)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?dttrs
Solves a system of linear equations with a diagonally dominant-like tridiagonal distributed matrix using the factorization computed by p?dttrf.

Syntax

```
void psdttrs (char *trans , MKL_INT *n , MKL_INT *nrhs, float *dl , float *d, float
*du , MKL_INT *ja, MKL_INT *desca , float *b, MKL_INT *ib, MKL_INT *descb, float
*af , MKL_INT *laf, float *work , MKL_INT *lwork , MKL_INT *info );
void pddttrs (char *trans, MKL_INT *n , MKL_INT *nrhs, double *dl , double *d, double
*du , MKL_INT *ja , MKL_INT *desca, double *b, MKL_INT *ib, MKL_INT *descb , double
*af, MKL_INT *laf, double *work, MKL_INT *lwork, MKL_INT *info );
void pcdttrs (char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complex8 *dl ,
MKL_Complex8 *d , MKL_Complex8 *du , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *b ,
MKL_INT *ib , MKL_INT *descb , MKL_Complex8 *af, MKL_INT *laf , MKL_Complex8 *Work ,
MKL_INT *lwork , MKL_INT *info );
void pzdttrs (char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complexl6 *dl ,
MKL_Complex16 *d , MKL_Complex16 *du , MKL_INT *ja , MKL_INT *desca , MKL_Complex16
*b , MKL_INT *ib , MKL_INT *descb , MKL_Complex16 *af , MKL_INT *laf , MKL_Complex16
*work , MKL_INT *lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?dttrsfunction solves for X one of the systems of equations:
$\operatorname{sub}(A) * X=\operatorname{sub}(B)$,
$(\operatorname{sub}(A))^{T *} X=\operatorname{sub}(B)$, or
$(\operatorname{sub}(A))^{H * X}=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ is a diagonally dominant-like tridiagonal distributed matrix, and $\operatorname{sub}(B)$ denotes the distributed matrix B ($i b: i b+n-1,1$:nrhs).
This function uses the $L U$ factorization computed by p?dttrf.

Input Parameters

trans
n
nrhs
$d l, d, d u$
ja
desca
b
ib
descb
af, work
(global) Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans $=' \mathrm{~N}$ ', then $\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$ is solved for X.
If trans $=' T$ ', then $(\operatorname{sub}(A))^{T *} X=\operatorname{sub}(B)$ is solved for X.
If trans $=' C$ ', then $(\operatorname{sub}(A))^{H *} X=\operatorname{sub}(B)$ is solved for X.
(global) The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global) The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$.
(local)
Pointers to the local arrays of size nb_a each.
On entry, these arrays contain details of the factorization. Globally, $d 1[0]$ and $d u[n-1]$ are not referenced; $d l$ and $d u$ must be aligned with d.
(global) The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_a $=501$ or dtype_a $=502$, then dlen_ ≥ 7;
else if dtype_a $=1$, then $d l e n_{-} \geq 9$.
(local) Same type as d.
Pointer into the local memory to an array of local size Ild_b*LOCc(nrhs)
On entry, the array b contains the local pieces of the n-by-nrhs right hand side distributed matrix $\operatorname{sub}(B)$.
(global) The row index in the global matrix B indicating the first row of the matrix to be operated on (which may be either all of B or a submatrix of B).
(global and local) array of size dlen_. The array descriptor for the distributed matrix B.

If dtype_b = 502, then dlen_ ≥ 7;
else if dtype_b $=1$, then $d l e n_{_} \geq 9$.
(local)
Arrays of size laf and (lwork), respectively.

The array af contains auxiliary fill-in space. The fill-in space is created in a call to the factorization function p ?dttrf and is stored in af. If a linear system is to be solved using p?dttrs after the factorization function, af must not be altered.

The array work is a workspace array.
(local) The size of the array af.
Must be $l a f \geq N B *(b w l+b w u)+6 *(b w l+b w u) *(b w l+2 * b w u)$.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f[0]$.
(local or global) The size of the array work, must be at least lwork \geq $10 *$ NPCOL +4 *nrhs.

Output Parameters

b
work[0]
info

On exit, this array contains the local pieces of the solution distributed matrix X.

On exit, work[0] contains the minimum value of lwork required for optimum performance.

If info $=0$, the execution is successful. info <0 :
If the i-th argument is an array and the j-th entry, indexed j - 1 , had an illegal value, then info $=-(i * 100+j)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?potrs

Solves a system of linear equations with a Choleskyfactored symmetric/Hermitian distributed positive-
definite matrix.

Syntax

```
void pspotrs (char *uplo, MKL_INT *n , MKL_INT *nrhs , float *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, float *b, MKL_INT *ib, MKL_INT *jb, MKL_INT *descb, MKL_INT
*infO );
void pdpotrs (char *uplo, MKL_INT *n , MKL_INT *nrhs , double *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca, double *b , MKL_INT *ib, MKL_INT *jb , MKL_INT *descb,
MKL_INT *info );
void pcpotrs (char *uplo, MKL_INT *n , MKL_INT *nrhs, MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *jb , MKL_INT
*descb , MKL_INT *info );
void pzpotrs (char *uplo, MKL_INT *n , MKL_INT *nrhs, MKL_Complexl6 *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, MKL_Complex16 *b, MKL_INT *ib, MKL_INT *jb,
MKL_INT *descb , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?potrsfunction solves for X a system of distributed linear equations in the form:
$\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ is an n-by-n real symmetric or complex Hermitian positive definite distributed matrix, and $\operatorname{sub}(B)$ denotes the distributed matrix B ($i b: i b+n-1, j b: j b+n r h s-1$).
This function uses Cholesky factorization

$$
\operatorname{sub}(A)=U^{H *} U, \operatorname{or} \operatorname{sub}(A)=L^{*} L^{H}
$$

computed by p?potrf.

Input Parameters

uplo	(global) Must be 'U' or 'L'.	
	If uplo = 'U', upper triangle of $\operatorname{sub}(A)$ is stored;	
	If uplo = 'L', lower triangle of $\operatorname{sub}(A)$ is stored.	
n	(global) The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.	
nrhs	(global) The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$.	
a, b	(local)	
	Pointers into the local memory to arrays of local sizes	
	$\\| l d=a * L O C C(j a+n-1)$ and IId_b*LOCC($j b+n r h s-1)$, respectively.	
	The array a contains the factors L or U from the Cholesky factorization $\operatorname{sub}(A)=L^{*} L^{H}$ or $\operatorname{sub}(A)=U^{H *} U$, as computed by p?potrf.	
	On entry, the array b contains the local pieces of the right hand sides $\operatorname{sub}(B)$.	
ia, ja	(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.	
desca	(global and local) array of size dlen_. The array descriptor for the distributed matrix A.	
ib, jb	(global) The row and column indices in the global matrix B indicating the first row and the first column of the matrix $\operatorname{sub}(B)$, respectively.	
descb	(local) array of size dlen_. The array descriptor for the distributed matrix B	

Output Parameters

b
info

Overwritten by the local pieces of the solution matrix X.
If info=0, the execution is successful.
info < 0 : if the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

```
See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.
p?pbtrs
Solves a system of linear equations with a Cholesky-
factored symmetric/Hermitian positive-definite band
matrix.
```


Syntax

```
void pspbtrs (char *uplo, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs , float *a , MKL_INT
```

void pspbtrs (char *uplo, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs , float *a , MKL_INT
*ja , MKL_INT *desca , float *b, MKL_INT *ib, MKL_INT *descb, float *af, MKL_INT
*ja , MKL_INT *desca , float *b, MKL_INT *ib, MKL_INT *descb, float *af, MKL_INT
*laf, float *work , MKL_INT *lwork , MKL_INT *info);
*laf, float *work , MKL_INT *lwork , MKL_INT *info);
void pdpbtrs (char *uplo, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs , double *a ,
void pdpbtrs (char *uplo, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs , double *a ,
MKL_INT *ja, MKL_INT *desca, double *b, MKL_INT *ib, MKL_INT *descb, double *af ,
MKL_INT *ja, MKL_INT *desca, double *b, MKL_INT *ib, MKL_INT *descb, double *af ,
MKL_INT *laf, double *work , MKL_INT *lwork, MKL_INT *info);
MKL_INT *laf, double *work , MKL_INT *lwork, MKL_INT *info);
void pcpbtrs (char *uplo, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs , MKL_Complex8 *a ,
void pcpbtrs (char *uplo, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs , MKL_Complex8 *a ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *descb ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *descb ,
MKL_Complex8 *af, MKL_INT *laf, MKL_Complex8 *work, MKL_INT *lwork , MKL_INT
MKL_Complex8 *af, MKL_INT *laf, MKL_Complex8 *work, MKL_INT *lwork , MKL_INT
*info);
*info);
void pzpbtrs (char *uplo, MKL_INT *n , MKL_INT *bw , MKL_INT *nrhs , MKL_Complex16
void pzpbtrs (char *uplo, MKL_INT *n , MKL_INT *bw , MKL_INT *nrhs , MKL_Complex16
*a,MKL_INT *ja, MKL_INT *desca, MKL_Complex16 *b, MKL_INT *ib, MKL_INT *descb,
*a,MKL_INT *ja, MKL_INT *desca, MKL_Complex16 *b, MKL_INT *ib, MKL_INT *descb,
MKL_Complex16 *af, MKL_INT *laf, MKL_Complex16 *Work, MKL_INT *lwork , MKL_INT
MKL_Complex16 *af, MKL_INT *laf, MKL_Complex16 *Work, MKL_INT *lwork , MKL_INT
*info);

```
*info );
```


Include Files

- mkl_scalapack.h

Description

The p?pbtrsfunction solves for X a system of distributed linear equations in the form:
$\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ is an $n-b y-n$ real symmetric or complex Hermitian positive definite distributed band matrix, and $\operatorname{sub}(B)$ denotes the distributed matrix $B(i b: i b+n-1,1: n r h s)$.

This function uses Cholesky factorization

```
sub}(A)=P*\mp@subsup{U}{}{H*}\mp@subsup{U}{}{*}\mp@subsup{P}{}{T},\operatorname{or}\operatorname{sub}(A)=P*L*LH*P
```

computed by p?pbtrf.

Input Parameters

```
uplo
n
bW
nrhs
```

(global) Must be 'U' or 'L'.
If uplo = 'U', upper triangle of $\operatorname{sub}(A)$ is stored;
If uplo = 'L', lower triangle of $\operatorname{sub}(A)$ is stored.
(global) The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global) The number of superdiagonals of the distributed matrix if uplo = 'U', or the number of subdiagonals if uplo = 'L' $(b w \geq 0)$.
(global) The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$.

a, b	(local)
	Pointers into the local memory to arrays of local sizes IId_a*LOCC $(j a+n-1)$ and IId_b*LOCc(nrhs-1), respectively.
	The array a contains the permuted triangular factor U or L from the Cholesky factorization $\operatorname{sub}(A)=P^{*} U^{H *} U^{*} P^{\top}$, or $\operatorname{sub}(A)=P^{*} L^{*} L^{H * P^{\top}}$ of the band matrix A, as returned by p?pbtrf.
	On entry, the array bcontains the local pieces of the n-by-nrhs right hand side distributed matrix sub (B).
ja	(global) The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
desca	(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
	If dtype_a = 501, then dlen_ ${ }^{\text {l }}$ 7;
	else if dtype_a $=1$, then $d l e n_{\sim} \geq 9$.
ib	(global) The row index in the global matrix B indicating the first row of the matrix sub(B).
descb	(global and local) array of size dlen_. The array descriptor for the distributed matrix B.
	If dtype_b = 502, then dlen_ $\mathrm{l}^{\text {7 }}$ 7;
	else if dtype_b $=1$, then dlen_ ≥ 9.
af, work	(local) Arrays, same type as a.
	The array af is of size laf. It contains auxiliary fill-in space. The fill-in space is created in a call to the factorization function p?dbtrf and is stored in $a f$.
	The array work is a workspace array of size lwork.
laf	(local) The size of the array af.
	Must be laf nrhs* ${ }^{\text {a }}$.
	If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a \in[0]$.
lwork	(local or global) The size of the array work, must be at least 1 work 2 bw ${ }^{2}$.

Output Parameters

b
work [0]
info

On exit, if info=0, this array contains the local pieces of the n-by-nrhs solution distributed matrix X.

On exit, work[0] contains the minimum value of 1 work required for optimum performance.

If info=0, the execution is successful.

```
info < 0:
```

If the i-th argument is an array and the j-th entry, indexed j - 1 , had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?pttrs
 Solves a system of linear equations with a symmetric
 (Hermitian) positive-definite tridiagonal distributed
 matrix using the factorization computed by p?pttrf.

Syntax

```
void pspttrs (MKL_INT *n , MKL_INT *nrhs , float *d, float *e , MKL_INT *ja , MKL_INT
*desca , float *b , MKL_INT *ib, MKL_INT *descb, float *af, MKL_INT *laf, float
*work , MKL_INT *lwork , MKL_INT *info );
void pdpttrs (MKL_INT *n , MKL_INT *nrhs , double *d, double *e , MKL_INT *ja , MKL_INT
*desca , double *b, MKL_INT *ib, MKL_INT *descb, double *af, MKL_INT *laf , double
*work, MKL_INT *lwork , MKL_INT *info );
void pcpttrs (char *uplo , MKL_INT *n , MKL_INT *nrhs, float *d , MKL_Complex8 *e ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *descb,
MKL_Complex8 *af, MKL_INT *laf, MKL_Complex8 *Work, MKL_INT *lwork, MKL_INT
*info );
void pzpttrs (char *uplo, MKL_INT *n , MKL_INT *nrhs , double *d , MKL_Complex16 *e ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib , MKL_INT *descb ,
MKL_Complex16 *af, MKL_INT *laf, MKL_Complex16 *work, MKL_INT *lwork, MKL_INT
*info );
```


Include Files

- mkl_scalapack.h

Description

The p?pttrsfunction solves for X a system of distributed linear equations in the form:
$\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ is an $n-b y-n$ real symmetric or complex Hermitian positive definite tridiagonal distributed matrix, and $\operatorname{sub}(B)$ denotes the distributed matrix $B(i b: i b+n-1,1: n r h s)$.

This function uses the factorization

```
sub(A) = P**L*D*L
```

computed by p?pttrf.

Input Parameters

uplo
(global, used in complex flavors only)
Must be 'U' or 'L'.
If uplo = 'U', upper triangle of $\operatorname{sub}(A)$ is stored;
If uplo = 'L', lower triangle of $\operatorname{sub}(A)$ is stored.

n	(global) The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
nrhs	(global) The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$.
d, e	(local)
	Pointers into the local memory to arrays of size nb_a each.
	These arrays contain details of the factorization as returned by p?pttrf
ja	(global) The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
desca	(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
	If dtype_a $=501$ or dtype_a $=502$, then dlen_ \geq 7;
	else if dtype_a $=1$, then dlen_ ≥ 9.
b	(local) Same type as d^{\prime}, e.
	Pointer into the local memory to an array of local size
	IId_b*LOCc(nrhs).
	On entry, the array b contains the local pieces of the n-by-nrhsright hand side distributed matrix $\operatorname{sub}(B)$.
ib	(global) The row index in the global matrix B indicating the first row of the matrix to be operated on (which may be either all of B or a submatrix of B).
descb	(global and local) array of size dlen_. The array descriptor for the distributed matrix B.
	If dtype_b = 502, then dlen_ \geq 7;
	else if dtype_b $=1$, then dlen_ ≥ 9.
af, work	(local)
	Arrays of size laf and (lwork), respectively. The array af contains auxiliary fill-in space. The fill-in space is created in a call to the factorization function p?pttrf and is stored in af.
	The array work is a workspace array.
laf	(local) The size of the array af.
	Must be laf \geq nb_a+2.
	If laf is not large enough, an error code is returned and the minimum acceptable size will be returned in $a f[0]$.
Iwork	(local or global) The size of the array work, must be at least
	lwork \geq ($10+2{ }^{\text {min }}(100, n r h s){ }^{*}$ NPCOL $+4 *_{\text {nrhs }}$.

Output Parameters

b

On exit, this array contains the local pieces of the solution distributed matrix X.

```
work[0]) On exit, work[0] contains the minimum value of lwork required for
    optimum performance.
info If info=0, the execution is successful.
info < 0:
if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?trtrs
Solves a system of linear equations with a triangular distributed matrix.

Syntax

```
void pstrtrs (char *uplo, char *trans , char *diag, MKL INT *n , MKL INT *nrhs , float
*a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , float *b , MKL_INT *ib , MKL_INT *jb ,
MKL_INT *descb , MKL_INT *info );
void pdtrtrs (char *uplo , char *trans , char *diag , MKL_INT *n , MKL_INT *nrhs ,
double *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca , double *b , MKL_INT *ib ,
MKL_INT *jb , MKL_INT *descb , MKL_INT *info );
void pctrtrs (char *uplo , char *trans , char *diag, MKL_INT *n , MKL_INT *nrhs ,
MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *b ,
MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *info );
void pztrtrs (char *uplo, char *trans , char *diag, MKL_INT *n , MKL_INT *nrhs ,
MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *b ,
MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?trtrsfunction solves for X one of the following systems of linear equations:
$\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$,
$(\operatorname{sub}(A))^{\top *} X=\operatorname{sub}(B)$, or
$(\operatorname{sub}(A))^{H *} X=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ is a triangular distributed matrix of order n, and $\operatorname{sub}(B)$ denotes the distributed matrix B (ib: $i b+n-1, j b: j b+n r h s-1)$.

A check is made to verify that $\operatorname{sub}(A)$ is nonsingular.
Input Parameters
uplo (global) Must be 'U' or 'L'.
Indicates whether $\operatorname{sub}(A)$ is upper or lower triangular:
If uplo = 'U', then $\operatorname{sub}(A)$ is upper triangular.

trans	If uplo = 'L', then $\operatorname{sub}(A)$ is lower triangular. (global) Must be 'N' or 'T' or 'C'.
	Indicates the form of the equations:
	If trans $=$ ' N ', then $\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$ is solved for X.
	If trans $=$ 'T', then $\operatorname{sub}(A)^{T *} X=\operatorname{sub}(B)$ is solved for X.
	If trans $=$ ' C', then $\operatorname{sub}(A)^{H *} X=\operatorname{sub}(B)$ is solved for X.
diag	(global) Must be 'N' or 'U'.
	If diag $=$ ' N ', then $\operatorname{sub}(A)$ is not a unit triangular matrix.
	If diag = 'U', then $\operatorname{sub}(A)$ is unit triangular.
n	(global) The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
nrhs	(global) The number of right-hand sides; i.e., the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$.
a, b	(local)
	Pointers into the local memory to arrays of local sizes I/d_a*LOCc (ja+n-1) and IId_b*LOCc(jb+nrhs-1), respectively.
	The array a contains the local pieces of the distributed triangular matrix $\operatorname{sub}(A)$.
	If uplo = 'U', the leading n-by-n upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular matrix, and the strictly lower triangular part of sub (A) is not referenced.
	If uplo = 'L', the leading n-by- n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular matrix, and the strictly upper triangular part of sub (A) is not referenced.
	If diag = 'U', the diagonal elements of $\operatorname{sub}(A)$ are also not referenced and are assumed to be 1.
	On entry, the array b contains the local pieces of the right hand side distributed matrix $\operatorname{sub}(B)$.
ia, ja	(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
desca	(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
ib, jb	(global) The row and column indices in the global matrix B indicating the first row and the first column of the matrix $\operatorname{sub}(B)$, respectively.
descb	(global and local) array of size dlen_. The array descriptor for the distributed matrix B.

Output Parameters

```
b
info
```

On exit, if info $=0, \operatorname{sub}(B)$ is overwritten by the solution matrix X.
If info=0, the execution is successful.
info < 0 :
if the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.
info> 0:
if info $=i$, the i-th diagonal element of $\operatorname{sub}(A)$ is zero, indicating that the submatrix is singular and the solutions X have not been computed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

Estimating the Condition Number: ScaLAPACK Computational Routines

This section describes the ScaLAPACK routines for estimating the condition number of a matrix. The condition number is used for analyzing the errors in the solution of a system of linear equations. Since the condition number may be arbitrarily large when the matrix is nearly singular, the routines actually compute the reciprocal condition number.

p?gecon

Estimates the reciprocal of the condition number of a general distributed matrix in either the 1 -norm or the infinity-norm.

Syntax

```
void psgecon (char *norm, MKL_INT *n , float *a, MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *anorm, float *rcond, float *work, MKL_INT *lwork, MKL_INT *iwork,
MKL_INT *liwork , MKL_INT *info );
void pdgecon (char *norm , MKL_INT *n , double *a, MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca, double *anorm, double *rcond, double *work, MKL_INT *lwork , MKL_INT
*iwork , MKL_INT *liwork , MKL_INT *info );
void pcgecon (char *norm, MKL_INT *n , MKL_Complex8 *a, MKL_INT *ia, MKL_INT *ja ,
MKL_INT *desca , float *anorm, float *rcond, MKL_Complex8 *work , MKL_INT *lwork ,
float *rwork , MKL_INT *lrwork , MKL_INT *info );
void pzgecon (char *norm , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca, double *anorm, double *rcond, MKL_Complexl6 *work, MKL_INT *lwork,
double *rwork, MKL_INT *lrwork, MKL_INT *info );
```


Include Files

```
- mkl_scalapack.h
```


Description

The p?gecon function estimates the reciprocal of the condition number of a general distributed real/complex matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ in either the 1-norm or infinity-norm, using the $L U$ factorization computed by p?getrf.

An estimate is obtained for $\left\|(\operatorname{sub}(A))^{-1}\right\|$, and the reciprocal of the condition number is computed as

Input Parameters

norm
n
a
ia, ja
desca
anorm
work
lwork
(global) Must be '1' or 'O' or 'I'.
Specifies whether the 1-norm condition number or the infinity-norm condition number is required.
If norm = '1' or 'O', then the 1 -norm is used;
If norm $=$ 'I', then the infinity-norm is used.
(global) The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
Pointer into the local memory to an array of size IId_a*LOCc (ja+n-1).
The array a contains the local pieces of the factors L and U from the factorization $\operatorname{sub}(A)=P * L * U$; the unit diagonal elements of L are not stored.
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(global)
If norm = '1' or 'O', the 1-norm of the original distributed matrix $\operatorname{sub}(A)$;
If norm $=$ 'I', the infinity-norm of the original distributed matrix $\operatorname{sub}(A)$.
(local)
The array work of size lwork is a workspace array.
(local or global) The size of the array work.
For real flavors:
lwork must be at least

```
lwork\geq 2* LOCr(n+mod(ia-1,mb_a)) +2* LOCC(n+mod(ja-1,nb_a))
+max(2, max(nb_a*max(1, iceil(NPROW-1, NPCOL)), LOCC(n
+mod(ja-1,nb_a)) + nb_a*max(1, iceil(NPCOL-1, NPROW)))).
```


For complex flavors:

lwork must be at least

```
lwork\geq 2*LOCr(n+mod(ia-1,mb_a)) +max(2,
max(nb_a*iceil(NPROW-1, NPCOL), LOCC(n+mod(ja-1,nb_a))+
nb_a*iceil(NPCOL-1, NPROW))).
```

LOCr and LOCc values can be computed using the ScaLAPACK tool function numroc; NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

NOTE

iceil (x, y) is the ceiling of x / y, and $\bmod (x, y)$ is the integer remainder of x / y.
iwork
liwork
rwork
lrwork
(local) Workspace array of size liwork. Used in real flavors only.
(local or global) The size of the array iwork; used in real flavors only. Must be at least

Iiwork \geq LOCr(n+mod(ia-1,mb_a)).
(local)
Workspace array of size lrwork. Used in complex flavors only.
(local or global) The size of the array rwork; used in complex flavors only. Must be at least
lrwork $\geq \max \left(1,2 * \operatorname{LOCC}\left(n+\bmod \left(j a-1, n b _a\right)\right)\right)$.

Output Parameters

rcond
work[0]
iwork[0]
rwork[0]
info
(global)
The reciprocal of the condition number of the distributed matrix sub (A). See Description.

On exit, work[0] contains the minimum value of lwork required for optimum performance.

On exit, iwork[0] contains the minimum value of liwork required for optimum performance (for real flavors).

On exit, rwork[0] contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) If info $=0$, the execution is successful.
info < 0:
If the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?pocon
Estimates the reciprocal of the condition number (in
the 1 -norm) of a symmetric / Hermitian positive-
definite distributed matrix.

```
Syntax
void pspocon (char *uplo, MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *anorm, float *rcond, float *work, MKL_INT *lwork, MKL_INT *iwork ,
MKL_INT *liwork , MKL_INT *info );
void pdpocon (char *uplo, MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , double *anorm, double *rcond, double *work, MKL_INT *lwork , MKL_INT
*iwork , MKL_INT *liwork , MKL_INT *info );
void pcpocon (char *uplo, MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , float *anorm, float *rcond, MKL_Complex8 *work , MKL_INT *lwork ,
float *rwork , MKL_INT *lrwork , MKL_INT *info );
void pzpocon (char *uplo , MKL_INT *n , MKL_Complexl6 *a , MKL_INT *ia , MKL_INT *ja,
MKL_INT *desca, double *anorm, double *rcond, MKL_Complex16 *work, MKL_INT *lwork ,
double *rwork , MKL_INT *lrwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?poconfunction estimates the reciprocal of the condition number (in the 1 -norm) of a real symmetric or complex Hermitian positive definite distributed matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$, using the Cholesky factorization $\operatorname{sub}(A)=U^{H *} U$ or $\operatorname{sub}(A)=L^{*} L^{H}$ computed by p?potrf.
An estimate is obtained for $\left\|(\operatorname{sub}(A))^{-1}\right\|$, and the reciprocal of the condition number is computed as

Input Parameters

uplo
n
a
ia, ja
(global) Must be 'U' or 'L'.
Specifies whether the factor stored in $\operatorname{sub}(A)$ is upper or lower triangular.
If uplo = 'U', $\operatorname{sub}(A)$ stores the upper triangular factor U of the Cholesky factorization $\operatorname{sub}(A)=U^{H *} U$.

If uplo = 'L', $\operatorname{sub}(A)$ stores the lower triangular factor L of the Cholesky factorization $\operatorname{sub}(A)=L^{*} L^{H}$.
(global) The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
Pointer into the local memory to an array of size IId_a*LOCc (ja+n-1).
The array a contains the local pieces of the factors L or U from the Cholesky factorization $\operatorname{sub}(A)=U^{H *} U$, or $\operatorname{sub}(A)=L^{*} L^{H}$, as computed by p?potrf.
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(global)
The 1-norm of the symmetric/Hermitian distributed matrix $\operatorname{sub}(A)$. (local)

The array work of size 1 work is a workspace array.
(local or global) The size of the array work.
For real flavors:
lwork must be at least
IWOrk $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, \operatorname{mb} _a\right)\right)+2 * \operatorname{LOCC}\left(n+\bmod \left(j a-1, n b _a\right)\right)$
$+\max \left(2, \max \left(n b _a^{*} i c e i l(N P R O W-1, N P C O L), L O C C(n\right.\right.$
$\left.\left.\left.+\bmod \left(j a-1, n b _a\right)\right)+n b _a * i c e i l(N P C O L-1, N P R O W)\right)\right)$.
For complex flavors:
lwork must be at least

```
lwork\geq 2*LOCr(n+mod(ia-1,mb_a)) +max(2,
max(nb_a*max(1, iceil(NPROW-1, NPCOL)), LOCC(n+mod(ja-1,nb_a))
+nb_a*max(1,iceil(NPCOL-1, NPROW)))).
```

If lwork $=-1$, then lwork is a global input and a workspace query is assumed. The routine only calculates the minimum and optimal size for all work arrays. Each value is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

NOTE

iceil (x, y) is the ceiling of x / y, and $\bmod (x, y)$ is the integer remainder of x / y.
(local) Workspace array of size liwork. Used in real flavors only.
(local or global) The size of the array iwork; used in real flavors only. Must be at least liwork $\geq \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right.$).
If liwork $=-1$, then liwork is a global input and a workspace query is assumed. The routine only calculates the minimum and optimal size for all work arrays. Each value is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
(local)
Workspace array of size lrwork. Used in complex flavors only.
(local or global) The size of the array rwork; used in complex flavors only. Must be at least 1 rwork $\geq 2 *$ LOCC ($n+\bmod \left(j a-1, n b _a\right)$).

If lrwork $=-1$, then lrwork is a global input and a workspace query is assumed. The routine only calculates the minimum and optimal size for all work arrays. Each value is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

rcond
work[0]
iwork[0]
rwork[0]
info
(global)
The reciprocal of the condition number of the distributed matrix $\operatorname{sub}(A)$.
On exit, work[0] contains the minimum value of lwork required for optimum performance.

On exit, iwork[0] contains the minimum value of liwork required for optimum performance (for real flavors).

On exit, rwork[0] contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) If info $=0$, the execution is successful.
info < 0 :
If the i-th argument is an array and the j-th entry, indexed j - 1 , had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?trcon

Estimates the reciprocal of the condition number of a triangular distributed matrix in either 1-norm or infinity-norm.

Syntax

```
void pstrcon (char *norm, char *uplo, char *diag, MKL_INT *n , float *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, float *rcond, float *work , MKL_INT *lwork ,
MKL_INT *iwork , MKL_INT *liwork , MKL_INT *info );
void pdtrcon (char *norm, char *uplo, char *diag, MKL_INT *n , double *a, MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, double *rcond, double *work, MKL_INT *lwork ,
MKL_INT *iwork , MKL_INT *liwork , MKL_INT *info );
void pctrcon (char *norm , char *uplo, char *diag, MKL_INT *n , MKL_Complex8 *a ,
MKL_INT *ia, MKL_INT *ja, MKL_INT *desca , float *rcond, MKL_Complex8 *work ,
MKL_INT *lwork , float *rwork , MKL_INT *lrwork , MKL_INT *info );
void pztrcon (char *norm , char *uplo, char *diag, MKL_INT *n , MKL_Complex16 *a ,
MKL_INT *ia, MKL_INT *ja , MKL_INT *desca, double *rcond, MKL_Complex16 *work ,
MKL_INT *lwork , double *rwork , MKL_INT *lrwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p ? trconfunction estimates the reciprocal of the condition number of a triangular distributed matrix $\operatorname{sub}(A)=A($ ia:ia+n-1, ja:ja+n-1), in either the 1-norm or the infinity-norm.

The norm of $\operatorname{sub}(A)$ is computed and an estimate is obtained for $\left\|(\operatorname{sub}(A))^{-1}\right\|$, then the reciprocal of the condition number is computed as

Input Parameters

norm
uplo
diag
n
a
ia, ja
desca
work
lwork
(global) Must be '1' or 'O' or 'I'.
Specifies whether the 1-norm condition number or the infinity-norm condition number is required.
If norm = '1' or 'O', then the 1 -norm is used;
If norm $=$ 'I', then the infinity-norm is used.
(global) Must be 'U' or 'L'.
If uplo = 'U', $\operatorname{sub}(A)$ is upper triangular. If uplo $=$ ' L ', $\operatorname{sub}(A)$ is lower triangular.
(global) Must be 'N' or 'U'.
If diag $=$ ' N ', $\operatorname{sub}(A)$ is non-unit triangular. If diag $=' U ', \operatorname{sub}(A)$ is unit triangular.
(global) The order of the distributed matrix $\operatorname{sub}(A),(n \geq 0)$.
(local)
Pointer into the local memory to an array of size lld_a*LOCC (ja+n-1).
The array a contains the local pieces of the triangular distributed matrix $\operatorname{sub}(A)$.

If uplo = 'U', the leading n-by- n upper triangular part of this distributed matrix contains the upper triangular matrix, and its strictly lower triangular part is not referenced.

If uplo = 'L', the leading n-by- n lower triangular part of this distributed matrix contains the lower triangular matrix, and its strictly upper triangular part is not referenced.
If diag = 'U', the diagonal elements of $\operatorname{sub}(A)$ are also not referenced and are assumed to be 1.
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
The array work of size lwork is a workspace array.
(local or global) The size of the array work.
For real flavors:
lwork must be at least

```
lwork\geq 2*LOCr(n+mod(ia-1,mb_a))+LOCC(n+mod(ja-1,nb_a))
+max(2, max(nb_a*max(1,iceil(NPROW-1, NPCOL)),
LOCC(n+mod(ja-1,nb_a))+nb_a*max(1,iceil(NPCOL-1, NPROW)))).
```

For complex flavors:
lwork must be at least
lwork $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)+\max (2$, max(nb_a*iceil(NPROW-1, NPCOL), LOCC(n+mod(ja-1,nb_a))+nb_a*iceil(NPCOL-1, NPROW))).

NOTE

iceil (x, y) is the ceiling of x / y, and $\bmod (x, y)$ is the integer remainder of x / y.
iwork
liwork
rwork
lrwork
(local) Workspace array of size liwork. Used in real flavors only.
(local or global) The size of the array iwork; used in real flavors only. Must be at least
liwork \geq LOCr (n+mod(ia-1,mb_a)).
(local)
Workspace array of size lrwork. Used in complex flavors only.
(local or global) The size of the array rwork; used in complex flavors only. Must be at least
lrwork \geq LOCC(n+mod (ja-1,nb_a)).

Output Parameters

rcond
work[0]
iwork[0]
rwork[0]
info
(global)
The reciprocal of the condition number of the distributed matrix $\operatorname{sub}(A)$.
On exit, work[0] contains the minimum value of lwork required for optimum performance.

On exit, iwork[0] contains the minimum value of liwork required for optimum performance (for real flavors).

On exit, rwork[0] contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) If info=0, the execution is successful.
info < 0:
If the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

Refining the Solution and Estimating Its Error: ScaLAPACK Computational Routines

This section describes the ScaLAPACK routines for refining the computed solution of a system of linear equations and estimating the solution error. You can call these routines after factorizing the matrix of the system of equations and computing the solution (see Routines for Matrix Factorization and Solving Systems of Linear Equations).

p?gerfs
 Improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution.

Syntax

```
void psgerfs (char *trans , MKL_INT *n , MKL_INT *nrhs , float *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca, float *af, MKL_INT *iaf, MKL_INT *jaf, MKL_INT
*descaf, MKL_INT *ipiv, float *b , MKL_INT *ib, MKL_INT *jb, MKL_INT *descb , float
*x , MKL_INT *ix, MKL_INT *jx, MKL_INT *descx, float *ferr, float *berr , float
*Work , MKL_INT *lwork , MKL_INT *iwork , MKL_INT *liwork , MKL_INT *info );
void pdgerfs (char *trans , MKL_INT *n , MKL_INT *nrhs , double *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca, double *af, MKL_INT *iaf, MKL_INT *jaf, MKL_INT
*descaf, MKL_INT *ipiv, double *b , MKL_INT *ib, MKL_INT *jb , MKL_INT *descb ,
double *x , MKL_INT *ix , MKL_INT *jx , MKL_INT *descx , double *ferr, double *berr ,
double *work , MKL_INT *lwork , MKL_INT *iwork , MKL_INT *liwork , MKL_INT *info );
void pcgerfs (char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complex8 *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, MKL_Complex8 *af, MKL_INT *iaf, MKL_INT *jaf ,
MKL_INT *descaf, MKL_INT *ipiv , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *jb , MKL_INT
*descb , MKL_Complex8 *x , MKL_INT *ix , MKL_INT *jx , MKL_INT *descx , float *ferr ,
float *berr , MKL_Complex8 *work , MKL_INT *lwork , float *rwork , MKL_INT *lrwork ,
MKL_INT *info );
void pzgerfs (char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complex16 *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *af, MKL_INT *iaf , MKL_INT *jaf ,
MKL_INT *descaf, MKL_INT *ipiv , MKL_Complex16 *b , MKL_INT *ib , MKL_INT *jb ,
MKL_INT *descb , MKL_Complex16 *x , MKL_INT *ix , MKL_INT *jx , MKL_INT *descx , double
*ferr, double *berr, MKL_Complex16 *work , MKL_INT *lwork , double *rwork , MKL_INT
*lrwork , MKL_INT *info );
```

Include Files

- mkl_scalapack.h

Description

The p?gerfs function improves the computed solution to one of the systems of linear equations
$\operatorname{sub}(A) * \operatorname{sub}(X)=\operatorname{sub}(B)$,
$\operatorname{sub}(A)^{T *} \operatorname{sub}(X)=\operatorname{sub}(B)$, or
$\operatorname{sub}(A)^{H *} \operatorname{sub}(X)=\operatorname{sub}(B)$ and provides error bounds and backward error estimates for the solution.
Here $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1), \operatorname{sub}(B)=B(i b: i b+n-1, j b: j b+n r h s-1)$, and $\operatorname{sub}(X)=X(i x: i x$ $+n-1, j x: j x+n r h s-1)$.

Input Parameters

trans
n
nrhs
$a, a f, b, x$
ia, ja
desca
iaf, jaf
descaf
ib, jb
descb
ix, jx
(global) Must be 'N' or 'T' or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $\operatorname{sub}(A) * \operatorname{sub}(X)=\operatorname{sub}(B)$ (No transpose);
If trans $=$ ' T ', the system has the form $\operatorname{sub}(A)^{T *} \operatorname{sub}(X)=\operatorname{sub}(B)$ (Transpose);

If trans $=$ ' C ', the system has the form $\operatorname{sub}(A)^{H *} \operatorname{sub}(X)=\operatorname{sub}(B)$ (Conjugate transpose).
(global) The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global) The number of right-hand sides, i.e., the number of columns of the matrices $\operatorname{sub}(B)$ and $\operatorname{sub}(X)$ (nrhs ≥ 0).
(local)
Pointers into the local memory to arrays of local sizes
a: Ild_a * LOCc (ja+n-1),
af: Ild_af * LOCc(jaf+n-1),
b: $\| l d _b * \operatorname{LOCc}(j b+n r h s-1)$,
$x: / l d _x * \operatorname{LOCc}(j x+n r h s-1)$.
The array a contains the local pieces of the distributed matrix $\operatorname{sub}(A)$.
The array $a f$ contains the local pieces of the distributed factors of the matrix sub $(A)=P^{\star} L^{\star} U$ as computed by p?getrf.

The array b contains the local pieces of the distributed matrix of right hand sides sub(B).

On entry, the array x contains the local pieces of the distributed solution matrix $\operatorname{sub}(X)$.
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(global) The row and column indices in the global matrix $A F$ indicating the first row and the first column of the matrix $\operatorname{sub}(A F)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix $A F$.
(global) The row and column indices in the global matrix B indicating the first row and the first column of the matrix $\operatorname{sub}(B)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix B.
(global) The row and column indices in the global matrix X indicating the first row and the first column of the matrix $\operatorname{sub}(X)$, respectively.

descx	(global and local) array of size dlen_. The array descrip distributed matrix X.
ipiv	(local)
	Array of size LOCr $\left(m_{-} a f\right)+m b _a f$.
	This array contains pivoting information as computed ipiv $[i]=j$, then the local row $i+1$ was swapped with $i=0, \ldots, \operatorname{LOCr}\left(m_{-} a f\right)+m b _a f-1$.
	This array is tied to the distributed matrix A.
work	(local)
	The array work of size lwork is a workspace array.
lwork	(local or global) The size of the array work.
	For real flavors:
	I work must be at least
	IWork $\geq 3 * \operatorname{LOCr}(n+\bmod ($ ia-1,mb_a))
	For complex flavors:
	I work must be at least
	1 work $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)$

iwork
liwork
rwork
lrwork

Output Parameters

X
ferr, berr

NOTE

$\bmod (x, y)$ is the integer remainder of x / y.
(global and local) array of size dlen_. The array descriptor for the distributed matrix X.
(local)
Array of size LOCr (m_af) + mb_af.
This array contains pivoting information as computed by p?getrf. If ipiv $[i]=j$, then the local row $i+1$ was swapped with the global row j where $i=0, \ldots, \operatorname{LOCr}\left(m_{_} a f\right)+m b _a f-1$.

This array is tied to the distributed matrix A.
(local)
The array work of size lwork is a workspace array.
(local or global) The size of the array work.
For real flavors:
l work must be at least
lwork \geq 3*LOCr(n+mod(ia-1,mb_a))
For complex flavors:
lwork $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)$
(local) Workspace array, size liwork. Used in real flavors only.
(local or global) The size of the array iwork; used in real flavors only. Must be at least
liwork \geq LOCr ($n+\bmod \left(i b-1, m b _b\right)$).
(local)
Workspace array, size lrwork. Used in complex flavors only.
(local or global) The size of the array rwork; used in complex flavors only. Must be at least lrwork $\geq \operatorname{LOCr}\left(n+\bmod \left(i b-1, m b _b\right)\right)$).

On exit, contains the improved solution vectors.
Arrays of size LOCc($j b+n r h s-1)$ each.
The array ferr contains the estimated forward error bound for each solution vector of $\operatorname{sub}(X)$.

If XTRUE is the true solution corresponding to $\operatorname{sub}(X)$, ferr is an estimated upper bound for the magnitude of the largest element in ($\operatorname{sub}(X)$ - XTRUE) divided by the magnitude of the largest element in $\operatorname{sub}(X)$. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
work [0]
iwork[0]
rwork[0]
info

This array is tied to the distributed matrix X.
The array berr contains the component-wise relative backward error of each solution vector (that is, the smallest relative change in any entry of $\operatorname{sub}(A)$ or $\operatorname{sub}(B)$ that makes $\operatorname{sub}(X)$ an exact solution). This array is tied to the distributed matrix X.

On exit, work [0] contains the minimum value of lwork required for optimum performance.

On exit, iwork[0] contains the minimum value of liwork required for optimum performance (for real flavors).

On exit, rwork [0] contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) If info=0, the execution is successful.
info < 0 :
If the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-(i * 100+j)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?porfs

Improves the computed solution to a system of linear
equations with symmetric/Hermitian positive definite
distributed matrix and provides error bounds and
backward error estimates for the solution.

Syntax

```
void psporfs (char *uplo , MKL_INT *n , MKL_INT *nrhs , float *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , float *af, MKL_INT *iaf, MKL_INT *jaf, MKL_INT *descaf , float
*b , MKL_INT *ib , MKL_INT *jb, MKL_INT *descb, float *x , MKL_INT *ix , MKL_INT *jx ,
MKL_INT *descx , float *ferr, float *berr , float *work , MKL_INT *lwork , MKL_INT
*iwork , MKL_INT *liwork , MKL_INT *info );
void pdporfs (char *uplo, MKL_INT *n , MKL_INT *nrhs , double *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca, double *af, MKL_INT *iaf, MKL_INT *jaf, MKL_INT
*descaf, double *b, MKL_INT *ib, MKL_INT *jb, MKL_INT *descb, double *x , MKL_INT
*ix , MKL_INT *jx , MKL_INT *descx , double *ferr, double *berr , double *work ,
MKL_INT *lwork , MKL_INT *iwork , MKL_INT *liwork, MKL_INT *info );
void pcporfs (char *uplo, MKL_INT *n , MKL_INT *nrhs, MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *af, MKL_INT *iaf, MKL_INT *jaf , MKL_INT
*descaf , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_Complex8
*x , MKL_INT *ix , MKL_INT *jx , MKL_INT *descx , float *ferr , float *berr ,
MKL_Complex8 *work , MKL_INT *lwork, float *rwork, MKL_INT *lrwork, MKL_INT *info );
void pzporfs (char *uplo, MKL_INT *n , MKL_INT *nrhs , MKL_Complex16 *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, MKL_Complex16 *af, MKL_INT *iaf, MKL_INT *jaf ,
MKL_INT *descaf , MKL_Complex16 *b , MKL_INT *ib, MKL_INT *jb, MKL_INT *descb ,
MKL_Complex16 *x , MKL_INT *ix , MKL_INT *jx, MKL_INT *descx , double *ferr , double
*berr, MKL_Complex16 *work , MKL_INT *lwork, double *rwork, MKL_INT *lrwork ,
MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?porfsfunction improves the computed solution to the system of linear equations
$\operatorname{sub}(A) * \operatorname{sub}(X)=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ is a real symmetric or complex Hermitian positive definite distributed matrix and

```
sub(B)=B(ib:ib+n-1, jb:jb+nrhs-1),
```

$\operatorname{sub}(X)=X(i x: i x+n-1, j x: j x+n r h s-1)$
are right-hand side and solution submatrices, respectively. This function also provides error bounds and backward error estimates for the solution.

Input Parameters

```
uplo
n
nrhs
a, af,b,x
```

(global) Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix $\operatorname{sub}(A)$ is stored.
If uplo = 'U', $\operatorname{sub}(A)$ is upper triangular. If uplo $=' L ', \operatorname{sub}(A)$ is lower triangular.
(global) The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global) The number of right-hand sides, i.e., the number of columns of the matrices $\operatorname{sub}(B)$ and $\operatorname{sub}(X)(n r h s \geq 0)$.
(local)
Pointers into the local memory to arrays of local sizes
a: Ild_a * LOCC(ja+n-1),
af: Ild_af * LOCc(jaf+n-1),
b: Ild_b * LOCc(jb+nrhs-1),
$x: \| d _x * \operatorname{LOCc}(j x+n r h s-1)$.
The array a contains the local pieces of the n-by- n symmetric/Hermitian distributed matrix sub (A).
If uplo = 'U', the leading $n-b y-n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo = 'L', the leading $n-b y-n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the distributed matrix, and its strictly upper triangular part is not referenced.

The array af contains the factors L or U from the Cholesky factorization $\operatorname{sub}(A)=L^{*} L^{H}$ or $\operatorname{sub}(A)=U^{H * U}$, as computed by p?potrf.
On entry, the array b contains the local pieces of the distributed matrix of right hand sides sub(B).

```
ia, ja
desca
iaf, jaf
descaf
i.b, jb
descb
ix, jx
descx
work
```

lwork
iwork
liwork
rwork
lrwork

On entry, the array x contains the local pieces of the solution vectors $\operatorname{sub}(X)$.
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(global) The row and column indices in the global matrix $A F$ indicating the first row and the first column of the matrix $\operatorname{sub}(A F)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix $A F$.
(global) The row and column indices in the global matrix B indicating the first row and the first column of the matrix $\operatorname{sub}(B)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix B.
(global) The row and column indices in the global matrix X indicating the first row and the first column of the matrix $\operatorname{sub}(X)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix X.
(local)
The array work of size lwork is a workspace array.
(local) The size of the array work.
For real flavors:
lwork must be at least
lwork $\geq 3 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)$
For complex flavors:
lwork must be at least
lwork $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)$

NOTE

$\bmod (x, y)$ is the integer remainder of x / y.
(local) Workspace array of size liwork. Used in real flavors only.
(local or global) The size of the array iwork; used in real flavors only. Must be at least
liwork $\geq L O C r\left(n+\bmod \left(i b-1, m b _b\right)\right)$.
(local)
Workspace array of size lrwork. Used in complex flavors only.
(local or global) The size of the array rwork; used in complex flavors only. Must be at least lrwork $\geq \operatorname{LOCr}\left(n+\bmod \left(i b-1, m b _b\right)\right)$).

Output Parameters

```
x
ferr, berr
```

work[0]
iwork[0]
rwork[0]
info

On exit, contains the improved solution vectors.
Arrays of size LOCc(jb+nrhs-1) each.
The array ferr contains the estimated forward error bound for each solution vector of $\operatorname{sub}(X)$.
If XTRUE is the true solution corresponding to $\operatorname{sub}(X)$, ferr is an estimated upper bound for the magnitude of the largest element in ($\operatorname{sub}(X)$ - XTRUE) divided by the magnitude of the largest element in $\operatorname{sub}(X)$. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
This array is tied to the distributed matrix X.
The array berr contains the component-wise relative backward error of each solution vector (that is, the smallest relative change in any entry of $\operatorname{sub}(A)$ or $\operatorname{sub}(B)$ that makes $\operatorname{sub}(X)$ an exact solution). This array is tied to the distributed matrix X.

On exit, work [0] contains the minimum value of lwork required for optimum performance.

On exit, iwork[0] contains the minimum value of liwork required for optimum performance (for real flavors).

On exit, rwork[0] contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) If info=0, the execution is successful.
info < 0 :
If the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.
p?trrfs
Provides error bounds and backward error estimates
for the solution to a system of linear equations with a distributed triangular coefficient matrix.

Syntax

```
void pstrrfs (char *uplo, char *trans , char *diag, MKL_INT *n , MKL_INT *nrhs , float
*a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, float *b, MKL_INT *ib , MKL_INT *jb ,
MKL_INT *descb, float *x , MKL_INT *ix , MKL_INT *jx , MKL_INT *descx , float *ferr ,
float *berr , float *work , MKL_INT *lwork , MKL_INT *iwork , MKL_INT *liwork , MKL_INT
*infO );
void pdtrrfs (char *uplo, char *trans , char *diag, MKL_INT *n , MKL_INT *nrhs ,
double *a, MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *b, MKL_INT *ib,
MKL_INT *jb, MKL_INT *descb, double *x , MKL_INT *ix , MKL_INT *jx , MKL_INT *descx ,
double *ferr, double *berr , double *work, MKL_INT *lwork , MKL_INT *iwork , MKL_INT
*liwork , MKL_INT *info );
```

```
void pctrrfs (char *uplo, char *trans , char *diag, MKL_INT *n , MKL_INT *nrhs ,
MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *b ,
MKL_INT *ib, MKL_INT *jb , MKL_INT *descb , MKL_Complex8 *x , MKL_INT *ix , MKL_INT
*jx , MKL_INT *descx , float *ferr, float *berr , MKL_Complex8 *work , MKL_INT *lwork ,
float *rwork , MKL_INT *lrwork , MKL_INT *info );
void pztrrfs (char *uplo , char *trans , char *diag, MKL_INT *n , MKL_INT *nrhs ,
MKL_Complex16 *a, MKL_INT *ia, MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *b,
MKL_INT *ib, MKL_INT *jb , MKL_INT *descb , MKL_Complex16 *x , MKL_INT *ix , MKL_INT
*jx , MKL_INT *descx , double *ferr, double *berr, MKL_Complex16 *work , MKL_INT
*lwork, double *rwork , MKL_INT *lrwork, MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?trrfsfunction provides error bounds and backward error estimates for the solution to one of the systems of linear equations

```
sub (A)* sub (X) = sub (B),
sub(A)}\mp@subsup{}{}{T*}\operatorname{sub}(X)=\operatorname{sub}(B)\mathrm{ , or
sub (A) H* sub (X) = sub (B),
where sub (A) = A(ia:ia+n-1, ja:ja+n-1) is a triangular matrix,
sub(B)=B(ib:ib+n-1,jb:jb+nrhs-1), and
sub (X) = X(ix:ix+n-1, jx:jx+nrhs-1).
```

The solution matrix X must be computed by p?trtrs or some other means before entering this function. The function p?trrfs does not do iterative refinement because doing so cannot improve the backward error.

Input Parameters

```
uplo (global)Must be 'U' or 'L'.
    If uplo = 'U', sub(A) is upper triangular. If uplo = 'L', sub (A) is lower
    triangular.
    (global) Must be 'N' or 'T' or 'C'.
    Specifies the form of the system of equations:
    If trans = 'N', the system has the form sub(A)*sub(X)= sub(B) (No
    transpose);
    If trans = 'T', the system has the form sub (A)'** sub (X)= sub(B)
    (Transpose);
    If trans = 'C', the system has the form sub (A) H* sub (X) = sub(B)
    (Conjugate transpose).
diag Must be 'N' or 'U'.
    If diag = 'N', then sub(A) is non-unit triangular.
    If diag = 'U', then sub(A) is unit triangular.
    (global) The order of the distributed matrix sub(A) ( }n\geq0)
```

```
nrhs
a,b,x
ia, ja
desca
ib, jb
descb
ix, jx
descx
work
(global) The number of right-hand sides, that is, the number of columns of the matrices \(\operatorname{sub}(B)\) and \(\operatorname{sub}(X)(n r h s \geq 0)\).
(local)
Pointers into the local memory to arrays of local sizes
a: Ild_a * LOCc (ja+n-1),
b: Ild_b * LOCc(jb+nrhs-1),
\(x: / l d \_x * \operatorname{LOCc}(j x+n r h s-1)\).
The array a contains the local pieces of the original triangular distributed matrix \(\operatorname{sub}(A)\).
If uplo = 'U', the leading \(n-b y-n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo = 'L', the leading \(n-b y-n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the distributed matrix, and its strictly upper triangular part is not referenced.
If diag = 'U', the diagonal elements of \(\operatorname{sub}(A)\) are also not referenced and are assumed to be 1 .
On entry, the array \(b\) contains the local pieces of the distributed matrix of right hand sides \(\operatorname{sub}(B)\).
On entry, the array \(x\) contains the local pieces of the solution vectors \(\operatorname{sub}(X)\).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(global) The row and column indices in the global matrix \(B\) indicating the first row and the first column of the matrix \(\operatorname{sub}(B)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(B\).
(global) The row and column indices in the global matrix \(X\) indicating the first row and the first column of the matrix \(\operatorname{sub}(X)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(X\).
(local)
The array work of size lwork is a workspace array.
(local) The size of the array work.
For real flavors:
lwork must be at least lwork \(\geq 3 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b \_a\right)\right)\)
For complex flavors:
lwork must be at least
```

IWOrk $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)$

NOTE

$\bmod (x, y)$ is the integer remainder of x / y.
liwork
rwork

Irwork

Output Parameters

ferr, berr
work[0]
iwork[0]
rwork[0]
info

Arrays of size LOCc $(j b+n r h s-1)$ each.
The array ferr contains the estimated forward error bound for each solution vector of $\operatorname{sub}(X)$.

If XTRUE is the true solution corresponding to $\operatorname{sub}(X)$, ferr is an estimated upper bound for the magnitude of the largest element in ($\operatorname{sub}(X)-X T R U E)$ divided by the magnitude of the largest element in $\operatorname{sub}(X)$. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

This array is tied to the distributed matrix X.
The array berr contains the component-wise relative backward error of each solution vector (that is, the smallest relative change in any entry of $\operatorname{sub}(A)$ or $\operatorname{sub}(B)$ that makes $\operatorname{sub}(X)$ an exact solution). This array is tied to the distributed matrix X.

On exit, work[0] contains the minimum value of lwork required for optimum performance.

On exit, iwork[0] contains the minimum value of liwork required for optimum performance (for real flavors).

On exit, rwork[0] contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) If info $=0$, the execution is successful.
info < 0 :
If the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

Matrix Inversion: ScaLAPACK Computational Routines

This sections describes ScaLAPACK routines that compute the inverse of a matrix based on the previously obtained factorization. Note that it is not recommended to solve a system of equations $A x=b$ by first computing A^{-1} and then forming the matrix-vector product $x=A^{-1} b$. Call a solver routine instead (see Solving Systems of Linear Equations); this is more efficient and more accurate.

```
p?getri
Computes the inverse of a LU-factored distributed
matrix.
Syntax
```

```
void psgetri (MKL_INT *n , float *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca ,
```

void psgetri (MKL_INT *n , float *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca ,
MKL_INT *ipiv, float *work , MKL_INT *lwork , MKL_INT *iwork , MKL_INT *liwork ,
MKL_INT *ipiv, float *work , MKL_INT *lwork , MKL_INT *iwork , MKL_INT *liwork ,
MKL_INT *info);
MKL_INT *info);
void pdgetri (MKL_INT *n , double *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca ,
void pdgetri (MKL_INT *n , double *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca ,
MKL_INT *ipiv, double *work , MKL_INT *lwork, MKL_INT *iwork , MKL_INT *liwork ,
MKL_INT *ipiv, double *work , MKL_INT *lwork, MKL_INT *iwork , MKL_INT *liwork ,
MKL_INT *info);
MKL_INT *info);
void pcgetri (MKL_INT *n , MKL_Complex8 *a, MKL_INT *ia, MKL_INT *ja, MKL_INT
void pcgetri (MKL_INT *n , MKL_Complex8 *a, MKL_INT *ia, MKL_INT *ja, MKL_INT
*desca , MKL_INT *ipiv, MKL_Complex8 *work, MKL_INT *lwork , MKL_INT *iwork , MKL_INT
*desca , MKL_INT *ipiv, MKL_Complex8 *work, MKL_INT *lwork , MKL_INT *iwork , MKL_INT
*liwork , MKL_INT *info);
*liwork , MKL_INT *info);
void pzgetri (MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
void pzgetri (MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , MKL_INT *ipiv, MKL_Complex16 *work, MKL_INT *lwork , MKL_INT *iwork ,
*desca , MKL_INT *ipiv, MKL_Complex16 *work, MKL_INT *lwork , MKL_INT *iwork ,
MKL_INT *liwork , MKL_INT *info);

```
MKL_INT *liwork , MKL_INT *info );
```

Include Files

- mkl_scalapack.h

Description

The p?getrifunction computes the inverse of a general distributed matrix $\operatorname{sub}(A)=A(i a: i a+n-1$, ja: ja $+n-1$) using the $L U$ factorization computed by p?getrf. This method inverts U and then computes the inverse of $\operatorname{sub}(A)$ by solving the system

```
inv(\operatorname{sub}(A))*L=inv(U)
```

for $\operatorname{inv}(\operatorname{sub}(A))$.

Input Parameters

n
(global) The number of rows and columns to be operated on, that is, the order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
Pointer into the local memory to an array of local size IId_a*LOCc (ja+n-1).
On entry, the array a contains the local pieces of the L and U obtained by the factorization $\operatorname{sub}(A)=P^{*} L^{*} U$ computed by p?getrf.
ia, ja
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

```
work

\section*{Output Parameters}
ipiv
work[0]
iwork[0]
info
(local)
The array work of size lwork is a workspace array.
(local) The size of the array work. lwork must be at least
\(\operatorname{lwork} \geq \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b \_a\right)\right) * n b \_a\).

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).

The array work is used to keep at most an entire column block of sub \((A)\).
(local) Workspace array used for physically transposing the pivots, size liwork.
(local or global) The size of the array iwork.
The minimal value liwork of is determined by the following code:
```

if NPROW == NPCOL then
liwork = LOCc(n_a + mod(ja-1,nb_a))+ nb_a
else
liwork = LOCc(n_a + mod(ja-1,nb_a)) +
max(ceil(ceil(LOCr(m_a)/mb_a)/(lcm/NPROW)),nb_a)
end if

```
where 1 cm is the least common multiple of process rows and columns (NPROW and NPCOL).
(local)
Array of size LOCr (m_a) + mb_a.
This array contains the pivoting information.
If ipiv[i]=j, then the local row \(i+1\) was swapped with the global row \(j\) where \(i=0, \ldots, \operatorname{LOCr}\left(m_{-} a\right)+m b \_a-1\).

This array is tied to the distributed matrix \(A\).
On exit, work[0] contains the minimum value of lwork required for optimum performance.

On exit, iwork[0] contains the minimum value of liwork required for optimum performance.
(global) If info \(=0\), the execution is successful.
```

info < 0:

```

If the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```

info> 0:

```

If info \(=i\), the matrix element \(U(i, i)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, and division by zero will occur if it is used to solve a system of equations.

\section*{See Also}

\section*{Overview for details of ScaLAPACK array descriptor structures and related notations.}
p?potri
Computes the inverse of a symmetric/Hermitian positive definite distributed matrix.

\section*{Syntax}
```

void pspotri (char *uplo, MKL_INT *n , float *a, MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , MKL_INT *info);
void pdpotri (char *uplo, MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , MKL_INT *info);
void pcpotri (char *uplo, MKL_INT *n , MKL_Complex8 *a, MKL_INT *ia, MKL_INT *ja,
MKL_INT *desca , MKL_INT *info);
void pzpotri (char *uplo, MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?potrifunction computes the inverse of a real symmetric or complex Hermitian positive definite distributed matrix \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\) using the Cholesky factorization \(\operatorname{sub}(A)=U^{H} * U\) or \(\operatorname{sub}(A)=L^{*} L^{H}\) computed by p?potrf.

\section*{Input Parameters}
```

uplo
n
a
ia, ja
(global) Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix $\operatorname{sub}(A)$ is stored.
If uplo = 'U', upper triangle of $\operatorname{sub}(A)$ is stored. If uplo = 'L', lower triangle of $\operatorname{sub}(A)$ is stored.
(global) The number of rows and columns to be operated on, that is, the order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
Pointer into the local memory to an array of local size IId_a*LOCc(ja+n-1).
On entry, the array a contains the local pieces of the triangular factor U or L from the Cholesky factorization $\operatorname{sub}(A)=U^{H *} U$, or $\operatorname{sub}(A)=L^{*} L^{H}$, as computed by p?potrf.
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.

```
desca

\section*{Output Parameters}
\(a\)
On exit, overwritten by the local pieces of the upper or lower triangle of the (symmetric/Hermitian) inverse of \(\operatorname{sub}(A)\).
(global) If info \(=0\), the execution is successful.
```

info < 0:

```

If the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```

info> 0:

```

If info \(=i\), the element \((i, i)\) of the factor \(U\) or \(L\) is zero, and the inverse could not be computed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?trtri
Computes the inverse of a triangular distributed
matrix.

\section*{Syntax}
```

void pstrtri (char *uplo, char *diag, MKL_INT *n , float *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , MKL_INT *info);
void pdtrtri (char *uplo , char *diag , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , MKL_INT *info);
void pctrtri (char *uplo , char *diag , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca, MKL_INT *info);
void pztrtri (char *uplo , char *diag , MKL_INT *n , MKL_Complexl6 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca, MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?trtrifunction computes the inverse of a real or complex upper or lower triangular distributed matrix \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\).

Input Parameters
uplo (global) Must be 'U' or 'L'.
Specifies whether the distributed matrix \(\operatorname{sub}(A)\) is upper or lower triangular.
If uplo = 'U', \(\operatorname{sub}(A)\) is upper triangular.
If uplo = 'L', \(\operatorname{sub}(A)\) is lower triangular.
\begin{tabular}{|c|c|}
\hline diag & Must be 'N' or 'U'. \\
\hline & Specifies whether or not the distributed matrix \(\operatorname{sub}(A)\) is unit triangular. \\
\hline & If diag = 'N', then \(\operatorname{sub}(A)\) is non-unit triangular. \\
\hline & If diag = 'U', then \(\operatorname{sub}(A)\) is unit triangular. \\
\hline \(n\) & (global) The number of rows and columns to be operated on, that is, the order of the distributed matrix \(\operatorname{sub}(A)(n \geq 0)\). \\
\hline a & (local) \\
\hline & Pointer into the local memory to an array of local size IId_a*LOCc(ja+n-1). \\
\hline & The array a contains the local pieces of the triangular distributed matrix \(\operatorname{sub}(A)\). \\
\hline & If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular matrix to be inverted, and the strictly lower triangular part of \(\operatorname{sub}(A)\) is not referenced. \\
\hline & If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular matrix, and the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced. \\
\hline ia, ja & (global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively. \\
\hline desca & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
info
On exit, overwritten by the (triangular) inverse of the original matrix.
(global) If info \(=0\), the execution is successful.
info < 0:
If the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
info> 0:
If info \(=k\), the matrix element \(A(i a+k-1, j a+k-1)\) is exactly zero. The triangular matrix \(\operatorname{sub}(A)\) is singular and its inverse cannot be computed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{Matrix Equilibration: ScaLAPACK Computational Routines}

ScaLAPACK routines described in this section are used to compute scaling factors needed to equilibrate a matrix. Note that these routines do not actually scale the matrices.
```

p?geequ
Computes row and column scaling factors intended to
equilibrate a general rectangular distributed matrix
and reduce its condition number.

```
```

Syntax
void psgeequ (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *r , float *c, float *rowcnd, float *colcnd, float *amax , MKL_INT
*infO);
void pdgeequ (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , double *r, double *c, double *rowcnd, double *colcnd, double *amax ,
MKL_INT *info);
void pcgeequ (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , float *r , float *c , float *rowcnd, float *colcnd, float *amax ,
MKL_INT *info);
void pzgeequ (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja,
MKL_INT *desca, double *r, double *c, double *rowcnd, double *colcnd, double
*amax , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?geequfunction computes row and column scalings intended to equilibrate an \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)\) and reduce its condition number. The output array returns the row scale factors \(r_{i}\), and the array \(c\) returns the column scale factors \(c_{j}\). These factors are chosen to try to make the largest element in each row and column of the matrix \(B\) with elements \(b_{i j}=r_{i} * a_{i j} * c_{j}\) have absolute value 1.
\(r_{i}\) and \(c_{j}\) are restricted to be between \(S M L N U M=\) smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of sub( \(A\) ) but works well in practice.
SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision values of SMLNUM and BIGNUM as follows:
```

SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM

```

The auxiliary function p?laqge uses scaling factors computed by p?geequ to scale a general rectangular matrix.

\section*{Input Parameters}
m
(global) The number of rows to be operated on, that is, the number of rows of the distributed matrix \(\operatorname{sub}(A)(m \geq 0)\).
(global) The number of columns to be operated on, that is, the number of columns of the distributed matrix \(\operatorname{sub}(A)(n \geq 0)\).
(local)
Pointer into the local memory to an array of local size IId_a*LOCc (ja+n-1).
The array a contains the local pieces of the m-by-n distributed matrix whose equilibration factors are to be computed.
ia, ja
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
desca

\section*{Output Parameters}

rowend, colend
amax
info
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Arrays of sizes LOCr (m_a) and LOCC (n_a), respectively.
If info \(=0\), or info>ia+m-1,r[i] contain the row scale factors for \(\operatorname{sub}(A)\) for \(i a-1 \leq i<i a+m-1\). \(r\) is aligned with the distributed matrix \(A\), and replicated across every process column. \(r\) is tied to the distributed matrix A.

If info \(=0, c[i]\) contain the column scale factors for \(\operatorname{sub}(A)\) for \(j a-1 \leq\) \(i<j a+n-1\). \(c\) is aligned with the distributed matrix \(A\), and replicated down every process row. \(c\) is tied to the distributed matrix \(A\).
(global)
If info \(=0\) or info>ia+m-1, rowend contains the ratio of the smallest \(r_{i}\) to the largest \(r_{i}\) ( \(\mathrm{i} a \leq i \leq i a+m-1\) ). If rowend \(\geq 0.1\) and amax is neither too large nor too small, it is not worth scaling by \(r_{i}\).

If info \(=0\), colcnd contains the ratio of the smallest \(c_{j}\) to the largest \(c_{j}\) (ja \(\leq j \leq j a+n-1)\).
If colcnd \(\geq 0.1\), it is not worth scaling by \(c_{j}\).
(global)
Absolute value of the largest matrix element. If amax is very close to overflow or very close to underflow, the matrix should be scaled.
(global) If info=0, the execution is successful.
info < 0 :
If the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
info> 0:
If info \(=i\) and
\(i \leq m\), the \(i\)-th row of the distributed matrix
\(\operatorname{sub}(A)\) is exactly zero;
\(i>m\), the \((i-m)\)-th column of the distributed
matrix \(\operatorname{sub}(A)\) is exactly zero.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?poequ
Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite distributed matrix and reduce its condition number.
```

Syntax
void pspoequ (MKL_INT *n , float *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca , float
*sr , float *SC , float *Scond , float *amax , MKL_INT *info);
void pdpoequ (MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca ,
double *Sr, double *SC , double *scond, double *amax , MKL_INT *info);
void pcpoequ (MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *sr , float *SC , float *scond, float *amax , MKL_INT *info);
void pzpoequ (MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca, double *sr , double *SC , double *scond, double *amax , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?poequ function computes row and column scalings intended to equilibrate a real symmetric or complex Hermitian positive definite distributed matrix \(\operatorname{sub}(A)=A(i a: i a+n-1\), ja:ja+n-1) and reduce its condition number (with respect to the two-norm). The output arrays sr and SC return the row and column scale factors
\[
s(i)=\frac{1}{\sqrt{a_{i, i}}}
\]

These factors are chosen so that the scaled distributed matrix \(B\) with elements \(b_{i j}=s(i) * a_{i j} * s(j)\) has ones on the diagonal.
This choice of \(s r\) and \(s c\) puts the condition number of \(B\) within a factor \(n\) of the smallest possible condition number over all possible diagonal scalings.

The auxiliary function p?laqsy uses scaling factors computed by p?geequ to scale a general rectangular matrix.

\section*{Input Parameters}
\(n\)
a
ia, ja
desca
(global) The number of rows and columns to be operated on, that is, the order of the distributed matrix \(\operatorname{sub}(A)(n \geq 0)\).
(local)
Pointer into the local memory to an array of local size IId_a*LOCc (ja+n-1).
The array a contains the \(n\)-by- \(n\) symmetric/Hermitian positive definite distributed matrix \(\operatorname{sub}(A)\) whose scaling factors are to be computed. Only the diagonal elements of \(\operatorname{sub}(A)\) are referenced.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).

\section*{Output Parameters}
sr, sc
(local)

Arrays of sizes LOCr (m_a) and LOCC (n_a), respectively.
If info \(=0\), the array \(\operatorname{sr}(i a: i a+n-1)\) contains the row scale factors for \(\operatorname{sub}(A) . s r\) is aligned with the distributed matrix \(A\), and replicated across every process column. sr is tied to the distributed matrix \(A\).

If info \(=0\), the array \(\operatorname{sc}(j a: j a+n-1)\) contains the column scale factors for \(\operatorname{sub}(A) . S C\) is aligned with the distributed matrix \(A\), and replicated down every process row. sc is tied to the distributed matrix \(A\).
(global)
If info \(=0\), scond contains the ratio of the smallest \(s r[i]\) ( or \(s c[j]\) ) to the largest \(s r[i]\) ( or \(s c[j]\) ), with
\(i a-1 \leq i<i a+n-1\) and \(j a-1 \leq j<j a+n-1\).
If scond \(\geq 0.1\) and amax is neither too large nor too small, it is not worth scaling by sr (or sc).
(global)
Absolute value of the largest matrix element. If amax is very close to overflow or very close to underflow, the matrix should be scaled.
(global)
If info=0, the execution is successful.
info < 0:
If the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
info> 0:
If info \(=k\), the \(k\)-th diagonal entry of \(\operatorname{sub}(A)\) is nonpositive.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{Orthogonal Factorizations: ScaLAPACK Computational Routines}

This section describes the ScaLAPACK routines for the \(Q R(R Q)\) and \(L Q(Q L)\) factorization of matrices. Routines for the \(R Z\) factorization as well as for generalized \(Q R\) and \(R Q\) factorizations are also included. For the mathematical definition of the factorizations, see the respective LAPACK sections or refer to [SLUG].
Table "Computational Routines for Orthogonal Factorizations" lists ScaLAPACK routines that perform orthogonal factorization of matrices.
Computational Routines for Orthogonal Factorizations
\begin{tabular}{lllll}
\hline \begin{tabular}{l} 
Matrix type, \\
factorization
\end{tabular} & \begin{tabular}{l} 
Factorize \\
without \\
pivoting
\end{tabular} & \begin{tabular}{l} 
Factorize with \\
pivoting
\end{tabular} & \begin{tabular}{l} 
Generate matrix \\
\(\mathbf{Q}\)
\end{tabular} & Apply matrix \(\mathbf{Q}\) \\
\hline \begin{tabular}{l} 
general matrices, QR \\
factorization
\end{tabular} & p?geqrf & p?geqpf & p?orgqr & p?ormqr \\
& & p?ungqr & p?unmqr
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Matrix type, factorization & Factorize without pivoting & Factorize with pivoting & Generate matrix Q & Apply matrix \(\mathbf{Q}\) \\
\hline \multirow[t]{2}{*}{general matrices, RQ factorization} & \multirow[t]{2}{*}{p?gerqf} & & p?orgrq & p?ormrq \\
\hline & & & p?ungrq & p?unmrq \\
\hline \multirow[t]{2}{*}{general matrices, LQ factorization} & \multirow[t]{2}{*}{\(p\) ?gelqf} & & p?orglq & p?ormlq \\
\hline & & & p?unglq & p?unmlq \\
\hline \multirow[t]{2}{*}{general matrices, QL factorization} & \multirow[t]{2}{*}{p?geqlf} & & p?orgql & p?ormql \\
\hline & & & p?ungql & p?unmql \\
\hline \multirow[t]{2}{*}{trapezoidal matrices, RZ factorization} & \multirow[t]{2}{*}{p?tzrzf} & & & p?ormrz \\
\hline & & & & p?unmrz \\
\hline pair of matrices, generalized QR factorization & p?ggqrf & & & \\
\hline pair of matrices, generalized RQ factorization & p?ggrqf & & & \\
\hline
\end{tabular}

\section*{p?geqrf}

Computes the QR factorization of a general m-by-n matrix.

\section*{Syntax}
```

void psgeqrf (MKL_INT *m, MKL_INT *n , float *a, MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca, float *tau , float *work, MKL_INT *lwork, MKL_INT *info);
void pdgeqrf (MKL_INT *m, MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , double *tau , double *work , MKL_INT *lwork, MKL_INT *info);
void pcgeqrf (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT *lwork , MKL_INT
*infO);
void pzgeqrf (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT *lwork , MKL_INT
*info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?geqrf function forms the \(Q R\) factorization of a general \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)=A(\) ia: ia \(+m-1\), ja:ja+n-1) as
\(A=Q^{*} R\).

\section*{Input Parameters}
m
(global) The number of rows in the distributed matrix \(\operatorname{sub}(A) ;(m \geq 0)\).
\(n\)
\(a\)
ia, ja
desca
work
lwork
(global) The number of columns in the distributed matrix \(\operatorname{sub}(A) ;(n \geq 0)\). (local)
Pointer into the local memory to an array of local size IId_a*LOCc(ja+n-1).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be factored.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A(i a: i a+m-1, j a: j a+n-1)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\)
(local).
Workspace array of size lwork.
(local or global) size of work, must be at least lwork \(\geq n b\) _a * ( \(m p 0+n q 0+n b \_a\) ), where
iroff \(=\bmod \left(i a-1, m b \_a\right), i C O f f=\bmod \left(j a-1, n b \_a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL),
mp0 \(=\) numroc (m+iroff, mb_a, MYROW, iarow, NPROW),
nq0 = numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL), and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then lwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
tau
work[0]
info

The elements on and above the diagonal of \(\operatorname{sub}(A)\) contain the \(\min (m, n)\)-by\(n\) upper trapezoidal matrix \(R\) ( \(R\) is upper triangular if \(m \geq n\) ); the elements below the diagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
(local)
Array of size LOCC (ja+min \((m, n)-1)\).
Contains the scalar factor of elementary reflectors. tau is tied to the distributed matrix \(A\).

On exit, work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\), the execution is successful.
\(<0\), if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(j a) * H(j a+1) * \ldots * H(j a+k-1)\),
where \(k=\min (m, n)\).
Each \(H(i)\) has the form
\(H(i)=I-\tan u^{*} v^{*} v^{\prime}\)
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i-1)=0\) and \(v(i)=1 ; v(i+1: m)\) is stored on exit in \(A(i a+i: i a+m-1, j a+i-1)\), and tau in tau[ja+i-2].

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?geqpf}

Computes the \(Q R\) factorization of a general m-by-n matrix with pivoting.

\section*{Syntax}
```

void psgeqpf (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , MKL_INT *ipiv , float *tau , float *work , MKL_INT *lwork , MKL_INT *info);
void pdgeqpf (MKL_INT *m , MKL_INT *n , double *a, MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , MKL_INT *ipiv, double *tau , double *work, MKL_INT *lwork , MKL_INT *info);
void pcgeqpf (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja,
MKL_INT *desca , MKL_INT *ipiv, MKL_Complex8 *tau, MKL_Complex8 *work , MKL_INT
*lwork , float *rwork , MKL_INT *lrwork , MKL_INT *info);
void pzgeqpf (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_INT *ipiv , MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT
*lwork, double *rwork , MKL_INT *lrwork, MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The \(p\) ? geqpf function forms the \(Q R\) factorization with column pivoting of a general \(m-b y-n\) distributed matrix \(\operatorname{sub}(A)=A(\) ia:ia+m-1, ja:ja+n-1) as
\(\operatorname{sub}(A) * P=Q^{*} R\).

\section*{Input Parameters}
m
n
a
(global) The number of rows in the matrix \(\operatorname{sub}(A)(m \geq 0)\).
(global) The number of columns in the matrix \(\operatorname{sub}(A)(n \geq 0)\). (local)

Pointer into the local memory to an array of local size IId_a*LOCc(ja+n-1).

Contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be factored.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A(i a: i a+m-1, j a: j a+n-1)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local).
Workspace array of size lwork.
(local or global) size of work, must be at least
For real flavors:
1 work \(\geq \max (3, m p 0+n q 0)+\operatorname{LOCC}(j a+n-1)+n q 0\).
For complex flavors:
Iwork \(\geq \max (3, m p 0+n q 0)\).
Here
iroff \(=\bmod (i a-1, \operatorname{mb} a), \quad i C O f f=\bmod \left(j a-1, \quad n b \_a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
\(m p 0=\) numroc (m+iroff, mb_a, MYROW, iarow, NPROW ),
\(n q 0=\) numroc \(\left(n+i c o f f, n b \_a, ~ M Y C O L, ~ i a c o l, ~ N P C O L\right)\),
LOCC \((j a+n-1)=\) numroc (ja+n-1, nb_a, MYCOL, csrc_a, NPCOL), and numroc, indxg2p are ScaLAPACK tool functions.

You can determine MYROW, MYCOL, NPROW and NPCOL by calling the blacs_gridinfofunction.

If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
(local).
Workspace array of size lrwork (complex flavors only).
(local or global) size of rwork (complex flavors only). The value of lrwork must be at least
lwork \(\geq\) LOCC \((j a+n-1)+n q 0\).
Here
iroff \(=\bmod \left(i a-1, m b \_a\right), i C O f f=\bmod \left(j a-1, n b \_a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mp0 \(=\) numroc (m+iroff, mb_a, MYROW, iarow, NPROW ),
\(n q 0=\) numroc (n+icoff, nb a, MYCOL, iacol, NPCOL),

LOCC \((j a+n-1)=\) numroc (ja+n-1, nb_a, MYCOL, csrc_a, NPCOL), and numroc, indxg2p are ScaLAPACK tool functions.

You can determine MYROW, MYCOL, NPROW and NPCOL by calling the blacs_gridinfofunction.

If lrwork \(=-1\), then lrwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
ipiv
tau
work[0]
rwork[0]
info

The elements on and above the diagonal of \(\operatorname{sub}(A)\) contain the \(\min (m, n)\)-by\(n\) upper trapezoidal matrix \(R\) ( \(R\) is upper triangular if \(m \geq n\) ); the elements below the diagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
(local) Array of size LOCC (ja+n-1).
ipiv[i] \(=k\), the local \((i+1)\)-th column of \(\operatorname{sub}(A) * P\) was the global \(k\)-th column of \(\operatorname{sub}(A)(0 \leq i<\operatorname{LOCC}(j a+n-1)\). ipiv is tied to the distributed matrix \(A\).
(local)
Array of size LOCC \((j \operatorname{atmin}(m, n)-1)\).
Contains the scalar factor tau of elementary reflectors. tau is tied to the distributed matrix \(A\).

On exit, work[0] contains the minimum value of lwork required for optimum performance.

On exit, rwork[0] contains the minimum value of lrwork required for optimum performance.
(global)
\(=0\), the execution is successful.
\(<0\), if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(1) * H(2) * \ldots * H(k)\)
where \(k=\min (m, n)\).
Each \(H(i)\) has the form
\(H=I-\tan ^{*} v^{*} v^{\prime}\)
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i-1)=0\) and \(v(i)=1 ; v(i+1: m)\) is stored on exit in \(A(i a+i: i a+m-1, j a+i-1)\).

The matrix \(P\) is represented in ipiv as follows: if ipiv[j]= \(i\) then the \((j+1)\)-th column of \(P\) is the \(i\)-th canonical unit vector ( \(0 \leq j<\operatorname{LOCc}(j a+n-1)\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?orgqr}

Generates the orthogonal matrix \(Q\) of the \(Q R\)
factorization formed by p?geqre.

\section*{Syntax}
```

void psorgqr (MKL_INT *m , MKL_INT *n , MKL_INT *k, float *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , float *tau , float *work, MKL_INT *lwork , MKL_INT *info);
void pdorgqr (MKL_INT *m , MKL_INT *n , MKL_INT *k, double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca , double *tau, double *work , MKL_INT *lwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?orgqrfunction generates the whole or part of \(m-b y-n\) real distributed matrix \(Q\) denoting \(A(i a: i a+m-1\), ja:ja+n-1) with orthonormal columns, which is defined as the first \(n\) columns of a product of \(k\) elementary reflectors of order \(m\)
\[
Q=H(1) * H(2) * \ldots * H(k)
\]
as returned by p?geqrf.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & (global) The number of rows in the matrix \(\operatorname{sub}(Q)(m \geq 0)\). \\
\hline \(n\) & (global) The number of columns in the matrix \(\operatorname{sub}(Q)(m \geq n \geq 0)\). \\
\hline k & (global) The number of elementary reflectors whose product defines the matrix \(Q(n \geq k \geq 0)\). \\
\hline a & (local) \\
\hline & Pointer into the local memory to an array of local size IId_a*LOCc(ja+n-1). The \(j\)-th column of the matrix stored in amust contain the vector that defines the elementary reflector \(H(j), j a \leq j \leq j a+k-1\), as returned by p?geqrf in the \(k\) columns of its distributed matrix argument \(A(i a: *, j a: j a\) \(+k-1)\). \\
\hline ia, ja & (global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A(i a: i a+m-1, j a: j a+n-1)\), respectively. \\
\hline desca & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\). \\
\hline tau & (local) \\
\hline & Array of size LOCC (ja+k-1). \\
\hline
\end{tabular}
work

1 work

Contains the scalar factor tau[j] of elementary reflectors \(H(j+1)\) as returned by p?geqrf \((0 \leq j<\operatorname{LOCc}(j a+k-1))\). tau is tied to the distributed matrix \(A\).
(local)
Workspace array of size of 1 work.
(local or global) size of work.
Must be at least 1 work \(\geq n b \_a^{*}\left(n q a 0+m p a 0+n b \_a\right)\), where
```

iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),

```
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL),
mpaO = numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 = numroc (n+icoffa, nb_a, MYCOL, iacol, NPCOL);
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
work [0]
info

Contains the local pieces of the \(m-\) by- \(n\) distributed matrix Q .
On exit, [0] contains the minimum value of 1 work required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?ungqr
Generates the complex unitary matrix \(Q\) of the \(Q R\) factorization formed by p?geqrf.

\section*{Syntax}
```

void pcungqr (MKL_INT *m , MKL_INT *n , MKL_INT *k , MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT
*lwork , MKL_INT *info);
void pzungqr (MKL_INT *m , MKL_INT *n , MKL_INT *k , MKL_Complex16 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT
*lwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

This function generates the whole or part of \(m\)-by- \(n\) complex distributed matrix \(Q\) denoting \(A(i a: i a+m-1\), ja: ja+n-1) with orthonormal columns, which is defined as the first \(n\) columns of a product of \(k\) elementary reflectors of order \(m\)
\(Q=H(1)^{*} H(2)^{*} \ldots * H(k)\)
as returned by \(p\) ? geqre.

\section*{Input Parameters}
\(m\)
\(n\)
\(k\)
a
ia, ja
desca
tau
work
lwork
(global) The number of rows in the matrix \(\operatorname{sub}(Q) ;(m \geq 0)\).
(global) The number of columns in the matrix \(\operatorname{sub}(Q)(m \geq n \geq 0)\).
(global) The number of elementary reflectors whose product defines the matrix \(Q(n \geq k \geq 0)\).
(local)
Pointer into the local memory to an array of size IId_a*LOCc (ja+n-1). The \(j\)-th column of the matrix stored in amust contain the vector that defines the elementary reflector \(H(j)\), ja \(\leq j \leq j a+k-1\), as returned by p? geqre in the \(k\) columns of its distributed matrix argument \(A\left(i a:^{*}, j a: j a+k-1\right)\).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size LOCC (ja+k-1).
Contains the scalar factor tau[j] of elementary reflectors \(H(j+1)\) as returned by p?geqrf \((0 \leq j<\operatorname{LOCC}(j a+k-1))\). tau is tied to the distributed matrix \(A\).
(local)
Workspace array of size of 1 work.
(local or global) size of work, must be at least 1 work \(\geq n b \_a *(n q a 0+m p a 0\) + nb_a), where
iroffa \(=\bmod \left(i a-1, m b \_a\right)\),
icoffa \(=\bmod \left(j a-1, n b \_a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
\(m p a 0=\) numroc \(\left(m+i r o f f a, m b \_a\right.\), MYROW, iarow, NPROW \()\),
\(n q a 0=\) numroc( \(n+i c o f f a, n b \_a\), MYCOL, \(\left.i a c o l, N P C O L\right)\)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
work [0]
info

Contains the local pieces of the \(m-\) by- \(n\) distributed matrix \(Q\).
On exit work[0] contains the minimum value of 1 work required for optimum performance.
(global)
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?ormqr}

Multiplies a general matrix by the orthogonal matrix Q of the \(Q R\) factorization formed by p?geqre.

\section*{Syntax}
```

void psormqr (char *side , char *trans, MKL_INT *m, MKL_INT *n , MKL_INT *k , float
*a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, float *tau , float *c , MKL_INT *ic ,
MKL_INT *jc , MKL_INT *descc , float *work , MKL_INT *lwork , MKL_INT *info);
void pdormqr (char *side , char *trans, MKL_INT *m, MKL_INT *n , MKL_INT *k , double
*a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *tau , double *C , MKL_INT
*ic , MKL_INT *jc , MKL_INT *descc , double *work, MKL_INT *lwork , MKL_INT *info);

```

\section*{Include Files}
```

- mkl_scalapack.h

```

\section*{Description}

The p?ormqrfunction overwrites the general real m-by-n distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c\) \(+n-1)\) with
\begin{tabular}{lll} 
& side \(=' \mathrm{~L} '\) & side \(=' \mathrm{R}\) \\
trans \(=\) 'N': & \(Q^{*} \operatorname{sub}(C)\) & \(\operatorname{sub}(C) * Q\) \\
trans \(=\) 'T': & \(Q^{T *} \operatorname{sub}(C)\) & \(\operatorname{sub}(C) * Q^{T}\)
\end{tabular}
where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors
\(Q=H(1) H(2) \ldots H(k)\)
as returned by p?geqre. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) 'R'.

\section*{Input Parameters}
m
n
k
a
ia, ja
desca
tau

C
ic, jc
descc
work
(global)
\(=\) 'L': \(Q\) or \(Q^{T}\) is applied from the left.
\(={ }^{\prime} R^{\prime}: Q\) or \(Q^{T}\) is applied from the right.
(global)
= 'N', no transpose, \(Q\) is applied.
\(=\) ' \(\mathrm{T}^{\prime}\), transpose, \(Q^{T}\) is applied.
(global) The number of rows in the distributed matrix \(\operatorname{sub}(C)(m \geq 0)\).
(global) The number of columns in the distributed matrix \(\operatorname{sub}(C)(n \geq 0)\).
(global) The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) 'R', \(n \geq k \geq 0\).
(local)
Pointer into the local memory to an array of size IId_a*LOCc(ja+n-1). The \(j\)-th column of the matrix stored in amust contain the vector that defines the elementary reflector \(H(j)\), ja \(\leq j \leq j a+k-1\), as returned by p?geqrf in the \(k\) columns of its distributed matrix argument \(A\left(i a:^{*}, j a: j a+k-1\right) . A\left(i a:^{*}\right.\), ja: ja+k-1) is modified by the function but restored on exit.
```

If side = 'L',Ild_a \geq max(1, LOCr(ia+m-1))
If side = 'R',Ild_a \geq max(1, LOCr(ia+n-1))

```
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size LOCC (ja+k-1).
Contains the scalar factor tau[j] of elementary reflectors \(H(j+1)\) as returned by p?geqrf \((0 \leq j<\operatorname{LOCC}(j a+k-1))\). tau is tied to the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of local size IId_c*LOCc (jc+n-1).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
(global) The row and column indices in the global matrix \(C\) indicating the first row and the first column of the matrix \(\operatorname{sub}(C)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)

Workspace array of size of lwork.
(local or global) size of work, must be at least:
```

if side = 'L',
lwork\geqmax ((nb_a* (nb_a-1))/2, (nqc0+mpc0)*nb_a) + nb_a*nb_a
else if side = 'R',
lwork\geqmax((nb_a*(nb_a-1))/2, (nqc0+max(npa0+numroc(numroc (n
+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq), mpc0))*nb_a)

+ nb_a*nb_a
end if
where
lcmq = lcm/NPCOL with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
npa0= numroc(n+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0= numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0= numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

```
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If lwork \(=-1\), then lwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
c
work[0]
info
Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{T *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{T}\), or \(\operatorname{sub}(C) * Q\).

On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```

See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.
p?unmqr
Multiplies a complex matrix by the unitary matrix Q of
the QR factorization formed by p?geqrf.
Syntax

```
```

void pcunmqr (char *side , char *trans , MKL_INT *m, MKL_INT *n , MKL_INT *k ,

```
void pcunmqr (char *side , char *trans , MKL_INT *m, MKL_INT *n , MKL_INT *k ,
MKL_Complex8 *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *tau ,
MKL_Complex8 *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *tau ,
MKL_Complex8 *C , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex8 *Work ,
MKL_Complex8 *C , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex8 *Work ,
MKL_INT *IWork , MKL_INT *info );
MKL_INT *IWork , MKL_INT *info );
void pzunmqr (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k ,
void pzunmqr (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k ,
MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *tau ,
MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *tau ,
MKL_Complex16 *c , MKL_INT *ic , MKL_INT *jc, MKL_INT *descc , MKL_Complex16 *work ,
MKL_Complex16 *c , MKL_INT *ic , MKL_INT *jc, MKL_INT *descc , MKL_Complex16 *work ,
MKL_INT *lwork , MKL_INT *info );
```

MKL_INT *lwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

This function overwrites the general complex m-by-n distributed matrix sub (C) =C(ic:ic+m-1,jc:jc+n-1) with
```

side ='L' side ='R'
trans = 'N': }\quad\mp@subsup{Q}{}{*}\operatorname{sub}(C)\quad\operatorname{sub}(C)*
trans = 'T': }\quad\mp@subsup{Q}{}{H*}\operatorname{sub}(C
sub(C)*Q H

```
where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors \(Q=H(1) H(2) \ldots H(k)\) as returned by p?geqre. \(Q\) is of order \(m\) if side = 'L' and of order \(n\) if side ='R'.

\section*{Input Parameters}
k
(global)
\(=\) ' L' \(: Q\) or \(Q^{H}\) is applied from the left.
\(=R^{\prime}\) ': \(Q\) or \(Q^{H}\) is applied from the right.
(global)
\(=\) 'N', no transpose, \(Q\) is applied.
\(=' \mathrm{C}\) ', conjugate transpose, \(Q^{H}\) is applied.
(global) The number of rows in the distributed matrix \(\operatorname{sub}(C)(m \geq 0)\).
(global) The number of columns in the distributed matrix \(\operatorname{sub}(C)(n \geq 0)\).
(global) The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:

If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) 'R', \(n \geq k \geq 0\).
a
c
ic, jc
descc
work
lwork
(local)
Pointer into the local memory to an array of size IId_a*LOCc (ja+k-1). The \(j\)-th column of the matrix stored in amust contain the vector that defines the elementary reflector \(H(j)\), \(j a \leq j \leq j a+k-1\), as returned by p?geqrf in the \(k\) columns of its distributed matrix argument \(A\left({\text { ia:*, ja: ja+k-1). } A\left(i a:^{*} \text {, }\right.}_{\text {, }}\right.\) \(j a: j a+k-1)\) is modified by the function but restored on exit.

If side \(=\) 'L', lld_a \(\geq \max (1\), LOCr (ia+m-1))
If side \(=\) 'R', lld_a \(\geq \max (1, \operatorname{LOCr}(i a+n-1))\)
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size LOCC (ja+k-1).
Contains the scalar factor tau[j] of elementary reflectors \(H(j+1)\) as returned by p?geqrf \((0 \leq j<\operatorname{LOCC}(j a+k-1))\). tau is tied to the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of local size IId_c*LOCc (jc+n-1).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
(global) The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
Workspace array of size of lwork.
(local or global) size of work, must be at least:
```

If side = 'L',
lwork\geqmax ((nb_a* (nb_a-1))/2, (nqc0 + mpc0)*nb_a) + nb_a*nb_a
else if side = 'R',
lwork\geqmax((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 +
numroc(numroc(n+iCOffC, nb_a, 0, 0, NPCOL), nb_a, 0, 0,
lcmq), mpcO))*nb_a) + nb_a*nb_a
end if
where
lcmq = lcm/NPCOL with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

```
```

npa0 = numroc(n+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the function
blacs_gridinfo.
If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}
c
work[0]
info

Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{H *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C) * Q^{H}\), or \(\operatorname{sub}(C) * Q\).

On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?gelqf
Computes the LQ factorization of a general
rectangular matrix.

```

\section*{Syntax}
```

void psgelqf (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *tau , float *work , MKL_INT *lwork , MKL_INT *info);
void pdgelqf (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , double *tau , double *work , MKL_INT *lwork , MKL_INT *info);
void pcgelqf (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT *lwork , MKL_INT
*info);
void pzgelqf (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT *lwork , MKL_INT
*info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?gelqf function computes the \(L Q\) factorization of a real/complex distributed \(m\)-by- \(n\) matrix \(\operatorname{sub}(A)=\) \(A(i a: i a+m-1, j a: j a+n-1)=L^{*} Q\).

\section*{Input Parameters}
m
n
a
ia, ja
desca
work

I work
(global) The number of rows in the distributed submatrix \(\operatorname{sub}(A)(m \geq 0)\).
(global) The number of columns in the distributed submatrix \(\operatorname{sub}(A)(n \geq\) \(0)\).
(local)
Pointer into the local memory to an array of local size Ild_a*LOCc(ja+n-1).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be factored.
(global) The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(A(i a: i a+m-1, j a: j a+n-1)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Workspace array of size of lwork.
(local or global) size of work, must be at least lwork \(\geq m b\) _a* (mp0 \(+n q 0+\) mb_a), where
iroff \(=\bmod \left(i a-1, m b \_a\right)\),
iCoff \(=\bmod \left(j a-1, n b \_a\right)\),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mp0 = numroc (m+iroff, mb_a, MYROW, iarow, NPROW),
nq0 \(=\) numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).

If lwork \(=-1\), then lwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
The elements on and below the diagonal of \(\operatorname{sub}(A)\) contain the \(m\)-by\(\min (m, n)\) lower trapezoidal matrix \(L(L\) is lower trapezoidal if \(m \leq n\) ); the elements above the diagonal, with the array tau, represent the orthogonal/ unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
(local)
Array of size LOCr (ia+min \((m, n)-1)\).
Contains the scalar factors of elementary reflectors. tau is tied to the distributed matrix \(A\).

On exit, work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(i a+k-1) * H(i a+k-2) * \ldots * H(i a)\),
where \(k=\min (m, n)\)
Each \(H(i)\) has the form
\(H(i)=I-\tan ^{*} v^{*} v^{\prime}\)
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i-1)=0\) and \(v(i)=1 ; v(i+1: n)\) is stored on exit in \(A(i a+i-1, j a+i: j a+n-1)\), and tau in tau[ia+i-2].

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?orglq
Generates the real orthogonal matrix Q of the LQ
factorization formed by p?gelqf.

```

\section*{Syntax}
```

void psorglq (MKL_INT *m , MKL_INT *n , MKL_INT *k, float *a, MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca , float *tau , float *work, MKL_INT *lwork, MKL_INT *info);
void pdorglq (MKL_INT *m, MKL_INT *n , MKL_INT *k, double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, double *tau, double *work, MKL_INT *lwork, MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?orglq function generates the whole or part of \(m\)-by-n real distributed matrix \(Q\) denoting \(A\) (ia:ia \(+m-1, j a: j a+n-1\) ) with orthonormal rows, which is defined as the first \(m\) rows of a product of \(k\) elementary reflectors of order \(n\)
\(Q=H(k)^{*} \ldots * H(2)^{*} H(1)\)
as returned by p?gelqf.

\section*{Input Parameters}
m
\(n\)
k
a
ia, ja
desca
work
lwork
(global) The number of rows in the matrix sub(Q); ( \(m \geq 0\) ).
(global) The number of columns in the matrix \(\operatorname{sub}(Q)(n \geq m \geq 0)\).
(global) The number of elementary reflectors whose product defines the matrix \(Q(m \geq k \geq 0)\).
(local)
Pointer into the local memory to an array of local size IId_a*LOCc(ja+n-1). On entry, the \(i\)-th row of the matrix stored in amust contain the vector that defines the elementary reflector \(H(i), i a \leq i \leq i a+k-1\), as returned by \(p\) ?gelqf in the \(k\) rows of its distributed matrix argument \(A(i a: i a+k-1\), ja:*).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A(i a: i a+m-1, j a: j a+n-1)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Workspace array of size of lwork.
(local or global) size of work, must be at least
lwork \(\geq m b\) _a* (mpa0 \(+n q a 0+m b\) _a), where
iroffa \(=\bmod \left(i a-1, m b \_a\right)\),
icoffa \(=\bmod \left(j a-1, n b \_a\right)\),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpaO = numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 \(=\) numroc (n+icoffa, nb_a, MYCOL, iacol, NPCOL)

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
\(a\)
tau
Contains the local pieces of the \(m\)-by- \(n\) distributed matrix \(Q\) to be factored.
(local)
Array of size LOCr (ia+k-1).
Contains the scalar factors tau[j] of elementary reflectors \(H(j+1), 0 \leq j<\) LOCr ( \(i a+k-1\) ). tau is tied to the distributed matrix \(A\).
\(\begin{array}{ll}\text { work[0] } & \begin{array}{l}\text { On exit, work[0] contains the minimum value of } 1 \text { work required for } \\ \text { optimum performance. }\end{array} \\ \text { info } & \text { (global) } \\ & =0 \text { : the execution is successful. } \\ & <0 \text { : if the } i \text {-th argument is an array and the } j \text {-th entry, indexed } j-1 \text {, had } \\ & \text { an illegal value, then } i n f o=-\left(i^{*} 100+j\right) ; \text { if the } i \text {-th argument is a scalar } \\ \text { and had an illegal value, then info }=-i .\end{array}\)

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?unglq}

Generates the unitary matrix \(Q\) of the \(L Q\) factorization
formed by p?gelqf.

\section*{Syntax}
```

void pcunglq (MKL_INT *m , MKL_INT *n , MKL_INT *k, MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT
*lwork , MKL_INT *info);
void pzunglq (MKL_INT *m , MKL_INT *n , MKL_INT *k, MKL_Complex16 *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT
*lwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

This function generates the whole or part of \(m-b y-n\) complex distributed matrix \(Q\) denoting \(A\) (ia:ia \(+m-1, j a: j a+n-1\) ) with orthonormal rows, which is defined as the first \(m\) rows of a product of \(k\) elementary reflectors of order \(n\)
\(Q=(H(k))^{H} \ldots *(H(2))^{H *}(H(1))^{H}\) as returned by p?gelqf.

\section*{Input Parameters}
m
(global) The number of rows in the matrix \(\operatorname{sub}(Q)(m \geq 0)\).
n
k
a
ia, ja
desca
tau
work
l work
(global) The number of columns in the matrix \(\operatorname{sub}(Q)(n \geq m \geq 0)\).
(global) The number of elementary reflectors whose product defines the matrix \(Q(m \geq k \geq 0)\).
(local)
Pointer into the local memory to an array of local size IId_a*LOCc(ja+n-1). On entry, the \(i\)-th row of the matrix stored in amust contain the vector that defines the elementary reflector \(H(i)\), \(i a \leq i \leq i a+k-1\), as returned by \(p\) ?gelqf in the \(k\) rows of its distributed matrix argument \(A(i a: i a+k-1\), ja:*).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A(i a: i a+m-1, j a: j a+n-1)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size LOCr (ia+k-1).
Contains the scalar factors tau[j] of elementary reflectors \(H(j+1), 0 \leq j<\) \(\operatorname{LOCr}(i a+k-1)\). tau is tied to the distributed matrix \(A\).
(local)
Workspace array of size of lwork.
(local or global) size of work, must be at least
lwork \(\geq m b\) _a* (mpa0 \(+n q a 0+m b\) _a), where
iroffa \(=\bmod \left(i a-1, m b \_a\right)\),
icoffa \(=\bmod \left(j a-1, n b \_a\right)\),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL),
mpa0 \(=\) numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 \(=\) numroc (n+icoffa, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
work[0]
info

Contains the local pieces of the \(m\)-by- \(n\) distributed matrix \(Q\) to be factored.
On exit, work[0] contains the minimum value of 1 work required for optimum performance.
(global)
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?ormlq
Multiplies a general matrix by the orthogonal matrix Q
of the LQ factorization formed by p?gelqf.

```

\section*{Syntax}
```

void psormlq (char *side , char *trans, MKL_INT *m, MKL_INT *n , MKL_INT *k , float
*a, MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, float *tau , float *c , MKL_INT *ic ,
MKL_INT *jc, MKL_INT *descc , float *work, MKL_INT *lwork, MKL_INT *info);
void pdormlq (char *side , char *trans , MKL_INT *m, MKL_INT *n , MKL_INT *k , double
*a, MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *tau , double *C , MKL_INT
*ic, MKL_INT *jc , MKL_INT *descc, double *work , MKL_INT *lwork , MKL_INT *info);

```

Include Files
- mkl_scalapack.h

\section*{Description}

The p?ormlq function overwrites the general real \(m\)-by-n distributed matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c\) \(+n-1\) ) with
```

 side = 'L
 side = 'R'
trans = 'N': }\quad\mp@subsup{Q}{}{*}\operatorname{sub}(C)\quad\operatorname{sub}(C)*
trans = 'T': }\quad\mp@subsup{Q}{}{T*}\operatorname{sub}(C
sub(C)*}\mp@subsup{Q}{}{T

```
where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors
\[
Q=H(k) \ldots H(2) H(1)
\]
as returned by \(p\) ? gelqf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
```

side
trans
(global)
$=$ ' L': Q or Q^{T} is applied from the left.
$={ }^{\prime} \mathrm{R}^{\prime}: Q$ or Q^{T} is applied from the right.
(global)

```
```

$=$ 'N', no transpose, Q is applied.
= 'T', transpose, Q^{T} is applied.
(global) The number of rows in the distributed matrix $\operatorname{sub}(C)(m \geq 0)$.
(global) The number of columns in the distributed matrix $\operatorname{sub}(C)(n \geq 0)$.
(global) The number of elementary reflectors whose product defines the matrix Q. Constraints:
If side $=$ 'L', $m \geq k \geq 0$
If side $=$ 'R', $n \geq k \geq 0$.
(local)
Pointer into the local memory to an array of size IId_a*LOCc($j a+m-1)$, if side $=$ 'L' and IId_a*LOCC(ja+n-1), if side $=$ 'R'. The i-th row of the matrix stored in amust contain the vector that defines the elementary reflector $H(i)$, ia $\leq i \leq i a+k-1$, as returned by p?gelqf in the k rows of its distributed matrix argument $A($ ia:ia+k-1, ja:*).
$A\left(i a: i a+k-1, j a:^{*}\right)$ is modified by the function but restored on exit.
(global) The row and column indices in the global matrix A indicating the first row and the first column of the submatrix A, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
Array of size LOCC (ja+k-1).
Contains the scalar factor $\operatorname{tau}[j]$ of elementary reflectors $H(j+1)$ as returned by p?gelqf $(0 \leq j<\operatorname{LOCC}(j a+k-1))$. tau is tied to the distributed matrix A.
(local)
Pointer into the local memory to an array of local size Ild_c*LOCc(jc+n-1).
Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.
(global) The row and column indices in the global matrix C indicating the first row and the first column of the submatrix C, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix C.
(local)
Workspace array of size of lwork.
(local or global) size of the array work; must be at least:
If side = 'L',
lwork $\geq \max \left(\left(m b _a^{*}\left(m b _a-1\right)\right) / 2, \quad(m p c 0+\operatorname{maxmqa0})+\right.$ numroc (numroc $(m$ + iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), nqco))*
$\left.m b _a\right)+m b _a * m b _a$
else if side = 'R',

```
```

lwork\geqmax((mb_a* (mb_a-1))/2, (mpc0+nqc0)*mb_a + mb_a*mb_a
end if
where
lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc}=\operatorname{mod}(jc-1, nb_c)
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

```

\section*{NOTE}
```

mod}(x,y)\mathrm{ is the integer remainder of }x/y

```
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime}{ }^{*} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C) * Q\)
work[0]
info
On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?unmlq
Multiplies a general matrix by the unitary matrix Q of
the LQ factorization formed by p?gelqf.

```

\section*{Syntax}
```

void pcunmlq (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k ,

```
void pcunmlq (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k ,
MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *tau ,
MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *tau ,
MKL_Complex8 *C , MKL_INT *ic, MKL_INT *jc, MKL_INT *descc , MKL_Complex8 *work ,
MKL_Complex8 *C , MKL_INT *ic, MKL_INT *jc, MKL_INT *descc , MKL_Complex8 *work ,
MKL_INT *lwork , MKL_INT *info );
MKL_INT *lwork , MKL_INT *info );
void pzunmlq (char *side , char *trans , MKL_INT *m, MKL_INT *n , MKL_INT *k ,
void pzunmlq (char *side , char *trans , MKL_INT *m, MKL_INT *n , MKL_INT *k ,
MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *tau ,
MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *tau ,
MKL_Complex16 *c , MKL_INT *ic , MKL_INT *jc, MKL_INT *descc , MKL_Complex16 *work ,
MKL_Complex16 *c , MKL_INT *ic , MKL_INT *jc, MKL_INT *descc , MKL_Complex16 *work ,
MKL_INT *lwork , MKL_INT *info );
```

MKL_INT *lwork , MKL_INT *info);

```

Include Files
- mkl_scalapack.h

\section*{Description}

This function overwrites the general complex m-by-n distributed matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\) with
\begin{tabular}{lll} 
& side \(=' \mathrm{~L} '\) & side \(={ }^{\prime} \mathrm{R}^{\prime}\) \\
trans \(=\) 'N': \(^{\prime}:\) & \(Q^{*} \operatorname{sub}(C)\) & \(\operatorname{sub}(C)^{*} Q\) \\
trans \(=\) 'T' \(^{\prime}:\) & \(Q^{H *} \operatorname{sub}(C)\) & \(\operatorname{sub}(C)^{*} Q^{H}\)
\end{tabular}
where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors
\(Q=H(k)^{\prime} \ldots H(2)^{\prime} H(1)^{\prime}\)
as returned by p?gelqf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) 'R'.

\section*{Input Parameters}
side
trans
m
\(n\)
\(k\)
a
(global)
\(=\) ' L': \(Q\) or \(Q^{H}\) is applied from the left.
\(=R^{\prime}\) ': \(Q\) or \(Q^{H}\) is applied from the right.
(global)
\(=\) 'N', no transpose, \(Q\) is applied.
\(=\) ' C', conjugate transpose, \(Q^{H}\) is applied.
(global) The number of rows in the distributed matrix \(\operatorname{sub}(C)(m \geq 0)\).
(global) The number of columns in the distributed matrix \(\operatorname{sub}(C)(n \geq 0)\).
(global) The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:

If side \(=\) 'L', \(m \geq k \geq 0\)
If side = 'R', \(n \geq k \geq 0\).
(local)

Pointer into the local memory to an array of size \(I I d \_a * \operatorname{LOCC}(j a+m-1)\), if side \(=\) 'L' and IId_a*LOCC(ja+n-1), if side \(=\) 'R', where lld_a \(\geq\) \(\max (1, \operatorname{LOCr}(i a+k-1))\). The \(i\)-th column of the matrix stored in amust contain the vector that defines the elementary reflector \(H(i)\), \(i a \leq i \leq i a+k-1\), as returned by p ?gelqf in the \(k\) rows of its distributed matrix argument A( ia:ia+k-1, ja:*). \(A(\) ia:ia+k-1, ja:*) is modified by the function but restored on exit.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size LOCC (ia+k-1).
Contains the scalar factor tau[j] of elementary reflectors \(H(j+1)\) as returned by p?gelqf \((0 \leq j<\operatorname{LOCC}(i a+k-1))\). tau is tied to the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of local size IId_c*LOCc(jc+n-1).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
(global) The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
Workspace array of size of lwork.
(local or global) size of the array work; must be at least:
```

If side = 'L',
lwork\geqmax((mb_a* (mb_a-1))/2, (mpc0 + maxmqa0) +
numroc(numroc(m + iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0,
lcmp), nqc())*mb_a) + mb_a*mb_a
else if side = 'R',
lwork\geqmax ((mb_a* (mb_a-1))/2, (mpc0 + nqc0)*mb_a + mb_a*mb_a
end if
where
lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqaO = numroc(m + icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc = mod(ic-1, mb_c),

```
```

icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline c & Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C) * Q^{\prime}\), or \(\operatorname{sub}(C) * Q\) \\
\hline work[0] & On exit work[0] contains the minimum value of lwork required for optimum performance. \\
\hline \multirow[t]{3}{*}{info} & (global) \\
\hline & \(=0\) : the execution is successful. \\
\hline & \(<0\) : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). \\
\hline
\end{tabular}

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?geqlf
Computes the QL factorization of a general matrix.

\section*{Syntax}
```

void psgeqlf (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *tau , float *work , MKL_INT *lwork, MKL_INT *info);
void pdgeqlf (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja, MKL_INT
*desca , double *tau, double *work , MKL_INT *lwork , MKL_INT *info);
void pcgeqlf (MKL_INT *m, MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia, MKL_INT *ja,
MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT *lwork , MKL_INT
*info);
void pzgeqlf (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a, MKL_INT *ia , MKL_INT *ja,
MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT *lwork , MKL_INT
*info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?geqlf function forms the \(Q L\) factorization of a real/complex distributed \(m-b y-n\) matrix \(\operatorname{sub}(A)=\) \(A(i a: i a+m-1, j a: j a+n-1)=Q^{*} L\).

\section*{Input Parameters}
```

m
n
a
ia, ja
desca
work

```
I work
(global) The number of rows in the matrix \(\operatorname{sub}(Q) ;(m \geq 0)\).
(global) The number of columns in the matrix \(\operatorname{sub}(Q)(n \geq 0)\).
(local)
Pointer into the local memory to an array of local size IId_a*LOCc(ja+n-1). Contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be factored.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A(i a: i a+m-1\), ja: ja+n-1), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Workspace array of size of lwork.
(local or global) size of work, must be at least 1 work \(\geq n b \_a^{*}(m p 0+n q 0+\) nb_a), where
```

iroff = mod(ia-1, mb_a),

```
iCoff \(=\bmod \left(j a-1, n b \_a\right)\),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL),
mp0 \(=\) numroc (m+iroff, mb_a, MYROW, iarow, NPROW),
\(n q 0=\) numroc (n+iCOff, nb_a, MYCOL, iacol, NPCOL)

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
numroc and indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
On exit, if \(m \geq n\), the lower triangle of the distributed submatrix \(A(i a+m-n: i a\) \(+m-1\), ja:ja+n-1) contains the \(n\)-by- \(n\) lower triangular matrix \(L\); if \(m \leq n\), the elements on and below the \((n-m)\)-th superdiagonal contain the \(m\)-by- \(n\) lower trapezoidal matrix \(L\); the remaining elements, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
(local)
Array of size LOCC (ja+n-1).
Contains the scalar factors of elementary reflectors. tau is tied to the distributed matrix \(A\).

On exit, work[0] contains the minimum value of 1 work required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(j a+k-1)^{*} \ldots * H(j a+1) * H(j a)\)
where \(k=\min (m, n)\)
Each \(H(i)\) has the form
\(H(i)=I-\tan u^{*} v^{*} v^{\prime}\)
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(m-k+i+1: m)=0\) and \(v(m-k+i)=1\); \(v(1: m-k+i-1)\) is stored on exit in \(A(i a: i a+m-k+i-2, j a+n-k+i-1)\), and tau in tau[ja+n-k+i-2].

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?orgql}

Generates the orthogonal matrix \(Q\) of the QL
factorization formed by p?geqle.

\section*{Syntax}
```

void psorgql (MKL_INT *m , MKL_INT *n , MKL_INT *k , float *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, float *tau , float *work, MKL_INT *lwork, MKL_INT *info);
void pdorgql (MKL_INT *m, MKL_INT *n , MKL_INT *k, double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, double *tau, double *work, MKL_INT *lwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?orgql function generates the whole or part of \(m-b y-n\) real distributed matrix \(Q\) denoting \(A\) (ia:ia \(+m-1, j a: j a+n-1\) ) with orthonormal rows, which is defined as the first \(m\) rows of a product of \(k\) elementary reflectors of order \(n\)
\(Q=H(k)^{*} \ldots{ }^{*} H(2) * H(1)\)
as returned by p?geqle.

\section*{Input Parameters}
m
n
\(k\)
a
ia, ja
desca
tau
work

I work
(global) The number of rows in the matrix \(\operatorname{sub}(Q),(m \geq 0)\).
(global) The number of columns in the matrix \(\operatorname{sub}(Q),(m \geq n \geq 0)\).
(global) The number of elementary reflectors whose product defines the matrix \(Q(n \geq k \geq 0)\).
(local)
Pointer into the local memory to an array of local size IId_a*LOCc(ja+n-1). On entry, the \(j\)-th column of the matrix stored in amust contain the vector that defines the elementary reflector \(H(j), j a+n-k \leq j \leq j a+n-1\), as returned by p?geqlf in the \(k\) columns of its distributed matrix argument \(A(i a: *, j a\) \(+n-k: j a+n-1)\).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A(i a: i a+m-1, j a: j a+n-1)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size LOCC (ja+n-1).
Contains the scalar factors tau[j] of elementary reflectors \(H(j+1), 0 \leq j<\) \(\operatorname{LOCr}(i a+n-1)\). tau is tied to the distributed matrix \(A\).
(local)
Workspace array of size of lwork.
(local or global) size of work, must be at least
lwork \(\geq n b\) _a* (nqa0 \(\left.0+m p a 0+n b \_a\right)\), where
iroffa \(=\bmod \left(i a-1, m b \_a\right)\),
icoffa \(=\bmod \left(j a-1, n b \_a\right)\),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 = numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 \(=\) numroc (n+icoffa, nb_a, MYCOL, iacol, NPCOL)

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
```

work[0]

```
info

Contains the local pieces of the \(m\)-by- \(n\) distributed matrix \(Q\) to be factored.
On exit, work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p? ungql}

Generates the unitary matrix \(Q\) of the \(Q L\) factorization
formed by p?geqle.

\section*{Syntax}
```

void pcungql (const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , MKL_Complex8
*a , const MKL_INT *ia , const MKL_INT *ja, const MKL_INT *desca , const MKL_Complex8
*tau , MKL_Complex8 *work , const MKL_INT *lwork , MKL_INT *info);
void pzungql (const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , MKL_Complex16
*a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca , const MKL_Complex16
*tau , MKL_Complex16 *work , const MKL_INT *lwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

This function generates the whole or part of \(m-b y-n\) complex distributed matrix \(Q\) denoting \(A\) (ia:ia \(+m-1, j a: j a+n-1)\) with orthonormal rows, which is defined as the first \(n\) columns of a product of \(k\) elementary reflectors of order \(m\)
\(Q=(H(k))^{H} \ldots *(H(2))^{H *}(H(1))^{H}\) as returned by p?geqle.

\section*{Input Parameters}
```

m
n
k
a
ia, ja
desca
tau

```
work

I work
(global) The number of rows in the matrix \(\operatorname{sub}(Q)(m \geq 0)\).
(global) The number of columns in the matrix \(\operatorname{sub}(Q)(m \geq n \geq 0)\).
(global) The number of elementary reflectors whose product defines the matrix \(Q(n \geq k \geq 0)\).
(local)
Pointer into the local memory to an array of local size IId_a*LOCc(ja \(+n-1)\). On entry, the \(j\)-th columnof the matrix stored in a must contain the vector that defines the elementary reflector \(H(j)\), ja+n\(k \leq j \leq j a+n-1\), as returned by \(p\) ?geqlf in the \(k\) columns of its distributed matrix argument \(A(i a: *, j a+n-k: j a+n-1)\).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A(i a: i a+m-1, j a: j a+n-1)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size \(\operatorname{LOCr}(i a+n-1)\).
Contains the scalar factors tau[j] of elementary reflectors \(H(j+1), 0 \leq j<\) \(\operatorname{LOCr}(i a+n-1)\). tau is tied to the distributed matrix \(A\).
(local)
Workspace array of size of lwork.
(local or global) size of work, must be at least lwork \(\geq n b \_a *(n q a 0+m p a 0\) + nb_a), where
iroffa \(=\bmod \left(i a-1, m b \_a\right)\),
icoffa \(=\bmod \left(j a-1, n b \_a\right)\),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL),
mpa0 = numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
\(n q a 0=\) numroc( \(n+i c o f f a, n b \_a\), MYCOL, iacol, NPCOL \()\)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
```

work[0] On exit, work[0] contains the minimum value of lwork required for
optimum performance.
(global)
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-th entry, indexed j-1, had
an illegal value, then info =-(i*100+j); if the i-th argument is a scalar
and had an illegal value, then info =-i.

```

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?ormql
Multiplies a general matrix by the orthogonal matrix Q
of the QL factorization formed by p?geqlf.

```

\section*{Syntax}
```

void psormql (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k , float
*a, MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, float *tau, float *c , MKL_INT *ic,
MKL_INT *jc, MKL_INT *descc , float *work , MKL_INT *lwork, MKL_INT *info);
void pdormql (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k , double
*a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *tau , double *C, MKL_INT
*ic, MKL_INT *jc , MKL_INT *descc, double *work , MKL_INT *lwork , MKL_INT *info);

```

\section*{Include Files}
```

- mkl_scalapack.h

```

\section*{Description}

The p?ormqlfunction overwrites the general real m-by-n distributed matrix sub(C)=C(ic:ic+m-1,jc:jc \(+n-1\) ) with
```

 side ='L' side ='R'
 trans = 'N': Q*sub(C) sub(C)*Q
trans = 'T': }\quad\mp@subsup{Q}{}{T*sub(C)
sub(C)*QT

```
where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors
\(Q=H(k)^{\prime} \ldots H(2)^{\prime} H(1)^{\prime}\)
as returned by p?geqle. \(Q\) is of order mif side = 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
side
trans
(global)
\(=L^{\prime}: Q\) or \(Q^{T}\) is applied from the left.
\(=' R^{\prime}: Q\) or \(Q^{T}\) is applied from the right.

\section*{(global)}
\(=\) ' \(N\) ', no transpose, \(Q\) is applied.
\(=\) 'T', transpose, \(Q^{T}\) is applied.
m

C
(global) The number of rows in the distributed matrix \(\operatorname{sub}(C),(m \geq 0)\). (global) The number of columns in the distributed matrix \(\operatorname{sub}(C),(n \geq 0)\). (global) The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:

If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) 'R', \(n \geq k \geq 0\).
(local)
Pointer into the local memory to an array of size IId_a*LOCc(ja+k-1). The \(j\)-th column of the matrix stored in amust contain the vector that defines the elementary reflector \(H(j)\), ja \(\leq j \leq j a+k-1\), as returned by p?gelqf in the \(k\) columns of its distributed matrix argument \(A\left(i a:^{*}, ~ j a: j a+k-1\right) . A\left(i a:^{*}\right.\), ja: ja+k-1) is modified by the function but restored on exit.

If side \(=\) 'L',lld_a \(\geq \max (1\), LOCr(ia+m-1)),
If side \(=\) 'R', lld_a \(\geq \max (1\), LOCr(ia+n-1)).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size LOCC (ja+n-1).
Contains the scalar factor tau[j] of elementary reflectors \(H(j+1)\) as returned by p?geqlf \((0 \leq j<\operatorname{LOCC}(j a+k-1))\). tau is tied to the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of local size \(I I d \_c^{*} L O C c(j c+n-1)\).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
(global) The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
Workspace array of size of lwork.
(local or global) dimension of work, must be at least:
```

If side = 'L',
lwork\max((nb_a*(nb_a-1))/2, (nqc0+mpc0)*nb_a + nb_a*nb_a
else if side ='R',
lwork\geqmax((nb_a*(nb_a-1))/2, (nqc0+max(npa0 +
numroc(numroc(n+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0,
lcmq), mpc0))*nb_a) + nb_a*nb_a

```
```

end if
where
lcmq = lcm/NPCOL with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
npaO= numroc(n + iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
c
Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C) * Q\)
work[0]
info
On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?unmql}

Multiplies a general matrix by the unitary matrix \(Q\) of
the QL factorization formed by p?geqle.

\section*{Syntax}
```

void pcunmql (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k ,
MKL_Complex8 *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *tau ,
MKL_Complex8 *c , MKL_INT *ic, MKL_INT *jc, MKL_INT *descc, MKL_Complex8 *Work ,
MKL_INT *lwork , MKL_INT *info);
void pzunmql (char *side , char *trans , MKL_INT *m, MKL_INT *n , MKL_INT *k ,
MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *tau ,
MKL_Complex16 *C , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex16 *work ,
MKL_INT *lwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

This function overwrites the general complex m-by-n distributed matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\) with
```

 side = 'L'
 side = 'R'
trans = 'N': }\quad\mp@subsup{Q}{}{*}\textrm{sub}(C)\quad\operatorname{sub}(C)*
trans = 'C':
QH*
sub(C)*Q H

```
where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors \(Q=H(k)^{\prime} \ldots H(2)^{\prime} H(1)^{\prime}\)
as returned by p?geqle. \(Q\) is of order mif side = 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
side
trans
m
n
k
a
(global)
\(=\) 'L': \(Q\) or \(Q^{H}\) is applied from the left.
\(={ }^{\prime} R^{\prime}: Q\) or \(Q^{H}\) is applied from the right.
(global)
\(=\) 'N', no transpose, \(Q\) is applied.
\(=\) ' C', conjugate transpose, \(Q^{H}\) is applied.
(global) The number of rows in the distributed matrix \(\operatorname{sub}(C)(m \geq 0)\).
(global) The number of columns in the distributed matrix \(\operatorname{sub}(C)(n \geq 0)\).
(global) The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
If side \(=\) 'L', \(m \geq k \geq 0\)
If side = 'R', \(n \geq k \geq 0\).
(local)
```

ia, ja
desca
tau
C
ic, jc
descc
work
lwork

```
ia, ja
desca
```

(global) The row and column indices in the global matrix A indicating the first row and the first column of the submatrix A, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
Array of size LOCC (ia+n-1).
Contains the scalar factor tau[j] of elementary reflectors $H(j+1)$ as returned by p?geqlf $(0 \leq j<\operatorname{LOCC}(i a+n-1))$. tau is tied to the distributed matrix A.
(local)
Pointer into the local memory to an array of local size IId_c*LOCc($j c+n-1)$.
Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.
(global) The row and column indices in the global matrix C indicating the first row and the first column of the submatrix C, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix C.
(local)
Workspace array of size of lwork.
(local or global) size of work, must be at least:
If side = 'L',
lwork $\geq \max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2,(n q c 0+\operatorname{mpc} 0) * n b _a+n b _a^{*} n b _a\right.$
else if side ='R',
Iwork $\geq \max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2, \quad(n q c 0+\max n p a 0)+\right.$ numroc (numroc $(n$ +icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq), mpc0))*nb_a)

+ nb_a*nb_a
end if
where

```
```

lcmp = lcm/NPCOL with lcm = ilcm (NPROW, NPCOL),

```
lcmp = lcm/NPCOL with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
iroffa = mod(ia-1, mb_a),
iCOffa = mod(ja-1, nb_a),
iCOffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
npaO = numroc (n + iroffa, mb_a, MYROW, iarow, NPROW),
```

npaO = numroc (n + iroffa, mb_a, MYROW, iarow, NPROW),

```

Pointer into the local memory to an array of size IId_a*LOCc (ja+k-1). The \(j\)-th column of the matrix stored in amust contain the vector that defines the elementary reflector \(H(j)\), ja \(\leq j \leq j a+k-1\), as returned by p?geqlf in the \(k\) columns of its distributed matrix argument \(A(i a: *, j a: j a+k-1) . A\left(i a:^{*}\right.\), \(j a: j a+k-1\) ) is modified by the function but restored on exit.

If side \(=\) 'L',lld_a \(\geq \max (1, \operatorname{LOCr}(i a+m-1))\),
If side \(=' R ', \quad\) lld_a \(\geq \max (1, \operatorname{LOCr}(i a+n-1))\).
```

iroffC = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

C
work[0]
info
Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C) * Q\)

On exit work[0] contains the minimum value of 1 work required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?gerqf
Computes the \(R Q\) factorization of a general rectangular matrix.

\section*{Syntax}
```

void psgerqf (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca, float *tau , float *work, MKL_INT *lwork, MKL_INT *info);
void pdgerqf (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , double *tau , double *work , MKL_INT *lwork , MKL_INT *info);

```
```

void pcgerqf (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT *lwork , MKL_INT
*info);
void pzgerqf (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT *lwork , MKL_INT
*info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?gerqf function forms the \(Q R\) factorization of a general \(m-b y-n\) distributed matrix \(\operatorname{sub}(A)=A(\) ia: ia \(+m-1\), ja:ja+n-1) as
\(A=R^{*} Q\)

\section*{Input Parameters}
```

m
n
a
ia, ja
desca
work
l work

```
(global) The number of rows in the distributed matrix sub(A); ( \(m \geq 0\) ).
(global) The number of columns in the distributed matrix sub \((A) ;(n \geq 0)\). (local)

Pointer into the local memory to an array of local size IId_a*LOCc(ja+n-1). Contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be factored.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A(i a: i a+m-1, j a: j a+n-1)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\)
(local).
Workspace array of size 1 work.
(local or global) size of work, must be at least
lwork \(\geq m b \_a^{\star}\left(m p 0+n q 0+m b \_a\right)\), where
iroff \(=\bmod \left(i a-1, m b \_a\right)\),
icoff \(=\bmod \left(j a-1, n b \_a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, CSrC_a, NPCOL),
mpO = numroc (m+iroff, mb_a, MYROW, iarow, NPROW),

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
nq0 = numroc(n+icoff, nb_a, MYCOL, iacol, NPCOL) and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
On exit, if \(m \leq n\), the upper triangle of \(A(i a: i a+m-1\), ja: ja \(+n-1\) ) contains the \(m\)-by- \(m\) upper triangular matrix \(R\); if \(m \geq_{n}\), the elements on and above the ( \(m\) - \(n\) )-th subdiagonal contain the m-by- \(n\) upper trapezoidal matrix \(R\); the remaining elements, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
(local)
Array of size LOCr (ia+m-1).
Contains the scalar factor of elementary reflectors. tau is tied to the distributed matrix \(A\).

On exit, work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\), the execution is successful.
\(<0\), if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(i a)^{*} H(i a+1)^{*} \ldots * H(i a+k-1)\),
where \(k=\min (m, n)\).
Each \(H(i)\) has the form
\(H(i)=I-\tan ^{*} v^{*} v^{\prime}\)
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(n-k+i+1: n)=0\) and \(v(n-k+i)=1\); \(v(1: n-k+i-1)\) is stored on exit in \(A(i a+m-k+i-1, j a: j a+n-k+i-2)\), and tau in \(\operatorname{tau}[i a+m-k+i-2]\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?orgrq}

Generates the orthogonal matrix \(Q\) of the \(R Q\)
factorization formed by p?gerqf.

\section*{Syntax}
```

void psorgrq (MKL_INT *m , MKL_INT *n , MKL_INT *k, float *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, float *tau , float *work, MKL_INT *lwork , MKL_INT *info);
void pdorgrq (MKL_INT *m , MKL_INT *n , MKL_INT *k, double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, double *tau , double *work, MKL_INT *lwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?orgrqfunction generates the whole or part of \(m\)-by-n real distributed matrix \(Q\) denoting \(A\) (ia:ia \(+m-1, j a: j a+n-1)\) with orthonormal rows that is defined as the last \(m\) rows of a product of \(k\) elementary reflectors of order \(n\)
\[
Q=H(1) * H(2) * \ldots * H(k)
\]
as returned by p?gerqf.

\section*{Input Parameters}
\[
\begin{aligned}
& m \\
& n \\
& k
\end{aligned}
\]
a
ia, ja
desca
```

tau

```
work
lwork
(global) The number of rows in the matrix \(\operatorname{sub}(Q),(m \geq 0)\).
(global) The number of columns in the matrix \(\operatorname{sub}(Q),(n \geq m \geq 0)\).
(global) The number of elementary reflectors whose product defines the matrix \(Q(m \geq k \geq 0)\).
(local)
Pointer into the local memory to an array of local size IId_a*LOCc(ja+n-1). The \(i\)-th row of the matrix stored in amust contain the vector that defines the elementary reflector \(H(i)\), \(i a \leq i \leq i a+m-1\), as returned by \(p\) ? gerqf in the \(k\) rows of its distributed matrix argument \(A(i a+m-k: i a+m-1, j a: *)\).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size LOCC (ja+k-1).
Contains the scalar factor tau[i] of elementary reflectors \(H(i+1)\) as returned by p?gerqf, \(0 \leq i<\operatorname{LOCr}(j a+k-1)\). tau is tied to the distributed matrix \(A\).
(local)
Workspace array of size of lwork.
(local or global) size of work, must be at least lwork \(\geq m b \_a *(m p a 0+n q a 0\) + mb_a), where
iroffa \(=\bmod \left(i a-1, m b \_a\right)\),
icoffa \(=\bmod \left(j a-1, n b \_a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpaO = numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 \(=\) numroc (n+icoffa, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
work[0]
info

Contains the local pieces of the \(m-b y-n\) distributed matrix Q .
On exit, work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

\section*{Overview for details of ScaLAPACK array descriptor structures and related notations.}
p?ungrq
Generates the unitary matrix \(Q\) of the \(R Q\) factorization
formed by p?gerqf.

\section*{Syntax}
```

void pcungrq (MKL_INT *m , MKL_INT *n , MKL_INT *k, MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT
*lwork , MKL_INT *info);
void pzungrq (MKL_INT *m , MKL_INT *n , MKL_INT *k , MKL_Complex16 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca, MKL_Complex16 *tau, MKL_Complex16 *work, MKL_INT
*lwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

This function generates the \(m\)-by-n complex distributed matrix \(Q\) denoting \(A(i a: i a+m-1, j a: j a+n-1)\) with orthonormal rows, which is defined as the last \(m\) rows of a product of \(k\) elementary reflectors of order \(n\)
\(Q=(H(1))^{H *}(H(2))^{H *} \ldots *(H(k))^{H}\) as returned by p?gerqf.

\section*{Input Parameters}
\(n\)
\[
k
\]
a
ia, ja
desca
tau
work
l work
(global) The number of columns in the matrix \(\operatorname{sub}(Q)(n \geq m \geq 0)\).
(global) The number of elementary reflectors whose product defines the matrix \(Q(m \geq k \geq 0)\).
(local)
Pointer into the local memory to an array of size IId_a*LOCc (ja+n-1). The \(i\)-th row of the matrix stored in amust contain the vector that defines the elementary reflector \(H(i)\), \(i a+m-k \leq i \leq i a+m-1\), as returned by p?gerqf in the \(k\) rows of its distributed matrix argument \(A(i a+m-k: i a+m-1, j a: *)\).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size LOCr (ia+m-1).
Contains the scalar factor tau[i] of elementary reflectors \(H(i+1)\) as returned by p?gerqf, \(0 \leq i<\operatorname{LOCr}(i a+m-1)\). tau is tied to the distributed matrix \(A\).
(local)
Workspace array of size of lwork.
(local or global) size of work, must be at least lwork \(\geq m b \_a *\) (mpa0 +nqa0+mb_a), where
iroffa \(=\bmod \left(i a-1, m b \_a\right)\),
icoffa \(=\bmod \left(j a-1, n b \_a\right)\),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL),
mpa0 \(=\) numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 \(=\) numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

Contains the local pieces of the \(m\)-by-n distributed matrix \(Q\).
\begin{tabular}{ll} 
work[0] & \begin{tabular}{l} 
On exit work \([0]\) contains the minimum value of 1 work required for \\
optimum performance.
\end{tabular} \\
info & (global) \\
& \(=0\) : the execution is successful. \\
& \(<0:\) if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had \\
an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar \\
and had an illegal value, then info \(=-i\).
\end{tabular}

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?ormr3}

Applies an orthogonal distributed matrix to a general m-by-n distributed matrix.

\section*{Syntax}
```

void psormr3 (const char* side, const char* trans, const MKL_INT* m, const MKL_INT* n,
const MKL_INT* k, const MKL_INT* l, const float* a, const MKL_INT* ia, const MKL_INT*
ja, const MKL_INT* desca, const float* tau, float* c, const MKL_INT* ic, const MKL_INT*
jc, const MKL_INT* descc, float* work, const MKL_INT* lwork, MKL_INT* info);
void pdormr3 (const char* side, const char* trans, const MKL_INT* m, const MKL_INT* n,
const MKL_INT* k, const MKL_INT* l, const double* a, const MKL_INT* ia, const MKL_INT*
ja, const MKL_INT* desca, const double* tau, double* c, const MKL_INT* ic, const
MKL_INT* jc, const MKL_INT* descc, double* work, const MKL_INT* lwork, MKL_INT* info);

```

Include Files
- mkl_scalapack.h

\section*{Description}
p?ormr3 overwrites the general real m-by-n distributed matrix sub( \(C\) ) \(=C(i c: i c+m-1, j c: j c+n-1)\) with
\begin{tabular}{|l|l|l|}
\hline & side \(=\) 'L' & side \(=\) 'R' \\
\hline trans \(=\) 'N' & \(Q^{*} \operatorname{sub}(C)\) & \(\operatorname{sub}(C) * Q\) \\
\hline trans \(=\) 'T' & \begin{tabular}{l}
\(Q^{T} * \operatorname{sub}(C)\) \\
\(Q^{*} \operatorname{sub}(C)\)
\end{tabular} & \(\operatorname{sub}(C)^{*} Q^{T}\) \\
\hline
\end{tabular}
where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors
\(Q=\mathrm{H}(1) \mathrm{H}(2) \ldots \mathrm{H}(k)\)
as returned by p?tzrzf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) 'R'.

\section*{Input Parameters}
side
(global)
\(=\) 'L': apply \(Q\) or \(Q^{T}\) from the Left;
\(=\) 'R': apply \(Q\) or \(Q^{T}\) from the Right.
(global)
= 'N': No transpose, apply Q;
\(=\) 'T': Transpose, apply \(Q^{T}\).
(global)
The number of rows to be operated on i.e the number of rows of the distributed submatrix sub( \(C\) ). \(m>=0\).
(global)
The number of columns to be operated on i.e the number of columns of the distributed submatrix sub( \(C\) ). \(n>=0\).
(global)
The number of elementary reflectors whose product defines the matrix \(Q\).
If side \(=\) 'L', \(m>=k>=0\),
if side \(=\) 'R', \(n>=k>=0\).
(global)
The columns of the distributed submatrix sub( \(A\) ) containing the meaningful part of the Householder reflectors.
If side \(=\) 'L', \(m>=1>=0\),
if side \(='^{\prime}\) ', \(n>=1>=0\).
(local)
Pointer into the local memory to an array of size IId_a*LOCC(ja+m-1) if side='L', and lld_a*LOCC(ja+n-1) if side='R', where lld_a >= \(\operatorname{MAX}(1, \operatorname{LOCr}(i a+k-1))\);
On entry, the \(i\)-th row must contain the vector which defines the elementary reflector \(\mathrm{H}(i)\), \(i a<=i<=i a+k-1\), as returned by p?tzrzf in the \(k\) rows of its distributed matrix argument \(A\left(i a: i a+k-1, j a:^{*}\right)\).
\(A(i a: i a+k-1, j a: *)\) is modified by the routine but restored on exit.
(global)
The row index in the global array a indicating the first row of \(\operatorname{sub}(A)\).
(global)
The column index in the global array a indicating the first column of \(\operatorname{sub}(A)\).
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix \(A\).
(local)
Array, size LOCc(ia+k-1).
This array contains the scalar factors tau(i) of the elementary reflectors \(H(i)\) as returned by p?tzrzf. tau is tied to the distributed matrix \(A\).
```

c
ic
jc
descc

```
c
ic
(local)
Pointer into the local memory to an array of size \(/ I d \_c^{*} \operatorname{LOCc}(j c+n-1)\).
On entry, the local pieces of the distributed matrix sub( C ).
(global)
The row index in the global array \(c\) indicating the first row of sub( \(C\) ).
(global)
The column index in the global array \(c\) indicating the first column of sub ( C ).
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix \(C\).
(local)
Array, size (lwork)
(local)
The size of the array work.
lwork is local input and must be at least
If side = 'L', lwork >= MpCO + MAX( MAX( \(1, N q C O)\) ), numroc( numroc \((m\) +IROFFC,mb_a,0,0,NPROW ),mb_a,0,0,NqCO ) );
if side = 'R', lwork >= NqCO + MAX( \(1, M p C 0\) );
where LCMP = LCM / NPROW
LCM \(=\operatorname{iclm}(\) NPROW, NPCOL ) ,
IROFFC \(=\) MOD ( \(\left.i c-1, m b \_c\right)\),
ICOFFC \(=\) MOD ( \(\left.j c-1, n b \_c\right)\),
ICROW = indxg2p( ic, mb_c, MYROW, rsrc_c, NPROW ),
ICCOL \(=\) indxg2p( jc, nb_c, MYCOL, csrc_c, NPCOL \()\),
MpCO = numroc \((m+\) IROFFC, mb_c, MYROW, ICROW, NPROW \()\),
NqCO = numroc ( \(n+\) ICOFFC, nb_c, MYCOL, ICCOL, NPCOL ),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

On exit, sub( C ) is overwritten by \(Q^{*} \operatorname{sub}(C)\) or \(Q^{\prime *} \operatorname{sub}(C)\) or \(\operatorname{sub}(C)^{*} Q^{\prime}\) or \(\operatorname{sub}(C)^{*} Q\).
```

work On exit, work[0] returns the minimal and optimal lwork.
info
On exit, work[0] returns the minimal and optimal lwork.
(local)
= 0 : successful exit
< 0: If the i-th argument is an array and the j-th entry had an illegal value, then info $=-(i * 100+j)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

```

\section*{Application Notes}

\section*{Alignment requirements}

The distributed submatrices \(A\left(\right.\) ia: \(\left.^{*}, j a:^{*}\right)\) and \(C(i c: i c+m-1, j c: j c+n-1)\) must verify some alignment properties, namely the following expressions should be true:
```

If side = 'L',
($\left.n b _a=m b _c . A N D . I C O F F A=I R O F F C\right)$
If side = 'R',

```
( \(n b \_a=n b \_c . A N D\). ICOFFA \(=\) ICOFFC \(\left.. A N D . I A C O L=I C C O L\right)\)
p?unmr3
Applies an orthogonal distributed matrix to a general m-by-n distributed matrix.

\section*{Syntax}
```

void pcunmr3 (const char* side, const char* trans, const MKL_INT* m, const MKL_INT* n,
const MKL_INT* k, const MKL_INT* l, const MKL_Complex8* a, const MKL_INT* ia, const
MKL_INT* ja, const MKL_INT* desca, const MKL_Complex8* tau, MKL_Complex8* c, const
MKL_INT* ic, const MKL_INT* jc, const MKL_INT* descc, MKL_Complex8* work, const
MKL_INT* lwork, MKL_INT* info);
void pzunmr3 (const char* side, const char* trans, const MKL_INT* m, const MKL_INT* n,
const MKL_INT* k, const MKL_INT* l, const MKL_Complex16* a, const MKL_INT* ia, const
MKL_INT* ja, const MKL_INT* desca, const MKL_Complex16* tau, MKL_Complex16* c, const
MKL_INT* ic, const MKL_INT* jc, const MKL_INT* descc, MKL_Complex16* work, const
MKL_INT* lwork, MKL_INT* info);

```

Include Files
- mkl_scalapack.h

\section*{Description}
p?unmr3 overwrites the general complex m-by-n distributed matrix sub( \(C\) ) \(=C(i c: i c+m-1, j c: j c+n-1)\) with
\[
\begin{array}{lr}
\text { side }=\text { 'L' } & \text { side }=\text { 'R' } \\
\text { trans }=~ ' N ': Q * \operatorname{sub}(C) & \operatorname{sub}(C) * Q \\
\text { trans }='^{\prime} C^{\prime}: Q^{H} * \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q^{H}
\end{array}
\]
where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors
\(\mathrm{Q}=\mathrm{H}(1)^{\prime} \mathrm{H}(2)^{\prime} \ldots \mathrm{H}(k)^{\prime}\)
as returned by p?tzrzf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) 'R'.

\section*{Input Parameters}
side
trans
m
\(n\)
\(k\)

1
a
ia
ja
desca
tau
(global)
\(=\) 'L': apply \(Q\) or \(Q^{H}\) from the Left;
\(=\) 'R': apply \(Q\) or \(Q^{H}\) from the Right.
(global)
= 'N': No transpose, apply \(Q\);
\(=\) 'C': Conjugate transpose, apply \(Q^{H}\).

\section*{(global)}

The number of rows to be operated on i.e the number of rows of the distributed submatrix \(\operatorname{sub}(C) . m>=0\).

\section*{(global)}

The number of columns to be operated on i.e the number of columns of the distributed submatrix \(\operatorname{sub}(C) . n>=0\).
(global)
The number of elementary reflectors whose product defines the matrix \(Q\).
\[
\text { If side }=\text { 'L', m > = k >=0, if side }=\text { 'R', } n>=k>=0 \text {. }
\]

\section*{(global)}

The columns of the distributed submatrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors.
\[
\text { If side = 'L', m>= l>=0, if side = 'R', } n>=l>=0 \text {. }
\]
(local)
Pointer into the local memory to an array of size IId_a*LOCc (ja+m-1) if side='L', and IId_a*LOCC(ja+n-1) if side='R', where Ild_a >= \(\operatorname{MAX}(1, \operatorname{LOCr}(i a+k-1))\);
On entry, the i-th row must contain the vector which defines the elementary reflector \(\mathrm{H}(\mathrm{i})\), ia \(<=\mathrm{i}<=i a+k-1\), as returned by p?tzrzf in the \(k\) rows of its distributed matrix argument \(A(\) ia:ia+k-1,ja:*).
\(A(i a: i a+k-1, j a: *)\) is modified by the routine but restored on exit.
(global)
The row index in the global array a indicating the first row of \(\operatorname{sub}(A)\).
(global)
The column index in the global array a indicating the first column of \(\operatorname{sub}(A)\).
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix \(A\).
(local)
Array, size LOCc(ia+k-1).

C
ic

This array contains the scalar factors tau(i) of the elementary reflectors \(H(i)\) as returned by p?tzrzf. tau is tied to the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of size \(I I d \_c^{*} L O C c(j c+n-1)\).
On entry, the local pieces of the distributed matrix sub( \(C\) ).
(global)
The row index in the global array \(c\) indicating the first row of sub( \(C\) ).
(global)
The column index in the global array \(c\) indicating the first column of \(\operatorname{sub}(C)\).
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix \(C\).
(local)
Array, size (lwork)
On exit, work(1) returns the minimal and optimal lwork.
(local or global)
The size of the array work.
lwork is local input and must be at least
If side \(=\) 'L', lwork \(>=\operatorname{MpCO}+\operatorname{MAX}(\operatorname{MAX}(1, \operatorname{NqCO})\), numroc( numroc ( \(m\)
+IROFFC, \(m b \_a, 0,0\), NPROW ), \(m b \_a, 0,0\), LCMP ) );
if side \(=\) 'R', lwork \(>=\mathrm{NqC0}+\mathrm{MAX}(1, \mathrm{MpCO})\);
where LCMP = LCM / NPROW with LCM = ICLM ( NPROW, NPCOL ),
IROFFC \(=\operatorname{MOD}\left(i c-1, M B \_C\right)\), ICOFFC \(=\operatorname{MOD}\left(j c-1, n b \_c\right)\),
ICROW = indxg2p( ic, MB_C, MYROW, rsrc_c, NPROW ),
ICCOL \(=\) indxg2p( jc, \(\left.n b \_c, ~ M Y C O L, ~ c s r c \_c, N P C O L ~\right)\),
MpCO = numroc \((m+\) IROFFC, MB_C, MYROW, ICROW, NPROW \()\),
\(\mathrm{NqCO}=\) numroc \(\left(n+\right.\) ICOFFC, \(\left.n b \_c, M Y C O L, I C C O L, N P C O L\right)\),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

C
On exit, sub( C ) is overwritten by \(Q^{*} \operatorname{sub}(C)\) or \(Q^{\prime *} \operatorname{sub}(C)\) or \(\operatorname{sub}(C)^{*} Q^{\prime}\) or \(\operatorname{sub}(C)^{*} Q\).
(local)
Array, size (lwork)
On exit, work[0] returns the minimal and optimal lwork.
(local)
= 0: successful exit
< 0 : If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

\section*{Alignment requirements}

The distributed submatrices \(A\left(\right.\) ia: \(\left.^{*}, j a:^{*}\right)\) and \(C(i c: i c+m-1, j c: j c+n-1)\) must verify some alignment properties, namely the following expressions should be true:
```

If side = 'L',(nb_a = MB_C and ICOFFA = IROFFC)
If side = 'R', (nb_a = nb_c and ICOFFA = ICOFFC and IACOL = ICCOL)

```

\section*{p?ormrq}

Multiplies a general matrix by the orthogonal matrix \(Q\)
of the \(R Q\) factorization formed by p?gerqf.

\section*{Syntax}
```

void psormrq (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k , float
*a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca , float *tau , float *c , MKL_INT *ic ,
MKL_INT *jc, MKL_INT *descc , float *work , MKL_INT *lwork, MKL_INT *info);
void pdormrq (char *side , char *trans , MKL_INT *m, MKL_INT *n , MKL_INT *k , double
*a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca, double *tau , double *C , MKL_INT
*ic , MKL_INT *jc , MKL_INT *descc , double *work , MKL_INT *lwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?ormrqfunction overwrites the general real m-by-n distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c\) \(+n-1\) ) with
```

 side = 'L' side = 'R'
 trans = 'N': }\quad\mp@subsup{Q}{}{*}\textrm{sub}(C)\quad\operatorname{sub}(C)*
trans = 'T': }\quad\mp@subsup{Q}{}{T*}\operatorname{sub}(C
sub(C)*}\mp@subsup{Q}{}{T

```
where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors
\(Q=H(1) H(2) \ldots H(k)\)
as returned by p?gerqf. \(Q\) is of order mif side \(=\) 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
(global)
\(=\) ' \(L^{\prime}: Q\) or \(Q^{T}\) is applied from the left.
\(={ }^{\prime} \mathrm{R}^{\prime}: Q\) or \(Q^{T}\) is applied from the right.
(global)
\(=N^{\prime}\) ', no transpose, \(Q\) is applied.
\(=' T\) ', transpose, \(Q^{T}\) is applied.
(global) The number of rows in the distributed matrix \(\operatorname{sub}(C)(m \geq 0)\).
(global) The number of columns in the distributed matrix \(\operatorname{sub}(C)(n \geq 0)\).
(global) The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) 'R', \(n \geq k \geq 0\).
(local)
Pointer into the local memory to an array of size IId_a*LOCc (ja+m-1) if side \(=\) 'L', and IId_a*LOCc \((j a+n-1)\) if side \(=\) 'R'.
The \(i\)-th row of the matrix stored in a must contain the vector that defines the elementary reflector \(H(i)\), \(i a \leq i \leq i a+k-1\), as returned by p?gerqf in the \(k\) rows of its distributed matrix argument \(A(\) ia:ia+k-1, ja:*). \(A\) (ia:ia \(\left.+k-1, j a:^{*}\right)\) is modified by the function but restored on exit.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size LOCC (ja+k-1).
Contains the scalar factor \(\operatorname{tau}[i]\) of elementary reflectors \(H(i+1)\) as returned by p?gerqf \((0 \leq i<\operatorname{LOCC}(j a+k-1))\). tau is tied to the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of local size \(I I d \_c^{*} \operatorname{LOCc}(j c+n-1)\).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
(global) The row and column indices in the global matrix \(C\) indicating the first row and the first column of the matrix sub( \(C\) ), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
Workspace array of size of lwork.
(local or global) size of work, must be at least:
```

If side = 'L',
IWork\geqmax((mb_a* (mb_a-1))/2, (mpc0 + max(mqa0 +
numroc (numroc (n+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0,
lcmp), nqC0))*mb_a) + mb_a*mb_a
else if side ='R',
lwork\geqmax ((mb_a* (mb_a-1))/2, (mpc0 + nqC0)*mb_a) + mb_a*mb_a
end if
where

```
```

lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),

```
lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL),
mqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc = mod(ic-1, mb_c),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),
```

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{*}\) sub (C), or sub(C)* \(Q^{\prime}\), or \(\operatorname{sub}(C)^{*} Q\)

On exit work[0] contains the minimum value of 1 work required for optimum performance.
(global)
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?unmrq}

Multiplies a general matrix by the unitary matrix \(Q\) of the \(R Q\) factorization formed by p?gerqf.

\section*{Syntax}
```

void pcunmrq (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k ,
MKL_Complex8 *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca, MKL_Complex8 *tau,
MKL_Complex8 *C , MKL_INT *ic, MKL_INT *jc , MKL_INT *descc , MKL_Complex8 *Work ,
MKL_INT *lwork , MKL_INT *info);
void pzunmrq (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k ,
MKL_Complex16 *a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *tau ,
MKL_Complex16 *c , MKL_INT *ic , MKL_INT *jc, MKL_INT *descc , MKL_Complex16 *work ,
MKL_INT *lwork , MKL_INT *info);

```

\section*{Include Files}
```

- mkl_scalapack.h

```

\section*{Description}

This function overwrites the general complex m-by-n distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\) with
```

side = L' side = 'R'
trans = 'N': }\quad\mp@subsup{Q}{}{*}\operatorname{sub}(C)\quad\operatorname{sub}(C)*
trans = 'C': }\quad\mp@subsup{Q}{}{H*}\operatorname{sub}(C
sub(C)*Q H

```
where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors
\(Q=H(1)^{\prime} H(2)^{\prime} \ldots H(k)^{\prime}\)
as returned by p?gerqf. \(Q\) is of order \(m\) if side = 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
side
trans
m
n
(global)
\(=\) ' L' \(: Q\) or \(Q^{H}\) is applied from the left.
\(={ }^{\prime} R^{\prime}: Q\) or \(Q^{H}\) is applied from the right.
(global)
\(=\) 'N', no transpose, \(Q\) is applied.
\(=C^{\prime}\) ', conjugate transpose, \(Q^{H}\) is applied.
(global) The number of rows in the distributed matrix \(\operatorname{sub}(C),(m \geq 0)\).
(global) The number of columns in the distributed matrix \(\operatorname{sub}(C),(n \geq 0)\).
k
a
c
ic, jc
descc
work

I work
(global) The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
If side = 'L', \(m \geq k \geq 0\)
If side \(=\) ' \(\mathrm{R}^{\prime}, n \geq k \geq 0\).
(local)
Pointer into the local memory to an array of size IId_a*LOCc (ja+m-1) if side \(=\) 'L', and IId_a*LOCc(ja+n-1) if side \(=\) 'R'. The \(i\)-th row of the matrix stored in amust contain the vector that defines the elementary reflector \(H(i)\), iasisia+k-1, as returned by p?gerqf in the \(k\) rows of its distributed matrix argument \(A(\) ia:ia+k-1, ja:*). \(A(\) ia:ia+k-1, ja:*) is modified by the function but restored on exit.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size LOCC (ja+k-1).
Contains the scalar factor tau[i] of elementary reflectors \(H(i+1)\) as returned by p?gerqf \((0 \leq i<\operatorname{LOCC}(j a+k-1))\). tau is tied to the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of local size IId_c*LOCc (jc+n-1). Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
(global) The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
Workspace array of size of lwork.
(local or global) size of work, must be at least:
```

If side = 'L',
lwork\geqmax((mb_a*(mb_a-1))/2, (mpc0 +
max(mqa0+numroc(numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a,
0, 0, lcmp), nqc0))*mb_a) + mb_a*mb_a
else if side = 'R',
lwork\geqmax ((mb_a* (mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a*mb_a
end if
where

```
```

lcmp = lcm/NPROW with lcm = ilcm(NPROW, NPCOL),

```
lcmp = lcm/NPROW with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
```

iroffa = mod(ia-1, mb_a),

```
```

icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If lwork \(=-1\), then lwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
c
work[0]
info
Overwritten by the product \(Q^{*} \operatorname{sub}(C)\) or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C) * Q\)

On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

\section*{Overview for details of ScaLAPACK array descriptor structures and related notations.}

\section*{p?tzrzf}

Reduces the upper trapezoidal matrix \(A\) to upper triangular form.

\section*{Syntax}
```

void pstzrzf (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *tau , float *work , MKL_INT *lwork, MKL_INT *info);
void pdtzrzf (MKL_INT *m, MKL_INT *n , double *a, MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca, double *tau , double *work , MKL_INT *lwork, MKL_INT *info);

```
```

void pctzrzf (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a, MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT *lwork , MKL_INT
*info);
void pztzrzf (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT *lwork, MKL_INT
*infO);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?tzrzffunction reduces the \(m\)-by- \(n(m \leq n)\) real/complex upper trapezoidal matrix \(\operatorname{sub}(A)=A(\) ia:ia \(+m-1\), ja:ja+n-1) to upper triangular form by means of orthogonal/unitary transformations. The upper trapezoidal matrix \(A\) is factored as
\(A=(R 0) * Z\),
where \(Z\) is an \(n\)-by- \(n\) orthogonal/unitary matrix and \(R\) is an \(m\)-by- \(m\) upper triangular matrix.

\section*{Input Parameters}
```

m (global) The number of rows in the matrix sub(A); (m\geq0).
(global) The number of columns in the matrix sub(A) (n\geq0).
(local)

```

Pointer into the local memory to an array of size Ild_a*LOCc(ja+n-1). Contains the local pieces of the \(m\)-by- \(n\) distributed matrix sub \((A)\) to be factored.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Workspace array of size of lwork.
(local or global) size of work, must be at least
lwork \(\geq m b\) _a* \(\left(m p 0+n q 0+m b \_a\right)\), where
iroff \(=\bmod \left(i a-1, m b \_a\right)\),
iCOff \(=\bmod \left(j a-1, n b \_a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL),
mp0 \(=\) numroc (m+iroff, mb_a, MYROW, iarow, NPROW),
nq0 \(=\) numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL)

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
\(a\)
work[0]
tau
info

On exit, the leading \(m\)-by- \(m\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular matrix \(R\), and elements \(m+1\) to \(n\) of the first \(m\) rows of sub \((A)\), with the array tau, represent the orthogonal/unitary matrix \(Z\) as a product of \(m\) elementary reflectors.

On exit work[0] contains the minimum value of lwork required for optimum performance.
(local)
Array of size LOCr (ia+m-1).
Contains the scalar factor of elementary reflectors. tau is tied to the distributed matrix \(A\).
(global)
\(=0\) : the execution is successful.
\(<0\) :if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The factorization is obtained by the Householder's method. The \(k\)-th transformation matrix, \(Z(k)\), which is or whose conjugate transpose is used to introduce zeros into the ( \(m-k+1\) ) -th row of \(\operatorname{sub}(A)\), is given in the form
\[
Z(k)=\left[\begin{array}{cc}
i & 0 \\
0 & \mathrm{~T}(k)
\end{array}\right]
\]
where
\(T(k)=i-\tan ^{*} u(k)^{*} u(k)^{\prime}\),
\[
U(k)=\left[\begin{array}{c}
1 \\
0 \\
Z(k)
\end{array}\right]
\]
tau is a scalar and \(Z(k)\) is an \((n-m)\) element vector. tau and \(Z(k)\) are chosen to annihilate the elements of the \(k\)-th row of \(\operatorname{sub}(A)\). The scalar tau is returned in the \(k\)-th element of \(\operatorname{tau}\), indexed \(k-1\), and the vector \(u(k)\) in the \(k\)-th row of \(\operatorname{sub}(A)\), such that the elements of \(Z(k)\) are in \(a(k, m+1), \ldots, a(k, n)\). The elements of \(R\) are returned in the upper triangular part of \(\operatorname{sub}(A) . Z\) is given by
```

Z=Z(1)*Z(2)*···*Z(m).

```

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?ormrz}

Multiplies a general matrix by the orthogonal matrix
from a reduction to upper triangular form formed by p?tzrzf.

\section*{Syntax}
```

void psormrz (char *side , char *trans, MKL_INT *m, MKL_INT *n , MKL_INT *k , MKL_INT
*l, float *a, MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, float *tau , float *c,
MKL_INT *ic, MKL_INT *jc, MKL_INT *descc, float *work , MKL_INT *lwork , MKL_INT
*info);
void pdormrz (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k , MKL_INT
*I, double *a, MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *tau , double *c,
MKL_INT *ic, MKL_INT *jc, MKL_INT *descc, double *work, MKL_INT *lwork, MKL_INT
*info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

This function overwrites the general real \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\) with
```

 side ='L' side = 'R'
 trans = 'N': }\quad\mp@subsup{Q}{}{*}\textrm{sub}(C)\quad\operatorname{sub}(C)*
trans = 'T': }\quad\mp@subsup{Q}{}{T*}\operatorname{sub}(C)\quad\operatorname{sub}(C)*\mp@subsup{Q}{}{T

```
where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors
\[
Q=H(1) H(2) \ldots H(k)
\]
as returned by p?tzrzf. \(Q\) is of order mif side = 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline side & (global) \\
\hline & \(=L^{\prime} \mathrm{L}\) ' \(Q\) or \(Q^{T}\) is applied from the left. \\
\hline & \(={ }^{\prime} \mathrm{R}^{\prime}: Q\) or \(Q^{T}\) is applied from the right. \\
\hline trans & (global) \\
\hline & = 'N', no transpose, \(Q\) is applied. \\
\hline & = 'T', transpose, \(Q^{T}\) is applied. \\
\hline m & (global) The number of rows in the distributed matrix sub (C) ( \(m \geq 0\) ) . \\
\hline \(n\) & (global) The number of columns in the distributed matrix sub ( \(C\) ) ( \(n \geq 0\) ). \\
\hline k & (global) The number of elementary reflectors whose product defines the matrix \(Q\). Constraints: \\
\hline
\end{tabular}

> If side \(=\) 'L', \(m \geq k \geq 0\)
> If side \(=\) 'R', \(n \geq k \geq 0\).

1
a
ia, ja
desca
tau
c
ic, jc
descc
work
lwork
(global)
The columns of the distributed matrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors.
If side \(=\) 'L', \(m \geq 1 \geq 0\)
If side \(=\) 'R', \(n \geq 1 \geq 0\).
(local)
Pointer into the local memory to an array of size IId_a*LOCc (ja+m-1) if side \(=\) 'L', and Ild_a*LOCC(ja+n-1) if side = 'R', where lld_a \(\geq\) \(\max (1\), LOCr (ia+k-1)).

The \(i\)-th row of the matrix stored in amust contain the vector that defines the elementary reflector \(H(i)\), \(i a \leq i \leq i a+k-1\), as returned by p?tzrzf in the \(k\) rows of its distributed matrix argument \(A(\) ia:ia+k-1, ja:*). \(A\) (ia:ia \(\left.+k-1, j a:^{*}\right)\) is modified by the function but restored on exit.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size LOCC (ia+k-1).
Contains the scalar factor tau[i] of elementary reflectors \(H(i+1)\) as returned by p?tzrzf \((0 \leq i<\operatorname{LOCC}(i a+k-1))\). tau is tied to the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of local size IId_c*LOCc (jc+n-1).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
(global) The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
Workspace array of size of lwork.
(local or global) size of work, must be at least:
```

If side = 'L',
lwork\geqmax((mb_a*(mb_a-1))/2, (mpc0 + max(mqa0 +
numroc(numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0,
lcmp), nqc())*mb_a) + mb_a*mb_a
else if side ='R',

```
```

lwork\geqmax ((mb_a* (mb_a-1)) /2, (mpc0 + nqC0)*mb_a) + mb_a*mb_a
end if
where
lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, cSrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then lwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
c
work[0]
info

Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C) * Q^{\prime}\), or \(\operatorname{sub}(C) * Q\)

On exit work[0] contains the minimum value of 1 work required for optimum performance.
(global)
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?unmrz}

Multiplies a general matrix by the unitary transformation matrix from a reduction to upper triangular form determined by p?tzrzf.

\section*{Syntax}
```

void pcunmrz (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k , MKL_INT
*I , MKL_Complex8 *a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *tau ,
MKL_Complex8 *C , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex8 *work ,
MKL_INT *lwork , MKL_INT *info);
void pzunmrz (char *side , char *trans, MKL_INT *m, MKL_INT *n , MKL_INT *k , MKL_INT
*l , MKL_Complex16 *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca , MKL_Complex16
*tau, MKL_Complex16 *c, MKL_INT *ic, MKL_INT *jc, MKL_INT *descc , MKL_Complex16
*work, MKL_INT *lwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

This function overwrites the general complex m-by-n distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\) with
```

 side ='L' side = 'R'
 trans = 'N': }\quad\mp@subsup{Q}{}{*}\textrm{sub}(C)\quad\operatorname{sub}(C)*
trans = 'C': }\quad\mp@subsup{Q}{}{H*}\operatorname{sub}(C)\quad\operatorname{sub}(C)*\mp@subsup{Q}{}{H

```
where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors
\[
Q=H(1)^{\prime} H(2)^{\prime} \ldots H(k)^{\prime}
\]
as returned by pctzrzf/pztzrzf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
side
trans
m
n
k
(global)
\(=\) 'L': \(Q\) or \(Q^{H}\) is applied from the left.
\(={ }^{\prime} \mathrm{R}^{\prime}: Q\) or \(Q^{H}\) is applied from the right.
(global)
\(=\) 'N', no transpose, \(Q\) is applied.
\(=\) ' C', conjugate transpose, \(Q^{H}\) is applied.
(global) The number of rows in the distributed matrix \(\operatorname{sub}(C),(m \geq 0)\).
(global) The number of columns in the distributed matrix \(\operatorname{sub}(C),(n \geq 0)\).
(global) The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:

If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) 'R', \(n \geq k \geq 0\).

1
a
c
ic, jc
descc
work

I work
(global) The columns of the distributed matrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors.
If side \(=\) 'L', \(m \geq l \geq 0\)
If side \(=\) 'R', \(n \geq 1 \geq 0\).
(local)
Pointer into the local memory to an array of size IId_a*LOCc( ja+m-1) if side \(=\) 'L', and Ild_a*LOCC(ja+n-1) if side = 'R', where lld_a \(\geq\) \(\max (1, \operatorname{LOCr}(j a+k-1))\). The \(i\)-th row of the matrix stored in amust contain the vector that defines the elementary reflector \(H(i)\), \(i a \leq i \leq i a+k-1\), as returned by \(p\) ? gerqf in the \(k\) rows of its distributed matrix argument \(A\left(\right.\) ia:ia+k-1, ja:*). \(A\left(i a: i a+k-1, j a:^{*}\right)\) is modified by the function but restored on exit.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size LOCC (ia+k-1).
Contains the scalar factor tau[i] of elementary reflectors \(H(i+1)\) as returned by p?gerqf \((0 \leq i<\operatorname{LOCC}(i a+k-1))\). tau is tied to the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of local size \(I / d \_c^{*} L O C c(j c+n-1)\).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
(global) The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
Workspace array of size lwork.
(local or global) size of work, must be at least:
```

If side = 'L',
lwork\geqmax((mb_a* (mb_a-1))/2, (mpc0+max (mqa0+numroc (numroc (n
+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), nqc0))*mb_a)

+ mb_a*mb_a
else if side ='R',
lwork}\geq\operatorname{max}((mb_\mp@subsup{a}{}{*}(mb_a-1))/2, (mpc0+nqc0)*mb_a) + mb_a*mb_a
end if
where
lcmp = lcm/NPROW with lcm = ilcm(NPROW, NPCOL),

```
```

iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL),
mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
c
work[0]
info
Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C) * Q\)

On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?ggqrf
Computes the generalized QR factorization.

\section*{Syntax}
```

void psggqrf (MKL_INT *n , MKL_INT *m , MKL_INT *p , float *a , MKL_INT *ia, MKL_INT
*ja, MKL_INT *desca , float *taua, float *b , MKL_INT *ib , MKL_INT *jb , MKL_INT
*descb, float *taub , float *work , MKL_INT *lwork , MKL_INT *info);

```
```

void pdggqrf (MKL_INT *n , MKL_INT *m, MKL_INT *p , double *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , double *taua , double *b , MKL_INT *ib , MKL_INT *jb , MKL_INT
*descb , double *taub , double *work , MKL_INT *lwork , MKL_INT *info);
void pcggqrf (MKL_INT *n , MKL_INT *m, MKL_INT *p , MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *taua, MKL_Complex8 *b , MKL_INT *ib ,
MKL_INT *jb, MKL_INT *descb, MKL_Complex8 *taub, MKL_Complex8 *work , MKL_INT
*lwork , MKL_INT *info);
void pzggqrf (MKL_INT *n , MKL_INT *m , MKL_INT *p , MKL_Complexl6 *a , MKL_INT *ia,
MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *taua , MKL_Complex16 *b , MKL_INT *ib ,
MKL_INT *jb , MKL_INT *descb , MKL_Complex16 *taub , MKL_Complex16 *work , MKL_INT
*lwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?ggqrffunction forms the generalized \(Q R\) factorization of an \(n\)-by-m matrix
\[
\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+m-1)
\]
and an \(n\)-by- \(p\) matrix
\(\operatorname{sub}(B)=B(i b: i b+n-1, j b: j b+p-1):\)
as
\(\operatorname{sub}(\mathrm{A})=Q^{*} R, \operatorname{sub}(B)=Q^{*} T^{*} Z\),
where \(Q\) is an \(n\)-by- \(n\) orthogonal/unitary matrix, \(Z\) is a \(p\)-by- \(p\) orthogonal/unitary matrix, and \(R\) and \(T\) assume one of the forms:
If \(n \geq m\)
\[
R=\binom{R_{11}}{0} n=m
\]
or if \(n<m\)
\[
\begin{array}{r}
\left.R=\begin{array}{ll}
R_{11} & R_{12}
\end{array}\right) n \\
n
\end{array} m-n
\]
where \(R_{11}\) is upper triangular, and
\[
\begin{gathered}
T=\left(\begin{array}{ll}
0 & T_{12}
\end{array}\right) n, \text { if } n \leq o \\
p-n \\
n
\end{gathered}
\]
\[
\begin{gathered}
\text { or } T=\binom{T_{11}}{T_{21}}\binom{n-p}{p}, \text { if } n>p \\
p
\end{gathered}
\]
where \(T_{12}\) or \(T_{21}\) is an upper triangular matrix.
In particular, if \(\operatorname{sub}(B)\) is square and nonsingular, the \(G Q R\) factorization of \(\operatorname{sub}(A)\) and \(\operatorname{sub}(B)\) implicitly gives the \(Q R\) factorization of inv \((\operatorname{sub}(B))^{*}\) sub \((A)\) :
\(\operatorname{inv}(\operatorname{sub}(B)) * \operatorname{sub}(A)=Z^{H *}(\operatorname{inv}(T) * R)\)

\section*{Input Parameters}
\(n\)
m
\(p\)
a
ia, ja
desca
\(b\)
ib, jb
descb
work
l work
(global) The number of rows in the distributed matrices sub \((A)\) and \(\operatorname{sub}(B)\) ( \(n \geq 0\) ).
(global) The number of columns in the distributed matrix \(\operatorname{sub}(A)(m \geq 0)\).
The number of columns in the distributed matrix \(\operatorname{sub}(B)(p \geq 0)\).
(local)
Pointer into the local memory to an array of size IId_a*LOCc(ja+m-1). Contains the local pieces of the \(n-\) by \(-m\) matrix \(\operatorname{sub}(A)\) to be factored.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of size \(/ I d \_b^{*} L O C c(j b+p-1)\). Contains the local pieces of the \(n\)-by- \(p\) matrix sub \((B)\) to be factored.
(global) The row and column indices in the global matrix \(B\) indicating the first row and the first column of the submatrix \(B\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(B\).
(local)
Workspace array of size of 1 work.
(local or global) Sze of work, must be at least
lwork \(\geq \max \left(n b \_a^{*}\left(n p a 0+m q a 0+n b \_a\right), \max \left(\left(n b \_a^{*}\left(n b \_a-1\right)\right) / 2\right.\right.\), \(\left.\left.(p q b 0+n p b 0) * n b \_a\right)+n b \_a^{*} n b \_a, m b \_b^{*}\left(n p b 0+p q b 0+m b \_b\right)\right)\),
where
```

iroffa = mod(ia-1, mb_A),
icoffa = mod(ja-1, nb_a),
iarOw = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL),

```
```

npa0 = numroc (n+iroffa, mb_a, MYROW, iarow, NPROW),
mqaO = numroc (m+icoffa, nb_a, MYCOL, iacol, NPCOL)
iroffb = mod(ib-1, mb_b),
icoffb = mod(jb-1, nb_b),
ibrow = indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW),
ibcol = indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL),
npb0 = numroc (n+iroffa, mb_b, MYROW, Ibrow, NPROW),
pqb0 = numroc(m+icoffb, nb_b, MYCOL, ibcol, NPCOL)

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If lwork \(=-1\), then lwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
\(a\)
taua, taub
work[0]
info

On exit, the elements on and above the diagonal of sub (A) contain the \(\min (n, m)\)-by-m upper trapezoidal matrix \(R\) ( \(R\) is upper triangular if \(n \geq m\) ); the elements below the diagonal, with the array taua, represent the orthogonal/unitary matrix \(Q\) as a product of \(\min (n, m)\) elementary reflectors. (See Application Notes below).
(local)
Arrays of size LOCC (ja+min \((n, m)-1)\) for taua and \(\operatorname{LOCr}(i b+n-1)\) for taub.

The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(Q\). taua is tied to the distributed matrix A. (See Application Notes below).

The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(Z\). taub is tied to the distributed matrix B. (See Application Notes below).

On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(j a) * H(j a+1) * \ldots * H(j a+k-1)\),
where \(k=\min (n, m)\).
Each \(H(i)\) has the form
\(H(i)=i-\operatorname{tana}{ }^{*} v^{*} v^{\prime}\)
where taua is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i-1)=0\) and \(v(i)=1 ; v(i+1: n)\) is stored on exit in \(A(i a+i: i a+n-1, j a+i-1)\), and taua in taua[ja+i-2]. To form \(Q\) explicitly, use ScaLAPACK function p?orgqr/p?ungqr. To use \(Q\) to update another matrix, use ScaLAPACK function p?ormqr/p?unmqr.
The matrix \(Z\) is represented as a product of elementary reflectors
\(Z=H(i b) * H(i b+1)^{*} \ldots * H(i b+k-1)\), where \(k=\min (n, p)\).
Each \(H(i)\) has the form
\(H(i)=i-\operatorname{tau} b^{*} v^{*} v^{\prime}\)
where taub is a real/complex scalar, and \(v\) is a real/complex vector with \(v(p-k+i+1: p)=0\) and \(v(p-k+i)=1\); \(v(1: p-k+i-1)\) is stored on exit in \(B(i b+n-k+i-1, j b: j b+p-k+i-2)\), and taub in \(\operatorname{taub}[i b+n-k+i-2]\). To form \(Z\) explicitly, use ScaLAPACK function p?orgrq/p? ungrq. To use \(Z\) to update another matrix, use ScaLAPACK function p?ormrq/p?unmrq.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?ggrqf}

Computes the generalized \(R Q\) factorization.

\section*{Syntax}
```

void psggrqf (MKL_INT *m , MKL_INT *p , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, float *taua, float *b , MKL_INT *ib, MKL_INT *jb, MKL_INT
*descb, float *taub, float *work , MKL_INT *lwork , MKL_INT *info);
void pdggrqf (MKL_INT *m , MKL_INT *p , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , double *taua , double *b , MKL_INT *ib , MKL_INT *jb , MKL_INT
*descb , double *taub , double *work , MKL_INT *lwork , MKL_INT *info);
void pcggrqf (MKL_INT *m , MKL_INT *p , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *taua, MKL_Complex8 *b , MKL_INT *ib ,
MKL_INT *jb, MKL_INT *descb, MKL_Complex8 *taub, MKL_Complex8 *work , MKL_INT
*lwork , MKL_INT *info);
void pzggrqf (MKL_INT *m , MKL_INT *p , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia,
MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *taua, MKL_Complex16 *b , MKL_INT *ib ,
MKL_INT *jb, MKL_INT *descb, MKL_Complex16 *taub, MKL_Complex16 *work , MKL_INT
*lwork , MKL_INT *info);

```

Include Files
- mkl_scalapack.h

\section*{Description}

The p?ggrqffunction forms the generalized \(R Q\) factorization of an \(m-b y-n\) matrix \(\operatorname{sub}(A)=A(i a: i a+m-1\), \(j a: j a+n-1)\) and a \(p-b y-n\) matrix \(\operatorname{sub}(B)=B(i b: i b+p-1, j b: j b+n-1)\) :
\(\operatorname{sub}(A)=R^{*} Q, \operatorname{sub}(B)=Z^{*} T^{*} Q\),
where \(Q\) is an \(n\)-by-n orthogonal/unitary matrix, \(Z\) is a \(p\)-by- \(p\) orthogonal/unitary matrix, and \(R\) and \(T\) assume one of the forms:
\[
\begin{gathered}
R=m\left(0 \quad R_{12}\right), \text { if } m \leq n, \\
n-m m
\end{gathered}
\]
or
\[
R=\binom{R_{11}}{R_{12}} \begin{gathered}
m-n \\
n
\end{gathered}, \text { if } m>n
\]
where \(R_{11}\) or \(R_{21}\) is upper triangular, and
\[
T=\binom{T_{11}}{0} \frac{n}{n-n}, \text { if } p \geq n
\]
or
\[
\begin{gathered}
T=p\left(\begin{array}{ll}
T_{11} & T_{12}
\end{array}\right) \quad p, \text { if } p<n, \\
p n-p
\end{gathered}
\]
where \(T_{11}\) is upper triangular.
In particular, if \(\operatorname{sub}(B)\) is square and nonsingular, the \(G R Q\) factorization of \(\operatorname{sub}(A)\) and \(\operatorname{sub}(B)\) implicitly gives the \(R Q\) factorization of sub \((A) * \operatorname{inv}(\operatorname{sub}(B))\) :
```

subb (A)*inv (subb (B))=(R*inv (T))* Z'

```
where \(\operatorname{inv}(\operatorname{sub}(B))\) denotes the inverse of the matrix \(\operatorname{sub}(B)\), and \(Z^{\prime}\) denotes the transpose (conjugate transpose) of matrix \(Z\).

\section*{Input Parameters}
m
\(p\)
n
a
ia, ja
(global) The number of rows in the distributed matrices sub (A) ( \(m \geq 0\) ).
The number of rows in the distributed matrix \(\operatorname{sub}(B)(p \geq 0)\).
(global) The number of columns in the distributed matrices sub \((A)\) and \(\operatorname{sub}(B)(n \geq 0)\).
(local)
Pointer into the local memory to an array of size Ild_a*LOCc(ja+n-1). Contains the local pieces of the \(m\)-by- \(n\) distributed matrix sub \((A)\) to be factored.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
```

desca
b
ib, jb
descb
work
lwork

```
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of size \(/ I d \_b^{*} \operatorname{LOCc}(j b+n-1)\).
Contains the local pieces of the \(p\)-by-n matrix \(\operatorname{sub}(B)\) to be factored.
(global) The row and column indices in the global matrix \(B\) indicating the first row and the first column of the submatrix \(B\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(B\).
(local)
Workspace array of size of lwork.
(local or global)
Size of work, must be at least lwork \(\geq \max \left(m b \_a *\left(m p a 0+n q a 0+m b \_a\right)\right.\), \(\max \left(\left(m b \_a^{*}\left(m b \_a-1\right)\right) / 2,(p p b 0+n q b 0) * m b \_a\right)+m b \_a * m b \_a\), \(\left.n b \_b^{*}\left(p p b 0+n q b 0+n b \_b\right)\right)\), where
iroffa \(=\bmod \left(i a-1, m b \_A\right)\),
icoffa \(=\bmod \left(j a-1, n b \_a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpaO \(=\) numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
nqaO \(=\) numroc (m+icoffa, nb_a, MYCOL, iacol, NPCOL)
iroffb \(=\bmod \left(i b-1, ~ m b \_b\right)\),
\(i c o f f b=\bmod \left(j b-1, n b \_b\right)\),
ibrow \(=\) indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW ),
ibcol \(=\) indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL ),
ppbo = numroc (p+iroffb, mb_b, MYROW, ibrow,NPROW),
nqb0 \(=\) numroc ( \(\left.n+i c o f f b, n b \_b, ~ M Y C O L, i b c o l, N P C O L\right)\)

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
On exit, if \(m \leq n\), the upper triangle of \(A(i a: i a+m-1\), ja+n-m: ja+n-1) contains the \(m\)-by- \(m\) upper triangular matrix \(R\); if \(m \geq n\), the elements on and above the \((m-n)\)-th subdiagonal contain the \(m\)-by- \(n\) upper trapezoidal matrix \(R\); the remaining elements, with the array taua, represent the orthogonal/ unitary matrix \(Q\) as a product of \(\min (n, m)\) elementary reflectors (see Application Notes below).
(local)
Arrays of size LOCr (ia+m-1) for taua and \(\operatorname{LOCC}(j b+\min (p, n)-1)\) for taub.

The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(Q\). taua is tied to the distributed matrix A.(See Application Notes below).

The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(Z\). taub is tied to the distributed matrix B. (See Application Notes below).

On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(i a)^{*} H(i a+1)^{*} \ldots * H(i a+k-1)\),
where \(k=\min (m, n)\).
Each \(H(i)\) has the form
\(H(i)=i-\operatorname{taua}{ }^{*} v^{*} v^{\prime}\)
where taua is a real/complex scalar, and \(v\) is a real/complex vector with \(v(n-k+i+1: n)=0\) and \(v(n-k+i)=1\); \(\mathrm{v}(1: n-k+i-1)\) is stored on exit in \(A(i a+m-k+i-1, j a: j a+n-k+i-2)\), and taua in taua[ia+m-k+i-2]. To form \(Q\) explicitly, use ScaLAPACK function p?orgrq/p?ungrq. To use \(Q\) to update another matrix, use ScaLAPACK function p?ormrq/p?unmrq.
The matrix \(Z\) is represented as a product of elementary reflectors
\(Z=H(j b) * H(j b+1) * \ldots * H(j b+k-1)\), where \(k=\min (p, n)\).
Each \(H(i)\) has the form
\(H(i)=i-\operatorname{tau}^{*} v^{*} v^{\prime}\)
where taub is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i-1)=0\) and \(v(i)=1 ; v(i+1: p)\) is stored on exit in \(B(i b+i: i b+p-1, j b+i-1)\), and taub in \(t a u b[j b+i-2]\). To form \(Z\) explicitly, use ScaLAPACK function p?orgqr/p?ungqr. To use \(Z\) to update another matrix, use ScaLAPACK function p?ormqr/p?unmqr.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{Symmetric Eigenvalue Problems: ScaLAPACK Computational Routines}

To solve a symmetric eigenproblem with ScaLAPACK, you usually need to reduce the matrix to real tridiagonal form \(T\) and then find the eigenvalues and eigenvectors of the tridiagonal matrix \(T\). ScaLAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or unitary) similarity transformation \(A=Q T Q^{H}\) as well as for solving tridiagonal symmetric eigenvalue problems. These routines are listed in Table "Computational Routines for Solving Symmetric Eigenproblems".
There are different routines for symmetric eigenproblems, depending on whether you need eigenvalues only or eigenvectors as well, and on the algorithm used (either the QTQ algorithm, or bisection followed by inverse iteration).
\begin{tabular}{lll} 
Computational Routines for Solving Symmetric Eigenproblems & \\
\hline Operation & \begin{tabular}{l} 
Dense symmetric/ \\
Hermitian matrix
\end{tabular} & \begin{tabular}{l} 
Orthogonal/unitary \\
matrix
\end{tabular} \\
\hline Reduce to tridiagonal form \(A=Q T Q^{H}\) & p? sytrd/p? hetrd & \begin{tabular}{l} 
Symmetric \\
tridiagonal \\
matrix
\end{tabular} \\
\begin{tabular}{lll} 
Multiply matrix after reduction
\end{tabular} & p?ormtr/p?unmtr & \\
\begin{tabular}{l} 
Find all eigenvalues and eigenvectors \\
of a tridiagonal matrix \(T\) by a \(Q T Q\) \\
method
\end{tabular} & & steqr2* \\
\begin{tabular}{l} 
Find selected eigenvalues of a \\
tridiagonal matrix \(T\) via bisection
\end{tabular} & p?stebz \\
\begin{tabular}{l} 
Find selected eigenvectors of a \\
tridiagonal matrix \(T\) by inverse \\
iteration
\end{tabular} & p?stein \\
\hline
\end{tabular}
* This routine is described as part of auxiliary ScaLAPACK routines.
p?syngst
Reduces a complex Hermitian-definite generalized eigenproblem to standard form.

\section*{Syntax}
```

void pssyngst (const MKL_INT* ibtype, const char* uplo, const MKL_INT* n, float* a,
const MKL_INT* ia, const MKL_INT* ja, const MKL_INT* desca, const float* b, const
MKL_INT* ib, const MKL_INT* jb, const MKL_INT* descb, float* scale, float* work, const
MKL_INT* lwork, MKL_INT* info);
void pdsyngst (const MKL_INT* ibtype, const char* uplo, const MKL_INT* n, double* a,
const MKL_INT* ia, const MKL_INT* ja, const MKL_INT* desca, const double* b, const
MKL_INT* ib, const MKL_INT* jb, const MKL_INT* descb, double* scale, double* work,
const MKL_INT* lwork, MKL_INT* info);

```

Include Files
- mkl_scalapack.h

\section*{Description}
p?syngst reduces a complex Hermitian-definite generalized eigenproblem to standard form.
p?syngst performs the same function as p?hegst, but is based on rank 2 K updates, which are faster and more scalable than triangular solves (the basis of p?syngst).
p?syngst calls \(p\) ?hegst when uplo='U', hence p?hengst provides improved performance only when uplo='L', ibtype=1.
p?syngst also calls p?hegst when insufficient workspace is provided, hence p?syngst provides improved performance only when lwork \(>=2 *\) NPO \(* \mathrm{NB}+\mathrm{NQO} * \mathrm{NB}+\mathrm{NB} * \mathrm{NB}\)

In the following \(\operatorname{sub}(A)\) denotes \(A(i a: i a+n-1, j a: j a+n-1)\) and \(\operatorname{sub}(B)\) denotes \(B(i b: i b+n-1, j b: j b\) \(+n-1\) ).

If ibtype \(=1\), the problem is \(\operatorname{sub}(A)^{*} x=\operatorname{lambda*} \operatorname{sub}(B)^{*} x\), and \(\operatorname{sub}(A)\) is overwritten by \(\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)\) or \(\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right)\)
If ibtype \(=2\) or 3 , the problem is \(\operatorname{sub}(A)^{*} \operatorname{sub}(B)^{*} x=\) lambda*x or \(\operatorname{sub}(B)^{*} \operatorname{sub}(A) * x=\) lambda*x, and \(\operatorname{sub}(A)\) is overwritten by \(U^{*} \operatorname{sub}(A) U^{H}\) or \(L^{H *} \operatorname{sub}(A)^{*} L\).
sub( \(B\) ) must have been previously factorized as \(U^{H *} U\) or \(L^{*} L^{H}\) by p?potrf.

\section*{Input Parameters}
ibtype
uplo
\(n\)
a
ia
ja
desca
b
(global)
\(=1\) : compute \(\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)\) or \(\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right)\);
\(=2\) or 3 : compute \(U^{*} \operatorname{sub}(A)^{*} U^{H}\) or \(L^{H *} \operatorname{sub}(A)^{*} L\).
(global)
\(=\) ' \(U\) ': Upper triangle of \(\operatorname{sub}(A)\) is stored and \(\operatorname{sub}(B)\) is factored as \(U^{H *} U\);
\(=\) ' \(L\) ': Lower triangle of \(\operatorname{sub}(A)\) is stored and \(\operatorname{sub}(B)\) is factored as \(L^{*} L^{H}\).
(global)
The order of the matrices \(\operatorname{sub}(A)\) and \(\operatorname{sub}(B) . n>=0\).
(local)
Pointer into the local memory to an array of size IId_a*LOCc (ja+n-1).
On entry, this array contains the local pieces of the \(n-b y-n\) Hermitian distributed matrix \(\operatorname{sub}(A)\). If uplo \(=\) ' U', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If uplo = 'L', the leading \(n-b y-n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
(global)
A's global row index, which points to the beginning of the submatrix which is to be operated on.
(global)
A's global column index, which points to the beginning of the submatrix which is to be operated on.
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of size \(/ I d \_b^{*} \operatorname{LOCc}(j b+n-1)\).
ib

On entry, this array contains the local pieces of the triangular factor from the Cholesky factorization of \(\operatorname{sub}(B)\), as returned by p?potrf.
(global)
B's global row index, which points to the beginning of the submatrix which is to be operated on.
(global)
\(B\) 's global column index, which points to the beginning of the submatrix which is to be operated on.
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix \(B\).
(local)
Array, size (lwork)
(local or global)
The size of the array work.
lwork is local input and must be at least lwork \(>=\operatorname{MAX}(\mathrm{NB} *(\mathrm{NPO}+1)\),
3 * NB )
When ibtype \(=1\) and uplo = 'L', p?syngst provides improved performance when lwork \(>=2\) * NPO * NB + NQO * NB + NB * NB,
where NB = mb_a = nb_a,
NPO = numroc ( \(n, N B, 0,0\), NPROW ),
NQO = numroc ( \(n, N B, 0,0\), NPROW ),
numroc is a ScaLAPACK tool functions
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
\(a\)
scale
work

On exit, if info \(=0\), the transformed matrix, stored in the same format as \(\operatorname{sub}(A)\).

\section*{(global)}

Amount by which the eigenvalues should be scaled to compensate for the scaling performed in this routine. At present, scale is always returned as 1.0 , it is returned here to allow for future enhancement.
(local)
Array, size (lwork)

On exit, work[0] returns the minimal and optimal lwork.
info
(global)
= 0 : successful exit
< 0: If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
p?syntrd
Reduces a real symmetric matrix to symmetric tridiagonal form.

\section*{Syntax}
```

void pssyntrd (const char* uplo, const MKL_INT* n, float* a, const MKL_INT* ia, const
MKL_INT* ja, const MKL_INT* desca, float* d, float* e, float* tau, float* work, const
MKL_INT* lwork, MKL_INT* info);
void pdsyntrd (const char* uplo, const MKL_INT* n, double* a, const MKL_INT* ia, const
MKL_INT* ja, const MKL_INT* desca, double* d, double* e, double* tau, double* work,
const MKL_INT* lwork, MKL_INT* info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}
p?syntrd is a prototype version of p?sytrd which uses tailored codes (either the serial, ?sytrd, or the parallel code, p?syttrd) when the workspace provided by the user is adequate.
p?syntrd reduces a real symmetric matrix \(\operatorname{sub}(A)\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation:
\(Q^{\prime}{ }^{*} \operatorname{sub}(A) * Q=T\), where \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\).

\section*{Features}
p?syntrd is faster than p?sytrd on almost all matrices, particularly small ones (i.e. \(n<500 * \operatorname{sqrt}(\mathrm{P})\) ), provided that enough workspace is available to use the tailored codes.
The tailored codes provide performance that is essentially independent of the input data layout.
The tailored codes place no restrictions on ia, ja, MB or NB. At present, ia, ja, MB and NB are restricted to those values allowed by p?hetrd to keep the interface simple (see the Application Notes section for more information about the restrictions).

\section*{Input Parameters}
```

uplo
n

```

\section*{(global)}
``` matrix \(\operatorname{sub}(A)\) is stored:
\(=\) 'U': Upper triangular
= 'L': Lower triangular
(global)
```

Specifies whether the upper or lower triangular part of the symmetric
$a$
ia

The number of rows and columns to be operated on, i.e. the order of the distributed submatrix $\operatorname{sub}(A) . n>=0$.
(local)
Pointer into the local memory to an array of size Ild_a*LOCc $(j a+n-1)$.
On entry, this array contains the local pieces of the symmetric distributed matrix sub( $A$ ). If uplo = ' U ', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If uplo = 'L', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
(global)
The row index in the global array a indicating the first row of $\operatorname{sub}(A)$.
(global)
The column index in the global array a indicating the first column of $\operatorname{sub}(A)$.
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix $A$.
(local)
Array, size (lwork)
(local or global)
The size of the array work.
lwork is local input and must be at least 1 work $>=\operatorname{MAX}($ NB * ( NP +1 ), 3

* NB )

For optimal performance, greater workspace is needed, i.e.
1 work $>=2 *(A N B+1) *(4 * N P S+2)+(N P S+4) * N P S$
ANB = pjlaenv( ICTXT, 3, 'p?syttrd', 'L', 0, 0, 0, 0 )
ICTXT $=$ desca( ctxt_ )
SQNPC = INT( sqrt( REAL( NPROW * NPCOL ) ) )
numroc is a ScaLAPACK tool function.
pjlaenv is a ScaLAPACK environmental inquiry function.
NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

## Output Parameters

a
On exit, if uplo = ' U ', the diagonal and first superdiagonal of $\operatorname{sub}(A)$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements above the first superdiagonal, with the array tau, represent the orthogonal matrix $Q$ as a product of elementary reflectors; if uplo = 'L', the diagonal and first subdiagonal
of sub( $A$ ) are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements below the first subdiagonal, with the array tau, represent the orthogonal matrix $Q$ as a product of elementary reflectors. See Further Details.
(local)
Array, size LOCc( $j a+n-1$ )
The diagonal elements of the tridiagonal matrix $T: d(\mathrm{i})=A(\mathrm{i}, \mathrm{i}) . d$ is tied to the distributed matrix $A$.
(local)
Array, size LOCc(ja+n-1) if uplo = 'U', LOCc(ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix $T$ : $e(i)=A(i, i+1)$ if uplo = 'U', e(i) = $A(\mathrm{i}+1, \mathrm{i})$ if uplo = 'L'. e is tied to the distributed matrix $A$.
(local)
Array, size LOCc(ja+n-1).
This array contains the scalar factors tau of the elementary reflectors. tau is tied to the distributed matrix $A$.
work
info
(local)
Array, size (lwork)
On exit, work[0] returns the optimal lwork.
(global)
= 0: successful exit
< 0: If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

If uplo = ' $U$ ', the matrix $Q$ is represented as a product of elementary reflectors
$Q=\mathrm{H}(n-1) \ldots \mathrm{H}(2) \mathrm{H}(1)$.
Each $\mathrm{H}(\mathrm{i})$ has the form
$H(i)=I-\operatorname{tau} * v * v^{\prime}$, where tau is a complex scalar, and $v$ is a complex vector with $v(i+1: n)=0$ and $v(i)=$ 1 ; $v(1: i-1)$ is stored on exit in $A(i a: i a+i-2, j a+i)$, and tau in $\operatorname{tau}(j a+i-1)$.

If uplo = 'L', the matrix $Q$ is represented as a product of elementary reflectors
$Q=H(1) H(2) \ldots H(n-1)$.
Each $\mathrm{H}(\mathrm{i})$ has the form
$\mathrm{H}(\mathrm{i})=\mathrm{I}-\operatorname{tau} * \mathrm{v} * \mathrm{v}^{\prime}$, where tau is a complex scalar, and v is a complex vector with $\mathrm{v}(1: \mathrm{i})=0$ and $\mathrm{v}(\mathrm{i}+1)=$ $1 ; v(i+2: n)$ is stored on exit in $A(i a+i+1: i a+n-1, j a+i-1)$, and tau in $\operatorname{tau}(j a+i-1)$.
The contents of $\operatorname{sub}(A)$ on exit are illustrated by the following examples with $n=5$ :
if uplo = 'U':
$\left(\begin{array}{lllll}d & e & v 2 & v 3 & v 4 \\ & d & e & v 3 & v 4 \\ & & d & e & v 3 \\ & & & d & e \\ & & & & d\end{array}\right)$
if uplo = 'L':
$\left(\begin{array}{lllll}d & \\ e & d & & \\ v 1 & e & d & \\ v 1 & v 2 & e & d \\ v 1 & v 2 & v 3 & e & d\end{array}\right)$
where $d$ and $e$ denote diagonal and off-diagonal elements of $T$, and $v i$ denotes an element of the vector defining $\mathrm{H}(i)$.

## Alignment requirements

The distributed submatrix sub( $A$ ) must verify some alignment properties, namely the following expression should be true:
$\left(m b \_a=n b \_a\right.$ and IROFFA $=$ ICOFFA and IROFFA $\left.=0\right)$ with IROFFA $=\bmod \left(i a-1, m b \_a\right)$, and ICOFFA = $\bmod \left(j a-1, n b \_a\right)$.

## p?sytrd

Reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity transformation.

## Syntax

```
void pssytrd (char *uplo, MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *d , float *e, float *tau , float *work, MKL_INT *lwork , MKL_INT
*info);
void pdsytrd (char *uplo, MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca, double *d, double *e, double *tau, double *work, MKL_INT *lwork, MKL_INT
*infO);
```


## Include Files

- mkl_scalapack.h


## Description

The p?sytrd function reduces a real symmetric matrix $\operatorname{sub}(A)$ to symmetric tridiagonal form $T$ by an orthogonal similarity transformation:

```
Q'*sub(A)*Q = T,
where sub(A) = A(ia:ia+n-1,ja:ja+n-1).
```


## Input Parameters

uplo

## (global)

Specifies whether the upper or lower triangular part of the symmetric matrix $\operatorname{sub}(A)$ is stored:

If uplo = 'U', upper triangular

If uplo = 'L', lower triangular
(global) The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
Pointer into the local memory to an array of size IId_a*LOCc(ja+n-1). On entry, this array contains the local pieces of the symmetric distributed matrix $\operatorname{sub}(A)$.
If uplo = ' $U$ ', the leading $n-b y-n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.

If uplo = 'L', the leading $n-b y-n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced. See Application Notes below.
(global) The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
Workspace array of size lwork.
(local or global) size of work, must be at least:
lwork $\geq \max \left(\mathrm{NB}^{*}(n p+1), 3 * \mathrm{NB}\right)$,
where NB $=m b \_a=n b \_a$,
$n p=$ numroc (n, NB, MYROW, iarow, NPROW),
iarow = indxg2p(ia, NB, MYROW, rsrc_a, NPROW).
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If lwork $=-1$, then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
$d$

On exit, if uplo = 'U', the diagonal and first superdiagonal of $\operatorname{sub}(A)$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements above the first superdiagonal, with the array tau, represent the orthogonal matrix $Q$ as a product of elementary reflectors; if uplo = ' L ', the diagonal and first subdiagonal of $\operatorname{sub}(A)$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements below the first subdiagonal, with the array tau, represent the orthogonal matrix $Q$ as a product of elementary reflectors. See Application Notes below.
(local)
Arrays of size LOCC (ja+n-1). The diagonal elements of the tridiagonal matrix $T$ :

$$
d[i]=A(i+1, i+1), 0 \leq i<\operatorname{LOCC}(j a+n-1) .
$$

$d$ is tied to the distributed matrix $A$.
e
tau
work[0]
info
(local)
Arrays of size LOCC(ja+n-1) if uplo = 'U', LOCC(ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix $T$ :
$e[i]=A(i+1, i+2), 0 \leq i<\operatorname{LOCC}(j a+n-1)$ if uplo = 'U',
$e[i]=A(i+2, i+1)$ if uplo $=$ 'L'.
$e$ is tied to the distributed matrix $A$.
(local)
Arrays of size $\operatorname{LOCC}(j a+n-1)$. This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix $A$.

On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
$=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

If uplo = 'U', the matrix $Q$ is represented as a product of elementary reflectors
$Q=H(n-1) \ldots H(2) H(1)$.
Each $H(i)$ has the form
$H(i)=i-\tan * v^{*} v^{\prime}$,
where tau is a real scalar, and $v$ is a real vector with $v(i+1: n)=0$ and $v(i)=1 ; v(1: i-1)$ is stored on exit in A(ia:ia+i-2, ja+i), and tau in tau[ja+i-2].

If uplo = 'L', the matrix $Q$ is represented as a product of elementary reflectors
$Q=H(1) H(2) \ldots H(n-1)$.
Each $H(i)$ has the form
$H(i)=i-\tan * v * v^{\prime}$,
where tau is a real scalar, and $v$ is a real vector with $v(1: i)=0$ and $v(i+1)=1 ; v(i+2: n)$ is stored on exit in $A(i a+i+1$ : $i a+n-1, j a+i-1)$, and tau in tau[ja+i-2].

The contents of $\operatorname{sub}(A)$ on exit are illustrated by the following examples with $n=5$ :
If uplo = 'U':

$$
\left[\begin{array}{ccccc}
d & e & v 2 & v 3 & v 4 \\
& d & e & v 3 & v 4 \\
& & d & e & v 4 \\
& & & d & e \\
& & & & d
\end{array}\right]
$$

If uplo = 'L':

$$
\left[\begin{array}{ccccc}
d & & & & \\
e & d & & & \\
v 1 & e & d & & \\
v 1 & v 2 & e & d & \\
v 1 & v 2 & v 3 & e & d
\end{array}\right]
$$

where $d$ and $e$ denote diagonal and off-diagonal elements of $T$, and $v i$ denotes an element of the vector defining $H(i)$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?ormtr

Multiplies a general matrix by the orthogonal
transformation matrix from a reduction to tridiagonal
form determined by p?sytrd.

## Syntax

```
void psormtr (char *side , char *uplo , char *trans , MKL_INT *m , MKL_INT *n , float
*a, MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, float *tau , float *C , MKL_INT *ic ,
MKL_INT *jc, MKL_INT *descc , float *work , MKL_INT *lwork, MKL_INT *info);
void pdormtr (char *side , char *uplo, char *trans, MKL_INT *m , MKL_INT *n , double
*a, MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *tau , double *C , MKL_INT
*ic, MKL_INT *jc , MKL_INT *descc , double *work, MKL_INT *lwork , MKL_INT *info);
```


## Include Files

- mkl_scalapack.h


## Description

This function overwrites the general real distributed $m$-by-n matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with

	side $=$ 'L'	side $={ }^{\prime} \mathrm{R}^{\prime}$
trans $=$ 'N':	$Q^{*} \operatorname{sub}(C)$	$\operatorname{sub}(C)^{*} Q$
trans $=$ ' $^{\prime}:$	$Q^{T *} \operatorname{sub}(C)$	$\operatorname{sub}(C)^{*} Q^{T}$

where $Q$ is a real orthogonal distributed matrix of order $n q$, with $n q=m$ if side $=$ 'L' and $n q=n$ if side $=$ 'R'.
$Q$ is defined as the product of $n q$ elementary reflectors, as returned by p?sytrd.
If uplo = 'U', $Q=H(n q-1) \ldots H(2) H(1)$;
If uplo $=$ 'L', $Q=H(1) H(2) \ldots H(n q-1)$.

## Input Parameters

m
$n$
a
ia, ja
desca
tau

C
(global)
$=L^{\prime}: Q$ or $Q^{T}$ is applied from the left.
$=$ R' $^{\prime}: Q$ or $Q^{T}$ is applied from the right.
(global)
$=N^{\prime}$ ', no transpose, $Q$ is applied.
$=' T$ ', transpose, $Q^{T}$ is applied.
(global)
= 'U': Upper triangle of $A(i a: *, ~ j a: *)$ contains elementary reflectors from p?sytrd;
= 'L': Lower triangle of $A(\mathrm{ia}: \star, j a: *)$ contains elementary reflectors from p?sytrd
(global) The number of rows in the distributed matrix $\operatorname{sub}(C)(m \geq 0)$.
(global) The number of columns in the distributed matrix $\operatorname{sub}(C)(n \geq 0)$.
(local)
Pointer into the local memory to an array of size Ild_a*LOCC(ja+m-1) if side $=$ 'L', and lld_a*LOCc ( $j a+n-1$ ) if side $=$ 'R'.
Contains the vectors that define the elementary reflectors, as returned by p?sytrd.
If side='L', lld_a $\geq$ max $(1, \operatorname{LOCr}(i a+m-1))$;
If side $=$ 'R', Illd_a $\geq \max (1, \operatorname{LOCr}(i a+n-1))$.
(global) The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
Array of size of Itau where
if side $=$ 'L' and uplo = 'U', Itau $=\operatorname{LOCc}\left(m_{-} a\right)$,
if side $=$ 'L' and uplo $=$ 'L', Itau $=\operatorname{LOCc}(j a+m-2)$,
if side $=$ 'R' and uplo = 'U', Itau $=\operatorname{LOCc}\left(n_{-} a\right)$,
if side $=$ 'R' and uplo $=$ 'L', Itau $=\operatorname{LOCC}(j a+n-2)$.
tau[i] must contain the scalar factor of the elementary reflector $H(i+1)$, as returned by p?sytrd ( $0 \leq i<I t a u$ ). tau is tied to the distributed matrix $A$. (local)
ic, jc
descc
work
lwork

Pointer into the local memory to an array of size $I I d \_c^{*} \operatorname{LOCc}(j c+n-1)$. Contains the local pieces of the distributed matrix sub (C).
(global) The row and column indices in the global matrix $C$ indicating the first row and the first column of the submatrix $C$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix $C$.
(local)
Workspace array of size lwork.
(local or global) size of work, must be at least:

```
if uplo = 'U',
iaa= ia; jaa= ja+1, icc= ic; jcc= jc;
else uplo = 'L',
iaa= ia+1, jaa= ja;
If side = 'L',
icc= ic+1; jcC= jc;
else icc= ic; jcc= jc+1;
end if
end if
If side = 'L',
mi= m-1; ni= n
lwork \geq max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) +
nb_a*nb_a
else
If side = 'R',
mi=m; mi = n-1;
lwork\geqmax((nb_a*(nb_a-1))/2, (nqc0 +
max(npa0+numroc(numroc(ni+iCoffc, nb_a, 0, 0, NPCOL), nb_a,
0, 0, lcmq), mpc0))*nb_a)+ nb_a^nb_a
end if
where lcmq = lcm/NPCOL with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
```

```
iccol = indxg2p(jcc, nb_c, MYCOL, cSrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),
```


## NOTE

```
mod}(x,y)\mathrm{ is the integer remainder of x/y.
```

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo. If 1 work $=-1$, then lwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

```
c
 Overwritten by the product Q*sub(C), or Q'*sub(C), or sub(C)*}\mp@subsup{Q}{}{\prime},\mathrm{ or
 sub(C)*Q.
 On exit work[0] contains the minimum value of lwork required for
 optimum performance.
 (global)
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-th entry, indexed j-1, had
 an illegal value, then info = -(i*100+j); if the i-th argument is a scalar
 and had an illegal value, then info = -i.
```


## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?hengst
Reduces a complex Hermitian-definite generalized
eigenproblem to standard form.

## Syntax

```
void pchengst (const MKL_INT* ibtype, const char* uplo, const MKL_INT* n, MKL_Complex8*
a, const MKL_INT* ia, const MKL_INT* ja, const MKL_INT* desca, const MKL_Complex8* b,
const MKL_INT* ib, const MKL_INT* jb, const MKL_INT* descb, float* scale, MKL_Complex8*
work, const MKL_INT* lwork, MKL_INT* info);
void pzhengst (const MKL_INT* ibtype, const char* uplo, const MKL_INT* n,
MKL_Complex16* a, const MKL_INT* ia, const MKL_INT* ja, const MKL_INT* desca, const
MKL_Complex16* b, const MKL_INT* ib, const MKL_INT* jb, const MKL_INT* descb, double*
scale, MKL_Complex16* work, const MKL_INT* lwork, MKL_INT* info);
```

Include Files

- mkl_scalapack.h


## Description

p?hengst reduces a complex Hermitian-definite generalized eigenproblem to standard form.
p?hengst performs the same function as p?hegst, but is based on rank 2 K updates, which are faster and more scalable than triangular solves (the basis of p?hengst).
$p$ ?hengst calls $p$ ?hegst when uplo='U', hence p?hengst provides improved performance only when uplo='L' and ibtype=1.
p?hengst also calls p?hegst when insufficient workspace is provided, hence p?hengst provides improved performance only when lwork is sufficient (as described in the parameter descriptions).

In the following $\operatorname{sub}(A)$ denotes the submatrix $A(i a: i a+n-1, j a: j a+n-1)$ and $\operatorname{sub}(B)$ denotes the submatrix $B$ ( $i b: i b+n-1, j b: j b+n-1$ ).
If ibtype $=1$, the problem is $\operatorname{sub}(A)^{*} x=\operatorname{lambda*} \operatorname{sub}(B)^{*} x$, and $\operatorname{sub}(A)$ is overwritten by $\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$ or $\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right)$
If ibtype $=2$ or 3 , the problem is sub $(A)^{*} \operatorname{sub}(B)^{*} x=$ lambda*x or $\operatorname{sub}(B)^{*} \operatorname{sub}(A) * x=$ lambda*x, and $\operatorname{sub}(A)$ is overwritten by $U^{*} \operatorname{sub}(A)^{*} U^{H}$ or $L^{H *} \operatorname{sub}(A)^{*} L$.
sub( $B$ ) must have been previously factorized as $U^{H *} U$ or $L^{*} L^{H}$ by p?potrf.

## Input Parameters

```
ibtype
(global)
\(=1\) : compute \(\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)\) or \(\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right)\);
\(=2\) or 3 : compute \(U^{*} \operatorname{sub}(A)^{*} U^{H}\) or \(L^{H *} \operatorname{sub}(A)^{*} L\).
(global)
\(=\) 'U': Upper triangle of \(\operatorname{sub}(A)\) is stored and \(\operatorname{sub}(B)\) is factored as \(U^{H *} U^{\prime}\);
\(=\) ' \(L\) ': Lower triangle of \(\operatorname{sub}(A)\) is stored and \(\operatorname{sub}(B)\) is factored as \(L^{*} L^{H}\).
(global)
The order of the matrices \(\operatorname{sub}(A)\) and \(\operatorname{sub}(B) . n>=0\).
(local)
Pointer into the local memory to an array of size IId_a*LOCc (ja+n-1).
On entry, this array contains the local pieces of the \(n-b y-n\) Hermitian distributed matrix \(\operatorname{sub}(A)\). If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If uplo = 'L', the leading \(n-b y-n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
(global)
Global row index of matrix \(A\), which points to the beginning of the submatrix on which to operate.
(global)
Global column index of matrix \(A\), which points to the beginning of the submatrix on which to operate.
\begin{tabular}{|c|c|}
\hline desca & (global and local) \\
\hline & Array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(A\). \\
\hline b & (local) \\
\hline & Pointer into the local memory to an array of size IId_b*LOCc (jb+n-1). \\
\hline i.b & (global) \\
\hline & Global row index of matrix \(B\), which points to the beginning of the submatrix on which to operate. \\
\hline jb & (global) \\
\hline & Global column index of matrix \(B\), which points to the beginning of the submatrix on which to operate. \\
\hline descb & (global and local) \\
\hline & Array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(B\). \\
\hline work & (local) \\
\hline & Array, size (lwork) \\
\hline & On exit, work(1) returns the minimal and optimal lwork. \\
\hline lwork & (local) \\
\hline & The size of the array work. \\
\hline & lwork is local input and must be at least lwork >= MAX (NB * (NPO +1), 3 * NB). \\
\hline & When ibtype \(=1\) and uplo = 'L', p?hengst provides improved performance when lwork \(>=2 * N P O * N B+N Q O * N B+N B * N B\), where \(N B=m b _a=n b _a, N P O=\) numroc \((n, N B, 0,0, N P R O W), N Q O=\) numroc (\(n, N B, 0,0\), NPROW), and numroc is a ScaLAPACK tool function. \\
\hline & MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo. \\
\hline & If lwork \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
scale

On exit, if info \(=0\), the transformed matrix, stored in the same format as \(\operatorname{sub}(A)\).
(global)
Amount by which the eigenvalues should be scaled to compensate for the scaling performed in this routine.
scale is always returned as 1.0.
```

work On exit, work[0] returns the minimal and optimal lwork.
info
(global)
= 0 : successful exit
< 0 : If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

```

\section*{p?hentrd \\ Reduces a complex Hermitian matrix to Hermitian \\ tridiagonal form.}

\section*{Syntax}
```

void pchentrd (const char* uplo, const MKL_INT* n, MKL_Complex8* a, const MKL_INT* ia,
const MKL_INT* ja, const MKL_INT* desca, float* d, float* e, MKL_Complex8* tau,
MKL_Complex8* work, const MKL_INT* lwork, float* rwork, const MKL_INT* lrwork, MKL_INT*
info);
void pzhentrd (const char* uplo, const MKL_INT* n, MKL_Complex16* a, const MKL_INT* ia,
const MKL_INT* ja, const MKL_INT* desca, double* d, double* e, MKL_Complex16* tau,
MKL_Complex16* work, const MKL_INT* lwork, double* rwork, const MKL_INT* lrwork,
MKL_INT* info);

```

\section*{Include Files}
```

- mkl_scalapack.h

```

\section*{Description}
p?hentrd is a prototype version of p?hetrd which uses tailored codes (either the serial, ?hetrd, or the parallel code, p?hettrd) when adequate workspace is provided.
p?hentrd reduces a complex Hermitian matrix sub (\(A\)) to Hermitian tridiagonal form \(T\) by an unitary similarity transformation:
\(Q^{\prime}{ }^{*} \operatorname{sub}(A) * Q=T\), where \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\).
p?hentrd is faster than p?hetrd on almost all matrices, particularly small ones (i.e. \(n<500 * \operatorname{sqrt}(\mathrm{P})\)), provided that enough workspace is available to use the tailored codes.
The tailored codes provide performance that is essentially independent of the input data layout.
The tailored codes place no restrictions on ia, ja, MB or NB. At present, ia, ja, MB and NB are restricted to those values allowed by p?hetrd to keep the interface simple (see the Application Notes section for more information about the restrictions).

\section*{Input Parameters}
uplo
n

\section*{(global)}

Specifies whether the upper or lower triangular part of the Hermitian matrix \(\operatorname{sub}(A)\) is stored:
= 'U': Upper triangular
= 'L': Lower triangular
(global)
\(a\)
ia

The number of rows and columns to be operated on, i.e. the order of the distributed submatrix \(\operatorname{sub}(A) . n>=0\).
(local)
Pointer into the local memory to an array of size Ild_a*LOCc (ja+n-1).
On entry, this array contains the local pieces of the Hermitian distributed matrix sub(\(A\)). If uplo = ' U ', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
(global)
The row index in the global array a indicating the first row of \(\operatorname{sub}(A)\).
(global)
The column index in the global array a indicating the first column of \(\operatorname{sub}(A)\).
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix \(A\).
(local)
Array, size (lwork)
(local or global)
The size of the array work.
lwork is local input and must be at least 1 work \(>=\operatorname{MAX}(\) NB \(*(N P+1), 3\)
* NB).

For optimal performance, greater workspace is needed:
lwork \(>=2^{*}(A N B+1) *(4 * N P S+2)+(N P S+4) * N P S\)
ANB = pjlaenv(ICTXT, 3, 'p?hettrd', 'L', 0, 0, 0, 0)
ICTXT \(=\) desca(\(\left.c t x t_{-}\right)\)
SQNPC \(=\operatorname{INT}(\operatorname{sqrt}(\operatorname{REAL}(\) NPROW * NPCOL \()))\)
NPS \(=\operatorname{MAX}(\operatorname{numroc}(n, 1,0,0, S Q N P C), 2 * A N B)\)
numroc is a ScaLAPACK tool function.
pjlaenv is a ScaLAPACK environmental inquiry function.
NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
(local)
Array, size (lrwork)
(local or global)
The size of the array rwork.
lrwork is local input and must be at least lrwork \(>=1\).
For optimal performance, greater workspace is needed, i.e. \(\operatorname{lrwork}>=\) \(\operatorname{MAX}(2 * n)\)

\section*{Output Parameters}
a
\(d\)
e
tau
work
rwork
info

On exit, if uplo = 'U', the diagonal and first superdiagonal of sub(\(A\)) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements above the first superdiagonal, with the array tau, represent the unitary matrix \(Q\) as a product of elementary reflectors; if uplo = 'L', the diagonal and first subdiagonal of sub(\(A\)) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements below the first subdiagonal, with the array tau, represent the unitary matrix \(Q\) as a product of elementary reflectors. See Application Notes.
(local)
Array, size LOCc(\(j a+n-1\))
The diagonal elements of the tridiagonal matrix \(T\) : \(d[i-1]=A(i, i)\). \(d\) is tied to the distributed matrix \(A\).
(local)
Array, size LOCc(ja+n-1) if uplo = 'U', LOCc(ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix \(T\) : e[i-1] = \(A(i, i+1)\) if uplo = 'U', e[i-1] = \(A(i+1, i)\) if uplo = 'L'. e is tied to the distributed matrix \(A\).
(local)
Array, size LOCc(ja+n-1).
This array contains the scalar factors tau of the elementary reflectors. tau is tied to the distributed matrix \(A\).

On exit, work[0] returns the optimal lwork.
On exit, rwork[0] returns the optimal lrwork.
(global)
= 0: successful exit
< 0: If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

If uplo = 'U', the matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(n-1) \ldots H(2) H(1)\).
Each \(\mathrm{H}(\mathrm{i})\) has the form
\(\mathrm{H}(\mathrm{i})=\mathrm{I}-\operatorname{tau} * \mathrm{v} * \mathrm{v}^{\prime}\), where tau is a complex scalar, and v is a complex vector with \(\mathrm{v}(\mathrm{i}+1: n)=0\) and \(\mathrm{v}(\mathrm{i})=\) \(1 ; v(1: i-1)\) is stored on exit in \(A(i a: i a+i-2, j a+i)\), and tau in tau(ja+i-1).

If uplo = 'L', the matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(1) H(2) \ldots H(n-1)\).
Each \(\mathrm{H}(\mathrm{i})\) has the form
\(\mathrm{H}(\mathrm{i})=\mathrm{I}-\operatorname{tau} * \mathrm{v} * \mathrm{v}^{\prime}\), where tau is a complex scalar, and v is a complex vector with \(\mathrm{v}(1: \mathrm{i})=0\) and \(\mathrm{v}(\mathrm{i}+1)=\) \(1 ; \mathrm{v}(\mathrm{i}+2: n)\) is stored on exit in \(A(i a+i+1: i a+n-1, j a+i-1)\), and tau in \(\operatorname{tau}(j a+i-1)\).
The contents of \(\operatorname{sub}(A)\) on exit are illustrated by the following examples with \(n=5\) :
if uplo = 'U':
\(\left(\begin{array}{ccccc}d & e & v 2 & v 3 & v 4 \\ & d & e & v 3 & v 4 \\ & & d & e & v 3 \\ & & & d & e \\ & & & & \\ & & & & d\end{array}\right)\)
if uplo = 'L':
\(\left(\begin{array}{ccccc}d & & & \\ e & d & & \\ v 1 & e & d & \\ v 1 & v 2 & e & d \\ v 1 & v 2 & v 3 & e & d\end{array}\right)\)
where \(d\) and \(e\) denote diagonal and off-diagonal elements of \(T\), and \(v i\) denotes an element of the vector defining \(\mathrm{H}(i)\).

\section*{Alignment requirements}

The distributed submatrix sub(\(A\)) must verify some alignment properties, namely the following expression should be true:
\(\left(m b _a=n b _a\right.\) and IROFFA \(=I C O F F A\) and \(\left.I R O F F A=0\right)\) with \(I R O F F A=\bmod \left(i a-1, m b _a\right)\), and ICOFFA \(=\) mod(ja-1, nb_a).

\section*{p?hetrd}

Reduces a Hermitian matrix to Hermitian tridiagonal form by a unitary similarity transformation.

\section*{Syntax}
```

void pchetrd (char *uplo, MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , float *d , float *e , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT
*lwork , MKL_INT *info );
void pzhetrd (char *uplo , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , double *d, double *e , MKL_Complex16 *tau , MKL_Complex16 *work ,
MKL_INT *lwork , MKL_INT *info );

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?hetrd function reduces a complex Hermitian matrix \(\operatorname{sub}(A)\) to Hermitian tridiagonal form \(T\) by a unitary similarity transformation:
\(Q^{\prime *} \operatorname{sub}(A)^{*} Q=T\)
where \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\).

\section*{Input Parameters}
n
a
ia, ja
desca
work

I work
(global)
Specifies whether the upper or lower triangular part of the Hermitian matrix \(\operatorname{sub}(A)\) is stored:
If uplo = 'U', upper triangular
If uplo = 'L', lower triangular
(global) The order of the distributed matrix \(\operatorname{sub}(A)(n \geq 0)\).
(local)
Pointer into the local memory to an array of size lld_a*LOCc(ja+n-1). On entry, this array contains the local pieces of the Hermitian distributed matrix sub \((A)\).
If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of sub \((A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of sub \((A)\) contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced. (see Application Notes below).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Workspace array of size 1 work.
(local or global) size of work, must be at least:
1 work \(\geq \max (\mathrm{NB} *(n p+1), 3 * \mathrm{NB})\)
where NB \(=m b _a=n b _a\),
\(n p=\) numroc (n, NB, MYROW, iarow, NPROW),
```

iarow = indxg2p(ia, NB, MYROW, rsrc_a, NPROW).

```
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

If uplo = 'U', the diagonal and first superdiagonal of \(\operatorname{sub}(A)\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements above the first superdiagonal, with the array tau, represent the unitary matrix \(Q\) as a product of elementary reflectors;if uplo = 'L', the diagonal and first subdiagonal of \(\operatorname{sub}(A)\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements below the first subdiagonal, with the array tau, represent the unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
d
(local)
Arrays of size LOCC (ja+n-1). The diagonal elements of the tridiagonal matrix \(T\) :
\(d[i]=A(i+1, i+1), 0 \leq i<\operatorname{LOCC}(j a+n-1)\).
\(d\) is tied to the distributed matrix \(A\).
(local)
Arrays of size LOCC(ja+n-1) if uplo = 'U'; LOCC(ja+n-2) - otherwise.
The off-diagonal elements of the tridiagonal matrix \(T\) :
\(e[i]=A(i+1, i+2), 0 \leq i<\operatorname{LOCC}(j a+n-1)\) if uplo = 'U',
\(e[i]=A(i+2, i+1)\) if uplo \(=\) 'L'.
\(e\) is tied to the distributed matrix \(A\).
work[0]
info
(local)
Array of size LOCC (ja+n-1). This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix \(A\).

On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

If uplo = 'U', the matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(n-1) * \ldots * H(2) * H(1)\).
Each \(H(i)\) has the form
\(H(i)=i-\tan ^{*} v^{*} v^{\prime}\),
where tau is a complex scalar, and \(v\) is a complex vector with \(v(i+1: n)=0\) and \(v(i)=1 ; v(1: i-1)\) is stored on exit in \(A(\) ia:ia+i-2, ja+i), and tau in tau[ja+i-2].

If uplo = 'L', the matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(1) * H(2) * \ldots * H(n-1)\).
Each \(H(i)\) has the form
\(H(i)=i-\tan u^{*} v^{*} v^{\prime}\),
where tau is a complex scalar, and \(v\) is a complex vector with \(v(1: i)=0\) and \(v(i+1)=1 ; v(i+2\) : \(n)\) is stored on exit in \(A(i a+i+1: i a+n-1, j a+i-1)\), and tau in tau[ja+i-2].
The contents of \(\operatorname{sub}(A)\) on exit are illustrated by the following examples with \(n=5\) :
If uplo = 'U':
\[
\left[\begin{array}{ccccc}
d & e & v 2 & v 3 & v 4 \\
& d & e & v 3 & v 4 \\
& & d & e & v 4 \\
& & & d & e \\
& & & & d
\end{array}\right]
\]

If uplo = 'L':

where \(d\) and \(e\) denote diagonal and off-diagonal elements of \(T\), and \(v i\) denotes an element of the vector defining \(H(i)\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?unmtr}

Multiplies a general matrix by the unitary transformation matrix from a reduction to tridiagonal form determined by p?hetrd.

\section*{Syntax}
```

void pcunmtr (char *side , char *uplo , char *trans , MKL_INT *m , MKL_INT *n ,
MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca, MKL_Complex8 *tau ,
MKL_Complex8 *c , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex8 *work ,
MKL_INT *lwork , MKL_INT *info );
void pzunmtr (char *side , char *uplo, char *trans , MKL_INT *m , MKL_INT *n ,
MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *tau ,
MKL_Complex16 *c , MKL_INT *ic , MKL_INT *jc, MKL_INT *descc , MKL_Complex16 *work ,
MKL_INT *lwork , MKL_INT *info );

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

This function overwrites the general complex distributed \(m\)-by-n matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\) with
```

side ='L' side ='R'

```

```

trans = 'C': }\quad\mp@subsup{Q}{}{H*sub(C)
sub(C)*QH

```
where \(Q\) is a complex unitary distributed matrix of order \(n q\), with \(n q=m\) if side \(=\) 'L' and \(n q=n\) if side \(=\) 'R'.
\(Q\) is defined as the product of \(n q-1\) elementary reflectors, as returned by p?hetrd.
```

If uplo = 'U',Q = H(nq-1)... H(2)H(1);

```
If uplo = 'L', \(Q=H(1) H(2) \ldots H(n q-1)\).

\section*{Input Parameters}
```

side

```
trans
m
n
a
ia, ja
desca
tau
(global)
\(=\) ' L ': \(Q\) or \(Q^{H}\) is applied from the left.
\(={ }^{\prime} R^{\prime}: Q\) or \(Q^{H}\) is applied from the right.
(global)
\(=' N\) ', no transpose, \(Q\) is applied.
\(=C^{\prime}\), conjugate transpose, \(Q^{H}\) is applied.
(global)
= 'U': Upper triangle of \(A(i a: *, ~ j a: *) ~ c o n t a i n s ~ e l e m e n t a r y ~ r e f l e c t o r s ~\) from p?hetrd;
\(=\) 'L': Lower triangle of \(A(i a: \star, j a: *)\) contains elementary reflectors from p?hetrd
(global) The number of rows in the distributed matrix \(\operatorname{sub}(C)(m \geq 0)\).
(global) The number of columns in the distributed matrix \(\operatorname{sub}(C)(n \geq 0)\).
(local)
Pointer into the local memory to an array of size Ild_a*LOCC(ja+m-1) if side \(=\) 'L', and Ild_a*LOCC(ja+n-1) if side = 'R'.
Contains the vectors which define the elementary reflectors, as returned by p?hetrd.
If side='L',lld_a \(\geq \max (1, \operatorname{LOCr}(i a+m-1))\);
If side ='R', lld_a \(\geq \max (1, \operatorname{LOCr}(i a+n-1))\).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)

\section*{Array of size of Itau where}
```

If side = 'L' and uplo = 'U',Itau = LOCc(m_a),
if side = 'L' and uplo = 'L',Itau = LOCC(ja+m-2),
if side = 'R' and uplo = 'U',Itau = LOCc(n_a),
if side = 'R' and uplo = 'L',Itau = LOCC(ja+n-2).

```
\(\operatorname{tau}[i]\) must contain the scalar factor of the elementary reflector \(H(i+1)\), as
returned by p?hetrd (\(0 \leq i<I t a u\)). tau is tied to the distributed matrix \(A\).
(local)

Pointer into the local memory to an array of size Ild_c*LOCc(jc+n-1). Contains the local pieces of the distributed matrix sub (C).
(global) The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
Workspace array of size lwork.
(local or global) size of work, must be at least:
```

If uplo = 'U',
iaa= ia; jaa= ja+1, icc= ic; jcc= jc;
else uplo = 'L',
iaa= ia+1, jaa= ja;
If side = 'L',
icc= ic+1; jcc= jc;
else icc= ic; jcc= jc+1;
end if
end if
If side = 'L',
mi= m-1; ni= n
lwork \geq max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) +
nb_a*nb_a
else
If side = 'R',
mi= m; mi = n-1;
lwork \geq max((nb_a*(nb_a-1))/2, (nqc0 +
max(npa0+numroc(numroc(ni+iCoffc, nb_a, 0, 0, NPCOL), nb_a,
0, 0, lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
where lcmq = lcm/NPCOL with lcm = ilcm(NPROW, NPCOL),

```
```

iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo. If lwork \(=-1\), then lwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
c
Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C) * Q\).

On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?stebz}

Computes the eigenvalues of a symmetric tridiagonal matrix by bisection.

\section*{Syntax}
```

void psstebz (MKL_INT *ictxt , char *range , char *order , MKL_INT *n , float *vl ,
float *vu , MKL_INT *il , MKL_INT *iu, float *abstol, float *d, float *e , MKL_INT
*m, MKL_INT *nsplit , float *w , MKL_INT *iblock, MKL_INT *isplit , float *work ,
MKL_INT *lwork , MKL_INT *iwork , MKL_INT *liwork , MKL_INT *info );

```
```

void pdstebz (MKL_INT *ictxt , char *range, char *order , MKL_INT *n , double *vl ,
double *Vu , MKL_INT *il , MKL_INT *iu, double *abstol, double *d, double *e ,
MKL_INT *m, MKL_INT *nsplit , double *w, MKL_INT *iblock, MKL_INT *isplit , double
*work , MKL_INT *lwork , MKL_INT *iwork, MKL_INT *liwork, MKL_INT *info );

```

Include Files
- mkl_scalapack.h

\section*{Description}

The p?stebz function computes the eigenvalues of a symmetric tridiagonal matrix in parallel. These may be all eigenvalues, all eigenvalues in the interval [\(v l v u\)], or the eigenvalues il through iu. A static partitioning of work is done at the beginning of \(p\) ?stebz which results in all processes finding an (almost) equal number of eigenvalues.
\begin{tabular}{|l|}
\hline Product and Performance Information \\
\hline Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ \\
PerformanceIndex. \\
Notice revision \#20201201 \\
\hline
\end{tabular}

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline ictxt & (global) The BLACS context handle. \\
\hline range & (global) Must be 'A' or 'V' or 'I'. \\
\hline & If range = 'A', the function computes all eigenvalues. \\
\hline & If range \(=\) ' \(V\) ', the function computes eigenvalues in the interval [v], vu]. \\
\hline & If range ='I', the function computes eigenvalues il through iu. \\
\hline order & (global) Must be 'B' or 'E'. \\
\hline & If order = 'B', the eigenvalues are to be ordered from smallest to largest within each split-off block. \\
\hline & If order = 'E', the eigenvalues for the entire matrix are to be ordered from smallest to largest. \\
\hline \(n\) & (global) The order of the tridiagonal matrix \(T(n \geq 0)\). \\
\hline vl, vu & (global) \\
\hline & If range \(=\) ' \(V\) ', the function computes the lower and the upper bounds for the eigenvalues on the interval [1, vu]. \\
\hline & If range \(=\) ' \(A\) ' or 'I', vl and \(v u\) are not referenced. \\
\hline il, iu & (global) \\
\hline & Constraint: \(1 \leq i 1 \leq i u \leq n\). \\
\hline & If range \(=\) 'I', the index of the smallest eigenvalue is returned for il and of the largest eigenvalue for iu (assuming that the eigenvalues are in ascending order) must be returned. \\
\hline & If range = 'A' or 'V', il and iu are not referenced. \\
\hline
\end{tabular}
```

abstol

```
d
\(e\)
(global)
The absolute tolerance to which each eigenvalue is required. An eigenvalue (or cluster) is considered to have converged if it lies in an interval of width abstol. If abstol \(1 \leq 0\), then the tolerance is taken as \(u l p\|T\|\), where \(u l p\) is the machine precision, and \(\|T\|\) means the 1 -norm of \(T\)
Eigenvalues will be computed most accurately when abstol is set to the underflow threshold slamch('U'), not 0 . Note that if eigenvectors are desired later by inverse iteration (p?stein), abstol should be set to 2*p?lamch('S').
(global)
Array of size \(n\).
Contains \(n\) diagonal elements of the tridiagonal matrix \(T\). To avoid overflow, the matrix must be scaled so that its largest entry is no greater than the overflow \({ }^{(1 / 2)}\) * underflow \({ }^{(1 / 4)}\) in absolute value, and for greatest accuracy, it should not be much smaller than that.
(global)
Array of size \(n-1\).
Contains (\(n-1\)) off-diagonal elements of the tridiagonal matrix \(T\). To avoid overflow, the matrix must be scaled so that its largest entry is no greater than overflow \({ }^{(1 / 2)}\) * underflow \({ }^{(1 / 4)}\) in absolute value, and for greatest accuracy, it should not be much smaller than that.
(local)
Array of size max \((5 n, 7)\). This is a workspace array.
(local) The size of the work array must be \(\geq \max (5 n, 7)\).
If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
(local) Array of size \(\max (4 n, 14)\). This is a workspace array.
(local) The size of the iwork array must \(\geq \max (4 n, 14\), NPROCS \()\).
If liwork \(=-1\), then liwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
m
nsplit
w
(global) The actual number of eigenvalues found. \(0 \leq m \leq n\)
(global) The number of diagonal blocks detected in \(T .1 \leq n s p l i t \leq_{n}\) (global)
Array of size \(n\). On exit, the first \(m\) elements of \(w\) contain the eigenvalues on all processes.
iblock
isplit
info
(global)
Array of size \(n\). At each row/column \(j\) where \(e[j-1]\) is zero or small, the matrix \(T\) is considered to split into a block diagonal matrix. On exit iblock[i] specifies which block (from 1 to the number of blocks) the eigenvalue \(w[i]\) belongs to.

\section*{NOTE}

In the (theoretically impossible) event that bisection does not converge for some or all eigenvalues, info is set to 1 and the ones for which it did not are identified by a negative block number.
(global)
Array of size \(n\).
Contains the splitting points, at which \(T\) breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit[0], the second of rows/columns isplit[0]+1 through isplit[1], and so on, and the nsplit-th submatrix consists of rows/columns isplit[nsplit-2]+1 through isplit[nsplit-1]=n. (Only the first nsplit elements are used, but since the nsplit values are not known, \(n\) words must be reserved for isplit.)
(global)
If info \(=0\), the execution is successful.
If info < 0 , if info \(=-i\), the \(i\)-th argument has an illegal value.
If info> 0 , some or all of the eigenvalues fail to converge or are not computed.
If info \(=1\), bisection fails to converge for some eigenvalues; these eigenvalues are flagged by a negative block number. The effect is that the eigenvalues may not be as accurate as the absolute and relative tolerances.
If info \(=2\), mismatch between the number of eigenvalues output and the number desired.

If info = 3: range='I', and the Gershgorin interval initially used is incorrect. No eigenvalues are computed. Probable cause: the machine has a sloppy floating-point arithmetic. Increase the fudge parameter, recompile, and try again.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?stedc}

Computes all eigenvalues and eigenvectors of a
symmetric tridiagonal matrix in parallel.

\section*{Syntax}
```

void psstedc (const char* compz, const MKL_INT* n, float* d, float* e, float* q, const
MKL_INT* iq, const MKL_INT* jq, const MKL_INT* descq, float* work, MKL_INT* lwork,
MKL_INT* iwork, const MKL_INT* liwork, MKL_INT* info);

```
```

void pdstedc (const char* compz, const MKL_INT* n, double* d, double* e, double* q,
const MKL_INT* iq, const MKL_INT* jq, const MKL_INT* descq, double* work, MKL_INT*
lwork, MKL_INT* iwork, const MKL_INT* liwork, MKL_INT* info);

```

Include Files
- mkl_scalapack.h

\section*{Description}
p?stedc computes all eigenvalues and eigenvectors of a symmetric tridiagonal matrix in parallel, using the divide and conquer algorithm.

\section*{Input Parameters}
```

compz
n
d
e
iq
jq
descq
work
lwork
= 'N': Compute eigenvalues only. (NOT IMPLEMENTED YET)
= 'I': Compute eigenvectors of tridiagonal matrix also.
= 'V': Compute eigenvectors of original dense symmetric matrix also. On
entry, Z contains the orthogonal matrix used to reduce the original matrix
to tridiagonal form. (NOT IMPLEMENTED YET)
(global)
The order of the tridiagonal matrix T. n >= 0.
(global)
Array, size (n)
On entry, the diagonal elements of the tridiagonal matrix.
(global)
Array, size ( }n-1\mathrm{ ).
On entry, the subdiagonal elements of the tridiagonal matrix.
(global)
Q's global row index, which points to the beginning of the submatrix which
is to be operated on.
(global)
Q's global column index, which points to the beginning of the submatrix
which is to be operated on.
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix Q.
(local)
Array, size (lwork)
(local)
The size of the array work.
lwork = 6*n + 2*NP*NQ
NP = numroc( n, NB, MYROW, DESCQ( rsrc_ ), NPROW )

```
\(\mathrm{NQ}=\) numroc \(\left(n, \mathrm{NB}, \mathrm{MYCOL}, \operatorname{DESCQ}\left(\operatorname{csrc} c_{-}\right), \mathrm{NPCOL}\right)\)
numroc is a ScaLAPACK tool function.
If 1 work \(=-1\), the 1 work is global input and a workspace query is assumed; the routine only calculates the minimum size for the work array. The required workspace is returned as the first element of work and no error message is issued by pxerbla.
iwork
liwork
(local)
Array, size (liwork)
The size of the array iwork.
\[
\text { liwork }=2+7 *_{n}+8 * N P C O L
\]

\section*{Output Parameters}
\(d\)
\(q\)
work
iwork
info

On exit, if info \(=0\), the eigenvalues in descending order.
(local)
Array, local size (\(\left./ l d _q, \operatorname{LOCc}(j q+n-1)\right)\)
\(q\) contains the orthonormal eigenvectors of the symmetric tridiagonal matrix.
On output, \(q\) is distributed across the \(P\) processes in block cyclic format.

On output, work[0] returns the workspace needed.
On exit, if liwork \(>\) 0, iwork[0] returns the optimal liwork.
(global)
\(=0\) : successful exit.
< 0: If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
> 0: The algorithm failed to compute the info/ \(n+1\))-th eigenvalue while working on the submatrix lying in global rows and columns \(\bmod (i n f 0, n+1)\).
p?stein
Computes the eigenvectors of a tridiagonal matrix using inverse iteration.

\section*{Syntax}
```

void psstein (MKL_INT *n , float *d, float *e , MKL_INT *m, float *W , MKL_INT
*iblock , MKL_INT *isplit , float *orfac, float *z , MKL_INT *iz , MKL_INT *jz ,
MKL_INT *descz , float *work , MKL_INT *lwork, MKL_INT *iwork, MKL_INT *liwork ,
MKL_INT *ifail , MKL_INT *iclustr , float *gap , MKL_INT *info );

```
```

void pdstein (MKL_INT *n , double *d, double *e , MKL_INT *m , double *W , MKL_INT
*iblock , MKL_INT *isplit , double *orfac, double *z , MKL_INT *iz , MKL_INT *jz ,
MKL_INT *descz , double *work , MKL_INT *lwork , MKL_INT *iwork , MKL_INT *liwork ,
MKL_INT *ifail, MKL_INT *iclustr, double *gap , MKL_INT *info );
void pcstein (MKL_INT *n , float *d, float *e , MKL_INT *m, float **W, MKL_INT
*iblock , MKL_INT *isplit , float *orfac, MKL_Complex8 *z , MKL_INT *iz , MKL_INT *jz ,
MKL_INT *descz , float *work , MKL_INT *lwork, MKL_INT *iwork , MKL_INT *liwork ,
MKL_INT *ifail , MKL_INT *iclustr , float *gap , MKL_INT *info );
void pzstein (MKL_INT *n , double *d, double *e , MKL_INT *m , double *W, MKL_INT
*iblock , MKL_INT *isplit, double *orfac, MKL_Complex16 *z , MKL_INT *iz , MKL_INT
*jz , MKL_INT *descz , double *work , MKL_INT *lwork, MKL_INT *iwork, MKL_INT
*liwork , MKL_INT *ifail, MKL_INT *iclustr, double *gap , MKL_INT *info );

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?stein function computes the eigenvectors of a symmetric tridiagonal matrix \(T\) corresponding to specified eigenvalues, by inverse iteration. p?stein does not orthogonalize vectors that are on different processes. The extent of orthogonalization is controlled by the input parameter lwork. Eigenvectors that are to be orthogonalized are computed by the same process. p?stein decides on the allocation of work among the processes and then calls ?stein2 (modified LAPACK function) on each individual process. If insufficient workspace is allocated, the expected orthogonalization may not be done.

\section*{NOTE}

If the eigenvectors obtained are not orthogonal, increase lwork and run the code again.
\(p=\) NPROW* \(^{*}\) NPCOL is the total number of processes.

\section*{Input Parameters}
n
m
\[
d, e, w
\]
iblock
(global) The order of the matrix \(T(n \geq 0)\).
(global) The number of eigenvectors to be returned.
(global)
Arrays:
\(d\) of size \(n\) contains the diagonal elements of \(T\).
e of size \(n-1\) contains the off-diagonal elements of \(T\).
\(w\) of size \(m\) contains all the eigenvalues grouped by split-off block. The eigenvalues are supplied from smallest to largest within the block. (Here the output array w from p?stebz with order = ' B' is expected. The array should be replicated in all processes.)
(global)

Array of size \(n\). The submatrix indices associated with the corresponding eigenvalues in \(w\) : 1 for eigenvalues belonging to the first submatrix from the top, 2 for those belonging to the second submatrix, etc. (The output array iblock from p?stebz is expected here).
(global)
Array of size \(n\). The splitting points at which \(T\) breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit[0], the second of rows/columns isplit[0]+1 through isplit[1], and so on, and the nsplit-th submatrix consists of rows/columns isplit[nsplit-2]+1 through isplit[nsplit-1]=n. (The output array isplit from p?stebz is expected here.)
(global)
orfac specifies which eigenvectors should be orthogonalized. Eigenvectors that correspond to eigenvalues within orfac^||T|| of each other are to be orthogonalized. However, if the workspace is insufficient (see lwork), this tolerance may be decreased until all eigenvectors can be stored in one process. No orthogonalization is done if orfac is equal to zero. A default value of 1000 is used if orfac is negative. orfac should be identical on all processes
(global) The row and column indices in the global matrix \(Z\) indicating the first row and the first column of the submatrix \(Z\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(Z\).
(local).
Workspace array of size lwork.
(local)
lwork controls the extent of orthogonalization which can be done. The number of eigenvectors for which storage is allocated on each process is \(n v e c=\) floor \(\left(\left(1\right.\right.\) work-max \(\left.\left.\left(5^{*} n, n p 0 *_{m q 0} 0\right)\right) / n\right)\). Eigenvectors corresponding to eigenvalue clusters of size (nvec - ceil \((m / p)+1\)) are guaranteed to be orthogonal (the orthogonality is similar to that obtained from ?stein2).

\section*{NOTE}
lwork must be no smaller than max (\(5{ }^{*} n, n p 00 * m q 00\)) + ceil (m/ \(p){ }^{n} n\) and should have the same input value on all processes.

It is the minimum value of lwork input on different processes that is significant.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla. (local)

Workspace array of size \(3 n+p+1\).
(local) The size of the array iwork. It must be greater than \(3{ }^{*} n+p+1\).
If liwork \(=-1\), then liwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
z
work
iwork
ifail
iclustr
(local)
Array of size descz[dlen_-1], n/NPCOL + NB). z contains the computed eigenvectors associated with the specified eigenvalues. Any vector which fails to converge is set to its current iterate after MAXIT iterations (See ?stein2). On output, \(z\) is distributed across the \(p\) processes in block cyclic format.

On exit, work[0] gives a lower bound on the workspace (lwork) that guarantees the user desired orthogonalization (see orfac). Note that this may overestimate the minimum workspace needed.

On exit, iwork[0] contains the amount of integer workspace required.
On exit, the iwork[1] through iwork[p+1] indicate the eigenvectors computed by each process. Process \(i\) computes eigenvectors indexed iwork[i+1]+1 through iwork[i+2].
(global) Array of size m. On normal exit, all elements of ifail are zero. If one or more eigenvectors fail to converge after MAXIT iterations (as in ?stein), then info \(>0\) is returned. If \(\bmod (i n f 0, m+1)>0\), then for \(i=1\) to mod (info, m+1), the eigenvector corresponding to the eigenvalue w[ifail[i-1]-1] failed to converge (\(w\) refers to the array of eigenvalues on output).

\section*{NOTE}
\(\underline{\bmod (x, y)}\) is the integer remainder of \(x / y\).
(global) Array of size \(2^{*} p\).
This output array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be orthogonalized due to insufficient workspace (see lwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr(2*I-1) to iclustr(2*I), i=1 to infol \((m+1)\), could not be orthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal. iclustr is a zero terminated array: iclustr \([2 * k-1] \neq 0\) and iclustr \([2 \star k]=0\) if and only if \(k\) is the number of clusters.
(global)
This output array contains the gap between eigenvalues whose eigenvectors could not be orthogonalized. The info/m output values in this array correspond to the infol (\(m+1\)) clusters indicated by the
array iclustr. As a result, the dot product between eigenvectors corresponding to the \(i\)-th cluster may be as high as (\(O(n) *_{\text {macheps }}\) / gap \([i-1]\).
(global)
If info \(=0\), the execution is successful.
If info < 0 : If the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\),
If the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
If info < 0 : if info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0 : if mod(info, \(m+1\)) \(=i\), then \(i\) eigenvectors failed to converge in MAXIT iterations. Their indices are stored in the array ifail. If infol (m \(+1)=i\), then eigenvectors corresponding to \(i\) clusters of eigenvalues could not be orthogonalized due to insufficient workspace. The indices of the clusters are stored in the array iclustr.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{Nonsymmetric Eigenvalue Problems: ScaLAPACK Computational Routines}

This section describes ScaLAPACK routines for solving nonsymmetric eigenvalue problems, computing the Schur factorization of general matrices, as well as performing a number of related computational tasks.

To solve a nonsymmetric eigenvalue problem with ScaLAPACK, you usually need to reduce the matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg matrix obtained.
Table "Computational Routines for Solving Nonsymmetric Eigenproblems"lists ScaLAPACK routines for reducing the matrix to the upper Hessenberg form by an orthogonal (or unitary) similarity transformation \(A=\) \(Q H Q^{H}\), as well as routines for solving eigenproblems with Hessenberg matrices, and multiplying the matrix after reduction.
\begin{tabular}{llll}
Computational Routines for Solving Nonsymmetric Eigenproblems \\
\hline Operation performed & General matrix & \begin{tabular}{l}
Orthogonal/Unitary \\
matrix
\end{tabular} & Hessenberg matrix \\
\hline \begin{tabular}{llll}
Reduce to Hessenberg form \(A=Q H Q^{H}\) & \(p ? g e h r d\) & & \\
Multiply the matrix after reduction
\end{tabular} & & p?ormhr/p?unmhr & \\
\begin{tabular}{l}
Find eigenvalues and Schur \\
factorization
\end{tabular} & & \(p ? l a h q r\) \\
\hline
\end{tabular}

\section*{p?gehrd}

Reduces a general matrix to upper Hessenberg form.

\section*{Syntax}
```

void psgehrd (MKL_INT *n , MKL_INT *ilo , MKL_INT *ihi , float *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , float *tau , float *Work , MKL_INT *lwork , MKL_INT
*infO );
void pdgehrd (MKL_INT *n , MKL_INT *ilo, MKL_INT *ihi , double *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca, double *tau , double *work, MKL_INT *lwork , MKL_INT
*info );
void pcgehrd (MKL_INT *n , MKL_INT *ilo, MKL_INT *ihi , MKL_Complex8 *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, MKL_Complex8 *tau , MKL_Complex8 *Work , MKL_INT
*lwork , MKL_INT *info );

```
```

void pzgehrd (MKL_INT *n , MKL_INT *ilo, MKL_INT *ihi , MKL_Complex16 *a , MKL_INT
*ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT
*lwork , MKL_INT *info );

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?gehrd function reduces a real/complex general distributed matrix sub(\(A\)) to upper Hessenberg form \(H\) by an orthogonal or unitary similarity transformation
\[
\begin{aligned}
& Q^{*} \operatorname{sub}(A) * Q=H, \\
& \text { where } \operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1) .
\end{aligned}
\]

\section*{Input Parameters}
```

n
ilo, ihi
a
ia, ja
desca
work
lwork
(global). The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global).
It is assumed that $\operatorname{sub}(A)$ is already upper triangular in rows ia: $i a+i l o-2$ and ia+ihi: $i a+n-1$ and columns ja:ja+ilo-2 and ja+ihi:ja+n-1. (See Application Notes below).
If $n>0,1 \leq i l o \leq i h i \leq n ;$ otherwise set ilo $=1$, ihi $=n$.
(local)
Pointer into the local memory to an array of size $I l d \_a * \operatorname{LOCc}(j a+n-1)$. On entry, this array contains the local pieces of the $n-b y-n$ general distributed matrix $\operatorname{sub}(A)$ to be reduced.
(global) The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
Workspace array of size 1 work.
(local or global) size of the array work. lwork is local input and must be at least

```
```

lwork\geqNB*NB + NB*max(ihip+1, ihlp+inlq)

```
lwork\geqNB*NB + NB*max(ihip+1, ihlp+inlq)
where NB = mb_a = nb_a,
where NB = mb_a = nb_a,
iroffa = mod(ia-1, NB),
iroffa = mod(ia-1, NB),
icoffa = mod(ja-1, NB),
icoffa = mod(ja-1, NB),
ioff = mod(ia+ilo-2, NB), iarow = indxg2p(ia, NB, MYROW,
ioff = mod(ia+ilo-2, NB), iarow = indxg2p(ia, NB, MYROW,
rsrc_a, NPROW), ihip = numroc(ihi+iroffa, NB, MYROW, iarow,
rsrc_a, NPROW), ihip = numroc(ihi+iroffa, NB, MYROW, iarow,
NPROW),
NPROW),
ilrow = indxg2p(ia+ilo-1, NB, MYROW, rsrc_a, NPROW),
ilrow = indxg2p(ia+ilo-1, NB, MYROW, rsrc_a, NPROW),
ihlp = numroc(ihi-ilo+ioff+1, NB, MYROW, ilrow, NPROW),
```

ihlp = numroc(ihi-ilo+ioff+1, NB, MYROW, ilrow, NPROW),

```
```

ilcol = indxg2p(ja+ilo-1, NB, MYCOL, CSrc_a, NPCOL),
inlq = numroc(n-ilo+ioff+1, NB, MYCOL, ilcol, NPCOL),

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If lwork \(=-1\), then lwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
On exit, the upper triangle and the first subdiagonal of \(\operatorname{sub}(A)\) are overwritten with the upper Hessenberg matrix \(H\), and the elements below the first subdiagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
(local).
Array of size at least max (ja+n-2).
The scalar factors of the elementary reflectors (see Application Notes below). Elements ja:ja+ilo-2 and ja+ihi:ja+n-2 of the global vector tau are set to zero. tau is tied to the distributed matrix \(A\).

On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of (ihi-ilo) elementary reflectors
\(Q=H(i l 0) * H(i l o+1) * \ldots * H(i h i-1)\).
Each \(H(i)\) has the form
\(H(i)=i-\tan u^{*} v^{*} v^{\prime}\)
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i)=0, v(i+1)=1\) and \(v(i\) ih \(+1: n)=0 ; v(i+2: i h i)\) is stored on exit in \(A(i a+i l o+i: i a+i h i-1, j a+i l o+i-2)\), and tau in tau[ja+ilo \(+i-3]\). The contents of \(A\)
(ia: ia+n-1,ja:ja+n-1) are illustrated by the following example, with \(n=7\), ilo \(=2\) and \(i h i=6\) :
on entry
\[
\left[\begin{array}{ccccccc}
a & a & a & a & a & a & a \\
& a & a & a & a & a & a \\
& a & a & a & a & a & a \\
& a & a & a & a & a & a \\
& a & a & a & a & a & a \\
& a & a & a & a & a & a \\
& & & & & & a
\end{array}\right]
\]
on exit
\(\left[\begin{array}{ccccccc}a & a & a & h & h & h & a \\ & a & h & h & h & h & a \\ & h & h & h & h & h & h \\ & v 2 & h & h & h & h & h \\ & v 2 & v 3 & h & h & h & h \\ & v 2 & v 3 & v 4 & h & h & h \\ & & & & & & a\end{array}\right]\)
where \(a\) denotes an element of the original matrix \(\operatorname{sub}(A), H\) denotes a modified element of the upper Hessenberg matrix \(H\), and vi denotes an element of the vector defining \(H\) (ja+ilo+i-2).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?ormhr}

Multiplies a general matrix by the orthogonal
transformation matrix from a reduction to Hessenberg
form determined by p?gehrd.

\section*{Syntax}
```

void psormhr (char *side , char *trans , MKL_INT *m, MKL_INT *n , MKL_INT *ilo ,
MKL_INT *ihi, float *a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca , float *tau ,
float *c, MKL_INT *ic, MKL_INT *jc, MKL_INT *descc, float *work, MKL_INT *lwork,
MKL_INT *info );
void pdormhr (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *ilo ,
MKL_INT *ihi , double *a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca , double *tau ,
double *c, MKL_INT *ic , MKL_INT *jc, MKL_INT *descc , double *work , MKL_INT *lwork,
MKL_INT *info );

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?ormhr function overwrites the general real distributed \(m\)-by-n matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c\) \(+n-1\)) with
\begin{tabular}{lll}
& side \(=\) 'L' & side \(={ }^{\prime} \mathrm{R}^{\prime}\) \\
trans \(=\) 'N': & \(Q^{*} \operatorname{sub}(C)\) & \(\operatorname{sub}(C)^{*} Q\) \\
trans \(=\) 'T': & \(Q^{T *} \operatorname{sub}(C)\) & \(\operatorname{sub}(C)^{*} Q^{T}\)
\end{tabular}
where \(Q\) is a real orthogonal distributed matrix of order \(n q\), with \(n q=m\) if side \(=\) 'L' and \(n q=n\) if side \(=\) 'R'.
\(Q\) is defined as the product of ihi-ilo elementary reflectors, as returned by p?gehrd.
\(Q=H(i l o) H(i l o+1) \ldots H(i h i-1)\).

\section*{Input Parameters}
```

side
trans
m
n
ilo, ihi
a
ia, ja
desca
tau

```
(global)
\(=\) 'L': \(Q\) or \(Q^{T}\) is applied from the left.
\(={ }^{\prime} \mathrm{R}^{\prime}: Q\) or \(Q^{T}\) is applied from the right.
(global)
\(=\) 'N', no transpose, \(Q\) is applied.
\(=\) 'T', transpose, \(Q^{T}\) is applied.
(global) The number of rows in the distributed matrix sub (C) (\(m \geq 0\)).
(global) The number of columns in he distributed matrix sub (C) (\(n \geq 0\)).
(global)
ilo and ihi must have the same values as in the previous call of p?gehrd. \(Q\) is equal to the unit matrix except for the distributed submatrix \(Q\) (ia
+ilo:ia+ihi-1,ja+ilo:ja+ihi-1).
If side = 'L', \(1 \leq i l o \leq i h i \leq m a x(1, m) ;\)
If side = 'R', \(1 \leq i l o \leq i h i \leq \max (1, n)\);
ilo and ihi are relative indexes.
(local)
Pointer into the local memory to an array of size IId_a*LOCc(ja+m-1) if side \(=\) 'L', and IId_a*LOCc(ja+n-1) if side = 'R'.
Contains the vectors which define the elementary reflectors, as returned by p?gehrd.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)

Array of size LOCC(ja+m-2) if side = 'L', and LOCC \((j a+n-2)\) if side \(=\) 'R'.
\(\operatorname{tau}[j]\) contains the scalar factor of the elementary reflector \(H(j+1)\) as returned by p?gehrd \((0 \leq j<\operatorname{size}(\operatorname{tau}))\). tau is tied to the distributed matrix \(A\).
c
ic, jc
descc
work
lwork
(local)
Pointer into the local memory to an array of size \(11 d _c^{\star} \operatorname{LOCC}(j c+n-1)\).
Contains the local pieces of the distributed matrix sub(C).
(global) The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
Workspace array with size lwork.
(local or global)
The size of the array work.
```

lwork must be at least iaa = ia + ilo; jaa = ja+ilo-1;

```
If side = 'L',
\(m i=i h i-i l o ; n i=n ; i c c=i c+i l o ; j c c=j c ; l w o r k \geq\)
\(\max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2,(n q c 0+m p c 0) * n b _a\right)+n b _a * n b _a\)
else if side = 'R',
\(m i=m ; n i=i h i-i l o ; i c c=i c ; j c c=j c+i l o ; l w o r k \geq\)
\(\max \left(\left(n b _a^{\star}\left(n b _a-1\right)\right) / 2, \quad(n q c 0+\max (n p a 0+n u m r o c(n u m r o c(n i\right.\)
\(\left.\left.\left.+i c o f f c, n b _a, 0,0, N P C O L\right), n b _a, 0,0,1 c m q\right), m p c 0\right)\)) \(\left.n b _a\right)\)
\(+n b _a^{*} n b _a\)
end if
where \(1 \mathrm{cmq}=1 \mathrm{~cm} / \mathrm{NPCOL}\) with \(1 \mathrm{~cm}=i l \mathrm{~cm}(\) NPROW, \(N P C O L)\),
iroffa \(=\bmod (\) iaa-1, mb_a),
icoffa \(=\bmod \left(j a a-1, n b _a\right)\),
iarow \(=\) indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 \(=\) numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc \(=\bmod \left(i C C-1, m b _c\right), i C O f f C=\bmod \left(j C C-1, n b _c\right)\),
icrow \(=\) indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol \(=\) indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 \(=\) numroc (mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 \(=\) numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
c
work[0]
info
\(\operatorname{sub}(C)\) is overwritten by \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C) * Q^{\prime}\), or \(\operatorname{sub}(C) * Q\).

On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?unmhr
Multiplies a general matrix by the unitary
transformation matrix from a reduction to Hessenberg
form determined by p?gehrd.

\section*{Syntax}
```

void pcunmhr (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *ilo ,
MKL_INT *ihi , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca ,
MKL_Complex8 *tau , MKL_Complex8 *C , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc ,
MKL_Complex8 *work , MKL_INT *lwork , MKL_INT *info );
void pzunmhr (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *ilo,
MKL_INT *ihi , MKL_Complex16 *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca ,
MKL_Complex16 *tau , MKL_Complex16 *C , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc,
MKL_Complex16 *work , MKL_INT *lwork , MKL_INT *info );

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

This function overwrites the general complex distributed \(m\)-by- \(n\) matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\) with
```

            side = 'L'
    trans = 'N':
Q*sub(C)
trans = 'H':
QH*
side = 'R'
sub(C)*Q
sub(C)*QH

```
where \(Q\) is a complex unitary distributed matrix of order \(n q\), with \(n q=m\) if side \(=\) 'L' and \(n q=n\) if side \(=\) 'R'.
\(Q\) is defined as the product of ihi-ilo elementary reflectors, as returned by p?gehrd.
\(Q=H(i l o) H(i l o+1) \ldots H(i h i-1)\).

\section*{Input Parameters}
side
trans
m
n
ilo, ihi
a
ia, ja
desca
tau
(global)
\(=\) 'L': \(Q\) or \(Q^{H}\) is applied from the left.
\(={ }^{\prime} R^{\prime}: Q\) or \(Q^{H}\) is applied from the right.
(global)
\(=\) 'N', no transpose, \(Q\) is applied.
\(=' \mathrm{C}\) ', conjugate transpose, \(Q^{H}\) is applied.
(global) The number of rows in the distributed matrix sub (C) (\(m \geq 0\)).
(global) The number of columns in the distributed matrix sub (C) (\(n \geq 0\)).
(global)
These must be the same parameters ilo and ihi, respectively, as supplied to \(p\) ?gehrd. \(Q\) is equal to the unit matrix except in the distributed submatrixQ(ia+ilo:ia+ihi-1,ja+ilo:ja+ihi-1).

If side \(=\) 'L', then \(1 \leq i l o \leq i h i \leq \max (1, m)\).
If side \(=\) 'R', then \(1 \leq i l o \leq i h i \leq \max (1, n)\)
ilo and ihi are relative indexes.
(local)
Pointer into the local memory to an array of size IId_a*LOCc (ja+m-1) if side \(=\) 'L', and IId_a*LOCc (ja+n-1) if side = 'R'.

Contains the vectors which define the elementary reflectors, as returned by p?gehrd.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size LOCC (ja+m-2), if side = 'L', and LOCC (ja+n-2) if side = 'R'.
tau[j] contains the scalar factor of the elementary reflector \(H(j+1)\) as returned by p?gehrd (\(0 \leq j<\operatorname{size}(\operatorname{tau})\)). tau is tied to the distributed matrix \(A\).
c
ic, jc
descc
work
lwork
(local)
Pointer into the local memory to an array of size \(/ / d _c^{*} \operatorname{LOCc}(j c+n-1)\).
Contains the local pieces of the distributed matrix sub(C).
(global) The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
Workspace array with size lwork.
(local or global)
The size of the array work.
```

lwork must be at least iaa = ia + ilo;jaa = ja+ilo-1;
If side = 'L',mi = ihi-ilo;ni = n; icc = ic + ilo; jcc = jc;
lwork \geq max((nb_a* (nb_a-1))/2, (nqc0+mpc0)*nb_a) + nb_a*nb_a
else if side = 'R',
mi = m; ni = ihi-ilo; icc = ic; jcc = jc + ilo; lwork \geq
max((nb_a*(nb_a-1))/2, (nqc0 + max(npa0+numroc(numroc(ni
+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq ),
mpc0))*nb_a) + nb_a*nb_a
end if
where lcmq = lcm/NPCOL with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqC0 = numroc(ni+icOffc, nb_c, MYCOL, iCCOl, NPCOL),

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
```

c
work[0])
info
$C$ is overwritten by $Q^{*} \operatorname{sub}(C)$ or $Q^{\prime *} \operatorname{sub}(C)$ or $\operatorname{sub}(C)^{*} Q^{\prime}$ or $\operatorname{sub}(C)^{*} Q$.
On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
$=0$ : the execution is successful.
< 0 : if the $i$-th argument is an array and the $j$-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

```

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lahqr
Computes the Schur decomposition and/or
eigenvalues of a matrix already in Hessenberg form.

\section*{Syntax}
```

void pslahqr (MKL_INT *wantt, MKL_INT *wantz, MKL_INT *n, MKL_INT *ilo, MKL_INT *ihi,
float *a, MKL_INT *desca, float *Wr, float *wi, MKL_INT *iloz, MKL_INT *ihiz, float *z,
MKL_INT *descz, float *work, MKL_INT *lwork, MKL_INT *iwork, MKL_INT *ilwork, MKL_INT
*infO );
void pdlahqr (MKL_INT *wantt, MKL_INT *wantz, MKL_INT *n, MKL_INT *ilo, MKL_INT *ihi,
double *a, MKL_INT *desca, double *wr, double *wi, MKL_INT *iloz, MKL_INT *ihiz, double
*z, MKL_INT *descz, double *work, MKL_INT *lwork, MKL_INT *iwork, MKL_INT *ilwork,
MKL_INT *info );
void pclahqr (const MKL_INT *wantt, const MKL_INT *wantz, const MKL_INT *n, const
MKL_INT *ilo, const MKL_INT *ihi, MKL_Complex8 *a, const MKL_INT *desca, MKL_Complex8
*W, const MKL_INT *iloz, const MKL_INT *ihiz, MKL_Complex8 *z, const MKL_INT *descz,
MKL_Complex8 *work, const MKL_INT *lwork, const MKL_INT *iwork, const MKL_INT *ilwork,
MKL_INT *info );
void pzlahqr (const MKL_INT *wantt, const MKL_INT *wantz, const MKL_INT *n, const
MKL_INT *ilo, const MKL_INT *ihi, MKL_Complex16 *a, const MKL_INT *desca, MKL_Complex16
*W, const MKL_INT *iloz, const MKL_INT *ihiz, MKL_Complex16 *z, const MKL_INT *descz,
MKL_Complex16 *work, const MKL_INT *lwork, const MKL_INT *iwork, const MKL_INT *ilwork,
MKL_INT *info );

```

Include Files
- mkl_scalapack.h

\section*{Description}

This is an auxiliary function used to find the Schur decomposition and/or eigenvalues of a matrix already in Hessenberg form from columns ilo and ihi.

\section*{NOTE}

These restrictions apply to the use of p?lahqr:
- The code requires the distributed block size to be square and at least 6 .
- The code requires \(A\) and \(Z\) to be distributed identically and have identical contexts.
- The matrix A must be in upper Hessenberg form. If elements below the subdiagonal are non-zero, the resulting transformations can be nonsimilar.
- All eigenvalues are distributed to all the nodes.

\section*{Input Parameters}
wantt
wantz
\(n\)
ilo, ihi
a
desca
iloz, ihiz
z
descz
work
lwork
(global)
If want \(t \neq 0\), the full Schur form \(T\) is required;
If wantt \(=0\), only eigenvalues are required.
(global)
If want \(z \neq 0\), the matrix of Schur vectors \(Z\) is required;
If wantz \(=0\), Schur vectors are not required.
(global) The order of the Hessenberg matrix \(A\) (and \(z\) if wantz is non-zero). \(n \geq 0\).
(global)
It is assumed that \(A\) is already upper quasi-triangular in rows and columns ihi \(+1: n\), and that \(A(i l o, i l o-1)=0\) (unless ilo = 1). p?lahqr works primarily with the Hessenberg submatrix in rows and columns ilo to ihi, but applies transformations to all of \(H\) if wantt is non-zero.
\(1 \leq i l o \leq \max (1, i h i)\); ihi \(\leq n\).
(global)
Array, of size lld_a * LOCc(n). On entry, the upper Hessenberg matrix \(A\).
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(global) Specify the rows of the matrix \(Z\) to which transformations must be applied if wantz is non-zero. \(1 \leq i l o z \leq i l o\); ihisihiz \(\leq_{n}\).
(global)
Array. If wantz is non-zero, on entry \(z\) must contain the current matrix \(Z\) of transformations accumulated by pdhseqr. If wantz is zero, \(z\) is not referenced.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(Z\).
(local)
Workspace array with size lwork.
(local) The size of work. lwork is assumed big enough so that 1 work \(\geq 3 *_{n}\) \(+\max \left(2 * \max \left(l l d_{-}, l l d_{-} a\right)+2 * L O C q(n), 7 * \operatorname{ceil}(n / h b l) /\right.\) lcm(NPROW, NPCOL))).
\begin{tabular}{|c|c|}
\hline & If lwork \(=-1\), then work[0] gets set to the above number and the code returns immediately. \\
\hline iwork & (global and local) array of size ilwork. Not referenced and can be NULL pointer. \\
\hline ilwork & (local) This holds some of the iblk integer arrays. Not referenced and can be NULL pointer. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline a & On exit, if wantt is non-zero, \(A\) is upper quasi-triangular in rows and columns ilo:ihi, with any 2-by-2 or larger diagonal blocks not yet in standard form. If wantt is zero, the contents of \(A\) are unspecified on exit. \\
\hline work[0] & On exit work [0] contains the minimum value of 1 work required for optimum performance. \\
\hline \multirow[t]{2}{*}{wr, wi} & (global replicated output) \\
\hline & Arrays of size \(n\) each. The real and imaginary parts, respectively, of the computed eigenvalues ilo to ihiare stored in the corresponding elements of \(w r\) and wi. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of wr and wi, say the \(i\)-th and (\(i\) +1)-th, with wi[i-1]>0 and wi[i]<0. If wantt is zero, the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in \(A\). A may be returned with larger diagonal blocks until the next release. \\
\hline \multirow[t]{2}{*}{w} & (global replicated output) \\
\hline & Array of size \(n\). The computed eigenvalues ilo to ihi are stored in the corresponding elements of w . If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of \(w\), say the \(i\)-th and (\(i+1\))-th, with \(w[i-1]>0\) and \(w[i]<0\). If wantt is zero, the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in \(A\). A may be returned with larger diagonal blocks until the next release. \\
\hline \(z\) & On exit \(z\) has been updated; transformations are applied only to the submatrix \(Z\) (iloz:ihiz, ilo:ihi). \\
\hline \multirow[t]{4}{*}{info} & (global) \\
\hline & \(=0\) : the execution is successful. \\
\hline & < 0: the parameter number - info is incorrect or inconsistent \\
\hline & > 0: p?lahqr failed to compute all the eigenvalues ilo to ihi in a total of \(30 *\) (ihi-ilo+1) iterations; if info \(=i\), elements \(i+1\) : ihi of wr and wi contain the eigenvalues that have been successfully computed. \\
\hline
\end{tabular}

See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p? trevc}

Computes right and/or left eigenvectors of a complex upper triangular matrix in parallel.
```

Syntax
void pctrevc (const char* side, const char* howmny, const MKL_INT* select, const
MKL_INT* n, MKL_Complex8* t, const MKL_INT* desct, MKL_Complex8* vl, const MKL_INT*
descvl, MKL_Complex8* vr, const MKL_INT* descvr, const MKL_INT* mm, MKL_INT* m,
MKL_Complex8* work, float* rwork, MKL_INT* info);
void pztrevc (const char* side, const char* howmny, const MKL_INT* select, const
MKL_INT* n, MKL_Complex16* t, const MKL_INT* desct, MKL_Complex16* vl, const MKL_INT*
descvl, MKL_Complex16* vr, const MKL_INT* descvr, const MKL_INT* mm, MKL_INT* m,
MKL_Complex16* work, double* rwork, MKL_INT* info);
void pdtrevc (const char* side, const char* howmny, const MKL_INT* select, const
MKL_INT* n, double* t, const MKL_INT* desct, double* vl, const MKL_INT* descvl, double*
vr, const MKL_INT* descvr, const MKL_INT* mm, MKL_INT* m, double* work, MKL_INT* infol;
void pstrevc (const char* side, const char* howmny, const MKL_INT* select, const
MKL_INT* n, float* t, const MKL_INT* desct, float* vl, const MKL_INT* descvl, float* vr,
const MKL_INT* descvr, const MKL_INT* mm, MKL_INT* m, float* work, MKL_INT* infol;

```

Include Files
- mkl_scalapack.h

\section*{Description}
p?trevc computes some or all of the right and/or left eigenvectors of a complex upper triangular matrix \(T\) in parallel.
The right eigenvector x and the left eigenvector y of \(T\) corresponding to an eigenvalue w are defined by:
\(T^{*} \mathrm{x}=\mathrm{w}^{*} \mathrm{x}\),
\(y^{\prime *} T=w^{*} y^{\prime}\)
where \(y^{\prime}\) denotes the conjugate transpose of the vector \(y\).
If all eigenvectors are requested, the routine may either return the matrices \(X\) and/or \(Y\) of right or left eigenvectors of \(T\), or the products \(Q^{*} X\) and/or \(Q^{*} Y\), where \(Q\) is an input unitary matrix. If \(T\) was obtained from the Schur factorization of an original matrix \(A=Q^{*} T^{*} Q^{\prime}\), then \(Q^{*} X\) and \(Q^{*} Y\) are the matrices of right or left eigenvectors of \(A\).

\section*{Input Parameters}
side
howmny
select
(global)
= 'R': compute right eigenvectors only;
\(=\) 'L': compute left eigenvectors only;
\(=\) ' B ': compute both right and left eigenvectors.
(global)
= ' A ': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors, and backtransform them using the input matrices supplied in vr and/or vl;
\(=\) 'S': compute selected right and/or left eigenvectors, specified by the logical array select.
(global)

Array, size (\(n\))
If howmny = 'S', select specifies the eigenvectors to be computed.
If howmny = 'A' or ' B ', select is not referenced. To select the eigenvector corresponding to the \(j\)-th eigenvalue, select[j-1] must be set to nonzero.
(global)
The order of the matrix \(T . n>=0\).
(local)
Array, size IId_t*LOCc(n).
The upper triangular matrix \(T . T\) is modified, but restored on exit.
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix \(T\).
(local)
Array, size (descvl(I/d_),mm)
On entry, if side = 'L' or 'B' and howmny = 'B', vl must contain an n-by-n matrix \(Q\) (usually the unitary matrix \(Q\) of Schur vectors returned by ?hseqr).
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix VL.
(local)
Array, size descvr(lld_)*mm.
On entry, if side = 'R' or 'B' and howmny = 'B', vr must contain an n-by-n matrix \(Q\) (usually the unitary matrix \(Q\) of Schur vectors returned by ?hseqr).
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix \(V R\).
(global)
The number of columns in the arrays \(v l\) and/or vr. \(m m>=m\).
(local)
Array, size (\(2 * \operatorname{desct}(I / d\) _))
Additional workspace may be required if p?lattrs is updated to use work.
Array, size (desct(IId_))

\section*{Output Parameters}
\(t\)
vI

Vr
m
info

The upper triangular matrix \(T . T\) is modified, but restored on exit.
On exit, if side = 'L' or 'B', vl contains:
if howmny \(=\) ' A ', the matrix \(Y\) of left eigenvectors of \(T\);
if howmny \(=\) ' B ', the matrix \(Q^{*} Y\);
if howmny \(=\) 'S', the left eigenvectors of \(T\) specified by select, stored consecutively in the columns of \(v l\), in the same order as their eigenvalues. If side = 'R', vl is not referenced.

On exit, if side \(=\) 'R' or 'B', vr contains:
if howmny \(=\) ' A ', the matrix \(X\) of right eigenvectors of \(T\);
if howmny = 'B', the matrix \(Q^{*} X\);
if howmny \(=\) ' S ', the right eigenvectors of \(T\) specified by select, stored consecutively in the columns of \(v r\), in the same order as their eigenvalues. If side \(=\) 'L', vr is not referenced.
(global)
The number of columns in the arrays \(v 1\) and/or vr actually used to store the eigenvectors. If howmny = 'A' or 'B', m is set to \(n\). Each selected eigenvector occupies one column.
(global)
\(=0\) : successful exit
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value

\section*{Application Notes}

The algorithm used in this program is basically backward (forward) substitution. Scaling should be used to make the code robust against possible overflow. But scaling has not yet been implemented in p?lattrs which is called by this routine to solve the triangular systems. p?lattrs just calls p?trsv.

Each eigenvector is normalized so that the element of largest magnitude has magnitude 1 ; here the magnitude of a complex number \((x, y)\) is taken to be \(|x|+|y|\).

\section*{Singular Value Decomposition: ScaLAPACK Driver Routines}

This section describes ScaLAPACK routines for computing the singular value decomposition (SVD) of a general m-by-n matrix \(A\) (see LAPACK"Singular Value Decomposition").
To find the SVD of a general matrix \(A\), this matrix is first reduced to a bidiagonal matrix \(B\) by a unitary (orthogonal) transformation, and then SVD of the bidiagonal matrix is computed. Note that the SVD of \(B\) is computed using the LAPACK routine ? bodsqr .

Table "Computational Routines for Singular Value Decomposition (SVD)" lists ScaLAPACK computational routines for performing this decomposition.
Computational Routines for Singular Value Decomposition (SVD)
\begin{tabular}{lll}
\hline Operation & General matrix & Orthogonal/unitary matrix \\
\hline Reduce \(A\) to a bidiagonal matrix & p?gebrd & \\
Multiply matrix after reduction & & p ? ormbr/p?unmbr \\
\hline
\end{tabular}

\section*{p?gebrd \\ Reduces a general matrix to bidiagonal form.}

\section*{Syntax}
```

void psgebrd (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *d, float *e , float *tauq, float *taup , float *work, MKL_INT
*lwork , MKL_INT *info );
void pdgebrd (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , double *d , double *e, double *tauq, double *taup , double *work, MKL_INT
*lwork , MKL_INT *info );
void pcgebrd (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , float *d, float *e , MKL_Complex8 *tauq, MKL_Complex8 *taup ,
MKL_Complex8 *work , MKL_INT *lwork , MKL_INT *info );
void pzgebrd (MKL_INT *m, MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , double *d, double *e , MKL_Complex16 *tauq , MKL_Complex16 *taup ,
MKL_Complex16 *work , MKL_INT *lwork , MKL_INT *info );

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?gebrd function reduces a real/complex general m-by-n distributed matrix \(\operatorname{sub}(A)=A(i a: i a+m-1\), ja:ja+n-1) to upper or lower bidiagonal form \(B\) by an orthogonal/unitary transformation:
\(Q^{\prime *} \operatorname{sub}(A)^{*} P=B\).
If \(m \geq n, B\) is upper bidiagonal; if \(m<n, B\) is lower bidiagonal.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & (global) The number of rows in the distributed matrix \(\operatorname{sub}(A)(m \geq 0)\). \\
\hline \(n\) & (global) The number of columns in the distributed matrix \(\operatorname{sub}(A)(n \geq 0)\). \\
\hline \multirow[t]{2}{*}{a} & (local) \\
\hline & Real pointer into the local memory to an array of size IId_a*LOCC(ja+n-1). On entry, this array contains the distributed matrix sub \((A)\). \\
\hline ia, ja & (global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{2}{*}{work} & (local) \\
\hline & Workspace array of size lwork. \\
\hline \multirow[t]{5}{*}{lwork} & (local or global) size of work, must be at least: \\
\hline & lwork \(\geq\) nb* \((m p a 0\) + nqa0+1) + nqa0 \\
\hline & where nb \(=\) mb_a \(=\) nb_ \(a\), \\
\hline & iroffa \(=\bmod (i a-1, n b)\), \\
\hline & icoffa \(=\bmod (j a-1, n b)\), \\
\hline
\end{tabular}
```

iarow = indxg2p(ia, nb, MYROW, rsrc_a, NPROW),
iacol = indxg2p (ja, nb, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m +iroffa, nb, MYROW, iarow, NPROW),
nqa0 = numroc(n +icoffa, nb, MYCOL, iacol, NPCOL),

```

\section*{NOTE}
\(\underline{\bmod (x, y)}\) is the integer remainder of \(x / y\).
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
d
e
tauq, taup
On exit, if \(m \geq n\), the diagonal and the first superdiagonal of \(\operatorname{sub}(A)\) are overwritten with the upper bidiagonal matrix \(B\); the elements below the diagonal, with the array tauq, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors, and the elements above the first superdiagonal, with the array taup, represent the orthogonal matrix \(P\) as a product of elementary reflectors. If \(m<n\), the diagonal and the first subdiagonal are overwritten with the lower bidiagonal matrix \(B\); the elements below the first subdiagonal, with the array tauq, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors, and the elements above the diagonal, with the array taup, represent the orthogonal matrix \(P\) as a product of elementary reflectors. See Application Notes below.
(local)
Array of size \(\operatorname{LOCC}(j a+\min (m, n)-1)\) if \(m \geq n\) and \(\operatorname{LOCr}(\operatorname{ia+min}(m, n)-1)\) otherwise. The distributed diagonal elements of the bidiagonal matrix \(B\) : \(d[i]=A(i+1, i+1), 0 \leq i<\operatorname{size}(d)\).
\(d\) is tied to the distributed matrix \(A\).
(local)
Array of size LOCr (ia+min \((m, n)-1)\) if \(m \geq_{n} ; \operatorname{LOCC}(j a+\min (m, n)-2)\) otherwise. The distributed off-diagonal elements of the bidiagonal distributed matrix \(B\) :
If \(m \geq n, e[i]=A(i+1, i+2)\) for \(i=0,1, \ldots, n-2\); if \(m<n, e[i]=A(i+2, i+1)\) for \(i=0,1, \ldots, m-2\). e is tied to the distributed matrix \(A\).
(local)
Arrays of size LOCC (ja+min \((m, n)-1)\) for tauq and LOCr (ia \(+\min (m, n)-1\)) for taup. Contain the scalar factors of the elementary reflectors that represent the orthogonal/unitary matrices \(Q\) and \(P\), respectively. tauq and taup are tied to the distributed matrix \(A\). See Application Notes below.
```

work[0]
info
On exit work[0] contains the minimum value of 1 work required for optimum performance.
(global)
$=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

```

\section*{Application Notes}

The matrices \(Q\) and \(P\) are represented as products of elementary reflectors:
If \(m \geq n\),
\(Q=H(1)^{*} H(2)^{*} \ldots * H(n)\), and \(P=G(1) * G(2)^{*} \ldots * G(n-1)\).
Each \(H(i)\) and \(G(i)\) has the form:
\(H(i)=i-\operatorname{tanq}{ }^{*} v^{*} v^{\prime}\) and \(G(i)=i-\operatorname{taup} u^{*} u^{\prime}\)
where tauq and taup are real/complex scalars, and \(v\) and \(u\) are real/complex vectors;
\(v(1: i-1)=0, v(i)=1\), and \(v(i+1: m)\) is stored on exit in \(A(i a+i: i a+m-1, j a+i-1)\);
\(u(1: i)=0, u(i+1)=1\), and \(u(i+2: n)\) is stored on exit in \(A(i a+i-1, j a+i+1: j a+n-1)\);
tauq is stored in tauq[ja+i-2] and taup in taup[ia+i-2].
If \(m<n\),
\(Q=H(1)^{*} H(2)^{*} \ldots * H(m-1)\), and \(P=G(1)^{*} G(2)^{*} \ldots * G(m)\)
Each \(H(i)\) and \(G(i)\) has the form:
\(H(i)=i-\operatorname{tau}^{*} v^{*} v^{\prime}\) and \(\left.G(i)=i-\operatorname{tau}\right)^{*} u^{*} u^{\prime}\)
here tauq and taup are real/complex scalars, and \(v\) and \(u\) are real/complex vectors;
\(v(1: i)=0, v(i+1)=1\), and \(v(i+2: m)\) is stored on exit in \(A(i a+i: i a+m-1, j a+i-1) ; u(1: i-1)=0, u(i)=1\), and \(u(i+1: n)\) is stored on exit in \(A(i a+i-1, j a+i+1: j a+n-1)\);
tauq is stored in tauq[ja+i-2] and taup in taup[ia+i-2].
The contents of \(\operatorname{sub}(A)\) on exit are illustrated by the following examples:
\(m=6\) and \(n=5(m>n):\)
\(\left[\begin{array}{ccccc}d & e & u 1 & u 1 & u 1 \\ v 1 & d & e & u 2 & u 2 \\ v 1 & v 2 & d & e & u 3 \\ v 1 & v 2 & v 3 & d & e \\ v 1 & v 2 & v 3 & v 4 & d \\ v 1 & v 2 & v 3 & v 4 & v 5\end{array}\right]\)
\(m=5\) and \(n=6(m<n):\)
\(\left[\begin{array}{cccccc}d & u 1 & u 1 & u 1 & u 1 & u 1 \\ e & d & u 2 & u 2 & u 2 & u 2 \\ v 1 & e & d & u 3 & u 3 & u 3 \\ v 1 & v 2 & e & d & u 4 & u 4 \\ v 1 & v 2 & v 3 & e & d & u 5\end{array}\right]\)
where \(d\) and \(e\) denote diagonal and off-diagonal elements of \(B\), vi denotes an element of the vector defining \(H(i)\), and \(u i\) an element of the vector defining \(G(i)\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?ormbr}

Multiplies a general matrix by one of the orthogonal matrices from a reduction to bidiagonal form
determined by p?gebrd.

\section*{Syntax}
```

void psormbr (char *vect , char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT
*k , float *a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, float *tau , float *C ,
MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , float *work , MKL_INT *lwork , MKL_INT
*info );
void pdormbr (char *vect , char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT
*k , double *a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *tau , double *c ,
MKL_INT *ic, MKL_INT *jc , MKL_INT *descc, double *work, MKL_INT *lwork, MKL_INT
*infO);

```

Include Files
- mkl_scalapack.h

\section*{Description}

If vect \(=\) ' \(Q\) ', the p?ormbr function overwrites the general real distributed \(m\)-by-n matrix \(\operatorname{sub}(C)=C(i c: i c\) \(+m-1, j c: j c+n-1)\) with
\[
\begin{array}{lll}
& \text { side }=\text { ' } \mathrm{L} ' & \text { side }={ }^{\prime} \mathrm{R} ' \\
\text { trans }=\text { ' } \mathrm{N} ': & Q \operatorname{sub}(C) & \operatorname{sub}(C) Q \\
\text { trans }=\text { ' } \mathrm{T} \text { ': } & Q^{T} \operatorname{sub}(C) & \operatorname{sub}(C) Q^{T}
\end{array}
\]

If vect \(=\) ' \(P\) ', the function overwrites sub(\(C\)) with
\[
\begin{array}{lll}
& \text { side }=' \mathrm{~L} ' & \text { side }={ }^{\prime} \mathrm{R}^{\prime} \\
\text { trans }=\text { ' } \mathrm{N} ': & P \operatorname{sub}(C) & \operatorname{sub}(C) P \\
\text { trans }=\mathrm{I}^{\prime}: & P^{T} \operatorname{sub}(C) & \operatorname{sub}(C) P^{T}
\end{array}
\]

Here \(Q\) and \(P^{T}\) are the orthogonal distributed matrices determined by \(p\) ? gebrd when reducing a real distributed matrix \(A\left(i a:^{*}\right.\), ja:*) to bidiagonal form: \(A\left(i a:^{*}, j a: *\right)=Q^{*} B^{*} P^{T} . Q\) and \(P^{T}\) are defined as products of elementary reflectors \(H(i)\) and \(G(i)\) respectively.

Let \(n q=m\) if side \(=\) 'L' and \(n q=n\) if side \(=\) 'R'. Therefore \(n q\) is the order of the orthogonal matrix \(Q\) or \(P^{T}\) that is applied.
```

If vect = 'Q', A(ia:*, ja:*) is assumed to have been an nq-by-k matrix:

```
If \(n q \geq k, Q=H(1) H(2) \ldots H(k)\);
If \(n q<k, Q=H(1) H(2) \ldots H(n q-1)\).
If vect \(=\) ' \(P^{\prime}, A\left(i a:^{*}, j a:^{*}\right)\) is assumed to have been a \(k\)-by-nq matrix:

If \(k<n q, P=G(1) G(2) \ldots G(k)\);
If \(k \geq n q, P=G(1) G(2) \ldots G(n q-1)\).
Input Parameters
vect
m
n
k
a
(global)
If vect \(=\) ' \(Q\) ', then \(Q\) or \(Q^{T}\) is applied.
If vect \(=P^{\prime}\) ', then \(P\) or \(P^{T}\) is applied.
(global)
If side ='L', then \(Q\) or \(Q^{T}, P\) or \(P^{T}\) is applied from the left.
If side \(=\) 'R', then \(Q\) or \(Q^{T}, P\) or \(P^{T}\) is applied from the right.
(global)
If trans \(=\) ' \(N\) ', no transpose, \(Q\) or \(P\) is applied.
If trans \(=\) ' T ', then \(Q^{T}\) or \(P^{T}\) is applied.
(global) The number of rows in the distributed matrix sub (C).
(global) The number of columns in the distributed matrix sub (C).
(global)
If vect \(=\) ' \(Q\) ', the number of columns in the original distributed matrix reduced by p?gebrd;
If vect \(=\) ' \(P\) ', the number of rows in the original distributed matrix reduced by p?gebrd.
Constraints: \(k \geq 0\).
(local)
Pointer into the local memory to an array of size IId_a * LOCc(ja
\(+\min (n q, k)-1)\) if vect=' \(Q\) ', and IId_a*LOCc(ja+nq-1) if vect = 'P'.
\(n q=m\) if side \(=\) 'L', and \(n q=n\) otherwise.
The vectors that define the elementary reflectors \(H(i)\) and \(G(i)\), whose products determine the matrices \(Q\) and \(P\), as returned by p?gebrd.
If vect \(=\) 'Q', lld_ \(a \geq \max (1, \quad\) LOCr(ia+nq-1));
If vect \(=\) ' \(P\) ', lld_a \(\quad \max (1, \operatorname{LOCr}(i a+\min (n q, k)-1))\).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
```

desca
tau
C
ic, jc
descc
work
lwork
(global and local) array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
Array of size LOCC(ja+min(nq, k)-1), if vect = 'Q', and LOCr(ia $+\min (n q, k)-1)$, if vect $=' P '$.
tau[i] must contain the scalar factor of the elementary reflector $H(i+1)$ or $G(i+1)$
which determines $Q$ or $P$, as returned by pdgebrd in its array argument tauq or taup. tau is tied to the distributed matrix $A$.
(local)
Pointer into the local memory to an array of size $/ I d \_c^{*} \operatorname{LOCc}(j c+n-1)$.
Contains the local pieces of the distributed matrix sub (C).
(global) The row and column indices in the global matrix $C$ indicating the first row and the first column of the submatrix $C$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix $C$.
(local)
Workspace array of size lwork.
(local or global) size of work, must be at least:

```
else
```

If side = 'L'

```
If side = 'L'
nq = m;
nq = m;
if ((vect = 'Q' and nq\geqk) or (vect is not equal to 'Q' and nq>k)),
if ((vect = 'Q' and nq\geqk) or (vect is not equal to 'Q' and nq>k)),
iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;
iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;
iaa= ia+1; jaa=ja; mi=m-1; ni=n; icc=ic+1; jcC= jc;
iaa= ia+1; jaa=ja; mi=m-1; ni=n; icc=ic+1; jcC= jc;
end if
end if
else
else
If side = 'R',nq = n;
If side = 'R',nq = n;
if((vect = 'Q' and nq\geqk) or (vect is not equal to 'Q' and
if((vect = 'Q' and nq\geqk) or (vect is not equal to 'Q' and
nq>k)),
nq>k)),
iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;
iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;
else
else
iaa= ia; jaa= ja+1; mi= m; ni= n-1; icc= ic; jcc= jc+1;
iaa= ia; jaa= ja+1; mi= m; ni= n-1; icc= ic; jcc= jc+1;
end if
end if
end if
end if
If vect = 'Q',
If vect = 'Q',
If side = 'L',lwork\geqmax((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) +
If side = 'L',lwork\geqmax((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) +
nb_a * nb_a
```

nb_a * nb_a

```
```

else if side = 'R',
lwork\geqmax((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 +
numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0,
lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
else if vect is not equal to 'Q', if side = 'L',
lwork}\geqmax((mb_a*(mb_a-1))/2, (mpc0 + max(mqa0 +
numroc(numroc(mi+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0,
lcmp), nq(0))*mb_a) + mb_a*mb_a
else if side = 'R',
lwork\geqmax((mb_a* (mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a*mb_a
end if
end if
where lcmp = lcm/NPROW, lcmq = lcm/NPCOL, with lcm =
ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(jaa, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(mi+icoffa, nb_a, MYCOL, iacol, NPCOL),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, cSrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icOffc, nb_c, MYCOL, icCol, NPCOL),

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

C
On exit, if vect= ' \(Q^{\prime}, \operatorname{sub}(C)\) is overwritten by \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C) * Q\); if vect \(={ }^{\prime} P^{\prime}, \operatorname{sub}(C)\) is overwritten by \(P^{*} \operatorname{sub}(C)\), or \(P^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} P\), or sub \((C) * P^{\prime}\).

On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?unmbr
Multiplies a general matrix by one of the unitary
transformation matrices from a reduction to bidiagonal
form determined by p?gebrd.

\section*{Syntax}
```

void pcunmbr (char *vect , char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT
*k , MKL_Complex8 *a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *tau ,
MKL_Complex8 *c , MKL_INT *ic, MKL_INT *jc, MKL_INT *descc, MKL_Complex8 *work ,
MKL_INT *lwork , MKL_INT *info );
void pzunmbr (char *vect , char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT
*k , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca , MKL_Complex16
*tau , MKL_Complex16 *c , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex16
*work , MKL_INT *lwork , MKL_INT *info );

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

If vect \(=\) ' \(Q\) ', the p?unmbr function overwrites the general complex distributed \(m\)-by- \(n\) matrix \(\operatorname{sub}(C)=\) \(C(i c: i c+m-1, j c: j c+n-1)\) with
\begin{tabular}{lll}
& side \(=^{\prime} \mathrm{L} '\) & side \(={ }^{\prime} \mathrm{R}^{\prime}\) \\
trans \(=\) 'N': & \(Q^{*} \operatorname{sub}(C)\) & \(\operatorname{sub}(C)^{*} Q\) \\
trans \(=\) ' C' \(^{\prime}:\) & \(Q^{H *} \operatorname{sub}(C)\) & \(\operatorname{sub}(C)^{*} Q^{H}\)
\end{tabular}

If vect \(=\) ' \(P\) ', the function overwrites \(\operatorname{sub}(C)\) with
\[
\begin{array}{lll}
& \text { side }=^{\prime} \mathrm{L} ' & \text { side }={ }^{\prime} \mathrm{R}^{\prime} \\
\text { trans }=\mathrm{I}^{\prime}: & P^{*} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} P \\
\text { trans }=\mathrm{I}^{\prime} \mathrm{C}: & P^{H *} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} P^{H}
\end{array}
\]

Here \(Q\) and \(P^{H}\) are the unitary distributed matrices determined by p ? gebrd when reducing a complex distributed matrix \(A\left(i a:^{*}\right.\), ja:*) to bidiagonal form: \(A\left(i a:^{*}, j a:^{*}\right)=Q^{*} B^{*} P^{H}\).
\(Q\) and \(P^{H}\) are defined as products of elementary reflectors \(H(i)\) and \(G(i)\) respectively.
Let \(n q=m\) if side \(=\) 'L' and \(n q=n\) if side \(=\) 'R'. Therefore \(n q\) is the order of the unitary matrix \(Q\) or \(P^{H}\) that is applied.
If vect \(=\) ' \(Q^{\prime}, A\left(\right.\) ia:*, \(\left.j a:^{*}\right)\) is assumed to have been an \(n q\)-by- \(k\) matrix:
If \(n q \geq k, Q=H(1) H(2) \ldots H(k)\);
If \(n q<k, Q=H(1) H(2) \ldots H(n q-1)\).
If vect \(=\quad{ }^{\prime} P^{\prime}, A\left(\right.\) ia:* \(\left.^{*}, j a:^{*}\right)\) is assumed to have been a \(k\)-by-nq matrix:
If \(k<n q, P=G(1) G(2) \ldots G(k)\);
If \(k \geq n q, P=G(1) G(2) \ldots G(n q-1)\).

\section*{Input Parameters}
vect
side
m
\(n\)
k
a
(global)
If vect \(=\) ' \(Q\) ', then \(Q\) or \(Q^{H}\) is applied.
If vect \(=\) ' \(P^{\prime}\), then \(P\) or \(P^{H}\) is applied.
(global)
If side ='L', then \(Q\) or \(Q^{H}, P\) or \(P^{H}\) is applied from the left.
If side \(=\) ' \(\mathrm{R}^{\prime}\), then \(Q\) or \(Q^{H}, P\) or \(P^{H}\) is applied from the right.
(global)
If trans = 'N', no transpose, \(Q\) or \(P\) is applied.
If trans \(=\) ' C', conjugate transpose, \(Q^{H}\) or \(P^{H}\) is applied.
(global) The number of rows in the distributed matrix sub (C) \(m \geq 0\).
(global) The number of columns in the distributed matrix sub (C) \(n \geq 0\).
(global)
If vect \(=\) ' \(Q\) ', the number of columns in the original distributed matrix reduced by p?gebrd;

If vect \(=\) ' \(P^{\prime}\), the number of rows in the original distributed matrix reduced by p?gebrd.
Constraints: \(k \geq 0\).
(local)
Pointer into the local memory to an array of size IId_a * LOCc(ja \(+\min (n q, k)-1)\) if vect=' \(Q\) ', and Ild_a* LOCc \((j a+n q-1)\) if vect \(=\) ' \(\mathrm{P}^{\prime}\).
\(n q=m\) if side \(=\) 'L', and \(n q=n\) otherwise.
The vectors that define the elementary reflectors \(H(i)\) and \(G(i)\), whose products determine the matrices \(Q\) and \(P\), as returned by p?gebrd.
If vect \(=\) ' Q', lld_a \(\geq \max (1, \operatorname{LOCr}(i a+n q-1))\);
If vect \(=' P^{\prime}, \operatorname{lld} a \geq \max (1, \operatorname{LOCr}(i a+\min (n q, k)-1))\).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
```

desca
tau
C
ic, jc
descc
work
lwork
(global and local) array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
Array of size LOCC(ja+min(nq, k)-1), if vect = 'Q', and LOCr(ia $+\min (n q, k)-1)$, if vect $=' P '$.
tau[i] must contain the scalar factor of the elementary reflector $H(i+1)$ or $G(i+1)$, which determines $Q$ or $P$, as returned by p?gebrd in its array argument tauq or taup. tau is tied to the distributed matrix $A$.
(local)
Pointer into the local memory to an array of size $/ / d_{-} c^{*} \operatorname{LOCc}(j c+n-1)$.
Contains the local pieces of the distributed matrix sub (C).
(global) The row and column indices in the global matrix $C$ indicating the first row and the first column of the submatrix $C$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix $C$.
(local)
Workspace array of size lwork.
(local or global) size of work, must be at least:

```
```

If side = 'L'

```
If side = 'L'
nq = m;
nq = m;
if ((vect = 'Q' and nq \geq k) or (vect is not equal to 'Q' and
if ((vect = 'Q' and nq \geq k) or (vect is not equal to 'Q' and
nq>k)), iaa= ia; jaa= ja; mi= m; ni= n; icc= ic; jcc= jc;
nq>k)), iaa= ia; jaa= ja; mi= m; ni= n; icc= ic; jcc= jc;
else
else
iaa= ia+1; jaa= ja; mi=m-1; ni= n; icc= ic+1; jcc= jc;
iaa= ia+1; jaa= ja; mi=m-1; ni= n; icc= ic+1; jcc= jc;
end if
end if
else
else
If side = 'R',nq=n;
If side = 'R',nq=n;
if ((vect = 'Q' and nq \geq k) or (vect is not equal to 'Q' and
if ((vect = 'Q' and nq \geq k) or (vect is not equal to 'Q' and
nq\geqk)),
nq\geqk)),
iaa= ia; jaa= ja; mi= m; ni= n; icc= ic; jcc= jc;
iaa= ia; jaa= ja; mi= m; ni= n; icc= ic; jcc= jc;
else
else
iaa= ia; jaa= ja+1; mi= m; ni= n-1; icc= ic; jcc= jc+1;
iaa= ia; jaa= ja+1; mi= m; ni= n-1; icc= ic; jcc= jc+1;
end if
end if
end if
end if
If vect = 'Q',
If vect = 'Q',
If side = 'L', lwork \geq max((nb_a* (nb_a-1))/2,
If side = 'L', lwork \geq max((nb_a* (nb_a-1))/2,
(nqc0+mpc0)*nb_a) + nb_a*nb_a
(nqc0+mpc0)*nb_a) + nb_a*nb_a
else if side = 'R',
```

else if side = 'R',

```
```

lwork \geq max((nb_a* (nb_a-1))/2, (nqC0 +
max(npa0+numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), nb_a,
0, 0, lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
else if vect is not equal to 'Q',
if side = 'L',
lwork \geq max((mb_a*(mb_a-1))/2, (mpc0 +
max (mqa0+numroc(numroc(mi+iroffc, mb_a, 0, 0, NPROW), mb_a,
0, 0, lcmp), nqc(0))*mb_a) + mb_a*mb_a
else if side = 'R',
lwork \geq max((mb_a*(mb_a-1))/2, (mpc0 + nqC0)*mb_a) +
mb_a*mb_a
end if
end if
where Icmp = Icm/NPROW, Icmq = Icm/NPCOL, with Icm =
ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(jaa, nb_a, MYCOL, CSrC_a, NPCOL),
mqa0 = numroc(mi+icoffa, nb_a,MYCOL, iacol, NPCOL),
npa0 = numroc(ni+iroffa,mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc}=\operatorname{mod}(jcc-1, nb_c)
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

C
On exit, if vect=' \(Q^{\prime}\), \(\operatorname{sub}(C)\) is overwritten by \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C)^{*} Q\); if vect=' \(P^{\prime}, \operatorname{sub}(C)\) is overwritten by \(P^{*} \operatorname{sub}(C)\), or \(P^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C) * P\), or \(\operatorname{sub}(C)^{*} P^{\prime}\).

On exit work[0] contains the minimum value of lwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{Generalized Symmetric-Definite Eigenvalue Problems: ScaLAPACK Computational Routines}

This section describes ScaLAPACK routines that allow you to reduce the generalized symmetric-definite eigenvalue problems (see LAPACKGeneralized Symmetric-Definite Eigenvalue Problems) to standard symmetric eigenvalue problem \(C y=\lambda y\), which you can solve by calling ScaLAPACK routines (see Symmetric Eigenproblems).
Table "Computational Routines for Reducing Generalized Eigenproblems to Standard Problems" lists these routines.
Computational Routines for Reducing Generalized Eigenproblems to Standard Problems
\begin{tabular}{lll}
\hline Operation & Real symmetric matrices & Complex Hermitian matrices \\
\hline Reduce to standard problems & p?sygst & p?hegst \\
\hline
\end{tabular}
```

p?sygst
Reduces a real symmetric-definite generalized
eigenvalue problem to the standard form.

```

Syntax
```

void pssygst (MKL_INT *ibtype , char *uplo, MKL_INT *n , float *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca, float *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb ,
float *scale , MKL_INT *info );
void pdsygst (MKL_INT *ibtype , char *uplo, MKL_INT *n , double *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca, double *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb ,
double *scale, MKL_INT *info );

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?sygstfunction reduces real symmetric-definite generalized eigenproblems to the standard form.
In the following \(\operatorname{sub}(A)\) denotes \(A(i a: i a+n-1, j a: j a+n-1)\) and \(\operatorname{sub}(B)\) denotes \(B(i b: i b+n-1, j b: j b+n-1)\).
If ibtype \(=1\), the problem is
\(\operatorname{sub}(A) * x=\lambda^{*} \operatorname{sub}(B)^{*} x\),
and \(\operatorname{sub}(A)\) is overwritten by \(\operatorname{inv}\left(U^{T}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)\), or \(\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{T}\right)\).
If ibtype \(=2\) or 3 , the problem is
\(\operatorname{sub}(A)^{*} \operatorname{sub}(B)^{*} x=\lambda^{*} x, \operatorname{or} \operatorname{sub}(B)^{*} \operatorname{sub}(A)^{*} x=\lambda^{*} x\),
and \(\operatorname{sub}(A)\) is overwritten by \(U^{*} \operatorname{sub}(A)^{*} U^{T}\), or \(L^{T *} \operatorname{sub}(A)^{*} L\).
\(\operatorname{sub}(B)\) must have been previously factorized as \(U^{T *} U\) or \(L^{*} L^{T}\) by p?potrf.
Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{ibtype} & (global) Must be 1 or 2 or 3 . \\
\hline & If itype \(=1\), compute \(\operatorname{inv}\left(U^{T}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)\), or \(\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{T}\right)\); \\
\hline & If itype \(=2\) or 3 , compute \(U^{*} \operatorname{sub}(A)^{*} U^{T}\), or \(L^{T *} \operatorname{sub}(A)^{*} L\). \\
\hline \multirow[t]{3}{*}{uplo} & (global) Must be 'U' or 'L'. \\
\hline & If uplo = 'U', the upper triangle of \(\operatorname{sub}(A)\) is stored and \(\operatorname{sub}(B)\) is factored as \(U^{T *} U\). \\
\hline & If uplo = 'L', the lower triangle of \(\operatorname{sub}(A)\) is stored and \(\operatorname{sub}(B)\) is factored as \(L^{*} L^{T}\). \\
\hline \(n\) & (global) The order of the matrices sub (A) and sub (B) (\(n \geq 0)\). \\
\hline \multirow[t]{4}{*}{a} & (local) \\
\hline & Pointer into the local memory to an array of size IId_a*LOCc(ja+n-1). On entry, the array contains the local pieces of the \(n-b y-n\) symmetric distributed matrix \(\operatorname{sub}(A)\). \\
\hline & If uplo = 'U', the leading \(n\)-by-n upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. \\
\hline & If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced. \\
\hline ia, ja & (global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{2}{*}{b} & (local) \\
\hline & Pointer into the local memory to an array of size \(I I d _b^{*} L O C c(j b+n-1)\). On entry, the array contains the local pieces of the triangular factor from the Cholesky factorization of sub (\(B\)) as returned by p?potrf. \\
\hline ib, jb & (global) The row and column indices in the global matrix \(B\) indicating the first row and the first column of the submatrix \(B\), respectively. \\
\hline descb & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(B\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a\)
scale
info

On exit, if info \(=0\), the transformed matrix, stored in the same format as \(\operatorname{sub}(A)\).
(global)
Amount by which the eigenvalues should be scaled to compensate for the scaling performed in this function. At present, scale is always returned as 1.0 , it is returned here to allow for future enhancement.
(global)
If info \(=0\), the execution is successful. If info \(<0\), if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?hegst
Reduces a Hermitian positive-definite generalized eigenvalue problem to the standard form.

\section*{Syntax}
```

void pchegst (MKL_INT *ibtype , char *uplo, MKL_INT *n , MKL_Complex8 *a , MKL_INT
*ia, MKL_INT *ja , MKL_INT *desca , MKL_Complex}\overline{8} *b , MKL_INT *ib , MKL_INT *j\overline{b}
MKL_INT *descb, float *scale, MKL_INT *info );
void pzhegst (MKL_INT *ibtype , char *uplo, MKL_INT *n , MKL_Complex16 *a , MKL_INT
*ia, MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib , MKL_INT *j\overline{b},
MKL_INT *descb , double *scale , MKL_INT *info );

```

Include Files
- mkl_scalapack.h

\section*{Description}

The p?hegst function reduces complex Hermitian positive-definite generalized eigenproblems to the standard form.

In the following \(\operatorname{sub}(A)\) denotes \(A(i a: i a+n-1, j a: j a+n-1)\) and \(\operatorname{sub}(B)\) denotes \(B(i b: i b+n-1, j b: j b+n-1)\).
If ibtype \(=1\), the problem is
\(\operatorname{sub}(A) * x=\lambda * \operatorname{sub}(B)^{*} x\),
and \(\operatorname{sub}(A)\) is overwritten by \(\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)\), or \(\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right)\).
If ibtype \(=2\) or 3 , the problem is
\(\operatorname{sub}(A)^{*} \operatorname{sub}(B)^{*} x=\lambda^{*} x\), or \(\operatorname{sub}(B)^{*} \operatorname{sub}(A)^{*} x=\lambda^{*} x\),
and \(\operatorname{sub}(A)\) is overwritten by \(U^{*} \operatorname{sub}(A)^{*} U^{H}\), or \(L^{H *} \operatorname{sub}(A)^{*} L\).
\(\operatorname{sub}(B)\) must have been previously factorized as \(U^{H *} U\) or \(L^{*} L^{H}\) by p?potrf.

\section*{Input Parameters}
ibtype
uplo
n
a
ia, ja
desca
b
ib, jb
descb

Output Parameters
a
scale
info
(global) Must be 1 or 2 or 3 .
If itype \(=1\), compute \(\operatorname{inv}\left(U^{H}\right)^{*} \operatorname{sub}(A) * \operatorname{inv}(U)\), or \(\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right)\);
If itype \(=2\) or 3 , compute \(U^{*} \operatorname{sub}(A)^{*} U^{H}\), or \(L^{H *} \operatorname{sub}(A)^{*} L\).
(global) Must be 'U' or 'L'.
If uplo = 'U', the upper triangle of \(\operatorname{sub}(A)\) is stored and \(\operatorname{sub}(B)\) is factored as \(U^{H *} U\).

If uplo = ' L' , the lower triangle of \(\operatorname{sub}(A)\) is stored and \(\operatorname{sub}(B)\) is factored as \(L^{*} L^{H}\).
(global) The order of the matrices sub \((A)\) and \(\operatorname{sub}(B)(n \geq 0)\).
(local)
Pointer into the local memory to an array of size lld_a*LOCC (ja+n-1). On entry, the array contains the local pieces of the \(n\)-by- \(n\) Hermitian distributed matrix \(\operatorname{sub}(A)\). If uplo = 'U', the leading \(n-b y-n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of size \(I I d _b^{*} L O C c(j b+n-1)\). On entry, the array contains the local pieces of the triangular factor from the Cholesky factorization of sub (B) as returned by p?potrf.
(global) The row and column indices in the global matrix \(B\) indicating the first row and the first column of the submatrix \(B\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(B\).

On exit, if info \(=0\), the transformed matrix, stored in the same format as \(\operatorname{sub}(A)\).
(global)
Amount by which the eigenvalues should be scaled to compensate for the scaling performed in this function. At present, scale is always returned as 1.0 , it is returned here to allow for future enhancement.
(global)

If info \(=0\), the execution is successful. If info \(<0\), if the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=\) -(i*100+j); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{ScaLAPACK Driver Routines}

Table "ScaLAPACK Driver Routines" lists ScaLAPACK driver routines available for solving systems of linear equations, linear least-squares problems, standard eigenvalue and singular value problems, and generalized symmetric definite eigenproblems.
ScaLAPACK Driver Routines
\begin{tabular}{|c|c|c|}
\hline Type of Problem & Matrix type, storage scheme & Driver \\
\hline \multirow[t]{7}{*}{Linear equations} & general (partial pivoting) & p?gesv (simple driver) / p?gesvx (expert driver) \\
\hline & general band (partial pivoting) & p?gbsv (simple driver) \\
\hline & general band (no pivoting) & p?dbsv (simple driver) \\
\hline & general tridiagonal (no pivoting) & p?dtsv (simple driver) \\
\hline & symmetric/Hermitian positive-definite & p?posv (simple driver) / p?posvx (expert driver) \\
\hline & symmetric/Hermitian positive-definite, band & p?pbsv (simple driver) \\
\hline & symmetric/Hermitian positive-definite, tridiagonal & p?ptsv (simple driver) \\
\hline Linear least squares problem & general m-by-n & p?gels \\
\hline Non-symmetric eigenvalue problem & general & p? geevx (expert driver) \\
\hline Symmetric eigenvalue problem & symmetric/Hermitian & ```
p?syev / p?heev (simple driver);
p?syevd/p?heevd (simple driver with
a divide and conquer algorithm);
p?syevx/ p?heevx (expert driver);
p?syevr / p?heevr (simple driver with
MRRR algorithm)
``` \\
\hline Singular value decomposition & general m-by-n & p? gesvd \\
\hline Generalized symmetric definite eigenvalue problem & symmetric/Hermitian, one matrix also positive-definite & p?sygvx / p?hegvx (expert driver) \\
\hline
\end{tabular}
```

p?geevx
Computes for an n-by-n real/complex non-symmetric
matrix A, the eigenvalues and, optionally, the left
and/or right eigenvectors.

```

\section*{Syntax}
```

void psgeevx (const char *balanc, const char *jobvl, const char *jobvr, const char

```
void psgeevx (const char *balanc, const char *jobvl, const char *jobvr, const char
*sense, const MKL_INT *n, float *a, const MKL_INT *desca, float *wr, float *wi, float
*sense, const MKL_INT *n, float *a, const MKL_INT *desca, float *wr, float *wi, float
*vl, const MKL_INT *descvl, float *vr, const MKL_INT *descvr, MKL_INT *ilo, MKL_INT
*vl, const MKL_INT *descvl, float *vr, const MKL_INT *descvr, MKL_INT *ilo, MKL_INT
*ihi, float *scale, float *abnrm, float *rconde, float *rcondv, float *work, const
*ihi, float *scale, float *abnrm, float *rconde, float *rcondv, float *work, const
MKL_INT *lwork, MKL_INT *info);
```

MKL_INT *lwork, MKL_INT *info);

```
```

void pdgeevx (const char *balanc, const char *jobvl, const char *jobvr, const char
*sense, const MKL_INT *n, double *a, const MKL_INT *desca, double *wr, double *wi,
double *Vl, const MKL_INT *descvl, double *vr, const MKL_INT *descvr, MKL_INT *ilo,
MKL_INT *ihi, double *scale, double *abnrm, double *rconde, double *rcondv, double
*work, const MKL_INT *lwork, MKL_INT *info);
void pcgeevx (const char *balanc, const char *jobvl, const char *jobvr, const char
*sense, const MKL_INT *n, MKL_Complex8 *a, const MKL_INT *desca, MKL_Complex8 *W,
MKL_Complex8 *vl, const MKL_INT *descvl, MKL_Complex8 *vr, const MKL_INT *descvr,
MKL_INT *ilo, MKL_INT *ihi, float *scale, float *abnrm, float *rconde, float *rcondv,
MKL_Complex8 *work, const MKL_INT *lwork, MKL_INT *info);
void pzgeevx (const char *balanc, const char *jobvl, const char *jobvr, const char
*sense, const MKL_INT *n, MKL_Complex16 *a, const MKL_INT *desca, MKL_Complex16 *w,
MKL_Complex16 *vl, const MKL_INT *descvl, MKL_Complex16 *vr, const MKL_INT *descvr,
MKL_INT *ilo, MKL_INT *ihi, double *scale, double *abnrm, double *rconde, double
*rcondv, MKL_Complex16 *work, const MKL_INT *lwork, MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?geevx function computes for an \(n\)-by- \(n\) real/complex non-symmetric matrix \(A\), the eigenvalues and, optionally, the left and/or right eigenvectors.
Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors (ilo, ihi, scale, and abnrm), reciprocal condition numbers for the eigenvalues (rconde).

The right eigenvector \(v\) of \(A\) satisfies
\(A \cdot v=\lambda \cdot v\)
where \(\lambda\) is its eigenvalue.
The left eigenvector \(u\) of \(A\) satisfies.
\(u^{H} A=\lambda u^{H}\)
where \(u^{H}\) denotes the conjugate transpose of \(u\). The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
Balancing a matrix means permuting the rows and columns to make it more nearly upper triangular, and applying a diagonal similarity transformation \(D^{*} A^{*} \operatorname{inv}(D)\), where \(D\) is a diagonal matrix, to make its rows and columns closer in norm and the condition number of its eigenvalues smaller. The computed reciprocal condition numbers correspond to the balanced matrix. Permuting rows and columns will not change the condition numbers in exact arithmetic, but diagonal scaling will.

\section*{NOTE}

The current version doesn't support computation of the reciprocal condition numbers for the right eigenvectors.

\section*{Current Notes and Restrictions}

All the p?geevx interfaces call p?lahqr for computing eigenvalues and eigenvectors of the Hessenberg matrices. There are several restrictions for the usage of p?lahqr, which include:
- The current implementation of p?lahqr requires the distributed block size to be square and at least six (6); unlike simpler codes like LU, this algorithm is extremely sensitive to block size.
- The current implementation of p?lahqr requires that input matrix \(A\), the left and right eigenvector matrices \(V R\) and/or \(V L\) to be distributed identically and have identical context.

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline balanc & (global). Must be ' N ', ' P ', ' S ', or ' B '. Indicates how the input matrix should be diagonally scaled and/or permuted to improve the conditioning of its eigenvalues. \\
\hline & If balanc \(=\) ' N ', do not diagonally scale or permute; \\
\hline & If balanc = ' P ', perform permutations to make the matrix more nearly upper triangular. Do not diagonally scale; \\
\hline & If balanc = 'S', diagonally scale the matrix, that is, replace \(A\) by \(D^{*} A^{*}{ }^{\operatorname{inv}}(D)\), where \(D\) is a diagonal matrix chosen to make the rows and columns of \(A\) more equal in norm. Do not permute; \\
\hline & If balanc = 'B', both diagonally scale and permute \(A\). \\
\hline & Computed reciprocal condition numbers will be for the matrix after balancing and/or permuting. Permuting does not change condition numbers (in exact arithmetic), but balancing does. \\
\hline jobvl & (global). Must be ' N ' or ' V . \\
\hline & If jobvl = ' N ', left eigenvectors of \(A\) are not computed; \\
\hline & If jobvl = 'V', left eigenvectors of \(A\) are computed. \\
\hline & If sense \(=\) ' E ', then jobvl must be ' V '. \\
\hline jobvr & (global). Must be ' N ' or ' V . \\
\hline & If jobvr \(=\) ' N ', right eigenvectors of \(A\) are not computed; \\
\hline & If jobvr \(=\) ' V ', right eigenvectors of \(A\) are computed. \\
\hline & If sense = ' E ', then jobvr must be ' V '. \\
\hline sense & (global). Must be ' N ' or ' E . Determines which reciprocal condition numbers are computed. \\
\hline & If sense \(=\) ' N ', none are computed. \\
\hline & If sense = 'E', computed for eigenvalues only. \\
\hline \(n\) & (global) The order of the distributed matrix \(A(n \geq 0)\). \\
\hline a & (local) \\
\hline & Pointer into the local memory to an array of size IId_a*LOCc(n). On entry, this array contains the local pieces of the \(n\)-by- \(n\) general distributed matrix \(A\) to be reduced. \\
\hline desca & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\). \\
\hline wr, wi & (global output) Arrays, size at least max \((1, n)\) each. Contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline w & (global output) Array, size at least max(1, \(n\) ). Contains the computed eigenvalues. \\
\hline \multirow[t]{2}{*}{vl} & (local output) \\
\hline & \begin{tabular}{l}
Pointer into the local memory to an array of size (DESCVL(LLD_), LOCc(n)). \\
If \(j o b v l=\) ' N ', \(v /\) is not referenced. If \(j o b v l=\) ' v ', the \(v /\) parameter contains the local pieces of the left eigenvectors of the matrix \(A\).
\end{tabular} \\
\hline descvl & (global and local input) array of size dlen_. The array descriptor for the distributed matrix v . \\
\hline \multirow[t]{3}{*}{vr} & (local output) \\
\hline & Pointer into the local memory to an array of size (DESCVR(LLD_),LOCc(n)). \\
\hline & If jobvr = ' N ', vr is not referenced. If jobvr = ' v ', the \(v r\) parameter contains the local pieces of the right eigenvectors of the matrix \(A\). \\
\hline descvr & (global and local input) array of size dlen_. The array descriptor for the distributed matrix vr. \\
\hline \multirow[t]{3}{*}{ilo, ihi} & (global output) \\
\hline & ilo and ihi are integer values determined when \(A\) was balanced. \\
\hline & The balanced \(A(i, j)=0\) if \(i>j\) and \(j=1, \ldots\), ilo-1 or \(i=i h i+1, \ldots, n\). If balanc \(=\) ' N ' or 'S', ilo \(=1\) and \(i h i=n\). \\
\hline \multirow[t]{6}{*}{scale} & (global output) \\
\hline & Array, size at least \(\max (1, n)\). Details of the permutations and scaling factors applied when balancing \(A\). \\
\hline & If \(\mathrm{P}[j-1]\) is the index of the row and column interchanged with row and column \(j\), and \(\mathrm{D}[j-1]\) is the scaling factor applied to row and column \(j\), then \\
\hline & scale \([j-1]=\mathrm{P}[j-1]\), for \(j=1, \ldots, i l o-1\) \\
\hline & \(=\mathrm{D}[j-1]\), for \(j=i / 0, \ldots, i h i\) \\
\hline & \(=\mathrm{P}[j-1]\) for \(j=i h i+1, \ldots, n\). \\
\hline
\end{tabular}

The order in which the interchanges are made is \(n\) to \(i h i+1\), then 1 to ilo- 1 .
The one-norm of the balanced matrix (the maximum of the sum of absolute values of elements of any column).

Array, size at least \(\max (1, n)\).
rconde[j-1] is the reciprocal condition number of the \(j\)-th eigenvalue.
Not supported in the current version. It could be null pointer.
(local)
Workspace array of size Iwork.
(local or global) size of the array work.
If Iwork \(=-1\), then Iwork is global input and a workspace query is assumed; the function only calculates the minimum size for the work array. These values are returned in the first entry of the work array, and no error message is issued by pxerbla.
```

info
(global)
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-th entry, indexed j-1, had an
illegal value, then info = -(i*100+j); if the i-th argument is a scalar and had
an illegal value, then info = -i.

```

\section*{p?gesv \\ Computes the solution to the system of linear equations with a square distributed matrix and multiple right-hand sides.}

\section*{Syntax}
```

void psgesv (MKL_INT *n , MKL_INT *nrhs , float *a, MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , MKL_INT *ipiv, float *b , MKL_INT *ib, MKL_INT *jb , MKL_INT *descb , MKL_INT
*info);
void pdgesv (MKL_INT *n , MKL_INT *nrhs, double *a , MKL_INT *ia , MKL_INT *ja,
MKL_INT *desca , MKL_INT *ipiv, double *b , MKL_INT *ib, MKL_INT *jb , MKL_INT
*descb , MKL_INT *info);
void pcgesv (MKL_INT *n , MKL_INT *nrhs, MKL_Complex8 *a, MKL_INT *ia, MKL_INT *ja ,
MKL_INT *desca , MKL_INT *ipiv, MKL_Complex8 *b , MKL_INT *ib, MKL_INT *jb , MKL_INT
*descb , MKL_INT *info);
void pzgesv (MKL_INT *n , MKL_INT *nrhs , MKL_Complex16 *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, MKL_INT *ipiv, MKL_Complex16 *b, MKL_INT *ib, MKL_INT *jb ,
MKL_INT *descb , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p? gesvfunction computes the solution to a real or complex system of linear equations sub ( \(A\) ) * \(X=\) sub \((B)\), where sub \((A)=A(i a: i a+n-1\), ja:ja+n-1) is an \(n\)-by- \(n\) distributed matrix and \(X\) and sub \((B)=\) \(B(i b: i b+n-1, j b: j b+n r h s-1)\) are \(n\)-by-nrhs distributed matrices.

The \(L U\) decomposition with partial pivoting and row interchanges is used to factor \(\operatorname{sub}(A)\) as \(\operatorname{sub}(A)=\) \(P^{\star} L^{\star} U\), where \(P\) is a permutation matrix, \(L\) is unit lower triangular, and \(U\) is upper triangular. \(L\) and \(U\) are stored in \(\operatorname{sub}(A)\). The factored form of \(\operatorname{sub}(A)\) is then used to solve the system of equations \(\operatorname{sub}(A) * X=\) sub ( \(B\) ).

\section*{Input Parameters}
```

n
nrhs

```
\(a, b\)
(global) The number of rows and columns to be operated on, that is, the order of the distributed submatrix sub (A) \((n \geq 0)\).
(global) The number of right hand sides, that is, the number of columns of the distributed submatrices \(B\) and \(X(n r h s \geq 0)\).
(local)
Pointers into the local memory to arrays of local size a: lld_a*LOCC (ja \(+n-1)\) and \(b:\) lld_b*LOCC(jb+nrhs-1), respectively.
```

ia, ja
desca
i.b, jb
descb

```

\section*{Output Parameters}
a
b
ipiv
info

On entry, the array a contains the local pieces of the \(n\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)\) to be factored.

On entry, the array \(b\) contains the right hand side distributed matrix sub(B).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of \(\operatorname{sub}(A)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(global) The row and column indices in the global matrix \(B\) indicating the first row and the first column of \(\operatorname{sub}(B)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(B\).

Overwritten by the factors \(L\) and \(U\) from the factorization \(\operatorname{sub}(A)=P^{*} L^{*} U\); the unit diagonal elements of \(L\) are not stored.

Overwritten by the solution distributed matrix \(X\).
(local) Array of size \(\operatorname{LOCr}\left(m_{-} a\right)+m b \_a\). This array contains the pivoting information. The (local) row i of the matrix was interchanged with the (global) row ipiv[i-1].
This array is tied to the distributed matrix \(A\).
(global) If info \(=0\), the execution is successful.
info < 0 :
If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
info> 0:
If info \(=k, U(i a+k-1, j a+k-1)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution could not be computed.

\section*{See Also}

\section*{Overview for details of ScaLAPACK array descriptor structures and related notations.}

\section*{p?gesvx}

Uses the LU factorization to compute the solution to the system of linear equations with a square matrix \(A\) and multiple right-hand sides, and provides error bounds on the solution.

\section*{Syntax}
```

void psgesvx (char *fact, char *trans, MKL_INT *n, MKL_INT *nrhs , float *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, float *af, MKL_INT *iaf, MKL_INT *jaf , MKL_INT
*descaf , MKL_INT *ipiv, char *equed, float *r, float *c , float *b, MKL_INT *ib,

```
```

MKL_INT *jb, MKL_INT *descb, float *x, MKL_INT *ix , MKL_INT *jx , MKL_INT *descx ,
float *rcond, float *ferr, float *berr , float *work, MKL_INT *lwork, MKL_INT
*iwork , MKL_INT *liwork , MKL_INT *info);
void pdgesvx (char *fact , char *trans , MKL_INT *n , MKL_INT *nrhs , double *a ,
MKL_INT *ia, MKL_INT *ja , MKL_INT *desca, double *af, MKL_INT *iaf , MKL_INT *jaf ,
MKL_INT *descaf, MKL_INT *ipiv, char *equed, double *r , double *c , double *b ,
MKL_INT *ib, MKL_INT *jb , MKL_INT *descb, double *x , MKL_INT *ix , MKL_INT *jx ,
MKL_INT *descx, double *rcond, double *ferr, double *berr , double *work, MKL_INT
*lwork , MKL_INT *iwork , MKL_INT *liwork , MKL_INT *info);
void pcgesvx (char *fact , char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complex8 *a ,
MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *af , MKL_INT *iaf , MKL_INT
*jaf, MKL_INT *descaf, MKL_INT *ipiv, char *equed, float *r , float *C ,
MKL_Complex8 *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_Complex8 *x ,
MKL_INT *ix, MKL_INT *jx , MKL_INT *descx , float *rcond, float *ferr , float *berr ,
MKL_Complex8 *work , MKL_INT *lwork , float *rwork, MKL_INT *lrwork , MKL_INT *info);
void pzgesvx (char *fact , char *trans, MKL_INT *n , MKL_INT *nrhs , MKL_Complex16
*a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca, MKL_Complexl6 *af, MKL_INT *iaf ,
MKL_INT *jaf, MKL_INT *descaf, MKL_INT *ipiv, char *equed, double *r, double *c,
MKL_Complex16 *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_Complex16 *x ,
MKL_INT *ix, MKL_INT *jx , MKL_INT *descx, double *rcond, double *ferr , double
*berr, MKL_Complex16 *work , MKL_INT *lwork, double *rwork , MKL_INT *Irwork ,
MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?gesvx function uses the \(L U\) factorization to compute the solution to a real or complex system of linear equations \(A X=B\), where \(A\) denotes the \(n\)-by-n submatrix \(A(i a: i a+n-1\), ja:ja+n-1), \(B\) denotes the \(n\)-bynrhs submatrix \(B(i b: i b+n-1, j b: j b+n r h s-1)\) and \(X\) denotes the \(n\)-by-nrhs submatrix \(X(i x: i x+n-1\), jx:jx+nrhs-1).

Error bounds on the solution and a condition estimate are also provided.
In the following description, af stands for the subarray of af from row iaf and column jaf to row iaf+n-1 and column jaf+n-1.

The function \(p\) ?gesvx performs the following steps:
1. If fact \(=\) ' E ', real scaling factors \(R\) and \(C\) are computed to equilibrate the system:
```

trans = 'N': diag(R)*A*diag(C) *diag(C) -1*X = diag(R)*B
trans = 'T': (diag(R)*A*diag(C))T *diag (R) -1*X = diag(C)*B
trans = 'C': (diag(R)*A*diag(C))H *diag (R) -1*X = diag(C)*B

```

Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(\boldsymbol{A}\) is overwritten by \(\operatorname{diag}(R) \star_{A}{ }^{\operatorname{diag}(C)}\) and \(B\) by diag \((R) *_{B}\) (if trans='N') or \(\operatorname{diag}(c) * B\) (if trans \(=\) ' \(T\) ' or ' C').
2. If fact \(=\) ' \(N\) ' or ' \(E\) ', the \(L U\) decomposition is used to factor the matrix \(A\) (after equilibration if fact \(=\) ' \(E\) ') as \(A=P L U\), where \(P\) is a permutation matrix, \(L\) is a unit lower triangular matrix, and \(U\) is upper triangular.
3. The factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than relative machine precision, steps 4-6 are skipped.
4. The system of equations is solved for \(X\) using the factored form of \(A\).
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix \(X\) is premultiplied by diag( \(C\) ) (if trans \(=\) ' \(N\) ') or \(\operatorname{diag}(R)\) (if trans \(=\) 'T' or 'C') so that it solves the original system before equilibration.

\section*{Input Parameters}
fact
trans
n
nrhs
\(a, a f, b\), work
ia, ja
(global) Must be 'F', 'N', or 'E'.
Specifies whether or not the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix \(A\) should be equilibrated before it is factored.

If fact \(=\) ' F ' then, on entry, af and ipiv contain the factored form of \(A\). If equed is not ' \(N\) ', the matrix \(A\) has been equilibrated with scaling factors given by \(r\) and \(c\). Arrays \(a, a f\), and ipiv are not modified.

If fact \(=\) ' \(N\) ', the matrix \(A\) is copied to af and factored.
If fact = 'E', the matrix \(A\) is equilibrated if necessary, then copied to af and factored.
(global) Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans \(=\) ' \(N\) ', the system has the form \(A^{*} X=B\) (No transpose);
If trans \(=\) ' \(T\) ', the system has the form \(A^{T *} X=B\) (Transpose);
If trans = 'C', the system has the form \(A^{H * X}=B\) (Conjugate transpose);
(global) The number of linear equations; the order of the submatrix \(A(n \geq\) \(0)\).
(global) The number of right hand sides; the number of columns of the distributed submatrices \(B\) and \(X(n r h s \geq 0)\).
(local)
Pointers into the local memory to arrays of local size a: lld_a*LOCC(ja \(+n-1)\), af: \(11 d \_a f^{*} \operatorname{LOCc}(j a+n-1), b: 11 d \_b * L O C c(j b+n r h s-1)\), work: lwork.

The array a contains the matrix \(A\). If fact = ' \(F\) ' and equed is not ' \(N\) ', then \(A\) must have been equilibrated by the scaling factors in \(r\) and/or \(c\).
The array af is an input argument if fact = 'F'. In this case it contains on entry the factored form of the matrix \(A\), that is, the factors \(L\) and \(U\) from the factorization \(A=P^{\star} L^{\star} U\) as computed by p? getrf. If equed is not ' \(N\) ', then of is the factored form of the equilibrated matrix \(A\).
The array \(b\) contains on entry the matrix \(B\) whose columns are the righthand sides for the systems of equations.
work is a workspace array. The size of work is (/work).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A(i a: i a+n-1, j a: j a\) \(+n-1\) ), respectively.
desca
iaf, jaf
descaf
ib, jb
descb
ipiv
equed
\(r, C\)
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(global) The row and column indices in the global matrix \(A F\) indicating the first row and the first column of the subarray \(a f\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A F\).
(global) The row and column indices in the global matrix \(B\) indicating the first row and the first column of the submatrix \(B(i b: i b+n-1, j b: j b\) +nrhs-1), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(B\).
(local) Array of size \(\operatorname{LOCr}\left(m_{-} a\right)+m b \_a\).
The array ipiv is an input argument if fact \(=\) ' F '.
On entry, it contains the pivot indices from the factorization \(A=P^{\star} L^{\star} U\) as computed by p?getrf; (local) row i of the matrix was interchanged with the (global) row ipiv[i - 1].

This array must be aligned with \(A(i a: i a+n-1, *)\).
(global) Must be 'N', 'R', 'C', or 'B'. equed is an input argument if fact \(=' F^{\prime}\). It specifies the form of equilibration that was done:

If equed = 'N', no equilibration was done (always true if fact = 'N');
If equed = 'R', row equilibration was done, that is, \(A\) has been premultiplied by diag( \(r\) );
If equed \(=\) ' \(C\) ', column equilibration was done, that is, \(A\) has been postmultiplied by diag(c);

If equed = 'B', both row and column equilibration was done; \(A\) has been replaced by diag ( \(r\) ) * \(A^{*} \operatorname{diag}(c)\).
(local)
Arrays of size LOCr (m_a) and LOCC (n_a), respectively.
The array \(r\) contains the row scale factors for \(A\), and the array \(c\) contains the column scale factors for \(A\). These arrays are input arguments if fact \(=\) ' F ' only; otherwise they are output arguments. If equed \(=\) ' R ' or ' B ', \(A\) is multiplied on the left by diag \((r)\); if equed \(={ }^{\prime} N\) ' or ' \(C\) ', \(r\) is not accessed.

If fact \(=\) ' \(F\) ' and equed \(=\) ' \(R\) ' or ' \(B\) ', each element of \(r\) must be positive.

If equed \(=\) ' C' or ' B ', \(A\) is multiplied on the right by diag(c); if equed = 'N' or 'R', \(c\) is not accessed.

If fact \(=\) ' F ' and equed \(=\) ' C' or 'B', each element of \(c\) must be positive. Array \(r\) is replicated in every process column, and is aligned with the distributed matrix \(A\). Array \(c\) is replicated in every process row, and is aligned with the distributed matrix \(A\).
```

ix, jx
descx
lwork
iwork
liwork
rwork
lrwork

```

Output Parameters
b
(global) The row and column indices in the global matrix \(X\) indicating the first row and the first column of the submatrix \(X(i x: i x+n-1, j x: j x\) \(+n r h s-1)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(X\).
(local or global) The size of the array work ; must be at least max (p?gecon(lwork), p?gerfs(lwork))+LOCr(n_a).
(local, psgesvx/pdgesvx only). Workspace array. The size of iwork is (liwork).
(local, psgesvx/pdgesvx only). The size of the array iwork, must be at least LOCr (n_a).
(local)
Workspace array, used in complex flavors only.
The size of rwork is (Irwork).
(local or global, pcgesvx/pzgesvx only). The size of the array rwork;must be at least 2 *LOCC (n_a).

\section*{(local)}

Pointer into the local memory to an array of local size lld_x*LOCC ( \(j x\) +nrhs-1).

If info \(=0\), the array \(x\) contains the solution matrix \(X\) to the original system of equations. Note that \(A\) and \(B\) are modified on exit if equed \(\neq{ }^{\prime} \mathrm{N}^{\prime}\), and the solution to the equilibrated system is:
```

diag(C)-1*X, if trans = 'N' and equed = 'C' or 'B'; and
diag(R)-1*X, if trans = 'T' or 'C' and equed = 'R' or 'B'.

```

Array \(a\) is not modified on exit if fact \(='^{\prime} \mathrm{F}^{\prime}\) or 'N', or if fact \(=\) 'E' and equed = 'N'.
If equed \(\neq\) ' \(N\) ', \(A\) is scaled on exit as follows:
```

equed = 'R':A = diag(R)*A
equed = 'C':A = A* diag(c)
equed = 'B':A = diag(R)*A*diag(C)

```

If fact \(=\) ' \(N\) ' or ' \(E\) ', then af is an output argument and on exit returns the factors \(L\) and \(U\) from the factorization \(A=P^{\star} L^{\star} U\) of the original matrix \(A\) (if fact \(=\) 'N') or of the equilibrated matrix \(A\) (if fact \(=' E '\) ). See the description of \(a\) for the form of the equilibrated matrix.

Overwritten by diag \((R) * B\) if trans \(=\) ' \(N\) ' and equed \(=\) ' \(R^{\prime}\) or ' \(\mathrm{B}^{\prime}\); overwritten by diag \((c) * B\) if trans \(=\) ' \(T\) ' and equed \(=\) ' \(C\) ' or ' \(B\) '; not changed if equed \(={ }^{\prime} N^{\prime}\).

These arrays are output arguments if \(f a c t \neq \mathcal{F}^{\prime}\).

See the description of \(r, c\) in Input Arguments section.
(global).
An estimate of the reciprocal condition number of the matrix \(A\) after equilibration (if done). The function sets rcond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular. (local)

Arrays of size LOCC (n_b) each. Contain the component-wise forward and relative backward errors, respectively, for each solution vector.

Arrays ferr and berr are both replicated in every process row, and are aligned with the matrices \(B\) and \(X\).

If fact \(=\) ' \(N\) ' or ' \(E\) ', then ipiv is an output argument and on exit contains the pivot indices from the factorization \(A=P^{\star} L^{\star} U\) of the original matrix \(A\) (if fact \(=\) 'N') or of the equilibrated matrix \(A\) (if fact \(=\) 'E').

If fact \(\neq ' F^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

If info=0, on exit work[0] returns the minimum value of Iwork required for optimum performance.

If info=0, on exit iwork[0] returns the minimum value of liwork required for optimum performance.

If info=0, on exit rwork[0] returns the minimum value of Irwork required for optimum performance.

If info \(=0\), the execution is successful.
info < 0 : if the ith argument is an array and the \(j\) th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\) th argument is a scalar and had an illegal value, then info \(=-i\). If info \(=i\), and \(i \leq n\), then \(U(i, i)\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed. If info \(=i\), and \(i=n+1\), then \(U\) is nonsingular, but rcond is less than machine precision. The factorization has been completed, but the matrix is singular to working precision and the solution and error bounds have not been computed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?gbsv \\ Computes the solution to the system of linear equations with a general banded distributed matrix and multiple right-hand sides.}
```

Syntax
void psgbsv (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs , float *a ,
MKL_INT *ja , MKL_INT *desca , MKL_INT *ipiv, float *b , MKL_INT *ib , MKL_INT *descb ,
float *work , MKL_INT *lwork , MKL_INT *info);
void pdgbsv (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs , double *a ,
MKL_INT *ja , MKL_INT *desca , MKL_INT *ipiv, double *b , MKL_INT *ib , MKL_INT
*descb , double *work , MKL_INT *lwork , MKL_INT *info);
void pcgbsv (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs , MKL_Complex8
*a, MKL_INT *ja, MKL_INT *desca , MKL_INT *ipiv, MKL_Complex8 *b , MKL_INT *ib ,
MKL_INT *descb , MKL_Complex8 *work , MKL_INT *lwork , MKL_INT *info);
void pzgbsv (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs , MKL_Complex16
*a , MKL_INT *ja, MKL_INT *desca , MKL_INT *ipiv, MKL_Complex16 *b , MKL_INT *ib ,
MKL_INT *descb , MKL_Complex16 *work , MKL_INT *lwork , MKL_INT *info);

```

Include Files
- mkl_scalapack.h

\section*{Description}

The \(p\) ? gbsvfunction computes the solution to a real or complex system of linear equations
\(\operatorname{sub}(A) * X=\operatorname{sub}(B)\),
where sub (A) \(=A(1: n, j a: j a+n-1)\) is an \(n\)-by- \(n\) real/complex general banded distributed matrix with bwl subdiagonals and \(b w u\) superdiagonals, and \(X\) and \(\operatorname{sub}(B)=B(i b: i b+n-1,1: r h s)\) are \(n\)-by-nrhs distributed matrices.

The \(L U\) decomposition with partial pivoting and row interchanges is used to factor \(\operatorname{sub}(A)\) as \(\operatorname{sub}(A)=\) \(P^{\star} L^{\star} U^{\star} Q\), where \(P\) and \(Q\) are permutation matrices, and \(L\) and \(U\) are banded lower and upper triangular matrices, respectively. The matrix \(Q\) represents reordering of columns for the sake of parallelism, while \(P\) represents reordering of rows for numerical stability using classic partial pivoting.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
n
bwl
bwu
nrhs
\(a, b\)
(global) The number of rows and columns to be operated on, that is, the order of the distributed matrix \(\operatorname{sub}(A)(n \geq 0)\).
(global) The number of subdiagonals within the band of \(A(0 \leq b w l \leq n-1)\).
(global) The number of superdiagonals within the band of \(A(0 \leq b w u \leq\) \(n-1)\).
(global) The number of right hand sides; the number of columns of the distributed matrix \(\operatorname{sub}(B)(n r h s \geq 0)\).
(local)
Pointers into the local memory to arrays of local size a: lld_a* LOCC (ja \(+n-1\) ) and \(b: 11 d \_b * L O C C(n r h s)\).

On entry, the array a contains the local pieces of the global array \(A\).
On entry, the array \(b\) contains the right hand side distributed matrix \(\operatorname{sub}(B)\).
ja
desca
ib
descb
work
lwork
(global) The index in the global matrix \(A\) indicating the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\) ).
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).

If desca[dtype_ - 1] = 501, then dlen_Z 7;
else if desca[dtype_ - 1] \(=1\), then dlen_ \(\geq 9\).
(global) The row index in the global matrix \(B\) indicating the first row of the matrix to be operated on (which may be either all of \(B\) or a submatrix of \(B\) ).
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(B\).

If descb[dtype_-1] = 502, then dlen_ \(\geq 7\);
else if descb[dtype_-1] \(=1\), then \(d l e n_{-} \geq 9\).
(local)
Workspace array of size Iwork.
(local or global) The size of the array work, must be at least lwork \(\geq\) (NB
\(+b w u) *(b w l+b w u)+6 *(b w l+b w u) *(b w l+2 * b w u)+\)
\(+\max (n r h s *(N B+2 * b w l+4 * b w u), 1)\).

\section*{Output Parameters}
a
b
ipiv
work[0]
info

On exit, contains details of the factorization. Note that the resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.

On exit, this array contains the local pieces of the solution distributed matrix \(X\).
(local) array.
The size of ipiv must be at least desca[nB - 1]. This array contains pivot indices for local factorizations. You should not alter the contents between factorization and solve.

On exit, work[0] contains the minimum value of Iwork required for optimum performance.

If info \(=0\), the execution is successful. info \(<0\) :
If the \(i\) th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j) ;\) if the \(i\) th argument is a scalar and had an illegal value, then info \(=-i\).
info> 0:

If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not nonsingular, and the factorization was not completed. If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?dbsv}

Solves a general band system of linear equations.

\section*{Syntax}
```

void psdbsv (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs , float *a ,
MKL_INT *ja , MKL_INT *desca , float *b , MKL_INT *ib , MKL_INT *descb , float *work ,
MKL_INT *lwork , MKL_INT *info);
void pddbsv (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs , double *a ,
MKL_INT *ja , MKL_INT *desca , double *b , MKL_INT *ib , MKL_INT *descb , double *work ,
MKL_INT *lwork , MKL_INT *info);
void pcdbsv (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs , MKL_Complex8
*a , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *descb ,
MKL_Complex8 *work , MKL_INT *lwork , MKL_INT *info);
void pzdbsv (MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu , MKL_INT *nrhs , MKL_Complex16
*a , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib , MKL_INT *descb ,
MKL_Complex16 *Work , MKL_INT *lwork , MKL_INT *info);

```

\section*{Include Files}
```

- mkl_scalapack.h

```

\section*{Description}

The p?dbsvfunction solves the following system of linear equations:
\(A(1: n, j a: j a+n-1) * X=B(i b: i b+n-1,1: n r h s)\),
where \(A(1: n, j a: j a+n-1)\) is an \(n\)-by- \(n\) real/complex banded diagonally dominant-like distributed matrix with bandwidth bwl, bwu.

Gaussian elimination without pivoting is used to factor a reordering of the matrix into \(L U\).
```

Product and Performance Information
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

```

\section*{Input Parameters}
\(n\)
bwl
bwu
(global) The order of the distributed submatrix \(A,(n \geq 0)\).
(global) Number of subdiagonals. \(0 \leq b w l \leq n-1\).
(global) Number of subdiagonals. \(0 \leq b w u \leq n-1\).
```

(global) The number of right-hand sides; the number of columns of the distributed submatrix B, (nrhs $\geq 0)$.
(local).
Pointer into the local memory to an array with leading size lld_a \geq (bwl $+b w u+1$) (stored in desca). On entry, this array contains the local pieces of the distributed matrix.
(global) The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) array of size dlen.
If $1 d$ type (dtype_a=501 or 502), dlen ≥ 7;
If $2 d$ type (dtype_a=1), dlen ≥ 9.
The array descriptor for the distributed matrix A.
Contains information of mapping of A to memory.
(local)
Pointer into the local memory to an array of local lead size lld_b $\geq n b$. On entry, this array contains the local pieces of the right hand sides B (ib:ib +n-1, 1:nrhs).
(global) The row index in the global matrix B indicating the first row of the matrix to be operated on (which may be either all of b or a submatrix of B).
(global and local) array of size dlen.
If 1d type (dtype_b =502), dlen ≥ 7;
If $2 d$ type (dtype_b $=1$), dlen ≥ 9.
The array descriptor for the distributed matrix B.
Contains information of mapping of B to memory. (local).
Temporary workspace. This space may be overwritten in between calls to functions. work must be the size given in lwork.
(local or global) Size of user-input workspace work. If Iwork is too small, the minimal acceptable size will be returned in work[0] and an error code is returned.
lwork $\geq n b(b w l+b w u)+6 \max (b w l, b w u) * \max (b w l, b w u)$
$+\max \left((\max (b w l, b w u) n r h s), \max (b w l, b w u){ }^{\max (b w l, b w u))}\right.$

```

\section*{Output Parameters}
a
b

On exit, this array contains information containing details of the factorization.

Note that permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.

On exit, this contains the local piece of the solutions distributed matrix \(X\).
\[
\begin{array}{ll}
\text { work } & \text { On exit, work[0] contains the minimal /work. } \\
\text { info } & \text { (local) If info }=0 \text {, the execution is successful. } \\
& <0 \text { : If the } i \text {-th argument is an array and the } j \text {-entry had an illegal value, } \\
& \text { then info }=-(i \star 100+j) \text {, if the } i \text {-th argument is a scalar and had an } \\
& \text { illegal value, then info }=-i \text {. } \\
& >0 \text { : If info }=k<\text { NPROCS, the submatrix stored on processor info and } \\
& \text { factored locally was not positive definite, and the factorization was not } \\
& \text { completed. } \\
& \text { If info }=k>\text { NPROCS, the submatrix stored on processor info-NPROCS } \\
& \text { representing interactions with other processors was not positive definite, } \\
& \text { and the factorization was not completed. }
\end{array}
\]

\section*{See Also}

\section*{Overview for details of ScaLAPACK array descriptor structures and related notations.}

\section*{p?dtsv}

Solves a general tridiagonal system of linear equations.

\section*{Syntax}
```

void psdtsv (MKL_INT *n , MKL_INT *nrhs, float *dl, float *d, float *du , MKL_INT
*ja, MKL_INT *desca, float *bb, MKL_INT *ib, MKL_INT *descb, float *work, MKL_INT
*lwork , MKL_INT *info);
void pddtsv (MKL_INT *n , MKL_INT *nrhs , double *dl , double *d , double *du , MKL_INT
*ja, MKL_INT *desca, double *b, MKL_INT *ib, MKL_INT *descb , double *work , MKL_INT
*lwork , MKL_INT *info);
void pcdtsv (MKL_INT *n , MKL_INT *nrhs , MKL_Complex8 *dl , MKL_Complex8 *d ,
MKL_Complex8 *du , MKL_INT *ja, MKL_INT *desca, MKL_Complex8 *b , MKL_INT *ib ,
MKL_INT *descb , MKL_Complex8 *work , MKL_INT *lwork , MKL_INT *info);
void pzdtsv (MKL_INT *n , MKL_INT *nrhs , MKL_Complex16 *dl , MKL_Complex16 *d ,
MKL_Complex16 *du , MKL_INT *ja , MKL_INT *desca, MKL_Complex16 *b, MKL_INT *ib ,
MKL_INT *descb , MKL_Complex16 *Work , MKL_INT *lwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The function solves a system of linear equations
```

A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs),

```
where \(A(1: n, j a: j a+n-1)\) is an \(n\)-by-n complex tridiagonal diagonally dominant-like distributed matrix. Gaussian elimination without pivoting is used to factor a reordering of the matrix into \(L U\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

\section*{Product and Performance Information}

Notice revision \#20201201

\section*{Input Parameters}
n
nrhs
dl
\(d\)
\(d u\)
ja
desca
b
i.b
descb
work
(global) The order of the distributed submatrix \(A(n \geq 0)\).
The number of right hand sides; the number of columns of the distributed matrix \(B(n r h s \geq 0)\).
(local).
Pointer to local part of global vector storing the lower diagonal of the matrix. Globally, \(d l[0]\) is not referenced, and \(d l\) must be aligned with \(d\). Must be of size > desca[nb_ - 1].
(local).
Pointer to local part of global vector storing the main diagonal of the matrix. (local).

Pointer to local part of global vector storing the upper diagonal of the matrix. Globally, \(d u[n-1]\) is not referenced, and du must be aligned with \(d\).
(global) The index in the global matrix \(A\) indicating the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\) ).
(global and local) array of size dlen.
If \(1 d\) type (dtype_a=501 or 502), dlen \(\geq 7\);
If \(2 d\) type (dtype_a=1), dlen \(\geq 9\).
The array descriptor for the distributed matrix \(A\).
Contains information of mapping of \(A\) to memory.
(local)
Pointer into the local memory to an array of local lead size lld_b > nb. On entry, this array contains the local pieces of the right hand sides \(B\) (ib: ib +n-1, 1:nrhs).
(global) The row index in the global matrix \(B\) indicating the first row of the matrix to be operated on (which may be either all of \(b\) or a submatrix of \(B\) ).
(global and local) array of size dlen.
If 1d type (dtype_b =502), dlen \(\geq 7\);
If \(2 d\) type (dtype_b \(=1\) ), dlen \(\geq 9\).
The array descriptor for the distributed matrix \(B\).
Contains information of mapping of \(B\) to memory.
(local).
(local or global) Size of user-input workspace work. If /work is too small, the minimal acceptable size will be returned in work [0] and an error code is returned. 1 work \(>(12 *\) NPCOL \(+3 * n b)+\max ((10+2 * \min (100\), nrhs))*NPCOL+4*nrhs, 8*NPCOL)

\section*{Output Parameters}

On exit, this array contains information containing the * factors of the matrix.

On exit, this array contains information containing the \(*\) factors of the matrix. Must be of size > desca[nb_ - 1].

On exit, this array contains information containing the * factors of the matrix. Must be of size > desca[nb_ - 1].

On exit, this contains the local piece of the solutions distributed matrix \(X\).
On exit, work[0] contains the minimal /work.
(local) If infor 0 , the execution is successful.
< 0: If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
\(>0\) : If info \(=k<\) NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.
If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not positive definite, and the factorization was not completed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?posv}

Solves a symmetric positive definite system of linear
equations.

\section*{Syntax}
```

void psposv (char *uplo, MKL_INT *n , MKL_INT *nrhs , float *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca , float *b, MKL_INT *ib, MKL_INT *jb, MKL_INT *descb, MKL_INT
*info);
void pdposv (char *uplo, MKL_INT *n , MKL_INT *nrhs, double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, double *b, MKL_INT *ib, MKL_INT *jb, MKL_INT *descb, MKL_INT
*info);
void pcposv (char *uplo, MKL_INT *n , MKL_INT *nrhs , MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *b, MKL_INT *ib , MKL_INT *jb , MKL_INT
*descb , MKL_INT *info);
void pzposv (char *uplo, MKL_INT *n , MKL_INT *nrhs, MKL_Complexl6 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *b, MKL_INT *ib, MKL_INT *jb , MKL_INT
*descb , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?posvfunction computes the solution to a real/complex system of linear equations
```

sub(A) * X = sub(B),

```
where \(\operatorname{sub}(A)\) denotes \(A(i a: i a+n-1, j a: j a+n-1)\) and is an \(n\)-by-n symmetric/Hermitian distributed positive definite matrix and \(X\) and \(\operatorname{sub}(B)\) denoting \(B(i b: i b+n-1, j b: j b+n r h s-1)\) are \(n\)-by-nrhs distributed matrices. The Cholesky decomposition is used to factor \(\operatorname{sub}(A)\) as
```

sub (A) = UT*U, if uplo = 'U', or
sub(A) = L* L'T, if uplo = 'L',

```
where \(U\) is an upper triangular matrix and \(L\) is a lower triangular matrix. The factored form of \(\operatorname{sub}(A)\) is then used to solve the system of equations.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & (global) Must be 'U' or 'L'. \\
\hline \(n\) & Indicates whether the upper or lower triangular part of \(\operatorname{sub}(A)\) is stored. (global) The order of the distributed matrix \(\operatorname{sub}(A)(n \geq 0)\). \\
\hline nrhs & The number of right-hand sides; the number of columns of the distributed matrix \(\operatorname{sub}(B)(n r h s \geq 0)\). \\
\hline a & (local) \\
\hline & Pointer into the local memory to an array of size IId_a*LOCc (ja+n-1). On entry, this array contains the local pieces of the \(n\)-by-n symmetric distributed matrix \(\operatorname{sub}(A)\) to be factored. \\
\hline & If uplo = ' \(U\) ', the leading \(n\)-by-n upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. \\
\hline & If uplo = ' \(L\) ', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the distributed matrix, and its strictly upper triangular part is not referenced. \\
\hline ia, ja & (global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\). \\
\hline b & (local) \\
\hline & Pointer into the local memory to an array of size IId_b*LOCc(jb+nrhs-1). On entry, the local pieces of the right hand sides distributed matrix \(\operatorname{sub}(B)\). \\
\hline ib, jb & (global) The row and column indices in the global matrix \(B\) indicating the first row and the first column of the submatrix \(B\), respectively. \\
\hline descb & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(B\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
On exit, if info \(=0\), this array contains the local pieces of the factor \(U\) or \(L\) from the Cholesky factorization sub \((A)=U^{H *} U\), or \(L^{*} L^{H}\).

On exit, if info \(=0, \operatorname{sub}(B)\) is overwritten by the solution distributed matrix \(X\).
(global)
If info \(=0\), the execution is successful.
If info < 0 : If the \(i\)-th argument is an array and the \(j\)-th entry, indexed \(j-1\), had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

If info > 0: If info \(=k\), the leading minor of order \(k\), \(A(i a: i a+k-1\), \(j a: j a+k-1)\) is not positive definite, and the factorization could not be completed, and the solution has not been computed.

\section*{See Also}

\section*{Overview for details of ScaLAPACK array descriptor structures and related notations.}

\section*{p?posvx}

\section*{Solves a symmetric or Hermitian positive definite system of linear equations.}

\section*{Syntax}
```

void psposvx (char *fact , char *uplo, MKL_INT *n , MKL_INT *nrhs , float *a , MKL_INT
*ia, MKL_INT *ja , MKL_INT *desca , float *af , MKL_INT *iaf, MKL_INT *jaf , MKL_INT
*descaf, char *equed, float *sr , float *sc , float *b , MKL_INT *ib , MKL_INT *jb ,
MKL_INT *descb , float *x , MKL_INT *ix , MKL_INT *jx , MKL_INT *descx , float *rcond ,
float *ferr, float *berr , float *work , MKL_INT *lwork , MKL_INT *iwork , MKL_INT
*liwork , MKL_INT *info);
void pdposvx (char *fact , char *uplo, MKL_INT *n , MKL_INT *nrhs , double *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, double *af, MKL_INT *iaf, MKL_INT *jaf, MKL_INT
*descaf, char *equed, double *sr, double *sc , double *b , MKL_INT *ib , MKL_INT
*jb , MKL_INT *descb, double *x, MKL_INT *ix, MKL_INT *jx , MKL_INT *descx , double
*rcond, double *ferr, double *berr, double *work, MKL_INT *lwork, MKL_INT *iwork,
MKL_INT *liwork , MKL_INT *info);
void pcposvx (char *fact , char *uplo, MKL_INT *n , MKL_INT *nrhs , MKL_Complex8 *a ,
MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *af, MKL_INT *iaf , MKL_INT
*jaf, MKL_INT *descaf, char *equed, float *sr , float *sc , MKL_Complex8 *b , MKL_INT
*ib , MKL_INT *jb, MKL_INT *descb , MKL_Complex8 *x , MKL_INT *ix , MKL_INT *jx ,
MKL_INT *descx, float *rcond, float *ferr, float *berr, MKL_Complex8 *work ,
MKL_INT *lwork , float *rwork , MKL_INT *lrwork , MKL_INT *info);
void pzposvx (char *fact , char *uplo, MKL_INT *n , MKL_INT *nrhs , MKL_Complexl6 *a ,
MKL_INT *ia, MKL_INT *ja, MKL_INT *desca , MKL_Complexl6 *af , MKL_INT *iaf , MKL_INT
*jaf, MKL_INT *descaf, char *equed, double *sr, double *sc , MKL_Complexl6 *b,
MKL_INT *ib},MKL_INT *jb, MKL_INT *descb, MKL_Complex16 *x , MKL_INT *ix , MKL_INT
*jx , MKL_INT *descx , double *rcond, double *ferr, double *berr , MKL_Complexl6
*WOrk , MKL_INT *lwork, double *rwork , MKL_INT *lrwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?posvxfunction uses the Cholesky factorization \(A=U^{T} \star U\) or \(A=L^{\star} L^{T}\) to compute the solution to a real or complex system of linear equations
```

A(ia:ia+n-1, ja:ja+n-1)*X = B(ib:ib+n-1, jb:jb+nrhs-1),

```
where \(A(i a: i a+n-1, j a: j a+n-1)\) is a \(n\)-by- \(n\) matrix and \(X\) and \(B(i b: i b+n-1, j b: j b+n r h s-1)\) are \(n\)-bynrhs matrices.
Error bounds on the solution and a condition estimate are also provided.
In the following comments \(y\) denotes \(Y(i y: i y+m-1, j y: j y+k-1)\), an \(m\)-by- \(k\) matrix where \(y\) can be \(a\), \(a f, b\) and \(x\).

The function p?posvx performs the following steps:
1. If fact \(=\) ' \(E\) ', real scaling factors \(s\) are computed to equilibrate the system:
```

diag(sr)*A*diag(sc)*inv(diag(sc))*X = diag(sr)*B

```

Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by diag \((s r) * A * \operatorname{diag}(s c)\) and \(B\) by \(\operatorname{diag}(s r) * B\).
2. If fact \(=\) ' \(N\) ' or ' \(E\) ', the Cholesky decomposition is used to factor the matrix \(A\) (after equilibration if fact \(=\) 'E') as
\(A=U^{T} * U\), if uplo = 'U', or
\(A=L * L^{T}\), if uplo = 'L',
where \(U\) is an upper triangular matrix and \(L\) is a lower triangular matrix.
3. The factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, steps 4-6 are skipped
4. The system of equations is solved for \(X\) using the factored form of \(A\).
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix \(X\) is premultiplied by diag(sr) so that it solves the original system before equilibration.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{fact} & (global) Must be 'F', 'N', or 'E'. \\
\hline & Specifies whether or not the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix \(A\) should be equilibrated before it is factored. \\
\hline & If fact \(=\) ' \(\mathrm{F}^{\prime}\) : on entry, af contains the factored form of \(A\). If equed \(=\) ' \(Y\) ', the matrix \(A\) has been equilibrated with scaling factors given by \(s\). a and af will not be modified. \\
\hline & If fact = 'N', the matrix \(A\) will be copied to af and factored. \\
\hline & If fact \(=\) ' \(E\) ', the matrix \(A\) will be equilibrated if necessary, then copied to af and factored. \\
\hline \multirow[t]{2}{*}{uplo} & (global) Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular part of \(A\) is stored. \\
\hline
\end{tabular}
\(n\)
nrhs
a
ia, ja
desca
\(a f\)
iaf, jaf
descaf
equed

Sr
(global) The order of the distributed matrix \(\operatorname{sub}(A)(n \geq 0)\).
(global) The number of right-hand sides; the number of columns of the distributed submatrices \(B\) and \(X\). (nrhs \(\geq 0)\).
(local)
Pointer into the local memory to an array of local size lld_a*LOCC (ja \(+n-1)\). On entry, the symmetric/Hermitian matrix \(A\), except if fact \(='^{\prime} \mathrm{F}^{\prime}\) and equed \(=\) ' \(Y\) ', then \(A\) must contain the equilibrated matrix \(\operatorname{diag}(s r) * A * \operatorname{diag}(s c)\).

If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(A\) contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(A\) is not referenced.
If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(A\) contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(A\) is not referenced. \(A\) is not modified if fact \(='^{\prime} F^{\prime}\) or 'N', or if fact \(=\) 'E' and equed = 'N' on exit.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of local size lld_af*LOCC (ja \(+n-1)\).

If fact \(=\) ' \(F\) ', then \(a f\) is an input argument and on entry contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{T} \star U\) or \(A=\) \(L^{\star} L^{T}\), in the same storage format as \(A\). If equed \(\neq{ }^{\prime} N^{\prime}\), then \(a f\) is the factored form of the equilibrated matrix diag (sr)*A*diag (sc).
(global) The row and column indices in the global matrix \(A F\) indicating the first row and the first column of the submatrix \(A F\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A F\).
(global) Must be 'N' or 'Y'.
equed is an input argument if fact \(={ }^{\prime} \mathrm{F}^{\prime}\). It specifies the form of equilibration that was done:
If equed = 'N', no equilibration was done (always true if fact = 'N');
If equed \(=\) ' \(Y\) ', equilibration was done and \(A\) has been replaced by \(\operatorname{diag}(s r) * A * \operatorname{diag}(s c)\).
(local)
Array of size lld_a.
The array \(s\) contains the scale factors for \(A\). This array is an input argument if fact \(=\) ' F ' only; otherwise it is an output argument.

If equed \(=\) ' \(N\) ', \(s\) is not accessed.

If fact \(=\) ' F ' and equed \(=\) 'Y', each element of \(s\) must be positive.
b
ib, jb
descb

X
ix, jx
descx
work
lwork
iwork
liwork
(local)
Pointer into the local memory to an array of local size lld_b*LOCC (jb \(+n r h s-1)\). On entry, the \(n\)-by-nrhs right-hand side matrix \(B\).
(global) The row and column indices in the global matrix \(B\) indicating the first row and the first column of the submatrix \(B\), respectively.
(global and local) Array of size dlen_. The array descriptor for the distributed matrix \(B\).
(local)
Pointer into the local memory to an array of local size lld_x*LOCC (jx +nrhs-1).
(global) The row and column indices in the global matrix \(X\) indicating the first row and the first column of the submatrix \(X\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(X\).
(local)
Workspace array of size Iwork.
(local or global)
The size of the array work. Iwork is local input and must be at least lwork \(=\max \left(\mathrm{p}\right.\) ?pocon(lwork), p?porfs(lwork)) \(+\operatorname{LOCr}\left(n_{-} a\right)\).
lwork \(=3 *\) desca[lld_ - 1].
If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
(local) Workspace array of size liwork.
(local or global)
The size of the array iwork. liwork is local input and must be at least liwork \(=\) desca[lld_ - 1]liwork \(=\operatorname{LOCr}\left(n_{-} a\right)\).
If liwork \(=-1\), then liwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
\(a f\)
On exit, if fact \(=\) ' E ' and equed \(=\) ' Y ', \(a\) is overwritten by \(\operatorname{diag}(S r) * a * \operatorname{diag}(S C)\).

If fact \(=\) ' \(N\) ', then \(a f\) is an output argument and on exit returns the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{T} \star U\) or \(A=\) \(L^{\star} L^{T}\) of the original matrix \(A\).

If fact \(=\) ' \(E\) ', then \(a f\) is an output argument and on exit returns the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{T} \star U\) or \(A=\) \(L^{\star} L^{T}\) of the equilibrated matrix \(A\) (see the description of \(A\) for the form of the equilibrated matrix).

If \(f a c t \neq ' F^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

This array is an output argument if fact \(\mathcal{F}^{\prime} \mathrm{F}^{\prime}\).
See the description of \(s r\) in Input Arguments section.
This array is an output argument if fact \(\neq\) ' \(F^{\prime}\).
See the description of \(s c\) in Input Arguments section.
On exit, if equed \(=\) ' \(N\) ', \(b\) is not modified; if trans \(=\) ' \(N\) ' and equed \(=\) ' \(\mathrm{R}^{\prime}\) or ' B ', \(b\) is overwritten by diag \((r) * b\); if trans \(=\) 'T' or ' \(C^{\prime}\) and equed \(=\) 'C' or ' B ', \(b\) is overwritten by diag \((c) * b\).
(local)
If info \(=0\) the \(n\)-by-nrhs solution matrix \(X\) to the original system of equations.
Note that \(A\) and \(B\) are modified on exit if equed \(\neq{ }^{\prime} N^{\prime}\), and the solution to the equilibrated system is
```

inv(diag(SC))*X if trans = 'N' and equed = 'C' or 'B', or
inv(diag(sr))*X if trans = 'T' or 'C' and equed = 'R' or 'B'.

```
(global)
An estimate of the reciprocal condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision (in particular, if \(r\) cond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).

Arrays of size at least max ( \(L O C, n_{-} b\) ). The estimated forward error bounds for each solution vector \(X(j)\) (the \(\bar{j}\)-th column of the solution matrix \(X\) ). If xtrue is the true solution, ferr \([j-1]\) bounds the magnitude of the largest entry in \((X(j)\) - xtrue) divided by the magnitude of the largest entry in \(X(j)\). The quality of the error bound depends on the quality of the estimate of norm (inv (A)) computed in the code; if the estimate of norm (inv (A)) is accurate, the error bound is guaranteed.
(local)
Arrays of size at least max ( \(L O C, n_{-} b\) ). The componentwise relative backward error of each solution vector \(X(j)\) (the smallest relative change in any entry of \(A\) or \(B\) that makes \(X(j)\) an exact solution).
(local) On exit, work[0] returns the minimal and optimal liwork.
(global)
If info \(=0\), the execution is successful.
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value
\(>0\) : if info \(=i\), and \(i\) is \(\leq n\) : if info \(=i\), the leading minor of order \(i\) of \(a\) is not positive definite, so the factorization could not be completed, and the solution and error bounds could not be computed.
\(=n+1\) : rcond is less than machine precision. The factorization has been completed, but the matrix is singular to working precision, and the solution and error bounds have not been computed.
```

See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.
p?pbsv
Solves a symmetric/Hermitian positive definite banded
system of linear equations.

```

\section*{Syntax}
```

void pspbsv (char *uplo , MKL_INT *n , MKL_INT *bw , MKL_INT *nrhs , float *a , MKL_INT

```
void pspbsv (char *uplo , MKL_INT *n , MKL_INT *bw , MKL_INT *nrhs , float *a , MKL_INT
*ja, MKL_INT *desca , float *b , MKL_INT *ib, MKL_INT *descb , float *work , MKL_INT
*ja, MKL_INT *desca , float *b , MKL_INT *ib, MKL_INT *descb , float *work , MKL_INT
*lwork , MKL_INT *info );
*lwork , MKL_INT *info );
void pdpbsv (char *uplo, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs , double *a , MKL_INT
void pdpbsv (char *uplo, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs , double *a , MKL_INT
*ja , MKL_INT *desca , double *b, MKL_INT *ib, MKL_INT *descb , double *work , MKL_INT
*ja , MKL_INT *desca , double *b, MKL_INT *ib, MKL_INT *descb , double *work , MKL_INT
*lwork , MKL_INT *info );
*lwork , MKL_INT *info );
void pcpbsv (char *uplo, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs , MKL_Complex8 *a ,
void pcpbsv (char *uplo, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs , MKL_Complex8 *a ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *descb ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *descb ,
MKL_Complex8 *work , MKL_INT *lwork , MKL_INT *info );
MKL_Complex8 *work , MKL_INT *lwork , MKL_INT *info );
void pzpbsv (char *uplo, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs , MKL_Complex16 *a ,
void pzpbsv (char *uplo, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs , MKL_Complex16 *a ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib , MKL_INT *descb ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib , MKL_INT *descb ,
MKL_Complex16 *work , MKL_INT *lwork , MKL_INT *info );
```

MKL_Complex16 *work , MKL_INT *lwork , MKL_INT *info);

```

Include Files
- mkl_scalapack.h

\section*{Description}

The p?pbsvfunction solves a system of linear equations
```

A(1:n, ja:ja+n-1)*X = B(ib:ib+n-1, 1:nrhs),

```
where \(A(1: n, j a: j a+n-1)\) is an \(n\)-by- \(n\) real/complex banded symmetric positive definite distributed matrix with bandwidth \(b w\).

Cholesky factorization is used to factor a reordering of the matrix into \(L^{*} L^{\prime}\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
(global) Must be 'U' or 'L'.
Indicates whether the upper or lower triangular of \(A\) is stored.
\begin{tabular}{|c|c|}
\hline & If uplo = 'U', the upper triangular \(A\) is stored \\
\hline & If uplo = 'L', the lower triangular of \(A\) is stored. \\
\hline \(n\) & (global) The order of the distributed matrix \(A(n \geq 0)\). \\
\hline bw & (global) The number of subdiagonals in \(L\) or \(U .0 \leq b_{W} \leq n-1\). \\
\hline nrhs & (global) The number of right-hand sides; the number of columns in \(B(n r h s \geq 0)\). \\
\hline a & (local). \\
\hline & Pointer into the local memory to an array with leading size lld_a \(\geq\) ( \(b \mathrm{w}\) +1 ) (stored in desca). On entry, this array contains the local pieces of the distributed matrix sub ( \(A\) ) to be factored. \\
\hline ja & (global) The index in the global matrix \(A\) indicating the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\) ). \\
\hline desca & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\). \\
\hline b & (local) \\
\hline & Pointer into the local memory to an array of local lead size \(/ / d \_b \geq n b\). On entry, this array contains the local pieces of the right hand sides \(B\) (ib:ib +n-1, 1:nrhs). \\
\hline ib & (global) The row index in the global matrix \(B\) indicating the first row of the matrix to be operated on (which may be either all of \(b\) or a submatrix of \(B\) ). \\
\hline descb & (global and local) array of size dlen. \\
\hline & If 1D type (dtype_b = 502), dlen \(\geq\) 7; \\
\hline & If 2D type (dtype_b =1), dlen \(\geq 9\). \\
\hline & The array descriptor for the distributed matrix \(B\). \\
\hline & Contains information of mapping of \(B\) to memory. \\
\hline work & (local). \\
\hline & Temporary workspace. This space may be overwritten in between calls to functions. work must be the size given in lwork. \\
\hline lwork & (local or global) Size of user-input workspace work. If /work is too small, the minimal acceptable size will be returned in work [0] and an error code is returned. 1 work \(\geq(n b+2 * b w) * b w+m a x\left(\left(b w^{*} n r h s\right)\right.\), \(\left.b^{*} b_{b w}\right)\) \\
\hline
\end{tabular}

\section*{Output Parameters}
a
b
work
info
On exit, this array contains information containing details of the factorization. Note that permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.

On exit, contains the local piece of the solutions distributed matrix \(X\).
On exit, work[0] contains the minimal lwork.
(global) If info \(=0\), the execution is successful.
< 0: If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
> 0 : If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.

If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not positive definite, and the factorization was not completed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?ptsv}

Syntax
Solves a symmetric or Hermitian positive definite tridiagonal system of linear equations.
```

void psptsv (MKL_INT *n , MKL_INT *nrhs , float *d, float *e , MKL_INT *ja , MKL_INT
*desca , float *b , MKL_INT *ib , MKL_INT *descb, float *work , MKL_INT *lwork ,
MKL_INT *info);
void pdptsv (MKL_INT *n , MKL_INT *nrhs , double *d, double *e , MKL_INT *ja , MKL_INT
*desca, double *b, MKL_INT *ib, MKL_INT *descb, double *work , MKL_INT *lwork ,
MKL_INT *info);
void pcptsv (char *uplo, MKL_INT *n , MKL_INT *nrhs , float *d, MKL_Complex8 *e ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *b, MKL_INT *ib , MKL_INT *descb ,
MKL_Complex8 *work, MKL_INT *lwork , MKL_INT *info);
void pzptsv (char *uplo , MKL_INT *n , MKL_INT *nrhs, double *d , MKL_Complexl6 *e ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib , MKL_INT *descb ,
MKL_Complex16 *work , MKL_INT *lwork , MKL_INT *info);

```

Include Files
- mkl_scalapack.h

\section*{Description}

The p?ptsvfunction solves a system of linear equations
```

A(1:n, ja:ja+n-1)*X = B(ib:ib+n-1, 1:nrhs),

```
where \(A(1: n, j a: j a+n-1)\) is an \(n\)-by- \(n\) real tridiagonal symmetric positive definite distributed matrix.
Cholesky factorization is used to factor a reordering of the matrix into \(L^{*} L^{\prime}\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
n
nrhs
\(d\)
e
ja
desca
b
ib
descb
work

I work
(global) The order of matrix \(A(n \geq 0)\).
(global) The number of right-hand sides; the number of columns of the distributed submatrix \(B(n r h s \geq 0)\).
(local)
Pointer to local part of global vector storing the main diagonal of the matrix.
(local)
Pointer to local part of global vector storing the upper diagonal of the matrix. Globally, \(d u(\mathrm{n})\) is not referenced, and \(d u\) must be aligned with \(d\).
(global) The index in the global matrix \(A\) indicating the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\) ).
(global and local) array of size dlen.
If 1d type (dtype_a=501 or 502), dlen \(\geq 7\);
If \(2 d\) type (dtype_a=1), dlen \(\geq 9\).
The array descriptor for the distributed matrix \(A\).
Contains information of mapping of \(A\) to memory.
(local)
Pointer into the local memory to an array of local lead size lld_b \(\geq n b\).
On entry, this array contains the local pieces of the right hand sides \(B\) (ib:ib+n-1, 1:nrhs).
(global) The row index in the global matrix \(B\) indicating the first row of the matrix to be operated on (which may be either all of \(b\) or a submatrix of \(B\) ).
(global and local) array of size dlen.
If \(1 d\) type (dtype_b \(=502\) ), dlen \(\geq 7\);
If \(2 d\) type (dtype_b = 1), dlen \(\geq 9\).
The array descriptor for the distributed matrix \(B\).
Contains information of mapping of \(B\) to memory.
(local).
Temporary workspace. This space may be overwritten in between calls to functions. work must be the size given in lwork.
(local or global) Size of user-input workspace work. If Iwork is too small, the minimal acceptable size will be returned in work[0] and an error code is returned. 1 work \(>(12 * \mathrm{NPCOL}+3 * n b)+\max ((10+2 * \min (100\), nrhs) ) *NPCOL+4*nrhs, 8*NPCOL).

\section*{Output Parameters}
d

On exit, this array contains information containing the factors of the matrix. Must be of size greater than or equal to desca[nb_ - 1].
\begin{tabular}{|c|c|}
\hline e & On exit, this array contains information containing the factors of the matrix Must be of size greater than or equal to desca[nb - 1]. \\
\hline b & On exit, this contains the local piece of the solutions distributed matrix \(X\). \\
\hline work & On exit, work[0] contains the minimal /work. \\
\hline info & (local) If info=0, the execution is successful. \\
\hline & < 0 : If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). \\
\hline & > 0 : If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed. \\
\hline & If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not positive definite, and the factorization was not completed. \\
\hline
\end{tabular}

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?gels}

Solves overdetermined or underdetermined linear systems involving a matrix of full rank.

\section*{Syntax}
```

void psgels (char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *nrhs , float *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, float *b, MKL_INT *ib, MKL_INT *jb, MKL_INT
*descb , float *work , MKL_INT *lwork, MKL_INT *info);
void pdgels (char *trans , MKL_INT *m, MKL_INT *n , MKL_INT *nrhs, double *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, double *b, MKL_INT *ib, MKL_INT *jb, MKL_INT
*descb, double *work, MKL_INT *lwork , MKL_INT *info);
void pcgels (char *trans, MKL_INT *m , MKL_INT *n , MKL_INT *nrhs , MKL_Complex8 *a ,
MKL_INT *ia, MKL_INT *ja , MKL_INT *desca, MKL_Complex8 *b , MKL_INT *ib , MKL_INT
*jb, MKL_INT *descb, MKL_Complex8 *work, MKL_INT *lwork, MKL_INT *info);
void pzgels (char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *nrhs , MKL_Complexl6 *a ,
MKL_INT *ia, MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib , MKL_INT
*jb, MKL_INT *descb, MKL_Complex16 *work, MKL_INT *lwork, MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?gels function solves overdetermined or underdetermined real/ complex linear systems involving an \(m\)-by-n matrix sub \((A)=A(i a: i a+m-1, j a: j a+n-1)\), or its transpose/ conjugate-transpose, using a QTQ or \(L Q\) factorization of \(\operatorname{sub}(A)\). It is assumed that \(\operatorname{sub}(A)\) has full rank.
The following options are provided:
1. If trans = ' \(N\) ' and \(m \geq n\) : find the least squares solution of an overdetermined system, that is, solve the least squares problem
minimize \(||\operatorname{sub}(B)-\operatorname{sub}(A) * X||\)
2. If trans \(=\) ' \(N\) ' and \(m<n\) : find the minimum norm solution of an underdetermined system \(\operatorname{sub}(A) * X\) \(=\operatorname{sub}(B)\).
3. If trans = ' \(T\) ' and \(m \geq n\) : find the minimum norm solution of an undetermined system sub \((A)^{T} * X=\) sub ( \(B\) ).
4. If trans \(=\) ' \(T\) ' and \(m<n\) : find the least squares solution of an overdetermined system, that is, solve the least squares problem
```

minimize ||sub(B) - sub(A) }\mp@subsup{}{}{T*}X||
where sub(B) denotes B(ib:ib+m-1, jb:jb+nrhs-1) when trans = 'N' and B(ib:ib+n-1,

``` \(j b: j b+n r h s-1)\) otherwise. Several right hand side vectors \(b\) and solution vectors \(x\) can be handled in a single call; when trans = 'N', the solution vectors are stored as the columns of the \(n\)-by-nrhs right hand side matrix \(\operatorname{sub}(B)\) and the \(m\)-by-nrhs right hand side matrix sub \((B)\) otherwise.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{trans} & (global) Must be 'N', or 'T'. \\
\hline & If trans \(=\) ' N ', the linear system involves matrix \(\operatorname{sub}(A)\); \\
\hline & If trans \(=\) 'T', the linear system involves the transposed matrix \(A^{T}\) (for real flavors only). \\
\hline m & (global) The number of rows in the distributed matrix sub \((A)(m \geq 0)\). \\
\hline \(n\) & (global) The number of columns in the distributed matrix sub ( \(A\) ) ( \(n \geq 0\) ). \\
\hline nrhs & (global) The number of right-hand sides; the number of columns in the distributed submatrices \(\operatorname{sub}(B)\) and \(X .(n r h s \geq 0)\). \\
\hline \multirow[t]{2}{*}{a} & (local) \\
\hline & Pointer into the local memory to an array of size lld_a*LOCC (ja+n-1). On entry, contains the \(m\)-by- \(n\) matrix \(A\). \\
\hline ia, ja & (global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{2}{*}{b} & (local) \\
\hline & Pointer into the local memory to an array of local size lld_b*LOCc (jb \(+n r h s-1)\). On entry, this array contains the local pieces of the distributed matrix \(B\) of right-hand side vectors, stored columnwise; \(\operatorname{sub}(B)\) is \(m\)-bynrhs if trans= ' N ', and \(n\)-by-nrhs otherwise. \\
\hline ib, jb & (global) The row and column indices in the global matrix \(B\) indicating the first row and the first column of the submatrix \(B\), respectively. \\
\hline descb & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(B\). \\
\hline \multirow[t]{2}{*}{work} & (local) \\
\hline & Workspace array with size /work. \\
\hline lwork & (local or global) . \\
\hline
\end{tabular}

The size of the array worklwork is local input and must be at least lwork \(\geq\) ltau \(+\max (l w f, \quad l w S)\), where if \(m>n\), then

Itau \(=\) numroc (ja+min \(\left.(m, n)-1, n b \_a, ~ M Y C O L, ~ C s r c \_a, ~ N P C O L\right), ~\)
\(\operatorname{lwf}=n b \_a^{*}\left(m p a 0+n q a 0+n b \_a\right)\)
lws \(=\max \left(\left(n b \_a^{*}\left(n b \_a-1\right)\right) / 2,(n r h s q b 0+m p b 0) * n b \_a\right)+\)
\(n b \_a * n b \_a\)
else
Itau \(=\) numroc (ia+min \(\left.(m, n)-1, ~ m b \_a, ~ M Y R O W, ~ r s r c \_a, ~ N P R O W\right), ~\)
lwf = mb_a * (mpa0 + nqa0 + mb_a)
lws \(=\max \left(\left(m b \_a *\left(m b \_a-1\right)\right) / 2,(n p b 0+\max (n q a 0+\right.\)
numroc (numroc (n+iroffb, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), nrhsqb0))*mb_a) + mb_a*mb_a
end if,
where \(\operatorname{lcmp}=1 \mathrm{~cm} / \mathrm{NPROW}\) with \(\operatorname{lcm}=\) ilcm (NPROW, NPCOL),
```

iroffa = mod(ia-1, mb_a),

```
iCoffa \(=\bmod \left(j a-1, ~ n b \_a\right)\),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol= indxg2p(ja, nb_a, MYROW, rsrc_a, NPROW)
mpaO = numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 \(=\) numroc (n+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffb \(=\bmod \left(i b-1, m b \_b\right)\),
\(i c o f f b=\bmod \left(j b-1, n b \_b\right)\),
ibrow \(=\) indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW),
ibcol \(=\) indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL),
mpb0 \(=\) numroc (m+iroffb, mb_b, MYROW, icrow, NPROW),
nqb0 = numroc(n+icoffb, nb_b, MYCOL, ibcol, NPCOL),

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW, and NPCOL can be determined by calling the function blacs_gridinfo.

If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
On exit, If \(m \geq n, \operatorname{sub}(A)\) is overwritten by the details of its \(Q R\) factorization as returned by p?geqrf; if \(m<n, \operatorname{sub}(A)\) is overwritten by details of its \(L Q\) factorization as returned by p?gelqf.

On exit, \(\operatorname{sub}(B)\) is overwritten by the solution vectors, stored columnwise: if trans \(=\) ' \(N\) ' and \(m \geq n\), rows 1 to \(n\) of \(\operatorname{sub}(B)\) contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements \(n+1\) to \(m\) in that column;

If trans \(=\) ' \(N\) ' and \(m<n\), rows 1 to \(n\) of \(\operatorname{sub}(B)\) contain the minimum norm solution vectors;

If trans \(=\) ' \(T\) ' and \(m \geq n\), rows 1 to \(m\) of \(\operatorname{sub}(B)\) contain the minimum norm solution vectors; if trans \(=\) ' \(T\) ' and \(m<n\), rows 1 to \(m\) of \(\operatorname{sub}(B)\) contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements \(m+1\) to \(n\) in that column.

On exit, work[0] contains the minimum value of Iwork required for optimum performance.
(global)
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?syev
Computes selected eigenvalues and eigenvectors of a symmetric matrix.

\section*{Syntax}
```

void pssyev (char *jobz , char *uplo, MKL_INT *n , float *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, float *w, float *z , MKL_INT *iz , MKL_INT *jz , MKL_INT
*descz , \overline{float *work , MKL_INT *lwork , MKL_INT *info);}
void pdsyev (char *jobz, char *uplo, MKL_INT *n , double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, double *W, double *z_, MKL_INT *iz , MKL_INT *jz , MKL_INT
*descz , double *work, MKL_INT *lwork , MKL_INT *info);

```

\section*{Include Files}
```

- mkl_scalapack.h

```

\section*{Description}

The p?syevfunction computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) by calling the recommended sequence of ScaLAPACK functions.

In its present form, the function assumes a homogeneous system and makes no checks for consistency of the eigenvalues or eigenvectors across the different processes. Because of this, it is possible that a heterogeneous system may return incorrect results without any error messages.

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.
\begin{tabular}{|c|c|}
\hline jobz & (global) Must be 'N' or 'V'. Specifies if it is necessary to compute the eigenvectors: \\
\hline & If \(\mathrm{jobz}=\) ' N ', then only eigenvalues are computed. \\
\hline & If jobz \(=^{\prime} \mathrm{V}\) ', then eigenvalues and eigenvectors are computed. \\
\hline uplo & (global) Must be 'U' or 'L'. Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored: \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & (global) The number of rows and columns of the matrix \(A(n \geq 0)\). \\
\hline a & (local) \\
\hline & Block cyclic array of global size \(n^{*} n\) and local size \(11 d \_a \star \operatorname{LOCC}(j a+n-1)\). On entry, the symmetric matrix \(A\). \\
\hline & If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the symmetric matrix. \\
\hline & If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the symmetric matrix. \\
\hline ia, ja & (global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\). \\
\hline \(i z, j z\) & (global) The row and column indices in the global matrix \(Z\) indicating the first row and the first column of the submatrix \(Z\), respectively. \\
\hline descz & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(Z\). \\
\hline work & (local) \\
\hline & Array of size /work. \\
\hline lwork & (local) See below for definitions of variables used to define Iwork. \\
\hline & If no eigenvectors are requested (jobz = 'N'), then lwork \(\geq 5^{*} n+\) sizesytrd + 1, \\
\hline & where sizesytrdis the workspace for p?sytrd and is max (NB* (np +1), \(3 * N B)\). \\
\hline & If eigenvectors are requested \((j \circ b z=' V ')\) then the amount of workspace required to guarantee that all eigenvectors are computed is: \\
\hline
\end{tabular}
qrmem \(=2 * n-2\)
```

lwmin = 5*n + n*ldc + max(sizemqrleft, qrmem) + 1

```

Variable definitions:
```

nb = desca[mb_ - 1] = desca[nb_ - 1] = descz[mb_ - 1]=
descz[nb_ - 1];
nn = max (n, nb, 2);
desca[rsrc_ - 1] = desca[rsrc_ - 1] = descz[rsrc_ - 1]=
descz[csrc_ - 1] = 0
np = numroc (nn, nb, 0, 0, NPROW)
nq= numroc(max (n, nb, 2), nb, 0, 0, NPCOL)
nrc = numroc(n, nb, myprowc, 0, NPROCS)
ldc}=\operatorname{max}(1, nrc

```
sizemqrleft is the workspace for p?ormtr when its side argument is 'L'. myprowc is defined when a new context is created as follows:
```

call blacs_get(desca[ctxt_ - 1], 0, contextc)
call blacs_gridinit(contextc, 'R', NPROCS, 1)
call blacs_gridinfo(contextc, nprowc, npcolc, myprowc,
mypcolc)

```

If 1 work \(=-1\), then /work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
w
z
work[0]

On exit, the lower triangle (if uplo=' L') or the upper triangle (if uplo='U') of \(A\), including the diagonal, is destroyed.
(global).
Array of size \(n\).
On normal exit, the first \(m\) entries contain the selected eigenvalues in ascending order.
(local).
Array, global size \(n^{*} n\), local size \(11 d_{-} z^{\star} \operatorname{LOCC}(j z+n-1)\). If jobz = 'V', then on normal exit the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues.
If jobz \(=\) ' N ', then \(z\) is not referenced.
On output, work[0] returns the workspace needed to guarantee completion. If the input parameters are incorrect, work[0] may also be incorrect.
If jobz = 'N'work[0] = minimal (optimal) amount of workspace
If jobz = 'V' work[0] = minimal workspace required to generate all the eigenvectors.
```

info
(global)
If info = 0, the execution is successful.
If info < 0: If the i-th argument is an array and the j-entry had an illegal
value, then info = - (i*100+j), if the i-th argument is a scalar and had
an illegal value, then info = -i.
If info > 0:
If info= 1 through n, the i-th eigenvalue did not converge in ?steqr2
after a total of 30n iterations.
If info= n+1, then p?syev has detected heterogeneity by finding that
eigenvalues were not identical across the process grid. In this case, the
accuracy of the results from p?syev cannot be guaranteed.

```

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?syevd}

Computes all eigenvalues and eigenvectors of a real symmetric matrix by using a divide and conquer algorithm.

\section*{Syntax}
```

void pssyevd (char *jobz , char *uplo, MKL_INT *n , float *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , float *W , float *z , MKL_INT *iz , MKL_INT *jz , MKL_INT
*descz , float *work , MKL_INT *lwork , MKL_INT *iwork , MKL_INT *liwork , MKL_INT
*info);
void pdsyevd (char *jobz , char *uplo, MKL_INT *n , double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, double *W , double *z , MKL_INT *iz , MKL_INT *jz , MKL_INT
*descz , double *work , MKL_INT *lwork , MKL_INT *iwork , MKL_INT *liwork , MKL_INT
*info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?syevd function computes all eigenvalues and eigenvectors of a real symmetric matrix \(A\) by using a divide and conquer algorithm.

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.
```

jobz (global)Must be 'N' or 'V'.
Specifies if it is necessary to compute the eigenvectors:
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
(global) Must be 'U' or 'L'.

```

Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is stored:

If uplo = 'U', a stores the upper triangular part of \(A\).
If uplo = 'L', a stores the lower triangular part of \(A\).
\(n\)
\(a\)
ia, ja
desca
iz, jz
descz
work
lwork
iwork
liwork
(global) The number of rows and columns of the matrix \(A(n \geq 0)\).
(local).
Block cyclic array of global size \(n^{*} n\) and local size \(11 d \_a^{*} \operatorname{LOCC}(j a+n-1)\). On entry, the symmetric matrix \(A\).

If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the symmetric matrix.

If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the symmetric matrix.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\). If desca[ctxt_ - 1] is incorrect, p?syevd cannot guarantee correct error reporting.
(global) The row and column indices in the global matrix \(Z\) indicating the first row and the first column of the submatrix \(Z\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(Z\). descz[ctxt_ - 1] must equal desca[ctxt_ - 1].
(local).
Array of size /work.
(local) The size of the array work.
If eigenvalues are requested:
```

lwork\geq max(1+6*n + 2*np*nq, trilwmin) + 2*n
with trilwmin = 3*n + max(nb*(np + 1), 3*nb)
np = numroc(n, nb, myrow, iarow, NPROW)
nq = numroc(n, nb, mycol, iacol, NPCOL)

```

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the size required for optimal performance for all work arrays. The required workspace is returned as the first element of the corresponding work arrays, and no error message is issued by pxerbla.
(local) Workspace array of size liwork.
(local), size of iwork.
liwork \(=7 * n+8 * n p c o l+2\).

\section*{Output Parameters}
a

W
z
work[0]
iwork[0]
info

On exit, the lower triangle (if uplo = 'L'), or the upper triangle (if uplo = ' \(U\) ') of \(A\), including the diagonal, is overwritten.
(global).
Array of size \(n\). If info \(=0, w\) contains the eigenvalues in the ascending order.
(local).
Array, global size \((n, n)\), local size \(11 d \_z^{\star} \operatorname{LOCC}(j z+n-1)\).
The \(z\) parameter contains the orthonormal eigenvectors of the matrix \(A\).
On exit, returns adequate workspace to allow optimal performance.
(local).
On exit, if liwork \(>0\), iwork[0] returns the optimal liwork.
(global)
If info \(=0\), the execution is successful.
If info < 0 :
If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\). If the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

If info> 0:
The algorithm failed to compute the infol ( \(n+1\) ) -th eigenvalue while working on the submatrix lying in global rows and columns mod (info, \(n\) +1) .

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?syevr
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix using Relatively Robust Representation.

\section*{Syntax}
```

void pssyevr(char* jobz, char* range, char* uplo, MKL_INT* n, float* a, MKL_INT* ia,
MKL_INT* ja, MKL_INT* desca, float* vl, float* vu, MKL_INT* il, MKL_INT* iu, MKL_INT* m,
MKL_INT* nz, float* w, float* z, MKL_INT* iz, MKL_INT* jz, MKL_INT* descz, float* work,
MKL_INT* lwork, MKL_INT* iwork, MKL_INT* liwork, MKL_INT* info);
void pdsyevr(char* jobz, char* range, char* uplo, MKL_INT* n, double* a, MKL_INT* ia,
MKL_INT* ja, MKL_INT* desca, double* vl, double* vu, MKL_INT* il, MKL_INT* iu, MKL_INT*
m, MKL_INT* nz, double* w, double* z, MKL_INT* iz, MKL_INT* jz, MKL_INT* descz, double*
work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT* liwork, MKL_INT* info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}
p?syevr computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) distributed in 2D blockcyclic format by calling the recommended sequence of ScaLAPACK functions.
First, the matrix \(A\) is reduced to real symmetric tridiagonal form. Then, the eigenproblem is solved using the parallel MRRR algorithm. Last, if eigenvectors have been computed, a backtransformation is done.

Upon successful completion, each processor stores a copy of all computed eigenvalues in \(w\). The eigenvector matrix \(z\) is stored in 2D block-cyclic format distributed over all processors.

Note that subsets of eigenvalues/vectors can be selected by specifying a range of values or a range of indices for the desired eigenvalues.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
```

jobz
range

```
uplo
n
a
(global)
Specifies whether or not to compute the eigenvectors:
\(=\) ' N ': Compute eigenvalues only.
\(=\) ' V ': Compute eigenvalues and eigenvectors.
(global)
\(=\) ' A ': all eigenvalues will be found.
\(=\) ' \(V\) ': all eigenvalues in the interval \([v I, v u]\) will be found.
= 'I': the il-th through iu-th eigenvalues will be found.
(global)
Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored:
\(=\) 'U': Upper triangular
= 'L': Lower triangular
(global)
The number of rows and columns of the matrix \(a . n \geq 0\)
Block cyclic array of global size \(n * n\) ), local size \(/ I d \_a * L O C_{c}(j a+n-1)\).
This array contains the local pieces of the symmetric distributed matrix \(A\). If uplo = 'U', only the upper triangular part of \(a\) is used to define the elements of the symmetric matrix. If uplo = 'L', only the lower triangular part of \(a\) is used to define the elements of the symmetric matrix.

On exit, the lower triangle (if uplo='L') or the upper triangle (if uplo='U') of \(a\), including the diagonal, is destroyed.
ia
(global)
Global row index in the global matrix \(A\) that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
(global)
Global column index in the global matrix \(A\) that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
(global and local) array of size dlen_=9.
The array descriptor for the distributed matrix \(a\).
(global)
If range \(=\) ' \(V\) ', the lower bound of the interval to be searched for eigenvalues. Not referenced if range = 'A' or 'I'.
(global)
If range='V', the upper bound of the interval to be searched for eigenvalues. Not referenced if range = 'A' or 'I'.
(global)
If range='I', the index (from smallest to largest) of the smallest eigenvalue to be returned. \(i l \geq 1\).

Not referenced if range \(=\) ' A '.
(global)
If range='I', the index (from smallest to largest) of the largest eigenvalue to be returned. \(\min (i l, n) \leq i u \leq n\).

Not referenced if range \(=\) ' A '.
(global)
Global row index in the global matrix \(Z\) that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
(global)
Global column index in the global matrix \(Z\) that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
array of size dlen_.
The array descriptor for the distributed matrix \(z\).
The context descz[ctxt_-1] must equal desca[ctxt_-1]. Also note the array alignment requirements specified below.
(local workspace) array of size lwork
(local)
Size of work, must be at least 3.

See below for definitions of variables used to define lwork.
If no eigenvectors are requested ( \(j \circ b z=\) ' \(N\) ') then
```

lwork\geq2 + 5*n + max(12*nn, neig * (npO + 1))

```

If eigenvectors are requested (jobz \(=\) ' \(V\) ') then the amount of workspace required is:
lwork \(\geq 2+5 * n+\max (18 * n n, n p 0 * m q 0+2 *\) neig \(*\) neig \()+(2+\) iceil( neig, nprow*npcol))*nn

Variable definitions:
neig \(=\) number of eigenvectors requested
\(n b=\operatorname{desca}\left[m b_{-}-1\right]=\operatorname{desca}\left(n b_{-}\right)=\operatorname{descz}\left[m b_{-}-1\right]=\operatorname{descz}\left(n b_{-}\right)\)
\(n n=\max (n, n e i g, 2)\)
desca[rsrc_-1] \(=\operatorname{desca}\left[\operatorname{csrc} c_{-} n b_{-}-1\right]=\operatorname{descz}\left[r s r c_{-}-1\right]=\) descz[csrc_-1] \(=0\)
np0 \(=\) numroc (nn, neig, 0, 0, nprow \()\)
\(m q 0=\) numroc \((\max (n e i g, n e i g, 2)\), neig, 0, 0, npcol \()\)
iceil \((x, y)\) is a ScaLAPACK function returning ceiling \((x / y)\), and nprow and \(n p c o l\) can be determined by calling the function blacs_gridinfo.

If lwork \(=-1\), then lwork is global input and a workspace query is assumed; the function only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
(local )
size of iwork
Let \(n n p=\max \left(n, n p r o w^{*} n p c o l+1,4\right)\). Then:
liwork \(\geq 12 * n n p+2 *_{n}\) when the eigenvectors are desired
liwork \(\geq 10 * n n p+2 *_{n}\) when only the eigenvalues have to be computed
If liwork \(=-1\), then liwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{OUTPUT Parameters}
m
(global)
Total number of eigenvalues found. \(0 \leq m \leq n\).
(global)
Total number of eigenvectors computed. \(0 \leq n z \leq m\).
The number of columns of \(z\) that are filled.
If jobz \(\neq\) ' V ', \(n z\) is not referenced.

If jobz = 'V', \(n z=m\)

W
z
work
iwork
info
(global ) array of size \(n\)
Upon successful exit, the first \(m\) entries contain the selected eigenvalues in ascending order.

Block-cyclic array, global sizen*n, local size IId_z*LOC \((j z+n-1)\).
On exit, contains local pieces of distributed matrix \(Z\).
On return, work[0] contains the optimal amount of workspace required for efficient execution. If jobz='N' work[0] = optimal amount of workspace required to compute the eigenvalues. If jobz='V' work[0] = optimal amount of workspace required to compute eigenvalues and eigenvectors. (local workspace) array

On return, iwork[0] contains the amount of integer workspace required. (global)
= 0: successful exit
< 0: If the \(i\)-th argument is an array and the \(j\) th-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The distributed submatrices \(a\left(i a:^{*}, j a:^{*}\right)\) and \(z(i z: i z+m-1, j z: j z+n-1)\) must satisfy the following alignment properties:
1. Identical (quadratic) dimension: \(\operatorname{desca}\left[m_{-}-1\right]=\operatorname{descz}\left[m_{-}-1\right]=\operatorname{desca}\left[n_{-}-1\right]=\operatorname{descz}\left[n_{-}-1\right]\)
2. Quadratic conformal blocking: desca[mb_-1] = desca[nb_-1]=descz[mb_-1]=descz[nb_-1], desca[rsrc_-1] = descz[rsrc_ - 1]
3. \(\bmod \left(i a-1, m b \_a\right)=\bmod \left(i z-1, m b \_z\right)=0\)

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?syevx}

Computes selected eigenvalues and, optionally, eigenvectors of a symmetric matrix.

\section*{Syntax}
```

void pssyevx (char *jobz , char *range , char *uplo, MKL_INT *n , float *a , MKL_INT
*ia , MKL_INT *ja , MKL_INT *desca , float *vl , float *vu , MKL_INT *il , MKL_INT *iu ,
float *abstol, MKL_INT *m, MKL_INT *nz , float **w, float *orfac , float *z , MKL_INT
*iz , MKL_INT *jz , MKL_INT *descz , float *work , MKL_INT *lwork , MKL_INT *iwork ,
MKL_INT *liwork, MKL_INT *ifail, MKL_INT *iclustr, float *gap , MKL_INT *info);

```
```

void pdsyevx (char *jobz , char *range , char *uplo, MKL_INT *n , double *a , MKL_INT
*ia , MKL_INT *ja , MKL_INT *desca , double *vl, double *vu , MKL_INT *il , MKL_INT
*iu, double *abstol, MKL_INT *m, MKL_INT *nz, double **, double *orfac , double
*z , MKL_INT *iz, MKL_INT *jz , MKL_INT *descz , double *work, MKL_INT *lwork ,
MKL_INT *iwork , MKL_INT *liwork , MKL_INT *ifail, MKL_INT *iclustr , double *gap ,
MKL_INT *info);

```

Include Files
- mkl_scalapack.h

\section*{Description}

The p?syevxfunction computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) by calling the recommended sequence of ScaLAPACK functions. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.
\begin{tabular}{|c|c|}
\hline jobz & (global) Must be 'N' or 'V'. Specifies if it is necessary to compute the eigenvectors: \\
\hline & If jobz ='N', then only eigenvalues are computed. \\
\hline & If jobz = 'V', then eigenvalues and eigenvectors are computed. \\
\hline range & (global) Must be 'A', 'V', or 'I'. \\
\hline & If range = 'A', all eigenvalues will be found. \\
\hline & If range \(=\) ' \(V\) ', all eigenvalues in the half-open interval [ \(v 1, v u\) ] will be found. \\
\hline & If range = 'I', the eigenvalues with indices il through iu will be found. \\
\hline uplo & (global) Must be 'U' or 'L'. \\
\hline & Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored: \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & (global) The number of rows and columns of the matrix \(A(n \geq 0)\). \\
\hline a & (local). \\
\hline & Block cyclic array of global size \(n^{*} n\) and local size \(11 d \_a^{\star} \operatorname{LOCC}(j a+n-1)\). On entry, the symmetric matrix \(A\). \\
\hline & If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the symmetric matrix. \\
\hline
\end{tabular}

If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the symmetric matrix.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(global)
If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues; \(v i \leq v u\). Not referenced if range \(=\) 'A' or 'I'.
(global)
If range \(=\) 'I', the indices of the smallest and largest eigenvalues to be returned.

Constraints: il \(\geq 1\)
\(\min (i l, n) \leq i u \leq n\)
Not referenced if range \(=\) ' A ' or ' V '.
(global).
If jobz='V', setting abstol to p?lamch (context, 'U') yields the most orthogonal eigenvectors.
The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([a, b]\) of width less than or equal to
abstol + eps * max (|a|,|b|),
where eps is the machine precision. If \(a b s t o l\) is less than or equal to zero, then eps*norm( \(T\) ) will be used in its place, where norm( \(T\) ) is the 1-norm of the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.

Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) p?lamch ('S') not zero. If this function returns with \((\bmod (i n f o, 2) \neq 0)\) or (mod \((i n f o / 8,2) \neq 0)\) ), indicating that some eigenvalues or eigenvectors did not converge, try setting abstol to 2*p?lamch('S').
(global).
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within tol=orfac*norm ( \(A\) ) of each other are to be reorthogonalized. However, if the workspace is insufficient (see Iwork), tol may be decreased until all eigenvectors to be reorthogonalized can be stored in one process. No reorthogonalization will be done if orfac equals zero. A default value of \(1.0 \mathrm{e}-3\) is used if orfac is negative. orfac should be identical on all processes.
(global) The row and column indices in the global matrix \(Z\) indicating the first row and the first column of the submatrix \(Z\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(Z\). descz[ctxt_ - 1] must equal desca[ctxt_ - 1].
work
lwork
(local)
Array of size /work.
(local) The size of the array work.
See below for definitions of variables used to define Iwork.
If no eigenvectors are requested (jobz = 'N'), then lwork \(\geq 5{ }^{*} n+\) max (5*nn, NB* (np0 + 1)).

If eigenvectors are requested ( \(j \circ b z=\) ' \(V\) '), then the amount of workspace required to guarantee that all eigenvectors are computed is:
```

lwork \geq 5*n + max(5*nn, np0*mq0 + 2*NB*NB) + iceil(neig,
NPROW*NPCOL) * nn

```

The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality (at the cost of potentially poor performance) you should add the following to lwork:
(clustersize-1)*n,
where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:
```

{w[k-1],..., w[k+clustersize-2]|w[j] \leqw[j-1]) +
orfac*2*norm(A)},

```
where
neig = number of eigenvectors requested
```

nb = desca[mb_ - 1] = desca[nb_ - 1] = descz[mb_ - 1] =
descz[nb_ - 1];
nn = max(n, nb, 2);
desca[rsrc_ - 1] = desca[nb_ - 1] = descz[rsrc_ - 1] =
descz[csrc_ - 1] = 0;
np0 = numroc(nn, nb, 0, 0, NPROW);
mq0 = numroc(max(neig, nb, 2), nb, 0, 0, NPCOL)

```
iceil \((x, y)\) is a ScaLAPACK function returning ceiling \((x / y)\)
If Iwork is too small to guarantee orthogonality, p?syevx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.
If Iwork is too small to compute all the eigenvectors requested, no computation is performed and info \(=-23\) is returned.
Note that when range= 'V', number of requested eigenvectors are not known until the eigenvalues are computed. In this case and if Iwork is large enough to compute the eigenvalues, p?sygvx computes the eigenvalues and as many eigenvectors as possible.
Relationship between workspace, orthogonality \& performance:
Greater performance can be achieved if adequate workspace is provided. In some situations, performance can decrease as the provided workspace increases above the workspace amount shown below:
lwork \(\geq \max \left(1\right.\) work, \(\left.5{ }^{*} n+n s y t r d \_l w o p t\right)\),
where Iwork, as defined previously, depends upon the number of eigenvectors requested, and
```

nsytrd_lwopt = n + 2*(anb+1)*(4*nps+2) + (nps + 3)*nps;
anb = pjlaenv(desca[ctxt_ - 1], 3, 'p?syttrd', 'L', 0, 0, 0,
0) ;
sqnpc = int(sqrt(dble(NPROW * NPCOL)));
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb);

```
numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
For large n, no extra workspace is needed, however the biggest boost in performance comes for small \(n\), so it is wise to provide the extra workspace (typically less than a megabyte per process).
If clustersize > \(n / \operatorname{sqrt}(N P R O W * N P C O L)\), then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. At the limit (that is, clustersize \(=n-1\) ) p?stein will perform no better than ?stein on single processor.

For clustersize \(=n /\) sqrt(NPROW*NPCOL) reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more.

For clustersize>n/sqrt(NPROW*NPCOL) execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.

If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the function only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
(local) Workspace array.
(local), size of iwork. liwork \(\geq 6{ }^{*} n n p\)
Where: \(n n p=\max (n\), NPROW*NPCOL \(+1,4)\)
If liwork \(=-1\), then liwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo = ' U ') of \(A\), including the diagonal, is overwritten.
(global) The total number of eigenvalues found; \(0 \leq m \leq n\).
\(n z\)
(global) Total number of eigenvectors computed. \(0 \leq n z \leq m\).
The number of columns of \(z\) that are filled.
If jobz \(\neq\) ' \(V\) ', \(n z\) is not referenced.
If jobz = 'V', \(n z=m\) unless the user supplies insufficient space and p?syevx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold the eigenvectors in \(z\) ( \(m \leq \operatorname{descz}\left[n_{-}-1\right]\) ) and sufficient workspace to compute them. (See Iwork). p?syevx is always able to detect insufficient space without computation unless range \(=\) ' V '.
(global).
Array of size \(n\). The first \(m\) elements contain the selected eigenvalues in ascending order.
(local).
Array, global size \(n^{*} n\), local size \(\operatorname{lld} z^{*} \operatorname{LOCC}(j z+n-1)\).
If jobz = ' \(V\) ', then on normal exit the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.
On exit, returns workspace adequate workspace to allow optimal performance.

On return, iwork[0] contains the amount of integer workspace required.
(global).
Array of size \(n\).
If jobz = ' \(V\) ', then on normal exit, the first \(m\) elements of ifail are zero. If \((\bmod (i n f 0,2) \neq 0)\) on exit, then ifail contains the indices of the eigenvectors that failed to converge.

If jobz \(=\) ' \(N\) ', then ifail is not referenced.
(global) Array of size ( \(2 *\) NPROW*NPCOL)
This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see Iwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr(2*i-1) to iclustr(2*i), could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal. iclustr is a zero terminated array. iclustr \([2 * k-1] \neq 0\) and iclustr \([2 * k]=0\) if and only if \(k\) is the number of clusters.
iclustr is not referenced if \(j o b z=' N\) '.
(global)
Array of size NPROW*NPCOL

This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the ith cluster may be as high as ( \(C^{\star} n\) ) / gap[i-1] where \(C\) is a small constant.
(global)
If info \(=0\), the execution is successful.
If info < 0 :
If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

If info> 0: if \((\bmod (i n f 0,2) \neq 0)\), then one or more eigenvectors failed to converge. Their indices are stored in ifail. Ensure
abstol=2.0*p?lamch('U').
If (mod (info/ 2,2\() \neq 0\) ), then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in the array iclustr.
If (mod (infol 4,2\() \neq 0)\), then space limit prevented p?syevxf rom computing all of the eigenvectors between \(v /\) and \(v u\). The number of eigenvectors computed is returned in \(n z\).
If \((\bmod (i n f o / 8,2) \neq 0)\), then \(p\) ?stebz failed to compute eigenvalues. Ensure abstol=2.0*p?lamch('U').

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?heev}

Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix.

\section*{Syntax}
```

void pcheev (char *jobz , char *uplo, MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca , float *W , MKL_Complex8 *z , MKL_INT *iz , MKL_INT *jz ,
MKL_INT *descz , MKL_Complex8 *work , MKL_INT *lwork , float *rwork , MKL_INT *lrwork,
MKL_INT *info);
void pzheev (char *jobz , char *uplo, MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca, double *W , MKL_Complex16 *z , MKL_INT *iz , MKL_INT
*jz , MKL_INT *descz , MKL_Complex16 *work , MKL_INT *lwork , double *rwork , MKL_INT
*lrwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?heev function computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\) by calling the recommended sequence of ScaLAPACK functions. The function assumes a homogeneous system and makes spot checks of the consistency of the eigenvalues across the different processes. A heterogeneous system may return incorrect results without any error messages.

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.
\begin{tabular}{ll} 
jobz & (global) Must be 'N' or ' V '. \\
& Specifies if it is necessary to compute the eigenvectors: \\
& If \(j o b z='^{\prime} N^{\prime}\), then only eigenvalues are computed. \\
& If jobz \(=\) ' \(V\) ', then eigenvalues and eigenvectors are computed. \\
uplo & (global) Must be 'U' or 'L'.
\end{tabular}

Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is stored:

If uplo = 'U', a stores the upper triangular part of \(A\).
If uplo = 'L', a stores the lower triangular part of \(A\).
(global) The number of rows and columns of the matrix \(A(n \geq 0)\).
(local).
Block cyclic array of global size \(n^{*} n\) and local size \(11 d_{\_} a^{\star} \operatorname{LOCC}(j a+n-1)\). On entry, the Hermitian matrix \(A\).

If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the Hermitian matrix.

If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the Hermitian matrix.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\). If desca[ctxt_ - 1] is incorrect, p?heev cannot guarantee correct error reporting.
(global) The row and column indices in the global matrix \(Z\) indicating the first row and the first column of the submatrix \(Z\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(Z\). descz[ctxt_ - 1] must equal desca[ctxt_ - 1]. (local).

Array of size Iwork.
(local) The size of the array work.
If only eigenvalues are requested (jobz = 'N'):
lwork \(\geq \max \left(n b^{*}(n p 0+1), 3\right)+3 * n\)
rwork
lrwork

If eigenvectors are requested ( \(\mathrm{jobz}=\) ' V ') , then the amount of workspace required:

IWOrk \(\geq(n p 0+n q 0+n b) * n b+3 * n+n^{2}\)
with \(n b=\operatorname{desca}\left[m b \_-1\right]=\operatorname{desca}\left[n b \_-1\right]=n b=\operatorname{descz}\left[m b{ }_{-}\right.\)-
1] \(=\operatorname{descz}\left[n b \_-1\right]\)
\(n p 0=\) numroc \((n n, n b, 0,0, N P R O W)\).
\(n q 0=\) numroc \((\max (n, n b, 2), n b, 0,0, N P C O L)\).
If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the function only calculates the size required for optimal performance for all work arrays. The required workspace is returned as the first element of the corresponding work arrays, and no error message is issued by pxerbla.
(local).
Workspace array of size Irwork.
(local) The size of the array rwork.
See below for definitions of variables used to define lrwork.
If no eigenvectors are requested (jobz \(=\) 'N'), then \(\operatorname{lrwork} \geq 2{ }^{*} n\).
If eigenvectors are requested ( \(\mathrm{jobz}=\) 'V'), then \(\operatorname{lrwork} \geq 2 \star_{n}+2 \star^{*} n-2\).
If lrwork \(=-1\), then lrwork is global input and a workspace query is assumed; the function only calculates the minimum size required for the rwork array. The required workspace is returned as the first element of rwork, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
w
z

On exit, the lower triangle (if uplo = 'L'), or the upper triangle (if uplo = ' \(U\) ') of \(A\), including the diagonal, is overwritten.
(global).
Array of size \(n\). The first \(m\) elements contain the selected eigenvalues in ascending order.
(local).
Array, global size \(n^{*} n\), local size \(11 d_{\_} z^{*} \operatorname{LOCC}(j z+n-1)\).
If jobz ='V', then on normal exit the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.
On exit, returns adequate workspace to allow optimal performance.
If \(j o b z=' N\) ', then work[0] = minimal workspace only for eigenvalues.
If jobz ='V', then work[0] = minimal workspace required to generate all the eigenvectors.
rwork[0]
info
(local)
On output, rwork[0] returns workspace required to guarantee completion.
(global)
If info \(=0\), the execution is successful.
If info < 0 :
If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\). If the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

If info> 0 :
If info \(=1\) through \(n\), the \(i\)-th eigenvalue did not converge in ?steqr2 after a total of \(30 * n\) iterations.

If info \(=n+1\), then \(p\) ?heev detected heterogeneity, and the accuracy of the results cannot be guaranteed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?heevd}

Computes all eigenvalues and eigenvectors of a
complex Hermitian matrix by using a divide and conquer algorithm.

\section*{Syntax}
```

void pcheevd (char *jobz , char *uplo , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca , float *W , MKL_Complex8 *_z , MKL_INT *iz , MKL_INT *jz ,
MKL_INT *descz , MKL_Complex8 *work , MKL_INT *lwork , float *rwork , MKL_INT *lrwork ,
MKL_INT *iwork , MKL_INT *liwork , MKL_INT *info);
void pzheevd (char *jobz , char *uplo, MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca, double *W , MKL_Complex16 *z , MKL_INT *iz , MKL_INT
*jz , MKL_INT *descz , MKL_Complex16 *work , MKL_INT *lwork , double *rwork , MKL_INT
*lrwork , MKL_INT *iwork , MKL_INT *liwork , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p? heevd function computes all eigenvalues and eigenvectors of a complex Hermitian matrix \(A\) by using a divide and conquer algorithm.

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.
jobz (global) Must be 'N' or 'V'.
Specifies if it is necessary to compute the eigenvectors:
If jobz = 'N', then only eigenvalues are computed.

If jobz = 'V', then eigenvalues and eigenvectors are computed.
(global) Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is stored:

If uplo = 'U', a stores the upper triangular part of \(A\).
If uplo = 'L', a stores the lower triangular part of \(A\).
(global) The number of rows and columns of the matrix \(A(n \geq 0)\).
(local).
Block cyclic array of global size \(n^{*} n\) and local size \(11 d_{\_} a *\) LOCc (ja+n-1). On entry, the Hermitian matrix \(A\).
If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the Hermitian matrix.

If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the Hermitian matrix.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\). If desca[ctxt_ - 1] is incorrect, p?heevd cannot guarantee correct error reporting.
(global) The row and column indices in the global matrix \(Z\) indicating the first row and the first column of the submatrix \(Z\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(Z\). descz[ctxt_ - 1] must equal desca[ctxt_ - 1]. (local).

Array of size Iwork.
(local) The size of the array work.
If eigenvalues are requested:
lwork \(=n+(n b 0+m q 0+n b) * n b\)
with \(n p 0=\) numroc \((\max (n, n b, 2), n b, 0,0\), NPROW \()\)
\(m q 0=\) numroc \((\max (n, n b, 2), n b, 0,0, N P C O L)\)
If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the size required for optimal performance for all work arrays. The required workspace is returned as the first element of the corresponding work arrays, and no error message is issued by pxerbla.
(local).
Workspace array of size Irwork.
(local) The size of the array rwork.
lrwork \(\geq 1+9{ }^{*} n+3 * n p^{*} n q\),
with \(n p=\) numroc ( \(n, n b\), myrow, iarow, NPROW)
\(n q=\) numroc ( \(n, n b\), mycol, iacol, NPCOL)
iwork
liwork
(local) Workspace array of size liwork.
(local), size of iwork.
liwork \(=7 * n+8 * n p c o l+2\).

\section*{Output Parameters}
a
w
z
work[0]
rwork[0]
iwork[0]
info ' \(U\) ') of \(A\), including the diagonal, is overwritten.
(global). order.
(local).
Array, global size \(n^{*} n\), local size \(11 d_{z} z^{*} \operatorname{LOCC}(j z+n-1)\).
(local)
(local).
(global)

On exit, the lower triangle (if uplo = 'L'), or the upper triangle (if uplo =

Array of size \(n\). If info \(=0, w\) contains the eigenvalues in the ascending

The \(z\) parameter contains the orthonormal eigenvectors of the matrix \(A\).
On exit, returns adequate workspace to allow optimal performance.

On output, rwork[0] returns workspace required to guarantee completion.

On return, iwork[0] contains the amount of integer workspace required.

If info \(=0\), the execution is successful.
If info < 0 :
If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\). If the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

If info> 0 :
If info \(=1\) through \(n\), the \(i\)-th eigenvalue did not converge.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?heevr
Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix using Relatively Robust Representation.
```

Syntax
void pcheevr(char* jobz, char* range, char* uplo, MKL_INT* n, MKL_Complex8* a, MKL_INT*
ia, MKL_INT* ja, MKL_INT* desca, float* vl, float* vu, MKL_INT* il, MKL_INT* iu,
MKL_INT* m, MKL_INT* nz, float* w, MKL_Complex8* z, MKL_INT* iz, MKL_INT* jz, MKL_INT*
descz, MKL_Complex8* work, MKL_INT* lwork, float* rwork, MKL_INT* lrwork, MKL_INT*
iwork, MKL_INT* liwork, MKL_INT* info);
void pzheevr(char* jobz, char* range, char* uplo, MKL_INT* n, MKL_Complex16* a, MKL_INT*
ia, MKL_INT* ja, MKL_INT* desca, double* vl, double* vu, MKL_INT* il, MKL_INT* iu,
MKL_INT* m, MKL_INT* nz, double* w, MKL_Complex16* z, MKL_INT* iz, MKL_INT* jz, MKL_INT*
descz, MKL_Complex16* work, MKL_INT* lwork, double* rwork, MKL_INT* lrwork, MKL_INT*
iwork, MKL_INT* liwork, MKL_INT* info);

```

\section*{Include Files}
```

- mkl_scalapack.h

```

\section*{Description}
p?heevr computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\) distributed in 2D blockcyclic format by calling the recommended sequence of ScaLAPACK functions.

First, the matrix \(A\) is reduced to complex Hermitian tridiagonal form. Then, the eigenproblem is solved using the parallel MRRR algorithm. Last, if eigenvectors have been computed, a backtransformation is done.
Upon successful completion, each processor stores a copy of all computed eigenvalues in \(w\). The eigenvector matrix \(Z\) is stored in 2D block-cyclic format distributed over all processors.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
jobz
range
uplo
n
(global)
Specifies whether or not to compute the eigenvectors:
\(=\) ' N ': Compute eigenvalues only.
\(=\) ' \(V\) ': Compute eigenvalues and eigenvectors.
(global)
\(=\) ' A ': all eigenvalues will be found.
\(=\) ' \(V\) ': all eigenvalues in the interval \([v 1, v u]\) will be found.
\(=\) 'I': the il-th through iu-th eigenvalues will be found.

\section*{(global)}

Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is stored:
= 'U': Upper triangular
= 'L': Lower triangular
(global)

The number of rows and columns of the matrix \(A . n \geq 0\)
Block-cyclic array, global size \(n * n)\), local size IId_a * LOC \((j a+n-1)\)
Contains the local pieces of the Hermitian distributed matrix \(A\). If uplo \(=\) ' \(U\) ', only the upper triangular part of \(a\) is used to define the elements of the Hermitian matrix. If uplo = 'L', only the lower triangular part of \(a\) is used to define the elements of the Hermitian matrix.
(global)
Global row index in the global matrix \(A\) that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
(global)
Global column index in the global matrix \(A\) that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
(global and local) array of size dlen_. (The ScaLAPACK descriptor length is dlen_ = 9.)
The array descriptor for the distributed matrix \(a\). The descriptor stores details about the 2D block-cyclic storage, see the notes below. If desca is incorrect, p?heevr cannot work correctly.

Also note the array alignment requirements specified below
(global)
If range \(=\) ' \(V\) ', the lower bound of the interval to be searched for eigenvalues. Not referenced if range = 'A' or 'I'.
(global)
If range \(=\) ' \(V\) ', the upper bound of the interval to be searched for eigenvalues. Not referenced if range = 'A' or 'I'.
(global)
If range='I', the index (from smallest to largest) of the smallest eigenvalue to be returned. il\(\geq 1\).

Not referenced if range \(=\) ' A '.
(global)
If range='I', the index (from smallest to largest) of the largest eigenvalue to be returned. \(\min (i l, n) \leq i u \leq n\).

Not referenced if range \(=\) ' A '.
(global)
Global row index in the global matrix \(Z\) that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
(global)
\(\operatorname{descz}\)

Global column index in the global matrix \(Z\) that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
(global and local) array of size dlen_.
The array descriptor for the distributed matrix z. descz[ctxt_ - 1] must equal desca[ctxt_-1]
(local workspace) array of size lwork
(local)
Size of work array, must be at least 3 .
If only eigenvalues are requested:
```

lwork\geqn + max(nb*(np00 + 1),nb*3)

```

If eigenvectors are requested:
```

lwork\geqn + (np00 + mq00 + nb)* nb

```

For definitions of \(n p 00\) and mq00, see lrwork.
For optimal performance, greater workspace is needed, i.e.
```

lwork\geq max(lwork, nhetrd_/work)

```

Where lwork is as defined above, and
nhetrd_Iwork \(=n+2 *(a n b+1) *(4 * n p s+2)+(n p s+1) * n p s\)
ictxt \(=\operatorname{desca}[\) ctxt_-1]
anb = pjlaenv( ictxt, 3, 'PCHETTRD', 'L', 0, 0, 0, 0 )
sqnpc \(=\operatorname{sqrt}(\operatorname{real}(\) nprow \(*\) npcol \())\)
\(n p s=\max (\operatorname{numroc}(n, 1,0,0, \operatorname{sqnpc}), 2 * a n b)\)
If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the function only calculates the optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
(local workspace) array of size lrwork
(local)
Size of rwork, must be at least 3.
See below for definitions of variables used to define lrwork.
If no eigenvectors are requested ( \(j \circ b z=\) ' N ') then
lrwork \(\geq 2+5 * n+\max (12 * n, n b *(n p 00+1))\)
If eigenvectors are requested ( \(j \circ b z=\) ' \(V\) ' ) then the amount of workspace required is:
lrwork \(\geq 2+5 * n+\max (18 * n, n p 00 * m q 00+2 * n b * n b)+\) \((2+\) iceil( neig, nprow*npcol))* \(n\)
iwork
liwork

\section*{NOTE}
iceil \((x, y)\) is the ceiling of \(x / y\).

\section*{Variable definitions:}
neig \(=\) number of eigenvectors requested
\(n b=\operatorname{desca}[m b--1]=\operatorname{desca}\left[n b_{-}-1\right]=\operatorname{descz}[m b--1]=\operatorname{descz}\left[n b_{-}\right.\) -1]
\(n n=\max (n, n b, 2)\)
desca[ rsrc_-1] = desca[csrc_-1] = descz[rsrc_-1] = descz[csrc_ \(1]=0\)
np00 = numroc (nn, nb, 0, 0, nprow )
mq00 = numroc( \(\max (n e i g, n b, 2), n b, 0,0, n p c o l)\)
iceil \((x, y)\) is a ScaLAPACK function returning ceiling \((x / y)\), and nprow and \(n p c o l\) can be determined by calling the function blacs_gridinfo.
If 1 rwork \(=-1\), then 1 rwork is global input and a workspace query is assumed; the function only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla
(local workspace) array of size liwork
(local )
size of iwork
Let \(n n p=\max \left(n, n p r o w^{*} n p c o l+1,4\right)\). Then:
liwork \(\geq 12 * n n p+2 *_{n}\) when the eigenvectors are desired
liwork \(\geq 10 * n n p+2 *_{n}\) when only the eigenvalues have to be computed
If liwork \(=-1\), then liwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla

\section*{OUTPUT Parameters}
a
m
\(n z\)

The lower triangle (if \(u p l o=' L\) ') or the upper triangle (if \(u p l o=' U\) ') of \(a\), including the diagonal, is destroyed.
(global)
Total number of eigenvalues found. \(0 \leq m \leq n\).
(global)
Total number of eigenvectors computed. \(0 \leq n z \leq m\).
The number of columns of \(z\) that are filled.
If jobz \(\neq\) ' \(V\) ', \(n z\) is not referenced.

If jobz \(=\) ' \(V\) ', \(n z=m\)

W
z
work
rwork
iwork
info
(global ) array of size \(n\)
On normal exit, the first \(m\) entries contain the selected eigenvalues in ascending order.
(local ) array, global size \(\left.n^{*} n\right)\), local size \(I / d z^{*} L O C_{C}(j z+n-1)\)
If jobz \(=\) ' V ', then on normal exit the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues.

If jobz \(=\) ' N ', then \(z\) is not referenced.
work[0] returns workspace adequate workspace to allow optimal performance.

On return, rwork[0] contains the optimal amount of workspace required for efficient execution. if jobz='N'rwork[0] = optimal amount of workspace required to compute the eigenvalues. if jobz='V'rwork[0] = optimal amount of workspace required to compute eigenvalues and eigenvectors.

On return, iwork[0] contains the amount of integer workspace required.
(global)
\(=0\) : successful exit
\(<0\) : If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The distributed submatrices \(a\left(i a:^{*}, j a:^{*}\right)\) and \(z(i z: i z+m-1, j z: j z+n-1)\) must satisfy the following alignment properties:
1. Identical (quadratic) dimension: \(\operatorname{desca}\left[m_{-}-1\right]=\operatorname{descz}\left[m_{-}-1\right]=\operatorname{desca}\left[n_{-}-1\right]=\operatorname{descz}\left[n_{-}-1\right]\)
2. Quadratic conformal blocking: \(\operatorname{desca}\left[m b_{-}-1\right]=\operatorname{desca}\left[n b_{-}-1\right]=\operatorname{descz}\left[m b_{-}-1\right]=\operatorname{descz}\left[n b_{-}-1\right]\), desca[rsrc_-1] = descz[rsrc_-1]
3. \(\bmod \left(i a-1, m b \_a\right)=\bmod \left(i z-1, m b \_z\right)=0\)

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).

\footnotetext{
See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.
p?heevx
Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix.
}

\section*{Syntax}
```

void pcheevx (char *jobz , char *range , char *uplo, MKL_INT *n , MKL_Complex8 *a ,
MKL_INT *ia, MKL_INT *ja , MKL_INT *desca , float *vl , float *vu , MKL_INT *il ,
MKL_INT *iu, float *abstol , MKL_INT *m , MKL_INT *nz , float *W , float *orfac ,
MKL_Complex8 *z , MKL_INT *iz , MKL_INT *jz , MKL_INT *descz , MKL_Complex8 *work ,
MKL_INT *lwork , float *rwork , MKL_INT *lrwork , MKL_INT *iwork , MKL_INT *Iiwork ,
MKL_INT *ifail , MKL_INT *iclustr , float *gap , MKL_INT *info);
void pzheevx (char *jobz , char *range , char *uplo, MKL_INT *n , MKL_Complexl6 *a ,
MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *vl , double *vu , MKL_INT *il ,
MKL_INT *iu , double *abstol , MKL_INT *m , MKL_INT *nz , double *w , double *orfac ,
MKL_Complex16 *z , MKL_INT *iz , MKL_INT *jz , MKL_INT *descz , MKL_Complex16 *work ,
MKL_INT *lwork , double *rwork , MKL_INT *Irwork , MKL_INT *iwork , MKL_INT *Iiwork ,
MKL_INT *ifail , MKL_INT *iclustr , double *gap , MKL_INT *info);

```

\section*{Include Files}
```

- mkl_scalapack.h

```

\section*{Description}

The p?heevx function computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\) by calling the recommended sequence of ScaLAPACK functions. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.
```

Product and Performance Information
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

```

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{jobz} & (global) Must be 'N' or 'V'. \\
\hline & Specifies if it is necessary to compute the eigenvectors: \\
\hline & If jobz = 'N', then only eigenvalues are computed. \\
\hline & If \(j 0 b z=\) ' V ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{range} & (global) Must be 'A', 'V', or 'I'. \\
\hline & If range = 'A', all eigenvalues will be found. \\
\hline & If range \(=\) ' V ', all eigenvalues in the half-open interval [ \(\mathrm{vl}, \mathrm{vu}\) ] will be found. \\
\hline & If range = 'I', the eigenvalues with indices il through iu will be found. (global) Must be 'U' or 'L'. \\
\hline uplo & Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is stored: \\
\hline
\end{tabular}

If uplo = 'U', a stores the upper triangular part of \(A\).

If uplo = 'L', a stores the lower triangular part of \(A\).
\(n\)
\(a\)

ia, ja
desca
vl, vu
\(i l, i u\)
abstol
(global) The number of rows and columns of the matrix \(A(n \geq 0)\). (local).

Block cyclic array of global size \(n^{*} n\) and local size \(11 d_{\_} a *\) LOCc (ja+n-1). On entry, the Hermitian matrix \(A\).
If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the Hermitian matrix.
If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the Hermitian matrix.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\). If desca[ctxt_ - 1] is incorrect, p?heevx cannot guarantee correct error reporting.
(global)
If range = 'V', the lower and upper bounds of the interval to be searched for eigenvalues; not referenced if range \(=\) 'A' or 'I'.
(global)
If range ='I', the indices of the smallest and largest eigenvalues to be returned.

Constraints:
il \(\geq 1 ; \min (i l, n) \leq i u \leq n\).
Not referenced if range \(=\) ' \(A\) ' or 'V'.
(global).
If jobz='V', setting abstol to p?lamch(context, 'U') yields the most orthogonal eigenvectors.
The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([a, b]\) of width less than or equal to abstol+eps^max (|a|, \(|b|)\), where eps is the machine precision. If abstol is less than or equal to zero, then \(e p s^{\star}\) norm ( \(T\) ) will be used in its place, where norm ( \(T\) ) is the 1-norm of the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues are computed most accurately when abstol is set to twice the underflow threshold \(2 *\) p? lamch ('S'), not zero. If this function returns with \(((\bmod (\operatorname{info}, 2) \neq 0)\).or. \((\bmod (\operatorname{info} / 8,2) \neq 0))\), indicating that some eigenvalues or eigenvectors did not converge, try setting abstol to 2*p?lamch('S').

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
(global).
\(i z, j z\)
descz
work

Specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within tol=orfac*norm \((A)\) of each other are to be reorthogonalized. However, if the workspace is insufficient (see Iwork), tol may be decreased until all eigenvectors to be reorthogonalized can be stored in one process. No reorthogonalization will be done if orfac equals zero. A default value of \(1.0 \mathrm{e}-3\) is used if orfac is negative.
orfac should be identical on all processes.
(global) The row and column indices in the global matrix \(Z\) indicating the first row and the first column of the submatrix \(Z\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(Z\). descz[ctxt_ - 1] must equal desca[ctxt_ - 1].
(local).
Array of size Iwork.
(local) The size of the array work.
If only eigenvalues are requested:
```

lwork\geqn + max(nb* (np0 + 1), 3)

```

If eigenvectors are requested:
```

lwork\geqn + (np0+mq0 +nb)*nb
with nq0 = numroc (nn, nb, 0, 0, NPCOL).
lwork\geq 5*n + max(5*nn, np0*mq0+2*nb*nb) + iceil(neig,
NPROW*NPCOL)*nn

```

For optimal performance, greater workspace is needed, that is
```

lwork\geqmax(lwork, nhetrd_lwork)

```
where Iwork is as defined above, and nhetrd_lwork \(=n+2 *\) (anb
\(+1) *(4 * n p s+2)+(n p s+1) * n p s\)
ictxt \(=\) desca[ctxt_ - 1]
anb = pjlaenv(ictxt, 3, 'pchettrd', 'L', 0, 0, 0, 0)
sqnpc \(=\) sqrt(dble(NPROW * NPCOL))
nps \(=\max (\) numroc \((n, 1,0,0, \operatorname{sqnpc}), 2 \star a n b)\)
If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the function only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
(local)
Workspace array of size Irwork.
(local) The size of the array work.
See below for definitions of variables used to define Iwork.
If no eigenvectors are requested ( \(j \circ b z=1 N\) '), then \(\operatorname{lrwork} \geq 5 * n n+4 * n\).

If eigenvectors are requested ( \(j \circ b z=\) ' \(V\) '), then the amount of workspace required to guarantee that all eigenvectors are computed is:
```

Irwork\geq 4*n + max(5*nn, np0*mq0+2*nb*nb) + iceil(neig,
NPROW*NPCOL)*nn

```

The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality (at the cost of potentially poor performance) you should add the following values to Irwork:
```

(clustersize-1)*n,

```
where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:
```

{w[k - 1],..., w[k+clustersize-2]|w[j] \leq
w[j-1]+orfac*2*norm(A)}.

```

Variable definitions:
neig \(=\) number of eigenvectors requested;
```

nb = desca[mb_ - 1] = desca[nb_ - 1] = descz[mb_ - 1] =
descz[nb_ - 1];
nn = max(n, NB, 2);
desca[rsrc_ - 1] = desca[nb_ - 1] = descz[rsrc_ - 1] =
descz[csrc_ - 1] = 0;
np0 = numroc(nn, nb, 0, 0, NPROW);
mq0 = numroc(max(neig, nb, 2), nb, 0, 0, NPCOL);

```
iceil \((x, y)\) is a ScaLAPACK function returning ceiling \((x / y)\)
When Irwork is too small:
If Iwork is too small to guarantee orthogonality, p?heevx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues. If Iwork is too small to compute all the eigenvectors requested, no computation is performed and info \(=-23\) is returned. Note that when range='V', p?heevx does not know how many eigenvectors are requested until the eigenvalues are computed. Therefore, when range= ' \(V\) ' and as long as /work is large enough to allow p?heevx to compute the eigenvalues, p ? heevx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality and performance:
If clustersize \(\geq n /\) sqrt(NPROW*NPCOL), then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. In the limit (that is, clustersize \(=n-1\) ) p?stein will perform no better than ?stein on 1 processor.

For clustersize \(=n /\) sqrt(NPROW*NPCOL) reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more.

For clustersize>n/sqrt(NPROW*NPCOL) execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.
iwork
liwork

If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the function only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
(local) Workspace array.
(local), size of iwork.
liwork \(\geq\) 6*nnp
Where: \(n n p=\max (n\), NPROW*NPCOL+1, 4)
If liwork \(=-1\), then liwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

On exit, the lower triangle (if uplo = 'L'), or the upper triangle (if uplo = ' U ') of \(A\), including the diagonal, is overwritten.
(global) The total number of eigenvalues found; \(0 \leq m \leq n\).
(global) Total number of eigenvectors computed. \(0 \leq n z \leq m\).
The number of columns of \(z\) that are filled.
If jobz \(\neq ' \mathrm{~V}\) ', \(n z\) is not referenced.
If \(j o b z=' V ', n z=m\) unless the user supplies insufficient space and p?heevx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold the eigenvectors in \(z\left(m \leq \operatorname{descz}\left[n_{-}-1\right]\right)\) and sufficient workspace to compute them. (See /work). p?heevx is always able to detect insufficient space without computation unless range='V'.
(global).
Array of size \(n\). The first \(m\) elements contain the selected eigenvalues in ascending order.
(local).
Array, global size \(n^{*} n\), local size \(11 d_{\_} z^{\star} \operatorname{LOCC}(j z+n-1)\).
If jobz ='V', then on normal exit the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.
On exit, returns adequate workspace to allow optimal performance. (local).

Array of size Irwork. On return, rwork [0] contains the optimal amount of workspace required for efficient execution.

If jobz='N'rwork[0] = optimal amount of workspace required to compute eigenvalues efficiently.
If jobz='V'rwork[0] = optimal amount of workspace required to compute eigenvalues and eigenvectors efficiently with no guarantee on orthogonality.

If range= 'V', it is assumed that all eigenvectors may be required.
iwork[0]
ifail
iclustr
gap
info
(local)
On return, iwork[0] contains the amount of integer workspace required.
(global)
Array of size \(n\).
If \(j o b z=' V\) ', then on normal exit, the first \(m\) elements of ifail are zero. If \((\bmod (i n f 0,2) \neq 0)\) on exit, then ifail contains the indices of the eigenvectors that failed to converge.

If jobz = 'N', then ifail is not referenced.
(global)
Array of size \(2 *^{*}\) NPROW*NPCOL.
This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see Iwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr[2*i - 2]) to iclustr[2*i 1], could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal.
iclustr is a zero terminated array. (iclustr[2*k-1]\(=0\) and iclustr \(\left[2^{*} k\right]=0\) ) if and only if \(k\) is the number of clusters. iclustr is not referenced if jobz \(=\) ' \(N^{\prime}\).
(global)
Array of size (NPROW*NPCOL)
This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the \(i\)-th cluster may be as high as ( \(C^{*} n\) )/ gap(i) where \(C\) is a small constant.
(global)
If info \(=0\), the execution is successful.
If info < 0 :
If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\). If the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
If info> 0 :
If (mod (info, 2\() \neq 0\) ), then one or more eigenvectors failed to converge. Their indices are stored in ifail. Ensure abstol=2.0*p?lamch ('U')

If (mod (info/2,2) \(\neq 0\) ), then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in the array iclustr.

If (mod (info/4,2) \(\neq 0\) ), then space limit prevented p?syevx from computing all of the eigenvectors between \(v /\) and \(v u\). The number of eigenvectors computed is returned in \(n z\).

If (mod (info/, 2\() \neq 0)\), then \(p\) ?stebz failed to compute eigenvalues. Ensure abstol=2.0*p?lamch('U').

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?gesvd \\ Computes the singular value decomposition of a \\ general matrix, optionally computing the left and/or right singular vectors.}

\section*{Syntax}
```

void psgesvd (char *jobu , char *jobvt , MKL_INT *m , MKL_INT *n , float *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, float *s, float *u, MKL_INT *iu , MKL_INT *ju ,
MKL_INT *descu , float *vt , MKL_INT *ivt , MKL_INT *jvt , MKL_INT *descvt , float
*work, MKL_INT *lwork , float *rwork, MKL_INT *info);
void pdgesvd (char *jobu , char *jobvt , MKL_INT *m, MKL_INT *n , double *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, double *s , double *u , MKL_INT *iu , MKL_INT *ju,
MKL_INT *descu , double *vt , MKL_INT *ivt , MKL_INT *jvt , MKL_INT *descvt , double
*work , MKL_INT *lwork , double *rwork , MKL_INT *info);
void pcgesvd (char *jobu , char *jobvt , MKL_INT *m, MKL_INT *n , MKL_Complex8 *a ,
MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , float *s , MKL_Complex8 *u , MKL_INT *iu ,
MKL_INT *ju , MKL_INT *descu , MKL_Complex8 *vt , MKL_INT *ivt , MKL_INT *jvt , MKL_INT
*descvt , MKL_Complex8 *work , MKL_INT *lwork, float *rwork , MKL_INT *info);
void pzgesvd (char *jobu , char *jobvt , MKL_INT *m , MKL_INT *n , MKL_Complex16 *a ,
MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *s , MKL_Complex16 *u , MKL_INT
*iu , MKL_INT *ju , MKL_INT *descu , MKL_Complex16 *vt , MKL_INT *ivt , MKL_INT *jvt ,
MKL_INT *descvt , MKL_Complex16 *work, MKL_INT *lwork, double *rwork , MKL_INT
*info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p? gesvd function computes the singular value decomposition (SVD) of an m-by-n matrix \(A\), optionally computing the left and/or right singular vectors. The SVD is written
```

$A=U^{\star} \Sigma^{\star} V^{T}$,

```
where \(\Sigma\) is an \(m\)-by- \(n\) matrix that is zero except for its \(\min (m, n)\) diagonal elements, \(U\) is an \(m\)-by- \(m\) orthogonal matrix, and \(V\) is an \(n\)-by- \(n\) orthogonal matrix. The diagonal elements of \(\Sigma\) are the singular values of \(A\) and the columns of \(U\) and \(V\) are the corresponding right and left singular vectors, respectively. The singular values are returned in array \(s\) in decreasing order and only the first \(\min (m, n)\) columns of \(U\) and rows of \(v t=V^{\top}\) are computed.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{NOTE}

The distributed submatrix \(\operatorname{sub}(A)\) must verify certain alignment properties. These expressions must be true:
- \(m b \_a=n b \_a=n b\)
- iroffa = icoffa
where:
- iroffa \(=\bmod (i a-1, n b)\)
- \(i\) coffa \(=\bmod (j a-1, n b)\)

\section*{Input Parameters}
```

mp = number of local rows in A and U
nq= number of local columns in A and VT
size = min}(m,n
sizeq = number of local columns in U
sizep = number of local rows in VT

```
(global) Specifies options for computing all or part of the matrix \(U\).
If jobu \(=\) ' \(V\) ', the first size columns of \(U\) (the left singular vectors) are returned in the array \(u\);
If jobu \(={ }^{\prime} N^{\prime}\), no columns of \(U\) (no left singular vectors) are computed.
(global)
Specifies options for computing all or part of the matrix \(V^{T}\).
If jobvt \(=\) ' \(V\) ', the first size rows of \(V^{\top}\) (the right singular vectors) are returned in the array \(v t\);

If jobvt \(=\) ' \(N\) ', no rows of \(V^{T}\) (no right singular vectors) are computed.
(global) The number of rows of the matrix \(A(m \geq 0)\).
(global) The number of columns in \(A(n \geq 0)\).
(local).
Block cyclic array, global size \((m, n)\), local size ( \(m p, n q\) ).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
iu, ju
descu
ivt, jvt
descvt
work
lwork
(global) The row and column indices in the global matrix \(U\) indicating the first row and the first column of the submatrix \(U\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(U\).
(global) The row and column indices in the global matrix \(V T\) indicating the first row and the first column of the submatrix \(V T\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(V T\).
(local).
Workspace array of size Iwork
(local) The size of the array work;
lwork > 2 + 6*sizeb + max(watobd, wbdtosvd),
where sizeb \(=\max (m, n)\), and watobd and wbdtosvd refer, respectively, to the workspace required to bidiagonalize the matrix \(A\) and to go from the bidiagonal matrix to the singular value decomposition USVT.
For watobd, the following holds:
```

watobd = max(max(wp?lange,wp?gebrd), max(wp?lared2d, wp?
laredld)),

```
where wp?lange, wp?lared1d, wp?lared2d, wp?gebrd are the workspaces required respectively for the subprograms p?lange, p?lared1d, p?lared2d, p?gebrd. Using the standard notation
```

mp = numroc(m, mb, MYROW, desca[ctxt_ - 1], NPROW),
nq = numroc(n, nb, MYCOL, desca[lld_ - 1], NPCOL),

```
the workspaces required for the above subprograms are
```

wp?lange = mp,
wp?laredld = nq0,
wp?lared2d = mp0,
wp?gebrd = nb* (mp + nq + 1) + nq,

```
where \(n q 0\) and \(m p 0\) refer, respectively, to the values obtained at MYCOL \(=\) 0 and MYROW \(=0\). In general, the upper limit for the workspace is given by a workspace required on processor \((0,0)\) :
```

watobd\leqnb* (mp0 + nq0 + 1) + nq0.

```

In case of a homogeneous process grid this upper limit can be used as an estimate of the minimum workspace for every processor.

For wbdtosvd, the following holds:
```

wbdtosvd = size*(wantu*nru + wantvt*ncvt) + max(w?bdsqr,
max(wantu*wp?ormbrqln, wantvt*wp?ormbrprt)),
where

```
wantu(wantvt) \(=1\), if left/right singular vectors are wanted, and wantu(wantvt) \(=0\), otherwise. w?bdsqr, wp?ormbrqIn, and wp?ormbrprt refer respectively to the workspace required for the subprograms ?bdsqr, p?ormbr \((q / n)\), and \(p\) ?ormbr \((p r t)\), where \(q / n\) and prt are the values of the arguments vect, side, and trans in the call to p?ormbr. nru is equal to the local number of rows of the matrix \(U\) when distributed 1-dimensional "column" of processes. Analogously, ncvt is equal to the local number of columns of the matrix \(V T\) when distributed across 1-dimensional "row" of processes. Calling the LAPACK procedure ?bdsqr requires
```

w?bdsqr = max(1, 2*size + (2*size - 4)* max(wantu, wantvt))

```
on every processor. Finally,
```

wp?ormbrqln = max((nb* (nb-1))/2, (sizeq+mp)*nb) +nb*nb,

```
wp?ormbrprt \(=\max \left(\left(m b^{\star}(m b-1)\right) / 2,(\operatorname{sizep}+n q) * m b\right)+m b \star m b\),

If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the function only calculates the minimum size for the work array. The required workspace is returned as the first element of work and no error message is issued by pxerbla.

Workspace array of size \(1+4 *\) sizeb. Not used for psgesvd and pdgesvd.

\section*{Output Parameters}
a
\(S\)
\(u\)
vt
work
rwork
info

On exit, the contents of \(a\) are destroyed.
(global).
Array of size size.
Contains the singular values of \(A\) sorted so that \(s(i) \geq s(i+1)\).
(local).
local size \(m p^{*}\) sizeq, global size \(m^{*}\) size)
If jobu \(=\) ' \(V^{\prime}\), \(u\) contains the first \(\min (m, n)\) columns of \(U\).
If jobu \(=\) ' \(N\) ' or 'O', \(u\) is not referenced.
(local).
local size (sizep, nq), global size (size, \(n\) )
If jobvt \(=\) ' \(V^{\prime}\) ', vt contains the first size rows of \(V^{\top}\) if jobu \(={ }^{\prime} N^{\prime}\) ', vt is not referenced.

On exit, if info \(=0\), then work[0] returns the required minimal size of Iwork.

On exit, if info \(=0\), then rwork[0] returns the required size of rwork.
(global)
If info \(=0\), the execution is successful.
If info < 0, If info \(=-i\), the \(i\) th parameter had an illegal value.
If info > 0 i, then if ?bdsqr did not converge,

If info \(=\min (m, n)+1\), then \(p\) ?gesvd has detected heterogeneity by finding that eigenvalues were not identical across the process grid. In this case, the accuracy of the results from p?gesvd cannot be guaranteed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?sygvx
Computes selected eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem.

```

\section*{Syntax}
```

void pssygvx (MKL_INT *ibtype , char *jobz , char *range , char *uplo , MKL_INT *n ,

```
void pssygvx (MKL_INT *ibtype , char *jobz , char *range , char *uplo , MKL_INT *n ,
float *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca , float *b , MKL_INT *ib , MKL_INT
float *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca , float *b , MKL_INT *ib , MKL_INT
*jb, MKL_INT *descb, float *vl , float *vu , MKL_INT *il, MKL_INT *iu , float
*jb, MKL_INT *descb, float *vl , float *vu , MKL_INT *il, MKL_INT *iu , float
*abstol , MKL_INT *m, MKL_INT *nz , float ** , float *orfac , float *z , MKL_INT *iz ,
*abstol , MKL_INT *m, MKL_INT *nz , float ** , float *orfac , float *z , MKL_INT *iz ,
MKL_INT *jz , MKL_INT *descz , float *work , MKL_INT *lwork, MKL_INT *iwork , MKL_INT
MKL_INT *jz , MKL_INT *descz , float *work , MKL_INT *lwork, MKL_INT *iwork , MKL_INT
*liwork , MKL_INT *ifail , MKL_INT *iclustr , float *gap , MKL_INT *info );
*liwork , MKL_INT *ifail , MKL_INT *iclustr , float *gap , MKL_INT *info );
void pdsygvx (MKL_INT *ibtype, char *jobz , char *range , char *uplo , MKL_INT *n ,
void pdsygvx (MKL_INT *ibtype, char *jobz , char *range , char *uplo , MKL_INT *n ,
double *a, MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *b, MKL_INT *ib,
double *a, MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *b, MKL_INT *ib,
MKL_INT *jb, MKL_INT *descb , double *vl , double *vu , MKL_INT *il , MKL_INT *iu ,
MKL_INT *jb, MKL_INT *descb , double *vl , double *vu , MKL_INT *il , MKL_INT *iu ,
double *abstol, MKL_INT *m , MKL_INT *nz , double *w, double *orfac , double *z ,
double *abstol, MKL_INT *m , MKL_INT *nz , double *w, double *orfac , double *z ,
MKL_INT *iz , MKL_INT *jz, MKL_INT *descz , double *work, MKL_INT *lwork , MKL_INT
MKL_INT *iz , MKL_INT *jz, MKL_INT *descz , double *work, MKL_INT *lwork , MKL_INT
*iwork , MKL_INT *liwork , MKL_INT *ifail, MKL_INT *iclustr , double *gap , MKL_INT
*iwork , MKL_INT *liwork , MKL_INT *ifail, MKL_INT *iclustr , double *gap , MKL_INT
*info );
```

*info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?sygvxfunction computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form

Here \(x\) denotes eigen vectors, \(\lambda\) (lambda) denotes eigenvalues, sub (A) denoting A(ia:ia+n-1, ja: ja \(+n-1\) ) is assumed to symmetric, and \(\operatorname{sub}(B)\) denoting \(B(i b: i b+n-1, j b: j b+n-1)\) is also positive definite.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
ibtype
(global) Must be 1 or 2 or 3.
Specifies the problem type to be solved:
If ibtype \(=1\), the problem type is sub \((A){ }^{*} x_{X}=\operatorname{lambda}{ }^{\star} \operatorname{sub}(B){ }^{*} X\);
If ibtype \(=2\), the problem type is sub \((A){ }^{*} \operatorname{sub}(B){ }^{*} X=\operatorname{lambda}{ }^{*} X\);

If ibtype \(=3\), the problem type is sub \((B){ }^{*} \operatorname{sub}(A) *_{X}=\operatorname{lambda}{ }^{*}\).
(global) Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If \(j o b z=' \mathrm{~V}\) ', then compute eigenvalues and eigenvectors.
(global) Must be 'A' or 'V' or 'I'.
If range \(=\) ' \(A\) ', the function computes all eigenvalues.
If range \(=\) ' \(V\) ', the function computes eigenvalues in the interval: [ \(v\) ], vu]

If range \(=\) 'I', the function computes eigenvalues with indices il through \(i u\).
(global) Must be 'U' or 'L'.
If uplo = 'U', arrays \(a\) and \(b\) store the upper triangles of \(\operatorname{sub}(A)\) and sub (B);

If uplo \(=\) 'L', arrays \(a\) and \(b\) store the lower triangles of \(\operatorname{sub}(A)\) and sub (B).
(global) The order of the matrices \(\operatorname{sub}(A)\) and \(\operatorname{sub}(B), n \geq 0\).
(local)
Pointer into the local memory to an array of size lld_a*LOCC (ja+n-1). On entry, this array contains the local pieces of the \(n\)-by-n symmetric distributed matrix \(\operatorname{sub}(A)\).

If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix.
If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\). If desca[ctxt_ - 1] is incorrect, p?sygvx cannot guarantee correct error reporting.
(local).
Pointer into the local memory to an array of size lld_b* LOCC ( \(j b+n-1\) ). On entry, this array contains the local pieces of the \(n\)-by-n symmetric distributed matrix \(\operatorname{sub}(B)\).

If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(B)\) contains the upper triangular part of the matrix.

If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix.
(global) The row and column indices in the global matrix \(B\) indicating the first row and the first column of the submatrix \(B\), respectively.
\begin{tabular}{|c|c|}
\hline descb & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(B\). descb[ctxt_ - 1] must be equal to desca[ctxt_ \(1]\). \\
\hline \multirow[t]{3}{*}{vl, vu} & (global) \\
\hline & If range = 'V', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & If range \(=\) 'A' or 'I', v/ and vu are not referenced. \\
\hline \multirow[t]{2}{*}{il, iu} & (global) \\
\hline & \begin{tabular}{l}
If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. Constraint: il \(\geq 1\), \(\min (i l, n) \leq i u \leq n\) \\
If range \(=\) 'A' or ' V ', il and \(i u\) are not referenced.
\end{tabular} \\
\hline \multirow[t]{7}{*}{abstol} & (global) \\
\hline & If jobz='V', setting abstol to p?lamch(context, 'U') yields the most orthogonal eigenvectors. \\
\hline & The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([a, b]\) of width less than or equal to \\
\hline & abstol + eps*max (|a|,|b|), \\
\hline & where eps is the machine precision. If abstol is less than or equal to zero, then eps*norm ( \(T\) ) will be used in its place, where norm ( \(T\) ) is the 1-norm of the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. \\
\hline & Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) p? lamch ('S') not zero. If this function returns with \(((\bmod (i n f o, 2) \neq 0)\) or \((\bmod (i n f o / 8,2) \neq 0))\), indicating that some eigenvalues or eigenvectors did not converge, try setting abstol to 2*p?lamch('S'). \\
\hline & \begin{tabular}{l}
NOTE \\
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
\end{tabular} \\
\hline \multirow[t]{2}{*}{orfac} & (global). \\
\hline & Specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within tol=orfac*norm (A) of each other are to be reorthogonalized. However, if the workspace is insufficient (see Iwork), tol may be decreased until all eigenvectors to be reorthogonalized can be stored in one process. No reorthogonalization will be done if orfac equals zero. A default value of \(1.0 \mathrm{e}-3\) is used if orfac is negative. orfac should be identical on all processes. \\
\hline iz, jz & (global) The row and column indices in the global matrix \(Z\) indicating the first row and the first column of the submatrix \(Z\), respectively. \\
\hline descz & (global and local) array of size dlen_. The array descriptor for the distributed matrix \(z\). descz[ctxt_ - 1] must equal desca[ctxt_ - 1]. \\
\hline work & (local) \\
\hline
\end{tabular}

Workspace array of size Iwork
(local)
Size of the array work. See below for definitions of variables used to define Iwork.

If no eigenvectors are requested (jobz = 'N'), then lwork \(\geq 5 *_{n}+\) \(\max \left(5^{*} n n, N B^{*}(n p 0+1)\right)\).

If eigenvectors are requested ( \(j \circ b z=\) ' \(V\) '), then the amount of workspace required to guarantee that all eigenvectors are computed is:
```

lwork \geq 5*n + max(5*nn, np0*mq0 + 2*nb*nb) + iceil(neig,
NPROW*NPCOL)* nn.

```

The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality at the cost of potentially poor performance you should add the following to lwork:
```

(clustersize-1)*n,

```
where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:
```

{w[k - 1],..., w[k+clustersize - 2]|w[j] \leq w[j - 1] +
orfac*2*norm(A) }

```

Variable definitions:
neig \(=\) number of eigenvectors requested,
```

nb = desca[mb_ - 1] = desca[nb_ - 1] = descz[mb_ - 1] =
descz[nb_ - 1],
nn = max(n, nb, 2),
desca[rsrc_ - 1] = desca[nb_ - 1] = descz[rsrc_ - 1] =
descz[csrc_ - 1] = 0,
np0 = numroc(nn, nb, 0, 0, NPROW),
mq0 = numroc(max(neig, nb, 2), nb, 0, 0, NPCOL)
iceil(}x,y\mathrm{) is a ScaLAPACK function returning ceiling(x/y)

```

If Iwork is too small to guarantee orthogonality, p?syevx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.

If Iwork is too small to compute all the eigenvectors requested, no computation is performed and info \(=-23\) is returned.

Note that when range='V', number of requested eigenvectors are not known until the eigenvalues are computed. In this case and if Iwork is large enough to compute the eigenvalues, p?sygvx computes the eigenvalues and as many eigenvectors as possible.
Greater performance can be achieved if adequate workspace is provided. In some situations, performance can decrease as the provided workspace increases above the workspace amount shown below:
lwork \(\geq \max \left(l w o r k, 5 * n+n s y t r d \_l w o p t, ~ n s y g s t \_l w o p t\right), ~ w h e r e ~\)

Iwork, as defined previously, depends upon the number of eigenvectors requested, and
```

nsytrd_lwopt = n + 2*(anb+1)*(4*nps+2) + (nps+3)*nps
nsygst_lwopt = 2*np0*nb + nq0*nb + nb*nb
anb = pjlaenv(desca[ctxt_ - 1], 3, p?syttrd ', 'L', 0, 0, 0,
0)
sqnpc = int(sqrt(dble(NPROW * NPCOL)))
nps = max (numroc (n, 1, 0, 0, sqnpc), 2*anb)
NB = desca[mb_ - 1]
np0 = numroc (n, nb, 0, 0, NPROW)
nq0 = numroc (n, nb, 0, 0, NPCOL)

```
numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.

For large \(n\), no extra workspace is needed, however the biggest boost in performance comes for small \(n\), so it is wise to provide the extra workspace (typically less than a Megabyte per process).

If clustersize \(\geq n /\) sqrt(NPROW*NPCOL), then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. At the limit (that is, clustersize \(=n-1\) ) p?stein will perform no better than ?stein on a single processor.

For clustersize \(=n /\) sqrt(NPROW*NPCOL) reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more.
For clustersize>n/sqrt(NPROW*NPCOL) execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.

If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the function only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
iwork
Iiwork
(local) Workspace array.
(local), size of iwork.
liwork \(\geq 6 * n n p\)
Where:
```

nnp = max (n, NPROW*NPCOL + 1, 4)

```

If liwork \(=-1\), then liwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
\(a\)
b
m
\(n z\)

On exit,
If jobz \(=\) ' \(V\) ', and if info \(=0, \operatorname{sub}(A)\) contains the distributed matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
for ibtype \(=1\) or \(2, Z^{T *} \operatorname{sub}(B) * Z=i\);
for ibtype \(=3, Z^{T} * \operatorname{inv}(\operatorname{sub}(B)) * Z=i\).
If jobz = 'N', then on exit the upper triangle (if uplo='U') or the lower triangle (if uplo='L') of sub( \(A\) ), including the diagonal, is destroyed.

On exit, if info \(\leq n\), the part of \(\operatorname{sub}(B)\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization sub \((B)=\) \(U^{T} * U\) or \(\operatorname{sub}(B)=L^{*} L^{T}\).
(global) The total number of eigenvalues found, \(0 \leq m \leq n\).
(global)
Total number of eigenvectors computed. \(0 \leq n z \leq m\). The number of columns of \(z\) that are filled.
If jobz \(\neq\) ' \(V\) ', \(n z\) is not referenced.
If \(j o b z=' V ', n z=m\) unless the user supplies insufficient space and p?sygvx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold the eigenvectors in \(z\) ( \(m \leq \operatorname{descz}\left(n_{-}\right)\)) and sufficient workspace to compute them. (See /work below.) p?sygvx is always able to detect insufficient space without computation unless range=' \(\mathrm{V}^{\prime}\).
(global)
Array of size \(n\). On normal exit, the first \(m\) entries contain the selected eigenvalues in ascending order.
(local).
global size \(n^{*} n\), local size \(11 d_{-} z^{\star} \operatorname{LOCC}(j z+n-1)\).
If \(j o b z=\) ' \(V\) ', then on normal exit the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
If jobz='N'work[0] = optimal amount of workspace required to compute eigenvalues efficiently
If jobz = 'V'work[0] = optimal amount of workspace required to compute eigenvalues and eigenvectors efficiently with no guarantee on orthogonality.
If range=' V ', it is assumed that all eigenvectors may be required.
(global)
Array of size \(n\).
ifail provides additional information when info \(\neq 0\)
If \((\bmod (i n f o / 16,2) \neq 0)\) then ifail[0] indicates the order of the smallest minor which is not positive definite. If \((\bmod (\operatorname{info}, 2) \neq 0)\) on exit, then ifail contains the indices of the eigenvectors that failed to converge.

If neither of the above error conditions hold and jobz = ' V ', then the first \(m\) elements of ifail are set to zero.
(global)
Array of size \((2 *\) NPROW*NPCOL \()\). This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see Iwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr[2*i - 2] to iclustr[2*i - 1], could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal. iclustr is a zero terminated array.
(iclustr \(\left[2 \star_{k}-1\right] \neq 0\).and. iclustr \(\left[2 \star_{k}\right]=0\) ) if and only if \(k\) is the number of clusters iclustr is not referenced if jobz = 'N'.
(global)
Array of size \(\mathrm{NPROW}^{*}\) NPCOL. This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the \(i\)-th cluster may be as high as \(\left(C^{\star} n\right) / \operatorname{gap}[i-1]\), where \(C\) is a small constant.
(global)
If info \(=0\), the execution is successful.
If info \(<0\) : the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

If info> 0 :
If (mod (info, 2\() \neq 0\) ), then one or more eigenvectors failed to converge. Their indices are stored in ifail.

If (mod (info, 2,2\() \neq 0)\), then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in the array iclustr.

If (mod (info/4,2) \(\neq 0\) ), then space limit prevented p?sygvx from computing all of the eigenvectors between \(v /\) and \(v u\). The number of eigenvectors computed is returned in \(n z\).

If \((\bmod (\operatorname{info} / 8,2) \neq 0)\), then \(p\) ?stebz failed to compute eigenvalues.
If (mod (info/16,2) \(\neq 0\) ), then \(B\) was not positive definite. ifail(1) indicates the order of the smallest minor which is not positive definite.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?hegvx
Computes selected eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
positive-definite eigenproblem.
Syntax
void pchegvx (MKL_INT *ibtype , char *jobz , char *range , char *uplo , MKL_INT *n ,
MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *b ,
MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , float *vl , float *vu , MKL_INT *il ,
MKL_INT *iu , float *abstol , MKL_INT *m , MKL_INT *nz , float *w , float *orfac ,
MKL_Complex8 *z , MKL_INT *iz , MKL_INT *jz , MKL_INT *descz , MKL_Complex8 *work ,
MKL_INT *lwork , float *rwork , MKL_INT *lrwork , MKL_INT *iwork , MKL_INT *liwork ,
MKL_INT *ifail , MKL_INT *iclustr , float *gap , MKL_INT *info);
void pzhegvx (MKL_INT *ibtype , char *jobz , char *range , char *uplo , MKL_INT *n ,
MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *b ,
MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , double *vl , double *vu , MKL_INT *il ,
MKL_INT *iu , double *abstol , MKL_INT *m , MKL_INT *nz , double *w , double *orfac ,
MKL_Complex16 *z , MKL_INT *iz , MKL_INT *jz , MKL_INT *descz , MKL_Complex16 *Work ,
MKL_INT *lwork , double *rwork , MKL_INT *lrwork , MKL_INT *iwork , MKL_INT *liwork ,
MKL_INT *ifail , MKL_INT *iclustr , double *gap , MKL_INT *info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?hegvx function computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem, of the form


Here sub ( \(A\) ) denoting \(A(i a: i a+n-1, j a: j a+n-1\) ) and \(\operatorname{sub}(B)\) are assumed to be Hermitian and \(\operatorname{sub}(B)\) denoting \(B\) (ib: ib+n-1, jb: jb+n-1) is also positive definite.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
```

ibtype
(global) Must be 1 or 2 or 3 .
Specifies the problem type to be solved:
If ibtype $=1$, the problem type is

```

```

If ibtype $=2$, the problem type is
sub (A) *sub (B) *x $=$ lambda*x;
If ibtype $=3$, the problem type is
sub $(B) * \operatorname{sub}(A){ }^{*} x=l a m b d a{ }^{*} x$.

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & (global) Must be 'N' or 'V'. \\
\hline & If jobz ='N', then compute eigenvalues only. \\
\hline & If \(j 0 b z=' \mathrm{~V}\) ', then compute eigenvalues and eigenvectors. \\
\hline \multirow[t]{4}{*}{range} & (global) Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the function computes all eigenvalues. \\
\hline & If range \(=\) ' V ', the function computes eigenvalues in the interval: [v], vu] \\
\hline & If range = 'I', the function computes eigenvalues with indices il through \(i u\). \\
\hline \multirow[t]{3}{*}{uplo} & (global) Must be 'U' or 'L'. \\
\hline & If uplo = 'U', arrays \(a\) and \(b\) store the upper triangles of \(\operatorname{sub}(A)\) and sub (B); \\
\hline & If uplo = 'L', arrays \(a\) and \(b\) store the lower triangles of \(\operatorname{sub}(A)\) and sub (B). \\
\hline \multirow[t]{2}{*}{\(n\)} & (global) \\
\hline & The order of the matrices \(\operatorname{sub}(A)\) and \(\operatorname{sub}(B)(n \geq 0)\). \\
\hline \multirow[t]{2}{*}{a} & (local) \\
\hline & Pointer into the local memory to an array of size lld_a*LOCC (ja+n-1). On entry, this array contains the local pieces of the \(n\)-by- \(n\) Hermitian distributed matrix \(\operatorname{sub}(A)\). If uplo \(=\) ' U ', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix. \\
\hline \multirow[t]{2}{*}{ia, ja} & (global) \\
\hline & The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline \multirow[t]{2}{*}{desca} & (global and local) array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(A\). If desca[ctxt_ - 1] is incorrect, p?hegvx cannot guarantee correct error reporting. \\
\hline \multirow[t]{4}{*}{b} & (local). \\
\hline & Pointer into the local memory to an array of size \(11 d^{\prime} b^{*} \operatorname{LOCC}(j b+n-1)\). On entry, this array contains the local pieces of the \(n\)-by- \(n\) Hermitian distributed matrix \(\operatorname{sub}(B)\). \\
\hline & If uplo = ' U ', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(B)\) contains the upper triangular part of the matrix. \\
\hline & If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(B)\) contains the lower triangular part of the matrix. \\
\hline \multirow[t]{2}{*}{ib, jb} & (global) \\
\hline & The row and column indices in the global matrix \(B\) indicating the first row and the first column of the submatrix \(B\), respectively. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline descb & (global and local) array of size dlen_. \\
\hline & The array descriptor for the distributed matrix B. descb[ctxt_ - 1] must be equal to desca[ctxt - 1]. \\
\hline vi, vu & (global) \\
\hline & If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & If range \(=\) ' A ' or 'I', v/ and \(v u\) are not referenced. \\
\hline il, iu & (global) \\
\hline & \begin{tabular}{l}
If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. Constraint: il \(1 \geq 1, \min (i 1, n) \leq i u \leq n\) \\
If range \(=\) ' A ' or ' V ', il and \(i u\) are not referenced.
\end{tabular} \\
\hline abstol & (global) \\
\hline & If jobz='V', setting abstol to p?lamch (context, 'U') yields the most orthogonal eigenvectors. \\
\hline & The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([a, b]\) of width less than or equal to \\
\hline & \(a b s t o l+e p s * \max (|a|,|b|)\), \\
\hline & where eps is the machine precision. If abstol is less than or equal to zero, then eps*norm( \(T\) ) will be used in its place, where norm \((T)\) is the 1-norm of the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. \\
\hline & Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) p? lamch ('S') not zero. If this function returns with \(((\bmod (\) info, 2\() \neq 0)\).or. * \((\bmod (\) info \(/ 8,2) \neq 0))\), indicating that some eigenvalues or eigenvectors did not converge, try setting abstol to 2*p?lamch('S'). \\
\hline
\end{tabular}

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
\(i z, j z\)
(global).
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within tol=orfac*norm (A) of each other are to be reorthogonalized. However, if the workspace is insufficient (see Iwork), tol may be decreased until all eigenvectors to be reorthogonalized can be stored in one process. No reorthogonalization will be done if orfac equals zero. A default value of \(1.0 \mathrm{E}-3\) is used if orfac is negative. orfac should be identical on all processes.
(global) The row and column indices in the global matrix \(Z\) indicating the first row and the first column of the submatrix \(Z\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix z.descz[ctxt_ - 1] must equal desca[ctxt_ - 1].
```

work
(local)
Workspace array of size /work
(local).
The size of the array work.
If only eigenvalues are requested:
lwork $\geq n+\max (N B *(n p 0+1), 3)$
If eigenvectors are requested:
lwork $\geq n+(n p 0+m q 0+N B) * N B$
with nq0 $=$ numroc ($n n, \mathrm{NB}, 0,0, \mathrm{NPCOL})$.
For optimal performance, greater workspace is needed, that is
lwork $\geq \max \left(l w o r k, n, \quad n h e t r d _l w o p t, ~ n h e g s t _l w o p t\right) ~$
where Iwork is as defined above, and

```
```

nhetrd_lwork = 2*(anb+1)*(4*nps+2) + (nps + 1)*nps;

```
nhetrd_lwork = 2*(anb+1)*(4*nps+2) + (nps + 1)*nps;
nhegst_lwopt = 2*np0*nb + nq0*nb + nb*nb
nhegst_lwopt = 2*np0*nb + nq0*nb + nb*nb
nb = desca[mb_ - 1]
nb = desca[mb_ - 1]
np0 = numroc(n, nb, 0, 0, NPROW)
np0 = numroc(n, nb, 0, 0, NPROW)
nq0 = numroc(n, nb, 0, 0, NPCOL)
nq0 = numroc(n, nb, 0, 0, NPCOL)
ictxt = desca[ctxt_ - 1]
ictxt = desca[ctxt_ - 1]
anb = pjlaenv(ictxt, 3, 'p?hettrd', 'L', 0, 0, 0, 0)
anb = pjlaenv(ictxt, 3, 'p?hettrd', 'L', 0, 0, 0, 0)
sqnpc = sqrt(dble(NPROW * NPCOL))
sqnpc = sqrt(dble(NPROW * NPCOL))
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)
numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the function only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
(local)
Workspace array of size Irwork.
(local) The size of the array rwork.
See below for definitions of variables used to define Irwork.
If no eigenvectors are requested (jobz \(=\) 'N'), then lrwork \(\geq 5 * n n+4 * n\)
If eigenvectors are requested \((j \circ b z=' V ')\), then the amount of workspace required to guarantee that all eigenvectors are computed is:
lrwork \(\geq 4 * n+\max (5 * n n, n p 0 * m q 0)+i c e i l(n e i g\), NPROW*NPCOL) *nn
```

The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality (at the cost of potentially poor performance) you should add the following value to Irwork:
(clustersize-1)*n,
where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:

```
{w]k - 1],...,w[k+clustersize - 2]|w[j] \leqw[j -
1]+orfac*2*\operatorname{norm(A) }}
```

Variable definitions:
neig $=$ number of eigenvectors requested;

```
nb = desca[mb_ - 1] = desca[nb_ - 1] = descz[mb_ - 1]=
descz[nb_ - 1];
nn=max(n, nb, 2);
desca[rsrc_ - 1] = desca[nb_ - 1] = descz[rsrc_ - 1]=
descz[csrc_ - 1]=0;
np0 = numroc (nn, nb, 0, 0, NPROW);
mq0 = numroc(max(neig, nb, 2), nb, 0, 0, NPCOL);
```

iceil (x, y) is a ScaLAPACK function returning ceiling (x / y).
When Irwork is too small:
If Iwork is too small to guarantee orthogonality, p?hegvx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.

If Iwork is too small to compute all the eigenvectors requested, no computation is performed and info $=-25$ is returned. Note that when range='V', p?hegvx does not know how many eigenvectors are requested until the eigenvalues are computed. Therefore, when range=' V ' and as long as /work is large enough to allow p?hegvx to compute the eigenvalues, p?hegvx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality \& performance:
If clustersize > $n /$ sqrt(NPROW*NPCOL), then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. In the limit (that is, clustersize $=n-1$) p?stein will perform no better than ?stein on 1 processor.

For clustersize $=n /$ sqrt(NPROW*NPCOL) reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more.
For clustersize>n/sqrt(NPROW*NPCOL) execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.
iwork
liwork

If 1 work $=-1$, then Irwork is global input and a workspace query is assumed; the function only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
(local) Workspace array.
(local), size of iwork.
liwork $\geq 6 *_{n n p}$
Where: $n n p=\max (n$, NPROW*NPCOL $+1,4)$
If liwork $=-1$, then liwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

On exit, if jobz $=$ ' V ', then if info $=0, \operatorname{sub}(A)$ contains the distributed matrix Z of eigenvectors.
The eigenvectors are normalized as follows:
If ibtype $=1$ or 2 , then $Z^{H \star}$ sub $(B) * Z=i$;
If ibtype $=3$, then $Z^{H \star} \operatorname{inv}(\operatorname{sub}(B)) \star Z=i$.
If $\mathrm{jobz}=$ ' N ', then on exit the upper triangle (if $u p l o=' U$ ') or the lower triangle (if uplo='L') of $\operatorname{sub}(A)$, including the diagonal, is destroyed.

On exit, if info $\leq n$, the part of $\operatorname{sub}(B)$ containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization $\operatorname{sub}(B)=$ $U^{H *} U$, or $\operatorname{sub}(B)=L^{*} L^{H}$.
(global) The total number of eigenvalues found, $0 \leq m \leq n$.
(global) Total number of eigenvectors computed. $0<n z<m$. The number of columns of z that are filled.

If jobz \neq 'V', $n z$ is not referenced.
If $j o b z=$ ' V ', $n z=m$ unless the user supplies insufficient space and p?hegvx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold the eigenvectors in z ($m \leq \operatorname{descz}\left[n_{-}-1\right]$) and sufficient workspace to compute them. (See Iwork below.) The function p?hegvx is always able to detect insufficient space without computation unless range $=$ ' V^{\prime}.
(global)
Array of size n. On normal exit, the first m entries contain the selected eigenvalues in ascending order.
(local).
global size $n^{*} n$, local size $11 d _z^{\star} \operatorname{LOCC}(j z+n-1)$.

If jobz $=$ ' V ', then on normal exit the first m columns of z contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

If jobz $=$ ' N ', then z is not referenced.
On exit, work[0] returns the optimal amount of workspace.
On exit, rwork[0] contains the amount of workspace required for optimal efficiency
If jobz='N'rwork[0] = optimal amount of workspace required to compute eigenvalues efficiently
If jobz='V'rwork[0] = optimal amount of workspace required to compute eigenvalues and eigenvectors efficiently with no guarantee on orthogonality.

If range= 'V', it is assumed that all eigenvectors may be required when computing optimal workspace.
(global)
Array of size n.
ifail provides additional information when info $\neq 0$
If $(\bmod (i n f o / 16,2) \neq 0)$, then ifail[0] indicates the order of the smallest minor which is not positive definite.

If $(\bmod (i n f 0,2) \neq 0)$ on exit, then ifail[0] contains the indices of the eigenvectors that failed to converge.

If neither of the above error conditions are held, and $j o b z=' V$ ', then the first m elements of ifail are set to zero.
(global)
Array of size ($2 *$ NPROW*NPCOL) . This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see Iwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr(2*i-1) to iclustr ($2 * i$), could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal.
iclustr() is a zero terminated array. (iclustr ($2 * k$)
$\neq 0$. and. clustr $(2 * k+1)=0)$ if and only if k is the number of clusters.
iclustr is not referenced if $j o b z=' N$ '.
(global)
Array of size NPROW*NPCOL.
This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the i-th cluster may be as high as $\left(C^{\star} n\right) /$ gap(i), where C is a small constant.
(global)
If info $=0$, the execution is successful.
If info <0 : the i-th argument is an array and the j-entry had an illegal value, then info $=-(i * 100+j)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

If info> 0:
If $(\bmod (i n f 0,2) \neq 0)$, then one or more eigenvectors failed to converge. Their indices are stored in ifail.

If (mod (info, 2,2$) \neq 0)$, then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in the array iclustr.

If (mod (info/4,2) $\neq 0$), then space limit prevented p?sygvx from computing all of the eigenvectors between $v /$ and $v u$. The number of eigenvectors computed is returned in $n z$.
If $(\bmod (\operatorname{info} / 8,2) \neq 0)$, then p ?stebz failed to compute eigenvalues.
If (mod (infol 16,2$) \neq 0)$, then B was not positive definite. ifail(1) indicates the order of the smallest minor which is not positive definite.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

ScaLAPACK Auxiliary Routines

ScaLAPACK Auxiliary Routines

Routine Name	Data Types	Description
p?lacgv	c, z	Conjugates a complex vector.
p?max1	C, z	Finds the index of the element whose real part has maximum absolute value (similar to the Level 1 PBLAS p?amax, but using the absolute value to the real part).
pmpcol	s,d	Finds the collaborators of a process.
pmpim2	s,d	Computes the eigenpair range assignments for all processes.
? combamax1	c, z	Finds the element with maximum real part absolute value and its corresponding global index.
p?sum1	sc, dz	Forms the 1-norm of a complex vector similar to Level 1 PBLAS p?asum, but using the true absolute value.
p?dbtrsv	s, d, c, z	Computes an LU factorization of a general tridiagonal matrix with no pivoting. The routine is called by p?dbtrs.
p?dttrsv	s, d, c, z	Computes an $L U$ factorization of a general band matrix, using partial pivoting with row interchanges. The routine is called by p?dttrs.
p?gebal	s,d	Balances a general real/complex matrix.

Routine Name	Data Types	Description
p?gebd2	s, d, c, z	Reduces a general rectangular matrix to real bidiagonal form by an orthogonal/unitary transformation (unblocked algorithm).
p?gehd2	s, d, c, z	Reduces a general matrix to upper Hessenberg form by an orthogonal/unitary similarity transformation (unblocked algorithm).
p?gelq2	s, d, c, z	Computes an $L Q$ factorization of a general rectangular matrix (unblocked algorithm).
p?geql2	s, d, c, z	Computes a $Q L$ factorization of a general rectangular matrix (unblocked algorithm).
p?geqr2	s, d, c, z	Computes a $Q R$ factorization of a general rectangular matrix (unblocked algorithm).
p?gerq2	s, d, c, z	Computes an $R Q$ factorization of a general rectangular matrix (unblocked algorithm).
p?getf2	s, d, c, z	Computes an $L U$ factorization of a general matrix, using partial pivoting with row interchanges (local blocked algorithm).
p?labrd	s, d, c, z	Reduces the first $n b$ rows and columns of a general rectangular matrix A to real bidiagonal form by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of A.
p?lacon	s, d, c, z	Estimates the 1-norm of a square matrix, using the reverse communication for evaluating matrix-vector products.
p?laconsb	s,d	Looks for two consecutive small subdiagonal elements.
p?lacp2	s, d, c, z	Copies all or part of a distributed matrix to another distributed matrix.
p?lacp3	s,d	Copies from a global parallel array into a local replicated array or vice versa.
p?lacpy	s, d, c, z	Copies all or part of one two-dimensional array to another.
p?laevswp	s, d, c, z	Moves the eigenvectors from where they are computed to ScaLAPACK standard block cyclic array.
p?lahrd	s, d, c, z	Reduces the first $n b$ columns of a general rectangular matrix A so that elements below the $k^{\text {th }}$ subdiagonal are zero, by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of A.
p?laiect	s, d, c, z	Exploits IEEE arithmetic to accelerate the computations of eigenvalues.
p? lamve	s, d	Copies all or part of one two-dimensional distributed array to another.
p?lange	s, d, c, z	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a general rectangular matrix.
p?lanhs	s, d, c, z	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of an upper Hessenberg matrix.

Routine Name	Data Types	Description
p?lansy, p?lanhe	$\begin{aligned} & s, d, c, z / c \\ & , z \end{aligned}$	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a real symmetric or complex Hermitian matrix.
p?lantr	s, d, c, z	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a triangular matrix.
p?lapiv	s, d, c, z	Applies a permutation matrix to a general distributed matrix, resulting in row or column pivoting.
p?laqge	s, d, c, z	Scales a general rectangular matrix, using row and column scaling factors computed by p?geequ.
p?laqr0	s,d	Computes the eigenvalues of a Hessenberg matrix and optionally returns the matrices from the Schur decomposition.
p?laqr1	s,d	Sets a scalar multiple of the first column of the product of a 2-by-2 or 3-by-3 matrix and specified shifts.
p?laqr2	s,d	Performs the orthogonal/unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
p?laqr3	s,d	Performs the orthogonal/unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
p?laqr 5	s,d	Performs a single small-bulge multi-shift QR sweep.
p?laqsy	s, d, c, z	Scales a symmetric/Hermitian matrix, using scaling factors computed by p?poequ.
p?lared1d	s,d	Redistributes an array assuming that the input array bycol is distributed across rows and that all process columns contain the same copy of bycol.
p?lared2d	s,d	Redistributes an array assuming that the input array byrow is distributed across columns and that all process rows contain the same copy of byrow .
p?larf	s, d, c, z	Applies an elementary reflector to a general rectangular matrix.
p ?larfb	s, d, c, z	Applies a block reflector or its transpose/conjugate-transpose to a general rectangular matrix.
$p ? l a r f c$	c, z	Applies the conjugate transpose of an elementary reflector to a general matrix.
p?larfg	s, d, c, z	Generates an elementary reflector (Householder matrix).
p?larft	s, d, c, z	Forms the triangular vector T of a block reflector $H=I-V T V^{H}$
p?larz	s, d, c, z	Applies an elementary reflector as returned by p?tzrzf to a general matrix.
p?larzb	s, d, c, z	Applies a block reflector or its transpose/conjugate-transpose as returned by p?tzrzf to a general matrix.

Routine Name	Data Types	Description
p?larzc	C, z	Applies (multiplies by) the conjugate transpose of an elementary reflector as returned by p?tzrzf to a general matrix.
p?larzt	s, d, c, z	Forms the triangular factor T of a block reflector $H=I-V T V^{H}$ as returned by p?tzrzf.
p?lascl	s, d, c, z	Multiplies a general rectangular matrix by a real scalar defined as $C_{\text {to }} / C_{\text {from }}$.
p?laset	s, d, c, z	Initializes the off-diagonal elements of a matrix to α and the diagonal elements to β.
p?lasmsub	s,d	Looks for a small subdiagonal element from the bottom of the matrix that it can safely set to zero.
p?lassq	s, d, c, z	Updates a sum of squares represented in scaled form.
p?laswp	s, d, c, z	Performs a series of row interchanges on a general rectangular matrix.
p?latra	s, d, c, z	Computes the trace of a general square distributed matrix.
p?latrd	s, d, c, z	Reduces the first $n b$ rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal/unitary similarity transformation.
p?latrz	s, d, c, z	Reduces an upper trapezoidal matrix to upper triangular form by means of orthogonal/unitary transformations.
p?lauu2	s, d, c, z	Computes the product $U U^{H}$ or $L^{H} L$, where U and L are upper or lower triangular matrices (local unblocked algorithm).
p?laum	s, d, c, z	Computes the product $U U^{H}$ or $L^{H} L$, where U and L are upper or lower triangular matrices.
p?lawil	s,d	Forms the Wilkinson transform.
p?org2l/p?ung2l	s, d, c, z	Generates all or part of the orthogonal/unitary matrix Q from a $Q L$ factorization determined by p?geqlf (unblocked algorithm).
p?org2r/p?ung2r	s, d, c, z	Generates all or part of the orthogonal/unitary matrix Q from a $Q R$ factorization determined by p?geqrf (unblocked algorithm).
p?orgl2/p?ungl2	s, d, c, z	Generates all or part of the orthogonal/unitary matrix Q from an $L Q$ factorization determined by p?gelqf (unblocked algorithm).
p?orgr2/p?ungr2	s, d, c, z	Generates all or part of the orthogonal/unitary matrix Q from an $R Q$ factorization determined by p?gerqf (unblocked algorithm).
p?orm2l/p?unm21	s, d, c, z	Multiplies a general matrix by the orthogonal/unitary matrix from a QL factorization determined by p?geqlf (unblocked algorithm).
p?orm2r/p?unm2r	s, d, c, z	Multiplies a general matrix by the orthogonal/unitary matrix from a $Q R$ factorization determined by p?geqrf (unblocked algorithm).
p?orml2/p?unml2	s, d, c, z	Multiplies a general matrix by the orthogonal/unitary matrix from an $L Q$ factorization determined by p?gelqf (unblocked algorithm).
p?ormr2/p?unmr2	s, d, c, z	Multiplies a general matrix by the orthogonal/unitary matrix from an $R Q$ factorization determined by p?gerqf (unblocked algorithm).

Routine Name	Data Types	Description
p?pbtrsv	s, d, c, z	Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of a banded matrix computed by p?pbtrf.
p?pttrsv	s, d, c, z	Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of a tridiagonal matrix computed by p?pttrf.
p?potf2	s, d, c, z	Computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (local unblocked algorithm).
p?rot	s,d	Applies a planar rotation to two distributed vectors.
p?rscl	s,d,cs,zd	Multiplies a vector by the reciprocal of a real scalar.
p?sygs2/p?hegs2	s, d, c, z	Reduces a symmetric/Hermitian positive-definite generalized eigenproblem to standard form, using the factorization results obtained from p?potrf (local unblocked algorithm).
p?sytd2/p?hetd2	s, d, c, z	Reduces a symmetric/Hermitian matrix to real symmetric tridiagonal form by an orthogonal/unitary similarity transformation (local unblocked algorithm).
p?trord	s,d	Reorders the Schur factorization of a general matrix.
p?trsen	s,d	Reorders the Schur factorization of a matrix and (optionally) computes the reciprocal condition numbers and invariant subspace for the selected cluster of eigenvalues.
p?trti2	s, d, c, z	Computes the inverse of a triangular matrix (local unblocked algorithm).
?lamsh	s,d	Sends multiple shifts through a small (single node) matrix to maximize the number of bulges that can be sent through.
?laqr 6	s,d	Performs a single small-bulge multi-shift QR sweep collecting the transformations.
?lar1va	s, d	Computes scaled eigenvector corresponding to given eigenvalue.
?laref	s,d	Applies Householder reflectors to matrices on either their rows or columns.
? larrb2	s,d	Provides limited bisection to locate eigenvalues for more accuracy.
?larrd2	s,d	Computes the eigenvalues of a symmetric tridiagonal matrix to suitable accuracy.
?larre2	s,d	Given a tridiagonal matrix, sets small off-diagonal elements to zero and for each unreduced block, finds base representations and eigenvalues.
?larre2a	s,d	Given a tridiagonal matrix, sets small off-diagonal elements to zero and for each unreduced block, finds base representations and eigenvalues.
? larrf2	s,d	Finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated.
?larrv2	s,d	Computes the eigenvectors of the tridiagonal matrix $T=L^{*} D^{*} L^{\top}$ given L, D and the eigenvalues of $L^{*} D^{*} L^{\top}$.

Routine Name	Data Types	Description
?lasorte	s,d	Sorts eigenpairs by real and complex data types.
?lasrt2	s,d	Sorts numbers in increasing or decreasing order.
?stegr2	s,d	Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.
?stegr2a	s, d	Computes selected eigenvalues and initial representations needed for eigenvector computations.
?stegr2b	s,d	From eigenvalues and initial representations computes the selected eigenvalues and eigenvectors of the real symmetric tridiagonal matrix in parallel on multiple processors.
?stein2	s,d	Computes the eigenvectors corresponding to specified eigenvalues of a real symmetric tridiagonal matrix, using inverse iteration.
? dbtf2	s, d, c, z	Computes an $L U$ factorization of a general band matrix with no pivoting (local unblocked algorithm).
? dbtrf	s, d, c, z	Computes an $L U$ factorization of a general band matrix with no pivoting (local blocked algorithm).
?dttrf	s, d, c, z	Computes an $L U$ factorization of a general tridiagonal matrix with no pivoting (local blocked algorithm).
?dttrsv	s, d, c, z	Solves a general tridiagonal system of linear equations using the $L U$ factorization computed by ?dttrf.
?pttrsv	s, d, c, z	Solves a symmetric (Hermitian) positive-definite tridiagonal system of linear equations, using the $L D L^{H}$ factorization computed by ?pttrf.
?steqr2	s,d	Computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit $Q L$ or $Q R$ method.
?trmvt	s, d, c, z	Performs matrix-vector operations.
pilaenv	NA	Returns the positive integer value of the logical blocking size.
pilaenvx	NA	Called from the ScaLAPACK routines to choose problem-dependent parameters for the local environment.
pjlaenv	NA	Called from the ScaLAPACK symmetric and Hermitian tailored eigen-routines to choose problem-dependent parameters for the local environment.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201
p?lacgv
Conjugates a complex vector.

Syntax

```
void pclacgv (MKL_INT *n , MKL_Complex8 *x , MKL_INT *ix , MKL_INT *jx , MKL_INT
*descx , MKL_INT *incx );
void pzlacgv (MKL_INT *n , MKL_Complex16 *x , MKL_INT *ix ,MKL_INT *jx , MKL_INT
*descx , MKL_INT *incx );
```


Include Files

```
- mkl_scalapack.h
```


Description

The p? lacgvfunction conjugates a complex vector sub (X) of length n, where sub (X) denotes X (ix, jx: jx $+n-1)$ if incx $=m_{-} x$, and $X(i x: i x+n-1, j x)$ if incx $=1$.

Input Parameters

n	(global) The length of the distributed vector $\operatorname{sub}(X)$.
x	(local).
	Pointer into the local memory to an array of size $I I d_{-} x * \operatorname{LOCc}\left(n_{-} x\right)$. On entry the vector to be conjugated $x[i]=X\left(i x+(j x-1) * m_{-} x+i * i n c x\right), 0$ $\leq i<n$.
ix	(global) The row index in the global matrix X indicating the first row of $\operatorname{sub}(X)$.
jx	(global) The column index in the global matrix X indicating the first column of $\operatorname{sub}(X)$.
descx	(global and local) Array of size dlen_=9. The array descriptor for the distributed matrix X.
incx	(global) The global increment for the elements of X. Only two values of incx are supported in this version, namely 1 and $m_{-} x$. incx must not be zero.

Output Parameters

x
(local).
On exit, the local pieces of conjugated distributed vector $\operatorname{sub}(X)$.

See Also
 p? max1
 Finds the index of the element whose real part has
 maximum absolute value (similar to the Level 1 PBLAS
 p?amax, but using the absolute value to the real part).

Overview for details of ScaLAPACK array descriptor structures and related notations.

Syntax

```
void pcmaxl (MKL_INT *n , MKL_Complex8 *amax, MKL_INT *indx , MKL_Complex8 *x ,
MKL_INT *ix , MKL_INT *jx , MKL_INT *descx , MKL_INT *incx );
void pzmax1 (MKL_INT *n , MKL_Complex16 *amax , MKL_INT *indx , MKL_Complex16 *x ,
MKL_INT *ix , MKL_INT *jx , MKL_INT *descx , MKL_INT *incx );
```


Include Files

- mkl_scalapack.h

Description

The p?maxifunction computes the global index of the maximum element in absolute value of a distributed vector $\operatorname{sub}(X)$. The global index is returned in indx and the value is returned in amax, where sub (X) denotes $x(i x: i x+n-1, j x)$ if $i n c x=1, x(i x, j x: j x+n-1)$ if $i n c x=m_{2} x$.

Input Parameters

n	(global). The number of components of the distributed vector $\operatorname{sub}(X) . n \geq 0$.
x	(local)
	Pointer into the local memory to an array of size IId_x*LOCc(jx+n-1). On entry this array contains the local pieces of the distributed vector $\operatorname{sub}(X)$.
ix	(global) The row index in the global matrix X indicating the first row of $\operatorname{sub}(X)$.
jx	(global) The column index in the global matrix X indicating the first column of $\operatorname{sub}(X)$.
descx	(global and local) Array of size dlen_. The array descriptor for the distributed matrix X.
incx	(global).The global increment for the elements of X. Only two values of incx are supported in this version, namely 1 and $m_{-} x$. incx must not be zero.

Output Parameters

amax
indx
(global output).The absolute value of the largest entry of the distributed vector $\operatorname{sub}(X)$ only in the scope of $\operatorname{sub}(X)$.
(global output).The global index of the element of the distributed vector $\operatorname{sub}(X)$ whose real part has maximum absolute value.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
pilaver
Returns the ScaLAPACK version.

Syntax

void pilaver (MKL_INT* vers_major, MKL_INT* vers_minor, MKL_INT* vers_patch);

Include Files

```
- mkl_scalapack.h
```


Description

This function returns the ScaLAPACK version.

Output Parameters

vers_major
Return the ScaLAPACK major version.

```
vers_minor Return the ScaLAPACK minor version from the major version.
vers_patch Return the ScaLAPACK patch version from the minor version.
pmpcol
Finds the collaborators of a process.
Syntax
void pmpcol(MKL_INT* myproc, MKL_INT* nprocs, MKL_INT* iil, MKL_INT* needil, MKL_INT*
neediu, MKL_INT* pmyils, MKL_INT* pmyius, MKL_INT* colbrt, MKL_INT* frstcl, MKL_INT*
lastcl);
```

Include Files

- mkl_scalapack.h

Description

Using the output from pmpim2 and given the information on eigenvalue clusters, pmpcol finds the collaborators of myproc.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Input Parameters

myproc
nprocs
iil
needil
neediu
pmyils
pmyius

The processor number, $0 \leq m y p r o c<n p r o c s$.
The total number of processors available.
The index of the leftmost eigenvalue in the eigenvalue cluster.
The leftmost position in the eigenvalue cluster needed by myproc.
The rightmost position in the eigenvalue cluster needed by myproc.
array
For each processor $p, 0<p \leq n p r o c s$, pmyils[$p-1]$ is the index of the first eigenvalue in the eigenvalue cluster to be computed.
pmyils[p-1] equals zero if p stays idle.
array
For each processor p, pmyius[p-1] is the index of the last eigenvalue in the eigenvalue cluster to be computed.
pmyius[p-1] equals zero if p stays idle.

OUTPUT Parameters

colbrt
frstcl, lastcl

Non-zero if myproc collaborates.
First and last collaborator of myproc.
myproc collaborates with:
frstcl, ..., myproc-1, myproc $1, \ldots$, lastcl
If myproc $=$ frstcl, there are no collaborators on the left. If myproc $=$ lastcl, there are no collaborators on the right.

If frstcl $=0$ and lastcl $=$ nprocs-1, then myproc collaborates with everybody

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
pmpim2
Computes the eigenpair range assignments for all processes.

Syntax

```
void pmpim2(MKL_INT* il, MKL_INT* iu, MKL_INT* nprocs, MKL_INT* pmyils, MKL_INT*
```

pmyius);

Include Files

- mkl_scalapack.h

Description

pmpim2 is the scheduling function. It computes for all processors the eigenpair range assignments.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Input Parameters

il, iu
nprocs

Output Parameters

pmyils
pmyius

The range of eigenpairs to be computed.
The total number of processors available.
array
For each processor p, pmyils $[p-1]$ is the index of the first eigenvalue in a cluster to be computed.
pmyils[p-1] equals zero if p stays idle.
array
For each processor p, pmyius[p-1] is the index of the last eigenvalue in a cluster to be computed.
pmyius[$p-1$] equals zero if p stays idle.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?combamax1

Finds the element with maximum real part absolute value and its corresponding global index.

Syntax

```
void ccombamax1 (MKL_Complex8 *V1 , MKL_Complex8 *V2 );
void zcombamax1 (MKL_Complex16 *V1 , MKL_Complex16 *V2 );
```


Include Files

- mkl_scalapack.h

Description

The ?combamaxifunction finds the element having maximum real part absolute value as well as its corresponding global index.

Input Parameters

```
v1
v2
(local)
Array of size 2. The first maximum absolute value element and its global index. \(v 1[0]=\) amax, \(v 1[1]=\) indx.
(local)
```

Array of size 2. The second maximum absolute value element and its global index. v2[0]=amax, v2[1]=indx.

Output Parameters

v1
(local).
The first maximum absolute value element and its global index.
v1[0]=amax, v1[1]=indx.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?sum1
Forms the 1-norm of a complex vector similar to Level
1 PBLAS p?asum, but using the true absolute value.

Syntax

```
void pscsum1 (MKL_INT *n , float *asum, MKL_Complex8 *x , MKL_INT *ix , MKL_INT *jx ,
MKL_INT *descx , MKL_INT *incx );
void pdzsum1 (MKL_INT *n , double *asum , MKL_Complex16 *x , MKL_INT *ix , MKL_INT
*jx , MKL_INT *descx , MKL_INT *incx );
```

Include Files

- mkl_scalapack.h

Description

The p ? sum1function returns the sum of absolute values of a complex distributed vector $\operatorname{sub}(x)$ in asum, where $\operatorname{sub}(x)$ denotes $x(i x: i x+n-1, j x: j x)$, if incx $=1, x(i x: i x, j x: j x+n-1)$, if incx $=m_{\text {_ }} x$.

Based on p?asum from the Level 1 PBLAS. The change is to use the 'genuine' absolute value.

Input Parameters

n

X
ix
$j x$
descx
incx
(global). The number of components of the distributed vector $\operatorname{sub}(x) . n \geq 0$. (local)
Pointer into the local memory to an array of size Ild_x*LOCc $(j x+n-1)$. This array contains the local pieces of the distributed vector $\operatorname{sub}(X)$.
(global) The row index in the global matrix X indicating the first row of $\operatorname{sub}(X)$.
(global) The column index in the global matrix X indicating the first column of $\operatorname{sub}(X)$
(local) Array of size dlen_=9. The array descriptor for the distributed matrix X.
(global) The global increment for the elements of X. Only two values of incx are supported in this version, namely 1 and $m_{-} x$.

Output Parameters

asum
(local)
The sum of absolute values of the distributed vector $\operatorname{sub}(X)$ only in its scope.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?dbtrsv

Computes an LU factorization of a general triangular matrix with no pivoting. The function is called by p?dbtrs.

Syntax

```
void psdbtrsv (char *uplo , char *trans , MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu ,
MKL_INT *nrhs, float *a , MKL_INT *ja , MKL_INT *desca , float *b , MKL_INT *ib ,
MKL_INT *descb, float *af , MKL_INT *laf, float *work , MKL_INT *lwork , MKL_INT
*info );
void pddbtrsv (char *uplo, char *trans, MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu ,
MKL_INT *nrhs, double *a , MKL_INT *ja , MKL_INT *desca, double *b , MKL_INT *ib,
MKL_INT *descb, double *af , MKL_INT *laf, double *work , MKL_INT *lwork , MKL_INT
*info );
void pcdbtrsv (char *uplo, char *trans , MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu ,
MKL_INT *nrhs , MKL_Complex8 *a , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *b ,
MKL_INT *ib , MKL_INT *descb , MKL_Complex8 *af , MKL_INT *laf , MKL_Complex8 *work ,
MKL_INT *lwork , MKL_INT *info );
void pzdbtrsv (char *uplo, char *trans , MKL_INT *n , MKL_INT *bwl , MKL_INT *bwu ,
MKL_INT *nrhs , MKL_Complex16 *a , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *b ,
MKL_INT *ib, MKL_INT *descb, MKL_Complex16 *af , MKL_INT *laf , MKL_Complex16 *work ,
MKL_INT *lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?dbtrsvfunction solves a banded triangular system of linear equations
$A(1: n, j a: j a+n-1) * X=B(i b: i b+n-1,1$:nrhs $)$ or
$A(1: n, j a: j a+n-1)^{T} * X=B\left(i b: i b+n-1,1\right.$:nrhs) (for real flavors); $A(1: n, j a: j a+n-1)^{H *} X=B(i b: i b+n-1$, 1 :nrhs) (for complex flavors),
where $A(1: n, j a: j a+n-1)$ is a banded triangular matrix factor produced by the Gaussian elimination code of p?dbtrf and is stored in $A(1: n, j a: j a+n-1)$ and $a f$. The matrix stored in $A(1: n, j a: j a+n-1)$ is either upper or lower triangular according to uplo, and the choice of solving $A(1: n, j a: j a+n-1)$ or $A(1: n$, ja: ja $+n-1)^{T}$ is dictated by the user by the parameter trans.
The function p ? dbtrf must be called first.

Input Parameters

uplo	(global)
	If uplo='U', the upper triangle of $A(1: n, j a: j a+n-1)$ is stored, if uplo = 'L', the lower triangle of $A(1: n, j a: j a+n-1)$ is stored.
trans	(global)
	If trans = 'N', solve with $A(1: n$, ja: ja+n-1),
	if trans = 'C', solve with conjugate transpose $A(1: n, j a: j a+n-1)$.
n	(global) The order of the distributed submatrix A; $n \geq 0)$.
bwl	(global) Number of subdiagonals. $0 \leq b w l \leq n-1$.
bwu	(global) Number of subdiagonals. $0 \leq b w u \leq n-1$.
nrhs	(global) The number of right-hand sides; the number of columns of the distributed submatrix B ($n r h s \geq 0$).
a	(local).
	Pointer into the local memory to an array of size IId_a * LOCc(ja+n-1), where $/ / d _a \geq(b w /+b w u+1)$. On entry, this array contains the local pieces of the n-by-n unsymmetric banded distributed Cholesky factor L or L^{T}, represented in global A as $A(1: n, j a: j a+n-1)$. This local portion is stored in the packed banded format used in LAPACK. See the Application Notes below and the ScaLAPACK manual for more detail on the format of distributed matrices.
ja	(global) The index in the global matrix A that points to the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
desca	(global and local) array of size dlen_.
	if 1d type (dtype_a $=501$ or 502), dlen ≥ 7;
	if $2 d$ type (dtype_a $=1$), dlen ≥ 9. The array descriptor for the distributed matrix A. Contains information of mapping of A to memory.

b
ib
descb
(local)
Pointer into the local memory to an array of local lead dimension IId_b $\geq n b$. On entry, this array contains the local pieces of the right-hand sides $B(i b: i b+n-1,1: n r h s)$.
(global) The row index in the global matrix B that points to the first row of the matrix to be operated on (which may be either all of B or a submatrix of $B)$.
(global and local) array of size dlen_.
if 1d type (dtype_b =502), dlen ≥ 7;
if $2 d$ type (dtype_b $=1$), dlen ≥ 9. The array descriptor for the distributed matrix B. Contains information of mapping B to memory.
(local)
Size of user-input auxiliary fill-in space af.
laf nb* (bwl+bwu) $+6 *_{\text {max }}(b w l, b w u) * \max (b w l, b w u)$. If $l a f$ is not large enough, an error code is returned and the minimum acceptable size will be returned in af[0].
(local).
Temporary workspace. This space may be overwritten in between function calls.
work must be the size given in lwork.
(local or global)
Size of user-input workspace work. If lwork is too small, the minimal acceptable size will be returned in work[0] and an error code is returned.
lwork $\geq \max (b w l, b w u){ }^{n} n r h s$.

Output Parameters

a
b
af
work
info
(local).
This local portion is stored in the packed banded format used in LAPACK. Please see the ScaLAPACK manual for more detail on the format of distributed matrices.

On exit, this contains the local piece of the solutions distributed matrix X. (local).
auxiliary fill-in space. The fill-in space is created in a call to the factorization function p?dbtrf and is stored in af. If a linear system is to be solved using p?dbtrf after the factorization function, af must not be altered after the factorization.

On exit, work[0] contains the minimal lwork.
(local).
If info $=0$, the execution is successful.
< 0 : If the i-th argument is an array and the j-th entry, indexed j - 1 , had an illegal value, then info $=-(i \star 100+j)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.
p?dttrsv
Computes an LU factorization of a general band
matrix, using partial pivoting with row interchanges.
The function is called by p?dttrs.

Syntax

```
void psdttrsv (char *uplo, char *trans, MKL_INT *n , MKL_INT *nrhs , float *dl , float
*d, float *du , MKL_INT *ja, MKL_INT *desca , float *b , MKL_INT *ib , MKL_INT
*descb, float *af, MKL_INT *laf, float *work, MKL_INT *lwork , MKL_INT *info );
void pddttrsv (char *uplo, char *trans , MKL_INT *n , MKL_INT *nrhs , double *dl ,
double *d, double *du , MKL_INT *ja, MKL_INT *desca, double *b , MKL_INT *ib,
MKL_INT *descb, double *af, MKL_INT *laf, double *work , MKL_INT *lwork, MKL_INT
*info );
void pcdttrsv (char *uplo, char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complex8
*dl , MKL_Complex8 *d, MKL_Complex8 *du , MKL_INT *ja, MKL_INT *desca , MKL_Complex8
*b , MKL_INT *ib, MKL_INT *descb, MKL_Complex8 *af, MKL_INT *laf , MKL_Complex8
*work, MKL_INT *lwork , MKL_INT *info );
void pzdttrsv (char *uplo , char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complex16
*dl, MKL_Complex16 *d, MKL_Complex16 *du, MKL_INT *ja, MKL_INT *desca ,
MKL_Complex16 *b , MKL_INT *ib , MKL_INT *descb , MKL_Complex16 *af, MKL_INT *laf,
MKL_Complex16 *work , MKL_INT *lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?dttrsvfunction solves a tridiagonal triangular system of linear equations

```
A(1 :n, ja:ja+n-1)*X = B(ib:ib+n-1, 1 :nrhs) or
```

$A(1: n, j a: j a+n-1)^{T} * X=B(i b: i b+n-1,1$: $n r h s)$ for real flavors; $A(1: n, j a: j a+n-1)^{H *} X=$
$B(i b: i b+n-1,1$:nrhs) for complex flavors,
where $A(1: n, j a: j a+n-1)$ is a tridiagonal matrix factor produced by the Gaussian elimination code of p?dttrf and is stored in $A(1: n, j a: j a+n-1)$ and $a f$.
The matrix stored in $A(1: n, j a: j a+n-1)$ is either upper or lower triangular according to uplo, and the choice of solving $A(1: n, j a: j a+n-1)$ or $A(1: n, j a: j a+n-1)^{T}$ is dictated by the user by the parameter trans.

The function p?dttrf must be called first.

Input Parameters

uplo
(global)
If uplo='U', the upper triangle of $A(1: n, j a: j a+n-1)$ is stored,
if uplo = 'L', the lower triangle of $A(1: n, j a: j a+n-1)$ is stored.
n
nrhs
b
i.b
(global)
If trans $=$ ' N ', solve with $A(1: n, j a: j a+n-1)$,
if trans $={ }^{\prime} C$ ', solve with conjugate transpose $A(1: n, j a: j a+n-1)$.
(global) The order of the distributed submatrix $A ;(n \geq 0)$.
(global) The number of right-hand sides; the number of columns of the distributed submatrix B (ib:ib+n-1, $1: n r h s) .(n r h s \geq 0)$.
(local).
Pointer to local part of global vector storing the lower diagonal of the matrix.

Globally, $d l[0]$ is not referenced, and $d l$ must be aligned with d.
Must be of size $\geq n b _a$.
(local).
Pointer to local part of global vector storing the main diagonal of the matrix.
(local).
Pointer to local part of global vector storing the upper diagonal of the matrix.

Globally, $d u[n-1]$ is not referenced, and $d u$ must be aligned with d.
(global) The index in the global matrix A that points to the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) array of size dlen_.
if $1 d$ type (dtype_a = 501 or 502), dlen ≥ 7;
if $2 d$ type (dtype_a = 1), dlen ≥ 9.
The array descriptor for the distributed matrix A. Contains information of mapping of A to memory.
(local)
Pointer into the local memory to an array of local lead dimension IId_ $b \geq n b$. On entry, this array contains the local pieces of the right-hand sides $B(i b: i b+n-1,1$:nrhs).
(global) The row index in the global matrix B that points to the first row of the matrix to be operated on (which may be either all of B or a submatrix of $B)$.
(global and local) array of size dlen_.
if 1d type (dtype_b = 502), dlen ≥ 7;
if $2 d$ type (dtype_b = 1), dlen ≥ 9.
The array descriptor for the distributed matrix B. Contains information of mapping B to memory.
(local).

Size of user-input auxiliary fill-in space af.
$\operatorname{la} \geq 2 *(n b+2)$. If laf is not large enough, an error code is returned and the minimum acceptable size will be returned in $a f[0]$.
(local).
Temporary workspace. This space may be overwritten in between function calls.
work must be the size given in lwork.
(local or global)
Size of user-input workspace work. If lwork is too small, the minimal acceptable size will be returned in work[0] and an error code is returned.
lwork $\geq 10 * n p c o l+4 * n r h s$.

Output Parameters

$d l$
d
b
af
work
info
(local).
On exit, this array contains information containing the factors of the matrix.
On exit, this array contains information containing the factors of the matrix. Must be of size $\geq n b _a$.

On exit, this contains the local piece of the solutions distributed matrix X .
(local).
Auxiliary fill-in space. The fill-in space is created in a call to the factorization function p?dttrf and is stored in af. If a linear system is to be solved using p?dttrs after the factorization function, af must not be altered after the factorization.

On exit, work [0] contains the minimal /work.
(local).
If info $=0$, the execution is successful.
if info< 0 : If the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?gebal

Balances a general real/complex matrix.

Syntax

```
void psgebal(char* job, MKL_INT* n, float* a, MKL_INT* desca, MKL_INT* ilo, MKL_INT*
ihi, float* scale, MKL_INT* info);
void pdgebal(char* job, MKL_INT* n, double* a, MKL_INT* desca, MKL_INT* ilo, MKL_INT*
ihi, double* scale, MKL_INT* info);
void pcgebal(char* job, MKL_INT* n, complex float* a, MKL_INT* desca, MKL_INT* ilo,
MKL_INT* ihi, float* scale, MKL_INT* info);
```

```
void pzgebal(char* job, MKL_INT* n, complex double* a, MKL_INT* desca, MKL_INT* ilo,
MKL_INT* ihi, double* scale, MKL_INT* info);
```


Include Files

- mkl_scalapack.h

Description

p?gebal balances a general real/complex matrix A. This involves, first, permuting A by a similarity transformation to isolate eigenvalues in the first 1 to ilo-1 and last ihi+1 to n elements on the diagonal; and second, applying a diagonal similarity transformation to rows and columns ilo to ihi to make the rows and columns as close in norm as possible. Both steps are optional.

Balancing may reduce the 1-norm of the matrix, and improve the accuracy of the computed eigenvalues and/or eigenvectors.

Input Parameters

```
job
```

n
a
desca
(global)
Specifies the operations to be performed on a :
$=$ ' N ': none: simply set $i l o=1$, ihi $=n$, scale $[i]=1.0$ for $i=0, \ldots, n-1$;
= 'P': permute only;
= 'S': scale only;
$=$ ' B ': both permute and scale.
(global)
The order of the matrix $A(n \geq 0)$.
(local) Pointer into the local memory to an array of size $/ l d_{-} a * O_{c}(n)$
This array contains the local pieces of global input matrix A.
(global and local) array of size dlen_.
The array descriptor for the distributed matrix A.

OUTPUT Parameters

a
ilo, ihi
scale
On exit, a is overwritten by the balanced matrix A.
If job $=$ ' N ', a is not referenced.
See Notes for further details.
(global)
ilo and ihi are set to integers such that on exit matrix elements $A(i, j)$ are zero if $i>j$ and $j=1, \ldots, i l o-1$ or $i=i h i+1, \ldots, n$.
If job $=$ ' N ' or 'S', ilo $=1$ and ihi $=n$.
(global) array of size n.

Details of the permutations and scaling factors applied to a. If $p j$ is the index of the row and column interchanged with row and column j and $d j$ is the scaling factor applied to row and column j, then
scale[j-1] $=p j$ for $j=1, \ldots, i l o-1$, ihi+1,..., n
scale[j-1] $=d j$ for $j=i l o, \ldots, i h i$
The order in which the interchanges are made is n to $i h i+1$, then 1 to ilo-1.
info
(global)
$=0$: successful exit.
< 0: if info $=-i$, the i-th argument had an illegal value.

Application Notes

The permutations consist of row and column interchanges which put the matrix in the form

where $T 1$ and $T 2$ are upper triangular matrices whose eigenvalues lie along the diagonal. The column indices ilo and ihi mark the starting and ending columns of the submatrix B. Balancing consists of applying a diagonal similarity transformation $D^{-1} B D$ to make the 1 -norms of each row of B and its corresponding column nearly equal. The output matrix is

Information about the permutations P and the diagonal matrix D is returned in the vector scale.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?gebd2
 Reduces a general rectangular matrix to real bidiagonal form by an orthogonal/unitary transformation (unblocked algorithm).

Syntax

```
void psgebd2 (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *d, float *e , float *tauq, float *taup, float *work, MKL_INT
*lwork , MKL_INT *info );
void pdgebd2 (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , double *d , double *e, double *tauq, double *taup , double *work , MKL_INT
*lwork , MKL_INT *info );
void pcgebd2 (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja,
MKL_INT *desca , float *d, float *e , MKL_Complex8 *tauq, MKL_Complex8 *taup ,
MKL_Complex8 *work , MKL_INT *lwork , MKL_INT *info );
void pzgebd2 (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a, MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , double *d , double *e , MKL_Complex16 *tauq, MKL_Complex16 *taup ,
MKL_Complex16 *work , MKL_INT *lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?gebd2function reduces a real/complex general m-by-n distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1$, $j a: j a+n-1)$ to upper or lower bidiagonal form B by an orthogonal/unitary transformation:

$$
Q^{\prime *} \operatorname{sub}(A) * P=B
$$

If $m \geq n, B$ is the upper bidiagonal; if $m<n, B$ is the lower bidiagonal.

Input Parameters

m
n
a
ia, ja
desca
work

I work
(global)
The number of rows of the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.
(global)
The number of columns in the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$.
(local).
Pointer into the local memory to an array of sizelld_a* $L O C_{C}(j a+n-1)$.
On entry, this array contains the local pieces of the general distributed matrix $\operatorname{sub}(A)$.
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local).
This is a workspace array of size Iwork.
(local or global)
The size of the array work.
Iwork is local input and must be at least 1 work $\geq \max (m p a 0, ~ n q a 0)$,

```
where nb = mb_a = nb_a, iroffa = mod(ia-1, nb),
iarow = indxg2p(ia, nb, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, nb, myrow, iarow, nprow),
nqa0 = numroc(n+icoffa, nb, mycol, iacol, npcol).
```

indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and $n p c o l$ can be determined by calling the function blacs_gridinfo.

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
(local).
On exit, if $m \geq n$, the diagonal and the first superdiagonal of $\operatorname{sub}(A)$ are overwritten with the upper bidiagonal matrix B; the elements below the diagonal, with the array tauq, represent the orthogonal/unitary matrix Q as a product of elementary reflectors, and the elements above the first superdiagonal, with the array taup, represent the orthogonal matrix P as a product of elementary reflectors. If $m<n$, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal matrix B; the elements below the first subdiagonal, with the array tauq, represent the
orthogonal/unitary matrix Q as a product of elementary reflectors, and the elements above the diagonal, with the array taup, represent the orthogonal matrix P as a product of elementary reflectors. See Applications Notes below.
(local)
Array of size $\operatorname{LOCC}(j a+\min (m, n)-1)$ if $m \geq n ; \operatorname{LOCr}(i a+m i n(m, n)-1)$ otherwise. The distributed diagonal elements of the bidiagonal matrix B : $d[i]=A(i+1, i+1), \mathrm{i}=0,1, \ldots$, size $(d)-1 . d$ is tied to the distributed matrix A.
(local)
Array of size $\operatorname{LOCC}(j a+\min (m, n)-1)$ if $m \geq n ; \operatorname{LOCr}(\operatorname{ia+min}(m, n)-2)$ otherwise. The distributed diagonal elements of the bidiagonal matrix B :
if $m \geq n, e[i]=A(i+1, i+2)$ for $i=0,1, \ldots, n-2$;
if $m<n, e[i]=A(i+2, i+1)$ for $i=0,1, \ldots, m-2$. e is tied to the distributed matrix A.
(local).
Array of size $\operatorname{LOCC}(j \operatorname{atmin}(m, n)-1)$. The scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix Q. tauq is tied to the distributed matrix A.
(local).
Array of size $\operatorname{LOCr}(\operatorname{ia+min}(m, n)-1)$. The scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix P. taup is tied to the distributed matrix A.

On exit, work[0] returns the minimal and optimal /work.
(local)
If info $=0$, the execution is successful.
if info < 0 : If the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

The matrices Q and P are represented as products of elementary reflectors:
If $m \geq n$,
$Q=H(1) \star H(2) \star \ldots \star H(n)$, and $P=G(1) \star G(2) \star \ldots{ }^{*} G(n-1)$
Each $H(i)$ and $G(i)$ has the form:

where tauq and taup are real/complex scalars, and v and u are real/complex vectors. $v(1$: $i-1)=0, v(i)$ $=1$, and $v(i+i: m)$ is stored on exit in

A(ia+i-ia+m-1, ja+i-1);
$u(1: i)=0, u(i+1)=1$, and $u(i+2: n)$ is stored on exit in A(ia+i-1,ja+i+1:ja+n-1);
tauq is stored in tauq[ja+i-2] and taup in taup[ia+i-2].
If $m<n$,
$v(1: i)=0, v(i+1)=1$, and $v(i+2: m)$ is stored on exit in A(ia+i+1: $i a+m-1, j a+i-1)$;
$u(1: i-1)=0, u(i)=1$, and $u(i+1: n)$ is stored on exit in $A(i a+i-1, j a+i: j a+n-1)$;
tauq is stored in tauq[ja+i-2] and taup in taup[ia+i-2].
The contents of $\operatorname{sub}(A)$ on exit are illustrated by the following examples:

$$
m=6 \text { and } n=5(m>n): \quad m=5 \text { and } n=6(m<n):
$$

$$
\left[\begin{array}{ccccc}
d & e & u 1 & u 1 & u 1 \\
v 1 & d & e & u 2 & u 2 \\
v 1 & v 2 & d & e & u 3 \\
v 1 & v 2 & v 3 & d & e \\
v 1 & v 2 & v 3 & v 4 & d \\
v 1 & v 2 & v 3 & v 4 & v 5
\end{array}\right]
$$

$$
\left[\begin{array}{cccccc}
d & u 1 & u 1 & u 1 & u 1 & u 1 \\
e & d & u 2 & u 2 & u 2 & u 2 \\
v 1 & e & d & u 3 & u 3 & u 3 \\
v 1 & v 2 & e & d & u 4 & u 4 \\
v 1 & v 2 & v 3 & e & d & u 5
\end{array}\right]
$$

where d and e denote diagonal and off-diagonal elements of B, vi denotes an element of the vector defining $H(i)$, and $u i$ an element of the vector defining $G(i)$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?gehd2

Reduces a general matrix to upper Hessenberg form by an orthogonal/unitary similarity transformation (unblocked algorithm).

Syntax

```
void psgehd2 (MKL_INT *n , MKL_INT *ilo, MKL_INT *ihi , float *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca, float *tau , float *work, MKL_INT *lwork , MKL_INT
*infO );
void pdgehd2 (MKL_INT *n , MKL_INT *ilo, MKL_INT *ihi , double *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca, double *tau, double *work, MKL_INT *lwork, MKL_INT
*infO );
void pcgehd2 (MKL_INT *n , MKL_INT *ilo, MKL_INT *ihi , MKL_Complex8 *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT
*lwork , MKL_INT *info );
void pzgehd2 (MKL_INT *n , MKL_INT *ilo, MKL_INT *ihi , MKL_Complex16 *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT
*lwork , MKL_INT *info );
```

Include Files

- mkl_scalapack.h

Description

The p?gehd2function reduces a real/complex general distributed matrix sub (A) to upper Hessenberg form H by an orthogonal/unitary similarity transformation: $Q^{\prime *} \operatorname{sub}(A) * Q=H$, where $\operatorname{sub}(A)=A(i a+n-1$:ia $+n-1, j a+n-1$:ja+n-1).

Input Parameters

```
ilo, ihi
```

a
ia, ja
desca
work

I work
(global) The order of the distributed submatrix A. $(n \geq 0)$.
(global) It is assumed that the matrix $\operatorname{sub}(A)$ is already upper triangular in rows ia:ia+ilo-2 and ia+ihi:ia+n-1 and columns ja:ja+jlo-2 and ja +jhi: ja+n-1. See Application Notes for further information.
If $n \geq 0,1 \leq i l o \leq i h i \leq n ;$ otherwise set ilo = 1 , ihi $=n$.
(local).
Pointer into the local memory to an array of sizelld_a* $L O C_{C}(j a+n-1)$.
On entry, this array contains the local pieces of the n-by- n general distributed matrix $\operatorname{sub}(A)$ to be reduced.
(global) The row and column indices in the global matrix A indicating the first row and the first column of $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local).
This is a workspace array of size Iwork.
(local or global)
The size of the array work.
Iwork is local input and must be at least 1 work $\geq n b+\max (n p a 0, n b)$, where $n b=m b _a=n b _a$, iroffa $=\bmod (i a-1, n b)$, iarow $=$ indxg2p (ia, nb, myrow, rsrc_a, nprow), npa0 = numroc(ihi +iroffa, nb, myrow, iarow, nprow).
indxg2p and numroc are ScaLAPACK tool functions;myrow, mycol, nprow, and $n p c o l$ can be determined by calling the function blacs_gridinfo.

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
tau
(local). On exit, the upper triangle and the first subdiagonal of sub(A) are overwritten with the upper Hessenberg matrix H, and the elements below the first subdiagonal, with the array tau, represent the orthogonal/unitary matrix Q as a product of elementary reflectors. (see Application Notes below).
(local).
work
info

Array of size LOCC (ja+n-2) The scalar factors of the elementary reflectors (see Application Notes below). Elements ja:ja+ilo-2 and ja+ihi:ja+n-2 of the global vector tau are set to zero. tau is tied to the distributed matrix A.

On exit, work[0] returns the minimal and optimal /work.
(local)
If info $=0$, the execution is successful.
if info <0 : If the i-th argument is an array and the j-th entry, indexed j-1, had an illegal value, then info $=-(i * 100+j)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

The matrix Q is represented as a product of (ihi-ilo) elementary reflectors

$$
Q=H(i l o) * H(i l o+1) * \ldots * H(i h i-1) .
$$

Each $H(i)$ has the form

$$
H(i)=I-t a u^{\star} v^{\star} v^{\prime},
$$

where tau is a real/complex scalar, and v is a real/complex vector with $v(1: i)=0, v(i+1)=1$ and $v(i h i$ $+1: n)=0 ; v(i+2: i h i)$ is stored on exit in $A(i a+i l o+i: i a+i h i-1, i a+i l o+i-2)$, and tau in tau[ja+ilo +i-3].

The contents of $A(i a: i a+n-1, j a: j a+n-1)$ are illustrated by the following example, with $n=7$, $i l o=2$ and ihi $=6$:

on entry

on exit
$\left[\begin{array}{ccccccc}a & a & h & h & h & h & a \\ a & h & h & h & h & a \\ h & h & h & h & h & h \\ v 2 & h & h & h & h & h \\ v 2 & v 3 & h & h & h & h \\ v 2 & v 3 & v 4 & h & h & h \\ & & & & & a\end{array}\right]$
where a denotes an element of the original matrix $\operatorname{sub}(A), h$ denotes a modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector defining $H(j a+i l o+i-2)$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?gelq2

Computes an LQ factorization of a general rectangular
matrix (unblocked algorithm).

Syntax

```
void psgelq2 (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *tau , float *work , MKL_INT *lwork, MKL_INT *info );
void pdgelq2 (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , double *tau , double *work , MKL_INT *lwork , MKL_INT *info );
void pcgelq2 (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT *lwork , MKL_INT
*infO );
void pzgelq2 (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a, MKL_INT *ia , MKL_INT *ja,
MKL_INT *desca, MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT *lwork, MKL_INT
*infO );
```


Include Files

- mkl_scalapack.h

Description

The p?gelq2function computes an $L Q$ factorization of a real/complex distributed m-by- n matrix sub (A) $=$ $A(i a: i a+m-1, j a: j a+n-1)=L^{\star} Q$.

Input Parameters

m	(global)
	The number of rows of the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.
	(global)
n	The number of columns of the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$.
a	(local).
	Pointer into the local memory to an array of size lld_a * LOCC (ja+n-1).
	On entry, this array contains the local pieces of the m-by- n distributed matrix $\operatorname{sub}(A)$ which is to be factored.
ia, ja	(global) The row and column indices in the global matrix A indicating the first row and the first column of $\operatorname{sub}(A)$, respectively.
desca	(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
work	(local).
	This is a workspace array of size lwork.
lwork	(local or global)
	The size of the array work.
	lwork is local input and must be at least 1 work $\geq n q 0+\max (1, m p 0)$, where iroff $=\bmod (i a-1, \quad m b a), i C o f f=\bmod \left(j a-1, n b _a\right)$,
	iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
	iacol $=$ indxg2p(ja, nb_a, mycol, csrc_a, npcol),
	$m p 0=$ numroc (m+iroff, mb_a, myrow, iarow, nprow),

```
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol),
```

indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and $n p c o l$ can be determined by calling the function blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
(local).
On exit, the elements on and below the diagonal of $\operatorname{sub}(A)$ contain the m by $\min (m, n)$ lower trapezoidal matrix $L(L$ is lower triangular if $m \leq n)$; the elements above the diagonal, with the array tau, represent the orthogonal/ unitary matrix Q as a product of elementary reflectors (see Application Notes below).
(local).
Array of size LOCr (ia+min $(m, n)-1)$. This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix A.

On exit, work[0] returns the minimal and optimal /work.
(local) If info $=0$, the execution is successful. if info < 0 : If the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

The matrix Q is represented as a product of elementary reflectors
$Q=H(i a+k-1){ }^{*} H(i a+k-2) * . . . * H(i a)$ for real flavors, $Q=(H(i a+k-1))^{H \star}(H(i a$
$+k-2))^{H} \ldots{ }^{*}(H(i a))^{H}$ for complex flavors,
where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(i)=I-\tan ^{\star} V^{\star} V^{\prime}$
where tau is a real/complex scalar, and v is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1 ; v(i$ $+1: n$) (for real flavors) or conjg (v(i+1: n)) (for complex flavors) is stored on exit in $A(i a+i-1, j a+i: j a$ $+n-1)$, and tau in tau[ia+i-2].

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?geql2

Computes a QL factorization of a general rectangular matrix (unblocked algorithm).

Syntax

```
void psgeql2 (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *tau , float *work , MKL_INT *lwork, MKL_INT *info );
```

```
void pdgeql2 (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , double *tau , double *work , MKL_INT *lwork , MKL_INT *info );
void pcgeql2 (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia, MKL_INT *ja,
MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT *lwork , MKL_INT
*info );
void pzgeql2 (MKL_INT *m , MKL_INT *n , MKL_Complexl6 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT *lwork , MKL_INT
*info);
```


Include Files

- mkl_scalapack.h

Description

The p?geql2function computes a $Q L$ factorization of a real/complex distributed m-by- n matrix sub $(A)=$ $A(i a: i a+m-1, j a: j a+n-1)=Q$ *L.

Input Parameters

m
n
a
ia, ja
desca
work

I work
(global)
The number of rows in the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.
(global)
The number of columns in the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$.
(local).
Pointer into the local memory to an array of size lld_a* $\operatorname{LOC} C_{C}(j a+n-1)$.
On entry, this array contains the local pieces of the m-by- n distributed matrix $\operatorname{sub}(A)$ which is to be factored.
(global) The row and column indices in the global matrix A indicating the first row and the first column of $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local).
This is a workspace array of size lwork.
(local or global)
The size of the array work.
1 work is local input and must be at least $1 w o r k \geq \operatorname{mp} 0+\max (1, n q 0)$,
where iroff $=\bmod \left(i a-1, m b _a\right), i C o f f=\bmod \left(j a-1, n b _a\right)$,
iarow $=$ indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol $=$ indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 $=$ numroc (m+iroff, mb_a, myrow, iarow, nprow),
nq0 $=$ numroc (n+icoff, nb_a, mycol, iacol, npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and $n p c o l$ can be determined by calling the function blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
(local).
On exit,
if $m \geq n$, the lower triangle of the distributed submatrix $A(i a+m-n: i a+m-1$, $j a: j a+n-1)$ contains the n-by- n lower triangular matrix L;
if $m \leq n$, the elements on and below the ($n-m$)-th superdiagonal contain the m-by- n lower trapezoidal matrix L; the remaining elements, with the array tau, represent the orthogonal/ unitary matrix Q as a product of elementary reflectors (see Application Notes below).
(local).
Array of size $\operatorname{LOCc}(j a+n-1)$. This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix A.

On exit, work[0] returns the minimal and optimal /work.
(local).
If info $=0$, the execution is successful. if info <0 : If the i-th argument is an array and the j-th entry, indexed j-1, had an illegal value, then info $=-(i * 100+j)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

The matrix Q is represented as a product of elementary reflectors

```
Q = H(ja+k-1)* . .* H(ja+1)*H(ja), where k = min (m,n).
```

Each $H(i)$ has the form

```
H(i) = I- tau * ** v'
```

where tau is a real/complex scalar, and v is a real/complex vector with $v(m-k+i+1: m)=0$ and $v(m-k+i)=$ $1 ; v(1: m-k+i-1)$ is stored on exit in $A(i a: i a+m-k+i-2, j a+n-k+i-1)$, and tau in $\operatorname{tau}[j a+n-k+i-2]$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?geqr2

Computes a QR factorization of a general rectangular matrix (unblocked algorithm).

Syntax

```
void psgeqr2 (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *tau , float *work , MKL_INT *lwork, MKL_INT *info );
void pdgeqr2 (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , double *tau , double *work , MKL_INT *lwork , MKL_INT *info );
```

```
void pcgeqr2 (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT *lwork , MKL_INT
*info );
void pzgeqr2 (MKL_INT *m , MKL_INT *n , MKL_Complexl6 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT *lwork , MKL_INT
*infO );
```


Include Files

- mkl_scalapack.h

Description

The p?geqr2function computes a $Q R$ factorization of a real/complex distributed m-by-n matrix sub $(A)=$ $A(i a: i a+m-1, j a: j a+n-1)=Q^{\star} R$.

Input Parameters

```
m
n
a
ia, ja
desca
work
l work
```

(global)
The number of rows in the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.
(global) The number of columns in the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$. (local).

Pointer into the local memory to an array of size $11 d_{d} a * \operatorname{LOC}_{C}(j a+n-1)$.
On entry, this array contains the local pieces of the m-by- n distributed matrix $\operatorname{sub}(A)$ which is to be factored.
(global) The row and column indices in the global matrix A indicating the first row and the first column of $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local).
This is a workspace array of size lwork.
(local or global)
The size of the array work.
Iwork is local input and must be at least 1 work $\geq \operatorname{mp} 0+\max (1, n q 0)$,
where iroff $=\bmod \left(i a-1, m b _a\right), i c o f f=\bmod \left(j a-1, n b _a\right)$,
iarow $=$ indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol $=$ indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 $=$ numroc (m+iroff, mb_a, myrow, iarow, nprow),
nq0 $=$ numroc (n+icoff, nb_a, mycol, iacol, npcol).
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and $n p c o l$ can be determined by calling the function blacs_gridinfo.

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
(local).
On exit, the elements on and above the diagonal of $\operatorname{sub}(A)$ contain the $\min (m, n)$ by n upper trapezoidal matrix R (R is upper triangular if $m \geq n$); the elements below the diagonal, with the array tau, represent the orthogonal/ unitary matrix Q as a product of elementary reflectors (see Application Notes below).
(local).
Array of size $\operatorname{LOCc}(j a+\min (m, n)-1)$. This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix A.

On exit, work[0] returns the minimal and optimal lwork.
(local)
If info $=0$, the execution is successful. if info <0 :
If the i-th argument is an array and the j-th entry, indexed j - 1 , had an illegal value, then info $=-(i * 100+j)$,
if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

The matrix Q is represented as a product of elementary reflectors
$Q=H(j a) * H(j a+1) * . . . * H(j a+k-1)$, where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(j)=I-t a u^{*} v^{*} v^{\prime}$,
where tau is a real/complex scalar, and v is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1 ; v(i+1: m)$ is stored on exit in $A(i a+i: i a+m-1, j a+i-1)$, and tau in tau[ja+i-2].

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?gerq2

Computes an $R Q$ factorization of a general rectangular matrix (unblocked algorithm).

Syntax

```
void psgerq2 (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca, float *tau, float *work, MKL_INT *lwork, MKL_INT *info);
void pdgerq2 (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , double *tau , double *work , MKL_INT *lwork , MKL_INT *info );
void pcgerq2 (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia, MKL_INT *ja,
MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work, MKL_INT *lwork , MKL_INT
*info );
```

```
void pzgerq2 (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja,
MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT *lwork , MKL_INT
*infO );
```


Include Files

- mkl_scalapack.h

Description

The p?gerq2function computes an $R Q$ factorization of a real/complex distributed m-by- n matrix sub (A) $=$ $A(i a: i a+m-1, j a: j a+n-1)=R^{\star} Q$.

Input Parameters

```
m
n
a
ia, ja
desca
work
```

I work
(global) The number of rows in the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$. (global) The number of columns in the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$. (local).
Pointer into the local memory to an array of size $11 d_{-} a * \operatorname{LOC}_{c}(j a+n-1)$.
On entry, this array contains the local pieces of the m-by- n distributed matrix $\operatorname{sub}(A)$ which is to be factored.
(global) The row and column indices in the global matrix A indicating the first row and the first column of $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local).
This is a workspace array of size 1 work.
(local or global)
The size of the array work.
lwork is local input and must be at least 1 work $\geq \mathrm{nq} 0+\max (1, m p 0)$, where

```
iroff = mod(ia-1, mb_a), icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol), mp0 =
numroc( m+iroff, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol),
```

indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and $n p c o l$ can be determined by calling the function blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

	On exit,
	if $m \leq n$, the upper triangle of $A(i a+m-n: i a+m-1, j a: j a+n-1)$ contains the m-by- m upper triangular matrix R;
	if $m \geq n$, the elements on and above the ($m-n$)-th subdiagonal contain the m-by- n upper trapezoidal matrix R; the remaining elements, with the array tau, represent the orthogonal/ unitary matrix Q as a product of elementary reflectors (see Application Notes below).
tau	(local).
	Array of size $\operatorname{LOCr}(i a+m-1)$. This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix A.
work	On exit, work[0] returns the minimal and optimal lwork.
info	(local)
	If info $=0$, the execution is successful.
	if info < 0 : If the i-th argument is an array and the j-th entry, indexed j-1, had an illegal value, then info $=-(i * 100+j)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

The matrix Q is represented as a product of elementary reflectors
$Q=H(i a) * H(i a+1) * \ldots * H(i a+k-1)$ for real flavors,
$Q=(H(i a))^{H_{\star}}(H(i a+1))^{H} \ldots{ }^{*}(H(i a+k-1))^{H}$ for complex flavors,
where $k=\min (m, n)$.
Each H (i) has the form
$H(i)=I-\operatorname{tau^{*}v^{*}v^{\prime },}$
where tau is a real/complex scalar, and v is a real/complex vector with $v(n-k+i+1: n)=0$ and $v(n-k+i)=$ $1 ; v(1: n-k+i-1)$ for real flavors or $\operatorname{conjg}(v(1: n-k+i-1))$ for complex flavors is stored on exit in $A(i a+m-$ k+i-1, ja:ja+n-k+i-2), and tau in tau[ia+m-k+i-2].

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?getf2

Computes an LU factorization of a general matrix, using partial pivoting with row interchanges (local blocked algorithm).

Syntax

```
void psgetf2 (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , MKL_INT *ipiv , MKL_INT *info );
void pdgetf2 (MKL_INT *m , MKL_INT *n , double *a, MKL_INT *ia , MKL_INT *ja, MKL_INT
*desca , MKL_INT *ipiv , MKL_INT *info );
void pcgetf2 (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_INT *ipiv , MKL_INT *info );
```

```
void pzgetf2 (MKL_INT *m , MKL_INT *n , MKL_Complexl6 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_INT *ipiv , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?getf2function computes an $L U$ factorization of a general m-by-n distributed matrix $\operatorname{sub}(A)=A$ (ia: ia $+m-1, j a: j a+n-1)$ using partial pivoting with row interchanges.

The factorization has the form sub $(A)=P \star L^{\star} U$, where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if $m>n$), and U is upper triangular (upper trapezoidal if $m<n$). This is the right-looking Parallel Level 2 BLAS version of the algorithm.

```
Product and Performance Information
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision #20201201
```


Input Parameters

m
n
a
ia, ja
desca

Output Parameters

(global)
The number of rows in the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.
(global) The number of columns in the distributed matrix $\operatorname{sub}(A)$. (nb_a $\left.\bmod \left(j a-1, n b _a\right) \geq n \geq 0\right)$.
(local).
Pointer into the local memory to an array of size lld_a* $\operatorname{LOC_{C}}(j a+n-1)$.
On entry, this array contains the local pieces of the m-by- n distributed matrix $\operatorname{sub}(A)$.
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
Array of size $\left(\operatorname{LOCr}\left(m_{-} a\right)+m b _a\right)$. This array contains the pivoting information. ipiv[i] -> The global row that local row $(i+1)$ was swapped with, $i=0,1, \ldots, \operatorname{LOCr}\left(m_{-} a\right)+m b _a-1$. This array is tied to the distributed matrix A.
(local).
If info = 0: successful exit.
If info <0 :

- if the i-th argument is an array and the j-th entry, indexed j - 1 , had an illegal value, then info $=-(i * 100+j)$,
- if the i-th argument is a scalar and had an illegal value, then info $=$ i.

If info > 0: If info $=k$, the matrix element $U(i a+k-1, j a+k-1)$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?labrd

Reduces the first nb rows and columns of a general rectangular matrix A to real bidiagonal form by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of A.

Syntax

```
void pslabrd (MKL_INT *m , MKL_INT *n , MKL_INT *nb , float *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , float *d, float *e , float *tauq, float *taup , float *x ,
MKL_INT *ix , MKL_INT *jx , MKL_INT *descx , float *y , MKL_INT *iy , MKL_INT *jy ,
MKL_INT *descy , float *work );
void pdlabrd (MKL_INT *m , MKL_INT *n , MKL_INT *nb, double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, double *d, double *e, double *tauq, double *taup, double *x,
MKL_INT *ix , MKL_INT *jx , MKL_INT *descx , double *y , MKL_INT *iy , MKL_INT *jy ,
MKL_INT *descy , double *work );
void pclabrd (MKL_INT *m , MKL_INT *n , MKL_INT *nb, MKL_Complex8 *a , MKL_INT *ia,
MKL_INT *ja , MKL_INT *desca , float *d, float *e , MKL_Complex8 *tauq , MKL_Complex8
*taup , MKL_Complex8 *x , MKL_INT *ix , MKL_INT *jx, MKL_INT *descx , MKL_Complex8 *y ,
MKL_INT *iy , MKL_INT *jy , MKL_INT *descy , MKL_Complex8 *work );
void pzlabrd (MKL_INT *m , MKL_INT *n , MKL_INT *nb , MKL_Complex16 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , double *d , double *e , MKL_Complex16 *tauq ,
MKL_Complex16 *taup , MKL_Complex16 *x , MKL_INT *ix , MKL_INT *jx , MKL_INT *descx ,
MKL_Complex16 *y , MKL_INT *iy , MKL_INT *jy, MKL_INT *descy , MKL_Complex16 *work );
```


Include Files

- mkl_scalapack.h

Description

The p?labrdfunction reduces the first $n b$ rows and columns of a real/complex general m-by- n distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)$ to upper or lower bidiagonal form by an orthogonal/unitary transformation $Q^{\prime *} A * P$, and returns the matrices X and Y necessary to apply the transformation to the unreduced part of $\operatorname{sub}(A)$.
If $m \geq n$, sub (A) is reduced to upper bidiagonal form; if $m<n$, sub (A) is reduced to lower bidiagonal form.
This is an auxiliary function called by p?gebrd.

Input Parameters

m
n
(global) The number of rows in the distributed matrix sub (A). ($m \geq 0$). (global) The number of columns in the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$. (global)

The number of leading rows and columns of $\operatorname{sub}(A)$ to be reduced.
(local).
Pointer into the local memory to an array of size lld_a* $L O C_{C}(j a+n-1)$.
On entry, this array contains the local pieces of the general distributed matrix $\operatorname{sub}(A)$.
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(global) The row and column indices in the global matrix X indicating the first row and the first column of the matrix $\operatorname{sub}(X)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix X.
(global) The row and column indices in the global matrix Y indicating the first row and the first column of the matrix $\operatorname{sub}(Y)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix Y.
(local).
Workspace array of sizelwork.
lwork \geq nb_a $+n q$,
with $n q=\operatorname{numroc}\left(n+\bmod \left(i a-1, n b _y\right), n b _y, m y c o l, i a c o l\right.$, npcol)
iacol $=$ indxg2p (ja, nb_a, mycol, csrc_a, npcol)
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the function blacs_gridinfo.

Output Parameters

a
(local)
On exit, the first $n b$ rows and columns of the matrix are overwritten; the rest of the distributed matrix sub (A) is unchanged.

If $m \geq n$, elements on and below the diagonal in the first $n b$ columns, with the array tauq, represent the orthogonal/unitary matrix Q as a product of elementary reflectors; and elements above the diagonal in the first $n b$ rows, with the array taup, represent the orthogonal/unitary matrix P as a product of elementary reflectors.
d
e
tauq, taup
x

Y
X

者

If $m<n$, elements below the diagonal in the first $n b$ columns, with the array tauq, represent the orthogonal/unitary matrix Q as a product of elementary reflectors, and elements on and above the diagonal in the first $n b$ rows, with the array taup, represent the orthogonal/unitary matrix P as a product of elementary reflectors. See Application Notes below.
(local).
Array of size LOCr (ia+min $(m, n)-1)$ if $m \geq n$; $\operatorname{LOCC}(j a+m i n(m, n)-1)$ otherwise. The distributed diagonal elements of the bidiagonal distributed matrix B :
$d[i]=A(i a+i, j a+i), i=0,1, \ldots$, size $(d)-1$
d is tied to the distributed matrix A.
(local).
Array of size LOCr $(\operatorname{ia+min}(m, n)-1)$ if $m \geq n ; \operatorname{LOCc}(j a+m i n(m, n)-2)$ otherwise. The distributed off-diagonal elements of the bidiagonal distributed matrix B :
if $m \geq n, e[i]=A(i a+i, j a+i+1)$ for $i=0,1, \ldots, n-2$;
if $m<n, e[i]=A(i a+i+1, j a+i)$ for $i=0,1, \ldots, m-2$.
e is tied to the distributed matrix A.
(local).
Array size $\operatorname{LOCc}(j a+\min (m, n)-1)$ for tauq, size $\operatorname{LOCr}(i a+\min (m, n)-1)$ for taup. The scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix Q for tauq, P for taup. tauq and taup are tied to the distributed matrix A. See Application Notes below.
(local)
Pointer into the local memory to an array of size $I l d x^{*} n b$. On exit, the local pieces of the distributed m-by-nb matrix $X(i x: i x+m-1, j x: j x+n b-1)$ required to update the unreduced part of $\operatorname{sub}(A)$.
(local).
Pointer into the local memory to an array of size $l l d_{-} y^{*} n b$. On exit, the local pieces of the distributed n-by-nb matrix $Y(i y: i y+n-1, j y: j y+n b-1)$ required to update the unreduced part of $\operatorname{sub}(A)$.

Application Notes

The matrices Q and P are represented as products of elementary reflectors:
$Q=H(1) * H(2) * \ldots * H(n b)$, and $P=G(1) * G(2) * \ldots * G(n b)$
Each $H(i)$ and $G(i)$ has the form:
$H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{\prime}$, and $G(i)=I-\operatorname{taup}^{\star} u^{\star} u^{\prime}$,
where tauq and taup are real/complex scalars, and v and u are real/complex vectors.
If $m \geq n, v(1: i-1)=0, v(i)=1$, and $v(i: m)$ is stored on exit in
A(ia+i-1:ia+m-1, ja+i-1); u(1:i) $=0, u(i+1)=1$, and $u(i+1: n)$ is stored on exit in $A(i a+i-1$, $j a+i: j a+n-1) ;$ tauq is stored in tauq[ja+i-2] and taup in taup[ia+i-2].

If $m<n, v(1: i)=0, v(i+1)=1$, and $v(i+1: m)$ is stored on exit in $A(i a+i+1: i a+m-1, j a+i-1) ; u(1: i-1)=0, u(i)=1$, and $u(i: n)$ is stored on exit in $A(i a+i-1, j a$ $+i: j a+n-1)$; tauq is stored in tauq[ja+i-2] and taup in taup[ia+i-2]. The elements of the vectors v and u together form the m-by- $n b$ matrix V and the $n b$-by- n matrix U^{\prime} which are necessary, with X and Y, to apply the transformation to the unreduced part of the matrix, using a block update of the form: sub (A) : = sub (A) - $V^{\star} Y^{\prime}-X^{*} U^{\prime}$. The contents of sub (A) on exit are illustrated by the following examples with nb $=2$:

$$
\begin{array}{llll}
m=6 \text { and } n=5(m>n): & m=5 \text { and } n=6(m<n): \\
{\left[\begin{array}{ccccc}
1 & 1 & u l & u l & u l \\
v 1 & 1 & 1 & u 2 & u 2 \\
v 1 & v 2 & a & a & a \\
v 1 & v 2 & a & a & a \\
v 1 & v 2 & a & a & a \\
v 1 & v 2 & a & a & a
\end{array}\right]} & {\left[\begin{array}{cccccc}
1 & u l & u 1 & u l & u l & u l \\
1 & 1 & u 2 & u 2 & u 2 & u 2 \\
v 1 & 1 & a & a & a & a \\
v 1 & v 2 & a & a & a & a \\
v 1 & v 2 & a & a & a & a
\end{array}\right]}
\end{array}
$$

where a denotes an element of the original matrix which is unchanged, vi denotes an element of the vector defining $H(i)$, and $u i$ an element of the vector defining $G(i)$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?lacon

Estimates the 1-norm of a square matrix, using the reverse communication for evaluating matrix-vector products.

Syntax

```
void pslacon (MKL_INT *n , float *V, MKL_INT *iv, MKL_INT *jv, MKL_INT *descv, float
*x , MKL_INT *ix, MKL_INT *jx , MKL_INT *descx, MKL_INT *isgn , float *est , MKL_INT
*kase );
void pdlacon (MKL_INT *n , double *V, MKL_INT *iv, MKL_INT *jv , MKL_INT *descv ,
double *x , MKL_INT *ix , MKL_INT *jx , MKL_INT *descx , MKL_INT *isgn , double *est ,
MKL_INT *kase );
void pclacon (MKL_INT *n , MKL_Complex8 *V , MKL_INT *iv, MKL_INT *jv , MKL_INT
*descv, MKL_Complex8 *x , MKL_INT *ix, MKL_INT *jx, MKL_INT *descx, float *est,
MKL_INT *kase );
void pzlacon (MKL_INT *n , MKL_Complex16 *V , MKL_INT *iv, MKL_INT *jv , MKL_INT
*descv , MKL_Complex16 *x , MKL_INT *ix , MKL_INT *jx , MKL_INT *descx , double *est ,
MKL_INT *kase );
```

Include Files

- mkl_scalapack.h

Description

The p?laconfunction estimates the 1-norm of a square, real/unitary distributed matrix A. Reverse communication is used for evaluating matrix-vector products. x and v are aligned with the distributed matrix A, this information is implicitly contained within $i v, i x, d e s c v$, and descx.

Input Parameters	
n	(global) The length of the distributed vectors v and $x . n \geq 0$.
v	(local).
	Pointer into the local memory to an array of size $\operatorname{LOCr}\left(n+\bmod \left(i v-1, m b _v\right)\right)$. On the final return, $v=a^{\star} w$, where est $=$ norm $(v) /$ norm $(w)(w$ is not returned).
iv, jv	(global) The row and column indices in the global matrix V indicating the first row and the first column of the submatrix V, respectively.
descv	(global and local) array of size dlen_. The array descriptor for the distributed matrix V .
x	(local).
	Pointer into the local memory to an array of size $\operatorname{LOCr}\left(n+\bmod \left(i x-1, m b _x\right)\right)$.
ix, jx	(global) The row and column indices in the global matrix X indicating the first row and the first column of the submatrix X, respectively.
descx	(global and local) array of size dlen_. The array descriptor for the distributed matrix X .
isgn	(local).
	Array of size $\operatorname{LOCr}\left(n+\bmod \left(i x-1, m b _x\right)\right)$. isgn is aligned with x and v.
kase	(local).
	On the initial call to p?lacon, kase should be 0 .

Output Parameters

x
est
kase
(local).
On an intermediate return, X should be overwritten by $A^{*} X$, if kase $=1, A^{\prime}$ * X, if kase $=2$,
p ? lacon must be re-called with all the other parameters unchanged.
(global).
(local)
On an intermediate return, kase is 1 or 2 , indicating whether X should be overwritten by $A^{\star} X$, or $A^{\prime} * X$. On the final return from p?lacon, kase is again 0 .

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?laconsb
Looks for two consecutive small subdiagonal elements.
```


Syntax

```
void pslaconsb (const float *a, const MKL_INT *desca, const MKL_INT *i, const MKL_INT
```

void pslaconsb (const float *a, const MKL_INT *desca, const MKL_INT *i, const MKL_INT
*l, MKL_INT *m, const float *h44, const float *h33, const float *h43h34, float *buf,
*l, MKL_INT *m, const float *h44, const float *h33, const float *h43h34, float *buf,
const MKL_INT * lwork);
const MKL_INT * lwork);
void pdlaconsb (const double *a, const MKL_INT *desca, const MKL_INT *i, const MKL_INT
void pdlaconsb (const double *a, const MKL_INT *desca, const MKL_INT *i, const MKL_INT
*l, MKL_INT *m, const double *h44, const double *h33, const double *h43h34, double *buf,
*l, MKL_INT *m, const double *h44, const double *h33, const double *h43h34, double *buf,
const MKL_INT *lwork);
const MKL_INT *lwork);
void pclaconsb (const MKL_Complex8 *a, const MKL_INT *desca , const MKL_INT *i , const
void pclaconsb (const MKL_Complex8 *a, const MKL_INT *desca , const MKL_INT *i , const
MKL_INT *l , MKL_INT *m , const MKL_Complex8 *h44 , const MKL_Complex8 *h33 , const
MKL_INT *l , MKL_INT *m , const MKL_Complex8 *h44 , const MKL_Complex8 *h33 , const
MKL_Complex8 *h43h34 , MKL_Complex8 *buf , const MKL_INT *lwork);
MKL_Complex8 *h43h34 , MKL_Complex8 *buf , const MKL_INT *lwork);
void pzlaconsb (const MKL_Complexl6 *a , const MKL_INT *desca , const MKL_INT *i ,
void pzlaconsb (const MKL_Complexl6 *a , const MKL_INT *desca , const MKL_INT *i ,
const MKL_INT *l , MKL_INT *m , const MKL_Complex16 *h44 , const MKL_Complex16 *h33,
const MKL_INT *l , MKL_INT *m , const MKL_Complex16 *h44 , const MKL_Complex16 *h33,
const MKL_Complex16 *h43h34, MKL_Complex16 *buf, const MKL_INT *lwork);

```
const MKL_Complex16 *h43h34, MKL_Complex16 *buf, const MKL_INT *lwork );
```


Include Files

- mkl_scalapack.h

Description

The p?laconsbfunction looks for two consecutive small subdiagonal elements by analyzing the effect of starting a double shift $Q R$ iteration given by $h 44, h 33$, and $h 43 h 34$ to see if this process makes a subdiagonal negligible.

Input Parameters

```
a
    (local)
    Array of size Ild_a*LOCc(n_a). On entry, the Hessenberg matrix whose
    tridiagonal part is being scanned. Unchanged on exit.
    (global and local)
    Array of size dlen_. The array descriptor for the distributed matrix A.
    (global)
    The global location of the bottom of the unreduced submatrix of }A\mathrm{ .
    Unchanged on exit.
    (global)
```

 The global location of the top of the unreduced submatrix of \(A\). Unchanged
 on exit.
 (global).
 These three values are for the double shift \(Q R\) iteration.
 (local)
 This must be at least 7*ceil (ceil ((i-l)/mb_a)/lcm(nprow,
 npcol)). Here 1 cm is the least common multiple and nprow* npcol is the
 logical grid size.

Output Parameters

m
(global). On exit, this yields the starting location of the $Q R$ double shift. This will satisfy:
$l \leq m \leq i-2$.
(local).
Array of size Iwork.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lacp2
Copies all or part of a distributed matrix to another
distributed matrix.

Syntax

```
void pslacp2 (char *uplo, MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , float *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb );
void pdlacp2 (char *uplo, MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, double *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb );
void pclacp2 (char *uplo, MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *jb , MKL_INT
*descb );
void pzlacp2 (char *uplo, MKL_INT *m , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib , MKL_INT *jb_, MKL_INT
*descb );
```


Include Files

- mkl_scalapack.h

Description

The p?lacp2function copies all or part of a distributed matrix A to another distributed matrix B. No communication is performed, p? lacp2 performs a local copy $\operatorname{sub}(A):=\operatorname{sub}(B)$, where $\operatorname{sub}(A)$ denotes $A(i a: i a+m-1, a: j a+n-1)$ and $\operatorname{sub}(B)$ denotes $B(i b: i b+m-1, j b: j b+n-1)$.
p?lacp2 requires that only dimension of the matrix operands is distributed.

Input Parameters

uplo
m
(global) Specifies the part of the distributed matrix $\operatorname{sub}(A)$ to be copied:
$=$ 'U': Upper triangular part is copied; the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced;
$=$ 'L': Lower triangular part is copied; the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
Otherwise: all of the matrix $\operatorname{sub}(A)$ is copied.
(global)
The number of rows in the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.

```
n
a
ia, ja
desca
ib, jb
descb
```


Output Parameters

b
(global)
The number of columns in the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$.
(local).
Pointer into the local memory to an array of sizelld_a * LOCC(ja+n-1).
On entry, this array contains the local pieces of the m-by- n distributed matrix sub(A).
(global) The row and column indices in the global matrix A indicating the first row and the first column of $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(global) The row and column indices in the global matrix B indicating the first row and the first column of $\operatorname{sub}(B)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix B.
(local).
Pointer into the local memory to an array of size lld_b* LOCC ($j b+n-1$). This array contains on exit the local pieces of the distributed matrix $\operatorname{sub}(B)$ set as follows:
if uplo $=$ ' U ', $B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), 1 \leq i \leq j, 1 \leq j \leq n ;$
if uplo $=$ 'L', $B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), j \leq i \leq m, 1 \leq j \leq n$;
otherwise, $B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), 1 \leq i \leq m, 1 \leq j \leq n$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?lacp3

Copies from a global parallel array into a local
replicated array or vice versa.

Syntax

```
void pslacp3 (const MKL_INT *m, const MKL_INT *i, float *a, const MKL_INT *desca, float
*b, const MKL_INT *Idb, const MKL_INT *ii, const MKL_INT *jj, const MKL_INT *rev );
void pdlacp3 (const MKL_INT *m, const MKL_INT *i, double *a, const MKL_INT *desca,
double *b, const MKL_INT *Idb, const MKL_INT *ii, const MKL_INT *jj, const MKL_INT
*rev );
void pclacp3 (const MKL_INT *m, const MKL_INT *i, MKL_Complex8 *a, const MKL_INT
*desca, MKL_Complex8 *b, const MKL_INT *ldb, const MKL_INT *ii, const MKL_INT *jj,
const MKL_INT *rev);
void pzlacp3 (const MKL_INT *m, const MKL_INT *i, MKL_Complex16 *a, const MKL_INT
*desca, MKL_Complex16 *\overline{b}, const MKL_INT * Idb, const MKL_INT *ii, const MKL_INT *jj,
const MKL_INT *rev);
```


Include Files

- mkl_scalapack.h

Description

This is an auxiliary function that copies from a global parallel array into a local replicated array or vise versa. Note that the entire submatrix that is copied gets placed on one node or more. The receiving node can be specified precisely, or all nodes can receive, or just one row or column of nodes.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Input Parameters

m
i
a
desca
b

1 db
ii, jj
rev
(global)
m is the order of the square submatrix that is copied.
$m \geq 0$. Unchanged on exit.
(global) The matrix element $A(i, i)$ is the global location that the copying starts from. Unchanged on exit.
(local)
Array of size Ild_a*LOCc $\left(n_{-} a\right)$. On entry, the parallel matrix to be copied into or from.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
Array of size $1 \mathrm{db}^{*} \operatorname{LOCc}(m)$. If rev $=0$, this is the global portion of the matrix $A(i: i+m-1, i: i+m-1)$. If rev $=1$, this is unchanged on exit.
(local)
The leading dimension of B.
(global) By using rev 0 and 1, data can be sent out and returned again. If rev $=0$, then $i i$ is destination row index and $j j$ is destination column index for the node(s) receiving the replicated matrix B. If $i i \geq 0, j j \geq 0$, then node ($i i, j j$) receives the data. If $i i=-1, j j \geq 0$, then all rows in column $j j$ receive the data. If $i i \geq 0, j j=-1$, then all cols in row $i i$ receive the data. If $i i=-1, j j$ $=-1$, then all nodes receive the data. If rev $!=0$, then $i i$ is the source row index for the node(s) sending the replicated B.
(global) Use rev $=0$ to send global matrixA into locally replicated matrix B (on node (ii, $j j$)). Use rev $!=0$ to send locally replicated B from node (ii, $j j$) to its owner (which changes depending on its location in A) into the global A.

Output Parameters

a
On exit, if rev $=1$, the copied data. Unchanged on exit if rev $=0$.
b
If rev $=1$, this is unchanged on exit.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lacpy
Copies all or part of one two-dimensional array to another.

Syntax

```
void pslacpy (char *uplo, MKL_INT *m, MKL_INT *n , float *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, float *b, MKL_INT *ib, MKL_INT *jb, MKL_INT *descb );
void pdlacpy (char *uplo, MKL_INT *m, MKL_INT *n , double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, double *b , MKL_INT *ib, MKL_INT *jb, MKL_INT *descb );
void pclacpy (char *uplo, MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *jb , MKL_INT
*descb );
void pzlacpy (char *uplo, MKL_INT *m , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib , MKL_INT *jb , MKL_INT
*descb );
```


Include Files

- mkl_scalapack.h

Description

The p? lacpyfunction copies all or part of a distributed matrix A to another distributed matrix B. No communication is performed, p?lacpy performs a local copy $\operatorname{sub}(B):=\operatorname{sub}(A)$, where $\operatorname{sub}(A)$ denotes $A(i a: i a+m-1, j a: j a+n-1)$ and $\operatorname{sub}(B)$ denotes $B(i b: i b+m-1, j b: j b+n-1)$.

Input Parameters
uplo
m
n
a
(global) Specifies the part of the distributed matrix $\operatorname{sub}(A)$ to be copied:
$=$ 'U': Upper triangular part; the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced;
$=$ ' L': Lower triangular part; the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
Otherwise: all of the matrix $\operatorname{sub}(A)$ is copied.
(global)
The number of rows in the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.
(global)
The number of columns in the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$.
(local).
Pointer into the local memory to an array of size lld_a* LOCC (ja+n-1).

```
ia, ja
desca
ib, jb
```

descb

On entry, this array contains the local pieces of the distributed matrix $\operatorname{sub}(A)$.
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(global) The row and column indices in the global matrix B indicating the first row and the first column of $\operatorname{sub}(B)$ respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

Output Parameters

b
(local).
Pointer into the local memory to an array of size lld_b* LOCC ($j b+n-1$). This array contains on exit the local pieces of the distributed matrix sub(B) set as follows:
if uplo = 'U', $B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), 1 \leq i \leq j, 1 \leq j \leq n$;
if uplo $=$ 'L', $B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), j \leq i \leq m, 1 \leq j \leq n$;
otherwise, $B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), 1 \leq i \leq m, 1 \leq j \leq n$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?laevswp

Moves the eigenvectors from where they are computed to ScaLAPACK standard block cyclic array.

Syntax

```
void pslaevswp (MKL_INT *n , float *zin, MKL_INT *ldzi , float *z , MKL_INT *iz ,
MKL_INT *jz , MKL_INT *descz , MKL_INT *nvs, MKL_INT *key , float *work, MKL_INT
*lwork );
void pdlaevswp (MKL_INT *n , double *zin, MKL_INT *ldzi , double *z , MKL_INT *iz ,
MKL_INT *jz, MKL_INT *descz , MKL_INT *nvs, MKL_INT *key , double *work, MKL_INT
*lwork );
void pclaevswp (MKL_INT *n , float *zin , MKL_INT *ldzi , MKL_Complex8 *z , MKL_INT
*iz , MKL_INT *jz , MKL_INT *descz , MKL_INT *nvs, MKL_INT *key , float *rwork ,
MKL_INT *lrwork);
void pzlaevswp (MKL_INT *n , double *zin, MKL_INT *ldzi , MKL_Complex16 *z , MKL_INT
*iz , MKL_INT *jz , MKL_INT *descz, MKL_INT *nvs, MKL_INT *key , double *rwork ,
MKL_INT *Irwork );
```

Include Files

- mkl_scalapack.h

Description

The p?laevswpfunction moves the eigenvectors (potentially unsorted) from where they are computed, to a ScaLAPACK standard block cyclic array, sorted so that the corresponding eigenvalues are sorted.

Input Parameters

$n p=$ the number of rows local to a given process.
$n q=$ the number of columns local to a given process.

n	(global)
	The order of the matrix A. $n \geq 0$.
zin	(local).
	Array of size $I d z i^{*} n v s[i a m+1]$. The eigenvectors on input. iam is a process rank from [0, nprocs) interval. Each eigenvector resides entirely in one process. Each process holds a contiguous set of $n v s[i a m+1]$ eigenvectors. The global number of the first eigenvector that the process holds is: ((sum for $i=[0, i a m]$ of $n v s[i])+1$).
Idzi	(local)
	The leading dimension of the zin array.
iz, jz	(global) The row and column indices in the global matrix Z indicating the first row and the first column of the submatrix Z, respectively.
descz	(global and local)
	Array of size dlen_. The array descriptor for the distributed matrix Z .
nvs	(global)
	Array of size nprocs+1
	$n v s[i]=$ number of eigenvectors held by processes [0, i)
	$n v s[0]=$ number of eigenvectors held by processes [0,0) $=0$
	$n v s[n p r o c s]=$ number of eigenvectors held by [0, nprocs) $=$ total number of eigenvectors.
key	(global)
	Array of size n. Indicates the actual index (after sorting) for each of the eigenvectors.
rwork	(local).
	Array of size Irwork.
Irwork	(local)
	Size of work.

Output Parameters

z
(local).
Array of global size $n^{*} n$ and of local size $/ l d _z * n q$. The eigenvectors on output. The eigenvectors are distributed in a block cyclic manner in both dimensions, with a block size of $n b$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lahrd
Reduces the first nb columns of a general rectangular matrix A so that elements below the k-th subdiagonal are zero, by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of A.

Syntax

```
void pslahrd (MKL_INT *n , MKL_INT *k , MKL_INT *nb, float *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , float *tau, float *t , float *y , MKL_INT *iy , MKL_INT *jy ,
MKL_INT *descy , float *work );
void pdlahrd (MKL_INT *n , MKL_INT *k, MKL_INT *nb, double *a , MKL_INT *ia, MKL_INT
*ja, MKL_INT *desca, double *tau, double *t , double *y, MKL_INT *iy , MKL_INT *jy ,
MKL_INT *descy , double *work );
void pclahrd (MKL_INT *n , MKL_INT *k, MKL_INT *nb, MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *t , MKL_Complex8 *y ,
MKL_INT *iy, MKL_INT *jy , MKL_INT *descy , MKL_Complex8 *work );
void pzlahrd (MKL_INT *n , MKL_INT *k , MKL_INT *nb , MKL_Complex16 *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *tau, MKL_Complex16 *t , MKL_Complex16
*y , MKL_INT *iy , MKL_INT *jy , MKL_INT *descy , MKL_Complex16 *work );
```


Include Files

- mkl_scalapack.h

Description

The p?lahrdfunction reduces the first $n b$ columns of a real general n-by- $(n-k+1)$ distributed matrix A (ia: ia $+n-1$, $j a: j a+n-k)$ so that elements below the k-th subdiagonal are zero. The reduction is performed by an orthogonal/unitary similarity transformation $Q^{*} A^{*} Q$. The function returns the matrices V and T which determine Q as a block reflector $I-V^{\star} T^{*} V^{\prime}$, and also the matrix $Y=A * V^{*} T$.
This is an auxiliary function called by p?gehrd. In the following comments sub(A) denotes A(ia:ia+n-1, ja:ja+n-1).

Input Parameters

n
k
$n \cdot b$
a

(global)

The order of the distributed matrix $\operatorname{sub}(A) . n \geq 0$.
(global)
The offset for the reduction. Elements below the k-th subdiagonal in the first $n b$ columns are reduced to zero.
(global)

The number of columns to be reduced.
(local).

Pointer into the local memory to an array of size IId_a * LOCc $(j a+n-k)$. On entry, this array contains the local pieces of the $n-b y-(n-k+1)$ general distributed matrix $A(i a: i a+n-1, j a: j a+n-k)$.
ia, ja
desca
iy, jy
descy
work
(global) The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(global) The row and column indices in the global matrix Y indicating the first row and the first column of the matrix $\operatorname{sub}(Y)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix Y.
(local).
Array of size $n b$.

Output Parameters

a
(local).
On exit, the elements on and above the k-th subdiagonal in the first $n b$ columns are overwritten with the corresponding elements of the reduced distributed matrix; the elements below the k-th subdiagonal, with the array tau, represent the matrix Q as a product of elementary reflectors. The other columns of the matrix $A(i a: i a+n-1, j a: j a+n-k)$ are unchanged. (See Application Notes below.)
(local)
Array of size $\operatorname{LOCc}(j a+n-2)$. The scalar factors of the elementary reflectors (see Application Notes below). tau is tied to the distributed matrix A.
t
(local)
Array of size $n b _a * n b _a$. The upper triangular matrix T.
(local).
Pointer into the local memory to an array of size $I / d _y^{*} n b _a$. On exit, this array contains the local pieces of the n-by- $n b$ distributed matrix Y. $\| l d _y \geq$ $\operatorname{LOCr}(i a+n-1)$.

Application Notes

The matrix Q is represented as a product of $n b$ elementary reflectors
$Q=H(1) \star H(2) \star \ldots \star H(n b)$.
Each $H(i)$ has the form
$H(i)=i-t a u^{\star} V^{\star} V^{\prime}$,
where tau is a real/complex scalar, and v is a real/complex vector with $v(1: i+k-1)=0, v(i+k)=1 ; v(i+k$ $+1: n)$ is stored on exit in $A(i a+i+k: i a+n-1, j a+i-1)$, and tau in tau[ja+i-2].

The elements of the vectors v together form the $(n-k+1)$-by- $n b$ matrix V which is needed, with T and Y, to apply the transformation to the unreduced part of the matrix, using an update of the form: A(ia:ia+n-1, $j a: j a+n-k):=\left(I-V^{*} T^{*} V^{\prime}\right)^{*}\left(A(i a: i a+n-1, j a: j a+n-k)-Y^{*} V^{\prime}\right)$. The contents of $A(i a: i a+n-1, j a: j a+n-k)$ on exit are illustrated by the following example with $n=7, k=3$, and $n b=2$:

$$
\left[\begin{array}{ccccc}
a & h & a & a & a \\
a & h & a & a & a \\
a & h & a & a & a \\
h & h & a & a & a \\
v 1 & h & a & a & a \\
v 1 & v 2 & a & a & a \\
v 1 & v 2 & a & a & a
\end{array}\right]
$$

where a denotes an element of the original matrix $A(i a: i a+n-1, j a: j a+n-k), h$ denotes a modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector defining $H(i)$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?laiect

Exploits IEEE arithmetic to accelerate the computations of eigenvalues.

Syntax

```
void pslaiect (float *sigma , MKL_INT *n , float *d , MKL_INT *count );
void pdlaiectb (float *sigma , MKL_INT *n , float *d, MKL_INT *count );
void pdlaiectl (float *sigma , MKL_INT *n , float *d, MKL_INT *count );
```


Include Files

- mkl_scalapack.h

Description

The p?laiectfunction computes the number of negative eigenvalues of ($A-\sigma I$). This implementation of the Sturm Sequence loop exploits IEEE arithmetic and has no conditionals in the innermost loop. The signbit for real function pslaiect is assumed to be bit 32. Double-precision functions pdlaiectb and pdlaiectl differ in the order of the double precision word storage and, consequently, in the signbit location. For pdlaiect.b, the double precision word is stored in the big-endian word order and the signbit is assumed to be bit 32 . For pdlaiectl, the double precision word is stored in the little-endian word order and the signbit is assumed to be bit 64.
This is a ScaLAPACK internal function and arguments are not checked for unreasonable values.

Input Parameters

The shift. p?laiect finds the number of eigenvalues less than equal to sigma.
n
d

The order of the tridiagonal matrix $T . n \geq 1$.
Array of size $2 n-1$.
On entry, this array contains the diagonals and the squares of the offdiagonal elements of the tridiagonal matrix T. These elements are assumed to be interleaved in memory for better cache performance. The diagonal entries of T are in the entries $d[0], d[2], \ldots, d[2 n-2]$, while the squares of the off-diagonal entries are $d[1], d[3], \ldots, d[2 n-3]$. To avoid overflow, the matrix must be scaled so that its largest entry is no greater than overflow ${ }^{(1 / 2)}$ * underflow ${ }^{(1 / 4)}$ in absolute value, and for greatest accuracy, it should not be much smaller than that.

Output Parameters

n
The count of the number of eigenvalues of T less than or equal to sigma.

```
See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.
```


p?lamve

```
Copies all or part of one two-dimensional distributed
array to another.
```


Syntax

```
void pslamve(char* uplo, MKL_INT* m, MKL_INT* n, float* a, MKL_INT* ia, MKL_INT* ja,
```

void pslamve(char* uplo, MKL_INT* m, MKL_INT* n, float* a, MKL_INT* ia, MKL_INT* ja,
MKL_INT* desca, float* b, MKL_INT* ib, MKL_INT* jb, MKL_INT* descb, float* dwork);
void pdlamve(char* uplo, MKL_INT* m, MKL_INT* n, double* a, MKL_INT* ia, MKL_INT* ja,
MKL_INT* desca, double* b, MKL_INT* ib, MKL_INT* jb, MKL_INT* descb, double* dwork);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}
p? lamve copies all or part of a distributed matrix \(A\) to another distributed matrix \(B\). There is no alignment assumptions at all except that \(A\) and \(B\) are of the same size.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
uplo

\section*{(global)}

Specifies the part of the distributed matrix \(\operatorname{sub}(A)\) to be copied:
= 'U': Upper triangular part is copied; the strictly lower triangular part of \(\operatorname{sub}(A)\) is not referenced;
\(=\) 'L': Lower triangular part is copied; the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced;
```

Otherwise: All of the matrix $\operatorname{sub}(A)$ is copied.
(global)
The number of rows to be operated on, which is the number of rows of the distributed matrix $\operatorname{sub}(A) . m \geq 0$.
(global)
The number of columns to be operated on, which is the number of columns of the distributed matrix $\operatorname{sub}(A) . n \geq 0$.
(local) pointer into the local memory to an array of size IId_a * LOC_{c} (ja
$+n-1)$. This array contains the local pieces of the distributed matrix $\operatorname{sub}(A)$ to be copied from.
(global)
The row index in the global matrix A indicating the first row of $\operatorname{sub}(A)$.
(global)
The column index in the global matrix A indicating the first column of $\operatorname{sub}(A)$.
(global and local) array of size dlen_.
The array descriptor for the distributed matrix A.
(global)
The row index in the global matrix B indicating the first row of sub(B).
(global)
The column index in the global matrix B indicating the first column of $\operatorname{sub}(B)$.
(global and local) array of size dlen_.
The array descriptor for the distributed matrix B.
(local workspace) array
If uplo = 'U' or uplo = 'L' and number of processors >1, the length of $d w o r k$ is at least as large as the length of b.
Otherwise, dwork is not referenced.

```

\section*{OUTPUT Parameters}
b
(local ) pointer into the local memory to an array of size \(I l d \_b * L O C_{c}(j b\) \(+n-1)\). This array contains on exit the local pieces of the distributed matrix \(\operatorname{sub}(B)\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lange
Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a general rectangular matrix.

\section*{Syntax}
```

float pslange (char *norm, MKL_INT *m, MKL_INT *n , float *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca , float *work);
double pdlange (char *norm , MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca , double *work);
float pclange (char *norm, MKL_INT *m, MKL_INT *n , MKL_Complex8 *a, MKL_INT *ia,
MKL_INT *ja, MKL_INT *desca , float *work);
double pzlange (char *norm, MKL_INT *m, MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca , double *work);

```

Include Files
- mkl_scalapack.h

\section*{Description}

The p?langefunction returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a distributed matrix sub \((A)=A(i a: i a+m-1, j a: j a+n-1)\).

\section*{Input Parameters}
norm
m
n
a
ia, ja
desca
work
(global) Specifies what value is returned by the function:
\(='^{\prime}\) ' or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix \(A\), it \(s\) not a matrix norm.
\(=\) '1' or 'O' or 'o': val \(=\operatorname{norm1}(A), 1\)-norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F', 'f','E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).
(global)
The number of rows in the distributed matrix \(\operatorname{sub}(A)\). When \(m=0\), \(p\) ?lange is set to zero. \(m \geq 0\).
(global)
The number of columns in the distributed matrix \(\operatorname{sub}(A)\). When \(n=0\), p? lange is set to zero. \(n \geq 0\).
(local).
Pointer into the local memory to an array of size IId_a * LOCc \((j a+n-1)\) containing the local pieces of the distributed matrix \(\operatorname{sub}(A)\).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local).
Array size Iwork.
```

lwork \geq 0 if norm = 'M' or 'm'(not referenced),
nq0 if norm = '1','O' or 'o',
mp0 if norm = 'I' or 'i',
O if norm = 'F','f','E' or 'e' (not referenced),
where
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol),

```
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and \(n p c o l\) can be determined by calling the function blacs_gridinfo.

\section*{Output Parameters}
val
The value returned by the function.

\section*{See Also}

\section*{Overview for details of ScaLAPACK array descriptor structures and related notations.}

\section*{p?lanhs}

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of an upper Hessenberg matrix.

\section*{Syntax}
```

float pslanhs (char *norm , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *work);
double pdlanhs (char *norm , MKL_INT *n , double *a, MKL_INT *ia, MKL_INT *ja,
MKL_INT *desca , double *work);
float pclanhs (char *norm, MKL_INT *n , MKL_Complex8 *a, MKL_INT *ia, MKL_INT *ja,
MKL_INT *desca, float *work);
double pzlanhs (char *norm, MKL_INT *n , MKL_Complex16 *a, MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , double *work);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?lanhsfunction returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an upper Hessenberg distributed matrix sub \((A)=A(i a: i a+m-1\), ja:ja+n-1).

\section*{Input Parameters}
norm
Specifies the value to be returned by the function:
\(={ }^{\prime} M^{\prime}\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix A.
```

 = '1' or 'O' or 'O': val = norm1(A), 1-norm of the matrix A
    ``` (maximum column sum),
\(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F', 'f', 'E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).
n
a
ia, ja
desca
work
(global)
The number of columns in the distributed matrix \(\operatorname{sub}(A)\). When \(n=\) 0 , p?lanhs is set to zero. \(n \geq 0\).
(local).
Pointer into the local memory to an array of size lld_a * LOCC (ja+n-1) containing the local pieces of the distributed matrix \(\operatorname{sub}(A)\).
(global)
The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local).
Array of size /work.
Iwork \(\geq 0\) if norm = 'M' or 'm' (not referenced),
nq0 if norm = '1', ' O' or '○',
mp0 if norm = 'I' or 'i',
0 if norm = 'E','f', 'E' or 'e' (not referenced),
where
iroffa \(=\bmod \left(i a-1, m b \_a\right)\), icoffa \(=\bmod \left(j a-1, n b \_a\right)\),
iarow \(=\) indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol \(=\) indxg2p( ja, nb_a, mycol, csrc_a, npcol \()\),
\(m p 0=\) numroc ( \(m+\) iroffa, mb_a, myrow, iarow, nprow \()\),
\(n q 0=\) numroc ( \(n+i c o f f a, n b \_a\), mycol, iacol, npcol \()\),
indxg2p and numroc are ScaLAPACK tool functions; myrow, imycol, nprow, and \(n p c o l\) can be determined by calling the function blacs_gridinfo.

\section*{Output Parameters}
val
The value returned by the function.

See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?lansy, p?lanhe
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element, of a real symmetric or a complex Hermitian
matrix.

```

\section*{Syntax}
```

float pslansy (char *norm, char *uplo , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca , float *work);
double pdlansy (char *norm , char *uplo, MKL_INT *n , double *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , double *Work);
float pclansy (char *norm , char *uplo, MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca, float *work);
double pzlansy (char *norm, char *uplo, MKL_INT *n , MKL_Complexl6 *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca , double *work);
float pclanhe (char *norm, char *uplo, MKL_INT *n , MKL_Complex8 *a, MKL_INT *ia,
MKL_INT *ja, MKL_INT *desca, float *work);
double pzlanhe (char *norm, char *uplo, MKL_INT *n , MKL_Complexl6 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , double *work);

```

Include Files
- mkl_scalapack.h

\section*{Description}

The p?lansy and p?lanhefunctions return the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a distributed matrix sub \((A)=A(i a: i a+m-1, j a: j a\) \(+n-1)\).

\section*{Input Parameters}
norm
uplo
n
(global) Specifies what value is returned by the function:
\(=' M '\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix \(A\), it s not a matrix norm.
\(=\) '1' or 'O' or 'o': val \(=\operatorname{norm1}(A), 1\)-norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F', 'f','E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).
(global) Specifies whether the upper or lower triangular part of the symmetric matrix \(\operatorname{sub}(A)\) is to be referenced.
\(=\) 'U': Upper triangular part of \(\operatorname{sub}(A)\) is referenced,
\(=\) 'L': Lower triangular part of \(\operatorname{sub}(A)\) is referenced.
(global)

The number of columns in the distributed matrix \(\operatorname{sub}(A)\). When \(n=0\), p?lansy is set to zero. \(n \geq 0\).
\(a\)
ia, ja
desca
work
(local).
Pointer into the local memory to an array of size Ild_a * LOCc(ja+n-1) containing the local pieces of the distributed matrix \(\operatorname{sub}(A)\).

If uplo = 'U', the leading \(n\)-by-n upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular matrix whose norm is to be computed, and the strictly lower triangular part of this matrix is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular matrix whose norm is to be computed, and the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced.
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local).
Array of size Iwork.
```

Iwork \geq0 if norm = 'M' or 'm' (not referenced),
2*nq0+mp0+ldw if norm = '1', 'O' or 'o', 'I' or 'i',

```
where \(I d w\) is given by:
```

if(nprow\not=npcol) then
ldw = mb_a*iceil(iceil(np0,mb_a),(lcm/nprow))
else
ldw = 0
end if
O if norm = 'F','f','E' or 'e'(not referenced),

```
where \(/ \mathrm{cm}\) is the least common multiple of nprow and npcol, \(1 \mathrm{~cm}=\)
ilcm ( nprow, npcol ) and iceil \((x, y)\) is a ScaLAPACK function that
returns ceiling \((x / y)\).
iroffa \(=\bmod \left(i a-1, m b \_a\right), i c o f f a=\bmod \left(j a-1, n b \_a\right)\),
iarow \(=\) indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol \(=\) indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 \(=\) numroc \(\left(m+i r o f f a, ~ m b \_a, ~ m y r o w, ~ i a r o w, ~ n p r o w\right), ~\)
\(n q 0=\) numroc (n+icoffa, nb_a, mycol, iacol, npcol),
ilcm, iceil, indxg2p, and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the function
blacs_gridinfo.

\section*{Output Parameters}

The value returned by the function.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?lantr}

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a triangular matrix.

\section*{Syntax}
```

float pslantr (char *norm , char *uplo, char *diag, MKL_INT *m , MKL_INT *n , float
*a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , float *Work);
double pdlantr (char *norm , char *uplo, char *diag, MKL_INT *m , MKL_INT *n , double
*a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca , double *Work);
float pclantr (char *norm, char *uplo, char *diag, MKL_INT *m, MKL_INT *n ,
MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca , float *work);
double pzlantr (char *norm , char *uplo , char *diag , MKL_INT *m , MKL_INT *n ,
MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , double *work);

```

Include Files
- mkl_scalapack.h

\section*{Description}

The p?lantrfunction returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular distributed matrix sub (A) \(=A(i a: i a+m-1\), ja:ja+n-1).

\section*{Input Parameters}
norm
(global) Specifies what value is returned by the function: \(={ }^{\prime} M^{\prime}\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix \(A\), it s not a matrix norm.
\(=\) '1' or 'O' or 'o': val \(=\) norm1 (A), 1-norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val \(=\) normI ( \(A\) ), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F', 'f','E' or 'e': val = normF (A), Frobenius norm of the matrix
\(A\) (square root of sum of squares).
(global)
Specifies whether the upper or lower triangular part of the symmetric matrix \(\operatorname{sub}(A)\) is to be referenced.
= 'U': Upper trapezoidal,
\(=\) 'L': Lower trapezoidal.
Note that \(\operatorname{sub}(A)\) is triangular instead of trapezoidal if \(m=n\).
(global)
Specifies whether the distributed matrix \(\operatorname{sub}(A)\) has unit diagonal.
\(={ }^{\prime} N^{\prime}\) : Non-unit diagonal.
\(=\) 'U': Unit diagonal.
m
n
a
ia, ja
desca
work
(global)
The number of rows in the distributed matrix \(\operatorname{sub}(A)\). When \(m=0\), \(p\) ? lantr is set to zero. \(m \geq 0\).
(global)
The number of columns in the distributed matrix \(\operatorname{sub}(A)\). When \(n=0\), \(p\) ?lantr is set to zero. \(n \geq 0\).
(local).
Pointer into the local memory to an array of sizelld_a * LOCC (ja+n-1) containing the local pieces of the distributed matrix \(\operatorname{sub}(A)\).
(global)
The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local).
Array size /work.
```

lwork\geq 0 if norm = 'M' or 'm' (not referenced),
nq0 if norm = '1', 'O' or '०',
mp0 if norm = 'I' or 'i'',
0 if norm = 'F','f','E' or 'e' (not referenced),
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol),

```
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and \(n p c o l\) can be determined by calling the function blacs_gridinfo.

\section*{Output Parameters}
val
The value returned by the function.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lapiv
Applies a permutation matrix to a general distributed matrix, resulting in row or column pivoting.

\section*{Syntax}
```

void pslapiv (char *direc , char *rowcol , char *pivroc , MKL_INT *m , MKL_INT *n ,
float *a, MKL_INT *ia, MKL_INT *ja , MKL_INT *desca, MKL_INT *ipiv , MKL_INT *ip ,
MKL_INT *jp , MKL_INT *descip , MKL_INT *iwork);
void pdlapiv (char *direc , char *rowcol , char *pivroc , MKL_INT *m , MKL_INT *n ,
double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_INT *ipiv , MKL_INT *ip ,
MKL_INT *jp , MKL_INT *descip , MKL_INT *iwork);
void pclapiv (char *direc , char *rowcol , char *pivroc , MKL_INT *m , MKL_INT *n ,
MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca , MKL_INT *ipiv , MKL_INT
*ip , MKL_INT *jp , MKL_INT *descip , MKL_INT *iwork);
void pzlapiv (char *direc , char *rowcol , char *pivroc , MKL_INT *m , MKL_INT *n ,
MKL_Complex16 *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca , MKL_INT *ipiv , MKL_INT
*ip , MKL_INT *jp , MKL_INT *descip , MKL_INT *iwork);

```

Include Files
- mkl_scalapack.h

\section*{Description}

The p?lapivfunction applies either \(P\) (permutation matrix indicated by \(i p i v\) ) or inv \((P)\) to a general \(m\)-by- \(n\) distributed matrix sub \((A)=A(i a: i a+m-1, j a: j a+n-1)\), resulting in row or column pivoting. The pivot vector may be distributed across a process row or a column. The pivot vector should be aligned with the distributed matrix \(A\). This function will transpose the pivot vector, if necessary.
For example, if the row pivots should be applied to the columns of sub \((A)\), pass rowcol=' \(C\) ' and pivroc='C'.

\section*{Input Parameters}
```

direc
rowcol
pivroc

```
m
(global)
Specifies in which order the permutation is applied:
\(=\) ' F' (Forward): Applies pivots forward from top of matrix. Computes \(P^{\star}\) sub ( \(A\) ).
\(=\) ' \(B^{\prime}\) (Backward): Applies pivots backward from bottom of matrix.
Computes inv ( \(P\) ) *sub ( \(A\) ).
(global)
Specifies if the rows or columns are to be permuted:
\(=\) ' \(\mathrm{R}^{\prime}\) : Rows will be permuted,
\(=\) ' C': Columns will be permuted.
(global)
Specifies whether ipiv is distributed over a process row or column:
= 'R': ipiv is distributed over a process row,
\(=\) 'C': ipiv is distributed over a process column.
(global)

The number of rows in the distributed matrix \(\operatorname{sub}(A)\). When \(m=0\), p? lapiv is set to zero. \(m \geq 0\).
n
a
ia, ja
desca
ipiv
ip, jp
descip
iwork
(global)
The number of columns in the distributed matrix \(\operatorname{sub}(A)\). When \(n=0\), p?lapiv is set to zero. \(n \geq 0\).
(local).
Pointer into the local memory to an array of size lld_a * LOCC (ja+n-1) containing the local pieces of the distributed matrix \(\operatorname{sub}(A)\).
(global)
The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
Array of size lipiv ;
```

when rowcol='R' or 'r':

```
lipivzLOCr(ia+m-1) + mb_a if pivroc='C' or 'c',
lipiv \(\geq \operatorname{LOCC}\left(m+\bmod \left(j p-1, n b \_p\right)\right)\) if pivroc='R' or 'r', and,
when rowcol='C' or 'c':
lipiv \(\geq\) LOCr \(\left(n+\bmod \left(i p-1, m b \_p\right)\right)\) if pivroc='C' or 'c',
lipiv \(\geq\) LOCC (ja+n-1) + nb_a if pivroc='R' or 'r'.
This array contains the pivoting information. ipiv(i) is the global row (column), local row (column) \(i\) was swapped with. When rowcol='R' or 'r' and pivroc='C' or 'c', or rowcol='C' or 'c' and pivroc='R' or 'r', the last piece of this array of size \(m b \_a\) (resp. \(n b \_a\) ) is used as workspace. In those cases, this array is tied to the distributed matrix \(A\).
(global) The row and column indices in the global matrix \(P\) indicating the first row and the first column of the matrix \(\operatorname{sub}(P)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed vector ipiv.
(local).
Array of size \(I d w\), where \(I d w\) is equal to the workspace necessary for transposition, and the storage of the transposed ipiv:

Let /cm be the least common multiple of nprow and npcol.
```

if(*rowcol == 'r' \&\& *pivroc == 'r') {
if(nprow == npcol) {
ldw = LOCr(n_p + (*jp-1)%nb_p) + nb_p;
} else {
ldw = LOCr(n_p + (*jp-1) %nb_p) +
nb_p * ceil(ceil(LOCc(n_p)/nb_p) / (lcm/npcol));
}

```
```

} else if(*rowcol == 'c' \&\& *pivroc == 'c') {
if(nprow == npcol) {
ldw = LOCc(m_p + (*ip-1) %mb_p) + mb_p;
} else {
ldw = LOCc(m_p + (*ip-1) omb_p) +
mb_p *ceil(ceil(LOCr(m_p) /mb_p) / (lcm/nprow));
}
} else {
// iwork is not referenced.

```

\section*{Output Parameters}
a
(local).
On exit, the local pieces of the permuted distributed submatrix.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lapv2
Applies a permutation to an m-by-n distributed matrix.

\section*{Syntax}
```

void pslapv2 (const char* direc, const char* rowcol, const MKL_INT* m, const MKL_INT*
n, float* a, const MKL_INT* ia, const MKL_INT* ja, const MKL_INT* desca, const MKL_INT*
ipiv, const MKL_INT* ip, const MKL_INT* jp, const MKL_INT* descip);
void pdlapv2 (const char* direc, const char* rowcol, const MKL_INT* m, const MKL_INT*
n, double* a, const MKL_INT* ia, const MKL_INT* ja, const MKL_INT* desca, const
MKL_INT* ipiv, const MKL_INT* ip, const MKL_INT* jp, const MKL_INT* descip);
void pclapv2 (const char* direc, const char* rowcol, const MKL_INT* m, const MKL_INT*
n, MKL_Complex8* a, const MKL_INT* ia, const MKL_INT* ja, const MKL_INT* desca, const
MKL_INT* ipiv, const MKL_INT* ip, const MKL_INT* jp, const MKL_INT* descip);
void pzlapv2 (const char* direc, const char* rowcol, const MKL_INT* m, const MKL_INT*
n, MKL_Complex16* a, const MKL_INT* ia, const MKL_INT* ja, const MKL_INT* desca, const
MKL_INT* ipiv, const MKL_INT* ip, const MKL_INT* jp, const MKL_INT* descip);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}
p?lapv2 applies either \(P\) (permutation matrix indicated by ipiv) or inv( \(P\) ) to an \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)\) denoting \(A(i a: i a+m-1, j a: j a+n-1)\), resulting in row or column pivoting. The pivot vector should be aligned with the distributed matrix \(A\). For pivoting the rows of \(\operatorname{sub}(A)\), ipiv should be distributed along a process column and replicated over all process rows. Similarly, ipiv should be distributed along a process row and replicated over all process columns for column pivoting.

\section*{Input Parameters}

Specifies in which order the permutation is applied:
\(=\) ' F ' (Forward) Applies pivots Forward from top of matrix. Computes \(P\) * \(\operatorname{sub}(A)\);
\(=\) 'B' (Backward) Applies pivots Backward from bottom of matrix. Computes \(\operatorname{inv}(P) * \operatorname{sub}(A)\).
(global)
Specifies if the rows or columns are to be permuted:
\(=\) 'R' Rows will be permuted,
\(=\) 'C' Columns will be permuted.
(global)
The number of rows to be operated on, i.e. the number of rows of the distributed submatrix \(\operatorname{sub}(A) . m>=0\).
(global)
The number of columns to be operated on, i.e. the number of columns of the distributed submatrix \(\operatorname{sub}(A) . n>=0\).

Pointer into local memory to an array of size Ild_a*LOCc (ja+n-1).
On entry, this local array contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to which the row or columns interchanges will be applied.
(global)
The row index in the global array a indicating the first row of \(\operatorname{sub}(A)\).
(global)
The column index in the global array a indicating the first column of \(\operatorname{sub}(A)\).
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix \(A\).
Array, size >= LOCr \(\left(m_{-} a\right)+m b \_a\) if rowcol \(=\) 'R', LOCc \(\left(n \_a\right)+n b \_a\) otherwise.

It contains the pivoting information. ipiv[i-1] is the global row (column), local row (column) \(i\) was swapped with. The last piece of the array of size \(m b \_a\) or \(n b \_a\) is used as workspace. ipiv is tied to the distributed matrix A.
(global)
The global row index of ipiv, which points to the beginning of the submatrix on which to operate.
(global)
The global column index of ipiv, which points to the beginning of the submatrix on which to operate.
(global and local)
Array of size 8.

The array descriptor for the distributed matrix ipiv.

\section*{Output Parameters}
a
On exit, this array contains the local pieces of the permuted distributed matrix.
p?laqge
Scales a general rectangular matrix, using row and column scaling factors computed by p?geequ .

\section*{Syntax}
```

void pslaqge (MKL_INT *m , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca, float *r, float *c, float *rownnd, float *colcnd, float *amax, char
*equed) ;
void pdlaqge (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca, double *r, double *c, double *rowcnd, double *colcnd, double *amax , char
*equed);
void pclaqge (MKL_INT *m , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , float *r, float *c , float *rowcnd, float *colcnd, float *amax ,
char *equed);
void pzlaqge (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca, double *r, double *c, double *rowcnd, double *colcnd, double
*amax , char *equed);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p? laqgefunction equilibrates a general \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)\) using the row and scaling factors in the vectors \(r\) and \(c\) computed by p?geequ.

\section*{Input Parameters}
m
n
a
ia, ja
desca

\section*{(global)}

The number of rows in the distributed matrix \(\operatorname{sub}(A) .(m \geq 0)\).
(global)
The number of columns in the distributed matrix \(\operatorname{sub}(A) .(n \geq 0)\).
(local).
Pointer into the local memory to an array of size lld_a* LOCC (ja+n-1).
On entry, this array contains the distributed matrix \(\operatorname{sub}(A)\).
(global) The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
```

r
(local).
Array of size LOCr(m_a). The row scale factors for sub(A). r is aligned with
the distributed matrix }A\mathrm{ , and replicated across every process column. }r\mathrm{ is
tied to the distributed matrix }A\mathrm{ .
(local).
Array of size LOCC(n_a).The row scale factors for sub(A). }c\mathrm{ is aligned with
the distributed matrix }A\mathrm{ , and replicated across every process column. }c\mathrm{ is
tied to the distributed matrix }A\mathrm{ .
(local).
The global ratio of the smallest r[i] to the largest r[i],ia-1 \leqi\leqia
+m-2.
(local).
The global ratio of the smallest c[i] to the largest c[i],ia-1 \leqi\leqia+n-2.
(global).
Absolute value of largest distributed submatrix entry.

```

\section*{Output Parameters}
a
(local).
On exit, the equilibrated distributed matrix. See equed for the form of the equilibrated distributed submatrix.
equed
(global)
Specifies the form of equilibration that was done.
= ' N ': No equilibration
= 'R': Row equilibration, that is, sub \((A)\) has been pre-multiplied by
diag(r[ia-1:ia+m-2]),
\(=\) ' C ' : column equilibration, that is, \(\operatorname{sub}(A)\) has been post-multiplied by diag(c[ja-1:ja+n-2]),
\(=\) ' \(B\) ': Both row and column equilibration, that is, \(\operatorname{sub}(A)\) has been replaced by diag(r[ia-1:ia+m-2])* sub(A) * diag(c[ja-1:ja \(+n-2]\) ).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?laqr0}

Computes the eigenvalues of a Hessenberg matrix and optionally returns the matrices from the Schur decomposition.

\section*{Syntax}
```

void pslaqr0(MKL_INT* wantt, MKL_INT* wantz, MKL_INT* n, MKL_INT* ilo, MKL_INT* ihi,
float* h, MKL_INT* desch, float* wr, float* wi, MKL_INT* iloz, MKL_INT* ihiz, float* z,
MKL_INT* descz, float* work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT* liwork, MKL_INT*
info, MKL_INT* reclevel);

```
```

void pdlaqr0(MKL_INT* wantt, MKL_INT* wantz, MKL_INT* n, MKL_INT* ilo, MKL_INT* ihi,
double* h, MKL_INT* desch, double* wr, double* wi, MKL_INT* iloz, MKL_INT* ihiz, double*
z, MKL_INT* descz, double* work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT* liwork,
MKL_INT* info, MKL_INT* reclevel);

```

Include Files
- mkl_scalapack.h

\section*{Description}
p? laqr0 computes the eigenvalues of a Hessenberg matrix \(H\) and, optionally, the matrices \(T\) and \(Z\) from the Schur decomposition \(H=Z^{*} T^{*} Z^{\top}\), where \(T\) is an upper quasi-triangular matrix (the Schur form), and \(Z\) is the orthogonal matrix of Schur vectors.
Optionally \(Z\) may be postmultiplied into an input orthogonal matrix \(Q\) so that this function can give the Schur factorization of a matrix \(A\) which has been reduced to the Hessenberg form \(H\) by the orthogonal matrix \(Q\) : \(A\) \(=Q^{*} H^{*} Q^{\top}=(Q Z)^{*} T^{*}(Q Z)^{\top}\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{wantt} & (global) \\
\hline & Non-zero : the full Schur form \(T\) is required; \\
\hline & Zero : only eigenvalues are required. \\
\hline \multirow[t]{3}{*}{wantz} & (global) \\
\hline & Non-zero : the matrix of Schur vectors \(Z\) is required; \\
\hline & Zero: Schur vectors are not required. \\
\hline \multirow[t]{2}{*}{\(n\)} & (global) \\
\hline & The order of the Hessenberg matrix \(H\) (and \(Z\) if wantzis non-zero). \(n \geq 0\). \\
\hline \multirow[t]{3}{*}{ilo, ihi} & (global ) \\
\hline & It is assumed that the matrix \(H\) is already upper triangular in rows and columns 1:ilo-1 and ihi+1:n. ilo and ihi are normally set by a previous call to p?gebal, and then passed to p?gehrd when the matrix output by ihi is reduced to Hessenberg form. Otherwise ilo and ihi should be set to 1 and \(n\), respectively. If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\). \\
\hline & If \(n=0\), then ilo \(=1\) and \(i h i=0\). \\
\hline \multirow[t]{2}{*}{h} & (global ) array of size Ild_h* \(\operatorname{LOC}_{c}(n)\) \\
\hline & The upper Hessenberg matrix \(H\). \\
\hline \multirow[t]{3}{*}{desch} & (global and local ) \\
\hline & Array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(H\). \\
\hline iloz, ihiz & Specify the rows of the matrix \(Z\) to which transformations must be applied if wantz is non-zero, \(1 \leq i l o z \leq i l o ; ~ i h i \leq i h i z \leq n\). \\
\hline \multirow[t]{2}{*}{\(z\)} & Array of size lld_z * \(\operatorname{LOC}_{c}(\mathrm{n})\). \\
\hline & If wantz is non-zero, contains the matrix \(Z\). \\
\hline
\end{tabular}

If wantzequals zero, \(z\) is not referenced.
descz
work
lwork
iwork
liwork
reclevel

\section*{OUTPUT Parameters}
\(h\)
wr, wi
z
work[0]
iwork[0]
info
(global and local ) array of size dlen_.
The array descriptor for the distributed matrix \(Z\).
(local workspace) array of size lwork
(local )
The length of the workspace array work.
(local workspace) array of size liwork
(local)
The length of the workspace array iwork.
(local)
Level of recursion. reclevel \(=0\) must hold on entry.

On exit, if wantt is non-zero, the matrix \(H\) is upper quasi-triangular in rows and columns ilo:ihi, with 1-by-1 and 2-by-2 blocks on the main diagonal. The 2-by- 2 diagonal blocks (corresponding to complex conjugate pairs of eigenvalues) are returned in standard form, with \(H(i, i)=H(i+1, i+1)\) and \(H(i\) \(+1, i) * H(i, i+1)<0\). If info \(=0\) and wanttequals zero, the contents of \(h\) are unspecified on exit.

The real and imaginary parts, respectively, of the computed eigenvalues ilo to ihi are stored in the corresponding elements of wr and wi. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of wr and wi, say the \(i\)-th and ( \(i+1\) )th, with wi[i-1] > 0 and wi[i]<0. If wantt is non-zero, the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in \(h\).

Updated matrix with transformations applied only to the submatrix Z(ilo:ihi,ilo:ihi).

If COMPZ = 'I', on exit, if info \(=0, z\) contains the orthogonal matrix \(Z\) of the Schur vectors of \(H\).
If wantz is non-zero, then \(Z\) (ilo:ihi,iloz:ihiz) is replaced by \(Z\) (ilo:ihi,iloz:ihiz)* \(U\), when \(U\) is the orthogonal/unitary Schur factor of H(ilo:ihi,ilo:ihi).
If wantzequals zero, then \(z\) is not defined.
On exit, if info \(=0\), work[0] returns the optimal lwork.
On exit, if info \(=0\), iwork[0] returns the optimal liwork.
> 0 : if info \(=i\), then the function failed to compute all the eigenvalues. Elements 0:ilo-2 and \(i: n-1\) of wr and wi contain those eigenvalues which have been successfully computed.
\(>0\) : if wanttequals zero, then the remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix rows and columns ilo through ihi of the final output value of \(H\).
> 0: if wantt is non-zero, then (initial value of \(H\) ) \({ }^{*} U=U^{*}\) (final value of \(H\) ), where \(U\) is an orthogonal/unitary matrix. The final value of \(H\) is upper Hessenberg and quasi-triangular/triangular in rows and columns info+1 through ihi.
> 0 : if wantz is non-zero, then (final value of
\(Z(i l o: i h i, i l o z: i h i z))=(i n i t i a l ~ v a l u e ~ o f ~ Z(i l o: i h i, i l o z: i h i z)) * U\), where \(U\) is the orthogonal/unitary matrix in the previous expression (regardless of the value of wantt).
> 0: if wantzequals zero, then \(z\) is not accessed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?laqr1}

Sets a scalar multiple of the first column of the product of a 2-by-2 or 3-by-3 matrix and specified shifts.

\section*{Syntax}
```

void pslaqr1(MKL_INT* wantt, MKL_INT* wantz, MKL_INT* n, MKL_INT* ilo, MKL_INT* ihi,
float* a, MKL_INT* desca, float* wr, float* wi, MKL_INT* iloz, MKL_INT* ihiz, float* z,
MKL_INT* descz, float* work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT* ilwork, MKL_INT*
info);
void pdlaqr1(MKL_INT* wantt, MKL_INT* wantz, MKL_INT* n, MKL_INT* ilo, MKL_INT* ihi,
double* a, MKL_INT* desca, double* wr, double* wi, MKL_INT* iloz, MKL_INT* ihiz, double*
z, MKL_INT* descz, double* work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT* ilwork,
MKL_INT* info);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}
p?laqr1 is an auxiliary function used to find the Schur decomposition and/or eigenvalues of a matrix already in Hessenberg form from columns ilo to ihi.

This is a modified version of p?lahqr from ScaLAPACK version 1.7.3. The following modifications were made:
- Workspace query functionality was added.
- Aggressive early deflation is implemented.
- Aggressive deflation (looking for two consecutive small subdiagonal elements by PSLACONSB) is abandoned.
- The returned Schur form is now in canonical form, i.e., the returned 2-by-2 blocks really correspond to complex conjugate pairs of eigenvalues.
- For some reason, the original version of p?lahqr sometimes did not read out the converged eigenvalues correctly. This is now fixed.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
```

wantt

```
wantz
\(n\)
ilo, ihi
a
desca
iloz, ihiz

Z
descz
work
lwork
(global)
Non-zero : the full Schur form \(T\) is required;
Zero: only eigenvalues are required.
Non-zero : the matrix of Schur vectors \(Z\) is required;
Zero: Schur vectors are not required.
(global)
The order of the Hessenberg matrix \(A\) (and \(Z\) if wantzis non-zero). \(n \geq 0\).
(global)
It is assumed that the matrix \(A\) is already upper quasi-triangular in rows and columns \(i h i+1: n\), and that \(A(i l o, i l o-1)=0\) (unless \(i l o=1\) ). p?laqr1 works primarily with the Hessenberg submatrix in rows and columns ilo to ihi, but applies transformations to all of \(H\) if wantt is nonzero.
\(1 \leq i l o \leq \max (1, i h i) ; i h i \leq n\).
(global ) array of size Ild_a * \(\operatorname{LOC}_{c}(n)\)
On entry, the upper Hessenberg matrix \(A\).
(global and local ) array of size dlen_.
The array descriptor for the distributed matrix \(A\).
(global)
Specify the rows of the matrix \(Z\) to which transformations must be applied if wantz is non-zero.
\(1 \leq i l o z \leq i l o ; ~ i h i \leq i h i z \leq n . ~\)
(global) array of size \(I l d \_z * L O C_{c}(n)\).
If wantz is non-zero, on entry \(z\) must contain the current matrix \(Z\) of transformations accumulated by p?hseqr
If want \(z\) is zero, \(z\) is not referenced.
(global and local ) array of size dlen_.
The array descriptor for the distributed matrix \(Z\).
(local output) array of size 1 work
(local)
The size of the work array ( 1 work \(>=1\) ).

If 1 work \(=-1\), then a workspace query is assumed.
iwork
ilwork
(global and local) array of size ilwork
This holds the some of the IBLK integer arrays.
(local)
The size of the iwork array (ilwork \(\geq 3\) ).

\section*{OUTPUT Parameters}
a
wr, wi
z
work[0]
info
If wantt is non-zero, the matrix \(A\) is upper quasi-triangular in rows and columns ilo:ihi, with any 2-by-2 or larger diagonal blocks not yet in standard form. If wanttequals zero, the contents of a are unspecified on exit.
(global replicated) array of size \(n\)
The real and imaginary parts, respectively, of the computed eigenvalues ilo to ihi are stored in the corresponding elements of wr and wi. If two eigenvalues are computed as a complex conjugate pair, they are stored in 0 and wi[i] < 0 . If wantt is non-zero, the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in a. a may be returned with larger diagonal blocks until the next release.

On exit \(z\) is updated; transformations are applied only to the submatrix Z(iloz:ihiz,ilo:ihi).

If wantzequals zero, \(z\) is not referenced.
On exit, if info \(=0\), work[0] returns the optimal lwork.
(global) consecutive elements of \(w r\) and wi, say the \(i\)-th and ( \(i+1\) )th, with wi[i-1]>
< 0: parameter number -info incorrect or inconsistent
= 0: successful exit
> 0: p?laqr1 failed to compute all the eigenvalues ilo to ihi in a total of 30*(ihi-ilo+1) iterations; if info \(=i\), elements \(i\) :ihi-1 of wr and wi contain those eigenvalues which have been successfully computed.

\section*{Application Notes}

This algorithm is very similar to p?ahqr. Unlike p?lahqr, instead of sending one double shift through the largest unreduced submatrix, this algorithm sends multiple double shifts and spaces them apart so that there can be parallelism across several processor row/columns. Another critical difference is that this algorithm aggregrates multiple transforms together in order to apply them in a block fashion.

\section*{Current Notes and/or Restrictions:}
- This code requires the distributed block size to be square and at least six (6); unlike simpler codes like LU, this algorithm is extremely sensitive to block size. Unwise choices of too small a block size can lead to bad performance.
- This code requires \(a\) and \(z\) to be distributed identically and have identical contxts.
- This release currently does not have a function for resolving the Schur blocks into regular \(2 \times 2\) form after this code is completed. Because of this, a significant performance impact is required while the deflation is done by sometimes a single column of processors.
- This code does not currently block the initial transforms so that none of the rows or columns for any bulge are completed until all are started. To offset pipeline start-up it is recommended that at least 2*LCM(NPROW,NPCOL) bulges are used (if possible)
- The maximum number of bulges currently supported is fixed at 32 . In future versions this will be limited only by the incoming work array.
- The matrix \(A\) must be in upper Hessenberg form. If elements below the subdiagonal are nonzero, the resulting transforms may be nonsimilar. This is also true with the LAPACK function.
- For this release, it is assumed \(r s r_{-}=c s r c_{-}=0\)
- Currently, all the eigenvalues are distributed to all the nodes. Future releases will probably distribute the eigenvalues by the column partitioning.
- The internals of this function are subject to change.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?laqr2 \\ Performs the orthogonal/unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).}

\section*{Syntax}
```

void pslaqr2(MKL_INT* wantt, MKL_INT* wantz, MKL_INT* n, MKL_INT* ktop, MKL_INT* kbot,
MKL_INT* nw, float* a, MKL_INT* desca, MKL_INT* iloz, MKL_INT* ihiz, float* z, MKL_INT*
descz, MKL_INT* ns, MKL_INT* nd, float* sr, float* si, float* t, MKL_INT* ldt, float* v,
MKL_INT* ldv, float* wr, float* wi, float* work, MKL_INT* lwork);
void pdlaqr2(MKL_INT* wantt, MKL_INT* wantz, MKL_INT* n, MKL_INT* ktop, MKL_INT* kbot,
MKL_INT* nw, double* a, MKL_INT* desca, MKL_INT* iloz, MKL_INT* ihiz, double* z,
MKL_INT* descz, MKL_INT* ns, MKL_INT* nd, double* sr, double* si, double* t, MKL_INT*
ldt, double* v, MKL_INT* ldv, double* wr, double* wi, double* work, MKL_INT* lwork);

```

Include Files
- mkl_scalapack.h

\section*{Description}
p?laqr2 accepts as input an upper Hessenberg matrix \(A\) and performs an orthogonal similarity transformation designed to detect and deflate fully converged eigenvalues from a trailing principal submatrix. On output Ais overwritten by a new Hessenberg matrix that is a perturbation of an orthogonal similarity transformation of \(A\). It is to be hoped that the final version of \(A\) has many zero subdiagonal entries.
This function handles small deflation windows which is affordable by one processor. Normally, it is called by p?laqr1. All the inputs are assumed to be valid without checking.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}

If wantt is non-zero, then the Hessenberg matrix \(A\) is fully updated so that the quasi-triangular Schur factor may be computed (in cooperation with the calling function).

If wantt equals zero, then only enough of \(A\) is updated to preserve the eigenvalues.
(global)
If wantz is non-zero, then the orthogonal matrix \(Z\) is updated so that the orthogonal Schur factor may be computed (in cooperation with the calling function).

If wantz equals zero, then \(z\) is not referenced.

\section*{(global)}

The order of the matrix \(A\) and (if wantz is non-zero) the order of the orthogonal matrix \(Z\).
(global)
It is assumed without a check that either \(k b \circ t=n\) or \(A(k b \circ t+1, k b \circ t)=0\). \(k b o t\) and \(k\) top together determine an isolated block along the diagonal of the Hessenberg matrix. However, \(\boldsymbol{A}(k t o p, k t o p-1)=0\) is not essentially necessary if wantt is non-zero .
(global)
Deflation window size. \(1 \leq n w \leq(k b o t-k t o p+1)\). Normally \(n w \geq 3\) if p?laqr2 is called by p?laqr1.
(local ) array of size IId_a * \(\operatorname{LOC}_{c}(n)\)
The initial \(n-b y-n\) section of a stores the Hessenberg matrix undergoing aggressive early deflation.
(global and local) array of size dlen_.
The array descriptor for the distributed matrix \(A\).
(global)
Specify the rows of the matrix Zto which transformations must be applied if wantz is non-zero. \(1 \leq i l o z \leq i h i z \leq n\).

Array of size \(/ l d \_z * \operatorname{LOC}_{c}(n)\)
If wantz is non-zero, then on output, the orthogonal similarity transformation mentioned above has been accumulated into the matrix Z(iloz:ihiz,
kbot:ktop), stored in \(z\), from the right.
If wantz is zero, then \(z\) is unreferenced.
(global and local) array of size dlen_.
The array descriptor for the distributed matrix \(Z\).
(local workspace) array of size \(1 d t^{*} n w\).
(local )

The leading dimension of the array \(t . l d t \geq n w\).
\(I d V\)
wr, wi
work
I work
(local workspace) array of size \(1 d \mathrm{v} *{ }_{n w}\).
(local )
The leading dimension of the array \(v . l d v \geq n w\).
(local workspace) array of size kbot.
(local workspace) array of size lwork.
(local)
work(lwork) is a local array and lwork is assumed big enough so that lwork \(\geq n w^{*}\) nw.

\section*{OUTPUT Parameters}
a
z
ns
nd
sr, si

On output a has been transformed by an orthogonal similarity transformation, perturbed, and returned to Hessenberg form that (it is to be hoped) has some zero subdiagonal entries.
(global)
The number of unconverged (that is, approximate) eigenvalues returned in \(s r\) and \(s i\) that may be used as shifts by the calling function.
(global)
The number of converged eigenvalues uncovered by this function.
(global) array of size kbot
On output, the real and imaginary parts of approximate eigenvalues that may be used for shifts are stored in \(s r[k b o t-n d-n s]\) through \(s r[k b o t-\) \(n d-1]\) and \(s i[k b \circ t-n d-n s]\) through \(s i[k b \circ t-n d-1]\), respectively.
On processor \#0, the real and imaginary parts of converged eigenvalues are stored in \(s r[k b o t-n d]\) through \(s r[k b o t-1]\) and \(s i[k b o t-n d]\) through \(s i[k b o t-1]\), respectively. On other processors, these entries are set to zero.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?laqr3}

Performs the orthogonal/unitary similarity
transformation of a Hessenberg matrix to detect and
deflate fully converged eigenvalues from a trailing
principal submatrix (aggressive early deflation).

\section*{Syntax}
```

void pslaqr3(MKL_INT* wantt, MKL_INT* wantz, MKL_INT* n, MKL_INT* ktop, MKL_INT* kbot,
MKL_INT* nw, float* h, MKL_INT* desch, MKL_INT* iloz, MKL_INT* ihiz, float* z, MKL_INT*
descz, MKL_INT* ns, MKL_INT* nd, float* sr, float* si, float* v, MKL_INT* descv,
MKL_INT* nh, float* t, MKL_INT* desct, MKL_INT* nv, float* wV, MKL_INT* descw, float*
work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT* liwork, MKL_INT* reclevel);

```
```

void pdlaqr3(MKL_INT* wantt, MKL_INT* wantz, MKL_INT* n, MKL_INT* ktop, MKL_INT* kbot,
MKL_INT* nw, double* h, MKL_INT* desch, MKL_INT* iloz, MKL_INT* ihiz, double* z,
MKL_INT* descz, MKL_INT* ns, MKL_INT* nd, double* sr, double* si, double* v, MKL_INT*
descv, MKL_INT* nh, double* t, MKL_INT* desct, MKL_INT* nv, double* wv, MKL_INT* descw,
double* work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT* liwork, MKL_INT* reclevel);

```

Include Files
- mkl_scalapack.h

\section*{Description}

This function accepts as input an upper Hessenberg matrix \(H\) and performs an orthogonal similarity transformation designed to detect and deflate fully converged eigenvalues from a trailing principal submatrix. On output \(H\) is overwritten by a new Hessenberg matrix that is a perturbation of an orthogonal similarity transformation of \(H\). It is to be hoped that the final version of \(H\) has many zero subdiagonal entries.

\section*{Input Parameters}

\begin{tabular}{|c|c|}
\hline desch & (global and local) array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(H\). \\
\hline iloz, ihiz & (global) \\
\hline & Specify the rows of the matrix \(Z\) to which transformations must be applied if wantz is non-zero. \(1 \leq i l o z \leq i h i z \leq n\). \\
\hline \(z\) & Array of size /ld_z * \(\operatorname{LOC}_{c}(n)\) \\
\hline & If wantz is non-zero, then on output, the orthogonal similarity transformation mentioned above has been accumulated into the matrix Z(iloz:ihiz,kbot:ktop) from the right. \\
\hline & If wantz is zero, then \(z\) is unreferenced. \\
\hline descz & (global and local) array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(Z\). \\
\hline v & (global workspace) array of size \(/ 1 d_{-} v * L O C_{c}{ }^{n w}\) ) \\
\hline & An nw-by-nw distributed work array. \\
\hline descv & (global and local) array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(V\). \\
\hline \(n h\) & The number of columns of \(t\). \(n h \geq n w\). \\
\hline t & (global workspace) array of size Ild_t \(\mathrm{LOC}_{c}(n h)\) \\
\hline desct & (global and local) array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(T\). \\
\hline nv & (global) \\
\hline & The number of rows of work array wv available for workspace. \(n v \geq n w\). \\
\hline wV & (global workspace) array of size Ild_w \(\mathrm{LLOC}_{c}(\mathrm{nw})\) \\
\hline descw & (global and local) array of size dlen_. \\
\hline & The array descriptor for the distributed matrix wv. \\
\hline work & (local workspace) array of size lwork. \\
\hline Iwork & (local ) \\
\hline & The size of the work array work (lwork \(\geq 1\) ). lwork \(=2 *_{n w}\) suffices, but greater efficiency may result from larger values of lwork. \\
\hline & If 1 work \(=-1\), then a workspace query is assumed; p? laqr3 only estimates the optimal workspace size for the given values of \(n, n w, k t o p\) and kbot. The estimate is returned in work[0]. No error message related to lwork is issued by xerbla. Neither \(h\) nor \(z\) are accessed. \\
\hline iwork & (local workspace) array of size liwork \\
\hline liwork & (local ) \\
\hline & The length of the workspace array iwork (liwork \(\geq 1\) ). \\
\hline
\end{tabular}

If liwork=-1, then a workspace query is assumed.

\section*{OUTPUT Parameters}
\begin{tabular}{|c|c|}
\hline h & On output \(h\) has been transformed by an orthogonal similarity transformation, perturbed, and the returned to Hessenberg form that (it is to be hoped) has some zero subdiagonal entries. \\
\hline \(z\) & IF wantz is non-zero, then on output, the orthogonal similarity transformation mentioned above has been accumulated into the matrix Z(iloz:ihiz,kbot:ktop) from the right. \\
\hline ns & If want \(z\) is zero, then \(z\) is unreferenced. (global) \\
\hline nd & \begin{tabular}{l}
The number of unconverged (that is, approximate) eigenvalues returned in \(s r\) and \(s i\) that may be used as shifts by the calling function. \\
(global)
\end{tabular} \\
\hline \(s r, s i\) & \begin{tabular}{l}
The number of converged eigenvalues uncovered by this function. \\
(global) array of size kbot. The real and imaginary parts of approximate eigenvalues that may be used for shifts are stored in \(s r[k b o t-n d-n s]\) through sr[kbot-nd-1] and si[kbot-nd-ns] through si[kbot-nd-1], respectively. The real and imaginary parts of converged eigenvalues are stored in \(s r[k b o t-n d]\) through \(s r[k b o t-1]\) and \(s i[k b o t-n d]\) through \(s i[k b o t-1]\), respectively.
\end{tabular} \\
\hline work[0] & On exit, if info \(=0\), work[0] returns the optimal lwork \\
\hline iwork[0] & On exit, if info \(=0\), iwork[0] returns the optimal liwork \\
\hline
\end{tabular}

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?laqr5
Performs a single small-bulge multi-shift QR sweep.

\section*{Syntax}
```

void pslaqr5(MKL_INT* wantt, MKL_INT* wantz, MKL_INT* kacc22, MKL_INT* n, MKL_INT*
ktop, MKL_INT* kbot, MKL_INT* nshfts, float* sr, float* si, float* h, MKL_INT* desch,
MKL_INT* iloz, MKL_INT* ihiz, float* z, MKL_INT* descz, float* work, MKL_INT* lwork,
MKL_INT* iwork, MKL_INT* liwork);
void pdlaqr5(MKL_INT* wantt, MKL_INT* wantz, MKL_INT* kacc22, MKL_INT* n, MKL_INT*
ktop, MKL_INT* kbot, MKL_INT* nshfts, double* sr, double* si, double* h, MKL_INT* desch,
MKL_INT* iloz, MKL_INT* ihiz, double* z, MKL_INT* descz, double* work, MKL_INT* lwork,
MKL_INT* iwork, MKL_INT* liwork);

```

Include Files
- mkl_scalapack.h

\section*{Description}

This auxiliary function called by p?laqr0 performs a single small-bulge multi-shift QR sweep by chasing separated groups of bulges along the main block diagonal of a Hessenberg matrix \(H\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{wantt} & (global) scalar \\
\hline & wanttis non-zero if the quasi-triangular Schur factor is being computed. wantt is set to zero otherwise. \\
\hline \multirow[t]{2}{*}{wantz} & (global) scalar \\
\hline & wantzis non-zero if the orthogonal Schur factor is being computed. wantz is set to zero otherwise. \\
\hline \multirow[t]{5}{*}{kacc22} & (global) \\
\hline & Value 0,1 , or 2 . Specifies the computation mode of far-from-diagonal orthogonal updates. \\
\hline & = 0: p?laqr5 does not accumulate reflections and does not use matrix-matrix multiply to update far-from-diagonal matrix entries. \\
\hline & = 1: p?laqr5 accumulates reflections and uses matrix-matrix multiply to update the far-from-diagonal matrix entries. \\
\hline & = 2: p?laqr5 accumulates reflections, uses matrix-matrix multiply to update the far-from-diagonal matrix entries, and takes advantage of 2-by-2 block structure during matrix multiplies. \\
\hline \multirow[t]{2}{*}{\(n\)} & (global) scalar \\
\hline & The order of the Hessenberg matrix \(H\) and, if wantzis non-zero, the order of the orthogonal matrix \(Z\). \\
\hline \multirow[t]{2}{*}{ktop, kbot} & (global) scalar \\
\hline & These are the first and last rows and columns of an isolated diagonal block upon which the QR sweep is to be applied. It is assumed without a check that either \(k\) top \(=1\) or \(H(k t o p, k t o p-1)=0\) and either \(k b o t\) \(=n\) or \(H(k b \circ t+1, k b \circ t)=0\). \\
\hline \multirow[t]{2}{*}{nshfts} & (global) scalar \\
\hline & nshfts gives the number of simultaneous shifts. nshfts must be positive and even. \\
\hline \multirow[t]{2}{*}{\(s r, s i\)} & (global) Array of size nshfts \\
\hline & sr contains the real parts and si contains the imaginary parts of the nshfts shifts of origin that define the multi-shift QR sweep. \\
\hline \multirow[t]{2}{*}{h} & (local) Array of size \(/ 1 d_{-} h^{*} \operatorname{LOC}_{c}(n)\) \\
\hline & On input \(h\) contains a Hessenberg matrix \(H\). \\
\hline \multirow[t]{3}{*}{desch} & (global and local) \\
\hline & array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(H\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline iloz, ihiz & (global) \\
\hline & Specify the rows of the matrix \(Z\) to which transformations must be applied if wantzis non-zero. \(1 \leq i l o z \leq i h i z \leq n\) \\
\hline \(z\) & (local) array of size \(/ / d_{-} z * L O C_{c}(n)\) \\
\hline & If wantzis non-zero, then the QR Sweep orthogonal similarity transformation is accumulated into the matrix \(Z\) (iloz:ihiz,kbot:ktop) from the right. If wantzequals zero, then \(z\) is unreferenced. \\
\hline descz & (global and local) array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(Z\). \\
\hline work & (local workspace) array of size lwork \\
\hline Iwork & (local) \\
\hline & The size of the work array ( 1 wor \(k \geq 1\) ). \\
\hline & If 1 work \(=-1\), then a workspace query is assumed. \\
\hline iwork & (local workspace) array of size liwork \\
\hline liwork & (local) \\
\hline & The size of the iwork array (liwork \(\geq 1\) ). \\
\hline & If liwork=-1, then a workspace query is assumed. \\
\hline
\end{tabular}

\section*{Output Parameters}
h

Z
work[0]
iwork[0]

A multi-shift QR sweep with shifts \(s r(j)+i^{*} s i(j)\) is applied to the isolated diagonal block in rows and columns ktop through kbot of the matrix \(H\).

If wantzis non-zero, \(z\) is updated with transformations applied only to the submatrix \(Z\) (iloz:ihiz,kbot:ktop).

On exit, if info \(=0\), work[0] returns the optimal lwork.
On exit, if info \(=0\), iwork[0] returns the optimal liwork.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?laqsy}

Scales a symmetric/Hermitian matrix, using scaling
factors computed by p?poequ .

\section*{Syntax}
```

void pslaqsy (char *uplo, MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *sr , float *sc , float *scond, float *amax , char *equed);
void pdlaqsy (char *uplo, MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , double *Sr , double *SC , double *scond, double *amax , char *equed);
void pclaqsy (char *uplo, MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia, MKL_INT *ja ,
MKL_INT *desca , float *sr , float *sc , float *scond , float *amax , char *equed);

```
```

void pzlaqsy (char *uplo, MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , double *sr , double *sc , double *scond, double *amax , char *equed);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?laqsyfunction equilibrates a symmetric distributed matrix \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\) using the scaling factors in the vectors \(s r\) and \(s c\). The scaling factors are computed by p?poequ.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & (global) Specifies the upper or lower triangular part of the symmetric distributed matrix sub \((A)\) is to be referenced: \\
\hline & = 'U': Upper triangular part; \\
\hline & = 'L': Lower triangular part. \\
\hline \multirow[t]{2}{*}{\(n\)} & (global) \\
\hline & The order of the distributed matrix \(\operatorname{sub}(A) . n \geq 0\). \\
\hline \multirow[t]{5}{*}{a} & (local). \\
\hline & Pointer into the local memory to an array of size IId_a * LOCc \((j a+n-1)\). \\
\hline & On entry, this array contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\). On entry, the local pieces of the distributed symmetric matrix \(\operatorname{sub}(A)\). \\
\hline & If uplo = 'U', the leading \(n\)-by-n upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and the strictly lower triangular part of \(\operatorname{sub}(A)\) is not referenced. \\
\hline & If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced. \\
\hline \multirow[t]{2}{*}{ia, ja} & (global) \\
\hline & The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively. \\
\hline desca & (global and local) array of size dlen_. The array descriptor for the distributed matrix A. \\
\hline \multirow[t]{2}{*}{sr} & (local) \\
\hline & Array of size \(\operatorname{LOCr}\left(m_{2} a\right)\). The scale factors for the matrix \(A(i a: i a+m-1, j a: j a\) \(+n-1)\). \(s r\) is aligned with the distributed matrix \(A\), and replicated across every process column. sr is tied to the distributed matrix \(A\). \\
\hline \multirow[t]{2}{*}{SC} & (local) \\
\hline & Array of size \(\operatorname{LOCc}\left(m_{-} a\right)\). The scale factors for the matrix \(A\) (ia:ia+m-1, \(j a: j a+n-1) . s c\) is aligned with the distributed matrix \(A\), and replicated across every process column. Sc is tied to the distributed matrix \(A\). \\
\hline scond & (global). \\
\hline
\end{tabular}

Ratio of the smallest \(s r[i]\) (respectively \(s c[j]\) ) to the largest \(s r[i]\) (respectively \(s c[j]\) ), with ia \(-1 \leq i<i a+n-1\) and \(j a-1 \leq j<j a+n-1\). (global).
Absolute value of largest distributed submatrix entry.

\section*{Output Parameters}
a
On exit,
if equed \(=\) ' \(Y\) ', the equilibrated matrix:
\(\operatorname{diag}\left(s r_{i a} . . ., s r_{i a+n-1}\right) * \operatorname{sub}(A) * \operatorname{diag}\left(s c_{j a} . . ., s c_{j a+n-1}\right)\).
equed
(global).
Specifies whether or not equilibration was done.
= 'N': No equilibration.
\(=\) 'Y': Equilibration was done, that is, \(\operatorname{sub}(A)\) has been replaced by:
\(\operatorname{diag}\left(s r_{i a}, \ldots, s r_{i a+n-1}\right)^{*} \operatorname{sub}(A) * \operatorname{diag}\left(s c_{j a,} . . ., s c_{j a+n-1}\right)\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?lared1d}

Redistributes an array assuming that the input array,
bycol, is distributed across rows and that all process columns contain the same copy of bycol.

\section*{Syntax}
```

void pslaredld (MKL_INT *n , MKL_INT *ia , MKL_INT *ja , MKL_INT *desc , float *bycol ,
float *byall, float *Work , MKL_INT *lwork);
void pdlaredld (MKL_INT *n , MKL_INT *ia, MKL_INT *ja , MKL_INT *desc , double
*bycol , double *byall, double *work , MKL_INT *lwork);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?laredldfunction redistributes a 1D array. It assumes that the input array bycol is distributed across rows and that all process column contain the same copy of bycol. The output array byall is identical on all processes and contains the entire array.

\section*{Input Parameters}
\(n p=\) Number of local rows in bycol()
\(n\)
(global)
The number of elements to be redistributed. \(n \geq 0\).
ia, ja
desc
(global) ia, ja must be equal to 1 .
(local) array of size 9. A 2D array descriptor, which describes bycol.
bycol
work
lwork
(local).
Distributed block cyclic array of global size \(n\) and of local size np. bycol is distributed across the process rows. All process columns are assumed to contain the same value.
(local).
size lwork. Used to hold the buffers sent from one process to another.
(local)
The size of the work array. lwork \(\geq\) numroc ( \(n, \operatorname{desc}[n b]\), 0,0 , npcol).

\section*{Output Parameters}
byall
(global).
Global size \(n\), local size \(n\). byall is exactly duplicated on all processes. It contains the same values as bycol, but it is replicated across all processes rather than being distributed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?lared2d}

Redistributes an array assuming that the input array
byrow is distributed across columns and that all
process rows contain the same copy of byrow.

\section*{Syntax}
```

void pslared2d (MKL_INT *n , MKL_INT *ia, MKL_INT *ja, MKL_INT *desc , float *byrow ,
float *byall, float *work , MKL_INT *lwork);
void pdlared2d (MKL_INT *n , MKL_INT *ia, MKL_INT *ja , MKL_INT *desc , double
*byrow , double *byall , double *work , MKL_INT *lwork);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?lared2dfunction redistributes a 1D array. It assumes that the input array byrow is distributed across columns and that all process rows contain the same copy of byrow. The output array byall will be identical on all processes and will contain the entire array.

\section*{Input Parameters}
\(n p=\) Number of local rows in byrow()
\begin{tabular}{ll}
\(n\) & (global) \\
& The number of elements to be redistributed. \(n \geq 0\). \\
ia, ja & (global) ia, ja must be equal to 1. \\
desc & (local) array of size dlen_. A 2D array descriptor, which describes byrow.
\end{tabular}
byrow
work

I Work
(local).
Distributed block cyclic array of global size \(n\) and of local size \(n p\). byrow is distributed across the process columns. All process rows are assumed to contain the same value.
(local).
size lwork. Used to hold the buffers sent from one process to another.
(local) The size of the work array. 1 work \(\geq \operatorname{numroc}\left(n, \operatorname{desc}\left[n b \_\right], 0,0\right.\), npcol).

\section*{Output Parameters}
(global).
Global size \(n\), local size \(n\). byall is exactly duplicated on all processes. It contains the same values as byrow, but it is replicated across all processes rather than being distributed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?larf
Applies an elementary reflector to a general rectangular matrix.

\section*{Syntax}
```

void pslarf (char *side , MKL_INT *m, MKL_INT *n , float *V , MKL_INT *iv , MKL_INT
*jv, MKL_INT *descv, MKL_INT *incv, float *tau, float *c , MKL_INT *ic , MKL_INT
*jc, MKL_INT *descc , float *work);
void pdlarf (char *side , MKL_INT *m, MKL_INT *n , double *V , MKL_INT *iv , MKL_INT
*jv, MKL_INT *descv , MKL_INT *incv, double *tau, double *c , MKL_INT *ic , MKL_INT
*jc, MKL_INT *descc, double *work);
void pclarf (char *side , MKL_INT *m, MKL_INT *n , MKL_Complex8 *V , MKL_INT *iv ,
MKL_INT *jv , MKL_INT *descv , MKL_INT *incv, MKL_Complex8 *tau , MKL_Complex8 *C ,
MKL_INT *ic, MKL_INT *jc, MKL_INT *descc, MKL_Complex8 *work);
void pzlarf (char *side , MKL_INT *m , MKL_INT *n , MKL_Complexl6 *V , MKL_INT *iv ,
MKL_INT *jv , MKL_INT *descv , MKL_INT *incv , MKL_Complex16 *tau , MKL_Complex16 *C ,
MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complexl6 *work);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p?larffunction applies a real/complex elementary reflector \(Q\) (or \(Q^{T}\) ) to a real/complex m-by-n distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\), from either the left or the right. \(Q\) is represented in the form
\[
Q=I-\operatorname{ta} u^{\star} v^{\star} v^{\prime}
\]
where tau is a real/complex scalar and \(v\) is a real/complex vector.
If \(\operatorname{tau}=0\), then \(Q\) is taken to be the unit matrix.

\section*{Input Parameters}

\section*{side}
m
n
v
(global).
```

= 'L': form Q*sub (C),
= 'R': form sub (C)*Q,Q=\mp@subsup{Q}{}{T}}\mathrm{ .

```
(global)
The number of rows in the distributed submatrix \(\operatorname{sub}(A) .(m \geq 0)\).
(global)
The number of columns in the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\).
(local).
Pointer into the local memory to an array of size \(/ / d \_v * \operatorname{LOCc}\left(n_{-} v\right)\), containing the local pieces of the global distributed matrix \(V\) representing the Householder transformation \(Q\),
\(V(i v: i v+m-1, j v)\) if side \(=\) 'L' and incv \(=1\),
\(V(i v, j v: j v+m-1)\) if side \(=\) 'L' and incv \(=m_{-} v\),
\(V(i v: i v+n-1, j v)\) if side \(=\) 'R' and incv \(=1\),
\(V(i v, j v: j v+n-1)\) if side \(=\) 'R' and incv \(=m_{-} v\).
The array \(v\) is the representation of \(Q . v\) is not used if \(\operatorname{tau}=0\).
(global) The row and column indices in the global matrix \(V\) indicating the first row and the first column of the matrix \(\operatorname{sub}(V)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix V.
(global)
The global increment for the elements of \(V\). Only two values of incv are supported in this version, namely 1 and \(m_{-} v\).
incv must not be zero.
(local).
Array of size \(\operatorname{LOCc}(j v)\) if incv \(=1\), and \(\operatorname{LOCr}(i v)\) otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix \(V\).
(local).
Pointer into the local memory to an array of size IId_c * LOCc (jc+n-1), containing the local pieces of sub( \(C\) ).
(global)
The row and column indices in the global matrix \(C\) indicating the first row and the first column of the matrix sub \((C)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local).

Array of size Iwork.
If \(i n c v=1\),
if side \(=\) 'L',
if \(\mathrm{ivcol}=i c c o l\), Iwork \(\geq n q c 0\)
else
        \(l w o r k \geq m p c 0+\max (1, n q c 0)\)
end if
else if side = 'R',
Iwork \(\geqq n q c 0+\max (\max (1, m p c 0)\), numroc(numroc( \(n+\) icoffc,nb_v,0,0,npcol),nb_v,0,0,lcmq ))
end if
else if incv \(=m_{-} v\),
    if side = 'L',
    Iwork \(\geq m p C 0+\max (\max (1, n q C 0)\), numroc \((\)
        numroc( \(m+\) iroffc, \(\left.\left.m b \_v, 0,0, n p r o w\right), m b \_v, 0,0, I c m p\right)\) )
    else if side = 'R',
    if ivrow \(=i c r o w\),
        Iwork \(\geq m p c 0\)
    else
        \(I\) work \(\geq n q c 0+\max (1, m p c 0)\)
    end if
end if
end if,
where \(I \mathrm{~cm}\) is the least common multiple of nprow and \(n p c o l\) and \(I \mathrm{~cm}=\)
ilcm( nprow, npcol ), Icmp = Icm/nprow, Icmq = Icm/npcol,
iroffc \(=\bmod \left(i c-1, m b \_c\right), i c o f f c=\bmod \left(j c-1, n b \_c\right)\),
icrow \(=\) indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol \(=\) indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
mpc0 \(=\) numroc( m+iroffc, mb_c, myrow, icrow, nprow ),
nqc0 \(=\) numroc ( n+icoffc, nb_c, mycol, iccol, npcol ),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the function blacs_gridinfo.

\section*{Output Parameters}
c
On exit, \(\operatorname{sub}(C)\) is overwritten by the \(Q^{\star} \operatorname{sub}(C)\) if side \(=\) ' \(L\) ',
\[
\text { or } \operatorname{sub}(C) * Q \text { if side }=' \mathrm{R} ' .
\]

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?larfb}

Applies a block reflector or its transpose/conjugatetranspose to a general rectangular matrix.

\section*{Syntax}
```

void pslarfb (char *side , char *trans , char *direct , char *storev , MKL_INT *m ,
MKL_INT *n , MKL_INT *k , float *V , MKL_INT *iv, MKL_INT *jv, MKL_INT *descv , float
*t , float *c, MKL_INT *ic, MKL_INT *jc , MKL_INT *descc , float *work);
void pdlarfb (char *side , char *trans , char *direct , char *storev , MKL_INT *m ,
MKL_INT *n , MKL_INT *k , double *V , MKL_INT *iv , MKL_INT *jv , MKL_INT *descV ,
double *t, double *c , MKL_INT *ic, MKL_INT *jc, MKL_INT *descc , double *work);
void pclarfb (char *side , char *trans , char *direct , char *storev , MKL_INT *m ,
MKL_INT *n , MKL_INT *k , MKL_Complex8 *V , MKL_INT *iv , MKL_INT *jv , MKL_INT *desCV ,
MKL_Complex8 *t , MKL_Complex8 *C , MKL_INT *ic, MKL_INT *jc , MKL_INT *descc ,
MKL_Complex8 *work);
void pzlarfb (char *side , char *trans , char *direct , char *storev , MKL_INT *m ,
MKL_INT *n , MKL_INT *k , MKL_Complex16 *V , MKL_INT *iv, MKL_INT *jv , MKL_INT
*descv , MKL_Complex16 *t , MKL_Complex16 *c , MKL_INT *ic , MKL_INT *jc , MKL_INT
*descc , MKL_Complex16 *work);

```

\section*{Include Files}
- mkl_scalapack.h

\section*{Description}

The p? larfbfunction applies a real/complex block reflector \(Q\) or its transpose \(Q^{T} /\) conjugate transpose \(Q^{H}\) to a real/complex distributed \(m\)-by-n matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\) from the left or the right.

\section*{Input Parameters}
side
trans
direct
(global)
if side \(=\) 'L': apply \(Q\) or \(Q^{T}\) for real flavors ( \(Q^{H}\) for complex flavors) from the Left;
if side = 'R': apply \(Q\) or \(Q^{T}\) for real flavors ( \(Q^{H}\) for complex flavors) from the Right.
(global)
if trans = 'N': no transpose, apply Q;
for real flavors, if trans=' \(T\) ' : transpose, apply \(Q^{T}\)
for complex flavors, if trans \(=\) ' C': conjugate transpose, apply \(Q^{H}\);
(global) Indicates how \(Q\) is formed from a product of elementary reflectors.
if direct \(=' \mathrm{~F}^{\prime}: Q=H(1) \star H(2) * \ldots{ }^{*} H(k)\) (Forward)
if direct \(=\) 'B': \(Q=H(k) * \ldots * H(2) * H(1)\) (Backward)
```

storev
m
n
k
v
iv, jv
descv
c
ic, jc
descc
work
(global)
Indicates how the vectors that define the elementary reflectors are stored:
if storev = 'C': Columnwise
if storev = 'R': Rowwise.

```

\section*{(global)}
```

The number of rows in the distributed matrix $\operatorname{sub}(C) .(m \geq 0)$.
(global)
The number of columns in the distributed matrix $\operatorname{sub}(C) .(n \geq 0)$.
(global)
The order of the matrix T.
(local).
Pointer into the local memory to an array of size
IId_v*LOCc $(j v+k-1)$ if storev $=$ 'C',
$I I d _v * \operatorname{LOCc}(j v+m-1)$ if storev $=$ 'R' and side $=$ 'L',
Ild_v*LOCc(jv+n-1) if storev $=$ ' R^{\prime} and side $=$ ' R '.
It contains the local pieces of the distributed vectors V representing the Householder transformation.

```
```

if storev = 'C' and side = 'L', lld_v\geq max(1,LOCr(iv+m-1));

```
if storev = 'C' and side = 'L', lld_v\geq max(1,LOCr(iv+m-1));
if storev = 'C' and side = 'R', lld_v\geq max(1,LOCr(iv+n-1));
if storev = 'C' and side = 'R', lld_v\geq max(1,LOCr(iv+n-1));
if storev = 'R', lld_v\geqLOCr(jv+k-1).
if storev = 'R', lld_v\geqLOCr(jv+k-1).
(global)
The row and column indices in the global matrix \(V\) indicating the first row and the first column of the matrix \(\operatorname{sub}(V)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(V\).
(local).
Pointer into the local memory to an array of size IId_c * LOCc \((j c+n-1)\), containing the local pieces of sub( \(C\) ).
(global) The row and column indices in the global matrix \(C\) indicating the first row and the first column of the matrix sub( \(C\) ), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local).
Workspace array of size Iwork.
If storev = ' C',
if side \(=\) 'L',
lwork \(\geq(n q c 0+m p c 0) * k\)
```

```
else if side = 'R',
    Iwork \geq ( nqc0 + max( npv0 + numroc( numroc( n +
        icoffc, nb_v, 0, 0, npcol ), nb_v, 0, 0, Icmq ),
        mpc0 ))*k
    end if
else if storev = 'R',
if side = 'L' ,
    lwork\geq(mpc0 + max( mqv0 + numroc( numroc( m +
    iroffc, mb_v, 0, 0, nprow ), mb_v, 0, 0, Icmp ),
    nqc0 ))*k
else if side = 'R',
    lwork}\geq(mpc0 + nqc0)*
    end if
end if,
where
Icmq = /cm / npcol with /cm = iclm(nprow, npcol ),
iroffv = mod}(iv-1,mb_v ), icoffv = mod(jv-1, nb_v ),
ivrow = indxg2p(iv, mb_v, myrow, rsrc_v, nprow ),
ivcol = indxg2p(jv, nb_v, mycol, csrc_v, npcol ),
MqVO = numroc( m+icoffv, nb_v, mycol, ivcol, npcol ),
NpVO = numroc( n+iroffv, mb_v, myrow, ivrow, nprow ),
iroffc = mod( ic-1, mb_c ), icoffc = mod}(jc-1, nb_c )
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p(jc, nb_c,mycol, csrc_c, npcol ),
MpCO = numroc( m+iroffc, mb_c, myrow, icrow, nprow ),
NpCO = numroc( n+icoffc, mb_c, myrow, icrow, nprow ),
NqCO = numroc( n+icoffc, nb_c, mycol, iccol, npcol ),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol,
nprow, and npcol can be determined by calling the function
blacs_gridinfo.
```


Output Parameters

Array of size $m b _v * m b _v i f$ storev $=$ ' R', and $n b _v * n b _v i f$ storev $=$ ' C '. The triangular matrix t is the representation of the block reflector.
(local).
On exit, $\operatorname{sub}(C)$ is overwritten by the $Q^{\star} \operatorname{sub}(C)$, or $Q^{\prime *} \operatorname{sub}(C)$, or sub $(C) \star Q$, or sub $(C){ }^{*} Q^{\prime} . Q^{\prime}$ is transpose (conjugate transpose) of Q.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?larfc
Applies the conjugate transpose of an elementary reflector to a general matrix.

Syntax

```
void pclarfc (char *side , MKL_INT *m, MKL_INT *n , MKL_Complex8 *V , MKL_INT *iv ,
MKL_INT *jv, MKL_INT *descv, MKL_INT *inCV , MKL_Complex8 *tau , MKL_Complex8 *C ,
MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex8 *WOrk );
void pzlarfc (char *side , MKL_INT *m, MKL_INT *n , MKL_Complexl6 *V , MKL_INT *iv ,
MKL_INT *jv , MKL_INT *descv , MKL_INT *inCV, MKL_Complex16 *tau , MKL_Complex16 *C ,
MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex16 *work );
```

Include Files

- mkl_scalapack.h

Description

The p?larfcfunction applies a complex elementary reflector Q^{H} to a complex m-by- n distributed matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$, from either the left or the right. Q is represented in the form

```
Q = i-tau* v* v',
```

where tau is a complex scalar and v is a complex vector.
If $\operatorname{tau}=0$, then Q is taken to be the unit matrix.

Input Parameters

side
m
n

V
(global)
if side $=$ 'L': form $Q^{H *}$ sub (C) ;
if side $=$ 'R': form sub $(C) * Q^{H}$.
(global)
The number of rows in the distributed matrix $\operatorname{sub}(C) .(m \geq 0)$.
(global)
The number of columns in the distributed matrix $\operatorname{sub}(C) .(n \geq 0)$.
(local).
Pointer into the local memory to an array of size $/ l d _v * \operatorname{OCc}\left(n_{-} v\right)$, containing the local pieces of the global distributed matrix V representing the Householder transformation Q,
$V(i v: i v+m-1, j v)$ if side $=$ 'L' and incv $=1$,
$V(i v, j v: j v+m-1)$ if side $=$ 'L' and incv $=m_{-} v$,
$V(i v: i v+n-1, j v)$ if side $=$ 'R' and incv $=1$,
$V(i v, j v: j v+n-1)$ if side $=$ 'R' and incv $=m_{-} v$.
The array v is the representation of $Q . v$ is not used if $\operatorname{tau}=0$.

```
iv, jv
descv
incv
tau
C
ic, jc
descc
work
(global)
The row and column indices in the global matrix \(V\) indicating the first row and the first column of the matrix \(\operatorname{sub}(V)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(V\).
(global)
The global increment for the elements of \(v\). Only two values of incv are supported in this version, namely 1 and \(m_{-} v\).
incv must not be zero.
(local)
Array of size \(\operatorname{LOCc}(j v)\) if incv \(=1\), and \(\operatorname{LOCr}(i v)\) otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix \(V\).
(local).
Pointer into the local memory to an array of size IId_c * LOCc(jc+n-1), containing the local pieces of sub( \(C\) ).
(global)
The row and column indices in the global matrix \(C\) indicating the first row and the first column of the matrix sub \((C)\), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local).
Workspace array of size Iwork.
If \(i n c v=1\),
if side \(=\) 'L' ,
if \(\mathrm{ivcol}=i c c o l\),
Iwork \(\geq\) nqc0
else
Iwork \(\geq m p c 0+\max (1, n q c 0)\)
end if
else if side = 'R',
Iwork \(\geq n q c 0+\max (\max (1, m p c 0)\), numroc( numroc(
\(\left.\left.n+i c o f f c, n b \_v, 0,0, n p c o l\right), n b \_v, 0,0, / c m q\right)\) )
end if
else if incv \(=m_{-} v\),
if side \(=\) 'L',
Iwork \(\geq m p c 0+\max (\max (1, n q c 0)\), numroc (numroc \((\)
\(\left.\left.m+i r o f f c, m b \_v, 0,0, n p r o w\right), m b \_v, 0,0, / c m p\right)\) )
```

```
else if side = 'R' ,
    if ivrow = icrow,
        Iwork \geqmpc0
        else
        lwork \geqnqc0 + max( 1,mpc0 )
    end if
end if
end if,
where Icm is the least common multiple of nprow and npcol and Icm =
ilcm(nprow, npcol),
lcmp = lcm/nprow, lcmq = lcm/npcol,
iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;myrow, mycol,
nprow, and npcol can be determined by calling the function
blacs_gridinfo.
```


Output Parameters

c
(local).
On exit, $\operatorname{sub}(C)$ is overwritten by the $Q^{H \star}$ sub (C) if side $=$ 'L', or sub (C) * Q^{H} if side $=$ ' R^{\prime}.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?larfg

Generates an elementary reflector (Householder
matrix).

Syntax

```
void pslarfg (MKL_INT *n , float *alpha , MKL_INT *iax, MKL_INT *jax , float *x ,
MKL_INT *ix, MKL_INT *jx , MKL_INT *descx, MKL_INT *incx , float *tau );
void pdlarfg (MKL_INT *n , double *alpha, MKL_INT *iax , MKL_INT *jax , double *x ,
MKL_INT *ix, MKL_INT *jx , MKL_INT *descx , MKL_INT *incx , double *tau );
void pclarfg (MKL_INT *n , MKL_Complex8 *alpha, MKL_INT *iax , MKL_INT *jax ,
MKL_Complex8 *x , MKL_INT *ix, MKL_INT *jx , MKL_INT *descx , MKL_INT *incx ,
MKL_Complex8 *tau );
void pzlarfg (MKL_INT *n , MKL_Complexl6 *alpha, MKL_INT *iax , MKL_INT *jax ,
MKL_Complex16 *x , MKL_INT *ix , MKL_INT *jx, MKL_INT *descx , MKL_INT *incx ,
MKL_Complex16 *tau );
```


Include Files

- mkl_scalapack.h

Description

The p?larfgfunction generates a real/complex elementary reflector H of order n, such that

$$
H^{*} \operatorname{sub}(X)=H^{*}\binom{x(i a x, j a x)}{x}=\binom{a l p h a}{0}, H^{* *} H=I,
$$

where alpha is a scalar (a real scalar - for complex flavors), and $\operatorname{sub}(X)$ is an ($n-1$)-element real/complex distributed vector $X(i x: i x+n-2, j x)$ if $i n c x=1$ and $X(i x, j x: j x+n-2)$ if incx $=m_{-} x . H$ is represented in the form

where tau is a real/complex scalar and v is a real/complex ($n-1$)-element vector. Note that H is not Hermitian.
If the elements of $\operatorname{sub}(X)$ are all zero (and $X($ iax, $j a x)$ is real for complex flavors), then $\operatorname{tau}=0$ and H is taken to be the unit matrix.
Otherwise $1 \leq$ real $($ tau $) \leq 2$ and abs $($ tau-1) ≤ 1.
Input Parameters
n
(global)
The global order of the elementary reflector. $n \geq 0$.
iax, jax

X
ix, jx
descx
(global)
The global row and column indices of $X($ iax, $j a x)$ in the global matrix X.
(local).
Pointer into the local memory to an array of size $/ I d _x * \operatorname{LOCc}\left(n_{-} x\right)$. This array contains the local pieces of the distributed vector $\operatorname{sub}(X)$. Before entry, the incremented array $\operatorname{sub}(X)$ must contain vector x.
(global)
The row and column indices in the global matrix X indicating the first row and the first column of $\operatorname{sub}(X)$, respectively.
(global and local)
Array of size dlen_. The array descriptor for the distributed matrix X.
(global)
The global increment for the elements of x. Only two values of incx are supported in this version, namely 1 and $m_{-} x$. incx must not be zero.

Output Parameters

```
alpha (local)
    On exit, alpha is computed in the process scope having the vector sub (X).
    (local).
    On exit, it is overwritten with the vector v.
    (local).
    Array of size LOCc(jx) if inCx = 1, and LOCr(ix) otherwise. This array
    contains the Householder scalars related to the Householder vectors.
    tau is tied to the distributed matrix X.
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?larft
```

Forms the triangular vector T of a block reflector $H=I-$
$V * T * V^{H}$.

Syntax

```
void pslarft (char *direct , char *storev , MKL_INT *n , MKL_INT *k , float *V , MKL_INT
*iv, MKL_INT *jv, MKL_INT *descv, float *tau, float *t , float *work );
void pdlarft (char *direct , char *storev , MKL_INT *n , MKL_INT *k , double *V ,
MKL_INT *iv, MKL_INT *jv, MKL_INT *descv, double *tau , double *t , double *work );
void pclarft (char *direct , char *storev , MKL_INT *n , MKL_INT *k , MKL_Complex8 *V ,
MKL_INT *iv, MKL_INT *jv, MKL_INT *descv , MKL_Complex8 *tau , MKL_Complex8 *t ,
MKL_Complex8 *work );
void pzlarft (char *direct , char *storev , MKL_INT *n , MKL_INT *k , MKL_Complex16
*V , MKL_INT *iv , MKL_INT *jv, MKL_INT *descv, MKL_Complex16 *tau , MKL_Complex16
*t , MKL_Complex16 *Work );
```


Include Files

```
- mkl_scalapack.h
```


Description

The p?larftfunction forms the triangular factor T of a real/complex block reflector H of order n, which is defined as a product of k elementary reflectors.

If direct $=$ ' $\mathrm{F}^{\prime}, \quad H=H(1) \star H(2) \ldots \star H(k)$, and T is upper triangular;
If direct $=$ ' $\mathrm{B}^{\prime}, H=H(k) \star \ldots{ }^{*} H(2) \star H(1)$, and T is lower triangular.
If storev $=$ ' C', the vector which defines the elementary reflector $H(i)$ is stored in the i-th column of the distributed matrix V, and
$H=I-V^{\star} T^{*} V^{\prime}$

If storev = 'R', the vector which defines the elementary reflector $H(i)$ is stored in the i-th row of the distributed matrix V, and

```
H = I-V'*T*V.
```


Input Parameters

direct
n
k

V
(global)
Specifies the order in which the elementary reflectors are multiplied to form the block reflector:

```
if direct = 'F': H = H(1)*H(2)* ...*H(k) (forward)
if direct = 'B': H = H(k)*...*H(2)*H(1) (backward).
```

(global)
Specifies how the vectors that define the elementary reflectors are stored (See Application Notes below):
if storev = 'C': columnwise;
if storev = 'R': rowwise.

(global)

The order of the block reflector $H . n \geq 0$.
(global)
The order of the triangular factor T, is equal to the number of elementary reflectors.

```
1 \leq k \leq mb_v (= nb_v).
```

Pointer into the local memory to an array of local size
LOCr(iv+n-1) * LOCC(jv+k-1) if storev = 'C', and
LOCr(iv+k-1) * LOCC(jv+n-1) if storev = 'R'.
The distributed matrix V contains the Householder vectors. (See Application Notes below).
(global)
The row and column indices in the global matrix V indicating the first row and the first column of the matrix $\operatorname{sub}(V)$, respectively.
(local) array of size dlen_. The array descriptor for the distributed matrix V.
(local)
Array of size LOCr (iv+k-1) if incv = m_v, and LOCC (jv+k-1) otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix V.
(local).
Workspace array of size $k^{*}(k-1) / 2$.

Output Parameters

$$
\begin{aligned}
& v \\
& t
\end{aligned}
$$

(local)
Array of size $n b _v * n b _v$ if storev $={ }^{\prime} C^{\prime}$, and $m b _v * m b _v$ otherwise. It contains the k-by- k triangular factor of the block reflector associated with v. If direct $=' \mathrm{~F}$ ', t is upper triangular;
if direct $=$ ' B ', t is lower triangular.

Application Notes

The shape of the matrix V and the storage of the vectors that define the $H(i)$ is best illustrated by the following example with $n=5$ and $k=3$. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.

$$
\begin{aligned}
& \text { direct }={ }^{\prime} \mathrm{F}^{\prime} \text { and storev }={ }^{\prime} \mathrm{C}{ }^{\prime}: \quad \text { direct }={ }^{\prime} \mathrm{F}^{\prime} \text { and storev }={ }^{\prime} \mathrm{R}{ }^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { direct }={ }^{\prime} B \text { ' and storev }={ }^{\prime} C \text { ' } \\
& \left.\begin{array}{r}
V(i v \\
j v
\end{array}: j v+k-1, \quad j v+n-1\right)=\left[\begin{array}{ccc}
1 & v 1 & v 1 \\
& 1 & v 2 \\
& & 1
\end{array}\right. \\
& v\left(i v: i v+n-1, \quad\left[\begin{array}{ccc}
v 1 & v 2 v & v 3 \\
v 1 & v 2 & v 3 \\
1 & v 2 & v 3 \\
& 1 & v 3 \\
& & 1
\end{array}\right]\right. \\
& \text { direct }={ }^{\prime} B^{\prime} \text { and storev }={ }^{\prime} R^{\prime} \\
& v\left(i v: i v+k-1, \quad\left[\begin{array}{ccccc}
v 1 & v 1 & 1 & & \\
v 2 & v 2 & v 2 & 1 & \\
v 3 & v 3 & v 3 & v 3 & 1
\end{array}\right]\right.
\end{aligned}
$$

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?larz
Applies an elementary reflector as returned by p?tzrzf to a general matrix.

Syntax

```
void pslarz (char *side , MKL_INT *m , MKL_INT *n , MKL_INT *I , float *V , MKL_INT
*iv, MKL_INT *jv, MKL_INT *descv, MKL_INT *incv, float *tau , float *C , MKL_INT
*ic, MKL_INT *jc, MKL_INT *descc, float *Work );
void pdlarz (char *side , MKL_INT *m, MKL_INT *n , MKL_INT *I , double *V , MKL_INT
*iv, MKL_INT *jv , MKL_INT *descv, MKL_INT *inCv, double *tau , double *C , MKL_INT
*ic, MKL_INT *jc , MKL_INT *descc , double *work );
```

```
void pclarz (char *side , MKL_INT *m, MKL_INT *n , MKL_INT *I , MKL_Complex8 *V ,
MKL_INT *iv, MKL_INT *jv , MKL_INT *descv, MKL_INT *incv , MKL_Complex8 *tau ,
MKL_Complex8 *C , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex8 *work );
void pzlarz (char *side , MKL_INT *m, MKL_INT *n , MKL_INT *l , MKL_Complex16 *V ,
MKL_INT *iv, MKL_INT *jv, MKL_INT *descv, MKL_INT *incv, MKL_Complex16 *tau ,
MKL_Complex16 *C , MKL_INT *ic , MKL_INT *jc, MKL_INT *descc , MKL_Complex16 *work );
```


Include Files

- mkl_scalapack.h

Description

The p?larzfunction applies a real/complex elementary reflector Q (or Q^{T}) to a real/complex m-by- n distributed matrix sub $(C)=C(i c: i c+m-1, j c: j c+n-1)$, from either the left or the right. Q is represented in the form

$$
Q=I-\operatorname{tau^{*}} V^{\star} v^{\prime},
$$

where tau is a real/complex scalar and v is a real/complex vector.
If $\operatorname{tau}=0$, then Q is taken to be the unit matrix.
Q is a product of k elementary reflectors as returned by p?tzrzf.

Input Parameters

side
m
n

1

V

(global)

if side $=$ 'L': form $Q^{\star} \operatorname{sub}(C)$,
if side $=$ 'R': form $\operatorname{sub}(C) * Q, Q=Q^{T}$ (for real flavors).

(global)

The number of rows in the distributed matrix $\operatorname{sub}(C) .(m \geq 0)$.
(global)
The number of columns in the distributed matrix $\operatorname{sub}(C) .(n \geq 0)$.
(global)
The columns of the distributed matrix $\operatorname{sub}(A)$ containing the meaningful part of the Householder reflectors. If side $=$ ' $L ', m \geq I \geq 0$,
if side $=$ 'R', $n \geq 1 \geq 0$.
(local).
Pointer into the local memory to an array of size IId_v * LOCc(n_v) containing the local pieces of the global distributed matrix V representing the Householder transformation Q,
$V(i v: i v+l-1, j v)$ if side $=$ 'L' and incv = 1,
$V(i v, j v: j v+l-1)$ if side $=$ 'L' and incv $=m_{-} v$,
$V(i v: i v+l-1, j v)$ if side $=$ 'R' and incv $=1$,
$V(i v, j v: j v+l-1)$ if side $=$ ' R ' and incv $=m_{-} v$.
The vector v in the representation of $Q . v$ is not used if $\operatorname{tau}=0$.

```
iv, jv
descv
incv
tau
c
ic, jc
descc
work
```

```
    if ivrow = icrow,
    Iwork \geqMpC0
    else
    Iwork }\geqNqC0 + max(1,MpC0
    end if
    end if
end if.
```

Here $/ \mathrm{cm}$ is the least common multiple of nprow and $n p c o l$ and

```
Icm = ilcm( nprow, npcol ), Icmp = /cm / nprow,
Icmq = Icm / npcol,
iroffc = mod}(ic-1,mb_c ),icoffc=mod(jc-1, nb_c )
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol ),
mpc0 = numroc( m+iroffc, mb_c, myrow, icrow, nprow ),
nqc0 = numroc( n+icoffc, nb_c, mycol, iccol, npcol ),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol,
nprow, and npcol can be determined by calling the function
blacs_gridinfo.
```


Output Parameters

c
(local).
On exit, $\operatorname{sub}(C)$ is overwritten by the $Q^{\star} \operatorname{sub}(C)$ if side $=$ ' L ', or $\operatorname{sub}(C) * Q$ if side $=$ ' R .

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?larzb
Applies a block reflector or its transpose/conjugatetranspose as returned by p?tzrzf to a general matrix.

Syntax

```
void pslarzb (char *side , char *trans , char *direct , char *storev , MKL_INT *m,
MKL_INT *n , MKL_INT *k , MKL_INT *l , float *v , MKL_INT *iv, MKL_INT *jv , MKL_INT
*descv, float *t, float *C , MKL_INT *ic, MKL_INT *jc , MKL_INT *descc, float
*work );
void pdlarzb (char *side , char *trans , char *direct , char *storev , MKL_INT *m ,
MKL_INT *n , MKL_INT *k , MKL_INT *I , double *V , MKL_INT *iv , MKL_INT *jv , MKL_INT
```



```
*Work );
```

```
void pclarzb (char *side , char *trans , char *direct , char *storev , MKL_INT *m ,
MKL_INT *n , MKL_INT *k , MKL_INT *I , MKL_Complex8 *V , MKL_INT *iv , MKL_INT *jv ,
MKL_INT *descv , MKL_Complex8 *t , MKL_Complex8 *C , MKL_INT *ic , MKL_INT *jc ,
MKL_INT *descc , MKL_Complex8 *work );
void pzlarzb (char *side , char *trans, char *direct , char *storev , MKL_INT *m ,
MKL_INT *n , MKL_INT *k , MKL_INT *I , MKL_Complex16 *v, MKL_INT *iv, MKL_INT *jv,
MKL_INT *descv , MKL_Complex16 *t , MKL_Complex16 *c, MKL_INT *ic , MKL_INT *jc ,
MKL_INT *descc , MKL_Complex16 *work );
```


Include Files

- mkl_scalapack.h

Description

The p?larzbfunction applies a real/complex block reflector Q or its transpose Q^{T} (conjugate transpose Q^{H} for complex flavors) to a real/complex distributed m-by-n matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ from the left or the right.
Q is a product of k elementary reflectors as returned by p?tzrzf.
Currently, only storev = 'R' and direct = 'B' are supported.

Input Parameters

| side | (global) |
| :---: | :---: |
| | if side = 'L': apply Q or Q^{T} (Q^{H} for complex flavors) from the Left; |
| | if side = 'R': apply Q or Q^{T} (Q^{H} for complex flavors) from the Right. |
| trans | (global) |
| | if trans = 'N': No transpose, apply Q; |
| | If trans='T': Transpose, apply Q^{T} (real flavors); |
| | If trans= ' ' : Conjugate transpose, apply Q^{H} (complex flavors). |
| direct | (global) |
| | Indicates how H is formed from a product of elementary reflectors. |
| | if direct $=$ ' $\mathrm{F}^{\prime}: H=H(1){ }^{*} H(2) * \ldots{ }^{*} H(k)$ - forward (not supported) ; |
| | if direct $=$ ' $\mathrm{B}^{\prime}: H=H(k) * \ldots * H(2) * H(1)-$ backward. |
| storev | (global) |
| | Indicates how the vectors that define the elementary reflectors are stored: |
| | if storev = 'C': columnwise (not supported). |
| | if storev = 'R': rowwise. |
| m | (global) |
| | The number of rows in the distributed submatrix $\operatorname{sub}(C) .(m \geq 0)$. |
| n | (global) |
| | The number of columns in the distributed submatrix $\operatorname{sub}(C) .(n \geq 0)$. |
| k | (global) |

1

V
t

C

The order of the matrix T. (= the number of elementary reflectors whose product defines the block reflector).
(global)
The columns of the distributed submatrix $\operatorname{sub}(A)$ containing the meaningful part of the Householder reflectors.
If side $=$ 'L', $m \geq 1 \geq 0$,
if side $=$ 'R', $n \geq 1 \geq 0$.
(local).
Pointer into the local memory to an array of size $/ / d_{-} v * \operatorname{LOCc}(j v+m-1)$ if side $=$ 'L', Ild_v* LOCc(jv+m-1) if side = 'R'.
It contains the local pieces of the distributed vectors V representing the Householder transformation as returned by p?tzrzf.
$\| l d v \geq \operatorname{LOCr}(i v+k-1)$.

(global)

The row and column indices in the global matrix V indicating the first row and the first column of the submatrix $\operatorname{sub}(V)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix V.
(local)
Array of size $m b _v^{*} m b _v$.
The lower triangular matrix T in the representation of the block reflector. (local).

Pointer into the local memory to an array of size IId_c * LOCc(jc+n-1).
On entry, the m-by- n distributed matrix sub(C).
(global)
The row and column indices in the global matrix C indicating the first row and the first column of the submatrix $\operatorname{sub}(C)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix C.
(local).

Array of size Iwork.

```
If storev = 'C' ,
    if side = 'L' ,
            lwork}\geq(nqc0 + mpc0)* k
    else if side = 'R' ,
            lwork \geq(nqc0 + max(npv0 + numroc(numroc(n+icoffc, nb_v, 0, 0,
npcol),
            nb_v, 0, 0, lcmq), mpc0))* k
    end if
else if storev = 'R' ,
    if side = 'L' ,
            lwork\geq(mpc0 + max(mqv0 + numroc(numroc(m+iroffc, mb_v, 0, 0,
nprow),
                    mb_v, 0, 0, lcmp), nqc0))* k
    else if side = 'R' ,
            lwork\geq (mpc0 + nqc0) * k
        end if
    end if.
```

Here $\operatorname{lcmq}=1 \mathrm{~cm} / \mathrm{npcol}$ with $\mathrm{lcm}=$ iclm(nprow, npcol),
iroffv $=\bmod \left(i v-1, m b _v\right), i c o f f v=\bmod \left(j v-1, n b _v\right)$,
ivrow $=$ indxg2p(iv, mb_v, myrow, rsrc_v, nprow),
ivcol $=$ indxg2p(jv, nb_v, mycol, csrc_v, npcol),
mqv0 = numroc(m+icoffv, nb_v, mycol, ivcol, npcol),
npv0 = numroc (n+iroffv, mb_v, myrow, ivrow, nprow),
iroffc $=\bmod (i c-1, \operatorname{mb} c), i C o f f_{C}=\bmod \left(j c-1, n b _c\right)$,
icrow= indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol= indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpco $=$ numroc (m+iroffc, mb_c, myrow, icrow, nprow),
npc0 $=$ numroc (n+icoffc, mb_c, myrow, icrow, nprow),
nqco $=$ numroc (n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol,
nprow, and npcol can be determined by calling the function
blacs_gridinfo.

Output Parameters

c
(local).

On exit, $\operatorname{sub}(C)$ is overwritten by the $Q^{\star} \operatorname{sub}(C)$, or $Q^{\prime \star} \operatorname{sub}(C)$, or sub $(C){ }^{*} Q$, or $\operatorname{sub}(C){ }^{*} Q^{\prime}$, where Q^{\prime} is the transpose (conjugate transpose) of Q.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?larzc

Applies (multiplies by) the conjugate transpose of an elementary reflector as returned by p?tzrzf to a general matrix.

Syntax

```
void pclarzc (char *side , MKL_INT *m , MKL_INT *n , MKL_INT *I , MKL_Complex8 *V ,
MKL_INT *iv , MKL_INT *jv , MKL_INT *descv , MKL_INT *incv , MKL_Complex8 *tau ,
MKL_Complex8 *C , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex8 *Work );
void pzlarzc (char *side , MKL_INT *m , MKL_INT *n , MKL_INT *I , MKL_Complex16 *V ,
MKL_INT *iv, MKL_INT *jv , MKL_INT *descv , MKL_INT *incv , MKL_Complex16 *tau ,
MKL_Complex16 *c , MKL_INT *ic , MKL_INT *jc, MKL_INT *descc , MKL_Complexl6 *work );
```


Include Files

- mkl_scalapack.h

Description

The p?larzcfunction applies a complex elementary reflector Q^{H} to a complex m-by- n distributed matrix sub $(C)=C(i c: i c+m-1, j c: j c+n-1)$, from either the left or the right. Q is represented in the form

```
Q = i-tau* ** V',
```

where tau is a complex scalar and v is a complex vector.
If $\operatorname{tau}=0$, then Q is taken to be the unit matrix.
Q is a product of k elementary reflectors as returned by p?tzrzf.

Input Parameters

side
m
n

1
(global)
if side $=$ 'L': form $Q^{H *}$ sub (C);
if side $=$ ' R ': form sub $(C) * \mathrm{Q}^{H}$.
(global)
The number of rows in the distributed matrix $\operatorname{sub}(C) .(m \geq 0)$.
(global)
The number of columns in the distributed matrix $\operatorname{sub}(C) .(n \geq 0)$.
(global)
The columns of the distributed matrix $\operatorname{sub}(A)$ containing the meaningful part of the Householder reflectors.
If side $=$ 'L', $m \geq 1 \geq 0$,
if side $=$ 'R', $n \geq 1 \geq 0$.
(local).
Pointer into the local memory to an array of size $I I d _v *$ LOCc $\left(n _v\right)$ containing the local pieces of the global distributed matrix V representing the Householder transformation Q,
$V(i v: i v+l-1, j v)$ if side $=$ 'L' and incv $=1$,
$V(i v, j v: j v+l-1)$ if side $=$ 'L' and incv $=m_{-} v$,
$V(i v: i v+l-1, j v)$ if side $=$ 'R' and incv $=1$,
$V(i v, j v: j v+l-1)$ if side $=$ 'R' and incv $=m_{-} v$.
The vector v in the representation of $Q . v$ is not used if $\operatorname{tau}=0$.
(global)
The row and column indices in the global matrix V indicating the first row and the first column of the matrix $\operatorname{sub}(V)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix V.
(global)
The global increment for the elements of V. Only two values of incv are supported in this version, namely 1 and $m_{-} v$.
incv must not be zero.
(local)
Array of size $\operatorname{LOCc}(j v)$ if incv $=1$, and $\operatorname{LOCr}(i v)$ otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix V.
(local).
Pointer into the local memory to an array of size IId_c * LOCc($j c+n-1)$, containing the local pieces of sub(C).
(global)
The row and column indices in the global matrix C indicating the first row and the first column of the matrix sub(C), respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix C.
(local).

```
If incv = 1,
    if side = 'L' ,
        if ivCol = iccol,
            lwork\geq nqc0
        else
            lwork \geqmpc0 + max(1, nqc0)
        end if
    else if side = 'R' ,
        lwork \geqnqc0 + max(max(1, mpc0), numroc(numroc(n+icoffc, nb_v,
```

```
0, 0, npcol),
            nb_v, 0, 0, lcmq)) end if
else if incv = m_v,
    if side = 'L' ',
            lwork\geqmpc0 + max(max(1, nqc0), numroc(numroc(m+iroffc, mb_v,
0, 0, nprow),
            mb_v, 0, 0, lcmp))
    else if side = 'R',
        if ivrow = icrow,
            lwork\geqmpc0
        else
            lwork\geqnqc0 + max(1, mpc0)
        end if
    end if
            end if
```

Here Icm is the least common multiple of nprow and npcol;

```
lcm = ilcm(nprow, npcol), lcmp = l cm/nprow, lcmq= lcm/npcol,
iroffC = mod(ic-1, mb_c), icoffc= mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the function
blacs_gridinfo.
```


Output Parameters

C
(local).
On exit, $\operatorname{sub}(C)$ is overwritten by the $Q^{H *}$ sub (C) if side $=$ 'L', or $\operatorname{sub}(C) * Q^{H}$ if side $='^{\prime}$ '.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?larzt

Forms the triangular factor T of a block reflector $H=I$ -
$V * T * V^{H}$ as returned by p?tzrzf.

Syntax

```
void pslarzt (char *direct , char *storev , MKL_INT *n , MKL_INT *k , float *V , MKL_INT
*iv, MKL_INT *jv, MKL_INT *descv, float *tau, float *t , float *work );
void pdlarzt (char *direct , char *storev , MKL_INT *n , MKL_INT *k , double *V ,
MKL_INT *iv, MKL_INT *jv , MKL_INT *descv, double *tau , double *t , double *work );
void pclarzt (char *direct , char *storev , MKL_INT *n , MKL_INT *k , MKL_Complex8 *V ,
MKL_INT *iv, MKL_INT *jv , MKL_INT *descv, MKL_Complex8 *tau , MKL_Complex8 *t ,
MKL_Complex8 *work );
```

```
void pzlarzt (char *direct , char *storev , MKL_INT *n , MKL_INT *k , MKL_Complex16
*V , MKL_INT *iv , MKL_INT *jv, MKL_INT *descv, MKL_Complex16 *tau , MKL_Complex16
*t , MKL_Complex16 *work );
```


Include Files

- mkl_scalapack.h

Description

The p?larztfunction forms the triangular factor T of a real/complex block reflector H of order greater than n, which is defined as a product of k elementary reflectors as returned by p?tzrzf.

If direct $=' F^{\prime}, H=H(1) * H(2) * \ldots * H(k)$, and T is upper triangular;
If direct $=$ ' $\mathbf{B '}^{\prime}, H=H(k) \star \ldots{ }^{*} H(2) \star H(1)$, and T is lower triangular.
If storev $=$ ' C', the vector which defines the elementary reflector $H(i)$, is stored in the i-th column of the array v, and
$H=i-v^{\star} t^{\star} V^{\prime}$.
If storev = 'R', the vector, which defines the elementary reflector $H(i)$, is stored in the i-th row of the array v, and
$H=i-v^{\prime} * t^{*} v$
Currently, only storev = 'R' and direct = 'B' are supported.

Input Parameters

direct
storev
n
k

V

(global)

Specifies the order in which the elementary reflectors are multiplied to form the block reflector:

```
if direct = 'F': H = H(1)*H(2)* ...* H(k) (Forward, not supported)
if direct = 'B': H = H(k)*...*H(2)*H(1) (Backward).
```

(global)
Specifies how the vectors which defines the elementary reflectors are stored:
if storev $=$ ' C': columnwise (not supported);
if storev = 'R': rowwise.
(global)
The order of the block reflector $H . n \geq 0$.
(global)
The order of the triangular factor T (= the number of elementary reflectors).
$1 \leq k \leq m b _v\left(=n b _v\right)$.
Pointer into the local memory to an array of local size LOCr (iv+k-1) * LOCC (jv+n-1).
The distributed matrix V contains the Householder vectors. See Application Notes below.
iv, jv
descv
tau
work
(global) The row and column indices in the global matrix V indicating the first row and the first column of the matrix $\operatorname{sub}(V)$, respectively.
(local) array of size dlen_. The array descriptor for the distributed matrix V. (local)
Array of size LOCr (iv+k-1) if inCv $=m_{-} v$, and $\operatorname{LOCc}(j v+k-1)$ otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix V.
(local).
Workspace array of size $\left(k^{*}(k-1) / 2\right)$.

Output Parameters

v
t
(local)
Array of size $m b _v^{*} m b _v$. It contains the k-by- k triangular factor of the block reflector associated with $v . t$ is lower triangular.

Application Notes

The shape of the matrix V and the storage of the vectors which define the $H(i)$ is best illustrated by the following example with $n=5$ and $k=3$. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.

$$
\text { direct }={ }^{\prime} F^{\prime} \text { and storev }=^{\prime} C^{\prime}
$$

$\left[\begin{array}{ccc}v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3\end{array}\right]$
$\mathrm{V}=\quad . \quad . \quad$.

- . .

1
1 .
1
direct $={ }^{\prime} F^{\prime}$ and storev $=^{\prime} R^{\prime}$:
$\left[\begin{array}{lllllllll}\overbrace{v 1} & \mathrm{v} 1 & \mathrm{v} 1 & \mathrm{v} 1 & \mathrm{v1} & . & . & . & 1 \\ \mathrm{v} 2 & . & . & 1 & \\ \mathrm{v} 3 & . & 1 & & \end{array}\right]$
direct $=B^{\prime}$ and storev $=^{\prime} C^{\prime}$:
1
. 1
. . 1
$\mathrm{v}=. \quad$.
$\left[\begin{array}{ccc}v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3\end{array}\right]$
direct $=B^{\prime}$ and storev $=^{\prime} R^{\prime}$:
$\left[\begin{array}{ccccccccc}1 & \cdot & \cdot & \cdot & \cdot & \overbrace{\mathrm{v} 1} & \mathrm{v} 1 & \mathrm{v} 1 & \mathrm{v} 1 \\ \mathrm{v} 1 \\ \cdot & 1 & \cdot & \cdot & \cdot & \mathrm{v} 2 & \mathrm{v} 2 & \mathrm{v} 2 & \mathrm{v} 2 \\ \mathrm{v} 2 \\ \cdot & \cdot & 1 & \cdot & \cdot & \mathrm{v} 3 & \mathrm{v} 3 & \mathrm{v} 3 & \mathrm{v} 3 \\ \mathrm{v} 3\end{array}\right]$

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lascl
Multiplies a general rectangular matrix by a real scalar defined as $C_{t o} / C_{\text {from }}$.

Syntax

```
void pslascl (char *type, float *cfrom, float *cto, MKL_INT *m, MKL_INT *n , float
*a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, MKL_INT *info );
void pdlascl (char *type , double *cfrom, double *cto , MKL_INT *m , MKL_INT *n ,
double *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca, MKL_INT *info );
void pclascl (char *type , float *cfrom, float *cto , MKL_INT *m , MKL_INT *n ,
MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_INT *info );
void pzlascl (char *type , double *cfrom, double *cto , MKL_INT *m , MKL_INT *n ,
MKL_Complex16 *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?lasclfunction multiplies the m-by- n real/complex distributed matrix sub (A) denoting A (ia: $i a+m-1$, $j a: j a+n-1)$ by the real/complex scalar cto/cfrom. This is done without over/underflow as long as the final result cto*A(i, j)/ cfrom does not over/underflow. type specifies that sub (A) may be full, upper triangular, lower triangular or upper Hessenberg.

Input Parameters

```
type
cfrom, cto
```

m
n
a
desca
(global)
type indicates the storage type of the input distributed matrix.
if type $=$ ' G': $\operatorname{sub}(A)$ is a full matrix,
if type $=$ 'L': $\operatorname{sub}(A)$ is a lower triangular matrix,
if type $=$ ' U': $\operatorname{sub}(A)$ is an upper triangular matrix,
if type $=$ 'H': $\operatorname{sub}(A)$ is an upper Hessenberg matrix.
(global)
The distributed matrix $\operatorname{sub}(A)$ is multiplied by cto/cfrom. $A(i, j)$ is computed without over/underflow if the final result cto* $A(i, j) /$ cfrom can be represented without over/underflow. cfrom must be nonzero.
(global)
The number of rows in the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.
(global)
The number of columns in the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$.
(local input/local output)
Pointer into the local memory to an array of size Ild_a * LOCc (ja+n-1).
This array contains the local pieces of the distributed matrix $\operatorname{sub}(A)$.
(global)
The column and row indices in the global matrix A indicating the first row and column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local)

Array of size dlen_. The array descriptor for the distributed matrix A.

Output Parameters

a
(local).
On exit, this array contains the local pieces of the distributed matrix multiplied by cto/cfrom.
info
(local)
if info $=0$: the execution is successful.
if info < 0 : If the i-th argument is an array and the j-th entry, indexed $j-1$, had an illegal value, then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?lase2

Initializes an m-by-n distributed matrix.

Syntax

```
void pslase2 (const char* uplo, const MKL_INT* m, const MKL_INT* n, const float* alpha,
const float* beta, float* a, const MKL_INT* ia, const MKL_INT* ja, const MKL_INT*
desca);
void pdlase2 (const char* uplo, const MKL_INT* m, const MKL_INT* n, const double*
alpha, const double* beta, double* a, const MKL_INT* ia, const MKL_INT* ja, const
MKL_INT* desca);
void pclase2 (const char* uplo, const MKL_INT* m, const MKL_INT* n, const MKL_Complex8*
alpha, const MKL_Complex8* beta, MKL_Complex8* a, const MKL_INT* ia, const MKL_INT* ja,
const MKL_INT* desca);
void pzlase2 (const char* uplo, const MKL_INT* m, const MKL_INT* n, const
MKL_Complex16* alpha, const MKL_Complex16* beta, MKL_Complex16* a, const MKL_INT* ia,
const MKL_INT* ja, const MKL_INT* desca);
```


Include Files

- mkl_scalapack.h

Description

p?lase2 initializes an m-by-n distributed matrix $\operatorname{sub}(A)$ denoting $A(i a: i a+m-1, j a: j a+n-1)$ to beta on the diagonal and alpha on the off-diagonals. p?lase 2 requires that only the dimension of the matrix operand is distributed.

Input Parameters

uplo
(global)
Specifies the part of the distributed matrix $\operatorname{sub}(A)$ to be set:
$=$ 'U': Upper triangular part is set; the strictly lower triangular part of $\operatorname{sub}(A)$ is not changed;
$=$ 'L': Lower triangular part is set; the strictly upper triangular part of $\operatorname{sub}(A)$ is not changed;

Otherwise: All of the matrix $\operatorname{sub}(A)$ is set.
m
n
alpha
beta
ia
ja
desca
(global)
The number of rows to be operated on i.e the number of rows of the distributed submatrix $\operatorname{sub}(A) . m>=0$.
(global)
The number of columns to be operated on i.e the number of columns of the distributed submatrix $\operatorname{sub}(A) . n>=0$.
(global)
The constant to which the off-diagonal elements are to be set.
(global)
The constant to which the diagonal elements are to be set.
(global)
The row index in the global array a indicating the first row of $\operatorname{sub}(A)$.
(global)
The column index in the global array a indicating the first column of $\operatorname{sub}(A)$.
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix A.

Output Parameters

a
(local)
Pointer into the local memory to an array of size IId_a*LOCc(ja+n-1).
This array contains the local pieces of the distributed matrix $\operatorname{sub}(A)$ to be set.
On exit, the leading $m-b y-n$ submatrix $\operatorname{sub}(A)$ is set as follows:

```
if uplo = 'U', A(ia+i-1,ja+j-1) = alpha, 1<=i<=j-1, 1<=j<=n,
if uplo = 'L', A(ia+i-1,ja+j-1) = alpha, j+1<=i<=m, 1<=j<=n,
otherwise, }A(\textrm{ia+i}-1,ja+j-1)=alpha,1<=i<=m,1<=j<=n, ia+i !
ja+j,
and, for all uplo, }A(ia+i-1,ja+i-1)= beta,1<=i<==min(m,n).
```

p?laset
Initializes the offdiagonal elements of a matrix to alpha and the diagonal elements to beta.

Syntax

```
void pslaset (char *uplo, MKL_INT *m , MKL_INT *n , float *alpha , float *beta , float
*a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca );
void pdlaset (char *uplo, MKL_INT *m , MKL_INT *n , double *alpha, double *beta ,
double *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca );
void pclaset (char *uplo, MKL_INT *m , MKL_INT *n , MKL_Complex8 *alpha , MKL_Complex8
*beta , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca );
void pzlaset (char *uplo, MKL_INT *m, MKL_INT *n , MKL_Complexl6 *alpha,
MKL_Complex16 *beta , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca );
```


Include Files

- mkl_scalapack.h

Description

The p?lasetfunction initializes an m-by-n distributed matrix $\operatorname{sub}(A)$ denoting $A(i a: i a+m-1, j a: j a+n-1)$ to beta on the diagonal and alpha on the offdiagonals.

Input Parameters

uplo
m
n
alpha
beta
beta
(global)
Specifies the part of the distributed matrix $\operatorname{sub}(A)$ to be set:
if uplo = 'U': upper triangular part; the strictly lower triangular part of $\operatorname{sub}(A)$ is not changed;
if uplo = 'L': lower triangular part; the strictly upper triangular part of $\operatorname{sub}(A)$ is not changed.

Otherwise: all of the matrix $\operatorname{sub}(A)$ is set.
(global)
The number of rows in the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.
(global)
The number of columns in the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$.
(global).
The constant to which the offdiagonal elements are to be set.
(global).
The constant to which the diagonal elements are to be set.

Output Parameters

a
(local).
Pointer into the local memory to an array of size Ild_a * LOCc (ja+n-1).
This array contains the local pieces of the distributed matrix sub (A) to be set. On exit, the leading m-by- n matrix $\operatorname{sub}(A)$ is set as follows:
if uplo $=$ 'U', $A(i a+i-1, j a+j-1)=$ alpha, $1 \leq i \leq j-1,1 \leq j \leq n$,
if uplo $=$ 'L', $A(i a+i-1, j a+j-1)=$ alpha, $j+1 \leq i \leq m, 1 \leq j \leq n$,
otherwise, $A(i a+i-1, j a+j-1)=a l p h a, 1 \leq i \leq m, 1 \leq j \leq n, i a+i \neq j a+j$, and, for all uplo, $A(i a+i-1, j a+i-1)=$ beta, $1 \leq i \leq \min (m, n)$.
ia, ja
desca
(global)
The column and row indices in the distributed matrix A indicating the first row and column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local)
Array of size dlen_. The array descriptor for the distributed matrix A.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?lasmsub

Looks for a small subdiagonal element from the bottom of the matrix that it can safely set to zero.

Syntax

```
void pslasmsub (const float *a, const MKL_INT * desca, const MKL_INT *i, const MKL_INT
*l, MKL_INT *k, const float *smlnum, float *buf, const MKL_INT *lwork );
void pdlasmsub (const double *a, const MKL_INT *desca, const MKL_INT *i, const MKL_INT
*I, MKL_INT *k, const double *smlnum, double *buf, const MKL_INT *lwork );
void pclasmsub (const MKL_Complex8 *a , const MKL_INT *desca , const MKL_INT *i , const
MKL_INT *I , MKL_INT *k , const float *smlnum, MKL_Complex8 *buf , const MKL_INT
*lwork );
void pzlasmsub (const MKL_Complexl6 *a , const MKL_INT *desca , const MKL_INT *i ,
const MKL_INT * l MKL_INT *k , const double *smlnum , MKL_Complexl6 *buf , const
MKL_INT * lwork );
```


Include Files

- mkl_scalapack.h

Description

The p? lasmsubfunction looks for a small subdiagonal element from the bottom of the matrix that it can safely set to zero. This function performs a global maximum and must be called by all processes.

Input Parameters

a
desca
i
(local)
Array of size Ild_a*LOCc(n_a).
On entry, the Hessenberg matrix whose tridiagonal part is being scanned. Unchanged on exit.
(global and local)
Array of size dlen_. The array descriptor for the distributed matrix A.
(global)
The global location of the bottom of the unreduced submatrix of A. Unchanged on exit.

1

sml num

I work
(global)
The global location of the top of the unreduced submatrix of A.
Unchanged on exit.
(global)
On entry, a "small number" for the given matrix. Unchanged on exit. The machine-dependent constants for the stopping criterion.
(local)
This must be at least 2*ceil(ceil((i-l)/mb_a)/lcm(nprow, npcol)). Here 1 cm is least common multiple and nprowxnpcol is the logical grid size.

Output Parameters

k
(global)
On exit, this yields the bottom portion of the unreduced submatrix. This will satisfy: $1 \leq k \leq i-1$.
(local).
Array of size Iwork.

Application Notes

This routine parallelizes the code from ?lahqr that looks for a single small subdiagonal element.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?lasrt

Sorts the numbers in an array and the corresponding vectors in increasing order.

Syntax

```
void pslasrt (const char* id, const MKL_INT* n, float* d, const float* q, const
MKL_INT* iq, const MKL_INT* jq, const MKL_INT* descq, float* work, const MKL_INT*
lwork, MKL_INT* iwork, const MKL_INT* liwork, MKL_INT* info);
void pdlasrt (const char* id, const MKL_INT* n, double* d, const double* q, const
MKL_INT* iq, const MKL_INT* jq, const MKL_INT* descq, double* work, const MKL_INT*
lwork, MKL_INT* iwork, const MKL_INT* liwork, MKL_INT* info);
```

Include Files

- mkl_scalapack.h

Description

p ? lasrt sorts the numbers in d and the corresponding vectors in q in increasing order.

Input Parameters

id
(global)
= 'I': sort d in increasing order;
n
d
q
liwork
= ' D ': sort d in decreasing order. (NOT IMPLEMENTED YET)
(global)
The number of columns to be operated on i.e the number of columns of the distributed submatrix $\operatorname{sub}(Q) . n>=0$.
(global)
Array, size (n)
(local)
Pointer into the local memory to an array of size $/ I d _q^{*} \operatorname{LOCc}(j q+n-1)$.
This array contains the local pieces of the distributed matrix sub(A) to be copied from.
(global)
The row index in the global array A indicating the first row of sub(Q).
(global)
The column index in the global array A indicating the first column of $\operatorname{sub}(Q)$.
(global and local)
Array of size dlen_.
The array descriptor for the distributed matrix A.
(local)
Array, size (lwork)
(local)
The size of the array work.
$l_{\text {work }}=\operatorname{MAX}(n, N P *(N B+N Q))$, where NP $=\operatorname{numroc}(n, N B, M Y R O W$, IAROW, NPROW $), N Q=$ numroc ($n, N B, M Y C O L, D E S C Q\left(c s r c c_{-}\right)$, NPCOL $)$.
numroc is a ScaLAPACK tool function.
(local)
Array, size (liwork)
(local)
The size of the array iwork.
liwork $=n+2 * \mathrm{NB}+2 * \mathrm{NPCOL}$

Output Parameters

d
info

On exit, the numbers in d are sorted in increasing order.
(global)
= 0: successful exit
< 0: If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

```
p?lassq
Updates a sum of squares represented in scaled form.
```


Syntax

```
void pslassq (MKL_INT *n , float *x , MKL_INT *ix , MKL_INT *jx , MKL_INT *descx ,
```

void pslassq (MKL_INT *n , float *x , MKL_INT *ix , MKL_INT *jx , MKL_INT *descx ,
MKL_INT *incx , float *scale , float *sumsq);
MKL_INT *incx , float *scale , float *sumsq);
void pdlassq (MKL_INT *n , double *x , MKL_INT *ix , MKL_INT *jx , MKL_INT *descx ,
void pdlassq (MKL_INT *n , double *x , MKL_INT *ix , MKL_INT *jx , MKL_INT *descx ,
MKL_INT *incx , double *scale, double *sumsq);
MKL_INT *incx , double *scale, double *sumsq);
void pclassq (MKL_INT *n , MKL_Complex8 *x , MKL_INT *ix , MKL_INT *jx , MKL_INT
void pclassq (MKL_INT *n , MKL_Complex8 *x , MKL_INT *ix , MKL_INT *jx , MKL_INT
*descx , MKL_INT *incx , float *scale, float *sumsq);
*descx , MKL_INT *incx , float *scale, float *sumsq);
void pzlassq (MKL_INT *n , MKL_Complex16 *x , MKL_INT *ix , MKL_INT *jx , MKL_INT
void pzlassq (MKL_INT *n , MKL_Complex16 *x , MKL_INT *ix , MKL_INT *jx , MKL_INT
*descx , MKL_INT *incx , double *scale, double *sumsq);

```
*descx , MKL_INT *incx , double *scale, double *sumsq );
```


Include Files

- mkl_scalapack.h

Description

The p?lassqfunction returns the values $s c l$ and $s m s q$ such that
$s c l^{2} * s m s q=x_{1}^{2}+\ldots+x_{n}^{2}+$ scale ${ }^{2 *}$ sumsq,
where
$\mathrm{x}_{i}=\operatorname{sub}(X)=X\left(i x+(j x-1) * m_{-} x+(i-1){ }^{*} i_{n c x}\right)$ for pslassq/pdlassq,
$x_{i}=\operatorname{sub}(X)=\operatorname{abs}\left(X\left(i x+(j x-1) * m _x+(i-1){ }^{*} i_{n c x}\right)\right.$ for pclassq/pzlassq.
For real functions pslassq/pdlassq the value of sumsq is assumed to be non-negative and scl returns the value
$s c l=\max \left(s c a l e, \operatorname{abs}\left(x_{i}\right)\right)$.
For complex functions pclassq/pzlassq the value of sumsq is assumed to be at least unity and the value of ssq will then satisfy
$1.0 \leq s s q \leq s u m s q+2 n$
Value scale is assumed to be non-negative and scl returns the value

$$
s c l=\max _{i}\left(s c a l e, \operatorname{abs}\left(\operatorname{real}\left(x_{i}\right)\right), \operatorname{abs}\left(\operatorname{aimag}\left(x_{i}\right)\right)\right)
$$

For all functions p?lassq values scale and sumsq must be supplied in scale and sumsq respectively, and scale and sumsq are overwritten by scl and ssq respectively.
All functions p?lassq make only one pass through the vector $\operatorname{sub}(X)$.

Input Parameters

n
(global)
The length of the distributed vector $\operatorname{sub}(x)$.

| x | The array that stores the vector for which a scaled sum of squares is computed: |
| :---: | :---: |
| | $x\left[i x+(j x-1){ }^{*} m_{-} x+i * i n c x\right], 0 \leq i<n$. |
| ix | (global) |
| | The row index in the global matrix X indicating the first row of $\operatorname{sub}(X)$. |
| $j x$ | (global) |
| | The column index in the global matrix X indicating the first column of $\operatorname{sub}(X)$. |
| descx | (global and local) array of size dlen_. |
| | The array descriptor for the distributed matrix X. |
| incx | (global) |
| | The global increment for the elements of X. Only two values of incx are supported in this version, namely 1 and $m_{-} x$. The argument incx must not equal zero. |
| scale | (local). |
| | On entry, the value scale in the equation above. |
| sumsq | (local) |
| | On entry, the value sumsq in the equation above. |

Output Parameters

```
scale
```

sumsq
(local).
On exit, scale is overwritten with $s c l$, the scaling factor for the sum of squares.
(local).
On exit, sumsq is overwritten with the value smsq, the basic sum of squares from which scl has been factored out.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?laswp

Performs a series of row interchanges on a general rectangular matrix.

Syntax

```
void pslaswp (char *direc , char *rowcol , MKL_INT *n , float *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , MKL_INT *k1 , MKL_INT *k2 , MKL_INT *ipiv );
void pdlaswp (char *direc , char *rowcol , MKL_INT *n , double *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_INT *k1 , MKL_INT *k2 , MKL_INT *ipiv );
void pclaswp (char *direc , char *rowcol, MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_INT *k1, MKL_INT *k2 , MKL_INT *ipiv );
void pzlaswp (char *direc , char *rowcol , MKL_INT *n , MKL_Complex16 *a , MKL_INT
*ia, MKL_INT *ja , MKL_INT *desca , MKL_INT *k1, MKL_INT *k2 , MKL_INT *ipiv );
```


Include Files

- mkl_scalapack.h

Description

The p?laswpfunction performs a series of row or column interchanges on the distributed matrix sub $(A)=A(i a: i a+n-1, j a: j a+n-1)$. One interchange is initiated for each of rows or columns $k 1$ through $k 2$ of $\operatorname{sub}(A)$. This function assumes that the pivoting information has already been broadcast along the process row or column. Also note that this function will only work for $k 1-k 2$ being in the same $m b$ (or $n b$) block. If you want to pivot a full matrix, use p?lapiv.

Input Parameters

```
direc
```

(global)
Specifies in which order the permutation is applied:
= ' F ' - forward,
= 'B' - backward.
(global)
Specifies if the rows or columns are permuted:
= 'R' - rows,
$=$ ' C' - columns.
(global)
If rowcol='R', the length of the rows of the distributed matrix A (*, ja:ja+n-1) to be permuted;
If rowcol='C', the length of the columns of the distributed matrix A (ia: ia $+n-1$, *) to be permuted;
(local)
Pointer into the local memory to an array of size IId_a * LOCc (n_a). On entry, this array contains the local pieces of the distributed matrix to which the row/columns interchanges will be applied.
(global)
The row index in the global matrix A indicating the first row of $\operatorname{sub}(A)$.
(global)
The column index in the global matrix A indicating the first column of $\operatorname{sub}(A)$.
(global and local) array of size dlen_.
The array descriptor for the distributed matrix A.
(global)
The first element of ipiv for which a row or column interchange will be done.
(global)
The last element of ipiv for which a row or column interchange will be done.
(local)
Array of size LOCr $\left(m_{-} a\right)+m b$ _a for row pivoting and LOCr $\left(n_{-} a\right)+n b$ a for column pivoting. This array is tied to the matrix A, ipiv $[k]=1$ implies rows (or columns) $k+1$ and $/$ are to be interchanged, $k=0,1, \ldots$, size (ipiv) -1 .

Output Parameters

A
(local)
On exit, the permuted distributed matrix.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p? latra
Computes the trace of a general square distributed
matrix.

Syntax

```
float pslatra (MKL_INT *n , float *a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca );
double pdlatra (MKL_INT *n, double *a, MKL_INT *ia, MKL_INT *ja , MKL_INT *desca );
void pclatra (MKL_Complex8 * , MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca );
void pzlatra (MKL_Complex16 * , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca );
```


Include Files

- mkl_scalapack.h

Description

This function computes the trace of an n-by- n distributed matrix $\operatorname{sub}(A)$ denoting $A(i a: i a+n-1$, ja: ja $+n-1)$. The result is left on every process of the grid.

Input Parameters

| n | (global) |
| :--- | :--- |
| The number of rows and columns to be operated on, that is, the order of | |
| the distributed matrix $\operatorname{sub}(A) . n \geq 0$. | |
| (local). | |
| Pointer into the local memory to an array of size $/ I d _a * \operatorname{LOCc}(j a+n-1)$ | |
| containing the local pieces of the distributed matrix, the trace of which is to | |
| be computed. | |

Output Parameters

val
The value returned by the function.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?latrd

Reduces the first $n b$ rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal/unitary similarity transformation.

Syntax

```
void pslatrd (char *uplo , MKL_INT *n , MKL_INT *nb , float *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , float */d , float *e , float *tau, float *w, MKL_INT *iw,
MKL_INT *jw, MKL_INT *descw , float *work );
void pdlatrd (char *uplo, MKL_INT *n , MKL_INT *nb , double *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca, double *d , double *e, double *tau , double *W, MKL_INT *iw,
MKL_INT *jw, MKL_INT *descw , double *work );
void pclatrd (char *uplo , MKL_INT *n , MKL_INT *nb , MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca , float *d , float *e , MKL_Complex8 *tau , MKL_Complex8
*W , MKL_INT *iw , MKL_INT *jw , MKL_INT *descw , MKL_Complex8 *Work );
void pzlatrd (char *uplo, MKL_INT *n , MKL_INT *nb, MKL_Complex16 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , double *d , double *e , MKL_Complex16 *tau ,
MKL_Complex16 *W , MKL_INT *iw , MKL_INT *jw, MKL_INT *desCw , MKL_Complexl6 *work );
```


Include Files

- mkl_scalapack.h

Description

The p?latrdfunction reduces $n b$ rows and columns of a real symmetric or complex Hermitian matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ to symmetric/complex tridiagonal form by an orthogonal/unitary similarity transformation $Q^{\prime *} \operatorname{sub}(A) * Q$, and returns the matrices V and W, which are needed to apply the transformation to the unreduced part of $\operatorname{sub}(A)$.

If uplo $=\mathrm{U}, \mathrm{p}$? latrd reduces the last $n b$ rows and columns of a matrix, of which the upper triangle is supplied;
if uplo = L, p?latrd reduces the first $n b$ rows and columns of a matrix, of which the lower triangle is supplied.
This is an auxiliary function called by p?sytrd/p?hetrd.

Input Parameters

uplo

(global)
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix $\operatorname{sub}(A)$ is stored:

$$
\begin{aligned}
& \text { = 'U': Upper triangular } \\
& =\mathrm{L}: \text { Lower triangular. }
\end{aligned}
$$

n
(global)
The number of rows and columns to be operated on, that is, the order of the distributed matrix $\operatorname{sub}(A) . n \geq 0$.
(global)
The number of rows and columns to be reduced.
Pointer into the local memory to an array of size IId_a * LOCc (ja+n-1).
On entry, this array contains the local pieces of the symmetric/Hermitian distributed matrix $\operatorname{sub}(A)$.

If uplo $=\mathrm{U}$, the leading n-by- n upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo $=\mathrm{L}$, the leading $n-b y-n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
(global)
The row index in the global matrix A indicating the first row of $\operatorname{sub}(A)$. (global)
The column index in the global matrix A indicating the first column of $\operatorname{sub}(A)$.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(global)
The row index in the global matrix W indicating the first row of sub (W).
(global)
The column index in the global matrix W indicating the first column of $\operatorname{sub}(W)$.
(global and local) array of size dlen_. The array descriptor for the distributed matrix W.
(local)
Workspace array of size $n b _a$.

Output Parameters

a
(local)
On exit, if uplo = 'U', the last $n b$ columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of $\operatorname{sub}(A)$; the elements above the diagonal with the array tau represent the orthogonal/unitary matrix Q as a product of elementary reflectors;
d
e
w

if uplo = ' L ', the first $n b$ columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of $\operatorname{sub}(A)$; the elements below the diagonal with the array tau represent the orthogonal/unitary matrix Q as a product of elementary reflectors.
(local)
Array of size LOCC (ja+n-1).
The diagonal elements of the tridiagonal matrix T : $d[i]=A(i+1, i+1), i=0$, $1, \ldots, \operatorname{LOCC}(j a+n-1)-1 . d$ is tied to the distributed matrix A.
(local)
Array of size LOCC (ja+n-1) if uplo = 'U', LOCC (ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix T :
$e[i]=A(i+1, i+2)$ if uplo = 'U',
$e[i]=A(i+2, i+1)$ if uplo = 'L',
$i=0,1, \ldots, \operatorname{LOCC}(j a+n-1)-1$.
e is tied to the distributed matrix A.
(local)
Array of size $\operatorname{LOCC}(j a+n-1)$. This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix A.
(local)
Pointer into the local memory to an array of size Ild_w* nb_w. This array contains the local pieces of the n-by-nb_w matrix w required to update the unreduced part of $\operatorname{sub}(A)$.

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

$$
Q=H(n) * H(n-1) * \ldots * H(n-n b+1)
$$

Each $H(i)$ has the form

```
H(i) = I - tau* v* V',
```

where tau is a real/complex scalar, and v is a real/complex vector with $v(i: n)=0$ and $v(i-1)=1$; $v(1: i-1)$ is stored on exit in $A(i a: i a+i-1, j a+i)$, and tau in tau[ja+i-2].
If uplo $=L$, the matrix Q is represented as a product of elementary reflectors

$$
Q=H(1) * H(2) * \ldots * H(n b)
$$

Each $H(\mathrm{i})$ has the form

$$
H(i)=I-\operatorname{ta} u^{\star} v^{\star} v^{\prime}
$$

where tau is a real/complex scalar, and v is a real/complex vector with $v(1: i)=0$ and $v(i+1)=1 ; v(i$ $+2: n$) is stored on exit in $A(i a+i+1: i a+n-1, j a+i-1)$, and tau in tau[ja+i-2].

The elements of the vectors v together form the n-by- $n b$ matrix V which is needed, with W, to apply the transformation to the unreduced part of the matrix, using a symmetric/Hermitian rank- $2 k$ update of the form:
$\operatorname{sub}(A) \quad:=\operatorname{sub}(A)-V w^{\prime}-w v^{\prime}$.

The contents of a on exit are illustrated by the following examples with $n=5$ and $n b=2:$

$$
\begin{aligned}
& \text { if } u p 10=' \mathrm{U} \text { ': } \\
& \text { if } u p 10=\text { L': } \\
& {\left[\begin{array}{lllll}
a & a & a & v_{4} & v_{5} \\
& a & a & v_{4} & v_{5} \\
& & a & 1 & v_{5} \\
& & & d & 1 \\
& & & & d
\end{array}\right]\left[\begin{array}{ccccc}
d & & & & \\
1 & d & & & \\
v_{1} & 1 & a & & \\
v_{1} & v_{2} & a & a & \\
v_{1} & v_{2} & a & a & a
\end{array}\right]}
\end{aligned}
$$

where d denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and v_{i} denotes an element of the vector defining $H(\mathrm{i})$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?latrs
Solves a triangular system of equations with the scale factor set to prevent overflow.

Syntax

```
void pslatrs (char *uplo, char *trans , char *diag, char *normin , MKL_INT *n , float
*a ,MKL_INT *ia, MKL_INT *ja , MKL_INT *desca, float *x, MKL_INT *ix , MKL_INT *jx,
MKL_INT *descx, float *scale, float *cnorm, float *work );
void pdlatrs (char *uplo, char *trans , char *diag, char *normin , MKL_INT *n , double
*a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *x , MKL_INT *ix , MKL_INT
*jx , MKL_INT *descx , double *scale, double *cnorm, double *Work );
void pclatrs (char *uplo, char *trans , char *diag, char *normin , MKL_INT *n ,
MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *x ,
MKL_INT *ix , MKL_INT *jx , MKL_INT *descx , float *scale , float *cnorm, MKL_Complex8
*work );
void pzlatrs (char *uplo, char *trans , char *diag, char *normin , MKL_INT *n ,
MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *x ,
MKL_INT *ix , MKL_INT *jx , MKL_INT *descx , double *scale , double *cnorm ,
MKL_Complex16 *work );
```


Include Files

- mkl_scalapack.h

Description

The p? latrsfunction solves a triangular system of equations $A x=\mathrm{s} b, A^{T} X=\mathrm{s} b$ or $A^{H} X=\mathrm{s} b$, where s is a scale factor set to prevent overflow. The description of the function will be extended in the future releases.

Input Parameters

| uplo | Specifies whether the matrix A is upper or lower triangular. $\begin{aligned} & \text { = 'U': Upper triangular } \\ & =' \mathrm{~L} ': \text { Lower triangular } \end{aligned}$ |
| :---: | :---: |
| trans | Specifies the operation applied to $A x$. $\begin{aligned} & ={ }^{\prime} N^{\prime}: \text { Solve } A x=s^{*} b \text { (no transpose) } \\ & =' T^{\prime}: \text { Solve } A^{T} X=s^{*} b \text { (transpose) } \\ & ='^{\prime}: \text { Solve } A^{H} X=s^{*} b \text { (conjugate transpose), } \end{aligned}$
 where s - is a scale factor |
| diag | Specifies whether or not the matrix A is unit triangular. $\begin{aligned} & =' \mathrm{~N}^{\prime}: \text { Non-unit triangular } \\ & =' \mathrm{U} ': \text { Unit triangular } \end{aligned}$ |
| normin | Specifies whether cnorm has been set or not.

 $=$ 'N': cnorm is not set on entry. On exit, the norms will be computed and stored in cnorm. |
| n | The order of the matrix A. $n \geq 0$ |
| a | Array of size Ida* n. Contains the triangular matrix A.
 If uplo $=U$, the leading n-by- n upper triangular part of the array a contains the upper triangular matrix, and the strictly lower triangular part of a is not referenced. |
| | If uplo = 'L', the leading n-by- n lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of a is not referenced.
 If diag = 'U', the diagonal elements of a are also not referenced and are assumed to be 1 . |
| ia, ja | (global) The row and column indices in the global matrix A indicating the first row and the first column of the submatrix A, respectively. |
| desca | (global and local) array of size dlen_. The array descriptor for the distributed matrix A. |
| x $i x$ | Array of size n. On entry, the right hand side b of the triangular system. (global). The row index in the global matrix X indicating the first row of $\operatorname{sub}(x)$. |
| jx | (global) |
| | The column index in the global matrix X indicating the first column of $\operatorname{sub}(X)$. |

```
descx (global and local)
Array of size dlen_. The array descriptor for the distributed matrix X.
    Array of size n. If normin = 'Y', cnorm is an input argument and cnorm[j]
    contains the norm of the off-diagonal part of the (j+1)-th column of the
    matrix }A,j=0,1,\ldots,n-1. If trans = 'N', cnorm[j] must be greater than or
    equal to the infinity-norm, and if trans = 'T' or ' C', cnorm[j] must be
    greater than or equal to the 1-norm.
    (local).
    Temporary workspace.
```


Output Parameters

x
scale
cnorm

On exit, x is overwritten by the solution vector x.
Array of size $/ d a * n$. The scaling factor s for the triangular system as described above.

If scale $=0$, the matrix A is singular or badly scaled, and the vector x is an exact or approximate solution to $A x=0$.

If normin $=$ ' N ', cnorm is an output argument and cnorm[j] returns the 1norm of the off-diagonal part of the $(j+1)$-th column of $A, j=0,1, \ldots, n-1$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?latrz
Reduces an upper trapezoidal matrix to upper triangular form by means of orthogonal/unitary transformations.

Syntax

```
void pslatrz (MKL_INT *m , MKL_INT *n , MKL_INT *I , float *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, float *tau, float *work );
void pdlatrz (MKL_INT *m , MKL_INT *n , MKL_INT *I , double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca , double *tau, double *work );
void pclatrz (MKL_INT *m , MKL_INT *n , MKL_INT *l, MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work );
void pzlatrz (MKL_INT *m , MKL_INT *n , MKL_INT *l , MKL_Complexl6 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *work );
```

Include Files

- mkl_scalapack.h

Description

The p?latrzfunction reduces the $m-b y-n(m \leq n)$ real/complex upper trapezoidal matrix sub $(A)=$ [A(ia:ia+m-1, ja:ja+m-1) A(ia:ia+m-1, ja+n-l:ja+n-1)] to upper triangular form by means of orthogonal/unitary transformations.

The upper trapezoidal matrix $\operatorname{sub}(A)$ is factored as

```
sub (A) =( ( R 0 ) *Z,
```

where Z is an n-by- n orthogonal/unitary matrix and R is an m-by- m upper triangular matrix.

Input Parameters

m
n

1
a
ia
work
(global)
The number of rows in the distributed matrix $\operatorname{sub}(A) . m \geq 0$.
(global)
The number of columns in the distributed matrix $\operatorname{sub}(A) . n \geq 0$.
(global)
The number of columns of the distributed matrix $\operatorname{sub}(A)$ containing the meaningful part of the Householder reflectors. $I>0$.
(local)
Pointer into the local memory to an array of size IId_a * LOCc(ja+n-1). On entry, the local pieces of the m-by- n distributed matrix $\operatorname{sub}(A)$, which is to be factored.
(global)
The row index in the global matrix A indicating the first row of $\operatorname{sub}(A)$.
(global)
The column index in the global matrix A indicating the first column of $\operatorname{sub}(A)$.
(global and local) array of size dlen_.
The array descriptor for the distributed matrix A.
(local)
Workspace array of size /work.

```
lwork}\geqnq0 + max(1, mp0),wher
iroff = mod(ia-1, mb_a),
iCOff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroff, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol),
```

numroc, indxg2p, and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the function
blacs_gridinfo.

Output Parameters

a
On exit, the leading m-by- m upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular matrix R, and elements $n-l+1$ to n of the first m rows of $\operatorname{sub}(A)$, with the array tau, represent the orthogonal/unitary matrix Z as a product of m elementary reflectors.
(local)
Array of sizeLOCr (ja+m-1). This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix A.

Application Notes

The factorization is obtained by Householder's method. The k-th transformation matrix, $Z(k)$, which is used (or, in case of complex functions, whose conjugate transpose is used) to introduce zeros into the ($m-k+$ 1) -th row of $\operatorname{sub}(A)$, is given in the form

$$
Z(k)=\left[\begin{array}{cc}
I & 0 \\
0 & T(k)
\end{array}\right],
$$

where

$$
T(k)=I-\operatorname{tau} * u(k) * u(k)^{\prime}, \quad u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
$$

tau is a scalar and $z(k)$ is an ($n-m$)-element vector. tau and $z(k)$ are chosen to annihilate the elements of the k-th row of $\operatorname{sub}(A)$. The scalar tau is returned in the k-th element of tau, indexed $k-1$, and the vector $u(k)$ in the k-th row of $\operatorname{sub}(A)$, such that the elements of $z(k)$ are in $A(k, m+1), \ldots, A(k$, $n)$. The elements of R are returned in the upper triangular part of $\operatorname{sub}(A)$.
Z is given by

```
Z=Z(1)Z(2)...Z(m).
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lauu2
Computes the product $U^{*} U^{\prime}$ or $L^{\prime}{ }^{*} L$, where U and L
are upper or lower triangular matrices (local
unblocked algorithm).

Syntax

```
void pslauu2 (char *uplo, MKL_INT *n , float *a, MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca );
void pdlauu2 (char *uplo, MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca );
void pclauu2 (char *uplo, MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca );
```

```
void pzlauu2 (char *uplo, MKL_INT *n , MKL_Complexl6 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca );
```

Include Files

- mkl_scalapack.h

Description

The p? lauu2function computes the product $U^{*} U^{\prime}$ or $L^{\prime *} L$, where the triangular factor U or L is stored in the upper or lower triangular part of the distributed matrix

```
sub (A)= A(ia:ia+n-1, ja:ja+n-1).
```

If uplo $=$ ' U ' or ' u ', then the upper triangle of the result is stored, overwriting the factor U in $\operatorname{sub}(A)$.
If uplo $=$ 'L' or ' 1 ', then the lower triangle of the result is stored, overwriting the factor L in $\operatorname{sub}(A)$.
This is the unblocked form of the algorithm, calling BLAS Level 2 Routines. No communication is performed by this function, the matrix to operate on should be strictly local to one process.

Input Parameters

| uplo | (global) |
| :---: | :---: |
| | Specifies whether the triangular factor stored in the matrix $\operatorname{sub}(A)$ is upper or lower triangular: |
| | = U: upper triangular |
| | $=\mathrm{L}$: lower triangular. |
| n | (global) |
| | The number of rows and columns to be operated on, that is, the order of the triangular factor U or $L . n \geq 0$. |
| a | (local) |
| | Pointer into the local memory to an array of size IId_a * LOCc (ja+n-1). On entry, the local pieces of the triangular factor U or L. |
| ia | (global) |
| | The row index in the global matrix A indicating the first row of sub (A). |
| ja | (global) |
| | The column index in the global matrix A indicating the first column of $\operatorname{sub}(A)$. |
| desca | (global and local) array of size dlen_. The array descriptor for the distributed matrix A. |
| Output Parameters | |
| a | (local) |
| | On exit, if uplo = 'U', the upper triangle of the distributed matrix $\operatorname{sub}(A)$ is overwritten with the upper triangle of the product $U^{*} U^{\prime}$; if uplo = 'L', the lower triangle of $\operatorname{sub}(A)$ is overwritten with the lower triangle of the product $L^{\prime *} L$. |

Specifies whether the triangular factor stored in the matrix $\operatorname{sub}(A)$ is upper or lower triangular:
$=\mathrm{U}$: upper triangular
$=\mathrm{L}$: lower triangular.
(global)
The number of rows and columns to be operated on, that is, the order of the triangular factor U or $L . n \geq 0$.
(local)
Pointer into the local memory to an array of size IId_a * LOCc(ja+n-1). On entry, the local pieces of the triangular factor U or L.
(global)
The row index in the global matrix A indicating the first row of $\operatorname{sub}(A)$.
(global)
The column index in the global matrix A indicating the first column of $\operatorname{sub}(A)$.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
On exit, if uplo = 'U', the upper triangle of the distributed matrix $\operatorname{sub}(A)$ is overwritten with the upper triangle of the product $U^{*} U^{\prime}$; if uplo = 'L', product $L^{\prime *} L$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?lauum
Computes the product }\mp@subsup{U}{}{**}\mp@subsup{U}{}{\prime}\mathrm{ or }\mp@subsup{L}{}{\prime}*\mp@subsup{}{}{*}L\mathrm{ , where }U\mathrm{ and }
are upper or lower triangular matrices.
```


Syntax

```
void pslauum (char *uplo, MKL_INT *n , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca );
void pdlauum (char *uplo, MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca );
void pclauum (char *uplo, MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja ,
MKL INT *desca );
void pzlauum (char *uplo, MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca );
```


Include Files

```
- mkl_scalapack.h
```


Description

The p? lauumfunction computes the product $U^{*} U^{\prime}$ or $L^{\prime *} L$, where the triangular factor U or L is stored in the upper or lower triangular part of the matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$.

If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor U in $\operatorname{sub}(A)$. If uplo $=$ 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor L in $\operatorname{sub}(A)$.

This is the blocked form of the algorithm, calling Level 3 PBLAS.

Input Parameters

```
uplo
n
a
ia
ja
(global)
Specifies whether the triangular factor stored in the matrix \(\operatorname{sub}(A)\) is upper or lower triangular:
= 'U': upper triangular
= ' L ': lower triangular.
(global)
The number of rows and columns to be operated on, that is, the order of the triangular factor \(U\) or \(L . n \geq 0\).
(local)
Pointer into the local memory to an array of size lld_a*LOCc (ja+n-1). On entry, the local pieces of the triangular factor \(U\) or \(L\).
(global)
The row index in the global matrix \(A\) indicating the first row of \(\operatorname{sub}(A)\). (global)
```

The column index in the global matrix A indicating the first column of $\operatorname{sub}(A)$.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

Output Parameters

a

(local)

On exit, if uplo = ' U', the upper triangle of the distributed matrix sub (A) is overwritten with the upper triangle of the product $U^{*} U^{\prime}$; if uplo = 'L', the lower triangle of $\operatorname{sub}(A)$ is overwritten with the lower triangle of the product $L^{\prime *} L$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lawil
Forms the Wilkinson transform.

Syntax

```
void pslawil (const MKL_INT *ii, const MKL_INT *jj, const MKL_INT *m, const float *a,
const MKL_INT * desca, const float *h44, const float *h33, const float *h43h34, float
*V );
void pdlawil (const MKL_INT *ii, const MKL_INT *jj, const MKL_INT *m, const double *a,
const MKL_INT * desca, const double *h44, const double *h33, const double *h43h34,
double *V );
void pclawil (const MKL_INT *ii , const MKL_INT *jj , const MKL_INT *m, const
MKL_Complex8 *a , const MKL_INT *desca , const MKL_Complex8 *h44, const MKL_Complex8
*h33 , const MKL_Complex8 *h43h34 , MKL_Complex8 *V );
void pzlawil (const MKL_INT *ii, const MKL_INT *jj , const MKL_INT *m, const
MKL_Complex16 *a , const MKL_INT *desca , const MKL_Complex16 *h44 , const
MKL_Complex16 *h33 , const MKL_Complex16 *h43h34 , MKL_Complex16 *V );
```

Include Files

- mkl_scalapack.h

Description

The p?lawilfunction gets the transform given by $h 44, h 33$, and $h 43 h 34$ into v starting at row m.

Input Parameters

```
ii
jj
```

m
(global)
Number of the process row which owns the matrix element $A(m+2, m+2)$.
(global)
Number of the process column which owns the matrix element $A(m+2, m$ +2).
(global)

On entry, the location from where the transform starts (row m). Unchanged on exit.
a
(local)
Array of size Ild_a*LOCc(n_a).
On entry, the Hessenberg matrix. Unchanged on exit.
(global and local)
Array of size dlen_. The array descriptor for the distributed matrix A. Unchanged on exit.
(global)
These three values are for the double shift $Q R$ iteration. Unchanged on exit.

Output Parameters

V
(global)
Array of size 3 that contains the transform on output.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?org2l/p?ung2l

Generates all or part of the orthogonal/unitary matrix Q from a QL factorization determined by p?geqlf (unblocked algorithm).

Syntax

```
void psorg2l (MKL_INT *m , MKL_INT *n , MKL_INT *k , float *a , MKL_INT *ia , MKL_INT
*ja , MKL_INT *desca , float *tau , float *work, MKL_INT *lwork , MKL_INT *info );
void pdorg2l (MKL_INT *m , MKL_INT *n , MKL_INT *k, double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, double *tau, double *work , MKL_INT *lwork , MKL_INT *info );
void pcung2l (MKL_INT *m , MKL_INT *n , MKL_INT *k, MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT
*lwork , MKL_INT *info );
void pzung2l (MKL_INT *m , MKL_INT *n , MKL_INT *k, MKL_Complex16 *a , MKL_INT *ia,
MKL_INT *ja, MKL_INT *desca, MKL_Complex16 *tau, MKL_Complex16 *work, MKL_INT
*lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?org2l/p?ung2lfunction generates an m-by-n real/complex distributed matrix Q denoting A (ia: ia $+m-1$, ja: ja+n-1) with orthonormal columns, which is defined as the last n columns of a product of k elementary reflectors of order m :
$Q=H(k)^{*} \ldots * H(2) * H(1)$ as returned by p?geqle.

Input Parameters

m
n
k
a
ia
ja
desca
tau
work
lwork
(global)
The number of rows in the distributed submatrix $Q . m \geq 0$.
(global)
The number of columns in the distributed submatrix $Q . m \geq n \geq 0$.
(global)
The number of elementary reflectors whose product defines the matrix Q. $n \geq k \geq 0$.

Pointer into the local memory to an array of size IId_a * LOCc (ja+n-1).
On entry, the j-th column of the matrix stored in amust contain the vector that defines the elementary reflector $H(j), j a+n-k \leq j \leq j a+n-k$, as returned by p?geqle in the k columns of its distributed matrix argument A(ia:*, ja+n-k:ja+n-1).
(global)
The row index in the global matrix A indicating the first row of $\operatorname{sub}(A)$.
(global)
The column index in the global matrix A indicating the first column of $\operatorname{sub}(A)$.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
Array of size LOCC (ja+n-1).
$\operatorname{tau}[j]$ contains the scalar factor of the elementary reflector $H(j+1), j=$ $0,1, \ldots, \operatorname{LOCC}(j a+n-1)-1$, as returned by p?geqle.
(local)
Workspace array of size /work.
(local or global)
The size of the array work.
Iwork is local input and must be at least 1 work $\geq \operatorname{mpa} 0+\max (1$, nqa0), where

```
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol).
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow,
and npcol can be determined by calling the function blacs_gridinfo.
```

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
On exit, this array contains the local pieces of the m-by-n distributed matrix Q.

```
work
```

info
On exit, work[0] returns the minimal and optimal /work.
(local).
$=0$: successful exit
<0 : if the i-th argument is an array and the j-th entry, indexed j-1, had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value,
then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?org2r/p?ung2r

Generates all or part of the orthogonal/unitary matrix
Q from a $Q R$ factorization determined by p?geqrf (unblocked algorithm).

Syntax

```
void psorg2r (MKL_INT *m , MKL_INT *n , MKL_INT *k, float *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, float *tau, float *work, MKL_INT *lwork , MKL_INT *info );
void pdorg2r (MKL_INT *m , MKL_INT *n , MKL_INT *k, double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca, double \startau, double **work, MKL_INT *lwork, MKL_INT *info );
void pcung2r (MKL_INT *m , MKL_INT *n , MKL_INT *k , MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT
*lwork , MKL_INT *info );
void pzung2r (MKL_INT *m , MKL_INT *n , MKL_INT *k, MKL_Complex16 *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *tau , MKL_Complex16 *work , MKL_INT
*lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?org2r/p?ung2rfunction generates an m-by-n real/complex matrix Q denoting A (ia:ia+m-1, ja:ja $+n-1$) with orthonormal columns, which is defined as the first n columns of a product of k elementary reflectors of order m :
$Q=H(1)^{*} H(2)^{*} \ldots * H(k)$
as returned by p?geqre.

Input Parameters

m
n
k
a
ia
ja
desca
tau
work

I work
(global)
The number of rows in the distributed submatrix $Q . m \geq 0$. (global)
The number of columns in the distributed submatrix $Q . m \geq n \geq 0$.
(global)
The number of elementary reflectors whose product defines the matrix Q. n $\geq k \geq 0$.

Pointer into the local memory to an array of sizelld_a * LOCc (ja+n-1)
On entry, the j-th column of the matrix stored in amust contain the vector that defines the elementary reflector $H(j), j a \leq j \leq j a+k-1$, as returned by p ? geqre in the k columns of its distributed matrix argument A(ia:*,ja:ja+k-1).
(global)
The row index in the global matrix A indicating the first row of $\operatorname{sub}(A)$.
(global)
The column index in the global matrix A indicating the first column of $\operatorname{sub}(A)$.
(global and local) array of size dlen_.
The array descriptor for the distributed matrix A.
(local)
Array of size $\operatorname{LOCc}(j a+k-1)$.
$\operatorname{tau}[j]$ contains the scalar factor of the elementary reflector $H(j+1), j=$ $0,1, \ldots, \operatorname{LOCC}(j a+k-1)-1$, as returned by p?geqrf. This array is tied to the distributed matrix A.
(local)
Workspace array of size /work.
(local or global)
The size of the array work.
Iwork is local input and must be at least 1 work $\geq \operatorname{mpa} 0+\max (1$, nqa0 $)$, where

```
iroffa = mod(ia-1, mb_a, icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol).
```

indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and $n p c o l$ can be determined by calling the function blacs_gridinfo.

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
On exit, this array contains the local pieces of the m-by-n distributed matrix Q.
work
info
On exit, work[0] returns the minimal and optimal /work.
(local).
$=0$: successful exit
< 0 : if the i-th argument is an array and the j-th entry, indexed j-1, had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value,
then info $=-i$

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?orgl2/p?ungl2
Generates all or part of the orthogonal/unitary matrix Q from an $L Q$ factorization determined by p?gelqf (unblocked algorithm).

Syntax

```
void psorgl2 (MKL_INT *m , MKL_INT *n , MKL_INT *k , float *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca , float *tau , float *work, MKL_INT *lwork, MKL_INT *info );
void pdorgl2 (MKL_INT *m , MKL_INT *n , MKL_INT *k, double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca , double *tau , double *work, MKL_INT *lwork , MKL_INT *info );
void pcungl2 (MKL_INT *m , MKL_INT *n , MKL_INT *k, MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT
*lwork , MKL_INT *info );
void pzungl2 (MKL_INT *m , MKL_INT *n , MKL_INT *k , MKL_Complex16 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *tau, MKL_Complex16 *work , MKL_INT
*lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?orgl2/p?ungl2function generates a m-by-n real/complex matrix Q denoting $A(i a: i a+m-1$, ja: ja $+n-1$) with orthonormal rows, which is defined as the first m rows of a product of k elementary reflectors of order n

```
Q =H(k)*\ldots*H(2)*H(1) (for real flavors),
Q = (H(k)) H* ...*(H(2)) H*(H(1)) )}\mathrm{ (for complex flavors) as returned by p?gelqf.
```


Input Parameters

m
n
k
a
ia
ja
desca
tau

WORK

I work
(global)
The number of rows in the distributed submatrix $Q . m \geq 0$.
(global)
The number of columns in the distributed submatrix $Q . n \geq m \geq 0$.
(global)
The number of elementary reflectors whose product defines the matrix Q. m $\geq k \geq 0$.

Pointer into the local memory to an array of size IId_a * LOCc (ja+n-1).
On entry, the i-th row of the matrix stored in amust contain the vector that defines the elementary reflector $H(i)$, ia $\leq i \leq i a+k-1$, as returned by p ?gelqf in the k rows of its distributed matrix argument $A(i a: i a+k-1$, ja:*).
(global)
The row index in the global matrix A indicating the first row of $\operatorname{sub}(A)$.
(global)
The column index in the global matrix A indicating the first column of $\operatorname{sub}(A)$.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
Array of size $\operatorname{LOCr}(j a+k-1)$. $\operatorname{tau}[j]$ contains the scalar factor of the elementary reflectors $H(j+1), j=0,1, \ldots, \operatorname{LOCr}(j a+k-1)-1$, as returned by p ? gelqf. This array is tied to the distributed matrix A.
(local)
Workspace array of size /work.
(local or global)
The size of the array work.
Iwork is local input and must be at least 1 work $\geq n q a 0+\max (1, m p a 0)$, where

```
iroffa = mod(ia-1, mb_a),
icoffa}=\operatorname{mod}(ja-1, nb_a)
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol).
```

indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and $n p c o l$ can be determined by calling the function blacs_gridinfo.

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
On exit, this array contains the local pieces of the m-by-n distributed matrix Q.
work
info
On exit, work[0] returns the minimal and optimal /work.
(local)
$=0$: successful exit
< 0: if the i-th argument is an array and the j-th entry, indexed j-1, had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value,
then info $=-i$

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?orgr2/p?ungr2

Generates all or part of the orthogonal/unitary matrix Q from an $R Q$ factorization determined by p?gerqf (unblocked algorithm).

Syntax

```
void psorgr2 (MKL_INT *m , MKL_INT *n , MKL_INT *k , float *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca , float *tau , float *work, MKL_INT *lwork, MKL_INT *info );
void pdorgr2 (MKL_INT *m , MKL_INT *n , MKL_INT *k, double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca , double *tau, double *work, MKL_INT *lwork , MKL_INT *info );
void pcungr2 (MKL_INT *m , MKL_INT *n , MKL_INT *k, MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *tau , MKL_Complex8 *work , MKL_INT
*lwork , MKL_INT *info );
void pzungr2 (MKL_INT *m , MKL_INT *n , MKL_INT *k, MKL_Complexl6 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *tau, MKL_Complex16 *work , MKL_INT
*lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?orgr2/p?ungr2function generates an m-by-n real/complex matrix Q denoting A (ia:ia+m-1, ja:ja $+n-1$) with orthonormal rows, which is defined as the last m rows of a product of k elementary reflectors of order n

```
Q = H(1)*H(2)*\ldots*H(k) (for real flavors);
Q = (H(1)) H*(H(2))}\mp@subsup{)}{}{H}\ldots\mp@subsup{.}{}{*}(H(k)\mp@subsup{)}{}{H}\mathrm{ (for complex flavors) as returned by p?gerqf.
```


Input Parameters

m
n
k
a
ia
ja
desca
tau
work

I work
(global)
The number of rows in the distributed submatrix $Q . m \geq 0$.
(global)
The number of columns in the distributed submatrix $Q . n \geq m \geq 0$.
(global)
The number of elementary reflectors whose product defines the matrix Q. m $\geq k \geq 0$.

Pointer into the local memory to an array of size IId_a * LOCc (ja+n-1).
On entry, the i-th row of the matrix stored in amust contain the vector that defines the elementary reflector $H(i), i a+m-k \leq i \leq i a+m-1$, as returned by p ?gerqf in the k rows of its distributed matrix argument $A(i a+m-k$:ia +m-1, ja:*).
(global)
The row index in the global matrix A indicating the first row of $\operatorname{sub}(A)$.
(global)
The column index in the global matrix A indicating the first column of $\operatorname{sub}(A)$.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
Array of size LOCr (ja+m-1) . tau[j] contains the scalar factor of the elementary reflectors $H(j+1), j=0,1, \ldots, \operatorname{LOCr}(j a+m-1)-1$, as returned by p ? gerqf. This array is tied to the distributed matrix A.
(local)
Workspace array of size Iwork.
(local or global)
The size of the array work.
Iwork is local input and must be at least 1 work \geq nqa0 $+\max (1, \operatorname{mpa} 0)$, where iroffa $=\bmod (i a-1, \operatorname{mb} a), i c o f f a=\bmod \left(j a-1, n b _a\right)$,
iarow $=$ indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol $=$ indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 $=$ numroc (m+iroffa, mb_a, myrow, iarow, nprow),
nqa0 $=$ numroc (n+icoffa, nb_a, mycol, iacol, npcol).
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and $n p c o l$ can be determined by calling the function blacs_gridinfo.

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
On exit, this array contains the local pieces of the m-by- n distributed matrix Q.
work
info
On exit, work[0] returns the minimal and optimal /work.
(local)
$=0$: successful exit
< 0 : if the i-th argument is an array and the j-th entry, indexed j-1, had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value,
then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?orm21/p?unm2l
Multiplies a general matrix by the orthogonal/unitary
matrix from a QL factorization determined by p?geqlf
(unblocked algorithm).

Syntax

```
void psorm2l (char *side , char *trans, MKL_INT *m, MKL_INT *n , MKL_INT *k , float
*a, MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, float *tau , float *c, MKL_INT *ic ,
MKL_INT *jc, MKL_INT *descc , float *work , MKL_INT *lwork, MKL_INT *info );
void pdorm2l (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k , double
*a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca, double *tau , double *C , MKL_INT
*ic, MKL_INT *jc , MKL_INT *descc , double *work, MKL_INT *lwork , MKL_INT *info );
void pcunm2l (char *side , char *trans , MKL_INT *m, MKL_INT *n , MKL_INT *k ,
MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *tau ,
MKL_Complex8 *c , MKL_INT *ic , MKL_INT *jc, MKL_INT *descc , MKL_Complex8 *work ,
MKL_INT *lwork , MKL_INT *info );
void pzunm2l (char *side , char *trans, MKL_INT *m, MKL_INT *n , MKL_INT *k ,
MKL_Complex16 *a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, MKL_Complex16 *tau ,
MKL_Complex16 *C , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex16 *work ,
MKL_INT *lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?orm2l/p?unm2lfunction overwrites the general real/complex m-by-n distributed matrix sub (C) $=C(i c: i c+m-1, j c: j c+n-1)$ with

```
Q*sub(C) if side = 'L' and trans = 'N',or
```



```
flavors), or
sub(C)*Q if side = 'R' and trans = 'N',or
sub(C)* 'T / sub(C)*QH if side = 'R' and trans = 'T' (for real flavors) or trans = 'C' (for complex
flavors).
where \(Q\) is a real orthogonal or complex unitary distributed matrix defined as the product of \(k\) elementary reflectors
\(Q=H(k)^{*} \ldots * H(2) * H(1)\) as returned by p?geqle. \(Q\) is of order \(m\) if side \(=\) ' L ' and of order \(n\) if side \(=\) 'R'.
```


Input Parameters

side
trans
m

(global)

$=$ ' L' : apply Q or Q^{T} for real flavors (Q^{H} for complex flavors) from the left, $=$ ' R^{\prime} : apply Q or Q^{T} for real flavors (Q^{H} for complex flavors) from the right.
(global)
= 'N': apply Q (no transpose)
$=$ ' T ': apply Q^{T} (transpose, for real flavors)
$=$ ' C' : apply Q^{H} (conjugate transpose, for complex flavors)
(global)
The number of rows in the distributed matrix $\operatorname{sub}(C) . m \geq 0$.
(global)
The number of columns in the distributed matrix $\operatorname{sub}(C) . n \geq 0$.
(global)
The number of elementary reflectors whose product defines the matrix Q.
If side $=$ 'L', $m \geq k \geq 0$;
if side $='^{\prime}$ ', $n \geq k \geq 0$.
(local)
Pointer into the local memory to an array of size IId_a * LOCc(ja+k-1).
On entry, the j-th row of the matrix stored in amust contain the vector that defines the elementary reflector $H(j), j a \leq j \leq j a+k-1$, as returned by p?geqlf in the k columns of its distributed matrix argument $A(i a: *, j a: j a$ $+k-1)$. The argument $A(i a: *, j a: j a+k-1)$ is modified by the function but restored on exit.

If side $=$ 'L', lld_a $\geq \max (1, \operatorname{LOCr}(i a+m-1))$, if side $=$ 'R', lld_a $\geq \max (1, \operatorname{LOCr}(i a+n-1))$.
(global)
The row index in the global matrix A indicating the first row of $\operatorname{sub}(A)$.

```
ja
desca
tau
c
ic
jc
descc
work
(global)
The column index in the global matrix \(A\) indicating the first column of \(\operatorname{sub}(A)\).
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
Array of size \(\operatorname{LOCC}(j a+n-1)\). tau[j] contains the scalar factor of the elementary reflector \(H(j+1), j=0,1, \ldots, \operatorname{LOCC}(j a+n-1)-1\), as returned by \(p\) ?geqle. This array is tied to the distributed matrix \(A\).
(local)
Pointer into the local memory to an array of size \(I / d \_c * \operatorname{LOCc}(j c+n-1)\). On entry, the local pieces of the distributed matrix sub (C).
(global)
The row index in the global matrix \(C\) indicating the first row of sub( \(C\) ).
(global)
The column index in the global matrix \(C\) indicating the first column of sub (C).
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
Workspace array of size Iwork.
On exit, work(1) returns the minimal and optimal /work.
(local or global)
The size of the array work.
Iwork is local input and must be at least
```

```
if side = 'L', lwork\geqmpc0 + max(1, nqc0),
```

if side = 'L', lwork\geqmpc0 + max(1, nqc0),
if side = 'R', lwork\geqnqc0 + max(max(1, mpc0), numroc(numroc(n
if side = 'R', lwork\geqnqc0 + max(max(1, mpc0), numroc(numroc(n
+icoffc, nb_a, 0, 0, npcol), nb_a, 0, 0, lcmq)),
+icoffc, nb_a, 0, 0, npcol), nb_a, 0, 0, lcmq)),
where
where
lcmq = lcm/npcol,
lcmq = lcm/npcol,
lcm = iclm(nprow, npcol),
lcm = iclm(nprow, npcol),
iroffc = mod(ic-1, mb_c),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MqcO = numroc(m+icoffc, nb_c, mycol, icrow, nprow),
MqcO = numroc(m+icoffc, nb_c, mycol, icrow, nprow),
NpcO = numroc(n+iroffc, mb_c, myrow, iccol, npcol),

```
NpcO = numroc(n+iroffc, mb_c, myrow, iccol, npcol),
```

ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the function blacs_gridinfo.

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

On exit, c is overwritten by $Q^{*} \operatorname{sub}(C)$, or $Q^{T *} \operatorname{sub}(C) / Q^{H *} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q, \operatorname{or} \operatorname{sub}(C)^{*} Q^{T} / \operatorname{sub}(C)^{*} Q^{H}$
work
info
On exit, work[0] returns the minimal and optimal /work.
(local)
$=0$: successful exit
< 0 : if the i-th argument is an array and the j-th entry, indexed j - 1 , had an illegal value,
then info $=-(i * 100+j)$,
if the i-th argument is a scalar and had an illegal value,
then info $=-i$.

NOTE

The distributed submatrices $A(i a: *, j a: *)$ and $C(i c: i c+m-1, j c: j c+n-1)$ must verify some alignment properties, namely the following expressions should be true:

```
If side = 'L',( mb_a == mb_c && iroffa == iroffc && iarow == icrow )
If side = 'R',( mb_a == nb_c && iroffa == iroffc ).
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?orm2r/p?unm2r

Multiplies a general matrix by the orthogonal/unitary matrix from a QR factorization determined by p?geqrf (unblocked algorithm).

Syntax

```
void psorm2r (char *side , char *trans, MKL_INT *m, MKL_INT *n , MKL_INT *k , float
*a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, float *tau, float *c , MKL_INT *ic ,
MKL_INT *jc, MKL_INT *descc , float *Work , MKL_INT *lwork, MKL_INT *info );
void pdorm2r (char *side , char *trans, MKL_INT *m, MKL_INT *n , MKL_INT *k , double
*a,MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *tau, double *C , MKL_INT
*ic, MKL_INT *jc , MKL_INT *descc , double *work, MKL_INT *lwork , MKL_INT *info );
```

```
void pcunm2r (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k ,
MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *tau ,
MKL_Complex8 *C , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex8 *work ,
MKL_INT *lwork , MKL_INT *info );
void pzunm2r (char *side , char *trans, MKL_INT *m, MKL_INT *n , MKL_INT *k ,
MKL_Complex16 *a, MKL_INT *ia, MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *tau ,
MKL_Complex16 *c , MKL_INT *ic, MKL_INT *jc, MKL_INT *descc , MKL_Complex16 *work ,
MKL_INT *lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?orm2r/p?unm2rfunction overwrites the general real/complex m-by-n distributed matrix sub (C) $=C(i c: i c+m-1, j c: j c+n-1)$ with

```
Q*sub(C) if side = 'L' and trans = 'N', or
Q '* sub(C)/ QH* sub (C) if side = 'L' and trans = 'T' (for real flavors) or trans = 'C' (for complex
flavors), or
sub(C)*Q if side = 'R' and trans = 'N', or
sub(C)* Q'/ sub(C)* Q if side = 'R' and trans = 'T' (for real flavors) or trans = 'C' (for complex
flavors).
```

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary reflectors $Q=H(k) * \ldots * H(2) * H(1)$ as returned by p?geqrf. Q is of order m if side $=$ ' L' and of order n if side $=$ 'R'.

Input Parameters

side
trans
m
n
k

(global)

$=$ 'L': apply Q or Q^{T} for real flavors (Q^{H} for complex flavors) from the left, $=$ 'R': apply Q or Q^{T} for real flavors (Q^{H} for complex flavors) from the right.
(global)
$=$ 'N': apply Q (no transpose)
$=$ ' T^{\prime} : apply Q^{T} (transpose, for real flavors)
$=$ ' C' : apply Q^{H} (conjugate transpose, for complex flavors)
(global)
The number of rows in the distributed matrix $\operatorname{sub}(C) . m \geq 0$.
(global)
The number of columns in the distributed matrix $\operatorname{sub}(C) . n \geq 0$.
(global)
The number of elementary reflectors whose product defines the matrix Q.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ 'R', $n \geq k \geq 0$.
a
(local)
Pointer into the local memory to an array of size IId_a * LOCc (ja+k-1).
On entry, the j-th column of the matrix stored in amust contain the vector that defines the elementary reflector $H(j), j a \leq j \leq j a+k-1$, as returned by p?geqre in the k columns of its distributed matrix argument A (ia:*, ja: ja $+k-1)$. The argument $A(i a: \star, j a: j a+k-1)$ is modified by the function but restored on exit.

```
If side = 'L',lld_a \geq max(1, LOCr(ia+m-1)),
if side = 'R',lld_a \geq max(1, LOCr(ia+n-1)).
```

(global)
The row index in the global matrix A indicating the first row of $\operatorname{sub}(A)$.
(global)
The column index in the global matrix A indicating the first column of $\operatorname{sub}(A)$.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
Array of size LOCC ($j a+k-1$). tau[j] contains the scalar factor of the elementary reflector $H(j+1), j=0,1, \ldots, \operatorname{LOCC}(j a+k-1)-1$, as returned by p ? geqrf. This array is tied to the distributed matrix A.
(local)
Pointer into the local memory to an array of size Ild_c * LOCc(jc+n-1).
On entry, the local pieces of the distributed matrix sub (C).
(global)
The row index in the global matrix C indicating the first row of sub(C).
(global)
The column index in the global matrix C indicating the first column of sub (C).
(global and local) array of size dlen_.
The array descriptor for the distributed matrix C.
(local)
Workspace array of size /work.
(local or global)
The size of the array work.
Iwork is local input and must be at least
if side $=$ 'L', lwork $\geq \operatorname{mpc} 0+\max (1, n q c 0)$,

```
if side = 'R', lwork\geqnqc0 + max(max(1, mpc0), numroc(numroc(n
+icoffc, n.b_a, 0, 0, npcol), nb_a, 0, 0, lcmq)),
```

where
$l_{\mathrm{cmq}}=1 \mathrm{~cm} / \mathrm{npcol}$,
lcm $=$ iclm(nprow, npcol),
iroffc $=\bmod \left(i c-1, m b _c\right)$,
icoffc $=\bmod \left(j c-1, n b _c\right)$,
icrow $=$ indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol $=$ indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MqcO = numroc(m+icoffc, nb_c, mycol, icrow, nprow),
NpcO = numroc (n+iroffc, mb_c, myrow, iccol, npcol),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the function blacs_gridinfo.
If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

C
work
info

On exit, c is overwritten by $Q^{*} \operatorname{sub}(C)$, or $Q^{T *} \operatorname{sub}(C) / Q^{H *} \operatorname{sub}(C)$, or $\operatorname{sub}(C) * Q$, or $\operatorname{sub}(C) * Q^{T} / \operatorname{sub}(C) * Q^{H}$

On exit, work[0] returns the minimal and optimal /work.
(local)
= 0 : successful exit
<0 : if the i-th argument is an array and the j-th entry, indexed j-1, had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value,
then info $=-i$.

NOTE

The distributed submatrices $A(i a: *, j a: *)$ and $C(i c: i c+m-1, j c: j c+n-1)$ must verify some alignment properties, namely the following expressions should be true:

```
If side = 'L', (mb_a == mb_c) && (iroffa == iroffc) && (iarow == icrow).
If side = 'R', (mb_a == nb_c) && (iroffa == iroffc).
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?orml2/p?unml2
 Multiplies a general matrix by the orthogonal/unitary matrix from an LQ factorization determined by p?gelqf (unblocked algorithm).

Syntax

```
void psorml2 (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k , float
*a , MKL_INT *ia, MKL_INT *ja , MKL_INT *desca , float *tau , float *C , MKL_INT *ic ,
MKL_INT *jc , MKL_INT *descc , float *work , MKL_INT *lwork , MKL_INT *info );
void pdorml2 (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k , double
*a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *tau , double *C , MKL_INT
*ic , MKL_INT *jc , MKL_INT *descc , double *work , MKL_INT *lwork , MKL_INT *info );
void pcunml2 (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k ,
MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *tau ,
MKL_Complex8 *C , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex8 *Work ,
MKL_INT *lwork , MKL_INT *info );
void pzunml2 (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *k ,
MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *tau ,
MKL_Complex16 *C , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex16 *Work ,
MKL_INT *lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?orml2/p?unml2function overwrites the general real/complex m-by-n distributed matrix sub
(C) $=C(i c: i c+m-1, j c: j c+n-1)$ with
$Q^{*} \operatorname{sub}(C)$ if side $=$ 'L' and trans $=$ 'N', or
$Q^{T *} \operatorname{sub}(C) / Q^{H *} \operatorname{sub}(C)$ if side $=$ 'L' and trans $={ }^{\prime} T$ ' (for real flavors) or trans $=$ 'C' (for complex flavors), or
$\operatorname{sub}(C) * Q$ if side $=$ ' R ' and trans $=$ 'N', or
$\operatorname{sub}(C) * Q^{T} / \operatorname{sub}(C)^{*} Q^{H}$ if side $=' R$ ' and trans $=' T$ ' (for real flavors) or trans $=$ 'C' (for complex flavors).
where Q is a real orthogonal or complex unitary distributed matrix defined as the product of k elementary reflectors
$\mathrm{Q}=\mathrm{H}(k){ }^{\star} \ldots{ }^{\star} H(2){ }^{*} H(1)$ (for real flavors)
$Q=(H(k))^{H *} \ldots{ }^{*}(H(2))^{H *}(H(1))^{H}$ (for complex flavors)
as returned by p?gelqf. Q is of order m if side $=$ 'L' and of order n if side $=$ 'R'.

Input Parameters

side

(global)

$=$ 'L': apply Q or Q^{T} for real flavors (Q^{H} for complex flavors) from the left, $=$ 'R': apply Q or Q^{T} for real flavors (Q^{H} for complex flavors) from the right.
(global)

```
= 'N': apply Q (no transpose)
= 'T': apply Q (transpose, for real flavors)
= 'C': apply QH (conjugate transpose, for complex flavors)
```

(global)

The number of rows in the distributed matrix $\operatorname{sub}(C) . m \geq 0$. (global)

The number of columns in the distributed matrix $\operatorname{sub}(C) . n \geq 0$.
(global)
The number of elementary reflectors whose product defines the matrix Q.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ 'R', $n \geq k \geq 0$.
(local)
Pointer into the local memory to an array of size
Ild_a * LOCc (ja+m-1) if side='L',
Ild_a * LOCc(ja+n-1) if side='R',
where lld_a \geq max ($1, \operatorname{LOCr}(i a+k-1)$).
On entry, the i-th row of the matrix stored in amust contain the vector that defines the elementary reflector H (i), $i a \leq i \leq i a+k-1$, as returned by p ? gelqf in the k rows of its distributed matrix argument A (ia: ia+k-1, $j a: *)$. The argument $A(i a: i a+k-1, j a: *)$ is modified by the function but restored on exit.
(global)
The row index in the global matrix A indicating the first row of $\operatorname{sub}(A)$.
(global)
The column index in the global matrix A indicating the first column of $\operatorname{sub}(A)$.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
Array of size LOCC ($i a+k-1$). $\operatorname{tau}[i]$ contains the scalar factor of the elementary reflector $H(i+1), i=0,1, \ldots, \operatorname{LOCC}(j a+k-1)-1$, as returned by p ? gelqf. This array is tied to the distributed matrix A.
(local)
Pointer into the local memory to an array of size $/ / d_{-} c * \operatorname{LOCc}(j c+n-1)$. On entry, the local pieces of the distributed matrix sub (C).
(global)
The row index in the global matrix C indicating the first row of sub(C).

```
jc
descc
work
lwork
```


Output Parameters

c
work
info
On exit, c is overwritten by $Q^{*} \operatorname{sub}(C)$, or $Q^{T *} \operatorname{sub}(C) / Q^{H *} \operatorname{sub}(C)$, or $\operatorname{sub}(C) * Q, \operatorname{or} \operatorname{sub}(C) * Q^{T} / \operatorname{sub}(C) * Q^{H}$

On exit, work[0] returns the minimal and optimal /work.
(local)
= 0 : successful exit
< 0 : if the i-th argument is an array and the j-th entry, indexed j - 1 , had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value, then info $=-i$

NOTE

The distributed submatrices $A(i a: *, j a: *)$ and $C(i c: i c+m-1, j c: j c+n-1)$ must verify some alignment properties, namely the following expressions should be true:

```
If side = 'L', (nb_a == mb_c && icoffa == iroffc)
If side = 'R',(nb_a == nb_c && icoffa == icoffc && iacol == iccol).
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?ormr2/p?unmr2

Multiplies a general matrix by the orthogonal/unitary matrix from an $R Q$ factorization determined by p?gerqf (unblocked algorithm).

Syntax

```
void psormr2 (char *side , char *trans, MKL_INT *m, MKL_INT *n , MKL_INT *k , float
*a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca, float *tau , float *C , MKL_INT *ic ,
MKL_INT *jc, MKL_INT *descc , float *work , MKL_INT *lwork , MKL_INT *info );
void pdormr2 (char *side , char *trans , MKL_INT *m, MKL_INT *n , MKL_INT *k , double
*a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, double *tau , double *C , MKL_INT
*ic , MKL_INT *jc , MKL_INT *descc , double *work, MKL_INT *lwork , MKL_INT *info );
void pcunmr2 (char *side , char *trans, MKL_INT *m, MKL_INT *n , MKL_INT *k ,
MKL_Complex8 *a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, MKL_Complex8 *tau ,
MKL_Complex8 *c , MKL_INT *ic, MKL_INT *jc, MKL_INT *descc , MKL_Complex8 *work ,
MKL_INT *lwork , MKL_INT *info );
void pzunmr2 (char *side , char *trans, MKL_INT *m, MKL_INT *n , MKL_INT *k ,
MKL_Complex16 *a , MKL_INT *ia, MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *tau ,
MKL_Complex16 *C , MKL_INT *ic , MKL_INT *jc, MKL_INT *descc , MKL_Complex16 *work ,
MKL_INT *lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?ormr2/p?unmr2function overwrites the general real/complex m-by-n distributed matrix sub (C) $=C(i c: i c+m-1, j c: j c+n-1)$ with
Q^{*} sub (C) if side $=$ 'L' and trans $=$ 'N', or
$Q^{T *} \operatorname{sub}(C) / Q^{H *} \operatorname{sub}(C)$ if side $=$ 'L' and trans $='^{\prime} \mathrm{T}^{\prime}$ (for real flavors) or trans $={ }^{\prime} \mathrm{C}$ ' (for complex flavors), or
$\operatorname{sub}(C)^{*} Q$ if side $=' R$ ' and trans $=' N$ ', or
$\operatorname{sub}(C) * Q^{T} / \operatorname{sub}(C)^{*} Q^{H}$ if side $=' R$ ' and trans $=' T$ ' (for real flavors) or trans $=$ ' C' (for complex flavors).
where Q is a real orthogonal or complex unitary distributed matrix defined as the product of k elementary reflectors
$Q=H(1)^{*} H(2)^{*} \ldots * H(k)$ (for real flavors)
$Q=(H(1))^{H *}(H(2))^{H *} \ldots *(H(k))^{H}$ (for complex flavors)
as returned by p?gerqf. Q is of order m if side $=$ 'L' and of order n if side $=$ 'R'.

Input Parameters

side
trans
m

(global)

$=$ ' L' : apply Q or Q^{T} for real flavors (Q^{H} for complex flavors) from the left, $=$ ' R^{\prime} : apply Q or Q^{T} for real flavors (Q^{H} for complex flavors) from the right.
(global)
= 'N': apply Q (no transpose)
$=$ ' T ': apply Q^{T} (transpose, for real flavors)
= 'C': apply Q^{H} (conjugate transpose, for complex flavors)
(global)
The number of rows in the distributed matrix $\operatorname{sub}(C) . m \geq 0$.
(global)
The number of columns in the distributed matrix sub(C). $n \geq 0$.
(global)
The number of elementary reflectors whose product defines the matrix Q.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ 'R', $n \geq k \geq 0$.
(local)
Pointer into the local memory to an array of size
Ild_a * LOCc(ja+m-1) if side='L',
Ild_a * LOCc(ja+n-1) if side='R',
where lld_a $\geq \max (1, \operatorname{LOCr}(i a+k-1))$.
On entry, the i-th row of the matrix stored in amust contain the vector that defines the elementary reflector H (i), ia $\leq i \leq i a+k-1$, as returned by p ? gerqf in the k rows of its distributed matrix argument $A(i a: i a+k-1$, ja:*).

The argument $A(i a: i a+k-1, j a: *)$ is modified by the function but restored on exit.
(global)
The row index in the global matrix A indicating the first row of $\operatorname{sub}(A)$.
(global)

The column index in the global matrix A indicating the first column of $\operatorname{sub}(A)$.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
Array of size LOCC ($i a+k-1$). tau[j] contains the scalar factor of the elementary reflector $H(j+1), j=0,1, \ldots, \operatorname{LOCC}(j a+k-1)-1$, as returned by p ? gerqf. This array is tied to the distributed matrix A.
(local)
Pointer into the local memory to an array of size $/ I d _c * \operatorname{LOCc}(j c+n-1)$. On entry, the local pieces of the distributed matrix sub (C).
(global)
The row index in the global matrix C indicating the first row of sub(C).
(global)
The column index in the global matrix C indicating the first column of sub (C).
(global and local) array of size dlen_. The array descriptor for the distributed matrix C.
(local)
Workspace array of size Iwork.
(local or global)
The size of the array work.
Iwork is local input and must be at least

```
if side = 'L', lwork\geq mpc0 + max(max(1, nqc0), numroc(numroc(m
+iroffc, mb_a, 0, 0, nprow), mb_a, 0, 0, lcmp)),
if side = 'R', lwork \geq nqc0 + max(1, mpc0),
where lcmp = Icm/nprow,
lcm = iclm(nprow, npcol),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MpcO = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
NqCO = numroc(n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol,
nprow, and npcol can be determined by calling the function
blacs_gridinfo.
```

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c
work
info

On exit, c is overwritten by $Q^{*} \operatorname{sub}(C)$, or $Q^{T *} \operatorname{sub}(C) / Q^{H *} \operatorname{sub}(C)$, or $\operatorname{sub}(C) * Q, \operatorname{or} \operatorname{sub}(C)^{*} Q^{T} / \operatorname{sub}(C) * Q^{H}$

On exit, work[0] returns the minimal and optimal /work.
(local)
$=0$: successful exit
< 0: if the i-th argument is an array and the j-th entry, indexed j-1, had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value,
then info $=-i$.

NOTE

The distributed submatrices $A(i a: *, j a: *)$ and $C(i c: i c+m-1, j c: j c+n-1)$ must verify some alignment properties, namely the following expressions should be true:

```
If side = 'L',(nb_a == mb_c) && (icoffa== iroffC).
If side = 'R',(nb_a == nb_c) && (icoffa== icoffc) && (iacol == iccol).
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?pbtrsv

Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of a banded matrix computed by p?pbtrf.

Syntax

```
void pspbtrsv (char *uplo, char *trans, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs ,
float *a, MKL_INT *ja, MKL_INT *desca , float *b, MKL_INT *ib, MKL_INT *descb ,
float *af, MKL_INT *laf, float *work, MKL_INT *lwork , MKL_INT *info );
void pdpbtrsv (char *uplo, char *trans, MKL_INT *n , MKL_INT *bw , MKL_INT *nrhs ,
double *a , MKL_INT *ja, MKL_INT *desca, double *b, MKL_INT *ib , MKL_INT *descb,
double *af, MKL_INT *laf, double *work, MKL_INT *lwork, MKL_INT *info );
void pcpbtrsv (char *uplo , char *trans, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs ,
MKL_Complex8 *a , MKL_INT *ja , MKL_INT *desca, MKL_Complex8 *b, MKL_INT *ib ,
MKL_INT *descb , MKL_Complex8 *af , MKL_INT *laf , MKL_Complex8 *Work , MKL_INT
*lwork , MKL_INT *info );
```

```
void pzpbtrsv (char *uplo, char *trans, MKL_INT *n , MKL_INT *bw, MKL_INT *nrhs ,
MKL_Complex16 *a , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib ,
MKL_INT *descb , MKL_Complex16 *af , MKL_INT *laf, MKL_Complexl6 *work , MKL_INT
*lwork , MKL_INT *info );
```

Include Files

- mkl_scalapack.h

Description

The p?pbtrsvfunction solves a banded triangular system of linear equations
$A(1: n, j a: j a+n-1) * X=B(j b: j b+n-1,1: n r h s)$
or
$A(1: n, j a: j a+n-1)^{T} * X=B(j b: j b+n-1,1: n r h s)$ for real flavors,
$A(1: n, j a: j a+n-1)^{H *} X=B(j b: j b+n-1,1: n r h s)$ for complex flavors,
where $A(1: n, j a: j a+n-1)$ is a banded triangular matrix factor produced by the Cholesky factorization code p?pbtrf and is stored in $A(1: n, j a: j a+n-1)$ and $a f$. The matrix stored in $A(1: n, j a: j a+n-1)$ is either upper or lower triangular according to uplo.

The function p?pbtrf must be called first.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Input Parameters

```
uplo
trans
n
bw
nrhs
(global) Must be 'U' or 'L'.
If uplo = 'U', upper triangle of \(A(1: n, j a: j a+n-1)\) is stored;
If uplo = 'L', lower triangle of \(A(1: n, j a: j a+n-1)\) is stored.
(global) Must be 'N' or 'T' or 'C'.
If trans = 'N', solve with \(A(1: n, j a: j a+n-1)\);
If trans \(=\) ' \(T\) ' or 'C' for real flavors, solve with \(A(1: n, j a: j a+n-1)^{T}\).
If trans = 'C' for complex flavors, solve with conjugate transpose ( \(A(1: n, j a: j a+n-1)^{H}\).
(global)
The number of rows and columns to be operated on, that is, the order of the distributed submatrix \(A(1: n, j a: j a+n-1) . n \geq 0\).
(global)
The number of subdiagonals in 'L' or ' U ', \(0 \leq b w \leq n-1\).
(global)
The number of right hand sides; the number of columns of the distributed submatrix \(B\) (jb: jb+n-1, 1:nrhs); nrhs \(\geq 0\).
```

a
(local)
Pointer into the local memory to an array with the first size lld_a \geq (bw $+1)$, stored in desca.

On entry, this array contains the local pieces of the n-by- n symmetric banded distributed Cholesky factor L or $L^{T \star} A(1: n, j a: j a+n-1)$.

This local portion is stored in the packed banded format used in LAPACK. See the Application Notes below and the ScaLAPACK manual for more detail on the format of distributed matrices.
(global) The index in the global in the global matrix A that points to the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

If 1D type (dtype_a = 501), then dlen \geq 7;
If 2D type (dtype_a = 1), then dlen ≥ 9.
Contains information on mapping of A to memory. (See ScaLAPACK manual for full description and options.)
(local)
Pointer into the local memory to an array of local lead size $11 d _b \geq n b$.
On entry, this array contains the local pieces of the right hand sides B (jb: jb+n-1, 1:nrhs).
(global) The row index in the global matrix B that points to the first row of the matrix to be operated on (which may be either all of B or a submatrix of $B)$.
(global and local) array of size dlen_. The array descriptor for the distributed matrix B.
If 1D type (dtype_b = 502), then dlen \geq 7;
If 2D type (dtype_b $=1$), then dlen ≥ 9.
Contains information on mapping of B to memory. Please, see ScaLAPACK manual for full description and options.
(local)
The size of user-input auxiliary fill-in space $a f$. Must be laf \geq ($n b$ $\left.+2 * b_{w}\right) * b w$. If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f[0]$.
(local)
The array work is a temporary workspace array of size lwork. This space may be overwritten in between function calls.
(local or global) The size of the user-input workspace work, must be at least 1 work $\geq b w^{*} n r h s$. If 1 work is too small, the minimal acceptable size will be returned in work[0] and an error code is returned.

Output Parameters

```
af
```

(local)
The array af is of size laf. It contains auxiliary fill-in space. The fill-in
space is created in a call to the factorization function p?p.btrf and is stored
in af. If a linear system is to be solved using p?pbtrs after the
factorization function, af must not be altered after the factorization.
On exit, this array contains the local piece of the solutions distributed
matrix X.
On exit, work[0] contains the minimum value of lwork.
(local)
$=0$: successful exit
< 0: if the i-th argument is an array and the j-th entry, indexed j-1, had an
illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value,
then info $=-i$.

Application Notes

If the factorization function and the solve function are to be called separately to solve various sets of righthand sides using the same coefficient matrix, the auxiliary space af must not be altered between calls to the factorization function and the solve function.

The best algorithm for solving banded and tridiagonal linear systems depends on a variety of parameters, especially the bandwidth. Currently, only algorithms designed for the case $N / P \gg b w$ are implemented. These algorithms go by many names, including Divide and Conquer, Partitioning, domain decomposition-type, etc.

The Divide and Conquer algorithm assumes the matrix is narrowly banded compared with the number of equations. In this situation, it is best to distribute the input matrix A one-dimensionally, with columns atomic and rows divided amongst the processes. The basic algorithm divides the banded matrix up into P pieces with one stored on each processor, and then proceeds in 2 phases for the factorization or 3 for the solution of a linear system.

1. Local Phase: The individual pieces are factored independently and in parallel. These factors are applied to the matrix creating fill-in, which is stored in a non-inspectable way in auxiliary space af. Mathematically, this is equivalent to reordering the matrix A as $P A P^{T}$ and then factoring the principal leading submatrix of size equal to the sum of the sizes of the matrices factored on each processor. The factors of these submatrices overwrite the corresponding parts of A in memory.
2. Reduced System Phase: A small ($\left.b w^{\star}(P-1)\right)$ system is formed representing interaction of the larger blocks and is stored (as are its factors) in the space af. A parallel Block Cyclic Reduction algorithm is used. For a linear system, a parallel front solve followed by an analogous backsolve, both using the structure of the factored matrix, are performed.
3. Back Subsitution Phase: For a linear system, a local backsubstitution is performed on each processor in parallel.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?pttrsv

Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of a tridiagonal matrix computed by p?pttrf .

Syntax

```
void pspttrsv (char *uplo, MKL_INT *n , MKL_INT *nrhs, float *d, float *e , MKL_INT
*ja, MKL_INT *desca, float *b, MKL_INT *ib, MKL_INT *descb, float *af, MKL_INT
*laf, float *Work , MKL_INT *lwork , MKL_INT *info );
void pdpttrsv (char *uplo, MKL_INT *n , MKL_INT *nrhs , double *d, double *e , MKL_INT
*ja, MKL_INT *desca, double *b, MKL_INT *ib, MKL_INT *descb, double *af, MKL_INT
*laf, double *work , MKL_INT *lwork , MKL_INT *info );
void pcpttrsv (char *uplo , char *trans , MKL_INT *n , MKL_INT *nrhs , float *d ,
MKL_Complex8 *e , MKL_INT *ja , MKL_INT *desca, MKL_Complex8 *b , MKL_INT *ib ,
MKL_INT *descb , MKL_Complex8 *af, MKL_INT *laf, MKL_Complex8 *work , MKL_INT
*lwork , MKL_INT *info );
void pzpttrsv (char *uplo, char *trans , MKL_INT *n , MKL_INT *nrhs , double *d ,
MKL_Complex16 *e , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib ,
MKL_INT *descb , MKL_Complex16 *af , MKL_INT *laf, MKL_Complex16 *work , MKL_INT
*lwork , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?pttrsvfunction solves a tridiagonal triangular system of linear equations
$A(1: n, j a: j a+n-1) * X=B(j b: j b+n-1,1: n r h s)$
or
$A(1: n, j a: j a+n-1)^{T} * X=B(j b: j b+n-1,1: n r h s)$ for real flavors,
$A(1: n, j a: j a+n-1)^{H *} X=B(j b: j b+n-1,1: n r h s)$ for complex flavors,
where $A(1: n, j a: j a+n-1)$ is a tridiagonal triangular matrix factor produced by the Cholesky factorization code p?pttrf and is stored in $A(1: n, j a: j a+n-1)$ and $a f$. The matrix stored in $A(1: n, j a: j a+n-1)$ is either upper or lower triangular according to uplo.

The function p?pttrf must be called first.

Input Parameters

uplo
trans
(global) Must be 'U' or 'L'.
If uplo = 'U', upper triangle of $A(1: n, j a: j a+n-1)$ is stored;
If uplo = 'L', lower triangle of $A(1: n, j a: j a+n-1)$ is stored.
(global) Must be 'N' or 'C'.
If trans $=$ 'N', solve with $A(1: n, j a: j a+n-1)$;
If trans = ' C' (for complex flavors), solve with conjugate transpose ($A(1: n, j a: j a+n-1))^{H}$.
n
(global)
The number of rows and columns to be operated on, that is, the order of the distributed submatrix $A(1: n, j a: j a+n-1) . n \geq 0$.
(global)
The number of right hand sides; the number of columns of the distributed submatrix $B(j b: j b+n-1,1: n r h s) ; n r h s \geq 0$.
(local)
Pointer to the local part of the global vector storing the main diagonal of the matrix; must be of size $\geq n b _a$.
(local)
Pointer to the local part of the global vector $d u$ storing the upper diagonal of the matrix; must be of size $\geq n b _a$. Globally, $d u(n)$ is not referenced, and $d u$ must be aligned with d.
(global) The index in the global matrix A that points to the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

If 1D type (dtype_a $=501$ or 502), then dlen ≥ 7;
If 2D type (dtype_a $=1$), then dlen ≥ 9.
Contains information on mapping of A to memory. See ScaLAPACK manual for full description and options.
(local)
Pointer into the local memory to an array of local lead size $11 d_{-} b \geq n b$.
On entry, this array contains the local pieces of the right hand sides B (jb: jb+n-1, 1:nrhs).
(global) The row index in the global matrix B that points to the first row of the matrix to be operated on (which may be either all of B or a submatrix of $B)$.
(global and local) array of size dlen_. The array descriptor for the distributed matrix B.

If 1D type (dtype_b = 502), then dlen ≥ 7;
If 2D type (dtype_b = 1), then dlen ≥ 9.
Contains information on mapping of B to memory. See ScaLAPACK manual for full description and options.
(local)
The size of user-input auxiliary fill-in space af. Must be laf \geq (nb +2 *bw) *bw.

If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in af[0].
(local)

The array work is a temporary workspace array of size lwork. This space may be overwritten in between function calls.
(local or global) The size of the user-input workspace work, must be at least 1 work $\geq(10+2 * \min (100$, nrhs $)) * n p c o l+4 *$ nrhs. If lwork is too small, the minimal acceptable size will be returned in work[0] and an error code is returned.

Output Parameters

d, e
(local).
On exit, these arrays contain information on the factors of the matrix.
(local)
The array $a f$ is of size laf. It contains auxiliary fill-in space. The fill-in space is created in a call to the factorization function p?pbtrf and is stored in af. If a linear system is to be solved using p?pttrs after the factorization function, af must not be altered after the factorization.

On exit, this array contains the local piece of the solutions distributed matrix X.

On exit, work[0] contains the minimum value of lwork. (local)
= 0 : successful exit
< 0 : if the i-th argument is an array and the j-th entry, indexed j - 1 , had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value,
then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?potf2

Computes the Cholesky factorization of a symmetric/
Hermitian positive definite matrix (local unblocked
algorithm).

Syntax

```
void pspotf2 (char *uplo, MKL_INT *n , float *a, MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , MKL_INT *info );
void pdpotf2 (char *uplo, MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , MKL_INT *info );
void pcpotf2 (char *uplo, MKL_INT *n , MKL_Complex8 *a, MKL_INT *ia, MKL_INT *ja,
MKL_INT *desca , MKL_INT *info );
void pzpotf2 (char *uplo, MKL_INT *n , MKL_Complex16 *a, MKL_INT *ia , MKL_INT *ja,
MKL_INT *desca , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The p?potf2function computes the Cholesky factorization of a real symmetric or complex Hermitian positive definite distributed matrix sub (A)=A(ia:ia+n-1, ja:ja+n-1).
The factorization has the form

```
sub}(A)=\mp@subsup{U}{}{\prime*}U\mathrm{ , if uplo = 'U', or sub (A) = L*'L', if uplo = 'L',
```

where U is an upper triangular matrix, L is lower triangular. X^{\prime} denotes transpose (conjugate transpose) of X.

Input Parameters

uplo
n
a

Output Parameters

a
(global)
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix A is stored.
$=' U ':$ upper triangle of sub (A) is stored;
$=' L ':$ lower triangle of sub (A) is stored.
(global)
The number of rows and columns to be operated on, that is, the order of the distributed matrix sub (A). $n \geq 0$.
(local)
Pointer into the local memory to an array of size IId_a * LOCC(ja+n-1) containing the local pieces of the n-by-n symmetric distributed matrix $\operatorname{sub}(A)$ to be factored.

If uplo = 'U', the leading n-by-n upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular matrix and the strictly lower triangular part of this matrix is not referenced.
If uplo = 'L', the leading n-by- n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular matrix and the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
(global)
The row and column indices in the global matrix A indicating the first row and the first column of the $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
On exit,
if uplo = 'U', the upper triangular part of the distributed matrix contains the Cholesky factor U;
if uplo = 'L', the lower triangular part of the distributed matrix contains the Cholesky factor L.

```
info
(local)
= 0: successful exit
< 0: if the i-th argument is an array and the j-th entry, indexed j-1, had an
illegal value,
then info = - (i*100 +j),
if the i-th argument is a scalar and had an illegal value,
then info = -i
> 0: if info = k, the leading minor of order k is not positive definite, and
the factorization could not be completed.
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p? rot
Applies a planar rotation to two distributed vectors.

Syntax

```
void psrot(MKL_INT* n, float* x, MKL_INT* ix, MKL_INT* jx, MKL_INT* descx, MKL_INT*
incx, float* y, MKL_INT* iy, MKL_INT* jy, MKL_INT* descy, MKL_INT* incy, float* cs,
float* sn, float* work, MKL_INT* lwork, MKL_INT* info);
void pdrot(MKL_INT* n, double* x, MKL_INT* ix, MKL_INT* jx, MKL_INT* descx, MKL_INT*
incx, double* y, MKL_INT* iy, MKL_INT* jy, MKL_INT* descy, MKL_INT* incy, double* cs,
double* sn, double* work, MKL_INT* lwork, MKL_INT* info);
```

Include Files

- mkl_scalapack.h

Description

p?rot applies a planar rotation defined by $c s$ and $s n$ to the two distributed vectors $\operatorname{sub}(x)$ and $\operatorname{sub}(y)$.

Input Parameters

n

X
ix
jx
descx
(global)
The number of elements to operate on when applying the planar rotation to x and $y(n \geq 0)$.
(local) array of size $\left((j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$
This array contains the entries of the distributed vector $\operatorname{sub}(x)$.
(global)
The global row index of the submatrix of the distributed matrix x to operate on. If $i n c x=1$, then it is required that $i x=i y .1 \leq i x \leq m _x$.
(global)
The global column index of the submatrix of the distributed matrix x to operate on. If incx $=m_{-} x$, then it is required that $j x=j y$. $1 \leq i x \leq n _x$.
(global and local) array of size 9

The array descriptor of the distributed matrix x.
(global)
The global increment for the elements of x. Only two values of incx are supported in this version, namely 1 and $m_{-} x$. Moreover, it must hold that incx $=m_{-} x$ if incy $=m_{-} y$ and that incx $=1$ if incy $=1$.
(local) array of size ((jy-1)*m_y +iy+(n-1)*abs(incy))
This array contains the entries of the distributed vector $\operatorname{sub}(y)$.
(global)
The global row index of the submatrix of the distributed matrix y to operate on. If incy $=1$, then it is required that $i y=i x .1 \leq i y \leq m _y$.
(global)
The global column index of the submatrix of the distributed matrix y to operate on. If incy $=m_{-} x$, then it is required that $j y=j x .1 \leq j y \leq m_{-} y$.
(global and local) array of size 9
The array descriptor of the distributed matrix y.
(global)
The global increment for the elements of y. Only two values of incy are supported in this version, namely 1 and $m_{-} y$. Moreover, it must hold that incy $=m_{-} y$ if incx $=m_{-} x$ and that incy $=1$ if incx $=1$.
(global)
The parameters defining the properties of the planar rotation. It must hold that $0 \leq c s, s n \leq 1$ and that $s n^{2}+c s^{2}=1$. The latter is hardly checked in finite precision arithmetics.
(local workspace) array of size lwork
(local)
The length of the workspace array work.
If incx $=1$ and incy $=1$, then 1 work $=2 * m^{*} x$
If lwork $=-1$, then a workspace query is assumed; the function only calculates the optimal size of the work array, returns this value as the first entry of the IWORK array, and no error message related to LIWORK is issued by pxerbla.

OUTPUT Parameters

```
x
y
work[0]
info
```

On exit, if info $=0$, work[0] returns the optimal lwork
(global)
= 0: successful exit
<0 : if info $=-i$, the i-th argument had an illegal value.

If the i-th argument is an array and the j-th entry, indexed j - 1 , had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also
 p?rscl
 Multiplies a vector by the reciprocal of a real scalar.

Overview for details of ScaLAPACK array descriptor structures and related notations.

Syntax

```
void psrscl (MKL_INT *n , float *sa , float *sx , MKL_INT *ix , MKL_INT *jx , MKL_INT
*descx , MKL_INT *incx );
void pdrscl (MKL_INT *n , double *sa , double *sx , MKL_INT *ix , MKL_INT *jx , MKL_INT
*descx , MKL_INT *incx );
void pcsrscl (MKL_INT *n , float *sa , MKL_Complex8 *sx , MKL_INT *ix , MKL_INT *jx ,
MKL_INT *descx , MKL_INT *incx );
void pzdrscl (MKL_INT *n , double *sa , MKL_Complex16 *sx , MKL_INT *ix , MKL_INT *jx ,
MKL_INT *descx , MKL_INT *incx );
```


Include Files

```
- mkl_scalapack.h
```


Description

The p?rsclfunction multiplies an n-element real/complex vector $\operatorname{sub}(X)$ by the real scalar $1 / a$. This is done without overflow or underflow as long as the final result $\operatorname{sub}(X) /$ a does not overflow or underflow.

```
sub(X) denotes X(ix:ix+n-1, jx:jx), if incx = 1,
and X(ix:ix, jx:jx+n-1), if incx = m_x.
```


Input Parameters

| n | (global) |
| :---: | :---: |
| | The number of components of the distributed vector $\operatorname{sub}(X) . n \geq 0$. |
| sa | The scalar a that is used to divide each component of the vector $\operatorname{sub}(X)$. This parameter must be ≥ 0. |
| SX | Array containing the local pieces of a distributed matrix of size of at least $\left((j x-1) * m_{2} x+i x+(n-1) * a b s(i n c x)\right)$. This array contains the entries of the distributed vector $\operatorname{sub}(X)$. |
| ix | (global) The row index of the submatrix of the distributed matrix X to operate on. |
| jx | (global) |
| | The column index of the submatrix of the distributed matrix X to operate on. |
| descx | (global and local) |
| | Array of size 9. The array descriptor for the distributed matrix X. |

The increment for the elements of X. This version supports only two values of incx, namely 1 and $m_{-} x$.

Output Parameters

$S X$
On exit, the result x / a.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?sygs2/p?hegs2

Reduces a symmetric/Hermitian positive-definite generalized eigenproblem to standard form, using the factorization results obtained from p?potrf (local unblocked algorithm).

Syntax

```
void pssygs2 (MKL_INT *ibtype , char *uplo, MKL_INT *n , float *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca, float *b , MKL_INT *ib, MKL_INT *jb, MKL_INT *descb,
MKL_INT *info );
void pdsygs2 (MKL_INT *ibtype, char *uplo, MKL_INT *n , double *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , double *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb ,
MKL_INT *info );
void pchegs2 (MKL_INT *ibtype , char *uplo , MKL_INT *n , MKL_Complex8 *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *jb ,
MKL_INT *descb , MKL_INT *info );
void pzhegs2 (MKL_INT *ibtype , char *uplo, MKL_INT *n , MKL_Complex16 *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, MKL_Complex16 *b, MKL_INT *ib, MKL_INT *jb,
MKL_INT *descb , MKL_INT *info );
```

Include Files

- mkl_scalapack.h

Description

The p?sygs $2 / \mathrm{p}$?hegs2function reduces a real symmetric-definite or a complex Hermitian positive-definite generalized eigenproblem to standard form.

Here sub (A) denotes $A(i a: i a+n-1, j a: j a+n-1)$, and sub (B) denotes $B(i b: i b+n-1, j b: j b+n-1)$.
If ibtype $=1$, the problem is

```
sub (A)* * }=\lambda*\mathrm{ sub (B)* *
```

and sub (A) is overwritten by
$\operatorname{inv}\left(U^{T}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$ or inv $(L) * \operatorname{sub}(A) * i n v\left(L^{T}\right)$ - for real flavors, and
$\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$ or inv $(L) * \operatorname{sub}(A) * i n v\left(L^{H}\right)$ - for complex flavors.
If ibtype $=2$ or 3 , the problem is

$$
\operatorname{sub}(A) * \operatorname{sub}(B) x=\lambda * x \text { or } \operatorname{sub}(B) * \operatorname{sub}(A) x=\lambda * x
$$

and sub (A) is overwritten by

```
U*}\operatorname{sub}(A)*\mp@subsup{U}{}{T}\mathrm{ or }\mp@subsup{L}{}{\star*}\mp@subsup{T}{}{*}\mathrm{ sub (A)* L- for real flavors and
U*}\operatorname{sub}(A)*\mp@subsup{U}{}{H}\mathrm{ or LL** H*
```

The matrix sub (B) must have been previously factorized as $U^{T} * U$ or $L^{*} L^{T}$ (for real flavors), or as $U^{H \star} U$ or $L^{*} L^{H}$ (for complex flavors) by p?potrf.

Input Parameters

ibtype

uplo
n
a
ia, ja
desca

B
(global)
$=1$:
compute $\operatorname{inv}\left(U^{T}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$, or $\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{T}\right)$ for real functions,
and $\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$, or inv(L)*sub (A)*inv (L^{H}) for complex functions;
$=2$ or 3 :
compute $U^{\star} \operatorname{sub}(A) \star U^{T}$, or $L^{T \star}$ sub $(A) * L$ for real functions, and $U^{\star} \operatorname{sub}(A) * U^{H}$ or $L^{H *}$ sub $(A) * L$ for complex functions.
(global)
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix $\operatorname{sub}(A)$ is stored, and how $\operatorname{sub}(B)$ is factorized.
$=$ ' U': Upper triangular of $\operatorname{sub}(A)$ is stored and $\operatorname{sub}(B)$ is factorized as $U^{T *} U$ (for real functions) or as $U^{H *} U$ (for complex functions).
$=$ ' L ': Lower triangular of $\operatorname{sub}(A)$ is stored and $\operatorname{sub}(B)$ is factorized as $L^{*} L^{T}$ (for real functions) or as $L^{*} L^{H}$ (for complex functions)
(global)
The order of the matrices $\operatorname{sub}(A)$ and $\operatorname{sub}(B) . n \geq 0$.
(local)
Pointer into the local memory to an array of size IId_a * LOCc (ja+n-1).
On entry, this array contains the local pieces of the n-by- n symmetric/ Hermitian distributed matrix $\operatorname{sub}(A)$.
If uplo = 'U', the leading $n-b y-n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced.

If uplo = 'L', the leading n-by- n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.

(global)

The row and column indices in the global matrix A indicating the first row and the first column of the $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
Pointer into the local memory to an array of size $/ I d _b * \operatorname{LOCc}(j b+n-1)$.

On entry, this array contains the local pieces of the triangular factor from the Cholesky factorization of $\operatorname{sub}(B)$ as returned by p?potrf.
ib, jb
descb

Output Parameters

a
(local)
On exit, if info $=0$, the transformed matrix is stored in the same format as $\operatorname{sub}(A)$.
$=0$: successful exit.
<0 : if the i-th argument is an array and the j-th entry, indexed j-1, had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value,
then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?sytd2/p?hetd2

Reduces a symmetric/Hermitian matrix to real symmetric tridiagonal form by an orthogonal/unitary similarity transformation (local unblocked algorithm).

Syntax

```
void pssytd2 (char *uplo, MKL_INT *n, float *a, MKL_INT *ia, MKL_INT *ja, MKL_INT
*desca, float *d, float *e, float *tau, float *work, MKL_INT *lwork, MKL_INT *info);
void pdsytd2 (char *uplo, MKL_INT *n, double *a, MKL_INT *ia, MKL_INT *ja, MKL_INT
*desca, double *d, double *e, double *tau, double *work, MKL_INT *lwork, MKL_INT *info);
void pchetd2 (char *uplo, MKL_INT *n, MKL_Complex8 *a, MKL_INT *ia, MKL_INT *ja, MKL_INT
*desca, float *d, float *e, MKL_Complex8 *tau, MKL_Complex8 *work, MKL_INT *lwork,
MKL_INT *info);
void pzhetd2 (char *uplo, MKL_INT *n, MKL_Complex16 *a, MKL_INT *ia, MKL_INT *ja,
MKL_INT *desca, double *d, double *e, MKL_Complex16 *tau, MKL_Complex16 *Work, MKL_INT
*lwork, MKL_INT *info);
```


Include Files

- mkl_scalapack.h

Description

The p?sytd2/p?hetd2function reduces a real symmetric/complex Hermitian matrix $\operatorname{sub}(A)$ to symmetric/ Hermitian tridiagonal form T by an orthogonal/unitary similarity transformation:

```
Q'*sub(A)*Q = T, where sub(A) = A(ia:ia+n-1, ja:ja+n-1).
```


Input Parameters

n
a
ia, ja
desca
work
(global)
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix $\operatorname{sub}(A)$ is stored:
= 'U': upper triangular
= 'L': lower triangular
(global)
The number of rows and columns to be operated on, that is, the order of the distributed matrix $\operatorname{sub}(A) . n \geq 0$.
(local)
Pointer into the local memory to an array of size lld_a * $L O C_{C}(j a+n-1)$.
On entry, this array contains the local pieces of the n-by- n symmetric/ Hermitian distributed matrix $\operatorname{sub}(A)$.

If uplo = 'U', the leading n-by- n upper triangular part of sub (A) contains the upper triangular part of the matrix, and the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced.

If uplo = 'L', the leading n-by-n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.

(global)

The row and column indices in the global matrix A indicating the first row and the first column of the $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
(local)
The array work is a temporary workspace array of size Iwork.

Output Parameters

a
d

On exit, if uplo = ' U ', the diagonal and first superdiagonal of $\operatorname{sub}(A)$ are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements above the first superdiagonal, with the array tau, represent the orthogonal/unitary matrix Q as a product of elementary reflectors;
if uplo = 'L', the diagonal and first subdiagonal of A are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements below the first subdiagonal, with the array tau, represent the orthogonal/ unitary matrix Q as a product of elementary reflectors. See the Application Notes below.
(local)
Array of sizeLOCC (ja+n-1). The diagonal elements of the tridiagonal matrix T :
$d[i]=A(i+1, i+1)$, where $i=0,1, \ldots, \operatorname{LOCc}(j a+n-1)-1 ; d$ is tied to the distributed matrix A.
e
(local)
Array of size LOCC(ja+n-1),
if uplo = 'U', LOCC(ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix T :
$e[i]=A(i+1, i+2)$ if uplo $=$ 'U',
$e[i]=A(i+2, i+1)$ if uplo $=$ 'L',
where $i=0,1, \ldots, \operatorname{LOCc}(j a+n-1)-1$.
e is tied to the distributed matrix A.
(local)
Array of size LOCC (ja+n-1).
The scalar factors of the elementary reflectors. tau is tied to the distributed matrix A.

On exit, work[0] returns the minimal and optimal value of /work.
(local or global)
The size of the workspace array work.
Iwork is local input and must be at least lwork $\geq 3 n$.
If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
(local)
= 0 : successful exit
<0 : if the i-th argument, indexed i-1, is an array and the j-th entry had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value,
then info $=-i$.

Application Notes

If uplo = ' U ', the matrix Q is represented as a product of elementary reflectors
$Q=H(n-1) * \ldots * H(2) * H(1)$
Each H(i) has the form
$H(i)=I-t a u^{\star} V^{\star} V^{\prime}$,
where tau is a real/complex scalar, and v is a real/complex vector with $v(i+1: n)=0$ and $v(i)=1$; $v(1: i-1)$ is stored on exit in $A(i a: i a+i-2, j a+i)$, and tau in tau[ja+i-2].
If uplo = 'L', the matrix Q is represented as a product of elementary reflectors
$Q=H(1) * H(2) * \ldots * H(n-1)$.
Each $H(i)$ has the form
$H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{\prime}$,
where tau is a real/complex scalar, and v is a real/complex vector with $v(1: i)=0$ and $v(i+1)=1 ; v(i$ $+2: n$) is stored on exit in $A(i a+i+1: i a+n-1, j a+i-1)$, and tau in tau[ja+i-2].

The contents of sub (A) on exit are illustrated by the following examples with $n=5$:

$$
\left.\begin{array}{c}
\text { if uplo='U': } \\
{\left[\begin{array}{ccccc}
d & e & v_{2} & v_{3} & v_{4} \\
& d & e & v_{3} & v_{4} \\
& d & e & v_{4} \\
& & & d & e \\
& & & d
\end{array}\right] \quad\left[\begin{array}{cccc}
d & & & \\
e & d & & \\
v 1 & e & d & \\
v 1 & v_{2} & e & d \\
v 1 & v_{2} & v_{3} & e
\end{array}\right]}
\end{array}\right]
$$

where d and e denotes diagonal and off-diagonal elements of T, and v_{i} denotes an element of the vector defining $H(i)$.

NOTE

The distributed matrix sub (A) must verify some alignment properties, namely the following expression should be true:

```
( mb_a==nb_a && iroffa==icoffa ) where iroffa = mod(ia - 1, mb_a) and icoffa =
mod(ja -1, nb_a).
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?trord

Reorders the Schur factorization of a general matrix.

Syntax

```
void pstrord( char* compq, MKL_INT* select, MKL_INT* para, MKL_INT* n, float* t,
MKL_INT* it, MKL_INT* jt, MKL_INT* desct, float* q, MKL_INT* iq, MKL_INT* jq, MKL_INT*
descq, float* wr, float* wi, MKL_INT* m, float* work, MKL_INT* lwork, MKL_INT* iwork,
MKL_INT* liwork, MKL_INT* info);
void pdtrord(char* compq, MKL_INT* select, MKL_INT* para, MKL_INT* n, double* t,
MKL_INT* it, MKL_INT* jt, MKL_INT* desct, double* q, MKL_INT* iq, MKL_INT* jq, MKL_INT*
descq, double* wr, double* wi, MKL_INT* m, double* work, MKL_INT* lwork, MKL_INT* iwork,
MKL_INT* liwork, MKL_INT* info);
```


Include Files

- mkl_scalapack.h

Description

p?trord reorders the real Schur factorization of a real matrix $A=Q^{*} T^{*} Q^{\top}$, so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix T, and the leading columns of Q form an orthonormal basis of the corresponding right invariant subspace.
T must be in Schur form (as returned by p? lahqr), that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks.

This function uses a delay and accumulate procedure for performing the off-diagonal updates.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Input Parameters

compq
select
para
(global)
$=$ 'V': update the matrix q of Schur vectors;
= ' N ': do not update q.
(global) array of size n
select specifies the eigenvalues in the selected cluster. To select a real eigenvalue $w(j)$, select $[j-1]$ must be set to 1 . To select a complex conjugate pair of eigenvalues $w(j)$ and $w(j+1)$, corresponding to a 2-by-2 diagonal block, either select[j-1] or select[j] or both must be set to 1 ; a complex conjugate pair of eigenvalues must be either both included in the cluster or both excluded.
(global)
Block parameters:
para[0] maximum number of concurrent computational windows allowed in the algorithm; $0<$ para[0] \leq min(nprow, npcol) must hold;
number of eigenvalues in each window; $0<$ para[1] < para[2] must hold;
window size; para[1] < para[2] < mb_t must hold;
minimal percentage of FLOPS required for performing matrix-matrix multiplications instead of pipelined orthogonal transformations; 0 $\leq p a r a[3] \leq 100$ must hold;
width of block column slabs for row-wise application of pipelined orthogonal transformations in their factorized form; $0<$ para[4] $\leq m b$ _t must hold.
the maximum number of eigenvalues moved together over a process border; in practice, this will be approximately half of the cross border window size; $0<$ para[5] para[1] must hold.
t

desct
q
iq, jq
descq
work
lwork
iwork
liwork

The order of the globally distributed matrix $t . n \geq 0$.
(local) array of size $/ l d_{-} t * \operatorname{LOC}_{c}(n)$.
The local pieces of the global distributed upper quasi-triangular matrix T, in Schur form.
(global)
The row and column index in the global matrix T indicating the first column of T. it $=j t=1$ must hold (see Application Notes).
(global and local) array of size dlen_.
The array descriptor for the global distributed matrix T.
(local) array of size $I I d _q * L O C_{c}(n)$.
On entry, if compq $=$ ' V ', the local pieces of the global distributed matrix Q of Schur vectors.
If compq $=$ ' N ', q is not referenced.

(global)

The column index in the global matrix Q indicating the first column of Q. iq $=j q=1$ must hold (see Application Notes).
(global and local) array of size dlen_.
The array descriptor for the global distributed matrix Q.
(local workspace) array of size lwork
(local)
The size of the array work.
If 1 work $=-1$, then a workspace query is assumed; the function only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by pxerbla.
(local workspace) array of size liwork
(local)
The size of the array iwork.
If liwork $=-1$, then a workspace query is assumed; the function only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued by pxerbla

OUTPUT Parameters

```
select
```

t
(global) array of size n
The (partial) reordering is displayed.
On exit, t is overwritten by the local pieces of the reordered matrix T, again in Schur form, with the selected eigenvalues in the globally leading diagonal blocks.
q
m
work[0]
iwork[0]
info

On exit, if compq = ' V ', q has been postmultiplied by the global orthogonal transformation matrix which reorders t; the leading m columns of q form an orthonormal basis for the specified invariant subspace.

If compq $=$ ' N ', q is not referenced.
(global) array of size n
The real and imaginary parts, respectively, of the reordered eigenvalues of the matrix T. The eigenvalues are in principle stored in the same order as on the diagonal of T, with $w r[i]=T(i+1, i+1)$ and, if $T(i: i+1, i: i+1)$ is a 2 -by-2 diagonal block, wi[i-1]>0 and $w i[i]=-w i[i-1]$.

Note also that if a complex eigenvalue is sufficiently ill-conditioned, then its value may differ significantly from its value before reordering.
(global)
The size of the specified invariant subspace.

$0 \leq m \leq n$.

On exit, if info $=0$, work[0] returns the optimal lwork.
On exit, if info $=0$, iwork[0] returns the optimal liwork.
(global)
= 0 : successful exit
< 0 : if info $=-i$, the i-th argument had an illegal value. If the i-th argument is an array and the j-th entry, indexed j - 1 , had an illegal value, then info $=-\left(i^{*} 1000+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.
> 0 : here we have several possibilities

- Reordering of t failed because some eigenvalues are too close to separate (the problem is very ill-conditioned);
t may have been partially reordered, and wr and wi contain the eigenvalues in the same order as in t.
On exit, info $=\{$ the index of t where the swap failed (indexing starts at 1) \}.
- A 2-by-2 block to be reordered split into two 1-by-1 blocks and the second block failed to swap with an adjacent block.

On exit, info $=\{$ the index of t where the swap failed $\}$.

- If info $=n+1$, there is no valid BLACS context (see the BLACS documentation for details).

Application Notes

The following alignment requirements must hold:

- $m b _t=n b _t=m b _q=n b _q$
- rsrc_t $=r s r c _q$
- csrc_t $=$ csrc_q

All matrices must be blocked by a block factor larger than or equal to two (3). This is to simplify reordering across processor borders in the presence of 2-by-2 blocks.

This algorithm cannot work on submatrices of t and q, i.e., $i t=j t=i q=j q=1$ must hold. This is however no limitation since p?lahqr does not compute Schur forms of submatrices anyway.

Parallel execution recommendations:

- Use a square grid, if possible, for maximum performance. The block parameters in para should be kept well below the data distribution block size.
- In general, the parallel algorithm strives to perform as much work as possible without crossing the block borders on the main block diagonal.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?trsen
Reorders the Schur factorization of a matrix and
(optionally) computes the reciprocal condition
numbers and invariant subspace for the selected
cluster of eigenvalues.
```


Syntax

```
void pstrsen(char* job, char* compq, MKL_INT* select, MKL_INT* para, MKL_INT* n, float*
```

void pstrsen(char* job, char* compq, MKL_INT* select, MKL_INT* para, MKL_INT* n, float*
t, MKL_INT* it, MKL_INT* jt, MKL_INT* desct, float* q, MKL_INT* iq, MKL_INT* jq,
t, MKL_INT* it, MKL_INT* jt, MKL_INT* desct, float* q, MKL_INT* iq, MKL_INT* jq,
MKL_INT* descq, float* wr, float* wi, MKL_INT* m, float* s, float* sep, float* work,
MKL_INT* descq, float* wr, float* wi, MKL_INT* m, float* s, float* sep, float* work,
MKL_INT* lwork, MKL_INT* iwork, MKL_INT* liwork, MKL_INT* info);
MKL_INT* lwork, MKL_INT* iwork, MKL_INT* liwork, MKL_INT* info);
void pdtrsen(char* job, char* compq, MKL_INT* select, MKL_INT* para, MKL_INT* n, double*
void pdtrsen(char* job, char* compq, MKL_INT* select, MKL_INT* para, MKL_INT* n, double*
t, MKL_INT* it, MKL_INT* jt, MKL_INT* desct, double* q, MKL_INT* iq, MKL_INT* jq,
t, MKL_INT* it, MKL_INT* jt, MKL_INT* desct, double* q, MKL_INT* iq, MKL_INT* jq,
MKL_INT* descq, double* wr, double* wi, MKL_INT* m, double* s, double* sep, double*
MKL_INT* descq, double* wr, double* wi, MKL_INT* m, double* s, double* sep, double*
work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT* liwork, MKL_INT* info);

```
work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT* liwork, MKL_INT* info);
```


Include Files

- mkl_scalapack.h

Description

p?trsen reorders the real Schur factorization of a real matrix $A=Q^{*} T^{*} Q^{\top}$, so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix T, and the leading columns of Q form an orthonormal basis of the corresponding right invariant subspace. The reordering is performed by p?trord.

Optionally the function computes the reciprocal condition numbers of the cluster of eigenvalues and/or the invariant subspace.
T must be in Schur form (as returned by p?lahqr), that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201
Input Parameters
job
(global)

Specifies whether condition numbers are required for the cluster of eigenvalues (s) or the invariant subspace (sep):
$=$ ' N ': no condition numbers are required;
$=$ ' E ': only the condition number for the cluster of eigenvalues is computed (s);
$=$ ' V ': only the condition number for the invariant subspace is computed (sep);
$=$ ' B ': condition numbers for both the cluster and the invariant subspace are computed (s and $s e p$).
(global)
$=$ 'V': update the matrix q of Schur vectors;
$=$ ' N ': do not update q.
(global) array of size n
select specifies the eigenvalues in the selected cluster. To select a real eigenvalue $w(j)$, select $[j-1]$ must be set to a non-zero number. To select a complex conjugate pair of eigenvalues $w(j)$ and $w(j+1)$, corresponding to a 2-by-2 diagonal block, either select[j-1] or select[j] or both must be set to a non-zero number; a complex conjugate pair of eigenvalues must be either both included in the cluster or both excluded.
(global)
Block parameters:

| para[0] | maximum number of concurrent computational windows allowed in the algorithm; 0 < para[0] \leq min(NPROW,NPCOL) must hold; |
| :---: | :---: |
| para[1] | number of eigenvalues in each window; $0<$ para[1] < para[2] must hold; |
| para[2] | window size; para[1] < para[2] < mb_t must hold; |
| para[3] | minimal percentage of flops required for performing matrix-matrix multiplications instead of pipelined orthogonal transformations; 0 \leq para[3] 100 must hold; |
| para[4] | width of block column slabs for row-wise application of pipelined orthogonal transformations in their factorized form; $0<$ para[4] $\leq m b _t$ must hold. |
| para[5] | the maximum number of eigenvalues moved together over a process border; in practice, this will be approximately half of the cross border window size $0<\operatorname{para}[5] \leq$ para[1] must hold; |

(global)
The order of the globally distributed matrix $t . n \geq 0$.

```
t
it,jt
desct
q
iq, jq
descq
work
lwork
iwork
liwork
(local ) array of size \(I I d_{-} t * L O C_{c}(n)\).
The local pieces of the global distributed upper quasi-triangular matrix \(T\), in Schur form.
(global)
The row and column index in the global matrix \(T\) indicating the first column of \(T\). it \(=j t=1\) must hold (see Application Notes).
(global and local) array of size dlen_.
The array descriptor for the global distributed matrix \(T\).
(local ) array of size Ild_q* \(\operatorname{LOC}_{c}(n)\).
On entry, if compq \(=\) ' V ', the local pieces of the global distributed matrix \(Q\) of Schur vectors.
If compq \(=\) ' N ', \(q\) is not referenced.
(global)
The column index in the global matrix \(Q\) indicating the first column of \(Q\). iq \(=j q=1\) must hold (see Application Notes).
(global and local) array of size dlen_.
The array descriptor for the global distributed matrix \(Q\).
(local workspace) array of size lwork
(local )
The size of the array work.
If 1 work \(=-1\), then a workspace query is assumed; the function only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by pxerbla.
(local workspace) array of size liwork
(local )
The size of the array iwork.
If liwork \(=-1\), then a workspace query is assumed; the function only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued by pxerbla.
```


OUTPUT Parameters

t
q
t is overwritten by the local pieces of the reordered matrix T, again in Schur form, with the selected eigenvalues in the globally leading diagonal blocks.

On exit, if compq $=$ ' V ', q has been postmultiplied by the global orthogonal transformation matrix which reorders t; the leading m columns of q form an orthonormal basis for the specified invariant subspace.

If compq $=$ ' N ', q is not referenced.
(global) array of size n
The real and imaginary parts, respectively, of the reordered eigenvalues of the matrix T. The eigenvalues are in principle stored in the same order as on the diagonal of T, with $w r[i]=T(i+1, i+1)$ and, if $T(i: i+1, i: i+1)$ is a 2-by-2 diagonal block, wi[i-1]>0 and $w i[i]=-w i[i-1]$.
Note also that if a complex eigenvalue is sufficiently ill-conditioned, then its value may differ significantly from its value before reordering.
(global)
The size of the specified invariant subspace. $0 \leq m \leq n$.
(global)
If job = ' E ' or ' B ', s is a lower bound on the reciprocal condition number for the selected cluster of eigenvalues. s cannot underestimate the true reciprocal condition number by more than a factor of $\operatorname{sqrt}(n)$. If $m=0$ or n, $s=1$.
If job $=$ ' N ' or ' V ', s is not referenced.
(global)
If job $=$ ' V ' or ' B ', sep is the estimated reciprocal condition number of the specified invariant subspace. If
$m=0$ or n, sep $=\operatorname{norm}(t)$.
If job $=$ ' N ' or ' E ', sep is not referenced.
On exit, if info $=0$, work[0] returns the optimal lwork.
On exit, if info $=0$, iwork[0] returns the optimal liwork.
(global)
= 0: successful exit
< 0: if info $=-i$, the i-th argument had an illegal value.
If the i-th argument is an array and the j-th entry, indexed j - 1 , had an illegal value, then info $=-(i * 1000+j)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.
> 0: here we have several possibilities

- Reordering of t failed because some eigenvalues are too close to separate (the problem is very ill-conditioned); t may have been partially reordered, and wr and wi contain the eigenvalues in the same order as in t.

On exit, info $=\{$ the index of t where the swap failed (indexing starts at 1) \}.

- A 2-by-2 block to be reordered split into two 1-by-1 blocks and the second block failed to swap with an adjacent block.
On exit, info $=\{$ the index of t where the swap failed $\}$.
- If info $=n+1$, there is no valid BLACS context (see the BLACS documentation for details).

Application Notes

The following alignment requirements must hold:

- $m b _t=n b _t=m b _q=n b _q$
- rsrc_t $=r s r c _q$
- csrc_t = csrc_q

All matrices must be blocked by a block factor larger than or equal to two (3). This to simplify reordering across processor borders in the presence of 2-by-2 blocks.

This algorithm cannot work on submatrices of t and q, i.e., $i t=j t=i q=j q=1$ must hold. This is however no limitation since p? lahqr does not compute Schur forms of submatrices anyway.
For parallel execution, use a square grid, if possible, for maximum performance. The block parameters in para should be kept well below the data distribution block size.
In general, the parallel algorithm strives to perform as much work as possible without crossing the block borders on the main block diagonal.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?trti2
Computes the inverse of a triangular matrix (local unblocked algorithm).

Syntax

```
void pstrti2 (char *uplo , char *diag, MKL_INT *n , float *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca , MKL_INT *info );
void pdtrti2 (char *uplo , char *diag , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT
*ja, MKL_INT *desca , MKL_INT *info);
void pctrti2 (char *uplo , char *diag, MKL_INT *n , MKL_Complex8 *a , MKL_INT *ia ,
MKL_INT *ja, MKL_INT *desca , MKL_INT *info );
void pztrti2 (char *uplo , char *diag , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia ,
MKL_INT *ja , MKL_INT *desca , MKL_INT *info );
```


Include Files

```
- mkl_scalapack.h
```


Description

The p?trti2function computes the inverse of a real/complex upper or lower triangular block matrix sub (A) = A(ia:ia+n-1, ja:ja+n-1).

This matrix should be contained in one and only one process memory space (local operation).

Input Parameters

```
uplo
diag
```

(global)
Specifies whether the matrix sub (A) is upper or lower triangular.
$=$ ' U ': sub (A) is upper triangular
$=$ 'L': sub (A) is lower triangular.
(global)

Specifies whether or not the matrix A is unit triangular.
$={ }^{\prime} N^{\prime}$ ': sub (A) is non-unit triangular
$=$ 'U': sub (A) is unit triangular.
n
a
ia, ja
desca
(global)
The number of rows and columns to be operated on, i.e., the order of the distributed submatrix sub (A). $n \geq 0$.
(local)
Pointer into the local memory to an array, size lld_a * LOCc (ja+n-1).
On entry, this array contains the local pieces of the triangular matrix $\operatorname{sub}(A)$.
If uplo = 'U', the leading n-by- n upper triangular part of the matrix $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced.
If uplo = 'L', the leading n-by- n lower triangular part of the matrix $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced. If diag $=$ ' U ', the diagonal elements of $\operatorname{sub}(A)$ are not referenced either and are assumed to be 1 .
(global)
The row and column indices in the global matrix A indicating the first row and the first column of the $\operatorname{sub}(A)$, respectively.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

Output Parameters

a
info
On exit, the (triangular) inverse of the original matrix, in the same storage format.
$=0$: successful exit
<0 : if the i-th argument is an array and the j-th entry, indexed j-1, had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value,
then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
?lahqr2
Updates the eigenvalues and Schur decomposition.

Syntax

```
void clahqr2 (const MKL_INT* wantt, const MKL_INT* wantz, const MKL_INT* n, const
MKL_INT* ilo, const MKL_INT* ihi, MKL_Complex8* h, const MKL_INT* ldh, MKL_Complex8* w,
const MKL_INT* iloz, const MKL_INT* ihiz, MKL_Complex8* z, const MKL_INT* Idz, MKL_INT*
infO);
void zlahqr2 (const MKL_INT* wantt, const MKL_INT* wantz, const MKL_INT* n, const
MKL_INT* ilo, const MKL_INT* ihi, MKL_Complex16* h, const MKL_INT* ldh, MKL_Complex16*
W, const MKL_INT* iloz, const MKL_INT* ihiz, MKL_Complex16* z, const MKL_INT* ldz,
MKL_INT* info);
```


Include Files

```
- mkl_scalapack.h
```


Description

?lahqr2 is an auxiliary routine called by ?hseqr to update the eigenvalues and Schur decomposition already computed by ?hseqr, by dealing with the Hessenberg submatrix in rows and columns ilo to ihi. This version of ?lahgr (not the standard LAPACK version) uses a double-shift algorithm (like LAPACK's ?lahqr). Unlike the standard LAPACK convention, this does not assume the subdiagonal is real, nor does it work to preserve this quality if given.

Input Parameters

| wantt | $\neq 0$: the full Schur form T is required; |
| :--- | :--- |
| | $=0$: only eigenvalues are required. |
| wantz | |
| | $\neq 0$: the matrix of Schur vectors Z is required; |
| | $=0$: Schur vectors are not required. |
| n | |
| | The order of the matrix $H . n>=0$. |

Output Parameters

h

W
z
info

On exit, if want $t \neq 0, h$ is upper triangular in rows and columns ilo:ihi. If wantt $=0$, the contents of h are unspecified on exit.

Array, size (n)
The computed eigenvalues ilo to ihi are stored in the corresponding elements of w. If wan $t \not t \neq 0$, the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in h, with w[i] = H(i, i).

If want $z \neq 0$, on exit z has been updated; transformations are applied only to the submatrix Z (iloz:ihiz,ilo:ihi). If wantz= $0, z$ is not referenced.
$=0$: successful exit
> 0: if info $=i$, ?lahqr failed to compute all the eigenvalues ilo to ihi in a total of 30 (ihi-ilo+1) iterations; elements w[i:ihi - 1] contain those eigenvalues which have been successfully computed.

?lamsh

Sends multiple shifts through a small (single node) matrix to maximize the number of bulges that can be sent through.

Syntax

```
void slamsh (float *s, const MKL_INT *lds, MKL_INT *nbulge, const MKL_INT *jblk, float
*h, const MKL_INT *ldh, const MKL_INT *n, const float *ulp );
void dlamsh (double *s, const MKL_INT *lds, MKL_INT * nbulge, const MKL_INT * jblk,
double *h, const MKL_INT *ldh, const MKL_INT *n, const double *ulp );
void clamsh (MKL_Complex8 *s , const MKL_INT *lds, MKL_INT *nbulge , const MKL_INT
*jblk, MKL_Complex8 *h , const MKL_INT *ldh, const MKL_INT *n , const float *ulp l;
void zlamsh (MKL_Complexl6 *s , const MKL_INT *lds, MKL_INT *nbulge , const MKL_INT
*jblk, MKL_Complex16 *h , const MKL_INT *Idh , const MKL_INT *n , const double *ulp );
```


Include Files

- mkl_scalapack.h

Description

The ? lamshfunction sends multiple shifts through a small (single node) matrix to see how small consecutive subdiagonal elements are modified by subsequent shifts in an effort to maximize the number of bulges that can be sent through. The function should only be called when there are multiple shifts/bulges (nbulge >1) and the first shift is starting in the middle of an unreduced Hessenberg matrix because of two or more small consecutive subdiagonal elements.

Input Parameters

S
lds
nbulge
jblk
h
ldh
n
$u l p$
(local)
Array of size $1 d s^{*} 2^{*} j b l k$.
On entry, the matrix of shifts. Only the 2×2 diagonal of s is referenced. It is assumed that s has $j b l k$ double shifts (size 2).
(local)
On entry, the leading dimension of S; unchanged on exit. $1<$ nbulge $\leq j b l k$ $\leq 1 d s / 2$.
(local)
On entry, the number of bulges to send through $h(>1)$. nbulge should be less than the maximum determined (jblk). $1<n b u l g e \leq j b l k \leq l d s / 2$. (local)

On entry, the number of double shifts determined for S; unchanged on exit.
(local)
Array of size $1 d h^{*} n$.
On entry, the local matrix to apply the shifts on.
h should be aligned so that the starting row is 2 .
(local)
On entry, the leading dimension of H; unchanged on exit.
(local)
On entry, the size of H. If all the bulges are expected to go through, n should be at least 4 nbulge +2 . Otherwise, nbulge may be reduced by this function.
(local)
On entry, machine precision. Unchanged on exit.

Output Parameters

s
nbulge
h

On exit, the data is rearranged in the best order for applying.
On exit, the maximum number of bulges that can be sent through.
On exit, the data is destroyed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?lapst

Sorts the numbers in increasing or decreasing order.

Syntax

```
void slapst (const char* id, const MKL_INT* n, const float* d, MKL_INT* indx, MKL_INT*
infO);
```

```
void dlapst (const char* id, const MKL_INT* n, const double* d, MKL_INT* indx, MKL_INT*
infO);
```


Include Files

- mkl_scalapack.h

Description

?lapst is a modified version of the LAPACK routine ?lasrt.
Define a permutation indx that sorts the numbers in d in increasing order (if id= 'I') or in decreasing order (if $i d=$ ' D ').
Use Quick Sort, reverting to Insertion sort on arrays of size $<=20$. Dimension of STACK limits n to about 2^{32}.

Input Parameters

| id | $=$ 'I': sort d in increasing order; |
| :--- | :--- |
| | $=$ 'D': sort d in decreasing order. |
| n | The length of the array d. |
| d | Array, size (n) |
| | The array to be sorted. |

Output Parameters

```
indx
info =0: successful exit
    < 0: if info = -i, the i-th argument had an illegal value
```


?laqr6
 Performs a single small-bulge multi-shift $Q R$ sweep collecting the transformations.

Syntax

```
void slaqr6(char* job, MKL_INT* wantt, MKL_INT* wantz, MKL_INT* kacc22, MKL_INT* n,
MKL_INT* ktop, MKL_INT* kbot, MKL_INT* nshfts, float* sr, float* si, float* h, MKL_INT*
ldh, MKL_INT* iloz, MKL_INT* ihiz, float* z, MKL_INT* ldz, float* v, MKL_INT* ldv,
float* u, MKL_INT* ldu, MKL_INT* nv, float* wv, MKL_INT* ldwv, MKL_INT* nh, float* wh,
MKL_INT* ldwh);
void dlaqr6(char* job, MKL_INT* wantt, MKL_INT* wantz, MKL_INT* kacc22, MKL_INT* n,
MKL_INT* ktop, MKL_INT* kbot, MKL_INT* nshfts, double* sr, double* si, double* h,
MKL_INT* ldh, MKL_INT* iloz, MKL_INT* ihiz, double* z, MKL_INT* ldz, double* v, MKL_INT*
ldv, double* u, MKL_INT* ldu, MKL_INT* nv, double* wv, MKL_INT* ldwv, MKL_INT* nh,
double* wh, MKL_INT* Idwh);
```


Include Files

- mkl_scalapack.h

Description

This auxiliary function performs a single small-bulge multi-shift QR sweep, moving the chain of bulges from top to bottom in the submatrix $H(k t o p: k b \circ t, k t o p: k b \circ t)$, collecting the transformations in the matrix V or accumulating the transformations in the matrix Z (see below).
This is a modified version of ?laqr5 from LAPACK 3.1.

Input Parameters

| job | Set the kind of job to do in ?laqr6, as follows: |
| :---: | :---: |
| | job = 'I': Introduce and chase bulges in submatrix |
| | job = 'C': Chase bulges from top to bottom of submatrix |
| | job = 'O': Chase bulges off submatrix |
| wantt | wanttis non-zero if the quasi-triangular Schur factor is being computed. wantt is set to zero otherwise. |
| wantz | wantzis non-zero if the orthogonal Schur factor is being computed. wantz is set to zero otherwise. |
| kacc22 | Specifies the computation mode of far-from-diagonal orthogonal updates. = 0: ?laqr 6 does not accumulate reflections and does not use matrixmatrix multiply to update far-from-diagonal matrix entries. |
| | = 1: ? laqr 6 accumulates reflections and uses matrix-matrix multiply to update the far-from-diagonal matrix entries. |
| | = 2: ?laqr6 accumulates reflections, uses matrix-matrix multiply to update the far-from-diagonal matrix entries, and takes advantage of 2-by-2 block structure during matrix multiplies. |
| n | n is the order of the Hessenberg matrix H upon which this function operates. |
| ktop, kbot | These are the first and last rows and columns of an isolated diagonal block upon which the QR sweep is to be applied. It is assumed without a check that either k top $=1$ or $H(k t o p, k t o p-1)=0$ and either $k b o t=n$ or $H(k b o t$ $+1, k b \circ t)=0$. |
| nshfts | nshfts gives the number of simultaneous shifts. nshfts must be positive and even. |
| $s r, s i$ | Array of size nshfts |
| | sr contains the real parts and si contains the imaginary parts of the nshfts shifts of origin that define the multi-shift QR sweep. |
| h | Array of size $1 \mathrm{dh} *{ }_{n}$ |
| | On input h contains a Hessenberg matrix H. |
| 1 dh | $l d h$ is the leading dimension of H just as declared in the calling function. $1 d h \geq \max (1, n)$. |

| iloz, ihiz | Specify the rows of the matrix Zto which transformations must be applied if wantzis non-zero. $1 \leq$ iloz $\leq i h i z \leq n$ |
| :---: | :---: |
| z | Array of size $1 d z * k t o p$ |
| | If wantzis non-zero, then the QR sweep orthogonal similarity transformation is accumulated into the matrix Z(iloz:ihiz,kbot:ktop), stored in the array z, from the right. |
| | If wantzequals zero, then z is unreferenced. |
| $1 d z$ | $l d z$ is the leading dimension of z just as declared in the calling function. $l d z \geq n$. |
| v | (workspace) array of size $1 d v * n s h f t s / 2$ |
| $l d v$ | $l d v$ is the leading dimension of v as declared in the calling function. $1 d v \geq 3$. |
| u | (workspace) array of size $1 \mathrm{du} *\left(3{ }^{*}\right.$ nshfts-3) |
| $1 d u$ | $I d u$ is the leading dimension of u just as declared in the calling function. $1 d u \geq 3^{*}$ nshfts-3. |
| $n h$ | $n h$ is the number of columns in array wh available for workspace. $n h \geq 1$ is required for usage of this workspace, otherwise the updates of the far-from-diagonal elements will be updated without level 3 BLAS. |
| wh | (workspace) array of size ldwh * nh |
| ldwh | Leading dimension of wh just as declared in the calling function. ldwh $\geq 3^{*}{ }^{n s h f t s-3 .}$ |
| nv | $n v$ is the number of rows in $w v$ available for workspace. $n v \geq 1$ is required for usage of this workspace, otherwise the updates of the far-from-diagonal elements will be updated without level 3 BLAS. |
| WV | (workspace) array of size 1 dwv * 3 * nshfts |
| Idwv | scalar |
| | ldwv is the leading dimension of wv as declared in the in the calling function. $l d w v \geq n v$. |

OUTPUT Parameters

h
A multi-shift QR sweep with shifts $s r[j]+i^{*} s i[j]$ is applied to the isolated diagonal block in matrix rows and columns ktop through kbot.

If wantzis non-zero, then the QR sweep orthogonal/unitary similarity transformation is accumulated into the matrix Z (iloz:ihiz,kbot:ktop) from the right.

If wantzequals zero, then z is unreferenced.

Application Notes

Notes
Based on contributions by Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA Robert Granat, Department of Computing Science and HPC2N, Umea University, Sweden

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?lar1va

Computes scaled eigenvector corresponding to given eigenvalue.

Syntax

```
void slarlva(MKL_INT* n, MKL_INT* bl, MKL_INT* bn, float* lambda, float* d, float* l,
float* ld, float* lld, float* pivmin, float* gaptol, float* z, MKL_INT* wantnc, MKL_INT*
negcnt, float* ztz, float* mingma, MKL_INT* r, MKL_INT* isuppz, float* nrminv, float*
resid, float* rqcorr, float* work);
void dlarlva(MKL_INT* n, MKL_INT* bl, MKL_INT* bn, double* lambda, double* d, double* l,
double* ld, double* lld, double* pivmin, double* gaptol, double* z, MKL_INT* wantnc,
MKL_INT* negcnt, double* ztz, double* mingma, MKL_INT* r, MKL_INT* isuppz, double*
nrminv, double* resid, double* rqcorr, double* work);
```


Include Files

- mkl_scalapack.h

Description

?slarlva computes the (scaled) r-th column of the inverse of the submatrix in rows bl through bn of the tridiagonal matrix $L D L^{\top}-\lambda I$. When λ is close to an eigenvalue, the computed vector is an accurate eigenvector. Usually, r corresponds to the index where the eigenvector is largest in magnitude. The following steps accomplish this computation :

1. Stationary qd transform, $L D L^{\top}-\lambda I=L_{+} D_{+} L_{+}{ }^{\top}$,
2. Progressive qd transform, $L D L^{\top}-\lambda I=U_{-} D_{-} U_{-}{ }^{\top}$,
3. Computation of the diagonal elements of the inverse of $L D L^{\top}-\lambda I$ by combining the above transforms, and choosing r as the index where the diagonal of the inverse is (one of the) largest in magnitude.
4. Computation of the (scaled) r-th column of the inverse using the twisted factorization obtained by combining the top part of the stationary and the bottom part of the progressive transform.

Input Parameters

| n | The order of the matrix $L D L^{\top}$. |
| :---: | :---: |
| b1 | First index of the submatrix of $L D L^{\top}$. |
| $b n$ | Last index of the submatrix of $L D L^{\top}$. |
| l ambda | The shift λ. In order to compute an accurate eigenvector, lambda should be a good approximation to an eigenvalue of $L D L^{\top}$. |
| 1 | Array of size $n-1$ |
| | The ($n-1$) subdiagonal elements of the unit bidiagonal matrix L, in elements 0 to $n-2$. |
| d | Array of size n |
| | The n diagonal elements of the diagonal matrix D. |
| $1 d$ | Array of size $n-1$ |
| | The n-1 elements $1[i] * d[i], i=0, \ldots, n-2$. |

| lld | Array of size $n-1$ |
| :---: | :---: |
| | The $n-1$ elements $\left.1[i]^{*}\right][i] * d[i], i=0, \ldots, n-2$. |
| pivmin | The minimum pivot in the Sturm sequence. |
| gaptol | Tolerance that indicates when eigenvector entries are negligible with respect to their contribution to the residual. |
| z | Array of size n |
| | On input, all entries of z must be set to 0 . |
| wantnc | Specifies whether negcnt has to be computed. |
| r | The twist index for the twisted factorization used to compute z. |
| | On input, $0 \leq r \leq n$. If r is input as $0, r$ is set to the index where $\left(L D L^{\top}-\sigma I\right)^{-1}$ is largest in magnitude. If $1 \leq r \leq n, r$ is unchanged. |
| | Ideally, r designates the position of the maximum entry in the eigenvector. |
| work | (Workspace) array of size $4{ }^{*}$ |

OUTPUT Parameters

Z
On output, z contains the (scaled) r-th column of the inverse. The scaling is such that $z[r-1]$ equals 1 .

If wantncis non-zero then negcnt $=$ the number of pivots $<$ pivmin in the matrix factorization $L D L^{\top}$, and negent $=-1$ otherwise.

The square of the 2-norm of z.
The reciprocal of the largest (in magnitude) diagonal element of the inverse of $L D L^{\top}-\sigma I$.

On output, r contains the twist index used to compute z.
array of size 2
The support of the vector in z, i.e., the vector z is non-zero only in elements isuppz[0] and isuppz[1].
nrminv $=1 / \operatorname{SQRT}(z t z)$
The residual of the FP vector.
resid $=\operatorname{ABS}($ mingma $) / \operatorname{SQRT}(z t z)$
The Rayleigh Quotient correction to lambda.

See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.

?laref

Applies Householder reflectors to matrices on their rows or columns.

Syntax

```
void slaref (const char* type, float* a, const MKL_INT* lda, const MKL_INT* wantz,
float* z, const MKL_INT* ldz, const MKL_INT* block, MKL_INT* irowI, MKL_INT* icoll,
const MKL_INT* istart, const MKL_INT* istop, const MKL_INT* itmpl, const MKL_INT*
itmp2, const MKL_INT* liloz, const MKL_INT* lihiz, const float* vecs, float* v2, float*
v3, float* t1, float* t2, float* t3);
void dlaref (const char* type, double* a, const MKL_INT* lda, const MKL_INT* wantz,
double* z, const MKL_INT* ldz, const MKL_INT* block, MKL_INT* irowI, MKL_INT* icoll,
const MKL_INT* istart, const MKL_INT* istop, const MKL_INT* itmpl, const MKL_INT*
itmp2, const MKL_INT* liloz, const MKL_INT* lihiz, const double* vecs, double* v2,
double* v3, double* t1, double* t2, double* t3);
void claref (const char* type, MKL_Complex8* a, const MKL_INT* lda, const MKL_INT*
wantz, MKL_Complex8* z, const MKL_INT* ldz, const MKL_INT* block, MKL_INT* irowl,
MKL_INT* icoll, const MKL_INT* istart, const MKL_INT* istop, const MKL_INT* itmpl,
const MKL_INT* itmp2, const MKL_INT* liloz, const MKL_INT* lihiz, const MKL_Complex8*
vecs, MKL_Complex8* v2, MKL_Complex8* v3, MKL_Complex8* t1, MKL_Complex8* t2,
MKL_Complex8* t3);
void zlaref (const char* type, MKL_Complex16* a, const MKL_INT* lda, const MKL_INT*
wantz, MKL_Complex16* z, const MKL_INT* ldz, const MKL_INT* block, MKL_INT* irowl,
MKL_INT* icoll, const MKL_INT* istart, const MKL_INT* istop, const MKL_INT* itmpl,
const MKL_INT* itmp2, const MKL_INT* liloz, const MKL_INT* lihiz, const MKL_Complex16*
vecs, MKL_Complex16* v2, MKL_Complex16* v3, MKL_Complex16* t1, MKL_Complex16* t2,
MKL_Complex16* t3);
Include Files
```

- mkl_scalapack.h

Description

?laref applies one or several Householder reflectors of size 3 to one or two matrices (if column is specified) on either their rows or columns.

Input Parameters

| type | (local) |
| :--- | :--- |
| | If 'R': Apply reflectors to the rows of the matrix (apply from left) |
| Otherwise: Apply reflectors to the columns of the matrix | |
| Unchanged on exit. | |
| (local) | |
| Array, Ild_a*LOCc(ja+n-1) | |
| On entry, the matrix to receive the reflections. | |
| Ida | |
| | (local) |
| | On entry, the leading dimension of a. |
| Unchanged on exit. | |
| wantz | |
| | |

If want $z \neq 0$, then apply any column reflections to z as well.
If wantz $=0$, then do no additional work on z.
(local)
Array, $1 d z^{*}$ ncols, where the value ncols depends on other arguments. If wantzwantz $\neq 0$ and type \neq 'R' then ncols $=i c o l l+3 *(\operatorname{lhiz}-\operatorname{liloz}+$ 1). Otherwise, ncols is unused.

On entry, the second matrix to receive column reflections.
This is changed only if wantz is set.
(local)
On entry, the leading dimension of z.
Unchanged on exit.
(local)
If nonzero, then apply several reflectors at once and read their data from the vecs array.

If zero, apply the single reflector given by $v 2, v 3, t 1, t 2$, and $t 3$.
(local)
On entry, the local row element of a.
(local)
On entry, the local column element of a.
(local)
Specifies the "number" of the first reflector. This is used as an index into vecs if block is set. istart is ignored if block is zero.
(local)
Specifies the "number" of the last reflector. This is used as an index into vecs if block is set. istop is ignored if block is zero.

Starting range into a. For rows, this is the local first column. For columns, this is the local first row.
(local)
Ending range into a. For rows, this is the local last column. For columns, this is the local last row.
(local)
These serve the same purpose as itmp1, itmp2 but for z when wantz is set.
(local)

Array of size $3^{*} \mathrm{~N}$ (matrix size)

This holds the size 3 reflectors one after another and this is only accessed when block is nonzero
$v 2, v 3, t 1, t 2, t 3$
(local)
This holds information on a single size 3 Householder reflector and is read when block is zero, and overwritten when block is nonzero

Output Parameters

a

Z
irowl
icoll
v2, v3, t1, t2, t3

The updated matrix on exit.
This is changed only if wantz is set.
Undefined on output.
Undefined on output.
Overwritten when block is nonzero.

?larrb2

Provides limited bisection to locate eigenvalues for more accuracy.

Syntax

```
void slarrb2(MKL_INT* n, float* d, float* lld, MKL_INT* ifirst, MKL_INT* ilast, float*
rtoll, float* rtol2, MKL_INT* offset, float* w, float* wgap, float* werr, float* work,
MKL_INT* iwork, float* pivmin, float* lgpvmn, float* lgspdm, MKL_INT* twist, MKL_INT*
info);
void dlarrb2(MKL_INT* n, double* d, double* lld, MKL_INT* ifirst, MKL_INT* ilast,
double* rtoll, double* rtol2, MKL_INT* offset, double* w, double* wgap, double* werr,
double* work, MKL_INT* iwork, double* pivmin, double* lgpvmn, double* lgspdm, MKL_INT*
twist, MKL_INT* info);
```


Include Files

```
- mkl_scalapack.h
```


Description

Given the relatively robust representation (RRR) $L D L^{\top}$, ? larrb2 does "limited" bisection to refine the eigenvalues of $L D L^{\top}$ with indices in a given range to more accuracy. Initial guesses for these eigenvalues are input in w, the corresponding estimate of the error in these guesses and their gaps are input in werr and wgap, respectively. During bisection, intervals [left, right] are maintained by storing their mid-points and semi-widths in the arrays w and werr respectively. The range of indices is specified by the ifirst, ilast, and offset parameters, as explained in Input Parameters.

NOTE

There are very few minor differences between larrb from LAPACK and this current function ?larrb2. The most important reason for creating this nearly identical copy is profiling: in the ScaLAPACK MRRR algorithm, eigenvalue computation using ?larrb2 is used for refinement in the construction of the representation tree, as opposed to the initial computation of the eigenvalues for the root RRR which uses ?larrb. When profiling, this allows an easy quantification of refinement work vs. computing eigenvalues of the root.

Input Parameters

| n | The order of the matrix. | | | |
|---|---|---|---|---|
| d | Array of size n. |
| | The n diagonal elements of the diagonal matrix D. |
| lld | Array of size $n-1$. |
| | The ($n-1$) elements $I_{i+1} * I_{i+1} * d[i], i=0, \ldots, n-2$. |
| ifirst | The index of the first eigenvalue to be computed. |
| ilast | The index of the last eigenvalue to be computed. |
| rtoll, rtol2 | Tolerance for the convergence of the bisection intervals. |
| | An interval [left, right] has converged if right - left < max (rtoll * gap, rtol2 * max(\|/eft|, |right|)) where gap is the (estimated) distance to the nearest eigenvalue. |
| offset | Offset for the arrays w, wgap and werr, i.e., the elements indexed ifirst offset - 1 through ilast - offset -1 of these arrays are to be used. |
| w | Array of size n |
| | On input, w[ifirst - offset - 1] through w[ilast - offset - 1] are estimates of the eigenvalues of $L D L^{\top}$ indexed ifirst through ilast. |
| wgap | Array of size $n-1$. |
| | On input, the (estimated) gaps between consecutive eigenvalues of $L D L^{\top}$, i.e., wgap[I-offset - 1] is the gap between eigenvalues I and $I+1$. Note that if ifirst $=$ ilast then wgap[ifirst - offset - 1] must be set to zero. |
| werr | Array of size n. |
| | On input, werr[ifirst - offset - 1] through werr[ilast - offset - 1] are the errors in the estimates of the corresponding elements in w . |
| work | (workspace) array of size $4 *^{*}$. |
| | Workspace. |
| iwork | (workspace) array of size $2^{*} n$. |
| | Workspace. |
| pivmin | The minimum pivot in the Sturm sequence. |

```
lgpvmn Logarithm of pivmin, precomputed.
lgspdm Logarithm of the spectral diameter, precomputed.
twist
The twist index for the twisted factorization that is used for the negcount.
\[
\begin{aligned}
& \text { twist }=n: \text { Compute negcount from } L D L^{\top}-\lambda I=L_{+} D_{+} L_{+}^{\top} \\
& \text { twist }=1: \text { Compute negcount from } L D L^{\top}-\lambda I=U_{-} D_{-} U_{-}^{\top} \\
& \text { twist }=r, 1<r<n: \text { Compute negcount from } L D L^{\top}-\lambda I=N_{r} \Delta_{r} N_{r}^{\top}
\end{aligned}
\]
```


OUTPUT Parameters

```
w On output, the eigenvalue estimates in w are refined.
wgap On output, the eigenvalue gaps in wgap are refined.
werr
info
On output, the eigenvalue estimates in \(w\) are refined.
On output, the eigenvalue gaps in wgap are refined.
On output, the errors in werr are refined.
Error flag.
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?larrd2

Computes the eigenvalues of a symmetric tridiagonal matrix to suitable accuracy.

Syntax

```
void slarrd2(char* range, char* order, MKL_INT* n, float* vl, float* vu, MKL_INT* il,
MKL_INT* iu, float* gers, float* reltol, float* d, float* e, float* e2, float* pivmin,
MKL_INT* nsplit, MKL_INT* isplit, MKL_INT* m, float* w, float* werr, float* wl, float*
wu, MKL_INT* iblock, MKL_INT* indexw, float* work, MKL_INT* iwork, MKL_INT* dol,
MKL_INT* dou, MKL_INT* info);
void dlarrd2(char* range, char* order, MKL_INT* n, double* vl, double* vu, MKL_INT* il,
MKL_INT* iu, double* gers, double* reltol, double* d, double* e, double* e2, double*
pivmin, MKL_INT* nsplit, MKL_INT* isplit, MKL_INT* m, double* w, double* werr, double*
wl, double* wu, MKL_INT* iblock, MKL_INT* indexw, double* work, MKL_INT* iwork, MKL_INT*
dol, MKL_INT* dou, MKL_INT* info);
```


Include Files

- mkl_scalapack.h

Description

?larrd2 computes the eigenvalues of a symmetric tridiagonal matrix T to limited initial accuracy. This is an auxiliary code to be called from larre2a.
?larrd2 has been created using the LAPACK code larrd which itself stems from stebz. The motivation for creating ?larrd2 is efficiency: When computing eigenvalues in parallel and the input tridiagonal matrix splits into blocks, ? larrd2 can skip over blocks which contain none of the eigenvalues from DOL to DOU for which the processor responsible. In extreme cases (such as large matrices consisting of many blocks of small size like 2×2), the gain can be substantial.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

Input Parameters

| range | = 'A': ("All") all eigenvalues will be found. |
| :---: | :---: |
| | = 'V': ("Value") all eigenvalues in the half-open interval ($v 1, v u$] will be found. |
| | = 'I': ("Index") eigenvalues of the entire matrix with the indices in a given range will be found. |
| order | = 'B': ("By Block") the eigenvalues will be grouped by split-off block (see iblock, isplit) and ordered from smallest to largest within the block. |
| | = ' E ': ("Entire matrix") the eigenvalues for the entire matrix will be ordered from smallest to largest. |
| n | The order of the tridiagonal matrix $T . n>=0$. |
| vl, vu | If range='V', the lower and upper bounds of the interval to be searched for eigenvalues. Eigenvalues less than or equal to vl, or greater than vu, will not be returned. vl < vu. |
| | Not referenced if range $=$ ' A^{\prime} or ' I '. |
| il, iu | If range='I', the indices (in ascending order) of the smallest eigenvalue, to be returned in w[il-1], and largest eigenvalue, to be returned in w[iu-1]. |
| | $1 \leq i l \leq i u \leq=n$, if $n>0$; il $=1$ and $i u=0$ if $n=0$. |
| | Not referenced if range $=$ ' A^{\prime} ' or 'V'. |
| gers | Array of size $2 *_{n}$ |
| | The n Gerschgorin intervals (the i-th Gerschgorin interval is (gers[2*i-2], $\left.\operatorname{gers}\left[2^{*}{ }_{i-1}\right]\right)$). |
| reltol | The minimum relative width of an interval. When an interval is narrower than reltol times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, i.e., converged. Note: this should always be at least radix*machine epsilon. |
| d | Array of size n |
| | The n diagonal elements of the tridiagonal matrix T. |
| e | Array of size $n-1$ |
| | The ($n-1$) off-diagonal elements of the tridiagonal matrix T. |
| e2 | Array of size $n-1$ |
| | The ($n-1$) squared off-diagonal elements of the tridiagonal matrix T. |
| pivmin | The minimum pivot allowed in the sturm sequence for T. |

nsplit
isplit
work
iwork
dol, dou

The number of diagonal blocks in the matrix T.
$1 \leq n s p l i t \leq n$.
Array of size n
The splitting points, at which T breaks up into submatrices.
The first submatrix consists of rows/columns 1 to isplit[0], the second of rows/columns isplit[0]+1 through isplit[1], etc., and the nsplit-th submatrix consists of rows/columns isplit[nsplit-2]+1 through isplit[nsplit-1]=n.
(Only the first nsplit elements will actually be used, but since the user cannot know a priori what value nsplit will have, n words must be reserved for isplit.)
(workspace) Array of size $4 *_{n}$
(workspace) Array of size $3 *_{n}$
Specifying an index range dol:dou allows the user to work on only a selected part of the representation tree.
Otherwise, the setting dol=1, dou=n should be applied.
Note that dol and dou refer to the order in which the eigenvalues are stored in W.

OUTPUT Parameters

m

W
werr
wl, wu
iblock

The actual number of eigenvalues found. $0 \leq m \leq n$.
(See also the description of info=2,3.)
Array of size n
On exit, the first m elements of w will contain the eigenvalue approximations. ? larrd2 computes an interval $I_{j}=\left(a_{j}, b_{j}\right]$ that includes eigenvalue j. The eigenvalue approximation is given as the interval midpoint $w[j-1]=\left(a_{j}+b_{j}\right) / 2$. The corresponding error is bounded by werr $[j-1]=$ $\operatorname{abs}\left(a_{j}-b_{j}\right) / 2$.

Array of size n
The error bound on the corresponding eigenvalue approximation in w .
The interval (wl, wu] contains all the wanted eigenvalues.
If range $=$ ' V ', then $w l=v l$ and $w u=v u$.
If range $=$ ' A ', then wl and wu are the global Gerschgorin bounds on the spectrum.
If range='I', then wl and wu are computed by SLAEBZ from the index range specified.

Array of size n
indexw
info

At each row/column j where $e[j-1]$ is zero or small, the matrix T is considered to split into a block diagonal matrix. On exit, if info $=0$, iblock[i] specifies to which block (from 0 to the number of blocks minus one) the eigenvalue $w[i]$ belongs. (?larrd2 may use the remaining $n-m$ elements as workspace.)

Array of size n

The indices of the eigenvalues within each block (submatrix); for example, indexw $[i]=j$ and iblock[$i]=k$ imply that the $(i+1)$-th eigenvalue $w[i]$ is the j-th eigenvalue in block k.
$=0$: successful exit
<0 : if info $=-i$, the i-th argument had an illegal value
>0 : some or all of the eigenvalues failed to converge or were not computed:

- =1 or 3: Bisection failed to converge for some eigenvalues; these eigenvalues are flagged by a negative block number. The effect is that the eigenvalues may not be as accurate as the absolute and relative tolerances.
- $=2$ or 3 : range='I' only: Not all of the eigenvalues il:iu were found.
- = 4: range='I', and the Gershgorin interval initially used was too small. No eigenvalues were computed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?larre2

Given a tridiagonal matrix, sets small off-diagonal elements to zero and for each unreduced block, finds base representations and eigenvalues.

Syntax

```
void slarre2(char* range, MKL_INT* n, float* vl, float* vu, MKL_INT* il, MKL_INT* iu,
float* d, float* e, float* e2, float* rtoll, float* rtol2, float* spltol, MKL_INT*
nsplit, MKL_INT* isplit, MKL_INT* m, MKL_INT* dol, MKL_INT* dou, float* w, float* werr,
float* wgap, MKL_INT* iblock, MKL_INT* indexw, float* gers, float* pivmin, float* work,
MKL_INT* iwork, MKL_INT* info);
void dlarre2(char* range, MKL_INT* n, double* vl, double* vu, MKL_INT* il, MKL_INT* iu,
double* d, double* e, double* e2, double* rtoll, double* rtol2, double* spltol, MKL_INT*
nsplit, MKL_INT* isplit, MKL_INT* m, MKL_INT* dol, MKL_INT* dou, double* w, double*
werr, double* wgap, MKL_INT* iblock, MKL_INT* indexw, double* gers, double* pivmin,
double* work, MKL_INT* iwork, MKL_INT* info);
```

Include Files

- mkl_scalapack.h

Description

To find the desired eigenvalues of a given real symmetric tridiagonal matrix T, ? larre 2 sets, via ?larra, "small" off-diagonal elements to zero. For each block T_{i}, it finds

- a suitable shift at one end of the block's spectrum,
- the root RRR, $\mathrm{T}_{i}-\sigma_{i} I=L_{i} D_{i} L_{i}{ }^{\top}$, and
- eigenvalues of each $L_{i} D_{i} L_{i}{ }^{\top}$.

The representations and eigenvalues found are then returned to ?stegr2 to compute the eigenvectors T.
? larre 2 is more suitable for parallel computation than the original LAPACK code for computing the root RRR and its eigenvalues. When computing eigenvalues in parallel and the input tridiagonal matrix splits into blocks, ? larre2 can skip over blocks which contain none of the eigenvalues from dol to dou for which the processor is responsible. In extreme cases (such as large matrices consisting of many blocks of small size, e.g. 2×2), the gain can be substantial.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Input Parameters

| range | = 'A': ("All") all eigenvalues will be found. | | | |
|---|---|---|---|---|
| | = 'V': ("Value") all eigenvalues in the half-open interval (vi,vu] will be found. |
| | = 'I': ("Index") eigenvalues of the entire matrix with the indices in a given range will be found. |
| n | The order of the matrix. $n>0$. |
| vl, vu | If range $=$ 'V', the lower and upper bounds for the eigenvalues. |
| | Eigenvalues less than or equal to vl, or greater than vu, will not be returned. vl < vu. |
| il, iu | If range='I', the indices (in ascending order) of the smallest eigenvalue, to be returned in w[il-1], and largest eigenvalue, to be returned in w[iu-1]. |
| | $1 \leq i \leq \leq i u \leq n$. |
| d | Array of size n |
| | The n diagonal elements of the tridiagonal matrix T. |
| e | Array of size n |
| | The first ($n-1$) entries contain the subdiagonal elements of the tridiagonal matrix T; $e[n-1]$ need not be set. |
| e2 | Array of size n |
| | The first ($n-1$) entries contain the squares of the subdiagonal elements of the tridiagonal matrix T; $e 2[n-1]$ need not be set. |
| rtoll, rtol2 | Parameters for bisection. |
| | An interval [left, right] has converged if right-left<max(rtol1*gap, rtol2*max(\|left|,|right|)) |
| spltol | The threshold for splitting. |

dol, dou

work
iwork

OUTPUT Parameters

Specifying an index range dol: dou allows the user to work on only a selected part of the representation tree. Otherwise, the setting dol=1, dou $=n$ should be applied.

Note that dol and dou refer to the order in which the eigenvalues are stored in w.

Workspace array of size $6 *_{n}$
Workspace array of size $5 *_{n}$

If range='I' or ='A', ?larre2 contains bounds on the desired part of the spectrum.

The n diagonal elements of the diagonal matrices D_{i}.
e contains the subdiagonal elements of the unit bidiagonal matrices L_{i}. The entries e[isplit[i]], $0 \leq i<n s p l i t$, contain the base points σ_{i+1} on output.

The entries e2[isplit[i]], $0 \leq i<n s p l i t$, are set to zero.
The number of blocks T splits into. $1 \leq n s p l i t \leq n$.
Array of size n
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to isplit[0], the second of rows/columns isplit[0]+1 through isplit[1], etc., and the nsplit-th block consists of rows/columns isplit[nsplit-2]+1 through isplit[nsplit-1]=n.

The total number of eigenvalues (of all $L_{i} D_{i} L_{i}^{\top}$) found.
Array of size n
The first m elements contain the eigenvalues. The eigenvalues of each of the blocks, $L_{i} D_{i} L_{i}{ }^{\top}$, are sorted in ascending order (? larre2 may use the remaining $n-m$ elements as workspace).

Note that immediately after exiting this function, only the eigenvalues in wwith indices in range dol-1:dou-1 might rely on this processor when the eigenvalue computation is done in parallel.

Array of size n
The error bound on the corresponding eigenvalue in w .
Note that immediately after exiting this function, only the uncertainties in werrwith indices in range dol-1:dou-1 might rely on this processor when the eigenvalue computation is done in parallel.

Array of size n
The separation from the right neighbor eigenvalue in w .
The gap is only with respect to the eigenvalues of the same block as each block has its own representation tree.

| | Exception: at the right end of a block we store the left gap |
| :---: | :---: |
| | Note that immediately after exiting this function, only the gaps in wgapwith indices in range dol-1:dou-1 might rely on this processor when the eigenvalue computation is done in parallel. |
| iblock | Array of size n |
| | The indices of the blocks (submatrices) associated with the corresponding eigenvalues in w; iblock $[i]=1$ if eigenvalue $w[i]$ belongs to the first block from the top, iblock[i]=2 if w[i] belongs to the second block, and so on. |
| indexw | Array of size n |
| | The indices of the eigenvalues within each block (submatrix); for example, indexw[i]= 10 and iblock[i]=2 imply that the ($i+1$)-th eigenvalue $w[i]$ is the 10th eigenvalue in block 2. |
| gers | Array of size $2 *_{n}$ |
| | The n Gerschgorin intervals (the i-th Gerschgorin interval is (gers[2*i-2], gers[2*i-1])). |
| pivmin | The minimum pivot in the sturm sequence for T. |
| info | = 0 : successful exit |
| | > 0: A problem occurred in ?larre2. |
| | < 0 : One of the called functions signaled an internal problem. |
| | Needs inspection of the corresponding parameter info for further information. |
| | =-1: Problem in ?larrd. |
| | $=-2$: Not enough internal iterations to find the base representation. |
| | $=-3$: Problem in ?larrb when computing the refined root representation for ? lasq2. |
| | $=-4$: Problem in ?larrb when preforming bisection on the desired part of the spectrum. |
| | =-5: Problem in ?lasq2 |
| | =-6: Problem in ? ${ }^{\text {asq }}$ 2 |

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?larre2a

Given a tridiagonal matrix, sets small off-diagonal elements to zero and for each unreduced block, finds base representations and eigenvalues.

Syntax

```
void slarre2a(char* range, MKL_INT* n, float* vl, float* vu, MKL_INT* il, MKL_INT* iu,
float* d, float* e, float* e2, float* rtoll, float* rtol2, float* spltol, MKL_INT*
nsplit, MKL_INT* isplit, MKL_INT* m, MKL_INT* dol, MKL_INT* dou, MKL_INT* needil,
```

```
MKL_INT* neediu, float* w, float* werr, float* wgap, MKL_INT* iblock, MKL_INT* indexw,
float* gers, float* sdiam, float* pivmin, float* work, MKL_INT* iwork, float* minrgp,
MKL_INT* info);
void dlarre2a(char* range, MKL_INT* n, double* vl, double* vu, MKL_INT* il, MKL_INT* iu,
double* d, double* e, double* e2, double* rtol1, double* rtol2, double* spltol, MKL_INT*
nsplit, MKL_INT* isplit, MKL_INT* m, MKL_INT* dol, MKL_INT* dou, MKL_INT* needil,
MKL_INT* neediu, double* w, double* werr, double* wgap, MKL_INT* iblock, MKL_INT*
indexw, double* gers, double* sdiam, double* pivmin, double* work, MKL_INT* iwork,
double* minrgp, MKL_INT* info);
```

Include Files

- mkl_scalapack.h

Description

To find the desired eigenvalues of a given real symmetric tridiagonal matrix T, ?larre2a sets any "small" offdiagonal elements to zero, and for each unreduced block $T_{i \text {, }}$ it finds

- a suitable shift at one end of the block's spectrum,
- the base representation, $T_{i}-\sigma_{i} I=L_{i} D_{i} L_{i}^{\top}$, and
- eigenvalues of each $L_{i} D_{i} L_{i}{ }^{\top}$.

NOTE

The algorithm obtains a crude picture of all the wanted eigenvalues (as selected by range). However, to reduce work and improve scalability, only the eigenvalues dol to dou are refined. Furthermore, if the matrix splits into blocks, RRRs for blocks that do not contain eigenvalues from dol to dou are skipped. The DQDS algorithm (function ?lasq2) is not used, unlike in the sequential case. Instead, eigenvalues are computed in parallel to some figures using bisection.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Input Parameters

| range | = 'A': ("All") all eigenvalues will be found. |
| :---: | :---: |
| | = 'V': ("Value") all eigenvalues in the half-open interval (vi, vu] will be found. |
| | = 'I': ("Index") eigenvalues of the entire matrix with the indices in a given range will be found. |
| n | The order of the matrix. $n>0$. |
| vl, vu | If range='V', the lower and upper bounds for the eigenvalues. Eigenvalues less than or equal to $v l$, or greater than $v u$, will not be returned. $v l<v u$. |
| | If range='I' or ='A', ?larre2a computes bounds on the desired part of the spectrum. |

OUTPUT Parameters

$v 1, v u$
d
e
nsplit
isplit

| il, iu | If range='I', the indices (in ascending order) of the smallest eigenvalue, to be returned in w[il-1], and largest eigenvalue, to be returned in w[iu-1]. | | | |
|---|---|---|---|---|
| | $1 \leq i l \leq i u \leq n$. |
| d | Array of size n |
| | On entry, the n diagonal elements of the tridiagonal matrix T. |
| e | Array of size n |
| | The first ($n-1$) entries contain the subdiagonal elements of the tridiagonal matrix T; e[n-1] need not be set. |
| e2 | Array of size n |
| | The first ($n-1$) entries contain the squares of the subdiagonal elements of the tridiagonal matrix T; e2[n-1] need not be set. |
| rtoll, rtol2 | Parameters for bisection. |
| | An interval [left,right] has converged if right - left < max (rtoll*gap, rtol2*max(\|left|,|right|)) |
| spltol | The threshold for splitting. |
| dol, dou | If the user wants to work on only a selected part of the representation tree, he can specify an index range dol:dou. |
| | Otherwise, the setting $d o l=1$, dou $=n$ should be applied. |
| | Note that dol and dou refer to the order in which the eigenvalues are stored in w. |
| work | Workspace array of size $6 *_{n}$ |
| iwork | Workspace array of size $5 *_{n}$ |
| minrgp | The minimum relative gap threshold to decide whether an eigenvalue or a cluster boundary is reached. |

If range='I', the indices (in ascending order) of the smallest eigenvalue, to be returned in w[il-1], and largest eigenvalue, to be returned in w[iu-1].
$1 \leq i l \leq i u \leq n$.
Array of size n
On entry, the n diagonal elements of the tridiagonal matrix T.
Array of size n
The first ($n-1$) entries contain the subdiagonal elements of the tridiagonal matrix T; $e[n-1]$ need not be set.

Array of size n
The first ($n-1$) entries contain the squares of the subdiagonal elements of the tridiagonal matrix T; e2[n-1] need not be set.

Parameters for bisection.
An interval [left,right] has converged if right - left < max(rtolı*gap, rtol2*max(|left|,|right|))

The threshold for splitting.
If the user wants to work on only a selected part of the representation tree, he can specify an index range dol:dou.

Otherwise, the setting $d o l=1$, $d o u=n$ should be applied.
Note that dol and dou refer to the order in which the eigenvalues are stored in w.

Workspace array of size 6*n
Workspace array of size $5{ }^{*} n$
The minimum relative gap threshold to decide whether an eigenvalue or a cluster boundary is reached.

If range $=$ ' V ', the lower and upper bounds for the eigenvalues. Eigenvalues less than or equal to $v l$, or greater than $v u$, are not returned. $v l$ < $v u$.

If range='I' or range='A', ?larre2a computes bounds on the desired part of the spectrum.

The n diagonal elements of the diagonal matrices D_{i}.
e contains the subdiagonal elements of the unit bidiagonal matrices L_{i}. The entries e[isplit[i]], $0 \leq i<n s p l i t$, contain the base points σ_{i+1} on output.

The number of blocks T splits into. $1 \leq n s p l i t \leq n$.
Array of size n
The splitting points, at which T breaks up into blocks.

The first block consists of rows/columns 1 to isplit[0], the second of rows/columns isplit[0]+1 through isplit[1], etc., and the nsplit-th block consists of rows/columns isplit[nsplit-2]+1 through isplit[nsplit-1]=n.

The total number of eigenvalues (of all $L_{i} D_{i} L_{i}{ }^{\top}$) found.
The indices of the leftmost and rightmost eigenvalues of the root node RRR which are needed to accurately compute the relevant part of the representation tree.

Array of size n
The first m elements contain the eigenvalues. The eigenvalues of each of the blocks, $L_{i} D_{i} L_{i}{ }^{\top}$, are sorted in ascending order (? larre2a may use the remaining $n-m$ elements as workspace).

Note that immediately after exiting this function, only the eigenvalues in wwith indices in range dol-1: dou-1 rely on this processor because the eigenvalue computation is done in parallel.

Array of size n
The error bound on the corresponding eigenvalue in w .
Note that immediately after exiting this function, only the uncertainties in werrwith indices in range dol-1:dou-1 are reliable on this processor because the eigenvalue computation is done in parallel.

Array of size n
The separation from the right neighbor eigenvalue in w. The gap is only with respect to the eigenvalues of the same block as each block has its own representation tree.

Exception: at the right end of a block we store the left gap
Note that immediately after exiting this function, only the gaps in wgapwith indices in range dol-1:dou-1 are reliable on this processor because the eigenvalue computation is done in parallel.

Array of size n
The indices of the blocks (submatrices) associated with the corresponding eigenvalues in w; iblock[i]=1 if eigenvalue w[i] belongs to the first block from the top, iblock[i]=2 if $w[i]$ belongs to the second block, and so on.

Array of size n
The indices of the eigenvalues within each block (submatrix); for example, indexw $[i]=10$ and $i b \operatorname{lock}[i]=2$ imply that the ($i+1$)-th eigenvalue $w[i]$ is the 10th eigenvalue in block 2.

Array of size $2 *_{n}$
The n Gerschgorin intervals (the i-th Gerschgorin interval is (gers[2*i-2], gers[2*i-1])).

The minimum pivot in the sturm sequence for T.
$=0$: successful exit
> 0: A problem occurred in ?larre2a.
< 0: One of the called functions signaled an internal problem. Needs inspection of the corresponding parameter info for further information.
=-1: Problem in ?larrd2.
$=-2$: Not enough internal iterations to find base representation.
$=-3$: Problem in ?larrb2 when computing the refined root representation.
$=-4$: Problem in ?larrb2 when preforming bisection on the desired part of the spectrum.
$=-9$ Problem: $m<$ dou-dol +1 , that is the code found fewer eigenvalues than it was supposed to.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?larrf2

Finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated.

Syntax

```
void slarrf2(MKL_INT* n, float* d, float* l, float* ld, MKL_INT* clstrt, MKL_INT* clend,
MKL_INT* clmidl, MKL_INT* clmid2, float* w, float* wgap, float* werr, MKL_INT* trymid,
float* spdiam, float* clgapl, float* clgapr, float* pivmin, float* sigma, float* dplus,
float* lplus, float* work, MKL_INT* info);
void dlarrf2(MKL_INT* n, double* d, double* l, double* ld, MKL_INT* clstrt, MKL_INT*
clend, MKL_INT* clmidl, MKL_INT* clmid2, double* w, double* wgap, double* werr, MKL_INT*
trymid, double* spdiam, double* clgapl, double* clgapr, double* pivmin, double* sigma,
double* dplus, double* lplus, double* work, MKL_INT* info);
```


Include Files

- mkl_scalapack.h

Description

Given the initial representation $L D L^{\top}$ and its cluster of close eigenvalues (in a relative measure), defined by the indices of the first and last eigenvalues in the cluster, ? larrf2 finds a new relatively robust representation $L D L^{\top}-\sigma \mathrm{I}=L_{+} D_{+} L_{+}{ }^{\top}$ such that at least one of the eigenvalues of $L_{+} D_{+} L_{+}{ }^{\top}$ is relatively isolated.

This is an enhanced version of ?larrf that also tries shifts in the middle of the cluster, should there be a large gap, in order to break large clusters into at least two pieces.

Input Parameters

n
d

1

The order of the matrix (subblock, if the matrix was split).
Array of size n
The n diagonal elements of the diagonal matrix D.
Array of size $n-1$
The $(n-1)$ subdiagonal elements of the unit bidiagonal matrix L.

| $1 d$ | Array of size $n-1$ |
| :---: | :---: |
| | The ($n-1$) elements $1[i] * d[i]$. |
| clstrt | The index of the first eigenvalue in the cluster. |
| clend | The index of the last eigenvalue in the cluster. |
| clmid1, clmid2 | The index of a middle eigenvalue pair with large gap. |
| w | Array of size \geq (clend-clstrt +1) |
| | The eigenvalue approximations of $L D L^{\top}$ in ascending order. w[clstrt - 1] through w[clend-1] form the cluster of relatively close eigenalues. |
| wgap | Array of size \geq (clend-clstrt +1) |
| | The separation from the right neighbor eigenvalue in w. |
| werr | Array of size \geq (clend-clstrt +1) |
| | werr contains the semiwidth of the uncertainty interval of the corresponding eigenvalue approximation in w . |
| spdiam | Estimate of the spectral diameter obtained from the Gerschgorin intervals |
| clgapl, clgapr | Absolute gap on each end of the cluster. |
| | Set by the calling function to protect against shifts too close to eigenvalues outside the cluster. |
| pivmin | The minimum pivot allowed in the Sturm sequence. |
| work | Workspace array of size $2 *_{n}$ |

OUTPUT Parameters

| wgap | Contains refined values of its input approximations. Very small gaps are unchanged. |
| :---: | :---: |
| sigma | The shift (σ) used to form $L_{+} D_{+} L_{+}{ }^{\top}$. |
| dplus | Array of size n |
| | The n diagonal elements of the diagonal matrix D_{+}. |
| lplus | Array of size $n-1$ |
| | The first ($n-1$) elements of $l p l u s$ contain the subdiagonal elements of the unit bidiagonal matrix L_{+}. |

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?larrv2

Computes the eigenvectors of the tridiagonal matrix T $=L^{*} D^{*} L^{\top}$ given L, D and the eigenvalues of $L^{*} D^{*} L^{T}$.

Syntax

```
void slarrv2(MKL_INT* n, float* vl, float* vu, float* d, float* l, float* pivmin,
MKL_INT* isplit, MKL_INT* m, MKL_INT* dol, MKL_INT* dou, MKL_INT* needil, MKL_INT*
neediu, float* minrgp, float* rtoll, float* rtol2, float* w, float* werr, float* wgap,
MKL_INT* iblock, MKL_INT* indexw, float* gers, float* sdiam, float* z, MKL_INT* ldz,
MKL_INT* isuppz, float* work, MKL_INT* iwork, MKL_INT* vstart, MKL_INT* finish,
MKL_INT* maxcls, MKL_INT* ndepth, MKL_INT* parity, MKL_INT* zoffset, MKL_INT* info);
void dlarrv2(MKL_INT* n, double* vl, double* vu, double* d, double* l, double* pivmin,
MKL_INT* isplit, MKL_INT* m, MKL_INT* dol, MKL_INT* dou, MKL_INT* needil, MKL_INT*
neediu, double* minrgp, double* rtoll, double* rtol2, double* w, double* werr, double*
wgap, MKL_INT* iblock, MKL_INT* indexw, double* gers, double* sdiam, double* z, MKL_INT*
Idz, MKL_INT* isuppz, double* work, MKL_INT* iwork, MKL_INT* vstart, MKL_INT* finish,
MKL_INT* maxcls, MKL_INT* ndepth, MKL_INT* parity, MKL_INT* zoffset, MKL_INT* info);
```


Include Files

```
- mkl_scalapack.h
```


Description

? larrv2 computes the eigenvectors of the tridiagonal matrix $T=\angle D L^{\top}$ given L, D and approximations to the eigenvalues of $L D L^{\top}$. The input eigenvalues should have been computed by larre2a or by previous calls to ?larrv2.

The major difference between the parallel and the sequential construction of the representation tree is that in the parallel case, not all eigenvalues of a given cluster might be computed locally. Other processors might "own" and refine part of an eigenvalue cluster. This is crucial for scalability. Thus there might be communication necessary before the current level of the representation tree can be parsed.
Please note:

- The calling sequence has two additional integer parameters, dol and dou, that should satisfy $m \geq d o u \geq d o l \geq 1$. These parameters are only relevant when both eigenvalues and eigenvectors are computed (stegr2b parameter $j o b z=' V$ '). ? larrv2 only computes the eigenvectors corresponding to eigenvalues dol through dou in w. (That is, instead of computing the eigenvectors belonging to w[0] through w[m-1], only the eigenvectors belonging to eigenvalues w[dol-1] through w[dou-1] are computed. In this case, only the eigenvalues dol:dou are guaranteed to be accurately refined to all figures by Rayleigh-Quotient iteration.
- The additional arguments vstart, finish, ndepth, parity, zoffset are included as a thread-safe implementation equivalent to save variables. These variables store details about the local representation tree which is computed layerwise. For scalability reasons, eigenvalues belonging to the locally relevant representation tree might be computed on other processors. These need to be communicated before the inspection of the RRRs can proceed on any given layer. Note that only when the variable finish is nonzero, the computation has ended. All eigenpairs between dol and dou have been computed. m is set to dou-dol+1.
- ?larrv2 needs more workspace in z than the sequential slarrv. It is used to store the conformal embedding of the local representation tree.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Input Parameters

```
n
vl, vu
```

d

1
pivmin
isplit
m
dol, dou
needil, neediu
minrgp
rtoll, rtol2
w

The order of the matrix. $n \geq 0$.
Lower and upper bounds of the interval that contains the desired eigenvalues. vl < vu. Needed to compute gaps on the left or right end of the extremal eigenvalues in the desired range. vu is currently not used but kept as parameter in case needed.

Array of size n
The n diagonal elements of the diagonal matrix d. On exit, d is overwritten.
Array of size n
The ($n-1$) subdiagonal elements of the unit bidiagonal matrix L are in elements 0 to $n-2$ of I (if the matrix is not split.) At the end of each block is stored the corresponding shift as given by ?larre. On exit, 1 is overwritten.

The minimum pivot allowed in the sturm sequence.

Array of size n

The splitting points, at which the matrix T breaks up into blocks. The first block consists of rows/columns 1 to isplit[0], the second of rows/ columns isplit[0] + 1 through isplit[1], etc.

The total number of input eigenvalues. $0 \leq m \leq n$.
If you want to compute only selected eigenvectors from all the eigenvalues supplied, you can specify an index range dol:dou. Or else the setting $d o l=1, d o u=m$ should be applied. Note that $d o l$ and dou refer to the order in which the eigenvalues are stored in w. If you want to compute only selected eigenpairs, the columns dol-1 to dou +1 of the eigenvector space Z contain the computed eigenvectors. All other columns of Z are set to zero.
If dol >1, then $Z(:, d o l-1-z o f f s e t)$ is used.
If dou $<m$, then $Z(:$, dou+1-zoffset $)$ is used.
Describe which are the left and right outermost eigenvalues that still need to be included in the computation. These indices indicate whether eigenvalues from other processors are needed to correctly compute the conformally embedded representation tree.
When dol $\leq n e e d i l \leq n e e d i u \leq d o u$, all required eigenvalues are local to the processor and no communication is required to compute its part of the representation tree.

The minimum relative gap threshold to decide whether an eigenvalue or a cluster boundary is reached.

Parameters for bisection. An interval [left,right] has converged if right-left < max(rtol1*gap, rtol2*max(|left|,|right|))

Array of size n

The first m elements of w contain the approximate eigenvalues for which eigenvectors are to be computed. The eigenvalues should be grouped by split-off block and ordered from smallest to largest within the block. (The output array w from ?stegr2a is expected here.) Furthermore, they are with respect to the shift of the corresponding root representation for their block.

Array of size n
The first m elements contain the semiwidth of the uncertainty interval of the corresponding eigenvalue in w .

Array of size n
The separation from the right neighbor eigenvalue in w .
Array of size n
The indices of the blocks (submatrices) associated with the corresponding eigenvalues in w; iblock[i]=1 if eigenvalue w[i] belongs to the first block from the top, $i b l o c k[i]=2$ if $w[i]$ belongs to the second block, and so on.

Array of size n
The indices of the eigenvalues within each block (submatrix). For example: indexw $[i]=10$ and $i b \operatorname{lock}[i]=2$ imply that the ($i+1$)-th eigenvalue $w[i]$ is the 10th eigenvalue in block 2.

Array of size $2 *_{n}$
The n Gerschgorin intervals (the i-th Gerschgorin interval is (gers[2*i-2], $\operatorname{gers}[2 * i-1])$). The Gerschgorin intervals should be computed from the original unshifted matrix.

Not used but kept as parameter for possible future use.
Array of size n
The spectral diameters for all unreduced blocks.
The leading dimension of the array $z . l d z \geq 1$, and if stegr2b parameter jobz $=$ 'V', $l d z \geq \max (1, n)$.
(workspace) array of size $12^{*} n$
(workspace) Array of size $7 *_{n}$
Non-zero on initialization, set to zero afterwards.
A flag that indicates whether all eigenpairs have been computed.
The largest cluster worked on by this processor in the representation tree.
The current depth of the representation tree. Set to zero on initial pass, changed when the deeper levels of the representation tree are generated.

An internal parameter needed for the storage of the clusters on the current level of the representation tree.

Offset for storing the eigenpairs when z is distributed in 1D-cyclic fashion.

OUTPUT Parameters

```
needil, neediu
W
werr
wgap
z
isuppz
vstart
finish
maxcls
ndepth
parity
info
Unshifted eigenvalues for which eigenvectors have already been computed.
Contains refined values of its input approximations.
Contains refined values of its input approximations. Very small gaps are changed.
Array of size \(1 d z * \max (1, m)\)
If info \(=0\), the first \(m\) columns of the matrix \(Z\), stored in the array \(z\), contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the input eigenvalues, with the \(i\)-th column of \(Z\) holding the eigenvector associated with w[i-1].
In the distributed version, only a subset of columns is accessed, see dol, dou, and zoffset.
Array of size \(2^{*} \max (1, m)\)
The support of the eigenvectors in \(z\), i.e., the indices indicating the nonzero elements in \(z\). The \(i\)-th eigenvector is non-zero only in elements isuppz[ \(2 *_{i-2}\) ] through isuppz[ \(\left.2 *_{i-1}\right]\).
Non-zero on initialization, set to zero afterwards.
A flag that indicates whether all eigenpairs have been computed.
The largest cluster worked on by this processor in the representation tree.
The current depth of the representation tree. Set to zero on initial pass, changed when the deeper levels of the representation tree are generated.
An internal parameter needed for the storage of the clusters on the current level of the representation tree.
= 0: successful exit
> 0: A problem occured in ?larrv2.
\(<0\) : One of the called functions signaled an internal problem.
Needs inspection of the corresponding parameter info for further information.
=-1: Problem in ?larrb2 when refining a child's eigenvalues.
\(=-2\) : Problem in ?larrf2 when computing the RRR of a child. When a child is inside a tight cluster, it can be difficult to find an RRR. A partial remedy from the user's point of view is to make the parameter minrgp smaller and recompile. However, as the orthogonality of the computed vectors is proportional to \(1 /\) minrgp, be aware that decreasing minrgp might be reduce precision.
=-3: Problem in ?larrb2 when refining a single eigenvalue after the Rayleigh correction was rejected.
= 5: The Rayleigh Quotient Iteration failed to converge to full accuracy.
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?lasorte

Sorts eigenpairs by real and complex data types.

Syntax

```
void slasorte (float *s , MKL_INT *lds, MKL_INT *j, float *out , MKL_INT *info );
void dlasorte (double *s , MKL_INT *lds , MKL_INT *j , double *out , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The ?lasortefunction sorts eigenpairs so that real eigenpairs are together and complex eigenpairs are together. This helps to employ $2 x 2$ shifts easily since every second subdiagonal is guaranteed to be zero. This function does no parallel work and makes no calls.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Input Parameters

s

$$
I d s
$$

j
out
info
(local)
Array of size Ids.
On entry, a matrix already in Schur form.
(local)
On entry, the leading dimension of the array s; unchanged on exit.
(local)
On entry, the order of the matrix S; unchanged on exit.
(local)
Array of size $2 * j$. The work buffer required by the function.
(local)
Set, if the input matrix had an odd number of real eigenvalues and things could not be paired or if the input matrix S was not originally in Schur form. 0 indicates successful completion.

Output Parameters

S
On exit, the diagonal blocks of S have been rewritten to pair the eigenvalues. The resulting matrix is no longer similar to the input.

Work buffer.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
?lasrt2
Sorts numbers in increasing or decreasing order.

Syntax

```
void slasrt2 (char *id, MKL_INT *n , float *d, MKL_INT *key , MKL_INT *info );
void dlasrt2 (char *id, MKL_INT *n , double *d, MKL_INT *key, MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The ?lasrt2function is modified LAPACK function ?lasrt, which sorts the numbers in d in increasing order (if id = 'I') or in decreasing order (if id = 'D'). It uses Quick Sort, reverting to Insertion Sort on arrays of size ≤ 20. The size of STACK limits n to about 2^{32}.

Input Parameters

```
id = 'I':sort d in increasing order;
    = 'D': sort d in decreasing order.
n
d
    Array of size n.
    On entry, the array to be sorted.
key Array of size n.
    On entry, key contains a key to each of the entries in d.
    Typically, key[i]=i+1 for all i=0, .., n-1.
```


Output Parameters

d
On exit, d has been sorted into increasing order
$(d[0] \leq \ldots \leq d[n-1])$
or into decreasing order
$(d[0] \geq \ldots \geq d[n-1])$,
depending on id.
info $\quad=0$: successful exit
< 0: if info $=-i$, the i-th argument had an illegal value.
key
On exit, key is permuted in exactly the same manner as d was permuted from input to output. Therefore, if $k e y[i]=i+1$ for all $i=0, \ldots, \mathrm{n}-1$ on input, $d[i]$ on output equals $d[k e y[i]-1]$ on input.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
?stegr2
Computes selected eigenvalues and eigenvectors of a
real symmetric tridiagonal matrix.
```


Syntax

```
void sstegr2(char* jobz, char* range, MKL_INT* n, float* d, float* e, float* vl, float*
```

void sstegr2(char* jobz, char* range, MKL_INT* n, float* d, float* e, float* vl, float*
vu, MKL_INT* il, MKL_INT* iu, MKL_INT* m, float* w, float* z, MKL_INT* ldz, MKL_INT*
vu, MKL_INT* il, MKL_INT* iu, MKL_INT* m, float* w, float* z, MKL_INT* ldz, MKL_INT*
nzc, MKL_INT* isuppz, float* work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT* liwork,
nzc, MKL_INT* isuppz, float* work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT* liwork,
MKL_INT* dol, MKL_INT* dou, MKL_INT* zoffset, MKL_INT* info);
MKL_INT* dol, MKL_INT* dou, MKL_INT* zoffset, MKL_INT* info);
void dstegr2(char* jobz, char* range, MKL_INT* n, double* d, double* e, double* vl,
void dstegr2(char* jobz, char* range, MKL_INT* n, double* d, double* e, double* vl,
double* vu, MKL_INT* il, MKL_INT* iu, MKL_INT* m, double* w, double* z, MKL_INT* ldz,
double* vu, MKL_INT* il, MKL_INT* iu, MKL_INT* m, double* w, double* z, MKL_INT* ldz,
MKL_INT* nzc, MKL_INT* isuppz, double* work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT*
MKL_INT* nzc, MKL_INT* isuppz, double* work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT*
liwork, MKL_INT* dol, MKL_INT* dou, MKL_INT* zoffset, MKL_INT* info);

```
liwork, MKL_INT* dol, MKL_INT* dou, MKL_INT* zoffset, MKL_INT* info);
```


Include Files

- mkl_scalapack.h

Description

?stegr2 computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T. It is invoked in the ScaLAPACK MRRR driver p?syevr and the corresponding Hermitian version either when only eigenvalues are to be computed, or when only a single processor is used (the sequential-like case).
?stegr2 has been adapted from LAPACK's ?stegr. Please note the following crucial changes.

1. The calling sequence has two additional integer parameters, dol and dou, that should satisfy $m \geq d o u \geq d o l \geq 1$. ?stegr2only computes the eigenpairs corresponding to eigenvalues dol through dou in w, indexed dol-1 through dou-1. (That is, instead of computing the eigenpairs belonging to w[0] through w[m-1], only the eigenvectors belonging to eigenvalues w[dol-1] through w[dou-1] are computed. In this case, only the eigenvalues dol through dou are guaranteed to be fully accurate.
2. m is not the number of eigenvalues specified by range, but is $m=d o u-d o l+1$. This concerns the case where only eigenvalues are computed, but on more than one processor. Thus, in this case m refers to the number of eigenvalues computed on this processor.
3. The arrays w and z might not contain all the wanted eigenpairs locally, instead this information is distributed over other processors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

Input Parameters

jobz
range
$=$ ' N ': Compute eigenvalues only;
$=$ ' V ': Compute eigenvalues and eigenvectors.
$=$ ' A ': all eigenvalues will be found.
$=$ ' V ': all eigenvalues in the half-open interval ($v 1, v u$] will be found.
$=$ 'I': eigenvalues of the entire matrix with the indices in a given range will be found.

| n | The order of the matrix. $n \geq 0$. |
| :---: | :---: |
| d | Array of size n |
| | On entry, the n diagonal elements of the tridiagonal matrix T. Overwritten on exit. |
| e | Array of size n |
| | On entry, the ($n-1$) subdiagonal elements of the tridiagonal matrix T in elements 0 to $n-2$ of e. e[n-1] need not be set on input, but is used internally as workspace. Overwritten on exit. |
| v1 | |
| vu | If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. vl < vu. |
| | Not referenced if range $=$ ' A ' or 'I'. |
| il, iu | If range='I', the indices (in ascending order) of the smallest eigenvalue, to be returned in w[il-1], and largest eigenvalue, to be returned in w[iu-1]. |
| | $1 \leq i l \leq i u \leq n$, if $n>0$. |
| | Not referenced if range $=$ ' A ' or 'V'. |
| $1 d z$ | The leading dimension of the array $z . l d z \geq 1$, and if jobz $=$ ' V ', then $I d z \geq$ $\max (1, n)$. |
| $n z C$ | The number of eigenvectors to be held in the array z, storing the matrix Z. |
| | If range $=$ ' A ', then $n z c \geq \max (1, n)$. |
| | If range $=$ ' V ', then $n z c \geq$ the number of eigenvalues in ($v 1, v u$]. |
| | If range $=$ 'I', then $n z c \geq i u-i l+1$. |
| | If $n z c=-1$, then a workspace query is assumed; the function calculates the number of columns of the matrix Z that are needed to hold the eigenvectors. This value is returned as the first entry of the z array, and no error message related to $n z c$ is issued. |
| Iwork | The size of the array work. 1 work $\geq \max \left(1,18 *_{n}\right)$ |
| | if jobz $=$ ' V ', and 1 work $\geq \max \left(1,12^{*} n\right)$ if jobz $=' \mathrm{~N}$ '. If 1 work $=-1$, then a workspace query is assumed; the function only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued. |
| liwork | The size of the array iwork. liwork $\geq \max \left(1,10 *_{n}\right)$ if the eigenvectors are desired, and $\operatorname{liwork} \geq \max \left(1,8^{*} n\right)$ if only the eigenvalues are to be computed. |
| | If liwork $=-1$, then a workspace query is assumed; the function only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued. |
| dol, dou | From the eigenvalues w[0] through $w[m-1]$, only eigenvectors $Z(:, d o l)$ to $Z(:$, dou $)$ are computed. |
| | If dol > 1 , then $Z(:$, dol-1-zoffset $)$ is used and overwritten. |

If dou $<m$, then $Z($:,dou $+1-z o f f s e t)$ is used and overwritten.

```
zoffset
```


OUTPUT Parameters

Offset for storing the eigenpairs when z is distributed in 1D-cyclic fashion

Globally summed over all processors, m equals the total number of eigenvalues found. $0 \leq m \leq n$. If range $=$ ' A ', $m=n$, and if range $=$ ' I ', $m=i u$ $i l+1$. The local output equals $m=d o u-d o l+1$.

Array of size n
The first m elements contain the selected eigenvalues in ascending order. Note that immediately after exiting this function, only the eigenvalues indexed dol-1 through dou-1 are reliable on this processor because the eigenvalue computation is done in parallel. Other processors will hold reliable information on other parts of the w array. This information is communicated in the ScaLAPACK driver.

Array of size $1 d z * \max (1, m)$.
If jobz $=$ ' V ', and if info $=0$, then the first m columns of the matrix Z stored in z contain some of the orthonormal eigenvectors of the matrix T corresponding to the selected eigenvalues, with the i-th column of Z holding the eigenvector associated with w[i-1].

If jobz $=$ ' N ', then z is not referenced.
Note: the user must ensure that at least max $(1, m)$ columns of the matrix are supplied in the array z; if range $=$ ' V ', the exact value of m is not known in advance and can be computed with a workspace query by setting nzc= -1 , see below.
array of size $2^{*} \max (1, m)$
The support of the eigenvectors in z, i.e., the indices indicating the nonzero elements in z. The i-th computed eigenvector is nonzero only in elements isuppz[$2 * i-2$] through isuppz[$2 * i-1]$. This is relevant in the case when the matrix is split. isuppz is only set if $n>2$.

On exit, if info $=0$, work[0] returns the optimal (and minimal) lwork.
On exit, if info $=0$, iwork[0] returns the optimal liwork.
On exit, info
$=0$: successful exit
other:if info $=-i$, the i-th argument had an illegal value
if info $=10 \mathrm{X}$, internal error in ?larre2,
if info = 20X, internal error in ?larrv.
Here, the digit $X=A B S($ iinfo) < 10, where iinfo is the nonzero error code returned by ?larre2 or ?larrv, respectively.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
?stegr2a
Computes selected eigenvalues and initial
representations needed for eigenvector computations.
```


Syntax

```
void sstegr2a(char* jobz, char* range, MKL_INT* n, float* d, float* e, float* vl, float*
vu, MKL_INT* il, MKL_INT* iu, MKL_INT* m, float* w, float* z, MKL_INT* ldz, MKL_INT*
nzc, float* work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT* liwork, MKL_INT* dol,
MKL_INT* dou, MKL_INT* needil, MKL_INT* neediu, MKL_INT* inderr, MKL_INT* nsplit,
float* pivmin, float* scale, float* wl, float* wu, MKL_INT* info);
void dstegr2a(char* jobz, char* range, MKL_INT* n, double* d, double* e, double* vl,
double* vu, MKL_INT* il, MKL_INT* iu, MKL_INT* m, double* w, double* z, MKL_INT* ldz,
MKL_INT* nzc, double* work, MKL_INT* lwork, MKL_INT* iwork, MKL_INT* liwork, MKL_INT*
dol, MKL_INT* dou, MKL_INT* needil, MKL_INT* neediu, MKL_INT* inderr, MKL_INT* nsplit,
double* pivmin, double* scale, double* wl, double* wu, MKL_INT* info);
```


Include Files

- mkl_scalapack.h

Description

?stegr2a computes selected eigenvalues and initial representations needed for eigenvector computations in ?stegr2b. It is invoked in the ScaLAPACK MRRR driver p?syevr and the corresponding Hermitian version when both eigenvalues and eigenvectors are computed in parallel on multiple processors. For this case, ?stegr2a implements the first part of the MRRR algorithm, parallel eigenvalue computation and finding the root RRR. At the end of ?stegr2a, other processors might have a part of the spectrum that is needed to continue the computation locally. Once this eigenvalue information has been received by the processor, the computation can then proceed by calling the second part of the parallel MRRR algorithm, ?stegr2b.

Please note:

- The calling sequence has two additional integer parameters, (compared to LAPACK's stegr), these are $d o l$ and $d o u$ and should satisfy $m \geq d o u \geq d o l \geq 1$. These parameters are only relevant for the case $j o b z=$ ' V '.

Globally invoked over all processors, ?stegr2a computes all the eigenvalues specified by range.
?stegr2a locally only computes the eigenvalues corresponding to eigenvalues dol through dou in w, indexed dol-1 through dou-1. (That is, instead of computing the eigenvectors belonging to $w([0]$ through $w[m-1]$, only the eigenvectors belonging to eigenvalues w[dol-1] through w[dou-1] are computed. In this case, only the eigenvalues dol through dou are guaranteed to be fully accurate.

- m is not the number of eigenvalues specified by range, but it is $m=d o u-d o l+1$. Instead, m refers to the number of eigenvalues computed on this processor.
- While no eigenvectors are computed in ?stegr2a itself (this is done later in ?stegr2b), the interface

If jobz = 'V' then, depending on range and dol, dou, ?stegr2a might need more workspace in z then the original ?stegr. In particular, the arrays w and z might not contain all the wanted eigenpairs locally, instead this information is distributed over other processors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Input Parameters

| jobz | $=$ ' N ': Compute eigenvalues only; |
| :--- | :--- |
| | $=$ ' V ': Compute eigenvalues and eigenvectors. |
| range | $=$ ' A ': all eigenvalues will be found. |
| | $=$ ' V ': all eigenvalues in the half-open interval ($\mathrm{v} 1, \mathrm{vu}]$ will be found. |
| | $=$ 'I': eigenvalues of the entire matrix with the indices in a given range will |
| n | be found. |
| | The order of the matrix. $n \geq 0$. |

Array of size n
The n diagonal elements of the tridiagonal matrix T. Overwritten on exit.
Array of size n
On entry, the ($n-1$) subdiagonal elements of the tridiagonal matrix T in elements 0 to $n-2$ of e. e[n-1] need not be set on input, but is used internally as workspace. Overwritten on exit.

If range='V', the lower and upper bounds of the interval to be searched for eigenvalues. vl < vu.
Not referenced if range $=$ ' A ' or ' I '.
If range='I', the indices (in ascending order) of the smallest eigenvalue, to be returned in w[il-1], and largest eigenvalue, to be returned in w[iu-1]. 1 $\leq i l \leq i u \leq n$, if $n>0$.

Not referenced if range = 'A' or 'V'.
The leading dimension of the array $z . ~ l d z \geq 1$, and if $j o b z=' \mathrm{~V}$ ', then $l d z \geq$ $\max (1, n)$.

The number of eigenvectors to be held in the array z.
If range $=$ ' A ', then $n z c \geq \max (1, n)$.
If range $=$ ' V ', then $n z c \geq$ the number of eigenvalues in ($v 1, v u$].
If range $=$ 'I', then $n z c \geq i u-i l+1$.
If $n z c=-1$, then a workspace query is assumed; the function calculates the number of columns of the matrix stored in array z that are needed to hold the eigenvectors. This value is returned as the first entry of the z array, and no error message related to $n z c$ is issued.

The size of the array work. lwork $\max \left(1,18^{*} n\right)$ if $j o b z=' V '$, and 1 work \geq $\max \left(1,12_{n}\right)$ if jobz = ' N '.
If 1 work $=-1$, then a workspace query is assumed; the function only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to 1 work is issued.

The size of the array iwork. liwork $\geq \max \left(1,10 *_{n}\right)$ if the eigenvectors are desired, and liwork $\geq \max \left(1,8^{*} n\right)$ if only the eigenvalues are to be computed.

If liwork $=-1$, then a workspace query is assumed; the function only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued.

From all the eigenvalues w[0] through w[m-1], only eigenvalues w[dol-1] through w[dou-1] are computed.

Globally summed over all processors, m equals the total number of eigenvalues found. $0 \leq m \leq n$.
If range $=$ ' A ', $m=n$, and if range $=$ ' I ', $m=i u-i l+1$.
The local output equals $m=d o u-d o l+1$.
Array of size n
The first m elements contain approximations to the selected eigenvalues in ascending order. Note that immediately after exiting this function, only the eigenvalues indexed dol-1 through dou-1 are reliable on this processor because the eigenvalue computation is done in parallel. The other entries are very crude preliminary approximations. Other processors hold reliable information on these other parts of the w array.
This information is communicated in the ScaLAPACK driver.
Array of size $l d z * \max (1, m)$.
?stegr2a does not compute eigenvectors, this is done in ?stegr2b. The argument z as well as all related other arguments only appear to keep the interface consistent and to signal to the user that this function is meant to be used when eigenvectors are computed.

On exit, if info $=0$, work[0] returns the optimal (and minimal) lwork.
On exit, if info $=0$, iwork[0] returns the optimal liwork.
The indices of the leftmost and rightmost eigenvalues needed to accurately compute the relevant part of the representation tree. This information can be used to find out which processors have the relevant eigenvalue information needed so that it can be communicated.
inderr points to the place in the work space where the eigenvalue uncertainties (errors) are stored.

The number of blocks into which T splits. $1 \leq n s p l i t \leq n$.
The minimum pivot in the sturm sequence for T.
The scaling factor for the tridiagonal T.
The interval (wl, wu] contains all the wanted eigenvalues.
It is either given by the user or computed in ?larre2a.
On exit, info $=0$: successful exit
other: if info $=-i$, the i-th argument had an illegal value
if info $=10 x$, internal error in ?larre2a,

Here, the digit $x=\operatorname{abs}($ iinfo $)<10$, where iinfo is the nonzero error code returned by ?larre2a.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?stegr2b

From eigenvalues and initial representations computes the selected eigenvalues and eigenvectors of the real symmetric tridiagonal matrix in parallel on multiple processors.

Syntax

```
void sstegr2b(char* jobz, MKL_INT* n, float* d, float* e, MKL_INT* m, float* w, float*
z, MKL_INT* ldz, MKL_INT* nzc, MKL_INT* isuppz, float* work, MKL_INT* lwork, MKL_INT*
iwork, MKL_INT* liwork, MKL_INT* dol, MKL_INT* dou, MKL_INT* needil, MKL_INT* neediu,
MKL_INT* indwlc, float* pivmin, float* scale, float* wl, float* wu, MKL_INT* vstart,
MKL_INT* finish, MKL_INT* maxcls, MKL_INT* ndepth, MKL_INT* parity, MKL_INT* zoffset,
MKL_INT* info);
void dstegr2b(char* jobz, MKL_INT* n, double* d, double* e, MKL_INT* m, double* w,
double* z, MKL_INT* ldz, MKL_INT* nzc, MKL_INT* isuppz, double* work, MKL_INT* lwork,
MKL_INT* iwork, MKL_INT* liwork, MKL_INT* dol, MKL_INT* dou, MKL_INT* needil, MKL_INT*
neediu, MKL_INT* indwlc, double* pivmin, double* scale, double* wl, double* wu, MKL_INT*
vstart, MKL_INT* finish, MKL_INT* maxcls, MKL_INT* ndepth, MKL_INT* parity, MKL_INT*
zoffset, MKL_INT* info);
```

Include Files

- mkl_scalapack.h

Description

?stegr2b should only be called after a call to ?stegr2a. From eigenvalues and initial representations computed by ?stegr2a, ?stegr2b computes the selected eigenvalues and eigenvectors of the real symmetric tridiagonal matrix in parallel on multiple processors. It is potentially invoked multiple times on a given processor because the locally relevant representation tree might depend on spectral information that is "owned" by other processors and might need to be communicated.
Please note:

- The calling sequence has two additional integer parameters, dol and dou, that should satisfy $m \geq d o u \geq d o l \geq 1$. These parameters are only relevant for the case $j o b z=$ ' V '. ?stegr $2 b$ only computes the eigenvectors corresponding to eigenvalues dol through dou in w, indexed dol-1 through dou-1. (That is, instead of computing the eigenvectors belonging to $w([0]$ through w[m-1], only the eigenvectors belonging to eigenvalues w[dol-1] through w[dou-1] are computed. In this case, only the eigenvalues dol through dou are guaranteed to be accurately refined to all figures by Rayleigh-Quotient iteration.
- The additional arguments vstart, finish, ndepth, parity, zoffset are included as a thread-safe implementation equivalent to save variables. These variables store details about the local representation tree which is computed layerwise. For scalability reasons, eigenvalues belonging to the locally relevant representation tree might be computed on other processors. These need to be communicated before the inspection of the RRRs can proceed on any given layer. Note that only when the variable finishis nonzero, the computation has ended. All eigenpairs between $d o l$ and dou have been computed. m is set to dou - dol +1 .
- ?stegr2b needs more workspace in z than the sequential ?stegr. It is used to store the conformal embedding of the local representation tree.

```
Product and Performance Information
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision #20201201
```


Input Parameters

jobz $\quad=$ ' N ': Compute eigenvalues only;

The order of the matrix. $n \geq 0$.
Array of size n
The n diagonal elements of the tridiagonal matrix T. Overwritten on exit.
Array of size n
The ($n-1$) subdiagonal elements of the tridiagonal matrix T in elements 0 to $n-2$ of e. e[n-1] need not be set on input, but is used internally as workspace. Overwritten on exit.

The total number of eigenvalues found in ?stegr2a. $0 \leq m \leq n$.
Array of size n
The first m elements contain approximations to the selected eigenvalues in ascending order. Note that only the eigenvalues from the locally relevant part of the representation tree, that is all the clusters that include eigenvalues from dol through dou, are reliable on this processor. (It does not need to know about any others anyway.)

The leading dimension of the array $z . l d z \geq 1$, and if $j o b z=$ 'V', then $l d z \geq$ $\max (1, n)$.

The number of eigenvectors to be held in the array z, storing the matrix Z.
The size of the array work. 1 work $\geq \max \left(1,18 *_{n}\right)$
if $j o b z=$ 'V', and $l w o r k \geq \max \left(1,12^{*} n\right)$ if $j o b z=' N '$.
If lwork $=-1$, then a workspace query is assumed; the function only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued.

The size of the array iwork. liwork $\max \left(1,10 *_{n}\right)$ if the eigenvectors are desired, and liwork $\geq \max \left(1,8^{*} n\right)$ if only the eigenvalues are to be computed.
If liwork $=-1$, then a workspace query is assumed; the function only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued.

From the eigenvalues $w[0]$ through $w[m-1]$, only eigenvectors $Z(:, d o l)$ to $Z(:, d o u)$ are computed.
If dol > 1, then $Z(:$, dol-1-zoffset $)$ is used and overwritten.

```
needil, neediu
```

pivmin
scale
wl, wu
vstart
finish
maxcls
ndepth
parity
zoffset

OUTPUT Parameters

z
isuppz
work
iwork
needil, neediu
indwlc
vstart
finish
maxcls

If dou $<m$, then $Z(:$, dou $+1-z o f f s e t)$ is used and overwritten.
Describes which are the left and right outermost eigenvalues still to be computed. Initially computed by ?larre2a, modified in the course of the algorithm.

The minimum pivot in the sturm sequence for T.
The scaling factor for T. Used for unscaling the eigenvalues at the very end of the algorithm.

The interval (wl, wu] contains all the wanted eigenvalues.
Non-zero on initialization, set to zero afterwards.
Indicates whether all eigenpairs have been computed.
The largest cluster worked on by this processor in the representation tree.
The current depth of the representation tree. Set to zero on initial pass, changed when the deeper levels of the representation tree are generated.

An internal parameter needed for the storage of the clusters on the current level of the representation tree.

Offset for storing the eigenpairs when z is distributed in 1D-cyclic fashion.

Array of size $l d z * \max (1, m)$

If jobz $=$ ' V ', and if info $=0$, then a subset of the first m columns of the matrix Z, stored in z, contain the orthonormal eigenvectors of the matrix T corresponding to the selected eigenvalues, with the i-th column of Z holding the eigenvector associated with w[i-1].

See dol, dou for more information.
array of size $2 * \max (1, m)$.
The support of the eigenvectors in z, i.e., the indices indicating the nonzero elements in z. The i-th computed eigenvector is nonzero only in elements isuppz[$2 *_{i-2}$] through isuppz[$\left.2 *_{i}-1\right]$. This is relevant in the case when the matrix is split. isuppz is only set if $n>2$.

On exit, if info $=0$, work[0] returns the optimal (and minimal) lwork.
On exit, if info $=0$, iwork[0] returns the optimal liwork.
Modified in the course of the algorithm.
Pointer into the workspace location where the local eigenvalue representations are stored. ("Local eigenvalues" are those relative to the individual shifts of the RRRs.)

Non-zero on initialization, set to zero afterwards.
Indicates whether all eigenpairs have been computed
The largest cluster worked on by this processor in the representation tree.

| ndepth | The current depth of the representation tree. Set to zero on initial pass,
 changed when the deeper levels of the representation tree are generated. |
| :--- | :--- |
| parity | An internal parameter needed for the storage of the clusters on the current |
| level of the representation tree. | |

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?stein2

Computes the eigenvectors corresponding to specified eigenvalues of a real symmetric tridiagonal matrix, using inverse iteration.

Syntax

```
void sstein2 (MKL_INT *n , float *d, float *e , MKL_INT *m, float *W, MKL_INT
*iblock , MKL_INT *isplit , float *orfac, float *z , MKL_INT *ldz , float *work ,
MKL_INT *iwork , MKL_INT *ifail , MKL_INT *info );
void dstein2 (MKL_INT *n , double *d, double *e , MKL_INT *m , double *W , MKL_INT
*iblock , MKL_INT *isplit , double *orfac, double *z , MKL_INT *ldz , double *work ,
MKL_INT *iwork , MKL_INT *ifail , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The ?stein2function is a modified LAPACK function ?stein. It computes the eigenvectors of a real symmetric tridiagonal matrix T corresponding to specified eigenvalues, using inverse iteration.
The maximum number of iterations allowed for each eigenvector is specified by an internal parameter maxits (currently set to 5).

Input Parameters

```
n The order of the matrix T(n\geq0).
m
d, e,w
The order of the matrix \(T(n \geq 0)\).
The number of eigenvectors to be found ( \(0 \leq m \leq n\) ).
Arrays:
\(d\), of size \(n\). The \(n\) diagonal elements of the tridiagonal matrix \(T\).
\(e\), of size \(n\).
```

The ($n-1$) subdiagonal elements of the tridiagonal matrix T, in elements 1 to $n-1$. e[n-1] need not be set.
w, of size n.
The first m elements of w contain the eigenvalues for which eigenvectors are to be computed. The eigenvalues should be grouped by split-off block and ordered from smallest to largest within the block. (The output array w from ? stebz with ORDER = 'B' is expected here).

The size of w must be at least max $(1, n)$.

Array of size n.
The submatrix indices associated with the corresponding eigenvalues in w; $i b \operatorname{lock}[i]=1$, if eigenvalue $w[i]$ belongs to the first submatrix from the top,
$i b \operatorname{lock}[i]=2$, if eigenvalue $w[i]$ belongs to the second submatrix, etc. (The output array iblock from ?stebz is expected here).

Array of size n.
The splitting points, at which T breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit[0], the second submatrix consists of rows/columns isplit[0]+1 through isplit[1], etc. (The output array isplit from ?stebz is expected here).
orfac specifies which eigenvectors should be orthogonalized. Eigenvectors that correspond to eigenvalues which are within orfac*||T|| of each other are to be orthogonalized.

The leading dimension of the output array $z ; 1 d z \geq \max (1, n)$.
Workspace array of size $5 n$.
Workspace array of size n.

Array of size $I d z * m$.
The computed eigenvectors. The eigenvector associated with the eigenvalue ${ }_{w}[i]$ is stored in the $(i+1)$-th column of the matrix Z represented by z, $i=0, \ldots, m-1$. Any vector that fails to converge is set to its current iterate after maxits iterations.

Array of size m.
On normal exit, all elements of ifail are zero. If one or more eigenvectors fail to converge after maxits iterations, then their indices are stored in the array ifail.
info $=0$, the exit is successful.
info < 0 : if info $=-i$, the i-th had an illegal value.
info > 0 : if info $=i$, then i eigenvectors failed to converge in maxits iterations. Their indices are stored in the array ifail.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?dbtf2

Computes an LU factorization of a general band matrix with no pivoting (local unblocked algorithm).

Syntax

```
void sdbtf2 (MKL_INT *m , MKL_INT *n , MKL_INT *kl , MKL_INT *ku , float *ab , MKL_INT
*ldab , MKL_INT *info );
void ddbtf2 (MKL_INT *m , MKL_INT *n , MKL_INT *kI , MKL_INT *ku , double *ab , MKL_INT
*ldab , MKL_INT *info );
void cdbtf2 (MKL_INT *m , MKL_INT *n , MKL_INT *kl, MKL_INT *ku , MKL_Complex8 *ab ,
MKL_INT *Idab , MKL_INT *info );
void zdbtf2 (MKL_INT *m , MKL_INT *n , MKL_INT *kl, MKL_INT *ku , MKL_Complex16 *ab ,
MKL_INT *Idab , MKL_INT *info );
```


Include Files

```
- mkl_scalapack.h
```


Description

The ? $\mathrm{dbt} f 2$ function computes an $L U$ factorization of a general real/complex m-by- n band matrix A without using partial pivoting with row interchanges.
This is the unblocked version of the algorithm, calling BLAS Routines and Functions.

Input Parameters

```
\begin{tabular}{ll}
\(m\) & The number of rows of the matrix \(A(m \geq 0)\). \\
\(n\) & The number of columns in \(A(n \geq 0)\). \\
\(k l\) & The number of sub-diagonals within the band of \(A(k I \geq 0)\). \\
\(k u\) & The number of super-diagonals within the band of \(A(k u \geq 0)\). \\
\(a b\) & Array of size \(/ d a b * n\).
\end{tabular}
The matrix \(A\) in band storage, in rows \(k l+1\) to \(2 k l+k u+1\); rows 1 to \(k l\) of the matrix need not be set. The \(j\)-th column of \(A\) is stored in the array \(a b\) as follows: \(a b\left[k l+k u+i-j+(j-1)^{*} \_d a b\right]=A(i, j)\) for \(\max (1, j-\) \(k u) \leq i \leq \min (m, j+k l)\).
The leading dimension of the array \(a b\).
```

```
(ldab\geq 2kl + ku +1)
```


Output Parameters

ab
On exit, details of the factorization: U is stored as an upper triangular band matrix with $k l+k u$ superdiagonals in rows 1 to $k l+k u+1$, and the multipliers used during the factorization are stored in rows $k l+k u+2$ to $2 * k l+k u+1$. See the Application Notes below for further details.
info $\quad=0$: successful exit
<0 : if info $=-i$, the i-th argument had an illegal value,
>0 : if info $=+i$, the matrix element $U(i, i)$ is 0 . The factorization has been
completed, but the factor U is exactly singular. Division by 0 will occur if
you use the factor U for solving a system of linear equations.

Application Notes

The band storage scheme is illustrated by the following example, when $m=n=6, k l=2, k u=1$:

The function does not use array elements marked *; elements marked + need not be set on entry, but the function requires them to store elements of U, because of fill-in resulting from the row interchanges.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?dbtrf

Computes an LU factorization of a general band matrix with no pivoting (local blocked algorithm).

Syntax

```
void sdbtrf (MKL_INT *m , MKL_INT *n , MKL_INT *kI , MKL_INT *ku , float *ab , MKL_INT
*ldab , MKL_INT *info );
void ddbtrf (MKL_INT *m , MKL_INT *n , MKL_INT *kI , MKL_INT *ku , double *ab , MKL_INT
*Idab , MKL_INT *info );
void cdbtrf (MKL_INT *m , MKL_INT *n , MKL_INT *kI, MKL_INT *ku , MKL_Complex8 *ab ,
MKL_INT *Idab , MKL_INT *info );
void zdbtrf (MKL_INT *m , MKL_INT *n , MKL_INT *kl , MKL_INT *ku , MKL_Complex16 *ab ,
MKL_INT *Idab , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

This function computes an LU factorization of a real m-by-n band matrix A without using partial pivoting or row interchanges.
This is the blocked version of the algorithm, calling BLAS Routines and Functions.

Input Parameters

m
The number of rows of the matrix $A(m \geq 0)$.
n

Idab

The number of columns in $A(n \geq 0)$.
The number of sub-diagonals within the band of $A(k l \geq 0)$.
The number of super-diagonals within the band of $A(k u \geq 0)$.
Array of size $I d a b{ }^{*} n$.
The matrix A in band storage, in rows $k l+1$ to $2 k l+k u+1$; rows 1 to $k l$ need not be set. The j-th column of A is stored in the array $a b$ as follows: $a b[k]$ $+k u+i-j+(j-1) * l d a b]=A(i, j)$ for $\max (1, j-k u) \leq i \leq \min (m, j$ $+k I)$.

The leading dimension of the array $a b$.

```
(Idab \geq 2kl + ku +1)
```


Output Parameters

$=0$: successful exit
< 0: if info $=-i$, the i-th argument had an illegal value,
>0 : if info $=+i$, the matrix element $U(i, i)$ is 0 . The factorization has been completed, but the factor U is exactly singular. Division by 0 will occur if you use the factor U for solving a system of linear equations.
On exit, details of the factorization: U is stored as an upper triangular band matrix with $k l+k u$ superdiagonals in rows 1 to $k l+k u+1$, and the multipliers used during the factorization are stored in rows $k l+k u+2$ to $2 * k l+k u+1$. See the Application Notes below for further details.

Application Notes

The band storage scheme is illustrated by the following example, when $m=n=6, k 1=2, k u=1$:

$$
\text { on entry } \quad \text { on exit }
$$

$\left[\begin{array}{cccccc}3 & 312 & 323 & 334 & 346 & 366 \\ 317 & 322 & 333 & 344 & 366 & 366 \\ 321 & 332 & 343 & 364 & 366 & 3 \\ 331 & 342 & 363 & 364 & 3 & 3\end{array}\right]$

| 3 | W2 | 123 | 1,34 | 145 |
| :---: | :---: | :---: | :---: | :---: |
| $U 1]$ | 422 | 133 | 1144 | $4 S$ |
| $m 21$ | M, 32 | $m 49$ | mb4 | M6F |
| ML 31 | M42 | $m b s$ | 1264 | 3 |

The function does not use array elements marked *.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?dttrf

Computes an LU factorization of a general tridiagonal
matrix with no pivoting (local blocked algorithm).

Syntax

```
void sdttrf (MKL_INT *n , float *dl , float *d, float *du , MKL_INT *info );
```

```
void ddttrf (MKL_INT *n , double *dl, double *d, double *du , MKL_INT *info );
void cdttrf (MKL_INT *n , MKL_Complex8 *dl, MKL_Complex8 *d, MKL_Complex8 *du ,
MKL_INT *info );
void zdttrf (MKL_INT *n , MKL_Complex16 *dl, MKL_Complex16 *d, MKL_Complexl6 *du ,
MKL_INT *info );
```

Include Files

- mkl_scalapack.h

Description

The ?dttrffunction computes an $L U$ factorization of a real or complex tridiagonal matrix A using elimination without partial pivoting.
The factorization has the form $A=L^{*} U$, where L is a product of unit lower bidiagonal matrices and U is upper triangular with nonzeros only in the main diagonal and first superdiagonal.

Input Parameters

| n | The order of the matrix $A(n \geq 0)$. |
| :--- | :--- |
| $d l, d, d u$ | Arrays containing elements of A. |

The array $d l$ of size $(n-1)$ contains the sub-diagonal elements of A.
The array d of size n contains the diagonal elements of A.
The array $d u$ of size ($n-1$) contains the super-diagonal elements of A.

Output Parameters

| $d I \quad$ | Overwritten by the $(n-1)$ multipliers that define the matrix L from the $L U$
 factorization of A. |
| :--- | :--- |
| $d \quad$Overwritten by the n diagonal elements of the upper triangular matrix U
 from the $L U$ factorization of A. | |
| Overwritten by the $(n-1)$ elements of the first super-diagonal of U. | |
| | $=0$: successful exit |
| $<0:$ if info $=-i$, the i-th argument had an illegal value, | |
| | >0 : if info $=i$, the matrix element $U(i, i)$ is exactly 0 . The factorization has |
| been completed, but the factor U is exactly singular. Division by 0 will occur | |
| if you use the factor U for solving a system of linear equations. | |

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?dttrsv

Solves a general tridiagonal system of linear equations using the LU factorization computed by ?dttrf.

Syntax

```
void sdttrsv (char *uplo, char *trans, MKL_INT *n , MKL_INT *nrhs , float *dl , float
*d , float *du , float *b , MKL_INT *ldb , MKL_INT *info );
```

```
void ddttrsv (char *uplo , char *trans, MKL_INT *n , MKL_INT *nrhs , double *dl ,
double *d, double *du , double *b , MKL_INT *ldb , MKL_INT *info );
void cdttrsv (char *uplo, char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complex8
*dl , MKL_Complex8 *d , MKL_Complex8 *du , MKL_Complex8 *b , MKL_INT *Idb , MKL_INT
*info );
void zdttrsv (char *uplo , char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complex16
*dl , MKL_Complex16 *d, MKL_Complex16 *du , MKL_Complex16 *b , MKL_INT *ldb , MKL_INT
*info);
```


Include Files

- mkl_scalapack.h

Description

The ?dttrsvfunction solves one of the following systems of linear equations:

```
L*X = B, L'T*X = B, or L'H*X = B,
U*X = B, U'T*X = B, or }\mp@subsup{U}{}{H}*X=
```

with factors of the tridiagonal matrix A from the $L U$ factorization computed by ?dttrf.

Input Parameters

| uplo | Specifies whether to solve with L or U. |
| :---: | :---: |
| trans | Must be 'N' or 'T' or 'C'. |
| | Indicates the form of the equations: |
| | If trans $={ }^{\prime} \mathrm{N}^{\prime}$ ', then $A^{*} X=B$ is solved for X (no transpose). |
| | If trans $=$ ' T ', then $A^{T} * X=B$ is solved for X (transpose). |
| | If trans $=$ ' C', then $A^{H *} X=B$ is solved for X (conjugate transpose). |
| n | The order of the matrix $A(n \geq 0)$. |
| nrhs | The number of right-hand sides, that is, the number of columns in the matrix B ($n r h s \geq 0$). |
| $d 1, d, d u, b$ | The array $d l$ of size $(n-1)$ contains the $(n-1)$ multipliers that define the matrix L from the $L U$ factorization of A. |
| | The array d of size n contains n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A. |
| | The array du of size $(n-1)$ contains the $(n-1)$ elements of the first superdiagonal of U. |
| | On entry, the array bof size $l d b *$ nrhs contains the right-hand side of matrix B. |
| 1 db | The leading dimension of the array $b ; 1 d b \geq \max (1, n)$. |

Output Parameters

b
info
Overwritten by the solution matrix X.
If inforo, the execution is successful.

If info $=-i$, the i-th parameter had an illegal value.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?pttrsv

Solves a symmetric (Hermitian) positive-definite tridiagonal system of linear equations, using the $L^{*} D^{*} L^{H}$ factorization computed by ?pttrf.

Syntax

```
void spttrsv (char *trans , MKL_INT *n , MKL_INT *nrhs, float *d , float *e , float
*b ,MKL_INT *Idb , MKL_INT *info );
void dpttrsv (char *trans , MKL_INT *n , MKL_INT *nrhs, double *d , double *e , double
*b , MKL_INT *Idb , MKL_INT *info );
void cpttrsv (char *uplo, char *trans , MKL_INT *n , MKL_INT *nrhs , float *d ,
MKL_Complex8 *e , MKL_Complex8 *b , MKL_INT *ldb , MKL_INT *info );
void zpttrsv (char *uplo, char *trans , MKL_INT *n , MKL_INT *nrhs , double *d,
MKL_Complex16 *e , MKL_Complex16 *b , MKL_INT *Idb , MKL_INT *info );
```


Include Files

- mkl_scalapack.h

Description

The ?pttrsvfunction solves one of the triangular systems:

```
L'*}\mp@subsup{}{}{T}*=B\mathrm{ , or }L*X=B\mathrm{ for real flavors,
```

or
$L^{*} X=B$, or $L^{H * X}=B$,
$U^{*} X=B$, or $U^{H} * X=B$ for complex flavors,
where L (or U for complex flavors) is the Cholesky factor of a Hermitian positive-definite tridiagonal matrix A such that

```
A = L*D* L L
```

or
$A=U^{H} D^{*} U$ or $A=L \star D^{\star} L^{H}$ (computed by cpttrf/zpttrf).

Input Parameters

| uplo | Must be 'U' or ' L '. |
| :--- | :--- |
| | Specifies whether the superdiagonal or the subdiagonal of the tridiagonal |
| | matrix A is stored and the form of the factorization: |
| | If uplo $=$ 'U', e is the superdiagonal of U, and $A=U^{H} \star D^{\star} U$ or $A=$ |
| | $L^{\star} D^{\star} L^{H} ;$ |
| | if uplo $=$ ' L ', e is the subdiagonal of L, and $A=L^{\star} D^{\star} L^{H}$. |
| | The two forms are equivalent, if A is real. |

```
trans
n
nrhs
d
e
b
ldb
Specifies the form of the system of equations:
for real flavors:
if trans \(=\) 'N': \(L^{*} X=B\) (no transpose)
if trans \(=\) ' \(T\) ' \(: L^{T} * X=B\) (transpose)
for complex flavors:
if trans \(=' N^{\prime}: U^{\star} X=B\) or \(L^{*} X=B\) (no transpose)
if trans \(=' C ': U^{H} * X=B\) or \(L^{H} * X=B\) (conjugate transpose).
n
nrhs
\(d\)
e
b
\(1 d b\)
The order of the tridiagonal matrix \(A . n \geq 0\).
The number of right hand sides, that is, the number of columns of the matrix \(B\). nrhs \(\geq 0\).
array of size \(n\). The \(n\) diagonal elements of the diagonal matrix \(D\) from the factorization computed by ?pttrf.
array of size ( \(n-1\) ). The ( \(n-1\) ) off-diagonal elements of the unit bidiagonal factor \(U\) or \(L\) from the factorization computed by ?pttrf. See uplo.
array of size \(/ d b^{*} n r h s\).
On entry, the right hand side matrix \(B\).
The leading dimension of the array \(b\).
```

```
ldb\geq max(1, n).
```

```
ldb\geq max(1, n).
```


Output Parameters

b
info

On exit, the solution matrix X.
$=0$: successful exit
<0 : if info $=-i$, the i-th argument had an illegal value.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?steqr2

Computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method.

Syntax

```
void ssteqr2 (char *compz , MKL_INT *n , float *d, float *e , float *z , MKL_INT *ldz ,
MKL_INT *nr , float *work , MKL_INT *info );
void dsteqr2 (char *compz, MKL_INT *n , double *d, double *e , double *z , MKL_INT
*Idz , MKL_INT *nr , double *WOrk , MKL_INT *info );
```

Include Files

- mkl_scalapack.h

Description

The ?steqr2function is a modified version of LAPACK function ?steqr. The ?steqr2function computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method. ?steqr2 is modified from ?steqr to allow each ScaLAPACK process running ?steqr2 to perform updates on a distributed matrix Q. Proper usage of ?steqr2 can be gleaned from examination of ScaLAPACK function p?syev.

Input Parameters

```
compz
n
d, e, work
z
ldz
nr
```

Must be 'N' or 'I'.
If compz = 'N', the function computes eigenvalues only. If compz = 'I', the function computes the eigenvalues and eigenvectors of the tridiagonal matrix T.
z must be initialized to the identity matrix by p?laset or ?laset prior to entering this function.

The order of the matrix $T(n \geq 0)$.
Arrays:
d contains the diagonal elements of T. The size of d must be at least $\max (1, n)$.
e contains the $(n-1)$ subdiagonal elements of T. The size of e must be at least max (1, $n-1$).
work is a workspace array. The size of work is max $\left(1,2 *_{n-2}\right)$. If compz $=$ ' N ', then work is not referenced.
(local)
Array of global size $n^{*} n$ and of local size $/ d z^{*} n r$.
If compz $=$ ' V ', then z contains the orthogonal matrix used in the reduction to tridiagonal form.

The leading dimension of the array z. Constraints:
$1 d z \geq 1$,
$l d z \geq \max (1, n)$, if eigenvectors are desired.
$n r=\max (1, \operatorname{numroc}(n, n b$, myprow, $0, n p r o c s))$.
If compz = 'N', then nr is not referenced.

On exit, the eigenvalues in ascending order, if info $=0$.
See also info.
On exit, e has been destroyed.
On exit, if info $=0$, then,

Output Parameters

d
e
z
if compz $=$ ' V ', z contains the orthonormal eigenvectors of the original symmetric matrix, and if compz = 'I', z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If $\operatorname{compz}={ }^{\prime} \mathrm{N}^{\prime}$, then z is not referenced.
info
info $=0$, the exit is successful.
info <0 : if info $=-i$, the i-th had an illegal value.
info> 0 : the algorithm has failed to find all the eigenvalues in a total of 30n iterations;
if info $=i$, then i elements of e have not converged to zero; on exit, d and e contain the elements of a symmetric tridiagonal matrix, which is orthogonally similar to the original matrix.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

?trmvt

Performs matrix-vector operations.

Syntax

```
void strmvt (const char* uplo, const MKL_INT* n, const float* t, const MKL_INT* ldt,
float* x, const MKL_INT* incx, const float* y, const MKL_INT* incy, float* w, const
MKL_INT* incw, const float* z, const MKL_INT* incz);
void dtrmvt (const char* uplo, const MKL_INT* n, const double* t, const MKL_INT* ldt,
double* x, const MKL_INT* incx, const double* y, const MKL_INT* incy, double* w, const
MKL_INT* incw, const double* z, const MKL_INT* incz);
void ctrmvt (const char* uplo, const MKL_INT* n, const MKL_Complex8* t, const MKL_INT*
ldt, MKL_Complex8* x, const MKL_INT* incx, const MKL_Complex8* y, const MKL_INT* incy,
MKL_Complex8* w, const MKL_INT* incw, const MKL_Complex8* z, const MKL_INT* incz);
void ztrmvt (const char* uplo, const MKL_INT* n, const MKL_Complex16* t, const MKL_INT*
ldt, MKL_Complex16* x, const MKL_INT* incx, const MKL_Complex16* y, const MKL_INT*
incy, MKL_Complex16* w, const MKL_INT* incw, const MKL_Complex16* z, const MKL_INT*
inCZ);
```


Include Files

- mkl_scalapack.h

Description

?trmvt performs the matrix-vector operations as follows:
strmvt and dtrmvt: $\mathrm{x}:=T^{*} \mathrm{y}$, and $\mathrm{w}:=T^{*} \mathrm{z}$
ctrmvt and ztrmvt: $\mathrm{x}:=\mathrm{conjg}(T){ }^{*} \mathrm{y}$, and $\mathrm{w}:=T^{*} \mathrm{z}$,
where \mathbf{x} is an n element vector and T is an $n-b y-n$ upper or lower triangular matrix.

Input Parameters

uplo
On entry, uplo specifies whether the matrix is an upper or lower triangular matrix as follows:

> uplo = 'U' or 'u'
A is an upper triangular matrix.
uplo = 'L' or 'I'
A is a lower triangular matrix.
Unchanged on exit.
On entry, n specifies the order of the matrix $A . n$ must be at least zero.
Unchanged on exit.
Array of size ($I d t, n$).
Before entry with uplo = 'U' or 'u', the leading n-by- n upper triangular part of the array t must contain the upper triangular matrix and the strictly lower triangular part of t is not referenced.

Before entry with uplo = 'L' or 'I', the leading n-by- n lower triangular part of the array t must contain the lower triangular matrix and the strictly upper triangular part of t is not referenced.

On entry, Ida specifies the first dimension of A as declared in the calling (sub) program. Ida must be at least max ($1, n$).
Unchanged on exit.
On entry, incx specifies the increment for the elements of x. incx must not be zero.
Unchanged on exit.
Array of size at least ($1+(n-1) * a b s($ incy $))$.
Before entry, the incremented array y must contain the n element vector y. Unchanged on exit.

On entry, incy specifies the increment for the elements of y. incy must not be zero.
Unchanged on exit.
On entry, incw specifies the increment for the elements of w. incw must not be zero.

Unchanged on exit.
Array of size at least $(1+(n-1) * a b s(i n c z))$.
Before entry, the incremented array z must contain the n element vector z.
Unchanged on exit.
On entry, incz specifies the increment for the elements of z. incz must not be zero.

Unchanged on exit.

Output Parameters

t

X

W

Before entry with uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array t must contain the upper triangular matrix and the strictly lower triangular part of t is not referenced.
Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array t must contain the lower triangular matrix and the strictly upper triangular part of t is not referenced.

Array of size at least ($1+(n-1) * a b s($ incx $))$.
On exit, $x=T^{*} y$.
Array of size at least $(1+(n-1) * a b s($ incw $))$.
On exit, $w=T * z$.

pilaenv

Returns the positive integer value of the logical
blocking size.

Syntax

```
MKL_INT pilaenv (const MKL_INT *ictxt , const char *prec);
```


Include Files

- mkl_pblas.h

Description

pilaenv returns the positive integer value of the logical blocking size. This value is machine and precision specific. This version provides a logical blocking size which should give good though not optimal performance on many of the currently available distributed-memory concurrent computers. You are encouraged to modify this subroutine to set this tuning parameter for your particular machine.

Input Parameters

```
ictxt
prec
On entry, ictxt specifies the BLACS context handle, indicating the global context of the operation. The context itself is global, but the value of ictxt is local.
On input, prec specifies the precision for which the logical block size should be returned as follows:
```

```
prec = 'S' or 's' single precision real,
```

prec = 'S' or 's' single precision real,
prec = 'D' or 'd' double precision real,
prec = 'D' or 'd' double precision real,
prec = 'C' or 'c' single precision complex,
prec = 'C' or 'c' single precision complex,
prec = 'Z' or 'z' double precision complex,
prec = 'Z' or 'z' double precision complex,
prec = 'I' or 'i' integer.

```
prec = 'I' or 'i' integer.
```


Application Notes

Before modifying this routine to tune the library performance on your system, be aware of the following:

1. The value this function returns must be strictly larger than zero,
2. If you are planning to link your program with different instances of the library (for example, on a heterogeneous machine), you must compile each instance of the library with exactly the same version of this routine for obvious interoperability reasons.

pilaenvx

Called from the ScaLAPACK routines to choose problem-dependent parameters for the local environment.

Syntax

```
MKL_INT pilaenvx (const MKL_INT* ictxt, const MKL_INT* ispec, const char* name, const
char* opts, const MKL_INT* n1, const MKL_INT* n2, const MKL_INT* n3, const MKL_INT*
```


Include Files

- mkl.h

Description

pilaenvx is called from the ScaLAPACK routines to choose problem-dependent parameters for the local environment. See ispec for a description of the parameters. This version provides a set of parameters which should give good, though not optimal, performance on many of the currently available computers. You are encouraged to modify this subroutine to set the tuning parameters for your particular machine using the option and problem size information in the arguments.

Input Parameters

ictxt
ispec
(local input)On entry, ictxt specifies the BLACS context handle, indicating the global context of the operation. The context itself is global, but the value of ictxt is local.
(global input)
Specifies the parameter to be returned as the value of pilaenvx.
$=1$: the optimal blocksize; if this value is 1 , an unblocked algorithm will give the best performance (unlikely).
$=2$: the minimum block size for which the block routine should be used; if the usable block size is less than this value, an unblocked routine should be used.
= 3: the crossover point (in a block routine, for N less than this value, an unblocked routine should be used).
$=4$: the number of shifts, used in the nonsymmetric eigenvalue routines (DEPRECATED).
= 5: the minimum column dimension for blocking to be used; rectangular blocks must have dimension at least k by m, where k is given by pilaenvx (2,...) and m by pilaenvx (5, ...).
$=6$: the crossover point for the SVD (when reducing an m by n matrix to bidiagonal form, if $\max (m, n) / \min (m, n)$ exceeds this value, a QR factorization is used first to reduce the matrix to a triangular form).
$=7$: the number of processors.
= 8: the crossover point for the multishift QR method for nonsymmetric eigenvalue problems (DEPRECATED).
= 9: maximum size of the subproblems at the bottom of the computation tree in the divide-and-conquer algorithm (used by ?gelsd and ?gesdd).
=10: IEEE NaN arithmetic can be trusted not to trap.
=11: infinity arithmetic can be trusted not to trap.
$12<=$ ispec <= $16:$
p?hseqr or one of its subroutines, see piparmq for detailed explanation.
$17<=$ ispec <= 22:
Parameters for pb?trord/p?hseqr (not all), as follows:
=17: maximum number of concurrent computational windows;
=18: number of eigenvalues/bulges in each window;
=19: computational window size;
=20: minimal percentage of FLOPS required for performing matrix-matrix multiplications instead of pipelined orthogonal transformations;
=21: width of block column slabs for row-wise application of pipelined orthogonal transformations in their factorized form;
$=22$: the maximum number of eigenvalues moved together over a process border;
$=23$: the number of processors involved in Aggressive Early Deflation (AED);
=99: Maximum iteration chunksize in OpenMP parallelization.
name
opts
n1, n2, n3, and n4
(global input)
The name of the calling subroutine, in either upper case or lower case.
(global input) The character options to the subroutine name, concatenated into a single character string. For example, uplo = 'U', trans = 'T', and diag = 'N' for a triangular routine would be specified as opts = 'UTN'.
(global input) Problem dimensions for the subroutine name; these may not all be required.

Output Parameters

(global output)
$>=0$: the value of the parameter specified by ispec.
<0 : if pilaenvx $=-k$, the k-th argument had an illegal value.

Application Notes

The following conventions have been used when calling ilaenv from the LAPACK routines:

1. opts is a concatenation of all of the character options to subroutine name, in the same order that they appear in the argument list for name, even if they are not used in determining the value of the parameter specified by ispec.
2. The problem dimensions $n 1, n 2, n 3$, and $n 4$ are specified in the order that they appear in the argument list for name. n1 is used first, n2 second, and so on, and unused problem dimensions are passed a value of -1 .
3. The parameter value returned by ilaenv is checked for validity in the calling subroutine. For example, ilaenv is used to retrieve the optimal block size for strtri as follows:
```
NB = ilaenv( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 );
if( NB<=1 ) {
    NB = MAX( 1, N );
}
```

The same conventions hold for this ScaLAPACK-style variant.

pjlaenv

Called from the ScaLAPACK symmetric and Hermitian tailored eigen-routines to choose problem-dependent parameters for the local environment.

Syntax

```
MKL_INT pjlaenv (const MKL_INT* ictxt, const MKL_INT* ispec, const char* name, const
char* opts, const MKL_INT* n1, const MKL_INT* n2, const MKL_INT* n3, const MKL_INT*
n4);
```


Include Files

- mkl.h

Description

pjlaenv is called from the ScaLAPACK symmetric and Hermitian tailored eigen-routines to choose problemdependent parameters for the local environment. See ispec for a description of the parameters. This version provides a set of parameters which should give good, though not optimal, performance on many of the currently available computers. You are encouraged to modify this subroutine to set the tuning parameters for your particular machine using the option and problem size information in the arguments.

Input Parameters

```
ispec (global input) Specifies the parameter to be returned as the value of
pjlaenv.
= 1: the data layout blocksize;
= 2: the panel blocking factor;
= 3: the algorithmic blocking factor;
= 4: execution path control;
= 5: maximum size for direct call to the LAPACK routine.
(global input) The name of the calling subroutine, in either upper case or lower case.
(global input) The character options to the subroutine name, concatenated into a single character string. For example, uplo = 'U', trans \(=\) 'T', and diag \(=\) ' \(N\) ' for a triangular routine would be specified as opts \(=\) 'UTN'.
```

$n 1, n 2, n 3$, and $n 4$
(global input) Problem dimensions for the subroutine name; these may not all be required. At present, only $n 1$ is used, and it ($n 1$) is used only for 'TTRD'.

Output Parameters

result
(global or local output)
$>=0$: the value of the parameter specified by ispec.
< 0: if pjlaenv $=-k$, the k-th argument had an illegal value. Most parameters set via a call to pjlaenv must be identical on all processors and hence pjlaenv will return the same value to all procesors (i.e. global output). However some, in particular, the panel blocking factor can be different on each processor and hence pjlaenv can return different values on different processors (i.e. local output).

Application Notes

The following conventions have been used when calling pjlaenv from the ScaLAPACK routines:

1. opts is a concatenation of all of the character options to subroutine name, in the same order that they appear in the argument list for name, even if they are not used in determining the value of the parameter specified by ispec.
2. The problem dimensions $n 1, n 2, n 3$, and $n 4$ are specified in the order that they appear in the argument list for name. $n 1$ is used first, $n 2$ second, and so on, and unused problem dimensions are passed a value of -1 .
a. The parameter value returned by pjlaenv is checked for validity in the calling subroutine. For example, pjlaenv is used to retrieve the optimal blocksize for STRTRI as follows:
```
NB = pjlaenv( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 );
IF( NB>=1 ) {
    NB = MAX( 1, N );
}
```

pjlaenv is patterned after ilaenv and keeps the same interface in anticipation of future needs, even though pjlaenv is only sparsely used at present in ScaLAPACK. Most ScaLAPACK codes use the input data layout blocking factor as the algorithmic blocking factor - hence there is no need or opportunity to set the algorithmic or data decomposition blocking factor. pXYYtevx.f and pXYYtgvx.f and pXYYttrd.f are the only codes which call pjlaenv. pXYYtevx.f and pXYYtgvx.f redistribute the data to the best data layout for each transformation. pXYYttrd.f uses a data layout blocking factor of 1.

Additional ScaLAPACK Routines

```
void pchettrd (const char *uplo , const MKL_INT *n , MKL_Complex8 *a , const MKL_INT
*ia, const MKL_INT *ja , const MKL_INT *desca , float *\overline{d}, float *e , MKL_Complex8
*tau , MKL_Complex8 *work , const MKL_INT *lwork , MKL_INT *info );
void pzhettrd (const char *uplo , const MKL_INT *n , MKL_Complex16 *a , const MKL_INT
*ia, const MKL_INT *ja, const MKL_INT *desca , double *d, double *e , MKL_Complex16
*tau , MKL_Complex16 *work , const MKL_INT *lwork , MKL_INT *info );
void pslaed0 (const MKL_INT *n , float *d, float *e , float *q, const MKL_INT *iq ,
const MKL_INT *jq, const MKL_INT *descq , float *work , MKL_INT *iwork , MKL_INT
*info );
```

void pdlaed0 (const MKL_INT *n , double *d, double *e, double *q, const MKL_INT *iq, const MKL_INT *jq, const MKL_INT *descq , double *work, MKL_INT *iwork, MKL_INT *info);
void pslaed1 (const MKL_INT *n , const MKL_INT *n1 , float *d, const MKL_INT *id, float *q, const MKL_INT *iq, const MKL_INT *jq, const MKL_INT *descq, const float *rho, float *work , - MKL_INT *iwork, MKL_INT *info);
void pdlaedl (const MKL_INT *n , const MKL_INT *nI , double *d, const MKL_INT *id, double *q, const MKL_INT *iq, const MKL_INT *jq, const MKL_INT *descq, const double *rho, double *work , MKL_INT *iwork , MKL_INT *info);
void pslaed2 (const MKL_INT *ictxt , MKL_INT *k, const MKL_INT *n , const MKL_INT *n1, const MKL_INT *nb, float *d, const MKL_INT *drow, const MKL_INT *dcol, float *q , const MKL_्INT *ldq , float *rho, const float *z , float *W , float *dlamda, float *q2 , const MKL_INT *ldq2 , float *qbuf, MKL_INT *ctot , MKL_INT *psm , const MKL_INT *npcol , MKL_INT *indx , MKL_INT *indxc , MKL_INT *indxp, MKL_INT *indcol , MKL_INT *coltyp, MKL_INT *nn , MKL_INT *nn1, MKL_INT *nn2 , MKL_INT $\bar{*}_{i b 1}$, MKL_INT *ib2); void pdlaed2 (const MKL_INT *ictxt , MKL_INT *k, const MKL_INT *n , const MKL_INT *n1, const MKL_INT *nb, double *d, const MKL_INT *drow, const MKL_INT *dcol, double *q, cons̄t MKL_INT *ldq, double *rho, const double *z, double *w , double *dlamda, double *q2 - const MKL_INT *ldq2, double *qbuf, MKL_INT *ctot , MKL_INT
 *indcol , MKL_INT *coltyp, MKL_INT *nn , MKL_INT ${ }^{-} n n 1, ~ M K L _I N T ~ * \bar{n} n 2$, MKL_INT *ib̄ , MKL_INT *ib2);
void pslaed3 (const MKL_INT *ictxt , MKL_INT *k, const MKL_INT *n , const MKL_INT
 *dlamda, float *W , const float *z , float *u , const MKL_INT *ldu , float *buf , MKL_INT *indx , MKL_INT *indcol , MKL_INT *indrow, MKL_INT *indxr , MKL_INT *indxc , MKL_INT *ctot, const MKL_INT *npcol , MKL_INT *info);
void pdlaed3 (const MKL_INT *ictxt , MKL_INT *k, const MKL_INT *n , const MKL_INT *nb, double *d, const ${ }^{-}$MKL_INT *drow, \bar{c} onst MKL_INT *dcol- ${ }^{-}$double *rho, doūble
 MKL_INT *indx , MKL_INT *indcol , MKL_INT *indrow, MKL_INT *íindxr , MKL_INT *indxc , MKL_INT *ctot , const MKL_INT *npcol , MKL_INT *info);
void pslaedz (const MKL_INT *n , const MKL_INT *nI , const MKL_INT *id, const float *q, const MKL_INT *iq , const MKL_INT *jq- const MKL_INT *Idq, const MKL_INT *descq , float ${ }^{-}$z , float *work);
void pdlaedz (const MKL_INT *n , const MKL_INT *nI , const MKL_INT *id, const double *q, const MKL_INT *iq ${ }^{\text {, }}$ const MKL_INT *jq, const MKL_INT *ldq,$~ c o n s t ~ M K L _I N T ~$ *descq, double ${ }^{-}$, double *work) ;
void pdlaiectb (const double *sigma , const MKL_INT *n , const double *d, MKL_INT *count);
void pdlaiectl (const double *sigma, const MKL_INT *n , const double *d, MKL_INT
*count);
void slamov (const char *UPLO , const MKL_INT *M, const MKL_INT *N, const float *A, const MKL_INT *LDA, float *B, const MKL_INT *LDB);
void dlamov (const char *UPLO, const MKL_INT *M, const MKL_INT *N, const double *A, const MKL_INT *LDA , double *B , const MKL_INT *LDB);
void clamov (const char *UPLO , const MKL_INT *M, const MKL_INT *N, const MKL_Complex8 *A, const MKL_INT *LDA, MKL_Complex8 *B , cons̄t MKL_INT *LDB);
void zlamov (const char *UPLO , const MKL_INT *M, const MKL_INT *N, const MKL_Complex16 *A, const MKL_INT *LDA, MK̄L_Complex16 *B, cōnst MKL_INT *LDB);

```
void pslamrld (const MKL_INT *n , float *a , const MKL_INT *ia , const MKL_INT *ja ,
const MKL_INT * desca, float *b, const MKL_INT *ib, const MKL_INT * jb, const MKL_INT
*descb );
void pdlamrld (const MKL_INT *n , double *a , const MKL_INT *ia , const MKL_INT *ja ,
const MKL_INT *desca , double *b, const MKL_INT *ib, const MKL_INT *jb, const
MKL_INT *descb );
void pclamrld (const MKL INT *n , MKL Complex8 *a , const MKL INT *ia , const MKL INT
*ja , const MKL_INT *desca , MKL_Complex8 *b , const MKL_INT *ib , const MKL_INT * jb ,
const MKL_INT *descb );
void pzlamrld (const MKL_INT *n , MKL_Complex16 *a , const MKL_INT *ia , const MKL_INT
*ja , const MKL_INT * desca , MKL_Complexl6 *b, const MKL_INT *ib , const MKL_INT *jb ,
const MKL_INT * descb );
void clanv2 (MKL_Complex8 *a , MKL_Complex8 *b , MKL_Complex8 *c , MKL_Complex8 *d ,
MKL_Complex8 *rt1 , MKL_Complex8 *rt2 , float *cs , MKL_Complex8 *sn );
void zlanv2 (MKL Complex16 *a , MKL Complex16 *b , MKL Complex16 *c , MKL Complex16
*d , MKL_Complex16 *rt1 , MKL_Complex16 *rt2 , double *Cs , MKL_Complex16 *sn );
void pclattrs (const char *uplo, const char *trans, const char *diag, const char
*normin, const MKL_INT *n , const MKL_Complex8 *a, const MKL_INT *ia, const MKL_INT
*ja, const MKL_INT * desca, MKL_Complex> *x, const MKL_INT * i
const MKL_INT *-descx , float *scale, float *cnorm, MKL_INT *info );
void pzlattrs (const char *uplo, const char *trans, const char *diag , const char
*normin, const MKL_INT *n , const MKL_Complex16 *a , const MKL_INT *ia , const MKL_INT
*ja, const MKL_INT * desca, MKL_Complex16 *x, const MKL_INT *\overline{ix}, const MKL_INT * jxx ,
const MKL_INT *descx , double *scale , double *cnorm , MKL_INT *info );
void pssyttrd (const char *uplo, const MKL_INT *n , float *a , const MKL_INT *ia ,
const MKL_INT * ja, const MKL_INT *desca, float *d, float *e , float *tau , float
*work, const MKL_INT *lwork , MKL_INT *info );
void pdsyttrd (const char *uplo, const MKL_INT *n, double *a , const MKL_INT *ia ,
const MKL_INT * ja, const MKL_INT *desca, double *d, double *e , double *tau , double
*work , const MKL_INT *lwork , MKL_INT *info );
MKL_INT piparmq (const MKL_INT *ictxt , const MKL_INT *ispec , const char *name , const
cha\overline{r}*opts, const MKL_INT * ' , const MKL_INT *ilo , const MKL_INT *ihi , const MKL_INT
* I worknb );
```

For descriptions of these functions, please see http://www.netlib.org/scalapack/explore-html/files.html.

ScaLAPACK Utility Functions and Routines

This section describes ScaLAPACK utility functions and routines. Summary information about these routines is given in the following table:

ScaLAPACK Utility Functions and Routines

| Routine Name | Data Types | Description |
| :--- | :--- | :--- |
| p?labad | s, d | Returns the square root of the underflow and overflow thresholds if the
 exponent-range is very large. |
| p?lachkieee | s, d | Performs a simple check for the features of the IEEE standard. |
| p?lamch | s, d | Determines machine parameters for floating-point arithmetic. |
| p?lasnbt | s, d | Computes the position of the sign bit of a floating-point number. |
| descinit | N/A | Initializes the array descriptor for distributed matrix. |

| Routine Name | Data Types | Description |
| :--- | :--- | :--- |
| numroc | N/A | Computes the number of rows or columns of a distributed matrix
 owned by the process. |

See Also

pxerbla Error handling routine called by ScaLAPACK routines.
p?labad
Returns the square root of the underflow and overflow thresholds if the exponent-range is very large.

Syntax

```
void pslabad (MKL_INT *ictxt , float *small , float *large );
void pdlabad (MKL_INT *ictxt , double *small , double *large );
```


Include Files

```
- mkl_scalapack.h
```


Description

The p?labadfunction takes as input the values computed by p?lamch for underflow and overflow, and returns the square root of each of these values if the log of large is sufficiently large. This function is intended to identify machines with a large exponent range, such as the Crays, and redefine the underflow and overflow limits to be the square roots of the values computed by p?lamch. This function is needed because p?lamch does not compensate for poor arithmetic in the upper half of the exponent range, as is found on a Cray.

In addition, this function performs a global minimization and maximization on these values, to support heterogeneous computing networks.

Input Parameters

```
ictxt
```

small
large

Output Parameters
small
large
(global)
The BLACS context handle in which the computation takes place.
(local).
On entry, the underflow threshold as computed by p?lamch.
(local).
On entry, the overflow threshold as computed by p?lamch.

(local).

On exit, if log10(large) is sufficiently large, the square root of small, otherwise unchanged.
(local).
On exit, if log10(large) is sufficiently large, the square root of large, otherwise unchanged.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lachkieee
Performs a simple check for the features of the IEEE
standard.

Syntax

```
void pslachkieee (MKL_INT *isieee , float *rmax , float *rmin );
void pdlachkieee (MKL_INT *isieee, float *rmax , float *rmin );
```

Include Files

- mkl_scalapack.h

Description

The p?lachkieeefunction performs a simple check to make sure that the features of the IEEE standard are implemented. In some implementations, plachkieee may not return.

This is a ScaLAPACK internal function and arguments are not checked for unreasonable values.

Input Parameters

rmax
rmin
(local).
The overflow threshold (= ?lamch ('O')).
(local).
The underflow threshold(= ?lamch ('U')).

Output Parameters

```
isieee
```

(local).
On exit, isieee $=1$ implies that all the features of the IEEE standard that we rely on are implemented. On exit, isieee $=0$ implies that some the features of the IEEE standard that we rely on are missing.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lamch
Determines machine parameters for floating-point arithmetic.

Syntax

```
float pslamch (MKL_INT *ictxt , char *cmach );
double pdlamch (MKL_INT *ictxt , char *cmach );
```

Include Files

- mkl_scalapack.h

Description

The p?lamchfunction determines single precision machine parameters.

Input Parameters

ictxt
cmach
(global). The BLACS context handle in which the computation takes place. (global)

Specifies the value to be returned by p?lamch:
where
eps = relative machine precision

$$
\text { sfmin }=\text { safe minimum, such that } 1 / \text { sfmin does not overflow }
$$

base = base of the machine

$$
\text { prec }=\text { eps*base }
$$

$$
t=\text { number of (base) digits in the mantissa }
$$

$$
\text { rnd }=1.0 \text { when rounding occurs in addition, } 0.0 \text { otherwise }
$$

$$
\text { emin }=\text { minimum exponent before (gradual) underflow }
$$

$$
\text { rmin }=\text { underflow threshold }- \text { base }(e m i n-1)
$$

$$
\text { emax }=\text { largest exponent before overflow }
$$

$$
\text { rmax }=\text { overflow threshold }-\left(\text { base }{ }^{e m a x}\right) \star(1-e p s)
$$

Output Parameters

val
Value returned by the function.

$$
\begin{aligned}
& \text { = 'E' or 'e', p?lamch :=eps } \\
& =\text { 'S' or 's', p?lamch := sfmin } \\
& \text { = 'B' or 'b', p?lamch := base } \\
& \text { = ' } \mathrm{P} \text { ' or 'p', p?lamch :=eps*base } \\
& =\text { 'N' or 'n', p?lamch := t } \\
& \text { = 'R' or 'r', p?lamch := rnd } \\
& \text { = 'M' or 'm', p?lamch := emin } \\
& \text { = 'U' or 'u', p?lamch := rmin } \\
& \text { = 'L' or 'l', p?lamch := emax } \\
& \text { = 'O' or 'o', p?lamch := rmax, }
\end{aligned}
$$

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lasnbt
Computes the position of the sign bit of a floatingpoint number.

Syntax

```
void pslasnbt (MKL_INT *ieflag );
void pdlasnbt (MKL_INT *ieflag );
```


Include Files

- mkl_scalapack.h

Description

The p?lasnbtfunction finds the position of the signbit of a single/double precision floating point number. This function assumes IEEE arithmetic, and hence, tests only the 32-nd bit (for single precision) or 32-nd and 64th bits (for double precision) as a possibility for the signbit. sizeof (int) is assumed equal to 4 bytes.
If a compile time flag (NO_IEEE) indicates that the machine does not have IEEE arithmetic, ieflag $=0$ is returned.

Output Parameters

```
ieflag
This flag indicates the position of the signbit of any single/double precision floating point number.
ieflag \(=0\), if the compile time flag NO_IEEE indicates that the machine does not have IEEE arithmetic, or if sizeof (int) is different from 4 bytes.
ieflag = 1 indicates that the signbit is the 32 -nd bit for a single precision function.
In the case of a double precision function:
ieflag \(=1\) indicates that the signbit is the 32 -nd bit (Big Endian).
ieflag \(=2\) indicates that the signbit is the 64-th bit (Little Endian).
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

descinit

Initializes the array descriptor for distributed matrix.

Syntax

```
void descinit (MKL_INT *desc, const MKL_INT *m, const MKL_INT *n, const MKL_INT *mb,
const MKL_INT *nb, const MKL_INT *irsrc, const MKL_INT *icsrc, const MKL_INT *ictxt,
const MKL_INT *lld, MKL_INT *info);
```


Description

The descintfunction initializes the array descriptor for distributed matrix.

Input Parameters

```
desc (global) array of dimension DLEN_. The array descriptor of a distributed
    matrix to be set.
    (global input) The number of rows in the distributed matrix. M > = 0.
    (global input) The number of columns in the distributed matrix. N >=0.
    (global input) The blocking factor used to distribute the rows of the matrix.
    MB >= 1.
    (global input) The blocking factor used to distribute the columns of the
    matrix. NB >= 1.
```

```
lrsrc
lcsrc
ictxt
lld
```

(global input) The process row over which the first row of the matrix is distributed. $0<=$ IRSRC < NPROW.
(global input) The process column over which the first column of the matrix is distributed. $0<=$ ICSRC $<$ NPCOL.
(global input) The BLACS context handle, indicating the global context of the operation on the matrix. The context itself is global.
(local input) The leading dimension of the local array storing the local blocks of the distributed matrix. LLD $>=\operatorname{MAX}(1, \operatorname{LOCr}(M)) . \operatorname{LOCr}()$ denotes the number of rows of a global dense matrix that the process in a grid receives after data distributing.

Output Parameters

info

```
(output)
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
numroc
Computes the number of rows or columns of a
distributed matrix owned by the process.

Syntax

```
MKL_INT numroc (const MKL_INT *n, const MKL_INT *nb, const MKL_INT *iproc, const
MKL_INT *srcproc, const MKL_INT *nprocs);
```


Description

The numrocfunction computes the number of rows or columns of a distributed matrix owned by the process.

Input Parameters

| n | | | |
|---|---|---|---|
| $n b$ | (global input) The number of rows/columns in distributed matrix. |
| (global input) Block size, size of the blocks the distributed matrix is split | |
| into. | |\quad| (local input) The coordinate of the process whose local array row or column |
| :--- |
| is to be determined. |
| srcproc |
| (global input) The coordinate of the process that possesses the first row or |
| column of the distributed matrix. |

Output Parameters

info
(output) Value returned by the function.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

ScaLAPACK Redistribution/Copy Routines

This section describes ScaLAPACK redistribution/copy routines. Summary information about these routines is given in the following table:

ScaLAPACK Redistribution/Copy Routines

| Routine Name | Data Types | Description |
| :--- | :--- | :--- |
| p?gemr2d | s, d, c, z, i | Copies a submatrix from one general rectangular matrix to another. |
| p?trmr2d | s, d, c, z, i | Copies a submatrix from one trapezoidal matrix to another. |

See Also

pxerbla Error handling routine called by ScaLAPACK routines.

p?gemr2d
 Copies a submatrix from one general rectangular matrix to another.

Syntax

```
void psgemr2d (MKL_INT *m, MKL_INT *n, float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , float *b , MKL_INT *ib, MKL_INT *jb, MKL_INT *descb, MKL_INT *ictxt );
void pdgemr2d (MKL_INT *m , MKL_INT *n , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT
*desca , double *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *ictxt );
void pcgemr2d (MKL_INT *m , MKL_INT *n MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca, MKL_Complex8 *b , MKL_INT *ib, MKL_INT *jb, MKL_INT *descb , MKL_INT
*ictxt );
void pzgemr2d (MKL_INT *m , MKL_INT *n , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib, MKL_INT *jb , MKL_INT *descb ,
MKL_INT *ictxt );
void pigemr2d (MKL_INT *m , MKL_INT *n , MKL_INT *a , MKL_INT *ia , MKL_INT *ja ,
MKL_INT *desca , MKL_INT *b , MKL_INT *ib, MKL_INT *jb, MKL_INT *descb , MKL_INT
*ictxt );
```


Include Files

- mkl_scalapack.h

Description

The p?gemr2dfunction copies the indicated matrix or submatrix of A to the indicated matrix or submatrix of B. It provides a truly general copy from any block cyclicly-distributed matrix or submatrix to any other block cyclicly-distributed matrix or submatrix. With p?trmı2d, these functions are the only ones in the ScaLAPACK library which provide inter-context operations: they can take a matrix or submatrix A in context A (distributed over process grid A) and copy it to a matrix or submatrix B in context B (distributed over process grid B).

There does not need to be a relationship between the two operand matrices or submatrices other than their global size and the fact that they are both legal block cyclicly-distributed matrices or submatrices. This means that they can, for example, be distributed across different process grids, have varying block sizes and differing matrix starting points, or be contained in different sized distributed matrices.

Take care when context A is disjoint from context B. The general rules for which parameters need to be set are:

- All calling processes must have the correct m and n.
- Processes in context A must correctly define all parameters describing A.
- Processes in context B must correctly define all parameters describing B.
- Processes which are not members of context A must pass ctxt_a $=-1$ and need not set other parameters describing A.
- Processes which are not members of context B must pass ctxt_b $=-1$ and need not set other parameters describing B.

Because of its generality, p?gemr2d can be used for many operations not usually associated with copy functions. For instance, it can be used to a take a matrix on one process and distribute it across a process grid, or the reverse. If a supercomputer is grouped into a virtual parallel machine with a workstation, for instance, this function can be used to move the matrix from the workstation to the supercomputer and back. In ScaLAPACK, it is called to copy matrices from a two-dimensional process grid to a one-dimensional process grid. It can be used to redistribute matrices so that distributions providing maximal performance can be used by various component libraries, as well.

Note that this function requires an array descriptor with dtype_ $=1$.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

Input Parameters

m
n
a
ia, ja
desca
ib, jb
descb
(global) The number of rows of matrix A to be copied ($m \geq 0$).
(global) The number of columns of matrix A to be copied ($n \geq 0$).
(local)
Pointer into the local memory to array of size $\operatorname{lld} d^{*} \operatorname{LOCC}(j a+n-1)$ containing the source matrix A.
(global) The row and column indices in the array A indicating the first row and the first column, respectively, of the submatrix of A) to copy. 1 siátotal_rows_in_a-m+1,1 $\leq j a \leq t o t a l _c o l u m n s _i n _a-n+1$.
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
Only dtype_a $=1$ is supported, so dlen_ $=9$.
If the calling process is not part of the context of $A, c t x t$ _a must be equal to -1 .
(global) The row and column indices in the array B indicating the first row and the first column, respectively, of the submatrix B to which to copy the matrix. $1 \leq i b \leq t o t a l _r o w s _i n _b-m+1,1 \leq j b \leq t o t a l _c o l u m n s _i n _b-n+1$.
(global and local) array of size dlen_. The array descriptor for the distributed matrix B.
Only dtype_b=1 is supported, so dlen_= 9 .

If the calling process is not part of the context of $B, c t x t _b$ must be equal to -1.
(global).
The context encompassing at least the union of all processes in context A and context B. All processes in the context ictxt must call this function, even if they do not own a piece of either matrix.

Output Parameters

b
Pointer into the local memory to array of size lld_b*LOCC (jb+n-1). Overwritten by the submatrix from A.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?trmr2d
Copies a submatrix from one trapezoidal matrix to
another.
```


Syntax

```
void pstrmr2d (char *uplo, char *diag , MKL_INT *m, MKL_INT *n , float *a , MKL_INT
*ia, MKL_INT *ja, MKL_INT *desca, float *b, MKL_INT *ib, MKL_INT *jb, MKL_INT
*descb , MKL_INT *ictxt );
void pdtrmr2d (char *uplo, char *diag , MKL_INT *m, MKL_INT *n , MKL_INT *nrhs ,
double *a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca, double *b , MKL_INT *ib ,
MKL_INT *jb, MKL_INT *descb , MKL_INT *ictxt );
void pctrmr2d (char *uplo, char *diag, MKL_INT *m, MKL_INT *n , MKL_INT *nrhs ,
MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *b ,
MKL_INT *ib , MKL_INT *jb , MKL_INT *descb, MKL_INT *ictxt );
void pztrmr2d (char *uplo, char *diag, MKL_INT *m, MKL_INT *n , MKL_INT *nrhs ,
MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja, MKL_INT *desca , MKL_Complex16 *b,
MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *ictxt );
void pitrmr2d (char *uplo , char *diag , MKL_INT *m , MKL_INT *n , MKL_INT *a , MKL_INT
*ia , MKL_INT *ja, MKL_INT *desca , MKL_INT *b, MKL_INT *ib, MKL_INT *jb , MKL_INT
*descb , MKL_INT *ictxt );
```


Include Files

- mkl_scalapack.h

Description

The p?trmr2dfunction copies the indicated matrix or submatrix of A to the indicated matrix or submatrix of B. It provides a truly general copy from any block cyclicly-distributed matrix or submatrix to any other block cyclicly-distributed matrix or submatrix. With p?gemr2d, these functions are the only ones in the ScaLAPACK library which provide inter-context operations: they can take a matrix or submatrix A in context A (distributed over process grid A) and copy it to a matrix or submatrix B in context B (distributed over process grid B).

The p?trmr2dfunction assumes the matrix or submatrix to be trapezoidal. Only the upper or lower part is copied, and the other part is unchanged.

There does not need to be a relationship between the two operand matrices or submatrices other than their global size and the fact that they are both legal block cyclicly-distributed matrices or submatrices. This means that they can, for example, be distributed across different process grids, have varying block sizes and differing matrix starting points, or be contained in different sized distributed matrices.
Take care when context A is disjoint from context B. The general rules for which parameters need to be set are:

- All calling processes must have the correct m and n.
- Processes in context A must correctly define all parameters describing A.
- Processes in context B must correctly define all parameters describing B.
- Processes which are not members of context A must pass ctxt_a $=-1$ and need not set other parameters describing A.
- Processes which are not members of context B must pass ctxt_b $=-1$ and need not set other parameters describing B.

Because of its generality, p?trmr2d can be used for many operations not usually associated with copy functions. For instance, it can be used to a take a matrix on one process and distribute it across a process grid, or the reverse. If a supercomputer is grouped into a virtual parallel machine with a workstation, for instance, this function can be used to move the matrix from the workstation to the supercomputer and back. In ScaLAPACK, it is called to copy matrices from a two-dimensional process grid to a one-dimensional process grid. It can be used to redistribute matrices so that distributions providing maximal performance can be used by various component libraries, as well.
Note that this function requires an array descriptor with dtype_ $=1$.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Input Parameters

```
uplo
```

diag
m
n
a
ia, ja
(global) Specifies whether to copy the upper or lower part of the matrix or submatrix.

$$
\begin{array}{ll}
\text { uplo }=\text { 'U' } & \text { Copy the upper triangular part. } \\
\text { uplo }{ }^{\prime} \mathrm{L} ' & \text { Copy the lower triangular part. }
\end{array}
$$

(global) Specifies whether to copy the diagonal of the matrix or submatrix.

| diag $=$ 'U' | Do not copy the diagonal. |
| :--- | :--- |
| diag $=^{\prime} N^{\prime}$ | Copy the diagonal. |

(global) The number of rows of matrix A to be copied ($m \geq 0$).
(global) The number of columns of matrix A to be copied ($n \geq 0$).
(local)
Pointer into the local memory to array of size lld_a* LOCC (ja+n-1) containing the source matrix A.
(global) The row and column indices in the array A indicating the first row and the first column, respectively, of the submatrix of A) to copy. 1 siátotal_rows_in_a-m+1,1<játotal_columns_in_a-n+1.

```
desca
ib, jb
descb
ictxt
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(A\).
Only dtype_a = 1 is supported, so dlen_ \(=9\).
If the calling process is not part of the context of \(A, c t x t\) a must be equal to -1.
(global) The row and column indices in the array \(B\) indicating the first row and the first column, respectively, of the submatrix \(B\) to which to copy the matrix. \(1 \leq i b \leq t o t a l \_r o w s \_i n \_b-m+1,1 \leq j b \leq t o t a l \_c o l u m n s \_i n \_b-n+1\).
(global and local) array of size dlen_. The array descriptor for the distributed matrix \(B\).
Only dtype_b = 1 is supported, so dlen_ = 9 .
If the calling process is not part of the context of \(B, c t x t \_b\) must be equal to -1.
(global).
The context encompassing at least the union of all processes in context \(A\) and context \(B\). All processes in the context ictxt must call this function, even if they do not own a piece of either matrix.
```


Output Parameters

b
Pointer into the local memory to array of size lld_b*LOCc (jb+n-1). Overwritten by the submatrix from A.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

Sparse Solver Routines

Intel ${ }^{\circ}$ oneAPI Math Kernel Library (oneMKL) sparse solver algorithms for solving real or complex, symmetric, structurally symmetric or nonsymmetric, positive definite, indefinite or Hermitian square sparse linear system of algebraic equations.

The terms and concepts required to understand the use of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) sparse solver routines are discussed in the Appendix "Linear Solvers Basics". If you are familiar with linear sparse solvers and sparse matrix storage schemes, you can skip these sections and go directly to the interface descriptions.
See the description of

- the direct sparse solver based on PARDISO*, which is referred to here as Intel MKL PARDISO;
- the alternative interface for the direct sparse solver, which is referred to here as the DSS interface;
- iterative sparse solvers (ISS) based on the reverse communication interface (RCI);
- preconditioners based on the incomplete LU factorization technique.
- a direct sparse solver based on QR decomposition.

oneMKL PARDISO - Parallel Direct Sparse Solver Interface

This section describes the interface to the shared-memory multiprocessing parallel direct sparse solver known as the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO solver.
The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO package is a high-performance, robust, memory efficient, and easy to use software package for solving large sparse linear systems of equations on shared memory multiprocessors. The solver uses a combination of left- and right-looking Level-3 BLAS supernode
techniques [Schenk00-2]. To improve sequential and parallel sparse numerical factorization performance, the algorithms are based on a Level-3 BLAS update and pipelining parallelism is used with a combination of leftand right-looking supernode techniques [Schenk00, Schenk01, Schenk02, Schenk03]. The parallel pivoting methods allow complete supernode pivoting to compromise numerical stability and scalability during the factorization process. For sufficiently large problem sizes, numerical experiments demonstrate that the scalability of the parallel algorithm is nearly independent of the shared-memory multiprocessing architecture.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201
The following table lists the names of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO routines and describes their general use.
oneMKL PARDISO Routines

| Routine | Description |
| :--- | :--- |
| pardisoinit | Initializes Intel® oneAPI Math Kernel Library (oneMKL)
 PARDISO with default parameters depending on the
 matrix type. |
| pardiso | Calculates the solution of a set of sparse linear equations
 with single or multiple right-hand sides. |
| pardiso_64 | Calculates the solution of a set of sparse linear equations
 with single or multiple right-hand sides, 64-bit integer
 version. |
| mkl_pardiso_pivot | Replaces routine which handles Intel® oneAPI Math Kernel
 Library (oneMKL) PARDISO pivots with user-defined
 routine. |
| pardiso_getdiag | Returns diagonal elements of initial and factorized matrix. |
| pardiso_export | Places pointers dedicated for sparse representation of
 requested matrix into MKL PARDISO. |
| pardiso_handle_store | Store internal structures from pardiso to a file. |
| pardiso_handle_restore | Restore pardiso internal structures from a file. |

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO solver supports a wide range of real and complex sparse matrix types (seethe figure below).

```
border_
top
```


Sparse Matrices That Can Be Solved with the oneMKL PARDISO Solver

The Intel® oneAPI Math Kernel Library (oneMKL) PARDISO solver performs four tasks:

- analysis and symbolic factorization
- numerical factorization
- forward and backward substitution including iterative refinement
- termination to release all internal solver memory.

To find code examples that use Intel® oneAPI Math Kernel Library (oneMKL) PARDISO routines to solve systems of linear equations, unzip theC archive file in the examplesfolder of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) installation directory. Code examples will be in theexamples/solverc/source folder.

Supported Matrix Types

The analysis steps performed by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO depend on the structure of the input matrix A.

Symmetric Matrices The solver first computes a symmetric fill-in reducing permutation P based on either the minimum degree algorithm [Liu85] or the nested dissection algorithm from the METIS package [Karypis98] (both included with Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL)), followed by the parallel left-right looking numerical Cholesky factorization [Schenk00-2] of $P A P^{T}=L L^{T}$ for symmetric positivedefinite matrices, or $P A P^{T}=L D L^{T}$ for symmetric indefinite matrices. The solver uses diagonal pivoting, or 1×1 and 2×2 Bunch-Kaufman pivoting for symmetric indefinite matrices. An approximation of X is found by forward and backward substitution and optional iterative refinement.
Whenever numerically acceptable 1×1 and 2×2 pivots cannot be found within the diagonal supernode block, the coefficient matrix is perturbed. One or two passes of iterative refinement may be required to correct the effect of the perturbations. This restricting notion of pivoting with iterative refinement is effective for highly indefinite symmetric systems. Furthermore, for a large set of matrices from different applications areas, this method is as accurate as a direct factorization method that uses complete sparse pivoting techniques [Schenk04].

Another method of improving the pivoting accuracy is to use symmetric weighted matching algorithms. These algorithms identify large entries in the coefficient matrix A that, if permuted close to the diagonal, permit the factorization process

Structurally Symmetric Matrices
to identify more acceptable pivots and proceed with fewer pivot perturbations. These algorithms are based on maximum weighted matchings and improve the quality of the factor in a complementary way to the alternative of using more complete pivoting techniques.

The inertia is also computed for real symmetric indefinite matrices.
The solver first computes a symmetric fill-in reducing permutation P followed by the parallel numerical factorization of $P A P^{T}=Q L U^{T}$. The solver uses partial pivoting in the supernodes and an approximation of X is found by forward and backward substitution and optional iterative refinement.

The solver first computes a nonsymmetric permutation $P_{\text {MPS }}$ and scaling matrices D_{r} and D_{c} with the aim of placing large entries on the diagonal to enhance reliability of the numerical factorization process [Duff99]. In the next step the solver computes a fill-in reducing permutation P based on the matrix $P_{\text {MPS }} A+$ $\left(P_{M P S} A\right)^{T}$ followed by the parallel numerical factorization
$Q L U R=P P_{M P S} D_{r} A D_{C} P$
with supernode pivoting matrices Q and R. When the factorization algorithm reaches a point where it cannot factor the supernodes with this pivoting strategy, it uses a pivoting perturbation strategy similar to [Li99]. The magnitude of the potential pivot is tested against a constant threshold of
alpha $=$ eps*||A2||inf,
where eps is the machine precision, $A 2=P^{\star} P_{M P S}{ }^{\star} D_{r}{ }^{\star} A^{\star} D_{C}{ }^{\star} P_{\text {, }}$ and $||A 2||_{\text {inf }}$ is the infinity norm of A. Any tiny pivots encountered during elimination are set to the sign $\left(I_{I I}\right) * e p s *||A 2||_{\text {inf }}$, which trades off some numerical stability for the ability to keep pivots from getting too small. Although many failures could render the factorization well-defined but essentially useless, in practice the diagonal elements are rarely modified for a large class of matrices. The result of this pivoting approach is that the factorization is, in general, not exact and iterative refinement may be needed.

Sparse Data Storage

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO stores sparse data in several formats:

- CSR3: The 3-array variation of the compressed sparse row format described in Three Array Variation of CSR Format.
- BSR3: The three-array variation of the block compressed sparse row format described in Three Array Variation of BSR Format. Use iparm[36] to specify the block size.
- VBSR: Variable BSR format. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO analyzes the matrix provided in CSR3 format and converts it into an internal structure which can improve performance for matrices with a block structure. Useiparm[36] $=-t(0<t \leq 100)$ to specify use of internal VBSR format and to set the degree of similarity required to combine elements of the matrix. For example, if you set iparm[36] $=-80$, two rows of the input matrix are combined when their non-zero patterns are 80% or more similar.

NOTE

Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) supports only the VBSR format for real and symmetric positive definite or indefinite matrices (mtype $=2$ or mtype $=-2$).

Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) supports these features for all matrix types as long asiparm[23]=1:

- iparm[30] > 0: Partial solution
- iparm[35] > 0:Schur complement
- iparm[59] > 0: OOC Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO

For all storage formats, the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO parameterja is used for the columns array, ia is used for rowIndex, and a is used for values. The algorithms in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO require column indicesja to be in increasing order per row and that the diagonal element in each row be present for any structurally symmetric matrix. For symmetric or nonsymmetric matrices the diagonal elements which are equal to zero are not necessary.

Caution

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO column indicesja must be in increasing order per row. You can validate the sparse matrix structure with the matrix checker (iparm[26])

NOTE

While the presence of zero diagonal elements for symmetric matrices is not required, you should explicitly set zero diagonal elements for symmetric matrices. Otherwise, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO creates internal copies of arraysia, ja, and a full of diagonal elements, which require additional memory and computational time. However, the memory and time required the diagonal elements in internal arrays is usually not significant compared to the memory and the time required to factor and solve the matrix.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Storage of Matrices

By default, Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO stores data in RAM. This is referred to as In-Core (IC) mode. However, you can specify that Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO store matrices on disk by settingiparm[59]. This mode is called the Out-of-Core (OOC) mode.
You can set the following parameters for the OOC mode.

| Parameter/Environment Variable
 Name | Description |
| :--- | :--- |
| MKL_PARDISO_OOC_PATH | Directory for storing data created in the OOC mode. |
| MKL_PARDISO_OOC_FILE_NAME | Full file name (incl. path) which will be used for the OOC files |

| Parameter/Environment Variable
 Name | Description |
| :--- | :--- |
| MKL_PARDISO_OOC_MAX_CORE_SIZE | Maximum size of RAM (in megabytes) available for Intel
 ®
 oneAPI Math Kernel Library (oneMKL) PARDISO |
| MKL_PARDISO_OOC_MAX_SWAP_SIZE | Maximum swap size (in megabytes) available for Intel® oneAPI
 Math Kernel Library (oneMKL) PARDISO |
| MKL_PARDISO_OOC_KEEP_FILE | A flag which determines whether temporary data files will be
 deleted or stored |

By default, the current working directory is used in the OOC mode as a directory path for storing data. All work arrays will be stored in files named ooc_temp with different extensions. When MKL_PARDISO_OOC_FILE_NAME is not set and MKL_PARDISO_OOC_PATH is set, the names for the created files will contain <path>/mkl_pardiso or <path> mk __pardiso depending on the OS. Setting MKL_PARDISO_OOC_FILE_NAME=<filename> will override the path which could have been set in MKL_PARDISO_OOC_PATH. In this case <filename> will be used for naming the OOC files.

By default, MKL_PARDISO_OOC_MAX_CORE_SIZE is 2000 (MB) and MKL_PARDISO_OOC_MAX_SWAP_SIZE is 0.

NOTE

Do not set the sum of MKL_PARDISO_OOC_MAX_CORE_SIZE and MKL_PARDISO_OOC_MAX_SWAP_SIZE greater than the size of the RAM plus the size of the swap memory. Be sure to allow enough free memory for the operating system and any other processes which need to be running.

By default, all temporary data files will be deleted. For keeping them it is required to set MKL_PARDISO_OOC_KEEP_FILE to 0.

OOC parameters can be set in a configuration file. You can set the path to this file and its name using environmental variables MKL_PARDISO_OOC_CFG_PATH and MKL_PARDISO_OOC_CFG_FILE_NAME.

For setting parameters of OOC mode either environment variables or a configuration file can be used. When the last option is chosen, by default the name of the file is pardiso_ooc.cfg and it should be placed in the working directory. If needed, the user can set the path to the configuration file using environmental variables MKL_PARDISO_OOC_CFG_PATH and MKL_PARDISO_OOC_CFG_FILE_NAME. These variables specify the path and filename as follows:

- Linux* OS and OS X*: <MKL_PARDISO_OOC_CFG_PATH>/ <MKL_PARDISO_OOC_CFG_FILE_NAME>
- Windows* OS: <MKL_PARDISO_OOC_CFG_PATH>\<MKL_PARDISO_OOC_CFG_FILE_NAME>

An example of the configuration file:

```
MKL_PARDISO_OOC_PATH = <path>
MKL_PARDISO_OOC_MAX_CORE_SIZE = N
MKL_PARDISO_OOC_MAX_SWAP_SIZE = K
MKL_PARDISO_OOC_KEEP_FILE = 0 (or 1)
```


Caution

The maximum length of the path lines in the configuration files is 1000 characters.

Alternatively, the OOC parameters can be set as environment variables via command line.

For Linux* OS and OS X*:

```
export MKL_PARDISO_OOC_PATH = <path>
export MKL_PARDISO_OOC_MAX_CORE_SIZE = N
export MKL_PARDISO_OOC_MAX_SWAP_SIZE = K
export MKL_PARDISO_OOC_KEEP_FILE = 0 (or 1)
```

For Windows* OS:

```
set MKL_PARDISO_OOC_PATH = <path>
set MKL_PARDISO_OOC_MAX_CORE_SIZE = N
set MKL_PARDISO_OOC_MAX_SWAP_SIZE = K
set MKL_PARDISO_OOC_KEEP_FILE = 0 (or 1)
```

where <path> should follow the OS naming convention.

Direct-Iterative Preconditioning for Nonsymmetric Linear Systems

The solver uses a combination of direct and iterative methods [Sonn89] to accelerate the linear solution process for transient simulation. Most applications of sparse solvers require solutions of systems with gradually changing values of the nonzero coefficient matrix, but with an identical sparsity pattern. In these applications, the analysis phase of the solvers has to be performed only once and the numerical factorizations are the important time-consuming steps during the simulation. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO uses a numerical factorization and applies the factors in a preconditioned Krylov Subspace iteration. If the iteration does not converge, the solver automatically switches back to the numerical factorization. This method can be applied to nonsymmetric matrices in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO. You can select the method using theiparm[3] input parameter. The iparm[19] parameter returns the error status after running Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO.

Single and Double Precision Computations

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO solves tasks using single or double precision. Each precision has its benefits and drawbacks. Double precision variables have more digits to store value, so the solver uses more memory for keeping data. But this mode solves matrices with better accuracy, which is especially important for input matrices with large condition numbers.
Single precision variables have fewer digits to store values, so the solver uses less memory than in the double precision mode. Additionally this mode usually takes less time. But as computations are made less precisely, only some systems of equations can be solved accurately enough using single precision.

Separate Forward and Backward Substitution

The solver execution step (see parameterphase $=33$ below) can be divided into two or three separate substitutions: forward, backward, and possible diagonal. This separation can be explained by the examples of solving systems with different matrix types.

A real symmetric positive definite matrix A (mtype $=2$) is factored by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO as $A=L^{\star} L^{T}$. In this case the solution of the system $A^{\star} x=b$ can be found as sequence of substitutions: $L^{\star} y=b$ (forward substitution, phase $=331$) and $L^{T \star}{ }_{x}=y$ (backward substitution, phase $=333$).

A real nonsymmetric matrix A ($m t y p e=11$) is factored by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO as $A=L^{*} U$. In this case the solution of the system $A^{*} x=b$ can be found by the following sequence: $L^{\star} y=b$ (forward substitution, phase =331) and $U^{\star} x=y$ (backward substitution, phase =333).

Solving a system with a real symmetric indefinite matrix A ($m t y p e=-2$) is slightly different from the cases above. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO factors this matrix as $A=L D L^{T}$, and the solution of the system $A^{\star} x=b$ can be calculated as the following sequence of substitutions: $L^{\star} y=b$ (forward
substitution, phase =331), $D^{\star} v=y$ (diagonal substitution, phase $=332$), and finally $L^{T \star} x=v$ (backward substitution, phase =333). Diagonal substitution makes sense only for symmetric indefinite matrices (mtype $=-2,-4,6)$. For matrices of other types a solution can be found as described in the first two examples.

Caution

The number of refinement steps (iparm[7]) must be set to zero if a solution is calculated with separate substitutions (phase $=331,332,333$), otherwise Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO produces the wrong result.

NOTE

Different pivoting (iparm[20]) produces different $L D L^{T}$ factorization. Therefore results of forward, diagonal and backward substitutions with diagonal pivoting can differ from results of the same steps with Bunch-Kaufman pivoting. Of course, the final results of sequential execution of forward, diagonal and backward substitution are equal to the results of the full solving step (phase=33) regardless of the pivoting used.

Callback Function for Pivoting Control

In-core Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO allows you to control pivoting with a callback routine, mkl_pardiso_pivot. You can then use the pardiso_getdiag routine to access the diagonal elements. Set iparm[55] to 1 in order to use the callback functionality.

Low Rank Update

Use low rank update to accelerate the factorization step in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO when you use multiple matrices with identical structure and similar values. After callingpardiso in the usual manner for factorization (phase $=12,13,22$, or 23) for some matrix $A 1$, low rank update can be applied to the factorization step (phase $=22$ or 23) of some matrix $A 2$ with identical structure.
To use the low rank update feature, set iparm[38] = 1 while also setting iparm[23] = 10. Additionally, supply an array that lists the values in A2 that are different from A1 using the perm parameter as outlined in the pardiso perm parameter description.

Important

Low rank update can only be called for matrices with the exact same pattern of nonzero values. As such, the value of the mtype, ia, ja, and iparm[23] parameters should also be identical. In general, the low rank factorization should be called with the same parameters as the preceding factorization step for the same internal data structure handle (except for array a, iparm[38], and perm).

Low rank update does not currently support Intel TBB threading. In this case, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO defaults to full factorization instead.
Low rank update cannot be used in combination with a user-supplied permutation vector - in other words, you must use the default values of $\operatorname{iparm}[4]=0$, $\operatorname{iparm}[30]=0$, and $\operatorname{iparm}[35]=0$). Additionally, iparm[3], iparm[5], iparm[27], iparm[36], iparm[55], and iparm[59] must all be set to the default value of 0 .

pardiso

Calculates the solution of a set of sparse linear equations with single or multiple right-hand sides.

```
Syntax
void pardiso (_MKL_DSS_HANDLE_t pt, const MKL_INT *maxfct, const MKL_INT *mnum, const
MKL_INT *mtype, const MKL_INT *phase, const MKL_INT *n, const void *a, const MKL_INT
*ia, const MKL_INT * ja, MKL_INT *perm, const MKL_INT *nrhs, MKL_INT *iparm, const
MKL_INT *msglvl, void *b, void *x, MKL_INT *error);
```


Include Files

- mkl.h

Description

The pardiso routine calculates the solution of a set of sparse linear equations

$$
A^{\star} X=B
$$

with single or multiple right-hand sides, using a parallel $L U, L D L$, or $L L^{T}$ factorization, where A is an n-by-n matrix, and X and B are n-by-nrhs vectors or matrices.

Notes

- This routine supports usage of the mkl_progress with OpenMP, TBB, and sequential threading. See mkl _progress for details. The case of iparm[23]=10 does not support this feature.
- If iparm[26] is set to 1 (Matrix checker), Intel ${ }^{\circledR}$ oneAPI Math Kernel Library PARDISO uses the auxiliary routine sparse_matrix_checker to check integer arrays ia and ja.
sparse_matrix_checker has its own set of error values (from 21 to 24) that are returned in the event of an unsuccessful matrix check. For more details, refer to the sparse_matrix_checker documentation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Input Parameters

pt
Array with size of 64.
Handle to internal data structure. The entries must be set to zero prior to the first call to pardiso. Unique for factorization.

Caution

After the first call to pardiso do not directly modify $p t$, as that could cause a serious memory leak.

Use the pardiso_handle_store or pardiso_handle_store_64 routine to store the content of $p t$ to a file. Restore the contents of $p t$ from the file using pardiso_handle_restore or pardiso_handle_restore_64. Use pardiso_handle_store and pardiso_handle_restore with pardiso, and pardiso_handle_store_64 and pardiso_handle_restore_64 with pardiso_64.

maxfct

mnum

mtype
phase

Maximum number of factors with identical sparsity structure that must be kept in memory at the same time. In most applications this value is equal to 1 . It is possible to store several different factorizations with the same nonzero structure at the same time in the internal data structure management of the solver.
pardiso can process several matrices with an identical matrix sparsity pattern and it can store the factors of these matrices at the same time. Matrices with a different sparsity structure can be kept in memory with different memory address pointers $p t$.

Indicates the actual matrix for the solution phase. With this scalar you can define which matrix to factorize. The value must be: $1 \leq m n u m \leq \operatorname{maxf} c t$.

In most applications this value is 1 .
Defines the matrix type, which influences the pivoting method. The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO solver supports the following matrices:

| 1 | real and structurally symmetric |
| :--- | :--- |
| 2 | real and symmetric positive definite |
| -2 | real and symmetric indefinite |
| 3 | complex and structurally symmetric |
| 4 | complex and Hermitian positive definite |
| -4 | complex and Hermitian indefinite |
| 6 | complex and symmetric |
| 11 | ceal and nonsymmetric |
| 13 | complex and nonsymmetric |

Controls the execution of the solver. Usually it is a two- or three-digit integer. The first digit indicates the starting phase of execution and the second digit indicates the ending phase. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO has the following phases of execution:

- Phase 1: Fill-reduction analysis and symbolic factorization
- Phase 2: Numerical factorization
- Phase 3: Forward and Backward solve including optional iterative refinement

This phase can be divided into two or three separate substitutions: forward, backward, and diagonal (see Separate Forward and Backward Substitution).

- Memory release phase (phase $=0$ or phase $=-1$)

If a previous call to the routine has computed information from previous phases, execution may start at any phase. The phase parameter can have the following values:

phase Solver Execution Steps

11

You can supply a custom implementation for phase 332 instead of calling pardiso. For example, it can be implemented with dense LAPACK functionality. Custom implementation also allows you to substitute the matrix S with your own.

NOTE

For very large Schur complement matrices use LAPACK functionality to compute the Schur complement vector instead of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO phase 332 implementation.

Number of equations in the sparse linear systems of equations $A^{\star} X=B$. Constraint: $n>0$.

Array. Contains the non-zero elements of the coefficient matrix A corresponding to the indices in ja. The coefficient matrix can be either real or complex. The matrix must be stored in the three-array variant of the compressed sparse row (CSR3) or in the three-array variant of the block compressed sparse row (BSR3) format, and the matrix must be stored with increasing values of j a for each row.

For CSR3 format, the size of a is the same as that of ja. Refer to the values array description in Three Array Variation of CSR Format for more details.

For BSR3 format the size of a is the size of ja multiplied by the square of the block size. Refer to the values array description in Three Array Variation of BSR Format for more details.

NOTE
If you set iparm[36] to a negative value, Intel® ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO converts the data from CSR3 format to an internal variable BSR (VBSR) format. SeeSparse Data Storage.

Array, size ($n+1$).
For CSR3 format, ia [i] $(i<n)$ points to the first column index of row i in the array ja. That is, ia[i] gives the index of the element in array a that contains the first non-zero element from row i of A. The last element ia $n]$ is taken to be equal to the number of non-zero elements in A, plus one. Refer to rowIndex array description in Three Array Variation of CSR Format for more details.

For BSR3 format, ia [i] $(i<n)$ points to the first column index of row i in the array ja. That is, ia[i] gives the index of the element in array a that contains the first non-zero block from row i of A. The last element ia [n] is taken to be equal to the number of non-zero blcoks in A, plus one. Refer to rowIndex array description in Three Array Variation of BSR Format for more details.

The array ia is accessed in all phases of the solution process.
Indexing of ia is one-based by default, but it can be changed to zero-based by setting the appropriate value to the parameter iparm[34].

For CSR3 format, array ja contains column indices of the sparse matrix A.
It is important that the indices are in increasing order per row. For structurally symmetric matrices it is assumed that all diagonal elements are stored (even if they are zeros) in the list of non-zero elements in a and ja. For symmetric matrices, the solver needs only the upper triangular part of the system as is shown for columns array in Three Array Variation of CSR Format.

For BSR3 format, array ja contains column indices of the sparse matrix A. It is important that the indices are in increasing order per row. For structurally symmetric matrices it is assumed that all diagonal blocks are stored (even if they are zeros) in the list of non-zero blocks in a and ja. For symmetric matrices, the solver needs only the upper triangular part of the system as is shown for columns array in Three Array Variation of BSR Format.
The array ja is accessed in all phases of the solution process.
Indexing of ja is one-based by default, but it can be changed to zero-based by setting the appropriate value to the parameter iparm[34].
perm
nrhs
iparm
$m s g l v l$
b

Array, size (n). Depending on the value of iparm[4] and iparm[30], holds the permutation vector of size n, specifies elements used for computing a partial solution, or specifies differing values of the input matrices for low rank update.

- If iparm[4] = 1, iparm[30] = 0, and iparm[35] $=0$, perm specifies the fill-in reducing ordering to the solver. Let A be the original matrix and $C=P^{\star} A^{\star} P^{T}$ be the permuted matrix. Row (column) i of C is the perm[i] row (column) of A. The array perm is also used to return the permutation vector calculated during fill-in reducing ordering stage.

NOTE

Be aware that setting iparm[4] = 1 prevents use of a parallel algorithm for the solve step.

- If iparm[4] $=2$, iparm[30] $=0$, and $\operatorname{iparm}[35]=0$, the permutation vector computed in phase 11 is returned in the perm array.
- If iparm[4] $=0$, iparm[30] >0, and iparm[35] $=0$, perm specifies elements of the right-hand side to use or of the solution to compute for a partial solution.
- If iparm[4] $=0$, iparm[30] $=0$, and iparm[35] >0, perm specifies elements for a Schur complement.
- If iparm[38] = 1, perm specifies values that differ in A for low rank update (see Low Rank Update). The size of the array must be at least $2 *$ ndiff +1 , where ndiff is the number of values of A that are different. The values of perm should be:

```
perm = {ndiff, row_index1, column_index1, row_index2,
column_index2, ...., row_index_ndiff, column_index_ndiff}
```

where row_index_m and column_index_m are the row and column indices of the m-th differing non-zero value in matrix A. The row and column index pairs can be in any order, but must use zero-based indexing regardless of the value of iparm[34].

See iparm[4], iparm[30], and iparm[38] for more details.
Indexing of perm is one-based by default, but unless iparm[38] = 1 it can be changed to zero-based by setting the appropriate value to the parameter iparm[34].

Number of right-hand sides that need to be solved for.
Array, size (64). This array is used to pass various parameters to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO and to return some useful information after execution of the solver.

See pardiso iparm Parameter for more details about the iparm parameters.
Message level information. If msglvl $=0$ then pardiso generates no output, if $m s g l v l=1$ the solver prints statistical information to the screen.

Array, size ($n^{*} n r h s$). On entry, contains the right-hand side vector/matrix B, which is placed in memory contiguously. The $b\left[+k^{\star} n r h s\right]$ element must hold the i-th component of k-th right-hand side vector. Note that b is only accessed in the solution phase.

Output Parameters

```
pt
```

perm
iparm
b
x
error
(See also Intel MKL PARDISO Parameters in Tabular Form.)
Handle to internal data structure.
See the Input Parameter description of the perm array.
On output, some iparm values report information such as the numbers of non-zero elements in the factors.

See pardiso iparm Parameter for more details about the iparm parameters.
On output, the array is replaced with the solution if iparm[5] $=1$.
Array, size ($n * n r h s$). If iparm[5] $=0$ it contains solution vector/matrix X, which is placed contiguously in memory. The $x\left[i+k^{\star} n\right]$ element must hold the i-th component of the k-th solution vector. Note that x is only accessed in the solution phase.

The error indicator according to the below table:

| error | Information |
| :---: | :---: |
| 0 | no error |
| -1 | input inconsistent |
| -2 | not enough memory |
| -3 | reordering problem |
| -4 | Zero pivot, numerical factorization or iterative refinement problem. If the error appears during the solution phase, try to change the pivoting perturbation (iparm[9]) and also increase the number of iterative refinement steps. If it does not help, consider changing the scaling, matching and pivoting options (iparm[10], iparm[12], iparm[20]) |
| -5 | unclassified (internal) error |
| -6 | reordering failed (matrix types 11 and 13 only) |
| -7 | diagonal matrix is singular |
| -8 | 32-bit integer overflow problem |
| -9 | not enough memory for OOC |
| -10 | error opening OOC files |
| -11 | read/write error with OOC files |
| -12 | (pardiso_64 only) pardiso_64 called from 32-bit library |
| -13 | interrupted by the (user-defined) mkl_progress function |

```
error
-15
```


Information

```
internal error which can appear for iparm[23] =10 and iparm[12] =1. Try switch matching off (set
iparm[12] =0 and rerun.)
```


pardisoinit

Initialize Inte® oneAPI Math Kernel Library (oneMKL)
PARDISO with default parameters in accordance with
the matrix type.

Syntax

```
void pardisoinit (_MKL_DSS_HANDLE_t pt, const MKL_INT *mtype, MKL_INT *iparm );
```


Include Files

- mkl.h

Description

This function initializes the solver handle pt for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO with zero values (as needed for the very first call of pardiso) and sets default iparm values in accordance with the matrix type mtype.
The recommended way is to avoid using pardisoinit and to initialize pt and set the values of the iparm array manually as the default parameters might not be the best for a particular use case.
An alternative method to set default iparm values is to call pardiso in the analysis phase with iparm (1) =0. In this case, the solver handle pt must be initialized with zero values.
The pardisoinit routine initializes only the in-core version of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO. Switching to the out-of-core version of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO as well as changing default iparm values can be done after the call to pardisoinit but before the first call to pardiso.
The pardisoinit routine cannot be used together with the pardiso_64 routine.

Input Parameters

mtype
Matrix type. Based on this value pardisoinit chooses default values for the iparm array. Refer to the section oneMKL PARDISO Parameters in Tabular Formfor more details about the default values of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO.

Output Parameters

pt
Array of size 64. Handle to internal data structure. The pardisoinit routine nullifies the array pt.

NOTE

It is very important that $p t$ is initialized with zero before the first call of Intel® oneAPI Math Kernel Library (oneMKL) PARDISO. After that first call you must never modify the array, because it could cause a serious memory leak or a crash.

Array of size 64. This array is used to set various options for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO and to return some useful information after execution of the solver. Thepardisoinit routine fills in the iparm array with the default values. Refer to the section oneMKL PARDISO Parameters in Tabular Form for more details about the default values of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO.

pardiso_64

Calculates the solution of a set of sparse linear equations with single or multiple right-hand sides, 64bit integer version.

Syntax

```
void pardiso_64 (_MKL_DSS_HANDLE_t pt, const long long int *maxfct, const long long int
*mnum, const long long int *mtype, const long long int *phase, const long long int *n,
const void *a, const long long int *ia, const long long int *ja, long long int *perm,
const long long int *nrhs, long long int *iparm, const long long int *msglvl, void *b,
void *x, long long int *error);
```


Include Files

- mkl.h

Description

pardiso_64 is an alternative ILP64 (64-bit integer) version of the pardiso routine (see Description section for more details). The interface of pardiso_64 is the same as the interface of pardiso, but it accepts and returns all integer data as long long int.
Use pardiso_64 when pardisofor solving large matrices (with the number of non-zero elements on the order of 500 million or more). You can use it together with the usual LP64 interfaces for the rest of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functionality. In other words, if you use 64-bit integer version (pardiso_64), you do not need to re-link your applications with ILP64 libraries. Take into account that pardiso_ 64 may perform slower than regular pardiso on the reordering and symbolic factorization phase.

NOTE

pardiso_64 is supported only in the 64-bit libraries. If pardiso_64 is called from the 32 -bit libraries, it returns error $=-12$.

NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

Input Parameters

The input parameters of pardiso_64 are the same as the input parameters of pardiso, but pardiso_64 accepts all integer data as long long int.

Output Parameters

The output parameters of pardiso_64 are the same as the output parameters of pardiso, but pardiso_64 returns all integer data as long long int.

mkl_pardiso_pivot

Replaces routine which handles Intel® oneAPI Math
Kernel Library (oneMKL) PARDISO pivots with userdefined routine.

Syntax

```
void mkl_pardiso_pivot (const void *ai, void *bi, const void *eps);
```


Include Files

- mkl.h

Description

The mkl_pardiso_pivotroutine allows you to handle diagonal elements which arise during numerical factorization that are zero or near zero. By default, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO determines that a diagonal elementbi is a pivot if bi <eps, and if so, replaces it with eps. But you can provide your own routine to modify the resulting factorized matrix in case there are small elements on the diagonal during the factorization step.

NOTE

To use this routine, you must set iparm[55] to 1 before the main pardiso loop.

Input Parameters

| ai | Diagonal element of initial matrix corresponding to pivot element. |
| :--- | :--- |
| bi | Diagonal element of factorized matrix that could be chosen as a pivot
 element. |
| eps | Scalar to compare with diagonal of factorized matrix. On input equal to
 parameter described by iparm[9]. |

Output Parameters

bi
In case element is chosen as a pivot, value with which to replace the pivot.

```
pardiso_getdiag
Returns diagonal elements of initial and factorized
matrix.
Syntax
```

```
void pardiso_getdiag (const _MKL_DSS_HANDLE_t pt, void *df, void *da, const MKL_INT
```

void pardiso_getdiag (const _MKL_DSS_HANDLE_t pt, void *df, void *da, const MKL_INT
*mnum, MKL_INT *error);

```
*mnum, MKL_INT *error);
```


Include Files

- mkl.h

Description

This routine returns the diagonal elements of the initial and factorized matrix for a real or Hermitian matrix.

NOTE

In order to use this routine, you must set iparm[55] to 1 before the main pardiso loop.
If iparm[23] is set to 10 (an improved two-level factorization algorithm for nonsymmetric matrices), Intel ${ }^{\circledR}$ oneAPI Math Kernel Library PARDISO will automatically use the classic algorithm for factorization.

Input Parameters

pt
mnum

Output Parameters

$d f$
da

Array with a size of 64. Handle to internal data structure for the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO solver. The entries must be set to zero prior to the first call topardiso. Unique for factorization.

Indicates the actual matrix for the solution phase of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO solver. With this scalar you can define the diagonal elements of the factorized matrix that you want to obtain. The value must be: $1 \leq m n u m \leq \operatorname{maxf} c t$. In most applications this value is 1 .

Array with a dimension of n. Contains diagonal elements of the factorized matrix after factorization.

NOTE

Elements of $d f$ correspond to diagonal elements of matrix Lcomputed during phase 22. Because during phase 22 Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO makes additional permutations to improve stability, it is possible that array $d f$ is not in line with the perm array computed during phase 11.

Array with a dimension of n. Contains diagonal elements of the initial matrix.

NOTE

Elements of da correspond to diagonal elements of matrix Lcomputed during phase 22. Because during phase 22 Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO makes additional permutations to improve stability, it is possible that arrayda is not in line with the perm array computed during phase 11.

The error indicator.

error Information

-1 Diagonal information not turned on before pardiso main loop (iparm[55]=0).

```
pardiso_export
Places pointers dedicated for sparse representation of
a requested matrix (values, rows, and columns) into
MKL PARDISO
```


Syntax

```
void pardiso_export (const _MKL_DSS_HANDLE_t pt, void* values, MKL_INT* rows, MKL_INT*
columns, MKL_INT* step, MKL_INT* iparm, MKL_INT* error);
```


Include Files

- mkl.h

Description

This auxiliary routine places pointers dedicated for sparse representation of a requested matrix (values, rows, and columns) into MKL PARDISO. The matrix will be stored in the three-array variant of the compressed sparse row (CSR3 format) with 0-based indexing.

NOTE

Currently, this routine can be used only for a sparse Schur complement matrix. All parameters related to the Schur complement matrix (perm, iparm) must be set before the reordering stage of MKL PARDISO (phase $=11$) is called.

Input Parameters

pt
iparm
step
Array with a size of 64. Handle to internal data structure for the Intel MKL PARDISO solver. The entries must be set to zero prior to the first call to pardiso. Unique for factorization.

This array is used to pass various parameters to Intel ${ }^{\circledR}$ MKL PARDISO and to return some useful information after execution of the solver.

Stage indicator. These are the currently supported values:

| Step
 value | Notes |
| :--- | :--- |
| 1 | Used to place pointers related to a Schur complement
 matrix in MKL PARDISO. The routine with step equal to
 1 must be called between the reordering and
 factorization phases of MKL PARDISO. |
| -1 | Used to clean the internal handle. |

Input/Output Parameters

```
values
```

rows
columns
error

Parameter type: input/output parameter.

This array contains the non-zero elements of the requested matrix.
Parameter type: input/output parameter.

```
Array of size (size + 1)
```

For CSR3 format, rows[i] (i < size) points to the first column index of row i in the array columns; that is, rows [i] gives the index of the element in the array values that contains the first non-zero element from row i of the sparse matrix. The last element, rows [size], is equal to the number of non-zero elements in the sparse matrix.

Parameter type: input/output parameter.

This array contains the column indices for the non-zero elements of the requested matrix.

Parameter type: output parameter.

The error status:

- 0 indicates no error.
- 1 indicates inconsistent input data.

Usage Example

The following C-style example demonstrates how to use the pardiso_export routine to get the sparse representation (that is, three-array CSR format) of a Schur complement matrix.

```
#include "mkl.h"
/*
* Call the reordering phase of MKL PARDISO with iparm[35] set to -1 in
* order to compute the Schur complement matrix only, or -2 to compute all
* factorization arrays. perm array indices related to the Schur complement
* matrix must be set to 1.
*/
phase = 11;
for ( i = 0; i < schur_size; i++ ) { perm[i] = 1.; }
iparm[35] = -1;
pardiso(pt, &maxfct, &mnum, &mtype, &phase, &n, a, ia, ja, perm, &nrhs,
    iparm, &msglvl, b, x, &error);
/*
    * After the reordering phase, iparm[35] will contain the number of non-zero
    * elements for the Schur complement matrix. Arrays dedicated to the sparse
* representation of the Schur complement matrix must be allocated before
* the factorization stage of MKL PARDISO is called.
*/
schur_nnz = iparm[35];
schur_rows = (MKL_INT *) mkl_malloc(schur_size+1, ALIGNMENT);
schur_columns = (MKL_INT *) mkl_malloc(schur_nnz , ALIGNMENT);
schur_values = (DATA`_TYPE *) mkl_malloc(schur_nnz , ALIGNMENT);
/*
* Call to the pardiso_export routine with step equal to 1 in order to put
```

```
* pointers related to the three-array CSR format into MKL PARDISO:
*/
pardiso_export(pt, schur_values, schur_ia, schur_ja, &step, iparm, &error);
/*
* Call the factorization phase of PARDISO with iparm[35] equal to -1 or -2
* to compute the Schur complement matrix:
*/
phase = 22;
iparm[35] = -1;
pardiso(pt, &maxfct, &mnum, &mtype, &phase, &n, a, ia, ja, perm, &nrhs,
    iparm, &msglvl, b, x, &error);
/*
    * After the factorization stage, schur_values, schur_rows, and
    * schur_columns will contain the Schur complement matrix in CSR3 format.
    */
```


pardiso_handle_store

Store internal structures from pardiso to a file.

Syntax

```
void pardiso_handle_store (_MKL_DSS_HANDLE_t pt, const char *dirname, MKL_INT *error);
```


Include Files

- mkl.h

Description

This function stores Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO structures to a file, allowing you to store Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO internal structures between the stages of thepardiso routine. The pardiso_handle_restoreroutine can restore the Intel® oneAPI Math Kernel Library (oneMKL) PARDISO internal structures from the file.

Input Parameters

```
pt Array with a size of 64. Handle to internal data structure.
dirname String containing the name of the directory to which to write the files with
    the content of the internal structures. Use an empty string ("") to specify
    the current directory. The routine creates a file named handle.pds in the
    directory.
```


Output Parameters

| pt | Handle to internal data structure. | |
| :--- | :--- | :--- |
| error | The error indicator. | |
| | error | Information |
| | 0 | No error. |
| | -2 | Not enough memory. |
| | -10 | Cannot open file for writing. |

```
error Information
-11 Error while writing to file.
-13 Wrong file format.
```


pardiso_handle_restore

Restore pardiso internal structures from a file.

Syntax

```
void pardiso_handle_restore (_MKL_DSS_HANDLE_t pt, const char *dirname, MKL_INT
*error);
```


Include Files

- mkl.h

Description

This function restores Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO structures from a file. This allows you to restore Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO internal structures stored bypardiso_handle_store after a phase of the pardiso routine and continue execution of the next phase.

Input Parameters

String containing the name of the directory in which the file with the content of the internal structures are located. Use an empty string (") to specify the current directory.

Output Parameters

$p t$
error

Array with a dimension of 64 . Handle to internal data structure.
The error indicator.

| error | Information |
| :--- | :--- |
| 0 | No error. |
| -2 | Not enough memory. |
| -10 | Cannot open file for reading. |
| -11 | Error while reading from file. |
| -13 | Wrong file format. |

pardiso_handle_delete
Delete files with pardiso internal structure data.
Syntax
void pardiso_handle_delete (const char *dirname, MKL_INT *error);
Include Files

- mkl.h

Description

This function deletes files generated with pardiso_handle_storethat contain Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO internal structures.

Input Parameters

```
dirname String containing the name of the directory in which the file with the content of the internal structures are located. Use an empty string ("") to specify the current directory.
```


Output Parameters

| error | The error indicator. | |
| :--- | :--- | :--- |
| error | Information | |
| 0 | No error. | |
| | -10 | Cannot delete files. |

pardiso_handle_store_64

Store internal structures from pardiso_64 to a file.

Syntax

```
void pardiso_handle_store_64 (_MKL_DSS_HANDLE_t pt, const char *dirname, MKL_INT
*error);
```

Include Files

- mkl.h

Description

This function stores Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO structures to a file, allowing you to store Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO internal structures between the stages of thepardiso_64 routine. The pardiso_handle_restore_64routine can restore the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO internal structures from the file.

Input Parameters

```
pt Array with a dimension of 64. Handle to internal data structure.
dirname String containing the name of the directory to which to write the files with
    the content of the internal structures. Use an empty string ("") to specify
    the current directory. The routine creates a file named handle.pds in the
    directory.
```


Output Parameters

```
pt Handle to internal data structure.
error The error indicator.
```

 error Information
 0
 No error.
 | error | Information |
| :--- | :--- |
| -2 | Not enough memory. |
| -10 | Cannot open file for writing. |
| -11 | Error while writing to file. |
| -12 | Not supported in 32-bit library - routine is only
 supported in 64-bit libraries. |
| -13 | Wrong file format. |

```
pardiso_handle_restore_64
Restore pardiso_64 internal structures from a file.
```


Syntax

```
void pardiso_handle_restore_64 (_MKL_DSS_HANDLE_t pt, const char *dirname, MKL_INT
*error);
```


Include Files

- mkl.h

Description

This function restores Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO structures from a file. This allows you to restore Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO internal structures stored bypardiso_handle_store_ 64 after a phase of the pardiso_ 64 routine and continue execution of the next phase.

Input Parameters

```
dirname String containing the name of the directory in which the file with the content of the internal structures are located. Use an empty string ("") to specify the current directory.
```


Input Parameters

```
pt Array with a dimension of 64. Handle to internal data structure.
error
The error indicator.
```


error Information

0
-2 Not enough memory.
-10 Cannot open file for reading.
-11 Error while reading from file.
$-13 \quad$ Wrong file format.

```
pardiso_handle_delete_64
```


Syntax

Delete files with pardiso_64 internal structure data.

```
void pardiso_handle_delete_64 (const char *dirname, MKL_INT *error);
```


Include Files

- mkl.h

Description

This function deletes files generated with pardiso_handle_store_64that contain Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO internal structures.

Input Parameters

String containing the name of the directory in which the file with the content of the internal structures are located. Use an empty string ("") to specify the current directory.

Output Parameters

error
The error indicator.

| error | Information |
| :--- | :--- |
| 0 | No error. |
| -10 | Cannot delete files. |
| -12 | Not supported in 32-bit library - routine is only
 supported in 64-bit libraries. |

oneMKL PARDISO Parameters in Tabular Form

The following table lists all parameters of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO and gives their brief descriptions.

| Parameter | Type | Description | Values | Comments | $\begin{aligned} & \text { In/ } \\ & \text { Out } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $p t$ | void* | Solver internal data address pointer | 0 | Must be initialized with zeros and never be modified later | $\begin{gathered} \text { in/o } \\ \text { ut } \end{gathered}$ |
| maxfct | MKL_INT* | Maximal number of factors in memory | >0 | Generally used value is 1 | in |
| mnum | MKL_INT* | The number of matrix (from 1 to maxfct) to solve | $\begin{gathered} {[1:} \\ \left.\max f_{C} t\right] \end{gathered}$ | Generally used value is 1 | in |
| mtype | MKL_INT* | Matrix type | 1 | Real and structurally symmetric | in |
| | | | 2 | Real and symmetric positive definite | |

| Parameter | Description | Values | Comments |
| :--- | :--- | :--- | :--- |

| Parameter | Type | Description | Values | Comments | In/ Out |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | matrix must be stored in the 3-array variation of compressed sparse row (CSR3) format with increasing values of ja for each row | |
| ia[n] | MKL_INT* | rowIndex array in CSR3 format | $>=0$ | ia [i] gives the index of the element in array a that contains the first non-zero element from row i of A. The last element ia(n) is taken to be equal to the number of non-zero elements in A.
 Note: iparm[34] indicates whether row/column indexing starts from 1 or 0 . | in |
| ja | MKL_INT* | columns array in CSR3 format | $>=0$ | The column indices for each row of A must be sorted in increasing order. For structurally symmetric matrices zero diagonal elements must be stored in a and ja. Zero diagonal elements should be stored for symmetric matrices, although they are not required. For symmetric matrices, the solver needs only the upper triangular part of the system.
 Note: iparm[34] indicates whether row/column indexing starts from 1 or 0 . | in |
| $\operatorname{perm}[\mathrm{n}]$ | MKL_INT* | Holds the permutation vector of size n, specifies elements used for computing a partial solution, or specifies differing values of the input matrices for low rank update | $>=0$ | You can apply your own fill-in reducing ordering (iparm[4] = 1) or return the permutation from the solver (iparm[4] = 2).
 Let $C=P^{\star} A^{\star} P^{T}$ be the permuted matrix. Row (column) i of C is the perm(i) row (column) of A. The numbering of the array must describe a permutation. | $\begin{gathered} \text { in/o } \\ \text { ut } \end{gathered}$ |

| Parameter | Type | Description | Values | Comments | $\begin{aligned} & \text { In/ } \\ & \text { Out } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | To specify elements for a partial solution, set
 iparm[4] = 0,
 iparm[30]>0, and
 iparm[35] $=0$. | |
| | | | | To specify elements for a Schur complement, set iparm[4] = 0, iparm[30]=0, and iparm[35]>0. | |
| | | | | To specify values that differ in A for low rank update (see Low Rank Update), set iparm[38] =
 1. The size of the array must be at least $2 *$ ndiff + 1 , where ndiff is the number of values of A that are different. The values of perm should be: | |
| | | | | ```perm = {ndiff, row_index1, column_index1, row_index2, column_index2,, row_index_ndiff, column_index_ndiff}``` | |
| | | | | where row_index_m and column_index_m are the row and column indices of the m-th differing nonzero value in matrix A. The row and column index pairs can be in any order, but must use zero-based indexing regardless of the value of iparm[34]. | |
| | | | | NOTE
 Unless you have specified low rank update, iparm[34] indicates whether row/column indexing starts from 1 or 0. | |
| nrhs | MKL_INT* | Number of righthand sides that need to be solved for | > $=0$ | Generally used value is 1
 To obtain better Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO performance, during the numerical factorization phase you can provide the maximum number of | in |

| Parameter | Type | Description | Values | Comments | $\begin{aligned} & \text { In/ } \\ & \text { Out } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | right-hand sides, which can be used further during the solving phase. | |
| iparm[64] | MKL_INT* | This array is used to pass various parameters to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO and to return some useful information after execution of the solver (see pardiso iparm Parameter for more details) | * | If iparm[0]=0, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO fillsiparm[1] through iparm[63] with default values and uses them. | in/o |
| $m s g l v 1$ | MKL_INT* | Message level information | 0 | Intel® oneAPI Math Kernel Library (oneMKL) PARDISO generates no output | in |
| | | | 1 | Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO prints statistical information | |
| $b[n * n r h s]$ | void* | Right-hand side vectors | * | On entry, contains the right-hand side vector/ matrix B, which is placed contiguously in memory. The $b\left[i+k^{*} n\right]$ element must hold the i-th component of k-th righthand side vector. Note that b is only accessed in the solution phase. | $\begin{gathered} \text { in/o } \\ \text { ut } \end{gathered}$ |
| | | | | On output, the array is replaced with the solution if iparm[5]=1. | |
| $x\left[n^{\star} n r h s\right]$ | void* | Solution vectors | * | On output, if iparm[5] =0, contains solution vector/ matrix X which is placed contiguously in memory. The $x\left[i+k^{*} n\right]$ element must hold the i-th component of k-th solution vector. Note that x is only accessed in the solution phase. | out |
| error | MKL_INT* | Error indicator | 0 | No error | out |
| | | | -1 | Input inconsistent | |
| | | | -2 | Not enough memory | |

$\left.\begin{array}{llll}\hline \text { Parameter } & \text { Type } & \text { Values } & \text { Comments }\end{array} \begin{array}{l}\text { In/ } \\ \text { Out }\end{array}\right]$

1) See description of PARDISO_DATA_TYPE in PARDISO_DATA_TYPE.

pardiso iparm Parameter

This table describes all individual components of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISOiparm parameter. Components which are not used must be initialized with 0 . Default values are denoted with an asterisk (*).

| Component | Description |
| :---: | :---: |
| iparm[0] | Use default values. |
| input | 0 iparm[1] - iparm[63] are filled with default values. |
| | $\neq 0 \quad$ You must supply all values in components iparm[1] - iparm[63]. |
| iparm[1] | Fill-in reducing ordering for the input matrix. |
| input | |
| | Caution
 You can control the parallel execution of the solver by explicitly setting the MKL_NUM_THREADS environment variable. If fewer OpenMP threads are available than specified, the execution may slow down instead of speeding up. If MKL_NUM_THREADS is not defined, then the solver uses all available processors. |
| | 0 The minimum degree algorithm [Li99]. |
| | 2* The nested dissection algorithm from the METIS package [Karypis98]. |
| | 3 The parallel (OpenMP) version of the nested dissection algorithm. It can decrease the time of computations on multi-core computers, especially when Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO Phase 1 takes significant time. |

NOTE

Setting iparm[1] = 3 prevents the use of CNR mode (iparm[33] >0) because Intel® oneAPI Math Kernel Library (oneMKL) PARDISO uses dynamic parallelism.

| iparm[2] | Reserved. Set to zero. | |
| :---: | :---: | :---: |
| iparm[3] | Preconditioned CGS/CG. | |
| input | This parameter controls preconditioned CGS [Sonn89] for nonsymmetric or structurally symmetric matrices and Conjugate-Gradients for symmetric matrices. iparm[3] has the form iparm[3]=10*L+K. | |
| | $K=0$ | The factorization is always computed as required by phase. |
| | $K=1$ | CGS iteration replaces the computation of $L U$. The preconditioner is $L U$ that was computed at a previous step (the first step or last step with a failure) in a sequence of solutions needed for identical sparsity patterns. |
| | $K=2$ | CGS iteration for symmetric positive definite matrices replaces the computation of $L L^{\top}$. The preconditioner is $L L^{\top}$ that was computed at a previous step (the first step or last step with a failure) in a sequence of solutions needed for identical sparsity patterns. |

The value L controls the stopping criterion of the Krylov Subspace iteration:
$e p s_{\text {CGS }}=10^{-L}$ is used in the stopping criterion
$\left|\left|d x_{i}\right|\right| /\left|\left|d x_{0}\right|\right|<e p S_{C G S}$
where $\left|\left|d x_{i}\right|\right|=\left|\left|\operatorname{inv}\left(L^{\star} U\right)^{\star} r_{i}\right|\right|$ for $K=1$ or $\left|\left|d x_{i}\right|\right|=\left|\left|\operatorname{inv}\left(L^{\star} L^{T}\right) * r_{i}\right|\right|$ for $K=2$ and r_{i} is the residue at iteration i of the preconditioned Krylov Subspace iteration.

A maximum number of 150 iterations is fixed with the assumption that the iteration will converge before consuming half the factorization time. Intermediate convergence rates and residue excursions are checked and can terminate the iteration process. If phase $=23$, then the factorization for a given A is automatically recomputed in cases where the Krylov Subspace iteration failed, and the corresponding direct solution is returned. Otherwise the solution from the preconditioned Krylov Subspace iteration is returned. Using phase $=33$ results in an error message (error=-4) if the stopping criteria for the Krylov Subspace iteration can not be reached. More information on the failure can be obtained from iparm[19].

The default is iparm[3]=0, and other values are only recommended for an advanced user. iparm[3] must be greater than or equal to zero.

Examples:

| iparm[3] | Description
 LU-preconditioned CGS iteration with a stopping criterion of $1.0 \mathrm{E}-3$ for
 nonsymmetric matrices |
| :--- | :--- |
| 61 | LU-preconditioned CGS iteration with a stopping criterion of $1.0 \mathrm{E}-6$ for
 nonsymmetric matrices |
| 62 | LLT-preconditioned CGS iteration with a stopping criterion of $1.0 \mathrm{E}-6$ for
 symmetric positive definite matrices |

iparm[4] User permutation.
input

NOTE Perturbed pivots result in iterative refinement (independent of the value of iparm[7]) and the number of executed iterations is reported in iparm[6].

0* The solver automatically performs two steps of iterative refinement when perturbed pivots are obtained during the numerical factorization.

| Component | Description | |
| :---: | :---: | :---: |
| | >0 | Maximum number of iterative refinement steps that the solver performs. The solver performs not more than the absolute value of iparm[7] steps of iterative refinement. The solver might stop the process before the maximum number of steps if
 - a satisfactory level of accuracy of the solution in terms of backward error is achieved,
 - or if it determines that the required accuracy cannot be reached. In this case the solver returns -4 in the error parameter.
 The number of executed iterations is reported in iparm[6]. |
| | <0 | Maximum number of iterative refinement steps with a negative sign. Unlike the case above the accumulation of the residuum uses extended precision real and complex data types. |

NOTE Currently, this feature is only supported for sequential and OpenMP threading.

Tolerance level for the relative residual in the iterative refinement process. If set to a non-zero value, an additional criterion is used for stopping the iterative refinement: $\frac{\|r\|}{\|b\|}<10^{- \text {iparm }[8]}$
If set to zero, default checks are used to determine when to stop the iterations (see iparm[7] description).

NOTE Currently it is only used for iparm [23] =1 or 10 and OpenMP threading.
iparm[9]
input

Pivoting perturbation.
input This parameter instructs Intel® oneAPI Math Kernel Library (oneMKL) PARDISO how to handle small pivots or zero pivots for nonsymmetric matrices ($m t y p e=11$ or mtype $=13$) and symmetric matrices (mtype $=-2$, mtype $=-4$, or mtype $=6$). For these matrices the solver uses a complete supernode pivoting approach. When the factorization algorithm reaches a point where it cannot factor the supernodes with this pivoting strategy, it uses a pivoting perturbation strategy similar to [Li99], [Schenk04].
Small pivots are perturbed with eps = 10-iparm[9].
The magnitude of the potential pivot is tested against a constant threshold of
alpha $=$ eps* $||A 2||_{\text {inf }}$,
where eps $=10(-i p a r m[9]), A 2=P^{\star} P_{\mathrm{MPS}}{ }^{*} D_{\mathrm{r}}{ }^{\star} A^{\star} D_{\mathrm{C}} \star P$, and $||A 2||_{\text {inf }}$ is the infinity norm of the scaled and permuted matrix A. Any tiny pivots encountered during elimination are set to the sign ($I_{I I}$) *eps*||A2||inf, which trades off some numerical stability for the ability to keep pivots from getting too small. Small pivots are therefore perturbed with eps $=10$ (-iparm[9]).
13* The default value for nonsymmetric matrices (mtype $=11$, mtype=13), eps $=$ 10^{-13}.
8* The default value for symmetric indefinite matrices (mtype $=-2, m t y p e=-4$, $m t y p=6)$, eps $=10^{-8}$.
iparm[10]
input \quad Scaling vectors.

| Component | Description |
| :---: | :---: |
| | Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO uses a maximum weight matching algorithm to permute large elements on the diagonal and to scale so that the diagonal elements are equal to 1 and the absolute values of the off-diagonal entries are less than or equal to 1 . This scaling method is applied only to nonsymmetric matrices (mtype $=11$ or mtype $=13$). The scaling can also be used for symmetric indefinite matrices (mtype $=-2$, mtype $=-4$, or mtype $=6$) when the symmetric weighted matchings are applied (iparm[12] = 1).
 Use iparm[10] = 1 (scaling) and iparm[12] = 1 (matching) for highly indefinite symmetric matrices, for example, from interior point optimizations or saddle point problems. Note that in the analysis phase (phase=11) you must provide the numerical values of the matrix A in array a in case of scaling and symmetric weighted matching. |
| | 0* Disable scaling. Default for symmetric indefinite matrices. |
| | 1* Enable scaling. Default for nonsymmetric matrices.
 Scale the matrix so that the diagonal elements are equal to 1 and the absolute values of the off-diagonal entries are less or equal to 1 . This scaling method is applied to nonsymmetric matrices (mtype $=11$, mtype $=13$). The scaling can also be used for symmetric indefinite matrices (mtype $=-2$, mtype $=-4$, mtype $=6$) when the symmetric weighted matchings are applied (iparm[12] $=1$).
 Note that in the analysis phase (phase=11) you must provide the numerical values of the matrix A in case of scaling. |
| iparm[11] input | Solve with transposed or conjugate transposed matrix A. |
| | 0* Solve a linear system $A X=B$. |
| | 1 Solve a conjugate transposed system $A^{H} X=B$ based on the factorization of the matrix A. |
| | 2 Solve a transposed system $A^{T} X=B$ based on the factorization of the matrix A. |
| input | Improved accuracy using (non-) symmetric weighted matching.
 Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO can use a maximum weighted matching algorithm to permute large elements close the diagonal. This strategy adds an additional level of reliability to the factorization methods and complements the alternative of using more complete pivoting techniques during the numerical factorization. |
| | 0* Disable matching. Default for symmetric indefinite matrices. |
| | $1^{*} \quad$ Enable matching. Default for nonsymmetric matrices.
 Maximum weighted matching algorithm to permute large elements close to the diagonal.
 It is recommended to use iparm[10] = 1 (scaling) and iparm[12] = 1 (matching) for highly indefinite symmetric matrices, for example from interior point optimizations or saddle point problems. |

| Component | Description | |
|---|---|---|
| | Note that in the analysis phase (phase=11) you must provide the numerical values of the matrix A in case of symmetric weighted matching. |
| iparm[13] output | Number of perturbed pivots.
 After factorization, contains the number of perturbed pivots for the matrix types: 1, 3, $11,13,-2,-4$ and 6 . |
| iparm[14]
 output | Peak memory on symbolic factorization.
 The total peak memory in kilobytes that the solver needs during the analysis and symbolic factorization phase.
 This value is only computed in phase 1. |
| iparm[15]
 output | Permanent memory on symbolic factorization.
 Permanent memory from the analysis and symbolic factorization phase in kilobytes that the solver needs in the factorization and solve phases.
 This value is only computed in phase 1. |
| iparm[16]
 output | Size of factors/Peak memory on numerical factorization and solution.
 This parameter provides the size in kilobytes of the total memory consumed by in-core Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO for internal floating point arrays. This parameter is computed in phase 1. Seeiparm[62] for the OOC mode.
 The total peak memory consumed by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO ismax(iparm[14], iparm[15]+iparm[16]) |
| iparm[17] | Report the number of non-zero elements in the factors. |
| input/output | $<0 \quad$ Enable reporting if iparm[17] < 0 on entry. The default value is -1. |
| | $>=0$ Disable reporting. |
| iparm[18] input/output | Report number of floating point operations (in 10^{6} floating point operations) that are necessary to factor the matrix A. |
| | $<0 \quad$ Enable report if iparm[18] < 0 on entry. This increases the reordering time. |
| | ${ }_{*}^{>}=0$ Disable report. |
| iparm[19] | Report CG/CGS diagnostics. |
| output | $>0 \quad$ CGS succeeded, reports the number of completed iterations. |
| | $<0 \quad \mathrm{CG} / \mathrm{CGS}$ failed (error $=-4$ after the solution phase).
 If phase $=23$, then the factors L and U are recomputed for the matrix A and the error flag error=0 in case of a successful factorization. If phase $=33$, then error $=-4$ signals failure.
 iparm[19] = - it_cgs*10 - cgs_error.
 Possible values of cgs_error:
 1 - fluctuations of the residuum are too large
 2 - \||dx max_it_cgs/2 $\|\mid$ is too large (slow convergence)
 3 - stopping criterion is not reached at max_it_cgs
 4 - perturbed pivots caused iterative refinement |

| Component | Description |
| :---: | :---: |
| | 5 - factorization is too fast for this matrix. It is better to use the factorization method with iparm[3] $=0$ |
| iparm[20] input | Pivoting for symmetric indefinite matrices. |
| | NOTE
 Use iparm[10] = 1 (scaling) and iparm[12] = 1 (matchings) for highly indefinite symmetric matrices, for example from interior point optimizations or saddle point problems. |
| | $0 \quad$ Apply 1×1 diagonal pivoting during the factorization process. |
| | $1^{*} \quad$ Apply 1×1 and 2×2 Bunch-Kaufman pivoting during the factorization process. Bunch-Kaufman pivoting is available for matrices of mtype $=-2$, mtype $=-4$, or mtype $=6$. |
| | $2 \quad$ Apply 1×1 diagonal pivoting during the factorization process. Using this value is the same as using iparm[20] $=0$ except that the solve step does not automatically make iterative refinements when perturbed pivots are obtained during numerical factorization. The number of iterations is limited to the number of iterative refinements specified by iparm[7] (0 by default). |
| | Apply 1×1 and 2×2 Bunch-Kaufman pivoting during the factorization process. Bunch-Kaufman pivoting is available for matrices of mtype=-2, mtype=-4, or $m t y p e=6$. Using this value is the same as using iparm[20] = 1 except that the solve step does not automatically make iterative refinements when perturbed pivots are obtained during numerical factorization. The number of iterations is limited to the number of iterative refinements specified by iparm[7] (0 by default). |
| iparm[21] | Inertia: number of positive eigenvalues. |
| output | Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO reports the number of positive eigenvalues for symmetric indefinite matrices. |
| | Inertia: number of negative eigenvalues. |
| output | Intel® oneAPI Math Kernel Library (oneMKL) PARDISO reports the number of negative eigenvalues for symmetric indefinite matrices. |
| iparm[23]
 input | Parallel factorization control. |
| | 0* Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO uses the classic algorithm for factorization. |
| | 1 Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO uses a two-level factorization algorithm. This algorithm generally improves scalability in case of parallel factorization on many OpenMP threads (more than eight). |

NOTE Disable iparm[10] (scaling) and iparm[12] = 1 (matching) when using the two-level factorization algorithm. Otherwise Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO uses the classic factorization algorithm.

10 Intel® oneAPI Math Kernel Library (oneMKL) PARDISO uses an improved twolevel factorization algorithm for nonsymmetric matrices.

Parallel forward/backward solve control.
input

| Component | Description | |
| :---: | :---: | :---: |
| | 0* | Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO uses the following strategy for parallelizing the solving step: |
| | | In the case of the one right-hand side, the parallelization will be performed by partitioning the matrix. |
| | | Otherwise, the parallelization will be over the right-hand sides. |
| | | This feature is available only for in-core Intel® oneAPI Math Kernel Library (oneMKL) PARDISO (seeiparm[59]). |
| | 1 | Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO uses the sequential forward and backward solve. |
| | 2 | Independent from the number of the right-hand sides, Intel oneAPI Math Kernel Library (oneMKL) PARDISO uses the parallel algorithm based on the matrix partitioning. |
| | | This feature is available only for in-core Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (seeiparm[59]). |
| iparm[25] | Reserved. Set to zero. | |
| iparm[26]
 input | Matrix checker. | |
| | 0* | Intel® oneAPI Math Kernel Library (oneMKL) PARDISO does not check the sparse matrix representation for errors. |
| | 1 | Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO checks integer arraysia and ja. In particular, Intel® oneAPI Math Kernel Library (oneMKL) PARDISO checks whether column indices are sorted in increasing order within each row. |
| iparm[27] input | Single or double precision Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO.
 See iparm[7] for information on controlling the precision of the refinement steps. | |
| | | |
| | Important
 The iparm[27] value is stored in the Intel oneAPI Math Kernel Library (oneMKL) PARDISO handle between Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO calls, so the precision mode can be changed only during phase 1. | |
| | 0* | Input arrays (a, x and b) and all internal arrays must be presented in double precision. |
| | 1 | Input arrays (a, x and b) must be presented in single precision.
 In this case all internal computations are performed in single precision. |
| iparm[28] | Reserved. Set to zero. | |
| iparm[29]
 output | Number of zero or negative pivots. | |
| | If Intel® oneAPI Math Kernel Library (oneMKL) PARDISO detects zero or negative pivot formtype $=2$ or m type $=4$ matrix types, the factorization is stopped. Intel ${ }^{-}$oneAPI Math Kernel Library (oneMKL) PARDISO returns immediately with anerror $=-4$, and iparm[29] reports the number of the equation where the zero or negative pivot is detected. | |
| | Note: The returned value can be different for the parallel and sequential version in case of several zero/negative pivots. | |
| iparm[30] | Partial solve and computing selected components of the solution vectors. | |

| Component | Description |
| :---: | :---: |
| input | This parameter controls the solve step of Intel® oneAPI Math Kernel Library (oneMKL) PARDISO. It can be used if only a few components of the solution vectors are needed or if you want to reduce the computation cost at the solve step by utilizing the sparsity of the right-hand sides. To use this option the input permutation vector defineperm so that when $\operatorname{perm}(i)=1$ it means that either the i-th component in the right-hand sides is nonzero, or the i-th component in the solution vectors is computed, or both, depending on the value of iparm[30]. |
| | The permutation vector permmust be present in all phases of Intel ${ }^{\text {® }}$ oneAPI Math Kernel Library (oneMKL) PARDISO software. At the reordering step, the software overwrites the input vectorperm by a permutation vector used by the software at the factorization and solver step. If m is the number of components such that perm(i) $=$ 1 , then the last m components of the output vector perm are a set of the indices i satisfying the condition perm(i) $=1$ on input. |

NOTE

Turning on this option often increases the time used by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO for factorization and reordering steps, but it can reduce the time required for the solver step.

Important

You can use this feature for both in-core and out-of-core Intel® oneAPI Math Kernel Library (oneMKL) PARDISO as long as iparm[23]=1. Otherwise, you cannot use partial solve for out-of-core mode and you will need to setiparm[59] $=0$ for in-core mode. Set the parameters iparm[7] (iterative refinement steps), iparm[3] (preconditioned CGS), iparm[4] (user permutation), and iparm[35] (Schur complement) to 0 as well.
0* Disables this option.
$1 \quad$ it is assumed that the right-hand sides have only a few non-zero components* and the input permutation vector perm is defined so that perm(i) = 1 means that the (i)-th component in the right-hand sides is nonzero. In this case Intel ${ }^{(}$ oneAPI Math Kernel Library (oneMKL) PARDISO only uses the non-zero components of the right-hand side vectors and computes only corresponding components in the solution vectors. That means thei-th component in the solution vectors is only computed if perm(i) $=1$.

| 2 | It is assumed that the right-hand sides have only a few non-zero components* |
| :--- | :--- |
| and the input permutation vector perm is defined so that perm(i) $=1$ means | |
| that the i-th component in the right-hand sides is nonzero. | |

Unlike for iparm[30]=1, all components of the solution vector are computed for this setting and all components of the right-hand sides are used. Because all components are used, for iparm[30] $=2$ you must set the i-th component of the right-hand sides to zero explicitly if perm(i) is not equal to 1 .

| | Selected components of the solution vectors are computed. The perm array is
 not related to the right-hand sides and it only indicates which components of
 the solution vectors should be computed. In this case perm(i) $=1$ means that
 the i-th component in the solution vectors is computed. |
| :--- | :--- |
| iparm[31] -
 iparm[32] | Reserved. Set to zero. |
| iparm[33]
 input | Optimal number of OpenMP threads for conditional numerical reproducibility (CNR)
 mode. |

| Component | Description |
| :---: | :---: |
| | Intel® oneAPI Math Kernel Library (oneMKL) PARDISO reads the value ofiparm[33] during the analysis phase (phase 1), so you cannot change it later. |
| | Because Intel® oneAPI Math Kernel Library (oneMKL) PARDISO uses C random number generator facilities during the analysis phase (phase 1) you must take these precautions to get numerically reproducible results:
 - Do not alter the states of the random number generators.
 - Do not run multiple instances of Intel® oneAPI Math Kernel Library (oneMKL) PARDISO in parallel in the analysis phase (phase 1). |
| | NOTE
 CNR is only available for the in-core version of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO and the non-parallel version of the nested dissection algorithm. You must also:
 - set iparm[59] to 0 in order to use the in-core version,
 - not set iparm[1] to 3 in order to not use the parallel version of the nested dissection algorithm. |
| | Otherwise Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO does not produce numerically repeatable results even if CNR is enabled for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) using the functionality described inSupport Functions for CNR. |

0* CNR mode for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO is enabled only if it is enabled for Intel oneAPI Math Kernel Library (oneMKL) using the functionality described inSupport Functions for CNRand the in-core version is used. Intel oneAPI Math Kernel Library (oneMKL) PARDISO determines the optimal number of OpenMP threads automatically, and produces numerically reproducible results regardless of the number of threads.
$>0 \quad$ CNR mode is enabled for Intel® oneAPI Math Kernel Library (oneMKL) PARDISO if in-core version is used and the optimal number of OpenMP threads for Intel ${ }^{\oplus}$ oneAPI Math Kernel Library (oneMKL) PARDISO to rely on is defined by the value of i parm[33]. You can use iparm[33] to enable CNR mode independent from other Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) domains. To get the best performance, setiparm[33] to the actual number of hardware threads dedicated for Intel ${ }^{\otimes}$ oneAPI Math Kernel Library (oneMKL) PARDISO.
Setting iparm[33] to fewer OpenMP threads than the maximum number of them in use reduces the scalability of the problem being solved. Setting iparm[33] to more threads than are available can reduce the performance of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO.
iparm[34]
input
One- or zero-based indexing of columns and rows.

NOTE

Schur complement may be inaccurate or incorrect if pivots are detected.
Please, check the output of iparm [28] .

| 0^{*} | One-based indexing: columns and rows indexing in arrays ia, ja, and perm
 starts from 1 (Fortran-style indexing). |
| :--- | :--- |
| 1 | Zero-based indexing: columns and rows indexing in arrays ia, ja, and perm
 starts from 0 (C-style indexing). |

| Component | Description |
| :--- | :--- |
| iparm[35] | Schur complement matrix computation control. To calculate this matrix, you must set |
| input/output | the input permutation vector perm to a set of indexes such that when perm (i) $=1$,
 the i-th element of the initial matrix is an element of the Schur matrix. |
| | |

Caution

You can only set one of iparm[4], iparm[30], and iparm[35], so be sure that the iparm[4] (user permutation) and the iparm[30] (partial solution) parameters are 0 if you set iparm[35].

0* Do not compute Schur complement.

$1 \quad$ Compute Schur complement matrix as part of Intel ${ }^{8}$ oneAPI Math Kernel Library (oneMKL) PARDISO factorization step and return it in the solution vector.

NOTE

This option only computes the Schur complement matrix, and does not calculate factorization arrays.
$2 \quad$ Compute Schur complement matrix as part of Intel® oneAPI Math Kernel Library (oneMKL) PARDISO factorization step and return it in the solution vector. Since this option calculates factorization arrays you can use it to launch partial or full solution of the entire problem after the factorization step.
-1 Same as iparm[35] equals 1, but the Schur complement matrix is provided in 3-array CSR sparse format. Use in combination with pardiso_export. After reordering stage of MKL PARDISO, iparm [35] contains number of nonzero elements for Schur complement matrix. Set it once again before calling the factorization phase.

NOTE

This option is available only when iparm[23] is not equal to 0 .
-2 Same as iparm[35] equals 2, but the Schur complement matrix is provided in 3-array CSR sparse format. Use in combination with pardiso_export. After reordering stage of MKL PARDISO, iparm[35] contains number of nonzero elements for Schur complement matrix. Set it once again before calling the factorization phase.

NOTE

This option is available only when iparm[23] is not equal to 0 .
iparm[36]
input

Format for matrix storage.

| 0* | Use CSR format (see Three Array Variation of CSR Format) for matrix storage. |
| :--- | :--- |
| >0 | Use BSR format (see Three Array Variation of BSR Format) for matrix storage

 . |

NOTE

Intel ${ }^{\text {® }}$ oneAPI Math Kernel Library (oneMKL) does not support BSR format in these cases:

- iparm[10] > 0:Scaling vectors
- iparm[12] > 0: Weighted matching
- iparm[30] > 0: Partial solution
- iparm[35] > 0: Schur complement
- iparm[55] > 0: Pivoting control
- iparm[59] > 0: OOC Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO
$<0 \quad$ Convert supplied matrix to variable BSR (VBSR) format (see Sparse Data Storage) for matrix storage. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO analyzes the matrix provided in CSR3 format and converts it to an internal VBSR format. Setiparm[36] $=-t, 0<t \leq 100$.

NOTE

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) supports only the VBSR format for real and symmetric positive definite or indefinite matrices ($m t y p e=2$ or $m t y p e=-2$). Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) does not support VBSR format in these cases:

- iparm[10] > 0: Scaling vectors
- iparm[12] > 0: Weighted matching
- iparm[55] > 0: Pivoting control

NOTEIntel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) supports these features for all matrix types as long asiparm[23]=1:

- iparm[30] > 0: Partial solution
- iparm[35] > 0: Schur complement
- iparm[59] > 0: OOC Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO

| iparm[37] | Reserved. Set to zero. |
| :---: | :---: |
| iparm[38] | Enable low rank update (see Low Rank Update) to accelerate factorization for multiple matrices with identical structure and similar values. |
| | 0* Do not use low rank update functionality. |
| | 1 Use low rank update functionality. You must also set iparm[23] = 10 and provide a list of changed values in the perm array. |
| | This option requires the default settings of iparm[3], iparm[4], iparm[5], iparm[27], iparm[30], iparm[35], iparm[36], iparm[55], and iparm[59] as well. |
| $\begin{aligned} & \hline \text { iparm[39] - } \\ & \text { iparm[41] } \end{aligned}$ | Reserved. Set to zero. |
| iparm[42] | Control parameter for the computation of the diagonal of inverse matrix. |
| | 0* Do not compute the diagonal of inverse matrix. |

NOTE

When iparm[59] > 0, use the MKL_PARDISO_OOC_FILE_NAME environment variable to store factors.

Warning

Do not increase the number of OpenMP threads used for cluster_sparse_solver between the first call and the factorization or solution phase. Because the minimum amount of memory required for out-of-core execution depends on the number of OpenMP threads, increasing it after the initial call can cause incorrect results.

| 0^{*} | IC mode. |
| :--- | :--- |
| 1 | IC mode is used if the total amount of RAM (in megabytes) needed for storing |
| the matrix factors is less than sum of two values of the environment variables: | |
| | MKL_PARDISO_OOC_MAX_CORE_SIZE (default value 2000 MB) and |
| | MKL_PARDISO_OOC_MAX_SWAP_SIZE (default value 0 MB); otherwise OOC |
| | mode is used. In this case amount of RAM used by OOC mode cannot exceed |
| the value of MKL_PARDISO_OOC_MAX_CORE_SIZE. | |

NOTE

Generally in sparse matrices, components which are equal to zero can be considered non-zero if necessary. For example, in order to make a matrix structurally symmetric, elements which are zero can be considered non-zero. See Sparse Matrix Storage Formats for an example.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

PARDISO_DATA_TYPE

The following table lists the values of PARDISO_DATA_TYPE depending on the matrix types and values of the parameter iparm[27].

| Data type value | Matrix type $m t y p e$ | iparm[27] | comments |
| :--- | :--- | :--- | :--- |
| double | $1,2,-2,11$ | 0 | Real matrices, do |
| float | | 1 | Real matrices, sin |
| MKL_Complex16 | $3,6,13,4,-4$ | 0 | Complex matrices |
| MKL_Complex8 | | 1 | precision |
| Complex matrices | | | |
| precision | | | |

Parallel Direct Sparse Solver for Clusters Interface

The Parallel Direct Sparse Solver for Clusters Interface solves large linear systems of equations with sparse matrices on clusters. It is

- high performing
- robust
- memory efficient
- easy to use

A hybrid implementation combines Message Passing Interface (MPI) technology for data exchange between parallel tasks (processes) running on different nodes, and OpenMP* technology for parallelism inside each node of the cluster. This approach effectively uses modern hardware resources such as clusters consisting of nodes with multi-core processors. The solver code is optimized for the latest Intel processors, but also performs well on clusters consisting of non-Intel processors.
Code examples are available in the Intel® oneAPI Math Kernel Library (oneMKL) installationexamples directory.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Parallel Direct Sparse Solver for Clusters Interface Algorithm

Parallel Direct Sparse Solver for Clusters Interface solves a set of sparse linear equations
$A * X=B$
with multiple right-hand sides using a distributed $L U, L L^{\top}, L D L^{\top}$ or $L D L^{*}$ factorization, where A is an n-by-n matrix, and X and B are n-by-nrhs matrices.
The solution comprises four tasks:

- analysis and symbolic factorization;
- numerical factorization;
- forward and backward substitution including iterative refinement;
- termination to release all internal solver memory.

The solver first computes a symmetric fill-in reducing permutation P based on the nested dissection algorithm from the METIS package [Karypis98](included with Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL)), followed by the Cholesky or other type of factorization (depending on matrix type)[Schenk00-2] of PAP ${ }^{\top}$. The solver uses either diagonal pivoting, or 1×1 and 2×2 Bunch and Kaufman pivoting for symmetric indefinite or Hermitian matrices before finding an approximation of X by forward and backward substitution and iterative refinement.

The initial matrix A is perturbed whenever numerically acceptable 1×1 and 2×2 pivots cannot be found within the diagonal blocks. One or two passes of iterative refinement may be required to correct the effect of the perturbations. This restricted notion of pivoting with iterative refinement is effective for highly indefinite symmetric systems. For a large set of matrices from different application areas, the accuracy of this method is comparable to a direct factorization method that uses complete sparse pivoting techniques [Schenk04].

Parallel Direct Sparse Solver for Clusters additionally improves the pivoting accuracy by applying symmetric weighted matching algorithms. These methods identify large entries in the coefficient matrix A that, if permuted close to the diagonal, enable the factorization process to identify more acceptable pivots and proceed with fewer pivot perturbations. The methods are based on maximum weighted matching and improve the quality of the factor in a complementary way to the alternative idea of using more complete pivoting techniques.

Parallel Direct Sparse Solver for Clusters Interface Matrix Storage

The sparse data storage in the Parallel Direct Sparse Solver for Clusters Interface follows the scheme described in the Sparse Matrix Storage Formats section using the variable ja for columns, ia for rowIndex, and a for values. Column indices ja must be in increasing order per row.
When an input data structure is not accessed in a call, a NULL pointer or any valid address can be passed as a placeholder for that argument.

Algorithm Parallelization and Data Distribution

Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Parallel Direct Sparse Solver for Clusters enables parallel execution of the solution algorithm with efficient data distribution.

The master MPI process performs the symbolic factorization phase to represent matrix A as computational tree. Then matrix A is divided among all MPI processes in a one-dimensional manner. The same distribution is used for L-factor (the lower triangular matrix in Cholesky decomposition). Matrix A and all required internal data are broadcast to subordinate MPI processes. Each MPI process fills in its own parts of L-factor with initial values of the matrix A.

Parallel Direct Sparse Solver for Clusters Interface computes all independent parts of L-factor completely in parallel. When a block of the factor must be updated by other blocks, these updates are independently passed to a temporary array on each updating MPI process. It further gathers the result into an updated block using the MPI Reduce () routine. The computations within an MPI process are dynamically divided among OpenMP threads using pipelining parallelism with a combination of left- and right-looking techniques similar to those of the PARDISO* software. Level 3 BLAS operations from Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) ensure highly efficient performance of block-to-block update operations.

During forward/backward substitutions, respective Right Hand Side (RHS) parts are distributed among all MPI processes. All these processes participate in the computation of the solution. Finally, the solution is gathered on the master MPI process.

This approach demonstrates good scalability on clusters with Infiniband* technology. Another advantage of the approach is the effective distribution of L-factor among cluster nodes. This enables the solution of tasks with a much higher number of non-zero elements than it is possible with any Symmetric Multiprocessing (SMP) in-core direct solver.
The algorithm ensures that the memory required to keep internal data on each MPI process is decreased when the number of MPI processes in a run increases. However, the solver requires that matrix A and some other internal arrays completely fit into the memory of each MPI process.

To get the best performance, run one MPI process per physical node and set the number of OpenMP* threads per node equal to the number of physical cores on the node.

NOTE

> Instead of calling MPI_Init(), initialize MPI with MPI_Init_thread() and set the MPI threading level to MPI_THREAD_FUNNELED or higher. For details, see the code examples in <install_dir>/ examples.

```
cluster_sparse_solver
Calculates the solution of a set of sparse linear
equations with single or multiple right-hand sides.
```


Syntax

```
void cluster_sparse_solver (_MKL_DSS_HANDLE_t pt, const MKL_INT *maxfct, const MKL_INT
```

void cluster_sparse_solver (_MKL_DSS_HANDLE_t pt, const MKL_INT *maxfct, const MKL_INT
*mnum, const MKL_INT *mtype, const MKL_INT *phase, const MKL_INT *n, const void *a,
const MKL_INT *ia, const MKL_INT *ja, MKL_INT *perm, const MKL_INT *nrhs, MKL_INT
*iparm, const MKL_INT *msglvl, void *b, void *x, const int *comm, MKL_INT *error);

```

\section*{Include Files}
- mkl_cluster_sparse_solver.h

\section*{Description}

The routine cluster_sparse_solver calculates the solution of a set of sparse linear equations
\[
A^{*} X=B
\]
with single or multiple right-hand sides, using a parallel \(L U, L D L\), or \(L L^{T}\) factorization, where \(A\) is an \(n\)-by-n matrix, and \(X\) and \(B\) are \(n\)-by- \(n r h s\) vectors or matrices.

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}

\section*{NOTE}

Most of the input parameters (except for the pt, phase, and comm parameters and, for the distributed format, the \(a, i a\), and ja arrays) must be set on the master MPI process only, and ignored on other processes. Other MPI processes get all required data from the master MPI process using the MPI communicator, comm.

Array of size 64.
Handle to internal data structure. The entries must be set to zero before the first call to cluster_sparse_solver.

\section*{Caution}

After the first call to cluster_sparse_solver do not modify pt, as that could cause a serious memory leak.
mnum
mtype
phase
\(n\)
a

Ignored; assumed equal to 1 .
Defines the matrix type, which influences the pivoting method. The Parallel Direct Sparse Solver for Clusters solver supports the following matrices:
\begin{tabular}{ll}
1 & real and structurally symmetric \\
2 & real and symmetric positive definite \\
-2 & real and symmetric indefinite \\
3 & complex and structurally symmetric \\
4 & complex and Hermitian positive definite \\
-4 & complex and Hermitian indefinite \\
6 & complex and symmetric \\
11 & complex and nonsymmetric \\
13 &
\end{tabular}

Controls the execution of the solver. Usually it is a two- or three-digit integer. The first digit indicates the starting phase of execution and the second digit indicates the ending phase. Parallel Direct Sparse Solver for Clusters has the following phases of execution:
- Phase 1: Fill-reduction analysis and symbolic factorization
- Phase 2: Numerical factorization
- Phase 3: Forward and Backward solve including optional iterative refinement
- Memory release (phase \(=-1\) )

If a previous call to the routine has computed information from previous phases, execution may start at any phase. The phase parameter can have the following values:
\begin{tabular}{ll} 
phase & Solver Execution Steps \\
11 & Analysis \\
12 & Analysis, numerical factorization \\
13 & \begin{tabular}{l} 
Analysis, numerical factorization, solve, iterative \\
refinement
\end{tabular} \\
22 & Numerical factorization \\
23 & Numerical factorization, solve, iterative refinement \\
33 & Solve, iterative refinement \\
-1 & Release all internal memory for all matrices
\end{tabular}

Number of equations in the sparse linear systems of equations \(A \star X=B\). Constraint: \(n>0\).

Array. Contains the non-zero elements of the coefficient matrix \(A\) corresponding to the indices in ja. The coefficient matrix can be either real or complex. The matrix must be stored in the three-array variant of the
compressed sparse row (CSR3) or in the three-array variant of the block compressed sparse row (BSR3) format, and the matrix must be stored with increasing values of ja for each row.

For CSR3 format, the size of \(a\) is the same as that of ja. Refer to the values array description in Three Array Variation of CSR Format for more details.

For BSR3 format the size of \(a\) is the size of ja multiplied by the square of the block size. Refer to the values array description in Three Array Variation of BSR Format for more details.

\section*{NOTE}

For centralized input (iparm[39]=0), provide the a array for the master MPI process only. For distributed assembled input (iparm[39]=1 or iparm[39]=2), provide it for all MPI processes.

\section*{Important}

The column indices of non-zero elements of each row of the matrix \(A\) must be stored in increasing order.

For CSR3 format, ia[i] \((i<n)\) points to the first column index of row \(i\) in the array ja. That is, ia[i] gives the index of the element in array a that contains the first non-zero element from row \(i\) of \(A\). The last element ia[n] is taken to be equal to the number of non-zero elements in \(A\), plus one. Refer to rowIndex array description in Three Array Variation of CSR Format for more details.

For BSR3 format, ia [i] \((i<n)\) points to the first column index of row \(i\) in the array ja. That is, ia[i] gives the index of the element in array a that contains the first non-zero block from row \(i\) of \(A\). The last element ia [n] is taken to be equal to the number of non-zero blcoks in \(A\), plus one. Refer to rowIndex array description in Three Array Variation of BSR Format for more details.

The array ia is accessed in all phases of the solution process.
Indexing of \(i a\) is one-based by default, but it can be changed to zero-based by setting the appropriate value to the parameter iparm[34]. For zerobased indexing, the last element \(i a[n]\) is assumed to be equal to the number of non-zero elements in matrix \(A\).

\section*{NOTE}

For centralized input (iparm[39]=0), provide the ia array at the master MPI process only. For distributed assembled input (iparm[39]=1 or iparm[39]=2), provide it at all MPI processes.

For CSR3 format, array ja contains column indices of the sparse matrix \(A\). It is important that the indices are in increasing order per row. For symmetric matrices, the solver needs only the upper triangular part of the system as is shown for columns array in Three Array Variation of CSR Format.

For BSR3 format, array ja contains column indices of the sparse matrix \(A\). It is important that the indices are in increasing order per row. For symmetric matrices, the solver needs only the upper triangular part of the system as is shown for columns array in Three Array Variation of BSR Format.

The array ja is accessed in all phases of the solution process.
Indexing of \(j a\) is one-based by default, but it can be changed to zero-based by setting the appropriate value to the parameter iparm(35).

\section*{NOTE}

For centralized input (iparm(40)=0), provide the ja array at the master MPI process only. For distributed assembled input (iparm \((40)=1\) or \(\operatorname{iparm}(40)=2\) ), provide it at all MPI processes.
perm
nrhs iparm
\(m s g l v l\)
b
comm

Ignored.
Number of right-hand sides that need to be solved for.
Array, size 64. This array is used to pass various parameters to Parallel Direct Sparse Solver for Clusters Interface and to return some useful information after execution of the solver.

See cluster_sparse_solver iparm Parameter for more details about the iparm parameters.

Message level information. If \(m s g l v l=0\) then cluster_sparse_solver generates no output, if \(m s g l v l=1\) the solver prints statistical information to the screen.

Statistics include information such as the number of non-zero elements in \(L\)-factor and the timing for each phase.

Set msglvl = 1 if you report a problem with the solver, since the additional information provided can facilitate a solution.

Array, size \(n^{*} n r h s\). On entry, contains the right-hand side vector/matrix \(B\), which is placed in memory contiguously. The \(b\left[i+k^{\star} n\right]\) must hold the i-th component of \(k\)-th right-hand side vector. Note that \(b\) is only accessed in the solution phase.

MPI communicator. The solver uses the Fortran MPI communicator internally. Convert the MPI communicator to Fortran using the MPI_Comm_c2f() function. See the examples in the <install_dir>/ examples directory.

\section*{Output Parameters}
```

pt

```
perm
iparm

Handle to internal data structure.
Ignored.
On output, some iparm values report information such as the numbers of non-zero elements in the factors.
\begin{tabular}{|c|c|}
\hline & See cluster_sparse_solver iparm Parameter for more details about the iparm parameters. \\
\hline b & On output, the array is replaced with the solution if iparm[5] = 1 . \\
\hline \(x\) & Array, size ( \(n^{*} n r h s\) ). If iparm[5] \(=0\) it contains solution vector/matrix \(X\), which is placed contiguously in memory. The \(x\left[i+k^{*} n\right]\) element must hold the \(i\)-th component of the \(k\)-th solution vector. Note that \(x\) is only accessed in the solution phase. \\
\hline \multirow[t]{14}{*}{error} & The error indicator according to the below table: \\
\hline & error Information \\
\hline & 0 no error \\
\hline & -1 input inconsistent \\
\hline & -2 not enough memory \\
\hline & -3 reordering problem \\
\hline & \[
\begin{aligned}
& -4 \\
& \text { Zero pivot, numerical factorization or iterative } \\
& \text { refinement problem. If the error appears during the } \\
& \text { solution phase, try to change the pivoting perturbation } \\
& \text { (iparm[9]) and also increase the number of iterative } \\
& \text { refinement steps. If it does not help, consider changing } \\
& \text { the scaling, matching and pivoting options (iparm[10], } \\
& \text { iparm[12], iparm[20]) }
\end{aligned}
\] \\
\hline & -5 unclassified (internal) error \\
\hline & -6 reordering failed (matrix types 11 and 13 only) \\
\hline & -7 diagonal matrix is singular \\
\hline & -8 32-bit integer overflow problem \\
\hline & -9 not enough memory for OOC \\
\hline & -10 error opening OOC files \\
\hline & -11 read/write error with OOC files \\
\hline
\end{tabular}
cluster_sparse_solver_64
Calculates the solution of a set of sparse linear
equations with single or multiple right-hand sides.

\section*{Syntax}
```

void cluster_sparse_solver_64 (_MKL_DSS_HANDLE_t pt, const long long int *maxfct, const
long long int *mnum, const long long int *mtype, const long long int *phase, const long
long int *n, const void *a, const long long int *ia, const long long int *ja, long long
int *perm, const long long int *nrhs, long long int *iparm, const long long int
*msglvl, void *b, void *x, const int *comm, long long int *error);

```

\section*{Include Files}
- mkl_cluster_sparse_solver.h

\section*{Description}

The routine cluster_sparse_solver_64 is an alternative ILP64 (64-bit integer) version of the cluster_sparse_solver routine (see the Description section for more details). The interface of cluster_sparse_solver_64 is the same as the interface of cluster_sparse_solver, but it accepts and returns all integer data as long long int.

Use cluster_sparse_solver_64 when cluster_sparse_solverfor solving large matrices (with the number of non-zero elements on the order of 500 million or more). You can use it together with the usual LP64 interfaces for the rest of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functionality. In other words, if you use 64-bit integer version (cluster_sparse_solver_64), you do not need to re-link your applications with ILP64 libraries. Take into account that cluster_sparse_solver_64 may perform slower than regular cluster_sparse_solver on the reordering and symbolic factorization phase.

\section*{NOTE}
cluster_sparse_solver_64 is supported only in the 64-bit libraries. If
cluster_sparse_solver_64 is called from the 32-bit libraries, it returns error \(=-12\).

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}

The input parameters of cluster_sparse_solver_64 are the same as the input parameters of cluster_sparse_solver, but cluster_sparse_solver_64 accepts all integer data as long long int.

\section*{Output Parameters}

The output parameters of cluster_sparse_solver_64 are the same as the output parameters of cluster_sparse_solver, but cluster_sparse_solver_64 returns all integer data as long long int.
```

cluster_sparse_solver_get_csr_size
Computes the (local) number of rows and (local)
number of nonzero entries for (distributed) CSR data
corresponding to the provided name.
Syntax
void cluster_sparse_solver_get_csr_size (_MKL_DSS_HANDLE_t pt, _MKL_DSS_EXPORT_DATA
name , MKL_INT *local_nrows, MKL_INT *local_nnz, const int*comm, MKL_INT *error);

```

\section*{Include Files}
- mkl_cluster_sparse_solver.h

\section*{Description}

This routine uses the internal data created during the factorization phase of cluster_sparse_solver for matrix \(A\). The routine then:
- Computes the local number of rows and the local number of nonzeros for CSR data that correspond to the provided name
- Returns the computed values in local_nrows and local_nnz

It is assumed that the CSR data defined by the name will be distributed in the same way as the matrix \(A\) (as defined by iparm[39]) used in cluster_sparse_solver.

The returned values can be used for allocating CSR arrays for factors \(L\) and \(U\), and also for allocating arrays for permutations \(P\) and \(Q\), or scaling matrix \(D\) which can then be used with cluster_sparse_solver_set_csr_ptrs or cluster_sparse_solver_set_ptr for exporting corresponding data via cluster_sparse_solver_export.

\section*{NOTE}

Only call this routine after the factorization phase (phase=22) of the cluster_sparse_solver has been called. Neither pt, nor iparm should be changed after the preceding call to cluster_sparse_solver.

\section*{Input Parameters}
```

pt Array with size of 64.
Handle to internal data structure used in the prior calls to
cluster_sparse_solver.

```

\section*{Caution}
```

Do not modify pt after the calls to cluster_sparse_solver.

```
name
local_nrows
local_nnz
comm
```

Array with size of 64.
Handle to internal data structure used in the prior calls to cluster_sparse_solver.
Specifies CSR data for which the output values are computed.

```
```

SPARSE_PTLUQT_L Factor L from P* P* Q= L* U.

```
SPARSE_PTLUQT_L Factor L from P* P* Q= L* U.
SPARSE_PTLUQT_U Factor U from P* A}\mp@subsup{P}{}{\star}Q=\mp@subsup{L}{}{\star}U\mathrm{ .
SPARSE_PTLUQT_U Factor U from P* A}\mp@subsup{P}{}{\star}Q=\mp@subsup{L}{}{\star}U\mathrm{ .
SPARSE_DPTLUQT_L Factor L from P* ( D - 
SPARSE_DPTLUQT_L Factor L from P* ( D - 
SPARSE_DPTLUQT_U Factor U from P* ( D'1}A)*Q=\mp@subsup{L}{}{*}U\mathrm{ .
SPARSE_DPTLUQT_U Factor U from P* ( D'1}A)*Q=\mp@subsup{L}{}{*}U\mathrm{ .
On entry, an array of size 1.
On entry, an array of size 1.
MPI communicator. The solver uses the Fortran MPI communicator internally. Convert the MPI communicator to Fortran using the MPI_Comm_c2f() function. See the examples in the <install_dir>/ examples directory.
```


Output Parameters

local_nrows
local_nnz
error

On output, the local number of rows for the CSR data which correspond to the name.

On output, the local number of nonzero entries for the CSR data which correspond to the name.

The error indicator:

```
error Information
                                no error
```

| error | Information |
| :--- | :--- |
| -1 | pt is a null pointer |
| -2 | invalid pt |
| -3 | invalid name |
| -4 | unsupported name
 unsupported internal code path, consider switching off
 non-default iparm parameters for
 cluster_sparse_solver |
| -9 | unsupported case when the matrix A is distributed
 among processes with overlap in the preceding calls to
 cluster_sparse_solver |
| -12 | internal memory error |
| | |

NOTE Refer to cl_solver_export_c.c for an example using this functionality.
cluster_sparse_solver_set_csr_ptrs
Saves internally-provided pointers to the 3-array CSR
data corresponding to the specified name.

Syntax

```
void cluster_sparse_solver_set_csr_ptrs (_MKL_DSS_HANDLE_t pt, _MKL_DSS_EXPORT_DATA
name, MKL_INT *rowptr, MKL_INT *colindx, void *vals, const int *comm, MKL_INT *error);
```


Include Files

- mkl_cluster_sparse_solver.h

Description

This routine internally saves the input pointers, rowptr, colindx, and vals, of the 3-array CSR data, which correspond to the provided name. It is assumed that the exported data will be distributed in the same way as the matrix A (as defined by iparm[39]) used in cluster_sparse_solver.
The saved pointers can then be used for exporting corresponding data by means of cluster_sparse_solver_export.

NOTE

Only call this routine after the factorization phase (phase=22) of the cluster_sparse_solver has been called. Neither pt, nor iparm should be changed after the preceding call to cluster_sparse_solver.

Input Parameters

Handle to internal data structure used in the prior calls to cluster_sparse_solver.

Caution

Do not modify pt after the calls to cluster_sparse_solver.
name

Specifies for which CSR data the pointers are provided.

```
SPARSE_PTLUQT_L Factor L from P** }\mp@subsup{P}{}{*}Q=\mp@subsup{L}{}{*}U\mathrm{ U.
SPARSE_PTLUQT_U Factor U from P* PA\star Q=L* U.
SPARSE_DPTLUQT_L Factor L from P* ( D'1 A * * = = L* U.
SPARSE_DPTLUQT_U Factor U from P* ( D-1 A)* Q=L*U.
```

Array of length at least (local_nrows+1) where local_nrows is the local number of rows, which can be obtained by calling cluster_sparse_solver_get_csr_size. This array contains row indices, such that rowptr[i] - indexing is the first index of row i in the array's vals and colindx. Here, the value of indexing is 0 for zero-based indexing and 1 for one-based indexing, and must be the same as it was for the matrix A used in the preceding calls to cluster_sparse_solver (also stored in iparm [34]).

Refer to pointerB array description in CSR Format for more details.
Array of length at least rowptr[local_nrows] - rowptr[0]. Indexing (zero- or one-based) must be the same as for rowptr. For one-based indexing, the array contains the column indices plus one for each non-zero element of the matrix which corresponds to the name. For zero-based indexing, the array contains the column indices for each non-zero element of the matrix.

Array containing non-zero elements of the matrix which corresponds to the name. Its length is equal to length of the colindx array. Refer to values array description in CSR Format for more details.
It will be interpreted internally as float*/double*(MKL_Complex8*/ MKL_Complex16*) depending on mtype (type of the matrix A) and iparm[27] (precision) specified in the preceding call to cluster_sparse_solver.

MPI communicator. The solver uses the Fortran MPI communicator internally. Convert the MPI communicator to Fortran using the MPI_Comm_c2f() function. See the examples in the <install_dir>/ examples directory.

Output Parameters

error
The error indicator:

error Information

0 no error

| error | Information |
| :--- | :--- |
| -1 | pt is a null pointer |
| -2 | invalid $p t$ |
| -3 | invalid name |
| -4 | unsupported name |
| -9 | unsupported internal code path, consider switching off
 non-default iparm parameters for
 cluster_sparse_solver |
| -12 | internal memory error |

NOTE Refer to cl_solver_export_c.c for an example using this functionality.
cluster_sparse_solver_set_ptr
Internally saves a provided pointer to the data corresponding to the specified name.

Syntax

```
void cluster_sparse_solver_set_ptr (_MKL_DSS_HANDLE_t pt, _MKL_DSS_EXPORT_DATA name,
void *ptr, const int *comm, MKL_INT *error);
```


Include Files

- mkl_cluster_sparse_solver.h

Description

This routine internally saves the input pointer, ptr, of the data which correspond to the provided name. The saved pointer can then be used for exporting corresponding data by means of cluster_sparse_solver_export.

NOTE

Only call this routine after the factorization phase (phase=22) of the cluster_sparse_solver has been called. Neither pt, nor iparm should be changed after the preceding call to

```
cluster_sparse_solver.
```


Input Parameters

```
pt Array with size of 64.
    Handle to internal data structure used in the prior calls to
    cluster_sparse_solver.
```


Caution

Do not modify pt after the calls to cluster_sparse_solver.

```
name
```

vals
comm

```
Specifies the data for which the pointer is provided.
\begin{tabular}{ll} 
SPARSE_PTLUQT_P & Permutation \(P\) from \(P^{\star} A^{\star} Q=L^{\star} U\). \\
SPARSE_PTLUQT_Q & Permutation \(Q\) from \(P^{\star} A \star Q=L^{\star} U\). \\
SPARSE_DPTLUQT_P & Permutation \(P\) from \(P^{\star} \quad\left(D^{-1} A\right) * Q=L^{\star} U\). \\
SPARSE_DPTLUQT_Q & Permutation \(Q\) from \(P^{\star} \quad\left(D^{-1} A\right) * Q=L^{\star} U\). \\
SPARSE_DPTLUQT_D & Scaling (diagonal) \(D\) from \(P^{\star} \quad\left(D^{-1} A\right) * Q=L^{\star} U\).
\end{tabular}
Array containing elements of the vector representation for the data which corresponds to the name. Its length should be at least local_nrows, where local_nrows is the local number of rows in a corresponding matrix (obtained from cluster_sparse_solver_get_csr_size, for example).
For permutations \(P\) and \(Q\), vals is interpreted as MKL_INT*, while for the scaling it is interpreted as float*/double*(MKL_Complex8*/ MKL_Complex16*) depending on mtype (type of the matrix \(A\) ) and iparm[27] (precision) specified in the preceding call to cluster_sparse_solver.
MPI communicator. The solver uses the Fortran MPI communicator internally. Convert the MPI communicator to Fortran using the MPI_Comm_c2f() function. See the examples in the <install_dir>/ examples directory.
```


Output Parameters

error
The error indicator:

| error | Information |
| :--- | :--- |
| 0 | no error |
| -1 | pt is a null pointer |
| -2 | invalid pt |
| -3 | invalid name |
| -4 | unsupported name
 -9 |
| non-default iparm parameters for
 cluster_sparse_solver
 internal memory error | |
| -12 | inder switching off |

NOTE Refer to cl_solver_export_c.c for an example using this functionality.

```
cluster_sparse_solver_export
Computes data corresponding to the specified
decomposition (defined by export operation) and fills
the pointers provided by calls to
cluster_sparse_solver_set_ptr and/or
cluster_sparse_solver_set_csr_ptrs.
```


Syntax

```
void cluster_sparse_solver_export (_MKL_DSS_HANDLE_t pt, _MKL_DSS_EXPORT_OPERATION
```

operation, const int *comm, MKL_INT *error);

Include Files

- mkl_cluster_sparse_solver.h

Description

This routine computes the data for the pointers of the (distributed) data to be exported (as defined the specified operation). It is assumed that the exported data will be distributed in the same way as the matrix A (as defined by iparm[39]) used in cluster_sparse_solver.

NOTE

Only call this routine after the factorization phase (phase=22) of the cluster_sparse_solver has been called. Neither pt, nor iparm should be changed after the preceding call to cluster_sparse_solver.

NOTE

Only call this routine after all pointers to the data required for the specified operation have been provided by means of calling cluster_sparse_solver_set_ptr and/or cluster_sparse_solver_set_csr_ptrs.

Input Parameters

Array with size of 64.
Handle to internal data structure used in the prior calls to cluster_sparse_solver.

Caution

Do not modify pt after the calls to cluster_sparse_solver.
operation
Specifies a particular operation which defines what data are exported

$$
\begin{array}{ll}
\text { SPARSE_PTLUQT } & \text { Exporting data from decomposition } P^{\star} A^{\star} Q=L^{\star} U . \\
\text { SPARSE_DPTLUQT } & \text { Exporting data from decomposition from } P^{\star} \\
& \left(D^{-1} A\right) \star Q=L^{\star} U .
\end{array}
$$

NOTE

Currently, for operation=SPARSE_DPTLUQT a real (complex) unit vector is provided for the scaling matrix D. Do not turn on scaling (iparm[10]>0) or matching(iparm[12]>0) in the iparm during the call to cluster_sparse_solver for this value of operation.

MPI communicator. The solver uses the Fortran MPI communicator internally. Convert the MPI communicator to Fortran using the MPI_Comm_c2f() function. See the examples in the <install_dir>/ examples directory.

Output Parameters

error The error indicator:

| error | Information |
| :--- | :--- |
| 0 | no error |
| -1 | $p t$ is a null pointer |
| -2 | invalid $p t$ |
| -5 | invalid operation
 pointers to some of the data required for the specified
 operation were not provided prior to calling
 cluster_sparse_solver_export |
| -6 | unsupported internal code path, consider switching off
 non-default iparm parameters for
 cluster_sparse_solver |
| -10 | unsupported case when the matrix A is distributed
 among processes with overlap in the preceding calls to
 cluster_sparse_solver |
| -12 | internal memory error |

NOTE Refer to cl_solver_export_c.c for an example using this functionality.

cluster_sparse_solver iparm Parameter

The following table describes all individual components of the Parallel Direct Sparse Solver for Clusters Interface iparm parameter. Components which are not used must be initialized with 0 . Default values are denoted with an asterisk (*).

| Component | Description |
| :--- | :--- |
| iparm
 input | Use default values. |
| | 0 |
| | $!=0$ |

| Component | Description | |
| :---: | :---: | :---: |
| iparm[1] | Fill-in reducing ordering for the input matrix. | |
| input | 2* | The nested dissection algorithm from the METIS package [Karypis98]. |
| | 3 | The parallel version of the nested dissection algorithm. It can decrease the time of computations on multi-core computers, especially when Phase 1 takes significant time. |
| | 10 | The MPI version of the nested dissection and symbolic factorization algorithms for the matrix in distributed assembled matrix input format (iparm [39] >0). The input matrix for the reordering must be distributed among different MPI processes without any intersection and all MPI ranks must have at least one row of the input matrix. Use iparm [40] and iparm [41] to set the bounds of the domain. During all of Phase 1, the entire matrix is not gathered on any one process, which can decrease computation time (especially when Phase 1 takes significant time) and decrease memory usage for each MPI process on the cluster. |

NOTE Distributed reordering does not work if any of matching (iparm[12]=1) / scaling(iparm[10]=1)/BSR format(iparm[36]>1)/Schur complement matrix computation control (iparm[35]>0)/Partial solve (iparm [30] >0) is turned on, or if the distributed input matrix has overlapping distribution of rows across MPI processes.

NOTE

If you set iparm[1] = 10, comm = -1 (MPI communicator), and if there is one MPI process, optimization and full parallelization with the OpenMP version of the nested dissection and symbolic factorization algorithms proceeds. This can decrease computation time on multi-core computers. In this case, set iparm[40] = 1 and iparm[41] = n for one-based indexing, or to 0 and $n-1$, respectively, for zerobased indexing.

| iparm[2] | Reserved. Set to zero. |
| :--- | :--- |
| iparm[3] | Reserved. Set to zero. |
| iparm[4] | User permutation.
 input |
| | This parameter controls whether user supplied fill-in reducing permutation is used instead
 of the integrated multiple-minimum degree or nested dissection algorithms. Another use
 of this parameter is to control obtaining the fill-in reducing permutation vector calculated
 during the reordering stage of Intel® |
| | This option is useful for testing reordering algorithms, adapting the code to special
 applications problems (for instance, to move zero diagonal elements to the end of
 $\left.P^{\star} A \star P^{T}\right)$, or for using the permutation vector more than once for matrices with identical
 sparsity structures. For definition of the permutation, see the description of the perm
 parameter. |

Caution

You can only set one of iparm[4], iparm[30], and iparm[35], so be sure that the iparm[30] (partial solution) and the iparm[35] (Schur complement) parameters are 0 if you set iparm[4].

| 0 | User permutation in the perm array is ignored. |
| :--- | :--- |
| 1 | Intel® oneAPI Math Kernel Library (oneMKL) PARDISO uses the user supplied fill-in reducing
 permutation from theperm array. iparm [1] is ignored. |
| 2 | Intel
 comeAPI Math Kernel Library (oneMKL) PARDISO returns the permutation vector
 comase 1 in theperm array. |

| Component | Description |
| :---: | :---: |
| iparm[5]
 input | Write solution on x. |
| | NOTE
 The array x is always used. |
| | 0* The array x contains the solution; right-hand side vector b is kept unchanged. |
| | $1 \quad$ The solver stores the solution on the right-hand side b. |
| iparm[6] output | Number of iterative refinement steps performed.
 Reports the number of iterative refinement steps that were actually performed during the solve step. |
| iparm[7] input | Iterative refinement step.
 On entry to the solve and iterative refinement step, iparm[7] must be set to the maximum number of iterative refinement steps that the solver performs. |
| | 0* The solver automatically performs two steps of iterative refinement when perturbed pivots are obtained during the numerical factorization. |
| | Maximum number of iterative refinement steps that the solver performs. The solver performs not more than the absolute value of iparm[7] steps of iterative refinement. The solver might stop the process before the maximum number of steps if
 - a satisfactory level of accuracy of the solution in terms of backward error is achieved,
 - or if it determines that the required accuracy cannot be reached. In this case Parallel Direct Sparse Solver for Clusters Interface returns -4 in the error parameter.
 The number of executed iterations is reported in iparm[6]. |
| | $<0 \quad$ Same as above, but the accumulation of the residuum uses extended precision real and complex data types.
 Perturbed pivots result in iterative refinement (independent of iparm[7]=0) and the number of executed iterations is reported in iparm[6]. |
| iparm[8] | Reserved. Set to zero. |
| iparm[9] input | Pivoting perturbation.
 This parameter instructs Parallel Direct Sparse Solver for Clusters Interface how to handle small pivots or zero pivots for nonsymmetric matrices (mtype $=11$ or mtype $=13$) and symmetric matrices (mtype $=-2$, mtype $=-4$, or mtype $=6$). For these matrices the solver uses a complete supernode pivoting approach. When the factorization algorithm reaches a point where it cannot factor the supernodes with this pivoting strategy, it uses a pivoting perturbation strategy similar to [Li99], [Schenk04].
 Small pivots are perturbed with eps = 10-iparm[9].
 The magnitude of the potential pivot is tested against a constant threshold of $\text { alpha }=\text { eps*\|\|A2\|\|inf },$ |

| Component | Description | | | |
|---|---|---|---|---|
| | where eps $\left.=10^{(-i p a r m}[9]\right), A 2=P^{\star} P_{\text {MPS }}{ }^{*} D_{\mathrm{r}}{ }^{\star} A^{\star} D_{\mathrm{C}}{ }^{\star} P$, and $\|\|A 2\|\|_{\text {inf }}$ is the infinity norm of the scaled and permuted matrix A. Any tiny pivots encountered during elimination are set to the sign ($l_{I I}$) *eps*\||A2||inf, which trades off some numerical stability for the ability to keep pivots from getting too small. Small pivots are therefore perturbed with eps $=10$ (-iparm[9]). |
| | 13* The default value for nonsymmetric matrices $(m t y p e=11, m t y p e=13)$, eps $=$ 10^{-13}. |
| | 8* The default value for symmetric indefinite matrices (m type $=-2$, mtype $=-4$, $m t y p e=6)$, eps $=10^{-8}$. $m t y p=6)$, eps $=10^{-8}$. |
| iparm[10]
 input | Scaling vectors. |
| | Parallel Direct Sparse Solver for Clusters Interface uses a maximum weight matching algorithm to permute large elements on the diagonal and to scale. |
| | Use iparm[10] = 1 (scaling) and iparm[12] = 1 (matching) for highly indefinite symmetric matrices, for example, from interior point optimizations or saddle point problems. Note that in the analysis phase (phase=11) you must provide the numerical values of the matrix A in array a in case of scaling and symmetric weighted matching. |
| | 0* Disable scaling. Default for symmetric indefinite matrices. |
| | 1* Enable scaling. Default for nonsymmetric matrices. |
| | Scale the matrix so that the diagonal elements are equal to 1 and the absolute values of the off-diagonal entries are less or equal to 1 . This scaling method is applied to nonsymmetric matrices (mtype $=11$, mtype $=13$). The scaling can also be used for symmetric indefinite matrices (mtype $=-2$, mtype $=-4$, mtype $=6$) when the symmetric weighted matchings are applied (iparm[12] =1). |
| | Note that in the analysis phase (phase=11) you must provide the numerical values of the matrix A in case of scaling. |

iparm[11] Solve with transposed or conjugate transposed matrix A.

NOTE

For real matrices, the terms transposed and conjugate transposed are equivalent.

| 0^{*} | Solve a linear system $A X=B$. |
| :--- | :--- |
| 1 | Solve a conjugate transposed system $A^{H} X=B$ based on the factorization of the
 matrix A. |
| 2 | Solve a transposed system $A^{T} X=B$ based on the factorization of the matrix A. |
| Improved accuracy using (non-) symmetric weighted matching. | |
| Parallel Direct Sparse Solver for Clusters Interface can use a maximum weighted matching
 algorithm to permute large elements close the diagonal. This strategy adds an additional
 level of reliability to the factorization methods and complements the alternative of using
 more complete pivoting techniques during the numerical factorization. | |

| 0^{*} | Disable matching. Default for symmetric indefinite matrices. |
| :--- | :--- |
| 1^{*} | Enable matching. Default for nonsymmetric matrices. |

| Component | Description |
| :---: | :---: |
| | Maximum weighted matching algorithm to permute large elements close to the diagonal.
 It is recommended to use iparm[10] = 1 (scaling) and iparm[12]=1 (matching) for highly indefinite symmetric matrices, for example from interior point optimizations or saddle point problems.
 Note that in the analysis phase (phase=11) you must provide the numerical values of the matrix A in case of symmetric weighted matching. |
| iparm[13]
 output | Number of perturbed pivots.
 After factorization, contains the number of perturbed pivots for the matrix types: $1,3,11$, $13,-2,-4$ and 6 . |
| iparm[14]
 output | Peak memory on symbolic factorization.
 The total peak memory in kilobytes that the solver needs during the analysis and symbolic factorization phase.
 This value is only computed in phase 1. |
| iparm[15]
 output | Permanent memory on symbolic factorization.
 Permanent memory from the analysis and symbolic factorization phase in kilobytes that the solver needs in the factorization and solve phases.
 This value is only computed in phase 1. |
| iparm[16]
 output | Size of factors/Peak memory on numerical factorization and solution.
 This parameter provides the size in kilobytes of the total memory consumed by in-core Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO for internal floating point arrays. This parameter is computed in phase 1. Seeiparm[62] for the OOC mode.
 The total peak memory consumed by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO ismax(iparm[14], iparm[15]+iparm[16]) |
| | Report the number of non-zero elements in the factors. |
| input/output | $<0 \quad$ Enable reporting if iparm[17] < 0 on entry. The default value is -1. |
| | >=0 Disable reporting. |
| $\begin{aligned} & \text { iparm[18] } \\ & \text { iparm[19] } \end{aligned}$ | Reserved. Set to zero. |
| iparm[20] | Pivoting for symmetric indefinite matrices. |
| input | $0 \quad$ Apply 1×1 diagonal pivoting during the factorization process. |
| | $1^{*} \quad$ Apply 1×1 and 2×2 Bunch-Kaufman pivoting during the factorization process. Bunch-Kaufman pivoting is available for matrices of $m t y p e=-2$, mtype $=-4$, or mtype $=6$. |
| iparm[21]
 output | Inertia: number of positive eigenvalues.
 Intel® oneAPI Math Kernel Library (oneMKL) PARDISO reports the number of positive eigenvalues for symmetric indefinite matrices. |
| iparm[22]
 output | Inertia: number of negative eigenvalues.
 Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO reports the number of negative eigenvalues for symmetric indefinite matrices. |

| Component | Description |
| :---: | :---: |
| $\begin{aligned} & \text { iparm[23] } \\ & \text { iparm[25] } \end{aligned}$ | Reserved. Set to zero. |
| iparm[26] input | Matrix checker. |
| | 0* Do not check the sparse matrix representation for errors. |
| | Check integer arrays ia and ja. In particular, check whether the column indices are sorted in increasing order within each row. |
| iparm[27]
 input | Single or double precision Parallel Direct Sparse Solver for Clusters Interface.
 See iparm[7] for information on controlling the precision of the refinement steps. |
| | 0* Input arrays (a, x and b) and all internal arrays must be presented in double precision. |
| | Input arrays (a, x and b) must be presented in single precision.
 In this case all internal computations are performed in single precision. |
| iparm[28] | Reserved. Set to zero. |
| iparm[29]
 output | Number of zero or negative pivots.
 If Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO detects zero or negative pivot formtype $=2$ or mtype $=4$ matrix types, the factorization is stopped. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO returns immediately with anerror $=-4$, and iparm[29] reports the number of the equation where the zero or negative pivot is detected.
 Note: The returned value can be different for the parallel and sequential version in case of several zero/negative pivots. |
| iparm[30] input | Partial solve and computing selected components of the solution vectors.
 This parameter controls the solve step of Intel oneAPI Math Kernel Library (oneMKL) PARDISO. It can be used if only a few components of the solution vectors are needed or if you want to reduce the computation cost at the solve step by utilizing the sparsity of the right-hand sides. To use this option the input permutation vector defineperm so that when perm(i) $=1$ it means that either the i-th component in the right-hand sides is nonzero, or the i-th component in the solution vectors is computed, or both, depending on the value of iparm[30].
 The permutation vector permmust be present in all phases of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO software. At the reordering step, the software overwrites the input vectorperm by a permutation vector used by the software at the factorization and solver step. If m is the number of components such that perm(i) $=1$, then the last m components of the output vector perm are a set of the indices i satisfying the condition perm(i) $=1$ on input. |

NOTE

Turning on this option often increases the time used by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO for factorization and reordering steps, but it can reduce the time required for the solver step.

Important

Set the parameters iparm[7] (iterative refinement steps), iparm[3] (preconditioned CGS), iparm[4] (user permutation), and iparm[35] (Schur complement) to 0 as well.

| Component | Description | |
| :---: | :---: | :---: |
| | 0* | Disables this option. |
| | 1 | it is assumed that the right-hand sides have only a few non-zero components* and the input permutation vector perm is defined so that perm(i) = 1 means that the (i-th component in the right-hand sides is nonzero. In this case Intele oneAPI Math Kernel Library (oneMKL) PARDISO only uses the non-zero components of the right-hand side vectors and computes only corresponding components in the solution vectors. That means thei-th component in the solution vectors is only computed if perm(i) $=1$. |
| | 2 | It is assumed that the right-hand sides have only a few non-zero components* and the input permutation vector perm is defined so that perm(i) = 1 means that the i-th component in the right-hand sides is nonzero. |
| | | Unlike for iparm[30]=1, all components of the solution vector are computed for this setting and all components of the right-hand sides are used. Because all components are used, for iparm[30] $=2$ you must set the i-th component of the right-hand sides to zero explicitly if perm(i) is not equal to 1 . |
| | 3 | Selected components of the solution vectors are computed. The perm array is not related to the right-hand sides and it only indicates which components of the solution vectors should be computed. In this case perm(i) $=1$ means that the i th component in the solution vectors is computed. |
| $\begin{aligned} & \hline \text { iparm[31]- } \\ & \text { iparm[33] } \end{aligned}$ | Reserved. Set to zero. | |
| iparm[34] | One- or zero-based indexing of columns and rows. | |
| input | 0* | One-based indexing: columns and rows indexing in arrays ia, ja, and perm starts from 1 (Fortran-style indexing). |
| | 1 | Zero-based indexing: columns and rows indexing in arrays ia, ja, and perm starts from 0 (C-style indexing). |
| iparm[35]
 input | Schur complement matrix computation control. To calculate this matrix, you must set the input permutation vector perm to a set of indexes such that when perm(i) $=1$, the i-th element of the initial matrix is an element of the Schur matrix. | |

Caution

You can only set one of iparm[4], iparm[30], and iparm[35], so be sure that the iparm[4] (user permutation) and the iparm[30] (partial solution) parameters are 0 if you set iparm[35].

| 0^{*} | Do not compute Schur complement. |
| :--- | :--- |
| 1 | Compute Schur complement matrix as part of Intel® oneAPI Math Kernel Library
 (oneMKL) PARDISO factorization step and return it in the solution vector. |

NOTE

This option only computes the Schur complement matrix, and does not calculate factorization arrays.

2 Compute Schur complement matrix as part of Intel oneAPI Math Kernel Library (oneMKL) PARDISO factorization step and return it in the solution vector. Since this option calculates factorization arrays you can use it to launch partial or full solution of the entire problem after the factorization step.

| Component | Description |
| :---: | :---: |
| iparm[36]
 input | Format for matrix storage. |
| | 0* Use CSR format (see Three Array Variation of BSR Format) for matrix storage. |
| | $1 \quad$ Use CSR format (see Three Array Variation of BSR Format) for matrix storage. |
| | <0 Convert supplied matrix to variable BSR (VBSR) format (see Sparse Data
 Storage) for matrix storage. Intel® oneAPI Math Kernel Library (oneMKL)
 PARDISO analyzes the matrix provided in CSR3 format and converts it to an
 internal VBSR format. Setiparm[36] $=-t, 0<t \leq 100$. |
| $\begin{aligned} & \text { iparm[37] - } \\ & \text { iparm[38] } \end{aligned}$ | Reserved. Set to zero. |
| iparm[39] input | Matrix input format. |
| | NOTE
 Performance of the reordering step of the Parallel Direct Sparse Solver for Clusters Interface is slightly better for assembled format (CSR, iparm[39] = 0) than for distributed format (DCSR, iparm[39] >0) for the same matrices, so if the matrix is assembled on one node do not distribute it before calling cluster_sparse_solver. |
| | 0*Provide the matrix in usual centralized input format: the master MPI process
 stores all data from matrix A, with rank $=0$. stores all data from matrix A, with rank=0. |
| | 1 Provide the matrix in distributed assembled matrix input format. In this case, each MPI process stores only a part (or domain) of the matrix A data. Set the bounds of the domain using iparm[40] and iparm[41]. The solution vector is placed on the master process. |
| | Provide the matrix in distributed assembled matrix input format. In this case, each MPI process stores only a part (or domain) of the matrix A data. Set the bounds of the domain using iparm[40] and iparm[41]. The solution vector, A, and RHS elements are distributed between processes in same manner. |
| | 3 Provide the matrix in distributed assembled matrix input format. In this case, each MPI process stores only a part (or domain) of the matrix A data. Set the bounds of the domain using iparm[40] and iparm[41]. The A and RHS elements are distributed between processes in same manner and the solution vector is the same on each process |
| iparm[40] | Beginning of input domain. |
| input | Only applicable to the distributed assembled matrix input format (iparm[39]>0).
 See Sparse Matrix Storage Formats for more details. |
| iparm[41]
 input | End of input domain.
 The number of the matrix A row, RHS element, and, for iparm[39]=2, solution vector that ends the input domain belonging to this MPI process.
 Only applicable to the distributed assembled matrix input format (iparm[39]>0).
 See Sparse Matrix Storage Formats for more details. |
| $\begin{aligned} & \text { iparm[42] - } \\ & \text { iparm[58] } \end{aligned}$ | Reserved. Set to zero. |

| Component | Description |
| :---: | :---: |
| input | |
| iparm[59] | cluster_sparse_solver mode. |
| input | iparm[59] switches between in-core (IC) and out-of-core (OOC) of cluster_sparse_solver. OOC can solve very large problems by holding the matrix factors in files on the disk, which requires a reduced amount of main memory compared to IC. |
| | Unless you are operating in sequential mode, you can switch between IC and OOC modes after the reordering phase. However, you can get better cluster_sparse_solver performance by setting iparm[59] before the reordering phase. |

The amount of memory used in OOC mode depends on the number of OpenMP threads.

NOTE

When iparm[59] > 0, use the MKL_PARDISO_OOC_FILE_NAME environment variable to store factors.

Warning

Do not increase the number of OpenMP threads used for cluster_sparse_solver between the first call and the factorization or solution phase. Because the minimum amount of memory required for out-of-core execution depends on the number of OpenMP threads, increasing it after the initial call can cause incorrect results.

| 0^{*} | IC mode. |
| :--- | :--- |
| 1 | IC mode is used if the total amount of RAM (in megabytes) needed for storing |
| the matrix factors is less than sum of two values of the environment variables: | |
| | MKL_PARDISO_OOC_MAX_CORE_SIZE (default value 2000 MB) and |
| | MKL_PARDISO_OOC_MAX_SWAP_SIZE (default value 0 MB); otherwise OOC mode |
| is used. In this case amount of RAM used by OOC mode cannot exceed the value | |
| | of MKL_PARDISO_OOC_MAX_CORE_SIZE. |
| | If the total peak memory needed for storing the local arrays is more than |
| | MKL_PARDISO_OOC_MAX_CORE_SSIZE, increase |
| | MKL_PARDISO_OOC_MAX_CORE_SIZE if possible. |

NOTE

Conditional numerical reproducibility (CNR) is not supported for this mode.

2 OOC mode.

The OOC mode can solve very large problems by holding the matrix factors in files on the disk. Hence the amount of RAM required by OOC mode is significantly reduced compared to IC mode.
If the total peak memory needed for storing the local arrays is more than MKL_PARDISO_OOC_MAX_CORE_SIZE, increase MKL_PARDISO_OOC_MAX_CORE_SIZE if possible.
To obtain better cluster_sparse_solver performance, during the numerical factorization phase you can provide the maximum number of right-hand sides, which can be used further during the solving phase.

| Component | Description |
| :---: | :---: |
| | NOTE To use OOC mode, you must disable iparm[10] (scaling) and iparm[12] = 1 (matching). |
| $\begin{aligned} & \hline \text { iparm[60] - } \\ & \text { iparm[61] } \end{aligned}$
 input | Reserved. Set to zero. |
| iparm[62]
 output | Size of the minimum OOC memory for numerical factorization and solution.
 This parameter provides the size in kilobytes of the minimum memory required by OOC Intel® oneAPI Math Kernel Library (oneMKL) PARDISO for internal floating point arrays. This parameter is computed in phase 1.
 Total peak memory consumption of OOC Intel® oneAPI Math Kernel Library (oneMKL) PARDISO can be estimated asmax(iparm[14], iparm[15] + iparm[62]). |
| iparm[63]
 input | Reser ved. Set to zero. |

NOTE

Generally in sparse matrices, components which are equal to zero can be considered non-zero if necessary. For example, in order to make a matrix structurally symmetric, elements which are zero can be considered non-zero. See Sparse Matrix Storage Formats for an example.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Direct Sparse Solver (DSS) Interface Routines

Intel® oneAPI Math Kernel Library (oneMKL) supports the DSS interface, an alternative to the Intel® oneAPI Math Kernel Library (oneMKL) PARDISO interface for the direct sparse solver. The DSS interface implements a group of user-callable routines that are used in the step-by-step solving process and utilizes the general scheme described inAppendix A Linear Solvers Basics for solving sparse systems of linear equations. This interface also includes one routine for gathering statistics related to the solving process.
The DSS interface also supports the out-of-core (OOC) mode.
Table "DSS Interface Routines" lists the names of the routines and describes their general use.
DSS Interface Routines

| Routine | Description |
| :--- | :--- |
| dss_create | Initializes the solver and creates the basic data structures
 necessary for the solver. This routine must be called
 before any other DSS routine. |
| dss_define_structure | Informs the solver of the locations of the non-zero
 elements of the matrix. |

| Routine | Description |
| :--- | :--- |
| dss_reorder | Based on the non-zero structure of the matrix, computes
 a permutation vector to reduce fill-in during the factoring
 process. |
| dss_factor_real, dss_factor_complex | Computes the $L U, L D L^{T}$ or $L L^{T}$ factorization of a real or
 complex matrix. |
| dss_solve_real, dss_solve_complex | Computes the solution vector for a system of equations
 based on the factorization computed in the previous
 phase. |
| dss_delete | Deletes all data structures created during the solving
 process. |
| dss_statistics | Returns statistics about various phases of the solving
 process. |

To find a single solution vector for a single system of equations with a single right-hand side, invoke the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) DSS interface routines in this order:

1. dss_create
2. dss_define_structure
3. dss_reorder
4. dss_factor_real, dss_factor_complex
5. dss_solve_real, dss_solve_complex
6. dss_delete

However, in certain applications it is necessary to produce solution vectors for multiple right-hand sides for a given factorization and/or factor several matrices with the same non-zero structure. Consequently, it is sometimes necessary to invoke the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) sparse routines in an order other than that listed, which is possible using the DSS interface. The solving process is conceptually divided into six phases.Figure "Typical order for invoking DSS interface routines" indicates the typical order in which the DSS interface routines can be invoked.
\qquad
border_ top

Typical order for invoking DSS interface routines

Create

Define array structure

See the code examples that use the DSS interface routines to solve systems of linear equations in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) installation directory (dss_*.c).

- examples/solverc/source

DSS Interface Description

Each DSS routine reads from or writes to a data object called a handle. Refer to Memory Allocation and Handles to determine the correct method for declaring a handle argument for each language. For simplicity, the descriptions in DSS routines refer to the data type as MKL_DSS_HANDLE.

Routine Options

The DSS routines have an integer argument (referred below to as opt) for passing various options to the routines. The permissible values for opt should be specified using only the symbol constants defined in the language-specific header files (see Implementation Details). The routines accept options for setting the message and termination levels as described in Table "Symbolic Names for the Message and Termination Levels Options". Additionally, each routine accepts the option MKL_DSS_DEFAULTS that sets the default values (as documented) for opt to the routine.

Symbolic Names for the Message and Termination Levels Options

| Message Level | Termination Level |
| :---: | :---: |
| MKL_DSS_MSG_LVL_SUCCESS | MKL_DSS_TERM_LVL_SUCCESS |
| MKL_DSS_MSG_LVL_INFO | MKL_DSS_TERM_LVL_INFO |
| MKL_DSS_MSG_LVL_WARNING | MKL_DSS_TERM_LVL_WARNING |
| MKL_DSS_MSG_LVL_ERROR | MKL_DSS_TERM_LVL_ERROR |
| MKL_DSS_MSG_LVL_FATAL | MKL_DSS_TERM_LVL_FATAL |

The settings for message and termination levels can be set on any call to a DSS routine. However, once set to a particular level, they remain at that level until they are changed in another call to a DSS routine.
You can specify both message and termination level for a DSS routine by adding the options together. For example, to set the message level to debug and the termination level to error for all the DSS routines, use the following call:

```
dss_create( handle, MKL_DSS_MSG_LVL_INFO + MKL_DSS_TERM_LVL_ERROR)
```


User Data Arrays

Many of the DSS routines take arrays of user data as input. For example, pointers to user arrays are passed to the routine dss_define_structure to describe the location of the non-zero entries in the matrix.

Caution

Do not modify the contents of these arrays after they are passed to one of the solver routines.

DSS Implementation Details

To promote portability across platforms and ease of use across different languages, use the mkl_dss.h header file.

The header file defines symbolic constants for returned error values, function options, certain defined data types, and function prototypes.

NOTE

Constants for options, returned error values, and message severities must be referred only by the symbolic names that are defined in these header files. Use of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) DSS software without including one of the above header files is not supported.

Memory Allocation and Handles

You do not need to allocate any temporary working storage in order to use the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) DSS routines, because the solver itself allocates any required storage. To enable multiple users to access the solver simultaneously, the solver keeps track of the storage allocated for a particular application by using ahandle data object.
Each of the Intel® ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) DSS routines creates, uses, or deletes a handle. Consequently, any program calling an Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) DSS routine must be able to allocate storage for a handle. The exact syntax for allocating storage for a handle varies from language to language. To standardize the handle declarations, the language-specific header files declare constants and defined data types that must be used when declaring a handle object in your code.

```
#include "mkl_dss.h"
_MKL_DSS_HANDLE_t handle;
```

In addition to the definition for the correct declaration of a handle, the include file also defines the following:

- function prototypes for languages that support prototypes
- symbolic constants that are used for the returned error values
- user options for the solver routines
- constants indicating message severity.

DSS Routines

```
dss_create
Initializes the solver.
```


Syntax

```
MKL_INT dss_create(_MKL_DSS_HANDLE_t *handle, MKL_INT const *opt)
```


Include Files

- mkl.h

Description

The dss_create routine initializes the solver. After the call to dss_create, all subsequent invocations of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) DSS routines must use the value of the handle returned bydss_create.

WARNING

Do not write the value of handle directly.

The default value of the parameter opt is

```
MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR.
```

By default, the DSS routines use double precision for solving systems of linear equations. The precision used by the DSS routines can be set to single mode by adding the following value to the opt parameter:

```
MKL_DSS_SINGLE_PRECISION.
```

Input data and internal arrays are required to have single precision.
By default, the DSS routines use Fortran style (one-based) indexing for input arrays of integer types (the first value is referenced as array element 1). To set indexing to C style (the first value is referenced as array element 0), add the following value to the opt parameter:

```
MKL_DSS_ZERO_BASED_INDEXING.
```

The opt parameter can also control number of refinement steps used on the solution stage by specifying the two following values:
MKL_DSS_REFINEMENT_OFF - maximum number of refinement steps is set to zero; MKL_-DSS_REFINEMENT_ON (default value) - maximum number of refinement steps is set to 2 .
By default, DSS uses in-core computations. To launch the out-of-core version of DSS (OOC DSS) you can add to this parameter one of two possible values: MKL_DSS_OOC_STRONG and MKL_DSS_OOC_VARIABLE.
MKL_DSS_OOC_STRONG - OOC DSS is used.
MKL_DSS_OOC_VARIABLE - if the memory needed for the matrix factors is less than the value of the environment variable MKL_PARDISO_OOC_MAX_CORE_SIZE, then the OOC DSS uses the in-core kernels of Intel® oneAPI Math Kernel Library (oneMKL) PARDISO, otherwise it uses the OOC computations.

The variable MKL_PARDISO_OOC_MAX_CORE_SIZE defines the maximum size of RAM allowed for storing work arrays associated with the matrix factors. It is ignored if MKL_DSS_OOC_STRONG is set. The default value of MKL_PARDISO_OOC_MAX_CORE_SIZE is 2000 MB. This value and default path and file name for storing temporary data can be changed using the configuration file pardiso_ooc.cfg or command line (See more details in the description of the pardiso routine).

WARNING

Other than message and termination level options, do not change the OOC DSS settings after they are specified in the routine dss_create.

Input Parameters

```
opt Parameter to pass the DSS options. The default value is
    MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR.
```


Output Parameters

```
handle
```

Pointer to the data structure storing internal DSS results (MKL_DSS_HANDLE).

Return Values

```
MKL_DSS_SUCCESS
```

MKL_DSS_INVALID_OPTION
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
dss_define_structure
Communicates locations of non-zero elements in the
matrix to the solver.

Syntax

MKL_INT dss_define_structure(_MKL_DSS_HANDLE_t *handle, MKL_INT const *opt, MKL_INT const *rowIndex, MKL_INT const *nRows, MKL_INT const *nCols, MKL_INT const *columns, MKL_INT const *nNonZeros);

Include Files

- mkl.h

Description

The routine dss_define_structure communicates the locations of the nNonZeros number of non-zero elements in a matrix of nRows * nCols size to the solver.

NOTE

The Intel® oneAPI Math Kernel Library (oneMKL) DSS software operates only on square matrices, sonRows must be equal to nCols.

To communicate the locations of non-zero elements in the matrix, do the following:

1. Define the general non-zero structure of the matrix by specifying the value for the options argument opt. You can set the following values for real matrices:

- MKL_DSS_SYMMETRIC_STRUCTURE
- MKL_DSS_SYMMETRIC
- MKL_DSS_NON_SYMMETRIC
and for complex matrices:
- MKL_DSS_SYMMETRIC_STRUCTURE_COMPLEX
- MKL_DSS_SYMMETRIC_COMPLEX
- MKL_DSS_NON_SYMMETRIC_COMPLEX

The information about the matrix type must be defined in dss_define_structure.
2. Provide the actual locations of the non-zeros by means of the arrays rowIndex and columns (see Sparse Matrix Storage Format).

NOTE No diagonal element can be omitted from the values array. If there is a zero value on the diagonal, for example, that element nonetheless must be explicitly represented.

Input Parameters

```
opt
```

rowIndex
nRows
nCols
columns
nNonZeros

Output Parameters

handle

Parameter to pass the DSS options. The default value for the matrix structure is MKL_DSS_SYMMETRIC.

Array of size nRows+1. Defines the location of non-zero entries in the matrix.

Number of rows in the matrix.
Number of columns in the matrix; must be equal to nRows.
Array of size nNonZeros. Defines the column location of non-zero entries in the matrix.

Number of non-zero elements in the matrix.

Pointer to the data structure storing internal DSS results (MKL_DSS_HANDLE).

Return Values

```
MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_STRUCTURE_ERR
MKL_DSS_ROW_ERR
MKL_DSS_COL_ERR
MKL_DSS_NOT_SQUARE
```

```
MKL_DSS_TOO_FEW_VALUES
MKL_DSS_TOO_MANY_VALUES
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
dss_reorder
Computes or sets a permutation vector that minimizes
the fill-in during the factorization phase.
```


Syntax

```
MKL_INT dss_reorder (_MKL_DSS_HANDLE_t *handle, MKL_INT const *opt, MKL_INT const *perm)
```


Include Files

- mkl.h

Description

If opt contains the option MKL_DSS_AUTO_ORDER, then the routine dss_reorder computes a permutation vector that minimizes the fill-in during the factorization phase. For this option, the routine ignores the contents of the perm array.
If opt contains the option MKL_DSS_METIS_OPENMP_ORDER, then the routine dss_reorder computes permutation vector using the parallel nested dissections algorithm to minimize the fill-in during the factorization phase. This option can be used to decrease the time of dss_reorder call on multi-core computers. For this option, the routine ignores the contents of the perm array.
If opt contains the option MKL_DSS_MY_ORDER, then you must supply a permutation vector in the array perm. In this case, the array perm is of length nRows, where nRows is the number of rows in the matrix as defined by the previous call to dss_define_structure.
If opt contains the option MKL_DSS_GET_ORDER, then the permutation vector computed during the dss_reorder call is copied to the array perm. In this case you must allocate the array perm beforehand. The permutation vector is computed in the same way as if the option MKL_DSS_AUTO_ORDER is set.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

Input Parameters

| opt | Parameter to pass the DSS options. The default value for the
 permutation type is MKL_DSS_AUTO_ORDER. |
| :--- | :--- |
| perm | Array of length $n R o w s$. Contains a user-defined permutation vector

 (accessed only if opt contains MKL_DSS_MY_ORDER or

 \quadMKL_DSS_GET_ORDER). |

Output Parameters

```
handle
```

Pointer to the data structure storing internal DSS results (MKL_DSS_HANDLE).

Return Values

MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_REORDER_ERR
MKL_DSS_REORDER1_ERR
MKL_DSS_I32BIT_ERR
MKL_DSS_FAILURE
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
dss_factor_real, dss_factor_complex
Compute factorization of the matrix with previously specified location of non-zero elements.

Syntax

MKL_INT dss_factor_real(_MKL_DSS_HANDLE_t *handle, MKL_INT const *opt, void const
*rValues)
MKL_INT dss_factor_complex(_MKL_DSS_HANDLE_t *handle, MKL_INT const *opt, void const

* cValues)

Include Files

- mkl.h

Description

These routines compute factorization of the matrix whose non-zero locations were previously specified by a call to dss_define_structure and whose non-zero values are given in the array rValues, cValues or Values. Data type These arrays must be of length nNonZeros as defined in a previous call to dss_define_structure.

NOTE

The data type (single or double precision) of rvalues, cValues, Values must be in correspondence with precision specified by the parameter opt in the routine dss_create.

The opt argument can contain one of the following options:

- MKL_DSS_POSITIVE_DEFINITE
- MKL_DSS_INDEFINITE
- MKL_DSS_HERMITIAN_POSITIVE_DEFINITE
- MKL_DSS_HERMITIAN_INDEFINITE
depending on your matrix's type.

NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

Input Parameters

handle
opt
rValues
cValues

Pointer to the data structure storing internal DSS results (MKL_DSS_HANDLE).

Parameter to pass the DSS options. The default value is MKL_DSS_POSITIVE_DEFINITE.

Array of elements of the matrix A. Real data, single or double precision as it is specified by the parameter opt in the routine dss_create.

Array of elements of the matrix A. Complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

Return Values

```
MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_OPTION_CONFLICT
MKL_DSS_VALUES_ERR
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_ZERO_PIVOT
MKL_DSS_FAILURE
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
MKL_DSS_OOC_MEM_ERR
MKL_DSS_OOC_OC_ERR
MKL_DSS_OOC_RW_ERR
```

dss_solve_real, dss_solve_complex
Compute the corresponding solution vector and place
it in the output array.

Syntax

```
MKL_INT dss_solve_real(_MKL_DSS_HANDLE_t *handle, MKL_INT const *opt, void const
*rRhsValues, MKL_INT const *nRhs, void *rSolValues)
MKL_INT dss_solve_complex(_MKL_DSS_HANDLE_t *handle, MKL_INT const *opt, void const
*cRhsValues, MKL_INT const *nRhs, void *cSolValues)
```


Include Files

- mkl.h

Description

For each right-hand side column vector defined in the arrays rRhsValues, cRhsValues, or RhsValues, these routines compute the corresponding solution vector and place it in the arrays rSolValues, cSolValues, or Solvalues respectively.

NOTE

The data type (single or double precision) of all arrays must be in correspondence with precision specified by the parameter opt in the routine dss_create.

The lengths of the right-hand side and solution vectors, nRows and nCols respectively, must be defined in a previous call to dss_define_structure.

By default, both routines perform the full solution step (it corresponds to phase $=33$ in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO). The parameteropt enables you to calculate the final solution step-bystep, calling forward and backward substitutions.

If it is set to MKL_DSS_FORWARD_SOLVE, the forward substitution (corresponding to phase $=331$ in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO) is performed;
if it is set to MKL_DSS_DIAGONAL_SOLVE, the diagonal substitution (corresponding to phase $=332$ in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO) is performed, if possible;
if it is set to MKL_DSS_BACKWARD_SOLVE, the backward substitution (corresponding to phase $=333$ in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO) is performed.

For more details about using these substitutions for different types of matrices, see Separate Forward and Backward Substitutionin the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO solver description.

This parameter also can control the number of refinement steps that is used on the solution stage: if it is set to MKL_DSS_REFINEMENT_OFF, the maximum number of refinement steps equal to zero, and if it is set to MKL_DSS_REFINEMENT_ON (default value), the maximum number of refinement steps is equal to 2.

MKL_DSS_CONJUGATE_SOLVE option added to the parameter opt enables solving a conjugate transposed system $A^{H} X=B$ based on the factorization of the matrix A. This option is equivalent to the parameter iparm[11]= 1 in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO.

MKL_DSS_TRANSPOSE_SOLVE option added to the parameter opt enables solving a transposed system $A^{T} X=$ B based on the factorization of the matrix A. This option is equivalent to the parameter iparm[11]= 2 in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO.

Input Parameters

```
handle
opt
nRhs
rRhsValues
```

Pointer to the data structure storing internal DSS results (MKL_DSS_HANDLE).

Parameter to pass the DSS options.
Number of the right-hand sides in the system of linear equations.
Array of size nRows * nRhs. Contains real right-hand side vectors. Real data, single or double precision as it is specified by the parameter opt in the routine dss_create.
cRhsValues

RhsValues

Output Parameters

rSolValues
cSolValues

Array of size nRows * nRhs. Contains complex right-hand side vectors. Complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

Array of size nRows * nRhs. Contains right-hand side vectors. Real or complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

Array of size nCols * nRhs. Contains real solution vectors. Real data, single or double precision as it is specified by the parameter opt in the routine dss_create.

Array of size nCols * nRhs. Contains complex solution vectors. Complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

Return Values

MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_DIAG_ERR
MKL_DSS_FAILURE
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
MKL_DSS_OOC_MEM_ERR
MKL_DSS_OOC_OC_ERR
MKL_DSS_OOC_RW_ERR
dss_delete
Deletes all of the data structures created during the solutions process.

Syntax

MKL_INT dss_delete(_MKL_DSS_HANDLE_t const *handle, MKL_INT const *opt)

Include Files

- mkl.h

Description

The routine dss_delete deletes all data structures created during the solving process.

Input Parameters

```
opt
```

Parameter to pass the DSS options. The default value is MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR.

Output Parameters

handle
Pointer to the data structure storing internal DSS results (MKL_DSS_HANDLE).

Return Values

```
MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
dss_statistics
Returns statistics about various phases of the solving
process.
```


Syntax

```
MKL_INT dss_statistics(_MKL_DSS_HANDLE_t *handle, MKL_INT const *opt, _CHARACTER_STR_t
const *statArr, _DOUBLE_PRECISION_t *retValues)
```

Include Files

- mkl.h

Description

The dss_statistics routine returns statistics about various phases of the solving process. This routine gathers the following statistics:

- time taken to do reordering,
- time taken to do factorization,
- duration of problem solving,
- determinant of the symmetric indefinite input matrix,
- inertia of the symmetric indefinite input matrix,
- number of floating point operations taken during factorization,
- total peak memory needed during the analysis and symbolic factorization,
- permanent memory needed from the analysis and symbolic factorization,
- memory consumption for the factorization and solve phases.

Statistics are returned in accordance with the input string specified by the parameter statArr. The value of the statistics is returned in double precision in a return array, which you must allocate beforehand.

For multiple statistics, multiple string constants separated by commas can be used as input. Return values are put into the return array in the same order as specified in the input string.
Statistics can only be requested at the appropriate stages of the solving process. For example, requesting FactorTime before a matrix is factored leads to an error.

The following table shows the point at which each individual statistics item can be requested:

| Type of Statistics | When to Call |
| :---: | :---: |
| ReorderTime | After dss_reorder is completed successfully. |
| FactorTime | Afterdss_factor_real ordss_factor_complex is completed successfully. |
| SolveTime | After dss_solve_real ordss_solve_complex is completed successfully. |
| Determinant | Afterdss_factor_real ordss_factor_complex is completed successfully. |
| Inertia | After dss_factor_real is completed successfully and the matrix is real, symmetric, and indefinite. |
| Flops | Afterdss_factor_real ordss_factor_complex is completed successfully. |
| Peakmem | After dss_reorder is completed successfully. |
| Factormem | After dss_reorder is completed successfully. |
| Solvemem | After dss_factor_real ordss_factor_complex is completed successfully. |

Input Parameters

```
handle
opt
statArr
```

Pointer to the data structure storing internal DSS results (MKL_DSS_HANDLE).

Parameter to pass the DSS options.
Input string that defines the type of the returned statistics. The parameter can include one or more of the following string constants (case of the input string has no effect):

SolveTime

Determinant

Inertia

ReorderTime Amount of time taken to do the reordering.
FactorTime Amount of time taken to do the factorization.
Amount of time taken to solve the problem after factorization.

Determinant of the matrix A.
For real matrices: the determinant is returned as det_pow, det_base in two consecutive return array locations, where $1.0 \leq$ abs (det_base) < 10.0 and determinant = det_base*10(det_pow).

For complex matrices: the determinant is returned as det_pow, det_re, det_im in three consecutive return array locations, where 1.0 $\leq a b s\left(d e t _r e\right)+a b s\left(d e t _i m\right)<10.0$ and determinant $=$ (det_re, det_im)*10(det_pow).

Inertia of a real symmetric matrix is defined as a triplet of nonnegative integers (p, n, z), where p is the number of positive eigenvalues, n is the number of negative eigenvalues, and z is the number of zero eigenvalues.

Inertia is returned as three consecutive return array locations p, n, z.

Computing inertia can lead to incorrect results for matrixes with a cluster of eigenvalues which are near 0 .
Inertia of a k-by- k real symmetric positive definite matrix is always $(k, 0,0)$. Therefore Inertia is returned only in cases of real symmetric indefinite matrices. For all other matrix types, an error message is returned.

Flops Number of floating point operations performed during the factorization.

Total peak memory in kilobytes that the solver needs during the analysis and symbolic factorization phase.

Permanent memory in kilobytes that the solver needs from the analysis and symbolic factorization phase in the factorization and solve phases.

Total double precision memory consumption (kilobytes) of the solver for the factorization and solve phases.

Output Parameters

retValues
Value of the statistics returned.

Finding 'time used to reorder' and 'inertia' of a matrix

The example below illustrates the use of the dss_statistics routine.
To find the above values, call dss_statistics(handle, opt, statArr, retValue), where staArr is "ReorderTime,Inertia"

In this example, retValue has the following values:

```
retValue[0] Time to reorder.
retValue[1] Positive Eigenvalues.
retValue[2] Negative Eigenvalues.
retValue[3] Zero Eigenvalues.
```


Return Values

```
MKL_DSS_SUCCESS
MKL_DSS_INVALID_OPTION
MKL_DSS_STATISTICS_INVALID_MATRIX
MKL_DSS_STATISTICS_INVALID_STATE
MKL_DSS_STATISTICS_INVALID_STRING
MKL_DSS_MSG_LVL_ERR
```

```
MKL_DSS_TERM_LVL_ERR
```


Iterative Sparse Solvers based on Reverse Communication Interface (RCI ISS)

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) supports iterative sparse solvers (ISS) based on the reverse communication interface (RCI), referred to here as the RCI ISS interface. The RCI ISS interface implements a group of user-callable routines that are used in the step-by-step solving process of a symmetric positive definite system (RCI conjugate gradient solver, or RCI CG), and of a non-symmetric indefinite (nondegenerate) system (RCI flexible generalized minimal residual solver, or RCI FGMRES) of linear algebraic equations. This interface uses the general RCI scheme described in [Dong95].

See the Appendix A Linear Solvers Basics for discussion of terms and concepts related to the ISS routines.
The term $R C I$ indicates that when the solver needs the results of certain operations (for example, matrixvector multiplications), the user performs them and passes the result to the solver. This makes the solver more universal as it is independent of the specific implementation of the operations like the matrix-vector multiplication. To perform such operations, the user can use the built-in sparse matrix-vector multiplications and triangular solvers routines described in Sparse BLAS Level 2 and Level 3 Routines.

NOTE

The RCI CG solver is implemented in two versions: for system of equations with a single right-hand side, and for systems of equations with multiple right-hand sides.

The CG method may fail to compute the solution or compute the wrong solution if the matrix of the system is not symmetric and not positive definite.

The FGMRES method may fail if the matrix is degenerate.

Table "RCI CG Interface Routines" lists the names of the routines, and describes their general use.

RCI ISS Interface Routines

| Routine | Description |
| :--- | :--- |
| dcg_init, dcgmrhs_init, dfgmres_init | Initializes the solver. |
| dcg_check, dcgmrhs_check, dfgmres_check | Checks the consistency and correctness of the user defined data. |
| dcg, dcgmrhs, dfgmres | Computes the approximate solution vector. |
| dcg_get, dcgmrhs_get, dfgmres_get | Retrieves the number of the current iteration. |

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) RCI ISS interface routines are normally invoked in this order:

1. <system_type>_init
2. <system_type>_check
3. <system_type>
4. <system_type>_get

Advanced users can change that order if they need it. Others should follow the above order of calls.
The following diagram indicates the typical order in which the RCI ISS interface routines are invoked.
__border__top
Typical Order for Invoking RCI ISS interface Routines

Initialize

See the code examples that use the RCI ISS interface routines to solve systems of linear equations in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) installation directory.

- examples/solverc/source

CG Interface Description

Each routine for the RCI CG solver is implemented in two versions: for a system of equations with a single right-hand side (SRHS), and for a system of equations with multiple right-hand sides (MRHS). The names of routines for a system with MRHS contain the suffix mrhs.

Routine Options

All of the RCI CG routines have common parameters for passing various options to the routines (see CG Common Parameters). The values for these parameters can be changed during computations.

User Data Arrays

Many of the RCI CG routines take arrays of user data as input. For example, user arrays are passed to the routine dcgto compute the solution of a system of linear algebraic equations. The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) RCI CG routines do not make copies of the user input arrays to minimize storage requirements and improve overall run-time efficiency.

CG Common Parameters

NOTE

The default and initial values listed below are assigned to the parameters by calling the dcg_init/ dcgmrhs_init routine.
n
x
nrhs
b

RCI_request
ipar

MKL_INT, this parameter sets the size of the problem in the dcg_init/ dcgmrhs_init routine. All the other routines use the ipar[0] parameter instead. Note that the coefficient matrix A is a square matrix of size $n^{*} n$.
double array of size n for SRHS, or matrix of size ($n * n r h s$) for MRHS. This parameter contains the current approximation to the solution. Before the first call to the dcg/dcgmrhs routine, it contains the initial approximation to the solution.

MKL_INT, this parameter sets the number of right-hand sides for MRHS routines.
double array containing a single right-hand side vector, or matrix of size $n^{\star} n r h s$ containing right-hand side vectors.

MKL_INT, this parameter gives information about the result of work of the RCI CG routines. Negative values of the parameter indicate that the routine completed with errors or warnings. The 0 value indicates successful completion of the task. Positive values mean that you must perform specific actions:

| RCI_request= 1 | multiply the matrix by tmp [$0: n-1$), put the result in tmp [$\left.n: 2 *_{n}-1\right)$, and return the control to the dcg/dcgmrhs routine; |
| :---: | :---: |
| RCI_request= 2 | to perform the stopping tests. If they fail, return the control to the dcg/dcgmrhs routine. If the stopping tests succeed, it indicates that the solution is found and stored in the x array; |
| RCI_request= 3 | for SRHS: apply the preconditioner to $\operatorname{tmp}[2 * n: 3 * n-1]$, put the result in tmp[3*n:4*n-1], and return the control to the dcg routine; |
| | for MRHS: apply the preconditioner to tmp[2+ipar[2]*n: (3 + ipar[2])*n - 1], put the result in $\operatorname{tmp}\left[3{ }^{*} n: 4^{\star} n-1\right]$, and return the control to the dcgmrhs routine. |

Note that the dcg_get/dcgmrhs_get routine does not change the parameter $R C I_{-}$request. This enables use of this routine inside the reverse communication computations.

MKL_INT array, of size 128 for SRHS, and of size (128+2*nrhs) for MRHS. This parameter specifies the integer set of data for the RCI CG computations:
ipar[0]
ipar[1]
specifies the size of the problem. The dcg_init/ dcgmrhs_init routine assigns ipar[0]=n. All the other routines use this parameter instead of n. There is no default value for this parameter.
specifies the type of output for error and warning messages generated by the RCI CG routines. The default value 6 means that all
messages are displayed on the screen. Otherwise, the error and warning messages are written to the newly created files
dcg_errors.txt and
dcg_check_warnings.txt, respectively. Note that if ipar[5] and ipar[6] parameters are set to 0 , error and warning messages are not generated at all.
ipar[2]
ipar[3]
ipar[4]
ipar[5]
ipar[6]
ipar[7]
ipar[8]
for SRHS: contains the current stage of the RCI CG computations. The initial value is 1 ;
for MRHS: contains the number of the righthand side for which the calculations are currently performed.

WARNING

Avoid altering this variable during computations.
contains the current iteration number. The initial value is 0 .
specifies the maximum number of iterations. The default value is $\min (150, n)$.
if the value is not equal to 0 , the routines output error messages in accordance with the parameter ipar[1]. Otherwise, the routines do not output error messages at all, but return a negative value of the parameter $R C I$ _request. The default value is 1 .
if the value is not equal to 0 , the routines output warning messages in accordance with the parameter ipar[1]. Otherwise, the routines do not output warning messages at all, but they return a negative value of the parameter $R C I_{-} r e q u e s t$. The default value is 1 .
if the value is not equal to 0 , the dcg/dcgmrhs routine performs the stopping test for the maximum number of iterations: ipar[3] \leq ipar[4]. Otherwise, the method is stopped and the corresponding value is assigned to the $R C I$ request. If the value is 0 , the routine does not perform this stopping test. The default value is 1 .
if the value is not equal to 0 , the dcg/dcgmrhs routine performs the residual stopping test:
$\operatorname{dpar}(5) \leq \operatorname{dpar}(4)=\operatorname{dpar}(1) * \operatorname{dpar}(3)+$ dpar (2). Otherwise, the method is stopped and corresponding value is assigned to the
ipar[9]
ipar[10]
ipar[11:127]
ipar[11:127 + 2*nrhs]
$R C I _r e q u e s t$. If the value is 0 , the routine does not perform this stopping test. The default value is 0 .
if the value is not equal to 0 , the dcg/dcgmrhs routine requests a user-defined stopping test by setting the output parameter $R C I$ request $=2$. If the value is 0 , the routine does not perform the user defined stopping test. The default value is 1 .

NOTE

At least one of the parameters ipar[7]ipar[9] must be set to 1 .
if the value is equal to 0 , the $\mathrm{dcg} / \mathrm{dcgmrhs}$ routine runs the non-preconditioned version of the corresponding CG method. Otherwise, the routine runs the preconditioned version of the CG method, and by setting the output parameter $R C I_{\text {_ request }}=3$, indicates that you must perform the preconditioning step. The default value is 0 .
are reserved and not used in the current RCI CG SRHS and MRHS routines.

NOTE

For future compatibility, you must declare the array ipar with length 128 for a single righthand side.
are reserved for internal use in the current RCI CG SRHS and MRHS routines.

NOTE

For future compatibility, you must declare the array ipar with length $128+2 *$ nrhs for multiple right-hand sides.
double array, for SRHS of size 128, for MRHS of size (128+2*nrhs); this parameter is used to specify the double precision set of data for the RCI CG computations, specifically:
dpar[0] specifies the relative tolerance. The default value is 1.0×10^{-6}.
specifies the absolute tolerance. The default value is 0.0 .
dpar[2]
dpar[3]
dpar 4
dpar[5]
dpar[6]
dpar[7]
dpar[8:127]
specifies the square norm of the initial residual (if it is computed in the dcg/dcgmrhs routine). The initial value is 0.0 .
service variable equal to
dpar[0]*dpar[2]+dpar[1] (if it is computed in the dcg/dcgmrhs routine). The initial value is 0.0 .
specifies the square norm of the current residual. The initial value is 0.0 .
specifies the square norm of residual from the previous iteration step (if available). The initial value is 0.0 .
contains the alpha parameter of the CG method. The initial value is 0.0 .
contains the beta parameter of the CG method, it is equal to dpar[4]/dpar[5] The initial value is 0.0 .
are reserved and not used in the current RCI CG SRHS and MRHS routines.

NOTE

For future compatibility, you must declare the array dpar with length 128 for a single righthand side.
dpar(9:128+2*nrhs)
[8:127 + 2*nrhs]
are reserved for internal use in the current RCI CG SRHS and MRHS routines.

NOTE

For future compatibility, you must declare the array dpar with length $128+2 *_{n}$ rhs for multiple right-hand sides.
double array of size ($n * 4$) for SRHS, and ($n *(3+n r h s$)) for MRHS. This parameter is used to supply the double precision temporary space for the RCI CG computations, specifically:

| $\operatorname{tmp}[0: n-1]$ | specifies the current search direction. The initial
 value is 0.0. |
| :--- | :--- |
| $\operatorname{tmp}\left[n: 2 \star^{*}-1\right]$ | contains the matrix multiplied by the current
 search direction. The initial value is 0.0. |
| $\operatorname{tmp}\left[2 \star_{n}: 3 \star_{n}-1\right]$ | contains the current residual. The initial value is

 0.0. |

| $t m p\left[3 * n: 4 *_{n}-1\right]$ | contains the inverse of the preconditioner applied to the current residual for the SRHS version of CG. There is no initial value for this parameter. |
| :---: | :---: |
| $\begin{aligned} & \operatorname{tmp}[4 * n:(4+n r h s) * n \\ & -1] \end{aligned}$ | contains the inverse of the preconditioner applied to the current residual for the MRHS version of CG. There is no initial value for this parameter. |

NOTE

You can define this array in the code using RCI CG SRHS as double tmp [3*n] if you run only non-preconditioned CG iterations.

FGMRES Interface Description

Routine Options

All of the RCI FGMRES routines have common parameters for passing various options to the routines (see FGMRES Common Parameters). The values for these parameters can be changed during computations.

User Data Arrays

Many of the RCI FGMRES routines take arrays of user data as input. For example, user arrays are passed to the routine dfgmresto compute the solution of a system of linear algebraic equations. To minimize storage requirements and improve overall run-time efficiency, the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) RCI FGMRES routines do not make copies of the user input arrays.

FGMRES Common Parameters

NOTE

The default and initial values listed below are assigned to the parameters by calling the dfgmres_init routine.
n
x
b

RCI_request

MKL_INT, this parameter sets the size of the problem in the dfgmres_init routine. All the other routines use the ipar[0] parameter instead. Note that the coefficient matrix A is a square matrix of size $n^{*} n$.
double array, this parameter contains the current approximation to the solution vector. Before the first call to the dfgmres routine, it contains the initial approximation to the solution vector.
double array, this parameter contains the right-hand side vector.
Depending on user requests (see the parameter ipar[12]), it might contain the approximate solution after execution.

MKL_INT, this parameter gives information about the result of work of the RCI FGMRES routines. Negative values of the parameter indicate that the routine completed with errors or warnings. The 0 value indicates successful completion of the task. Positive values mean that you must perform specific actions:
$R C I _$request $=1$
$R C I _$request $=2$

RCI_request= 3
$R C I$ request $=4$
multiply the matrix by tmp[ipar[21] 1:ipar[21] + $n-2]$, put the result in tmp[ipar[22] - 1:ipar[22] + n - 2], and return the control to the dfgmres routine;
perform the stopping tests. If they fail, return the control to the dfgres routine. Otherwise, the solution can be updated by a subsequent call to dfgmres_get routine;
apply the preconditioner to tmp[ipar[21] 1:ipar[21] $+n-2]$, put the result in tmp[ipar[22] - 1:ipar[22] $+n-2]$, and return the control to the dfgmres routine.
check if the norm of the current orthogonal vector is zero, within the rounding or computational errors. Return the control to the dfgmres routine if it is not zero, otherwise complete the solution process by calling dfgmres_get routine.
ipar[128]
MKL_INT array, this parameter specifies the integer set of data for the RCI FGMRES computations:

| ipar[0] | specifies the size of the problem. The dfgmres_init routine assigns ipar[0]=n. All the other routines uses this parameter instead of n. There is no default value for this parameter. |
| :---: | :---: |
| ipar[1] | specifies the type of output for error and warning messages that are generated by the RCI FGMRES routines. The default value 6 means that all messages are displayed on the screen. Otherwise the error and warning messages are written to the newly created file MKL_RCI_FGMRES_Log.txt. Note that if ipar[5] and ipar[6] parameters are set to 0, error and warning messages are not generated at all. |
| ipar[2] | contains the current stage of the RCI FGMRES computations. The initial value is 1 . |

WARNING

Avoid altering this variable during computations.
ipar[3] contains the current iteration number. The initial value is 0 .
specifies the maximum number of iterations. The default value is $\min (150, n)$.
ipar[5]
ipar[6]
ipar[7]
ipar[8]
ipar[9]
ipar[10]
ipar[11]
if the value is not 0 , the routines output error messages in accordance with the parameter ipar[1]. If it is 0 , the routines do not output error messages at all, but return a negative value of the parameter $R C I$ request. The default value is 1 .
if the value is not 0 , the routines output warning messages in accordance with the parameter ipar[1]. Otherwise, the routines do not output warning messages at all, but they return a negative value of the parameter $R C I$ request. The default value is 1 .
if the value is not equal to 0 , the dfgmres routine performs the stopping test for the maximum number of iterations: ipar[3] sipar[4]. If the value is 0 , the dfgmres routine does not perform this stopping test. The default value is 1 .
if the value is not 0 , the dfgmres routine performs the residual stopping test: dpar [4] $\leq d p a r[3]$. If the value is 0 , the dfgmres routine does not perform this stopping test. The default value is 0 .
if the value is not 0 , the dfgmres routine indicates that the user-defined stopping test should be performed by setting $R C I_{\text {_ request }}=2$. If the value is 0 , the dfgmres routine does not perform the user-defined stopping test. The default value is 1 .

NOTE

At least one of the parameters ipar[7]ipar[9] must be set to 1 .
if the value is 0 , the dfgmres routine runs the non-preconditioned version of the FGMRES method. Otherwise, the routine runs the preconditioned version of the FGMRES method, and requests that you perform the preconditioning step by setting the output parameter RCI_request $=3$. The default value is 0.
if the value is not equal to 0 , the dfgmres routine performs the automatic test for zero norm of the currently generated vector: dpar[6] \leq dpar[7], where dpar[7] contains the tolerance value. Otherwise, the routine indicates
that you must perform this check by setting the output parameter $R C I$ request $=4$. The default value is 0 .
if the value is equal to 0 , the dfgmres_get routine updates the solution to the vector x according to the computations done by the dfgmres routine. If the value is positive, the routine writes the solution to the right-hand side vector b. If the value is negative, the routine returns only the number of the current iteration, and does not update the solution. The default value is 0 .

NOTE

It is possible to call the dfgmres_get routine at any place in the code, but you must pay special attention to the parameter ipar[12]. The RCI FGMRES iterations can be continued after the call to dfgmres_get routine only if the parameter ipar[12] is not equal to zero. If ipar[12] is positive, then the updated solution overwrites the right-hand side in the vector b. If you want to run the restarted version of FGMRES with the same right-hand side, then it must be saved in a different memory location before the first call to the dfgmres_get routine with positive ipar[12].
contains the internal iteration counter that counts the number of iterations before the restart takes place. The initial value is 0 .

WARNING

Do not alter this variable during computations.
specifies the number of the non-restarted FGMRES iterations. To run the restarted version of the FGMRES method, assign the number of iterations to ipar [14] before the restart. The default value is $\min (150, n)$, which means that by default the non-restarted version of FGMRES method is used.
service variable specifying the location of the rotated Hessenberg matrix from which the matrix stored in the packed format (see Matrix Arguments in the Appendix B for details) is started in the tmp array.
\(\left.$$
\begin{array}{ll}\text { ipar[16] } & \begin{array}{l}\text { service variable specifying the location of the } \\
\text { rotation cosines from which the vector of cosines } \\
\text { is started in the tmp array. }\end{array} \\
\text { ipar[17] } & \begin{array}{l}\text { service variable specifying the location of the } \\
\text { rotation sines from which the vector of sines is } \\
\text { started in the tmp array. }\end{array}
$$

ipar[18]

service variable specifying the location of the

rotated residual vector from which the vector is

started in the tmp array.\end{array}\right\}\)| service variable, specifies the location of the |
| :--- |
| least squares solution vector from which the |
| vector is started in the tmp array. |

NOTE

You must declare the array ipar with length 128. While defining the array in the code as ipar[23] works, there is no guarantee of future compatibility with Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).
double array, this parameter specifies the double precision set of data for the RCI CG computations, specifically:

```
dpar[0]
dpar[1]
dpar[2]
```

specifies the relative tolerance. The default value is $1.0 \mathrm{e}-6$.
specifies the absolute tolerance. The default value is $0.0 \mathrm{e}-0$.
specifies the Euclidean norm of the initial residual (if it is computed in the dfgmres routine). The initial value is 0.0 .

| dpar [3] | service variable equal to dpar[0] *dpar[2] +dpar[1] (if it is computed in the dfgmres routine). The initial value is 0.0 . |
| :---: | :---: |
| dpar[4] | specifies the Euclidean norm of the current residual. The initial value is 0.0 . |
| dpar[5] | specifies the Euclidean norm of residual from the previous iteration step (if available). The initial value is 0.0 . |
| dpar [6] | contains the norm of the generated vector. The initial value is 0.0 . |
| | NOTE
 In terms of [Saad03] this parameter is the coefficient $h_{k+1, k}$ of the Hessenberg matrix. |
| dpar[7] | contains the tolerance for the zero norm of the currently generated vector. The default value is $1.0 \mathrm{e}-12$. |
| dpar[8:127] | are reserved and not used in the current RCI FGMRES routines. |

NOTE

You must declare the array dpar with length 128. While defining the array in the code as double dpar[8]works, there is no guarantee of future compatibility with Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).
double array of size ((2*ipar[14] + 1)*n +ipar[14]*(ipar[14] + 9) $/ 2+1$)) used to supply the double precision temporary space for the RCI FGMRES computations, specifically:


```
tmp[ipar[18] -
1:ipar[19] - 2]
tmp[ipar[19] -
1:ipar[20] - 2]
tmp[ipar[20] - 1:*]
```

contains the rotated residual vector generated by the FGMRES method. There is no initial value for this part of tmp array.
contains the solution vector to the least squares problem generated by the FGMRES method. There is no initial value for this part of tmp array.
contains the set of preconditioned vectors generated for the FGMRES method by the user. This part of tmp array is not used if the nonpreconditioned version of FGMRES method is called. There is no initial value for this part of tmp array.

NOTE

You can define this array in the code as double tmp[(2*ipar[14] + 1)*n + ipar[14]*(ipar[14] + 9)/2 + 1)] if you run only non-preconditioned FGMRES iterations.

RCI ISS Routines

dcg_init

Initializes the solver.

Syntax

void dcg_init (const MKL_INT \star_{n}, const double $*_{x}$, const double *b, MKL_INT
*RCI_request , MKL_INT *ipar, double *dpar , double *tmp);

Include Files

- mkl.h

Description

The routine dcg_initinitializes the solver. After initialization, all subsequent invocations of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) RCI CG routines use the values of all parameters returned by the routinedcg_init. Advanced users can skip this step and set the values in the ipar and dpar arrays directly.

Caution

You can modify the contents of these arrays after they are passed to the solver routine only if you are sure that the values are correct and consistent. You can perform a basic check for correctness and consistency by calling the dcg_check routine, but it does not guarantee that the method will work correctly.

Input Parameters

n
X
b

Output Parameters

```
RCI_request
ipar
dpar
tmp
```

Return Values

```
RCI_request= 0
RCI_request= -10000
dcg_check
Checks consistency and correctness of the user
defined data.
```


Syntax

```
void dcg_check (const MKL_INT *n , const double *x, const double *b, MKL_INT
```

void dcg_check (const MKL_INT *n , const double *x, const double *b, MKL_INT
*RCI_request , MKL_INT *ipar, double *dpar, double *tmp);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine dcg_check checks consistency and correctness of the parameters to be passed to the solver routine dcg. However this operation does not guarantee that the solver returns the correct result. It only reduces the chance of making a mistake in the parameters of the method. Skip this operation only if you are sure that the correct data is specified in the solver parameters.

The lengths of all vectors must be defined in a previous call to the dcg_init routine.
If none of the stopping criteria (ipar[7]-ipar[9]) has been enabled, both ipar[7] and ipar[8] will be set to 1.

\section*{Input Parameters}
```

ipar Array of size 128. Refer to the FGMRES Common Parameters.
n
x
Array of size 128. Refer to the FGMRES Common Parameters.
Sets the size of the problem.
Array of size n. Contains the initial approximation to the solution vector. Normally it is equal to 0 or to b.

```
b

\section*{Output Parameters}
RCI_request
ipar
dpar
tmp

Gives information about result of the routine.
Array of size 128. Refer to the CG Common Parameters. Only ipar[7]ipar[8] might be changed

Array of size 128. Refer to the CG Common Parameters.
Array of size ( \(n * 4\) ). Refer to the CG Common Parameters.
Array of size \(n\). Contains the right-hand side vector.

\section*{Return Values}
```

```
RCI_request=0
```

```
RCI_request=0
RCI_request = -1100
RCI_request = -1100
RCI_request= -1001
RCI_request= -1001
RCI_request= -1010
RCI_request= -1010
RCI_request= -1011
```

```
RCI_request= -1011
```

```

Indicates that the task completed normally.
Indicates that the task is interrupted and the errors occur.
Indicates that there are some warning messages.
Indicates that the routine changed some parameters to make them consistent or correct.

Indicates that there are some warning messages and that the routine changed some parameters.
dcg
Computes the approximate solution vector.

\section*{Syntax}
```

void dcg (const MKL_INT *n , double *x , const double *b, MKL_INT *RCI_request ,
MKL_INT *ipar , double *dpar , double *tmp);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The dcg routine computes the approximate solution vector using the CG method [Young71]. The routine dcg uses the vector in the array \(x\) before the first call as an initial approximation to the solution. The parameter RCI_request gives you information about the task completion and requests results of certain operations that are required by the solver.
Note that lengths of all vectors must be defined in a previous call to the dcg_init routine.

\section*{Input Parameters}

\footnotetext{
n
X
\(b\)
tmp
}

Sets the size of the problem.
Array of size \(n\). Contains the initial approximation to the solution vector.
Array of size \(n\). Contains the right-hand side vector.
Array of size \(\left(n^{*} 4\right)\). Refer to the CG Common Parameters.

\section*{Output Parameters}
```

RCI_request
X
ipar
dpar
tmp

```

\section*{Return Values}
\begin{tabular}{|c|c|}
\hline RCI_request=0 & Indicates that the task completed normally and the solution is found and stored in the vector \(x\). This occurs only if the stopping tests are fully automatic. For the user defined stopping tests, see the description of the RCI_request= 2 . \\
\hline RCI_request=-1 & Indicates that the routine was interrupted because the maximum number of iterations was reached, but the relative stopping criterion was not met. This situation occurs only if you request both tests. \\
\hline RCI_request=-2 & Indicates that the routine was interrupted because of an attempt to divide by zero. This situation happens if the matrix is non-positive definite or almost non-positive definite. \\
\hline RCI_request=-10 & Indicates that the routine was interrupted because the residual norm is invalid. This usually happens because the value dpar[5] was altered outside of the routine, or the dcg_check routine was not called. \\
\hline RCI_request=-11 & Indicates that the routine was interrupted because it enters the infinite cycle. This usually happens because the values ipar[7], ipar[8], ipar[9] were altered outside of the routine, or the dcg_check routine was not called. \\
\hline RCI_request= 1 & Indicates that you must multiply the matrix by \(\operatorname{tmp}[0: n-\) 1], put the result in the tmp [n:2*n-1], and return control back to the routine dcg. \\
\hline RCI_request= 2 & Indicates that you must perform the stopping tests. If they fail, return control back to the dcg routine. Otherwise, the solution is found and stored in the vector \(x\). \\
\hline RCI_request= 3 & Indicates that you must apply the preconditioner to \(\left[2 *_{n}: 3 *_{n}-1\right]\), put the result in the \(\left[3 *_{n}: 4 *_{n}-1\right]\), and return control back to the routine dcg. \\
\hline
\end{tabular}

\footnotetext{
dcg_get
Retrieves the number of the current iteration.
}

\section*{Syntax}
```

void dcg_get (const MKL_INT *n , const double *x, const double *b, const MKL_INT
*RCI_request, const MKL_INT *ipar, const double *dpar , const double *tmp , MKL_INT
*itercount);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine dcg_get retrieves the current iteration number of the solutions process.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & Sets the size of the problem. \\
\(x\) & Array of size \(n\). Contains the approximation vector to the solution. \\
\(b\) & Array of size \(n\). Contains the right-hand side vector. \\
RCI_request & This parameter is not used. \\
ipar & Array of size 128. Refer to the CG Common Parameters. \\
dpar & Array of size 128. Refer to the CG Common Parameters. \\
\(t m p\) & Array of size \((n * 4)\). Refer to the CG Common Parameters.
\end{tabular}

\section*{Output Parameters}
itercount
Returns the current iteration number.

\section*{Return Values}

The routine dcg_get has no return values.
```

dcgmrhs_init
Initializes the RCI CG solver with MHRS.

```

\section*{Syntax}
```

void dcgmrhs_init (const MKL_INT *n , const double *x , const MKL_INT *nrhs , const
double *b , const MKL_INT *method, MKL_INT *RCI_request , MKL_INT *ipar , double
*dpar , double *tmp);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine dcgmrhs_initinitializes the solver. After initialization all subsequent invocations of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) RCI CG with multiple right-hand sides (MRHS) routines use the values of all parameters that are returned bydcgmrhs_init. Advanced users may skip this step and set the values to these parameters directly in the appropriate routines.

\section*{WARNING}

You can modify the contents of these arrays after they are passed to the solver routine only if you are sure that the values are correct and consistent. You can perform a basic check for correctness and consistency by calling the dcgmrhs_check routine, but it does not guarantee that the method will work correctly.

\section*{Input Parameters}
```

n
X
nrhs
b
method

```

Sets the size of the problem.
Array of size \(n * n r h s\). Contains the initial approximation to the solution vectors. Normally it is equal to 0 or to \(b\).

Sets the number of right-hand sides.
Array of size \(n^{\star} n r h s\). Contains the right-hand side vectors.
Specifies the method of solution:
A value of 1 indicates CG with multiple right-hand sides (default value)

\section*{Output Parameters}
```

RCI_request
dpar
tmp

```
ipar Array of size \(\left(128+2 \star^{\star} n r h s\right)\). Refer to the CG Common Parameters.

Gives information about the result of the routine.
Array of size \(\left(128+2 \star_{n r h s}\right)\). Refer to the CG Common Parameters.
Array of size \(\left(128+2 \star_{n r h s}\right)\). Refer to the CG Common Parameters.
Array of size ( \(n^{\star}(3+n r h s)\) ). Refer to the CG Common Parameters.

\section*{Return Values}
```

RCI_request= 0
RCI_request= -10000

```

Indicates that the task completed normally.
Indicates failure to complete the task.
```

dcgmrhs_check
Checks consistency and correctness of the user
defined data.

```

\section*{Syntax}
```

void dcgmrhs_check (const MKL_INT *n, const double *x, const MKL_INT *nrhs , const double *b, MKL_INT *RCI_request, MKL_INT *ipar, double *dpar, double *tmp);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine dcgmrhs_check checks the consistency and correctness of the parameters to be passed to the solver routine dcgmrhs. While this operation reduces the chance of making a mistake in the parameters, it does not guarantee that the solver returns the correct result.

If you are sure that the correct data is specified in the solver parameters, you can skip this operation. The lengths of all vectors must be defined in a previous call to the dcgmrhs_init routine.

If none of the stopping criteria (ipar[7]-ipar[9]) has been enabled, both ipar[7] and ipar[8] will be set to 1.

\section*{Input Parameters}
n

X
nrhs
b

\section*{Output Parameters}
```

RCI_request
ipar
dpar
tmp

```

\section*{Return Values}
```

RCI_request=0
RCI_request = -1100
RCI_request= -1001
RCI_request= -1010
RCI_request= -1011
RcI request= -1011

```

Sets the size of the problem.
Array of size \(n \star n r h s\). Contains the initial approximation to the solution vectors. Normally it is equal to 0 or to \(b\).

This parameter sets the number of right-hand sides.
Array of size \(n^{\star} n r h s\). Contains the right-hand side vectors.

Returns information about the results of the routine.
Array of size \(\left(128+2 *_{n r h s}\right)\). Refer to the CG Common Parameters. Only ipar[7]-ipar[8] might be changed.

Array of size \((128+2 \star n r h s)\). Refer to the CG Common Parameters.
Array of size ( \(\left.n^{\star}(3+n r h s)\right)\). Refer to the CG Common Parameters.

Indicates that the task completed normally.
Indicates that the task is interrupted and the errors occur.
Indicates that there are some warning messages.
Indicates that the routine changed some parameters to make them consistent or correct.

Indicates that there are some warning messages and that the routine changed some parameters.
dcgmrhs
Computes the approximate solution vectors.

\section*{Syntax}
```

void dcgmrhs (const MKL_INT *n , double *x , const MKL_INT *nrhs , const double *b ,
MKL_INT *RCI_request , MKL_INT *ipar , double *dpar , double *tmp);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine dcgmrhs computes approximate solution vectors using the CG with multiple right-hand sides (MRHS) method [Young71]. The routine dcgmrhs uses the value that was in the \(x\) before the first call as an initial approximation to the solution. The parameter \(R C I_{-}\)request gives information about task completion status and requests results of certain operations that are required by the solver.

Note that lengths of all vectors are assumed to have been defined in a previous call to the dcgmrhs_init routine.

\section*{Input Parameters}
\(n\)

X
nrhs
b
tmp

\section*{Output Parameters}
```

RCI_request
X
ipar
dpar
tmp

```

Return Values
```

RCI_request=0
RCI_request=-1
RCI_request=-2
RCI_request=-10
RCI_request=-11
RCI_request= 1

```

Sets the size of the problem, and the sizes of arrays \(x\) and \(b\).
Array of size \(n^{\star} n r h s\). Contains the initial approximation to the solution vectors.

Sets the number of right-hand sides.
Array of size \(n^{\star} n r h s\). Contains the right-hand side vectors.
Array of size ( \(n, 3+n r h s\) ). Refer to the CG Common Parameters.

Gives information about result of work of the routine.
Array of size ( \(n \star n r h s\) ). Contains the updated approximation to the solution vectors.

Array of size \((128+2 * n r h s)\). Refer to the CG Common Parameters.
Array of size \(\left(128+2 \star_{n r h s}\right)\). Refer to the CG Common Parameters.
Array of size ( \(n^{\star}(3+n r h s)\) ). Refer to the CG Common Parameters.

Indicates that the task completed normally and the solution is found and stored in the vector \(x\). This occurs only if the stopping tests are fully automatic. For the user defined stopping tests, see the description of the \(R C I_{\_}\)request \(=2\).

Indicates that the routine was interrupted because the maximum number of iterations was reached, but the relative stopping criterion was not met. This situation occurs only if both tests are requested by the user.

The routine was interrupted because of an attempt to divide by zero. This situation happens if the matrix is nonpositive definite or almost non-positive definite.

Indicates that the routine was interrupted because the residual norm is invalid. This usually happens because the value dpar[5] was altered outside of the routine, or the dcg_check routine was not called.

Indicates that the routine was interrupted because it enters the infinite cycle. This usually happens because the values ipar[7], ipar[8], ipar[9] were altered outside of the routine, or the dcg_check routine was not called.

Indicates that you must multiply the matrix by \(\operatorname{tmp}[0: n-\) 1], put the result in the \(\operatorname{tmp}\left[n: 2 \star_{n}-1\right]\), and return control back to the routine dcg .
```

RCI_request=2
RCI_request= 3

```

Indicates that you must perform the stopping tests. If they fail, return control back to the dcg routine. Otherwise, the solution is found and stored in the vector \(x\).

Indicates that you must apply the preconditioner to tmp[2*n:3*n-1], put the result in the tmp[3*n:4*n 1], and return control back to the routine dcg.

\section*{dcgmrhs_get}

Retrieves the number of the current iteration.

\section*{Syntax}
```

void dcgmrhs_get (const MKL_INT *n , const double *x , const MKL_INT *nrhs , const
double *b, const MKL_INT *RCI_request, const MKL_INT *ipar, const double *dpar ,
const double *tmp , MKL_INT *itercount);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine dcgmrhs_get retrieves the current iteration number of the solving process.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & Sets the size of the problem. \\
\(x\) & \begin{tabular}{l} 
Array of size \(n^{\star} n r h s\). Contains the initial approximation to the solution \\
vectors.
\end{tabular} \\
\(n r h s\) & Sets the number of right-hand sides. \\
\(b\) & Array of size \(n^{\star} n r h s\). Contains the right-hand side . \\
RCI_request & This parameter is not used. \\
ipar & Array of size \((128+2 \star n r h s)\). Refer to the CG Common Parameters. \\
\(d p a r\) & Array of size \((128+2 \star n r h s)\). Refer to the CG Common Parameters. \\
\(t m p\) & Array of size \(\left(n^{\star}(3+n r h s)\right)\). Refer to the CG Common Parameters.
\end{tabular}

\section*{Output Parameters}
itercount
Array of size nrhs. Returns the current iteration number for each right-hand side.

\section*{Return Values}

The routine dcgmrhs_get has no return values.
dfgmres_init
Initializes the solver.
```

Syntax
void dfgmres_init (const MKL_INT *n , const double *x , const double *b, MKL_INT
*RCI_request , MKL_INT *ipar, double *dpar , double *tmp);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine dfgmres_initinitializes the solver. After initialization all subsequent invocations of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) RCI FGMRES routines use the values of all parameters that are returned bydfgmres_init. Advanced users can skip this step and set the values in the ipar and dpar arrays directly.

\section*{WARNING}

You can modify the contents of these arrays after they are passed to the solver routine only if you are sure that the values are correct and consistent. You can perform a basic check for correctness and consistency by calling the dfgmres_check routine, but it does not guarantee that the method will work correctly.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & Sets the size of the problem. \\
\(x\) & Array of size \(n\). Contains the initial approximation to the solution vector. \\
Normally it is equal to 0 or to \(b\).
\end{tabular} Array of size \(n\). Contains the right-hand side vector.

\section*{Output Parameters}
```

RCI_request Gives information about the result of the routine.
ipar Array of size 128. Refer to the FGMRES Common Parameters.
dpar Array of size 128. Refer to the FGMRES Common Parameters.
tmp Array of size ((2*ipar[14] + 1)*n + ipar[14]*(ipar[14] + 9)/2 +
1). Refer to the FGMRES Common Parameters.

```

\section*{Return Values}
```

RCI_request= 0 Indicates that the task completed normally.
RCI_request= -10000 Indicates failure to complete the task.

```
```

dfgmres_check
Checks consistency and correctness of the user
defined data.
Syntax
void dfgmres_check (const MKL_INT *n, const double *x, const double *b, MKL_INT

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine dfgmres_check checks consistency and correctness of the parameters to be passed to the solver routine dfgmres. However, this operation does not guarantee that the method gives the correct result. It only reduces the chance of making a mistake in the parameters of the routine. Skip this operation only if you are sure that the correct data is specified in the solver parameters.

The lengths of all vectors are assumed to have been defined in a previous call to the dfgmres_init routine.
In particular, the routine checks the consistency of ipar[15]-ipar[20] and ipar[0], ipar[14]. If the values do not agree, the routine emits a warning and modifies ipar[15]-ipar[20] to comply with the values of ipar[0], ipar[14]. A possible use case for this modification is a non-default value (not the one set by a possible call to dfgmres_init) of ipar[14].

Also, if none of the stopping criteria (ipar[7]-ipar[9]) has been enabled, both ipar[7] and ipar[9] will be set to 1 .

NOTE: It is not strictly necessary to call the dfgmres_check routine unless the values of ipar[14] or ipar[0] are changed after the last call to dfgmres_init.

\section*{Input Parameters}
```

ipar Array of size 128. Refer to the FGMRES Common Parameters.
n
x
b

```

\section*{Output Parameters}
```

RCI_request
ipar
dpar
tmp

```

\section*{Return Values}
```

RCI_request= 0
RCI_request= -1100
RCI_request= -1001
RCI_request= -1010
RCI_request=-1011

```

Indicates that the task completed normally.
Indicates that the task is interrupted and the errors occur.
Indicates that there are some warning messages.
Indicates that the routine changed some parameters to make them consistent or correct.

Indicates that there are some warning messages and that the routine changed some parameters.
```

dfgmres
Makes the FGMRES iterations.

```

\section*{Syntax}
void dfgmres (const MKL_INT *n, double *x, double *b, MKL_INT *RCI_request, MKL_INT
*ipar, double *dpar, double *tmp );

\section*{Include Files}
- mkl.h

\section*{Description}

The routine dfgmres performs the FGMRES iterations [Saad03], using the value that was in the array \(x\) before the first call as an initial approximation of the solution vector. To update the current approximation to the solution, the dfgmres_get routine must be called. The RCI FGMRES iterations can be continued after the call to the dfgmres_get routine only if the value of the parameter ipar[12] is not equal to 0 (default value). Note that the updated solution overwrites the right-hand side in the vector \(b\) if the parameter ipar[12] is positive, and the restarted version of the FGMRES method can not be run. If you want to keep the right-hand side, you must be save it in a different memory location before the first call to the dfgmres_get routine with a positive ipar[12].

The parameter RCI_request gives information about the task completion and requests results of certain operations that the solver requires.
The lengths of all the vectors must be defined in a previous call to the dfgmres_init routine.

\section*{Input Parameters}
\(n\)

X
b
\(t m p\)

\section*{Output Parameters}
```

RCI_request
ipar
dpar
tmp

```

\section*{Return Values}

Sets the size of the problem.
Array of size \(n\). Contains the initial approximation to the solution vector.
Array of size \(n\). Contains the right-hand side vector.
Array of size [12]. Refer to the FGMRES Common Parameters.

Informs about result of work of the routine.
Array of size 128. Refer to the FGMRES Common Parameters.
Array of size 128. Refer to the FGMRES Common Parameters.
Array of size ((2*ipar[14]+1)*n+ipar[14]*ipar[14]+9)/2 + 1. Refer to the FGMRES Common Parameters.
\(R C I \_\)request \(=0\)

Indicates that the task completed normally and the solution is found and stored in the vector \(x\). This occurs only if the stopping tests are fully automatic. For the user defined stopping tests, see the description of the \(R C I_{-}\)request \(=2\) or 4.
\begin{tabular}{|c|c|}
\hline RCI_request \(=-1\) & Indicates that the routine was interrupted because the maximum number of iterations was reached, but the relative stopping criterion was not met. This situation occurs only if you request both tests. \\
\hline RCI_request \(=-10\) & Indicates that the routine was interrupted because of an attempt to divide by zero. Usually this happens if the matrix is degenerate or almost degenerate. However, it may happen if the parameter dpar is altered, or if the method is not stopped when the solution is found. \\
\hline RCI_request \(=-11\) & Indicates that the routine was interrupted because it entered an infinite cycle. Usually this happens because the values ipar[7], ipar[8], ipar[9] were altered outside of the routine, or the dfgmres_check routine was not called. \\
\hline RCI_request \(=-12\) & Indicates that the routine was interrupted because errors were found in the method parameters. Usually this happens if the parameters ipar and dpar were altered by mistake outside the routine. \\
\hline RCI_request= 1 & Indicates that you must multiply the matrix by tmp[ipar[21] - 1:ipar[21] + n - 2], put the result in the tmp[ipar[22] - 1:ipar[22] \(+n-2]\), and return control back to the routine dfgmres. \\
\hline RCI_request= 2 & Indicates that you must perform the stopping tests. If they fail, return control to the dfgmres routine. Otherwise, the FGMRES solution is found, and you can run the fgmres_get routine to update the computed solution in the vector \(x\). \\
\hline RCI_request= 3 & Indicates that you must apply the inverse preconditioner to tmp[ipar[21] - 1:ipar[21] + n - 2], put the result in the tmp[ipar[22] - 1:ipar[22] \(+n-2]\), and return control back to the routine dfgmres. \\
\hline RCI_request= 4 & Indicates that you must check the norm of the currently generated vector. If it is not zero within the computational/ rounding errors, return control to the dfgmres routine. Otherwise, the FGMRES solution is found, and you can run the dfgmres_get routine to update the computed solution in the vector \(x\). \\
\hline
\end{tabular}

\section*{dfgmres_get}

Retrieves the number of the current iteration and updates the solution.

\section*{Syntax}
```

void dfgmres_get (const MKL_INT *n, double *x, double *b, MKL_INT *RCI_request, const
MKL_INT *ipar, const double *dpar, double *tmp, MKL_INT *itercount);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine dfgmres_get retrieves the current iteration number of the solution process and updates the solution according to the computations performed by the dfgmres routine. To retrieve the current iteration number only, set the parameter ipar[12] =-1 beforehand. Normally, you should do this before proceeding further with the computations. If the intermediate solution is needed, the method parameters must be set properly. For details see FGMRES Common Parametersand the Iterative Sparse Solver code examples in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) installation directory:
- examples/solverc/source

\section*{Input Parameters}
```

n Sets the size of the problem
ipar Array of size 128. Refer to the FGMRES Common Parameters.
dpar
tmp
Sets the size of the problem.
Array of size 128. Refer to the FGMRES Common Parameters.
Array of size 128. Refer to the FGMRES Common Parameters.
Array of size ((2*ipar[14]+1)*n+ipar[14]*ipar[14]+9)/2 + 1). Refer to the FGMRES Common Parameters.

```

\section*{Output Parameters}
x
b

RCI_request
itercount
Array of size \(n\). If ipar[12] = 0 , it contains the updated approximation to the solution according to the computations done in dfgmres routine. Otherwise, it is not changed.

Array of size \(n\). If ipar (13) \(>0\), it contains the updated approximation to the solution according to the computations done in dfgmres routine. Otherwise, it is not changed.

Gives information about result of the routine.
Contains the value of the current iteration number.

\section*{Return Values}
```

RCI_request=0
RCI_request= -12

```

RCI_request \(=-10000\)

Indicates that the task completed normally.
Indicates that the routine was interrupted because errors were found in the routine parameters. Usually this happens if the parameters ipar and dpar were altered by mistake outside of the routine.

Indicates that the routine failed to complete the task.

\section*{RCI ISS Implementation Details}

Several aspects of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) RCI ISS interface are platform-specific and language-specific. To promote portability across platforms and ease of use across different languages, include one of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) RCI ISS language-specific header files.

\section*{NOTE}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) does not support the RCI ISS interface unless you include the language-specific header file.

\section*{Preconditioners based on Incomplete LU Factorization Technique}

Preconditioners, or accelerators are used to accelerate an iterative solution process. In some cases, their use can reduce the number of iterations dramatically and thus lead to better solver performance. Although the terms preconditioner and accelerator are synonyms, hereafter only preconditioner is used.

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides two preconditioners, ILUO and ILUT, for sparse matrices presented in the format accepted in the Intel® oneAPI Math Kernel Library (oneMKL) direct sparse solvers (three-array variation of the CSR storage format described inSparse Matrix Storage Format ). The algorithms used are described in [Saad03].

The ILU0 preconditioner is based on a well-known factorization of the original matrix into a product of two triangular matrices: lower and upper triangular matrices. Usually, such decomposition leads to some fill-in in the resulting matrix structure in comparison with the original matrix. The distinctive feature of the ILU0 preconditioner is that it preserves the structure of the original matrix in the result.
Unlike the ILUO preconditioner, the ILUT preconditioner preserves some resulting fill-in in the preconditioner matrix structure. The distinctive feature of the ILUT algorithm is that it calculates each element of the preconditioner and saves each one if it satisfies two conditions simultaneously: its value is greater than the product of the given tolerance and matrix row norm, and its value is in the given bandwidth of the resulting preconditioner matrix.
Both ILUO and ILUT preconditioners can apply to any non-degenerate matrix. They can be used alone or together with the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) RCI FGMRES solver (seeSparse Solver Routines). Avoid using these preconditioners with MKL RCI CG solver because in general, they produce a non-symmetric resulting matrix even if the original matrix is symmetric. Usually, an inverse of the preconditioner is required in this case. To do this the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) triangular solver routinemkl_dcsrtrsv must be applied twice: for the lower triangular part of the preconditioner, and then for its upper triangular part.

\section*{NOTE}

Although ILUO and ILUT preconditioners apply to any non-degenerate matrix, in some cases the algorithm may fail to ensure successful termination and the required result. Whether or not the preconditioner produces an acceptable result can only be determined in practice.
A preconditioner may increase the number of iterations for an arbitrary case of the system and the initial solution, and even ruin the convergence. It is your responsibility as a user to choose a suitable preconditioner.

\section*{General Scheme of Using ILUT and RCI FGMRES Routines}

The general scheme for use is the same for both preconditioners. Some differences exist in the calling parameters of the preconditioners and in the subsequent call of two triangular solvers. You can see all these differences in the preconditioner code examples (dcsrilu*.*) in the examplesfolder of the Intel® oneAPI Math Kernel Library (oneMKL) installation directory:
- examples/solverc/source

\section*{ILU0 and ILUT Preconditioners Interface Description}

The concepts required to understand the use of the Intel® oneAPI Math Kernel Library (oneMKL) preconditioner routines are discussed in theAppendix A Linear Solvers Basics.

\section*{User Data Arrays}

The preconditioner routines take arrays of user data as input. To minimize storage requirements and improve overall run-time efficiency, the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) preconditioner routines do not make copies of the user input arrays.

\section*{Common Parameters}

Some parameters of the preconditioners are common with the FGMRES Common Parameters. The routine dfgmres_init specifies their default and initial values. However, some parameters can be redefined with other values. These parameters are listed below.

\section*{For the ILUO preconditioner:}
ipar[1] - specifies the destination of error messages generated by the ILUO routine. The default value 6 means that all error messages are displayed on the screen. Otherwise routine creates a log file called MKL_PREC_log.txt and writes error messages to it. Note if the parameter ipar[5] is set to 0, then error messages are not generated at all.
ipar [5] - specifies whether error messages are generated. If its value is not equal to 0 , the ILU0 routine returns error messages as specified by the parameter ipar[1]. Otherwise, the routine does not generate error messages at all, but returns a negative value for the parameter ierr. The default value is 1.

\section*{For the ILUT preconditioner:}
ipar [1] - specifies the destination of error messages generated by the ILUT routine. The default value 6 means that all messages are displayed on the screen. Otherwise routine creates a log file called MKL_PREC_log.txt and writes error messages to it. Note if the parameter ipar[5] is set to 0 , then error messages are not generated at all.
ipar [5] - specifies whether error messages are generated. If its value is not equal to 0 , the ILUT routine returns error messages as specified by the parameter ipar[1]. Otherwise, the routine does not generate error messages at all, but returns a negative value for the parameter ierr. The default value is 1 .
ipar[6] - if its value is greater than 0, the ILUT routine generates warning messages as specified by the parameter ipar[1] and continues calculations. If its value is equal to 0 , the routine returns a positive value of the parameter ierr. If its value is less than 0 , the routine generates a warning message as specified by the parameter ipar[1] and returns a positive value of the parameter ierr. The default value is 1 .

\section*{dcsrilu0}

ILUO preconditioner based on incomplete LU factorization of a sparse matrix.

\section*{Syntax}
```

void dcsrilu0 (const MKL_INT *n , const double *a, const MKL_INT *ia, const MKL_INT
*ja , double *bilu0, const MKL_INT *ipar , const double *dpar , MKL_INT *ierr);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine dcsrilu0 computes a preconditioner \(B\) [Saad03] of a given sparse matrix \(A\) stored in the format accepted in the direct sparse solvers:
\(A \sim B=L^{\star} U\), where \(L\) is a lower triangular matrix with a unit diagonal, \(U\) is an upper triangular matrix with a non-unit diagonal, and the portrait of the original matrix \(A\) is used to store the incomplete factors \(L\) and \(U\).

\section*{Caution}

This routine supports only one-based indexing of the array parameters.

\section*{Input Parameters}
\(n\)
a
ia
ja
ipar
dpar

Size (number of rows or columns) of the original square \(n\)-by- \(n\) matrix \(A\).
Array containing the set of elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to the values array description in the Sparse Matrix Storage Format for more details.

Array of size \((n+1)\) containing begin indices of rows of the matrix \(A\) such that ia[i] is the index in the array a of the first non-zero element from the row \(i\). The value of the last element \(i a[n]\) is equal to the number of nonzero elements in the matrix \(A\), plus one. Refer to the rowIndex array description in the Sparse Matrix Storage Format for more details.

Array containing the column indices for each non-zero element of the matrix \(A\). It is important that the indices are in increasing order per row. The matrix size is equal to the size of the array \(a\). Refer to the columns array description in the Sparse Matrix Storage Format for more details.

\section*{Caution}

If column indices are not stored in ascending order for each row of matrix, the result of the routine might not be correct.

Array of size 128. This parameter specifies the integer set of data for both the ILUO and RCI FGMRES computations. Refer to the ipar array description in the FGMRES Common Parameters for more details on FGMRES parameter entries. The entries that are specific to ILUO are listed below.
ipar[30] specifies how the routine operates when a zero diagonal element occurs during calculation. If this parameter is set to 0 (the default value set by the routine dfgmres_init), then the calculations are stopped and the routine returns a non-zero error value. Otherwise, the diagonal element is set to the value of dpar[31] and the calculations continue.

\section*{NOTE}

You can declare the ipar array with a size of 32 . However, for future compatibility you must declare the array ipar with length 128.

Array of size 128. This parameter specifies the double precision set of data for both the ILU0 and RCI FGMRES computations. Refer to the dpar array description in the FGMRES Common Parameters for more details on FGMRES parameter entries. The entries specific to ILU0 are listed below.
dpar[30] specifies a small value, which is compared with the computed diagonal elements. When ipar[30] is not 0 , then diagonal elements less than dpar [30] are set to dpar[31]. The default value is \(1.0 \mathrm{e}-16\).

\section*{NOTE}

This parameter can be set to the negative value, because the calculation uses its absolute value.
If this parameter is set to 0 , the comparison with the diagonal element is not performed.
dpar[31]
specifies the value that is assigned to the diagonal element if its value is less than dpar[30] (see above). The default value is \(1.0 \mathrm{e}-10\).

\section*{NOTE}

You can declare the dpar array with a size of 32 . However, for future compatibility you must declare the array dpar with length 128.

\section*{Output Parameters}
biluo
ierr

Array \(B\) containing non-zero elements of the resulting preconditioning matrix \(B\), stored in the format accepted in direct sparse solvers. Its size is equal to the number of non-zero elements in the matrix \(A\). Refer to the values array description in the Sparse Matrix Storage Format section for more details.

Error flag, gives information about the routine completion.

\section*{NOTE}

To present the resulting preconditioning matrix in the CSR3 format the arrays ia (row indices) and ja (column indices) of the input matrix must be used.

\section*{Return Values}
```

ierr=0
ierr=-101

```
ierr=-102
ierr=-103
ierr=-104

Indicates that the task completed normally.
Indicates that the routine was interrupted and that error occurred: at least one diagonal element is omitted from the matrix in CSR3 format (see Sparse Matrix Storage Format).

Indicates that the routine was interrupted because the matrix contains a diagonal element with the value of zero.

Indicates that the routine was interrupted because the matrix contains a diagonal element which is so small that it could cause an overflow, or that it would cause a bad approximation to ILUO.

Indicates that the routine was interrupted because the memory is insufficient for the internal work array.
ierr=-105
ierr=-106

Indicates that the routine was interrupted because the input matrix size \(n\) is less than or equal to 0 .

Indicates that the routine was interrupted because the column indices ja are not in the ascending order.

\section*{dcsrilut}

ILUT preconditioner based on the incomplete LU factorization with a threshold of a sparse matrix.

\section*{Syntax}
```

void dcsrilut (const MKL_INT *n, const double *a, const MKL_INT *ia, const MKL_INT *ja,
double *bilut, MKL_INT *ibilut, MKL_INT *jbilut, const double *tol, const MKL_INT
*maxfil, const MKL_INT *ipar, const double *dpar, MKL_INT *ierr);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routine dcsrilut computes a preconditioner \(B\) [Saad03] of a given sparse matrix \(A\) stored in the format accepted in the direct sparse solvers:
\(A \sim B=L^{\star} U\), where \(L\) is a lower triangular matrix with unit diagonal and \(U\) is an upper triangular matrix with non-unit diagonal.
The following threshold criteria are used to generate the incomplete factors \(L\) and \(U\) :
1) the resulting entry must be greater than the matrix current row norm multiplied by the parameter tol, and
2) the number of the non-zero elements in each row of the resulting \(L\) and \(U\) factors must not be greater than the value of the parameter maxfil.

\section*{Caution}

This routine supports only one-based indexing of the array parameters.

\section*{Input Parameters}
\(n\)
\(a\)
ia

Size (number of rows or columns) of the original square \(n\)-by- \(n\) matrix \(A\).
Array containing all non-zero elements of the matrix \(A\). The length of the array is equal to their number. Refer to values array description in the Sparse Matrix Storage Format section for more details.

Array of size \((n+1)\) containing indices of non-zero elements in the array \(a\). ia[i] is the index of the first non-zero element from the row \(i\). The value of the last element \(i_{a}[n]\) is equal to the number of non-zeros in the matrix A, plus one. Refer to the rowIndex array description in the Sparse Matrix Storage Format for more details.

Array of size 128. This parameter specifies the double precision set of data for both ILUT and RCI FGMRES computations. Refer to the dpar array description in the FGMRES Common Parameters for more details on FGMRES parameter entries. The entries that are specific to ILUT are listed below.
dpar[30] used to adjust the value of small diagonal elements. Diagonal elements with a value less than the current matrix row norm multiplied by tol are replaced with the value of dpar [30] multiplied by the matrix row norm.

\section*{NOTE}

There is no default value for dpar[30] entry even if the preconditioner is used within RCI ISS context. Always set the value of this entry.

\section*{NOTE}

You must declare the array dpar with length 128. While defining the array in the code as ipar[30] works, there is no guarantee of future compatibility with Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).

\section*{Output Parameters}
bilut
ibilut
jbilut
ierr
Return Values
ierr=0

Array containing non-zero elements of the resulting preconditioning matrix \(B\), stored in the format accepted in the direct sparse solvers. Refer to the values array description in the Sparse Matrix Storage Format for more details. The size of the array is equal to \(\left(2 *_{\text {maxfill }}+1\right){ }^{*} n-\) maxfil* (maxfil+1) +1 .

\section*{NOTE}

Provide enough memory for this array before calling the routine. Otherwise, the routine may fail to complete successfully with a correct result.

Array of size \((n+1)\) containing indices of non-zero elements in the array bilut. ibilut[i] is the index of the first non-zero element from the row \(i\). The value of the last element ibilut \([n]\) is equal to the number of nonzeros in the matrix \(B\), plus one. Refer to the rowIndex array description in the Sparse Matrix Storage Format for more details.

Array, its size is equal to the size of the array bilut. This array contains the column numbers for each non-zero element of the matrix \(B\). Refer to the columns array description in the Sparse Matrix Storage Format for more details.

Error flag, gives information about the routine completion.
```

ierr=-101
ierr=-102
ierr=-103
ierr=-104
ierr=-105
ierr=-106
ierr=-107
ierr=101
ierr=102
ierr=103
ierr=104

```

Indicates that the routine was interrupted because of an error: the number of elements in some matrix row specified in the sparse format is equal to or less than 0.

Indicates that the routine was interrupted because the value of the computed diagonal element is less than the product of the given tolerance and the current matrix row norm, and it cannot be replaced as ipar[30]=0.

Indicates that the routine was interrupted because the element \(i a[i]\) is less than or equal to the element \(i a[i-\) 1] (see Sparse Matrix Storage Format).

Indicates that the routine was interrupted because the memory is insufficient for the internal work arrays.

Indicates that the routine was interrupted because the input value of maxfil is less than 0.

Indicates that the routine was interrupted because the size \(n\) of the input matrix is less than 0 .

Indicates that the routine was interrupted because an element of the array \(j a\) is less than 1 , or greater than \(n\) (see Sparse Matrix Storage Format).

The value of maxfil is greater than or equal to \(n\). The calculation is performed with the value of maxfil set to ( \(n-1\) ).

The value of tol is less than 0 . The calculation is performed with the value of the parameter set to (-tol)

The absolute value of tol is greater than value of dpar[30]; it can result in instability of the calculation.

The value of dpar[30] is equal to 0 . It can cause calculations to fail.

\section*{Sparse Matrix Checker Routines}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides a sparse matrix checker so that you can find errors in the storage of sparse matrices before calling Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO, DSS, or Sparse BLAS routines.
sparse_matrix_checker
Checks the correctness of a sparse matrix.

\section*{Syntax}

MKL_INT sparse_matrix_checker (sparse_struct* handle);

\section*{Include Files}
- mkl.h

\section*{Description}

The sparse_matrix_checker routine checks a user-defined array used to store a sparse matrix in order to detect issues which could cause problems in routines that require sparse input matrices, such as Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO, DSS, or Sparse BLAS.

\section*{Input Parameters}
handle
Pointer to the data structure describing the sparse array to check.

\section*{Return Values}

The routine returns a value error. Additionally, the check_result parameter returns information about where the error occurred, which can be used when message_level is MKL_NO_PRINT.

\section*{Sparse Matrix Checker Error Values}
\begin{tabular}{|c|c|c|}
\hline error value & Meaning & Location \\
\hline MKL_SPARSE_CHECKER_SUC CESS & The input array successfully passed all checks. & \\
\hline MKL_SPARSE_CHECKER_NON _MONOTONIC & The input array is not 0 or 1 based (, ia[0] is not 0 or 1) or elements of ia are not in non-decreasing order as required. & ```
C:
ia[i] and ia[i + 1] are incompatible.
check_result[0] = i
check_result[1] = ia[i]
check_result[2] = ia[i + 1]
``` \\
\hline MKL_SPARSE_CHECKER_OUT _OF_RANGE & The value of the ja array is lower than the number of the first column or greater than the number of the last column. & ```
C:
ia[i] and ia[i + 1] are incompatible.
check_result[0] = i
check_result[1] = ia[i]
check_result[2] = ia[i + 1]
``` \\
\hline MKL_SPARSE_CHECKER_NON TRIANGULAR & The matrix_structure parameter is MKL_UPPER_TRIANGULAR and both ia and ja are not upper triangular, or the matrix_structure parameter is MKL_LOWER_TRIANGULAR and both ia and ja are not lower triangular & ```
C:
ia[i] and ja[j] are incompatible.
check_result[0] = i
check_result[1] = ia[i] = j
check_result[2] = ja[j]
``` \\
\hline MKL_SPARSE_CHECKER_NON ORDERED & The elements of the ja array are not in nondecreasing order in each row as required. & ```
C:
ia[i] and ia[i + 1] are incompatible.
check_result[0] = j
check_result[1] = ja[j]
check_result[2] = ja[j + 1]
``` \\
\hline
\end{tabular}

\section*{See Also}
sparse_matrix_checker_init Initializes handle for sparse matrix checker.
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO - Parallel Direct Sparse Solver Interface
Sparse BLAS Level 2 and Level 3 Routines
Sparse Matrix Storage Formats
sparse_matrix_checker_init
Initializes handle for sparse matrix checker.

\section*{Syntax}
```

void sparse_matrix_checker_init (sparse_struct* handle);

```

Include Files
- mkl.h

\section*{Description}

The sparse_matrix_checker_init routine initializes the handle for the sparse_matrix_checker routine. The handle variable contains this data:

Description of sparse_matrix_checkerhandle Data
\begin{tabular}{|c|c|c|c|}
\hline Field & Type & Possible Values & Meaning \\
\hline n & MKL_INT & & Order of the matrix stored in sparse array. \\
\hline CSr_ia & MKL_INT* & Pointer to ia array for matrix_format = MKL_CSR & \\
\hline csr_ja & MKL_INT* & Pointer to ja array for matrix_format = MKL CSR & \\
\hline check_result[3] & MKL_INT & See Sparse Matrix Checker Error Values for a description of the values returned in check_result. & Indicates location of problem in array when message_level = MKL_NO_PRINT. \\
\hline indexing & ```
sparse_matrix_index
ing
``` & \[
\begin{aligned}
& \text { MKL_ZERO_BASED } \\
& M K L _O N E _B A S E D
\end{aligned}
\] & Indexing style used in array. \\
\hline \multirow[t]{4}{*}{matrix_structure} & sparse_matrix_struc tures & ```
MKL_GENERAL_STRUCTU
RE
``` & Type of sparse matrix stored in array. \\
\hline & & ```
MKL_UPPER_TRIANGULA
R
``` & \\
\hline & & ```
MKL_LOWER_TRIANGULA
R
``` & \\
\hline & & MKL_STRUCTURAL_SYMM ETRIC & \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Field & Type & Possible Values & Meaning \\
\hline matrix_format & \begin{tabular}{l} 
sparse_matrix_forma \\
ts
\end{tabular} & MKL_CSR & \begin{tabular}{l} 
Format of array used for \\
sparse matrix storage.
\end{tabular} \\
message_level & \begin{tabular}{l} 
sparse_matrix_messa \\
ge_levels
\end{tabular} & \begin{tabular}{l} 
MKL_NO_PRINT
\end{tabular} & \begin{tabular}{l} 
Determines whether or \\
not feedback is provided \\
on the screen.
\end{tabular} \\
print_style & \begin{tabular}{ll} 
sparse_matrix_print \\
styles
\end{tabular} & MKL_C_STYLE & \begin{tabular}{l} 
Determines style of \\
messages when
\end{tabular} \\
& & MKL_FORTRAN_STYLE & \begin{tabular}{l} 
message_level \(=\) \\
MKL_PRINT.
\end{tabular} \\
\hline
\end{tabular}

\section*{Input Parameters}
handle

\section*{Output Parameters}
handle

Pointer to the data structure describing the sparse array to check.

Pointer to the initialized data structure.

\section*{See Also}
sparse_matrix_checker Checks the correctness of a sparse matrix.
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO - Parallel Direct Sparse Solver Interface
Sparse BLAS Level 2 and Level 3 Routines
Sparse Matrix Storage Formats

\section*{Extended Eigensolver Routines}

\section*{NOTE}

Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) only supports the shared memory programming (SMP) version of the eigenvalue solver.
- The FEAST Algorithm gives a brief description of the algorithm underlying the Extended Eigensolver.
- Extended Eigensolver Functionality describes the problems that can and cannot be solved with the Extended Eigensolver and how to get the best results from the routines.
- Extended Eigensolver Interfaces gives a reference for calling Extended Eigensolver routines.
-

\section*{The FEAST Algorithm}

The Extended Eigensolver functionality is a set of high-performance numerical routines for solving symmetric standard eigenvalue problems, \(A x=\lambda x\), or generalized symmetric-definite eigenvalue problems, \(A x=\lambda B x\). It yields all the eigenvalues \((\lambda)\) and eigenvectors \((x)\) within a given search interval [ \(\lambda_{\text {min }}, \lambda_{\text {max }}\) ]. It is based on the FEAST algorithm, an innovative fast and stable numerical algorithm presented in [Polizzi09], which fundamentally differs from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms [Bai00]) or other Davidson-Jacobi techniques [Sleijpen96]. The FEAST algorithm is inspired by the density-matrix representation and contour integration techniques in quantum mechanics.

The FEAST numerical algorithm obtains eigenpair solutions using a numerically efficient contour integration technique. The main computational tasks in the FEAST algorithm consist of solving a few independent linear systems along the contour and solving a reduced eigenvalue problem. Consider a circle centered in the
middle of the search interval [ \(\lambda_{\text {min }}, \lambda_{\text {max }}\) ]. The numerical integration over the circle in the current version of FEAST is performed using \(N_{e}\)-point Gauss-Legendre quadrature with \(x_{e}\) the \(e\)-th Gauss node associated with the weight \(\omega_{e}\). For example, for the case \(N_{e}=8\) :
\[
\begin{aligned}
& \left(x_{1}, \omega_{1}\right)=(0.183434642495649,0.362683783378361), \\
& \left(x_{2}, \omega_{2}\right)=(-0.183434642495649,0.362683783378361), \\
& \left(x_{3}, \omega_{3}\right)=(0.525532409916328,0.313706645877887), \\
& \left(x_{4}, \omega_{4}\right)=(-0.525532409916328,0.313706645877887), \\
& \left(x_{5}, \omega_{5}\right)=(0.796666477413626,0.222381034453374), \\
& \left(x_{6}, \omega_{6}\right)=(-0.796666477413626,0.222381034453374), \\
& \left(x_{7}, \omega_{7}\right)=(0.960289856497536,0.101228536290376), \text { and } \\
& \left(x_{8}, \omega_{8}\right)=(-0.960289856497536,0.101228536290376)
\end{aligned}
\]

The figure FEAST Pseudocode shows the basic pseudocode for the FEAST algorithm for the case of real symmetric (left pane) and complex Hermitian (right pane) generalized eigenvalue problems, using \(N\) for the size of the system and \(M\) for the number of eigenvalues in the search interval (see [Polizzi09]).

\section*{NOTE}

The pseudocode presents a simplified version of the actual algorithm. Refer to http://arxiv.org/abs/ 1302.0432 for an in-depth presentation and mathematical proof of convergence of FEAST.

\section*{FEAST Pseudocode}
A: real symmetric
A: complex Hermitian
\(B\) : symmetric positive definite (SPD)
\(\mathfrak{R}\{x\}\) : real part of \(x\)
\(B\) : Hermitian positive definite (HPD)
1. Select \(M_{0}>M\) random vectors \(Y_{N \times M_{1}}\). Select \(M_{0}>M\) random vectors \(Y_{N \times M_{0}} \in \mathbb{C}^{N \times} \|_{0}\).
2. Set \(Q=0\) with \(Q \in \mathbb{R}^{N \times M_{0}} ; r=\left(\lambda_{\max }-2\right.\). Set \(Q=0\) with \(Q \in \mathbb{R}^{N \times M_{0}} ; r=\left(\lambda_{\max }-\lambda_{\min }\right) / R\);

For \(e=1, \ldots, N_{e}\)
compute \(\theta_{e}=-(\pi / 2)\left(x_{e}-1\right)\), For \(e=1, \ldots, N_{e}\) compute \(Z_{e}=\left(\lambda_{\text {max }}+\lambda_{\text {min }}\right) / 2+r \exp\) solve \(\left(Z_{e} B-A\right) Q_{e}=Y\) to obtain \(Q_{e} \in\) compute \(Q=Q-\left(\omega_{e} / 2\right) \Re\left\{r \exp \left(i \theta_{e}\right.\right.\). End
3. Form \(A_{Q_{4_{0} \times M_{0}}}=Q^{\top} A Q\) and \(B_{Q_{4_{0} \times M_{0}}}=Q^{\top}\) reduce value of \(M_{0}\) if \(B_{Q}\) is not sym positive definite.
4. Solve \(A_{Q} \Phi=\varepsilon B_{Q} \Phi\) to obtain the \(M_{0}\) \(\varepsilon_{m}\) and eigenvectors \(\Phi_{M_{0} \times M_{0}} \in \mathbb{R}^{M_{0} \times 1}\)
3. Form \(A_{Q_{4_{0} \times 1_{0}}}=Q^{H} A Q\) and \(B_{Q_{4_{0} \times t_{0}}}=Q^{H} B Q\) reduce value of \(M_{0}\) if \(B_{Q}\) is not Hermitian positive definite.
4. Solve \(A_{Q} \Phi=\varepsilon B_{Q} \Phi\) to obtain the \(M_{0}\) eigeny alue
5. Set \(\lambda_{m}=\varepsilon_{m}\) and compute \(X_{N \times M_{0}}=Q_{N}\) If \(\lambda_{n} \in\left[\lambda_{\min }, \lambda_{\max }\right], \lambda_{m}\) is an eigenvalu 5 . and its eigenvector is \(X_{m}\) (the \(m\)-th
6. Check convergence for the trace of eigenvalues \(\lambda_{m}\). If iterative refinem neqded, compute \(Y=B X\) and go ba \({ }^{6}\) \(\varepsilon_{m}\), and eigenvectors \(\Phi_{M_{0} \times M_{0}} \in \mathbb{C}^{M_{0} \times M_{0}}\).
5. Set \(\lambda_{m}=\varepsilon_{m}\) and compute \(X_{N \times M_{0}}=Q_{N \times M_{0}} \Phi_{M_{0} \times N_{0}}\). If \(\lambda_{m} \in\left[\lambda_{m i n}, \lambda_{\max }\right], \lambda_{m}\) is an eigenvalue solution and its eigenvector is \(X_{m}\) (the \(m\)-th column of \(X\) ). 6. Check convergence for the trace of the eigenvalues \(\lambda_{\text {m }}\). If iterative refinement is needed, compute \(Y=B X\) and go back to step 2 .

\section*{Extended Eigensolver Functionality}

The eigenvalue problems covered are as follows:
- standard, \(A x=\lambda x\)
- \(A\) complex Hermitian
- A real symmetric
- generalized, \(A x=\lambda B x\)
- \(A\) complex Hermitian, \(B\) Hermitian positive definite (hpd)
- \(A\) real symmetric and \(B\) real symmetric positive definite (spd)

The Extended Eigensolver functionality offers:
- Real/Complex and Single/Double precisions: double precision is recommended to provide better accuracy of eigenpairs.
- Reverse communication interfaces (RCI) provide maximum flexibility for specific applications. RCI are independent of matrix format and inner system solvers, so you must provide your own linear system solvers (direct or iterative) and matrix-matrix multiply routines.
- Predefined driver interfaces for dense, LAPACK banded, and sparse (CSR) formats are less flexible but are optimized and easy to use:
- The Extended Eigensolver interfaces for dense matrices are likely to be slower than the comparable LAPACK routines because the FEAST algorithm has a higher computational cost.
- The Extended Eigensolver interfaces for banded matrices support banded LAPACK-type storage.
- The Extended Eigensolver sparse interfaces support compressed sparse row format and use the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO solver.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Parallelism in Extended Eigensolver Routines}

How you achieve parallelism in Extended Eigensolver routines depends on which interface you use. Parallelism (via shared memory programming) is not explicitly implemented in Extended Eigensolver routines within one node: the inner linear systems are currently solved one after another.
- Using the Extended Eigensolver RCI interfaces, you can achieve parallelism by providing a threaded inner system solver and a matrix-matrix multiplication routine. When using the RCI interfaces, you are responsible for activating the threaded capabilities of your BLAS and LAPACK libraries most likely using the shell variable OMP_NUM_THREADS.
- Using the predefined Extended Eigensolver interfaces, parallelism can be implicitly obtained within the shared memory version of BLAS, LAPACK or Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO. The shell variablemKL_NUM_THREADScan be used for automatically setting the number of OpenMP threads (cores) for BLAS, \(\overline{\text { LAPACK }}\), and Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Achieving Performance With Extended Eigensolver Routines}

In order to use the Extended Eigensolver Routines, you need to provide
- the search interval and the size of the subspace \(M_{0}\) (overestimation of the number of eigenvalues \(M\) within a given search interval);
- the system matrix in dense, banded, or sparse CSR format if the Extended Eigensolver predefined interfaces are used, or a high-performance complex direct or iterative system solver and matrix-vector multiplication routine if RCI interfaces are used.

In return, you can expect
- fast convergence with very high accuracy when seeking up to 1000 eigenpairs (in two to four iterations using \(M_{0}=1.5 \mathrm{M}\), and \(N_{e}=8\) or at most using \(N_{e}=16\) contour points);
- an extremely robust approach.

The performance of the basic FEAST algorithm depends on a trade-off between the choices of the number of Gauss quadrature points \(N_{e}\), the size of the subspace \(M_{0}\), and the number of outer refinement loops to reach the desired accuracy. In practice you should use \(M_{0}>1.5 M, N_{e}=8\), and at most two refinement loops.

For better performance:
- \(M_{0}\) should be much smaller than the size of the eigenvalue problem, so that the arithmetic complexity depends mainly on the inner system solver ( \(O(N M)\) for narrow-banded or sparse systems).
- Parallel scalability performance depends on the shared memory capabilities of the of the inner system solver.
- For very large sparse and challenging systems, application users should make use of the Extended Eigensolver RCI interfaces with customized highly-efficient iterative systems solvers and preconditioners.
- For the Extended Eigensolver interfaces for banded matrices, the parallel performance scalability is limited.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Extended Eigensolver Interfaces for Eigenvalues within Interval}

\section*{Extended Eigensolver Naming Conventions}

There are two different types of interfaces available in the Extended Eigensolver routines:
1. The reverse communication interfaces (RCI):
```

?feast_<matrix type>_rci

```

These interfaces are matrix free format (the interfaces are independent of the matrix data formats). You must provide matrix-vector multiply and direct/iterative linear system solvers for your own explicit or implicit data format.
2. The predefined interfaces:
```

?feast_<matrix type><type of eigenvalue problem>

```
are predefined drivers for ?feast reverse communication interface that act on commonly used matrix data storage (dense, banded and compressed sparse row representation), using internal matrix-vector routines and selected inner linear system solvers.
For these interfaces:
- ? indicates the data type of matrix \(A\) (and matrix \(B\) if any) defined as follows:
\begin{tabular}{ll} 
s & float \\
d & double \\
c & MKL_Complex8 \\
z & MKL_Complex16
\end{tabular}
- <matrix type> defined as follows:
\begin{tabular}{llll}
\hline Value of <matrix type> & Matrix format & \begin{tabular}{l} 
Inner linear system solver used by \\
Extended Eigensolver
\end{tabular} \\
\hline sy & (symmetric real) & & \\
he & \begin{tabular}{l} 
(Hermitian \\
complex)
\end{tabular} & Dense & LAPACK dense solvers \\
sb & \begin{tabular}{l} 
(symmetric \\
banded real)
\end{tabular} & Banded-LAPACK & Internal banded solver
\end{tabular}
\begin{tabular}{llll}
\hline Value of <matrix type> & Matrix format & \begin{tabular}{l} 
Inner linear system solver used by \\
Extended Eigensolver
\end{tabular} \\
\hline hb & \begin{tabular}{l} 
(Hermitian \\
banded complex)
\end{tabular} & & \\
scsr & \begin{tabular}{ll} 
(symmetric real)
\end{tabular} & Compressed sparse row & PARDISO solver \\
hcsr & \begin{tabular}{l} 
(Hermitian \\
complex)
\end{tabular} & User defined \\
s & \begin{tabular}{l} 
(symmetric real) \\
(Hermitian
\end{tabular} & \begin{tabular}{l} 
Reverse \\
communications \\
interfaces
\end{tabular} & \\
\hline
\end{tabular}
- <type of eigenvalue problem> is:
\begin{tabular}{ll} 
gv & generalized eigenvalue problem \\
ev & standard eigenvalue problem
\end{tabular}

For example, sfeast_scsrev is a single-precision routine with a symmetric real matrix stored in sparse compressed-row format for a standard eigenvalue problem, and zfeast_hrci is a complex double-precision routine with a Hermitian matrix using the reverse communication interface.
Note that:
- ? can be s or d if a matrix is real symmetric: <matrix type> is sy, sb, or scsr.
- ? can be c or z if a matrix is complex Hermitian: <matrix type> is he, hb, or hcsr.
- ? can be cor z if the Extended Eigensolver RCI interface is used for solving a complex Hermitian problem.
- ? can be \(s\) or \(d\) if the Extended Eigensolver RCI interface is used for solving a real symmetric problem.

\section*{feastinit}

Initialize Extended Eigensolver input parameters with default values.

\section*{Syntax}
```

feastinit (MKL_INT* fpm);

```

\section*{Include Files}
- mkl.h

\section*{Description}

This routine sets all Extended Eigensolver parameters to their default values.

\section*{Output Parameters}
fpm \(\quad\) Array, size 128. This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values.

\section*{Extended Eigensolver Input Parameters}

The input parameters for Extended Eigensolver routines are contained in an MKL_INT array named fpm. To call the Extended Eigensolver interfaces, this array should be initialized using the routine feastinit.
\begin{tabular}{|c|c|c|}
\hline Paramet er & Default & Description \\
\hline \multirow[t]{3}{*}{fpm[0]} & \multirow[t]{3}{*}{0} & Specifies whether Extended Eigensolver routines print runtime status. \\
\hline & & \[
\begin{array}{ll}
\operatorname{fpm}[0]=0 & \begin{array}{l}
\text { Extended Eigensolver routines do not generate runtime } \\
\text { messages at all. }
\end{array}
\end{array}
\] \\
\hline & & \[
\begin{array}{ll}
\operatorname{fpm}[0]=1 & \begin{array}{l}
\text { Extended Eigensolver routines print runtime status to the } \\
\text { screen } .
\end{array}
\end{array}
\] \\
\hline fpm[1] & 8 & The number of contour points \(N_{e}=8\) (see the description of FEAST algorithm). Must be one of \(\{3,4,5,6,8,10,12,16,20,24,32,40,48\}\). \\
\hline fpm[2] & 12 & Error trace double precision stopping criteria \(\varepsilon\left(\varepsilon=10^{-f p m[2]}\right)\). \\
\hline fpm[3] & 20 & Maximum number of Extended Eigensolver refinement loops allowed. If no convergence is reached within fpm[3] refinement loops, Extended Eigensolver routines return info \(=2\). \\
\hline fpm[4] & 0 & User initial subspace. If \(\operatorname{fpm}[4]=0\) then Extended Eigensolver routines generate initial subspace, if \(f p m[4]=1\) the user supplied initial subspace is used. \\
\hline \multirow[t]{9}{*}{fpm[5]} & \multirow[t]{9}{*}{0} & Extended Eigensolver stopping test. \\
\hline & & \begin{tabular}{l}
\[
\operatorname{fpm}[5]=0
\] \\
Extended Eigensolvers are stopped if this residual stopping test is satisfied: \\
- generalized eigenvalue problem:
\end{tabular} \\
\hline & & \begin{tabular}{l}
\[
\max _{i=1 \text { modi }} \frac{\left\|A x_{i}-\lambda_{i} B x_{i}\right\|_{1}}{\max \left(\left|E_{\text {min }}\right|,\left|E_{\text {max }}\right|\right)\left\|B x_{i}\right\|_{1}}<\varepsilon
\] \\
- standard eigenvalue problem:
\end{tabular} \\
\hline & & \[
\max _{i=1: \text { mode }} \frac{\left\|A x_{i}-\lambda_{i} x_{i}\right\|_{1}}{\max \left(\left|E_{\min }\right|,\left|E_{\max }\right|\right)\left\|x_{i}\right\|_{1}}<\varepsilon
\] \\
\hline & & where mode is the total number of eigenvalues found in the search interval and \(\varepsilon=10^{-f p m}[6]\) for real and complex or \(\varepsilon\) \(=10^{-f p m[2]}\) for double precision and double complex. \\
\hline & & \[
\begin{array}{ll}
\text { fpm }[5]=1 & \text { Extended Eigensolvers are stopped if this trace stopping test } \\
\text { is satisfied: }
\end{array}
\] \\
\hline & & \[
\frac{\operatorname{trace}_{j}-\text { trace }_{j-1} \mid}{\max \left(\left|E_{\min }\right|,\left|E_{\max }\right|\right)}<\varepsilon
\] \\
\hline & & where trace \(_{j}\) denotes the sum of all eigenvalues found in the search interval [emin, emax] at the \(j\)-th Extended Eigensolver iteration: \\
\hline & & \[
\text { trace }_{j}=\sum_{i=1}^{M} \lambda_{i}^{(j)}
\] \\
\hline fpm[6] & 5 & Error trace single precision stopping criteria (10-fpm[6]). \\
\hline fpm[13] & 0 & \(f p m[13]=0 \quad\) Standard use for Extended Eigensolver routines. \\
\hline
\end{tabular}


\section*{NOTE}

This option can only be used by Extended Eigensolver Predefined Interfaces for Sparse Matrices.
\begin{tabular}{ll}
\(\operatorname{fpm}[63]=0\) & \begin{tabular}{l} 
Extended Eigensolver routines use the Intel® oneAPI Math \\
Kernel Library (oneMKL) PARDISO defaultiparm settings \\
defined by calling the pardisoinit subroutine.
\end{tabular} \\
\(\operatorname{fpm}[63]=1\) & \begin{tabular}{l} 
The values from \(\operatorname{fpm}[64]\) to fpm[127] correspond to \\
iparm[0] to iparm[63] respectively according to the \\
formula \(\operatorname{fpm}[64+i]=\) iparm[i] for \(i=0,1, \ldots, 63\).
\end{tabular}
\end{tabular}

\section*{Extended Eigensolver Output Details}

Errors and warnings encountered during a run of the Extended Eigensolver routines are stored in an integer variable, info. If the value of the output info parameter is not 0 , either an error or warning was encountered. The possible return values for the info parameter along with the error code descriptions are given in the following table.
Return Codes for info Parameter
\begin{tabular}{lll}
\hline info & Classification & Description \\
\hline 202 & Error & Problem with size of the system \(n(n \leq 0)\) \\
201 & Error & Problem with size of initial subspace \(m 0(m 0 \leq 0\) or \(m 0>n)\) \\
200 & Error & Problem with emin,emax (emin \(\geq e m a x)\) \\
\((100+i)\) & Error & \begin{tabular}{l} 
Problem with \(i\)-th value of the input Extended Eigensolver \\
parameter \((f p m[i-1])\). Only the parameters in use are checked. \\
4
\end{tabular} \\
& Warning & \begin{tabular}{l} 
Successful return of only the computed subspace after call with \\
fpm \([13]=1\)
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline info & Classification & Description \\
\hline 3 & Warning & Size of the subspace m0 is too small ( \(\mathrm{mO}<\mathrm{m}\) ) \\
\hline 2 & Warning & No Convergence (number of iteration loops > fpm[3]) \\
\hline 1 & Warning & No eigenvalue found in the search interval. See remark below for further details. \\
\hline 0 & Successful exit & \\
\hline -1 & Error & Internal error for allocation memory. \\
\hline -2 & Error & Internal error of the inner system solver. Possible reasons: not enough memory for inner linear system solver or inconsistent input. \\
\hline \multirow[t]{2}{*}{-3} & Error & Internal error of the reduced eigenvalue solver \\
\hline & & Possible cause: matrix \(B\) may not be positive definite. It can be checked by setting fpm[27] = 1 before calling an Extended Eigensolver routine, or by using LAPACK routines. \\
\hline -4 & Error & Matrix \(B\) is not positive definite. \\
\hline \(-(100+i)\) & Error & Problem with the \(i\)-th argument of the Extended Eigensolver interface. \\
\hline
\end{tabular}

In some extreme cases the return value info \(=1\) may indicate that the Extended Eigensolver routine has failed to find the eigenvalues in the search interval. This situation could arise if a very large search interval is used to locate a small and isolated cluster of eigenvalues (i.e. the dimension of the search interval is many orders of magnitude larger than the number of contour points. It is then either recommended to increase the number of contour points fpm[1] or simply rescale more appropriately the search interval. Rescaling means the initial problem of finding all eigenvalues the search interval \(\left[\lambda_{\text {min }}, \lambda_{\text {max }}\right.\) ] for the standard eigenvalue problem \(A x=\lambda x\) is replaced with the problem of finding all eigenvalues in the search interval \(\left[\lambda_{\text {min }} / t, \lambda_{\text {max }} / t\right.\) ] for the standard eigenvalue problem \((A / t) x=(\lambda / t) x\) where \(t\) is a scaling factor.

\section*{Extended Eigensolver RCI Routines}

If you do not require specific linear system solvers or matrix storage schemes, you can skip this section and go directly to Extended Eigensolver Predefined Interfaces.

\section*{Extended Eigensolver RCI Interface Description}

The Extended Eigensolver RCI interfaces can be used to solve standard or generalized eigenvalue problems, and are independent of the format of the matrices. As mentioned earlier, the Extended Eigensolver algorithm is based on the contour integration techniques of the matrix resolvent \(G(\sigma)=(\sigma B-A)^{-1}\) over a circle. For solving a generalized eigenvalue problem, Extended Eigensolver has to perform one or more of the following operations at each contour point denoted below by \(Z_{e}\) :
- Factorize the matrix \(\left(Z_{e} * B-A\right)\)
- Solve the linear system \(\left(Z_{e} *_{B}-A\right) X=Y\) or \(\left(Z_{e} * B-A\right)^{H} X=Y\) with multiple right hand sides, where \(H\) means transpose conjugate
- Matrix-matrix multiply \(B X=Y\) or \(A X=Y\)

For solving a standard eigenvalue problem, replace the matrix \(B\) with the identity matrix \(I\).
The primary aim of RCI interfaces is to isolate these operations: the linear system solver, factorization of the matrix resolvent at each contour point, and matrix-matrix multiplication. This gives universality to RCI interfaces as they are independent of data structures and the specific implementation of the operations like matrix-vector multiplication or inner system solvers. However, this approach requires some additional effort when calling the interface. In particular, operations listed above are performed by routines that you supply on data structures that you find most appropriate for the problem at hand.

To initialize an Extended Eigensolver RCI routine, set the job indicator (ijob) parameter to the value -1 . When the routine requires the results of an operation, it generates a special value of ijob to indicate the operation that needs to be performed. The routine also returns \(z e\), the coordinate along the complex contour, the values of array work or workc, and the number of columns to be used. Your subroutine then must perform the operation at the given contour point \(z e\), store the results in prescribed array, and return control to the Extended Eigensolver RCI routine.

The following pseudocode shows the general scheme for using the Extended Eigensolver RCI functionality for a real symmetric problem:
```

ijob=-1; // initialization
do while (ijob!=0) {
?feast_srci(\&ijob, \&N, \&Ze, work, workc, Aq, Bq,
fpm, \&epsout, \&loop, \&Emin, \&Emax, \&M0, E, lambda, \&q, res, \&info);
switch(ijob) {
case 10: // Factorize the complex matrix (ZeB-A)
break;
case 11: // Solve the complex linear system (ZeB-A) x=workc
// Put result in workc
break;
case 30: // Perform multiplication A by Qi.. (j columns of Q Q NmMO
// where i = fpm[23] and j = fpm[23]+fpm[24]-1
// Qi..Qj located in q starting from q+N*(i-1)
break;

```

```

 // where i = fpm[23] and j = fpm[23]+fpm[24]-1
 // Qi..Qj located in q starting from q+N*(i-1)
 // Result is stored in work+N*(i-1)
 break;
 }
 }

```

\section*{NOTE}

The ? option in ?feast in the pseudocode given above should be replaced by either \(s\) or \(d\), depending on the matrix data type of the eigenvalue system.

The next pseudocode shows the general scheme for using the Extended Eigensolver RCI functionality for a complex Hermitian problem:
```

ijob=-1; // initialization
while (ijob!=0) {
?feast_hrci(\&ijob, \&N, \&Ze, work, workc, Aq, Bq,
fpm, \&epsout, \&loop, \&Emin, \&Emax, \&M0, E, lambda, \&q, res, \&info);
switch (ijob) {
case 10: // Factorize the complex matrix (ZeB-A)
break;
case 11: // Solve the linear system (ZeB-A)y=workc
// Put result in workc
break;
case 20: // Factorize (if needed by case 21) the complex matrix (ZeB-A)^H

```
```

 // ATTENTION: This option requires additional memory storage
 // (i.e . the resulting matrix from case 10 cannot be overwritten)
 break;
 case 21: // Solve the linear system (ZeB-A)^Hy=workc
 // Put result in workc
 // REMARK: case 20 becomes obsolete if this solve can be performed
 // using the factorization in case 10
 break;
 case 30: // Multiply A by Qi..Qj columns of Q QNxM0,
 // where i = fpm[23] and j = fpm[23]+fpm[24]-1
 // Qi..Qj located in q starting from q+N*(i-1)
 // Result is stored in work+N*(i-1)
 break;
 case 40: // Perform multiplication B by Qi..Qj columns of Q QNxM0
 // where i = fpm[23] and j = fpm[23]+fpm[24]-1
 // Qi..Qj located in q starting from q+N*(i-1)
 // Result is stored in work+N*(i-1)
 break;
 }
 }
 end do

```

\section*{NOTE}

The ? option in ?feast in the pseudocode given above should be replaced by either c or z , depending on the matrix data type of the eigenvalue system.

If case 20 can be avoided, performance could be up to twice as fast, and Extended Eigensolver functionality would use half of the memory.

If an iterative solver is used along with a preconditioner, the factorization of the preconditioner could be performed with \(i j o b=10\) (and \(i j o b=20\) if applicable) for a given value of \(Z_{e}\), and the associated iterative solve would then be performed with \(i j o b=11\) (and ijob \(=21\) if applicable).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{?feast_srci/?feast_hrci}

Extended Eigensolver RCI interface.

\section*{Syntax}
```

void sfeast_srci (MKL_INT* ijob, const MKL_INT* n, MKL_Complex8* ze, float* work,
MKL_Complex8* workc, float* aq, float* sq, MKL_INT* fpm, float* epsout, MKL_INT* loop,
const float* emin, const float* emax, MKL_INT* m0, float* lambda, float* q, MKL_INT* m,
float* res, MKL INT* info);

```
```

void dfeast_srci (MKL_INT* ijob, const MKL_INT* n, MKL_Complexl6* ze, double* work,
MKL_Complex16* workc, double* aq, double* sq, MKL_INT* fpm, double* epsout, MKL_INT*
loop, const double* emin, const double* emax, MKL_INT* mo, double* lambda, double* q,
MKL_INT* m, double* res, MKL_INT* info);
void cfeast_hrci (MKL_INT* ijob, const MKL_INT* n, MKL_Complex8* ze, MKL_Complex8*
work, MKL_Complex8* workc, MKL_Complex8* aq, MKL_Complex8* sq, MKL_INT* fpm, float*
epsout, MKL_INT* loop, const float* emin, const float* emax, MKL_INT* m0, float* lambda,
MKL_Complex8* q, MKL_INT* m, float* res, MKL_INT* info);
void zfeast_hrci (MKL_INT* ijob, const MKL_INT* n, MKL_Complex16* ze, MKL_Complex16*
work, MKL_Complex16* workc, MKL_Complex16* aq, MKL_Complex16* sq, MKL_INT* fpm, double*
epsout, MKL_INT* loop, const double* emin, const double* emax, MKL_INT* m0, double*
lambda, MKL_Complex16* q, MKL_INT* m, double* res, MKL_INT* info);

```

Include Files
- mkl.h

\section*{Description}

Compute eigenvalues as described in Extended Eigensolver RCI Interface Description.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline ijob & Job indicator variable. On entry, a call to ?feast_srci/?feast_hrci with \(i j o b=-1\) initializes the eigensolver. \\
\hline \(n\) & Sets the size of the problem. \(n>0\). \\
\hline work & Workspace array of size \(n\) by m0. \\
\hline workc & Workspace array of size \(n\) by m0. \\
\hline aq, sq & Workspace arrays of size m0 by m0. \\
\hline fpm & Array, size of 128 . This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values. \\
\hline emin, emax & The lower and upper bounds of the interval to be searched for eigenvalues; emin \(\leq\) emax. \\
\hline
\end{tabular}

> NOTE Users are advised to avoid situations in which eigenvalues nearly coincide with the interval endpoints. This may lead to unpredictable selection or omission of such eigenvalues. Users should instead specify a slightly larger interval than needed and, if required, pick valid eigenvalues and their corresponding eigenvectors for subsequent use.

On entry, specifies the initial guess for subspace size to be used, \(0<m 0 \leq n\). Set \(m 0 \geq m\) where \(m\) is the total number of eigenvalues located in the interval [emin, emax]. If the initial guess is wrong, Extended Eigensolver routines return info \(=3\).

On entry, if \(\operatorname{fpm}[4]=1\), the array \(q\) of size \(n\) by \(m\) contains a basis of guess subspace where \(n\) is the order of the input matrix.

\section*{Output Parameters}
ijob
ze

On exit, the parameter carries the status flag that indicates the condition of the return. The status information is divided into three categories:
1. A zero value indicates successful completion of the task.
2. A positive value indicates that the solver requires a matrix-vector multiplication or solving a specific system with a complex coefficient.
3. A negative value indicates successful initiation.

A non-zero value of ijob specifically means the following:
- \(i\) job \(=10\) - factorize the complex matrix \(Z_{e} * B-A\) at a given contour point \(Z_{e}\) and return the control to the ?feast_srci/?feast_hrci routine where \(Z_{e}\) is a complex number meaning contour point and its value is defined internally in ?feast_srci/?feast_hrci.
- ijob \(=11\) - solve the complex linear system \(\left(Z_{e} * B-A\right)^{*} y=\) workc, put the solution in workc and return the control to the ?feast_srci/?feast_hrci routine.
- ijob \(=20\) - factorize the complex matrix \(\left(Z_{e} * B-A\right)^{H}\) at a given contour point \(Z_{e}\) and return the control to the ?feast_srci/?feast_hrci routine where \(Z_{e}\) is a complex number meaning contour point and its value is defined internally in ?feast_srci/?feast_hrci.
The symbol \(X^{\mathrm{H}}\) means transpose conjugate of matrix \(X\).
- \(i\) job \(=21\) - solve the complex linear \(\operatorname{system}\left(Z_{e}{ }^{*} B-A\right)^{H *} y=\) workc, put the solution in workc and return the control to the ?feast_srci/?feast_hrci routine. The case ijob=20 becomes obsolete if the solve can be performed using the factorization computed for ijob=10.
The symbol \(X^{\mathrm{H}}\) mean transpose conjugate of matrix \(X\).
- ijob \(=30\) - multiply matrix \(A\) by \(Q_{j} . Q_{i}\), put the result in work \(+N^{*}(i-\) 1), and return the control to the ?feast_srci/?feast_hrci routine.
\(i\) is \(f p m[24]\), and \(j\) is \(f p m[23]+f p m[24]-1\).
- \(i\) job \(=40\) - multiply matrix \(B\) by \(Q_{j} . Q_{i}\), put the result in work \(+N^{*}(i-\) 1) and return the control to the ?feast_srci/?feast_hrci routine. If a standard eigenvalue problem is solved, just return work \(=q\).
\(i\) is \(f p m[24]\), and \(j\) is \(f p m[23]+f p m[24]-1\).
- \(i j o b=-2\) - rerun the ?feast_srci/?feast_hrci task with the same parameters.

Defines the coordinate along the complex contour. All values of \(z e\) are generated by ?feast_srci/?feast_hrci internally.

On output, contains coordinates of columns of work array needed for iterative refinement. (See Extended Eigensolver RCI Interface Description.)

On output, contains the relative error on the trace: \(\mid\) trace \(_{i}-\) trace \(_{i-1} \mid / \max (\mid\) emin|, |emax|)

On output, contains the number of refinement loop executed. Ignored on input.

Array of length \(m 0\). On output, the first \(m\) entries of lambda are eigenvalues found in the interval.
\(q\)
\(m\)
res
info

On output, \(q\) contains all eigenvectors corresponding to lambda.
The total number of eigenvalues found in the interval [emin, emax]: \(0 \leq m\) \(\leq m 0\).

Array of length \(m 0\). On exit, the first \(m\) components contain the relative residual vector:
- generalized eigenvalue problem:
\[
\frac{\left\|A x_{i}-\lambda_{i} B x_{i}\right\|_{1}}{\max \left(\left|E_{\min }\right|,\left|E_{\max }\right|\right)\left\|B x_{i}\right\|_{1}}
\]
- standard eigenvalue problem:
\[
\frac{\left\|A x_{i}-\lambda_{1} x_{i}\right\|_{1}}{\max \left(\left|E_{\min }\right|, \mid E_{\max }\right) \mid\left\|x_{i}\right\|_{1}}
\]
for \(i=0,1, \ldots, m-1\), and where \(m\) is the total number of eigenvalues found in the search interval.

If info \(=0\), the execution is successful. If info \(\neq 0\), see Output Eigensolver info Details.

\section*{Extended Eigensolver Predefined Interfaces}

The predefined interfaces include routines for standard and generalized eigenvalue problems, and for dense, banded, and sparse matrices.
\begin{tabular}{lll}
\hline Matrix Type & Standard Eigenvalue Problem & \begin{tabular}{l} 
Generalized Eigenvalue \\
Problem
\end{tabular} \\
\hline Dense & ?feast_syev & ?feast_sygv \\
?feast_heev & ?feast_hegv \\
Banded & ?feast_sbev & ?feast_sbgv \\
& ?feast_hbev & ?feast_hbgv \\
Sparse & ?feast_scsrev & ?feast_hcsrev
\end{tabular}

\section*{Matrix Storage}

The symmetric and Hermitian matrices used in Extended Eigensolvers predefined interfaces can be stored in full, band, and sparse formats.
- In the full storage format (described in Full Storage in additional detail) you store all elements, all of the elements in the upper triangle of the matrix, or all of the elements in the lower triangle of the matrix.
- In the band storage format (described in Band storage in additional detail), you store only the elements along a diagonal band of the matrix.
- In the sparse format (described in Storage Arrays for a Matrix in CSR Format (3-Array Variation)), you store only the non-zero elements of the matrix.
In generalized eigenvalue systems you must use the same family of storage format for both matrices \(A\) and \(B\). The bandwidth can be different for the banded format ( \(k l b\) can be different from \(k l a\) ), and the position of the non-zero elements can also be different for the sparse format (CSR coordinates ib and jb can be different from ia and ja).
```

?feast_syev/?feast_heev
Extended Eigensolver interface for standard
eigenvalue problem with dense matrices.

```

\section*{Syntax}
```

void sfeast_syev (const char * uplo, const MKL_INT * n, const float * a, const MKL_INT

* lda, MKL_INT * fpm, float * epsout, MKL_INT * loop, const float * emin, const float *
emax, MKL_INT * m0, float * e, float * x, MKL_INT * m, float * res, MKL_INT * info);
void dfeast_syev (const char * uplo, const MKL_INT * n, const double * a, const MKL_INT
* lda, MKL_INT * fpm, double * epsout, MKL_INT * loop, const double * emin, const
double * emax, MKL_INT * mO, double * e, double * x, MKL_INT * m, double * res, MKL_INT
* infO);
void cfeast_heev (const char * uplo, const MKL_INT * n, const MKL_Complex8 * a, const
MKL_INT * lda, MKL_INT * fpm, float * epsout, MKL_INT * loop, const float * emin, const
float * emax, MKL_INT * m0, float * e, MKL_Complex8 * x, MKL_INT * m, float * res,
MKL_INT * info);
void zfeast_heev (const char * uplo, const MKL_INT * n, const MKL_Complex16 * a, const
MKL_INT * lda, MKL_INT * fpm, double * epsout, MKL_INT * loop, const double * emin,
const double * emax, MKL_INT * m0, double * e, MKL_Complex16 * x, MKL_INT * m, double *
res, MKL_INT * info);

```
Include Files
- mkl.h

\section*{Description}

The routines compute all the eigenvalues and eigenvectors for standard eigenvalue problems, \(A x=\lambda x\), within a given search interval.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & Must be 'U' or 'L' or 'F'. \\
\hline & If uplo = 'U', a stores the upper triangular parts of \(A\). \\
\hline & If uplo \(=\) 'L', a stores the lower triangular parts of \(A\). \\
\hline & If uplo= 'F', a stores the full matrix \(A\). \\
\hline \(n\) & Sets the size of the problem. \(n>0\). \\
\hline a & Array of dimension lda by \(n\), contains either full matrix \(A\) or upper or lower triangular part of the matrix \(A\), as specified by uplo \\
\hline Ida & The leading dimension of the array \(a\). Must be at least max \((1, n)\). \\
\hline fpm & Array, dimension of 128 . This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values. \\
\hline emin, emax & The lower and upper bounds of the interval to be searched for eigenvalues; emin \(\leq\) emax. \\
\hline
\end{tabular}

NOTE Users are advised to avoid situations in which eigenvalues nearly coincide with the interval endpoints. This may lead to unpredictable selection or omission of such eigenvalues. Users should instead specify a slightly larger interval than needed and, if required, pick valid eigenvalues and their corresponding eigenvectors for subsequent use.

On entry, specifies the initial guess for subspace dimension to be used, \(0<\) \(m 0 \leq n\). Set \(m 0 \geq m\) where \(m\) is the total number of eigenvalues located in the interval [emin, emax]. If the initial guess is wrong, Extended Eigensolver routines return info=3.

On entry, if \(f p m[4]=1\), the array \(x\) of size \(n\) by \(m\) contains a basis of guess subspace where \(n\) is the order of the input matrix.

\section*{Output Parameters}
epsout
loop
e
x
m
info

On output, contains the relative error on the trace: \(\mid\) trace \(_{i}-\operatorname{trace}_{i-1} \mid / \max (\mid\) emin|, |emax|)

On output, contains the number of refinement loop executed. Ignored on input.

Array of length \(m 0\). On output, the first \(m\) entries of \(e\) are eigenvalues found in the interval.

On output, the first \(m\) columns of \(x\) contain the orthonormal eigenvectors corresponding to the computed eigenvalues \(e\), with the \(i\)-th column of \(x\) holding the eigenvector associated with \(e[i]\).

The total number of eigenvalues found in the interval [emin, emax]: \(0 \leq m\) \(\leq \mathrm{m} 0\).

Array of length \(m 0\). On exit, the first \(m\) components contain the relative residual vector:
\[
\frac{\left\|A x_{i}-\lambda_{i} x_{i}\right\|_{1}}{\max \left(\left|E_{\min }\right|,\left|E_{\max }\right|\right)\left\|x_{i}\right\|_{1}}
\]
for \(i=1,2, \ldots, m\), and where \(m\) is the total number of eigenvalues found in the search interval.

If info \(=0\), the execution is successful. If info \(\neq 0\), see Output Eigensolver info Details.
```

Syntax
void sfeast_sygv (const char * uplo, const MKL_INT * n, const float * a, const MKL_INT

* lda, const float * b, const MKL_INT * ldb, MKL_INT * fpm, float * epsout, MKL_INT *
loop, const float * emin, const float * emax, MKL_INT * m0, float * e, float * x,
MKL_INT * m, float * res, MKL_INT * info);
void dfeast_sygv (const char * uplo, const MKL_INT * n, const double * a, const MKL_INT
* lda, const double * b, const MKL_INT * ldb, MKL_INT * fpm, double * epsout, MKL_INT *
loop, const double * emin, const double * emax, MKL_INT * m0, double * e, double * x,
MKL_INT * m, double * res, MKL_INT * info);
void cfeast_hegv (const char * uplo, const MKL_INT * n, const MKL_Complex8 * a, const
MKL_INT * lda, const MKL_Complex8 * b, const MKL_INT * ldb, MKL_INT * fpm, float *
epsout, MKL_INT * loop, const float * emin, const float * emax, MKL_INT * m0, float * e,
MKL_Complex8 * x, MKL_INT * m, float * res, MKL_INT * info);
void zfeast_hegv (const char * uplo, const MKL_INT * n, const MKL_Complex16 * a, const
MKL_INT * lda, const MKL_Complex16 * b, const MKL_INT * ldb, MKL_INT * fpm, double *
epsout, MKL_INT * loop, const double * emin, const double * emax, MKL_INT * mo, double
* e, MKL_Complex16 * x, MKL_INT * m, double * res, MKL_INT * info);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routines compute all the eigenvalues and eigenvectors for generalized eigenvalue problems, \(A x=\lambda B x\), within a given search interval.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & Must be 'U' or 'L' or 'F'. \\
\hline & If \(U P L O=\) ' \(U\) ', \(a\) and \(b\) store the upper triangular parts of \(A\) and \(B\) respectively. \\
\hline & If UPLO \(=\) ' L ', \(a\) and \(b\) store the lower triangular parts of \(A\) and \(B\) respectively. \\
\hline & If UPLO \(=\) ' \(F\) ', \(a\) and \(b\) store the full matrices \(A\) and \(B\) respectively. \\
\hline n & Sets the size of the problem. \(n>0\). \\
\hline a & Array of dimension 1 da by \(n\), contains either full matrix \(A\) or upper or lower triangular part of the matrix \(A\), as specified by uplo \\
\hline lda & The leading dimension of the array \(a\). Must be at least max \((1, n)\). \\
\hline b & Array of dimension \(l d b\) by \(n\), contains either full matrix \(B\) or upper or lower triangular part of the matrix \(B\), as specified by uplo \\
\hline 1 db & The leading dimension of the array \(B\). Must be at least max \((1, n)\). \\
\hline fpm & Array, dimension of 128 . This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values. \\
\hline emin, emax & The lower and upper bounds of the interval to be searched for eigenvalues; emin \(\leq\) emax. \\
\hline
\end{tabular}

NOTE Users are advised to avoid situations in which eigenvalues nearly coincide with the interval endpoints. This may lead to unpredictable selection or omission of such eigenvalues. Users should instead specify a slightly larger interval than needed and, if required, pick valid eigenvalues and their corresponding eigenvectors for subsequent use.

On entry, specifies the initial guess for subspace dimension to be used, \(0<\) \(m 0 \leq n\). Set \(m 0 \geq m\) where \(m\) is the total number of eigenvalues located in the interval [emin, emax]. If the initial guess is wrong, Extended Eigensolver routines return info=3.

On entry, if \(f p m[4]=1\), the array \(x\) of size \(n\) by \(m\) contains a basis of guess subspace where \(n\) is the order of the input matrix.

\section*{Output Parameters}
epsout
loop
e
x
m
info

On output, contains the relative error on the trace: \(\mid\) trace \(_{i}-\operatorname{trace}_{i-1} \mid / \max (\mid\) emin|, |emax|)

On output, contains the number of refinement loop executed. Ignored on input.

Array of length \(m 0\). On output, the first \(m\) entries of \(e\) are eigenvalues found in the interval.

On output, the first \(m\) columns of \(x\) contain the orthonormal eigenvectors corresponding to the computed eigenvalues \(e\), with the \(i\)-th column of \(x\) holding the eigenvector associated with \(e[i]\).

The total number of eigenvalues found in the interval [emin, emax]: \(0 \leq m\) \(\leq \mathrm{m} 0\).

Array of length \(m 0\). On exit, the first \(m\) components contain the relative residual vector:
\[
\frac{\left\|A x_{i}-\lambda_{i} B x_{i}\right\|_{1}}{\max \left(\left|E_{\min }\right|,\left|E_{\max }\right|\right)\left\|B x_{i}\right\|_{1}}
\]
for \(i=1,2, \ldots, m\), and where \(m\) is the total number of eigenvalues found in the search interval.

If info \(=0\), the execution is successful. If info \(\neq 0\), see Output Eigensolver info Details.
?feast_sbev/?feast_hbev
Extended Eigensolver interface for standard eigenvalue problem with banded matrices.

\section*{Syntax}
```

void sfeast_sbev (const char * uplo, const MKL_INT * n, const MKL_INT * kla, const
float * a, const MKL_INT * lda, MKL_INT * fpm, float * epsout, MKL_INT * loop, const
float * emin, const float * emax, MKL_INT * mo, float * e, float * x, MKL_INT * m, float

* res, MKL_INT * info);
void dfeast_sbev (const char * uplo, const MKL_INT * n, const MKL_INT * kla, const
double * a, const MKL_INT * lda, MKL_INT * fpm, double * epsout, MKL_INT * loop, const
double * emin, const double * emax, MKL_INT * m0, double * e, double * x, MKL_INT * m,
double * res, MKL_INT * info);
void cfeast_hbev (const char * uplo, const MKL_INT * n, const MKL_INT * kla, const
MKL_Complex8 * a, const MKL_INT * lda, MKL_INT * fpm, float * epsout, MKL_INT * loop,
const float * emin, const float * emax, MKL_INT * m0, float * e, MKL_Complex8 * x,
MKL_INT * m, float * res, MKL_INT * info);
void zfeast_hbev (const char * uplo, const MKL_INT * n, const MKL_INT * kla, const
MKL_Complex16 * a, const MKL_INT * lda, MKL_INT * fpm, double * epsout, MKL_INT * loop,
const double * emin, const double * emax, MKL_INT * m0, double * e, MKL_Complexl6 * x,
MKL_INT * m, double * res, MKL_INT * info);

```

Include Files
- mkl.h

\section*{Description}

The routines compute all the eigenvalues and eigenvectors for standard eigenvalue problems, \(A x=\lambda x\), within a given search interval.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & Must be 'U' or 'L' or 'F'. \\
\hline & If uplo = 'U', a stores the upper triangular parts of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular parts of \(A\). \\
\hline & If uplo= 'F', a stores the full matrix \(A\). \\
\hline \(n\) & Sets the size of the problem. \(n>0\). \\
\hline kla & The number of super- or sub-diagonals within the band in \(\boldsymbol{A}(k l a \geq 0)\). \\
\hline a & Array of dimension lda by \(n\), contains either full matrix \(A\) or upper or lower triangular part of the matrix \(A\), as specified by uplo \\
\hline Ida & The leading dimension of the array \(a\). Must be at least max \((1, n)\). \\
\hline fpm & Array, dimension of 128 . This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values. \\
\hline emin, emax & The lower and upper bounds of the interval to be searched for eigenvalues; emin \(\leq\) emax. \\
\hline
\end{tabular}

NOTE Users are advised to avoid situations in which eigenvalues nearly coincide with the interval endpoints. This may lead to unpredictable selection or omission of such eigenvalues. Users should instead specify a slightly larger interval than needed and, if required, pick valid eigenvalues and their corresponding eigenvectors for subsequent use.

On entry, specifies the initial guess for subspace dimension to be used, \(0<\) \(m 0 \leq n\). Set \(m 0 \geq m\) where \(m\) is the total number of eigenvalues located in the interval [emin, emax]. If the initial guess is wrong, Extended Eigensolver routines return info=3.

On entry, if \(f p m[4]=1\), the array \(x\) of size \(n\) by \(m\) contains a basis of guess subspace where \(n\) is the order of the input matrix.

\section*{Output Parameters}
epsout
loop
e
x
m
info

On output, contains the relative error on the trace: \(\mid\) trace \(_{i}-\operatorname{trace}_{i-1} \mid / \max (\mid\) emin|, |emax|)

On output, contains the number of refinement loop executed. Ignored on input.

Array of length \(m 0\). On output, the first \(m\) entries of \(e\) are eigenvalues found in the interval.

On output, the first \(m\) columns of \(x\) contain the orthonormal eigenvectors corresponding to the computed eigenvalues \(e\), with the \(i\)-th column of \(x\) holding the eigenvector associated with \(e[i]\).

The total number of eigenvalues found in the interval [emin, emax]: \(0 \leq m\) \(\leq \mathrm{m} 0\).

Array of length \(m 0\). On exit, the first \(m\) components contain the relative residual vector:
\[
\frac{\left\|A x_{i}-\lambda_{i} x_{i}\right\|_{1}}{\max \left(\left|E_{\min }\right|,\left|E_{\max }\right|\right)\left\|x_{i}\right\|_{1}}
\]
for \(i=1,2, \ldots, m\), and where \(m\) is the total number of eigenvalues found in the search interval.

If info \(=0\), the execution is successful. If info \(\neq 0\), see Output Eigensolver info Details.
?feast_sbgv/?feast_hbgv
Extended Eigensolver interface for generalized eigenvalue problem with banded matrices.

\section*{Syntax}
```

void sfeast_sbgv (const char * uplo, const MKL_INT * n, const MKL_INT * kla, const
float * a, const MKL_INT * lda, const MKL_INT * klb, const float * b, const MKL_INT *
ldb, MKL_INT * fpm, float * epsout, MKL_INT * loop, const float * emin, const float *
emax, MKL_INT * mO, float * e, float * x, MKL_INT * m, float * res, MKL_INT * info);
void dfeast_sbgv (const char * uplo, const MKL_INT * n, const MKL_INT * kla, const
double * a, const MKL_INT * lda, const MKL_INT * klb, const double * b, const MKL_INT *
ldb, MKL_INT * fpm, double * epsout, MKL_INT * loop, const double * emin, const double

* emax, MKL_INT * mo, double * e, double * x, MKL_INT * m, double * res, MKL_INT *
info);
void cfeast_hbgv (const char * uplo, const MKL_INT * n, const MKL_INT * kla, const
MKL_Complex8 * a, const MKL_INT * lda, const MKL_INT * klb, const MKL_Complex8 * b,
const MKL_INT * ldb, MKL_INT * fpm, float * epsout, MKL_INT * loop, const float * emin,
const float * emax, MKL_INT * m0, float * e, MKL_Complex8 * x, MKL_INT * m, float * res,
MKL_INT * info);
void zfeast_hbgv (const char * uplo, const MKL_INT * n, const MKL_INT * kla, const
MKL_Complex16 * a, const MKL_INT * lda, const MKL_INT * klb, const MKL_Complexl6 * b,
const MKL_INT * ldb, MKL_INT * fpm, double * epsout, MKL_INT * loop, const double *
emin, const double * emax, MKL_INT * mO, double * e, MKL_Complex16 * x, MKL_INT * m,
double * res, MKL_INT * info);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routines compute all the eigenvalues and eigenvectors for generalized eigenvalue problems, \(A x=\lambda B x\), within a given search interval.

\section*{NOTE}

Both matrices \(A\) and \(B\) must use the same family of storage format. The bandwidth, however, can be different ( \(k l b\) can be different from \(k l a\) ).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & Must be 'U' or 'L' or 'F'. \\
\hline & If \(U P L O=' U ', a\) and \(b\) store the upper triangular parts of \(A\) and \(B\) respectively. \\
\hline & If UPLO = 'L', \(a\) and \(b\) store the lower triangular parts of \(A\) and \(B\) respectively. \\
\hline & If \(U P L O=' \mathrm{~F}\) ', \(a\) and \(b\) store the full matrices \(A\) and \(B\) respectively. \\
\hline \(n\) & Sets the size of the problem. \(n>0\). \\
\hline kla & The number of super- or sub-diagonals within the band in \(\boldsymbol{A}(k l a \geq 0)\). \\
\hline a & Array of dimension Ida by \(n\), contains either full matrix \(A\) or upper or lower triangular part of the matrix \(A\), as specified by uplo \\
\hline Ida & The leading dimension of the array \(a\). Must be at least max \((1, n)\). \\
\hline
\end{tabular}
mo
X

\section*{Output Parameters}
```

klb
b
ldb
fpm
emin, emax
The number of super- or sub-diagonals within the band in $B(k I b \geq 0)$.
Array of dimension $1 d b$ by n, contains either full matrix B or upper or lower triangular part of the matrix B, as specified by uplo
The leading dimension of the array B. Must be at least $\max (1, n)$.
Array, dimension of 128 . This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values.
The lower and upper bounds of the interval to be searched for eigenvalues; emin \leq emax.
NOTE Users are advised to avoid situations in which eigenvalues nearly coincide with the interval endpoints. This may lead to unpredictable selection or omission of such eigenvalues. Users should instead specify a slightly larger interval than needed and, if required, pick valid eigenvalues and their corresponding eigenvectors for subsequent use.

```

On entry, specifies the initial guess for subspace dimension to be used, \(0<\) \(m 0 \leq n\). Set \(m 0 \geq m\) where \(m\) is the total number of eigenvalues located in the interval [emin, emax]. If the initial guess is wrong, Extended Eigensolver routines return info \(=3\).

On entry, if \(£ p m[4]=1\), the array \(x\) of size \(n\) by \(m\) contains a basis of guess subspace where \(n\) is the order of the input matrix.

On output, contains the relative error on the trace: \(\mid t r a c e_{i}-\) trace \(_{i-1} \mid / \max (\mid\) emin|, |emax|)

On output, contains the number of refinement loop executed. Ignored on input.

Array of length \(m 0\). On output, the first \(m\) entries of \(e\) are eigenvalues found in the interval.

On output, the first \(m\) columns of \(x\) contain the orthonormal eigenvectors corresponding to the computed eigenvalues \(e\), with the \(i\)-th column of \(x\) holding the eigenvector associated with \(e[i]\).

The total number of eigenvalues found in the interval [emin, emax]: \(0 \leq m\) \(\leq \mathrm{mO}\).

Array of length \(m 0\). On exit, the first \(m\) components contain the relative residual vector:
\[
\frac{\left\|A x_{i}-\lambda_{i} B x_{i}\right\|_{1}}{\max \left(\left|E_{\min }\right|,\left|E_{\max }\right|\right)\left\|B x_{i}\right\|_{1}}
\]
for \(i=1,2, \ldots, m\), and where \(m\) is the total number of eigenvalues found in the search interval.
info If info \(=0\), the execution is successful. If info \(\neq 0\), see Output Eigensolver info Details.
?feast_scsrev/?feast_hcsrev
Extended Eigensolver interface for standard
eigenvalue problem with sparse matrices.

\section*{Syntax}
```

void sfeast_scsrev (const char * uplo, const MKL_INT * n, const float * a, const
MKL_INT * ia, const MKL_INT * ja, MKL_INT * fpm, float * epsout, MKL_INT * loop, const
float * emin, const float * emax, MKL_INT * m0, float * e, float * x, MKL_INT * m, float

* res, MKL_INT * info);
void dfeast_scsrev (const char * uplo, const MKL_INT * n, const double * a, const
MKL_INT * ia, const MKL_INT * ja, MKL_INT * fpm, double * epsout, MKL_INT * loop, const
double * emin, const double * emax, MKL_INT * mO, double * e, double * x, MKL_INT * m,
double * res, MKL_INT * info);
void cfeast_hcsrev (const char * uplo, const MKL_INT * n, const MKL_Complex8 * a, const
MKL_INT * ia, const MKL_INT * ja, MKL_INT * fpm, float * epsout, MKL_INT * loop, const
float * emin, const float * emax, MKL_INT * m0, float * e, MKL_Complex8 * x, MKL_INT *
m, float * res, MKL_INT * info);
void zfeast_hcsrev (const char * uplo, const MKL_INT * n, const MKL_Complexl6 * a,
const MKL_INT * ia, const MKL_INT * ja, MKL_INT * fpm, double * epsout, MKL_INT * loop,
const double * emin, const double * emax, MKL_INT * m0, double * e, MKL_Complexl6 * x,
MKL_INT * m, double * res, MKL_INT * info);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routines compute all the eigenvalues and eigenvectors for standard eigenvalue problems, \(A x=\lambda x\), within a given search interval.

\section*{Input Parameters}
```

uplo
Must be 'U' or 'L' or 'F'.
If uplo = 'U', a stores the upper triangular parts of A.
If uplo = 'L', a stores the lower triangular parts of A.
If uplo= ' F ', a stores the full matrix A.
Sets the size of the problem. $n>0$.
Array containing the nonzero elements of either the full matrix A or the upper or lower triangular part of the matrix A, as specified by uplo.

```
ia

\section*{Output Parameters}

Array of length \(n+1\), containing indices of elements in the array \(a\), such that \(i a[i]\) is the index in the array \(a\) of the first non-zero element from the row \(i\). The value of the last element \(i a[n]\) is equal to the number of nonzeros plus one.

Array containing the column indices for each non-zero element of the matrix \(A\) being represented in the array \(a\). Its length is equal to the length of the array \(a\).

Array, dimension of 128 . This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values.

The lower and upper bounds of the interval to be searched for eigenvalues; emin \(\leq\) emax.

NOTE Users are advised to avoid situations in which eigenvalues nearly coincide with the interval endpoints. This may lead to unpredictable selection or omission of such eigenvalues. Users should instead specify a slightly larger interval than needed and, if required, pick valid eigenvalues and their corresponding eigenvectors for subsequent use.

On entry, specifies the initial guess for subspace dimension to be used, \(0<\) \(m 0 \leq n\). Set \(m 0 \geq m\) where \(m\) is the total number of eigenvalues located in the interval [emin, emax]. If the initial guess is wrong, Extended Eigensolver routines return info \(=3\).

On entry, if \(f p m[4]=1\), the array \(x\) of size \(n\) by \(m\) contains a basis of guess subspace where \(n\) is the order of the input matrix.

On output, the last 64 values correspond to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO iparm[0] to iparm[63] (regardless of the value of \(f p m\) [63] on input).

On output, contains the relative error on the trace: \(\mid\) trace \(_{i}-\) trace \(_{i-1} \mid / \max (\mid\) emin|, |emax|)

On output, contains the number of refinement loop executed. Ignored on input.

Array of length \(m 0\). On output, the first \(m\) entries of \(e\) are eigenvalues found in the interval.

On output, the first \(m\) columns of \(x\) contain the orthonormal eigenvectors corresponding to the computed eigenvalues \(e\), with the \(i\)-th column of \(x\) holding the eigenvector associated with e[i].

The total number of eigenvalues found in the interval [emin, emax]: \(0 \leq m\) \(\leq m 0\).

Array of length \(m 0\). On exit, the first \(m\) components contain the relative residual vector:
info If info \(=0\), the execution is successful. If info \(\neq 0\), see Output Eigensolver info Details.

\section*{?feast_scsrgv/?feast_hcsrgv}

Extended Eigensolver interface for generalized eigenvalue problem with sparse matrices.

\section*{Syntax}
```

void sfeast_scsrgv (const char * uplo, const MKL_INT * n, const float * a, const
MKL_INT * ia, const MKL_INT * ja, const float * b, const MKL_INT * ib, const MKL_INT *
jb, MKL_INT * fpm, float * epsout, MKL_INT * loop, const float * emin, const float *
emax, MKL_INT * mO, float * e, float * x, MKL_INT * m, float * res, MKL_INT * info);
void dfeast_scsrgv (const char * uplo, const MKL_INT * n, const double * a, const
MKL_INT * ia, const MKL_INT * ja, const double * b, const MKL_INT * ib, const MKL_INT *
jb, MKL_INT * fpm, double * epsout, MKL_INT * loop, const double * emin, const double *
emax, MKL_INT * mo, double * e, double * x, MKL_INT * m, double * res, MKL_INT * info);
void cfeast_hcsrgv (const char * uplo, const MKL_INT * n, const MKL_Complex8 * a, const
MKL_INT * ia, const MKL_INT * ja, const MKL_Complex8 * b, const MKL_INT * ib, const
MKL_INT * jb, MKL_INT * fpm, float * epsout, MKL_INT * loop, const float * emin, const
float * emax, MKL_INT * m0, float * e, MKL_Complex8 * x, MKL_INT * m, float * res,
MKL_INT * info);
void zfeast_hcsrgv (const char * uplo, const MKL_INT * n, const MKL_Complexl6 * a,
const MKL_INT * ia, const MKL_INT * ja, const MKL_Complexl6 * b, const MKL_INT * ib,
const MKL_INT * jb, MKL_INT * fpm, double * epsout, MKL_INT * loop, const double *
emin, const double * emax, MKL_INT * m0, double * e, MKL_Complex16 * x, MKL_INT * m,
double * res, MKL_INT * info);

```

\section*{Include Files}
- mkl.h

\section*{Description}

The routines compute all the eigenvalues and eigenvectors for generalized eigenvalue problems, \(A x=\lambda B x\), within a given search interval.

\section*{NOTE}

Both matrices \(A\) and \(B\) must use the same family of storage format. The position of the nonzero elements can be different (CSR coordinates \(i b\) and \(j b\) can be different from \(i a\) and \(j a\) ).

\section*{Input Parameters}

> uplo

Must be 'U' or 'L' or 'F'.

If \(U P L O=\) ' U ', \(a\) and \(b\) store the upper triangular parts of \(A\) and \(B\) respectively.

If \(U P L O=\) ' \(L\) ', \(a\) and \(b\) store the lower triangular parts of \(A\) and \(B\) respectively.

If \(U P L O=' F\) ', \(a\) and \(b\) store the full matrices \(A\) and \(B\) respectively.
Sets the size of the problem. \(n>0\).
Array containing the nonzero elements of either the full matrix \(A\) or the upper or lower triangular part of the matrix \(A\), as specified by uplo.

Array of length \(n+1\), containing indices of elements in the array \(a\), such that ia[i-1] is the index in the array a of the first non-zero element from the row \(i\). The value of the last element ia[n] is equal to the number of non-zeros plus one.

Array containing the column indices for each non-zero element of the matrix \(A\) being represented in the array \(a\). Its length is equal to the length of the array \(a\).

Array of dimension 1 db by \(*\), contains the nonzero elements of either the full matrix \(B\) or the upper or lower triangular part of the matrix \(B\), as specified by uplo.

Array of length \(n+1\), containing indices of elements in the array \(b\), such that \(i b[i-1]\) is the index in the array \(b\) of the first non-zero element from the row \(i\). The value of the last element \(i b[n]\) is equal to the number of non-zeros plus one.

Array containing the column indices for each non-zero element of the matrix \(B\) being represented in the array \(b\). Its length is equal to the length of the array \(b\).

Array, dimension of 128. This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values.

The lower and upper bounds of the interval to be searched for eigenvalues; emin \(\leq\) emax.

NOTE Users are advised to avoid situations in which eigenvalues nearly coincide with the interval endpoints. This may lead to unpredictable selection or omission of such eigenvalues. Users should instead specify a slightly larger interval than needed and, if required, pick valid eigenvalues and their corresponding eigenvectors for subsequent use.

On entry, specifies the initial guess for subspace dimension to be used, \(0<\) \(m 0 \leq n\). Set \(m 0 \geq m\) where \(m\) is the total number of eigenvalues located in the interval [emin, emax]. If the initial guess is wrong, Extended Eigensolver routines return info\(=3\).

On entry, if \(f p m[4]=1\), the array \(x\) of size \(n\) by \(m\) contains a basis of guess subspace where \(n\) is the order of the input matrix.

\section*{Output Parameters}
```

fpm

```
epsout
loop
e
x
m
On output, the last 64 values correspond to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISOiparm[0] to iparm[63] (regardless of the value of fpm [63] on input).

On output, contains the relative error on the trace: \(\mid\) trace \(_{i}-\operatorname{trace}_{i-1} \mid / \max (\mid\) emin|, |emax|)

On output, contains the number of refinement loop executed. Ignored on input.

Array of length \(m 0\). On output, the first \(m\) entries of \(e\) are eigenvalues found in the interval.

On output, the first \(m\) columns of \(x\) contain the orthonormal eigenvectors corresponding to the computed eigenvalues \(e\), with the \(i\)-th column of \(x\) holding the eigenvector associated with \(e[i]\).

The total number of eigenvalues found in the interval [emin, emax]: \(0 \leq m\) \(\leq \mathrm{mO}\).

Array of length \(m 0\). On exit, the first \(m\) components contain the relative residual vector:
\[
\frac{\left\|A x_{i}-\lambda_{i} B x_{i}\right\|_{1}}{\max \left(\left|E_{\min }\right|,\left|E_{\max }\right|\right)\left\|B x_{i}\right\|_{1}}
\]
for \(i=1,2, \ldots, m\), and where \(m\) is the total number of eigenvalues found in the search interval.

If info \(=0\), the execution is successful. If info \(\neq 0\), see Output Eigensolver info Details.

\section*{Extended Eigensolver Interfaces for Extremal Eigenvalues/Singular Values}

The topics in this section discuss Extended Eigensolver interfaces to find extremal eigenvalues as well as singular values.

\section*{Extended Eigensolver Interfaces to find largest/smallest eigenvalues}

The predefined interfaces include routines for standard and generalized eigenvalue problems and sparse matrices.
\begin{tabular}{lcl}
\hline Matrix Type & Standard Eigenvalue Problem & \begin{tabular}{l} 
Generalized Eigenvalue \\
Problem
\end{tabular} \\
\hline Sparse & mkl_sparse_?_ev & mkl_sparse_? gv \\
\hline
\end{tabular}
mkl_sparse_?_ev
Computes the largest/smallest eigenvalues and corresponding eigenvectors of a standard eigenvalue problem

\section*{Syntax}
```

sparse_status_t mkl_sparse_s_ev (char *which, MKL_INT *pm, sparse_matrix_t A, struct
matrix_descr descrA, MKL_INT kO, MKL_INT *k, float *E, float *X, float *res);
sparse_status_t mkl_sparse_d_ev (char *which, MKL_INT *pm, sparse_matrix_t A, struct
matrix_descr descrA, MKL_INT kO, MKL_INT *k, double *E, double *X, double *res);

```

\section*{Include Files}
- mkl_solvers_ee.h

\section*{Description}

The mkl_sparse_?_ev routine computes the largest/smallest eigenvalues and corresponding eigenvectors of a standard eigenvalue problem.
```

Ax = lambda x

```
where \(A\) is the real symmetric matrix.

\section*{Input Parameters}
which
pm

A
descrA

Indicates eigenvalues for which to search:
- which = 'L' indicates the largest eigenvalues.
- which = 'S' indicates the smallest eigenvalues.

Array of size 128. This array is used to pass various parameters to Extended Eigensolver routines. See - Extended Eigensolver Input Parameters for Extremal Eigenvalue Problem for a complete description of the parameters and their default values.

Handle containing sparse matrix in internal data structure.
Structure specifying sparse matrix properties.
sparse_matrix_type_t Specifies the type of a sparse matrix: type
-SPARSE_MATRIX_TYPE_GENERAL
The matrix is processed as-is.
-SPARSE_MATRIX_TYPE_SYMMETRIC
The matrix is symmetric (only the requested triangle is processed).
sparse_fill_mode_t mode

Specifies the triangular matrix part for symmetric, Hermitian, triangular, and blocktriangular matrices:
```

\bulletSPARSE_FILL_MODE_LOWER

```

The lower triangular matrix part is processed.
-SPARSE_FILL_MODE_UPPER
The upper triangular matrix part is processed.
sparse_diag_type_t Specifies the diagonal type for non-general diag
```

\bulletSPARSE_DIAG_NON_UNIT

```

Diagonal elements might not be equal to one.
-SPARSE_DIAG_UNIT
Diagonal elements are equal to one
k0
The desired number of the largest/smallest eigenvalues to find.

\section*{Output Parameters}
k
E
X

Res

Number of eigenvalues found.
Array of size \(k 0\). Contains k largest/smallest eigenvalues.
Array of size \(k 0^{*}\) Number of columns of the matrix A. Contains \(k\) eigenvectors.

Array of size \(k 0\). Contains \(k\) residuals.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
\begin{tabular}{ll} 
SPARSE_STATUS_SUCCESS & The operation was successful. \\
SPARSE_STATUS_NOT_INITIALIZED & The routine encountered an empty handle or matrix array. \\
SPARSE_STATUS_ALLOC_FAILED & Internal memory allocation failed. \\
SPARSE_STATUS_INVALID_VALUE & The input parameters contain an invalid value. \\
SPARSE_STATUS_EXECUTION_FAILED & Execution failed. \\
SPARSE_STATUS_INTERNAL_ERROR & An error in algorithm implementation occurred. \\
SPARSE_STATUS_NOT_SUPPORTED & The requested operation is not supported.
\end{tabular}
mkl_sparse_?_gv
Computes the largest/smallest eigenvalues and
corresponding eigenvectors of a generalized
eigenvalue problem

\section*{Syntax}
```

sparse_status_t mkl_sparse_s_gv (char *which, MKL_INT *pm, sparse_matrix_t A, struct
matrix_descr descrA, sparse_matrix_t B, struct matrix_descr descrB, MKL_INT kO, MKL_INT
*k, float *E, float *X, float *res);
sparse_status_t mkl_sparse_d_gv (char *which, MKL_INT *pm, sparse_matrix_t A, struct
matrix_descr descrA, sparse_matrix_t B, struct matrix_descr descrB, MKL_INT kO, MKL_INT
*k, double *E, double *X, double *res);

```

\section*{Include Files}
- mkl_solvers_ee.h

\section*{Description}

The mkl_sparse_?_gv routine computes the largest/smallest eigenvalues and corresponding eigenvectors of a generalized eigenvalue problem.
\[
\mathrm{Ax}=\text { lambda } \mathrm{Bx}
\]
where \(A\) is the real symmetric matrix and \(B\) is the real symmetric positive definite matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline which & \begin{tabular}{l}
Indicates eigenvalues for which to search: \\
- which = 'L' indicates the largest eigenvalues. \\
- which = 'S' indicates the smallest eigenvalues.
\end{tabular} \\
\hline pm & Array of size 128. This array is used to pass various parameters to Extended Eigensolver routines. See - Extended Eigensolver Input Parameters for Extremal Eigenvalue Problem for a complete description of the parameters and their default values. \\
\hline A & Handle containing sparse matrix in internal data structure. \\
\hline descrA & Structure specifying sparse matrix properties. \\
\hline & \begin{tabular}{l}
sparse_matrix_type_t Specifies the type of a sparse matrix: type \\
-SPARSE_MATRIX_TYPE_GENERAL
\end{tabular} \\
\hline & \begin{tabular}{l}
The matrix is processed as-is. \\
-SPARSE_MATRIX_TYPE_SYMMETRIC
\end{tabular} \\
\hline & The matrix is symmetric (only the requested triangle is processed). \\
\hline & \begin{tabular}{ll} 
sparse_fill_mode_t & \begin{tabular}{l} 
Specifies the triangular matrix part for \\
symmetric, Hermitian, triangular, and block- \\
triangular matrices:
\end{tabular}
\end{tabular} \\
\hline & -SPARSE_FILL_MODE_LOWER \\
\hline & \begin{tabular}{l}
The lower triangular matrix part is processed. \\
-SPARSE_FILL_MODE_UPPER
\end{tabular} \\
\hline & The upper triangular matrix part is processed. \\
\hline & sparse_diag_type_t \(\begin{aligned} & \text { Specifies the diagonal type for non-general } \\ & \text { diag }\end{aligned}\)
matrices: \\
\hline & -SPARSE_DIAG_NON_UNIT \\
\hline & Diagonal elements might not be equal to one. \\
\hline & -SPARSE_DIAG_UNIT \\
\hline & Diagonal elements are equal to one \\
\hline B & Handle containing sparse matrix in internal data structure. \\
\hline descrB & Structure specifying sparse matrix properties. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{```
sparse_matrix_type_t
type
```} & Specifies the type of a sparse matrix: \\
\hline & \(\bullet\)-SPARSE_MATRIX_TYPE_GENERAL \\
\hline & The matrix is processed as-is. \\
\hline & -SPARSE_MATRIX_TYPE_SYMMETRIC \\
\hline & The matrix is symmetric (only the requested triangle is processed). \\
\hline \multirow[t]{5}{*}{sparse_fill_mode_t mode} & Specifies the triangular matrix part for symmetric, Hermitian, triangular, and blocktriangular matrices: \\
\hline & -SPARSE_FILL_MODE_LOWER \\
\hline & The lower triangular matrix part is processed. \\
\hline & - SPARSE_FILL_MODE_UPPER \\
\hline & The upper triangular matrix part is processed. \\
\hline \multirow[t]{4}{*}{sparse_diag_type_t diag} & Specifies the diagonal type for non-general matrices: \\
\hline & -SPARSE_DIAG_NON_UNIT \\
\hline & Diagonal elements might not be equal to one. \\
\hline & - SPARSE_DIAG_UNIT \\
\hline
\end{tabular}

Diagonal elements are equal to one
The desired number of the largest/smallest eigenvalues to find.

\section*{Output Parameters}
k
E
X

Res
Number of eigenvalues found.
Array of size \(k 0\). Contains \(k\) largest/smallest eigenvalues.
Array of size \(k 0^{*}\) Number of columns of matrix A. Contains \(k\) eigenvectors.

Array of size \(k 0\). Contains \(k\) residuals.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS
SPARSE_STATUS_NOT_INITIALIZED
SPARSE_STATUS_ALLOC_FAILED
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
The operation was successful.
The routine encountered an empty handle or matrix array.
Internal memory allocation failed.
The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.

```

\section*{Extended Eigensolver Interfaces to find largest/smallest singular values}

The predefined interfaces include routines to find the largest and smallest singular values and the corresponding singular vectors of sparse matrices.
\begin{tabular}{ll}
\hline Matrix Type & \begin{tabular}{l}
Standard singular value \\
problem
\end{tabular} \\
\hline Sparse & mkl_sparse_?_svd \\
\hline
\end{tabular}
```

mkl_sparse_?_svd
Computes the largest/smallest singular values of a
singular-value problem
Syntax
sparse_status_t mkl_sparse_s_svd (char *whichS, char *whichV, MKL_INT *pm,
sparse_matrix_t A, struct matrix_descr descrA, MKL_INT k0, MKL_INT *k, float *E, float
*XL, float *XR, float *res);
sparse_status_t mkl_sparse_d_svd (char *whichS, char *whichV, MKL_INT *pm,
sparse_matrix_t A, struct matrix_descr descrA, MKL_INT kO, MKL_INT *k, double *E,
double *XL, double *XR, double *res);

```

\section*{Include Files}
- mkl_solvers_ee.h

\section*{Description}

The mkl_sparse_?_svd routine computes the largest/smallest singular values of a singular-value problem.
\(\operatorname{AATx}=\sigma x\) or ATAx \(=\sigma x\), where \(A\) is the real rectangular matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline whichS & \begin{tabular}{l}
Indicates eigenvalues for which to search: \\
- whichS \(=\) 'L' indicates the largest eigenvalues. \\
- whichS = 'S' indicates the smallest eigenvalues.
\end{tabular} \\
\hline whichV & \begin{tabular}{l}
Indicates singular vectors for which to search: \\
- whichV = 'R' indicates right singular vectors. \\
- whichV = 'L' indicates left singular vectors.
\end{tabular} \\
\hline pm & Array of size 128. This array is used to pass various parameters to Extended Eigensolver routines. See • Extended Eigensolver Input Parameters for Extremal Eigenvalue Problem for a complete description of the parameters and their default values. \\
\hline A & Handle containing sparse matrix in internal data structure. \\
\hline descrA & Structure specifying sparse matrix properties. \\
\hline & sparse_matrix_type_t Specifies the type of a sparse matrix: type \\
\hline
\end{tabular}

\section*{-SPARSE_MATRIX_TYPE_GENERAL}

The matrix is processed as-is.
-SPARSE_MATRIX_TYPE_SYMMETRIC
The matrix is symmetric (only the requested triangle is processed).
sparse_fill_mode_t mode

Specifies the triangular matrix part for symmetric, Hermitian, triangular, and blocktriangular matrices:
-SPARSE_FILL_MODE_LOWER
The lower triangular matrix part is processed.
-SPARSE_FILL_MODE_UPPER
The upper triangular matrix part is processed.
sparse_diag_type_t diag

Specifies the diagonal type for non-general matrices:
-SPARSE_DIAG_NON_UNIT
Diagonal elements might not be equal to one.
- SPARSE_DIAG_UNIT

Diagonal elements are equal to one
The desired number of the largest/smallest eigenvalues to find.

\section*{Output Parameters}
k

E
XL

XR

Res

Number of eigenvalues found.
Array of size \(k 0\). Contains \(k\) largest/smallest eigenvalues.
Array of size \(k 0^{*}\) Number of rows of matrix A. Contains \(k\) left singular vectors.

Array of size \(k 0^{*}\) Number of columns of matrix A. Contains \(k\) right singular vectors.

Array that contains \(k\) residuals.

\section*{Return Values}

The function returns a value indicating whether the operation was successful or not, and why.
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INITIALIZED The routine encountered an empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILED Internal memory allocation failed.
SPARSE_STATUS_INVALID_VALUE The input parameters contain an invalid value.
SPARSE_STATUS_EXECUTION_FAILED Execution failed.

```
```

SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED

```

An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_ee_init
Initializes Extended Eigensolver input parameters with default values

\section*{Syntax}
```

sparse_status_t mkl_sparse_ee_init (MKL_INT* pm);

```

\section*{Include Files}
- mkl_solvers_ee.h

\section*{Description}

This routine sets all Extended Eigensolver parameters to their default values.

\section*{Output Parameters}
pm
Array of size 128. This array is used to pass various parameters to Extended Eigensolver routines. See - Extended Eigensolver Input Parameters for Extremal Eigenvalue Problem for a complete description of the parameters and their default values.

\section*{Extended Eigensolver Input Parameters for Extremal Eigenvalue Problem}

The input parameters for Extended Eigensolver routines are contained in an MKL_INT array named pm. To call the Extended Eigensolver interfaces, initialize this array using the mkl_sparse_ee_init routine.
\begin{tabular}{|c|c|c|}
\hline Parameter & Defa ult & Description \\
\hline pm[0] & 0 & Reserved for future use. \\
\hline \multirow[t]{2}{*}{pm[1]} & \multirow[t]{2}{*}{6} & Defines the tolerance for the stopping criteria: \\
\hline & & \(\epsilon=10^{-p m[1]+1}\) \\
\hline \multirow[t]{2}{*}{pm[2]} & \multirow[t]{2}{*}{0} & Specifies the algorithm to use: \\
\hline & & \begin{tabular}{l}
- 0-Decided at runtime \\
- 1 - The Krylov-Schur method \\
- 2 - Subspace Iteration technique based on FEAST algorithm
\end{tabular} \\
\hline \multirow[t]{2}{*}{pm[3]} & \multirow[t]{2}{*}{*} & This parameter is referenced only for Krylov-Schur Method. It indicates the number of Lanczos/Arnoldi vectors (NCV) generated at each iteration. \\
\hline & & This parameter must be less than or equal to size of matrix and greater than number of eigenvalues (k 0) to be computed. If unspecified, NCV is set to be at least 1.5 times larger than k0. \\
\hline pm [4] & * & Maximum number of iterations. If unspecified, this parameter is set to 10000 for the Krylov-Schur method and 60 for the subspace iteration method. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Parameter & Defa ult & Description \\
\hline pm[5] & 0 & Power of Chebychev expansion for approximate spectral projector. Only referenced when \(p m[2]=1\) \\
\hline \multirow[t]{3}{*}{pm[6]} & \multirow[t]{3}{*}{1} & Used only for Krylov-Schur Method. \\
\hline & & If 0 , then the method only computes eigenvalues. \\
\hline & & If 1 , then the method computes eigenvalues and eigenvectors. The subspace iteration method always computes eigenvectors/singular vectors. You must allocate the required memory space. \\
\hline \multirow[t]{12}{*}{pm[7]} & \multirow[t]{12}{*}{0} & Convergence stopping criteria. \\
\hline & & Defines whether the stopping criteria for the iterations with respect to the true residuals (used if pm[8] is not zero) and residual norm estimates are relative to the eigenvalues/singular values or not. \\
\hline & & If 0 , the stopping criteria with respect to the true residuals is: \\
\hline & & \[
\frac{\|A x-\lambda x\|}{|\lambda|}<10^{-p m[1]+1}
\] \\
\hline & & or \\
\hline & & \[
\frac{\| A x-\lambda B x| |}{|\lambda|}<10^{-p m[1]+1}
\] \\
\hline & & If 1 , the stopping criteria with respect to the true residuals is: \\
\hline & & \[
\| A x-\lambda x| |<10^{-p m[1]+1}
\] \\
\hline & & or \\
\hline & & \[
\| A x-\lambda B x| |<10^{-p m[1]+1}
\] \\
\hline & & for a generalized eigenproblem. \\
\hline & & The residual norm estimates are based on the magnitude of the last eigenvector of the Schur decomposition matrix and the exact formula can be found in the literature. When \(\mathrm{pm}[7]=0\), the residual norm estimate is additionally divided by the magnitude of the computed eigenvalue and compared to \(10(-\mathrm{pm}[1]+1)\). \\
\hline \multirow[t]{3}{*}{pm[8]} & \multirow[t]{3}{*}{0} & Specifies if for detecting convergence the solver must compute the true residuals for eigenpairs for the Krylov-Schur method or it can only use the residual norm estimates. \\
\hline & & If 0 , only residual norm estimates are used. \\
\hline & & If 1 , the solver computes not just residual norm estimates but also the true residuals as defined in the description of pm[7]. \\
\hline \multirow[t]{2}{*}{pm[9]} & \multirow[t]{2}{*}{0} & Used only for the Krylov-Schur method and only as an output parameter. \\
\hline & & \begin{tabular}{l}
Reports the reason for exiting the iteration loop of the method: \\
- If 0 , the iterations stopped since convergence has been detected. \\
- If -1 , maximum number of iterations has been reached and even the residual norm estimates have not converged.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Parameter & Defa ult & Description \\
\hline & & \begin{tabular}{l}
- If -2 , maximum number of iterations has been reached despite the residual norm estimates have converged (but the true residuals for eigenpairs have not). \\
- If -3 , the iterations stagnated and even the residual norm estimates have not converged. \\
- If -4 , the iterations stagnated while the eigenvalues have converged (but the true residuals for eigenpairs do not).
\end{tabular} \\
\hline \[
\begin{aligned}
& p m[10] \text { to } \\
& p m[128]
\end{aligned}
\] & - & Reserved for future use. \\
\hline
\end{tabular}

\section*{Vector Mathematical Functions}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Vector Mathematics functions (VM) compute a mathematical function of each of the vector elements. VM includes a set of highly optimized functions (arithmetic, power, trigonometric, exponential, hyperbolic, special, and rounding) that operate on vectors of real and complex numbers.

Application programs that improve performance with VM include nonlinear programming software, computation of integrals, financial calculations, computer graphics, and many others.
VM functions fall into the following groups according to the operations they perform:
- VM Mathematical Functions compute values of mathematical functions, such as sine, cosine, exponential, or logarithm, on vectors stored contiguously in memory.
- VM Pack/Unpack Functions convert to and from vectors with positive increment indexing, vector indexing, and mask indexing (see Appendix "Vector Arguments in VM" for details on vector indexing methods).
- VM Service Functions set/get the accuracy modes and the error codes, and free memory.

The VM mathematical functions take an input vector as an argument, compute values of the respective function element-wise, and return the results in an output vector. All the VM mathematical functions can perform in-place operations, where the input and output arrays are at the same memory locations. For VM mathematical functions with positive increment indexing, in-place operations are supported only when the input and output increments have the same value.

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) interfaces are given in mkl_vml_functions.h.

NOTE On 64-bit platforms, oneMKL provides VML C interfaces with the _64 suffix to support large data arrays in the LP64 interface library. For more interface library details, see "Using the ILP64 Interface vs. LP64 Interface" in the developer guide.

Examples that demonstrate how to use the VM functions are located in:
\$ \{MKL\} /examples/vmlc/source
See VM performance and accuracy data in the online VM Performance and Accuracy Data document available at https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-documentation.html.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{VM Data Types, Accuracy Modes, and Performance Tips}

VM includes mathematical and pack/unpack vector functions for single and double precision vector arguments of real and compex types. Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides Fortran and C interfaces for all VM functions, including the associated service functions. The Function Naming Conventions topic shows how to call these functions.
Performance depends on a number of factors, including vectorization and threading overhead. The recommended usage is as follows:
- Use VM for vector lengths larger than 40 elements.
- Use the Intel \({ }^{\circledR}\) Compiler for vector lengths less than 40 elements.

All VM vector functions support the following accuracy modes:
- High Accuracy (HA), the default mode
- Low Accuracy (LA), which improves performance by reducing accuracy of the two least significant bits
- Enhanced Performance (EP), which provides better performance at the cost of significantly reduced accuracy. Approximately half of the bits in the mantissa are correct.

Note that using the EP mode does not guarantee accurate processing of corner cases and special values. Although the default accuracy is HA, LA is sufficient in most cases. For applications that require less accuracy (for example, media applications, some Monte Carlo simulations, etc.), the EP mode may be sufficient.

VM handles special values in accordance with the C99 standard [C99].
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) offers both functions and environment variables to switch between modes for VM. See the Inteß oneAPI Math Kernel Library (oneMKL) Developer Guide for details about the environment variables. Use the vmlSetMode (mode) function (see Table "Values of the mode Parameter") to switch between the HA, LA, and EP modes. The vmlGetMode () function returns the current mode.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{See Also}

Function Naming Conventions

\section*{VM Naming Conventions}

The VM function names are of mixed (lower and upper) case.
The VM mathematical and pack/unpack function names have the following structure:
```

v[m]<?><name><mod>

```
where
- \(\quad v\) is a prefix indicating vector operations.
- \(\quad[m]\) is an optional prefix for mathematical functions that indicates additional argument to specify a VM mode for a given function call (see vmlSetMode for possible values and their description).
- <?> is a precision prefix that indicates one of the following data types:
\(s\)
d double.
c MKL_Complex8.
z
- <name> indicates the function short name, with some of its letters in uppercase. See examples in Table "VM Mathematical Functions".
- <mod> field (written in uppercase) is present only in the pack/unpack functions and indicates the indexing method used:
```

i indexing with a positive increment
v indexing with an index vector
m indexing with a mask vector.

```

The VM service function names have the following structure:

\section*{\(v m /<\) name>}
where
<name> indicates the function short name, with some of its letters in uppercase. See examples in Table "VM Service Functions".
To call VM functions from an application program, use conventional function calls. For example, call the vector single precision real exponential function as
```

vsExp ( n, a, y );

```

\section*{VM Function Interfaces}

VM interfaces include the function names and argument lists. The following sections describe the interfaces for the VM functions. Note that some of the functions have multiple input and output arguments
Some VM functions may also take scalar arguments as input. See the function description for the naming conventions of such arguments.

\section*{VM Mathematical Function Interfaces}
```

v<?><name>( n, a, [scalar input arguments,]y );
v<?><name>I( n, a, inca, [scalar input arguments,] y, incy );
v<?><name>( n, a, b, [scalar input arguments,]y );
v<?><name>I( n, a, inca, b, incb, [scalar input arguments,] y, incy );
v<?><name>( n, a, y, z );
v<?><name>I( n, a, inca, y, incy, z, incz );
vm<?><name>( n, a, [scalar input arguments,]y, mode );
vm<?><name>I( n, a, inca, [scalar input arguments,] y, incy, mode );
vm<?><name>( n, a, b, [scalar input arguments,]y, mode );
vm<?><name>I( n, a, inca, b, incb, [scalar input arguments,] y, incy, mode );
vm<?><name>( n, a, y, z, mode );
vm<?><name>I( n, a, inca, y, incy, z, incz, mode);

```

VM Mathematical Functions

\section*{VM Pack Function Interfaces}
```

v<?>PackI( n, a, inca, y );
v<?>PackV( n, a, ia, y );
v<?>PackM( n, a, ma, y );

```

\section*{VM Unpack Function Interfaces}
```

v<?>UnpackI( n, a, y, incy );
v<?>UnpackV( n, a, y, iy );

```
```

v<?>UnpackM( n, a, y,my );

```

\section*{VM Service Function Interfaces}
```

oldmode = vmlSetMode( mode );
mode = vmlGetMode( void );
olderr = vmlSetErrStatus ( err );
err = vmlGetErrStatus( void );
olderr = vmlClearErrStatus( void );
oldcallback = vmlSetErrorCallBack( callback );
callback = vmlGetErrorCallBack( void );
oldcallback = vmlClearErrorCallBack( void );

```

Note that oldmode, olderr, and oldcallback refer to settings prior to the call.

\section*{VM Input Parameters}
\begin{tabular}{ll}
\(n\) & number of elements to be calculated \\
\(a\) & first input vector \\
\(b\) & second input vector \\
inca & vector increment for the input vector \(a\) \\
incb & vector increment for the input vector \(b\) \\
ia & index vector for the input vector a \\
ma & mask vector for the input vector a \\
incy & vector increment for the output vector \(y\) \\
incz & vector increment for the output vector \(z\) \\
\(i y\) & index vector for the output vector \(y\) \\
\(m y\) & mask vector for the output vector \(y\) \\
err & error code \\
mode & VM mode \\
callback & address of the callback function
\end{tabular}

\section*{VM Output Parameters}
\begin{tabular}{ll}
\(y\) & first output vector \\
\(z\) & second output vector \\
err & error code \\
mode & VM mode \\
olderr & former error code \\
oldmode & former VM mode \\
callback & address of the callback function \\
oldcallback & address of the former callback function
\end{tabular}

See the data types of the parameters used in each function in the respective function description section. All Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) VM mathematical functions can perform in-place operations. For VM mathematical functions with positive increment indexing, (for example, v?PowI), in-place operations are supported only when the input and output increments have the same value.

\section*{Vector Indexing Methods}

Classic VM mathematical functions work with unit stride. Strided VM mathematical functions (names with "I" suffix) work with arbitrary integer increments. Increments may be positive, negative or equal to zero. For example:
```

vsExpI (n, a, inca, r, incr)

```
is equivalent to:
```

for (i=0; i<n; i++)
{
r[i * incr] = exp (a[i * inca]);
}

```
where
\(i\) - current index,
inca - input index increment,
incr - output index increment.
\(n\) - the number of elements to be computed (important: \(n\) is not the maximum array size).
So, when calling vsExpI (\(n, a\), inca, \(r\), incr) be sure that the input vector a is allocated at least for 1 \(+(n-1)\) *inca elements and the result vector \(r\) has a space for \(1+(n-1)\) *incr elements.

NOTE The order of computations is not guaranteed and no array bounds-checking is performed; therefore, the results for overlapped and in-place arrays are not generally deterministic for increments other than 1.

For output index increment, equal to 0 , the result is not deterministic and generally nonsensical.
Use negative increments to step from base pointers in reverse order.
For example:
```

vsExpI (n, a, -2, r, -3)

```
is equivalent to:
```

for (i=0; i<n; i++)
{
r[- i*3] = exp (a[-i*2]);
}

```

NOTE Pass pointers to the desired ending array element in memory as an argument for negative strides.

For example:
```

vsExpI (n, a, 2, r + 1000, -3).

```

Use a zero increment for one fixed argument rather than an array.
For example:
```

vsMulI (n, a, 1, b, 0, r, 1)

```
is equivalent to:
```

for (i=0; i<n; i++)
{
r[i] = a[i] * b[0];
}

```

VM Pack/Unpack functions use the following indexing methods to do this task:
- positive increment
- index vector
- mask vector

The indexing method used in a particular function is indicated by the indexing modifier (see the description of the <mod> field in Function Naming Conventions). For more information on the indexing methods, see Vector Arguments in VM.

\section*{VM Pack/Unpack Functions}

\section*{VM Error Diagnostics}

The VM mathematical functions incorporate the error handling mechanism, which is controlled by the following service functions:
```

vmlGetErrStatus,
vmlSetErrStatus,
vmlClearErrStatus
vmlGetErrCallBack,
vmlSetErrCallBack,
vmlClearErrCallBack
vmlSetMode, vmlGetMode

```

These functions operate with a global variable called VM Error Status. The VM Error Status flags an error, a warning, or a successful execution of a VM function.

These functions enable you to customize the error handling. For example, you can identify a particular argument in a vector where an error occurred or that caused a warning.

These functions get and set a VM mode. If you set a new VM mode using the vmlSetMode function, you can store the previous VM mode returned by the routine and restore it at any point of your application.

If both an error and a warning situation occur during the function call, the VM Error Status variable keeps only the value of the error code. See Table "Values of the VM Error Status" for possible values. If a VM function does not encounter errors or warnings, it sets the VM Error Status to VML_STATUS_OK.
If you use incorrect input arguments to a VM function (VML_STATUS_BADSIZE and VML_STATUS_BADMEM), the function calls xerbla to report errors. See Table "Values of the VM Error Status" for details.

You can use the vmlSetMode and vmlGetMode functions to modify error handling behavior. Depending on the VM mode, the error handling behavior includes the following operations:
- setting the VM Error Status to a value corresponding to the observed error or warning
- setting the errno variable to one of the values described in Table "Set Values of the errno Variable"
- writing error text information to the stderr stream
- raising the appropriate exception on an error, if necessary
- calling the additional error handler callback function that is set by vmlSetErrorCallBack.

Set Values of the errno Variable
\begin{tabular}{ll}
\hline Value of errno & Description \\
\hline 0 & No errors are detected. \\
EINVAL & The array dimension is not positive. \\
\(E A C C E S\) & NULL pointer is passed. \\
\(E D O M\) & At least one of array values is out of a range of definition. \\
\(E R A N G E\) & At least one of array values caused a singularity, overflow or \\
& underflow. \\
\hline
\end{tabular}

\section*{See Also}
vmlGetErrstatus Gets the VM Error Status.
vmlSetErrStatus Sets the new VM Error Status according to err and stores the previous VM Error Status to olderrSets the global VM Status according to new values and returns the previous VM Status.
vmlclearErrstatus Sets the VM Error Status to vml_Status_ok and stores the previous VM Error Status to olderr.
vmlSetErrorCallBack Sets the additional error handler callback function and gets the old callback function.
vmlGetErrorCallBack Gets the additional error handler callback function.
vmlClearErrorCallBack Deletes the additional error handler callback function and retrieves the former callback function.
vmlGetMode Gets the VM mode.
vmisetMode Sets a new mode for VM functions according to the mode parameter and stores the previous VM mode to oldmode.

\section*{VM Mathematical Functions}

This section describes \(V M\) functions that compute values of mathematical functions on real and complex vector arguments.

Each function is introduced by its short name, a brief description of its purpose, and the calling sequence for each type of data, as well as a description of the input/output arguments.
The input range of parameters is equal to the mathematical range of the input data type, unless the function description specifies input threshold values, which mark off the precision overflow, as follows:
- FLT_MAX denotes the maximum number representable in single precision real data type
- DBL_MAX denotes the maximum number representable in double precision real data type

Table "VM Mathematical Functions" lists available mathematical functions and associated data types.

\section*{VM Mathematical Functions}
\begin{tabular}{|c|c|c|}
\hline Function & Data Types & Description \\
\hline \multicolumn{3}{|l|}{Arithmetic Functions} \\
\hline v?Add & \(s, d, c, z\) & Adds vector elements \\
\hline v?Sub & \(s, d, c, z\) & Subtracts vector elements \\
\hline v?Sqr & \(s, d\) & Squares vector elements \\
\hline v?Mul & \(s, d, c, z\) & Multiplies vector elements \\
\hline v?MulByConj & c, z & Multiplies elements of one vector by conjugated elements of the second vector \\
\hline v?Conj & c, z & Conjugates vector elements \\
\hline v?Abs & \(s, d, c, z\) & Computes the absolute value of vector elements \\
\hline v?Arg & c, z & Computes the argument of vector elements \\
\hline v?LinearFrac & \(s, d\) & Performs linear fraction transformation of vectors \\
\hline v?Fmod & \(s, d\) & Performs element by element computation of the modulus function of vector \(a\) with respect to vector \(b\) \\
\hline v?Remainder & \(s, d\) & Performs element by element computation of the remainder function on the elements of vector \(a\) and the corresponding elements of vector b \\
\hline
\end{tabular}

\section*{Power and Root Functions}
\begin{tabular}{lll}
v?Inv & \(s, d\) & Inverts vector elements \\
v?Div & \(s, d, c, z\) & Divides elements of one vector by elements of the second vector \\
v?Sqrt & \(s, d, c, z\) & Computes the square root of vector elements \\
v?InvSqrt & \(s, d\) & Computes the inverse square root of vector elements \\
v?Cbrt & \(s, d\) & Computes the cube root of vector elements
\end{tabular}
\begin{tabular}{ll}
\hline Function & Data Types \\
\hline v? InvCbrt & \(s, d\) \\
v?Pow2o3 & \(s, d\) \\
v?Pow3o2 & \(s, d\) \\
v?Pow & \(s, d, c, z\) \\
v?Powx & \(s, d, c, z\) \\
v?Powr & \(s, d\) \\
v?Hypot & \(s, d\) \\
Exponential and Logarithmic Functio \\
v?Exp & \(s, d, c, z\) \\
v?Exp2 & \(s, d\) \\
v?Exp10 & \(s, d\) \\
v?Expm1 & \(s, d\) \\
v?Ln & \(s, d, c, z\) \\
v?Log2 & \(s, d\) \\
v?Log10 & \(s, d, c, z\) \\
v?Log1p & \(s, d\) \\
v?Logb & \(s, d\)
\end{tabular}

\section*{Trigonometric Functions}
```

v?Cos
v?Sin
v?SinCos
v?CIS
v?Tan
v?Acos
v?Asin
v?Atan
v?Atan2
v?Cospi
v?Sinpi
v?Tanpi
v?Acospi
v?Asinpi
v?Atanpi
v?Atan2pi
v?Cosd
v?Sind
v?Tand

```
\(s, d, c, z\)
\(s, d, C, z\)
\(s, d\)
C, \(Z\)
\(s, d, C, z\)
\(s, d, c, z\)
\(s, d, c, z\)
\(s, d, c, z\)
\(s, d\)
\(s, d, C, z\)
\(s, d\)

Hyperbolic Functions
v?Cosh
v?Sinh
v?Tanh
v?Acosh
v?Asinh
v?Atanh
Special Functions
v?Erf

\section*{Description}

Computes the inverse cube root of vector elements
Computes the cube root of the square of each vector element
Computes the square root of the cube of each vector element
Raises each vector element to the specified power
Raises each vector element to the constant power
Computes \(a\) to the power \(b\) for elements of two vectors, where the elements of vector argument \(a\) are all non-negative
Computes the square root of sum of squares

Computes the base e exponential of vector elements
Computes the base 2 exponential of vector elements
Computes the base 10 exponential of vector elements
Computes the base exponential of vector elements decreased by 1
Computes the natural logarithm of vector elements
Computes the base 2 logarithm of vector elements
Computes the base 10 logarithm of vector elements
Computes the natural logarithm of vector elements that are increased by 1
Computes the exponents of the elements of input vector a

Computes the cosine of vector elements
Computes the sine of vector elements
Computes the sine and cosine of vector elements
Computes the complex exponent of vector elements (cosine and sine combined to complex value)
Computes the tangent of vector elements
Computes the inverse cosine of vector elements
Computes the inverse sine of vector elements
Computes the inverse tangent of vector elements
Computes the four-quadrant inverse tangent of ratios of the elements of two vectors
Computes the cosine of vector elements multiplied by \(n\)
Computes the sine of vector elements multiplied by п
Computes the tangent of vector elements multiplied by \(п\)
Computes the inverse cosine of vector elements divided by \(п\)
Computes the inverse sine of vector elements divided by \(\pi\)
Computes the inverse tangent of vector elements divided by \(п\)
Computes the four-quadrant inverse tangent of the ratios of the corresponding elementss of two vectors divided by п
Computes the cosine of vector elements multiplied by \(\pi / 180\)
Computes the sine of vector elements multiplied by \(\pi / 180\)
Computes the tangent of vector elements multiplied by \(\pi / 180\)

Computes the hyperbolic cosine of vector elements Computes the hyperbolic sine of vector elements Computes the hyperbolic tangent of vector elements
Computes the inverse hyperbolic cosine of vector elements
Computes the inverse hyperbolic sine of vector elements
Computes the inverse hyperbolic tangent of vector elements.

Computes the error function value of vector elements
\begin{tabular}{|c|c|c|}
\hline Function & Data Types & Description \\
\hline v?Erfc & \(s, d\) & Computes the complementary error function value of vector elements \\
\hline v ?CdfNorm & \(s, d\) & Computes the cumulative normal distribution function value of vector elements \\
\hline v?ErfInv & \(s, d\) & Computes the inverse error function value of vector elements \\
\hline v?ErfcInv & \(s, d\) & Computes the inverse complementary error function value of vector elements \\
\hline v?CdfNormInv & \(s, d\) & Computes the inverse cumulative normal distribution function value of vector elements \\
\hline v?LGamma & \(s, d\) & Computes the natural logarithm for the absolute value of the gamma function of vector elements \\
\hline v?TGamma & \(s, d\) & Computes the gamma function of vector elements \\
\hline v? ExpInt1 & \(s, d\) & Computes the exponential integral of vector elements \\
\hline \multicolumn{3}{|l|}{Rounding Functions} \\
\hline v?Floor & \(s, d\) & Rounds towards minus infinity \\
\hline v?Ceil & \(s, d\) & Rounds towards plus infinity \\
\hline v?Trunc & \(s, d\) & Rounds towards zero infinity \\
\hline v?Round & \(s, d\) & Rounds to nearest integer \\
\hline v?NearbyInt & \(s, d\) & Rounds according to current mode \\
\hline \(v\) ?Rint & \(s, d\) & Rounds according to current mode and raising inexact result exception \\
\hline v?Modf & \(s, d\) & Computes the integer and fractional parts \\
\hline v?Frac & \(s, d\) & Computes the fractional part \\
\hline \multicolumn{3}{|l|}{Miscellaneous Functions} \\
\hline v?CopySign & \(s, d\) & Returns vector of elements of one argument with signs changed to match other argument elements \\
\hline v?NextAfter & \(s, d\) & Returns vector of elements containing the next representable floating-point values following the values from the elements of one vector in the direction of the corresponding elements of another vector \\
\hline v?Fdim & \(s, d\) & Returns vector containing the differences of the corresponding elements of the vector arguments if the first is larger and +0 otherwise \\
\hline v?Fmax & \(s, d\) & Returns the larger of each pair of elements of the two vector arguments \\
\hline v ? Fmin & \(s, d\) & Returns the smaller of each pair of elements of the two vector arguments \\
\hline v?MaxMag & \(s, d\) & Returns the element with the larger magnitude between each pair of elements of the two vector arguments \\
\hline v?MinMag & \(s, d\) & Returns the element with the smaller magnitude between each pair of elements of the two vector arguments \\
\hline
\end{tabular}

\section*{Special Value Notations}

This topic defines notations of special values for complex functions. The definitions are provided in text, tables, or formulas.
- \(z, z 1, z 2\), etc. denote complex numbers.
- \(i, i^{2}=-1\) is the imaginary unit.
- \(x, X, x 1, x 2\), etc. denote real imaginary parts.
- \(y, Y, y 1, y 2\), etc. denote imaginary parts.
- \(X\) and \(Y\) represent any finite positive IEEE-754 floating point values, if not stated otherwise.
- Quiet NaN and signaling NaN are denoted with QNAN and SNAN, respectively.
- The IEEE-754 positive infinities or floating-point numbers are denoted with a + sign before \(\mathrm{X}, \mathrm{Y}\), etc.
- The IEEE-754 negative infinities or floating-point numbers are denoted with a - sign before \(\mathrm{X}, \mathrm{Y}\), etc.

CONJ (z) and CIS (z) are defined as follows:
\(\operatorname{CONJ}(x+i \cdot y)=x-i \cdot y\)
```

CIS (y)=\operatorname{cos}(y)+i\cdot\operatorname{sin}(y).

```

The special value tables show the result of the function for the \(z\) argument at the intersection of the \(\operatorname{RE}(z)\) column and the \(i * I M(z)\) row. If the function raises an exception on the argument \(z\), the lower part of this cell shows the raised exception and the VM Error Status. An empty cell indicates that this argument is normal and the result is defined mathematically.

\section*{Arithmetic Functions}

Arithmetic functions perform the basic mathematical operations like addition, subtraction, multiplication or computation of the absolute value of the vector elements.
v?Add
Performs element by element addition of vector a and vector \(b\).

\section*{Syntax}
```

vsAdd( n, a, b, y );
vsAddI(n, a, inca, b, incb, y, incy);
vmsAdd( n, a, b, y, mode );
vmsAddI(n, a, inca, b, incb, y, incy, mode);
vdAdd( n, a, b, y );
vdAddI(n, a, inca, b, incb, y, incy);
vmdAdd( n, a, b, y, mode );
vmdAddI(n, a, inca, b, incb, y, incy, mode);
vcAdd( n, a, b, y );
vcAddI(n, a, inca, b, incb, y, incy);
vmcAdd( n, a, b, y, mode );
vmcAddI(n, a, inca, b, incb, y, incy, mode);
vzAdd( n, a, b, y );
vzAddI(n, a, inca, b, incb, y, incy);
vmzAdd( n, a, b, y, mode );
vmzAddI(n, a, inca, b, incb, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a, b\) & const float* for vsAdd, vmsAdd \\
& const double* for vdAdd, vmdAdd
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to arrays that contain the input vectors \(a\) and \(b\).
```

Name Type
const MKL_Complex8* for vcAdd,
vmcAdd
const MKL_Complex16* for vzAdd,
vmzAdd
inca, incb, const MKL_INT
incy
mode
const MKL_INT64

```

\section*{Description}

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & float* for vsAdd, vmsAdd \\
& double* for vdAdd, vmdAdd \\
& MKL_Complex8* for vcAdd, vmcAdd \\
& MKL_Complex16* for vzAdd, vmzAdd
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Add function performs element by element addition of vector \(a\) and vector \(b\).
Special values for Real Function v?Add
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline+0 & +0 & +0 & \\
+0 & -0 & +0 & \\
-0 & +0 & +0 & \\
-0 & -0 & -0 & INVALID \\
\(+\infty\) & \(+\infty\) & \(+\infty\) & INVALID \\
\(+\infty\) & \(-\infty\) & QNAN & \\
\(-\infty\) & \(+\infty\) & QNAN & INVALID \\
\(-\infty\) & \(-\infty\) & \(-\infty\) & INVALID \\
SNAN & any value & QNAN & \\
any value & SNAN & QNAN & \\
QNAN & non-SNAN & QNAN & \\
non-SNAN & QNAN & &
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
Add (\(x 1+i * y 1, x 2+i * y 2)=(x 1+x 2)+i *(y 1+y 2)\)
Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all \(\operatorname{RE}(x), \operatorname{RE}(y)\), IM \((x)\), \(I M(y)\) arguments are finite numbers, but the real or imaginary part of the computed result is so large that it does not fit the target precision. In this case, the function returns \(\infty\) in that part of the result, raises the OVERFLOW exception, and sets the VM Error Status to VML_STATUS_OVERFLOW (overriding any possible VML_STATUS_ACCURACYWARNING status).

\section*{v?Sub \\ Performs element by element subtraction of vector b} from vector a.

\section*{Syntax}
```

vsSub( n, a, b, y );
vsSubI(n, a, inca, b, incb, y, incy);
vmsSub( n, a, b, y, mode );
vmsSubI(n, a, inca, b, incb, y, incy, mode);
vdSub( n, a, b, y );
vdSubI(n, a, inca, b, incb, y, incy);
vmdSub( n, a, b, y, mode );
vmdSubI(n, a, inca, b, incb, y, incy, mode);
vcSub( n, a, b, y );
vcSubI(n, a, inca, b, incb, y, incy);
vmcSub( n, a, b, y, mode );
vmcSubI(n, a, inca, b, incb, y, incy, mode);
vzSub( n, a, b, y );
vzSubI(n, a, inca, b, incb, y, incy);
vmzSub( n, a, b, y, mode );
vmzSubI(n, a, inca, b, incb, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a, b\) & \begin{tabular}{l}
const float* for vsSub, vmsSub \\
const double* for vdSub, vmdSub \\
const MKL_Complex8* for vcSub, \\
vmcSub
\end{tabular} \\
& \begin{tabular}{l}
const MKL_Complex16* for vzSub, \\
vmzSub
\end{tabular} \\
\begin{tabular}{ll}
inca, incb, \\
incy \\
mode
\end{tabular} & \begin{tabular}{ll}
const MKL_INT
\end{tabular} \\
&
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to arrays that contain the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\author{
Name \\ Type \\ float* for vsSub, vmsSub \\ double* for vdSub, vmdSub \\ MKL_Complex8* for vcSu.b, vmcSub \\ MKL_Complex16* for vzSub, vmzSub
}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Sub function performs element by element subtraction of vector \(b\) from vector \(a\).
Special values for Real Function v?Sub(x)
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline+0 & +0 & +0 & \\
+0 & -0 & +0 & \\
-0 & +0 & -0 & INVALID \\
-0 & -0 & +0 & QNAN \\
\(+\infty\) & \(+\infty\) & \(+\infty\) & INVALID \\
\(+\infty\) & \(-\infty\) & \(-\infty\) & INVALID \\
\(-\infty\) & \(+\infty\) & QNAN & INVALID \\
\(-\infty\) & \(-\infty\) & QNAN & \\
SNAN & any value & QNAN & \\
QNy value & SNAN & QNAN & \\
non-SNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
```

Sub(x1+i*y1,x2+i*y2) = (x1-x2) + i*(y1-y2).

```

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE (x), RE (y), IM (x) , IM (y) arguments are finite numbers, but the real or imaginary part of the computed result is so large that it does not fit the target precision. In this case, the function returns \(\infty\) in that part of the result, raises the OVERFLOW exception, and sets the VM Error Status to VML_STATUS_OVERFLOW (overriding any possible VML_STATUS_ACCURACYWARNING status).

\section*{v?Sqr}

Performs element by element squaring of the vector.

\section*{Syntax}
```

vsSqr( n, a, y );
vsSqrI(n, a, inca, y, incy);
vmsSqr( n, a, y, mode );
vmsSqrI(n, a, inca, y, incy, mode);
vdSqr( n, a, y );
vdSqrI(n, a, inca, y, incy);
vmdSqr( n, a, y, mode );

```
```

vmdSqrI(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const float* for vsSqr, \\
vmsSqr
\end{tabular} \\
& const double* for vdSqr, \\
& vmdSqr \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.
Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(y\) & float* for vsSqr, vmsSqr & Pointer to an array that contains the output \\
double* for vdSqr, vmdSqr & vector \(y\).
\end{tabular}

\section*{Description}

The v?Sqr function performs element by element squaring of the vector.

\section*{Special Values for Real Function v?Sqr(x)}
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & +0 & \\
\(+\infty\) & \(+\infty\) & INVALID \\
\(-\infty\) & \(+\infty\) & QNAN \\
QNAN & QNAN & \\
SNAN & \\
\hline
\end{tabular}
v?Mul
Performs element by element multiplication of vector \(a\) and vector \(b\).

\section*{Syntax}
```

vsMul( n, a, b, y );
vsMulI(n, a, inca, b, incb, y, incy);
vmsMul( n, a, b, y, mode );
vmsMulI(n, a, inca, b, incb, y, incy, mode);
vdMul( n, a, b, y );

```
```

vdMulI(n, a, inca, b, incb, y, incy);vdMulI(n, a, inca, b, incb, y, incy);
vmdMul( n, a, b, y, mode );
vmdMulI(n, a, inca, b, incb, y, incy, mode);
vcMul( n, a, b, y );
vcMulI(n, a, inca, b, incb, y, incy);
vmcMul( n, a, b, y, mode );
vmcMulI(n, a, inca, b, incb, y, incy, mode);
vzMul( n, a, b, y );
vzMulI(n, a, inca, b, incb, y, incy);
vmzMul( n, a, b, y, mode );
vmzMulI(n, a, inca, b, incb, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & const MKL_INT \\
\hline \multirow[t]{4}{*}{\(a, b\)} & const float* for vsMul, vmsMul \\
\hline & const double* for vdMul, vmdMul \\
\hline & ```
const MKL_Complex8* for vcMul,
vmcMul
``` \\
\hline & ```
const MKL_Complex16* for vzMul,
vmzMul
``` \\
\hline inca, incb, incy & const MKL_INT \\
\hline mode & const MKL_INT64 \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to arrays that contain the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Mul function performs element by element multiplication of vector \(a\) and vector \(b\).

Special values for Real Function v? Mul(x)
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline+0 & +0 & +0 & \\
+0 & -0 & -0 & \\
-0 & +0 & -0 & \\
-0 & -0 & +0 & INVALID \\
+0 & \(+\infty\) & QNAN & INVALID \\
+0 & \(-\infty\) & QNAN & INVALID \\
-0 & \(+\infty\) & QNAN \\
-0 & \(-\infty\) & QNAN & INVALID \\
\(+\infty\) & +0 & QNAN & INVALID \\
\(+\infty\) & -0 & QNAN & INVALID \\
\(-\infty\) & +0 & \(+\infty\) & \\
\(-\infty\) & -0 & \(-\infty\) & \\
\(+\infty\) & \(+\infty\) & \(-\infty\) & QNAN \\
\(+\infty\) & \(-\infty\) & \(+\infty\) & INVALID \\
\(-\infty\) & \(+\infty\) & QNAN & \\
\(-\infty\) & \(-\infty\) & QNAN & \\
SNAN & any value & QNAN & \\
any value & QNAN & QNAN & \\
QNAN & non-SNAN & QNAN &
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
\(\operatorname{Mul}\left(x 1+i^{*} y 1, x 2+i^{*} y 2\right)=(x 1 * x 2-y 1 * y 2)+i *(x 1 * y 2+y 1 * x 2)\).
Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE (x) , RE (y), IM (x), IM (y) arguments are finite numbers, but the real or imaginary part of the computed result is so large that it does not fit the target precision. In this case, the function returns \(\infty\) in that part of the result, raises the OVERFLOW exception, and sets the VM Error Status to VML_STATUS_OVERFLOW (overriding any possible VML_STATUS_ACCURACYWARNING status).

\section*{v?MulByConj}

Performs element by element multiplication of vector a element and conjugated vector b element.

\section*{Syntax}
```

vcMulByConj( n, a, b, y );
vsMulByConjI(n, a, inca, b, incb, y, incy);
vmcMulByConj( n, a, b, y, mode );
vmsMulByConjI(n, a, inca, b, incb, y, incy, mode);
vzMulByConj( }n,a,b,y)
vdMulByConjI(n, a, inca, b, incb, y, incy);
vmzMulByConj( n, a, b, y, mode );
vmdMulByConjI(n, a, inca, b, incb, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & Const MKL_INT \\
a,b & \begin{tabular}{l}
const MKL_Complex8* for \\
vcMulByConj, vmcMulByConj
\end{tabular} \\
\begin{tabular}{ll}
const MKL_Complex16* for \\
vzMulByConj, vmzMulByConj \\
inca, incb,
\end{tabular} & \begin{tabular}{l}
const MKL_INT
\end{tabular} \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to arrays that contain the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name Type
y
MKL_Complex8* for vcMulByConj,
vmcMulByConj
MKL_Complex16* for vzMulByConj,
vmzMulByConj

```

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?MulByConj function performs element by element multiplication of vector a element and conjugated vector \(b\) element.

Specifications for special values of the functions are found according to the formula
```

MulByConj(x1+i*y1,x2+i*y2) = Mul(x1+i*y1,x2-i*y2).

```

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE (x), RE (y), \(I M(x), I M(y)\) arguments are finite numbers, but the real or imaginary part of the computed result is so large that it does not fit the target precision. In this case, the function returns \(\infty\) in that part of the result, raises the OVERFLOW exception, and sets the VM Error Status to VML_STATUS_OVERFLOW (overriding any possible VML_STATUS_ACCURACYWARNING status).
v?Conj
Performs element by element conjugation of the vector.

Syntax
```

vcConj ( n, a, y );
vcConjI(n, a, inca, y, incy);
vmcConj( n, a, y, mode );

```
```

vmcConjI(n, a, inca, y, incy, mode);
vzConj( n, a, y );
vzConjI(n, a, inca, y, incy);
vmzConj( n, a, y, mode );
vmzConjI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const MKL_Complex8* for vcConj, \\
vmcConj \\
const MKL_Complex16* for vzConj, \\
vmzConj
\end{tabular} \\
inca, incy & \begin{tabular}{l}
const MKL_INT \\
mode
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name Type
y
MKL_Complex8* for vcConj, vmcConj
MKL_Complex16* for vzConj,
vmzConj

```

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The \(v\) ? Conj function performs element by element conjugation of the vector.
No special values are specified. The function does not raise floating-point exceptions.
v?Abs
Computes absolute value of vector elements.

\section*{Syntax}
```

vsAbs( n, a, y );
vsAbsI(n, a, inca, y, incy);
vmsAbs( n, a, y, mode );
vmsAbsI(n, a, inca, y, incy, mode);
vdAbs( n, a, y );
vdAbsI(n, a, inca, y, incy);

```
```

vmdAbs ( n, a, y, mode );
vmdAbsI(n, a, inca, y, incy, mode);
vcAbs( n, a, y );
vcAbsI(n, a, inca, y, incy);
vmcAbs ( n, a, y, mode );
vmcAbsI(n, a, inca, y, incy, mode);
vzAbs( n, a, y );
vzAbsI(n, a, inca, y, incy);
vmzAbs ( n, a, y, mode );
vmzAbsI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsAbs, vmsAbs \\
& const double* for vdAbs, vmdAbs \\
& \begin{tabular}{l}
const MKL_Complex8* for vcAbs, \\
vmcAbs
\end{tabular} \\
& \begin{tabular}{l}
const MKL_Complex16* for vzAbs, \\
vmzAbs
\end{tabular} \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The \(v\) ?Abs function computes an absolute value of vector elements.

Special Values for Real Function v?Abs(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & +0 & \\
\(+\infty\) & \(+\infty\) & \\
\(-\infty\) & \(+\infty\) & INVALID \\
\hline QNAN & QNAN & \\
SNAN & QNAN & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula \(\operatorname{Abs}(z)=\operatorname{Hypot}(\operatorname{RE}(z), I M(z))\).
v?Arg
Computes argument of vector elements.
Syntax
```

vcArg( n, a, y );
vcArgI(n, a, inca, y, incy);
vmcArg( n, a, y, mode );
vmcArgI(n, a, inca, y, incy, mode);
vzArg( n, a, y );
vzArgI(n, a, inca, y, incy);
vmzArg( n, a, y, mode );
vmzArgI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const MKL_Complex8* for vcArg, \\
vmcArg \\
const MKL_Complex16* for vzArg, \\
vmcArg
\end{tabular} \\
inca, incy & \begin{tabular}{l}
const MKL_INT \\
mode
\end{tabular} \\
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & float* for vcArg, vmcArg \\
& double* for vzArg, vmcArg
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Arg function computes argument of vector elements.
See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Arg(z)
\begin{tabular}{|c|l|l|l|l|l|l|l|}
\hline \begin{tabular}{c}
RE(z) \\
\(\mathbf{i} \cdot \mathbf{I M}(\mathbf{z}\) \\
\(\mathbf{)}\)
\end{tabular} & \(\mathbf{- \infty}\) & \(\mathbf{- X}\) & \(\mathbf{- 0}\) & \(\mathbf{+ 0}\) & \(\mathbf{+ X}\) & \(\mathbf{+ \infty}\) & NAN \\
\hline\(+\mathrm{i} \cdot \infty\) & \(+3 \cdot \pi / 4\) & \(+\pi / 2\) & \(+\pi / 2\) & \(+\pi / 2\) & \(+\pi / 2\) & \(+\pi / 4\) & NAN \\
\hline\(+\mathrm{i} \cdot \mathrm{Y}\) & \(+\pi\) & & \(+\pi / 2\) & \(+\pi / 2\) & & +0 & NAN \\
\hline\(+\mathrm{i} \cdot 0\) & \(+\pi\) & \(+\pi\) & \(+\pi\) & +0 & +0 & +0 & NAN \\
\hline\(-\mathrm{i} \cdot 0\) & \(-\pi\) & \(-\pi\) & \(-\pi\) & -0 & -0 & -0 & NAN \\
\hline\(-\mathrm{i} \cdot \mathrm{Y}\) & \(-\pi\) & & \(-\pi / 2\) & \(-\pi / 2\) & & -0 & NAN \\
\hline\(-\mathrm{i} \cdot \infty\) & \(-3 \cdot \pi / 4\) & \(-\pi / 2\) & \(-\pi / 2\) & \(-\pi / 2\) & \(-\pi / 2\) & \(-\pi / 4\) & NAN \\
\hline\(+\mathrm{i} \cdot \mathrm{NAN}\) & NAN \\
\hline
\end{tabular}

Notes:
- raises INVALID exception when real or imaginary part of the argument is SNAN
- \(\operatorname{Arg}(z)=\operatorname{Atan} 2(\operatorname{IM}(z), \operatorname{RE}(z))\).

\section*{v?LinearFrac}

Performs linear fraction transformation of vectors a and b with scalar parameters.

\section*{Syntax}
```

vsLinearFrac( n, a, b, scalea, shifta, scaleb, shiftb, y );
vsLinearFracI(n, a, inca, b, incb, scalea, shifta, scaleb, shiftb, y, incy);
vmsLinearFrac( n, a, b, scalea, shifta, scaleb, shiftb, y, mode );
vmsLinearFracI(n, a, inca, b, incb, scalea, shifta, scaleb, shiftb, y, incy, mode);
vdLinearFrac( n, a, b, scalea, shifta, scaleb, shiftb, y )
vdLinearFracI(n, a, inca, b, incb, scalea, shifta, scaleb, shiftb, y, incy);
vmdLinearFrac( n, a, b, scalea, shifta, scaleb, shiftb, y, mode );
vmdLinearFracI(n, a, inca, b, incb, scalea, shifta, scaleb, shiftb, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
a,b & \begin{tabular}{l}
const float* for vsLinearFrac, \\
vmsLinearFrac
\end{tabular} \\
& \begin{tabular}{l}
const double* for vdLinearFrac, \\
inca, incb, \\
incy
\end{tabular} \\
scalea, scaleb \begin{tabular}{l}
const MKL_INT
\end{tabular} \\
& \begin{tabular}{l}
vmsLinearFrac \\
const double for vdLinearFrac, \\
vmdLinearFrac
\end{tabular} \\
shifta, shiftb & const float for vsLinearFrac, \\
vmsLinearFrac
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to arrays that contain the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Constant values for scaling multipliers of vectors \(a\) and \(b\).

Constant values for shifting addends of vectors a and \(b\).

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?LinearFrac function performs a linear fraction transformation of vector \(a\) by vector \(b\) with scalar parameters: scaling multipliers scalea, scaleb and shifting addends shifta, shiftb:
\(y[i]=(s c a l e a \cdot a[i]+s h i f t a) /(s c a l e b \cdot b[i]+s h i f t b), i=1,2 \ldots n\)
The v?LinearFrac function is implemented in the EP accuracy mode only, therefore no special values are defined for this function. If used in HA or LA mode, v? LinearFrac sets the VM Error Status to VML_STATUS_ACCURACYWARNING (see the Values of the VM Status table). Correctness is guaranteed within the threshold limitations defined for each input parameter (see the table below); otherwise, the behavior is unspecified.

\section*{Threshold Limitations on Input Parameters}
\(2^{\mathrm{E}_{\mathrm{MIN}} / 2} \leq \mid\) scalea \(\mid \leq 2\left(\mathrm{E}_{\mathrm{MAX}}-2\right) / 2\)
```

Threshold Limitations on Input Parameters
$2^{\mathrm{E}_{\text {MIN }} / 2} \leq \mid$ scaleb $\mid \leq 2^{\left(\mathrm{E}_{\text {MAX }}-2\right) / 2}$
$\mid$ shifta| $\leq 2^{E_{\text {max }}-2}$
$\mid$ shiftb| $\leq 2^{E_{\text {max }}-2}$
$2^{\mathrm{E}_{\text {MIN }} / 2 \leq a[i]} \leq 2^{\left(\mathrm{E}_{\text {MAX }}-2\right) / 2}$
$2^{\mathrm{E}_{\text {MIN }} / 2} \leq b[i] \leq 2^{\left(\mathrm{E}_{\text {MAX }}-2\right) / 2}$
$a[i] \neq-($ shifta/scalea $) *\left(1-\delta_{1}\right),\left|\delta_{1}\right| \leq 2^{1-(p-1) / 2}$
$b[i] \neq-($ shiftb/scaleb $) *\left(1-\delta_{2}\right),\left|\delta_{2}\right| \leq 2^{1-(p-1) / 2}$

```
\(\mathrm{E}_{\text {MIN }}\) and \(\mathrm{E}_{\text {MAX }}\) are the minimum and maximum exponents and \(p\) is the number of significant bits (precision) for the corresponding data type according to the ANSI/IEEE Standard 754-2008 ([IEEE754]):
- for single precision \(\mathrm{E}_{\mathrm{MIN}}=-126, \mathrm{E}_{\mathrm{MAX}}=127, p=24\)
- for double precision \(\mathrm{E}_{\text {MIN }}=-1022, \mathrm{E}_{\text {MAX }}=1023, p=53\)

The thresholds become less strict for common cases with scalea=0 and/or scaleb=0:
- if scalea=0, there are no limitations for the values of a[i] and shifta.
- if \(s c a l e b=0\), there are no limitations for the values of \(b[i]\) and shiftb.

\section*{Example}

To use the v?LinearFrac to shift vector a by a scalar value, set scaleb to 0 . Note that even if scaleb is 0 , b must be declared.
```

\#include <stdio.h>
\#include "mkl_vml.h"
int main()
{
double a[10], *b;
double r[10];
double scalea = 1.0, scaleb = 0.0;
double shifta = -1.0, shiftb = 1.0;
MKL_INT i=0,n=10;
a [0]=-10000.0000;
a[1]=-7777.7777;
a [2] =-5555.5555;
a [3] =-3333.3333;
a[4]=-1111.1111;
a[5]=1111.1111;
a[6]=3333.3333;
a [7]=5555.5555;
a [8]=7777.7777;
a[9]=10000.0000;
vdLinearFrac( n, a, b, scalea, shifta, scaleb, shiftb, r );
for(i=0;i<10;i++) {
printf("%25.14f %25.14f\n",a[i],r[i]);
}

```
```

    return 0;
    }

```

To use the v?LinearFrac to compute shifta/(scaleb \(b[i]+\) shiftb), set scalea to 0 . Note that even if scalea is 0 , a must be declared.

\section*{v?Fmod}

The v ? Fmod function performs element by element computation of the modulus function of vector a with respect to vector \(b\).

\section*{Syntax}
```

vsFmod (n, a, b, y);
vsFmodI(n, a, inca, b, incb, y, incy);
vmsFmod (n, a, b, y, mode);
vmsFmodI(n, a, inca, b, incb, y, incy, mode);
vdFmod (n, a, b, y);
vdFmodI(n, a, inca, b, incb, y, incy);
vmdFmod (n, a, b, y, mode);
vmdFmodI(n, a, inca, b, incb, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a, b\) & const float* for vsFmod \\
& \begin{tabular}{l}
const float* for vmsFmod \\
const double* for vdFmod \\
const double* for vmdFmod
\end{tabular} \\
\begin{tabular}{ll}
inca, incb, \\
incy
\end{tabular} & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to arrays containing the input vectors a and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name
Type
y
float* for vsFmod
float* for vmsFmod
double* for vdFmod
double* for vmdFmod

```

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v? Fmod function computes the modulus function of each element of vector \(a\), with respect to the corresponding elements of vector \(b\) :
\(a_{i}-b_{i} * \operatorname{trunc}\left(a_{i} / b_{i}\right)\)
In general, the modulus function fmod (\(a_{i}, b_{i}\)) returns the value \(a_{i}-n \star b_{i}\) for some integer \(n\) such that if \(b_{i}\) is nonzero, the result has the same sign as \(a_{i}\) and a magnitude less than the magnitude of \(b_{i}\).
Special values for Real Function \(v\) ? Fmod (\(x, y\))
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & VM Error Status \\
\hline\(x\) not NAN & \(\pm 0\) & NAN & VML_STATUS_SING \\
\(\pm \infty\) & \(y\) not NAN & NAN & VML_STATUS_SING \\
\(\pm 0\) & \(y \neq 0\), not NAN & \(\pm 0\) & \\
\(x\) finite & \(\pm \infty\) & \(x\) & \\
& & & \\
NANVALID \\
\(x\) & \(y\) & NAN & \\
\hline
\end{tabular}

\section*{NOTE}

If element \(i\) in the result of v ? Fmod is 0 , its sign is that of \(a_{i}\).

\section*{See Also}

Div Performs element by element division of vector \(a\) by vector \(b\)
Remainder Performs element by element computation of the remainder function on the elements of vector \(a\) and the corresponding elements of vector \(b\).

\section*{v?Remainder}

Performs element by element computation of the remainder function on the elements of vector \(a\) and the corresponding elements of vector \(b\).

\section*{Syntax}
```

vsRemainder ( }n,a,b,y)\mathrm{ ;
vsRemainderI(n, a, inca, b, incb, y, incy);
vmsRemainder ( }n,a,b,y, mode)
vmsRemainderI(n, a, inca, b, incb, y, incy, mode);
vdRemainder ( }n,a,b,y)\mathrm{ ;
vdRemainderI(n, a, inca, b, incb, y, incy);

```
```

vmdRemainder ( }n,a,b,y, mode)
vmdRemainderI(n, a, inca, b, incb, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a, b\) & const float* for vsRemainder \\
& const float* for vmsRemainder \\
const double* for vdRemainder \\
inca, incb, \\
incy & const double* for vmdRemainder \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to arrays containing the input vectors a and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name Type}
```

    float* for vmsRemainder
    double* for vdRemainder
    double* for vmdRemainder
    ```

\section*{Description}

Computes the remainder of each element of vector \(a\), with respect to the corresponding elements of vector \(b\) : compute the values of \(n\) such that
\(n=a_{i}-n \star b_{i}\)
where \(n\) is the integer nearest to the exact value of \(a_{i} / b_{i}\). If two integers are equally close to \(a_{i} / b_{i}, n\) is the even one. If \(n\) is zero, it has the same sign as \(a_{i}\).
Special values for Real Function v?Remainder(\(\mathbf{x}, \mathrm{y}\))
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline\(x\) not NAN & \(\pm 0\) & NAN & VML_STATUS_DOM & INVALID \\
\(\pm \infty\) & \(y\) not NAN & NAN & & INVALID \\
\(\pm 0\) & \(y \neq 0\), not NAN & \(\pm 0\) & & UNDERFLOW if \(x\) is \\
\(x\) finite & \(\pm \infty\) & \(x\) & & subnormal \\
NAN & \(y\) & NAN & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline \(x\) & NAN & NAN & & \\
\hline \multicolumn{5}{|l|}{NOTE} \\
\hline
\end{tabular}

\section*{See Also}

Div Performs element by element division of vector \(a\) by vector \(b\)
Fmod The v? Fmod function performs element by element computation of the modulus function of vector \(a\) with respect to vector \(b\).

\section*{Power and Root Functions}
v? Inv
Performs element by element inversion of the vector.
Syntax
```

vsInv( n, a, y );
vsInvI(n, a, inca, y, incy);
vmsInv( n, a, y, mode );
vmsInvI(n, a, inca, y, incy, mode);
vdInv( n, a, y );
vdInvI(n, a, inca, y, incy);
vmdInv( n, a, y, mode );
vmdInvI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \(n\) & const MKL_INT & Specifies the number of elements to be calculated. \\
\hline a & ```
const float* for vsInv,
vmsInv
const double* for vdInv,
vmdInv
``` & Pointer to an array that contains the input vector \(a\). \\
\hline inca, incy & const MKL_INT & Specifies increments for the elements of \(a\) and \(y\). \\
\hline mode & const MKL_INT64 & Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & float* for vsInv, vmsInv \\
& double* for vdInv, vmdInv
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v? Inv function performs element by element inversion of the vector.
Special Values for Real Function v?Inv(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(+\infty\) & +0 & & \\
\(-\infty\) & -0 & & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}
v?Div
Performs element by element division of vector a by vector \(b\)

Syntax
```

vsDiv(n, a, b, y);
vsDivI(n, a, inca, b, incb, y, incy);
vmsDiv(n, a, b, y, mode);
vmsDivI(n, a, inca, b, incb, y, incy, mode);
vdDiv(n, a, b, y);
vdDivI(n, a, inca, b, incb, y, incy);
vmdDiv(n, a, b, y, mode);
vmdDivI(n, a, inca, b, incb, y, incy, mode);
vcDiv(n, a, b, y);
vcDivI(n, a, inca, b, incb, y, incy);
vmcDiv(n, a, b, y, mode);
vmcDivI(n, a, inca, b, incb, y, incy, mode);
vzDiv(n, a, b, y);
vzDivI(n, a, inca, b, incb, y, incy);
vmzDiv(n, a, b, y, mode);
vmzDivI(n, a, inca, b, incb, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a, b\) & \begin{tabular}{l} 
const float* for vsDiv, vmsDiv \\
const double* for vdDiv, vmdDiv \\
const MKL_Complex8* for vcDiv, \\
vmcDiv
\end{tabular} \\
& \begin{tabular}{l} 
const MKL_Complex16* for vzDiv, \\
vmzDiv \\
inca, incb, \\
incy \\
mode
\end{tabular}
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to arrays that contain the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Precision Overflow Thresholds for Real v?Div Function}
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(\mathrm{abs}(\mathrm{a}[\mathrm{i}])<\mathrm{abs}(b[i]) \star\) FLT_MAX \\
double precision & \(\mathrm{abs}(\mathrm{a}[\mathrm{i}])<\mathrm{abs}(b[i]) \star\) DBL_MAX \\
\hline
\end{tabular}

Precision overflow thresholds for the complex v?Div function are beyond the scope of this document.

\section*{Output Parameters}

\section*{Name Type}
```

y float* for vsDiv, vmsDiv
double* for vdDiv, vmdDiv
MKL_Complex8* for vcDiv, vmcDiv
MKL_Complex16* for vzDiv, vmzDiv

```

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Div function performs element by element division of vector \(a\) by vector \(b\).
Special values for Real Function v?Div(x)
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline\(X>+0\) & +0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(X>+0\) & -0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(X<+0\) & +0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(X<+0\) & -0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
+0 & +0 & QNAN & VML_STATUS_SING & \\
-0 & -0 & QNAN & VML_STATUS_SING & \\
\(X>+0\) & \(+\infty\) & +0 & & \\
\(X>+0\) & \(-\infty\) & -0 & &
\end{tabular}
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline\(+\infty\) & \(+\infty\) & QNAN & & \\
\(-\infty\) & \(-\infty\) & QNAN & & \\
QNAN & QNAN & QNAN & & INVALID \\
SNAN & SNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
```

Div(x1+i*y1,x2+i*y2) = (x1+i*y1)* (x2-i*y2)/(x2*x2+y2*y2).

```

Overflow in a complex function occurs when \(x 2+i * y 2\) is not zero, \(x 1, x 2, y 1, y 2\) are finite numbers, but the real or imaginary part of the exact result is so large that it does not fit the target precision. In that case, the function returns \(\infty\) in that part of the result, raises the OVERFLOW exception, and sets the VM Error Status to VML_STATUS_OVERFLOW.
v?Sqrt
Computes a square root of vector elements.

\section*{Syntax}
```

vsSqrt(n, a, y);
vsSqrtI(n, a, inca, y, incy);
vmsSqrt(n, a, y, mode);
vmsSqrtI(n, a, inca, y, incy, mode);
vdSqre(n, a, y);
vdSqrtI(n, a, inca, y, incy);
vmdSqrt(n, a, y, mode);
vmdSqrtI(n, a, inca, y, incy, mode);
vcSqrt(n, a, y);
vcSqrtI(n, a, inca, y, incy);
vmcSqrt(n, a, y, mode);
vmcSqrtI(n, a, inca, y, incy, mode);
vzSqrt(n, a, y);
vzSqrtI(n, a, inca, y, incy);
vmzSqrt(n, a, y, mode);
vmzSqrtI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.
```

Name Type
a const float* for vsSqrt, vmsSqre
const double* for vdSqre, vmdSqrt
const MKL_Complex8* for vcSqrt,
vmcSqrt
const MKL_Complex16* for vzSqrt,
vmzSqrt
inca, incy const MKL_INT
mode

```

\section*{Type}
const float* for vsSqre, vmsSqrt const double* for vdSqrt, vmdSqrt const MKL_Complex8* for vcSqrt, vmcSqrt
const MKL_Complex16* for vzSqrt, vmzSqrt
const MKL_INT
const MKL_INT64

\section*{Description}

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & float* for vsSqrt, vmsSqrt \\
double* for vdSqrt, vmdSqrt \\
& MKL_Complex8* for vcSqrt, vmcSqrt \\
& MKL_Complex16* for vzSqrt, \\
& vmzSqrt
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Sqrt function computes a square root of vector elements.
Special Values for Real Function v?Sqrt(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(X<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & +0 & & \\
-0 & -0 & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & \(+\infty\) & QNAN \\
\(+\infty\) & QNAN & & \\
QNAN & & INVALID \\
\hline SNAN & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Sqrt(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\operatorname{RE}(z) \\
\text { i•IM(z) }
\end{gathered}
\] & - & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(+\infty+\mathrm{i} \cdot \infty\) \\
\hline \(+\mathrm{i} \cdot \mathrm{Y}\) & \(+0+\mathrm{i} \cdot \infty\) & & & & & \(+\infty+\mathrm{i} \cdot 0\) & QNAN+i.QNAN \\
\hline +i.0 & \(+0+\mathrm{i} \cdot \infty\) & & +0+i. 0 & +0+i. 0 & & \(+\infty+\mathrm{i} \cdot 0\) & QNAN+i.QNAN \\
\hline -i. 0 & \(+0-\mathrm{i} \cdot \infty\) & & +0-i 0 & +0-i. 0 & & \(+\infty-\mathrm{i} \cdot 0\) & QNAN+i.QNAN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RE(z) } \\
& \text { i•IM(z) }
\end{aligned}
\] & - & -X & -0 & +0 & +X & + & NAN \\
\hline -i.Y & \(+0-\mathrm{i} \cdot \infty\) & & & & & \(+\infty-\mathrm{i} \cdot 0\) & QNAN+i-QNAN \\
\hline -i \(\cdot \infty\) & \(+\infty-\mathrm{i} \cdot \infty\) \\
\hline \(+\mathrm{i} \cdot \mathrm{NAN}\) & QNAN+i.QNAN & QNAN+i.QNAN & QNAN+i.QNAN & QNAN+i.QNAN & QNAN+i. QNAN & \(+\infty+\mathrm{i}\) Q Q \({ }^{\text {a }}\) & QNAN+i.QNAN \\
\hline
\end{tabular}

Notes:
- raises INVALID exception when the real or imaginary part of the argument is SNAN
- \(\operatorname{Sqrt}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Sqrt}(z))\).

\section*{v? InvSqrt}

Computes an inverse square root of vector elements.

\section*{Syntax}
```

vsInvSqrt(n, a, y);
vsInvSqrtI(n, a, inca, y, incy);
vmsInvSqrt(n, a, y, mode);
vmsInvSqrtI(n, a, inca, y, incy, mode);
vdInvSqrt(n, a, y);
vdInvSqrtI(n, a, inca, y, incy);
vmdInvSqrt(n, a, y, mode);
vmdInvSqrtI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l} 
const float* for vsInvSqrt, \\
vmsInvSqrt
\end{tabular} \\
\begin{tabular}{l} 
const double* for vdInvSqrt, \\
vmdInvSqrt
\end{tabular} \\
inca, incy & \begin{tabular}{l} 
const MKL_INT
\end{tabular} \\
& const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & float* for vsInvSqrt, vmsInvSqrt \\
& double* for vdInvSqrt, vmdInvSqrt
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v? InvSqrt function computes an inverse square root of vector elements.
Special Values for Real Function v?InvSqrt(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(X<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & +0 & & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}
v?Cbrt
Computes a cube root of vector elements.
Syntax
```

vsCbrt(n, a, y);
vsCbrtI(n, a, inca, y, incy);
vmsCbrt(n, a, y, mode);
vmsCbrtI(n, a, inca, y, incy, mode);
vdCbrt(n, a, y);
vdCbrtI(n, a, inca, y, incy);
vmdCbrt(n, a, y, mode);
vmdCbrtI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
\(n\) & const MKL_INT & \begin{tabular}{l} 
Specifies the number of elements to be \\
calculated.
\end{tabular} \\
\(a\) & const float* for vsCbrt, vmsCbrt \\
const double* for vdCbrt, vmdCbrt
\end{tabular}\(\quad\)\begin{tabular}{l} 
Pointer to an array that contains the input vector \\
inca, incy
\end{tabular}
\begin{tabular}{ll} 
Name & Type \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & float* for vsCbrt, vmsCbrt \\
& double* for vdCbrt, vmdCbrt
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Cbrt function computes a cube root of vector elements.
Special Values for Real Function v?Cbrt(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) & INVALID \\
\(-\infty\) & \(-\infty\) & \\
QNAN & QNAN & \\
SNAN & QNAN & \\
\hline
\end{tabular}

\section*{v? InvCbrt}

Computes an inverse cube root of vector elements.

\section*{Syntax}
```

vsInvCbrt(n, a, y);
vsInvCbrtI(n, a, inca, y, incy);
vmsInvCbrt(n, a, y, mode);
vmsInvCbrtI(n, a, inca, y, incy, mode);
vdInvCbrt(n, a, y);
vdInvCbrtI(n, a, inca, y, incy);
vmdInvCbrt(n, a, y, mode);
vmdInvCbrtI(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.
```

Name Type
a const float* for vsInvCbrt,
vms InvCbrt
const double* for vdInvCbrt,
vmdInvCbrt
inca, incy const MKL_INT
mode const MKL_INT64

```

\section*{Description}

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & float* for vsInvCbrt, vms InvCbrt \\
& double* for vdInvCbrt, vmdInvCbrt
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v? InvCbrt function computes an inverse cube root of vector elements.
Special Values for Real Function v?InvCbrt(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(+\infty\) & +0 & & \\
\(-\infty\) & -0 & & \\
QNAN & QNAN & & \\
SNAN & QNAN & & INVALID \\
\hline
\end{tabular}

\section*{v?Pow2o3}

Computes the cube root of the square of each vector element.

Syntax
```

vsPow2o3(n, a, y);
vsPow2o3I(n, a, inca, y, incy);
vmsPow2o3(n, a, y, mode);
vmsPow2o3I(n, a, inca, y, incy, mode);
vdPow2o3(n, a, y);
vdPow2o3I(n, a, inca, y, incy);
vmdPow2o3(n, a, y, mode);
vmdPow2o3I(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l} 
const float* for vsPow203, \\
vmsPow2o3 \\
const double* for vdPow203, \\
vmdPow2o3
\end{tabular} \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to arrays that contain the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name}
\(y\)

\section*{Type}
float* for vsPow2o3, vmsPow2o3
double* for vdPow2o3, vmdPow2०3

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v? Pow2o3 function computes the cube root of the square of each vector element.
Special Values for Real Function v?Pow2o3(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & +0 & \\
\(+\infty\) & \(+\infty\) & \\
\(-\infty\) & \(+\infty\) & INVALID \\
QNAN & QNAN & \\
SNAN & QNAN & \\
\hline
\end{tabular}
```

v?Pow3o2
Computes the square root of the cube of each vector
element.
Syntax

```
```

vsPow3o2(n, a, y);

```
vsPow3o2( n, a, y );
vsPow3o2I(n, a, inca, y, incy);
vsPow3o2I(n, a, inca, y, incy);
vmsPow3o2( n, a, y, mode );
vmsPow3o2( n, a, y, mode );
vmsPow3o2I(n, a, inca, y, incy, mode);
vmsPow3o2I(n, a, inca, y, incy, mode);
vdPow3o2( n, a, y );
vdPow3o2( n, a, y );
vdPow3o2I(n, a, inca, y, incy);
vdPow3o2I(n, a, inca, y, incy);
vmdPow3o2( n, a, y, mode );
```

vmdPow3o2(n, a, y, mode);

```
vmdPow3o2I(n, a, inca, y, incy, mode);
Include Files
- mkl.h

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l} 
const float* for vsPow3o2, \\
vmsPow3o2
\end{tabular} \\
& \begin{tabular}{l} 
const double* for vdPow3o2, \\
vmdPow3o2
\end{tabular} \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to arrays that contain the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

Precision Overflow Thresholds for Pow3o2 Function
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(\mathrm{abs}(a[i])<(\text { FLT_MAX })^{2 / 3}\) \\
double precision & \(\mathrm{abs}(a[i])<(\text { DBL_MAX })^{2 / 3}\) \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & float* for vsPow3o2, vmsPow3o2 \\
& double* for vdPow3o2, vmdPow3o2
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v? Pow 302 function computes the square root of the cube of each vector element.
Special Values for Real Function v?Pow3o2(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(X<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & +0 & & \\
-0 & -0 & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & \(+\infty\) & \\
\(+\infty\) & QNAN & QNAN & INVALID \\
QNAN & & \\
SNAN & & & \\
\hline
\end{tabular}
v?Pow
Computes a to the power b for elements of two vectors.

\section*{Syntax}
```

vsPow(n, a, b, y);
vsPowI(n, a, inca, b, incb, y, incy);
vmsPow(n, a, b, y, mode);
vmsPowI(n, a, inca, b, incb, y, incy, mode);
vdPow(n, a, b, y);
vdPowI(n, a, inca, b, incb, y, incy);
vmdPow (n, a, b, y, mode);
vmdPowI(n, a, inca, b, incb, y, incy, mode);
vcPow(n, a, b, y);
vcPowI(n, a, inca, b, incb, y, incy);
vmcPow (n, a, b, y, mode);
vmcPowI(n, a, inca, b, incb, y, incy, mode);
vzPow(n, a, b, y);
vzPowI(n, a, inca, b, incb, y, incy);
vmzPow(n, a, b, y, mode);
vmzPowI(n, a, inca, b, incb, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
a, \(b\) & \begin{tabular}{l} 
const float* for vsPow, vmsPow \\
\\
const double* for vdPow, vmdPow \\
vmcPow
\end{tabular} \\
\begin{tabular}{ll} 
const MKL_Complex16* for vzPow, \\
inca, incb, \\
incy
\end{tabular} & \begin{tabular}{l} 
const MKL_INT
\end{tabular} \\
mode
\end{tabular}\(\quad\)\begin{tabular}{ll} 
const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to arrays that contain the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Precision Overflow Thresholds for Real v?Pow Function}
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(\mathrm{abs}(\mathrm{a}[\mathrm{i}])<(\text { FLT_MAX })^{1 / b[i]}\)
\end{tabular}
Data Type \(\quad\) Threshold Limitations on Input Parameters
double precision \(\quad \operatorname{abs}(a[i])<(\text { DBL_MAX })^{1 / b[i]}\)

Precision overflow thresholds for the complex v?Pow function are beyond the scope of this document.

\section*{Output Parameters}
Name Type Description
\(y \quad\) float* for vsPow, vmsPow

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v? Pow function computes \(a\) to the power \(b\) for elements of two vectors.
The real function \(v(s / d)\) Pow has certain limitations on the input range of \(a\) and \(b\) parameters. Specifically, if \(a\) [i] is positive, then \(b\) [i] may be arbitrary. For negative \(a\) [i], the value of \(b\) [i] must be an integer (either positive or negative).
The complex function \(v(c / z)\) Pow has no input range limitations.

\section*{Special values for Real Function v?Pow( \(x, y\) )}
\begin{tabular}{|c|c|c|c|c|}
\hline Argument 1
(X) & \begin{tabular}{l}
Argument 2 \\
(Y)
\end{tabular} & Result & VM Error Status & Exception \\
\hline +0 & neg. odd integer & \(+\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline -0 & neg. odd integer & \(-\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline +0 & neg. even integer & \(+\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline -0 & neg. even integer & \(+\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline +0 & neg. non-integer & \(+\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline -0 & neg. non-integer & \(+\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline -0 & pos. odd integer & +0 & & \\
\hline -0 & pos. odd integer & -0 & & \\
\hline +0 & pos. even integer & +0 & & \\
\hline -0 & pos. even integer & +0 & & \\
\hline +0 & pos. non-integer & +0 & & \\
\hline -0 & pos. non-integer & +0 & & \\
\hline -1 & \(+\infty\) & +1 & & \\
\hline -1 & \(-\infty\) & +1 & & \\
\hline +1 & any value & +1 & & \\
\hline +1 & +0 & +1 & & \\
\hline +1 & -0 & +1 & & \\
\hline +1 & \(+\infty\) & +1 & & \\
\hline +1 & \(-\infty\) & +1 & & \\
\hline +1 & QNAN & +1 & & \\
\hline any value & +0 & +1 & & \\
\hline +0 & +0 & +1 & & \\
\hline -0 & +0 & +1 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Argument 1
(X) & \begin{tabular}{l}
Argument 2 \\
(Y)
\end{tabular} & Result & VM Error Status & Exception \\
\hline \(+\infty\) & +0 & +1 & & \\
\hline \(-\infty\) & +0 & +1 & & \\
\hline QNAN & +0 & +1 & & \\
\hline any value & -0 & +1 & & \\
\hline +0 & -0 & +1 & & \\
\hline -0 & -0 & +1 & & \\
\hline \(+\infty\) & -0 & +1 & & \\
\hline \(-\infty\) & -0 & +1 & & \\
\hline QNAN & -0 & +1 & & \\
\hline \(\mathrm{X}<+0\) & non-integer & QNAN & VML_STATUS_ERRDOM & INVALID \\
\hline \(|X|<1\) & \(-\infty\) & \(+\infty\) & & \\
\hline +0 & \(-\infty\) & \(+\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline -0 & \(-\infty\) & \(+\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline \(|X|>1\) & \(-\infty\) & +0 & & \\
\hline \(+\infty\) & \(-\infty\) & +0 & & \\
\hline \(-\infty\) & \(-\infty\) & +0 & & \\
\hline \(|X|<1\) & \(+\infty\) & +0 & & \\
\hline +0 & \(+\infty\) & +0 & & \\
\hline -0 & \(+\infty\) & +0 & & \\
\hline \(|X|>1\) & \(+\infty\) & \(+\infty\) & & \\
\hline \(+\infty\) & \(+\infty\) & \(+\infty\) & & \\
\hline \(-\infty\) & \(+\infty\) & \(+\infty\) & & \\
\hline \(-\infty\) & neg. odd integer & -0 & & \\
\hline \(-\infty\) & neg. even integer & +0 & & \\
\hline \(-\infty\) & neg. non-integer & +0 & & \\
\hline \(-\infty\) & pos. odd integer & \(-\infty\) & & \\
\hline \(-\infty\) & pos. even integer & \(+\infty\) & & \\
\hline \(-\infty\) & pos. non-integer & \(+\infty\) & & \\
\hline \(+\infty\) & \(x<+0\) & +0 & & \\
\hline \(+\infty\) & \(x>+0\) & \(+\infty\) & & \\
\hline Big finite value* & Big finite value* & \(+/-\infty\) & VML_STATUS_OVERFLOW & OVERFLOW \\
\hline QNAN & QNAN & QNAN & & \\
\hline QNAN & SNAN & QNAN & & INVALID \\
\hline SNAN & QNAN & QNAN & & INVALID \\
\hline SNAN & SNAN & QNAN & & INVALID \\
\hline
\end{tabular}

The complex double precision versions of this function, vzPow and vmzPow, are implemented in the EP accuracy mode only. If used in HA or LA mode, vzPow and vmzPow set the VM Error Status to VML_STATUS_ACCURACYWARNING (see the Values of the VM Status table).
* Overflow in a real function is supported only in the HA/LA accuracy modes. The overflow occurs when \(x\) and \(y\) are finite numbers, but the result is too large to fit the target precision. In this case, the function:
1. Returns \(\infty\) in the result.
2. Raises the OVERFLOW exception.
3. Sets the VM Error Status to VML_STATUS_OVERFLOW.

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all \(\operatorname{RE}(x), \operatorname{RE}(y)\), IM ( x ), IM ( y ) arguments are finite numbers, but the real or imaginary part of the computed result is so large that it does not fit the target precision. In this case, the function returns \(\infty\) in that part of the result, raises the OVERFLOW exception, and sets the VM Error Status to VML_STATUS_OVERFLOW (overriding any possible VML_STATUS_ACCURACYWARNING status).

\section*{v?Powx}

Computes vector a to the scalar power \(b\).

\section*{Syntax}
```

vsPowx(n, a, b, y);
vsPowxI(n, a, inca, b, y, incy);
vmsPowx(n, a, b, y, mode);
vmsPowxI(n, a, inca, b, y, incy, mode);
vdPowx(n, a, b, y);
vdPowxI(n, a, inca, b, y, incy);
vmdPowx(n, a, b, y, mode);
vmdPowxI(n, a, inca, b, y, incy, mode);
vCPowx(n, a, b, y);
vcPowxI(n, a, inca, b, y, incy);
vmcPowx(n, a, b, y, mode);
vmcPowxI(n, a, inca, b, y, incy, mode);
vzPowx(n, a, b, y);
vzPowxI(n, a, inca, b, y, incy);
vmzPowx (n, a, b, y, mode);
vmzPowxI(n, a, inca, b, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
a & const float* for vsPowx, vmsPowx \\
& const double* for vdPowx, vmdPowx \\
& const MKL_Complex8* for vcPowx, \\
& vmcPowx \\
& const MKL_Complex16* for vzPowx, \\
& vmzPowx \\
& const float for vsPowx, vmsPowx
\end{tabular}

\section*{Description}

Number of elements to be calculated.
Pointer to an array that contains the input vector a.

Constant value for power \(b\).
\begin{tabular}{lll} 
Name & Type & Description \\
const double for vaPowx, vmdPowx \\
const MKL_Complex8 for vcPowx, \\
vmcPowx \\
const MKL_Complex16 for vzPowx, \\
vmzPowx
\end{tabular}\(\quad\)\begin{tabular}{l} 
const MKL_INT \\
inca, incy \\
mode
\end{tabular}

Precision Overflow Thresholds for Real v?Powx Function
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & abs \((a[i])<(\text { FLT_MAX })^{1 / b}\) \\
double precision & abs \((a[i])<(\text { DBL_MAX })^{1 / b}\) \\
\hline
\end{tabular}

Precision overflow thresholds for the complex v? Powx function are beyond the scope of this document.

\section*{Output Parameters}

Name
y

Type
float* for vsPowx, vmsPowx
double* for vdPowx, vmdPowx
MKL_Complex8* for vcPowx, vmcPowx
MKL_Complex16* for vzPowx, vmzPowx

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v? Powx function computes \(a\) to the power \(b\) for a vector \(a\) and a scalar \(b\).
The real function \(v(s / d)\) Powx has certain limitations on the input range of \(a\) and \(b\) parameters. Specifically, if \(a\) [i] is positive, then \(b\) may be arbitrary. For negative \(a\) [i], the value of \(b\) must be an integer (either positive or negative).

The complex function \(v(c / z)\) Powx has no input range limitations.
Special values and VM Error Status treatment are the same as for the v? Pow function.
v?Powr
Computes a to the power \(b\) for elements of two vectors, where the elements of vector argument a are all non-negative.

\section*{Syntax}
```

vsPowr (n, a, b, y);
vsPowrI(n, a, inca, b, incb, y, incy);
vmsPowr (}n,a,b,y, mode)
vmsPowrI(n, a, inca, b, incb, y, incy, mode);

```
```

vdPowr (n, a, b, y);
vdPowrI(n, a, inca, b, incb, y, incy);
vmdPowr (n, a, b, y, mode);
vmdPowrI(n, a, inca, b, incb, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a, b\) & const float* for vsPowr \\
& \begin{tabular}{l} 
const float* for vmsPowr \\
const double* for vdPowr
\end{tabular} \\
\begin{tabular}{ll} 
inca, incb, \\
incy \\
mode
\end{tabular} & const MKL_INT
\end{tabular}

\section*{Output Parameters}

\section*{Name}

\section*{Type}
\(y\)

> float* for vsPowr
> float* for vmsPowr
> double* for vdPowr
> double* for vmdPowr

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to arrays containing the input vectors a and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v? Powr function raises each element of vector \(a\) by the corresponding element of vector \(b\). The elements of \(a\) are all nonnegative ( \(a_{i} \geq 0\) ).

Precision Overflow Thresholds for Real Function v?Powr
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(a_{i}<(\text { FLT_MAX })^{1 / b_{i}}\) \\
double precision & \(a_{i}<(\text { DBL_MAX })^{1 / b_{i}}\) \\
\hline
\end{tabular}

Special values and VM Error Status treatment for v?Powr function are the same as for v?Pow, unless otherwise indicated in this table:
Special values for Real Function v?Powr(x)
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline\(x<0\) & any value \(y\) & NAN & VML_STATUS_ERRDOM & INVALID
\end{tabular}
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline \(0<x<\infty\) & \(\pm 0\) & 1 & & \\
\(\pm 0\) & \(-\infty<y<0\) & \(+\infty\) & & \\
\(\pm 0\) & \(-\infty\) & \(+\infty\) & & \\
\(\pm 0\) & \(y>0\) & +0 & & \\
1 & \(-\infty<y<\infty\) & 1 & & \\
\(\pm 0\) & \(\pm 0\) & NAN & & \\
\(+\infty\) & \(\pm 0\) & NAN & & \\
1 & \(+\infty\) & NAN & & \\
\(x \geq 0\) & NAN & NAN & & \\
NAN & NAN value \(y\) & \(+\infty\) & & \\
\(0<x<1\) & \(-\infty\) & +0 & & \\
\(x>1\) & \(+\infty\) & \(+\infty\) & \(+\infty\) & \\
\(0 \leq x<1\) & \(x<+0\) & +0 & & \\
\(x>1\) & \(x>+0\) & QNAN & QNAN & \\
\(+\infty\) & SNAN & QNAN & & \\
\(+\infty\) & QNAN & QNAN & VML_STATUS_ERRDOM & INVALID \\
QNAN & SNAN & & & \\
QNAN & & & & \\
SNAN & & & & \\
SNAN & & & & \\
\hline
\end{tabular}

\section*{See Also}

Pow Computes \(a\) to the power \(b\) for elements of two vectors.
Powx Computes vector \(a\) to the scalar power \(b\).
v?Hypot
Computes a square root of sum of two squared elements.

\section*{Syntax}
```

vsHypot(n, a, b, y);
vsHypotI(n, a, inca, b, incb, y, incy);
vmsHypot(n, a, b, y, mode);
vmsHypotI(n, a, inca, b, incb, y, incy, mode);
vdHypot(n, a, b, y);
vdHypotI(n, a, inca, b, incb, y, incy);
vmdHypot(n, a, b, y, mode);
vmdHypotI(n, a, inca, b, incb, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & \begin{tabular}{l} 
const MKL_INT \\
const float* for vsHypot, \\
vmsHypot
\end{tabular} \\
\begin{tabular}{l} 
const double* for vdHypot, \\
inca, incb, \\
incy
\end{tabular} & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Number of elements to be calculated.
Pointers to arrays that contain the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Precision Overflow Thresholds for Hypot Function}
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(\operatorname{abs}(a[i])<\operatorname{sqrt}\left(F L T \_M A X\right)\) \\
double precision & \(\operatorname{abs}(b[i])<\operatorname{sqrt}\left(F L T \_M A X\right)\) \\
& \(\operatorname{abs}(a[i])<\operatorname{sqrt}\left(D B L \_M A X\right)\) \\
\(\operatorname{abs}(b[i])<\operatorname{sqrt}\left(D B L \_M A X\right)\) \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & float* for vsHypot, vmsHypot \\
& double* for vdHypot, vmdHypot
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The function v?Hypot computes a square root of sum of two squared elements.
Special values for Real Function v?Hypot(x)
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline+0 & +0 & +0 & +0 \\
-0 & -0 & \(+\infty\) & \\
\(+\infty\) & any value & \(+\infty\) & INVALID \\
any value & \(+\infty\) & QNAN & INVALID \\
SNAN & any value & QNAN & \\
any value & SNAN & QNAN & \\
QNAN & any value & QNAN & \\
any value & QNAN & & \\
\hline
\end{tabular}

\section*{Exponential and Logarithmic Functions}

\section*{v?Exp \\ Computes an exponential of vector elements.}

\section*{Syntax}
```

vsExp(n, a, y);
vsExpI(n, a, inca, y, incy);
vmsExp(n, a, y, mode);
vmsExpI(n, a, inca, y, incy, mode);
vdExp(n, a, y);
vdExpI(n, a, inca, y, incy);
vmdExp (n, a, y, mode);
vmdExpI(n, a, inca, y, incy, mode);
vcExp(n, a, y);
vcExpI(n, a, inca, y, incy);
vmcExp(n, a, y, mode);
vmcExpI(n, a, inca, y, incy, mode);
vzExp(n, a, y);
vzExpI(n, a, inca, y, incy);
vmzExp(n, a, y, mode);
vmzExpI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l} 
const float* for vsExp, vmsExp \\
\\
const double* for vdExp, vmdExp
\end{tabular} \\
& \begin{tabular}{l} 
const MKL_Complex8* for vcExp, \\
vmcExp
\end{tabular} \\
inca, incy & \begin{tabular}{l} 
const MKL_Complex16* for vzExp, \\
mode
\end{tabular}
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

Precision Overflow Thresholds for Real v?Exp Function
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(a[i]<\operatorname{Ln}\left(F L T \_M A X\right)\) \\
double precision & \(a[i]<\operatorname{Ln}\left(D B L \_M A X\right)\) \\
\hline
\end{tabular}

Precision overflow thresholds for the complex v?Exp function are beyond the scope of this document.

\section*{Output Parameters}
```

Name Type
y float* for vsExp, vmsExp
double* for vdExp, vmdExp
MKL_Complex8* for vcExp, vmcExp
MKL_Complex16* for vzExp, vmzExp

```

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Exp function computes an exponential of vector elements.

\section*{Special Values for Real Function v? Exp(x)}
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & \\
\(X>\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & OVERFLOW \\
\(X<\) underflow & +0 & VML_STATUS_UNDERFLOW & \\
\(+\infty\) & \(+\infty\) & & UNDERFLOW \\
\(-\infty\) & +0 & & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Exp(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RE(z) } \\
& \text { i•IM(z) }
\end{aligned}
\] & - - & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(+0+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN } \\
& \text { INVALID }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} \\
\hline \(+\mathrm{i} \cdot \mathrm{Y}\) & +0.CIS(Y) & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & \begin{tabular}{l}
QNAN \\
+i QNAN
\end{tabular} \\
\hline +i. 0 & +0.CIS(0) & & \(+1+\mathrm{i} \cdot 0\) & \(+1+\mathrm{i} \cdot 0\) & & \(+\infty+\mathrm{i} \cdot 0\) & QNAN+i. 0 \\
\hline -i.0 & +0.CIS(0) & & +1-i-0 & +1-i-0 & & \(+\infty\) - \(\mathrm{i} \cdot 0\) & QNAN-i•0 \\
\hline -i.Y & \(+0 \cdot \mathrm{CIS}(\mathrm{Y})\) & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & \begin{tabular}{l}
QNAN \\
+i QNAN
\end{tabular} \\
\hline -i \(\cdot \infty\) & +0-i \(\cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN } \\
& \text { INVALID }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RE(z) } \\
& \text { i•IM(z) }
\end{aligned}
\] & - & -X & -0 & +0 & +X & + & NAN \\
\hline \[
\begin{gathered}
+i \cdot N A \\
N
\end{gathered}
\] & \(+0+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN
\end{tabular} \\
\hline
\end{tabular}

Notes:
- raises the INVALID exception when real or imaginary part of the argument is SNAN
- raises the INVALID exception on argument \(z=-\infty+i \cdot Q N A N\)
- raises the OVERFLOW exception and sets the VM Error Status to VML_STATUS_OVERFLOW in the case of overflow, that is, when both RE (z) and IM(z) are finite non-zero numbers, but the real or imaginary part of the exact result is so large that it does not meet the target precision.

\section*{v?Exp2}

Computes the base 2 exponential of vector elements.

\section*{Syntax}
```

vsExp2 (n, a, y);
vsExp2I(n, a, inca, y, incy);
vmsExp2 (n, a, y, mode);
vmsExp2I(n, a, inca, y, incy, mode);
vdExp2 (n, a, y);
vdExp2I(n, a, inca, y, incy);
vmdExp2 (n, a, y, mode);
vmdExp2I(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsExp2 \\
& const float* for vmsExp2 \\
& const double* for vdExp2 \\
inca, incy & const double* for vmdExp2 \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name}

\section*{Type}
\[
\begin{aligned}
& \text { float* for vsExp2 } \\
& \text { float* for vmsExp2 } \\
& \text { double* for vdExp2 } \\
& \text { double* for vmdExp2 }
\end{aligned}
\]

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Exp2 function computes the base 2 exponential of vector elements.
Precision Overflow Thresholds for Real Function v?Exp2
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(a_{i}<\log _{2}(\) FLT_MAX \()\) \\
double precision & \(a_{i}<\log _{2}(\) DBL_MAX \()\) \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in this table:
Special values for Real Function v?Exp2(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & \\
\(x>\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & OVERFLOW \\
\(x<\) underflow & +0 & & UNL_STATUS_UNDERFLOW \\
\(+\infty\) & \(+\infty\) & & \\
\(-\infty\) & +0 & QNAN & INVALID \\
\hline QNAN & QNAN & & \\
\hline
\end{tabular}

\section*{See Also}

Exp Computes an exponential of vector elements.
Exp10 Computes the base 10 exponential of vector elements.
v?Exp10
Computes the base 10 exponential of vector elements.
Syntax
```

vsExp10 (n, a, y);
vsExp10I(n, a, inca, y, incy);
vmsExp10 (n, a, y, mode);
vmsExp10I(n, a, inca, y, incy, mode);
vdExp10 (n, a, y);
vdExp10I(n, a, inca, y, incy);
vmdExp10 (n, a, y, mode);
vmdExp10I(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
a & const float* for vsExp10 \\
& const float* for vmsExp10 \\
& const double* for vdExp10 \\
inca, incy & const double* for vmdExp10 \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
\(y\) & float* for vsExp10 & Pointer to an array containing the output vector \\
& float* for vmsExp10 & \(y\). \\
& double * for vdExp10 & \\
& double * for vmdExp10 &
\end{tabular}

\section*{Description}

The v?Exp10 function computes the base 10 exponential of vector elements.
Precision Overflow Thresholds for Real Function v?Exp10
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(a_{i}<\log _{10}\) (FLT_MAX) \\
double precision & \(a_{i}<\log _{10}\) (DBL_MAX) \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in this table:
Special values for Real Function v?Pow(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & \\
\(x>\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & OVERFLOW \\
\(x<\) underflow & +0 & VML_STATUS_UNDERFLOW & UNDERFLOW \\
\(+\infty\) & \(+\infty\) & & \\
\(-\infty\) & +0 & & INVALID \\
\hline QNAN & QNAN & & \\
\hline SNAN & QNAN & & \\
\hline
\end{tabular}

See Also
Exp Computes an exponential of vector elements.
Exp2 Computes the base 2 exponential of vector elements.
v?Expm1
Computes an exponential of vector elements decreased by 1 .

Syntax
```

vsExpm1 (n, a, y);
vsExpm1I(n, a, inca, y, incy);
vmsExpm1 (n, a, y, mode);
vmsExpm1I(n, a, inca, y, incy, mode);
vdExpm1(n, a, y);
vdExpm1I(n, a, inca, y, incy);
vmdExpm1 (n, a, y, mode);
vmdExpm1I(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l} 
const float* for vsExpm1, \\
vmsExpm1
\end{tabular} \\
const double* for vdExpm1, \\
inca, incy & condExpm1 MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Precision Overflow Thresholds for Expm1 Function}
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(a[i]<\operatorname{Ln}(\) FLT_MAX ) \\
double precision & \(a[i]<\operatorname{Ln}(\) DBL_MAX ) \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{Name}
y

\section*{Type}
float* for vsExpm1, vmsExpm1
double* for vdExpm1, vmdExpm1

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Expm1 function computes an exponential of vector elements decreased by 1.
Special Values for Real Function v?Expm1(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & +0 & & \\
\(X>\) overflow & \(+\infty\) & & \\
\(+\infty\) & \(+\infty\) & & \\
\(-\infty\) & -1 & OVERFLOW \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}
\(v ?\) Ln
Computes natural logarithm of vector elements.
Syntax
```

vsLn(n, a, y);
vsLnI(n, a, inca, y, incy);
vmsLn(n, a, y, mode);
vmsLnI(n, a, inca, y, incy, mode);
vdLn(n, a, y);
vdLnI(n, a, inca, y, incy);
vmdLn(n, a, y, mode);
vmdLnI(n, a, inca, y, incy, mode);
vcLn(n, a, y);
vcLnI(n, a, inca, y, incy);
vmcLn(n, a, y, mode);
vmcLnI(n, a, inca, y, incy, mode);
vzLn(n, a, y);
vzLnI(n, a, inca, y, incy);
vmzLn(n, a, y, mode);
vmzLnI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}

Name
n

\section*{Type}
const MKL_INT

\section*{Description}

Specifies the number of elements to be calculated.
\begin{tabular}{ll} 
Name & Type \\
a & const float* for vsLn, vmsLn \\
& const double* for vdLn, vmdLn \\
& const MKL_Complex8* for vcLn, \\
& vmcLn \\
inca, incy & const MKL_Complex16* for vzLn, \\
monzin & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & float* for vsLn, vmsLn \\
& double* for vdLn, vmdLn \\
& \(M K L \_C o m p l e x 8 * ~ f o r ~ v c L n, ~ v m c L n ~\) \\
& \(M K L \_C o m p l e x 16 *\) for \(v z L n, v m z L n\)
\end{tabular}

\section*{Description}

Pointer to an array that contains the input vector a.

> Specifies increments for the elements of \(a\) and \(y\).
> Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

The v ? Ln function computes natural logarithm of vector elements.
Special Values for Real Function v?Ln(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & +0 & & \\
\(X<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & \(+\infty\) & & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Ln(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
RE(z) \\
\(\mathbf{i} \cdot \mathbf{I M}(\mathbf{z}\) \\
)
\end{tabular} & \(-\infty\) & \(\mathbf{- X}\) & \(\mathbf{- 0}\) & \(\mathbf{+ 0}\) & \(\mathbf{+ X}\) & \(\mathbf{+ \infty}\) & NAN \\
\hline\(+\mathrm{i} \cdot \infty\) & & & & & \\
\hline\(+\infty+\mathrm{i} \cdot \frac{3 \pi}{4}\) & & \(+\infty+\mathrm{i} \cdot \pi / 2\) & \(+\infty+\mathrm{i} \cdot \pi / 2\) & \(+\infty+\mathrm{i} \cdot \pi / 2\) & \(+\infty+\mathrm{i} \cdot \pi / 4\) & \(+\infty+\mathrm{i} \cdot\) QNAN \\
\hline\(+\mathrm{i} \cdot \mathrm{Y}\) & \(+\infty+\mathrm{i} \cdot \pi\) & & & & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l} 
QNAN \\
\(+\mathrm{i} \cdot\) QNAN
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z } \\
\text { ) }
\end{gathered}
\] & \(-\infty\) & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline & & & & & & & INVALID \\
\hline +i. 0 & \(+\infty+\mathrm{i} \cdot \pi\) & & \begin{tabular}{l}
\(-\infty+i \cdot \pi\) \\
ZERODIVID \\
E
\end{tabular} & \begin{tabular}{l}
\(-\infty+\mathrm{i} \cdot 0\) \\
ZERODIVID \\
E
\end{tabular} & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} \\
\hline -i. 0 & \(+\infty-\mathrm{i} \cdot \pi\) & & \begin{tabular}{l}
\[
-\infty-\mathrm{i} \cdot \pi
\] \\
ZERODIVID \\
E
\end{tabular} & \begin{tabular}{l}
\(-\infty-\mathrm{i} \cdot 0\) \\
ZERODIVID \\
E
\end{tabular} & & \(+\infty\)-i. 0 & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} \\
\hline -i.Y & \(+\infty-\mathrm{i} \cdot \pi\) & & & & & \(+\infty-\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} \\
\hline -i \(\cdot \infty\) & \(+\infty-i \cdot \frac{3 \pi}{4}\) & \(+\infty-\mathrm{i} \cdot \pi / 2\) & \(+\infty-\mathrm{i} \cdot \pi / 4\) & \(+\infty+\mathrm{i} \cdot \mathrm{QNAN}\) \\
\hline \(+\mathrm{i} \cdot \mathrm{NAN}\) & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i.QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} \\
\hline
\end{tabular}

Notes:
- raises INVALID exception when real or imaginary part of the argument is SNAN

\section*{v?Log2}

Computes the base 2 logarithm of vector elements.

\section*{Syntax}
vsLog2 ( \(n, a, y\) );
vsLog2I (n, a, inca, y, incy);
vmsLog2 ( \(n, a, y\), mode);
vmsLog2I(n, a, inca, y, incy, mode);
vdLog2 ( \(n, a, y\) );
vdLog2I (n, a, inca, y, incy);
vmdLog2 (n, a, y, mode);
vmdLog2I(n, a, inca, y, incy, mode);
Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsLog2 \\
& const float* for vmsLog2 \\
& const double* for vdLog2 \\
inca, incy & const double* for vmdLog2 \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}
```

Name
y
float* for vsLog2
float* for vmsLog2
double* for vdLog2
double* for vmdLog2

```

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Log2 function computes the base 2 logarithm of vector elements.
See Special Value Notations for the conventions used in this table:
Special values for Real Function v?Log2(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & +0 & & \\
\(x<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & \(+\infty\) & & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

\section*{See Also}

Ln Computes natural logarithm of vector elements.
Log10 Computes the base 10 logarithm of vector elements.

\section*{v?Log10}

Computes the base 10 logarithm of vector elements.

\section*{Syntax}
```

vsLog10(n, a, y);
vsLog10I(n, a, inca, y, incy);
vmsLog10(n, a, y, mode);
vmsLog10I(n, a, inca, y, incy, mode);
vdLog10(n, a, y);
vdLog10I(n, a, inca, y, incy);
vmdLog10(n, a, y, mode);
vmdLog10I(n, a, inca, y, incy, mode);
vcLog10(n, a, y);
vcLog10I(n, a, inca, y, incy);
vmcLog10(n, a, y, mode);
vmcLog10I(n, a, inca, y, incy, mode);
vzLog10(n, a, y);
vzLog10I(n, a, inca, y, incy);
vmzLog10(n, a, y, mode);
vmzLog10I(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
a & \begin{tabular}{l} 
const float* for vsLog10, \\
vmsLog10
\end{tabular} \\
& \begin{tabular}{l} 
const double* for vdLog10, \\
vmdLog10
\end{tabular} \\
& \begin{tabular}{l} 
const MKL_Complex8* for vcLog10, \\
vmcLog10
\end{tabular} \\
inca, incy & \begin{tabular}{l} 
const MKL_Complex16* for vzLog10, \\
mode
\end{tabular}
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}
```

Name
y

```
```

float* for vsLog10, vmsLog10

```
float* for vsLog10, vmsLog10
double* for vdLog10, vmdLog10
double* for vdLog10, vmdLog10
MKL_Complex8* for vcLog10,
MKL_Complex8* for vcLog10,
vmcLog10
vmcLog10
MKL_Complex16* for vzLog10,
MKL_Complex16* for vzLog10,
vmzLog10
```

vmzLog10

```

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The \(v\) ? Log 10 function computes the base 10 logarithm of vector elements.
Special Values for Real Function v?Log10(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & +0 & & \\
\(X<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & \(+\infty\) & & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Log10(z)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z } \\
\text { ) }
\end{gathered}
\] & \(-\infty\) & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline \[
\overline{-i \cdot Y}
\] & \[
-i \frac{\pi}{\ln (1)}
\] & & & & & \(+\infty-\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
+i QNAN \\
INVALID
\end{tabular} \\
\hline \[
+\infty
\] & \[
+i \frac{3}{4}+\phi
\] & \[
-i \frac{\pi}{2}
\] & \[
-i \frac{\pi}{2}=
\] & \[
-i \frac{\pi}{2}=
\] & \[
-i \frac{\pi}{2}+\infty
\] & \[
-i \frac{\pi}{4}
\] & \[
\frac{1^{+\infty+i} \cdot \text { QNAN }}{(10)}
\] \\
\hline +i.NAN & \[
\begin{aligned}
& +\infty \\
& +i \cdot Q N A N
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+i \cdot\) QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+i \cdot\) QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+i \cdot\) QNAN \\
INVALID
\end{tabular} & QNAN +i.QNAN INVALID & \[
\begin{aligned}
& +\infty \\
& +i \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
+i.QNAN \\
INVALID
\end{tabular} \\
\hline
\end{tabular}

Notes:
- raises INVALID exception when real or imaginary part of the argument is SNAN

\section*{v?Log1p}

Computes a natural logarithm of vector elements that are increased by 1.

\section*{Syntax}
```

vsLoglp(n, a, y);
vsLog1pI(n, a, inca, y, incy);
vmsLog1p(n, a, y, mode);
vmsLoglpI(n, a, inca, y, incy, mode);
vdLoglp(n, a, y);
vdLoglpI(n, a, inca, y, incy);
vmdLog1p(n, a, y, mode);
vmdLog1pI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l} 
const float* for vsLog1p, \\
vmsLog1p
\end{tabular} \\
& \begin{tabular}{l} 
const double* for vdLog1p, \\
vmdLog1p
\end{tabular}
\end{tabular}
\begin{tabular}{ll} 
Name & Type \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & float* for vsLog1p, vmsLog1p \\
& double* for vdLog1p, vmdLog1p
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The \(v\) ? Log 1p function computes a natural logarithm of vector elements that are increased by 1.

\section*{Special Values for Real Function v?Log1p(x)}
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline-1 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(X<-1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & +0 & & \\
-0 & -0 & QML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & \(+\infty\) & & INVALID \\
\(+\infty\) & QNAN & QNAN & \\
QNAN & & & \\
\hline
\end{tabular}

\section*{v?Logb \\ Computes the exponents of the elements of input vector a.}

\section*{Syntax}
```

vsLogb (n, a, y);
vsLogbI(n, a, inca, y, incy);
vmsLogb (n, a, y, mode);
vmsLogbI(n, a, inca, y, incy, mode);
vdLogb (n, a, y);
vdLogbI(n, a, inca, y, incy);
vmdLogb (n, a, y, mode);
vmdLogbI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsLogb \\
& const float* for vmsLogb \\
& const double* for vdLogb \\
inca, incy & const double* for vmdLogb \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}
```

Name
y
float* for vsLogb
float* for vmsLogb
double* for vdLogb
double* for vmdLogb

```

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Logb function computes the exponents of the elements of the input vector \(a\). For each element \(a_{i}\) of vector \(a\), this is the integral part of \(\log _{2}\left|a_{i}\right|\). The returned value is exact and is independent of the current rounding direction mode.
See Special Value Notations for the conventions used in this table:
Special values for Real Function v?Logb(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & \(-\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\(-\infty\) & \(+\infty\) & & \\
\(+\infty\) & \(+\infty\) & & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}

\section*{Trigonometric Functions}
v?Cos
Computes cosine of vector elements.
Syntax
```

vsCos(n, a, y);

```
```

vsCosI(n, a, inca, y, incy);
vmsCos(n, a, y, mode);
vmsCosI(n, a, inca, y, incy, mode);
vdCos(n, a, y);
vdCosI(n, a, inca, y, incy);
vmdCos(n, a, y, mode);
vmdCosI(n, a, inca, y, incy, mode);
vCCos(n, a, y);
vcCosI(n, a, inca, y, incy);
vmcCos(n, a, y, mode);
vmcCosI(n, a, inca, y, incy, mode);
vzCos(n, a, y);
vzCosI(n, a, inca, y, incy);
vmzCos(n, a, y, mode);
vmzCosI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsCos, vmsCos \\
& const double* for vdCos, vmdCos \\
& const MKL_Complex8* for vcCos, \\
vmcCos \\
const MKL_Complex16* for vzCos, \\
vmzCos
\end{tabular}\(\quad\)\begin{tabular}{l} 
const MKL_INT \\
inca, incy \\
mode
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Name Type Description}
MKL_Complex16* for vzCos, vmzCos

\section*{Description}

The v ?Cos function computes cosine of vector elements.
Note that arguments abs (a[i]) \(\leq 2^{13}\) and \(\mathrm{abs}(a[i]) \leq 2^{16}\) for single and double precisions respectively are called fast computational path. These are trigonometric function arguments for which VM provides the best possible performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA) and Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast on the entire function domain. However, these functions provide less accuracy.
Special Values for Real Function \(\mathbf{v}\) ? \(\operatorname{Cos}(x)\)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
\(\operatorname{Cos}(z)=\operatorname{Cosh}(i * z)\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201
v?Sin
Computes sine of vector elements.

\section*{Syntax}
```

vsSin(n, a, y);
vsSinI(n, a, inca, y, incy);
vmsSin(n, a, y, mode);
vmsSinI(n, a, inca, y, incy, mode);
vdSin(n, a, y);
vdSinI(n, a, inca, y, incy);
vmdSin(n, a, y, mode);
vmdSinI(n, a, inca, y, incy, mode);
vcSin(n, a, y);
vcSinI(n, a, inca, y, incy);
vmcSin(n, a, y, mode);
vmcSinI(n, a, inca, y, incy, mode);

```
```

vzSin(n, a, y);
vzSinI(n, a, inca, y, incy);
vmzSin(n, a, y, mode);
vmzSinI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsSin, vmsSin \\
const double* for vaSin, vmaSin \\
& const MKL_Complex8* for vcSin, \\
vmcSin \\
const MKL_Complex16* for vzSin, \\
vmzSin
\end{tabular}\(\quad\)\begin{tabular}{l} 
const MKL_INT \\
inca, incy
\end{tabular}\(\quad\)\begin{tabular}{l} 
const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The function computes sine of vector elements.
Note that arguments abs (a[i]) \(\leq 2^{13}\) and \(\mathrm{abs}(a[i]) \leq 2^{16}\) for single and double precisions respectively are called fast computational path. These are trigonometric function arguments for which VM provides the best possible performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA) and Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast on the entire function domain. However, these functions provide less accuracy.
Special Values for Real Function v?Sin(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM &
\end{tabular}
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & INVALID \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula Sin(z) \(=-i^{*} \operatorname{Sinh}\left(i^{*} z\right)\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{v?SinCos}

Computes sine and cosine of vector elements.

\section*{Syntax}
```

vsSinCos(n, a, y, z);
vSSinCosI(n, a, inca, y, incy, z, incz);
vmsSinCos(n, a, y, z, mode);
vmsSinCosI(n, a, inca, y, incy, z, incz, mode);
vdSinCos(n, a, y, z);
vdSinCosI(n, a, inca, y, incy, z, incz);
vmdSinCos(n, a, y, z, mode);
vmdSinCosI(n, a, inca, y, incy, z, incz, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l} 
const float* for vsSinCos, \\
vmsSinCos \\
const double* for vdSinCos, \\
vmdSinCos
\end{tabular} \\
\begin{tabular}{l} 
inca, incy, \\
incz \\
mode
\end{tabular} & const MKL_INT
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a, y\), and \(z\).

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y, z\) & float* for vsSinCos, vmsSinCos \\
& double* for vdSinCos, vmdSinCos
\end{tabular}

\section*{Description}

Pointers to arrays that contain the output vectors \(y\) (for sinevalues) and \(z\) (for cosine values).

\section*{Description}

The function computes sine and cosine of vector elements.
Note that arguments abs (a[i]) \(\leq 2^{13}\) and abs (a[i]) \(\leq 2^{16}\) for single and double precisions respectively are called fast computational path. These are trigonometric function arguments for which VM provides the best possible performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA) and Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast on the entire function domain. However, these functions provide less accuracy.
Special Values for Real Function v?SinCos(x)
\begin{tabular}{lllll}
\hline Argument & Result 1 & Result 2 & VM Error Status & Exception \\
\hline+0 & +0 & +1 & & \\
-0 & -0 & +1 & & INVALID \\
\(+\infty\) & QNAN & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & QNAN & VML_STATUS_ERRDOM & \\
QNAN & QNAN & QNAN & & INVALID \\
\hline SNAN & QNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula \(\operatorname{Sin}(z)=-i * \operatorname{Sinh}(i * z)\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201
```

v?CIS
Computes complex exponent of real vector elements
(cosine and sine of real vector elements combined to
complex value).

```

\section*{Syntax}
```

vcCIS(n, a, y);
vcCISI(n, a, inca, y, incy);
vmcCIS(n, a, y, mode);
vmcCISI(n, a, inca, y, incy, mode);
vzCIS(n, a, y);
vzCISI(n, a, inca, y, incy);
vmzCIS(n, a, y, mode);
vmzCISI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vcCIS, vmcCIS \\
const double* for vzCIS, vmzCIS \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & MKL_Complex8* for vcCIS, vmcCIS \\
& MKL_Complex16* for vzCIS, vmzCIS
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?CIS function computes complex exponent of real vector elements (cosine and sine of real vector elements combined to complex value).
See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?CIS(x)
\begin{tabular}{|c|l|}
\hline \(\mathbf{x}\) & \\
\hline\(+\infty\) & \begin{tabular}{l} 
CIS( \(\mathbf{x})\) \\
INVALID
\end{tabular} \\
\hline+0 & \(+1+\mathrm{i} \cdot 0\) \\
\hline-0 & \(+1-\mathrm{i} \cdot 0\) \\
\hline\(-\infty\) & \begin{tabular}{l} 
QNAN+ \(\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} \\
\hline NAN & QNAN+ \(\mathrm{i} \cdot\) QNAN \\
\hline
\end{tabular}

\section*{Notes:}
- raises INVALID exception when the argument is SNAN
- raises INVALID exception and sets the VM Error Status to VML_STATUS_ERRDOM for \(x=+\infty, x=-\infty\)
v?Tan
Computes tangent of vector elements.

\section*{Syntax}
```

vsTan(n, a, y);
vsTanI(n, a, inca, y, incy);
vmsTan(n, a, y, mode);
vmsTanI(n, a, inca, y, incy, mode);
vdTan(n, a, y);
vdTanI(n, a, inca, y, incy);
vmdTan(n, a, y, mode);
vmdTanI(n, a, inca, y, incy, mode);
vcTan(n, a, y);
vcTanI(n, a, inca, y, incy);
vmcTan(n, a, y, mode);
vmcTanI(n, a, inca, y, incy, mode);
vzTan(n, a, y);
vzTanI(n, a, inca, y, incy);
vmzTan(n, a, y, mode);
vmzTanI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l} 
const float* for vsTan, vmsTan \\
\\
\\
\\
const double* for vdTan, vmdTan \\
vmcTan
\end{tabular} \\
& \begin{tabular}{l} 
const MKL_Complex16* for vzTan, \\
vmzTan
\end{tabular} \\
inca, incy & const MKL_INT
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}
```

Name

```

Type
float* for vsTan, vmsTan
double* for vdTan, vmdTan
MKL_Complex8* for vcTan, vmcTan
MKL_Complex16* for vzTan, vmzTan

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Tan function computes tangent of vector elements.
Note that arguments abs (a[i]) \(\leq 2^{13}\) and \(\operatorname{abs}(a[i]) \leq 2^{16}\) for single and double precisions respectively are called fast computational path. These are trigonometric function arguments for which VM provides the best possible performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA) and Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast on the entire function domain. However, these functions provide less accuracy.
Special Values for Real Function v?Tan(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula \(\operatorname{Tan}(z)=-i * \operatorname{Tanh}(i * z)\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{v?Acos}

Computes inverse cosine of vector elements.

\section*{Syntax}
```

vsAcos(n, a, y);
vsAcosI(n, a, inca, y, incy);
vmsAcos(n, a, y, mode);
vmsAcosI(n, a, inca, y, incy, mode);
vdAcos(n, a, y);
vdAcosI(n, a, inca, y, incy);
vmdAcos(n, a, y, mode);
vmdAcosI(n, a, inca, y, incy, mode);

```
```

vcAcos(n, a, y);
vcAcosI(n, a, inca, y, incy);
vmcAcos(n, a, y, mode);
vmcAcosI(n, a, inca, y, incy, mode);
vzAcos(n, a, y);
vzAcosI(n, a, inca, y, incy);
vmzAcos(n, a, y, mode);
vmzAcosI(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const int \\
\(a\) & const float* for vsAcos, vmsAcos \\
& const double* for vdAcos, vmdAcos \\
const MKL_Complex8* for vcAcos, \\
vmcAcos \\
& const MKL_Complex16* for vzAcos, \\
& vmzAcos \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}

\section*{Name Type}
y
```

float* for vsAcos, vmsAcos
double* for vdAcos, vmdAcos
MKL_Complex8* for vcAcos, vmcAcos
MKL_Complex16* for vzAcos,
vmzAcos

```

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The \(v\) ?Acos function computes inverse cosine of vector elements.

\section*{Special Values for Real Function v?Acos(x)}
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & \(+\pi / 2\) & &
\end{tabular}
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline-0 & \(+\pi / 2\) & & \\
+1 & +0 & & \\
-1 & \(+\pi\) & & \\
\(\mid\) X| \(>1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & \\
QNAN & QNAN & & INVALID \\
\hline SNAN & & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Acos(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z } \\
\text { ) }
\end{gathered}
\] & \(-\infty\) & -X & -0 & +0 & +X & + & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(+3 \cdot \pi / 4-\mathrm{i} \cdot \infty\) & \(+\pi / 2-\mathrm{i} \cdot \infty\) & \(+\pi / 4-\mathrm{i} \cdot \infty\) & QNAN-i \(\cdot \infty\) \\
\hline +i.Y & \(+\pi\) - \(\mathbf{i} \cdot \infty\) & & & & & \(+0-\mathrm{i} \cdot \infty\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline +i.0 & \(+\pi\) - \(\mathbf{i} \cdot \infty\) & & \(+\pi / 2-\mathrm{i} \cdot 0\) & \(+\pi / 2-\mathrm{i} \cdot 0\) & & \(+0-\mathrm{i} \cdot \infty\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i. 0 & \(+\pi+\mathrm{i} \cdot \infty\) & & \(+\pi / 2+i \cdot 0\) & \(+\pi / 2+i \cdot 0\) & & \(+0+\mathrm{i} \cdot \infty\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i.Y & \(+\pi+\mathbf{i} \cdot \infty\) & & & & & \(+0+\mathrm{i} \cdot \infty\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i \(\cdot \infty\) & \(+3 \pi / 4+\mathrm{i} \cdot \infty\) & \(+\pi / 2+\mathrm{i} \cdot \infty\) & \(+\pi / 4+\mathrm{i} \cdot \infty\) & QNAN+i \(\cdot \infty\) \\
\hline \(+i \cdot N A N\) & QNAN+i•m & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} & \[
\begin{aligned}
& \hline+\pi / \\
& 2+\dot{\mathrm{i}} \cdot \mathrm{QNAN}
\end{aligned}
\] & \[
\begin{aligned}
& \hline+\pi / \\
& 2+\dot{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} & QNAN+i \(\cdot \infty\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes:}
- raises INVALID exception when real or imaginary part of the argument is SNAN
- \(\operatorname{Acos}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Acos}(z))\).
v?Asin Computes inverse sine of vector elements.

\section*{Syntax}
```

vsAsin(n, a, y);
vsAsinI(n, a, inca, y, incy);
vmsAsin(n, a, y, mode);
vmsAsinI(n, a, inca, y, incy, mode);
vdAsin(n, a, y);
vdAsinI(n, a, inca, y, incy);
vmdAsin(n, a, y, mode);
vmdAsinI(n, a, inca, y, incy, mode);
vcAsin(n, a, y);

```
```

vcAsinI(n, a, inca, y, incy);
vmcAsin(n, a, y, mode);
vmcAsinI(n, a, inca, y, incy, mode);
vzAsin(n, a, y);
vzAsinI(n, a, inca, y, incy);
vmzAsin(n, a, y, mode);
vmzAsinI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsAsin, vmsAsin \\
& const double* for vdAsin, vmdAsin \\
& const MKL_Complex8* for vcAsin, \\
& vmcAsin \\
const MKL_Complex16* for vzAsin, \\
& \begin{tabular}{l} 
vmzAsin
\end{tabular} \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Asin function computes inverse sine of vector elements.
Special Values for Real Function v?Asin(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & &
\end{tabular}
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & \(+\pi / 2\) & & \\
-1 & \(-\pi / 2\) & & INVALID \\
\(|X|>1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
```

Asin(z) = -i*Asinh(i*z).

```
v?Atan
Computes inverse tangent of vector elements.

\section*{Syntax}
```

vsAtan(n, a, y);
vsAtanI(n, a, inca, y, incy);
vmsAtan(n, a, y, mode);
vmsAtanI(n, a, inca, y, incy, mode);
vdAtan(n, a, y);
vdAtanI(n, a, inca, y, incy);
vmdAtan(n, a, y, mode);
vmdAtanI(n, a, inca, y, incy, mode);
vcAtan(n, a, y);
vcAtanI(n, a, inca, y, incy);
vmcAtan(n, a, y, mode);
vmcAtanI(n, a, inca, y, incy, mode);
vzAtan(n, a, y);
vzAtanI(n, a, inca, y, incy);
vmzAtan(n, a, y, mode);
vmzAtanI(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}

\section*{Name}
\(n\)
const MKL_INT
const float* for vsAtan, vmsAtan

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.
```

Name Type
const double* for vdAtan, vmdAtan
const MKL_Complex8* for vcAtan,
vmcAtan
const MKL_Complex16* for vzAtan,
vmzAtan
inca, incy const MKL_INT
mode const MKL_INT64

```

\section*{Description}

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Atan function computes inverse tangent of vector elements.
Special Values for Real Function v?Atan(x)
\begin{tabular}{lll}
\hline Argument & Result & VM Error Status \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\pi / 2\) & \\
\(-\infty\) & \(-\pi / 2\) & \\
QNAN & QNAN & \\
SNAN & QNAN & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
```

Atan(z) = -i*Atanh(i*z).

```
v?Atan2
Computes four-quadrant inverse tangent of elements
of two vectors.
Syntax
```

vsAtan2(n, a, b, y);
vsAtan2I(n, a, inca, b, incb, y, incy);
vmsAtan2(n, a, b, y, mode);
vmsAtan2I(n, a, inca, b, incb, y, incy, mode);
vdAtan2(n, a, b, y);

```
```

vdAtan2I(n, a, inca, b, incb, y, incy);
vmdAtan2(n, a, b, y, mode);
vmdAtan2I(n, a, inca, b, incb, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
```

Name Type
n const MKL_INT
a,b const float* for vsAtan2,
vmsAtan2
const double* for vdAtan2,
vmdAtan2
inca, incb, const MKL_INT
incy
mode const MKL_INT64

```

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to arrays that contain the input vectors \(a\) and \(b\).

\author{
Specifies increments for the elements of \(a, b\) and \(y\). \\ Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.
}

\section*{Output Parameters}

\section*{Name Type}
\(y \quad\) float* for vsAtan2, vmsAtan2
double* for vdAtan2, vmdAtan2

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Atan2 function computes four-quadrant inverse tangent of elements of two vectors.
The elements of the output vectory are computed as the four-quadrant arctangent of \(a[i] / b[i]\).
Special values for Real Function v?Atan2(x)
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline\(-\infty\) & \(-\infty\) & \(-3^{*} \pi / 4\) & \\
\(-\infty\) & \(X<+0\) & \(-\pi / 2\) & \\
\(-\infty\) & -0 & \(-\pi / 2\) & \\
\(-\infty\) & +0 & \(-\pi / 2\) \\
\(-\infty\) & \(X>+0\) & \(-\pi / 4\) \\
\(-\infty\) & \(+\infty\) & \(-\pi\) \\
\(X<+0\) & \(-\infty\) & \(-\pi / 2\) & \\
\(X<+0\) & -0 & \(-\pi / 2\) & \\
\(X<+0\) & +0 & -0 & \\
-0 & \(+\infty\) & \(-\pi\) &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline -0 & \(\mathrm{X}<+0\) & \(-\pi\) & \\
\hline -0 & -0 & \(-\pi\) & \\
\hline -0 & +0 & -0 & \\
\hline -0 & \(x>+0\) & -0 & \\
\hline -0 & \(+\infty\) & -0 & \\
\hline +0 & \(-\infty\) & \(+\pi\) & \\
\hline +0 & \(x<+0\) & \(+\pi\) & \\
\hline +0 & -0 & \(+\pi\) & \\
\hline +0 & +0 & +0 & \\
\hline +0 & \(x>+0\) & +0 & \\
\hline +0 & \(+\infty\) & +0 & \\
\hline \(x>+0\) & \(-\infty\) & \(+\pi\) & \\
\hline \(x>+0\) & -0 & \(+\pi / 2\) & \\
\hline \(x>+0\) & +0 & \(+\pi / 2\) & \\
\hline \(x>+0\) & \(+\infty\) & +0 & \\
\hline \(+\infty\) & \(-\infty\) & \(+3 * \pi / 4\) & \\
\hline \(+\infty\) & \(x<+0\) & \(+\pi / 2\) & \\
\hline \(+\infty\) & -0 & \(+\pi / 2\) & \\
\hline \(+\infty\) & +0 & \(+\pi / 2\) & \\
\hline \(+\infty\) & \(x>+0\) & \(+\pi / 2\) & \\
\hline \(+\infty\) & \(+\infty\) & \(+\pi / 4\) & \\
\hline \(x>+0\) & QNAN & QNAN & \\
\hline \(x>+0\) & SNAN & QNAN & INVALID \\
\hline QNAN & \(\mathrm{X}>+0\) & QNAN & \\
\hline SNAN & \(\mathrm{X}>+0\) & QNAN & INVALID \\
\hline QNAN & QNAN & QNAN & \\
\hline QNAN & SNAN & QNAN & INVALID \\
\hline SNAN & QNAN & QNAN & INVALID \\
\hline SNAN & SNAN & QNAN & INVALID \\
\hline
\end{tabular}
v?Cospi
Computes the cosine of vector elements multiplied by \(\square\).

\section*{Syntax}
```

vsCospi (n, a, y);
vsCospiI(n, a, inca, y, incy);
vmsCospi (n, a, y, mode);
vmsCospiI(n, a, inca, y, incy, mode);
vdCospi (n, a, y);
vdCospiI(n, a, inca, y, incy);
vmdCospi (n, a, y, mode);
vmdCospiI(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsCospi \\
& const float* for vmsCospi \\
& const double* for vdCospi \\
inca, incy & const double* for vmdCospi \\
mode & const MKL_INT
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name \\ Type}
\(y\)
```

float* for vsCospi
float* for vmsCospi
double* for vdCospi
double* for vmdCospi

```

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Cospi function computes the cosine of vector elements multiplied by \(n\). For an argument \(x\), the function computes \(\cos \left(n^{*} x\right)\).
Special values for Real Function v?Cospi(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & \\
\begin{tabular}{ll}
\(n+0.5\), for any integer \(n\) & +0 \\
where \(n+0.5\) is & \\
representable & QNAN \\
\(\pm \infty\) & QNAN \\
QNAN & QNAN
\end{tabular} & INVALID \\
SNAN & & & INVALID \\
\hline
\end{tabular}

\section*{Application Notes}

If arguments \(\operatorname{abs}\left(a_{i}\right) \leq 2^{22}\) for single precision or \(a b s\left(a_{i}\right) \leq 2^{43}\) for double precision, they belong to the fast computational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

\section*{See Also}

Cos Computes cosine of vector elements.
Cosd Computes the cosine of vector elements multiplied by \(п / 180\).
v?Sinpi
Computes the sine of vector elements multiplied by п.

\section*{Syntax}
```

vsSinpi (n, a, y);
vsSinpiI(n, a, inca, y, incy);
vmsSinpi (n, a, y, mode);
vmsSinpiI(n, a, inca, y, incy, mode);
vdSinpi (n, a, y);
vdSinpiI(n, a, inca, y, incy);
vmdSinpi (n, a, y, mode);
vmdSinpiI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsSinpi \\
& const float* for vmsSinpi \\
& const double* for vdSinpi \\
inca, incy & const double* for vmdSinpi \\
mode & const MKL_INT
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & float* for vsSinpi \\
& float* for vmsSinpi \\
& double* for vdSinpi \\
& double* for vmdSinpi
\end{tabular}

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Sinpi function computes the sine of vector elements multiplied by \(\pi\). For an argument \(x\), the function computes \(\sin \left(\Pi^{*} x\right)\).

Special values for Real Function v?Sinpi(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & \\
\(+n\), positive integer & +0 & VML_STATUS_ERRDOM & INVALID \\
\(-n\), negative integer & -0 & & INVALID \\
\(\pm \infty\) & QNAN & QNAN & QNAN
\end{tabular}

\section*{Application Notes}

If arguments \(\operatorname{abs}\left(a_{i}\right) \leq 2^{22}\) for single precision or \(\operatorname{abs}\left(a_{i}\right) \leq 2^{51}\) for double precision, they belong to the fast computational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

\section*{See Also}

Sin Computes sine of vector elements.
Sind Computes the sine of vector elements multiplied by \(\pi / 180\).
v?Tanpi
Computes the tangent of vector elements multiplied
bу п.

\section*{Syntax}
```

vsTanpi (n, a, y);
vsTanpiI(n, a, inca, y, incy);
vmsTanpi (n, a, y, mode);
vmsTanpiI(n, a, inca, y, incy, mode);
vdTanpi (n, a, y);
vdTanpiI(n, a, inca, y, incy);
vmdTanpi (n, a, y, mode);
vmdTanpiI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsTanpi \\
& const float* for vmsTanpi \\
inca, incy & const double* for vdTanpi \\
mode & const MKL_INT \\
& const MKL_INT64
\end{tabular}

\section*{Output Parameters}

\section*{Name Type}
\begin{tabular}{ll}
\(y\) & float* for vsTanpi \\
float* for vmsTanpi \\
double* for vdTanpi \\
double* for vmdTanpi
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Tanpi function computes the tangent of vector elements multiplied by \(п\). For an argument \(x\), the function computes \(\tan \left(\pi^{*} x\right)\).
Special values for Real Function v?Tanpi(x)
\begin{tabular}{lll}
\hline Argument & Result & VM Error Status \\
\hline+0 & +1 & \\
-0 & +1 & Exception \\
\(\pm \infty\) & QNAN & \\
\(n\), even integer & copysign \((0.0, n)\) & \\
\(n\), odd integer & copysign \((0.0,-n)\) & \\
\(n+0.5\), for \(n\) even integer & \(+\infty\) & \\
\begin{tabular}{ll}
\(n+\infty\) \\
and \(n+0.5\) representable
\end{tabular} & & \\
\(n+0.5\), for \(n\) odd integer & \(-\infty\) & \\
\begin{tabular}{l} 
and \(n+0.5\) representable
\end{tabular} & & \\
QNAN & QNAN & QNAN
\end{tabular}

The copysign \((x, y)\) function returns the first vector argument \(x\) with the sign changed to match that of the second argument \(y\).

\section*{Application Notes}

If arguments abs \(\left(a_{i}\right) \leq 2{ }^{13}\) for single precision or \(\operatorname{abs}\left(a_{i}\right) \leq 267\) for double precision, they belong to the fast computational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

\section*{See Also}

Tan Computes tangent of vector elements.
Tand Computes the tangent of vector elements multiplied by \(\pi / 180\).
```

v?Acospi
Computes the inverse cosine of vector elements
divided bу п.
Syntax
vsAcospi (n, a, y);
vsAcospiI(n, a, inca, y, incy);
vmsAcospi (n, a, y, mode);
vmsAcospiI(n, a, inca, y, incy, mode);
vdAcospi (n, a, y);
vdAcospiI(n, a, inca, y, incy);
vmdAcospi (n, a, y, mode);
vmdAcospiI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsAcospi \\
const float* for vmsAcospi \\
& const double* for vdAcospi \\
inca, incy & const double* for vmdAcospi \\
mode & const MKL_INT
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & float* for vsAcospi \\
& float* for vmsAcospi \\
& double* for vdAcospi \\
& double* for vmdAcospi
\end{tabular}

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Acospi function computes the inverse cosine of vector elements divided by \(n\). For an argument \(x\), the function computes \(\operatorname{acos}(x) / п\).

See Special Value Notations for the conventions used in this table:
Special values for Real Function v?Acospi(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & \(+1 / 2\) & & \\
-0 & \(+1 / 2\) & & \\
+1 & +0 & & INVALID \\
-1 & +1 & VML_STATUS_ERRDOM & INVALID \\
\(|x|>1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & & INVALID \\
\hline\(\infty\) & QNAN & & \\
\hline QNAN & QNAN & & \\
\hline
\end{tabular}

\section*{See Also}

Acos Computes inverse cosine of vector elements.
v?Asinpi
Computes the inverse sine of vector elements divided bу п.

Syntax
```

vsAsinpi (n, a, y);
vsAsinpiI(n, a, inca, y, incy);
vmsAsinpi (n, a, y, mode);
vmsAsinpiI(n, a, inca, y, incy, mode);
vdAsinpi (n, a, y);
vdAsinpiI(n, a, inca, y, incy);
vmdAsinpi (n, a, y, mode);
vmdAsinpiI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsAsinpi \\
& const float* for vmsAsinpi \\
& const double* for vdAsinpi \\
inca, incy & const double* for vmdAsinpi \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}
```

Name
y
float* for vsAsinpi
float* for vmsAsinpi
double* for vdAsinpi
double* for vmdAsinpi

```

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Asinpi function computes the inverse sine of vector elements divided by \(n\). For an argument \(x\), the function computes \(\operatorname{asin}(x) / п\).
Special values for Real Function v?Asinpi(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & \\
+1 & \(+1 / 2\) & & INVALID \\
-1 & \(-1 / 2\) & VML_STATUS_ERRDOM & INVALID \\
\(|x|>1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & \\
\(-\infty\) & QNAN & & INVALID \\
\hline QNAN & QNAN & & \\
\hline
\end{tabular}

\section*{See Also}

Asin Computes inverse sine of vector elements.
v?Atanpi
Computes the inverse tangent of vector elements
divided bу п.

\section*{Syntax}
```

vsAtanpi (n, a, y);
vsAtanpiI(n, a, inca, y, incy);
vmsAtanpi (n, a, y, mode);
vmsAtanpiI(n, a, inca, y, incy, mode);
vdAtanpi (n, a, y);
vdAtanpiI(n, a, inca, y, incy);
vmdAtanpi (n, a, y, mode);
vmdAtanpiI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsAtanpi \\
& const float* for vmsAtanpi \\
& const double* for vdAtanpi \\
inca, incy & const double* for vmdAtanpi \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}
```

Name Type
y
float* for vsAtanpi
float* for vmsAtanpi
double* for vdAtanpi
double* for vmdAtanpi

```

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Atanpi function computes the inverse tangent of vector elements divided by \(п\). For an argument \(x\), the function computes \(\operatorname{atan}(x) / \Pi\).
Special values for Real Function v?Atanpi(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & &
\end{tabular}
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline-0 & -0 & & \\
\(+\infty\) & \(+1 / 2\) & & \\
\(-\infty\) & \(-1 / 2\) & INVALID \\
\hline QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}

\section*{See Also}

Atan Computes inverse tangent of vector elements.
v?Atan2pi
Computes the four-quadrant inverse tangent of the ratios of the corresponding elements of two vectors divided bу п.

Syntax
```

vsAtan2pi (n, a, b, y);
vsAtan2piI(n, a, inca, b, incb, y, incy);
vmsAtan2pi (n, a, b, y, mode);
vmsAtan2piI(n, a, inca, b, incb, y, incy, mode);
vdAtan2pi (n, a, b, y);
vdAtan2piI(n, a, inca, b, incb, y, incy);
vmdAtan2pi (n, a, b, y, mode);
vmdAtan2piI(n, a, inca, b, incb, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a, b\) & \begin{tabular}{l} 
const float* for vsAtan2pi \\
const float* for vmsAtan2pi \\
const double* for vdAtan2pi \\
const double* for vmdAtan2pi
\end{tabular} \\
\begin{tabular}{ll} 
inca, incb, \\
incy
\end{tabular} & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to the arrays containing the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\) and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name \\ Type}
\[
\begin{aligned}
& \text { float* for vsAtan2pi } \\
& \text { float* for vmsAtan2pi } \\
& \text { double* for vdAtan2pi } \\
& \text { double* for vmdAtan2pi }
\end{aligned}
\]

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Atan2pi function computes the four-quadrant inverse tangent of the ratios of the corresponding elements of two vectors divided by \(п\).
For the elements of the output vector \(y\), the function computers the four-quadrant arctangent of \(a_{i} / b_{i}\), with the result divided by \(п\).

Special values for Real Function v?Atan2pi( \(x, y\) )
\begin{tabular}{|c|c|c|c|}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline \(-\infty\) & \(-\infty\) & -3/4 & \\
\hline \(-\infty\) & \(x<+0\) & -1/2 & \\
\hline \(-\infty\) & -0 & +1/2 & \\
\hline \(-\infty\) & +0 & -1/2 & \\
\hline \(-\infty\) & \(x>+0\) & -1/2 & \\
\hline \(-\infty\) & \(+\infty\) & -1/4 & \\
\hline \(x<+0\) & \(-\infty\) & -1 & \\
\hline \(x<+0\) & -0 & -1/2 & \\
\hline \(x<+0\) & +0 & -1/2 & \\
\hline \(x<+0\) & \(+\infty\) & -0 & \\
\hline -0 & \(-\infty\) & -1 & \\
\hline -0 & \(x<+0\) & -1 & \\
\hline -0 & -0 & -1 & \\
\hline -0 & +0 & -0 & \\
\hline -0 & \(x>+0\) & -0 & \\
\hline -0 & \(+\infty\) & -0 & \\
\hline +0 & \(-\infty\) & +1 & \\
\hline +0 & \(x<+0\) & +1 & \\
\hline +0 & -0 & +1 & \\
\hline +0 & +0 & +0 & \\
\hline +0 & \(x>+0\) & +0 & \\
\hline +0 & \(+\infty\) & +0 & \\
\hline \(x>+0\) & \(-\infty\) & +1 & \\
\hline \(x>+0\) & -0 & +1/2 & \\
\hline \(x>+0\) & +0 & +1/2 & \\
\hline \(x>+0\) & \(+\infty\) & +1/4 & \\
\hline \(+\infty\) & \(-\infty\) & +3/4 & \\
\hline \(+\infty\) & \(x<+0\) & +1/2 & \\
\hline \(+\infty\) & -0 & +1/2 & \\
\hline \(+\infty\) & +0 & +1/2 & \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline\(+\infty\) & \(x>+0\) & \(+1 / 2\) & \\
\(+\infty\) & \(+\infty\) & \(+1 / 4\) & \\
\(x>+0\) & QNAN & QNAN & \\
\(x>+0\) & SNAN & QNAN & INVALID \\
QNAN & \(x>+0\) & QNAN & \\
SNAN & \(x>+0\) & QNAN & INVALID \\
QNAN & QNAN & QNAN & \\
QNAN & SNAN & QNAN & INVALID \\
SNAN & QNAN & QNAN & INVALID \\
SNAN & SNAN & QNAN & INVALID \\
\hline
\end{tabular}

\section*{See Also}

Atan2 Computes four-quadrant inverse tangent of elements of two vectors.
v?Cosd
Computes the cosine of vector elements multiplied by п/180.

\section*{Syntax}
```

vsCosd (n, a, y);
vsCosdI(n, a, inca, y, incy);
vmsCosd (n, a, y, mode);
vmsCosdI(n, a, inca, y, incy, mode);
vdCosd (n, a, y);
vdCosdI(n, a, inca, y, incy);
vmdCosd (n, a, y, mode);
vmdCosdI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
\begin{tabular}{ll} 
Name & Type \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & float* for vsCosd \\
& float* for vmsCosd \\
& double* for vdCosd \\
& double* for vmdCosd
\end{tabular}

\section*{Description}

Overrides the global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The \(v\) ? Cosd function computes the cosine of vector elements multiplied by \(\pi / 180\). For an argument \(x\), the function computes \(\cos \left(\pi^{*} x / 180\right)\).
Special values for Real Function v?Cosd(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & \\
\(\pm \infty\) & QNAN_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

\section*{Application Notes}

If arguments \(\operatorname{abs}\left(a_{i}\right) \leq 2^{24}\) for single precision or \(\operatorname{abs}\left(a_{i}\right) \leq 2^{52}\) for double precision, they belong to the fast computational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

\section*{See Also}

Cos Computes cosine of vector elements.
Cospi Computes the cosine of vector elements multiplied by \(п\).

\section*{v?Sind}

Computes the sine of vector elements multiplied by п/ 180.

\section*{Syntax}
```

vsSind (n, a, y);
vsSindI(n, a, inca, y, incy);
vmsSind (n, a, y, mode);
vmsSindI(n, a, inca, y, incy, mode);
vdSind (n, a, y);
vdSindI(n, a, inca, y, incy);

```
```

vmdSind (n, a, y, mode);
vmdSindI(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsSind \\
& const float* for vmsSind \\
& const double* for vdSind \\
inca, incy & const double* for vmdSind \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name \\ Type}
\(y\)
```

float* for vsSind

```
    float* for vmsSind
    double* for vdSind
    double* for vmdSind

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The \(v\) ?Sind function computes the sine of vector elements multiplied by \(\pi / 180\). For an argument \(x\), the function computes \(\sin \left(\pi^{*} x / 180\right)\).
Special values for Real Function v?Sind(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & \\
\(\pm \infty\) & QNAN & & INVALID \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

\section*{Application Notes}

If arguments \(\operatorname{abs}\left(a_{i}\right) \leq 2^{24}\) for single precision or \(\operatorname{abs}\left(a_{i}\right) \leq 2^{52}\) for double precision, they belong to the fast computational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

\section*{See Also}

Sin Computes sine of vector elements.
Sinpi Computes the sine of vector elements multiplied by \(п\).
v?Tand
Computes the tangent of vector elements multiplied by п/180.

\section*{Syntax}
```

vsTand (n, a, y);
vsTandI(n, a, inca, y, incy);
vmsTand (n, a, y, mode);
vmsTandI(n, a, inca, y, incy, mode);
vdTand (n, a, y);
vdTandI(n, a, inca, y, incy);
vmdTand (n, a, y, mode);
vmdTandI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsTand \\
& const float* for vmsTand \\
& const double* for vdTand \\
const double* for vmdTand \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name

```

Type
float* for vsTand
float* for vmsTand
double* for vdTand
double* for vmdTand

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The \(v\) ? Tand function computes the tangent of vector elements multiplied by \(n / 180\). For an argument \(x\), the function computes \(\tan \left(n^{*} x / 180\right)\).

Special values for Real Function v?Tand(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & \\
\(\pm \infty\) & QNAN_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

The copysign \((x, y)\) function returns the first vector argument \(x\) with the sign changed to match that of the second argument \(y\).

\section*{Application Notes}

If arguments \(\operatorname{abs}\left(a_{i}\right) \leq 2^{38}\) for single precision or \(\operatorname{abs}\left(a_{i}\right) \leq 2^{67}\) for double precision, they belong to the fast computational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

\section*{See Also}

Tan Computes tangent of vector elements.
Tanpi Computes the tangent of vector elements multiplied by \(п\).

\section*{Hyperbolic Functions}
v?Cosh
Computes hyperbolic cosine of vector elements.

\section*{Syntax}
```

vsCosh(n, a, y);
vsCoshI(n, a, inca, y, incy);
vmsCosh(n, a, y, mode);
vmsCoshI(n, a, inca, y, incy, mode);
vdCosh(n, a, y);
vdCoshI(n, a, inca, y, incy);
vmdCosh(n, a, y, mode);

```
```

vmdCoshI(n, a, inca, y, incy, mode);
vcCosh(n, a, y);
vcCoshI(n, a, inca, y, incy);
vmcCosh(n, a, y, mode);
vmcCoshI(n, a, inca, y, incy, mode);
vzCosh(n, a, y);
vzCoshI(n, a, inca, y, incy);
vmzCosh(n, a, y, mode);
vmzCoshI(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & const MKL_INT \\
a & const float* for vsCosh, vmsCosh \\
& const double* for vdCosh, vmdCosh \\
& const MKL_Complex8* for vcCosh, \\
& vmcCosh \\
& const MKL_Complex16* for vzCosh, \\
inca, incy & vmzCosh \\
const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

Precision Overflow Thresholds for Real v?Cosh Function
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(-\operatorname{Ln}\left(F L T \_M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(F L T \_M A X\right)+\operatorname{Ln} 2\) \\
double precision & \(-\operatorname{Ln}\left(D B L \_M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(D B L \_M A X\right)+\operatorname{Ln} 2\) \\
\hline
\end{tabular}

Precision overflow thresholds for the complex \(v\) ?Cosh function are beyond the scope of this document.

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
\(y\) & float* for vsCosh, vmsCosh & \begin{tabular}{l} 
Pointer to an array that contains the output \\
vector \(y\).
\end{tabular} \\
& double* for vdCosh, vmdCosh &
\end{tabular}

\section*{Name Type \\ ```
MKL_Complex16* for vzCosh, \\ vmzCosh
```}

\section*{Description}

\section*{Description}

The v?Cosh function computes hyperbolic cosine of vector elements.
Special Values for Real Function v?Cosh(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & \\
\(X>\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & OVERFLOW \\
\(X<-\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & \\
\(+\infty\) & \(+\infty\) & & INVALID \\
\(-\infty\) & \(+\infty\) & & OVN \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Cosh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z) }
\end{gathered}
\] & - & -X & -0 & +0 & +X & + & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN } \\
& \text { INVALID }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
+i.QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN-i•O \\
INVALID
\end{tabular} & QNAN+i•0 INVALID & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline +i.Y & \[
\begin{aligned}
& +\infty \cdot \operatorname{Cos}(Y)- \\
& i \cdot \infty \cdot \operatorname{Sin}(Y)
\end{aligned}
\] & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline +i.0 & \(+\infty-\mathrm{i} \cdot 0\) & & +1-i.0 & +1+i. 0 & & \(+\infty+\mathrm{i} \cdot 0\) & QNAN+i•0 \\
\hline -i. 0 & \(+\infty+\mathrm{i} \cdot 0\) & & \(+1+\mathrm{i} \cdot 0\) & +1-i \(\cdot 0\) & & \(+\infty-\mathrm{i} \cdot 0\) & QNAN-i•0 \\
\hline -i.Y & \[
\begin{aligned}
& +\infty \cdot \operatorname{Cos}(Y)- \\
& i \cdot \infty \cdot \operatorname{Sin}(Y)
\end{aligned}
\] & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & \begin{tabular}{l}
QNAN \\
+i•QNAN
\end{tabular} \\
\hline -i \(\cdot \infty\) & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN } \\
& \text { INVALID }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
+i.QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN+i•0 \\
INVALID
\end{tabular} & QNAN-i•0 INVALID & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN } \\
& \text { INVALID }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
\hline +i•NAN & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} & \begin{tabular}{l}
QNAN- \\
i•QNAN
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN
\end{tabular} & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes:}
- raises the INVALID exception when the real or imaginary part of the argument is SNAN
- raises the OVERFLOW exception and sets the VM Error Status to VML_STATUS_OVERFLOW in the case of overflow, that is, when \(\operatorname{RE}(z), I M(z)\) are finite non-zero numbers, but the real or imaginary part of the exact result is so large that it does not meet the target precision.
- \(\operatorname{Cosh}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Cosh}(z))\)
- \(\operatorname{Cosh}(-z)=\operatorname{Cosh}(z)\).
v?Sinh
Computes hyperbolic sine of vector elements.

\section*{Syntax}
```

vsSinh( n, a, y );
vsSinhI(n, a, inca, y, incy);
vmsSinh( n, a, y, mode );
vmsSinhI(n, a, inca, y, incy, mode);
vdSinh( n, a, y );
vdSinhI(n, a, inca, y, incy);
vmdSinh( n, a, y, mode );
vmdSinhI(n, a, inca, y, incy, mode);
vcSinh( n, a, y );
vcSinhI(n, a, inca, y, incy);
vmcSinh( n, a, y, mode );
vmcSinhI(n, a, inca, y, incy, mode);
vzSinh( n, a, y );
vzSinhI(n, a, inca, y, incy);
vmzSinh( n, a, y, mode );
vmzSinhI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsSinh, vmsSinh \\
& const double* for vdSinh, vmdSinh \\
& const MKL_Complex8* for vcSinh, \\
& vmcSinh \\
& const MKL_Complex16* for vzSinh, \\
vmzSinh
\end{tabular}\(\quad\)\begin{tabular}{l}
const MKL_INT \\
inca, incy
\end{tabular}\(\quad\)\begin{tabular}{l}
const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

Precision Overflow Thresholds for Real v?Sinh Function
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(-\operatorname{Ln}\left(F L T _M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(F L T _M A X\right)+\operatorname{Ln} 2\) \\
double precision & \(-\operatorname{Ln}\left(D B L _M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(D B L _M A X\right)+\operatorname{Ln} 2\) \\
\hline
\end{tabular}

Precision overflow thresholds for the complex v? Sinh function are beyond the scope of this document.

\section*{Output Parameters}
```

Name Type
y float* for vsSinh, vmsSinh
double* for vdSinh, vmdSinh
MKL_Complex8* for vcSinh, vmcSinh
MKL_Complex16* for vzSinh,
vmzSinh

```

\section*{Description}

The v?Sinh function computes hyperbolic sine of vector elements.
Special Values for Real Function v?Sinh(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & \\
\(X>\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & OVERFLOW \\
\(X<-\) verflow & \(-\infty\) & & OVERFLOW \\
\(+\infty\) & \(+\infty\) & QNAN & INVALID \\
\(-\infty\) & QNAN & & \\
QNAN & & \\
SNAN & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Sinh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RE(z) } \\
& \text { i•IM(z) }
\end{aligned}
\] & \(-\infty\) & -X & -0 & +0 & +X & + & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \begin{tabular}{l}
\(-\infty+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} & \(-0+i \cdot\) QNAN INVALID & \begin{tabular}{l}
\[
+0+\mathrm{i} \cdot \mathrm{QNA}
\] \\
N \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN
\[
+\mathrm{i} \cdot \text { QNAN }
\] \\
INVALID
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
INVALID
\end{tabular} & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
\hline \(+\mathrm{i} \cdot \mathrm{Y}\) & \[
\begin{aligned}
& -\infty \cdot \operatorname{Cos}(Y)+ \\
& i \cdot \infty \cdot \operatorname{Sin}(Y)
\end{aligned}
\] & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & QNAN
\[
+\mathrm{i} \cdot \text { QNAN }
\] \\
\hline \(+\mathrm{i} \cdot 0\) & \(-\infty+\mathrm{i} \cdot 0\) & & \(-0+i \cdot 0\) & \(+0+\mathrm{i} \cdot 0\) & & \(+\infty+\mathrm{i} \cdot 0\) & QNAN+i•0 \\
\hline -i. 0 & \(-\infty-i \cdot 0\) & & -0-i.0 & +0-i. 0 & & \(+\infty-\mathrm{i} \cdot 0\) & QNAN-i•0 \\
\hline -i.Y & \[
\begin{aligned}
& -\infty \cdot \operatorname{Cos}(Y)+ \\
& i \cdot \infty \cdot \operatorname{Sin}(Y)
\end{aligned}
\] & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & QNAN
\[
+\mathrm{i} \cdot \text { QNAN }
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z) }
\end{gathered}
\] & \(-\infty\) & -X & -0 & +0 & +X & + & NAN \\
\hline -i \(\cdot \infty\) & \begin{tabular}{l}
\(-\infty+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
-0+i•QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
\[
+0+i \cdot Q N A
\] \\
N \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i.QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
INVALID
\end{tabular} & \[
\begin{aligned}
& \text { QNAN } \\
& \text { +i•QNAN }
\end{aligned}
\] \\
\hline \(+\mathrm{i} \cdot \mathrm{NAN}\) & \(-\infty+\mathrm{i} \cdot \mathrm{QNAN}\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN
\end{tabular} & -0+i•QNAN & \[
\begin{aligned}
& +0+\mathrm{i} \cdot \mathrm{QNA} \\
& \mathrm{~N}
\end{aligned}
\] & \[
\begin{aligned}
& \text { QNAN } \\
& +\dot{i} \cdot \text { QNAN }
\end{aligned}
\] & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
\hline
\end{tabular}

Notes:
- raises the INVALID exception when the real or imaginary part of the argument is SNAN
- raises the OVERFLOW exception and sets the VM Error Status to VML_STATUS_OVERFLOW in the case of overflow, that is, when \(\operatorname{RE}(z), I M(z)\) are finite non-zero numbers, but the real or imaginary part of the exact result is so large that it does not meet the target precision.
- \(\operatorname{Sinh}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Sinh}(z))\)
- \(\operatorname{Sinh}(-z)=-\operatorname{Sinh}(z)\).
v?Tanh
Computes hyperbolic tangent of vector elements.

\section*{Syntax}
```

vsTanh( n, a, y );
vsTanhI(n, a, inca, y, incy);
vmsTanh( n, a, y, mode );
vmsTanhI(n, a, inca, y, incy, mode);
vdTanh( n, a, y );
vdTanhI(n, a, inca, y, incy);
vmdTanh( n, a, y, mode );
vmdTanhI(n, a, inca, y, incy, mode);
vcTanh( n, a, y );
vcTanhI(n, a, inca, y, incy);
vmcTanh( n, a, y, mode );
vmcTanhI(n, a, inca, y, incy, mode);
vzTanh( n, a, y );
vzTanhI(n, a, inca, y, incy);
vmzTanh( n, a, y, mode );
vmzTanhI(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const float* for vsTanh, vmsTanh \\
const double* for vdTanh, vmdTanh
\end{tabular} \\
& \begin{tabular}{l}
const MKL_Complex8* for vcTanh, \\
vmcTanh
\end{tabular} \\
inca, incy & \begin{tabular}{l}
const MKL_Complex16* for vzTanh,
\end{tabular} \\
mode & const MKL_INT
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Tanh function computes hyperbolic tangent of vector elements.
Special Values for Real Function v?Tanh(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & +1 & \\
\(-\infty\) & -1 & INVALID \\
\hline QNAN & QNAN & \\
SNAN & QNAN & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Tanh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RE(z) } \\
& \text { i•IM(z) }
\end{aligned}
\] & - \(\infty\) & -X & -0 & +0 & +X & + & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(-1+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & \(+1+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z) }
\end{gathered}
\] & - & -X & -0 & +0 & +X & + & NAN \\
\hline \(+\mathrm{i} \cdot \mathrm{Y}\) & \(-1+i \cdot 0 \cdot \operatorname{Tan}(\) Y) & & & & & \[
\begin{aligned}
& +1+\mathrm{i} \cdot 0 \cdot \mathrm{Ta} \\
& \mathrm{n}(\mathrm{Y})
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline +i.0 & \(-1+\mathrm{i} \cdot 0\) & & \(-0+\mathrm{i} \cdot 0\) & +0+i•0 & & \(+1+\mathrm{i} \cdot 0\) & QNAN+i•0 \\
\hline -i. 0 & -1-i.0 & & -0-i.0 & +0-i \(\cdot 0\) & & +1-i•0 & QNAN-i•0 \\
\hline -i.Y & \(-1+i \cdot 0 \cdot \operatorname{Tan}(\) Y) & & & & & \[
\begin{aligned}
& +1+\mathrm{i} \cdot 0 \cdot \mathrm{Ta} \\
& \mathrm{n}(\mathrm{Y})
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i \(\cdot \infty\) & -1-i•0 & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & +1-i•0 & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN
\end{tabular} \\
\hline +i•NAN & \(-1+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i•QNAN
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i•QNAN
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i•QNAN
\end{tabular} & \(+1+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
+i•QNAN
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes:}
- raises INVALID exception when real or imaginary part of the argument is SNAN
- \(\operatorname{Tanh}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Tanh}(z))\)
- \(\operatorname{Tanh}(-z)=-\operatorname{Tanh}(z)\).

\section*{v?Acosh}

Computes inverse hyperbolic cosine (nonnegative) of vector elements.

\section*{Syntax}
```

vsAcosh( n, a, y );
vsAcoshI(n, a, inca, y, incy);
vmsAcosh( n, a, y, mode );
vmsAcoshI(n, a, inca, y, incy, mode);
vdAcosh( n, a, y );
vdAcoshI(n, a, inca, y, incy);
vmdAcosh( n, a, y, mode );
vmdAcoshI(n, a, inca, y, incy, mode);
vcAcosh( n, a, y );
vcAcoshI(n, a, inca, y, incy);
vmcAcosh( n, a, y, mode );
vmcAcoshI(n, a, inca, y, incy, mode);
vzAcosh( n, a, y );
vzAcoshI(n, a, inca, y, incy);
vmzAcosh( n, a, y, mode );
vmzAcoshI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & const MKL_INT \\
\hline \multirow[t]{4}{*}{a} & const float* for vsAcosh, vmsAcosh \\
\hline & const double* for vdAcosh, vmdAcosh \\
\hline & const MKL_Complex8* for vcAcosh, vmcAcosh \\
\hline & ```
const MKL_Complex16* for vzAcosh,
vmzAcosh
``` \\
\hline inca, incy & cnst MKL_INT \\
\hline mode & const MKL_INT64 \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & float* for vsAcosh, vmsAcosh \\
& double* for vdAcosh, vmdAcosh \\
& MKL_Complex8* for vcAcosh, \\
& vmcAcosh \\
& MKL_Complex16* for vzAcosh, \\
& vmzAcosh
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The \(v\) ?Acosh function computes inverse hyperbolic cosine (nonnegative) of vector elements.
Special Values for Real Function v?Acosh(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & +0 & & \\
\(X<+1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & \(+\infty\) & & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.

Special Values for Complex Function v?Acosh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RE(z) } \\
& \text { i•IM(z } \\
& \text { ) }
\end{aligned}
\] & - \(\infty\) & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(\infty+i \cdot \frac{3 \pi}{4}\) & \(+\infty+\mathrm{i} \cdot \pi / 2\) & \(+\infty+\mathrm{i} \cdot \pi / 4\) & \(+\infty+i \cdot\) QNAN \\
\hline +i.Y & \(+\infty+\mathrm{i} \cdot \pi\) & & & & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline +i.0 & \(+\infty+\mathrm{i} \cdot \pi\) & & \(+0+\mathrm{i} \cdot \pi / 2\) & \(+0+\mathrm{i} \cdot \pi / 2\) & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i. 0 & \(+\infty+\mathrm{i} \cdot \pi\) & & \(+0+\mathrm{i} \cdot \pi / 2\) & \(+0+\mathrm{i} \cdot \pi / 2\) & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i.Y & \(+\infty+\mathrm{i} \cdot \pi\) & & & & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i \(\cdot \infty\) & \(\infty-i \cdot \frac{3 \pi}{4}\) & \(+\infty-\mathrm{i} \cdot \pi / 2\) & \(+\infty-\mathrm{i} \cdot \pi / 4\) & \(+\infty+i \cdot\) QNAN \\
\hline +i•NAN & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN
\end{tabular} \\
\hline
\end{tabular}

Notes:
- raises INVALID exception when real or imaginary part of the argument is SNAN
- \(\operatorname{Acosh}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Acosh}(z))\).

\section*{v?Asinh}

Computes inverse hyperbolic sine of vector elements.

\section*{Syntax}
```

vsAsinh(n, a, y);
vsAsinhI(n, a, inca, y, incy);
vmsAsinh(n, a, y, mode);
vmsAsinhI(n, a, inca, y, incy, mode);
vdAsinh(n, a, y);
vdAsinhI(n, a, inca, y, incy);
vmdAsinh(n, a, y, mode);
vmdAsinhI(n, a, inca, y, incy, mode);
vCAsinh(n, a, y);
vcAsinhI(n, a, inca, y, incy);
vmcAsinh(n, a, y, mode);
vmcAsinhI(n, a, inca, y, incy, mode);
vzAsinh(n, a, y);

```
```

vzAsinhI(n, a, inca, y, incy);
vmzAsinh(n, a, y, mode);
vmzAsinhI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
n & const MKL_INT \\
& \begin{tabular}{l} 
const float* for vsAsinh, \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
vmsAsinh \\
vmsAsinh
\end{tabular} \\
const MKL_Complex8* for vcAsinh, \\
inca, incy & vmzAsinh \\
const MKL_INT
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(Y\) & float* for vsAsinh, vmsAsinh \\
& double* for vdAsinh, vmdAsinh \\
& \(M K L \_C o m p l e x 8 *\) for vcAsinh, \\
& vmcAsinh \\
& \(M K L \_C o m p l e x 16 *\) for vzAsinh, \\
& vmzAsinh
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Asinh function computes inverse hyperbolic sine of vector elements.

\section*{Special Values for Real Function v?Asinh(x)}
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) & \\
\(-\infty\) & \(-\infty\) &
\end{tabular}
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline SNAN & QNAN & INVALID \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Asinh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RE(z) } \\
& \text { i•IM(z } \\
& \text { ) }
\end{aligned}
\] & - - & -X & -0 & +0 & +X & + & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(-\infty+\mathrm{i} \cdot \pi / 4\) & \(-\infty+\mathrm{i} \cdot \pi / 2\) & \(+\infty+\mathrm{i} \cdot \pi / 4\) & \(+\infty+\mathrm{i} \cdot \mathrm{QNAN}\) \\
\hline \(+\mathrm{i} \cdot \mathrm{Y}\) & \(-\infty+\mathrm{i} \cdot 0\) & & & & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline +i.0 & \(+\infty+\mathrm{i} \cdot 0\) & & \(+0+\mathrm{i} \cdot 0\) & +0+i. 0 & & \(+\infty+\mathrm{i} \cdot 0\) & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
\hline -i. 0 & \(-\infty-\mathrm{i} \cdot 0\) & & -0-i.0 & +0-i. 0 & & \(+\infty\)-i. 0 & QNANi•QNAN \\
\hline -i.Y & \(-\infty-\mathrm{i} \cdot 0\) & & & & & \(+\infty\)-i. 0 & QNAN
\[
+\mathrm{i} \cdot \mathrm{QNAN}
\] \\
\hline -i. \(\infty\) & \(-\infty-\mathrm{i} \cdot \pi / 4\) & \(-\infty-\mathrm{i} \cdot \pi / 2\) & \(-\infty-\mathrm{i} \cdot \pi / 2\) & \(+\infty-\mathrm{i} \cdot \pi / 2\) & \(+\infty-\mathrm{i} \cdot \pi / 2\) & \(+\infty-\mathrm{i} \cdot \pi / 4\) & \(+\infty+\mathrm{i}\)-QNAN \\
\hline \(+\mathrm{i} \cdot \mathrm{NAN}\) & \(-\infty+\mathrm{i} \cdot \mathrm{QNAN}\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \(+\infty+\mathrm{i} \cdot \mathrm{QNAN}\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes:}
- raises INVALID exception when real or imaginary part of the argument is SNAN
- Asinh \((\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Asinh}(z))\)
- Asinh \((-z)=-A \sinh (z)\).

\section*{v?Atanh}

Computes inverse hyperbolic tangent of vector elements.

\section*{Syntax}
```

vsAtanh(n, a, y);
vsAtanhI(n, a, inca, y, incy);
vmsAtanh(n, a, y, mode);
vmsAtanhI(n, a, inca, y, incy, mode);
vdAtanh(n, a, y);
vdAtanhI(n, a, inca, y, incy);
vmdAtanh(n, a, y, mode);
vmdAtanhI(n, a, inca, y, incy, mode);
vcAtanh(n, a, y);
vcAtanhI(n, a, inca, y, incy);
vmcAtanh(n, a, y, mode);
vmcAtanhI(n, a, inca, y, incy, mode);

```
```

vzAtanh(n, a, y);
vzAtanhI(n, a, inca, y, incy);
vmzAtanh(n, a, y, mode);
vmzAtanhI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & const MKL_INT \\
\hline a & ```
const float* for vsAtanh,
vmsAtanh
const double* for vdAtanh,
vmdAtanh
const MKL_Complex8* for vcAtanh,
vmcAtanh
const MKL_Complex16* for vzAtanh,
vmzAtanh
``` \\
\hline inca, incy & const MKL_INT \\
\hline mode & const MKL_INT64 \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name Type
y float* for vsAtanh, vmsAtanh
double* for vdAtanh, vmdAtanh
MKL_Complex8* for vcAtanh,
vmcAtanh
MKL_Complex16* for vzAtanh,
vmzAtanh

```

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Atanh function computes inverse hyperbolic tangent of vector elements.
Special Values for Real Function v?Atanh(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-1 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(|X|>1\) & QNAN & VML_STATUS_ERRDOM & INVALID
\end{tabular}
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Atanh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z } \\
)
\end{gathered}
\] & \(-\infty\) & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(-0+\mathrm{i} \cdot \pi / 2\) & \(-0+\mathrm{i} \cdot \pi / 2\) & \(-0+\mathrm{i} \cdot \pi / 2\) & \(+0+\mathrm{i} \cdot \pi / 2\) \\
\hline \(+\mathrm{i} \cdot \mathrm{Y}\) & \(-0+\mathrm{i} \cdot \pi / 2\) & & & & & \(+0+\mathrm{i} \cdot \pi / 2\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline +i.0 & \(-0+\mathrm{i} \cdot \pi / 2\) & & -0+i.0 & \(+0+\mathrm{i} \cdot 0\) & & \(+0+\mathrm{i} \cdot \pi / 2\) & \begin{tabular}{l}
QNAN \\
+i•QNAN
\end{tabular} \\
\hline -i. 0 & -0-i \(\cdot \pi / 2\) & & -0-i.0 & \(+0-\mathrm{i} \cdot 0\) & & \(+0-\mathrm{i} \cdot \pi / 2\) & QNANi•QNAN \\
\hline -i.Y & \(-0-\mathrm{i} \cdot \pi / 2\) & & & & & \(+0-\mathrm{i} \cdot \pi / 2\) & \begin{tabular}{l}
QNAN \\
+i•QNAN
\end{tabular} \\
\hline -i. \(\infty\) & -0-i \(\cdot \pi / 2\) & -0-i \(\cdot \pi / 2\) & -0-i \(\cdot \pi / 2\) & +0-i \(\cdot \pi / 2\) & +0-i \(\cdot \pi / 2\) & +0-i \(\cdot \pi / 2\) & \(+0-\mathrm{i} \cdot \pi / 2\) \\
\hline \(+i \cdot N A N\) & -0+i•QNAN & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN
\end{tabular} & -0+i•QNAN & \[
\begin{aligned}
& +0+\mathrm{i} \cdot \mathrm{QNA} \\
& \mathrm{~N}
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
+i•QNAN
\end{tabular} & \[
\begin{aligned}
& +0+\mathrm{i} \cdot \mathrm{QNA} \\
& \mathrm{~N}
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
+i•QNAN
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes:}
- Atanh \((+-1+-i * 0)=+-\infty+-i * 0\), and ZERODIVIDE exception is raised
- raises INVALID exception when real or imaginary part of the argument is SNAN
- Atanh \((\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Atanh}(z))\)
- Atanh \((-z)=-\operatorname{Atanh}(z)\).

\section*{Special Functions}
v?Erf
Computes the error function value of vector elements.

\section*{Syntax}
```

vsErf( n, a, y );
vsErfI(n, a, inca, y, incy);
vmsErf( n, a, y, mode );
vmsErfI(n, a, inca, y, incy, mode);
vdErf( n, a, y );
vdErfI(n, a, inca, y, incy);
vmdErf( n, a, y, mode );

```
```

vmdErfI(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsErf, vmsErf \\
inca, incy & const double* for vdErf, vmdErf \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

Name Type
```

y
float* for vsErf, vmsErf
double* for vdErf, vmdErf

```

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The Erf function computes the error function values for elements of the input vector \(a\) and writes them to the output vector \(y\).
The error function is defined as given by:
\[
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{1} e^{-t^{2}} d t
\]

Useful relations:
\[
\text { 1. } \operatorname{erfc}(x)=1-\operatorname{erf}(x) \text {, }
\]
where erfc is the complementary error function.
\[
\text { 2. } \Phi(x)=\frac{1}{2} \operatorname{erf}(x / \sqrt{2}) \text {, }
\]
where
\[
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \exp \left(-t^{2} / 2\right) d t
\]
is the cumulative normal distribution function.
\[
\text { 3. } \Phi^{-1}(x)=\sqrt{2} \operatorname{erf}^{-1}(2 x-1)
\]
where \(\Phi^{-1}(x)\) and \(\operatorname{erf}^{-1}(x)\) are the inverses to \(\Phi(x)\) and \(\operatorname{erf}(x)\) respectively.
The following figure illustrates the relationships among Erf family functions (Erf, Erfc, CdfNorm).
__border__top
Erf Family Functions Relationship

Useful relations for these functions:
\[
\begin{gathered}
\operatorname{erf}(x)+\operatorname{erfc}(x)=1 \\
\operatorname{cdfnorm}(x)=\frac{1}{2}\left(1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right)=1-\frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)
\end{gathered}
\]

Special Values for Real Function v?Erf(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline\(+\infty\) & +1 & \\
\(-\infty\) & -1 & \\
QNAN & QNAN &
\end{tabular}
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline SNAN & QNAN & INVALID \\
\hline
\end{tabular}

\section*{See Also}

Erfc
CdfNorm
v?Erfc
Computes the complementary error function value of vector elements.

Syntax
```

vsErfc( n, a, y );
vsErfcI(n, a, inca, y, incy);
vmsErfc( n, a, y, mode );
vmsErfcI(n, a, inca, y, incy, mode);
vdErfc( n, a, y );
vdErfcI(n, a, inca, y, incy);
vmdErfc( n, a, y, mode );
vmdErfcI(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
a & \begin{tabular}{l}
const float* for vsErfc, vmsErfc \\
const double* for vdErfc, vmdErfc
\end{tabular} \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}

\section*{Name}

\section*{Type}
\(y\)
float* for vsErfc, vmsErfc
double* for vdErfc, vmdErfc

\section*{Description}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

The Erfc function computes the complementary error function values for elements of the input vector a and writes them to the output vector \(y\).
The complementary error function is defined as follows:

Useful relations:
\[
\begin{gathered}
\text { 1. } \operatorname{erfc}(x)=1-\operatorname{erf}(x) \\
\text { 2. } \Phi(x)=\frac{1}{2} \operatorname{erf}(x / \sqrt{2})
\end{gathered}
\]
where
\[
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \exp \left(-t^{2} / 2\right) d t
\]
is the cumulative normal distribution function.
\[
\text { 3. } \Phi^{-1}(x)=\sqrt{2} \operatorname{erf}^{-1}(2 x-1)
\]
where \(\Phi^{-1}(x)\) and \(\operatorname{erf}^{-1}(x)\) are the inverses to \(\Phi(x)\) and \(\operatorname{erf}(x)\) respectively.
See also Figure "Erf Family Functions Relationship" in Erf function description for Erfc function relationship with the other functions of Erf family.

Special Values for Real Function v?Erfc(\(x\))
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(X>\) underflow & +0 & VML_STATUS_UNDERFLOW & UNDERFLOW \\
\(+\infty\) & +0 & & \\
\(-\infty\) & +2 & & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}

See Also
Erf
CdfNorm
v?CdfNorm
Computes the cumulative normal distribution function values of vector elements.

\section*{Syntax}
vsCdfNorm (\(n, a, y)\);
```

vsCdfNormI(n, a, inca, y, incy);
vmsCdfNorm( n, a, y, mode );
vmsCdfNormI(n, a, inca, y, incy, mode);
vdCdfNorm( n, a, y );
vdCdfNormI(n, a, inca, y, incy);
vmdCdfNorm( n, a, y, mode );
vmdCdfNormI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const float* for vsCdfNorm, \\
vmsCdfNorm
\end{tabular} \\
inca, incy & \begin{tabular}{l}
const double* for vdCdfNorm, \\
vmdCdfNorm
\end{tabular} \\
mode & const MKL_INT
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & float* for vsCdfNorm, vmsCdfNorm \\
& double* for vdCdfNorm, vmdCdfNorm
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The CdfNorm function computes the cumulative normal distribution function values for elements of the input vector \(a\) and writes them to the output vector \(y\).
The cumulative normal distribution function is defined as given by:

Useful relations:
\[
\operatorname{cdfnorm}(x)=\frac{1}{2}\left(1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right)=1-\frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)
\]
where Erf and Erfc are the error and complementary error functions.
See also Figure "Erf Family Functions Relationship" in Erf function description for Cdfnorm function relationship with the other functions of Erf family.

Special Values for Real Function v?CdfNorm(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(X<\) underflow & +0 & VML_STATUS_UNDERFLOW & UNDERFLOW \\
\(+\infty\) & +1 & & \\
\(-\infty\) & +0 & & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}

\section*{See Also}

Erf
Erfc
v?Erfinv
Computes inverse error function value of vector elements.

\section*{Syntax}
```

vsErfInv( n, a, y );
vsErfInvI(n, a, inca, y, incy);
vmsErfInv( n, a, y, mode );
vmsErfInvI(n, a, inca, y, incy, mode);
vdErfInv( n, a, y );
vdErfInvI(n, a, inca, y, incy);
vmdErfInv( n, a, y, mode );
vmdErfInvI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

Input Parameters
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const float* for vsErfInv, \\
vmsErfinv
\end{tabular}
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & float* for vsErfInv, vmsErfInv \\
& double* for vdErfinv, vmdErfinv
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The ErfInv function computes the inverse error function values for elements of the input vector a and writes them to the output vector \(y\)
\(y=\operatorname{erf}^{-1}(a)\),
where \(\operatorname{erf}(x)\) is the error function defined as given by:

Useful relations:
\[
\text { 1. } \operatorname{erf}^{-1}(x)=\operatorname{erfc}^{-1}(1-x)
\]
where rfc is the complementary error function.
\[
\text { 2. } \Phi(x)=\frac{1}{2} \operatorname{erf}(x / \sqrt{2}) \text {, }
\]
where
\[
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \exp \left(-t^{2} / 2\right) d t
\]
is the cumulative normal distribution function.
\[
\text { 3. } \Phi^{-1}(x)=\sqrt{2} \operatorname{erf}^{-1}(2 \mathrm{x}-1) \text {, }
\]
where \(\Phi^{-1}(x)\) and \(\operatorname{erf}^{-1}(x)\) are the inverses to \(\Phi(x)\) and \(\operatorname{erf}(x)\) respectively.
Figure "ErfInv Family Functions Relationship" illustrates the relationships among Erfinv family functions (ErfInv, ErfcInv, CdfNormInv).
__border \(\qquad\)
ErfInv Family Functions Relationship

Useful relations for these functions:
\[
\operatorname{erfcinv}(x)=\operatorname{erfinv}(1-x)
\]
\[
\operatorname{cdfnomminv}(x)=\sqrt{2} \operatorname{erfinv}(2 x-1)=\sqrt{2} \operatorname{erfcinv}(2-2 x)
\]

Special Values for Real Function v?ErfInv(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & \\
+1 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-1 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(|X|>1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & INVALID \\
\hline
\end{tabular}

\section*{See Also \\ ErfcInv \\ CdfnormInv \\ v?Erfclnv \\ Computes the inverse complementary error function value of vector elements.}

\section*{Syntax}
```

vsErfcInv( n, a, y );
vsErfcInvI(n, a, inca, y, incy);
vmsErfcInv( n, a, y, mode );
vmsErfcInvI(n, a, inca, y, incy, mode);
vdErfcInv( n, a, y );
vdErfcInvI(n, a, inca, y, incy);
vmdErfcInv( n, a, y, mode );
vmdErfcInvI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\(\left.\begin{array}{ll}\text { Name } & \text { Type } \\
n & \text { const MKL_INT } \\
\text { a } & \begin{array}{l}\text { const float* for vsErfcInv, } \\
\text { vmsErfcInv }\end{array} \\
\text { const double* for vdErfcInv, } \\
\text { vmdErfcInv }\end{array}\right]\)\begin{tabular}{l}
const MKL_INT \\
mode
\end{tabular}

\section*{Output Parameters}

\section*{Name \\ Type}
\(y\)
float* for vsErfcInv, vmsErfcInv
double* for vdErfcInv, vmdErfcInv

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The Erfcinv function computes the inverse complimentary error function values for elements of the input vector \(a\) and writes them to the output vector \(y\).
The inverse complementary error function is defined as given by:
\[
\begin{aligned}
& \operatorname{erfcinv}(x)=\operatorname{erfinv}(1-x) \\
& \operatorname{erfing}(x)=\operatorname{erf}^{-1}(x)
\end{aligned}
\]

where \(\operatorname{erf}(x)\) denotes the error function and \(\operatorname{erfinv}(x)\) denotes the inverse error function.
See also Figure "ErfInv Family Functions Relationship" in ErfInv function description for ErfcInv function relationship with the other functions of ErfInv family.

Special Values for Real Function v?ErfcInv(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & +0 & & \\
+2 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
+0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(X<-0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(X>+2\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & INVALID \\
\hline
\end{tabular}

\section*{See Also}

ErfInv
CdfNormInv
v?CdfNormInv
Computes the inverse cumulative normal distribution
function values of vector elements.

\section*{Syntax}
```

vsCdfNormInv( n, a, y );
vsCdfNormInvI(n, a, inca, y, incy);
vmsCdfNormInv( n, a, y, mode );
vmsCdfNormInvI(n, a, inca, y, incy, mode);
vdCdfNormInv( n, a, y );
vdCdfNormInvI(n, a, inca, y, incy);
vmdCdfNormInv( n, a, y, mode );
vmdCdfNormInvI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const float* for vsCdfNormInv, \\
vmsCdfNormInv
\end{tabular} \\
inca, incy & \begin{tabular}{l}
const double* for vdCdfNormInv, \\
mode
\end{tabular} \\
& const MKL_INT
\end{tabular}

\section*{Output Parameters}

\section*{Name}

\section*{Type}
\(y\)
```

float* for vsCdfNormInv,
vmsCdfNormInv
double* for vdCdfNormInv,
vmdCdfNormInv

```

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The cdfNormInv function computes the inverse cumulative normal distribution function values for elements of the input vector \(a\) and writes them to the output vector \(y\).

The inverse cumulative normal distribution function is defined as given by:

\section*{\(\operatorname{CdfNormInv}(x)=\operatorname{CdfNorm}^{-1}(x)\)}
where CdfNorm (x) denotes the cumulative normal distribution function.
Useful relations:
\[
\operatorname{cdfnomminv}(x)=\sqrt{2} \operatorname{erfinv}(2 x-1)=\sqrt{2} \operatorname{erfcinv}(2-2 x)
\]
where erfinv(x) denotes the inverse error function and erfcinv(x) denotes the inverse complementary error functions.
See also Figure "ErfInv Family Functions Relationship" in ErfInv function description for CdfnormInv function relationship with the other functions of ErfInv family.
Special Values for Real Function v?CdfNormInv(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0.5 & +0 & & \\
+1 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
+0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(X<-0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(X>+1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & INVALID \\
\hline
\end{tabular}

\section*{See Also \\ Erfinv}

ErfcInv

\section*{v?LGamma}

Computes the natural logarithm of the absolute value of gamma function for vector elements.

\section*{Syntax}
```

vsLGamma( n, a, y );
vsLGammaI(n, a, inca, y, incy);
vmsLGamma( n, a, y, mode );
vmsLGammaI(n, a, inca, y, incy, mode);
vdLGamma( n, a, y );
vdLGammaI(n, a, inca, y, incy);
vmdLGamma( n, a, y, mode );
vmdLGammaI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const float* for vsLGamma, \\
vmsLGamma
\end{tabular} \\
const double* for vdLGamma, \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & float* for vsLGamma, vmsLGamma \\
& double* for vdLGamma, vmdLGamma
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?LGamma function computes the natural logarithm of the absolute value of gamma function for elements of the input vector \(a\) and writes them to the output vector \(y\). Precision overflow thresholds for the v? LGamma function are beyond the scope of this document. If the result does not meet the target precision, the function raises the OVERFLOW exception and sets the VM Error Status to VML_STATUS_OVERFLOW.
Special Values for Real Function v?LGamma(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & +0 & & \\
+2 & +0 & & \\
+0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
negative integer & \(+\infty\) & & ZERODIVIDE \\
\(-\infty\) & \(+\infty\) & & OML_STATUS_OVERFLOW \\
\(+\infty\) & \(+\infty\) & & INVALID \\
\(X>\) overflow & \(+\infty\) & & \\
QNAN & & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}
v?TGamma
Computes the gamma function of vector elements.
Syntax
```

vsTGamma( n, a, y );

```
```

vsTGammaI(n, a, inca, y, incy);
vmsTGamma( n, a, y, mode );
vmsTGammaI(n, a, inca, y, incy, mode);
vdTGamma( n, a, y );
vdTGammaI(n, a, inca, y, incy);
vmdTGamma ( n, a, y, mode );
vmdTGammaI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const float* for vsTGamma, \\
vmsTGamma
\end{tabular} \\
& \begin{tabular}{l}
const double* for vdTGamma, \\
vmdTGamma
\end{tabular} \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & float* for vsTGamma, vmsTGamma \\
& double* for vdTGamma, vmdTGamma
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?TGamma function computes the gamma function for elements of the input vector a and writes them to the output vector \(y\). Precision overflow thresholds for the \(v\) ?TGamma function are beyond the scope of this document. If the result does not meet the target precision, the function raises the OVERFLOW exception and sets the VM Error Status to VML_STATUS_OVERFLOW.

Special Values for Real Function v?TGamma(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
negative integer & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & \(+\infty\) & & \\
\(X>\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & OVERFLOW
\end{tabular}
\begin{tabular}{lll}
\hline Argument & Result & VM Error Status \\
\hline QNAN & QNAN & Exception \\
SNAN & QNAN & INVALID \\
\hline
\end{tabular}

\section*{v?ExpInt1}

Computes the exponential integral of vector elements.
Syntax
```

vsExpInt1( n, a, y );
vsExpInt1I(n, a, inca, y, incy);
vmsExpInt1( n, a, y, mode );
vmsExpIntII(n, a, inca, y, incy, mode);
vdExpInt1(n, a, y );
vdExpInt1I(n, a, inca, y, incy);
vmdExpInt1( n, a, y, mode );
vmdExpIntII(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const float* for vsExpInt1, \\
vmsExpInt1
\end{tabular} \\
& \begin{tabular}{l}
const double* for vdExpInt1, \\
vmdExpInt1
\end{tabular} \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & float* for vsExpInt1, vmsExpInt1 \\
& double* for vdExpInt1, vmdExpInt1
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v? ExpInt1 function computes the exponential integral \(E_{1}\) of vector elements.
For positive real values \(x\), this can be written as:
\[
E_{1}(x)=\int_{x}^{\infty} \frac{e^{-t}}{t} \mathrm{~d} t=\int_{1}^{\infty} \frac{e^{-x t}}{t} \mathrm{~d} t .
\]

For negative real values \(x\), the result is defined as NAN.
Special Values for Real Function v?ExpInt1(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(x<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(+\infty\) & +0 & & \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & INVALID \\
\hline
\end{tabular}

\section*{Rounding Functions}
v?Floor
Computes an integer value rounded towards minus infinity for each vector element.

\section*{Syntax}
```

vsFloor( n, a, y );
vsFloorI(n, a, inca, y, incy);
vmsFloor( n, a, y, mode );
vmsFloorI(n, a, inca, y, incy, mode);
vdFloor( n, a, y );
vdFloorI(n, a, inca, y, incy);
vmdFloor( n, a, y, mode );
vmdFloorI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const float* for vsFloor, \\
vmsFloor
\end{tabular} \\
\begin{tabular}{l}
const double* for vdFloor, \\
vmdFloor
\end{tabular} \\
inca, incy & const MKL_INT
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
\begin{tabular}{ll}
Name & Type \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & float* for vsFloor, vmsFloor \\
& double* for vdFloor, vmdFloor
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The function computes an integer value rounded towards minus infinity for each vector element.

Special Values for Real Function v?Floor(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) & \\
\(-\infty\) & \(-\infty\) & INVALID \\
SNAN & QNAN & \\
QNAN & QNAN & \\
\hline
\end{tabular}
v?Ceil
Computes an integer value rounded towards plus infinity for each vector element.

\section*{Syntax}
```

vsCeil( n, a, y );
vsCeilI(n, a, inca, y, incy);
vmsCeil( n, a, y, mode );
vmsCeilI(n, a, inca, y, incy, mode);
vdCeil( n, a, y );

```
```

vdCeilI(n, a, inca, y, incy);
vmdCeil( n, a, y, mode );
vmdCeilI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
a & const float* for vsCeil, vmsCeil \\
& const double* for vdCeil, vmdCeil \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name Type}
\(y\)
```

float* for vsCeil, vmsCeil
double* for vdCeil, vmdCeil

```

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The function computes an integer value rounded towards plus infinity for each vector element.

Special Values for Real Function v?Ceil(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 &
\end{tabular}
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline\(+\infty\) & \(+\infty\) & \\
\(-\infty\) & \(-\infty\) & INVALID \\
SNAN & QNAN & \\
QNAN & QNAN & \\
\hline
\end{tabular}

\section*{v?Trunc}

Computes an integer value rounded towards zero for each vector element.

\section*{Syntax}
```

vsTrunc( n, a, y );
vsTruncI(n, a, inca, y, incy);
vmsTrunc( n, a, y, mode );
vmsTruncI(n, a, inca, y, incy, mode);
vdTrunc( n, a, y );
vdTruncI(n, a, inca, y, incy);
vmdTrunc( n, a, y, mode );
vmdTruncI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const float* for vsTrunc, \\
\\
\\
\\
vmsTrunc \\
const double* for vdTrunc, \\
inca, incy
\end{tabular} \\
\begin{tabular}{ll}
vode & const MKL_INT
\end{tabular} \\
& const MKL_INT64
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & float* for vsTrunc, vmsTrunc \\
& double* for vdTrunc, vmdTrunc
\end{tabular}

\section*{Description}

The function computes an integer value rounded towards zero for each vector element.

Special Values for Real Function v?Trunc(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) & INVALID \\
\(-\infty\) & \(-\infty\) & \\
SNAN & QNAN & \\
QNAN & QNAN & \\
\hline
\end{tabular}

\section*{v?Round}

Computes a value rounded to the nearest integer for each vector element.

\section*{Syntax}
```

vsRound( n, a, y );
vsRoundI(n, a, inca, y, incy);
vmsRound( n, a, y, mode );
vmsRoundI(n, a, inca, y, incy, mode);
vdRound( n, a, y );
vdRoundI(n, a, inca, y, incy);
vmdRound( n, a, y, mode );
vmdRoundI(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const float* for vsRound, \\
vmsRound \\
const double* for vdRound, \\
vmdRound
\end{tabular} \\
inca, incy & \begin{tabular}{l}
const MKL_INT \\
mode
\end{tabular}
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & float* for vsRound, vmsRound \\
& double* for vdRound, vmdRound
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The function computes a value rounded to the nearest integer for each vector element. Input elements that are halfway between two consecutive integers are always rounded away from zero regardless of the rounding mode.

Special Values for Real Function v?Round(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) & INVALID \\
\(-\infty\) & \(-\infty\) & \\
SNAN & QNAN & \\
QNAN & QNAN & \\
\hline
\end{tabular}
```

v?NearbyInt
Computes a rounded integer value in the current
rounding mode for each vector element.
Syntax
vsNearbyInt( n, a, y );
vsNearbyIntI(n, a, inca, y, incy);
vmsNearbyInt( n, a, y, mode );
vmsNearbyIntI(n, a, inca, y, incy, mode);
vdNearbyInt( n, a, y );
vdNearbyIntI(n, a, inca, y, incy);

```
```

vmdNearbyInt( n, a, y, mode );
vmdNearbyIntI(n, a, inca, y, incy, mode);

```
Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const float* for vsNearbyInt, \\
\\
vmsNearbyInt \\
const double* for vdNearbyInt, \\
inca, incy \\
mode
\end{tabular} \\
& const MKL_INT
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name Type}
```

y float* for vsNearbyInt,
vmsNearbyInt
double* for vdNearbyInt,
vmdNearbyInt

```

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?NearbyInt function computes a rounded integer value in a current rounding mode for each vector element.
Special Values for Real Function v?NearbyInt(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) & INVALID \\
\(-\infty\) & \(-\infty\) & \\
SNAN & QNAN & \\
QNAN & QNAN & \\
\hline
\end{tabular}

\footnotetext{
v?Rint
Computes a rounded integer value in the current rounding mode.
}

Syntax
```

vsRint( n, a, y );

```
```

vsRintI(n, a, inca, y, incy);
vmsRint( n, a, y, mode );
vmsRintI(n, a, inca, y, incy, mode);
vdRint( n, a, y );
vdRintI(n, a, inca, y, incy);
vmdRint( n, a, y, mode );
vmdRintI(n, a, inca, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(n\) & const MKL_INT & \begin{tabular}{l}
Specifies the number of elements to be \\
calculated.
\end{tabular} \\
a & const float* for vsRint, vmsRint \\
inca, incy & const MKL_INT & \begin{tabular}{l}
Pointer to an array that contains the input vector \\
\(a\).
\end{tabular} \\
mode for vdRint, vmdRint
\end{tabular}\(\quad\)\begin{tabular}{l}
Specifies increments for the elements of \(a\) and \(y\). \\
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & float* for vsRint, vmsRint \\
& double* for vdRint, vmdRint
\end{tabular}

\section*{Description}

Pointer to an array that contains the output vector \(y\).

\section*{Description}

The v?Rint function computes a rounded floating-point integer value using the current rounding mode for each vector element.
The rounding mode affects the results computed for inputs that fall between consecutive integers. For example:
- \(\mathrm{f}(0.5)=0\), for rounding modes set to round to nearest round toward zero or to minus infinity.
- \(f(0.5)=1\), for rounding modes set to plus infinity.
- \(\mathrm{f}(-1.5)=-2\), for rounding modes set to round to nearest or to minus infinity.
- \(£(-1.5)=-1\), for rounding modes set to round toward zero or to plus infinity.

Special Values for Real Function v?Rint(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) &
\end{tabular}
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline\(-\infty\) & \(-\infty\) & \\
SNAN & QNAN & INVALID \\
QNAN & QNAN & \\
\hline
\end{tabular}

\section*{v?Modf}

Computes a truncated integer value and the remaining fraction part for each vector element.

Syntax
```

vsModf( n, a, y, z );
vsModfI(n, a, inca, y, incy, z, incz);
vmsModf( n, a, y, z, mode );
vmsModfI(n, a, inca, y, incy, z, incz, mode);
vdModf( n, a, y, z );
vdModfI(n, a, inca, y, incy, z, incz);
vmdModf( n, a, y, z, mode );
vmdModfI(n, a, inca, y, incy, z, incz, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsModf, vmsModf \\
const double* for vdModf, vmdModf \\
\begin{tabular}{l}
inca, incy, \\
incz \\
mode
\end{tabular} & const MKL_INT
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to an array that contains the input vector a.

Specifies increments for the elements of \(a, y\), and \(z\).

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name Type}
```

y,z
float* for vsModf, vmsModf
double* for vdModf, vmdModf

```

\section*{Description}

Pointer to an array that contains the output vector \(y\) and \(z\).

\section*{Description}

The function computes a truncated integer value and the remaining fraction part for each vector element.

Special Values for Real Function v?Modf(x)
\begin{tabular}{llll}
\hline Argument & Result: \(y(i)\) & Result: \(z(i)\) & Exception \\
\hline+0 & +0 & +0 & \\
-0 & -0 & -0 & \\
\(+\infty\) & \(+\infty\) & +0 & INVALID \\
\(-\infty\) & \(-\infty\) & -0 & \\
SNAN & QNAN & QNAN & \\
QNAN & QNAN & QNAN & \\
\hline
\end{tabular}
v?Frac
Computes a signed fractional part for each vector element.

\section*{Syntax}
```

vsFrac( n, a, y );
vsFracI(n, a, inca, y, incy);
vmsFrac( n, a, y, mode );
vmsFracI(n, a, inca, y, incy, mode);
vdFrac( n, a, y );
vdFracI(n, a, inca, y, incy);
vmdFrac( n, a, y, mode );
vmdFracI(n, a, inca, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
a & \begin{tabular}{l}
const float* for vsFrac, vmsFrac \\
const double* for vdFrac, vmdFrac
\end{tabular} \\
inca, incy & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & float* for vsFrac, vmsFrac \\
& double* for vdFrac, vmdFrac
\end{tabular}

\section*{Description}

The function computes a signed fractional part for each vector element.

Special Values for Real Function v?Frac(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & +0 & \\
\(-\infty\) & -0 & INVALID \\
SNAN & QNAN & \\
QNAN & QNAN & \\
\hline
\end{tabular}

\section*{VM Pack/Unpack Functions}

This section describes VM functions that convert vectors with unit increment to and from vectors with positive increment indexing, vector indexing, and mask indexing (see Appendix "Vector Arguments in VM" for details on vector indexing methods).

The table below lists available VM Pack/Unpack functions, together with data types and indexing methods associated with them.

VM Pack/Unpack Functions
\begin{tabular}{llll}
\hline Function Short Name & \begin{tabular}{l}
Data \\
Types
\end{tabular} & \begin{tabular}{l}
Indexing \\
Methods
\end{tabular} & Description \\
\hline v?Pack & \(\mathrm{s}, \mathrm{d}, \mathrm{C}\), & \(\mathrm{I}, \mathrm{V}, \mathrm{M}\) & Gathers elements of arrays, indexed by different methods. \\
v?Unpack & \(\mathrm{z}, \mathrm{d}, \mathrm{C}\), & \(\mathrm{I}, \mathrm{V}, \mathrm{M}\) & Scatters vector elements to arrays with different indexing. \\
& z & & \\
\hline
\end{tabular}

\section*{See Also}

Appendix "Vector Arguments in VM"

\section*{v?Pack}

Copies elements of an array with specified indexing to a vector with unit increment.

\section*{Syntax}
```

vsPackI( n, a, inca, y );
vsPackV( n, a, ia, y );
vsPackM( n, a, ma, y );
vdPackI( n, a, inca, y );
vdPackV( n, a, ia, y );
vdPackM( n, a, ma, y );
vcPackI( n, a, inca, y );
vcPackV( n, a, ia, y );
vcPackM( n, a, ma, y );
vzPackI( n, a, inca, y );
vzPackV( n, a, ia, y );
vzPackM( n, a, ma, y );

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & \begin{tabular}{l}
const float* for vsPackI, \\
vsPackV, vsPackM
\end{tabular}
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.
Specifies pointer to an array that contains the input vector \(a\). The arrays must be:
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline & ```
const double* for vdPackI,
vdPackV, vdPackM
const MKL_Complex8* for vcPackI,
vcPackV, vcPackM
const MKL_Complex16* for
vzPackI, vzPackV, vzPackM
``` & ```
for v?PackI, at least(1 + (n-1)*inca)
for v?PackV, at least max( n,max(ia[j]) ), j=0,
..., n-1
for v?PackM, at least n.
``` \\
\hline inca & const MKL_INT for vsPackI, vdPackI, vcPackI, vzPackI & Specifies the increment for the elements of \(a\). \\
\hline ia & const int* for vsPackV, vdPackV, vcPackV, vzPackV & Specifies the pointer to an array of size at least \(n\) that contains the index vector for the elements of \(a\). \\
\hline ma & const int* for vsPackM, vdPackM, vcPackM, vzPackM & Specifies the pointer to an array of size at least \(n\) that contains the mask vector for the elements of \(a\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

Name
y
float* for vsPackI, vsPackV,
vsPackM
double* for vdPackI, vdPackV,
vdPackM
const MKL_Complex8* for vcPackI,
vcPackV, vcPackM
const MKL_Complex16* for vzPackI,
vzPackV, vzPackM

```

\section*{v?Unpack}

Copies elements of a vector with unit increment to an array with specified indexing.

\section*{Syntax}
```

vsUnpackI( n, a, y, incy );
vsUnpackV( n, a, y, iy );
vsUnpackM( n, a, y, my );
vdUnpackI( n, a, y, incy );
vdUnpackV( n, a, y, iy );
vdUnpackM( n, a, y, my );
vcUnpackI( n, a, y, incy );
vcUnpackV( n, a, y, iy );
vcUnpackM( n, a, y, my );
vzUnpackI( n, a, y, incy );

```
```

vzUnpackV( n, a, y, iy );
vzUnpackM( n, a, y, my );

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
```

Name Type
n const MKL_INT
a const float* for vsUnpackI,
vsUnpackV, vsUnpackM
const double* for vdUnpackI,
vdUnpackV, vdUnpackM
const MKL_Complex8* for
vcUnpackI, vcUnpackV, vcUnpackM
const MKL_Complex16* for
vzUnpackI, vzUnpackV, vzUnpackM
const MKL_INT for vsUnpackI,
vdUnpackI, vcUnpackI, vzUnpackI
iy const int* for vsUnpackV,
vdUnpackV, vcUnpackV, vzUnpackV
my
incy
const int* for vsUnpackM,
vdUnpackM, vcUnpackM, vzUnpackM

```

\section*{Description}

Specifies the number of elements to be calculated.

Specifies the pointer to an array of size at least \(n\) that contains the input vector \(a\).

Specifies the increment for the elements of \(y\).

Specifies the pointer to an array of size at least \(n\) that contains the index vector for the elements of \(a\).

Specifies the pointer to an array of size at least \(n\) that contains the mask vector for the elements of \(a\).

\section*{Output Parameters}

\section*{Name \\ Type}
y
```

float* for vsUnpackI, vsUnpackV,
vsUnpackM
double* for vdUnpackI,
vdUnpackV, vdUnpackM
const MKL_Complex8* for
vcUnpackI, vcUnpackV, vcUnpackM
const MKL_Complex16* for
vzUnpackI, vzUnpackV, vzUnpackM

```

\section*{Description}

Specifies the pointer to an array that contains the output vector \(y\).
The array must be:
for v?UnpackI, at least \((1+(n-1)\) *incy)
for v?UnpackV, at least
\(\max (n, \max (i a[j])), j=0, \ldots, n-1\), for v?UnpackM, at least \(n\).

\section*{VM Service Functions}

The VM Service functions enable you to set/get the accuracy mode and error code. These functions are available both in the Fortran and C interfaces. The table below lists available VM Service functions and their short description.

VM Service Functions
\begin{tabular}{ll}
Function Short Name & Description \\
\hline vmlSetMode & Sets the VM mode \\
vmlGetMode & Gets the VM mode \\
MKLFreeTls & Frees allocated VM/VS thread local storage memory from within DIIMain \\
& routine (Windows* OS only) \\
vmlSetErrStatus & Sets the VM Error Status \\
vmlGetErrStatus & Gets the VM Error Status \\
vmlClearErrStatus & Clears the VM Error Status \\
vmlSetErrorCallBack & Sets the additional error handler callback function \\
vmlGetErrorCallBack & Gets the additional error handler callback function \\
vmlClearErrorCallBack & Deletes the additional error handler callback function \\
\end{tabular}

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{vmISetMode}

Sets a new mode for VM functions according to the mode parameter and stores the previous VM mode to oldmode.

\section*{Syntax}
```

Oldmode = vmlSetMode( mode );

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
mode & const MKL_UINT
\end{tabular}

\section*{Description}

Specifies the VM mode to be set.

\section*{Output Parameters}

\section*{Name}

Type
oldmode unsigned int

\section*{Description}

Specifies the former VM mode.

\section*{Description}

The vmlSetMode function sets a new mode for VM functions according to the mode parameter and stores the previous VM mode to oldmode. The mode change has a global effect on all the VM functions within a thread.

\section*{NOTE}

You can override the global mode setting and change the mode for a given VM function call by using a respective vm \([s, d]<\) Func> variant of the function.

The mode parameter is designed to control accuracy, handling of denormalized numbers, and error handling. Table "Values of the mode Parameter" lists values of the mode parameter. You can obtain all other possible values of the mode parameter from the mode parameter values by a using bitwise OR (|) operation to combine one value for accuracy, one value for handling of denormalized numbers, and one value for error control options. The default value of the mode parameter is VML_HA | VML_FTZDAZ_CURRENT | VML_ERRMODE_DEFAULT.
The VML_FTZDAZ_ON mode is specifically designed to improve the performance of computations that involve denormalized numbers at the cost of reasonable accuracy loss. This mode changes the numeric behavior of the functions: denormalized input values are treated as zeros (DAZ = denormals-are-zero) and denormalized results are flushed to zero (FTZ = flush-to-zero). Accuracy loss may occur if input and/or output values are close to denormal range.

\section*{Values of the mode Parameter}
\begin{tabular}{ll}
\hline Value of mode & Description \\
\hline Accuracy Control & high accuracy versions of VM functions \\
VML_HA & \begin{tabular}{l}
low accuracy versions of VM functions \\
VML_LA \\
enhanced performance accuracy versions of VM functions
\end{tabular} \\
VML_EP & Faster processing of denormalized inputs is enabled. \\
Denormalized Numbers Handling Control & Faster processing of denormalized inputs is disabled. \\
VML_FTZDAZ_ON & \begin{tabular}{l}
Keep the current CPU settings for denormalized inputs.
\end{tabular} \\
VML_FTZDAZ_OFF & \begin{tabular}{l}
On computation error, VM Error status is updated, but otherwise no \\
action is set. Cannot be combined with other VML_ERRMODE
\end{tabular} \\
VML_FTZDAZ_CURRENT & \begin{tabular}{l}
settings. \\
On computation error, VM Error status is not updated and no action is
\end{tabular} \\
VML_ERRMODE_IGNORE & \begin{tabular}{l}
set. Cannot be combined with other VML_ERRMODE settings. \\
VML_ERRMODE_NOERR
\end{tabular} \\
On error, the errno variable is set.
\end{tabular}

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Examples}

The following example shows how to set low accuracy, fast processing for denormalized numbers and stderr error mode:
```

vmlSetMode( VML_LA );
vmlSetMode( VML_LA | VML_FTZDAZ_ON | VML_ERRMODE_STDERR );

```

\section*{vmIGetMode}

Gets the VM mode.

\section*{Syntax}
```

mod = vmlGetMode( void );

```

\section*{Include Files}
- mkl.h

\section*{Output Parameters}

\section*{Name Type}
mod unsigned int

\section*{Description}

Specifies the packed mode parameter.

\section*{Description}

The function vmlGetMode returns the VM mode parameter that controls accuracy, handling of denormalized numbers, and error handling options. The mod variable value is a combination of the values listed in the table "Values of the mode Parameter". You can obtain these values using the respective mask from the table "Values of Mask for the mode Parameter".
Values of Mask for the mode Parameter
\begin{tabular}{ll}
\hline Value of mask & Description \\
\hline VML_ACCURACY_MASK & Specifies mask for accuracy mode selection. \\
VML_FTZDAZ_MASK & Specifies mask for FTZDAZ mode selection. \\
VML_ERRMODE_MASK & Specifies mask for error mode selection. \\
\hline
\end{tabular}

See example below:

\section*{Examples}
```

accm = vmlGetMode(void )\& VML_ACCURACY MASK;
denm = vmlGetMode(void ) \& VML_FTZDAZ_MASK;
errm = vmlGetMode(void ) \& VML_ERRMODE_MASK;

```

\section*{MKLFreeTls}

Frees allocated VM/VS thread local storage memory
from within DIIMain routine. Use on Windows* OS
only.

\section*{Syntax}
```

void MKLFreeTls( const MKL_UINT fdwReason );

```

\section*{Include Files}
- mkl_vml_functions_win.h

\section*{Description}

The MKLFreeTls routine frees thread local storage (TLS) memory which has been allocated when using MKL static libraries to link into a DLL on the Windows* OS. The routine should only be used within Dllmain.

\section*{NOTE}

It is only necessary to use mKLFreetls for TLS data in the VM and VS domains.

\section*{Input Parameters}
\begin{tabular}{|l|l|l|}
\hline Name & Type & Description \\
\hline fdwReason & const MKL_UINT & Reason code from the DllMain call. \\
\hline
\end{tabular}

\section*{Example}
```

BOOL WINAPI DllMain(HINSTANCE hInst, DWORD fdwReason, LPVOID lpvReserved)
{
/*customer code*/
MKLFreeTls(fdwReason);
/*customer code*/
}

```

\section*{vmlSetErrStatus}

Sets the new VM Error Status according to err and stores the previous VM Error Status to olderrSets the global VM Status according to new values and returns the previous VM Status.

\section*{Syntax}
```

olderr = vmlSetErrStatus( status );

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
status & const MKL_INT & Specifies the VM error status to be set.
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
olderr & int & Specifies the former VM error status.
\end{tabular}

\section*{Description}

Table "Values of the VM Status" lists possible values of the err parameter.
Values of the VM Status
Status \(\quad\) Description \(\quad\)

\section*{Successful Execution}

VML_STATUS_OK The execution was completed successfully.

\section*{Warnings}
\begin{tabular}{ll}
\hline Status & Description \\
\hline VML_STATUS_ACCURACYWARNING & \begin{tabular}{l}
The execution was completed successfully in a different accuracy \\
mode.
\end{tabular} \\
Errors & The function does not support the preset accuracy mode. The Low \\
VML_STATUS_BADSIZE & Accuracy mode is used instead. \\
VML_STATUS_BADMEM & NULL pointer is passed. \\
VML_STATUS_ERRDOM & At least one of array values is out of a range of definition. \\
VML_STATUS_SING & At least one of the input array values causes a divide-by-zero \\
exception or produces an invalid (QNaN) result. \\
VML_STATUS_OVERFLOW & An overflow has happened during the calculation process. \\
VML_STATUS_UNDERFLOW & An underflow has happened during the calculation process. \\
\hline
\end{tabular}

\section*{Examples}
```

olderr = vmlSetErrStatus( VML_STATUS_OK );
olderr = vmlSetErrStatus( VML_STATUS_ERRDOM );
olderr = vmlSetErrStatus( VML_STATUS_UNDERFLOW );

```

\section*{vmIGetErrStatus}

Gets the VM Error Status.

\section*{Syntax}
```

err = vmlGetErrStatus( void );

```

\section*{Include Files}
- mkl.h

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
err & int & Specifies the VM error status.
\end{tabular}

\section*{vmIClearErrStatus}

Sets the VM Error Status to VML_STATUS_OK and stores the previous VM Error Stātus to olderr.

\section*{Syntax}
```

olderr = vmlClearErrStatus( void);

```

\section*{Include Files}
- mkl.h

\section*{Output Parameters}
Name Type
olderr int

\section*{vmlSetErrorCallBack}

Sets the additional error handler callback function and gets the old callback function.

\section*{Syntax}
```

oldcallback = vmlSetErrorCallBack( callback );

```

Include Files
- mkl.h

Input Parameters

\section*{Name}
callback Pointer to the callback function.

\section*{Description}

Specifies the former VM error status.

\section*{Description}

The callback function has the following format:
```

static int __cdecl
MyHandler(DefVmlErrorContext*

```
```

pContext)

```
pContext)
{
{
 /* Handler body */
 /* Handler body */
};
```

};

```

\section*{Name}

\section*{Description}

The passed error structure is defined as follows:
```

typedef struct _DefVmlErrorContext
{
int iCode;/* Error status value */
int iIndex;/* Index for bad array
element, or bad array
dimension, or bad
array pointer */
double dbA1; /* Error argument 1 */
double dbA2; /* Error argument 2 */
double dbR1; /* Error result 1 */
double dbR2; /* Error result 2 */
char cFuncName[64]; /* Function name */
int iFuncNameLen; /* Length of
functionname*/
double dbA1Im; /* Error argument 1, imag
part*/
double dbA2Im; /* Error argument 2, imag
part*/
double dbR1Im; /* Error result 1, imag
part*/
double dbR2Im; /* Error result 2, imag
part*/
} DefVmlErrorContext;

```

\section*{Output Parameters}

\section*{Name \\ Type}
oldcallback int

\section*{Description}

Pointer to the former callback function.

\section*{Description}

The callback function is called on each VM mathematical function error if VML_ERRMODE_CALLBACK error mode is set (see "Values of the mode Parameter").

Use the vmlSetErrorCallBack () function if you need to define your own callback function instead of default empty callback function.

The input structure for a callback function contains the following information about the error encountered:
- the input value that caused an error
- location (array index) of this value
- the computed result value
- error code
- name of the function in which the error occurred.

You can insert your own error processing into the callback function. This may include correcting the passed result values in order to pass them back and resume computation. The standard error handler is called after the callback function only if it returns 0 .

\section*{vmIGetErrorCallBack}

Gets the additional error handler callback function.

\section*{Syntax}
```

callback = vmlGetErrorCallBack( void );

```

\section*{Include Files}
- mkl.h

\section*{Output Parameters}

\section*{Name}
```

callback

```

\section*{vmlClearErrorCallBack}

Deletes the additional error handler callback function and retrieves the former callback function.

\section*{Syntax}
```

oldcallback = vmlClearErrorCallBack( void );

```

\section*{Include Files}
- mkl.h

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
oldcallback & int
\end{tabular}

\section*{Miscellaneous VM Functions}

\section*{v?CopySign}

Returns vector of elements of one argument with
signs changed to match other argument elements.

\section*{Syntax}
```

vsCopySign (n, a, y);
vsCopySignI(n, a, inca, b, incb, y, incy);
vmsCopySign (n, a, y, mode);
vmsCopySignI(n, a, inca, b, incb, y, incy, mode);
vdCopySign (n, a, y);

```
```

vdCopySignI(n, a, inca, b, incb, y, incy);
vmdCopySign (n, a, y, mode);
vmdCopySignI(n, a, inca, b, incb, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a\) & const float* for vsCopySign \\
& const float* for vmsCopySign \\
& const double* for vdCopySign \\
inca, incb, \\
incy & const double* for vmdCopySign \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector \(a\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name Type}
\(y \quad\) float* for vsCopySign
float* for vmsCopySign
double* for vdCopySign
double* for vmdCopySign

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v? CopySign function returns the first vector argument elements with the sign changed to match the sign of the second vector argument's corresponding elements.

\section*{v?NextAfter}

Returns vector of elements containing the next representable floating-point values following the values from the elements of one vector in the direction of the corresponding elements of another vector.

\section*{Syntax}
```

vsNextAfter ( }n,a,b,y)\mathrm{ ;
vsNextAfterI(n, a, inca, b, incb, y, incy);
vmsNextAfter ( n, a, b, y, mode);

```
```

vmsNextAfterI(n, a, inca, b, incb, y, incy, mode);
vdNextAfter (n, a, b, y);
vdNextAfterI(n, a, inca, b, incb, y, incy);
vmdNextAfter (n, a, b, y, mode);
vmdNextAfterI(n, a, inca, b, incb, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a, b\) & \begin{tabular}{l}
const float* for vsNextAfter \\
const float* for vmsNextAfter
\end{tabular} \\
& \begin{tabular}{l}
const double* for vdNextAfter
\end{tabular} \\
\begin{tabular}{ll}
inca, incb, \\
incy
\end{tabular} & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to the arrays containing the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name}

\section*{Type}
\(y\)
```

float* for vsNextAfter
float* for vmsNextAfter
double* for vdNextAfter
double* for vmdNextAfter

```

\section*{Description}

The v?NextAfter function returns a vector containing the next representable floating-point values following the first vector argument elements in the direction of the second vector argument's corresponding elements.

Special cases:

Overflow

Underflow

The function raises overflow and inexact floating-point exceptions and sets VML_STATUS_OVERFLOW if an input vector argument element is finite and the corresponding result vector element value is infinite.

The function raises underflow and inexact floating-point exceptions and sets VML_STATUS_UNDERFLOW if a result vector element value is subnormal or zero, and different from the corresponding input vector argument element.

Even though underflow or overflow can occur, the returned value is independent of the current rounding direction mode.

\section*{v?Fdim}

Returns vector containing the differences of the corresponding elements of the vector arguments if the first is larger and +0 otherwise.

Syntax
```

vsFdim ( n, a, b, y);
vsFdimI(n, a, inca, b, incb, y, incy);
vmsFdim (n, a, b, y, mode);
vmsFdimI(n, a, inca, b, incb, y, incy, mode);
vdFdim ( }n,a,b,y)
vdFdimI(n, a, inca, b, incb, y, incy);
vmdFdim (n, a, b, y, mode);
vmdFdimI(n, a, inca, b, incb, y, incy, mode);

```

\section*{Include Files}
- mkl.h

Input Parameters
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a, b\) & \begin{tabular}{l}
const float* for vsFdim \\
const float* for vmsFdim \\
const double* for vdFdim \\
const double* for vmdFdim
\end{tabular} \\
\begin{tabular}{ll}
inca, incb, \\
incy \\
mode & const MKL_INT
\end{tabular} \\
& const MKL_INT64
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & float* for vsFdim \\
& float* for vmsFdim \\
& double* for vdFdim \\
& double * for vmdFdim
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to the arrays containing the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Fdim function returns a vector containing the differences of the corresponding elements of the first and second vector arguments if the first element is larger, and +0 otherwise.
Special values for Real Function v?Fdim(\(x, y\))
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline any & QNAN & QNAN & & \\
any & SNAN & QNAN & & INVALID \\
QNAN & any & QNAN & & INVALID \\
\hline SNAN & any & QNAN & & \\
\hline
\end{tabular}

\section*{v?Fmax}

Returns the larger of each pair of elements of the two vector arguments.

\section*{Syntax}
```

vsFmax (n, a, b, y);
vsFmaxI(n, a, inca, b, incb, y, incy);
vmsFmax ( }n, a, b, y, mode)
vmsFmaxI(n, a, inca, b, incb, y, incy, mode);
vdFmax (n, a, b, y);
vdFmaxI(n, a, inca, b, incb, y, incy);
vmdFmax (n, a, b, y, mode);
vmdFmaxI(n, a, inca, b, incb, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a, b\) & const float* for vsFmax \\
& const float* for vmsFmax \\
& \begin{tabular}{l}
const double* for vdFmax \\
inca, incb, \\
incy \\
mode
\end{tabular} \\
& const MKL_INT
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to the arrays containing the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name

```

\section*{Type}
float* for vsFmax
float* for vmsFmax
double* for vdFmax
double* for vmdFmax

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v? Fmax function returns a vector with element values equal to the larger value from each pair of corresponding elements of the two vectors \(a\) and \(b\) : if \(a_{i}<b_{i} v\) ? Fmax returns \(b_{i}\), otherwise v? Fmax returns \(a_{i}\).
Special values for Real Function v?Fmax (\(x, y\))
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline\(a_{i}\) not NAN & NAN & \(a_{i}\) & \\
NAN & \(b_{i}\) not NAN & \(b_{i}\) & \\
NAN & NAN & NAN & \\
\hline
\end{tabular}

\section*{See Also}

Fmin Returns the smaller of each pair of elements of the two vector arguments.
MaxMag Returns the element with the larger magnitude between each pair of elements of the two vector arguments.

\section*{v?Fmin}

Returns the smaller of each pair of elements of the two vector arguments.

Syntax
```

vsFmin ( n, a, b, y);
vsFminI(n, a, inca, b, incb, y, incy);
vmsFmin (n, a, b, y, mode);
vmsFminI(n, a, inca, b, incb, y, incy, mode);
vdFmin ( n, a, b, y);
vdFminI(n, a, inca, b, incb, y, incy);
vmdFmin ( }n,a,b,y, mode)
vmdFminI(n, a, inca, b, incb, y, incy, mode);

```

\section*{Include Files}
- mkl.h

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
\(n\) & const MKL_INT & \begin{tabular}{l}
Specifies the number of elements to be \\
calculated.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
Name & Type \\
\(a, b\) & const float* for vsFmin \\
& const float* for vmsFmin \\
& const double* for vdFmin \\
\begin{tabular}{ll}
inca, incb, \\
incy
\end{tabular} & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}

\section*{Name Type}
\(y\)

> float* for vsFmin
> float* for vmsFmin
> double* for vdFmin
> double* for vmdFmin

\section*{Description}

Pointers to the arrays containing the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Fmin function returns a vector with element values equal to the smaller value from each pair of corresponding elements of the two vectors \(a\) and \(b\) : if \(b_{i}<a_{i} v\) ? Fmin returns \(b_{i}\), otherwise v? Fmin returns \(a_{i}\).
Special values for Real Function v?Fmin(\(x, y\))
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline\(a_{i}\) not NAN & NAN & \(a_{i}\) & & \\
NAN & \(b_{i}\) not NAN & \(b_{i}\) & \\
NAN & NAN & NAN & \\
\hline
\end{tabular}

\section*{See Also}

Fmax Returns the larger of each pair of elements of the two vector arguments.
MinMag Returns the element with the smaller magnitude between each pair of elements of the two vector arguments.
```

v?MaxMag
Returns the element with the larger magnitude
between each pair of elements of the two vector
arguments.
Syntax
vsMaxMag ( n, a, b, y);
vsMaxMagI(n, a, inca, b, incb, y, incy);
vmsMaxMag (n, a, b, y, mode);
vmsMaxMagI(n, a, inca, b, incb, y, incy, mode);
vdMaxMag (n, a, b, y);

```
```

vdMaxMagI(n, a, inca, b, incb, y, incy);
vmdMaxMag ( n, a, b, y, mode);
vmdMaxMagI(n, a, inca, b, incb, y, incy, mode);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a, b\) & const float* for vsMaxMag \\
& \begin{tabular}{l}
const float* for vmsMaxMag \\
const double* for vdMaxMag
\end{tabular} \\
\begin{tabular}{ll}
inca, incb, \\
incy
\end{tabular} & const MKL_INT \\
mode & const MKL_INT64
\end{tabular}

\section*{Output Parameters}

\section*{Name Type}
\(\begin{array}{ll}y & \text { float* for vsMaxMag } \\ \text { float* for vmsMaxMag } \\ \text { double* for vdMaxMag } \\ \text { double* for vmdMaxMag }\end{array}\)

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to the arrays containing the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?MaxMag function returns a vector with element values equal to the element with the larger magnitude from each pair of corresponding elements of the two vectors \(a\) and \(b\) :
- If \(\left|a_{i}\right|>\left|b_{i}\right|\) v?MaxMag returns \(a_{i}\), otherwise v?MaxMag returns \(a_{i}\).
- If \(\left|b_{i}\right|>\left|a_{i}\right|\) v?MaxMag returns \(b_{i}\), otherwise v?MaxMag returns \(a_{i}\).
- Otherwise \(v\) ?MaxMag behaves like v?Fmax.

Special values for Real Function v?MaxMag(\(\mathbf{x}, \mathrm{y}\))
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline\(a_{i}\) not NAN & NAN & \(a_{i}\) & & \\
NAN & \(b_{i}\) not NAN & \(b_{i}\) & & \\
NAN & NAN & NAN & & \\
\hline
\end{tabular}

\section*{See Also}

MinMag Returns the element with the smaller magnitude between each pair of elements of the two vector arguments.
Fmax Returns the larger of each pair of elements of the two vector arguments.

\section*{v?MinMag}

Returns the element with the smaller magnitude between each pair of elements of the two vector arguments.

\section*{Syntax}
```

vsMinMag ( n, a, b, y);
vsMinMagI(n, a, inca, b, incb, y, incy);
vmsMinMag ( }n,a,b,y, mode)
vmsMinMagI(n, a, inca, b, incb, y, incy, mode);
vdMinMag ( n, a, b, y);
vdMinMagI(n, a, inca, b, incb, y, incy);
vmdMinMag (n, a, b, y, mode);
vmdMinMagI(n, a, inca, b, incb, y, incy, mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
\(a, b\) & const float* for vsMinMag \\
& \begin{tabular}{l}
const float* for vmsMinMag \\
const double* for vdMinMag \\
inca, incb, \\
incy
\end{tabular} \\
\begin{tabular}{ll}
const double* for vmdMinMag \\
mode
\end{tabular} & const MKL_INT64
\end{tabular}

\section*{Output Parameters}

\section*{Name \\ Type}
\(y\)
float* for vsMinMag
float* for vmsMinMag
double* for vdMinMag

\section*{Description}

Pointer to an array containing the output vector \(y\).
Name Type Description

> double* for vmdMinMag

\section*{Description}

The v?MinMag function returns a vector with element values equal to the element with the smaller magnitude from each pair of corresponding elements of the two vectors \(a\) and \(b\) :
- If \(\left|a_{i}\right|<\left|b_{i}\right|\) v?MaxMag returns \(a_{i}\), otherwise v?MaxMag returns \(a_{i}\).
- If \(\left|b_{i}\right|<\left|a_{i}\right|\) v?MaxMag returns \(b_{i}\), otherwise v?MaxMag returns \(a_{i}\).
- Otherwise v?MaxMag behaves like v?Fmin.

Special values for Real Function v?MinMag(\(x, y\))
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline\(a_{i}\) not NAN & NAN & \(a_{i}\) & & \\
NAN & \(b_{i}\) not NAN & \(b_{i}\) & & \\
NAN & NAN & NAN & & \\
\hline
\end{tabular}

\section*{See Also}

MaxMag Returns the element with the larger magnitude between each pair of elements of the two vector arguments.
Fmin Returns the smaller of each pair of elements of the two vector arguments.

\section*{Statistical Functions}

Statistical functions in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) are known as the Vector Statistics (VS). They are designed for the purpose of
- generating vectors of pseudorandom, quasi-random, and non-deterministic random numbers
- performing mathematical operations of convolution and correlation
- computing basic statistical estimates for single and double precision multi-dimensional datasets

The corresponding functionality is described in the respective Random Number Generators, Convolution and Correlation, and Summary Statistics topics.

See VS performance data in the online VS Performance Data document available at https://www.intel.com/ content/www/us/en/developer/tools/oneapi/onemkl-documentation.html.

The basic notion in VS is a task. The task object is a data structure or descriptor that holds the parameters related to a specific statistical operation: random number generation, convolution and correlation, or summary statistics estimation. Such parameters can be an identifier of a random number generator, its internal state and parameters, data arrays, their shape and dimensions, an identifier of the operation and so forth. You can modify the VS task parameters using the VS service functions.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Random Number Generators}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) VS provides a set of routines implementing commonly used pseudorandom, quasi-random, or non-deterministic random number generators with continuous and discrete distribution. To improve performance, all these routines were developed using the calls to the highly optimizedBasic Random Number Generators (BRNGs) and vector mathematical functions (VM, see "Vector Mathematical Functions").
VS provides interfaces both for Fortran and \(C\) languages. For users of the \(C\) and \(C++\) languages the mkl_vsl.h header file is provided. All header files are found in the following directory:

\section*{\$ \{MKL \} /include}

All VS routines can be classified into three major categories:
- Transformation routines for different types of statistical distributions, for example, uniform, normal (Gaussian), binomial, etc. These routines indirectly call basic random number generators, which are pseudorandom, quasi-random, or non-deterministic random number generators. Detailed description of the generators can be found in Distribution Generators.
- Service routines to handle random number streams: create, initialize, delete, copy, save to a binary file, load from a binary file, get the index of a basic generator. The description of these routines can be found in Service Routines.
- Registration routines for basic pseudorandom generators and routines that obtain properties of the registered generators (see Advanced Service Routines).
The last two categories are referred to as service routines.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Random Number Generators Conventions}

This document makes no specific differentiation between random, pseudorandom, and quasi-random numbers, nor between random, pseudorandom, and quasi-random number generators unless the context requires otherwise. For details, refer to the 'Random Numbers' section in VS Notesdocument provided at the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) web page.
All generators of nonuniform distributions, both discrete and continuous, are built on the basis of the uniform distribution generators, called Basic Random Number Generators (BRNGs). The pseudorandom numbers with nonuniform distribution are obtained through an appropriate transformation of the uniformly distributed pseudorandom numbers. Such transformations are referred to as generation methods. For a given distribution, several generation methods can be used. See VS Notes for the description of methods available for each generator.
An RNG task determines environment in which random number generation is performed, in particular parameters of the BRNG and its internal state. Output of VS generators is a stream of random numbers that are used in Monte Carlo simulations. A random stream descriptor and a random stream are used as synonyms of an RNG task in the document unless the context requires otherwise.
The random stream descriptor specifies which BRNG should be used in a given transformation method. See the Random Streams and RNGs in Parallel Computation section of VS Notes.

The term computational node means a logical or physical unit that can process data in parallel.

\section*{Random Number Generators Mathematical Notation}

The following notation is used throughout the text:
\(N\)
\(Z\)
R
\[
\lfloor a\rfloor
\]
\(\oplus\) or xor
\[
C_{\alpha}^{\kappa} \operatorname{or}\binom{\alpha}{\kappa}
\]
\(\Phi(x)\)
\(\Gamma(\alpha)\)

The set of natural numbers \(N=\{1,2,3 \ldots\}\).
The set of integers \(Z=\{\ldots-3,-2,-1,0,1,2,3 \ldots\}\).
The set of real numbers.
The floor of \(a\) (the largest integer less than or equal to \(a\)).

Bitwise exclusive OR.
Binomial coefficient or combination (\(\alpha \in R, \alpha \geq 0 ; k \in N \cup\{0\}\)).

For \(\alpha \geq k\) binomial coefficient is defined as
\[
C_{\alpha}^{\kappa}=\frac{\alpha(\alpha-1) \ldots(\alpha-\kappa+1)}{\kappa!}
\]

If \(\alpha<k\), then
\[
C_{\alpha}^{\kappa}=0
\]

Cumulative Gaussian distribution function
\[
\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right) d y
\]
defined over \(-\infty<x<+\infty\).
\(\Phi(-\infty)=0, \Phi(+\infty)=1\).
The complete gamma function
\[
\Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t
\]
where \(\alpha>0\).
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{\(B(p, q)\)} & The complete beta function \\
\hline & \[
B(\gamma, G)=\int_{0}^{1} \pm^{n-1}\left(1-t^{-1}\right)^{1}+
\] \\
\hline & where \(p>0\) and \(q>0\). \\
\hline \(\operatorname{LCG}(a, c, m)\) & Linear Congruential Generator \(x_{n+1}=\left(a x_{n}+c\right) \bmod m\), where \(a\) is called the multiplier, \(c\) is called the increment, and \(m\) is called the modulus of the generator. \\
\hline MCG(\(a, m\)) & Multiplicative Congruential Generator \(x_{n+1}=\left(a x_{n}\right) \bmod m\) is a special case of Linear Congruential Generator, where the increment \(c\) is taken to be 0 . \\
\hline \(\operatorname{GFSR}(p, q)\) & Generalized Feedback Shift Register Generator \\
\hline
\end{tabular}
\[
x_{n}=x_{n-p} \oplus x_{n-q} .
\]

\section*{Random Number Generators Naming Conventions}

The names of the routines, types, and constants in VS random number generators are case-sensitive and can contain lowercase and uppercase characters (viRngUniform).
The names of generator routines have the following structure:
\(\mathrm{v}<t y p e\) of result>Rng<distribution>
where
- \(v\) is the prefix of a VS vector function.
- <type of result> is either \(s, d\), or \(i\) and specifies one of the following types:
\begin{tabular}{ll}
s & float \\
d & double \\
i & int
\end{tabular}

Prefixes s and d apply to continuous distributions only, prefix i applies only to discrete case.
- rng indicates that the routine is a random generator.
- <distribution> specifies the type of statistical distribution.

On 64-bit platforms, routines with the _64 suffix support large data arrays in the LP64 interface library and enable you to mix integer types in one application. For more interface library details, see "Using the ILP64 Interface vs. LP64 Interface" in the developer guide.
Names of service routines follow the template below:
```

vsl<name>

```
where
- vsl is the prefix of a VS service function.
- <name> contains a short function name.

For a more detailed description of service routines, refer to Service Routines and Advanced Service Routines.

The prototype of each generator routine corresponding to a given probability distribution fits the following structure:
```

status = <function name>( method, stream, n, r, [<distribution parameters>] )

```
where
- method defines the method of generation. A detailed description of this parameter can be found in table "Values of <method> in method parameter". See below, where the structure of the method parameter name is explained.
- stream defines the descriptor of the random stream and must have a non-zero value. Random streams, descriptors, and their usage are discussed further in Random Streams and Service Routines.
- \(n\) defines the number of random values to be generated. If \(n\) is less than or equal to zero, no values are generated. Furthermore, if \(n\) is negative, an error condition is set.
- \(r\) defines the destination array for the generated numbers. The dimension of the array must be large enough to store at least \(n\) random numbers.
- status defines the error status of a VS routine. See Error Reporting for a detailed description of error status values.
Additional parameters included into <distribution parameters> field are individual for each generator routine and are described in detail in Distribution Generators.

To invoke a distribution generator, use a call to the respective VS routine. For example, to obtain a vector \(r\), composed of \(n\) independent and identically distributed random numbers with normal (Gaussian) distribution, that have the mean value a and standard deviation sigma, write the following:
```

status = vsRngGaussian( method, stream, n, r, a, sigma )

```

The name of a method parameter has the following structure:
```

VSL_RNG_METHOD_method<distribution>_<method>
VSL_RNG_METHOD_<distribution>_<method>_ACCURATE

```
where
- <distribution> is the probability distribution.
- <method> is the method name.

Type of the name structure for the method parameter corresponds to fast and accurate modes of random number generation (see "Distribution Generators" and VS Notes for details).
```

Method names vSL_RNG_METHOD_<distribution>_<method>

```
and
VSL_RNG_METHOD_<distribution>_<method>_ACCURATE
should be used with
v<precision>Rng<distribution>
function only, where
- <precision> is
\(s\)
for single precision continuous distribution
d for double precision continuous distribution
\(i\) for discrete distribution
- <distribution> is the probability distribution.
is the probability distribution. Table "Values of <method> in method parameter" provides specific predefined values of the method name. The third column contains names of the functions that use the given method.

Values of <method> in method parameter
\begin{tabular}{|c|c|c|}
\hline Method & Short Description & Functions \\
\hline STD & Standard method. Currently there is only one method for these functions. & Uniform (continuous), Uniform (discrete), UniformBits, UniformBits32, UniformBits64 \\
\hline BOXMULLER & BOXMULLER generates normally distributed random number \(x\) thru the pair of uniformly distributed numbers \(u_{1}\) and \(u_{2}\) according to the formula: & Gaussian, GaussianMV \\
\hline & \[
x=\sqrt{-2 \ln u_{1}} \sin 2 \pi u_{2}
\] & \\
\hline \multirow[t]{3}{*}{BOXMULLER2} & BOXMULLER2 generates normally distributed random numbers \(x_{1}\) and \(x_{2}\) thru the pair of uniformly distributed numbers \(u_{1}\) and \(u_{2}\) according to the formulas: & \multirow[t]{3}{*}{Gaussian, GaussianMV, Lognormal} \\
\hline & \[
x_{1}=\sqrt{-2 \ln u_{1}} \sin 2 \pi u_{2}
\] & \\
\hline & & \\
\hline ICDF & Inverse cumulative distribution function method. & \begin{tabular}{l}
Exponential, \\
Laplace, \\
Weibull, Cauchy, \\
Rayleigh, \\
Gumbel, \\
Bernoulli, \\
Geometric, \\
Gaussian, \\
GaussianMV, \\
Lognormal
\end{tabular} \\
\hline GNORM & For \(\alpha>1\), a gamma distributed random number is generated as a cube of properly scaled normal random number; for \(0.6 \leq \alpha<\) 1 , a gamma distributed random number is generated using rejection from Weibull distribution; for \(\alpha<0.6\), a gamma distributed random number is obtained using transformation of exponential power distribution; for \(\alpha=1\), gamma distribution is reduced to exponential distribution. & Gamma \\
\hline CJA & For \(\min (p, q)>1\), Cheng method is used; for \(\min (p, q)<\) 1, Johnk method is used, if \(q+K \cdot p^{2}+C \leq 0\) (\(K=0.852 \ldots\), \(C=-0.956 \ldots\)) otherwise, Atkinson switching algorithm is used; for \(\max (p, q)<1\), method of Johnk is used; for \(\min (p, q)\) 1, \(\max (p, q)>1\), Atkinson switching algorithm is used (CJA stands for the first letters of Cheng, Johnk, Atkinson); for \(p=\) 1 or \(q=1\), inverse cumulative distribution function method is used;for \(p=1\) and \(q=1\), beta distribution is reduced to uniform distribution. & Beta \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Method & Short Description & Functions \\
\hline BTPE & \begin{tabular}{l}
Acceptance/rejection method for \\
ntrial \(\min (p, 1-p) \geq 30\) \\
with decomposition into 4 regions: \\
- 2 parallelograms \\
- triangle \\
- left exponential tail \\
- right exponential tail
\end{tabular} & Binomial \\
\hline H2PE & \begin{tabular}{l}
Acceptance/rejection method for large mode of distribution with decomposition into 3 regions: \\
- rectangular \\
- left exponential tail \\
- right exponential tail
\end{tabular} & Hypergeometric \\
\hline PTPE & \begin{tabular}{l}
Acceptance/rejection method for \(\lambda \geq 27\) with decomposition into 4 regions: \\
- 2 parallelograms \\
- triangle \\
- left exponential tail \\
- right exponential tail; \\
otherwise, table lookup method is used.
\end{tabular} & Poisson \\
\hline POISNORM & \begin{tabular}{l}
for \(\lambda \geq 1\), method based on Poisson inverse CDF approximation by Gaussian inverse CDF; \\
for \(\lambda<1\), table lookup method is used.
\end{tabular} & Poisson, PoissonV \\
\hline NBAR & & \\
\hline & \begin{tabular}{l}
\[
\frac{(a-1) \cdot(1-p)}{} \geq 100
\] \\
7 \\
with decomposition into 5 regions: \\
- rectangular \\
- 2 trapezoid \\
- left exponential tail \\
- right exponential tail
\end{tabular} & \\
\hline CHI2GAMMA & \begin{tabular}{l}
Random number generator of chi-square distribution with \(v\) degrees of freedom. To generate any successive random number \(x\) of the chi-square distribution: \\
- If \(v\) is 1 or 3 , a chi-square distributed random number is generated as a sum of squares of \(v\) independent normal random numbers with mean value \(\mathrm{a}=0\) and standard deviation \(\sigma=1\). \\
- If \(v\) is even and \(2 \leq v \leq 16\), a chi-square distributed random number is generated using the formula:
\[
x=-2 \ln \left(\prod_{i=1}^{v / 2} u_{i}\right)
\]
\end{tabular} & ChiSquare \\
\hline
\end{tabular}
Method Short Description Functions
where \(u_{i}\) are successive random numbers uniformly distributed over the interval \((0,1)\)
- If \(v \geq 17\) or \(v\) is odd and \(5 \leq v \leq 15\), a chi-square distribution is reduced to a Gamma distribution with these parameters:
- Shape \(a=v / 2\)
- Offset \(\mathrm{a}=0\)
- Scale factor \(\beta=2\)

The random numbers of the Gamma distribution are generated using the VSL_RNG_METHOD_GAMMA_GNORM method.

\section*{NOTE}

In this document, routines are often referred to by their base name (Gaussian) when this does not lead to ambiguity. In the routine reference, the full name (vsrnggaussian, vsRngGaussian) is always used in prototypes and code examples.

\section*{Basic Generators}

VS provides pseudorandom, quasi-random, and non-deterministic random number generators. This includes the following BRNGs, which differ in speed and other properties:
- the 31-bit multiplicative congruential pseudorandom number generator MCG (1132489760, \(2^{31}\)-1) [L'Ecuyer99]
- the 32-bit generalized feedback shift register pseudorandom number generator \(\operatorname{GFSR}(250,103)\) [Kirkpatrick81]
- the combined multiple recursive pseudorandom number generator MRG32k3a [L'Ecuyer99a]
- the 59-bit multiplicative congruential pseudorandom number generator MCG \(\left(13^{13}, 2^{59}\right)\) from NAG Numerical Libraries [NAG]
- Wichmann-Hill pseudorandom number generator (a set of 273 basic generators) from NAG Numerical Libraries [NAG]
- Mersenne Twister pseudorandom number generator MT19937 [Matsumoto98] with period length 219937-1 of the produced sequence
- Set of 6024 Mersenne Twister pseudorandom number generators MT2203 [Matsumoto98], [Matsumoto00]. Each of them generates a sequence of period length equal to \(2^{2203}-1\). Parameters of the generators provide mutual independence of the corresponding sequences.
- SIMD-oriented Fast Mersenne Twister pseudorandom number generator SFMT19937 [Saito08] with a period length equal to \(2^{19937}-1\) of the produced sequence.
- Sobol quasi-random number generator [Sobol76], [Bratley88], which works in arbitrary dimension. For dimensions greater than 40 the user should supply initialization parameters (initial direction numbers and primitive polynomials or direction numbers) by using vslNewStreamEx function. See additional details on interface for registration of the parameters in the library in VS Notes.
- Niederreiter quasi-random number generator [Bratley92], which works in arbitrary dimension. For dimensions greater than 318 the user should supply initialization parameters (irreducible polynomials or direction numbers) by using vslNewStreamEx function. See additional details on interface for registration of the parameters in the library in VS Notes.
- Non-deterministic random number generator (RDRAND-based generators only) [AVX], [InteISWMan].

\section*{NOTE}

You can use a non-deterministic random number generator only if the underlying hardware supports it. For instructions on how to detect if an Intel CPU supports a non-deterministic random number generator see, for example, Chapter 8: Post-32nm Processor Instructions in [AVX] or Chapter 4: RdRand Instruction Usage in [BMT].

\section*{NOTE}

The time required by some non-deterministic sources to generate a random number is not constant, so you might have to make multiple requests before the next random number is available. VS limits the number of retries for requests to the non-deterministic source to 10 . You can redefine the maximum number of retries during the initialization of the non-deterministic random number generator with the vsINewStreamEx function.
For more details on the non-deterministic source implementation for Intel CPUs please refer to Section 7.3.17, Volume 1, Random Number Generator Instruction in [IntelSWMan] and Section 4.2.2, RdRand Retry Loop in [BMT].
- Philox \(4 \times 32-10\) counter-based pseudorandom number generator with a period of \(2^{128}\) PHILOX4X32X10[Salmon11].
- ARS-5 counter-based pseudorandom number generator with a period of \(2^{128}\), which uses instructions from the AES-NI set ARS5[Salmon11].
See some testing results for the generators in VS Notes and comparative performance data at https:// www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-documentation.html.
VS provides means of registration of such user-designed generators through the steps described in Advanced Service Routines.
For some basic generators, VS provides two methods of creating independent random streams in multiprocessor computations, which are the leapfrog method and the block-splitting method. These sequence splitting methods are also useful in sequential Monte Carlo.
In addition, MT2203 pseudorandom number generator is a set of 6024 generators designed to create up to 6024 independent random sequences, which might be used in parallel Monte Carlo simulations. Another generator that has the same feature is Wichmann-Hill. It allows creating up to 273 independent random streams. The properties of the generators designed for parallel computations are discussed in detail in [Coddington94].
You may want to design and use your own basic generators. VS provides means of registration of such userdesigned generators through the steps described in Advanced Service Routines.
There is also an option to utilize externally generated random numbers in VS distribution generator routines. For this purpose VS provides three additional basic random number generators:
- for external random data packed in 32-bit integer array
- for external random data stored in double precision floating-point array; data is supposed to be uniformly distributed over (\(a, b\)) interval
- for external random data stored in single precision floating-point array; data is supposed to be uniformly distributed over (\(a, b\)) interval.

Such basic generators are called the abstract basic random number generators.
See VS Notes for a more detailed description of the generator properties.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{BRNG Parameter Definition}

Predefined values for the brng input parameter are as follows:
Values of brng parameter
\begin{tabular}{ll}
\hline Value & Short Description \\
\hline VSL_BRNG_MCG31 & A 31-bit multiplicative congruential generator.
\end{tabular}
\begin{tabular}{ll}
\hline Value & Short Description \\
\hline VSL_BRNG_R250 & A generalized feedback shift register generator. \\
VSL_BRNG_MRG32K3A & \begin{tabular}{l}
A combined multiple recursive generator with two components \\
of order 3.
\end{tabular} \\
VSL_BRNG_MCG59 & A 59-bit multiplicative congruential generator. \\
VSL_BRNG_WH & \begin{tabular}{l}
A set of 273 Wichmann-Hill combined multiplicative \\
congruential generators.
\end{tabular} \\
VSL_BRNG_MT19937 & A Mersenne Twister pseudorandom number generator. \\
VSL_BRNG_MT2203 & \begin{tabular}{l}
A set of 6024 Mersenne Twister pseudorandom number \\
generators.
\end{tabular} \\
VSL_BRNG_SFMT19937 & \begin{tabular}{l}
A SIMD-oriented Fast Mersenne Twister pseudorandom number \\
generator.
\end{tabular} \\
VSL_BRNG_SOBOL & \begin{tabular}{l}
A 32-bit Gray code-based generator producing low-discrepancy \\
sequences for dimensions 1 \\
dimensions are also available. 5
\end{tabular} \\
VSL_BRNG_NIEDERR user-defined
\end{tabular}

See VS Notes for detailed description.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Random Streams}

Random stream (or stream) is an abstract source of pseudo- and quasi-random sequences of uniform distribution. You can operate with stream state descriptors only. A stream state descriptor, which holds state descriptive information for a particular BRNG, is a necessary parameter in each routine of a distribution generator. Only the distribution generator routines operate with random streams directly. See VS Notes for details.

\section*{NOTE}

Random streams associated with abstract basic random number generator are called the abstract random streams. See VS Notes for detailed description of abstract streams and their use.

You can create unlimited number of random streams by VS Service Routines like NewStream and utilize them in any distribution generator to get the sequence of numbers of given probability distribution. When they are no longer needed, the streams should be deleted calling service routine DeleteStream.

VS provides service functions SaveStreamF and LoadStreamF to save random stream descriptive data to a binary file and to read this data from a binary file respectively. See VS Notes for detailed description.

\section*{BRNG Data Types}
```

typedef(void*) VSLStreamStatePtr;

```

See Advanced Service Routines for the format of the stream state structure for user-designed generators.

\section*{Error Reporting}

VS RNG routines return status codes of the performed operation to report errors to the calling program. The application should perform error-related actions and/or recover from the error. The status codes are of integer type and have the following format:

VSL_ERROR_<ERROR_NAME> - indicates VS errors common for all VS domains.
VSL_RNG_ERROR_<ERROR_NAME> - indicates VS RNG errors.
VS RNG errors are of negative values while warnings are of positive values. The status code of zero value indicates successful completion of the operation: VSL_ERROR_OK (or synonymic VSL_STATUS_OK).
Status Codes
Status Code \(\quad\) Description \(\quad\)\begin{tabular}{l}
(
\end{tabular}

\section*{Common VSL}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_BADARGS
VSL_ERROR_CPU_NOT_SUPPORTED
VSL_ERROR_FEATURE_NOT_IMPLEMENTED
VSL_ERROR_MEM_FAILURE
VSL_ERROR_NULL_PTR
VSL_ERROR_UNKNOWN

```

\section*{VS RNG Specific}
```

VSL_RNG_ERROR_BAD_FILE_FORMAT
VSL RNG ERROR BAD MEM FORMAT
VSL_RNG_ERROR_BAD_NBITS
VSL_RNG_ERROR_BAD_NSEEDS

```

No error, execution is successful.
Input argument value is not valid.
CPU version is not supported.
Feature invoked is not implemented.
System cannot allocate memory.
Input pointer argument is NULL.
Unknown error.

File format is unknown.
Descriptive random stream format is unknown.

The value in NBits field is bad.
The value in NSeeds field is bad.
\begin{tabular}{|c|c|}
\hline Status Code & Description \\
\hline VSL_RNG_ERROR_BAD_STREAM & The random stream is invalid. \\
\hline VSL_RNG_ERROR_BAD_STREAM_STATE_SIZE & The value in StreamStateSize field is bad. \\
\hline VSL_RNG_ERROR_BAD_UPDATE & Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, \(<0\) or >nmax. \\
\hline VSL_RNG_ERROR_BAD_WORD_SIZE & The value in WordSize field is bad. \\
\hline VSL_RNG_ERROR_BRNG_NOT_SUPPORTED & BRNG is not supported by the function. \\
\hline VSL_RNG_ERROR_BRNG_TABLE_FULL & Registration cannot be completed due to lack of free entries in the table of registered BRNGs. \\
\hline VSL_RNG_ERROR_BRNGS_INCOMPATIBLE & Two BRNGs are not compatible for the operation. \\
\hline VSL_RNG_ERROR_FILE_CLOSE & Error in closing the file. \\
\hline VSL_RNG_ERROR_FILE_OPEN & Error in opening the file. \\
\hline VSL_RNG_ERROR_FILE_READ & Error in reading the file. \\
\hline VSL_RNG_ERROR_FILE_WRITE & Error in writing the file. \\
\hline VSL_RNG_ERROR_INVALID_ABSTRACT_STREAM & The abstract random stream is invalid. \\
\hline VSL_RNG_ERROR_INVALID_BRNG_INDEX & BRNG index is not valid. \\
\hline VSL_RNG_ERROR_LEAPFROG_UNSUPPORTED & BRNG does not support Leapfrog method. \\
\hline VSL_RNG_ERROR_NO_NUMBERS & Callback function for an abstract BRNG returns zero as the number of updated entries in a buffer. \\
\hline VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED & Period of the generator is exceeded. \\
\hline VSL_RNG_ERROR_SKIPAHEAD_UNSUPPORTED & BRNG does not support Skip-Ahead method. \\
\hline VSL_RNG_ERROR_SKIPAHEADEX_UNSUPPORTED & BRNG does not support advanced Skip-Ahead method. \\
\hline VSL_RNG_ERROR_UNSUPPORTED_FILE_VER & File format version is not supported. \\
\hline VSL_RNG_ERROR_NONDETERM_NOT_SUPPORTED & Non-deterministic random number generator is not supported on the CPU running the application. \\
\hline VSL_RNG_ERROR_NONDETERM_ NRETRIES_EXCEEDED & Number of retries to generate a random number using non-deterministic random number generator exceeds threshold (see Section 7.2.1.12 Non-deterministic in [VS Notes] for more details) \\
\hline VSL_RNG_ERROR_ARS5_NOT_SUPPORTED & ARS-5 random number generator is not supported on the CPU running the application. \\
\hline
\end{tabular}

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{VS RNG Usage ModelIntel \({ }^{\oplus}\) oneMKL RNG Usage Model}

A typical algorithm for VSoneMKL random number generators is as follows:
1. Create and initialize stream/streams. Functions vslNewStream, vslNewStreamEx, vslCopyStream,
vslCopyStreamState, vslLeapfrogStream, vslSkipAheadStream, vslSkipAheadStreamEx.
2. Call one or more RNGs.
3. Process the output.
4. Delete the stream or streams with the function vslDeleteStream.

\section*{NOTE}

You may reiterate steps 2-3. Random number streams may be generated for different threads.

The following example demonstrates generation of a random stream that is output of basic generator MT19937. The seed is equal to 777 . The stream is used to generate 10,000 normally distributed random numbers in blocks of 1,000 random numbers with parameters \(a=5\) and sigma \(=2\). Delete the streams after completing the generation. The purpose of the example is to calculate the sample mean for normal distribution with the given parameters.

\section*{Example of VS RNG Usage}
```

\#include <stdio.h>
\#include "mkl_vsl.h"
int main()
{
double r[1000]; /* buffer for random numbers */
double s; /* average */
VSLStreamStatePtr stream;
int i, j;
/* Initializing */
s = 0.0;
vslNewStream( \&stream, VSL_BRNG_MT19937, 777 );
/* Generating */
for ( i=0; i<10; i++ ) {
vdRngGaussian( VSL_RNG_METHOD_GAUSSIAN_ICDF, stream, 1000, r, 5.0, 2.0 );
for ( j=0; j<1000; j++ ) {
s += r[j];
}
}
s /= 10000.0;
/* Deleting the stream */
vslDeleteStream( \&stream );
/* Printing results */
printf( "Sample mean of normal distribution = %f\n", s );
return 0;
}

```

Additionally, examples that demonstrate usage of VS random number generators are available in:
```

\$ {MKL} /examples/vslc/source

```

\section*{Service Routines}

Stream handling comprises routines for creating, deleting, or copying the streams and getting the index of a basic generator. A random stream can also be saved to and then read from a binary file. Table "Service Routines" lists all available service routines

\section*{Service Routines}
\begin{tabular}{|c|c|}
\hline Routine & Short Description \\
\hline vslNewStream & Creates and initializes a random stream. \\
\hline vslNewStreamex & Creates and initializes a random stream for the generators with multiple initial conditions. \\
\hline vsliNewAbstractStream & Creates and initializes an abstract random stream for integer arrays. \\
\hline vsldNewAbstractStream & Creates and initializes an abstract random stream for double precision floating-point arrays. \\
\hline vslsNewAbstractStream & Creates and initializes an abstract random stream for single precision floating-point arrays. \\
\hline vslDeleteStream & Deletes previously created stream. \\
\hline vslCopyStream & Copies a stream to another stream. \\
\hline vslCopyStreamState & Creates a copy of a random stream state. \\
\hline vslSaveStreamF & Writes a stream to a binary file. \\
\hline vslLoadStreamF & Reads a stream from a binary file. \\
\hline vslSaveStreamM & Writes a random stream descriptive data, including state, to a memory buffer. \\
\hline vslLoadStreamM & Creates a new stream and reads stream descriptive data, including state, from the memory buffer. \\
\hline vslGetStreamSize & Computes size of memory necessary to hold the random stream. \\
\hline vslLeapfrogStream & Initializes the stream by the leapfrog method to generate a subsequence of the original sequence. \\
\hline vslSkipAheadStream & Initializes the stream by the skip-ahead method. \\
\hline vsISkipAheadStreamEx & Initializes the stream by the advanced skip-ahead method. \\
\hline vslGetStreamStateBrng & Obtains the index of the basic generator responsible for the generation of a given random stream. \\
\hline vslGetNumRegBrngs & Obtains the number of currently registered basic generators. \\
\hline
\end{tabular}

Most of the generator-based work comprises three basic steps:
1. Creating and initializing a stream (vslNewStream, vslNewStreamEx, vslCopyStream,
vslCopyStreamState, vslLeapfrogStream, vslSkipAheadStream, vslSkipAheadStreamEx).
2. Generating random numbers with given distribution, see Distribution Generators.
3. Deleting the stream (vslDeleteStream).

Note that you can concurrently create multiple streams and obtain random data from one or several generators by using the stream state. You must use the vslDeletestream function to delete all the streams afterwards.
vsINewStream
Creates and initializes a random stream.

\section*{Syntax}
```

status = vslNewStream( \&stream, brng, seed );

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
brng & const MKL_INT \\
seed & const MKL_UINT
\end{tabular}

\section*{Description}

Index of the basic generator to initialize the stream. See Table Values of brng parameter for specific value.

Initial condition of the stream. In the case of a quasirandom number generator seed parameter is used to set the dimension. If the dimension is greater than the dimension that brng can support or is less than 1, then the dimension is assumed to be equal to 1 .

\section*{Output Parameters}

Name Type
stream VSLStreamStatePtr* Stream state descriptor

\section*{Description}

For a basic generator with number brng, this function creates a new stream and initializes it with a 32-bit seed. The seed is an initial value used to select a particular sequence generated by the basic generator brng. The function is also applicable for generators with multiple initial conditions. Use this function to create and initialize a new stream with a 32-bit seed only. If you need to provide multiple initial conditions such as several 32-bit or wider seeds, use the function vsINewStreamEx. See VS Notes for a more detailed description of stream initialization for different basic generators.

\section*{NOTE}

This function is not applicable for abstract basic random number generators. Please use vsliNewAbstractStream, vslsNewAbstractStream or vsldNewAbstractStream to utilize integer, single-precision or double-precision external random data respectively.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Return Values}
```

VSL_ERROR_OK,VSL_STATUS_OK Indicates no error, execution is successful.
VSL_RNG_ERROR_INVALID_BRNG_INDEX
VSL_ERROR_MEM_FAILURE System cannot allocate memory for stream.
VSL_RNG_ERROR_NONDETERMINISTIC_NOT_SUPP Non-deterministic random number generator is not
ORTED - - supported.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the
CPU running the application.

```

\section*{vsINewStreamEx}

Creates and initializes a random stream for generators with multiple initial conditions.

\section*{Syntax}
```

status = vslNewStreamEx( \&stream, brng, n, params );

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
brng & const MKL_INT \\
\(n\) & const MKL_INT \\
params & const unsigned int
\end{tabular}

\section*{Description}

Index of the basic generator to initialize the stream. See Table "Values of brng parameter" for specific value.

Number of initial conditions contained in params
Array of initial conditions necessary for the basic generator brng to initialize the stream. In the case of a quasi-random number generator only the first element in params parameter is used to set the dimension. If the dimension is greater than the dimension that brng can support or is less than 1 , then the dimension is assumed to be equal to 1 .

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
stream & VSLStreamStatePtr* & Stream state descriptor
\end{tabular}

\section*{Description}

The vslNewStreamEx function provides an advanced tool to set the initial conditions for a basic generator if its input arguments imply several initialization parameters. Initial values are used to select a particular sequence generated by the basic generator brng. Whenever possible, use vslNewStream, which is analogous to vslNewStreamEx except that it takes only one 32-bit initial condition. In particular, vslNewStreamEx may be used to initialize the state table in Generalized Feedback Shift Register Generators (GFSRs). A more detailed description of this issue can be found in VS Notes.

This function is also used to pass user-defined initialization parameters of quasi-random number generators into the library. See VS Notes for the format for their passing and registration in VS.

\section*{NOTE}

This function is not applicable for abstract basic random number generators. Please use vsliNewAbstractStream, vslsNewAbstractStream or vsldNewAbstractStream to utilize integer, single-precision or double-precision external random data respectively.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_RNG_ERROR_INVALID_BRNG_INDEX
VSL_ERROR_MEM_FAILURE System cannot allocate memory for stream.
VSL_RNG_ERROR_NONDETERMINISTIC_NOT_SUPP Non-deterministic random number generator is not
ORTED - - supported.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
Indicates no error, execution is successful.
BRNG index is invalid.
System cannot allocate memory for stream.
Non-deterministic random number generator is not supported.
ARS-5 random number generator is not supported on the CPU running the application.

```
vsliNewAbstractStream
Creates and initializes an abstract random stream for integer arrays.

\section*{Syntax}
```

status = vsliNewAbstractStream( \&stream, n, ibuf, icallback );

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(n\) & const MKL_INT & Size of the array ibuf \\
ibuf & const unsigned int & Array of \(n\) 32-bit integers \\
icallback & & Pointer to the callback function used for ibuf update
\end{tabular}

\section*{NOTE}

Format of the callback function:
```

int iUpdateFunc( VSLStreamStatePtrstream, int* n, unsigned int ibuf[], int* nmin, int*
nmax, int* idx );

```

The callback function returns the number of elements in the array actually updated by the function. Table icallback Callback Function Parameters gives the description of the callback function parameters.
icallback Callback Function Parameters
\begin{tabular}{ll}
\hline Parameters & Short Description \\
\hline stream & Abstract random stream descriptor \\
\(n\) & Size of ibuf \\
ibuf & Array of random numbers associated with the stream stream \\
nmin & Minimal quantity of numbers to update \\
nmax & Maximal quantity of numbers that can be updated \\
\(i d x\) & Position in cyclic buffer ibuf to start update \(0 \leq i d x<n\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
stream & VSLStreamStatePtr* & Descriptor of the stream state structure
\end{tabular}

\section*{Description}

The vsliNewAbstractStream function creates a new abstract stream and associates it with an integer array ibuf and your callback function icallback that is intended for updating of ibuf content.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_BADARGS Parameter n is not positive.
VSL_ERROR_MEM_FAILURE
VSL_ERROR_NULL_PTR

```
vsldNewAbstractStream
Creates and initializes an abstract random stream for double precision floating-point arrays.

\section*{Syntax}
```

status = vsldNewAbstractStream( \&stream, n, dbuf, a, b, dcallback );

```

\section*{Include Files}
- mkl.h

Input Parameters
\begin{tabular}{ll}
Name & Type \\
\(n\) & const MKL_INT \\
dbuf & const double
\end{tabular}

\section*{Description}

Size of the array dbuf
Array of \(n\) double precision floating-point random numbers with uniform distribution over interval \((a, b)\)
\begin{tabular}{lll}
Name & Type & Description \\
\(a\) & const double & Left boundary a \\
\(b\) & const double & Right boundary b \\
dcallback & See Note below & \begin{tabular}{l}
Pointer to the callback function used for update of the array \\
\(d b u f\)
\end{tabular}
\end{tabular}

\section*{Output Parameters}

Name Type
stream VSLStreamStatePtr*

\section*{Description}

Descriptor of the stream state structure

\section*{NOTE}

Format of the callback function:
```

int dUpdateFunc( VSLStreamStatePtr stream, int* n, double dbuf[], int* nmin, int* nmax,
int* idx );

```

The callback function returns the number of elements in the array actually updated by the function.Table dcallback Callback Function Parameters gives the description of the callback function parameters.
dcallback Callback Function Parameters
\begin{tabular}{ll}
\hline Parameters & Short Description \\
\hline stream & Abstract random stream descriptor \\
\(n\) & Size of \(d b u f\) \\
dbuf & Array of random numbers associated with the stream stream \\
\(n m i n\) & Minimal quantity of numbers to update \\
\(n m a x\) & Maximal quantity of numbers that can be updated \\
\(i d x\) & Position in cyclic buffer \(d b u f\) to start update \(0 \leq i d x<n\).
\end{tabular}

\section*{Description}

The vsldNewAbstractStream function creates a new abstract stream for double precision floating-point arrays with random numbers of the uniform distribution over interval (\(a, b\)). The function associates the stream with a double precision array dbuf and your callback function dcallback that is intended for updating of \(d b u f\) content.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_BADARGS
VSL_ERROR_MEM_FAILURE
VSL_ERROR_NULL_PTR

```

Indicates no error, execution is successful.
Parameter \(n\) is not positive.
System cannot allocate memory for stream.
Either buffer or callback function parameter is a NULL pointer.

\section*{vslsNewAbstractStream}

Creates and initializes an abstract random stream for
single precision floating-point arrays.
Syntax
```

status = vslsNewAbstractStream( \&stream, n, sbuf, a, b, scallback );

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(n\) & const MKL_INT & Size of the array sbuf \\
sbuf & const float & \begin{tabular}{l}
Array of \(n\) single precision floating-point random numbers \\
with uniform distribution over interval \((a, b)\)
\end{tabular} \\
\(a\) & const float & Left boundary a \\
\(b\) & const float & Right boundary b \\
scallback & See Note below & \begin{tabular}{l}
Pointer to the callback function used for update of the array \\
sbuf
\end{tabular}
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
stream & VSLStreamStatePtr* & Descriptor of the stream state structure
\end{tabular}

\section*{NOTE}

Format of the callback function in C :
```

int sUpdateFunc( VSLStreamStatePtr stream, int* n, float sbuf[], int* nmin, int* nmax,
int* idx );

```

The callback function returns the number of elements in the array actually updated by the function. Table scallback Callback Function Parameters gives the description of the callback function parameters.
scallback Callback Function Parameters
\begin{tabular}{ll}
\hline Parameters & Short Description \\
\hline stream & Abstract random stream descriptor \\
n & Size of sbuf \\
nmin & Array of random numbers associated with the stream stream \\
nmax & Minimal quantity of numbers to update \\
\(i d x\) & Maximal quantity of numbers that can be updated \\
\hline
\end{tabular}

\section*{Description}

The vslsNewAbstractStream function creates a new abstract stream for single precision floating-point arrays with random numbers of the uniform distribution over interval (\(a, b\)). The function associates the stream with a single precision array sbuf and your callback function scallback that is intended for updating of sbuf content.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_BADARGS Parameter n is not positive.
VSL_ERROR_MEM_FAILURE System cannot allocate memory for stream.
VSL_ERROR_NULL_PTR Either buffer or callback function parameter is a NULL
pointer.

```
vslDeleteStream
Deletes a random stream.

\section*{Syntax}
```

status = vslDeleteStream( \&stream );

```

\section*{Include Files}
- mkl.h

\section*{Input/Output Parameters}
Name Type Description
stream VSLStreamStatePtr*
Stream state descriptor. Must have non-zero value. After the stream is successfully deleted, the pointer is set to NULL.

\section*{Description}

The function deletes the random stream created by one of the initialization functions.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR stream parameter is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
vsICopyStream
Creates a copy of a random stream.
Syntax
status = vslCopyStream( \&newstream, srcstream );

```

Include Files
- mkl.h

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
srcstream & const VSLStreamStatePtr & Pointer to the stream state structure to be copied
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
newstream & VSLStreamStatePtr* & Copied random stream descriptor
\end{tabular}

\section*{Description}

The function creates an exact copy of srcstream and stores its descriptor to newstream.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_ERROR_MEM_FAILURE

```

Indicates no error, execution is successful.
srcstream parameter is a NULL pointer.
srcstream is not a valid random stream.
System cannot allocate memory for newstream.
Syntax
```

```
status = vslCopyStreamState(deststream, srcstream);
```

```
status = vslCopyStreamState(deststream, srcstream);
```


## Include Files

- mkl.h

Input Parameters

Name	Type	Description
srcstream	const VSLStreamStatePtr	Pointer to the stream state structure, from which the state   structure is copied

## Output Parameters

Name	Type
deststrea	VSLStreamStatePtr
$m$	

## Description

Pointer to the stream state structure where the stream state is copied

## Description

The vslCopyStreamState function copies a stream state from srcstream to the existing deststream stream. Both the streams should be generated by the same basic generator. An error message is generated when the index of the BRNG that produced deststream stream differs from the index of the BRNG that generated srcstream stream.

Unlike vslCopyStream function, which creates a new stream and copies both the stream state and other data from srcstream, the function vslCopyStreamState copies only srcstream stream state data to the generated deststream stream.

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BRNGS_INCOMPATIBLE
```

VSL_RNG_ERROR_BAD_STREAM Either srcstream or deststream is not a valid random
stream.

Indicates no error, execution is successful.
Either srcstream or deststream is a NULL pointer.
Either srcstream or deststream is not a valid random stream.

BRNG associated with srcstream is not compatible with BRNG associated with deststream.

## vsISaveStreamF

Writes random stream descriptive data, including stream state, to binary file.

## Syntax

```
errstatus = vslSaveStreamF(stream, fname);
```

Include Files

- mkl.h


## Input Parameters

Name	Type	Description
stream	const VSLStreamStatePtr	Random stream to be written to the file
fname	const char*	File name specified as a null-terminated string

## Output Parameters

Name	Type	Description
errstatus	int	Error status of the operation

## Description

The vslSaveStreamF function writes the random stream descriptive data, including the stream state, to the binary file. Random stream descriptive data is saved to the binary file with the name fname. The random stream stream must be a valid stream created by vslNewStream-like or vslCopyStream-like service routines. If the stream cannot be saved to the file, errstatus has a non-zero value. The random stream can be read from the binary file using the vslLoadStreamF function.

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_FILE_OPEN
VSL_RNG_ERROR_FILE_WRITE
VSL_RNG_ERROR_FILE_CLOSE
VSL_ERROR_MEM_FAILURE
```

Indicates no error, execution is successful.
Either fname or stream is a NULL pointer.
stream is not a valid random stream.
Indicates an error in opening the file.
Indicates an error in writing the file.
Indicates an error in closing the file.
System cannot allocate memory for internal needs.

## vslLoadStreamF

Creates new stream and reads stream descriptive
data, including stream state, from binary file.

## Syntax

errstatus $=$ vslLoadStreamF( \&stream, fname );

## Include Files

- mkl.h


## Input Parameters

Name	Type
fname	const char*

## Description

File name specified as a null-terminated string

## Output Parameters

Name	Type	Description
stream	VSLStreamStatePtr*	Pointer to a new random stream
errstatus	int	Error status of the operation

## Description

The vslloadStreamF function creates a new stream and reads stream descriptive data, including the stream state, from the binary file. A new random stream is created using the stream descriptive data from the binary file with the name fname. If the stream cannot be read (for example, an I/O error occurs or the file format is invalid), errstatus has a non-zero value. To save random stream to the file, use vslSaveStreamF function.

## Caution

Calling vslLoadStreamF with a previously initialized stream pointer can have unintended consequences such as a memory leak. To initialize a stream which has been in use until calling vslloadStreamF, you should call the vsIDeleteStream function first to deallocate the resources.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR fname is a NULL pointer.
VSL_RNG_ERROR_FILE_OPEN Indicates an error in opening the file.
VSL_RNG_ERROR_FILE_WRITE Indicates an error in writing the file.
VSL_RNG_ERROR_FILE_CLOSE Indicates an error in closing the file.
VSL_ERROR_MEM_FAILURE System cannot allocate memory for internal needs.
VSL_RNG_ERROR_BAD_FILE_FORMAT
VSL_RNG_ERROR_UNSUPPORTED_FILE_VER
VSL_RNG_ERROR_NONDETERMINISTIC_NOT_SUPP Non-deterministic random number generator is not
ORTED - - supported.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the
CPU running the application.
```

vslSaveStreamM
Writes random stream descriptive data, including stream state, to a memory buffer.

## Syntax

```
errstatus = vslSaveStreamM(stream, memptr);
```


## Include Files

- mkl.h


## Input Parameters

Name	Type	Description
stream	const VSLStreamStatePtr	Random stream to be written to the memory
memptr	char*	Memory buffer to save random stream descriptive data to

## Output Parameters

Name	Type	Description
errstatus int	Error status of the operation	

## Description

The vslSaveStreamM function writes the random stream descriptive data, including the stream state, to the memory at memptr. Random stream stream must be a valid stream created by vslNewStream-like or vslCopyStream-like service routines. The memptr parameter must be a valid pointer to the memory of size sufficient to hold the random stream stream. Use the service routine vslGetStreamSize to determine this amount of memory.
If the stream cannot be saved to the memory, errstatus has a non-zero value. The random stream can be read from the memory pointed by memptr using the vslloadStreamM function.

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR Either memptr or stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is a NULL pointer.
```


## vslLoadStreamM

Creates a new stream and reads stream descriptive
data, including stream state, from the memory buffer.
Syntax

```
errstatus = vslLoadStreamM(&stream, memptr);
```

Include Files

- mkl.h

Input Parameters

Name	Type	Description
memptr	const char*	Memory buffer to load random stream descriptive data from

## Output Parameters

Name	Type	Description
stream	VSLStreamStatePtr*	Pointer to a new random stream
errstatus	int	Error status of the operation

## Description

The vslLoadStreamM function creates a new stream and reads stream descriptive data, including the stream state, from the memory buffer. A new random stream is created using the stream descriptive data from the memory pointer by memptr. If the stream cannot be read (for example, memptr is invalid), errstatus has a non-zero value. To save random stream to the memory, use vslSaveStreamM function. Use the service routine vslGetStreamSize to determine the amount of memory sufficient to hold the random stream.

## Caution

Calling LoadStreamM with a previously initialized stream pointer can have unintended consequences such as a memory leak. To initialize a stream which has been in use until calling vslloadStreamM, you should call the vsIDeleteStream function first to deallocate the resources.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR memptr is a NULL pointer.
VSL_ERROR_MEM_FAILURE System cannot allocate memory for internal needs.
VSL_RNG_ERROR_BAD_MEM_FORMAT Descriptive random stream format is unknown.
VSL_RNG_ERROR_NONDETERMINISTIC_NOT_SUPP Non-deterministic random number generator is not
ORTED - - - supported.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the
 CPU running the application.
```

vslGetStreamSize
Computes size of memory necessary to hold the
random stream.
Syntax
memsize = vslGetStreamSize( stream );

## Include Files

- mkl.h


## Input Parameters

Name	Type	Description
stream	const VSLStreamStatePtr	Random stream

## Output Parameters

Name	Type
memsize	int

## Description

Amount of memory in bytes necessary to hold descriptive data of random stream stream

## Description

The vslGetStreamSize function returns the size of memory in bytes which is necessary to hold the given random stream. Use the output of the function to allocate the buffer to which you will save the random stream by means of the vslSaveStreamm function.

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_RNG_ERROR_BAD_STREAM stream is a NULL pointer.
```

vslLeapfrogStream
Initializes a stream using the leapfrog method.

## Syntax

```
status = vslLeapfrogStream(stream, k, nstreams);
```


## Include Files

- mkl.h


## Input Parameters

Name	Type	Description
stream	VSLStreamStatePtr	Pointer to the stream state structure to which leapfrog   method is applied
$k$	const MKL_INT	Index of the computational node, or stream number
nstreams	const MKL_INT	Largest number of computational nodes, or stride

## Description

The vslleapfrogStream function generates random numbers in a random stream with non-unit stride. This feature is particularly useful in distributing random numbers from the original stream across the nstreams buffers without generating the original random sequence with subsequent manual distribution.

One of the important applications of the leapfrog method is splitting the original sequence into nonoverlapping subsequences across nstreams computational nodes. The function initializes the original random stream (see Figure "Leapfrog Method") to generate random numbers for the computational node $k, 0 \leq k<$ nstreams, where nstreams is the largest number of computational nodes used.

## _ border_ <br> $\qquad$

Leapfrog Method

he stream contains $1,4,7,10,13,16,19, \ldots$
he stream contains $2,5,8,11,14,17,20, \ldots$
he stream contains $3,6,9,12,15,18,21, \ldots$

The leapfrog method is supported only for those basic generators that allow splitting elements by the leapfrog method, which is more efficient than simply generating them by a generator with subsequent manual distribution across computational nodes. See VS Notes for details.
For quasi-random basic generators, the leapfrog method allows generating individual components of quasirandom vectors instead of whole quasi-random vectors. In this case nstreams parameter should be equal to the dimension of the quasi-random vector while $k$ parameter should be the index of a component to be generated ( $0 \leq k<n s t r e a m s$ ). Other parameters values are not allowed.
The following code illustrates the initialization of three independent streams using the leapfrog method:

## Code for Leapfrog Method

```
VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;
/* Creating 3 identical streams */
status = vslNewStream(&stream1, VSL_BRNG_MCG31, 174);
status = vslCopyStream(&stream2, stream1);
status = vslCopyStream(&stream3, stream1);
/* Leapfrogging the streams
*/
status = vslLeapfrogStream(stream1, 0, 3);
status = vslLeapfrogStream(stream2, 1, 3);
status = vslLeapfrogStream(stream3, 2, 3);
/* Generating random numbers
*/
/* Deleting the streams
*/
status = vslDeleteStream(&stream1);
status = vslDeleteStream(&stream2);
status = vslDeleteStream(&stream3);
```


## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_LEAPFROG_UNSUPPORTED BRNG does not support Leapfrog method.
```


## vslSkipAheadStream

Initializes a stream using the block-splitting method.

## Syntax

```
status = vslSkipAheadStream(stream, nskip);
```


## Include Files

- mkl.h


## Input Parameters

Name	Type	Description
stream	VSLStreamStatePtr	Pointer to the stream state structure to which block-   splitting method is applied
nskip	const long long int	Number of skipped elements

## Description

The vslSkipAheadStream function skips a given number of elements in a random stream. This feature is particularly useful in distributing random numbers from original random stream across different computational nodes. If the largest number of random numbers used by a computational node is nskip, then the original random sequence may be split by vslSkipAheadStream into non-overlapping blocks of nskip size so that each block corresponds to the respective computational node. The number of computational nodes is unlimited. This method is known as the block-splitting method or as the skip-ahead method. (see Figure "Block-Splitting Method").
__border__top

## Block-Splitting Method



The skip-ahead method is supported only for those basic generators that allow skipping elements by the skip-ahead method, which is more efficient than simply generating them by generator with subsequent manual skipping. See VS Notes for details.

Please note that for quasi-random basic generators the skip-ahead method works with components of quasirandom vectors rather than with whole quasi-random vectors. Therefore, to skip NS quasi-random vectors, set the nskip parameter equal to the NS*DIMEN, where DIMEN is the dimension of the quasi-random vector. If this operation results in exceeding the period of the quasi-random number generator, which is $2^{32}-1$, the library returns the VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED error code.

The following code illustrates how to initialize three independent streams using the vslskipAheadStream function:

## Code for Block-Splitting Method

```
VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;
/* Creating the 1st stream
*/
status = vslNewStream(&stream1, VSL_BRNG_MCG31, 174);
/* Skipping ahead by 7 elements the 2nd stream */
status = vslCopyStream(&stream2, stream1);
status = vslSkipAheadStream(stream2, 7);
/* Skipping ahead by 7 elements the 3rd stream */
status = vslCopyStream(&stream3, stream2);
status = vslSkipAheadStream(stream3, 7);
/* Generating random numbers
*/
...
/* Deleting the streams
*/
status = vslDeleteStream(&stream1);
status = vslDeleteStream(&stream2);
status = vslDeleteStream(&Stream3);
```


## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_SKIPAHEAD_UNSUPPORTED BRNG does not support the Skip-Ahead method.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the quasi-random number generator is exceeded.
```


## vslSkipAheadStreamEx

Initializes a stream using the block-splitting method with partitioned number of skipped elements.

Syntax

```
status = vslSkipAheadStreamEx(stream, n, nskip);
```


## Include Files

- mkl.h


## Input Parameters

Name	Type
stream	VSLStreamStatePtr
$n$	const MKL_INT
nskip	const MKL_UINT64[]

## Description

Pointer to the stream state structure to which blocksplitting method is applied

Number of summands in nskip
Partitioned number of skipped elements

## Description

The vslSkipAheadStreamEx function skips a given number of elements in a random stream. This feature is particularly useful in distributing random numbers from original random stream across different computational nodes. If the largest number of random numbers used by a computational node is nskip, then the original random sequence may be split by vslSkipAheadStreamEx into non-overlapping blocks of nskip size so that each block corresponds to the respective computational node. The number of computational nodes is unlimited. This method is known as the block-splitting method or as the skip-ahead method.

Use this function when the number of elements to skip in a random stream is greater than $2^{63}$. Prior calls to the function represent the number of skipped elements with array of size $n$ as shown below:

```
nskip[0]+ nskip[1]*264}+nskip[2]* 2 2r8+ ... +nskip[n-1]*2(64*(n-1));
```

When the number of skipped elements is less than $2^{63}$ you can use either vslSkipAheadtreamEx or vslSkipAheadStream. The following code illustrates how to initialize three independent streams using the vslSkipAheadStreamEx function:

```
VSLStreamStatePtr stream1; VSLStreamStatePtr stream2; VSLStreamStatePtr stream3;
/* Creating the 1st stream
*/
status = vslNewStream(&stream1, VSL_BRNG_MCG31, 174);
/* To skip 2^64 elements in the random stream SkipAheadStreamEx(nskip) function should be called
with nskip represented as nskip = 2^64 = 0 + 1 * 2^64
*/
MKL_UINT64 nskip[2];
nskip[0]=0;
nskip[1]=1;
/* Skipping ahead by 2^64 elements the 2nd stream
/*
status = vslCopyStream(&stream2, stream1);
status = vslSkipAheadStreamEx (stream2, 2, nskip);
/* Skipping ahead by 2^64 elements the 3rd stream
/*
status = vslCopyStream(&stream3, stream2);
status = vslSkipAheadStreamEx (stream3, 2, nskip);
/* Generating random numbers
*/
/* Deleting the streams
```

```
*/
status = vslDeleteStream(&stream1);
status = vslDeleteStream(&stream2);
status = vslDeleteStream(&stream3);
...
```


## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_SKIPAHEADEX_UNSUPPORTED
```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.

BRNG does not support the advanced Skip-Ahead method.

## vsIGetStreamStateBrng

Returns index of a basic generator used for generation of a given random stream.

Syntax
brng $=$ vslGetStreamStateBrng( stream );
Include Files

- mkl.h


## Input Parameters

Name	Type	Description
stream	const VSLStreamStatePtr	Pointer to the stream state structure

## Output Parameters

Name	Type	Description
brng	int	Index of the basic generator assigned for the generation of   stream ; negative in case of an error

## Description

The vslGetStreamStateBrng function retrieves the index of a basic generator used for generation of a given random stream.

## Return Values

VSL_ERROR_NULL_PTR	stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM	stream is not a valid random stream.

## vslGetNumRegBrngs

Obtains the number of currently registered basic generators.

```
Syntax
nregbrngs = vslGetNumRegBrngs(void);
```


## Include Files

- mkl.h


## Output Parameters

## Name Type <br> nregbrngs int

## Description

Number of basic generators registered at the moment of the function call

## Description

The vslGetNumRegBrngs function obtains the number of currently registered basic generators. Whenever user registers a user-designed basic generator, the number of registered basic generators is incremented. The maximum number of basic generators that can be registered is determined by the VSL_MAX_REG_BRNGS parameter.

## Distribution Generators

oneMKLVS routines are used to generate random numbers with different types of distribution. Each function group is introduced below by the type of underlying distribution and contains a short description of its functionality, as well as specifications of the call sequence and the explanation of input and output parameters. Table "Continuous Distribution Generators" and Table "Discrete Distribution Generators" list the random number generator routines with data types and output distributions, and sets correspondence between data types of the generator routines and the basic random number generators.
Continuous Distribution Generators

Type of Distribution	Data Types	BRNG Data Type	Description
vRngUniform	$s, d$	$s, d$	Uniform continuous distribution on the interval $[a, b$ )
vRngGaussian	$s, d$	s, d	Normal (Gaussian) distribution
vRngGaussianMV	$s, d$	s, d	Normal (Gaussian) multivariate distribution
vRngExponential	s, d	s, d	Exponential distribution
vRngLaplace	s, d	s, d	Laplace distribution (double exponential distribution)
vRngWeibull	s, d	s, d	Weibull distribution
vRngCauchy	s, d	s, d	Cauchy distribution
vRngRayleigh	s, d	$s, d$	Rayleigh distribution
vRngLognormal	s, d	s, d	Lognormal distribution
vRngGumbel	s,d	s,d	Gumbel (extreme value) distribution
vRngGamma	s, d	s, d	Gamma distribution
vRngBeta	s, d	s, d	Beta distribution


Type of Distribution	Data   Types	BRNG Data   Type	Description
vRngChi Square	$s, d$	$s, d$	Chi-Square distribution

Discrete Distribution Generators

Type of Distribution	Data Types	BRNG Data Type	Description
vRngUniform	i	d	Uniform discrete distribution on the interval $[a, b)$
vRngUniformBits	i	i	Underlying BRNG integer recurrence
vRngUniformBits32	i	i	Uniformly distributed bits in 32-bit chunks
vRngUniformBits64	i	i	Uniformly distributed bits in 64-bit chunks
vRngBernoulli	i	s	Bernoulli distribution
vRngGeometric	i	s	Geometric distribution
vRngBinomial	i	d	Binomial distribution
vRngHypergeometric	i	d	Hypergeometric distribution
vRngPoisson	i	$\begin{aligned} & \text { s (for } \\ & \text { VSL_RNG_METHOD_POIS } \\ & \text { SON_POISNORM) } \\ & \text { s (for distribution } \\ & \text { parameter } \lambda \geq 27 \text { ) and d } \\ & \text { (for } \lambda<27 \text { ) (for } \\ & \text { VSL_RNG_METHOD_POIS } \\ & \text { SON_PTPE) } \end{aligned}$	Poisson distribution
vRngPoisson	i	s	Poisson distribution with varying mean
vRngNegBinomial	i	d	Negative binomial distribution, or Pascal distribution
vRngMultinomial	i	d	Multinomial distribution

## Modes of random number generation

The library provides two modes of random number generation, accurate and fast. Accurate generation mode is intended for the applications that are highly demanding to accuracy of calculations. When used in this mode, the generators produce random numbers lying completely within definitional domain for all values of the distribution parameters. For example, random numbers obtained from the generator of continuous distribution that is uniform on interval $[a, b]$ belong to this interval irrespective of what $a$ and $b$ values may be. Fast mode provides high performance of generation and also guarantees that generated random numbers
belong to the definitional domain except for some specific values of distribution parameters. The generation mode is set by specifying relevant value of the method parameter in generator routines. List of distributions that support accurate mode of generation is given in the table below.
Distribution Generators Supporting Accurate Mode

Type of Distribution	Data Types
vRngUniform	s, d
vRngExponential	s,d
vRngWeibull	s,d
vRngRayleigh	s,d
vRngLognormal	s, d
vRngGamma	s,d
vRngBeta	s,d

See additional details about accurate and fast mode of random number generation in VS Notes.

## New method names

The current version of oneMKL has a modified structure of VS RNG method names. (SeeRNG Naming Conventions for details.) The old names are kept for backward compatibility. The tables below set correspondence between the new and legacy method names for VS random number generators.
Method Names for Continuous Distribution Generators

RNG	Legacy Method Name	New Method Name
vRngUniform	$\begin{aligned} & \text { VSL_METHOD_SUNIFORM_STD, } \\ & \text { VSL_METHOD_DUNIFORM_STD, } \\ & \text { VSL_METHOD_SUNIFORM_STD_ACCURATE, } \\ & \text { VSL_METHOD_DUNIFORM_STD_ACCURATE } \end{aligned}$	$\begin{aligned} & \text { VSL_RNG_METHOD_UNIFORM_STD, } \\ & \text { VSL_RNG_METHOD_UNIFORM_STD_ACCURATE } \end{aligned}$
vRngGaussian	```VSL_METHOD_SGAUSSIAN_BOXMULLER, VSL_METHOD_SGAUSSIAN_BOXMULLER2, VSL_METHOD_SGAUSSIAN_ICDF, VSL_METHOD_DGAUSSIAN_BOXMULLER, VSL_METHOD_DGAUSSIAN_BOXMULLER2, VSL METHOD DGAUSSIAN ICDF```	```VSL_RNG_METHOD_GAUSSIAN_BOXMULLER, VSL_RNG_METHOD_GAUSSIAN_BOXMULLER2, VSL_RNG_METHOD_GAUSSIAN_ICDF```
vRngGaussian	```IVSL_METHOD_SGAUSSIANMV_BOXMULLER, VSL_METHOD_SGAUSSIANMV_BOXMULLER2, VSL_METHOD_SGAUSSIANMV_ICDF, VSL_METHOD_DGAUSSIANMV_BOXMULLER, VSL_METHOD_DGAUSSIANMV_BOXMULLER2, VSL_METHOD_DGAUSSIANMV_ICDF```	```VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER 2,VSL_RNG_METHOD_GAUSSIANMV_ICDF```
vRngExponent	```#SL_METHOD_SEXPONENTIAL_ICDF, VSL_METHOD_DEXPONENTIAL_ICDF, VSL_METHOD_SEXPONENTIAL_ICDF_ACCUR ATE, VSL_METHOD_DEXPONENTIAL_ICDF_ACCUR ATE```	$\begin{aligned} & \text { VSL_RNG_METHOD_EXPONENTIAL_ICDF, } \\ & \text { VSL_RNG_METHOD_EXPONENTIAL_ICDF_ACC } \\ & \text { URATE } \end{aligned}$


RNG	Legacy Method Name	New Method Name
vRngLaplace	VSL_METHOD_SLAPLACE_ICDF,   VSL_METHOD_DLAPLACEL_ICDF	VSL_RNG_METHOD_LAPLACE_ICDF
vRngWeibull	VSL_METHOD_SWEIBULL_ICDF,   VSL_METHOD_DWEIBULL_ICDF,   VSL_METHOD_SWEIBULL_ICDF_ACCURATE,   VSL_METHOD_DWEIBULL_ICDF_ACCURATE	```VSL_RNG_METHOD_WEIBULL_ICDF, VSL_RNG_METHOD_WEIBULL_ICDF_ACCURAT E```
vRngCauchy	```VSL_METHOD_SCAUCHY_ICDF, VSL_METHOD_DCAUCHY_ICDF```	VSL_RNG_METHOD_CAUCHY_ICDF
vRngRayleigh	```VSL_METHOD_SRAYLEIGH_ICDF, VSL_METHOD_DRAYLEIGH_ICDF, VSL_METHOD_SRAYLEIGH_ICDF_ACCURATE, VSL_METHOD_DRAYLEIGH_ICDF_ACCURATE```	```VSL_RNG_METHOD_RAYLEIGH_ICDF, VSL_RNG_METHOD_RAYLEIGH_ICDF_ACCURA TE```
vRngLognorma	VSL_METHOD_SLOGNORMAL_BOXMULLER2, VSL_METHOD_DLOGNORMAL_BOXMULLER2, VSL_METHOD_SLOGNORMAL_BOXMULLER2_A CCURATE, VSL_METHOD_DLOGNORMAL_BOXMULLER2_A CCURATE	```VSL_RNG_METHOD_LOGNORMAL_BOXMULLER2 VSL_RNG_METHOD_LOGNORMAL_BOXMULLER2 _ACCURATE```
	```VSL_METHOD_SLOGNORMAL_ICDF, VSL_METHOD_DLOGNORMAL_ICDF, VSL_METHOD_SLOGNORMAL_ICDF_ACCURAT E, VSL_METHOD_DLOGNORMAL_ICDF_ACCURAT E```	```VSL_RNG_METHOD_LOGNORMAL_ICDF, VSL_RNG_METHOD_LOGNORMAL_ICDF_ACCUR ATE```
vRngGumbel	VSL_METHOD_SGUMBEL_ICDF, VSL_METHOD_DGUMBEL_ICDF	VSL_RNG_METHOD_GUMBEL_ICDF
vRngGamma	```VSL_METHOD_SGAMMA_GNORM, VSL_METHOD_DGAMMA_GNORM, VSL_METHOD_SGAMMA_GNORM_ACCURATE, VSL_METHOD_DGAMMA_GNORM_ACCURATE```	$\begin{aligned} & \text { VSL_RNG_METHOD_GAMMA_GNORM, } \\ & \text { VSL_RNG_METHOD_GAMMA_GNORM_ACCURATE } \end{aligned}$
vRngBeta	```VSL_METHOD_SBETA_CJA, VSL_METHOD_DBETA_CJA, VSL_METHOD_SBETA_CJA_ACCURATE, VSL_METHOD_DBETA_CJA_ACCURATE```	```VSL_RNG_METHOD_BETA_CJA, VSL_RNG_METHOD_BETA_CJA_ACCURATE```

Method Names for Discrete Distribution Generators

RNG	Legacy Method Name	New Method Name
VRngUniform	VSL_METHOD_IUNIFORM_STD	VSL_RNG_METHOD_UNIFORM_STD
VRngUniformBitsVSL_METHOD_IUNIFORMBITS_STD	VSL_RNG_METHOD_UNIFORMBITS_STD	
VRngBernoulli	VSL_METHOD_IBERNOULLI_ICDF	VSL_RNG_METHOD_BERNOULLI_ICDF
VRngGeometric	VSL_METHOD_IGEOMETRIC_ICDF	VSL_RNG_METHOD_GEOMETRIC_ICDF
VRngBinomial	VSL_METHOD_IBINOMIAL_BTPE	VSL_RNG_METHOD_BINOMIAL_BTPE

RNG	Legacy Method Name	New Method Name
vRngHypergeometVSL_METHOD_IHYPERGEOMETRIC_H2PE	VSL_RNG_METHOD_HYPERGEOMETRIC_H2PE	
vRngPoisson	VSL_METHOD_IPOISSON_PTPE,	VSL_RNG_METHOD_POISSON_PTPE,
	VSL_METHOD_IPOISSON_POISNORM	VSL_RNG_METHOD_POISSON_POISNORM
VRngPoisSonV	VSL_METHOD_IPOISSONV_POISNORM	VSL_RNG_METHOD_POISSONV_POISNORM
VRngNegBinomialVSL_METHOD_INEGBINOMIAL_NBAR	VSL_RNG_METHOD_NEGBINOMIAL_NBAR	

Continuous Distributions

This section describes routines for generating random numbers with continuous distribution.
vRngUni form Continuous Distribution Generators
Generates random numbers with uniform distribution.

Syntax

```
status = vsRngUniform( method, stream, n, r, a, b );
status = vdRngUniform( method, stream, n, r, a, b );
```


Include Files

- mkl.h

Description

The vRngUniform function generates random numbers uniformly distributed over the interval [a, b), where a, b are the left and right bounds of the interval, respectively, and $a, b \in R ; a<b$.

The probability density function is given by:

$$
f_{a, b}(X)=\left\{\begin{array}{cc}
\frac{1}{b-a}, & x \in[a, b) \\
0, & x \notin[a, b)
\end{array},-\infty<x<+\infty\right.
$$

The cumulative distribution function is as follows:

$$
f_{a, b}(x)=\left\{\begin{aligned}
0, & x<a \\
\frac{x-a}{b-a}, & a \leq x<b,-\infty<x<+\infty \\
1, & x \geq b
\end{aligned}\right.
$$

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Product and Performance Information

Notice revision \#20201201

Input Parameters

Name	Type	Description
method	const MKL_INT	Generation method; the specific values are as follows:
		VSL_RNG_METHOD_UNIFORM_STD
		VSL_RNG_METHOD_UNIFORM_STD_ACCURATE
		Standard method.
stream	vSLStreamStatePtr	Pointer to the stream state structure
n	const MKL_INT	Number of random values to be generated.
a	```const float for vsRngUniform const double for vdRngUniform```	Left bound a.
b	const float for vsRngUniform const double for vdRngUniform	Right bound b .

Output Parameters

```
Name Type
r float* for vsRngUniform
    double* for vdRngUniform
```


Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
```

VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED
ED

Description

Vector of n random numbers uniformly distributed over the interval [a,b)

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or $>$ nmax .

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

Period of the generator has been exceeded.
Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.

```
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
```

ARS-5 random number generator is not supported on the CPU running the application.
vRngGaussian
Generates normally distributed random numbers.

Syntax

```
status = vsRngGaussian( method, stream, n, r, a, sigma );
status = vdRngGaussian( method, stream, n, r, a, sigma );
```

Include Files

- mkl.h

Description

The vRngGaussian function generates random numbers with normal (Gaussian) distribution with mean value a and standard deviation σ, where

$$
a, \sigma \in R ; \sigma>0
$$

The probability density function is given by:

$$
f_{a, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right),-\infty<x<+\infty
$$

The cumulative distribution function is as follows:

$$
F_{a, \sigma}(x)=\int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(y-a)^{2}}{2 \sigma^{2}}\right) d y,-\infty<x<+\infty .
$$

The cumulative distribution function $F_{a, \sigma}(x)$ can be expressed in terms of standard normal distribution $\Phi(x)$ as

$$
F_{a, \sigma}(x)=\Phi((x-a) / \sigma)
$$

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Input Parameters

Name	Type
method	const MKL_INT

stream VSLStreamStatePtr
n
a
sigma
const MKL_INT
const float for
vsRngGaussian
const double for
vdRngGaussian
const float for
vsRngGaussian
const double for vdRngGaussian

Output Parameters

Name Type

r

> float* for vsRngGaussian
> double* for vdRngGaussian

Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
```


Description

Generation method. The specific values are as follows:

```
VSL_RNG_METHOD_GAUSSIAN_BOXMULLER
```


VSL_RNG_METHOD_GAUSSIAN_BOXMULLER2

VSL_RNG_METHOD_GAUSSIAN_ICDF

See brief description of the methods BOXMULLER, BOXMULLER2, and ICDF in Table "Values of <method> in method parameter"

Pointer to the stream state structure
Number of random values to be generated.
Mean value a.

Standard deviation σ.

Description

Vector of n normally distributed random numbers.

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.

VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, <0 or $>$ nmax.
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED	
EDNumber of retries to generate a random number by using non-deterministic random number generator exceeds threshold.	
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED	ARS-5 random number generator is not supported on the CPU running the application.

vRngGaussianMV

Generates random numbers from multivariate normal distribution.

Syntax

```
status = vsRngGaussianMV( method, stream, n, r, dimen, mstorage, a, t );
status = vdRngGaussianMV( method, stream, n, r, dimen, mstorage, a, t );
```

Include Files

- mkl.h

Input Parameters

Name	Type
method	const MKL_INT
stream	VSLStreamStatePtr
n	const MKL_INT
dimen	const MKL_INT
mstorage	const MKL_INT

Description

Generation method. The specific values are as follows:

```
VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER
VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER2
VSL_RNG_METHOD_GAUSSIANMV_ICDF
```

See brief description of the methods BOXMULLER, BOXMULLER2, and ICDF in Table "Values of <method> in method parameter"

Pointer to the stream state structure
Number of d-dimensional vectors to be generated
Dimension $d \quad(d \geq 1)$ of output random vectors
Matrix storage scheme for lower triangular matrix T. The routine supports three matrix storage schemes:

- VSL_MATRIX_STORAGE_FULL—all $d x$ x elements of the matrix T are passed, however, only the lower triangle part is actually used in the routine.

```
Name
a
t const float* for
const float* for
vsRngGaussianMV
const double* for
vdRngGaussianMV
vsRngGaussianMV
const double* for
vdRngGaussianMV
```


Description

- VSL_MATRIX_STORAGE_PACKED- lower triangle elements of T are packed by rows into a onedimensional array.
- VSL_MATRIX_STORAGE_DIAGONAL— only diagonal elements of T are passed.

Mean vector a of dimension d

Elements of the lower triangular matrix passed according to the matrix T storage scheme mstorage.

Output Parameters

```
Name Type Description
r float* for vsRngGaussianMV
double* for vdRngGaussianMV
```


Description

```
Array of \(n\) random vectors of dimension dimen
```


Description

The vRngGaussianMV function generates random numbers with d-variate normal (Gaussian) distribution with mean value a and variance-covariance matrix C, where $a \in R^{d} ; C$ is a $d \times d$ symmetric positive-definite matrix.

The probability density function is given by:

$$
f_{a, C}(x)=\frac{1}{\sqrt{\operatorname{det}(2 \pi C)}} \exp \left(-1 / 2(x-a)^{T} C^{-1}(x-a)\right)
$$

where $x \in R^{d}$.
Matrix C can be represented as $C=T T^{T}$, where T is a lower triangular matrix - Cholesky factor of C.
Instead of variance-covariance matrix C the generation routines require Cholesky factor of C in input. To compute Cholesky factor of matrix C, the user may call Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) LAPACK routines for matrix factorization:?potrf or ?pptrf for v?RngGaussianMV/v?rnggaussianmv routines (? means either s or dor single and double precision respectively). See Application Notes for more details.

[^2]
Application Notes

Since matrices are stored in Fortran by columns, while in C they are stored by rows, the usage of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) factorization routines (assuming Fortran matrices storage) in combination with multivariate normal RNG (assuming C matrix storage) is slightly different in C and Fortran. The following tables help in using these routines in C and Fortran. For further information please refer to the appropriate VS example file.
Using Cholesky Factorization Routines in C
\(\left.$$
\begin{array}{lllll}\hline \text { Matrix Storage Scheme } & \begin{array}{l}\text { Variance- } \\
\text { Covariance Matrix } \\
\text { Argument }\end{array} & \begin{array}{l}\text { Factorization } \\
\text { Routine }\end{array} & \begin{array}{l}\text { UPLO } \\
\text { Parameter } \\
\text { in }\end{array} & \begin{array}{l}\text { Result of } \\
\text { Factorizatio } \\
\text { n as Input } \\
\text { Argument }\end{array}
$$

factorizati\end{array}\right]\)| on Routine |
| :--- |

Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR stream is a NULL pointer.
```

VSL RNG ERROR BAD STREAM stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an invalid
number of updated entries in a buffer, that is, < 0 or >
nmax.

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

Period of the generator has been exceeded.
Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.

ARS-5 random number generator is not supported on the CPU running the application.
vRngExponential
Generates exponentially distributed random numbers.

Syntax

```
status = vsRngExponential( method, stream, n, r, a, beta );
status = vdRngExponential( method, stream, n, r, a, beta );
```


Include Files

- mkl.h

Input Parameters

Name	Type	Description
method	const MKL_INT	Generation method. The specific values are as follows: VSL_RNG_METHOD_EXPONENTIAL_ICDF
stream	VSLStreamStatePtr VSN_METHOD_EXPONENTIAL_ICDF_ACCURATE	
a Inverse cumulative distribution function method		

Output Parameters

Name	Type	Description
r	float* for vsRngExponential	Vector of n exponentially distributed random numbers
	double* for vdRngExponential	

Description

The vRngExponential function generates random numbers with exponential distribution that has displacement a and scalefactor β, where a, $\beta \in R ; \beta>0$.
The probability density function is given by:

$$
f_{a, \beta}(x)=\left\{\begin{array}{ll}
\frac{1}{\beta} \exp ((-(x-a)) / \beta), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty .\right.
$$

The cumulative distribution function is as follows:

$$
F_{a, \beta}(x)=\left\{\begin{array}{l}
1-\exp ((-(x-a)) / \beta), \quad x \geq a \\
0, \\
x<a
\end{array},-\infty<x<+\infty .\right.
$$

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED non-deterministic random number generator exceeds
    threshold.
ARS-5 random number generator is not supported on the CPU running the application.
```

vRngLaplace
Generates random numbers with Laplace distribution.
Syntax

```
status = vsRngLaplace( method, stream, n, r, a, beta );
status = vdRngLaplace( method, stream, n, r, a, beta );
```


Include Files

- mkl.h

Input Parameters

Name	Type
method	const MKL_INT
stream	VSLStreamStatePtr

Description

Generation method. The specific values are as follows:
VSL_RNG_METHOD_LAPLACE_ICDF

Inverse cumulative distribution function method
Pointer to the stream state structure

```
Name Type Description
n const MKL_INT Number of random values to be generated
a const float for vsRngLaplace Mean value a
    const double for
    vdRngLaplace
beta const float for vsRngLaplace Scalefactor }\beta\mathrm{ .
        const double for
        vdRngLaplace
```


Output Parameters

Name Type

float* for vsRngLaplace
double* for vdRngLaplace

Description

Vector of n Laplace distributed random numbers

Description

The vRngLaplace function generates random numbers with Laplace distribution with mean value (or average) a and scalefactor β, where $a, \beta \in R ; \beta>0$. The scalefactor value determines the standard deviation as

$$
\sigma=\beta \sqrt{2}
$$

The probability density function is given by:

$$
f_{a, \beta}(X)=\frac{1}{\sqrt{2 \beta}} \exp \left(-\frac{|X-a|}{\beta}\right),-\infty<x<+\infty
$$

The cumulative distribution function is as follows:

$$
f_{a, \beta}(x)=\left\{\begin{array}{ll}
\frac{1}{2} \exp \left(-\frac{|x-a|}{\beta}\right), & x \geq a \\
1-\frac{1}{2} \exp \left(-\frac{|x-a|}{\beta}\right), & x<a
\end{array},-\infty<x<+\infty .\right.
$$

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

Return Values

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR	stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM	stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or $>$ nmax.
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
```VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED ED```	Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED	ARS-5 random number generator is not supported on the CPU running the application.

vRngWeibull
Generates Weibull distributed random numbers.
Syntax

```
status = vsRngWeibull(method, stream, n, r, alpha, a, beta);
status = vdRngWeibull(method, stream, n, r, alpha, a, beta);
```


## Include Files

- mkl.h


## Input Parameters

Name	Type	Description
method	const MKL_INT	Generation method. The specific values are as follows:
		VSL_RNG_METHOD WEIBULL_ICDF
		VSL_RNG_METHOD_WEIBULL_ICDF_ACCURATE
		Inverse cumulative distribution function method
stream	VSLStreamStatePtr	Pointer to the stream state structure
$n$	const MKL_INT	Number of random values to be generated
alpha	const float for vsRngWeibull	Shape $\alpha$.
	const double for vdRngWeibull	
a	const float for vsRngWeibull	Displacement a
	const double for	
	vdRngWeibull	
beta	const float for vsRngWeibull	Scalefactor $\beta$.

## Name Type Description

```
const double for
```

vdRngWeibull

## Output Parameters

Name	Type	Description
$r$	float* for vsRngWeibull	Vector of $n$ Weibull distributed random numbers

## Description

The vRngWeibull function generates Weibull distributed random numbers with displacement $a$, scalefactor $\beta$, and shape $\alpha$, where $\alpha, \beta, a \in R ; \alpha>0, \beta>0$.

The probability density function is given by:

$$
f_{a, \alpha, \beta}(x)=\left\{\begin{array}{cl}
\frac{\alpha}{\beta^{\alpha}(x-a)^{\alpha-1}} \exp \left(-\left(\frac{x-a}{\beta}\right)^{\alpha}\right), & x \geq a \\
0, & x<a
\end{array}\right.
$$

The cumulative distribution function is as follows:

$$
F_{a, \alpha, \beta}(x)=\left\{\begin{array}{c}
1-\exp \left(-\left(\frac{x-a}{\beta}\right)^{\alpha}\right), \quad x \geq a,-\infty<x<+\infty . \\
0, \\
x<a
\end{array}\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
```

VSL_RNG_ERROR_NO_NUMBERS

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, $<0$ or $>$ nmax.

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

```
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED - - - _ _ non-deterministic random number generator exceeds
 threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the
 CPU running the application.
```

vRngCauchy
Generates Cauchy distributed random values.
Syntax

```
status = vsRngCauchy(method, stream, n, r, a, beta);
status = vdRngCauchy(method, stream, n, r, a, beta);
```


## Include Files

- mkl.h


## Input Parameters

Name	Type	Description
method	const MKL_INT	Generation method. The specific values are as fol
		VSL_RNG_METHOD_CAUCHY_ICDF
		Inverse cumulative distribution function method
stream	VSLStreamStatePtr	Pointer to the stream state structure
$n$	const MKL_INT	Number of random values to be generated
a	const float for vsRngCauchy	Displacementa.
	const double for vdRngCauchy	
beta	const float for vsRngCauchy	Scalefactor $\beta$.
	const double for vdRngCauchy	

## Output Parameters

Name	Type	Description
$r$	float* for vsRngCauchy	Vector of $n$ Cauchy distributed random numbers
	double* for vdRngCauchy	

## Description

The function generates Cauchy distributed random numbers with displacement a and scalefactor $\beta$, where $a$, $\beta \in R ; \beta>0$.
The probability density function is given by:

$$
f_{a, \beta}(x)=\frac{1}{\pi \beta\left(1+\left(\frac{x-a}{\beta}\right)^{2}\right)},-\infty<x<+\infty .
$$

The cumulative distribution function is as follows:

$$
E_{a, \beta}(x)=\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{x-a}{\beta}\right),-\infty<x<+\infty .
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values


vRngRayleigh
Generates Rayleigh distributed random values.
Syntax

```
status = vsRngRayleigh(method, stream, n, r, a, beta);
status = vdRngRayleigh(method, stream, n, r, a, beta);
```

Include Files

- mkl.h


## Input Parameters

Name   method	Type   const MKL_INT
stream	VSLStreamStatePtr
$n$	const MKL_INT
a	const float for vsRngRayleigh const double for vdRngRayleigh
beta	const float for vsRngRayleigh const double for vdRngRayleigh

## Description

Generation method. The specific values are as follows:
VSL_RNG_METHOD_RAYLEIGH_ICDF
VSL_RNG_METHOD_RAYLEIGH_ICDF_ACCURATE
Inverse cumulative distribution function method
Pointer to the stream state structure
Number of random values to be generated
Displacement a

Scalefactor $\beta$.

## Output Parameters

## Name Type

float* for vsRngRayleigh double* for vdRngRayleigh

## Description

Vector of $n$ Rayleigh distributed random numbers

## Description

The vRngRayleigh function generates Rayleigh distributed random numbers with displacement a and scalefactor $\beta$, where $a, \beta \in R ; \beta>0$.
The Rayleigh distribution is a special case of the Weibull distribution, where the shape parameter $\alpha=2$. The probability density function is given by:

$$
f_{a, \beta}(x)=\left\{\begin{array}{ll}
\frac{2(x-a)}{\beta^{2}} \exp \left(-\frac{(x-a)^{2}}{\beta^{2}}\right), & x \geq a \\
0, \quad x<a
\end{array},-\infty<x<+\infty .\right.
$$

The cumulative distribution function is as follows:

$$
F_{a, \beta}(x)=\left\{\begin{array}{ll}
1-\exp \left(-\frac{(x-a)^{2}}{\beta^{2}}\right), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty .\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
```

VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED
ED
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

Period of the generator has been exceeded.
Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.

ARS-5 random number generator is not supported on the CPU running the application.
vRngLognormal
Generates lognormally distributed random numbers.

## Syntax

```
status = vsRngLognormal(method, stream, n, r, a, sigma, b, beta);
status = vdRngLognormal(method, stream, n, r, a, sigma, b, beta);
```

Include Files

- mkl.h


## Input Parameters

Name	Type
method	const MKL_INT $^{\text {IN }}$

## Description

Generation method. The specific values are as follows:

```
VSL_RNG_METHOD_LOGNORMAL_BOXMULLER2
VSL_RNG_METHOD_LOGNORMAL_BOXMULLER2_ACCURATE
```

Box Muller 2 based method
VSL_RNG_METHOD_LOGNORMAL_ICDF
VSL_RNG_METHOD_LOGNORMAL_ICDF_ACCURATE
Inverse cumulative distribution function based method

Name	Type	Description
stream	VSLStreamStatePtr	Pointer to the stream state structure
$n$	const MKL_INT	Number of random values to be generated
a	const float for vsRngLognormal	Average $a$ of the subject normal distribution
	const double for vdRngLognormal	
sigma	const float for vsRngLognormal	Standard deviation $\sigma$ of the subject normal distribution
	const double for vdRngLognormal	
b	const float for vsRngLognormal	Displacement $b$
	const double for vdRngLognormal	
beta	const float for vsRngLognormal	Scalefactor $\beta$.
	const double for vdRngLognormal	

## Output Parameters

## Name Type Description <br> $r$ <br> ```float* for vsRngLognormal \\ double* for vdRngLognormal``` <br> Vector of $n$ lognormally distributed random numbers

## Description

The vRngLognormal function generates lognormally distributed random numbers with average of distribution $a$ and standard deviation $\sigma$ of subject normal distribution, displacement $b$, and scalefactor $\beta$, where $a, \sigma, b$, $\beta \in R ; \sigma>0, \beta>0$.

The probability density function is given by:

$$
f_{a, \sigma, b, \beta}(x)= \begin{cases}\frac{1}{\sigma(x-b) \sqrt{2 \pi}} \exp \left(-\frac{[\ln ((x-b) / \beta)-a]^{2}}{2 \sigma^{2}}\right), & x>b \\ 0, & x \leq b\end{cases}
$$

The cumulative distribution function is as follows:

$$
F_{a, \sigma, b, \beta}(x)= \begin{cases}\Phi((\ln ((x-b) / \beta)-a) / \sigma), & x>b \\ 0, & x \leq b\end{cases}
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Return Values

VSL_ERROR_OK, VSL_STATUS_OK	Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR	stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM	stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
```VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED ED```	Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED	ARS-5 random number generator is not supported on the CPU running the application.

vRngGumbel
Generates Gumbel distributed random values.

Syntax

```
status = vsRngGumbel( method, stream, n, r, a, beta );
status = vdRngGumbel( method, stream, n, r, a, beta );
```


Include Files

- mkl.h

Input Parameters

Name	Type	Description
method	const MKL_INT	Generation method. The specific values are as follows:
		VSL_RNG_METHOD_GUMBEL_ICDF
		Inverse cumulative distribution function method
stream	VSLStreamStatePtr	Pointer to the stream state structure
n	const MKL_INT	Number of random values to be generated
a	const float for vsRngGumbel	Displacement a.

Name Type Description

beta const float for vsRngGumbel Scalefactor β.

Output Parameters

Name Type

r float* for vsRngGumbel

Description

The vRngGumbel function generates Gumbel distributed random numbers with displacement a and scalefactor β, where $a, \beta \in R ; \beta>0$.
The probability density function is given by:

$$
f_{a, \beta}(x)=\left\{\frac{1}{\beta} \exp \left(\frac{x-a}{\beta}\right) \exp (-\exp ((x-a) / \beta)),-\infty<x<+\infty\right.
$$

The cumulative distribution function is as follows:

$$
F_{a, \beta}(x)=1-\exp (-\exp ((x-a) / \beta)),-\infty<x<+\infty
$$

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Return Values

VSL_ERROR_OK, VSL_STATUS_OK	Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR	stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM	stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
```VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED ED```	Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.

```
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
```

ARS-5 random number generator is not supported on the CPU running the application.

## vRngGamma

Generates gamma distributed random values.

## Syntax

```
status = vsRngGamma(method, stream, n, r, alpha, a, beta);
status = vdRngGamma(method, stream, n, r, alpha, a, beta);
```


## Include Files

- mkl.h


## Input Parameters

Name	Type	Description
method	const MKL_INT	Generation method. The specific values are as follows:
		VSL_RNG_METHOD_GAMMA_GNORM
		VSL_RNG_METHOD_GAMMA_GNORM_ACCURATE
		Acceptance/rejection method using random numbers with Gaussian distribution. See brief description of the method GNORM in Table "Values of <method> in method parameter"
stream	VSLStreamStatePtr	Pointer to the stream state structure
$n$	const MKL_INT	Number of random values to be generated
alpha	const float for vsRngGamma const double for vdRngGamma	Shape $\alpha$.
a	const float for vsRngGamma const double for vdRngGamma	Displacement $a$.
beta	const float for vsRngGamma const double for vdRngGamma	Scalefactor $\beta$.

## Output Parameters

Name	Type	Description
$r$	float* for vsRngGamma	Vector of $n$ random numbers with gamma distribution
	double* for vdRngGamma	

## Description

The vRngGamma function generates random numbers with gamma distribution that has shape parameter $\alpha$, displacement $a$, and scale parameter $\beta$, where $\alpha, \beta$, and $a \in R ; \alpha>0, \beta>0$.
The probability density function is given by:

$$
f_{\alpha, a, \beta}(x)=\left\{\begin{array}{c}
\frac{1}{\Gamma(\alpha) \beta^{\alpha}}(x-a)^{\alpha-1} e^{-(x-a) / \beta}, x \geq a \\
0, \\
x<a
\end{array},-\infty<x<+\infty\right.
$$

where $\Gamma(\alpha)$ is the complete gamma function.
The cumulative distribution function is as follows:

$$
F_{\alpha, a, \beta}(x)=\left\{\begin{array}{c}
\int_{a}^{x} \frac{1}{\Gamma(\alpha) \beta^{\alpha}}(Y-a)^{\alpha-1} e^{-(y-a) / \beta} d y, x \geq a \\
0, \quad x<a
\end{array},-\infty<x<+\infty\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
```

VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED non-deterministic random number generator exceeds
threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the
CPU running the application.

## vRngBeta

Generates beta distributed random values.

## Syntax

```
status = vsRngBeta(method, stream, n, r, p, q, a, beta);
status = vdRngBeta(method, stream, n, r, p, q, a, beta);
```

Include Files

- mkl.h

Input Parameters

Name	Type	Description
method	const MKL_INT	Generation method. The specific values are
		VSL_RNG_METHOD_BETA_CJA
		VSL_RNG_METHOD_BETA_CJA_ACCURATE
		See brief description of the method CJA in <method> in method parameter"
stream	vSLStreamStatePtr	Pointer to the stream state structure
$n$	const MKL_INT	Number of random values to be generated
$p$	const float for vsRngBeta	Shape $p$
	const double for vdRngBeta	
q	const float for vsRngBeta	Shape $q$
	const double for vdRngBeta	
a	const float for vsRngBeta	Displacementa.
	const double for vdRngBeta	
beta	const float for vsRngBeta	Scalefactor $\beta$.
	const double for vdRngBeta	

## Output Parameters

## Name Type

$r \quad$ float* for vsRngBeta

## Description

Vector of $n$ random numbers with beta distribution

## Description

The vRngBeta function generates random numbers with beta distribution that has shape parameters $p$ and $q$, displacement $a$, and scale parameter $\beta$, where $p, q$, $a$, and $\beta \in R ; p>0, q>0, \beta>0$.

The probability density function is given by:

where $B(p, q)$ is the complete beta function.
The cumulative distribution function is as follows:

$$
F_{p, q, a, \beta}(x)=\left\{\begin{array}{cc}
0, & x<a \\
\left.\int_{a}^{x} \frac{1}{B(p, q) \beta^{p+q-1}}(y-a)^{p-1} \beta+a-y\right)^{q-1} d y, & a \leq x<a+\beta,-\infty<x \\
1, & x \geq a+\beta
\end{array}\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
```

VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED
ED
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

Period of the generator has been exceeded.
Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.

ARS-5 random number generator is not supported on the CPU running the application.
vRngChiSquare
Generates chi-square distributed random values.

## Syntax

```
status = vsRngChiSquare(method, stream, n, r, v);
status = vdRngChiSquare(method, stream, n, r, v);
```

Include Files

- mkl.h

Input Parameters

Name	Type
method	const MKL_INT

## Description

Generation method. The specific value is:
VSL_RNG_METHOD_CHISQUARE_CHI2GAMMA

Name	Type	Description
		For a description of VSL_RNG_METHOD_CHISQUARE_CHI2GAMMA, see Random Number Generators Naming Conventions.
stream	VSLStreamStatePtr	Pointer to the stream state structure
$n$	const MKL_INT	Number of random values to be generated
v	const MKL_INT	Degrees of freedom

## Output Parameters

## Name Type Description

$r$ float* for vsRngChiSquare
Vector of $n$ random numbers with chi-square distribution

## Description

The vRngChiSquare function generates random numbers with chi-square distribution and $v$ degrees of freedom, $v \in N, v>0$.

The probability density function is:
$f_{v}(x)=\left\{\begin{array}{lll}\frac{x^{\frac{v-2}{2}} e^{-\frac{x}{2}}}{2^{v / 2} \Gamma\left(\frac{v}{2}\right)}, & x \geq 0 & \\ 0, & x<0\end{array}\right.$
The cumulative distribution function is:
$F_{v}(x)= \begin{cases}\int_{0}^{x} \frac{\frac{v-2}{2} e^{-\frac{y}{2}}}{2^{v / 2} \Gamma\left(\frac{v}{2}\right)} d y, & x \geq 0 \\ 0, & x<0\end{cases}$

## Return Values

VSL_ERROR_OK, VSL_STATUS_OK	Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR	stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM	stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid   number of updated entries in a buffer, that is, $<0$ or   nmax.
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the   number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.

```
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED non-deterministic random number generator exceeds
 threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the
 CPU running the application.
```


## Discrete Distributions

This section describes routines for generating random numbers with discrete distribution.
vRngUniform Discrete Distribution Generators
Generates random numbers uniformly distributed over
the interval [a, b).
Syntax

```
status = viRngUniform(method, stream, n, r, a, b);
```


## Include Files

- mkl.h


## Input Parameters

Name	Type	Description
method	const MKL_INT	Generation method; the specific value is as follows:
		VSL_RNG_METHOD_UNIFORM_STD
		Standard method. Currently there is only one method for this distribution generator.
stream	VSLStreamStatePtr	Pointer to the stream state structure
$n$	const MKL_INT	Number of random values to be generated
a	const int	Left interval bound a
b	const int	Right interval bound b

## Output Parameters

Name	Type	Description
$r$	int*	Vector of $n$ random numbers uniformly distributed over the   interval $[a, b)$

## Description

The vRngUniform function generates random numbers uniformly distributed over the interval [a, b), where $a, b$ are the left and right bounds of the interval respectively, and $a, b \in z ; a<b$.

The probability distribution is given by:

$$
P(X=k)=\frac{1}{b-a}, k \in\{a, a+1, \ldots, b-1\} .
$$

The cumulative distribution function is as follows:

$$
F_{a, b}(x)=\left\{\begin{array}{c}
0, \quad x<a \\
\frac{\lfloor x-a+1\rfloor}{b-a}, a \leq x<b, x \in R . \\
1, \quad x \geq b
\end{array}\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values



## vRngUniformBits

Generates bits of underlying BRNG integer recurrence.

## Syntax

```
status = viRngUniformBits(method, stream, n, r);
```


## Include Files

- mkl.h


## Input Parameters

Name	Type
method	const MKL_INT
stream	VSLStreamStatePtr
$n$	const MKL_INT

## Description

Generation method; the specific value is

```
VSL_RNG_METHOD_UNIFORMBITS_STD
```

Pointer to the stream state structure
Number of random values to be generated

## Output Parameters

Name	Type
$r$	unsigned int*

## Description

Vector of $n$ random integer numbers. If the stream was generated by a 64 or a 128-bit generator, each integer value is represented by two or four elements of $r$ respectively. The number of bytes occupied by each integer is contained in the field WordSize of the structure VSLBRngProperties. The total number of bits that are actually used to store the value are contained in the field NBits of the same structure. See Advanced Service Routines for a more detailed discussion of VSLBRngProperties.

## Description

The vRngUniformBits function generates integer random values with uniform bit distribution. The generators of uniformly distributed numbers can be represented as recurrence relations over integer values in modular arithmetic. Apparently, each integer can be treated as a vector of several bits. In a truly random generator, these bits are random, while in pseudorandom generators this randomness can be violated. For example, a well known drawback of linear congruential generators is that lower bits are less random than higher bits (for example, see [Knuth81]). For this reason, care should be taken when using this function. Typically, in a 32-bit LCG only 24 higher bits of an integer value can be considered random. See VS Notes for details.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
```

VSL_RNG_ERROR_NO_NUMBERS

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

```
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED - - - non-deterministic random number generator exceeds
 threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the
 CPU running the application.
```

vRngUniformBits32
Generates uniformly distributed bits in 32-bit chunks.
Syntax
status $=$ viRngUniformBits32( method, stream, n, r );
Include Files

- mkl.h


## Input Parameters

Name	Type	Description
method	const MKL_INT	Generation method; the specific value is
stream	VSL_RNG_METHOD_UNIFORMBITS32_STD	
$n$	Const $M K L_{-}$INT	Pointer to the stream state structure
		Number of random values to be generated

## Output Parameters

## Name Type <br> $r$ unsigned int*

## Description

Vector of $n$ 32-bit random integer numbers with uniform bit distribution.

## Description

The vRngUniformBits 32 function generates uniformly distributed bits in 32-bit chunks. Unlike vRngUniformBits, which provides the output of underlying integer recurrence and does not guarantee uniform distribution across bits, vRngUniformBits32 is designed to ensure each bit in the 32-bit chunk is uniformly distributed. See VS Notes for details.

```
Product and Performance Information
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision #20201201
```


## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
```

VSL_ERROR_NULL_PTR stream is a NULL pointer.

```
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_BRNG_NOT_SUPPORTED BRNG is not supported by the function.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED - - - non-deterministic random number generator exceeds
threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
ARS-5 random number generator is not supported on the CPU running the application.
```


## vRngUniformBits64

Generates uniformly distributed bits in 64-bit chunks.

## Syntax

```
status = viRngUniformBits64(method, stream, n, r);
```


## Include Files

- mkl.h


## Input Parameters

Name	Type	Description
method	const MKL_INT	Generation method; the specific value is
		VSL_RNG_METHOD_UNIFORMBITS64_STD
stream	VSLStreamStatePtr	Pointer to the stream state structure
$n$	const MKL_INT	Number of random values to be generated

## Output Parameters

Name	Type
$r$	unsigned MKL_INT64*

## Description

Vector of $n$ 64-bit random integer numbers with uniform bit distribution.

## Description

The vRngUniformBits 64 function generates uniformly distributed bits in 64-bit chunks. Unlike vRngUniformBits, which provides the output of underlying integer recurrence and does not guarantee uniform distribution across bits, vRngUniformBits64 is designed to ensure each bit in the 64-bit chunk is uniformly distributed. See VS Notes for details.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values

[^3]```
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_BRNG_NOT_SUPPORTED BRNG is not supported by the function.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED non-deterministic random number generator exceeds
threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the
CPU running the application.
```

vRngBernoulli
Generates Bernoulli distributed random values.

Syntax

```
status = viRngBernoulli( method, stream, n, r, p );
```

Include Files

- mkl.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| method | const MKL_INT | Generation method. The specific value is as follows: |
| | | VSL_RNG_METHOD_BERNOULLI_ICDF |
| | | Inverse cumulative distribution function method. |
| stream | VSLStreamStatePtr | Pointer to the stream state structure |
| n | const MKL_INT | Number of random values to be generated |
| p | const double | Success probability p of a trial |

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| r | int* | Vector of n Bernoulli distributed random values |

The vRngBernoulli function generates Bernoulli distributed random numbers with probability p of a single trial success, where

```
p\inR; 0 \leqp\leq 1.
```

A variate is called Bernoulli distributed, if after a trial it is equal to 1 with probability of success p, and to 0 with probability $1-p$.

The probability distribution is given by:

```
P(X = 1) = p
P(X=0) = 1-p
```

The cumulative distribution function is as follows:

$$
F_{p}(x)=\left\{\begin{aligned}
& 0, x<0 \\
& 1-p, 0 \leq x<1, x \in R \\
& 1, x \geq 1
\end{aligned}\right.
$$

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > max.

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

Period of the generator has been exceeded.
ARS-5 random number generator is not supported on the CPU running the application.

vRngGeometric

Generates geometrically distributed random values.
Syntax

```
status = viRngGeometric( method, stream, n, r, p );
```


Include Files

- mkl.h

Input Parameters

| Name | Type |
| :--- | :--- |
| method | const MKL_INT |

Description

Generation method. The specific value is as follows:
VSL_RNG_METHOD_GEOMETRIC_ICDF

| Name | Type | Description |
| :--- | :--- | :--- |
| stream | VSLStreamStatePtr | Inverse cumulative distribution function method. |
| n | const MKL_INT | Pointer to the stream state structure |
| p | const double | Number of random values to be generated |
| | Success probability p of a trial | |

Output Parameters

Name Type

r int*

Description

Vector of n geometrically distributed random values

Description

The vRngGeometric function generates geometrically distributed random numbers with probability p of a single trial success, where $p \in R ; 0<p<1$.

A geometrically distributed variate represents the number of independent Bernoulli trials preceding the first success. The probability of a single Bernoulli trial success is p.

The probability distribution is given by:
$P(X=k)=p \cdot(1-p)^{k}, k \in\{0,1,2, \ldots\}$.
The cumulative distribution function is as follows:

$$
F_{p}(x)=\left\{\begin{array}{ll}
0, & x<0 \\
1-(1-p)^{\lfloor x+1\rfloor}, & 0 \geq x
\end{array} \quad x \in R .\right.
$$

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, <0 or $>$ nmax.

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

Period of the generator has been exceeded.

```
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED non-deterministic random number generator exceeds
    threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the
    CPU running the application.
```

vRngBinomial
Generates binomially distributed random numbers.

Syntax

```
status = viRngBinomial( method, stream, n, r, ntrial, p );
```


Include Files

- mkl.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| method | const MKL_INT | Generation method. The specific value is as follows:
 VSL_RN_METHOD_BINOMIAL_BTPE |
| stream | VSLStreamStatePtr | See brief description of the BTPE method in Table "Values of
 <method> in method parameter". |
| n | const MKL_INT | Pointer to the stream state structure |
| $n t r i a l$ | const int | Number of random values to be generated |
| p | const double | Number of independent trials m |

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| r | int* | Vector of n binomially distributed random values |

Description

The vRngBinomial function generates binomially distributed random numbers with number of independent Bernoulli trials m, and with probability p of a single trial success, where $p \in R ; 0 \leq p \leq 1, m \in N$.

A binomially distributed variate represents the number of successes in m independent Bernoulli trials with probability of a single trial success p.

The probability distribution is given by:

$$
P(X=k)=C_{m}^{k} p^{k}(1-p)^{m-k}, k \in\{0,1, \ldots, m\}
$$

The cumulative distribution function is as follows:

$$
F_{\mathbb{m}, p}(x)= \begin{cases}0, & x<0 \\ \sum_{k=0}^{\lfloor x]} C_{m}^{k} p^{k}(1-p)^{m-k}, & 0 \leq x<m, x \in R \\ 1, & x \geq m\end{cases}
$$

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Return Values

| VSL_ERROR_OK, VSL_STATUS_OK | Indicates no error, execution is successful. |
| :---: | :---: |
| VSL_ERROR_NULL_PTR | stream is a NULL pointer. |
| VSL_RNG_ERROR_BAD_STREAM | stream is not a valid random stream. |
| VSL_RNG_ERROR_BAD_UPDATE | Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax. |
| VSL_RNG_ERROR_NO_NUMBERS | Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer. |
| VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED | Period of the generator has been exceeded. |
| VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED ED | Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold. |
| VSL_RNG_ERROR_ARS5_NOT_SUPPORTED | ARS-5 random number generator is not supported on the CPU running the application. |

vRngHypergeometric

Generates hypergeometrically distributed random values.

Syntax

```
status = viRngHypergeometric( method, stream, n, r, l, s, m );
```


Include Files

- mkl.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| method | const MKL_INT | Generation method. The specific value is as
 VSL_RNG_METHOD_HYPERGEOMETRIC_H2PE |
| stream | VSLStreamStatePtr | See brief description of the H2PE method in
 <method> in method parameter" |
| n | const MKL_INT | Pointer to the stream state structure |
| I | const int | Number of random values to be generated |
| s | const int | Lot size 1 |
| m | const int | Number of marked elements m |

Output Parameters

Name

r int*

Description

Vector of n hypergeometrically distributed random values

Description

The vRngHypergeometric function generates hypergeometrically distributed random values with lot size I, size of sampling s, and number of marked elements in the lot m, where $I, m, s \in N \cup\{0\} ; 1 \geq \max (s, m)$.

Consider a lot of $/$ elements comprising m "marked" and $I-m$ "unmarked" elements. A trial sampling without replacement of exactly s elements from this lot helps to define the hypergeometric distribution, which is the probability that the group of s elements contains exactly k marked elements.

The probability distribution is given by:)

,$k \in\{\max (0, s+m-l), \ldots, \min (s, m)\}$
The cumulative distribution function is as follows:

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

Return Values

| VSL_ERROR_OK, VSL_STATUS_OK | Indicates no error, execution is successful. |
| :---: | :---: |
| VSL_ERROR_NULL_PTR | stream is a NULL pointer. |
| VSL_RNG_ERROR_BAD_STREAM | stream is not a valid random stream. |
| VSL_RNG_ERROR_BAD_UPDATE | Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax. |
| VSL_RNG_ERROR_NO_NUMBERS | Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer. |
| VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED | Period of the generator has been exceeded. |
| VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED ED | Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold. |
| VSL_RNG_ERROR_ARS5_NOT_SUPPORTED | ARS-5 random number generator is not supported on the CPU running the application. |

vRngPoisson

Generates Poisson distributed random values.

Syntax

```
status = viRngPoisson( method, stream, n, r, lambda );
```


Include Files

- mkl.h

Input Parameters

| Name | Type | Description |
| :---: | :---: | :---: |
| method | const MKL INT | Generation method. The specific values are as follows: |
| | | VSL_RNG_METHOD_POISSON_PTPE |
| | | VSL_RNG_METHOD_POISSON_POISNORM |
| | | See brief description of the PTPE and POISNORM methods in Table "Values of <method> in method parameter". |
| stream | VSLStreamStatePtr | Pointer to the stream state structure |
| n | const MKL_INT | Number of random values to be generated |
| lambda | const double | Distribution parameter λ. |

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| r | int* | Vector of n Poisson distributed random values |

Description

The vRng"Poisson function generates Poisson distributed random numbers with distribution parameter λ, where $\lambda \in R ; \lambda>0$.

The probability distribution is given by:

$k \in\{0,1,2, \ldots\}$.
The cumulative distribution function is as follows:

$$
F_{\lambda}(x)=\left\{\begin{array}{ll}
\sum_{k=0}^{\lfloor x\rfloor} \frac{\lambda^{k} e^{-\lambda}}{k!}, & x \geq 0 \\
0, & x<0
\end{array}, x \in R\right.
$$

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
```

VSL_RNG_ERROR_NO_NUMBERS

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

```
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED - - - n non-deterministic random number generator exceeds
    threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the
    CPU running the application.
vRngPoissonV
Generates Poisson distributed random values with
varying mean.
Syntax
```

```
status = viRngPoissonV( method, stream, n, r, lambda );
```

status = viRngPoissonV(method, stream, n, r, lambda);
Include Files

```
- mkl.h

Input Parameters
\begin{tabular}{lll} 
Name & Type & Description \\
method & cons MKL_INT & \begin{tabular}{l} 
Generation method. The specific value is as follows: \\
VSL_RNG_METHOD_POISSONV_POISNORM \\
See brief description of the POISNORM method in Table
\end{tabular} \\
stream & VSLStreamStatePtr & Pointer to the stream state structure \\
\(n\) & cons MKL_INT & Number of random values to be generated \\
lambda & canst double* & Array of \(n\) distribution parameters \(\lambda_{i}\).
\end{tabular}

\section*{Output Parameters}

\section*{Name Type}
\(r\) int*

\section*{Description}

Vector of \(n\) Poisson distributed random values

\section*{Description}

The vRngPoissonV function generates \(n\) Poisson distributed random numbers \(x_{i}(i=1, \ldots, n)\) with distribution parameter \(\lambda_{i}\), where \(\lambda_{i} \in R ; \lambda_{i}>0\).

The probability distribution is given by:
\[
P\left(X_{i}=k\right)=\frac{\lambda_{i}^{k} \exp \left(-\lambda_{i}\right)}{k!}, k \in\{0,1,2, \ldots\} .
\]

The cumulative distribution function is as follows:
\[
F_{\lambda_{i}}(x)=\left\{\begin{array}{ll}
\sum_{k=0}^{x \leq} \frac{\lambda_{i}^{*} e^{-\lambda_{i}}}{k!}, & x \geq 0 \\
0, & x<0
\end{array}, x \in R\right.
\]

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Return Values}
\begin{tabular}{|c|c|}
\hline VSL_ERROR_OK, VSL_STATUS_OK & Indicates no error, execution is successful. \\
\hline VSL_ERROR_NULL_PTR & stream is a NULL pointer. \\
\hline VSL_RNG_ERROR_BAD_STREAM & stream is not a valid random stream. \\
\hline VSL_RNG_ERROR_BAD_UPDATE & Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or \(>\) nmax. \\
\hline VSL_RNG_ERROR_NO_NUMBERS & Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer. \\
\hline VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED & Period of the generator has been exceeded. \\
\hline ```
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED
ED
``` & Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold. \\
\hline VSL_RNG_ERROR_ARS5_NOT_SUPPORTED & ARS-5 random number generator is not supported on the CPU running the application. \\
\hline
\end{tabular}
vRngNegBinomial
Generates random numbers with negative binomial distribution.

\section*{Syntax}
```

status = viRngNegbinomial( method, stream, n, r, a, p );

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
method & const MKL_INT \\
& \\
stream & VSLStreamStatePtr \\
\(n\) & const MKL_INT \\
\(a\) & const double \\
\(p\) & const double
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(r\) & int*
\end{tabular}

\section*{Description}

Generation method. The specific value is:
VSL_RNG_METHOD_NEGBINOMIAL_NBAR
See brief description of the NBAR method in Table "Values of <method> in method parameter"
pointer to the stream state structure
Number of random values to be generated
The first distribution parameter a
The second distribution parameter \(p\)

\section*{Description}

Vector of \(n\) random values with negative binomial distribution.

\section*{Description}

The vRngNegBinomial function generates random numbers with negative binomial distribution and distribution parameters a and \(p\), where \(p, a \in R ; 0<p<1\); \(a>0\).

If the first distribution parameter \(a \in N\), this distribution is the same as Pascal distribution. If \(a \in N\), the distribution can be interpreted as the expected time of a-th success in a sequence of Bernoulli trials, when the probability of success is \(p\).
The probability distribution is given by:
\[
P(X=k)=C_{a+k-1}^{k} p^{a}(1-p)^{k}, k \in\{0,1,2, \ldots\} .
\]

The cumulative distribution function is as follows:
\[
F_{a, p}(x)=\left\{\begin{array}{ll}
\sum_{k=0}^{\lfloor x\rfloor} C_{a+k-1}^{k} p^{a}(1-p)^{k}, & x \geq 0 \\
0, & x<0
\end{array} \quad, x \in R\right.
\]

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED

```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or \(>\) nmax.

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

Period of the generator has been exceeded.
ARS-5 random number generator is not supported on the CPU running the application.
vRngMultinomial
Generates multinomially distributed random numbers.
Syntax
```

status = viRngMultinomial( method, stream, n, r, ntrial, k, p );

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{method} & const MKL_INT \\
\hline & Generation method. The specific value is as follo \\
\hline & VSL RNG METHOD MULTINOMIAL MULTPOISSON \\
\hline \multirow[t]{2}{*}{stream} & VSLStreamStatePtr \\
\hline & Pointer to the stream state structure. \\
\hline \multirow[t]{2}{*}{\(n\)} & const MKL_INT \\
\hline & Number of random values to be generated. \\
\hline \multirow[t]{2}{*}{ntrial} & const int \\
\hline & Number of independent trials \(m\). \\
\hline \multirow[t]{2}{*}{\(k\)} & const int \\
\hline & Number of possible outcomes. \\
\hline p & const double* \\
\hline
\end{tabular}

Probability vector of \(k\) possible outcomes.

\section*{Output Parameters}

\section*{\(r\) int*}

Array of \(n\) random vectors of dimension \(k\).

\section*{Description}

The vRngMultinomial function generates multinomially distributed random numbers with \(m\) independent trials and \(k\) possible mutually exclusive outcomes, with corresponding probabilities \(p_{i}\), where \(p_{i} \in R\); \(0 \leq p_{i} \leq\) \(1, m \in N, k \in N\).

The probability distribution is given by:
\[
P\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\frac{m!}{\prod_{i=1}^{k} x_{i}!} \prod_{i=1}^{k} p_{i}^{x_{i}}, \quad 0 \leq x_{i} \leq m, \sum_{i=1}^{k} x_{i}=m
\]

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Return Values}
```

VSL_ERROR_OK, Indicates no error (execution was successful).
VSL_STATUS_OK
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STR stream is not a valid random stream.
EAM
VSL_RNG_ERROR_BAD_UPD A callback function for an abstract BRNG returns an invalid number of updated
ATE
VSL_RNG_ERROR_NO_NUMB A callback function for an abstract BRNG returns 0 as the number of updated
ERS
VSL_RNG_ERROR_ARS5_NO An ARS-5 random number generator is not supported on the CPU running the
T_SUPPORTED
VSL_DISTR_MULTINOMIAL Bad multinomial distribution probability array.
_BAD_PROBABILITY_ARRA
Y

```

\section*{Advanced Service Routines}

This section describes service routines for registering a user-designed basic generator (vslRegisterBrng) and for obtaining properties of the previously registered basic generators (vslGetBrngProperties). See VS Notes ("Basic Generators" section of VS Structure chapter) for substantiation of the need for several basic generators including user-defined BRNGs.

\section*{Advanced Service Routine Data Types}

The Advanced Service routines refer to a structure defining the properties of the basic generator.
This structure is described as follows:
```

typedef struct _VSLBRngProperties {
int StreamStateSize;
int NSeeds;
int IncludesZero;
int WordSize;
int NBits;
InitStreamPtr InitStream;
sBRngPtr sBRng;
dBRngPtr dBRng;
iBRngPtr iBRng;
} VSLBRngProperties;

```

The following table provides brief descriptions of the fields engaged in the above structure:

\section*{Field Descriptions}
\begin{tabular}{|c|c|}
\hline Field & Short Description \\
\hline StreamStateSize & The size, in bytes, of the stream state structure for a given basic generator. \\
\hline NSeeds & The number of 32-bit initial conditions (seeds) necessary to initialize the stream state structure for a given basic generator. \\
\hline IncludesZero & Flag value indicating whether the generator can produce a random 0. \\
\hline WordSize & Machine word size, in bytes, used in integer-value computations. Possible values: 4, 8, and 16 for 32, 64, and 128-bit generators, respectively. \\
\hline NBits & The number of bits required to represent a random value in integer arithmetic. Note that, for instance, 48-bit random values are stored to 64-bit (8 byte) memory locations. In this case, wordsize/ WordSize is equal to 8 (number of bytes used to store the random value), while nbits/NBits contains the actual number of bits occupied by the value (in this example, 48). \\
\hline InitStream & Contains the pointer to the initialization routine of a given basic generator. \\
\hline sBRng & Contains the pointer to the basic generator of single precision real numbers uniformly distributed over the interval (\(a, b\)) (float). \\
\hline dBRng & Contains the pointer to the basic generator of double precision real numbers uniformly distributed over the interval (\(a, b\)) (double). \\
\hline iBRng & Contains the pointer to the basic generator of integer numbers with uniform bit distribution (unsigned int). \\
\hline
\end{tabular}

\section*{vslRegisterBrng}

Registers user-defined basic generator.

\section*{Syntax}
```

brng = vslRegisterBrng( \&properties );

```

\footnotetext{
1 A specific generator that permits operations over single bits and bit groups of random numbers.
}

Include Files
- mkl.h

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
propertie const VSLBRngProperties* \\
\(s\) & & \begin{tabular}{l}
Pointer to the structure containing properties of the basic \\
generator to be registered
\end{tabular}
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
brng & int
\end{tabular}

\section*{Description}

Number (index) of the registered basic generator; used for identification. Negative values indicate the registration error.

\section*{Description}

An example of a registration procedure can be found in the respective directory of the VS examples.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_RNG_ERROR_BRNG_TABLE_FULL
VSL_RNG_ERROR_BAD_STREAM_STATE_SIZE
VSL_RNG_ERROR_BAD_WORD_SIZE
VSL_RNG_ERROR_BAD_NSEEDS Bad value in NSeeds field.
VSL_RNG_ERROR_BAD_NBITS
VSL_ERROR_NULL_PTR At least one of the fields iBrng, dBrng, sBrng or
InitStream is a NULL pointer.
vsIGetBrngProperties
Returns structure with properties of a given basic
generator.
Syntax
status = vslGetBrngProperties( brng, \&properties );

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
brng & const int
\end{tabular}

\section*{Description}

Number (index) of the registered basic generator; used for identification. See specific values in Table "Values of brng parameter". Negative values indicate the registration error.

\section*{Output Parameters}

\section*{Name Type \\ propertie VSLBRngProperties* s}

\section*{Description}

Pointer to the structure containing properties of the generator with number brng

\section*{Description}

The vslGetBrngProperties function returns a structure with properties of a given basic generator.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_RNG_ERROR_INVALID_BRNG_INDEX

```

Indicates no error, execution is successful.
BRNG index is invalid.

\section*{Formats for User-Designed Generators}

To register a user-designed basic generator using vslRegisterBrng function, you need to pass the pointer iBrng to the integer-value implementation of the generator; the pointers sBrng and dBrng to the generator implementations for single and double precision values, respectively; and pass the pointer Initstream to the stream initialization routine. See recommendations below on defining such functions with input and output arguments. An example of the registration procedure for a user-designed generator can be found in the respective directory of VS examples.
The respective pointers are defined as follows:
```

typedef int(*InitStreamPtr)( int method, VSLStreamStatePtr stream, int n, const unsigned int
params[] );
typedef int(*sBRngPtr)( VSLStreamStatePtr stream, int n, float r[], float a, float b );
typedef int(*dBRngPtr)( VSLStreamStatePtr stream, int n, double r[], double a, double b );
typedef int(*iBRngPtr)( VSLStreamStatePtr stream, int n, unsigned int r[] );

```

\section*{InitStream}
```

int MyBrngInitStream( int method, VSLStreamStatePtr stream, int n, const unsigned int params[] )
{
/* Initialize the stream */
...
} /* MyBrngInitStream */

```

\section*{Description}

The initialization routine of a user-designed generator must initialize stream according to the specified initialization method, initial conditions params and the argument \(n\). The value of method determines the initialization method to be used.
- If method is equal to 1 , the initialization is by the standard generation method, which must be supported by all basic generators. In this case the function assumes that the stream structure was not previously initialized. The value of \(n\) is used as the actual number of 32 -bit values passed as initial conditions through params. Note, that the situation when the actual number of initial conditions passed to the function is not sufficient to initialize the generator is not an error. Whenever it occurs, the basic generator must initialize the missing conditions using default settings.
- If method is equal to 2, the generation is by the leapfrog method, where \(n\) specifies the number of computational nodes (independent streams). Here the function assumes that the stream was previously initialized by the standard generation method. In this case params contains only one element, which identifies the computational node. If the generator does not support the leapfrog method, the function must return the error code VSL_RNG_ERROR_LEAPFROG_UNSUPPORTED.
- If method is equal to 3 , the generation is by the block-splitting method. Same as above, the stream is assumed to be previously initialized by the standard generation method; params is not used, \(n\) identifies the number of skipped elements. If the generator does not support the block-splitting method, the function must return the error code VSL_RNG_ERROR_SKIPAHEAD_UNSUPPORTED.
- If method is equal to 4, the generation is by the advanced block-splitting method. The stream is assumed to be previously initialized by the standard generation method; params is converted to MKL_UINT64[] and \(n\) is used as actual number of 64-bit values in params. If the generator does not support the advanced block-splitting method, the function must return the error code
VSL_RNG_ERROR_SKIPAHEADEX_UNSUPPORTED.
For a more detailed description of the leapfrog and the block-splitting methods, refer to the description of vslLeapfrogStream, vslSkipAheadStream, and vslSkipAheadStreamEx, respectively.

Stream state structure is individual for every generator. However, each structure has a number of fields that are the same for all the generators:
```

typedef struct
{
unsigned int Reserved1[2];
unsigned int Reserved2[2];
[fields specific for the given generator]
} MyStreamState;

```

The fields Reserved1 and Reserved2 are reserved for private needs only, and must not be modified by the user. When including specific fields into the structure, follow the rules below:
- The fields must fully describe the current state of the generator. For example, the state of a linear congruential generator can be identified by only one initial condition;
- If the generator can use both the leapfrog and the block-splitting methods, additional fields should be introduced to identify the independent streams. For example, in \(\operatorname{LCG}(a, c, m)\), apart from the initial conditions, two more fields should be specified: the value of the multiplier \(a^{k}\) and the value of the increment (\(a^{k}-1\)) c/ (\(a-1\)).

For a more detailed discussion, refer to [Knuth81], and [Gentle98]. An example of the registration procedure can be found in the respective directory of VS examples.
iBRng
```

int iMyBrng( VSLStreamStatePtr stream, int n, unsigned int r[] )
{
int i; /* Loop variable */
/* Generating integer random numbers */
/* Pay attention to word size needed to
store only random number */
for( i = 0; i < n; i++)
{
r[i] = ...;

```
```

    }
    /* Update stream state */
    ...
    return errcode;
    } /* iMyBrng */

```

\section*{NOTE}

When using 64 and 128-bit generators, consider digit capacity to store the numbers to the random vector \(r\) correctly. For example, storing one 64 -bit value requires two elements of \(r\), the first to store the lower 32 bits and the second to store the higher 32 bits. Similarly, use 4 elements of \(r\) to store a 128-bit value.

\section*{sBRng}
```

int sMyBrng( VSLStreamStatePtr stream, int n, float r[], float a, float b )
{
int i; /* Loop variable */
/* Generating float (a,b) random numbers */
for ( i = 0; i < n; i++ )
{
r[i] = ...;
}
/* Update stream state */
...
return errcode;
} /* sMyBrng */

```

\section*{dBRng}
```

int dMyBrng( VSLStreamStatePtr stream, int n, double r[], double a, double b )
{
int i; /* Loop variable */
/* Generating double (a,b) random numbers */
for ( i = 0; i < n; i++ )
{
r[i] = ...;
}
/* Update stream state */
...
return errcode;
} /* dMyBrng */

```

\section*{Convolution and Correlation}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) VS provides a set of routines intended to perform linear convolution and correlation transformations for single and double precision real and complex data.

For correct definition of implemented operations, see the Mathematical Notation and Definitions.
The current implementation provides:
- Fourier algorithms for one-dimensional single and double precision real and complex data
- Fourier algorithms for multi-dimensional single and double precision real and complex data
- Direct algorithms for one-dimensional single and double precision real and complex data
- Direct algorithms for multi-dimensional single and double precision real and complex data

One-dimensional algorithms cover the following functions from the IBM* ESSL library:
```

SCONF, SCORF
SCOND, SCORD
SDCON, SDCOR
DDCON, DDCOR
SDDCON, SDDCOR.

```

Special wrappers are designed to simulate these ESSL functions. The wrappers are provided as sample sources:
```

\${MKL}/examples/vslc/essl/vsl_wrappers

```

Additionally, you can browse the examples demonstrating the calculation of the ESSL functions through the wrappers:
```

\${MKL}/examples/vslc/essl

```

The convolution and correlation API provides interfaces for Fortran 90 and \(\mathrm{C} / 89\) languages. You can use the C89 interface with later versions of the C/C++.

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) providesthe mkl_vsl.h header file. All header files are in the directory
```

\$ {MKL} / include

```

The convolution and correlation API is implemented through task objects, or tasks. Task object is a data structure, or descriptor, which holds parameters that determine the specific convolution or correlation operation. Such parameters may be precision, type, and number of dimensions of user data, an identifier of the computation algorithm to be used, shapes of data arrays, and so on.
All the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) VS convolution and correlation routines process task objects in one way or another: either create a new task descriptor, change the parameter settings, compute mathematical results of the convolution or correlation using the stored parameters, or perform other operations. Accordingly, all routines are split into the following groups:
Task Constructors - routines that create a new task object descriptor and set up most common parameters.
Task Editors - routines that can set or modify some parameter settings in the existing task descriptor.
Task Execution Routines - compute results of the convolution or correlation operation over the actual input data, using the operation parameters held in the task descriptor.

Task Copy - routines used to make several copies of the task descriptor.
Task Destructors - routines that delete task objects and free the memory.
When the task is executed or copied for the first time, a special process runs which is called task commitment. During this process, consistency of task parameters is checked and the required work data are prepared. If the parameters are consistent, the task is tagged as committed successfully. The task remains committed until you edit its parameters. Hence, the task can be executed multiple times after a single commitment process. Since the task commitment process may include costly intermediate calculations such as preparation of Fourier transform of input data, launching the process only once can help speed up overall performance.

\section*{Convolution and Correlation Naming Conventions}

The names of routines, types, and constants in the convolution and correlation API are case-sensitive and can contain both lowercase and uppercase characters (vslsConvExec).

The names of routines have the following structure:
vsl [datatype] \{Conv|Corr\}<base name>
where
- vsl is a prefix indicating that the routine belongs to Intel \({ }^{8}\) MKL Vector Statistics.
- [datatype] is optional. If present, the symbol specifies the type of the input and output data and can be \(s\) (for single precision real type), d (for double precision real type), c (for single precision complex type), or \(z\) (for double precision complex type).
- Conv or Corr specifies whether the routine refers to convolution or correlation task, respectively.
- <base name> field specifies a particular functionality that the routine is designed for, for example, NewTask, DeleteTask.

\section*{Convolution and Correlation Data Types}

All convolution or correlation routines use the following types for specifying data objects:
\begin{tabular}{ll}
Type & Data Object \\
VSLConvTaskPtr & Pointer to a task descriptor for convolution \\
VSLCorrTaskPtr & Pointer to a task descriptor for correlation \\
float & Input/output user real data in single precision \\
double & Input/output user real data in double precision \\
MKL_Complex8 & Input/output user complex data in single precision \\
MKL_Complex16 & Input/output user complex data in double precision \\
int & All other data
\end{tabular}

Generic integer type (without specifying the byte size) is used for all integer data.

\section*{NOTE}

The actual size of the generic integer type is platform-dependent. Before you compile your application, set an appropriate byte size for integers. See details in the 'Using the ILP64 Interface vs. LP64 Interface' section of the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide.

\section*{Convolution and Correlation Parameters}

Basic parameters held by the task descriptor are assigned values when the task object is created, copied, or modified by task editors. Parameters of the correlation or convolution task are initially set up by task constructors when the task object is created. Parameter changes or additional settings are made by task editors. More parameters which define location of the data being convolved need to be specified when the task execution routine is invoked.
According to how the parameters are passed or assigned values, all of them can be categorized as either explicit (directly passed as routine parameters when a task object is created or executed) or optional (assigned some default or implicit values during task construction).
The following table lists all applicable parameters used in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) convolution and correlation API.

Convolution and Correlation Task Parameters
\begin{tabular}{lllll}
\hline Name & Category & Type & \begin{tabular}{l}
Default Value \\
Label
\end{tabular} & Description \\
\hline job & explicit & integer & \begin{tabular}{l}
Implied by the \\
constructor \\
name
\end{tabular} & \begin{tabular}{l}
Specifies whether the task relates to \\
convolution or correlation
\end{tabular} \\
& & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Name & Category & Type & Default Value Label & Description \\
\hline type & explicit & integer & Implied by the constructor name & Specifies the type (real or complex) of the input/output data. Set to real in the current version. \\
\hline precision & explicit & integer & Implied by the constructor name & Specifies precision (single or double) of the input/output data to be provided in arrays \(x, y, z\). \\
\hline mode & explicit & integer & None & Specifies whether the convolution/ correlation computation should be done via Fourier transforms, or by a direct method, or by automatically choosing between the two. See SetMode for the list of named constants for this parameter. \\
\hline method & optional & integer & "auto" & Hints at a particular computation method if several methods are available for the given mode. Setting this parameter to "auto" means that software will choose the best available method. \\
\hline internal_pre cision & optional & integer & Set equal to the value of precision & Specifies precision of internal calculations. Can enforce double precision calculations even when input/output data are single precision. See SetInternalPrecision for the list of named constants for this parameter. \\
\hline dims & explicit & integer & None & Specifies the rank (number of dimensions) of the user data provided in arrays \(x, y, z\). Can be in the range from 1 to 7 . \\
\hline \(x, y\) & explicit & real arrays & None & Specify input data arrays. See Data Allocation for more information. \\
\hline z & explicit & real array & None & Specifies output data array. See Data Allocation for more information. \\
\hline \begin{tabular}{l}
xshape, \\
yshape, \\
zshape
\end{tabular} & explicit & integer arrays & None & Define shapes of the arrays \(x, y, z\). See Data Allocation for more information. \\
\hline xstride, ystride, zstride & explicit & integer arrays & None & Define strides within arrays \(x, y, z\), that is specify the physical location of the input and output data in these arrays. See Data Allocation for more information. \\
\hline start & optional & integer array & Undefined & Defines the first element of the mathematical result that will be stored to output array \(z\). See SetStart and Data Allocation for more information. \\
\hline decimation & optional & integer array & Undefined & Defines how to thin out the mathematical result that will be stored to output array \(z\). See SetDecimation and Data Allocation for more information. \\
\hline
\end{tabular}

Users may pass the NULL pointer instead of either or all of the parameters xstride, ystride, or zstride for multi-dimensional calculations. In this case, the software assumes the dense data allocation for the arrays \(x, y\), or \(z\) due to the Fortran-style "by columns" representation of multi-dimensional arrays.

\section*{Convolution and Correlation Task Status and Error Reporting}

The task status is an integer value, which is zero if no error has been detected while processing the task, or a specific non-zero error code otherwise. Negative status values indicate errors, and positive values indicate warnings.
An error can be caused by invalid parameter values, a system fault like a memory allocation failure, or can be an internal error self-detected by the software.
Each task descriptor contains the current status of the task. When creating a task object, the constructor assigns the VSL_STATUS_OK status to the task. When processing the task afterwards, other routines such as editors or executors can change the task status if an error occurs and write a corresponding error code into the task status field.
Note that at the stage of creating a task or editing its parameters, the set of parameters may be inconsistent. The parameter consistency check is only performed during the task commitment operation, which is implicitly invoked before task execution or task copying. If an error is detected at this stage, task execution or task copying is terminated and the task descriptor saves the corresponding error code. Once an error occurs, any further attempts to process that task descriptor is terminated and the task keeps the same error code.

Normally, every convolution or correlation function (except DeleteTask) returns the status assigned to the task while performing the function operation.
The header files define symbolic names for the status codes. These names are defined as macros via the \#define statements.

If there is no error, the VSL_STATUS_OK status is returned, which is defined as zero:
\[
\text { \#define VSL_STATUS_OK } 0
\]

In case of an error, a non-zero error code is returned, which indicates the origin of the failure. The following status codes for the convolution/correlation error codes are pre-defined in the header files.

\section*{Convolution/Correlation Status Codes}
\begin{tabular}{ll}
Status Code & Description \\
\hline VSL_CC_ERROR_NOT_IMPLEMENTED & Requested functionality is not implemented. \\
VSL_CC_ERROR_ALLOCATION_FAILURE & Memory allocation failure. \\
VSL_CC_ERROR_BAD_DESCRIPTOR & Task descriptor is corrupted. \\
VSL_CC_ERROR_SERVICE_FAILURE & A service function has failed. \\
VSL_CC_ERROR_EDIT_FAILURE & Failure while editing the task. \\
VSL_CC_ERROR_EDIT_PROHIBITED & You cannot edit this parameter. \\
VSL_CC_ERROR_COMMIT_FAILURE & Task commitment has failed. \\
VSL_CC_ERROR_COPY_FAILURE & Failure while copying the task. \\
VSL_CC_ERROR_DELETE_FAILURE & Failure while deleting the task. \\
VSL_CC_ERROR_BAD_ARGUMENT & Bad argument or task parameter. \\
VSL_CC_ERROR_JOB & Bad parameter: job. \\
SL_CC_ERROR_KIND & Bad parameter: kind.
\end{tabular}
\begin{tabular}{ll}
\hline Status Code & Description \\
\hline VSL_CC_ERROR_MODE & Bad parameter: mode. \\
VSL_CC_ERROR_METHOD & Bad parameter: method. \\
VSL_CC_ERROR_TYPE & Bad parameter: type. \\
VSL_CC_ERROR_EXTERNAL_PRECISION & Bad parameter: external_precision. \\
VSL_CC_ERROR_INTERNAL_PRECISION & Bad parameter: internal_precision. \\
VSL_CC_ERROR_PRECISION & Incompatible external/internal precisions. \\
VSL_CC_ERROR_DIMS & Bad parameter: dims. \\
VSL_CC_ERROR_XSHAPE & Bad parameter: xshape. \\
VSL_CC_ERROR_YSHAPE & Bad parameter: yshape. \\
& Callback function for an abstract BRNG returns an invalid \\
& number of updated entries in a buffer, that is, 0 \\
VSL_CC_ERROR_ZSHAPE & Bad parameter: zshape. \\
VSL_CC_ERROR_XSTRIDE & Bad parameter: xstride. \\
VSL_CC_ERROR_YSTRIDE & Bad parameter: ystride. \\
VSL_CC_ERROR_ZSTRIDE & Bad parameter: decimation. \\
VSL_CC_ERROR_X & Bad parameter: start. \\
VSL_CC_ERROR_Y & Bad parameter: x. \\
VSL_CC_ERROR_Z & Bad parameter: y. \\
VSL_CC_ERROR_START & Bad parameter: z. \\
VSL_CC_ERROR_DECIMATION & BSL_CC_ERROR_OTHER
\end{tabular}

\section*{Convolution and Correlation Task Constructors}

Task constructors are routines intended for creating a new task descriptor and setting up basic parameters. No additional parameter adjustment is typically required and other routines can use the task object.

Intel \({ }^{\circledR}\) MKL implementation of the convolution and correlation API provides two different forms of constructors: a general form and an X-form. X-form constructors work in the same way as the general form constructors but also assign particular data to the first operand vector used in the convolution or correlation operation (stored in array \(x\)).
Using X-form constructors is recommended when you need to compute multiple convolutions or correlations with the same data vector held in array \(x\) against different vectors held in array \(y\). This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.
Each constructor routine has an associated one-dimensional version that provides algorithmic and computational benefits.

\section*{NOTE}

If the constructor fails to create a task descriptor, it returns the NULL task pointer.

The Table "Task Constructors" lists available task constructors:
Task Constructors
\begin{tabular}{ll}
Routine & Description \\
\hline vslConvNewTask/vslCorrNewTask & \begin{tabular}{l}
Creates a new convolution or correlation task descriptor for a \\
multidimensional case.
\end{tabular} \\
vslConvNewTask1D/ & \begin{tabular}{l}
Creates a new convolution or correlation task descriptor for a \\
one-dimensional case.
\end{tabular} \\
vslCorrNewTask1D & \begin{tabular}{l}
Creates a new convolution or correlation task descriptor as an \\
vslConvNewTaskX/vslCorrNewTaskX
\end{tabular} \\
XslCorm for a multidimensional case. \\
vslCorrNewTaskX1D & \begin{tabular}{l}
Creates a new convolution or correlation task descriptor as an
\end{tabular} \\
\hline
\end{tabular}

\section*{vslConvNewTask/vslCorrNewTask}

Creates a new convolution or correlation task descriptor for multidimensional case.

\section*{Syntax}
```

status = vslsConvNewTask(task, mode, dims, xshape, yshape, zshape);
status = vsldConvNewTask(task, mode, dims, xshape, yshape, zshape);
status = vslcConvNewTask(task, mode, dims, xshape, yshape, zshape);
status = vslzConvNewTask(task, mode, dims, xshape, yshape, zshape);
status = vslsCorrNewTask(task, mode, dims, xshape, yshape, zshape);
status = vsldCorrNewTask(task, mode, dims, xshape, yshape, zshape);
status = vslcCorrNewTask(task, mode, dims, xshape, yshape, zshape);
status = vslzCorrNewTask(task, mode, dims, xshape, yshape, zshape);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
mode & const MKL_INT \\
dims & const \(M K L _I N T\)
\end{tabular}

\section*{Description}

Specifies whether convolution/correlation calculation must be performed by using a direct algorithm or through Fourier transform of the input data. See Table "Values of mode parameter" for a list of possible values.

Rank of user data. Specifies number of dimensions for the input and output arrays \(x, y\), and \(z\) used during the execution stage. Must be in the range from 1 to 7 . The value is explicitly assigned by the constructor.
\begin{tabular}{ll}
Name & Type \\
xshape & const int [] \\
yshape & const int [] \\
zshape &
\end{tabular}

\section*{Output Parameters}
```

Name
task VSLConvTaskPtr* for
vslsConvNewTask,
vsldConvNewTask,
vslcConvNewTask,
vslzConvNewTask
VSLCorrTaskPtr* for
vslsCorrNewTask,
vsldCorrNewTask,
vslcConvNewTask,
vslzConvNewTask
status int

```

\section*{Description}

Defines the shape of the input data for the source array \(x\). See Data Allocation for more information.

Defines the shape of the input data for the source array \(y\). See Data Allocation for more information.

Defines the shape of the output data to be stored in array z. See Data Allocation for more information.

\section*{Description}

Pointer to the task descriptor if created successfully or NULL pointer otherwise.

Set to VSL_STATUS_OK if the task is created successfully or set to non-zero error code otherwise.

\section*{Description}

Each vslConvNewTask/vslCorrNewTask constructor creates a new convolution or correlation task descriptor with the user specified values for explicit parameters. The optional parameters are set to their default values (see Table "Convolution and Correlation Task Parameters").

The parameters xshape, yshape, and zshape define the shapes of the input and output data provided by the arrays \(x, y\), and \(z\), respectively. Each shape parameter is an array of integers with its length equal to the value of dims. You explicitly assign the shape parameters when calling the constructor. If the value of the parameter dims is 1, then xshape, yshape, zshape are equal to the number of elements read from the arrays \(x\) and \(y\) or stored to the array \(z\). Note that values of shape parameters may differ from physical shapes of arrays \(x, y\), and \(z\) if non-trivial strides are assigned.
If the constructor fails to create a task descriptor, it returns a NULL task pointer.

\section*{vslConvNewTask1D/vslCorrNewTask1D \\ Creates a new convolution or correlation task \\ descriptor for one-dimensional case.}

\section*{Syntax}
```

status = vslsConvNewTask1D(task, mode, xshape, yshape, zshape);
status = vsldConvNewTask1D(task, mode, xshape, yshape, zshape);
status = vslcConvNewTask1D(task, mode, xshape, yshape, zshape);
status = vslzConvNewTask1D(task, mode, xshape, yshape, zshape);
status = vslsCorrNewTask1D(task, mode, xshape, yshape, zshape);

```
```

status = vsldCorrNewTask1D(task, mode, xshape, yshape, zshape);
status = vslcCorrNewTask1D(task, mode, xshape, yshape, zshape);
status = vslzCorrNewTask1D(task, mode, xshape, yshape, zshape);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
mode & const MKL_INT
\end{tabular}

\section*{Description}

Specifies whether convolution/correlation calculation must be performed by using a direct algorithm or through Fourier transform of the input data. See Table "Values of mode parameter" for a list of possible values.

Defines the length of the input data sequence for the source array \(x\). See Data Allocation for more information.

Defines the length of the input data sequence for the source array \(y\). See Data Allocation for more information.

Defines the length of the output data sequence to be stored in array \(z\). See Data Allocation for more information.

\section*{Output Parameters}
```

Name Type
task VSLConvTaskPtr* for
vslsConvNewTask1D,
vsldConvNewTask1D,
vslcConvNewTask1D,
vslzConvNewTask1D
VSLCorrTaskPtr* for
vslsCorrNewTask1D,
vsldCorrNewTask1D,
vslcCorrNewTask1D,
vslzCorrNewTask1D
status int

```

\section*{Description}

Pointer to the task descriptor if created successfully or NULL pointer otherwise.

\section*{Description}

Each vslConvNewTask1D/vslCorrNewTask1D constructor creates a new convolution or correlation task descriptor with the user specified values for explicit parameters. The optional parameters are set to their default values (see Table "Convolution and Correlation Task Parameters"). Unlike vslConvNewTask/ vslCorrNewTask, these routines represent a special one-dimensional version of the constructor which assumes that the value of the parameter dims is 1 . The parameters xshape, yshape, and zshape are equal to the number of elements read from the arrays \(x\) and \(y\) or stored to the array \(z\). You explicitly assign the shape parameters when calling the constructor.
```

vslConvNewTaskX/vslCorrNewTaskX
Creates a new convolution or correlation task
descriptor for multidimensional case and assigns
source data to the first operand vector.

```

\section*{Syntax}
```

status = vslsConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vsldConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vslcConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vslzConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vslsCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vsldCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vslcCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);
status = vslzCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x, xstride);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline mode & const MKL_INT & Specifies whether convolution/correlation calculation must be performed by using a direct algorithm or through Fourier transform of the input data. See Table "Values of mode parameter" for a list of possible values. \\
\hline dims & const MKL_INT & Rank of user data. Specifies number of dimensions for the input and output arrays \(x, y\), and \(z\) used during the execution stage. Must be in the range from 1 to 7 . The value is explicitly assigned by the constructor. \\
\hline xshape & const int[] & Defines the shape of the input data for the source array \(x\). See Data Allocation for more information. \\
\hline yshape & const int[] & Defines the shape of the input data for the source array \(y\). See Data Allocation for more information. \\
\hline zshape & const int[] & Defines the shape of the output data to be stored in array z.See Data Allocation for more information. \\
\hline \(x\) & \begin{tabular}{l}
const float[] for real data in single precision flavors, const double[] for real data in double precision flavors, const MKL_Complex8[] for complex data in single precision flavors, \\
const MKL_Complex16[] for complex data in double precision flavors
\end{tabular} & Pointer to the array containing input data for the first operand vector.See Data Allocation for more information. \\
\hline
\end{tabular}
\begin{tabular}{lll}
Name & Type & Description \\
xstride & const int [] & Strides for input data in the array \(x\).
\end{tabular}

\section*{Output Parameters}
```

Name Type
task VSLConvTaskPtr* for
vslsConvNewTaskX,
vsldConvNewTaskX,
vslcConvNewTaskX,
vslzConvNewTaskX
vSLCorrTaskPtr* for
vslsCorrNewTaskX,
vsldCorrNewTaskX,
vslcCorrNewTaskX,
vslzCorrNewTaskX
status int

```

\section*{Description}

Pointer to the task descriptor if created successfully or NULL pointer otherwise.

Set to VSL_STATUS_OK if the task is created successfully or set to non-zero error code otherwise.

\section*{Description}

Each vslConvNewTaskX/vslCorrNewTaskX constructor creates a new convolution or correlation task descriptor with the user specified values for explicit parameters. The optional parameters are set to their default values (see Table "Convolution and Correlation Task Parameters").
Unlike vslConvNewTask/vslCorrNewTask, these routines represent the so called X-form version of the constructor, which means that in addition to creating the task descriptor they assign particular data to the first operand vector in array \(x\) used in convolution or correlation operation. The task descriptor created by the vslConvNewTaskX/vslCorrNewTaskX constructor keeps the pointer to the array \(x\) all the time, that is, until the task object is deleted by one of the destructor routines (see vslConvDeleteTask/vslCorrDeleteTask).

Using this form of constructors is recommended when you need to compute multiple convolutions or correlations with the same data vector in array \(x\) against different vectors in array \(y\). This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.

The parameters xshape, yshape, and zshape define the shapes of the input and output data provided by the arrays \(x, y\), and \(z\), respectively. Each shape parameter is an array of integers with its length equal to the value of dims. You explicitly assign the shape parameters when calling the constructor. If the value of the parameter dims is 1, then xshape, yshape, and zshape are equal to the number of elements read from the arrays \(x\) and \(y\) or stored to the array \(z\). Note that values of shape parameters may differ from physical shapes of arrays \(x, y\), and \(z\) if non-trivial strides are assigned.

The stride parameter xstride specifies the physical location of the input data in the array \(x\). In a onedimensional case, stride is an interval between locations of consecutive elements of the array. For example, if the value of the parameter xstride is \(s\), then only every \(s^{\text {th }}\) element of the array \(x\) will be used to form the input sequence. The stride value must be positive or negative but not zero.

\section*{vslConvNewTaskX1D/vsICorrNewTaskX1D}

Creates a new convolution or correlation task
descriptor for one-dimensional case and assigns
source data to the first operand vector.
```

Syntax

```
```

status = vslsConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);

```
status = vslsConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vsldConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vsldConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vslcConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vslcConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vslzConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vslzConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vslsCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vslsCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vsldCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vsldCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vslcCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vslcCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
status = vslzCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);
```

status = vslzCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
mode & const MKL_INT \\
xshape & const MKL_INT \\
yshape & const MKL_INT \\
zshape & \begin{tabular}{l}
const MKL_INT
\end{tabular} \\
x const float [] for real data in \\
single precision flavors,
\end{tabular}

\section*{Description}

Specifies whether convolution/correlation calculation must be performed by using a direct algorithm or through Fourier transform of the input data. See Table "Values of mode parameter" for a list of possible values.

Defines the length of the input data sequence for the source array \(x\). See Data Allocation for more information.

Defines the length of the input data sequence for the source array \(y\). See Data Allocation for more information.

Defines the length of the output data sequence to be stored in array \(z\). See Data Allocation for more information.

Pointer to the array containing input data for the first operand vector. See Data Allocation for more information.

Stride for input data sequence in the arrayx.

\section*{Output Parameters}
```

Name Type
task VSLConvTaskPtr* for
vslsConvNewTaskX1D,
vsldConvNewTaskX1D,
vslcConvNewTaskX1D,
vslzConvNewTaskX1D
VSLCorrTaskPtr* for
vslsCorrNewTaskX1D,
vsldCorrNewTaskX1D,
vslcCorrNewTaskX1D,
vslzCorrNewTaskX1D
status int

```

\section*{Description}

Pointer to the task descriptor if created successfully or NULL pointer otherwise.

Set to VSL_STATUS_OK if the task is created successfully or set to non-zero error code otherwise.

\section*{Description}

Each vslConvNewTaskX1D/vslCorrNewTaskX1D constructor creates a new convolution or correlation task descriptor with the user specified values for explicit parameters. The optional parameters are set to their default values (see Table "Convolution and Correlation Task Parameters").

These routines represent a special one-dimensional version of the so called X-form of the constructor. This assumes that the value of the parameter dims is 1 and that in addition to creating the task descriptor, constructor routines assign particular data to the first operand vector in array \(x\) used in convolution or correlation operation. The task descriptor created by the vslConvNewTaskX1D/vslCorrNewTaskX1D constructor keeps the pointer to the array \(x\) all the time, that is, until the task object is deleted by one of the destructor routines (see vslConvDeleteTask/vslCorrDeleteTask).

Using this form of constructors is recommended when you need to compute multiple convolutions or correlations with the same data vector in array \(x\) against different vectors in array \(y\). This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.

The parameters xshape, yshape, and zshape are equal to the number of elements read from the arrays \(x\) and \(y\) or stored to the array \(z\). You explicitly assign the shape parameters when calling the constructor.

The stride parameters xstride specifies the physical location of the input data in the array \(x\) and is an interval between locations of consecutive elements of the array. For example, if the value of the parameter xstride is \(s\), then only every \(s^{\text {th }}\) element of the array \(x\) will be used to form the input sequence. The stride value must be positive or negative but not zero.

\section*{Convolution and Correlation Task Editors}

Task editors in convolution and correlation API of Intel® oneAPI Math Kernel Library (oneMKL) are routines intended for setting up or changing the following task parameters (seeTable "Convolution and Correlation Task Parameters"):
- mode
- internal_precision
- start
- decimation

For setting up or changing each of the above parameters, a separate routine exists.

\section*{NOTE}

Fields of the task descriptor structure are accessible only through the set of task editor routines provided with the software.

The work data computed during the last commitment process may become invalid with respect to new parameter settings. That is why after applying any of the editor routines to change the task descriptor settings, the task loses its commitment status and goes through the full commitment process again during the next execution or copy operation. For more information on task commitment, see the Introduction to Convolution and Correlation.
Table "Task Editors" lists available task editors.

\section*{Task Editors}
\begin{tabular}{ll}
\hline Routine & Description \\
\hline vslConvSetMode/vslCorrSetMode & \begin{tabular}{l}
Changes the value of the parameter mode for the \\
operation of convolution or correlation.
\end{tabular} \\
\begin{tabular}{l}
vslConvSetInternalPrecision/ \\
vslCorrSetInternalPrecision
\end{tabular} & \begin{tabular}{l}
Changes the value of the parameter \\
internal_precision for the operation of convolution or \\
correlation.
\end{tabular} \\
vslConvSetStart/vslCorrSetStart & \begin{tabular}{l}
Sets the value of the parameter start for the operation \\
of convolution or correlation.
\end{tabular} \\
vslConvSetDecimation/ & \begin{tabular}{l}
Sets the value of the parameter decimation for the \\
operation of convolution or correlation.
\end{tabular} \\
\hline
\end{tabular}

\section*{NOTE}

You can use the NULL task pointer in calls to editor routines. In this case, the routine is terminated and no system crash occurs.
```

vslConvSetMode/vslCorrSetMode
Changes the value of the parameter mode in the convolution or correlation task descriptor.

```

\section*{Syntax}
```

status = vslConvSetMode(task, newmode);
status = vslCorrSetMode(task, newmode);

```

\section*{Include Files}
- mkl.h

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
task & \begin{tabular}{l}
VSLConvTaskPtr for \\
vslConvSetMode
\end{tabular} & Pointer to the task descriptor. \\
& \begin{tabular}{l}
VSLCorrTaskPtr for \\
vslCorrSetMode
\end{tabular} & \\
newmode & const MKL_INT & New value of the parameter mode.
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
status & int & Current status of the task.
\end{tabular}

\section*{Description}

This function is declared in mkl_vsl_functions.h.
The function routine changes the value of the parameter mode for the operation of convolution or correlation. This parameter defines whether the computation should be done via Fourier transforms of the input/output data or using a direct algorithm. Initial value for mode is assigned by a task constructor.

Predefined values for the mode parameter are as follows:
Values of mode parameter
\begin{tabular}{ll}
\hline Value & Purpose \\
\hline VSL_CONV_MODE_FFT & Compute convolution by using fast Fourier transform. \\
VSL_CORR_MODE_FFT & Compute correlation by using fast Fourier transform. \\
VSL_CONV_MODE_DIRECT & Compute convolution directly. \\
VSL_CORR_MODE_DIRECT & Compute correlation directly. \\
VSL_CONV_MODE_AUTO & Automatically choose direct or Fourier mode for convolution. \\
VSL_CORR_MODE_AUTO & Automatically choose direct or Fourier mode for correlation. \\
\hline
\end{tabular}
```

vslConvSetInternalPrecision/vslCorrSetInternalPrecision
Changes the value of the parameter internal_precision
in the convolution or correlation task descriptor.
Syntax
status = vslConvSetInternalPrecision(task, precision);
status = vslCorrSetInternalPrecision(task, precision);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
```

Name Type Description
task VSLConvTaskPtr for
vslConvSetInternalPrecisio
n
VSLCorrTaskPtr for
vslCorrSetInternalPrecisio
n
precision const MKL_INT New value of the parameter internal_precision.

```

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
status & int & Current status of the task.
\end{tabular}

\section*{Description}

The vslConvSetInternalPrecision/vslCorrSetInternalPrecision routine changes the value of the parameter internal_precision for the operation of convolution or correlation. This parameter defines whether the internal computations of the convolution or correlation result should be done in single or double precision. Initial value for internal_precision is assigned by a task constructor and set to either "single" or "double" according to the particular flavor of the constructor used.

Changing the internal_precision can be useful if the default setting of this parameter was "single" but you want to calculate the result with double precision even if input and output data are represented in single precision.

Predefined values for the internal_precision input parameter are as follows:
Values of internal_precision Parameter
\begin{tabular}{ll}
\hline Value & Purpose \\
\hline VSL_CONV_PRECISION_SINGLE & Compute convolution with single precision. \\
VSL_CORR_PRECISION_SINGLE & Compute correlation with single precision. \\
VSL_CONV_PRECISION_DOUBLE & Compute convolution with double precision. \\
VSL_CORR_PRECISION_DOUBLE & Compute correlation with double precision. \\
\hline
\end{tabular}
```

vslConvSetStart/vslCorrSetStart
Changes the value of the parameter start in the
convolution or correlation task descriptor.
Syntax
status = vslConvSetStart(task, start);
status = vslCorrSetStart(task, start);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
task & VSLConvTaskPtr for \\
& vslConvSetStart \\
& VSLCorrTaskPtr for \\
& vslCorrSetStart \\
start & const int[]
\end{tabular}

\section*{Description}

Pointer to the task descriptor.

New value of the parameter start.

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
status & int & Current status of the task.
\end{tabular}

\section*{Description}

The vslConvSetStart/vslCorrSetStart routine sets the value of the parameter start for the operation of convolution or correlation. In a one-dimensional case, this parameter points to the first element in the mathematical result that should be stored in the output array. In a multidimensional case, start is an array of indices and its length is equal to the number of dimensions specified by the parameter dims. For more information about the definition and effect of this parameter, see Data Allocation.

During the initial task descriptor construction, the default value for start is undefined and this parameter is not used. Therefore the only way to set and use the start parameter is via assigning it some value by one of the vslConvSetStart/vslCorrSetStart routines.
vslConvSetDecimation/vslCorrSetDecimation
Changes the value of the parameter decimation in the convolution or correlation task descriptor.

\section*{Syntax}
```

status = vslConvSetDecimation(task, decimation);
status = vslCorrSetDecimation(task, decimation);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
```

Name Type
task VSLConvTaskPtr for
vslConvSetDecimation
VSLCorrTaskPtr for
vslCorrSetDecimation
decimatio const int[] New value of the parameter decimation.
n

```

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
status & int & Current status of the task.
\end{tabular}

\section*{Description}

The routine sets the value of the parameter decimation for the operation of convolution or correlation. This parameter determines how to thin out the mathematical result of convolution or correlation before writing it into the output data array. For example, in a one-dimensional case, if decimation \(=d>1\), only every \(d\)-th element of the mathematical result is written to the output array \(z\). In a multidimensional case, decimation is an array of indices and its length is equal to the number of dimensions specified by the parameter dims. For more information about the definition and effect of this parameter, see Data Allocation.

During the initial task descriptor construction, the default value for decimation is undefined and this parameter is not used. Therefore the only way to set and use the decimation parameter is via assigning it some value by one of the vslSetDecimation routines.

\section*{Task Execution Routines}

Task execution routines compute convolution or correlation results based on parameters held by the task descriptor and on the user data supplied for input vectors.
After you create and adjust a task, you can execute it multiple times by applying to different input/output data of the same type, precision, and shape.
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides the following forms of convolution/correlation execution routines:
- General form executors that use the task descriptor created by the general form constructor and expect to get two source data arrays \(x\) and \(y\) on input
- X-form executors that use the task descriptor created by the X-form constructor and expect to get only one source data array \(y\) on input because the first array \(x\) has been already specified on the construction stage
When the task is executed for the first time, the execution routine includes a task commitment operation, which involves two basic steps: parameters consistency check and preparation of auxiliary data (for example, this might be the calculation of Fourier transform for input data).
Each execution routine has an associated one-dimensional version that provides algorithmic and computational benefits.

\section*{NOTE}

You can use the NULL task pointer in calls to execution routines. In this case, the routine is terminated and no system crash occurs.

If the task is executed successfully, the execution routine returns the zero status code. If an error is detected, the execution routine returns an error code which signals that a specific error has occurred. In particular, an error status code is returned in the following cases:
- if the task pointer is NULL
- if the task descriptor is corrupted
- if calculation has failed for some other reason.

\section*{NOTE}

Intel \({ }^{\circledR}\) MKL does not control floating-point errors, like overflow or gradual underflow, or operations with NaNs, etc.

If an error occurs, the task descriptor stores the error code.
The table below lists all task execution routines.

\section*{Task Execution Routines}

\section*{Routine Description}
vslConvExec/vslCorrExec
vslConvExec1D/vslCorrExec1D
vslConvExecX/vslCorrExecX
vslConvExecX1D/vslCorrExecX1D

Computes convolution or correlation for a multidimensional case.
Computes convolution or correlation for a one-dimensional case.
Computes convolution or correlation as X-form for a multidimensional case.

Computes convolution or correlation as X-form for a onedimensional case.

\section*{vslConvExec/vslCorrExec \\ Computes convolution or correlation for multidimensional case.}

\section*{Syntax}
```

status = vslsConvExec(task, x, xstride, y, ystride, z, zstride);
status = vsldConvExec(task, x, xstride, y, ystride, z, zstride);
status = vslcConvExec(task, x, xstride, y, ystride, z, zstride);
status = vslzConvExec(task, x, xstride, y, ystride, z, zstride);
status = vslsCorrExec(task, x, xstride, y, ystride, z, zstride);
status = vsldCorrExec(task, x, xstride, y, ystride, z, zstride);
status = vslcCorrExec(task, x, xstride, y, ystride, z, zstride);
status = vslzCorrExec(task, x, xstride, y, ystride, z, zstride);

```

Include Files
- mkl.h

Input Parameters
```

Name Type Description
task
X,Y
const float[] for
vslsConvExec and
vslsCorrExec,
const double[] for
vsldConvExec and
vsldCorrExec,
const MKL_Complex8[] for
vslcConvExec and
vslcCorrExec,
const MKL_Complex16[] for
vslzConvExec and
vslzCorrExec

```
xstride, const int[]
ystride,
zstride

Strides for input and output data. For more information, see stride parameters.

\section*{Output Parameters}
```

Name Type
z
status int

```

\section*{Description}

Pointer to the array that stores output data. See Data Allocation for more information.

Set to VSL_STATUS_OK if the task is executed successfully or set to non-zero error code otherwise.

\section*{Description}

Each of the vslConvExec/vslCorrExec routines computes convolution or correlation of the data provided by the arrays \(x\) and \(y\) and then stores the results in the array \(z\). Parameters of the operation are read from the task descriptor created previously by a corresponding vslConvNewTask/vslCorrNewTask constructor and pointed to by task. If task is NULL, no operation is done.

The stride parameters xstride, ystride, and zstride specify the physical location of the input and output data in the arrays \(x, y\), and \(z\), respectively. In a one-dimensional case, stride is an interval between locations of consecutive elements of the array. For example, if the value of the parameter zstride is \(s\), then only every \(s^{\text {th }}\) element of the array \(z\) will be used to store the output data. The stride value must be positive or negative but not zero.

\section*{vslConvExec1D/vsICorrExec1D}

Computes convolution or correlation for onedimensional case.

\section*{Syntax}
```

status = vslsConvExeclD(task, x, xstride, y, ystride, z, zstride);
status = vsldConvExeclD(task, x, xstride, y, ystride, z, zstride);
status = vslcConvExeclD(task, x, xstride, y, ystride, z, zstride);
status = vslzConvExeclD(task, x, xstride, y, ystride, z, zstride);
status = vslsCorrExeclD(task, x, xstride, y, ystride, z, zstride);
status = vsldCorrExeclD(task, x, xstride, y, ystride, z, zstride);
status = vslcCorrExeclD(task, x, xstride, y, ystride, z, zstride);
status = vslzCorrExeclD(task, x, xstride, y, ystride, z, zstride);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
```

Name
task
x, y
xstride,
ystride,
zstride

```

\section*{Output Parameters}
```

Name Type
z
const float[] for
vslsConvExec1D and
vslsCorrExec1D,
const double[] for
vsldConvExec1D and
vsldCorrExec1D,
const MKL_Complex8[] for
vslcConvExec1D and
vslcCorrExec1D,
const MKL_Complex16[] for
vslzConvExec1D and
vslzCorrExec1D

```

\section*{Description}

Pointer to the task descriptor.

Pointers to arrays containing input data. See Data Allocation for more information.

Strides for input and output data. For more information, see stride parameters.

\section*{Description}

Pointer to the array that stores output data. See Data Allocation for more information.
\begin{tabular}{ll}
Name & Type \\
status & int
\end{tabular}

\section*{Description}

Set to VSL_STATUS_OK if the task is executed successfully or set to non-zero error code otherwise.

\section*{Description}

Each of the vslConvExec1D/vslCorrExec1D routines computes convolution or correlation of the data provided by the arrays \(x\) and \(y\) and then stores the results in the array \(z\). These routines represent a special one-dimensional version of the operation, assuming that the value of the parameter dims is 1 . Using this version of execution routines can help speed up performance in case of one-dimensional data.

Parameters of the operation are read from the task descriptor created previously by a corresponding vslConvNewTask1D/vslCorrNewTask1D constructor and pointed to by task. If task is NULL, no operation is done.

\section*{vslConvExecX/vslCorrExecX}

Computes convolution or correlation for multidimensional case with the fixed first operand vector.

\section*{Syntax}
```

status = vslsConvExecX(task, y, ystride, z, zstride);
status = vsldConvExecX(task, y, ystride, z, zstride);
status = vslcConvExecX(task, y, ystride, z, zstride);
status = vslzConvExecX(task, y, ystride, z, zstride);
status = vslsCorrExecX(task, y, ystride, z, zstride);
status = vslcCorrExecX(task, y, ystride, z, zstride);
status = vslzCorrExecX(task, y, ystride, z, zstride);
status = vsldCorrExecX(task, y, ystride, z, zstride);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}

\section*{Name Type}
```

task VSLConvTaskPtr for
vslsConvExecX,
vsldConvExecX,
vslcConvExecX,
vslzConvExecX
VSLCorrTaskPtr for
vslsCorrExecX,
vsldCorrExecX,
vslcCorrExecX,
vslzCorrExecX

```
```

vslzCorrExecX

```

\section*{Description}

Pointer to the task descriptor.
```

Name Type
x ,y
const float[] for
vslsConvExecX and
vslsCorrExecX,
const double[] for
vsldConvExecX and
vsldCorrExecX,
const MKL_Complex8[] for
vslcConvExecX and
vslcCorrExecX,
const MKL_Complex16[] for
vslzConvExecX and
vslzCorrExecX
ystride ,z const int[]
stride

```

\section*{Output Parameters}

\section*{Name Type}
```

z

```
status
const float[] for vslsConvExecX and vslsCorrExecX, const double[] for vsldConvExecX and vsldCorrExecX, const MKL_Complex8[] for vslcConvExecX and vslcCorrExecX, const MKL_Complex16[] for vslzConvExecX and vslzCorrExecX
int

\section*{Description}

Pointer to array containing input data (for the second operand vector). See Data Allocation for more information.

Strides for input and output data. For more information, see stride parameters.

\section*{Description}

Pointer to the array that stores output data. See Data Allocation for more information.

Set to VSL_STATUS_OK if the task is executed successfully or set to non-zero error code otherwise.

\section*{Description}

Each of the vslConvExecX/vslCorrExecX routines computes convolution or correlation of the data provided by the arrays \(x\) and \(y\) and then stores the results in the array \(z\). These routines represent a special version of the operation, which assumes that the first operand vector was set on the task construction stage and the task object keeps the pointer to the array \(x\).

Parameters of the operation are read from the task descriptor created previously by a corresponding vslConvNewTaskX/vslCorrNewTaskX constructor and pointed to by task. If task is NULL, no operation is done.

Using this form of execution routines is recommended when you need to compute multiple convolutions or correlations with the same data vector in array \(x\) against different vectors in array \(y\). This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.

\section*{vsIConvExecX1D/vsICorrExecX1D}

Computes convolution or correlation for onedimensional case with the fixed first operand vector.

\section*{Syntax}
```

status = vslsConvExecX1D(task, y, ystride, z, zstride);
status = vsldConvExecX1D(task, y, ystride, z, zstride);
status = vslcConvExecX1D(task, y, ystride, z, zstride);
status = vslzConvExecX1D(task, y, ystride, z, zstride);
status = vslsCorrExecX1D(task, y, ystride, z, zstride);
status = vslcCorrExecX1D(task, y, ystride, z, zstride);
status = vslzCorrExecX1D(task, y, ystride, z, zstride);
status = vsldCorrExecX1D(task, y, ystride, z, zstride);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
```

Name Type
task
vSLConvTaskPtr for
vslsConvExecX1D,
vsldConvExecX1D,
vslcConvExecX1D,
vslzConvExecX1D
vSLCorrTaskPtr for
vslsCorrExecX1D,
vsldCorrExecX1D,
vslcCorrExecX1D,
vslzCorrExecX1D
x,y const float[] for
vslsConvExecX1D and
vslsCorrExecX1D,
const double[] for
vsldConvExecX1D and
vsldCorrExecX1D,
const MKL_Complex8[] for
vslcConvExecX1D and
vslcCorrExecX1D,

```
```

Name Type
const MKL_Complex16[] for
vslzConvExecX1D and
vslzCorrExecX1D
ystride, const MKL_INT
zstride

```

\section*{Output Parameters}
```

Name Type
z const float[] for
vslsConvExecX1D and
vslsCorrExecX1D,
const double[] for
vsldConvExecX1D and
vsldCorrExecX1D,
const MKL_Complex8[] for
vslcConvExecX1D and
vslcCorrExecX1D,
const MKL_Complex16[] for
vslzConvExecX1D and
vslzCorrExecX1D
status int

```

\section*{Description}

Strides for input and output data. For more information, see stride parameters.

\section*{Description}

Pointer to the array that stores output data. See Data Allocation for more information.

Set to VSL_STATUS_OK if the task is executed successfully or set to non-zero error code otherwise.

\section*{Description}

Each of the vslConvExecX1D/vslCorrExecX1D routines computes convolution or correlation of onedimensional (assuming that dims \(=1\)) data provided by the arrays \(x\) and \(y\) and then stores the results in the array \(z\). These routines represent a special version of the operation, which expects that the first operand vector was set on the task construction stage.
Parameters of the operation are read from the task descriptor created previously by a corresponding vslConvNewTaskX1D/vslCorrNewTaskX1D constructor and pointed to by task. If task is NULL, no operation is done.

Using this form of execution routines is recommended when you need to compute multiple one-dimensional convolutions or correlations with the same data vector in array \(x\) against different vectors in array \(y\). This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.

\section*{Convolution and Correlation Task Destructors}

Task destructors are routines designed for deleting task objects and deallocating memory.
vslConvDeleteTask/vslCorrDeleteTask
Destroys the task object and frees the memory.

\section*{Syntax}
```

errcode = vslConvDeleteTask(task);

```
```

errcode = vslCorrDeleteTask(task);

```

Include Files
- mkl.h

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
task & VSLConvTaskPtr* for & Pointer to the task descriptor. \\
& vslConvDeleteTask \\
& VSLCorrTaskPtr* for \\
vslCorrDeleteTask
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
errcode & int & Contains 0 if the task object is deleted successfully. \\
& & Contains an error code if an error occurred.
\end{tabular}

\section*{Description}

The vslConvDeleteTask/vslCorrvDeleteTask routine deletes the task descriptor object and frees any working memory and the memory allocated for the data structure. The task pointer is set to NULL.

Note that if the vslConvDeleteTask/vslCorrvDeleteTask routine does not delete the task successfully, the routine returns an error code. This error code has no relation to the task status code and does not change it.

\section*{NOTE}

You can use the nuLl task pointer in calls to destructor routines. In this case, the routine terminates with no system crash.

\section*{Convolution and Correlation Task Copiers}

The routines are designed for copying convolution and correlation task descriptors.
vsIConvCopyTask/vsICorrCopyTask
Copies a descriptor for convolution or correlation task.
Syntax
status = vslConvCopyTask(newtask, srctask);
status = vslCorrCopyTask(newtask, srctask);

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
srctask & \begin{tabular}{l}
const VSLConvTaskPtr for \\
vslConvCopyTask
\end{tabular} & Pointer to the source task descriptor. \\
& \begin{tabular}{l}
const VSLCorrTaskPtr for \\
vslCorrCopyTask
\end{tabular} &
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
newtask & \begin{tabular}{l}
VSLConvTaskPtr* for \\
vslConvCopyTask
\end{tabular} & Pointer to the new task descriptor. \\
& \begin{tabular}{l}
VSLCorrTaskPtr* for \\
vslCorrCopyTask
\end{tabular} & \\
status & int & Current status of the source task.
\end{tabular}

\section*{Description}

If a task object srctask already exists, you can use an appropriate vslConvCopyTask/vslCorrCopyTask routine to make its copy in newtask. After the copy operation, both source and new task objects will become committed (see Introduction to Convolution and Correlation for information about task commitment). If the source task was not previously committed, the commitment operation for this task is implicitly invoked before copying starts. If an error occurs during source task commitment, the task stores the error code in the status field. If an error occurs during copy operation, the routine returns a NULL pointer instead of a reference to a new task object.

\section*{Convolution and Correlation Usage Examples}

This section demonstrates how you can use the Intel oneAPI Math Kernel Library (oneMKL) routines to perform some common convolution and correlation operations both for single-threaded and multithreaded calculations. The following two sample functionsscond1 and sconf1 simulate the convolution and correlation functions SCOND and SCONF found in IBM ESSL* library. The functions assume single-threaded calculations and can be used with C or C++ compilers.

\section*{Function scond1 for Single-Threaded Calculations}
```

\#include "mkl_vsl.h"
int scondl(
float h[], int inch,
float x[], int incx,
float y[], int incy,
int nh, int nx, int iy0, int ny)
{
int status;
VSLConvTaskPtr task;
vslsConvNewTask1D(\&task,VSL_CONV_MODE_DIRECT,nh,nx,ny);
vslConvSetStart(task, \&iy0);
status = vslsConvExec1D(task, h,inch, x,incx, y,incy);
vslConvDeleteTask(\&task);
return status;
}

```

\section*{Function sconf1 for Single-Threaded Calculations}
```

\#include "mkl_vsl.h"
int sconf1(
int init,
float h[], int inc1h,
float x[], int inc1x, int inc2x,
float y[], int inc1y, int inc2y,
int nh, int nx, int m, int iy0, int ny,
void* aux1, int naux1, void* aux2, int naux2)
{
int status;
/* assume that aux1!=0 and naux1 is big enough */
VSLConvTaskPtr* task = (VSLConvTaskPtr*)aux1;
if (init != 0)
/* initialization: */
status = vslsConvNewTaskX1D(task,VSL_CONV_MODE_FFT,
nh,nx,ny, h,inc1h);
if (init == 0) {
/* calculations: */
int i;
vslConvSetStart(*task, \&iy0);
for (i=0; i<m; i++) {
float* xi = \&x[inc2x * i];
float* yi = \&y[inc2y * i];
/* task is implicitly committed at i==0 */
status = vslsConvExecX1D(*task, xi, inclx, yi, incly);
};
};
vslConvDeleteTask(task) ;
return status;
}

```

\section*{Using Multiple Threads}

For functions such as sconf1 described in the previous example, parallel calculations may be more preferable instead of cycling. If \(m>1\), you can use multiple threads for invoking the task execution against different data sequences. For such cases, use task copy routines to create m copies of the task object before the calculations stage and then run these copies with different threads. Ensure that you make all necessary parameter adjustments for the task (using Task Editors) before copying it.
The sample code in this case may look as follows:
```

if (init == 0) {
int i, status, ss[M];
VSLConvTaskPtr tasks[M] ;
/* assume that M is big enough */
. . .
vslConvSetStart(*task, \&iy0);
for (i=0; i<m; i++)
/* implicit commitment at i==0 */
vslConvCopyTask(\&tasks[i],*task);

```
 . . .

Then, \(m\) threads may be started to execute different copies of the task:
```

    float* xi = &x[inc2x * i];
    float* yi = &y[inc2y * i];
    ss[i]=vslsConvExecX1D(tasks[i], xi,inc1x, yi,inc1y);
    ```

And finally, after all threads have finished the calculations, overall status should be collected from all task objects. The following code signals the first error found, if any:
```

    for (i=0; i<m; i++) {
        status = ss[i];
        if (status != 0) /* O means "OK" */
        break;
    };
    return status;
    }; /* end if init==0 */

```

Execution routines modify the task internal state (fields of the task structure). Such modifications may conflict with each other if different threads work with the same task object simultaneously. That is why different threads must use different copies of the task.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Convolution and Correlation Mathematical Notation and Definitions}

The following notation is necessary to explain the underlying mathematical definitions used in the text:
\begin{tabular}{|l|l|}
\hline \(\mathbf{R}=(-\infty,+\infty)\) & The set of real numbers. \\
\hline \(\mathbf{Z}=\{0, \pm 1, \pm 2, \ldots\}\) & The set of integer numbers. \\
\hline \(\mathbf{Z}^{\mathrm{N}}=\mathbf{Z} \times \ldots \times \mathbf{Z}\) & The set of N -dimensional series of integer numbers. \\
\hline\(p=\left(p_{1}, \ldots, p_{\mathrm{N}}\right) \in \mathbf{Z}^{\mathrm{N}}\) & N-dimensional series of integers. \\
\hline\(u: \mathbf{Z}^{\mathrm{N}} \rightarrow \mathbf{R}\) & Function \(u\) with arguments from \(\mathbf{Z}^{\mathrm{N}}\) and values from \(\mathbf{R}\). \\
\hline\(u(p)=u\left(p_{1}, \ldots, p_{\mathrm{N}}\right)\) & The value of the function \(u\) for the argument \(\left(p_{1}, \ldots, p_{\mathrm{N}}\right)\). \\
\hline\(w=u^{*} v\) & Function \(w\) is the convolution of the functions \(u, v\). \\
\hline\(w=u \bullet v\) & Function \(w\) is the correlation of the functions \(u, v\). \\
\hline
\end{tabular}

Given series \(p, q \in \mathbf{Z}^{\mathrm{N}}\) :
- series \(r=p+q\) is defined as \(r^{n}=p^{n}+q^{n}\) for every \(n=1, \ldots, N\)
- series \(r=p-q\) is defined as \(r^{n}=p^{n}-q^{n}\) for every \(n=1, \ldots, N\)
- series \(r=\sup \{p, q\}\) is defines as \(r^{n}=\max \left\{p^{n}, q^{n}\right\}\) for every \(n=1, \ldots, N\)
- series \(r=\inf \{p, q\}\) is defined as \(r^{n}=\min \left\{p^{n}, q^{n}\right\}\) for every \(n=1, \ldots, N\)
- inequality \(p \leq q\) means that \(p^{n} \leq q^{n}\) for every \(n=1, \ldots, N\).

A function \(u(p)\) is called a finite function if there exist series \(P^{m i n}, P^{m a x} \in \mathbf{Z}^{N}\) such that:
```

u(p)

$$
\neq 0
$$

```

\section*{implies}
```

P}\mp@subsup{}{}{min}\leqp\leq P Pmax

```

Operations of convolution and correlation are only defined for finite functions.
Consider functions \(u, v\) and series \(\mathrm{P}^{\mathrm{min}}, \mathrm{P}^{\max } \mathrm{Q}^{\min }, \mathrm{Q}^{\max } \in \mathbf{Z}^{\mathrm{N}}\) such that:
\(u(p) \neq 0\) implies \(P^{m i n} \leq p \leq P^{m a x}\).
\(v(q) \neq 0\) implies \(Q^{m i n} \leq q \leq Q^{\max }\).
Definitions of linear correlation and linear convolution for functions \(u\) and \(v\) are given below.

\section*{Linear Convolution}

If function \(w=u^{*} v\) is the convolution of \(u\) and \(v\), then:
\(w(r) \neq 0\) implies \(\mathbf{R}^{\text {min }} \leq r \leq \mathbf{R}^{\text {max }}\), where \(\mathbf{R}^{\min }=\mathrm{P}^{\min }+\mathrm{Q}^{\min }\) and \(\mathrm{R}^{\max }=\mathrm{P}^{\max }+\mathrm{Q}^{\max }\).
If \(\mathbf{R}^{\text {min }} \leq r \leq \mathbf{R}^{\text {max }}\), then:
\(w(r)=\sum u(t) \cdot v(r-t)\) is the sum for all \(t \in \mathbf{Z}^{N}\) such that \(\mathbf{T}^{\text {min }} \leq t \leq \mathbf{T}^{\text {max }}\),
where \(\mathbf{T}^{\min }=\sup \left\{P^{\min }, r-Q^{\max }\right\}\) and \(\mathbf{T}^{\max }=\inf \left\{P^{\max }, r-Q^{\min }\right\}\).

\section*{Linear Correlation}

If function \(w=u \cdot v\) is the correlation of \(u\) and \(v\), then:
```

w(r) f 0 implies R R
where R }\mp@subsup{\mathbf{R}}{}{min}=\mp@subsup{Q}{}{min}-\mp@subsup{P}{}{max}\mathrm{ and }\mp@subsup{\mathbf{R}}{}{max}=\mp@subsup{Q}{}{max}-\mp@subsup{P}{}{min}\mathrm{ .
If R}\mp@subsup{\boldsymbol{R}}{}{\textrm{min}}\leqr\leq\mp@subsup{\mathbb{R}}{}{\mathrm{ max }}\mathrm{ , then:
w(r) = \sumu(t)\cdotv(r+t) is the sum for all t\in\mp@subsup{\mathbf{Z}}{}{\mathbb{N}}\mathrm{ such that T TMin}\leqt\leq\mp@subsup{\mathbf{T}}{}{max},
where }\mp@subsup{T}{}{min}=\operatorname{sup}{\mp@subsup{P}{}{min},\mp@subsup{Q}{}{min}-r} and \mp@subsup{T}{}{max}=\operatorname{inf{}{\mp@subsup{P}{}{max},\mp@subsup{Q}{}{max}-r}

```

Representation of the functions \(u, v\), was the input/output data for the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) convolution and correlation functions is described in theData Allocation.

\section*{Convolution and Correlation Data Allocation}

This section explains the relation between:
- mathematical finite functions \(u, v, w\) introduced in Mathematical Notation and Definitions;
- multi-dimensional input and output data vectors representing the functions \(u, v, w\);
- arrays \(u, v, w\) used to store the input and output data vectors in computer memory

The convolution and correlation routine parameters that determine the allocation of input and output data are the following:
- Data arrays \(x, y, z\)
- Shape arrays xshape, yshape, zshape
- Strides within arrays xstride, ystride, zstride
- Parameters start, decimation

\section*{Finite Functions and Data Vectors}

The finite functions \(u(p), v(q)\), and \(w(r)\) introduced above are represented as multi-dimensional vectors of input and output data:
```

inputu(in},···,\mp@subsup{i}{\mathrm{ dims }}{})\mathrm{ for u(p
inputv(j}\mp@subsup{j}{1}{},···,\mp@subsup{j}{\mathrm{ dims }}{})\mathrm{ for v(q}\mp@subsup{q}{1}{},···,\mp@subsup{q}{N}{}
output(k

```

Parameter dims represents the number of dimensions and is equal to N .
The parameters xshape, yshape, and zshape define the shapes of input/output vectors:
inputu (\(i_{1}, \ldots, i_{\text {dims }}\)) is defined if \(1 \leq i_{n} \leq x \operatorname{shape}(n)\) for every \(n=1, \ldots\), dims
inputv (\(j_{1}, \ldots, j_{\text {dims }}\)) is defined if \(1 \leq j_{n} \leq y \operatorname{shape}(n)\) for every \(n=1, \ldots\), dims
output (\(k_{1}, \ldots, k_{\text {dims }}\)) is defined if \(1 \leq k_{n} \leq \operatorname{zshape}(n)\) for every \(n=1, \ldots\), dims.
Relation between the input vectors and the functions \(u\) and \(v\) is defined by the following formulas:
inputu \(\left(i_{1}, \ldots, i_{\text {dims }}\right)=u\left(p_{1}, \ldots, p_{N}\right)\), where \(p_{n}=P_{n}{ }^{\text {min }}+\left(i_{n}-1\right)\) for every \(n\)
inputv \(\left(j_{1}, \ldots, j_{\text {dims }}\right)=v\left(q_{1}, \ldots, q_{N}\right)\), where \(q_{n}=Q_{n}{ }^{\text {min }}+\left(j_{n}-1\right)\) for every \(n\).
The relation between the output vector and the function \(w(r)\) is similar (but only in the case when parameters start and decimation are not defined):
output \(\left(k_{1}, \ldots, k_{\text {dims }}\right)=w\left(r_{1}, \ldots, r_{N}\right)\), where \(r_{n}=R_{n}{ }^{\text {min }}+\left(k_{n}-1\right)\) for every \(n\).
If the parameter start is defined, it must belong to the interval \(R_{n}{ }^{m i n} \leq s t a r t(n) \leq R_{n}{ }^{\text {max }}\). If defined, the start parameter replaces \(\mathrm{R}^{\mathrm{min}}\) in the formula:
output \(\left(k_{1}, \ldots, k_{\text {dims }}\right)=\mathrm{w}\left(r_{1}, \ldots, r_{N}\right)\), where \(r_{n}=\operatorname{start}(n)+\left(k_{n}-1\right)\)
If the parameter decimation is defined, it changes the relation according to the following formula:
output \(\left(k_{1}, \ldots, k_{\text {dims }}\right)=w\left(r_{1}, \ldots, r_{N}\right)\), where \(r_{n}=R_{n}{ }^{\text {min }}+\left(k_{n}-1\right)\) *decimation \((n)\)

If both parameters start and decimation are defined, the formula is as follows:
```

output( }\mp@subsup{k}{1}{},···,\mp@subsup{k}{\mathrm{ dims }}{})=\textrm{w}(\mp@subsup{r}{1}{},···,\mp@subsup{r}{N}{}),\mathrm{ where rn}\mp@subsup{r}{n}{}=\operatorname{start}(n)+(\mp@subsup{k}{n}{}-1)*decimation(n

```

The convolution and correlation software checks the values of zshape, start, and decimation during task commitment. If \(r_{n}\) exceeds \(R_{n}{ }^{\text {max }}\) for some \(k_{n}, n=1, \ldots\), dims, an error is raised.

\section*{Allocation of Data Vectors}

Both parameter arrays \(x\) and \(y\) contain input data vectors in memory, while array \(z\) is intended for storing output data vector. To access the memory, the convolution and correlation software uses only pointers to these arrays and ignores the array shapes.
For parameters \(x, y\), and \(z\), you can provide one-dimensional arrays with the requirement that actual length of these arrays be sufficient to store the data vectors.

The allocation of the input and output data inside the arrays \(x, y\), and \(z\) is described below assuming that the arrays are one-dimensional. Given multi-dimensional indices \(i, j, k \in \mathbf{Z}^{\mathrm{N}}\), one-dimensional indices \(e, f, g \in \mathbf{Z}\) are defined such that:
```

inputu(i
inputv(j\mp@subsup{j}{1}{},..,jdims) is allocated at y(f)
output(\mp@subsup{k}{1}{},···.,\mp@subsup{k}{\mathrm{ dims }}{})\mathrm{ is allocated at z(g).}

```

The indices \(e, f\), and \(g\) are defined as follows:
```

e=1 + \sumxstride(n)\cdotdx(n) (the sum is for all n=1,···, ..,dims)
f=1+\sumystride(n)}\cdotdy(n)\mathrm{ (the sum is for all n=1,...,dims)
g=1 + \sumzstride (n)}\cdotdz(n) (the sum is for all n=1,···,dims

```

The distances \(d x(n), d y(n)\), and \(d z(n)\) depend on the signum of the stride:
```

dx(n) = in
dy(n) = j}\mp@subsup{j}{n}{}-1 if ystride(n)>0, or dy(n) = j_ -yshape(n) if ystride(n)<
dz(n) = kn-1 if zstride(n)>0, or dz(n) = kn_zshape(n) if zstride(n)<0

```

The definitions of indices \(e, f\), and \(g\) assume that indexes for arrays \(x, y\), and \(z\) are started from unity:
\(x(e)\) is defined for \(e=1, \ldots\), length (\(x\))
\(y(f)\) is defined for \(f=1, \ldots\) length (\(y\))
\(z(g)\) is defined for \(g=1, \ldots\) length \((z)\)
Below is a detailed explanation about how elements of the multi-dimensional output vector are stored in the array \(z\) for one-dimensional and two-dimensional cases.
One-dimensional case. If dims=1, then zshape is the number of the output values to be stored in the array \(z\). The actual length of array \(z\) may be greater than zshape elements.

If zstride \(>1\), output values are stored with the stride: output (1) is stored to \(z(1)\), output (2) is stored to \(z(1+z s t r i d e)\), and so on. Hence, the actual length of \(z\) must be at least \(1+z s t r i d e *(z s h a p e-1)\) elements or more.

If zstride<0, it still defines the stride between elements of array \(z\). However, the order of the used elements is the opposite. For the \(k\)-th output value, output(k) is stored in \(z(1+\mid\) zstride|* (zshape-k)), where | zstride| is the absolute value of zstride. The actual length of the array \(z\) must be at least \(1+\mid\) zstride| *(zshape - 1) elements.

Two-dimensional case. If \(\operatorname{dims=2,~the~output~data~is~a~two-dimensional~matrix.~The~value~zstride~(1)~}\) defines the stride inside matrix columns, that is, the stride between the output (\(k_{1}, k_{2}\)) and output (\(k_{1}+1\), \(k_{2}\)) for every pair of indices \(k_{1}, k_{2}\). On the other hand, zstride (2) defines the stride between columns, that is, the stride between output (\(k_{1}, k_{2}\)) and output \(\left(k_{1}, k_{2}+1\right)\).

If zstride (2) is greater than zshape (1), this causes sparse allocation of columns. If the value of zstride (2) is smaller than zshape (1), this may result in the transposition of the output matrix. For example, if zshape \(=(2,3)\), you can define zstride \(=(3,1)\) to allocate output values like transposed matrix of the shape \(3 \times 2\).

Whether zstride assumes this kind of transformations or not, you need to ensure that different elements output (\(k_{1}, \ldots, k_{\text {dims }}\)) will be stored in different locations \(z(g)\).

\section*{Summary Statistics}

The Summary Statistics domain provides routines that compute basic statistical estimates for single and double precision multi-dimensional datasets.

The Summary Statistics routines calculate:
- raw and central moments up to the fourth order
- skewness and excess kurtosis (further referred to as kurtosis for brevity)
- variation coefficient
- quantiles and order statistics
- minimum and maximum
- variance-covariance/correlation matrix
- pooled/group variance-covariance matrix and mean
- partial variance-covariance/correlation matrix
- robust estimators for variance-covariance matrix and mean in presence of outliers
- raw/central partial sums up to the fourth order (for brevity referred to as raw/central sums)
- matrix of cross-products and sums of squares (for brevity referred to as cross-product matrix)
- median absolute deviation, mean absolute deviation

The library also contains functions to perform the following tasks:
- Detect outliers in datasets
- Support missing values in datasets
- Parameterize correlation matrices
- Compute quantiles for streaming data

Mathematical Notation and Definitions defines the supported operations in the Summary Statistics routines.
You can access the Summary Statistics routines through the Fortran 90 and C89 language interfaces. You can use the C89 interface with later versions of the \(\mathrm{C} / \mathrm{C}++\).

The mkl_vsl.h header file is in the \(\$\{M K L\} / i n c l u d e ~ d i r e c t o r y . ~\)
You can find examples that demonstrate calculation of the Summary Statistics estimates in the \$\{MKL\}/ examples/vslc example directory.
The Summary Statistics API is implemented through task objects, or tasks. A task object is a data structure, or a descriptor, holding parameters that determine a specific Summary Statistics operation. For example, such parameters may be precision, dimensions of user data, the matrix of the observations, or shapes of data arrays.

All the Summary Statistics routines process a task object as follows:
1. Create a task.
2. Modify settings of the task parameters.
3. Compute statistical estimates.
4. Destroy the task.

The Summary Statistics functions fall into the following categories:

Task Constructors - routines that create a new task object descriptor and set up most common parameters (dimension, number of observations, and matrix of the observations).
Task Editors - routines that can set or modify some parameter settings in the existing task descriptor.
Task Computation Routine - a routine that computes specified statistical estimates.
Task Destructor - a routine that deletes the task object and frees the memory.
A Summary Statistics task object contains a series of pointers to the input and output data arrays. You can read and modify the datasets and estimates at any time but you should allocate and release memory for such data.
See detailed information on the algorithms, API, and their usage in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Summary Statistics Application Notes [SS Notes].

\section*{Summary Statistics Naming Conventions}

The names of Summary Statistics routines, types, and constants are case-sensitive and can contain lowercase and uppercase characters (vslsSSEditQuantiles).
The names of routines have the following structure:
```

vsl[datatype]SS<base name>

```
where
- vslis a prefix indicating that the routine belongs to Intel® oneAPI Math Kernel Library (oneMKL) Vector Statistics.
- [datatype] specifies the type of the input and/or output data and can be s (single precision real type), d (double precision real type), or i (integer type).
- \(\mathrm{SS} / \mathrm{ss}\) indicates that the routine is intended for calculations of the Summary Statistics estimates.
- <base name> specifies a particular functionality that the routine is designed for, for example, NewTask, Compute, DeleteTask.

\section*{NOTE}

The Summary Statistics routine vslDeleteTask for deletion of the task is independent of the data type and its name omits the [datatype] field.

On 64-bit platforms, routines with the _64 suffix support large data arrays in the LP64 interface library and enable you to mix integer types in one application. For more interface library details, see "Using the ILP64 Interface vs. LP64 Interface" in the developer guide.

\section*{Summary Statistics Data Types}

The Summary Statistics routines use the following data types for calculations:

\section*{Type}
```

VSLSSTaskPtr
double
MKL_INT or long long

```
float Input/output user data in single precision

\section*{Data Object}

Pointer to a Summary Statistics task
Input/output user data in single precision
Input/output user data in double precision
Other data

\section*{NOTE}

The actual size of the generic integer type is platform-specific and can be 32 or 64 bits in length. Before you compile your application, set an appropriate size for integers. See details in the 'Using the ILP64 Interface vs. LP64 Interface' section of the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide.

\section*{Summary Statistics Parameters}

The basic parameters in the task descriptor (addresses of dimensions, number of observations, and datasets) are assigned values when the task editors create or modify the task object. Other parameters are determined by the specific task and changed by the task editors.

\section*{Summary Statistics Task Status and Error Reporting}

The task status is an integer value, which is zero if no error is detected, or a specific non-zero error code otherwise. Negative status values indicate errors, and positive values indicate warnings. An error can be caused by invalid parameter values or a memory allocation failure.

The header files define symbolic names for the status codes. These names are defined as macros via \#define statements.
The header files define the following status codes for the Summary Statistics error codes:

\section*{Summary Statistics Status Codes}
\begin{tabular}{ll}
\hline Status Code & Description \\
\hline VSL_STATUS_OK & Operation is successfully completed. \\
VSL_SS_ERROR_ALLOCATION_FAILURE & Memory allocation has failed. \\
VSL_SS_ERROR_BAD_DIMEN & Dimension value is invalid. \\
VSL_SS_ERROR_BAD_OBSERV_N & \begin{tabular}{l}
Invalid number (zero or negative) of \\
observations was obtained.
\end{tabular} \\
VSL_SS_ERROR_STORAGE_NOT_SUPPORTED & Storage format is not supported. \\
VSL_SS_ERROR_BAD_INDC_ADDR & Array of indices is not defined. \\
VSL_SS_ERROR_BAD_WEIGHTS & Array of weights contains negative values. \\
VSL_SS_ERROR_BAD_MEAN_ADDR & Array of means is not defined. \\
VSL_SS_ERROR_BAD_2R_MOM_ADDR & \begin{tabular}{l}
Array of the second order raw moments is not \\
defined.
\end{tabular} \\
VSL_SS_ERROR_BAD_3R_MOM_ADDR & \begin{tabular}{l}
Array of the third order raw moments is not \\
defined.
\end{tabular} \\
VSL_SS_ERROR_BAD_4R_MOM_ADDR & \begin{tabular}{l}
Array of the fourth order raw moments is not \\
defined.
\end{tabular} \\
VSL_SS_ERROR_BAD_2C_MOM_ADDR & \begin{tabular}{l}
Array of the second order central moments is
\end{tabular} \\
VSL_SS_ERROR_BAD_3C_MOM_ADDR & not defined.
\end{tabular}

\section*{Status Code}
```

VSL_SS_ERROR_BAD_KURTOSIS_ADDR
VSL_SS_ERROR_BAD_SKEWNESS_ADDR
VSL_SS_ERROR_BAD_MIN_ADDR
VSL_SS_ERROR_BAD_MAX_ADDR
VSL_SS_ERROR_BAD_VARIATION_ADDR
VSL_SS_ERROR_BAD_COV_ADDR
VSL_SS_ERROR_BAD_COR_ADDR
VSL_SS_ERROR_BAD_QUANT_ORDER_ADDR
VSL_SS_ERROR_BAD_QUANT_ORDER
VSL_SS_ERROR_BAD_QUANT_ADDR
VSL_SS_ERROR_BAD_ORDER_STATS_ADDR
VSL_SS_ERROR_MOMORDER_NOT_SUPPORTED
VSL_SS_NOT_FULL_RANK_MATRIX
VSL_SS_ERROR_ALL_OBSERVS_OUTLIERS
VSL_SS_ERROR_BAD_ROBUST_COV_ADDR
VSL_SS_ERROR_BAD_ROBUST_MEAN_ADDR
VSL_SS_ERROR_METHOD_NOT_SUPPORTED
VSL_SS_ERROR_NULL_TASK_DESCRIPTOR
VSL_SS_ERROR_BAD_OBSERV_ADDR
VSL_SS_ERROR_BAD_ACCUM_WEIGHT_ADDR
VSL_SS_ERROR_SINGULAR_COV
VSL_SS_ERROR_BAD_POOLED_COV_ADDR
VSL_SS_ERROR_BAD_POOLED_MEAN_ADDR
VSL_SS_ERROR_BAD_GROUP_COV_ADDR
VSL_SS_ERROR_BAD_GROUP_MEAN_ADDR
VSL_SS_ERROR_BAD_GROUP_INDC_ADDR
VSL_SS_ERROR_BAD_GROUP_INDC
VSL_SS_ERROR_BAD_OUTLIERS_PARAMS_ADDR
VSL_SS_ERROR_BAD_OUTLIERS_PARAMS_N_ADDR

```

\section*{Description}

Array of kurtosis values is not defined.
Array of skewness values is not defined.
Array of minimum values is not defined.
Array of maximum values is not defined.
Array of variation coefficients is not defined.
Covariance matrix is not defined.
Correlation matrix is not defined.
Array of quantile orders is not defined.
Quantile order value is invalid.
Array of quantiles is not defined.
Array of order statistics is not defined.
Moment of requested order is not supported.
Correlation matrix is not of full rank.
All observations are outliers. (At least one observation must not be an outlier.)

Robust covariance matrix is not defined.
Array of robust means is not defined.
Requested method is not supported.
Task descriptor is null.
Dataset matrix is not defined.
Pointer to the variable that holds the value of accumulated weight is not defined.

Covariance matrix is singular.
Pooled covariance matrix is not defined.
Array of pooled means is not defined.
Group covariance matrix is not defined.
Array of group means is not defined.
Array of group indices is not defined.
Group indices have improper values.
Array of parameters for the outlier detection algorithm is not defined.

Pointer to size of the parameter array for the outlier detection algorithm is not defined.
\begin{tabular}{ll}
\hline Status Code & Description \\
\hline VSL_SS_ERROR_BAD_OUTLIERS_WEIGHTS_ADDR & \begin{tabular}{l}
Output of the outlier detection algorithm is not \\
defined.
\end{tabular} \\
VSL_SS_ERROR_BAD_ROBUST_COV_PARAMS_ADDR & \begin{tabular}{l}
Array of parameters of the robust covariance \\
estimation algorithm is not defined.
\end{tabular} \\
VSL_SS_ERROR_BAD_ROBUST_COV_PARAMS_N_ADDR & \begin{tabular}{l}
Pointer to the number of parameters of the \\
algorithm for robust covariance is not defined.
\end{tabular} \\
VSL_SS_ERROR_BAD_STORAGE_ADDR & \begin{tabular}{l}
Pointer to the variable that holds the storage
\end{tabular} \\
Vormat is not defined.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Status Code & Description \\
\hline VSL_SS_ERROR_BAD_MI_OUTPUT_PARAMS & Array of output parameters in the Multiple Imputation method is not defined. \\
\hline VSL_SS_ERROR_BAD_MI_PRIOR_N_ADDR & Pointer to the number of prior parameters is not defined. \\
\hline VSL_SS_ERROR_BAD_MI_PRIOR_ADDR & Array of prior parameters is not defined. \\
\hline VSL_SS_ERROR_BAD_MI_MISSING_VALS_N & Invalid number of missing values was obtained. \\
\hline VSL_SS_SEMIDEFINITE_COR & Correlation matrix passed into the parameterization function is semi-definite. \\
\hline VSL_SS_ERROR_BAD_PARAMTR_COR_ADDR & Correlation matrix to be parameterized is not defined. \\
\hline VSL_SS_ERROR_BAD_COR & All eigenvalues of the correlation matrix to be parameterized are non-positive. \\
\hline VSL_SS_ERROR_BAD_STREAM_QUANT_PARAMS_N_ADDR & Pointer to the number of parameters for the quantile computation algorithm for streaming data is not defined. \\
\hline VSL_SS_ERROR_BAD_STREAM_QUANT_PARAMS_ADDR & Array of parameters of the quantile computation algorithm for streaming data is not defined. \\
\hline VSL_SS_ERROR_BAD_STREAM_QUANT_PARAMS_N & Invalid number of parameters of the quantile computation algorithm for streaming data has been obtained. \\
\hline VSL_SS_ERROR_BAD_STREAM_QUANT_PARAMS & Invalid parameters of the quantile computation algorithm for streaming data have been passed. \\
\hline VSL_SS_ERROR_BAD_STREAM_QUANT_ORDER_ADDR & Array of the quantile orders for streaming data is not defined. \\
\hline VSL_SS_ERROR_BAD_STREAM_QUANT_ORDER & Invalid quantile order for streaming data is defined. \\
\hline VSL_SS_ERROR_BAD_STREAM_QUANT_ADDR & Array of quantiles for streaming data is not defined. \\
\hline VSL_SS_ERROR_BAD_SUM_ADDR & Array of sums is not defined. \\
\hline VSL_SS_ERROR_BAD_2R_SUM_ADDR & Array of raw sums of 2 nd order is not defined. \\
\hline VSL_SS_ERROR_BAD_3R_SUM_ADDR & Array of raw sums of 3 rd order is not defined. \\
\hline VSL_SS_ERROR_BAD_4R_SUM_ADDR & Array of raw sums of 4th order is not defined. \\
\hline VSL_SS_ERROR_BAD_2C_SUM_ADDR & Array of central sums of 2 nd order is not defined. \\
\hline VSL_SS_ERROR_BAD_3C_SUM_ADDR & Array of central sums of 3rd order is not defined. \\
\hline VSL_SS_ERROR_BAD_4C_SUM_ADDR & Array of central sums of 4th order is not defined. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Status Code & Description \\
\hline VSL_SS_ERROR_BAD_CP_SUM_ADDR & Cross-product matrix is not defined. \\
VSL_SS_ERROR_BAD_MDAD_ADDR & \begin{tabular}{l}
Array of median absolute deviations is not \\
defined.
\end{tabular} \\
VSL_SS_ERROR_BAD_MNAD_ADDR & \begin{tabular}{l}
Array of mean absolute deviations is not \\
defined.
\end{tabular} \\
VSL_SS_ERROR_BAD_SORTED_OBSERV_ADDR & \begin{tabular}{l}
Array for storing observation sorting results is \\
not defined.
\end{tabular} \\
VSL_SS_ERROR_ERROR_INDICES_NOT_SUPPORTED & Array of indices is not supported.
\end{tabular}

Routines for robust covariance estimation, outlier detection, partial covariance estimation, multiple imputation, and parameterization of a correlation matrix can return internal error codes that are related to a specific implementation. Such error codes indicate invalid input data or other bugs in the Intel® oneAPI Math Kernel Library (oneMKL) routines other than the Summary Statistics routines.

\section*{Summary Statistics Task Constructors}

Task constructors are routines intended for creating a new task descriptor and setting up basic parameters.

\section*{NOTE}

If the constructor fails to create a task descriptor, it returns the NULL task pointer.
```

vsISSNewTask
Creates and initializes a new summary statistics task
descriptor.
Syntax

```
```

status = vslsSSNewTask(\&task, p, n, xstorage, x, w, indices);

```
status = vslsSSNewTask(&task, p, n, xstorage, x, w, indices);
status = vsldSSNewTask(&task, p, n, xstorage, x, w, indices);
```

status = vsldSSNewTask(\&task, p, n, xstorage, x, w, indices);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(p\) & const MKL_INT* & \begin{tabular}{l}
Dimension of the task, number of \\
variables
\end{tabular} \\
\(n\) & const MKL_INT* & Number of observations \\
\(x\) xstorage & const MKL_INT* & Storage format of matrix of observations \\
\(x\) & const float* for vslsSSNewTask & Matrix of observations \\
& const double* for vsldSSNewTask &
\end{tabular}
\begin{tabular}{ll}
Name & Type \\
\(W\) & const float* for vslsSSNewTask \\
& const double* for vsldSSNewTask \\
indices & const MKL_INT*
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
task & VSLSSTaskPtr* \\
status & int
\end{tabular}

Set to VSL_STATUS_OK if the task is created successfully, otherwise a non-zero error code is

\section*{Description}

Array of weights of size \(n\). Elements of the arrays are non-negative numbers. If a NULL pointer is passed, each observation is assigned weight equal to 1 .

Array of vector components that will be processed. Size of array is \(p\). If a NULL pointer is passed, all components of random vector are processed.

\section*{Description}

Descriptor of the task returned.

\section*{Description}

Each vslSSNewTask constructor routine creates a new summary statistics task descriptor with the userspecified value for a required parameter, dimension of the task. The optional parameters (matrix of observations, its storage format, number of observations, weights of observations, and indices of the random vector components) are set to their default values.

The observations of random \(p\)-dimensional vector \(\xi=\left(\xi_{1}, \ldots, \xi_{i}, \ldots, \xi_{p}\right)\), which are \(n\) vectors of dimension \(p\), are passed as a one-dimensional array \(x\). The parameter xstorage defines the storage format of the observations and takes one of the possible values listed in Table "Storage format of matrix of observations and order statistics".

Storage format of matrix of observations, order statistics, and matrix of sorted observations
Parameter Description

VSL_SS_MATRIX_STORAGE_COLS

The observations of random vector \(\xi\) are packed by rows: \(n\) data points for the vector component \(\xi_{1}\) come first, \(n\) data points for the vector component \(\xi_{2}\) come second, and so forth.

The observations of random vector \(\xi\) are packed by columns: the first \(p\)-dimensional observation of the vector \(\xi\) comes first, the second \(p\)-dimensional observation of the vector comes second, and so forth.

\begin{abstract}
A one-dimensional array w of size \(n\) contains non-negative weights assigned to the observations. You can pass a NULL array into the constructor. In this case, each observation is assigned the default value of the weight.
\end{abstract}

You can choose vector components for which you wish to compute statistical estimates. If an element of the vector indices of size \(p\) contains 0 , the observations that correspond to this component are excluded from the calculations. If you pass the NULL value of the parameter into the constructor, statistical estimates for all random variables are computed.
If the constructor fails to create a task descriptor, it returns the NULL task pointer.

\section*{Summary Statistics Task Editors}

Task editors are intended to set up or change the task parameters listed in Table "Parameters of Summary Statistics Task to Be Initialized or Modified". As an example, to compute the sample mean for a onedimensional dataset, initialize a variable for the mean value, and pass its address into the task as shown in the example below:
```

\#define DIM 1
\#define N 1000
int main()
{
VSLSSTaskPtr task;
double x[N];
double mean;
MKL_INT p, n, xstorage;
int status;
/* initialize variables used in the computations of sample mean */
p = DIM;
n = N;
xstorage = VSL_SS_MATRIX_STORAGE_ROWS;
mean = 0.0;
/* create task */
status = vsldSSNewTask( \&task, \&p, \&n, \&xstorage, x, 0, 0 );
/* initialize task parameters */
status = vsldSSEditTask( task, VSL_SS_ED_MEAN, \&mean );
/* compute mean using SS fast method */
status = vsldSSCompute(task, VSL_SS_MEAN, VSL_SS_METHOD_FAST );
/* deallocate task resources */
status = vslSSDeleteTask( \&task );
return 0;
}

```

Use the single (vslsssedittask) or double (vsldssedittask) version of an editor, to initialize single or double precision version task parameters, respectively. Use an integer version of an editor (vslissedittask) to initialize parameters of the integer type.
Table "Summary Statistics Task Editors" lists the task editors for Summary Statistics. Each of them initializes and/or modifies a respective group of related parameters.
Summary Statistics Task Editors
\begin{tabular}{ll}
Editor & Description \\
\hline vslSSEditTask & Changes a pointer in the task descriptor. \\
vslSSEditMoments & \begin{tabular}{l}
Changes pointers to arrays associated with raw and central \\
moments.
\end{tabular} \\
vsISSEditSums & Modifies the pointers to arrays that hold sum estimates. \\
vslSSEditCovCor & \begin{tabular}{l}
Changes pointers to arrays associated with covariance and/or \\
correlation matrices.
\end{tabular} \\
vsISSEditCP & Modifies the pointers to cross-product matrix parameters.
\end{tabular}

\section*{Editor}
vslSSEditPartialCovCor
vslSSEditQuantiles
vslSSEditStreamQuantiles
vslSSEditPooledCovariance
vslSSEditRobustCovariance
vslSSEditOutliersDetection
vslSSEditMissingValues
vslSSEditCorParameterization

\section*{Description}

Changes pointers to arrays associated with partial covariance and/or correlation matrices.

Changes pointers to arrays associated with quantile/order statistics calculations.

Changes pointers to arrays for quantile related calculations for streaming data.

Changes pointers to arrays associated with algorithms related to a pooled covariance matrix.

Changes pointers to arrays for robust estimation of a covariance matrix and mean.

Changes pointers to arrays for detection of outliers.
Changes pointers to arrays associated with the method of supporting missing values in a dataset.

Changes pointers to arrays associated with the algorithm for parameterization of a correlation matrix.

\section*{NOTE}

You can use the NULL task pointer in calls to editor routines. In this case, the routine is terminated and no system crash occurs.

\section*{vsISSEditTask}

Modifies address of an input/output parameter in the task descriptor.

\section*{Syntax}
```

status = vslsSSEditTask(task, parameter, par_addr);
status = vsldSSEditTask(task, parameter, par_addr);
status = vsliSSEditTask(task, parameter, par_addr);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
task & VSLSSTaskPtr \\
parameter & const MKL_INT \\
par_addr & const float* for vslsSSEditTask \\
& const double* for vsldSSEditTask \\
& const MKL_INT* for vsliSSEditTask
\end{tabular}

\section*{Description}

Descriptor of the task
Parameter to change
Address of the new parameter

\section*{Output Parameters}

\section*{Name Type}
status int

\section*{Description}

Current status of the task

\section*{Description}

The vslSSEditTask routine replaces the pointer to the parameter stored in the Summary Statistics task descriptor with the par_addr pointer. If you pass the NULL pointer to the editor, no changes take place in the task and a corresponding error code is returned. See Table "Parameters of Summary Statistics Task to Be Initialized or Modified" for the predefined values of the parameter.

Use the single (vslsssedittask) or double (vsldssedittask) version of the editor, to initialize single or double precision version task parameters, respectively. Use an integer version of the editor
(vslissedittask) to initialize parameters of the integer type.
Parameters of Summary Statistics Task to Be Initialized or Modified
\begin{tabular}{|c|c|c|c|}
\hline Parameter Value & Type & Purpose & Initialization \\
\hline VSL_SS_ED_DIMEN & i & Address of a variable that holds the task dimension & Required. Positive integer value. \\
\hline VSL_SS_ED_OBSERV_N & i & Address of a variable that holds the number of observations & Required. Positive integer value. \\
\hline VSL_SS_ED_OBSERV & d, s & Address of the observation matrix & Required. Provide the matrix containing your observations. \\
\hline VSL_SS_ED_OBSERV_STORAGE & i & Address of a variable that holds the storage format for the observation matrix & Required. Provide a storage format supported by the library whenever you pass a matrix of observations. \({ }^{1}\) \\
\hline VSL_SS_ED_INDC & i & Address of the array of indices & Optional. Provide this array if you need to process individual components of the random vector. Set entry \(i\) of the array to one to include the \(i\) th coordinate in the analysis. Set entry \(i\) of the array to zero to exclude the ith coordinate from the analysis. \\
\hline VSL_SS_ED_WEIGHTS & d, s & Address of the array of observation weights & Optional. If the observations have weights different from the default weight (one), set entries of the array to non-negative floating point values. \\
\hline VSL_SS_ED_MEAN & d, s & Address of the array of means & Optional. Set entries of the array to meaningful values (typically zero) if you intend to compute a progressive estimate. Otherwise, do not initialize the array. \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline Parameter Value & Type & Purpose & Initialization
\end{tabular}
\begin{tabular}{llll}
\hline Parameter Value & Type & Purpose & Initialization
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Parameter Value & Type & Purpose & Initialization \\
\hline VSL_SS_ED_ACCUM_WEIGHT & d, s & Address of the array of size 2 that holds the accumulated weight (sum of weights) in the first position and the sum of weights squared in the second position & Optional. Set the entries of the matrix to meaningful values (typically zero) if you intend to do progressive processing of the dataset or need the sum of weights and sum of squared weights assigned to observations. \\
\hline VSL_SS_ED_QUANT_ORDER_N & i & Address of the variable that holds the number of quantile orders & Required. Positive integer value. Provide the number of quantile orders whenever you compute quantiles. \\
\hline VSL_SS_ED_QUANT_ORDER & d, s & Address of the array of quantile orders & Required. Set entries of array to values from the interval \((0,1)\). Provide this parameter whenever you compute quantiles. \\
\hline VSL_SS_ED_QUANT_QUANTILE S & d, s & Address of the array of quantiles & None. \\
\hline VSL_SS_ED_ORDER_STATS & d, s & Address of the array of order statistics & None. \\
\hline VSL_SS_ED_GROUP_INDC & i & Address of the array of group indices used in computation of a pooled covariance matrix & Required. Set entry \(i\) to integer value \(k\) if the observation belongs to group \(k\). Values of \(k\) take values in the range [\(0, g\)-1], where \(g\) is the number of groups. \\
\hline \[
\begin{aligned}
& \text { VSL_SS_ED_POOLED_COV_STO } \\
& \text { RAGE }
\end{aligned}
\] & i & Address of a variable that holds the storage format for a pooled covariance matrix & Required. Provide a storage format supported by the library whenever you intend to compute pooled covariance. \({ }^{2}\) \\
\hline VSL_SS_ED_POOLED_MEAN & d, s & Address of an array of pooled means & None. \\
\hline VSL_SS_ED_POOLED_COV & d, s & Address of pooled covariance matrices & None. \\
\hline VSL_SS_ED_GROUP_COV_INDC & i & Address of an array of indices for which covariance/means should be computed & Optional. Set the \(k\) th entry of the array to 1 if you need group covariance and mean for group \(k\); otherwise set it to zero. \\
\hline VSL_SS_ED_REQ_GROUP_INDC & i & Address of an array of indices for which group estimates such as covariance or means are requested & Optional. Set the \(k\) th entry of the array to 1 if you need an estimate for group \(k\); otherwise set it to zero. \\
\hline VSL_SS_ED_GROUP_MEANS & i & Address of an array of group means & None. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Parameter Value & Type & Purpose & Initialization \\
\hline ```
VSL_SS_ED_GROUP_COV_STOR
AGE
``` & d, s & Address of a variable that holds the storage format for a group covariance matrix & Required. Provide a storage format supported by the library whenever you intend to get group covariance. \({ }^{2}\) \\
\hline VSL_SS_ED_GROUP_COV & d, s & Address of group covariance matrices & None. \\
\hline \[
\begin{aligned}
& \text { VSL_SS_ED_ROBUST_COV_STO } \\
& \text { RAGE }
\end{aligned}
\] & d, s & Address of a variable that holds the storage format for a robust covariance matrix & Required. Provide a storage format supported by the library whenever you compute robust covariance \({ }^{2}\). \\
\hline \[
\begin{aligned}
& \text { VSL_SS_ED_ROBUST_COV_PAR } \\
& \text { AMS_N }
\end{aligned}
\] & i & Address of a variable that holds the number of algorithmic parameters of the method for robust covariance estimation & Required. Set to the number of TBS parameters,
\[
V S L \_S S \_T B S \_P A R A M S \_N .
\] \\
\hline \[
\begin{aligned}
& \text { VSL_SS_ED_ROBUST_COV_PAR } \\
& \text { AMS }
\end{aligned}
\] & d, s & Address of an array of parameters of the method for robust estimation of a covariance & Required. Set the entries of the array according to the description in vsISSEditRobustCovariance. \\
\hline VSL_SS_ED_ROBUST_MEAN & i & Address of an array of robust means & None. \\
\hline VSL_SS_ED_ROBUST_COV & d, s & Address of a robust covariance matrix & None. \\
\hline VSL_SS_ED_OUTLIERS_PARAM S_N & d, s & Address of a variable that holds the number of parameters of the outlier detection method & Required. Set to the number of outlier detection parameters, VSL_SS_BACON_PARAMS_N. \\
\hline VSL_SS_ED_OUTLIERS_PARAM S & i & Address of an array of algorithmic parameters for the outlier detection method & Required. Set the entries of the array according to the description in vsISSEditOutliersDetection. \\
\hline VSL_SS_ED_OUTLIERS_WEIGH T & d, s & Address of an array of weights assigned to observations by the outlier detection method & None. \\
\hline VSL_SS_ED_ORDER_STATS_ST ORAGE & & Address of a variable that holds the storage format of an order statistics matrix & Required. Provide a storage format supported by the library whenever you compute a matrix of order statistics. \({ }^{1}\) \\
\hline ```
VSL_SS_ED_PARTIAL_COV_ID
X
``` & i & Address of an array that encodes subcomponents of a random vector & Required. Set the entries of the array according to the description in vsISSEditPartialCovCor. \\
\hline VSL_SS_ED_PARTIAL_COV & d, s & Address of a partial covariance matrix & None. \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline Parameter Value & Type & Purpose & Initialization \\
\hline VSL_SS_ED_PARTIAL_COV_ST & i & \begin{tabular}{l}
Address of a variable that \\
holds the storage format of \\
a partial covariance matrix
\end{tabular} & \begin{tabular}{l}
Required. Provide a storage \\
format supported by the library \\
whenever you compute the partial \\
covariance. \({ }^{2}\)
\end{tabular} \\
\hline VSL_SS_ED_PARTIAL_COR & & d, s & \begin{tabular}{l}
Address of a partial \\
correlation matrix
\end{tabular} \\
\hline VSL_SS_ED_PARTIAL_COR_ST & i & \begin{tabular}{l}
Address of a variable that \\
holds the storage format for \\
a partial correlation matrix
\end{tabular} & \begin{tabular}{l}
Required. Provide a storage \\
format supported by the library
\end{tabular} \\
\hline whenever you compute the partial
\end{tabular}
\begin{tabular}{llll}
\hline Parameter Value & Type & Purpose & Initialization \\
\hline & & & \begin{tabular}{l}
Library (oneMKL) Summary \\
Statistics Application Notes \\
document [SS Notes].
\end{tabular} \\
\hline VSL_SS_ED_MI_ESTIMATES & d, s & \begin{tabular}{l}
Address of an array of \\
estimates obtained as a \\
result of the Multiple
\end{tabular} & None. \\
\hline VSL_SS_ED_MI_PRIOR_N & & & \\
& & & \\
Imputation method
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline neter Value & Type & Purrose & Intitiaration \\
\hline \multirow[t]{2}{*}{Victe} & \multirow[t]{2}{*}{4,s} & \multirow[t]{2}{*}{Address of an array of
quantile orders for
streaming data} & \\
\hline & & & \\
\hline & d,s & & None. \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{d,s} & \multirow[t]{3}{*}{Addeses for aray of sums} & Oritonal. Stetenties of \\
\hline & & & comet \\
\hline & & & Poteres \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{d, 8} & \multirow[t]{3}{*}{} & Ootional siterinse the \\
\hline & & & \\
\hline & & & Popeseste esinate orne \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{d,s} & \multirow[t]{3}{*}{\(\pm\)} & \\
\hline & & & \\
\hline & & & do ort intasere the reay \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{d, \({ }^{\text {d }}\)} & \multirow[t]{2}{*}{} & Opional See enties oftere aray \\
\hline & & & zero) if you intend to compute a
progressive estimate. Otherwise \\
\hline \multirow[t]{3}{*}{VsL_Ss} & \multirow[t]{3}{*}{d,s} & \multirow[t]{3}{*}{Address of array of central} & Oftional Stetenties of \\
\hline & & & \\
\hline & & & Popeseste esinate orte \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{d,s} & \multirow[t]{3}{*}{} & \\
\hline & & & \\
\hline & & & donot hintalee the rax, \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{d, ,} & \multirow[t]{3}{*}{Address of array of central
sums of 4th order} & \\
\hline & & & \\
\hline & & & 隹 \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline Parameter Value & Type & Purpose & Initialization \\
\hline VSL_SS_ED_CP & d, s & \begin{tabular}{l}
Address of cross-product \\
matrix
\end{tabular} & \begin{tabular}{l}
Optional. Set entries of the array \\
to meaningful values (typically \\
zero) if you intend to compute a \\
progressive estimate. Otherwise, \\
do not initialize the array.
\end{tabular} \\
\hline VSL_SS_ED_MDAD & d, s & \begin{tabular}{l}
Address of array of median \\
absolute deviations
\end{tabular} & None. \\
\hline VSL_SS_ED_MNAD & d,s & \begin{tabular}{l}
Address of array of mean \\
absolute deviations
\end{tabular} & None. \\
\hline VSL_SS_ED_SORTED_OBSERV & d,s & \begin{tabular}{l}
Address of the array that \\
stores sorted results
\end{tabular} & None. \\
\hline VSL_SS_ED_SORTED_OBSERV_ & i & \begin{tabular}{l}
Address of a variable that \\
holds the storage format of \\
an output matrix
\end{tabular} & \begin{tabular}{l}
Required. Provide a supported \\
storage format whenever you \\
specify sorting of the observation \\
STORAGE
\end{tabular} \\
\hline
\end{tabular}
1. See Table: "Storage format of matrix of observations and order statistics" for storage formats.
2. See Table: "Storage formats of a variance-covariance/correlation matrix" for storage formats.

\section*{vsISSEditMoments}

Modifies the pointers to arrays that hold moment estimates.

\section*{Syntax}
```

status = vslsSSEditMoments(task, mean, r2m, r3m, r4m, c2m, c3m, c4m);
status = vsldSSEditMoments(task, mean, r2m, r3m, r4m, c2m, c3m, c4m);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline task & VSLSSTaskPtr & Descriptor of the task \\
\hline mean & float* for vslsSSEditMoments double* for vsldSSEditMoments & Pointer to the array of means \\
\hline r2m & \begin{tabular}{l}
float* for vslsSSEditMoments \\
double* for vsldSSEditMoments
\end{tabular} & Pointer to the array of raw moments of the \(2^{\text {nd }}\) order \\
\hline r3m & \begin{tabular}{l}
float* for vslsSSEditMoments \\
double* for vsldSSEditMoments
\end{tabular} & Pointer to the array of raw moments of the \(3^{\text {rd }}\) order \\
\hline r 4 m & \begin{tabular}{l}
float* for vslsSSEditMoments \\
double* for vsldSSEditMoments
\end{tabular} & Pointer to the array of raw moments of the \(4^{\text {th }}\) order \\
\hline
\end{tabular}
\begin{tabular}{ll}
Name & Type \\
\(c 2 m\) & float* for vslsSSEditMoments \\
double* for vsldSSEditMoments \\
\(c 3 m\) & float* for vslsSSEditMoments \\
& double* for vsldSSEditMoments \\
& \begin{tabular}{l}
float* for vslsSSEditMoments \\
\end{tabular}
\end{tabular}

\section*{Description}

Pointer to the array of central moments of the \(2^{\text {nd }}\) order

Pointer to the array of central moments of the \(3^{\text {rd }}\) order

Pointer to the array of central moments of the \(4^{\text {th }}\) order

\section*{Output Parameters}

Name
status

Type
int

\section*{Description}

Current status of the task

\section*{Description}

The vslSSEditMoments routine replaces pointers to the arrays that hold estimates of raw and central moments with values passed as corresponding parameters of the routine. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

\section*{vsISSEditSums}

Modifies the pointers to arrays that hold sum estimates.

\section*{Syntax}
```

status = vslsSSEditSums(task, sum, r2s, r3s, r4s, c2s, c3s, c4s);
status = vsldSSEditSums(task, sum, r2s, r3s, r4s, c2s, c3s, c4s);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
task & VSLSSTaskPtr \\
sum & float* for vslsSSEditSums \\
r2s & double* for vsldSSEditSums \\
& float* for vslsSSEditSums \\
r3s & \begin{tabular}{l}
double* for vsldSSEditSums
\end{tabular} \\
r4s fouble* for vsldSSEditSums
\end{tabular}\(\quad\)\begin{tabular}{l}
float* for vslsSSEditSums \\
\end{tabular}

\section*{Description}

Descriptor of the task
Pointer to the array of sums

Pointer to the array of raw sums of the second order

Pointer to the array of raw sums of the third order

Pointer to the array of raw sums of the fourth order
\begin{tabular}{ll}
Name & Type \\
\(c 2 s\) & float* for vslsSSEditSums \\
double* for vsldSSEditSums \\
\(c 3 s\) & float* for vslsSSEditSums \\
double* for vsldSSEditSums \\
\(c 4 s\) & float* for vslsSSEditSums \\
& double* for vsldSSEditSums
\end{tabular}

\section*{Description}

Pointer to the array of central sums of the second order

Pointer to the array of central sums of the third order

Pointer to the array of central sums of the fourth order

\section*{Output Parameters}

Name
status

Type
int

\section*{Description}

Current status of the task

\section*{Description}

The vslSSEditSums routine replaces pointers to the arrays that hold estimates of raw and central sums with values passed as corresponding parameters of the routine. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

\section*{vsISSEditCovCor}

Modifies the pointers to covariance/correlation/cross-
product parameters.

\section*{Syntax}
```

status = vslsSSEditCovCor(task, mean, cov, cov_storage, cor, cor_storage);
status = vsldSSEditCovCor(task, mean, cov, cov_storage, cor, cor_storage);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
task & VSLSSTaskPtr \\
mean & float* for vslsSSEditCovCor \\
Cov & \begin{tabular}{l}
flouble* for vsldSSEditCovCor \\
double* for vsldSSEditCovCor
\end{tabular} \\
Cov_storage & const MKL_INT*
\end{tabular}

\section*{Name}
```

cor_storage

```

\section*{Type}
const MKL_INT*

\section*{Description}

Pointer to the storage format of the correlation matrix

\section*{Description}

Current status of the task

\section*{Description}

The vslSSEditCovCor routine replaces pointers to the array of means, covariance/correlation arrays, and their storage format with values passed as corresponding parameters of the routine. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

The storage parameters, cov_storage and cor_storage, describe the storage format used for the \(p\)-by- \(p\) symmetric variance-covariance/correlation/cross-product matrix \(C\). The matrix \(C\) can be described as
\(C=\left(\begin{array}{cccccc}c_{1,1} & c_{1,2} & \cdots & \cdots & \cdots & c_{1, p} \\ c_{2,1} & c_{2,2} & \cdots & \cdots & \cdots & c_{2, p} \\ \vdots & \vdots & \ddots & & & \vdots \\ \vdots & \vdots & & c_{i, j} & & \vdots \\ \vdots & \vdots & & & \ddots & \vdots \\ c_{p, 1} & c_{p, 2} & \cdots & \cdots & \cdots & c_{p, p}\end{array}\right)\)
Table "Storage formats of a variance-covariance/correlation/cross-product matrix" shows how the matrix is stored in a one-dimensional array cp for different values of the storage parameters.

\section*{Storage formats of variance-covariance/correlation/cross-product matrices}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline \multirow[t]{7}{*}{VSL_SS_MATRIX_STORAGE_FULL} & The array \(c p\) contains all elements of the matrix stored sequentially, row-by-row: \\
\hline & cp [0] contains \(c_{1,1}\) \\
\hline & cp [1] contains \(c_{1,2}\) \\
\hline & \(c p[p-1]\) contains \(c_{1, p}\) \\
\hline & \(c p[p]\) contains \(c_{2,1}\) \\
\hline & \(c p\left[p^{*} p-1\right]\) contains \(c_{p, p}\) \\
\hline & The size of array \(c p\) is \(p^{*} p\). \\
\hline \multirow[t]{6}{*}{VSL_SS_MATRIX_STORAGE_L_PACKED} & The array \(c p\) contains the lower triangular part of the symmetric matrix stored sequentially, row-by-row: \\
\hline & \(c p[0]\) contains \(c_{1,1}\) \\
\hline & cp [1] contains \(c_{2,1}\) \\
\hline & cp [2] contains \(c_{2,2}\) \\
\hline & and so on. \\
\hline & The size of the array is \(p^{*}(p+1) / 2\). \\
\hline VSL_SS_MATRIX_STORAGE_U_PACKED & The array \(c p\) contains the upper triangular part of the symmetric matrix stored sequentially, row-by-row: \\
\hline
\end{tabular}

Parameter

\section*{Description}
\(c p[0]\) contains \(c_{1}, 1\)
\(c p[1]\) contains \(c_{1}, 2\)
\(c p[3]\) contains \(c_{1}, 3\)
and so on.

The size of the array is \(p^{*}(p+1) / 2\).
```

vsISSEditCP
Modifies the pointers to cross-product matrix
parameters.

```

\section*{Syntax}
```

status = vslsSSEditCP(task, mean, sum, cp, cp_storage);

```
status = vslsSSEditCP(task, mean, sum, cp, cp_storage);
status = vsldSSEditCP(task, mean, sum, cp, cp_storage);
```

status = vsldSSEditCP(task, mean, sum, cp, cp_storage);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
task & VSLSSTaskPtr & Descriptor of the task \\
mean & \begin{tabular}{ll}
float* for vslsSSEditCP \\
double* for vsldSSEditCP \\
float* for vslsSSEditCP \\
double* for vsldSSEditCP
\end{tabular} & Pointer to array of means \\
float* for vslsSSEditCP & Pointer to array of sums \\
cparage for vsldSSEditCP & const MKL_INT* & Pointer to a cross-product matrix
\end{tabular}

\section*{Output Parameters}

Name
status

Type
int

\section*{Description}

Current status of the task

\section*{Description}

The vslSSEditCP routine replaces pointers to the array of means, array of sums, cross-product matrix, and its storage format with values passed as corresponding parameters of the routine. See Table: "Storage formats of a variance-covariance/correlation/cross-product matrix" for possible values of the cp_storage parameter. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline VSL_SS_MATRIX_STORAGE_FULL & \begin{tabular}{l}
The array \(c p\) contains all elements of the matrix stored sequentially, row-by-row: \\
```

$c p[0]$ contains $c_{1,1}$ <br>
$c p[1]$ contains $c_{1,2}$ <br>
$c p[p-1]$ contains $c_{1, p}$ <br>
$c p[p]$ contains $c_{2,1}$ <br>
$c p\left[p^{*} p-1\right]$ contains $c_{p, p}$

``` \\
The size of array \(c p\) is \(p^{*} p\).
\end{tabular} \\
\hline VSL_SS_MATRIX_STORAGE_L_PACKED & \begin{tabular}{l}
The array \(c p\) contains the lower triangular part of the symmetric matrix stored sequentially, row-by-row:
```

cp[0] contains c c,1
cp[1] contains c2,1
cp[2] contains c2,2
and so on.

``` \\
The size of the array is \(p^{*}(p+1) / 2\).
\end{tabular} \\
\hline VSL_SS_MATRIX_STORAGE_U_PACKED & \begin{tabular}{l}
The array \(c p\) contains the upper triangular part of the symmetric matrix stored sequentially, row-by-row: \\
\(c p[0]\) contains \(c_{1,1}\) \\
\(c p\) [1] contains \(c_{1,2}\) \\
\(c p\) [3] contains \(c_{1,3}\) \\
and so on. \\
The size of the array is \(p^{*}(p+1) / 2\).
\end{tabular} \\
\hline
\end{tabular}
```

vsISSEditPartialCovCor
Modifies the pointers to partial covariance/correlation
parameters.
Syntax
status = vslsSSEditPartialCovCor(task, p_idx_array, cov, cov_storage, cor, cor_storage,
p_cov, p_cov_storage, p_cor, p_cor_storage);
status = vsldSSEditPartialCovCor(task, p_idx_array, cov, cov_storage, cor, cor_storage,
p_cov, p_cov_storage, p_cor, p_cor_storage);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
task & VSLSSTaskPtr & Descriptor of the task
\end{tabular}

\section*{Output Parameters}

\section*{Name}
status

\section*{Type}
int

\section*{Description}

Pointer to the array that encodes indices of subcomponents \(Z\) and \(Y\) of the random vector as described in section Mathematical Notation and Definitions.
p_idx_array[i] equals to
-1 if the \(i\)-th component of the random vector belongs to \(Z\)

1 , if the \(i\)-th component of the random vector belongs to \(Y\).

Pointer to a covariance matrix

Pointer to the storage format of the covariance matrix

Pointer to a correlation matrix

Pointer to the storage format of the correlation matrix

Pointer to a partial covariance matrix

Pointer to the storage format of the partial covariance matrix

Pointer to a partial correlation matrix

Pointer to the storage format of the partial correlation matrix

\section*{Description}

Current status of the task

\section*{Description}

The vslSSEditPartialCovCor routine replaces pointers to covariance/correlation arrays, partial covariance/ correlation arrays, and their storage format with values passed as corresponding parameters of the routine. See Table "Storage formats of a variance-covariance/correlation matrix" for possible values of the cov_storage, cor_storage, \(p_{-}\)cov_storage, and \(p_{-}\)cor_storage parameters. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.
```

vsISSEditQuantiles
Modifies the pointers to parameters related to quantile
computations.

```
Syntax
status \(=\) vslsSSEditQuantiles(task, quant_order_n, quant_order, quants, order_stats,
order_stats_storage);
status = vsldSSEditQuantiles(task, quant_order_n, quant_order, quants, order_stats,
order_stats_storage);

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
```

Name
task
quant_order_n
quant_order
quants
order_stats
order_stats_storage const MKL_INT*

```

\section*{Name}
```

float* for vslsSSEditQuantiles
double* for vsldSSEditQuantiles
float* for vslsSSEditQuantiles
double* for vsldSSEditQuantiles
const float* for
const double* for
vsldSSEditQuantiles

```

\section*{Type}
VSLSSTaskPtr
Const MKL_INT* vslsSSEditQuantiles

\section*{Description}

Descriptor of the task
Pointer to the number of quantile orders

Pointer to the array of quantile orders

Pointer to the array of quantiles

Pointer to the array of order statistics

Pointer to the storage format of the order statistics array

\section*{Output Parameters}

\section*{Name}
status

\section*{Type}
int

\section*{Description}

Current status of the task

\section*{Description}

The vslSSEditQuantiles routine replaces pointers to the number of quantile orders, the array of quantile orders, the array of quantiles, the array that holds order statistics, and the storage format for the order statistics with values passed into the routine. See Table "Storage format of matrix of observations and order statistics" for possible values of the order_statistics_storage parameter. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.
vsISSEditStreamQuantiles
Modifies the pointers to parameters related to quantile computations for streaming data.

\section*{Syntax}
```

status = vslsSSEditStreamQuantiles(task, quant_order_n, quant_order, quants, nparams,
params);
status = vsldSSEditStreamQuantiles(task, quant_order_n, quant_order, quants, nparams,
params);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
status & int
\end{tabular}

\section*{Description}

Current status of the task

\section*{Description}

The vslSSEditStreamQuantiles routine replaces pointers to the number of quantile orders, the array of quantile orders, the array of quantiles, the number of the algorithm parameters, and the array of the algorithm parameters with values passed into the routine. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.
vsISSEditPooledCovariance
Modifies pooled/group covariance matrix array pointers.
```

Syntax
status = vslsSSEditPooledCovariance(task, grp_indices, pld_mean, pld_cov,
req_grp_indices, grp_means, grp_cov);
status = vsldSSEditPooledCovariance(task, grp_indices, pld_mean, pld_cov,
req_grp_indices, grp_means, grp_cov);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
task & VSLSSTaskPtr \\
grp_indices & const MKL_INT* \\
pld_mean & \begin{tabular}{l}
float* for \\
\\
vslsSSEditPooledCovariance \\
\\
double* for \\
vsldSSEditPooledCovariance
\end{tabular} \\
& \begin{tabular}{l}
float* for \\
vslsSSEditPooledCovariance
\end{tabular} \\
double* for \\
vsldSSEditPooledCovariance
\end{tabular}

Output Parameters

\section*{Name}
status

\section*{Type}
int

\section*{Description}

Descriptor of the task
Pointer to an array of size \(n\). The \(i\)-th element of the array contains the number of the group the observation belongs to.

Pointer to the array of pooled means

Pointer to the array that holds a pooled covariance matrix

Pointer to the array that contains indices of groups for which estimates to return (such as covariance and mean)

Pointer to the array of group means

Pointer to the array that holds group covariance matrices

\section*{Description}

Current status of the task

\section*{Description}

The vslSSEditPooledCovariance routine replaces pointers to the array of group indices, the array of pooled means, the array for a pooled covariance matrix, and pointers to the array of indices of group matrices, the array of group means, and the array for group covariance matrices with values passed in the editors. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.. Use the vslSSEditTask routine to replace the storage format for pooled and group covariance matrices.

\section*{vsISSEditRobustCovariance}

Modifies pointers to arrays related to a robust covariance matrix.

\section*{Syntax}
```

status = vslsSSEditRobustCovariance(task, rcov_storage, nparams, params, rmean, rcov);
status = vsldSSEditRobustCovariance(task, rcov_storage, nparams, params, rmean, rcov);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline task & VSLSSTaskPtr & Descriptor of the task \\
\hline rcov_storage & const MKL_INT* & Pointer to the storage format of a robust covariance matrix \\
\hline nparams & const MKL_INT* & Pointer to the number of method parameters \\
\hline params & ```
const float* for
vslsSSEditRobustCovariance
const double* for
vsldSSEditRobustCovariance
``` & Pointer to the array of method parameters \\
\hline rmean & ```
float* for
vslsSSEditRobustCovariance
double* for
vsldSSEditRobustCovariance
``` & Pointer to the array of robust means \\
\hline rcov & ```
float* for
vslsSSEditRobustCovariance
double* for
vsldSSEditRobustCovariance
``` & Pointer to a robust covariance matrix \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{Name}
status

Type
int

\section*{Description}

Current status of the task

\section*{Description}

The vslSSEditRobustCovariance routine uses values passed as parameters of the routine to replace:
- pointers to covariance matrix storage
- pointers to the number of method parameters and to the array of the method parameters of size nparams
- pointers to the arrays that hold robust means and covariance

See Table "Storage formats of a variance-covariance/correlation matrix" for possible values of the rcov_storage parameter. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides a Translated Biweight S-estimator (TBS) for robust estimation of a variance-covariance matrix and mean [Rocke96]. Use one iteration of the Maronna algorithm with the reweighting step [Maronna02] to compute the initial point of the algorithm. Pack the parameters of the TBS algorithm into the params array and pass them into the editor. Table "Structure of the Array of TBS Parameters" describes the params structure.

\section*{Structure of the Array of TBS Parameters}
\begin{tabular}{lll}
\hline Array Position & \begin{tabular}{l} 
Algorithm \\
Parameter
\end{tabular} & Description \\
\hline 0 & \(\varepsilon\) & \begin{tabular}{l} 
Breakdown point, the number of outliers the algorithm can \\
hold. By default, the value is \((n-p) /(2 n)\).
\end{tabular} \\
1 & \(\alpha\) & \begin{tabular}{l} 
Asymptotic rejection probability, see details in [Rocke96]. By \\
default, the value is 0.001.
\end{tabular} \\
\hline \begin{tabular}{lll} 
Stopping criterion: the algorithm is terminated if weights are \\
changed less than \(\delta\). By default, the value is 0.001.
\end{tabular} \\
max_iter & \begin{tabular}{l} 
Maximum number of iterations. The algorithm terminates after \\
max iter iterations. By default, the value is 10.
\end{tabular} \\
If you set this parameter to zero, the function returns a robust \\
estimate of the variance-covariance matrix computed using \\
the Maronna method [Maronna02] only.
\end{tabular}

The robust estimator of variance-covariance implementation in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) requires that the number of observationsn be greater than twice the number of variables: \(n>2 p\).
See additional details of the algorithm usage model in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Summary Statistics Application Notes document [SS Notes].
vsISSEditOutliersDetection
Modifies array pointers related to multivariate outliers detection.

\section*{Syntax}
```

status = vslsSSEditOutliersDetection(task, nparams, params, w);
status = vsldSSEditOutliersDetection(task, nparams, params, w);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
```

Name
task VSLSSTaskPtr
nparams
params
w
float* for
vslsSSEditOutliersDetection
double* for
vsldSSEditOutliersDetection

```

\section*{Description}

Descriptor of the task
Pointer to the number of method parameters

Pointer to the array of method parameters

Pointer to an array of size \(n\). The array holds the weights of observations to be marked as outliers.

\section*{Description}

Current status of the task

\section*{Description}

The vslSSEditOutliersDetection routine uses the parameters passed to replace
- the pointers to the number of method parameters and to the array of the method parameters of size nparams
- the pointer to the array that holds the calculated weights of the observations

If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides the BACON algorithm ([Billor00]) for the detection of multivariate outliers. Pack the parameters of the BACON algorithm into the params array and pass them into the editor. Table "Structure of the Array of BACON Parameters" describes the params structure.

\section*{Structure of the Array of BACON Parameters}
\begin{tabular}{|c|c|c|}
\hline Array Position & Algorithm Parameter & Description \\
\hline \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{Method to start the algorithm} & The parameter takes one of the following possible values: VSL_SS_METHOD_BACON_MEDIAN_INIT, if the algorithm is started using the median estimate. This is the default value of the parameter. \\
\hline & & VSL_SS_METHOD_BACON_MAHALANOBIS_INIT, if the algorithm is started using the Mahalanobis distances. \\
\hline
\end{tabular}
Algorithm

Method to start the algorithm

The parameter takes one of the following possible values:
VSL_SS_METHOD_BACON_MEDIAN_INIT, if the algorithm is started using the median estimate. This is the default value of the parameter.
is started using the Mahalanobis distances.
\begin{tabular}{lll}
\hline Array Position & \begin{tabular}{l} 
Algorithm \\
Parameter
\end{tabular} & Description \\
\hline 1 & \(\alpha\) & \begin{tabular}{l} 
One-tailed probability that defines the \((1-\alpha)\) quantile of \(\chi^{2}\) \\
distribution with \(p\) degrees of freedom. The recommended \\
value is \(\alpha / \mathrm{n}\), where n is the number of observations. By \\
default, the value is 0.05.
\end{tabular} \\
2 & \(\delta\) & \begin{tabular}{l} 
Stopping criterion; the algorithm is terminated if the size of \\
the basic subset is changed less than \(\delta\). By default, the value is \\
0.005.
\end{tabular} \\
\hline
\end{tabular}

Output of the algorithm is the vector of weights, BaconWeights, such that BaconWeights \((i)=0\) if \(i\)-th observation is detected as an outlier. Otherwise BaconWeights \((i)=w(i)\), where \(w\) is the vector of input weights. If you do not provide the vector of input weights, BaconWeights(i) is set to 1 if the \(i\)-th observation is not detected as an outlier.

See additional details about usage model of the algorithm in the Inteß \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Summary Statistics Application Notes document [SS Notes].

\section*{vsISSEditMissingValues}

Modifies pointers to arrays associated with the method of supporting missing values in a dataset.

\section*{Syntax}
```

status = vslsSSEditMissingValues(task, nparams, params, init_estimates_n,
init_estimates, prior_n, prior, simul_missing_vals_n, simul_missing_vals, estimates_n,
estimates);
status = vsldSSEditMissingValues(task, nparams, params, init_estimates_n,
init_estimates, prior_n, prior, simul_missing_vals_n, simul_missing_vals, estimates_n,
estimates);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
task & VSLSSTaskPtr \\
nparams & const MKL_INT* \\
params & \begin{tabular}{l} 
const float* for \\
\\
\\
vslsSSEditMissingValues \\
const double* for \\
init_estimates_n
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Descriptor of the task
Pointer to the number of method parameters

Pointer to the array of method parameters

Pointer to the number of initial estimates for mean and a variancecovariance matrix
\begin{tabular}{lll} 
Name & Type & \\
init_estimates & const float* for & Description
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
status & int & Current status of the task
\end{tabular}

\section*{Description}

The vslSSEditMissingValues routine uses values passed as parameters of the routine to replace pointers to the number and the array of the method parameters, pointers to the number and the array of initial mean/variance-covariance estimates, the pointer to the number and the array of prior parameters, pointers to the number and the array of simulated missing values, and pointers to the number and the array of the intermediate mean/covariance estimates. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

Before you call the Summary Statistics routines to process missing values, preprocess the dataset and denote missing observations with one of the following predefined constants:
- VSL_SS_SNAN, if the dataset is stored in single precision floating-point arithmetic
- VSL_SS_DNAN, if the dataset is stored in double precision floating-point arithmetic

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides theVSL_SS_METHOD_MI method to support missing values in the dataset based on the Multiple Imputation (MI) approach described in [Schafer97]. The following components support Multiple Imputation:
- Expectation Maximization (EM) algorithm to compute the start point for the Data Augmentation (DA) procedure
- DA function

\section*{NOTE}

The DA component of the MI procedure is simulation-based and uses the VSL_BRNG_MCG59 basic random number generator with predefined seed \(=2^{50}\) and the Gaussian distribution generator (ICDFmethod) available in Intel® oneAPI Math Kernel Library (oneMKL) [Gaussian].

Pack the parameters of the MI algorithm into the params array. Table "Structure of the Array of MI Parameters" describes the params structure.

Structure of the Array of MI Parameters
\begin{tabular}{lll}
\hline Array Position & Algorithm Parameter & Description \\
\hline 0 & em_iter_num & \begin{tabular}{l} 
Maximal number of iterations for the EM algorithm. \\
By default, this value is 50.
\end{tabular} \\
1 & da_iter_num & \begin{tabular}{l} 
Maximal number of iterations for the DA algorithm. \\
By default, this value is 30.
\end{tabular} \\
2 & m & \begin{tabular}{l} 
Stopping criterion for the EM algorithm. The \\
algorithm terminates if the maximal module of the \\
element-wise difference between the previous and \\
current parameter values is less than \(\varepsilon\). By default, \\
this value is 0.001.
\end{tabular} \\
3 & missing_vals_num & Number of sets to impute
\end{tabular}

You can also pass initial estimates into the EM algorithm by packing both the vector of means and the variance-covariance matrix as a one-dimensional array init_estimates. The size of the array should be at least \(p+p(p+1) / 2\). For \(i=0, . ., p-1\), the init_estimates[ \(i]\) array contains the initial estimate of means. The remaining positions of the array are occupied by the upper triangular part of the variance-covariance matrix.

If you provide no initial estimates for the EM algorithm, the editor uses the default values, that is, the vector of zero means and the unitary matrix as a variance-covariance matrix. You can also pass prior parameters for \(\mu\) and \(\Sigma\) into the library: \(\mu_{0}, \tau, m\), and \(\Lambda^{-1}\). Pack these parameters as a one-dimensional array prior with a size of at least
\(\left(p^{2}+3 p+4\right) / 2\).
The storage format is as follows:
- prior [0], ..., prior[p-1] contain the elements of the vector \(\mu_{0}\).
- prior \([p]\) contains the parameter \(\tau\).
- prior \([p+1]\) contains the parameter \(m\).
- The remaining positions are occupied by the upper-triangular part of the inverted matrix \(\Lambda^{-1}\).

If you provide no prior parameters, the editor uses their default values:
- The array of \(p\) zeros is used as \(\mu_{0}\).
- \(\tau\) is set to 0 .
- \(m\) is set to \(p\).
- The zero matrix is used as an initial approximate of \(\Lambda^{-1}\).

The EditMissingValues editor returns \(m\) sets of imputed values and/or a sequence of parameter estimates drawn during the DA procedure.
The editor returns the imputed values as the simul_missing_vals array. The size of the array should be sufficient to hold \(m\) sets each of the missing_vals_num size, that is, at least \(m \star\) missing_vals_num in total. The editor packs the imputed values one by one in the order of their appearance in the matrix of observations.
For example, consider a task of dimension 4. The total number of observations \(n\) is 10 . The second observation vector misses variables 1 and 2 , and the seventh observation vector lacks variable 1 . The number of sets to impute is \(m=2\). Then, simul_missing_vals[0] and simul_missing_vals[1] contains the first and the second points for the second observation vector, and simul_missing_vals[2] holds the first point for the seventh observation. Positions 3, 4, and 5 are formed similarly.

To estimate convergence of the DA algorithm and choose a proper value of the number of DA iterations, request the sequence of parameter estimates that are produced during the DA procedure. The editor returns the sequence of parameters as a single array. The size of the array is
\(m^{\star}\) da_iter_num* \(\left(p+\left(p^{2}+p\right) / 2\right)\)
where
- \(m\) is the number of sets of values to impute.
- da_iter_num is the number of DA iterations.
- The value \(p+\left(p^{2}+p\right) / 2\) determines the size of the memory to hold one set of the parameter estimates.

In each set of the parameters, the vector of means occupies the first \(p\) positions and the remaining \(\left(p^{2}+p\right) / 2\) positions are intended for the upper triangular part of the variance-covariance matrix.
Upon successful generation of \(m\) sets of imputed values, you can place them in cells of the data matrix with missing values and use the Summary Statistics routines to analyze and get estimates for each of the \(m\) complete datasets.

\section*{NOTE}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) implementation of the MI algorithm rewrites cells of the dataset that contain thevSL_SS_SNAN/VSL_SS_DNAN values. If you want to use the Summary Statistics routines to process the data with missing values again, mask the positions of the empty cells.

See additional details of the algorithm usage model in the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Summary Statistics Application Notes document [SS Notes].
vsISSEditCorParameterization
Modifies pointers to arrays related to the algorithm of correlation matrix parameterization.

\section*{Syntax}
status \(=\) vslsSSEditCorParameterization(task, cor, cor_storage, pcor, pcor_storage);
status = vsldSSEditCorParameterization(task, cor, cor_storage, pcor, pcor_storage);

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
```

Name
task
cor
__storage
pcor
por_storage

```

\section*{Name}
task
cor
- corage
pcor

\section*{Type}

VSLSSTaskPtr
const float* for vslsSSEditCorParameterization
const double* for
vsldSSEditCorParameterization
const MKL_INT*
float* for
vslsSSEditCorParameterization
double* for
vsldSSEditCorParameterization
const MKL_INT*

\section*{Description}

Descriptor of the task
Pointer to the correlation matrix

Pointer to the storage format of the correlation matrix

Pointer to the parameterized correlation matrix

Pointer to the storage format of the parameterized correlation matrix

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
status & int
\end{tabular}

\section*{Description}

Current status of the task

\section*{Description}

The vslSSEditCorParameterization routine uses values passed as parameters of the routine to replace pointers to the correlation matrix, pointers to the correlation matrix storage format, a pointer to the parameterized correlation matrix, and a pointer to the parameterized correlation matrix storage format. See Table "Storage formats of a variance-covariance/correlation matrix" for possible values of the cor_storage and pcor_storage parameters. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

\section*{Summary Statistics Task Computation Routines}

Task computation routines calculate statistical estimates on the data provided and parameters held in the task descriptor. After you create the task and initialize its parameters, you can call the computation routines as many times as necessary. Table "Summary Statistics Estimates Obtained with vslSSCompute Routine" lists the respective statistical estimates.

\section*{NOTE}

The Summary Statistics computation routines do not signal floating-point errors, such as overflow or gradual underflow, or operations with NaNs (except for the missing values in the observations).

Summary Statistics Estimates Obtained with vsISSCompute Routine
\begin{tabular}{|c|c|c|}
\hline Estimate & Support of Observations Available in Blocks & Description \\
\hline VSL_SS_MEAN & Yes & Computes the array of means. \\
\hline VSL_SS_SUM & Yes & Computes the array of sums. \\
\hline VSL_SS_2R_MOM & Yes & Computes the array of the \(2^{\text {nd }}\) order raw moments. \\
\hline VSL_SS_2R_SUM & Yes & Computes the array of raw sums of the \(2^{\text {nd }}\) order. \\
\hline VSL_SS_3R_MOM & Yes & Computes the array of the \(3^{\text {rd }}\) order raw moments. \\
\hline VSL_SS_3R_SUM & Yes & Computes the array of raw sums of the \(3^{\text {rd }}\) order. \\
\hline VSL_SS_4R_MOM & Yes & Computes the array of the \(4^{\text {th }}\) order raw moments. \\
\hline VSL_SS_4R_SUM & Yes & Computes the array of raw sums of the \(4^{\text {th }}\) order. \\
\hline VSL_SS_2C_MOM & Yes & Computes the array of the \(2^{\text {nd }}\) order central moments. \\
\hline VSL_SS_2C_SUM & Yes & Computes the array of central sums of the \(2^{\text {nd }}\) order. \\
\hline VSL_SS_3C_MOM & Yes & Computes the array of the \(3^{\text {rd }}\) order central moments. \\
\hline VSL_SS_3C_SUM & Yes & Computes the array of central sums of the \(3^{\text {rd }}\) order. \\
\hline VSL_SS_4C_MOM & Yes & Computes the array of the \(4^{\text {th }}\) order central moments. \\
\hline VSL_SS_4C_SUM & Yes & Computes the array of central sums of the \(4^{\text {th }}\) order. \\
\hline VSL_SS_KURTOSIS & Yes & Computes the array of kurtosis values. \\
\hline VSL_SS_SKEWNESS & Yes & Computes the array of skewness values. \\
\hline VSL_SS_MIN & Yes & Computes the array of minimum values. \\
\hline VSL_SS_MAX & Yes & Computes the array of maximum values. \\
\hline VSL_SS_VARIATION & Yes & Computes the array of variation coefficients. \\
\hline VSL_SS_COV & Yes & Computes a covariance matrix. \\
\hline VSL_SS_COR & Yes & Computes a correlation matrix. The main diagonal of the correlation matrix holds variances of the random vector components. \\
\hline VSL_SS_CP & Yes & Computes a cross-product matrix. \\
\hline VSL_SS_POOLED_COV & No & Computes a pooled covariance matrix. \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Estimate & \begin{tabular}{l} 
Support of \\
Observations \\
Available in Blocks
\end{tabular} & Description \\
\hline VSL_SS_POOLED_MEAN & No & Computes an array of pooled means. \\
VSL_SS_GROUP_COV & No & Computes group covariance matrices. \\
VSL_SS_GROUP_MEAN & No & Computes group means. \\
VSL_SS_QUANTS & No & Computes quantiles. \\
VSL_SS_ORDER_STATS & No & Computes order statistics. \\
VSL_SS_ROBUST_COV & No & Computes a robust covariance matrix. \\
VSL_SS_OUTLIERS & No & Cetects outliers in the dataset. \\
VSL_SS_PARTIAL_COV & No & Computes a partial covariance matrix. \\
VSL_SS_PARTIAL_COR & No & Supports missing values in datasets. \\
VSL_SS_MISSING_VALS & Yes & Computes a parameterized correlation matrix. \\
VSL_SS_PARAMTR_COR & No & Computes quantiles for streaming data. \\
VSL_SS_STREAM_QUANTS & No & Computes median absolute deviation. \\
VSL_SS_MDAD & Computes mean absolute deviation. \\
VSL_SS_MNAD & rands the dataset by the components of the \\
VSL_SS_SORTED_OBSERV & & No \\
\hline
\end{tabular}

Table "Summary Statistics Computation Method"lists estimate calculation methods supported by Intel® oneAPI Math Kernel Library (oneMKL). See theInte® \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Summary Statistics Application Notes document [SS Notes] for a detailed description of the methods.

Summary Statistics Computation Method
\begin{tabular}{|c|c|}
\hline Method & Description \\
\hline VSL_SS_METHOD_FAST & \begin{tabular}{l}
Fast method for calculation of the estimates: \\
- raw/central moments/sums, skewness, kurtosis, variation, variance-covariance/correlation/crossproduct matrix \\
- min/max/quantile/order statistics \\
- partial variance-covariance \\
- median/mean absolute deviation
\end{tabular} \\
\hline VSL_SS_METHOD_FAST_USER_MEAN & \begin{tabular}{l}
Fast method for calculation of the estimates given userdefined mean: \\
- central moments/sums of 2-4 order, skewness, kurtosis, variation, variance-covariance/correlation/ cross-product matrix, mean absolute deviation
\end{tabular} \\
\hline VSL_SS_METHOD_1PASS & \begin{tabular}{l}
One-pass method for calculation of estimates: \\
- raw/central moments/sums, skewness, kurtosis, variation, variance-covariance/correlation/crossproduct matrix
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Method & Description \\
\hline VSL_SS_METHOD_TBS & • pooled/group covariance matrix \\
VSL_SS_METHOD_BACON & \begin{tabular}{l} 
TBS method for robust estimation of covariance and \\
mean
\end{tabular} \\
VSL_SS_METHOD_MI & BACON method for detection of multivariate outliers \\
VSL_SS_METHOD_SD & Multiple imputation method for support of missing values \\
VSL_SS_METHOD_SQUANTS_ZW & \begin{tabular}{l} 
Spectral decomposition method for parameterization of a \\
correlation matrix
\end{tabular} \\
Vhang-Wang (ZW) method for quantile estimation for \\
Vtreaming data
\end{tabular}

You can calculate all requested estimates in one call of the routine. For example, to compute a kurtosis and covariance matrix using a fast method, pass a combination of the pre-defined parameters into the compute routine as shown in the example below:
```

method = VSL_SS_METHOD_FAST;
task_params = VSL_SS_KURTOSIS|VSL_SS_COV;
status = vsldSSCompute(task, task_params, method);

```

To compute statistical estimates for the next block of observations, you can do one of the following:
- copy the observations to memory, starting with the address available to the task
- use one of the appropriate Editors to modify the pointer to the new dataset in the task.

The library does not detect your changes of the dataset and computed statistical estimates. To obtain statistical estimates for a new matrix, change the observations and initialize relevant arrays. You can follow this procedure to compute statistical estimates for observations that come in portions. See Table "Summary Statistics Estimates Obtained with vslSSCompute Routine"for information on such observations supported by the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Summary Statistics estimators.
To modify parameters of the task using the Task Editors, set the address of the targeted matrix of the observations or change the respective vector component indices. After you complete editing the task parameters, you can compute statistical estimates in the modified environment.
If the task completes successfully, the computation routine returns the zero status code. If an error is detected, the computation routine returns an error code. In particular, an error status code is returned in the following cases:
- the task pointer is NULL
- memory allocation has failed
- the calculation has failed for some other reason

\section*{NOTE}

You can use the NULL task pointer in calls to editor routines. In this case, the routine is terminated and no system crash occurs.

\section*{vsISSCompute}

Computes Summary Statistics estimates.
```

Syntax
status = vslsSSCompute(task, estimates, method);
status = vsldSSCompute(task, estimates, method);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
task & VSLSSTaskPtr & Descriptor of the task \\
estimates & const MKL_INT64 & List of statistical estimates to compute \\
method & const MKL_INT & Method to be used in calculations
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
status & int & Current status of the task
\end{tabular}

\section*{Description}

The vslSSCompute routine calculates statistical estimates passed as the estimates parameter using the algorithms passed as the method parameter of the routine. The computations are done in the context of the task descriptor that contains pointers to all required and optional, if necessary, properly initialized arrays. In one call of the function, you can compute several estimates using proper methods for their calculation. See Table "Summary Statistics Estimates Obtained with compute Routine" for the list of the estimates that you can calculate with the vslSSCompute routine. See Table "Summary Statistics Computation Methods" for the list of possible values of the method parameter.

To initialize single or double precision version task parameters, use the single (vslssscompute) or double (vsldsscompute) version of the editor, respectively. To initialize parameters of the integer type, use an integer version of the editor (vslisscompute).

\section*{NOTE}

Requesting a combination of the VSL_SS_MISSING_VALS value and any other estimate parameter in the compute function results in processing only the missing values.

\section*{Application Notes}

Be aware that when computing a correlation matrix, the vslSSCompute routine allocates an additional array for each thread which is running the task. If you are running on a large number of threads vslSSCompute might consume large amounts of memory.

When calculating covariance, correlation, or cross product, the number of bytes of memory required is at least \(\left(P^{*} P^{*} T+P^{*} T\right)^{*} b\), where \(P\) is the dimension of the task or number of variables, \(T\) is the number of threads, and \(b\) is the number of bytes required for each unit of data. If observation is weighted and the method is VSL_SS_METHOD_FAST, then the memory required is at least ( \(P * P^{*} T+P^{*} T+N^{*} P\) ) \({ }^{*} b\), where \(N\) is the number of observations.

\section*{Summary Statistics Task Destructor}

Task destructor is the vslSSDeleteTask routine intended to delete task objects and release memory.
vsISSDeleteTask
Destroys the task object and releases the memory.
Syntax
```

status = vslSSDeleteTask(\&task);

```

\section*{Include Files}
- mkl.h

Input Parameters

\section*{Name}
task

\section*{Type}

VSLSSTaskPtr*

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
status & int
\end{tabular}

Type
int
\[
0
\]

\section*{Description}

Descriptor of the task to destroy

\section*{Description}

Sets to VSL_STATUS_OK if the task is deleted; otherwise a non-zero code is returned.

\section*{Description}

The vslSSDeleteTask routine deletes the task descriptor object, releases the memory allocated for the structure, and sets the task pointer to NULL. If vslSSDeleteTask fails to delete the task successfully, it returns an error code.

\section*{NOTE}

Call of the destructor with the null pointer as the parameter results in termination of the function with no system crash.

\section*{Summary Statistics Usage Examples}

The following examples show various standard operations with Summary Statistics routines.

\section*{Calculating Fixed Estimates for Fixed Data}

The example shows recurrent calculation of the same estimates with a given set of variables for the complete life cycle of the task in the case of a variance-covariance matrix. The set of vector components to process remains unchanged, and the data comes in blocks. Before you call the vslSSCompute routine, initialize pointers to arrays for mean and covariance and set buffers.
```

double w[2];
double indices[DIM] = {1, 0, 1};
/* calculating mean for 1st and 3d random vector components */

```
```

/* Initialize parameters of the task */
p = DIM;
n = N;
xstorage = VSL_SS_MATRIX_STORAGE_ROWS;
covstorage = VSL_SS_MATRIX_STORAGE_FULL;
w[0] = 0.0; w[1] = 0.0;
for (i = 0; i < p; i++) mean[i] = 0.0;
for (i = 0; i < p*p; i++) cov[i] = 0.0;
status = vsldSSNewTask(\&task, \&p, \&n, \&xstorage, x, 0, indices);
status = vsldSSEditTask (task, VSL_SS_ED_ACCUM_WEIGHT, w);
status = vsldSSEditCovCor(task, mean, cov, \&Covstorage, 0, 0);

```

You can process data arrays that come in blocks as follows:
```

for (i = 0; i < num_of_blocks; i++)
{
status = vsldSSCompute(task, VSL_SS_COV, VSL_SS_METHOD_FAST);
/* Read new data block into array x */
}

```
...

\section*{Calculating Different Estimates for Variable Data}

The context of your calculation may change in the process of data analysis. The example below shows the data that comes in two blocks. You need to estimate a covariance matrix for the complete data, and the third central moment for the second block of the data using the weights that were accumulated for the previous datasets. The second block of the data is stored in another array. You can proceed as follows:
```

/* Set parameters for the task */
p = DIM;
n = N;
xstorage = VSL_SS_MATRIX_STORAGE_ROWS;
covstorage = VSL_SS_-MATRIX_STORAGE_FULL;
w[0] = 0.0; w[1] = 0.0;
for (i = 0; i < p; i++) mean[i] = 0.0;
for (i = 0; i < p*p; i++) cov[i] = 0.0;
/* Create task */
status = vsldSSNewTask(\&task, \&p, \&n, \&xstorage, x1, 0, indices);
/* Initialize the task parameters */
status = vsldSSEditTask(task, VSL_SS_ED_ACCUM_WEIGHT, w);
status = vsldSSEditCovCor(task, mean, cov, \&covstorage, 0, 0);
/* Calculate covariance for the x1 data */
status = vsldSSCompute(task, VSL_SS_COV, VSL_SS_METHOD_FAST);
/* Initialize array of the 3d central moments and pass the pointer to the task */
for (i = 0; i < p; i++) c3_m[i] = 0.0;
/* Modify task context */

```
```

status = vsldSSEditTask(task, VSL_SS_ED_3C_MOM, c3_m);
status = vsldSSEditTask(task, VSL_SS_ED_OBSERV, x2);
/* Calculate covariance for the x1 \& x2 data block */
/* Calculate the 3d central moment for the 2nd data block using earlier accumulated weight */
status = vsldSSCompute(task, VSL_SS_COV|VSL_SS_3C_MOM, VSL_SS_METHOD_FAST);
status = vslSSDeleteTask(\&task);

```

Similarly, you can modify indices of the variables to be processed for the next data block.

\section*{Summary Statistics Mathematical Notation and Definitions}

The following notations are used in the mathematical definitions and the description of the Intel® oneAPI Math Kernel Library (oneMKL) Summary Statistics functions.

\section*{Matrix and Weights of Observations}

For a random \(p\)-dimensional vector \(\xi=\left(\xi_{1}, \ldots, \xi_{i}, \ldots, \xi_{p}\right)\), this manual denotes the following:
- \((X)_{i}=\left(x_{i j}\right)_{j=1 \ldots n}\) is the result of \(n\) independent observations for the \(i\)-th component \(\xi_{i}\) of the vector \(\xi\).
- The two-dimensional array \(X=\left(x_{i j}\right)_{n \times p}\) is the matrix of observations.
- The column \([X]_{j}=\left(x_{i j}\right)_{i=1 \ldots p}\) of the matrix \(X\) is the \(j\)-th observation of the random vector \(\xi\).

Each observation \([X]_{j}\) is assigned a non-negative weight \(w_{j}\), where
- The vector \(\left(w_{j}\right)_{j=1 . . n}\) is a vector of weights corresponding to \(n\) observations of the random vector \(\xi\).
- \(W=\sum_{i=1}^{n} w_{i}\) is the accumulated weight corresponding to observations \(X\).

\section*{Vector of sample means}
\(M(X)=\left(M_{1}(X), \ldots, M_{p}(X)\right)\) with \(M_{i}(X)=\frac{1}{w} \sum_{j=1}^{n} w_{j} x_{i j}\)
for all \(i=1, \ldots, p\).

\section*{Vector of sample partial sums}
\(S(X)=\left(S_{1}(X), \ldots, S_{p}(X)\right)\) with \(S_{i}(X)=\sum_{j=1}^{n} w_{j} x_{i j}\)
for all \(i=1, \ldots, p\).

\section*{Vector of sample variances}
\(V(X)=\left(V_{1}(X), \ldots, V_{p}(X)\right)\) with \(V_{i}(X)=\frac{1}{B} \sum_{j=1}^{n} w_{j}\left(x_{i j}-M_{i}(X)\right)^{2}, B=W-\sum_{j=1}^{n} w_{j}^{2} / W\)
for all \(i=1, \ldots, p\).

\section*{Vector of sample raw/algebraic moments of \(\boldsymbol{k}\)-th order, \(\mathbf{k} \geq 1\)}
\(R^{(k)}(X)=\left(R_{1}^{(k)}(X), \ldots, R_{p}^{(k)}(X)\right)\) with \(R_{i}^{(k)}(X)=\frac{1}{W} \sum_{j=1}^{n} w_{j} x_{i j}^{k}\)
for all \(i=1, \ldots, p\).
Vector of sample raw/algebraic partial sums of \(\boldsymbol{k}\)-th order, \(\boldsymbol{k}=\mathbf{2 , 3 , 4}\) (raw/algebraic partial sums of squares/cubes/fourth powers)
\(S^{k}(X)=\left(S_{1}^{k}(X), \ldots, S_{p}^{k}(X)\right)\) with \(S_{i}^{k}(X)=\sum_{j=1}^{n} w_{j} x_{i j}^{k}\)
for all \(i=1, \ldots, p\).
Vector of sample central moments of the third and the fourth order
\(C^{(k)}(X)=\left(C_{1}^{(k)}(X), \ldots, C_{p}^{(k)}(X)\right)\) with \(C_{i}^{(k)}(X)=\frac{1}{B} \sum_{j=1}^{n} w_{j}\left(x_{i j}-M_{i}(X)\right)^{k}, B=\sum_{j=1}^{n} w_{j}\)
for all \(i=1, \ldots, p\) and \(k=3,4\).
Vector of sample central partial sums of \(\boldsymbol{k}\)-th order, \(k=2,3,4\) (central partial sums of squares/ cubes/fourth powers)
\(S^{k}(X)=\left(S_{1}^{k}(X), \ldots, S_{p}^{k}(X)\right)\) with \(S_{i}^{k}(X)=\sum_{j=1}^{n} w_{j}\left(x_{i j}-S_{i}(X)\right)^{k}\)
for all \(i=1, \ldots, p\).
Vector of sample excess kurtosis values
\(B(X)=\left(B_{1}(X), \ldots, B_{p}(X)\right)\) with \(B_{i}(X)=\frac{C_{i}^{(4)}(X)}{V_{i}^{2}(X)}-3\)
for all \(i=1, \ldots, p\).

Vector of sample skewness values
\(\Gamma(X)=\left(\Gamma_{1}(X), \ldots, \Gamma_{p}(X)\right)\) with \(\Gamma_{i}(X)=\frac{C_{i}^{(3)}(X)}{V_{i}^{1.5}(X)}\)
for all \(i=1, \ldots, p\).
Vector of sample variation coefficients
\(V C(X)=\left(V C_{1}(X), \ldots, V C_{p}(X)\right)\) with \(V C_{i}(X)=\frac{V_{i}^{0.5}(X)}{M_{i}(X)}\)
for all \(i=1, \ldots, p\).

\section*{Matrix of order statistics}

Matrix \(Y=\left(y_{i j}\right)_{p \times n}\), in which the \(i\)-th row \((Y)_{i}=\left(y_{i j}\right)_{j=1 \ldots n}\) is obtained as a result of sorting in the ascending order of row \((X)_{i}=\left(x_{i j}\right)_{j=1 \ldots n}\) in the original matrix of observations.

Vector of sample minimum values
\(\operatorname{Min}(X)=\left(\operatorname{Min}_{1}(X), \ldots, \operatorname{Min}_{p}(X)\right)\), where \(\operatorname{Min}_{i}(X)=y_{i 1}\)
for all \(i=1, \ldots, p\).

\section*{Vector of sample maximum values}
\(\operatorname{Max}(X)=\left(\operatorname{Max}_{1}(X), \ldots, \operatorname{Max}_{p}(X)\right)\), where \(\operatorname{Max}_{i}(X)=y_{\text {in }}\)
for all \(i=1, \ldots, p\).

\section*{Vector of sample median values}
\(\operatorname{Med}(X)=\left(\operatorname{Med}_{1}(X), \ldots, \operatorname{Med}_{p}(X)\right)\), where \(\operatorname{Med}_{i}(X)=\left\{\begin{array}{c}y_{i,(n+1) / 2}, \text { if } n \text { is odd } \\ \left(y_{i, n / 2}+y_{i, n / 2+1}\right) / 2, \text { if } n \text { is even }\end{array}\right.\)
for all \(i=1, \ldots, p\).

\section*{Vector of sample median absolute deviations}
\(M D A D(X)=\left(M D A D_{1}(X), \ldots, M D A D_{p}(X)\right)\), where \(M D A D_{i}(X)=M e d_{i}(Z)\) with \(Z=\left(z_{i j}\right)_{i=1 \ldots p, j=1 \ldots n \prime}\)
\(z_{i j}=\left|x_{i j}-\operatorname{Med}_{i}(X)\right|\)
for all \(i=1, \ldots, p\).

\section*{Vector of sample mean absolute deviations}
\(M N A D(X)=\left(M N A D_{1}(X), \ldots, M N A D_{p}(X)\right)\), where \(M N A D_{i}(X)=M_{i}(Z)\) with \(Z=\left(z_{i j}\right)_{i=1 \ldots p, j=1 \ldots n}\),
\(z_{i j}=\left|x_{i j}-M_{i}(X)\right|\)
for all \(i=1, \ldots, p\).

\section*{Vector of sample quantile values}

For a positive integer number \(q\) and \(k\) belonging to the interval \([0, q-1]\), point \(z_{i}\) is the \(k\)-th \(q\) quantile of the random variable \(\xi_{j}\) if \(P\left\{\xi_{i} \leq z_{i}\right\} \geq \beta\) and \(P\left\{\xi_{i} \leq z_{i}\right\} \geq 1-\beta\), where
- \(\quad P\) is the probability measure.
- \(\beta=k / n\) is the quantile order.

The calculation of quantiles is as follows:
\(j=[(n-1) \beta]\) and \(f=\{(n-1) \beta\}\) as integer and fractional parts of the number \((n-1) \beta\), respectively, and the vector of sample quantile values is
\(Q(X, \beta)=\left(Q_{1}(X, \beta), \ldots, Q_{p}(X, \beta)\right)\)
where
\(\left(Q_{i}(X, \beta)=y_{i, j+1}+f\left(y_{i, j+2}-y_{i, j+1}\right)\right.\)
for all \(i=1, \ldots, p\).

\section*{Variance-covariance matrix}
\(C(X)=\left(c_{i j}(X)\right)_{p \times p}\)
where
\(c_{i j}(X)=\frac{1}{B} \sum_{k=1}^{n} w_{k}\left(x_{i k}-M_{i}(X)\right)\left(x_{j k}-M_{j}(X)\right), B=W-\sum_{j=1}^{n} w_{j}^{2} / W\)

\section*{Cross-product matrix (matrix of cross-products and sums of squares)}
\(C P(X)=\left(c p_{i j}(X)\right)_{p \times p}\)
where
\(c p_{i j}(X)=\sum_{k=1}^{n} w_{k}\left(x_{i k}-M_{i}(X)\right)\left(x_{j k}-M_{j}(X)\right)\)

\section*{Pooled and group variance-covariance matrices}

The set \(N=\{1, \ldots, n\}\) is partitioned into non-intersecting subsets
\(G_{i}, i=1 . . g, N=\underset{i=1}{\bigcup_{i}} G_{i}\)
The observation \([X]_{j}=\left(x_{i j}\right)_{i=1 \ldots p}\) belongs to the group \(r\) if \(j \in G_{r}\). One observation belongs to one group only. The group mean and variance-covariance matrices are calculated similarly to the formulas above:
\(M^{(r)}(X)=\left(M_{1}^{(r)}(X), \ldots, M_{p}^{(r)}(X)\right)\) with \(M_{i}^{(r)}(X)=\frac{1}{W^{(r)}} \sum_{j \in G_{r}} w_{j} x_{i j}, W^{(r)}=\sum_{j \in G_{r}} w_{j}\)
for all \(i=1, \ldots, p\),
\(C^{(r)}(X)=\left(c_{i j}^{(r)}(X)\right)_{p \times p}\)
where
\(c_{i j}^{(r)}(X)=\frac{1}{B^{(r)}} \sum_{k \in G_{r}} w_{k}\left(x_{i k}-M_{i}^{(r)}(X)\right)\left(x_{j k}-M_{j}^{(r)}(X)\right), B^{(r)}=W^{(r)}-\sum_{j \in G_{r}} w_{j}^{2} / W^{(r)}\)
for all \(i=1, \ldots, p\) and \(j=1, \ldots, p\).
A pooled variance-covariance matrix and a pooled mean are computed as weighted mean over group covariance matrices and group means, correspondingly:
\(M^{\text {pooled }}(X)=\left(M_{1}^{\text {pooled }}(X), \ldots, M_{p}^{\text {pooled }}(X)\right)\) with \(M_{i}^{\text {pooled }}(X)=\frac{1}{W^{(1)}+\ldots+W^{(g)}} \sum_{r=1}^{g} W^{(r)} M_{i}^{(r)}(X)\)
for all \(i=1, \ldots, p\),
\(C^{\text {pooled }}(X)=\left(c_{i j}^{\text {pooled }}(X)\right)_{p \times p^{\prime}} c_{i j}^{\text {pooled }}(X)=\frac{1}{B^{(1)}+\ldots+B^{(g)}} \sum_{r=1}^{g} B^{(r)} c_{i j}^{(r)}(X)\)
for all \(i=1, \ldots, p\) and \(j=1, \ldots, p\).

\section*{Correlation matrix}
\(R(X)=\left(r_{i j}(X)\right)_{p \times p}\) where \(r_{i j}(X)=\frac{c_{i j}}{\sqrt{c_{i i} c_{j j}}}\)
for all \(i=1, \ldots, p\) and \(j=1, \ldots, p\).

\section*{Partial variance-covariance matrix}

For a random vector \(\xi\) partitioned into two components \(Z\) and \(Y\), a variance-covariance matrix \(C\) describes the structure of dependencies in the vector \(\xi\) :
\(C(X)=\left(\begin{array}{cc}C_{Z}(X) & C_{Z Y}(X) \\ C_{Y Z}(X) & C_{Y}(X)\end{array}\right)\).
The partial covariance matrix \(P(X)=\left(p_{i j}(X)\right)_{k x k}\) is defined as
\(P(X)=C_{Y}(X)-C_{Y Z}(X) C_{Z}^{-1} C_{Z Y}(X)\).
where \(k\) is the dimension of \(Y\).

\section*{Partial correlation matrix}

The following is a partial correlation matrix for all \(i=1, \ldots, k\) and \(j=1, \ldots, k\) :
\(R P(X)=\left(r p_{i j}(X)\right)_{k \times k^{\prime}}\) where \(r p_{i j}(X)=\frac{p_{i j}(X)}{\sqrt{p_{i i}(X) p_{j j}(X)}}\)
where
- \(k\) is the dimension of \(Y\).
- \(p_{i j}(X)\) are elements of the partial variance-covariance matrix.

\section*{Sorted dataset}

Matrix \(Y=\left(y_{i j}\right)_{p x n}\), in which the \(i\)-th row \((Y)_{i}\) is obtained as a result of sorting in ascending order the row \((X)_{i}\) \(=\left(x_{i j}\right)_{j=1 . . n}\) in the original matrix of observations.

\section*{Fourier Transform Functions}

The general form of the discrete Fourier transform is
\(z_{k_{1}}, k_{2}, \ldots, k_{d}=\sigma \times \sum_{j_{d}=0}^{n_{d}-1} \ldots \sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{1}=0}^{n_{1}-1} w_{j_{1}, j_{2}, \ldots, j_{d}} \exp \left(\delta i 2 \pi \sum_{l=1}^{d} j_{l} k_{l} / n_{l}\right)\)
for \(k_{1}=0, \ldots n_{1}-1 \quad(I=1, \ldots, d)\), where \(\sigma\) is a scale factor, \(\delta=-1\) for the forward transform, and \(\delta=+1\) for the inverse (backward) transform. In the forward transform, the input (periodic) sequence \(\left\{w_{j_{1}}, j_{2}, \ldots\right.\), \(\left.j_{d}\right\}\) belongs to the set of complex-valued sequences and real-valued sequences. Respective domains for the backward transform are represented by complex-valued sequences and complex-valued conjugate-even sequences.
The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides an interface for computing a discrete Fourier transform through the fast Fourier transform algorithm. Prefixes Dfti in function names and DFTI in the names of configuration parameters stand for Discrete Fourier Transform Interface.
The manual describes the following implementations of the fast Fourier transform functions available in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL):
- Fast Fourier transform (FFT) functions for single-processor or shared-memory systems (see FFT Functions)
- Cluster FFT functions for distributed-memory architectures (available only for Intel® 64 architectures)

\section*{NOTE}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) also supports the FFTW3* interfaces to the fast Fourier transform functionality for shared memory paradigm (SMP) systems.

Both FFT and Cluster FFT functions compute an FFT in five steps:
1. Allocate a fresh descriptor for the problem with a call to the DfticreateDescriptor or DftiCreateDescriptorDM function. The descriptor captures the configuration of the transform, such as the dimensionality (or rank), sizes, number of transforms, memory layout of the input/output data (defined by strides), and scaling factors. Many of the configuration settings are assigned default values in this call which you might need to modify in your application.
2. Optionally adjust the descriptor configuration with a call to the DftiSetValue or DftiSetValueDM function as needed. Typically, you must carefully define the data storage layout for an FFT or the data distribution among processes for a Cluster FFT. The configuration settings of the descriptor, such as the default values, can be obtained with the DftiGetValue or DftiGetValueDM function.
3. Commit the descriptor with a call to the DftiCommitDescriptor or DftiCommitDescriptorDM function, that is, make the descriptor ready for the transform computation. Once the descriptor is committed, the parameters of the transform, such as the type and number of transforms, strides and distances, the type and storage layout of the data, and so on, are "frozen" in the descriptor.
4. Compute the transform with a call to the DftiComputeForward/DftiComputeBackward or DftiComputeForwardDM/DftiComputeBackwardDM functions as many times as needed. Because the descriptor is defined and committed separately, all that the compute functions do is take the input and output data and compute the transform as defined. To modify any configuration parameters for another call to a compute function, use DftiSetValue followed by DftiCommitDescriptor (DftiSetValueDM followed by DftiCommitDescriptorDM) or create and commit another descriptor.
5. Deallocate the descriptor with a call to the DftiFreeDescriptor or DftiFreeDescriptorDM function. This returns the memory internally consumed by the descriptor to the operating system.
All the above functions return an integer status value, which is zero upon successful completion of the operation. You can interpret a non-zero status with the help of the DftiErrorClass or DftiErrorMessage function.
The FFT functions support lengths with arbitrary factors. You can improve performance of the Intel oneAPI Math Kernel Library (oneMKL) FFT if the length of your data vector permits factorization into powers of optimized radices. See the Intel oneAPI Math Kernel Library (oneMKL) Developer Guide for specific radices supported efficiently.

\section*{NOTE}

The FFT functions assume the Cartesian representation of complex data (that is, the real and imaginary parts define a complex number). The Intel oneAPI Math Kernel Library (oneMKL) Vector Mathematical Functions provide efficient tools for conversion to and from polar representation (see Example "Conversion from Cartesian to polar representation of complex data" and Example "Conversion from polar to Cartesian representation of complex data").

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{FFT Functions}

The fast Fourier transform function library of Intel® oneAPI Math Kernel Library (oneMKL) provides onedimensional, two-dimensional, and multi-dimensional transforms (of up to seven dimensions) and offers both Fortran and C interfaces for all transform functions.
Table "FFT Functions in Intel® oneAPI Math Kernel Library (oneMKL)"lists FFT functions implemented in Intel \({ }^{\text {® }}\) oneAPI Math Kernel Library (oneMKL):
FFT Functions in oneMKL
\begin{tabular}{ll}
\hline Function Name & Operation \\
\hline Descriptor Manipulation Functions & \\
DftiCreateDescriptor & \begin{tabular}{l} 
Allocates the descriptor data structure and initializes it with default \\
configuration values.
\end{tabular} \\
DftiCommitDescriptor & Performs all initialization for the actual FFT computation. \\
DftiFreeDescriptor & Frees memory allocated for a descriptor. \\
DftiCopyDescriptor & Makes a copy of an existing descriptor.
\end{tabular}
\begin{tabular}{ll}
\hline Function Name & Operation \\
\hline FFT Computation Functions & \\
DftiComputeForward & Computes the forward FFT. \\
DftiComputeBackward & Computes the backward FFT. \\
Descriptor Configuration Functions & \\
DftiSetValue & \begin{tabular}{l} 
Sets one particular configuration parameter with the specified \\
configuration value.
\end{tabular} \\
DftiGetValue & Gets the value of one particular configuration parameter. \\
Status Checking Functions & Checks if the status reflects an error of a predefined class. \\
DftiErrorClass & Translates the numeric value of an error status into a message. \\
DftiErrorMessage &
\end{tabular}

\section*{FFT Interface}

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT functions are provided with the Fortran and C interfaces.
The materials presented in this section assume the availability of native complex types in \(C\) as they are specified in C9X.
To use the FFT functions, you need to include mkl_dfti. h in your C code.
The C interface provides the DFTI_DESCRIPTOR_HANDLE type, named constants of two enumeration types DFTI_CONFIG_PARAM and DFTI_CONFIG_VALUE, and functions, some of which accept different numbers of input arguments.

\section*{NOTE}

The current version of the library may not support some of the FFT functions or functionality. You can find the complete list of the implementation-specific exceptions in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Release Notes.

For the main categories of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT functions, see FFT Functions.

\section*{Computing an FFT}

You can find code examples that compute transforms in the Fourier Transform Functions Code Examples.
Usually you can compute an FFT by five function calls (refer to the usage model for details). A single data structure, the descriptor, stores configuration parameters that can be changed independently.
The descriptor data structure, when created, contains information about the length and domain of the FFT to be computed, as well as the setting of several configuration parameters. Default settings for some of these parameters are as follows:
- Scale factor: none (that is, \(\sigma=1\) )
- Number of data sets: one
- Data storage: contiguous
- Placement of results: in-place (the computed result overwrites the input data)

The default settings can be changed one at a time through the function DftiSetValue as illustrated in Example "Changing Default Settings (C)".

\section*{Configuration Settings}

Each of the configuration parameters is identified by a named constant in the MKL_DFTI module. These named constants have the enumeration type DFTI_CONFIG_PARAM and are declared in the mkl_dfti.h header file.

Though exposed in that header file, the configuration parameters DFTI_FWD_DISTANCE and DFTI_BWD_DISTANCE are specific to the DPC++ DFT routines (see the Data Parallel C++ Developer Reference \(\overline{\text { ) }}\) : their use in another context is neither supported nor currently enabled. All other Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT configuration parameters are readable. Some of them are read-only, while others can be set using the DftiCreateDescriptor or DftiSetValue function.
Values of the configuration parameters fall into the following groups:
- Values that have native data types. For example, the number of simultaneous transforms requested has an integer value, while the scale factor for a forward transform is a floating-point number.
- Values that are discrete in nature and are provided in the MKL_DFTI module as named constants. For example, the domain of the forward transform requires values to be named constants. The named constants for configuration values have the enumeration type DFTI_CONFIG_VALUE.
The Table "Configuration Parameters" summarizes the information on configuration parameters, along with their types and values. For more details of each configuration parameter, see the subsection describing this parameter.

Configuration Parameters
\begin{tabular}{|c|c|c|}
\hline Configuration Parameter & Type/Value & Comments \\
\hline \multicolumn{3}{|l|}{Most common configuration parameters, no default, must be set explicitly by DftiCreateDescriptor} \\
\hline DFTI_PRECISION & Named constant DFTI_SINGLE or DFTI_DOUBLE & Precision of the computation. \\
\hline DFTI_FORWARD_DOMAIN & Named constant DFTI COMPLEX or DFTI_REAL & Type of the transform. \\
\hline DFTI_DIMENSION & Integer scalar & Dimension of the transform. \\
\hline DFTI_LENGTHS & Integer scalar/array & Lengths of each dimension. \\
\hline \multicolumn{3}{|l|}{Common configuration parameters, settable by DftiSetValue} \\
\hline DFTI_PLACEMENT & \begin{tabular}{l}
Named constant \\
DFTI_INPLACE or \\
DFTI_NOT_INPLACE
\end{tabular} & \begin{tabular}{l}
Defines whether the result overwrites the input data. Default value: \\
DFTI_INPLACE.
\end{tabular} \\
\hline DFTI_FORWARD_SCALE & Floating-point scalar & \begin{tabular}{l}
Scale factor for the forward transform. \\
Default value: 1.0. \\
Precision of the value should be the same as defined by DFTI_PRECISION.
\end{tabular} \\
\hline DFTI_BACKWARD_SCALE & Floating-point scalar & \begin{tabular}{l}
Scale factor for the backward transform. \\
Default value: 1.0. \\
Precision of the value should be the same as defined by DFTI_PRECISION.
\end{tabular} \\
\hline DFTI_NUMBER_OF_USER_THREADS & Integer scalar & This configuration parameter is no longer used and kept for compatibility with previous versions of Intel® oneAPI Math Kernel Library (oneMKL). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Configuration Parameter & Type/Value & Comments \\
\hline \multirow[t]{2}{*}{DFTI_THREAD_LIMIT} & \multirow[t]{2}{*}{Integer scalar} & Limits the number of threads for the DftiComputeForward and DftiComputeBackward. \\
\hline & & Default value: 0 . \\
\hline \multirow[t]{2}{*}{DFTI_DESCRIPTOR_NAME} & \multirow[t]{2}{*}{Character string} & \begin{tabular}{l}
Assigns a name to a descriptor. Assumed length of the string is \\
DFTI_MAX_NAME_LENGTH.
\end{tabular} \\
\hline & & Default value: empty string. \\
\hline \multicolumn{3}{|l|}{Data layout configuration parameters for single and multiple transforms. Settable by DftiSetValue} \\
\hline \multirow[t]{2}{*}{DFTI_INPUT_STRIDES} & \multirow[t]{2}{*}{Integer array} & Defines the input data layout. \\
\hline & & NOTE The default strides are set during creation of the descriptor based on the desired dimension and lengths. For more details, see DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES. \\
\hline \multirow[t]{2}{*}{DFTI_OUTPUT_STRIDES} & \multirow[t]{2}{*}{Integer array} & Defines the output data layout. \\
\hline & & NOTE The default strides are set during creation of the descriptor based on the desired dimension and lengths. For more details, see DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES. \\
\hline \multirow[t]{2}{*}{DFTI_NUMBER_OF_TRANSFORMS} & \multirow[t]{2}{*}{Integer scalar} & Number of transforms. \\
\hline & & Default value: 1. \\
\hline \multirow[t]{2}{*}{DFTI_INPUT_DISTANCE} & \multirow[t]{2}{*}{Integer scalar} & Defines the distance between input data sets for multiple transforms. \\
\hline & & Default value: 0 . \\
\hline \multirow[t]{2}{*}{DFTI_OUTPUT_DISTANCE} & \multirow[t]{2}{*}{Integer scalar} & Defines the distance between output data sets for multiple transforms. \\
\hline & & Default value: 0 . \\
\hline \multirow[t]{2}{*}{DFTI_COMPLEX_STORAGE} & \multirow[t]{2}{*}{\begin{tabular}{l}
Named constant \\
DFTI_COMPLEX_COMPLE \\
X or DFTI_REAL_REAL
\end{tabular}} & Defines whether the real and imaginary parts of data for a complex transform are interleaved in one array or split in two arrays. \\
\hline & & Default value: DFTI_COMPLEX_COMPLEX. \\
\hline DFTI_REAL_STORAGE & Named constant DFTI_REAL_REAL & Defines how real data for a real transform is stored. Only the DFTI_REAL_REAL value is supported. \\
\hline DFTI_CONJUGATE_EVEN_STORAGE & Named constant
```

DFTI_COMPLEX_COMPLE
X or
DFTI_COMPLEX_REAL

``` & Defines whether the complex data in the backward domain of a real transform is stored as complex elements or as real elements. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Configuration Parameter & Type/Value & Comments \\
\hline & & \begin{tabular}{l}
DFTI_COMPLEX_REAL is supported only for 1D transforms. \\
The default value is DFTI_COMPLEX_COMPLEX.
\end{tabular} \\
\hline \multirow[t]{2}{*}{DFTI_PACKED_FORMAT} & \begin{tabular}{l}
Named constant \\
DFTI_CCE_FORMAT, \\
DFTI_CCS_FORMAT, \\
DFTI_PACK_FORMAT, or DFTI_PERM_FORMAT
\end{tabular} & \begin{tabular}{l}
Defines the layout for the elements of the conjugate-even sequence in the backward domain of the real transform (in association with the configuration parameter \\
DFTI_CONJUGATE_EVEN_STORAGE). \\
The default value is DFTI CCE FORMAT.
\end{tabular} \\
\hline & & NOTE Transforms greater than 1D support only DFTI_CCE_FORMAT. \\
\hline \multicolumn{3}{|l|}{Advanced configuration parameters, settable by DftiSetValue} \\
\hline DFTI_WORKSPACE & \begin{tabular}{l}
Named constant \\
DFTI_ALLOW or \\
DFTI_AVOID
\end{tabular} & \begin{tabular}{l}
Defines whether the library should prefer algorithms using additional memory. \\
Default value: DFTI ALLOW.
\end{tabular} \\
\hline DFTI_ORDERING & \begin{tabular}{l}
Named constant \\
DFTI_ORDERED or \\
DFTI_BACKWARD_SCRAM \\
BLED
\end{tabular} & \begin{tabular}{l}
Defines whether the result of a complex transform is ordered or permuted. \\
Default value: DFTI_ORDERED.
\end{tabular} \\
\hline DFTI_DESTROY_INPUT & Named constant DFTI ALLOW or DFTI_AVOID & Defines whether the input data may be overwritten for out-of-place transforms. Default value: DFTI_AVOID. \\
\hline \multicolumn{3}{|l|}{Read-Only configuration parameters} \\
\hline DFTI_COMMIT_STATUS & \begin{tabular}{l}
Named constant \\
DFTI_UNCOMMITTED or \\
DFTI_COMMITTED
\end{tabular} & Readiness of the descriptor for computation. \\
\hline DFTI_VERSION & String & Version of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL). Assumed length of the string is DFTI_VERSION_LENGTH. \\
\hline
\end{tabular}

\section*{See Also}

\section*{Configuring and Computing an FFT in \(\mathrm{C} / \mathrm{C}++\)}

\section*{DFTI_PRECISION}

The configuration parameter DFTI_PRECISION denotes the floating-point precision in which the transform is to be carried out. A setting of DFTI_SINGLE stands for single precision, and a setting of DFTI_DOUBLE stands for double precision. The data must be presented in this precision, the computation is carried out in this precision, and the result is delivered in this precision.

DFTI_PRECISION does not have a default value. Set it explicitly by calling the DftiCreateDescriptor function.
To better understand configuration of the precision of transforms, refer to these examples in your Intel® oneAPI Math Kernel Library (oneMKL) directory:
./examples/dftc/source/basic_sp_complex_dft_1d.c
./examples/dftc/source/basic_dp_complex_dft_1d.c
```

See Also
DFTI_FORWARD_DOMAIN
DFTI_DIMENSION, DFTI_LENGTHS
DftiCreateDescriptor

```

DFTI_FORWARD_DOMAIN
The general form of a discrete Fourier transform is
\(z_{k_{1}}, k_{2}, \ldots, k_{d}=\sigma \times \sum_{j_{d}=0}^{n_{d}-1} \ldots \sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{1}=0}^{n_{1}-1} w_{j_{1}, j_{2}}, \ldots, j_{d} \exp \left(\delta i 2 \pi \sum_{l=1}^{d} j_{l} k_{l} / n_{l}\right)\)
for \(k_{1}=0, \ldots n_{1}-1(I=1, \ldots, d)\), where \(\sigma\) is a scale factor, \(\delta=-1\) for the forward transform, and \(\delta=+1\) for the backward transform.

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) implementation of the FFT algorithm, used for fast computation of discrete Fourier transforms, supports forward transforms on input sequences of two domains, as specified by the DFTI_FORWARD_DOMAIN configuration parameter: general complex-valued sequences (DFTI_COMPLEX domain) and general real-valued sequences (DFTI_REAL domain). The forward transform maps the forward domain to the corresponding backward domain, as shown in Table "Correspondence of Forward and Backward Domain".
The conjugate-even domain covers complex-valued sequences with the symmetry property:
\(x\left(k_{1}, k_{2}, \ldots, k_{d}\right)=\operatorname{conjugate}\left(x\left(n_{1}-k_{1}, n_{2}-k_{2}, \ldots, n_{d}-k_{d}\right)\right)\)
where the index arithmetic is performed modulo respective size, that is,
\(x\left(\ldots, \operatorname{expr}_{s}, \ldots\right) \equiv x\left(\ldots, \bmod \left(\operatorname{expr}_{s}, n_{s}\right), \ldots\right)\),
and therefore
\(x\left(\ldots, n_{s}, \ldots\right) \equiv x(\ldots, 0, \ldots)\).
Due to this property of conjugate-even sequences, only a part of such sequence is stored in the computer memory, as described in DFTI_CONJUGATE_EVEN_STORAGE.

\section*{Correspondence of Forward and Backward Domain}
\begin{tabular}{ll} 
Forward Domain & Implied Backward Domain \\
\hline Complex (DFTI_COMPLEX) & Complex (DFTI_COMPLEX) \\
Real (DFTI_REAL) & Conjugate-even \\
\hline
\end{tabular}

DFTI_FORWARD_DOMAIN does not have a default value. Set it explicitly by calling the DftiCreateDescriptor function.
To better understand usage of the DFTI_FORWARD_DOMAIN configuration parameter, you can refer to these examples in your Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory:
```

./examples/dftc/source/basic_sp_complex_dft_1d.c
./examples/dftc/source/basic_sp_real_dft_1d.c

```

\section*{See Also}
```

DFTI_PRECISION
DFTI_DIMENSION, DFTI_LENGTHS
DftiCreateDescriptor

```

\section*{DFTI_DIMENSION, DFTI_LENGTHS}

The dimension of the transform is a positive integer value represented in an integer scalar of MKL_LONG data type. For a one-dimensional transform, the transform length is specified by a positive integer value represented in an integer scalar of MKL_LONG data type. For multi-dimensional ( \(\geq 2\) ) transform, the lengths of each of the dimensions are supplied in an integer array (of MKL_LONG data type).

DFTI_DIMENSION and DFTI_LENGTHS do not have a default value. To set them, use the DfticreateDescriptor function and not the DftiSetValue function.
To better understand usage of the DFTI_DIMENSION and DFTI_LENGTHS configuration parameters, you can refer to basic examples of one-, two-, and three-dimensional transforms in your Intel® oneAPI Math Kernel Library (oneMKL) directory. Naming conventions for the examples are self-explanatory. For example, refer to these examples of single-precision two-dimensional transforms:
. /examples/dftc/source/basic_sp_real_dft_2d.c
. /examples/dftc/source/basic_sp_complex_dft_2d.c

\section*{See Also}

DFTI_FORWARD_DOMAIN
DFTI_PRECISION
DftiCreateDescriptor
DftiSetValue

\section*{DFTI_PLACEMENT}

By default, the computational functions overwrite the input data with the output result. That is, the default setting of the configuration parameter DFTI_PLACEMENT is DFTI_INPLACE. You can change that by setting it to DFTI_NOT_INPLACE.

\section*{NOTE}

When the configuration parameter is set to DFTI_NOT_INPLACE, the input and output data sets must have no common elements.

To better understand usage of the DFTI_PLACEMENT configuration parameter, see this example in your Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory:
./examples/dftc/source/config_placement.c

\section*{See Also}

DftiSetValue

\section*{DFTI_FORWARD_SCALE, DFTI_BACKWARD_SCALE}

The forward transform and backward transform are each associated with a scale factor \(\sigma\) of its own having the default value of 1 . You can specify the scale factors using one or both of the configuration parameters DFTI_FORWARD_SCALE and DFTI_BACKWARD_SCALE. For example, for a one-dimensional transform of length \(n\), you can use the default scale of 1 for the forward transform and set the scale factor for the backward transform to be \(1 / n\), thus making the backward transform the inverse of the forward transform.
Set the scale factor configuration parameter using a real floating-point data type of the same precision as the value for DFTI_PRECISION.

\section*{NOTE}

For inquiry of the scale factor with the DftiGetValue function, the config_val parameter must have the same floating-point precision as the descriptor.
```

See Also
DftiSetValue
DFTI_PRECISION
DftiGetValue

```

\section*{DFTI_NUMBER_OF_USER_THREADS}

The DFTI_NUMBER_OF_USER_THREADS configuration parameter is no longer used and kept for compatibility with previous versions of Intel \({ }^{\text {oneAPI Math Kernel Library (oneMKL). }}\)

\section*{See Also}

DftiSetValue

\section*{DFTI_THREAD_LIMIT}

In some situations you may need to limit the number of threads that the DftiComputeForward and DftiComputeBackward functions use. For example, if more than one thread calls Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL), it might be important that the thread calling these functions does not oversubscribe computing resources (CPU cores). Similarly, a known limit of the maximum number of threads to be used in computations might help the DftiCommitDescriptor function to select a more optimal computation method.
Set the parameter DFTI_THREAD_LIMIT as follows:
- To a positive number, to specify the maximum number of threads to be used by the compute functions.
- To zero (the default value), to use the maximum number of threads permitted in Intel® oneAPI Math Kernel Library (oneMKL) FFT functions. See "Techniques to Set the Number of Threads" in the Inte» \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide for more information.
On an attempt to set a negative value, the DftiSetValue function returns an error and does not update the descriptor.
The value of the DFTI_THREAD_LIMIT configuration parameter returned by the DftigetValue function is defined as follows:
- 1 if Intel \({ }^{\otimes}\) oneAPI Math Kernel Library (oneMKL) runs in the sequential mode
- Depends of the commit status of the descriptor if Intel® oneAPI Math Kernel Library (oneMKL) runs in a threaded mode:
\begin{tabular}{ll}
\hline Commit Status & Value \\
\hline Not committed & \begin{tabular}{l} 
The value of DFTI_THREAD_LIMIT set in a previous call to the \\
DftiSetValue function or the default value
\end{tabular} \\
Committed & \begin{tabular}{l} 
The upper limit on the number of threads used by the \\
DftiComputeForward and DftiComputeBackward functions
\end{tabular} \\
\hline
\end{tabular}

To better understand usage of the DFTI_THREAD_LIMIT configuration parameter, see this example in your Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory:
./examples/dftc/source/config_thread_limit.c

\section*{See Also}

DftiGetValue
DftiSetValue
DftiCommitDescriptor
DftiComputeForward
DftiComputeBackward
Threading Control Functions
DFTI_COMMIT_STATUS

\section*{DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES}

The FFT interface provides configuration parameters that define the layout of multidimensional data in the computer memory. For \(d\)-dimensional data set \(X\) defined by dimensions \(N_{1} \times N_{2} \times \ldots \times N_{d}\), the layout describes where a particular element \(X\left(k_{1}, k_{2}, \ldots, k_{d}\right)\) of the data set is located. The memory address of the element \(X\left(k_{1}, k_{2}, \ldots, k_{d}\right)\) is expressed by the formula,
address of \(X\left(k_{1}, k_{2}, \ldots, k_{d}\right)=\) the address stored in the pointer supplied to the compute function \(+\left(s_{0}+\right.\) \(\left.k_{1} s_{1}+k_{2} * s_{2}+\ldots+k_{d} * s_{d}\right) * u\),
Where \(u\) is the number of bytes per element of the desired precision for the assumed data type in the corresponding domain (see Table "Assumed Element Types of the Input/Output Data" below), where \(s_{0}\) is the displacement, and \(s_{1}, \ldots, s_{d}\) are generalized strides. The configuration parameters DFTI_INPUT_STRIDES and DFTI_OUTPUT_STRIDES enable you to get and set these values. The configuration value is an array of values ( \(s_{0}, s_{1}, \ldots, s_{d}\) ) of MKL_LONG data type.
The DFTI_FORWARD_DOMAIN, DFTI_COMPLEX_STORAGE, and DFTI_CONJUGATE_EVEN_STORAGE configuration
 Data":

\section*{Assumed Element Types of the Input/Output Data}
\begin{tabular}{lll}
\hline Descriptor Configuration & \begin{tabular}{ll} 
Element \\
Type in the \\
Forward \\
Domain
\end{tabular} & \begin{tabular}{l} 
Element \\
Type in the \\
Backward \\
Domain
\end{tabular} \\
\hline \begin{tabular}{lll} 
DFTI_FORWARD_DOMAIN=DFTI_COMPLEX \\
DFTI_COMPLEX_STORAGE=DFTI_COMPLEX_COMPLEX
\end{tabular} & Complex & Complex \\
DFTI_FORWARD_DOMAIN=DFTI_COMPLEX \\
DFTI_COMPLEX_STORAGE=DFTI_REAL_REAL & Real & Real \\
DFTI_FORWARD_DOMAIN=DFTI_REAL & Real & Real \\
DFTI_CONJUGATE_EVEN_STORAGE=DFTI_COMPLEX_REAL & Real & Complex \\
DFTI_FORWARD_DOMAIN=DFTI_REAL & & RFT_CONJUGATE_EVEN_STORAGE=DFTI_COMPLEX_COMPLEX
\end{tabular}

The DFTI_INPUT_STRIDES configuration parameter defines the layout of the input data, while the element type is defined by the forward domain for the DftiComputeForward function and by the backward domain for the DfticomputeBackward function. The DFTI_OUTPUT_STRIDES configuration parameter defines the layout of the output data, while the element type is defined by the backward domain for the DftiComputeForward function and by the forward domain for DftiComputeBackward function.

\section*{NOTE}

The DETI_INPUT_STRIDES and DFTI_OUTPUT_STRIDES configuration parameters define the layout of input and output data, and not the forward-domain and backward-domain data. If the data layouts in forward domain and backward domain differ, set DFTI_INPUT_STRIDES and DFTI_OUTPUT_STRIDES explicitly and then commit the descriptor before calling computation functions.

For in-place transforms (DFTI_PLACEMENT=DFTI_INPLACE), the configuration set by DFTI_OUTPUT_STRIDES is ignored when the element types in the forward and backward domains are the same. If they are different, set DFTI_OUTPUT_STRIDES explicitly (even though the transform is in-place). Ensure a consistent configuration for in-place transforms, that is, the locations of the first elements on input and output must coincide in each dimension.
The FFT interface supports both positive and negative stride values. If you use negative strides, set the displacement of the data as follows:
\(s_{0}=\sum_{i=1}^{d}\left(N_{i}-1\right) \cdot \max \left(-s_{i}, 0\right)\).

The default setting of strides in a general multi-dimensional case assumes that the array that contains the data has no padding. The order of the strides depends on the programming language. For example:
```

MKL_LONG dims[] = { n n, ..., n}\mp@subsup{n}{2}{},\mp@subsup{\textrm{n}}{1}{}}
DftiCreateDescriptor(\&hand, precision, domain, d, dims);
// The above call assumes data declaration: type X[nd]...[n_] [n []

```


Note that in case of a real FFT (DFTI_FORWARD_DOMAIN=DFTI_REAL), where different data layouts in the backward domain are available (see DFTI_PACKED_FORMAT), the default value of the strides is not intuitive for the recommended CCE format (configuration setting
DFTI_CONJUGATE_EVEN_STORAGE=DFTI_COMPLEX_COMPLEX). In case of an in-place real transform with the CCE \(\overline{\text { format, }}\) set the strides explicitly, as follows:
```

MKL_LONG dims[] = { n n, ..., n}\mp@subsup{n}{2}{},\mp@subsup{\textrm{n}}{1}{}}

```

```

MKL_LONG cstrides[] = { 0, nnd-1*...* n2* (n n/ 2+1), ..., }\mp@subsup{n}{2}{*}*(\mp@subsup{n}{1}{}/2+1),(\mp@subsup{n}{1}{}/2+1),1}
DftiCreateDescriptor(\&hand, precision, DFTI_REAL, d, dims);
DftiSetValue(hand, DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX);
// Set the strides approppriately for forward/backward transfororm

```

\begin{abstract}
Limitation Note Transforms with the number of points N of a non-unit stride dimension exceeding \(2^{\wedge}(27-p)-1\) for \(N\) a power-of-two, or \(2^{\wedge}(23-p)-1\) for \(N\) not a power-of-two, are currently not supported, where \(p=0\) for single precision and \(p=1\) for double precision. If a descriptor is created (for example, using DftiCreateDescriptor) and set (for example, using DftiSetValue) to do such a transform, a DFTI_1D_MEMORY_EXCEEDS_INT32 error is returned at commit time (for example, by DftiCommitDescriptor).
\end{abstract}

To better understand configuration of strides, you can also refer to these examples in your Intel® oneAPI Math Kernel Library (oneMKL) directory:
```

./examples/dftc/source/basic_sp_complex_dft_2d.c
./examples/dftc/source/basic_sp_complex_dft_3d.c
./examples/dftc/source/basic_dp_complex_dft_2d.c
./examples/dftc/source/basic_dp_complex_dft_3d.c
./examples/dftc/source/basic_sp_real_dft_2d.c
./examples/dftc/source/basic_sp_real_dft_3d.c
./examples/dftc/source/basic_dp_real_dft_2d.c
./examples/dftc/source/basic_dp_real_dft_3d.c

```

\section*{See Also}

DFTI_FORWARD_DOMAIN
DFTI_PLACEMENT
FFT Code Examples
DftiSetValue
DftiCommitDescriptor
DftiComputeForward
DftiComputeBackward

\section*{DFTI_NUMBER_OF_TRANSFORMS}

If you need to perform a large number of identical FFTs, you can do this in a single call to a DftiCompute* function with the value of the DFTI_NUMBER_OF_TRANSFORMS configuration parameter equal to the actual number of the transforms. The default value of this parameter is 1 . You can set this parameter to a positive integer value of the MKL_LONG data type. When setting the number of transforms to a value greater than one, you also need to specify the distance between the input data sets and the distance between the output data sets using one of the DFTI_INPUT_DISTANCE and DFTI_OUTPUT_DISTANCE configuration parameters or both.

\section*{Important}
- The data sets to be transformed must not have common elements.
- All the sets of data must be located within the same memory block.

To better understand usage of the DFTI_NUMBER_OF_TRANSFORMS configuration parameter, see this example in your Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMK̄) \(\overline{\text { directory: }}\)
```

./examples/dftc/source/config_number_of_transforms.c

```

\section*{See Also}

\section*{FFT Computation Functions}

DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE
DftisetValue

\section*{DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE}

The FFT interface in Intel oneAPI Math Kernel Library (oneMKL) enables computation of multiple transforms. To compute multiple transforms, you need to specify the data distribution of the multiple sets of data. The distance between the first data elements of consecutive data sets, DFTI_INPUT_DISTANCE for input data or DFTI_OUTPUT_DISTANCE for output data, specifies the distribution. The configuration setting is a value of MKL_IONG datā type.
The default value for both configuration settings is one. You must set this parameter explicitly if the number of transforms is greater than one (see DFTI_NUMBER_OF_TRANSFORMS).
The distance is counted in elements of the data type defined by the descriptor configuration (rather than by the type of the variable passed to the computation functions). Specifically, the DFTI_FORWARD_DOMAIN, DFTI_COMPLEX_STORAGE, and DFTI_CONJUGATE_EVEN_STORAGE configuration parameters define the type of the elements as shown in Table "Assumed Element Types of the Input/Output Data".

\section*{NOTE}

The configuration parameters DFTI_INPUT_DISTANCE and DFTI_OUTPUT_DISTANCE define the distance within input and output data, and not within the forward-domain and backward-domain data. If the distances in the forward and backward domains differ, set DFTI_INPUT_DISTANCE and DFTI_OUTPUT_DISTANCE explicitly and then commit the descriptor before calling computation functions.

For in-place transforms (DFTI_PLACEMENT=DFTI_INPLACE), the configuration set by DFTI_OUTPUT_DISTANCE is ignored when the element types in the forward and backward domains are the same. If they are different, set DFTI_OUTPUT_DISTANCE explicitly (even though the transform is in-place). Ensure a consistent configuration for in-place transforms, that is, the locations of the data sets on input and output must coincide.

This example illustrates setting of the DFTI_INPUT_DISTANCE configuration parameter:
```

MKL_LONG dims[] = { nd, ..., n2, n1 };
MKL_LONG distance = nd*...*n2*n1;
DftiCreateDescriptor(\&hand, precision, DFTI_COMPLEX, d, dims);
DftiSetValue(hand, DFTI_NUMBER_OF_TRANSFORMS, (MKL_LONG)howmany);
DftiSetValue(hand, DFTI_INPUT_DISTANCE, distance);

```

To better understand configuration of the distances, see these code examples in your Intel® oneAPI Math Kernel Library (oneMKL) directory:
./examples/dftc/source/config_number_of_transforms.c

\section*{See Also}

DFTI_PLACEMENT
DftiSetValue
DftiCommitDescriptor
DftiComputeForward
DftiComputeBackward

\section*{DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, DFTI_CONJUGATE_EVEN_STORAGE}

Depending on the value of the DFTI_FORWARD_DOMAIN configuration parameter, the implementation of FFT supports several storage schemes for input and output data (see document [3] for the rationale behind the definition of the storage schemes). The data elements are placed within contiguous memory blocks, defined with generalized strides (see DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES). For multiple transforms, all sets of data should be located within the same memory block, and the data sets should be placed at the same distance from each other (see DFTI_NUMBER_OF TRANSFORMS and DFTI_INPUT DISTANCE, DFTI_OUTPUT_DISTANCE).

\section*{Tip}

Avoid setting up multidimensional arrays with lists of pointers to one-dimensional arrays. Instead use a one-dimensional array with the explicit indexing to access the data elements.

FFT Examples demonstrate the usage of storage formats.

\section*{DFTI_COMPLEX_STORAGE: storage schemes for a complex domain}

For the DFTI_COMPLEX forward domain, both input and output sequences belong to a complex domain. In this case, the configuration parameter DFTI_COMPLEX_STORAGE can have one of the two values:
DFTI_COMPLEX_COMPLEX (default) or DFTI_REAL_REAL.

\section*{NOTE}

In the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL)FFT interface, storage schemes for a forward complex domain and the respective backward complex domain are the same.

With DFTI_COMPLEX_COMPLEX storage, complex-valued data sequences are referenced by a single complex parameter (array) AZ so that a complex-valued element \(z_{k_{1}, k_{2}, \ldots, k_{d}}\) of the m-th d-dimensional sequence is located at AZ[m*distance + stride \(0+k_{1} *\) stride \(_{1}+k_{2}{ }^{*}\) stride \(_{2}+\ldots k_{d}{ }^{*}\) strided] as a structure consisting of the real and imaginary parts.

This code illustrates the use of the DFTI_COMPLEX_COMPLEX storage:
```

complex *AZ = malloc(N1*N2*N3*M * sizeof(AZ[O]));
MKL_LONG ios[4], iodist; // input/output strides and distance

```
```

// on input: Z{k1,k2,k3,m}
// = AZ[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]
status = DftiComputeForward(desc, AZ);
// on output: Z{k1,k2,k3,m}
// = AZ[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]

```

With the DFTI_REAL_REAL storage, complex-valued data sequences are referenced by two real parameters \(A R\) and AI so that a complex-valued element \(z_{k_{1}, k_{2}, \ldots, k_{d}}\) of the m-th sequence is computed as
```

AR[m*distance + stride0 + k1*stride1 + k2*stride2+ ... kd*strided] + V (-1)*
AI[m*distance + stride0 + k1*stride1 + k2*stride2+ ... kd*strided].

```

This code illustrates the use of the DFTI_REAL_REAL storage:
```

float *AR = malloc(N1*N2*N3*M * sizeof(AR[0]));
float *AI = malloc(N1*N2*N3*M * sizeof(AI[0]));
MKL_LONG ios[4], iodist; // input/output strides and distance
// on input: Z{k1,..,kd,m}
// = AR[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]
// + I*AI[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]
status = DftiComputeForward(desc, AR, AI);
// on output: Z{k1,..,kd,m}
// = AR[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]
// + I*AI[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]

```

\section*{DFTI_REAL_STORAGE: storage schemes for a real domain}

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface supports only one configuration value for this storage scheme: DFTI_REAL_REAL. With the DFTI_REAL_REAL storage, real-valued data sequences in a real domain are referenced by one real parameter AR so that real-valued element of the m-th sequence is located as AR[m*distance + stride0 \(+k_{1} *\) stride \(_{1}+k_{2}{ }^{*}\) stride \({ }_{2}+\ldots k_{d}\) strided].

\section*{DFTI_CONJUGATE_EVEN_STORAGE: storage scheme for a conjugate-even domain}

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface supports two configuration values for this parameter: DFTI_COMPLEX_COMPLEX (default) and DFTI_COMPLEX_REAL (for 1D problems only). The conjugate-even symmetry of the data enables storing only about a half of the whole mathematical result, so that one part of it can be directly referenced in the memory while the other part can be reconstructed depending on the selected storage configuration.

With the DFTI_COMPLEX_COMPLEX storage, the complex-valued data sequences in the conjugate-even domain are referenced by one complex parameter AZ so that a complex-valued element \(z_{k_{1}, k_{2}, \ldots, k_{d}}\) of the mth sequence can be referenced or reconstructed as described below.

Consider a \(d\)-dimensional real-to-complex transform:
\[
Z_{k_{1}, k_{2}, \ldots, k_{d}} \equiv \sum_{n_{1}=0}^{N_{1}-1} \cdots \sum_{n_{d}=0}^{N_{d}-1} R_{n_{1}, n_{2}, \ldots, n_{d}} e^{\frac{-2 \pi i}{N_{1}} k_{1} \cdot n_{1}} \cdots e^{\frac{-2 \pi i}{N_{d}} k_{d} \cdot n_{d}}
\]

Because the input sequence \(R\) is real-valued, the mathematical result \(Z\) has conjugate-even symmetry:
\(z_{k_{1}, k_{2}}, \ldots, k_{d}=\) conjugate \(\left(z_{N_{1}-k_{1}}, N_{2}-k_{2}, \ldots, N_{d}-k_{d}\right)\),
where index arithmetic is performed modulo the length of the respective dimension. Obviously, the first element of the result is real-valued:
\(z_{0}, 0, \ldots, 0=\) conjugate \(\left(z_{0}, 0, \ldots, 0\right)\).

For dimensions with even lengths, some of the other elements are real-valued too. For example, if \(N_{s}\) is even, \(z_{0}, 0, \ldots, N_{s} / 2,0, \ldots, 0=\) conjugate \(\left(z_{0}, 0, \ldots, N_{s} / 2,0, \ldots, 0\right)\).
With the conjugate-even symmetry, approximately a half of the result suffices to fully reconstruct it. For an arbitrary dimension \(h\), it suffices to store elements \(z_{k_{1}, \ldots, k_{h}}, \ldots, k_{d}\) for the following indices:
- \(k_{h}=0, \ldots,\left\lfloor N_{h} / 2\right\rfloor\)
- \(k_{i}=0, \ldots, N_{i}-1\), where \(i=1, \ldots, d\) and \(i \neq h\)

The symmetry property enables reconstructing the remaining elements: for \(k_{h}=\left\lfloor N_{h} / 2\right\rfloor+1, \ldots, N_{h}-1\). In the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface, the halved dimension is the last dimension.
The following code illustrates usage of the DFTI_COMPLEX_COMPLEX storage for a conjugate-even domain:
```

float *AR = malloc(N1*N2*M * sizeof(AR[0]));
complex *AZ = malloc(N1*(N2/2+1)*M * sizeof(AZ[0]));
MKL_LONG is[3], os[3], idist, odist; // input and output strides and distance
// on input: R{k1,k2,m}
// = AR[is[0] + k1*is[1] + k2*is[2] + m*idist]
status = DftiComputeForward(desc, R, C);
// on output:
// for k2=0...N2/2: Z{k1,k2,m} = AZ[os[0]+k1*os[1]+k2*os[2]+m*odist]
// for k2=N2/2+1...N2-1: Z{k1,k2,m} = conj(AZ[os[0]+(N1-k1)%N1*os[1]
// +(N2-k2)%N2*os[2]+m*odist])

```

For the backward transform, the input and output parameters and layouts exchange roles: set the strides describing the layout in the backward/forward domain as input/output strides, respectively. For example:
```

status = DftiSetValue(desc, DFTI_INPUT_STRIDES, fwd_domain_strides);
status = DftiSetValue(desc, DFTI_OUTPUT_STRIDES, bwd_domain_strides);
status = DftiCommitDescriptor(desc);
status = DftiComputeForward(desc, ...);
status = DftiSetValue(desc, DFTI_INPUT_STRIDES, bwd_domain_strides);
status = DftiSetValue(desc, DFTI_OUTPUT_STRIDES, fwd_domain_strides);
status = DftiCommitDescriptor(desc);
status = DftiComputeBackward(desc, ...);

```

\section*{Important}

For in-place transforms, ensure the first element of the input data has the same location as the first element of the output data for each dimension.

\section*{See Also}

DftiSetValue

\section*{DFTI_PACKED_FORMAT}

The result of the forward transform of real data is a conjugate-even sequence. Due to the symmetry property, only a part of the complex-valued sequence is stored in memory. The combination of the DFTI_PACKED_FORMAT and DFTI_CONJUGATE_EVEN_STORAGE configuration parameters defines how the conjugate-even sequence data is packed. If DFTI_CONJUGATE_EVEN_STORAGE is set to DFTI_COMPLEX_COMPLEX (default), the only possible value of \(\overline{D F T I}\) PACKED_FORMAT is DFTI_CCE_FORMAT; this association of configuration parameters is supported for transforms of any dimension. For a description of the corresponding packed format, see DFTI CONJUGATE EVEN_STORAGE. For one-dimensional transforms (only) with DFTI_CONJUGATE_EVEN_STORAGE set to DFTI_COMPLEX_REAL, the DFTI_PACKED_FORMAT configuration parameter must be DFTI_CCS_FORMAT, DFTI_PACK_FORMAT, or DFTI_PERM_FORMAT. The corresponding packed formats are explained and illustrated below.

\section*{DFTI_CCS_FORMAT for One-dimensional Transforms}

The following figure illustrates the storage of a one-dimensional (1D) size- \(N\) conjugate-even sequence in a real array for the CCS, PACK, and PERM packed formats. The CCS format requires an array of size \(N+2\), while the other formats require an array of size \(N\). Zero-based indexing is used.

Storage of a 1D Size-N Conjugate-even Sequence in a Real Array
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{n}=\) & 0 & 1 & 2 & 3 & ... & 2L-2 & 2L-1 & 2 L & 2L+1 & \multirow[t]{4}{*}{\(2 \mathrm{~L}+2\)} \\
\hline CCS, \(\mathrm{N}=2 \mathrm{~L}\) & \(\mathrm{R}_{0}\) & 0 & \(\mathrm{R}_{1}\) & \(\mathrm{I}_{1}\) & ... & \(\mathrm{R}_{\mathrm{L}, 1}\) & \(\mathrm{I}_{\mathrm{L}, 1}\) & \(\mathrm{R}_{\mathrm{L}}\) & 0 & \\
\hline \(\mathrm{PACK}, \mathrm{N}=2 \mathrm{~L}\) & \(\mathrm{R}_{0}\) & \(\mathrm{R}_{1}\) & \(\mathrm{I}_{1}\) & \(\mathrm{R}_{2}\) & ... & \(\mathrm{I}_{\mathrm{L} \cdot 1}\) & \(\mathrm{R}_{\mathrm{L}}\) & & & \\
\hline PERM, \(\mathrm{N}=2 \mathrm{~L}\) & \(\mathrm{R}_{0}\) & \(\mathrm{R}_{\mathrm{L}}\) & \(\mathrm{R}_{1}\) & \(\mathrm{I}_{1}\) & ... & \(\mathrm{R}_{\mathrm{L}-1}\) & \(\mathrm{I}_{\mathrm{L}, 1}\) & & & \\
\hline CCS, \(\mathrm{N}=2 \mathrm{~L}+1\) & \(\mathrm{R}_{0}\) & 0 & \(\mathrm{R}_{1}\) & \(\mathrm{I}_{1}\) & ... & \(\mathrm{R}_{\mathrm{L}-1}\) & \(\mathrm{I}_{\mathrm{L}, 1}\) & \(\mathrm{R}_{\mathrm{L}}\) & \(\mathrm{I}_{\text {L }}\) & \({ }_{\substack{\text { not } \\ \text { used }}}\) \\
\hline PACK, \(\mathrm{N}=\mathbf{2 L + 1}\) & \(\mathrm{R}_{0}\) & \(\mathrm{R}_{1}\) & \(\mathrm{I}_{1}\) & \(\mathrm{R}_{2}\) & ... & \(\mathrm{I}_{\text {L-1 }}\) & \(\mathrm{R}_{\mathrm{L}}\) & \(\mathrm{I}_{\mathrm{L}}\) & & \\
\hline PERM, \(\mathbf{N}=\mathbf{2 L + 1}\) & \(\mathrm{R}_{0}\) & \(\mathrm{R}_{1}\) & \(\mathrm{I}_{1}\) & \(\mathrm{R}_{2}\) & ... & \(\mathrm{I}_{\mathrm{L}-1}\) & \(\mathrm{R}_{\mathrm{L}}\) & \(\mathrm{I}_{\mathrm{L}}\) & & \\
\hline
\end{tabular}

NOTE For storage of a one-dimensional conjugate-even sequence in a real array, CCS is in the same format as CCE.

The real and imaginary parts of the complex-valued conjugate-even sequence \(Z_{k}\) are located in a real-valued array AC as illustrated by figure "Storage of a 1D Size- \(N\) Conjugate-even Sequence in a Real Array" and can be used to reconstruct the whole conjugate-even sequence as follows:
```

float *AR; // malloc(sizeof(float)*N)
float *AC; // malloc(sizeof(float)*(N+2))
status = DftiSetValue(desc, DFTI_PACKED_FORMAT, DFTI_CCS_FORMAT);
// on input: R{k} = AR[k]
status = DftiComputeForward(desc, AR, AC); // real-to-complex FFT
// on output:
// for k=0...N/2: Z{k} = AC[2*k+0] + I*AC[2*k+1]
// for k=N/2+1...N-1: Z{k}=AC[2*(N-k)%N + 0] - I*AC[2*(N-k)%N + 1]

```

\section*{DFTI_PACK_FORMAT for One-dimensional Transforms}

The real and imaginary parts of the complex-valued conjugate-even sequence \(Z_{k}\) are located in a real-valued array AC as illustrated by figure "Storage of a 1D Size- \(N\) Conjugate-even Sequence in a Real Array" and can be used to reconstruct the whole conjugate-even sequence as follows:
```

float *AR; // malloc(sizeof(float)*N)
float *AC; // malloc(sizeof(float)*N)
status = DftiSetValue(desc, DFTI_PACKED_FORMAT, DFTI_PACK_FORMAT);
// on input: R{k} = AR[k]
status = DftiComputeForward(desc, AR, AC); // real-to-complex FFT
// on output: Z{k} = re + I*im, where

```
```

// if (k == 0) {
// re = AC[0];
// im = 0;
// } else if (k == N-k) {
// re = AC[2*k-1];
// im = 0;
// } else if (k <= N/2) {
// re = AC[2*k-1];
// im = AC[2*k-0];
// } else {
// re = AC[2* (N-k)-1];
// im = -AC[2* (N-k)-0];
// }

```

\section*{DFTI_PERM_FORMAT for One-dimensional Transforms}

The real and imaginary parts of the complex-valued conjugate-even sequence \(Z_{k}\) are located in real-valued array AC as illustrated by figure "Storage of a 1D Size- \(N\) Conjugate-even Sequence in a Real Array" and can be used to reconstruct the whole conjugate-even sequence as follows:
```

float *AR; // malloc(sizeof(float)*N)
float *AC; // malloc(sizeof(float)*N)
status = DftiSetValue(desc, DFTI_PACKED_FORMAT, DFTI_PERM_FORMAT);
// on input: R{k} = AR[k]
status = DftiComputeForward(desc, AR, AC); // real-to-complex FFT
// on output: Z{k} = re + I*im, where
// if (k == 0) {
// re = AC[0];
// im = 0;
// } else if (k == N-k) {
// re = AC[1];
// im = 0;
// } else if (k<= N/2) {
// re = AC[2*k+0 - N%2];
// im = AC[2*k+1 - N%2];
// } else {
// re = AC[2* (N-k)+0 - N%2];
// im = -AC[2* (N-k)+1 - N%2];
// }

```

\section*{See Also}
```

DftiSetValue

```

\section*{DFTI_WORKSPACE}

The computation step for some FFT algorithms requires a scratch space for permutation or other purposes. To manage the use of the auxiliary storage, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) enables you to set the configuration parameterDFTI_WORKSPACE with the following values:
```

DFTI_ALLOW
DFTI_AVOID

```
(default) Permits the use of the auxiliary storage.
Instructs Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) to avoid using the auxiliary storage if possible.

\section*{See Also}

DftiSetValue

\section*{DFTI_COMMIT_STATUS}

The DFTI_COMMIT_STATUS configuration parameter indicates whether the descriptor is ready for computation. The parameter has two possible values:
```

DFTI_UNCOMMITTED Default value, set after a successful call of DftiCreateDescriptor.
DFTI_COMMITTED The value after a successful call to DftiCommitDescriptor.

```

A computation function called with an uncommitted descriptor returns an error.
You cannot directly set this configuration parameter in a call to DftiSetValue, but a change in the configuration of a committed descriptor may change the commit status of the descriptor to DFTI_UNCOMMITTED.

\section*{See Also}

DftiCreateDescriptor
DftiCommitDescriptor
DftiSetValue

\section*{DFTI_ORDERING}

Some FFT algorithms apply an explicit permutation stage that is time consuming [4]. The exclusion of this step is similar to applying an FFT to input data whose order is scrambled, or allowing a scrambled order of the FFT results. In applications such as convolution and power spectrum calculation, the order of result or data is unimportant and thus using scrambled data is acceptable if it leads to better performance. The following options are available in Intel® oneAPI Math Kernel Library (oneMKL):
- DFTI_ORDERED: Forward transform data ordered, backward transform data ordered (default option).
- DFTI_BACKWARD_SCRAMBLED: Forward transform data ordered, backward transform data scrambled.

Table "Scrambled Order Transform" tabulates the effect of this configuration setting.

\section*{Scrambled Order Transform}
\begin{tabular}{lll}
\hline & DftiComputeForward & DftiComputeBackward \\
\hline DFTI_ORDERING & Input \(\rightarrow\) Output & Input \(\rightarrow\) Output \\
DFTI_ORDERED & ordered \(\rightarrow\) ordered & ordered \(\rightarrow\) ordered \\
DFTI_BACKWARD_SCRAMBLED & ordered \(\rightarrow\) scrambled & scrambled \(\rightarrow\) ordered \\
\hline
\end{tabular}

\section*{NOTE}

The word "scrambled" in this table means "permit scrambled order if possible". In some situations permitting out-of-order data gives no performance advantage and an implementation may choose to ignore the suggestion.

\section*{See Also}

DftiSetValue

\section*{DFTI_DESTROY_INPUT}

Allowing the library to overwrite your input data in case of out-of-place transforms may be an appropriate alternative to using DFTI_WORKSPACE to reduce the memory footprint of your application. Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) enables you to communicate whether this is allowed via the configuration parameter DFTI_DESTROY_INPUT, with the following values:

The default. Instructs the library to leave the input data unchanged.

\section*{See Also \\ DftiSetValue}

\section*{FFT Descriptor Manipulation Functions}

This category contains the following functions: create a descriptor, commit a descriptor, copy a descriptor, and free a descriptor.

\section*{DftiCreateDescriptor}

Allocates the descriptor data structure and initializes it with default configuration values.

\section*{Syntax}
```

status = DftiCreateDescriptor(\&desc_handle, precision, forward_domain, dimension,
length);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
precision & enum \\
forward_domain & enum \\
dimension & MKL_LONG \\
length & MKL_LONG if dimension = 1. \\
& Array of type MKL_LONG otherwise.
\end{tabular}

\section*{Output Parameters}

\section*{Name}
```

desc_handle
status

```

\section*{Type}

DFTI_DESCRIPTOR_HANDLE
MKL_LONG

\section*{Description}

Precision of the transform: DFTI_SINGLE or DFTI_DOUBLE.

Forward domain of the transform:
DFTI_COMPLEX or DFTI_REAL.
Dimension of the transform.
Length of the transform for a one-dimensional transform. Lengths of each dimension for a multi-dimensional transform.

\section*{Description}

This function allocates memory for the descriptor data structure and instantiates it with all the default configuration settings for the precision, forward domain, dimension, and length of the desired transform. Because memory is allocated dynamically, the result is actually a pointer to the created descriptor. This function is slightly different from the "initialization" function that can be found in software packages or libraries that implement more traditional algorithms for computing an FFT. This function does not perform any significant computational work such as computation of twiddle factors. The function DftiCommitDescriptor does this work after the function DftiSetValue has set values of all necessary parameters.

The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Prototype}
```

/* Note that the preprocessor definition provided below only illustrates
* that the actual function called may be determined at compile time.
* You can rely only on the declaration of the function.
* For precise definition of the preprocessor macro, see the include/mkl_dfti.h

* file in the Intel MKL directory.
*/
MKL_LONG DftiCreateDescriptor(DFTI_DESCRIPTOR_HANDLE * pHandle,
enum DFTI_CONFIG_VALUE precision,
enum DFTI_CONFIG_VALUE domain,
MKL_LONG dimension, ... /* length/lengths */);
\#define DftiCreateDescriptor(desc,prec,domain,dim,sizes) \
((prec)==DFTI_SINGLE \&\& (dim)==1) ? \
some_actual_fünction_s1d((desc),(domain),(MKL_LONG)(sizes)) : \
. . .

```

Variable length/lengths is interpreted as a scalar (MKL_LONG) or an array (MKL_LONG*), depending on the value of parameter dimension. If the value of parameter precision is known at compile time, an optimizing compiler retains only the call to the respective specific function, thereby reducing the size of the statically linked application. Avoid direct calls to the specific functions used in the preprocessor macro definition, because their interface may change in future releases of the library. If the use of the macro is undesirable, you can safely undefine it after inclusion of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT header file, as follows:
```

\#include "mkl_dfti.h"
\#undef DftiCreateDescriptor

```

\section*{See Also}

DFTI_PRECISION configuration parameter DFTI_FORWARD_DOMAIN configuration parameter
DFTI_DIMENSION, DFTI_LENGTHS configuration parameters

\section*{Configuration Parameters, summary table}

\section*{DftiCommitDescriptor}

Performs all initialization for the actual FFT computation.

\section*{Syntax}
```

status = DftiCommitDescriptor(desc_handle);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}

\section*{Name}
```

desc_handle

```

\section*{Type}

DFTI_DESCRIPTOR_HANDLE

\section*{Description}

FFT descriptor.

\section*{Output Parameters}

\author{
Name \\ desc_handle \\ status
}
Type
DFTI_DESCRIPTOR_HANDLE
MKL_LONG

\section*{Description}

Updated FFT descriptor.
Function completion status.

\section*{Description}

This function completes initialization of a previously created descriptor, which is required before the descriptor can be used for FFT computations. Typically, committing the descriptor performs all initialization that is required for the actual FFT computation. The initialization done by the function may involve exploring different factorizations of the input length to find the optimal computation method.
If you call the DftiSetValue function to change configuration parameters of a committed descriptor (see Descriptor Configuration Functions), you must re-commit the descriptor before invoking a computation function. Typically, a committal function call is immediately followed by a computation function call (see FFT Computation Functions).

The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Prototype}
```

MKL_LONG DftiCommitDescriptor(DFTI_DESCRIPTOR_HANDLE);

```

\section*{DftiFreeDescriptor}

Frees the memory allocated for a descriptor.

\section*{Syntax}
```

status = DftiFreeDescriptor(\&desc handle);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}

\section*{Name}
desc_handle

\section*{Type}

DFTI_DESCRIPTOR_HANDLE

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
desc_handle & DFTI_DESCRIPTOR_HANDLE \\
status & MKL_LONG \\
Description & \\
This function frees all memory allocated for a descriptor.
\end{tabular}

\section*{NOTE}

Memory allocation/deallocation inside Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) is managed by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) memory management software. So, even after successful completion of FreeDescriptor, the memory space may continue being allocated for the application because the memory management software sometimes does not return the memory space to the OS, but considers the space free and can reuse it for future memory allocation. See Example mkl_free_buffers: Usage with FFT Functions on how to use Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) memory management software and release memory to the OS.

The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Prototype}
```

MKL_LONG DftiFreeDescriptor(DFTI_DESCRIPTOR_HANDLE *);

```

\section*{DftiCopyDescriptor}

Makes a copy of an existing descriptor.

\section*{Syntax}
```

status = DftiCopyDescriptor(desc_handle_original, \&desc_handle_copy);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
```

Name
desc_handle_original DFTI_DESCRIPTOR_HANDLE
DFTI_DESCRIPTOR_HANDLE

```

\section*{Description}

The FFT descriptor to copy.
The FFT descriptor to copy.

\section*{Output Parameters}
```

Name
dfti_handle_dst
status

```

Type
DFTI_DESCRIPTOR_HANDLE

MKL_LONG

\section*{Description}

The copy of the FFT descriptor.

Function completion status.

\section*{Description}
```

This function makes a copy of an existing descriptor. The resulting descriptor desc_handle_copy and the existing descriptor desc_handle_original specify the same configuration of the transform, but do not have any memory areas in common ("deep copy").
The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

```

\section*{Prototype}
```

MKL_LONG DftiCopyDescriptor(DFTI_DESCRIPTOR_HANLDE, DFTI_DESCRIPTOR_HANDLE *);

```

\section*{FFT Descriptor Configuration Functions}

This category contains the following functions: the value setting function DftiSetValue sets one particular configuration parameter to an appropriate value, and the value-getting function DftiGetValue reads the value of one particular configuration parameter. While all configuration parameters are readable, you cannot set a few of them. Some of these contain fixed information of a particular implementation such as version number, or dynamic information, which is derived by the implementation during execution of one of the functions. See Configuration Settings for details.

\section*{DftiSetValue}

Sets one particular configuration parameter with the specified configuration value.

\section*{Syntax}
```

status = DftiSetValue(desc_handle, config_param, config_val);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
desc_handle & DFTI_DESCRIPTOR_HANDLE & FFT descriptor. \\
config_param & enum & Configuration parameter. \\
config_val & \begin{tabular}{l} 
Depends on the configuration \\
parameter.
\end{tabular} & Configuration value.
\end{tabular}

\section*{Output Parameters}
Name
desc_handle
status

\section*{Type}

DFTI_DESCRIPTOR_HANDLE
MKL_LONG

\section*{Description}

Updated FFT descriptor.
Function completion status.

\section*{Description}

This function sets one particular configuration parameter with the specified configuration value. Each configuration parameter is a named constant, and the configuration value must have the corresponding type, which can be a named constant or a native type. For available configuration parameters and the corresponding configuration values, see:
- DETI_PRECISION
- DFTI_FORWARD_DOMAIN
- DFTI_DIMENSION, DFTI_LENGTHS
- DFTI_PLACEMENT
- DFTI_FORWARD_SCALE, DFTI_BACKWARD_SCALE
- DFTI_THREAD_LIMIT
- DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES
- DFTI_NUMBER_OF_TRANSFORMS
- DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE
- DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, DFTI_CONJUGATE_EVEN_STORAGE
- DFTI_PACKED_FORMAT
- DFTI_WORKSPACE
- DFTI_ORDERING
- DFTI_DESTROY_INPUT

You cannot use the DftiSetValue function to change configuration parameters DFTI_FORWARD_DOMAIN, DFTI_PRECISION, DFTI_DIMENSION, and DFTI_LENGTHS. Use the DftiCreateDescriptor function to set them.
Function calls needed to configure an FFT descriptor for a particular call to an FFT computation function are summarized in Configuring and Computing an FFT in C C++.

The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Prototype}
```

MKL_LONG DftiSetValue(DFTI_DESCRIPTOR_HANDLE, DFTI_CONFIG_PARAM , ...);

```

\section*{See Also}

Configuration Settings for more information on configuration parameters.
DftiCreateDescriptor
DftiGetValue
DftiGetValue
Gets the configuration value of one particular configuration parameter.

\section*{Syntax}
```

status = DftiGetValue(desc_handle, config_param, \&config_val);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
desc_handle & DFTI_DESCRIPTOR_HANDLE & FFT descriptor. \\
config_param & enum & \begin{tabular}{l} 
Configuration parameter. See Table \\
"Configuration Parameters" for allowable values \\
of config_param.
\end{tabular}
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
config_val & \begin{tabular}{l} 
Depends on the configuration \\
parameter.
\end{tabular} & Configuration value. \\
status & MKL_LONG & Function completion status.
\end{tabular}

\section*{Description}

This function gets the configuration value of one particular configuration parameter. Each configuration parameter is a named constant, and the configuration value must have the corresponding type, which can be a named constant or a native type. For available configuration parameters and the corresponding configuration values, see:
- DFTI_PRECISION
- DFTI_FORWARD_DOMAIN
- DFTI_DIMENSION, DFTI_LENGTH
- DETI_PLACEMENT
- DFTI_FORWARD_SCALE, DFTI_BACKWARD_SCALE
- DFTI_THREAD_LIMIT
- DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES
- DFTI_NUMBER_OF_TRANSFORMS
- DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE
- DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, DFTI_CONJUGATE_EVEN_STORAGE
- DFTI_PACKED_FORMAT
- DFTI_WORKSPACE
- DFTI_COMMIT_STATUS
- DFTI_ORDERING
- DFTI_DESTROY_INPUT

The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Prototype}
```

 MKL_LONG DftiGetValue(DFTI_DESCRIPTOR_HANDLE,
 DFTI_CONFIG_PARAM ,
...);

```

Configuration Settings for more information on configuration parameters.
DftiSetValue

\section*{FFT Computation Functions}

This category contains the following functions: compute the forward transform and compute the backward transform.

DftiComputeForward
Computes the forward FFT.
Syntax
```

status = DftiComputeForward(desc_handle, x_inout);

```
```

status = DftiComputeForward(desc_handle, x_in, y_out);
status = DftiComputeForward(desc_handle, xre_inout, xim_inout);
status = DftiComputeForward(desc_handle, xre_in, xim_in, yre_out, yim_out);

```

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
desc_handle & DFTI_DESCRIPTOR_HANDLE & FFT descriptor. \\
x_inout, x_in & \begin{tabular}{l} 
Array of type float or double depending \\
on the precision of the transform.
\end{tabular} & \begin{tabular}{l} 
Data to be transformed in case of a \\
real forward domain or, in the case of a \\
complex forward domain in association \\
with FTI_COMPLEX_COMPLEX, set for
\end{tabular} \\
& \begin{tabular}{ll} 
DFTI_COMPLEX_STORAGE.
\end{tabular} \\
\begin{tabular}{ll} 
xre_inout, \\
xim_inout, \\
xre_in, xim_in
\end{tabular} & \begin{tabular}{l} 
Array of type float or double depending \\
on the precision of the transform.
\end{tabular} & \begin{tabular}{l} 
Real and imaginary parts of the data to \\
be transformed in the case of a \\
complex forward domain.
\end{tabular}
\end{tabular}

The suffix in parameter names corresponds to the value of the configuration parameter DFTI_PLACEMENT as follows:
- _inout to DFTI_INPLACE
- __in to DFTI_NOT_INPLACE

\section*{Output Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline y_out & Array of type float or double depending on the precision of the transform. & The transformed data in case of a real backward domain or, in the case of a complex forward domain in association with DFTI_COMPLEX_COMPLEX, set for DFTI_COMPLEX_STORAGE. \\
\hline ```
xre_inout,
xim_inout,
yre_out, yim_out
``` & Array of type float or double depending on the precision of the transform. & Real and imaginary parts of the transformed data in the case of a complex forward domain in association with DFTI_REAL_REAL set for DFTI_COMPLEX_STORAGE. \\
\hline status & MKL_LONG & Function completion status. \\
\hline
\end{tabular}

The suffix in parameter names corresponds to the value of the configuration parameter DFTI_PLACEMENT as follows:
- _inout to DFTI_INPLACE
- _out to DFTI_NOT_INPLACE

\section*{Include Files}
- mkl.h

\section*{Description}

The DftiComputeForward function accepts the descriptor handle parameter and one or more data parameters. Given a successfully configured and committed descriptor, this function computes the forward FFT, that is, the transform with the minus sign in the exponent, \(\delta=-1\).

The DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, and DFTI_CONJUGATE_EVEN_STORAGE configuration parameters define the layout of the input and output data and must be properly set in a call to the DftiSetValue function. The forward domain and the precision of the transform are determined by the configuration settings DFTI_FORWARD_DOMAIN and DFTI_PRECISION, which are during construction of the descriptor.

The FFT descriptor must be properly configured prior to the function call. Function calls needed to configure an FFT descriptor for a particular call to an FFT computation function are summarized in Configuring and Computing an FFT in C C++.

The number and types of the data parameters that the function requires may vary depending on the configuration of the descriptor. This variation is accommodated by variable parameters.
The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Prototype}
```

MKL_LONG DftiComputeForward( DFTI_DESCRIPTOR_HANDLE, void*, ... );

```
```

See Also
Configuration Settings
DFTI_FORWARD_DOMAIN
DFTI_PLACEMENT
DFTI_PACKED_FORMAT
DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE,DFTI_CONJUGATE_EVEN_STORAGE
DFTI_DIMENSION, DFTI_LENGTHS
DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE
DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES
DftiComputeBackward
DftiSetValue

```
DftiComputeBackward
Computes the backward FFT.
Syntax
```

status = DftiComputeBackward(desc_handle, x_inout);
status = DftiComputeBackward(desc_handle, y_in, x_out);
status = DftiComputeBackward(desc_handle, xre_inout, xim_inout);
status = DftiComputeBackward(desc_handle, yre_in, yim_in, xre_out, xim_out);

```

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
desc_handle & DFTI_DESCRIPTOR_HANDLE & FFT descriptor.
\end{tabular}
\begin{tabular}{lll}
Name & Type & Description \\
x_inout, y_in & \begin{tabular}{l}
Array of type float or double depending \\
on the precision of the transform.
\end{tabular} & \begin{tabular}{l}
Data to be transformed in case of a \\
real forward domain or, in the case of a \\
complex forward domain in association \\
with DFTI_COMPLEX_COMPLEX, set for
\end{tabular} \\
xre_inout, & \begin{tabular}{l}
DFTI_COMPLEX_STORAGE.
\end{tabular} \\
\begin{tabular}{ll}
Array of type float or double depending \\
yre_in, yim_in
\end{tabular} & \begin{tabular}{l}
Real and imaginary parts of the data to \\
be transformed in the case of a \\
complex forward domain in association
\end{tabular} \\
on the precision of the transform.
\end{tabular}\(\quad\)\begin{tabular}{l}
with DFTI_REAL_REAL set for
\end{tabular}

The suffix in parameter names corresponds to the value of the configuration parameter DFTI_PLACEMENT as follows:
- _inout to DFTI_INPLACE
- _in to DFTI_NOT_INPLACE

\section*{Output Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline x_out & Array of type float or double depending on the precision of the transform. & The transformed data in case of a real forward domain or, in the case of a complex forward domain in association with DFTI_COMPLEX_COMPLEX, set for DFTI_COMPLEX_STORAGE. \\
\hline \[
\begin{aligned}
& \text { xre_inout, } \\
& \text { xim_inout, } \\
& \text { xre_out, xim_out }
\end{aligned}
\] & Array of type float or double depending on the precision of the transform. & Real and imaginary parts of the transformed data in the case of a complex forward domain in association with DFTI_REAL_REAL set for DFTI_COMPLEX_STORAGE. \\
\hline status & MKL_LONG & Function completion status. \\
\hline
\end{tabular}

The suffix in parameter names corresponds to the value of the configuration parameter DFTI_PLACEMENT as follows:
- _inout to DFTI_INPLACE
- _out to DFTI_NOT_INPLACE

\section*{Include Files}
- mkl.h

\section*{Description}

The function accepts the descriptor handle parameter and one or more data parameters. Given a successfully configured and committed descriptor, the DftiComputeBackward function computes the inverse FFT, that is, the transform with the plus sign in the exponent, \(\delta=+1\).

The DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, and DFTI_CONJUGATE_EVEN_STORAGE configuration parameters define the layout of the input and output data and must be properly set in a call to the DftiSetValue function. The forward domain and the precision of the transform are determined by the configuration settings DFTI_FORWARD_DOMAIN and DFTI_PRECISION, which are during construction of the descriptor.
The FFT descriptor must be properly configured prior to the function call. Function calls needed to configure an FFT descriptor for a particular call to an FFT computation function are summarized in Configuring and Computing an FFT in C C++.

The number and types of the data parameters that the function requires may vary depending on the configuration of the descriptor. This variation is accommodated by variable parameters.

The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

\section*{Prototype}
```

MKL_LONG DftiComputeBackward( DFTI_DESCRIPTOR_HANDLE, void *, ... );

```
```

See Also
Configuration Settings
DFTI FORWARD DOMAIN
DFTI_PLACEMENT
DFTI_PACKED_FORMAT
DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, DFTI_CONJUGATE_EVEN_STORAGE
DFTI_DIMENSION, DFTI_LENGTHS
DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE
DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES
DftiComputeForward
DftiSetValue

```

\section*{Configuring and Computing an FFT in C/C++}

The table below summarizes information on configuring and computing an FFT in C/C ++ for all kinds of transforms and possible combinations of input and output domains.
\begin{tabular}{|c|c|c|c|}
\hline FFT to Compute & Input Data & Output Data & Required FFT Function Calls \\
\hline Complex-tocomplex, in-place, forward or backward & Interleaved complex numbers & Interleaved complex numbers & ```
/* Configure a Descriptor */
status = DftiCreateDescriptor(&hand,
<precision>, DFTI_COMPLEX, <dimension>,
<sizes>);
status = DftiCommitDescriptor(hand);
/* Compute an FFT */
/* forward FFT */
status = DftiComputeForward(hand, X_inout);
/* or backward FFT */
status = DftiComputeBackward(hand, X_inout);
``` \\
\hline Complex-tocomplex, out-of-place, & Interleaved complex numbers & Interleaved complex numbers & ```
/* Configure a Descriptor */
status = DftiCreateDescriptor(&hand,
<precision>, DFTI_COMPLEX, <dimension>,
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FFT to Compute & Input Data & Output Data & Required FFT Function Calls \\
\hline forward or backward & & & ```
<sizes>);
status = DftiSetValue (hand, DFTI_PLACEMENT,
DFTI_NOT_INPLACE);
status = DftiCommitDescriptor(hand);
/* Compute an FFT */
/* forward FFT */
status = DftiComputeForward(hand, X_in,
Y_out);
/* or backward FFT */
status = DftiComputeBackward (hand, X_in,
Y_out);
``` \\
\hline Complex-tocomplex, in-place, forward or backward & Split-complex numbers & Split-complex numbers & ```
/* Configure a Descriptor */
status = DftiCreateDescriptor(&hand,
<precision>, DFTI_COMPLEX, <dimension>,
<sizes>);
status = DftiSetValue(hand,
DFTI_COMPLEX_STORAGE, DFTI_REAL_REAL);
status = DftiCommitDescriptor(hand);
/* Compute an FFT */
/* forward FFT */
status = DftiComputeForward(hand, Xre_inout,
Xim_inout);
/* or backward FFT */
status = DftiComputeBackward(hand, Xre_inout,
Xim_inout);
``` \\
\hline Complex-tocomplex, out-of-place, forward or backward & Split-complex numbers & Split-complex numbers & ```
/* Configure a Descriptor */
status = DftiCreateDescriptor(&hand,
<precision>, DFTI_COMPLEX, <dimension>,
<sizes>);
status = DftiSetValue(hand,
DFTI_COMPLEX_STORAGE, DFTI_REAL_REAL);
status = DftiSetValue (hand, DFTI_PLACEMENT,
DFTI_NOT_INPLACE);
status = DftiCommitDescriptor(hand);
/* Compute an FFT */
/* forward FFT */
status = DftiComputeForward(hand, Xre_in,
Xim_in, Yre_out, Yim_out);
/* ō backwärd FFT `/
status = DftiComputeBackward(hand, Xre_in,
Xim_in, Yre_out, Yim_out);
``` \\
\hline Real-to-complex, in-place, forward & Real numbers & Numbers in the CCE format & ```
/* Configure a Descriptor */
status = DftiCreateDescriptor(&hand,
<precision>, DFTI_REAL, <dimension>, <sizes>);
status = DftiSetValue(hand,
DFTI_CONJUGATE_EVEN_STORAGE,
DFTI_COMPLEX_COMPLEX);
status = DftiSetValue(hand,
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FFT to Compute & Input Data & Output Data & Required FFT Function Calls \\
\hline & & & ```
DFTI_PACKED_FORMAT, DFTI_CCE_FORMAT);
status = DftiSetValue (hand,
DFTI_INPUT_STRIDES, <real_strides>);
status = DftiSetValue (hand,
DFTI_OUTPUT_STRIDES, <complex_strides>);
status = DftiCommitDescriptor(hand);
/* Compute an FFT */
status = DftiComputeForward(hand, X_inout);
``` \\
\hline Real-to-complex, out-of-place, forward & Real numbers & Numbers in the CCE format & ```
/* Configure a Descriptor */
status = DftiCreateDescriptor(&hand,
<precision>, DFTI_REAL, <dimension>, <sizes>);
status = DftiSetValue (hand,
DFTI_CONJUGATE_EVEN_STORAGE,
DFTI_COMPLEX_COMPLEX);
status = DftiSetValue(hand,
DFTI_PACKED_FORMAT, DFTI_CCE_FORMAT);
status = DftiSetValue (hand, DFTI_PLACEMENT,
DFTI_NOT_INPLACE);
status = DftiSetValue (hand,
DFTI_INPUT_STRIDES, <real_strides>);
status = DftiSetValue (hand,
DFTI_OUTPUT_STRIDES,
<complex_strides>);
status = DftiCommitDescriptor(hand);
/* Compute an FFT */
status = DftiComputeForward(hand, X_in,
Y_out);
``` \\
\hline Complex-to-real, in-place, backward & Numbers in the CCE format & Real numbers & ```
/* Configure a Descriptor */
status = DftiCreateDescriptor(&hand,
<precision>, DFTI_REAL, <dimension>, <sizes>);
status = DftiSetValue (hand,
DFTI_CONJUGATE_EVEN_STORAGE,
DFTI_COMPLEX_COMPLEX);
status = DftiSetValue (hand,
DFTI_PACKED_FORMAT, DFTI_CCE_FORMAT);
status = DftiSetValue (hand,
DFTI_INPUT_STRIDES, <complex_strides>);
status = DftiSetValue (hand,
DFTI_OUTPUT_STRIDES, <real_strides>);
status = DftiCommitDescriptor(hand);
/* Compute an FFT */
status = DftiComputeBackward(hand, X_inout);
``` \\
\hline Complex-to-real, out-of-place, backward & Numbers in the CCE format & Real numbers & ```
/* Configure a Descriptor */
status = DftiCreateDescriptor(&hand,
<precision>, DFTI_REAL, <dimension>, <sizes>);
status = DftiSetValue (hand,
DFTI_CONJUGATE_EVEN_STORAGE,
DFTI_COMPLEX_COMPLEX);
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline FFT to Compute & Input Data & Output Data & Required FFT Function Calls \\
\hline & & & ```
status = DftiSetValue (hand, DFTI_PLACEMENT,
DFTI_NOT_INPLACE);
status = DftiSetValue(hand,
DFTI_PACKED_FORMAT, DFTI_CCE_FORMAT);
status = DftiSetValue (hand,
DFTI_INPUT_STRIDES, <complex_strides>);
status = DftiSetValue (hand,
DFTI_OUTPUT_STRIDES, <real_strides>);
status = DftiCommitDescriptor(hand);
/* Compute an FFT */
status = DftiComputeBackward(hand, X_in,
Y_out);
``` \\
\hline
\end{tabular}

You can find C programs that illustrate configuring and computing FFTs in the examples/dftc/ subdirectory of your Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory.

\section*{Status Checking Functions}

All of the descriptor manipulation, FFT computation, and descriptor configuration functions return an integer value denoting the status of the operation. The functions in this category check that status. The first function is a logical function that checks whether the status reflects an error of a predefined class, and the second is an error message function that returns a character string.

\section*{DftiErrorClass}

Checks whether the status reflects an error of a predefined class.

\section*{Syntax}
```

predicate = DftiErrorClass(status, error_class);

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
status & MKL_LONG & \begin{tabular}{l} 
Completion status of a fast Fourier transform \\
(FFT) function.
\end{tabular} \\
error_class & MKL_LONG & Predefined error class.
\end{tabular}

\section*{Output Parameters}

Name predicate

\section*{Type}

MKL_LONG

\section*{Description}

Result of checking.

\section*{Description}

The FFT interface in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides a set of predefined error classeslisted in Table "Predefined Error Classes". They are named constants and have the type MKL_LONG.
\begin{tabular}{|c|c|}
\hline Named Constants & Comments \\
\hline DFTI_NO_ERROR & No error. The zero status belongs to this class. \\
\hline DFTI_MEMORY_ERROR & Usually associated with memory allocation. \\
\hline DFTI_INVALID_CONFIGURATION & Invalid settings in one or more configuration parameters. \\
\hline DFTI_INCONSISTENT_CONFIGURATION & Inconsistent configuration or input parameters. \\
\hline DFTI_NUMBER_OF_THREADS_ERROR & Number of OMP threads in the computation function is not equal to the number of OMP threads in the initialization stage (commit function). \\
\hline DFTI_MULTITHREADED_ERROR & Usually associated with a value that OMP routines return in case of errors. \\
\hline DFTI_BAD_DESCRIPTOR & Descriptor is unusable for computation. \\
\hline DFTI_UNIMPLEMENTED & Unimplemented legitimate settings; implementation dependent. \\
\hline DFTI_MKL_INTERNAL_ERROR & Internal library error. \\
\hline DFTI_1D_LENGTH_EXCEEDS_INT32 & Length of one of the dimensions exceeds \(2^{32}-1\) (4 bytes). \\
\hline DFTI_1D_MEMORY_EXCEEDS_INT32 & Data size of one of the transforms exceeds \(2^{31}-1\) bytes. \\
\hline
\end{tabular}

\section*{NOTE}

Use DFTI_1D_MEMORY_EXCEEDS_INT32 instead of DFTI_1D_LENGTH_EXCEEDS_INT32 for better accuracy.

The DftiErrorClass function returns a non-zero value if the status belongs to the predefined error class. To check whether a function call was successful, call DftiErrorClass with a specific error class. However, the zero value of the status belongs to the DFTI_NO_ERROR class and thus the zero status indicates successful completion of an operation. See Example "Using Status Checking Functions" for an illustration of correct use of the status checking functions.

\section*{NOTE}

It is incorrect to directly compare a status with a predefined class.

\section*{Prototype}
```

MKL_LONG DftiErrorClass(MKL_LONG , MKL_LONG);

```

\section*{DftiErrorMessage}

Generates an error message.
Syntax
```

error_message = DftiErrorMessage(status);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
status & MKL_LONG
\end{tabular}

\section*{Description}

Completion status of a function.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
error_message & Array of char
\end{tabular}
```

error_message

```

\section*{Description}

The character string with the error message.

\section*{Description}

The error message function generates an error message character string. The function returns a pointer to a constant character string, that is, a character array with terminating ' \(\backslash 0\) ' character, and you do not need to free this pointer.

Example Using Status Checking Function shows how this function can be used.

\section*{Prototype}
```

char *DftiErrorMessage(MKL LONG);

```

\section*{Cluster FFT Functions}

This section describes the cluster Fast Fourier Transform (FFT) functions implemented in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).

\section*{NOTE}

These functions are available only for Intel \({ }^{\circledR} 64\) architectures.

The cluster FFT function library was designed to perform fast Fourier transforms on a cluster, that is, a group of computers interconnected via a network. Each computer (node) in the cluster has its own memory and processor(s). Data interchanges between the nodes are provided by the network.

One or more processes may be running in parallel on each cluster node. To organize communication between different processes, the cluster FFT function library uses the Message Passing Interface (MPI). To avoid dependence on a specific MPI implementation (for example, MPICH, Intel® MPI, and others), the library works with MPI via a message-passing library for linear algebra called BLACS.

Cluster FFT functions of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provide one-dimensional, twodimensional, and multi-dimensional (up to the order of 7) functions and both Fortran and C interfaces for all transform functions.

To develop applications using the cluster FFT functions, you should have basic skills in MPI programming.
The interfaces for the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) cluster FFT functions are similar to the corresponding interfaces for the conventional Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL)FFT functions. Refer there for details not explained in this section.

Table "Cluster FFT Functions in Intel oneAPI Math Kernel Library (oneMKL)" lists cluster FFT functions implemented in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL):
Cluster FFT Functions in oneMKL

\section*{Function Name Operation}

Descriptor Manipulation Functions
DftiCreateDescriptorDM

DftiCommitDescriptorDM
DftiFreeDescriptorDM
Allocates memory for the descriptor data structure and preliminarily initializes it.

Performs all initialization for the actual FFT computation.
Frees memory allocated for a descriptor.
FFT Computation Functions
DftiComputeForwardDM
DftiComputeBackwardDM
Computes the forward FFT.
Computes the backward FFT.

\section*{Descriptor Configuration Functions}

DftiSetValueDM

DftiGetValueDM

Sets one particular configuration parameter with the specified configuration value.

Gets the value of one particular configuration parameter.

\section*{Computing Cluster FFT}

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL)cluster FFT functions are provided with Fortran and C interfaces.
Cluster FFT computation is performed by DftiComputeForwardDM and DftiComputeBackwardDM functions, called in a program using MPI, which will be referred to as MPI program. After an MPI program starts, a number of processes are created. MPI identifies each process by its rank. The processes are independent of one another and communicate via MPI. A function called in an MPI program is invoked in all the processes. Each process manipulates data according to its rank. Input or output data for a cluster FFT transform is a sequence of real or complex values. A cluster FFT computation function operates on the local part of the input data, that is, some part of the data to be operated in a particular process, as well as generates local part of the output data. While each process performs its part of computations, running in parallel and communicating through MPI, the processes perform the entire FFT computation. FFT computations using the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) cluster FFT functions are typically effected by a number of steps listed below:
1. Initiate MPI by calling MPI_Init (the function must be called prior to calling any FFT function and any MPI function).
2. Allocate memory for the descriptor and create it by calling DfticreateDescriptorDM.
3. Specify one of several values of configuration parameters by one or more calls to DftiSetValueDM.
4. Obtain values of configuration parameters needed to create local data arrays; the values are retrieved by calling DftiGetValueDM.
5. Initialize the descriptor for the FFT computation by calling DftiCommitDescriptorDM.
6. Create arrays for local parts of input and output data and fill the local part of input data with values. (For more information, see Distributing Data among Processes.)
7. Compute the transform by calling DftiComputeForwardDM or DftiComputeBackwardDM.
8. Gather local output data into the global array using MPI functions. (This step is optional because you may need to immediately employ the data differently.)
9. Release memory allocated for the descriptor by calling DftiFreeDescriptorDM.
10. Finalize communication through MPI by calling MPI_Finalize (the function must be called after the last call to a cluster FFT function and the last call to an MPI function).
Several code examples in Examples for Cluster FFT Functions in the Code Examples appendix illustrate cluster FFT computations.

\section*{Distributing Data Among Processes}

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) cluster FFT functions store all input and output multidimensional arrays (matrices) in one-dimensional arrays (vectors). The arrays are stored in the row-major order. For example, a two-dimensional matrix A of size \((m, n)\) is stored in a vector B of size \(m * n\) so that
\(\mathrm{B}[i * \mathrm{n}+\mathrm{j}]=\mathrm{A}[\mathrm{i}][j](i=0, \ldots, m-1, j=0, \ldots, n-1)\).

\section*{NOTE}

Order of FFT dimensions is the same as the order of array dimensions in the programming language. For example, a 3-dimensional FFT with Lengths=(m,n,l) can be computed over an array Ar [m] [n] [l].

All MPI processes involved in cluster FFT computation operate their own portions of data. These local arrays make up the virtual global array that the fast Fourier transform is applied to. It is your responsibility to properly allocate local arrays (if needed), fill them with initial data and gather resulting data into an actual global array or process the resulting data differently. To be able do this, see sections below on how the virtual global array is composed of the local ones.

\section*{Multi-dimensional transforms}

If the dimension of transform is greater than one, the cluster FFT function library splits data in the dimension whose index changes most slowly, so that the parts contain all elements with several consecutive values of this index. It is the first dimension in C. If the global array is two-dimensional, it gives each process several consecutive rows. Local arrays are placed in memory allocated for the virtual global array consecutively, in the order determined by process ranks. For example, in case of two processes, during the computation of a three-dimensional transform whose matrix has size \((11,15,12)\), the processes may store local arrays of sizes \((6,15,12)\) and \((5,15,12)\), respectively.

If \(p\) is the number of MPI processes and the matrix of a transform to be computed has size ( \(m, n, l\) ), each MPI process works with local data array of size \(\left(m_{q}, n, l\right)\), where \(\Sigma m_{q}=m, q=0, \ldots, p-1\). Local input arrays must contain appropriate parts of the actual global input array, and then local output arrays will contain appropriate parts of the actual global output array. You can figure out which particular rows of the global array the local array must contain from the following configuration parameters of the cluster FFT interface: CDFT_LOCAL_NX, CDFT_LOCAL_START_X, and CDFT_LOCAL_SIZE. To retrieve values of the parameters, use the DftiGetValueDM function:
- CDFT_LOCAL_NX specifies how many rows of the global array the current process receives.
- CDFT_LOCAL_START_X specifies which row of the global input or output array corresponds to the first row of the local input or output array. If \(A\) is a global array and \(L\) is the appropriate local array, then
\[
L[i][j][k]=A\left[i+c d f t \_l o c a l \_s t a r t \_x\right][j][k], \text { where } i=0, \ldots, m_{q}-1, j=0, \ldots, n-1, k=0, \ldots, l-1 \text {. }
\]

Example "2D Out-of-place Cluster FFT Computation" shows how the data is distributed among processes for a two-dimensional cluster FFT computation.

\section*{One-dimensional transforms}

In this case, input and output data are distributed among processes differently and even the numbers of elements stored in a particular process before and after the transform may be different. Each local array stores a segment of consecutive elements of the appropriate global array. Such segment is determined by the number of elements and a shift with respect to the first array element. So, to specify segments of the global input and output arrays that a particular process receives, four configuration parameters are needed: CDFT_LOCAL_NX, CDFT_LOCAL_START_X, CDFT_LOCAL_OUT_NX, and CDFT_LOCAL_OUT_START_X. Use the DftiGetValueDM function to retrieve their values. The meaning of the four configuration parameters depends upon the type of the transform, as shown in Table "Data Distribution Configuration Parameters for 1D Transforms":

Data Distribution Configuration Parameters for 1D Transforms
\begin{tabular}{lll}
\hline Meaning of the Parameter & Forward Transform & Backward Transform \\
\hline \begin{tabular}{l} 
Number of elements in input \\
array \\
Elements shift in input array
\end{tabular} & CDFT_LOCAL_NX & CDFT_LOCAL_OUT_NX \\
\begin{tabular}{l} 
Number of elements in output \\
array \\
Elements shift in output array
\end{tabular} & CDFT_LOCAL_START_X \(^{C D F T \& L O C A L \_O U T \& N X ~}\) & CDFT_LOCAL_OUT_START_X \\
\hline
\end{tabular}

\section*{Memory size for local data}

The memory size needed for local arrays cannot be just calculated from CDFT_LOCAL_NX
(CDFT_LOCAL_OUT_NX), because the cluster FFT functions sometimes require allocating a little bit more memory for local data than just the size of the appropriate sub-array. The configuration parameter CDFT_LOCAL_SIZE specifies the size of the local input and output array in data elements. Each local input and output arrays must have size not less than CDFT_LOCAL_SIZE*size_of_element. Note that in the current implementation of the cluster FFT interface, data elements can be real or complex values, each complex value consisting of the real and imaginary parts. If you employ a user-defined workspace for in-place transforms (for more information, refer to Table "Settable configuration Parameters"), it must have the same size as the local arrays. Example "1D In-place Cluster FFT Computations" illustrates how the cluster FFT functions distribute data among processes in case of a one-dimensional FFT computation performed with a user-defined workspace.

\section*{Available Auxiliary Functions}

If a global input array is located on one MPI process and you want to obtain its local parts or you want to gather the global output array on one MPI process, you can use functions MKL_CDFT_ScatterData and MKL_CDFT_GatherData to distribute or gather data among processes, respectively. These functions are defined in a file that is delivered with Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) and located in the following subdirectory of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) installation directory: examples/cdftc/ source/cdft_example_support.c.

\section*{Restriction on Lengths of Transforms}

The algorithm that the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) cluster FFT functions use to distribute data among processes imposes a restriction on lengths of transforms with respect to the number of MPI processes used for the FFT computation:
- For a multi-dimensional transform, the lengths of the first two dimensions must be not less than the number of MPI processes.
- The length of a one-dimensional transform must be the product of two integers each of which is not less than the number of MPI processes.

Non-compliance with the restriction causes an error CDFT_SPREAD_ERROR (refer to Error Codes for details). To achieve the compliance, you can change the transform lengths and/or the number of MPI processes, which is specified at start of an MPI program. MPI-2 enables changing the number of processes during execution of an MPI program.

\section*{Cluster FFT Interface}

To use the cluster FFT functions, you need to access the header file mkl_cdft. h through "include".
The C interface provides a structure type DFTI_DESCRIPTOR_DM_HANDLE and a number of functions, some of which accept a different number of input arguments.

To provide communication between parallel processes through MPI, the following include statement must be present in your code:
- \(\mathrm{C} / \mathrm{C}++\) :
\#include "mpi.h"
There are three main categories of the cluster FFT functions in Intel® oneAPI Math Kernel Library (oneMKL):
1. Descriptor Manipulation. There are three functions in this category. The DfticreateDescriptorDM function creates an FFT descriptor whose storage is allocated dynamically. The
DftiCommitDescriptorDM function "commits" the descriptor to all its settings. The DftiFreeDescriptorDM function frees up the memory allocated for the descriptor.
2. FFT Computation. There are two functions in this category. The DftiComputeForwardDM function performs the forward FFT computation, and the DftiComputeBackwardDM function performs the backward FFT computation.
3. Descriptor Configuration. There are two functions in this category. The DftiSetValueDM function sets one specific configuration value to one of the many configuration parameters. The DftiGetValueDM function gets the current value of any of these configuration parameters, all of which are readable. These parameters, though many, are handled one at a time.

\section*{Cluster FFT Descriptor Manipulation Functions}

There are three functions in this category: create a descriptor, commit a descriptor, and free a descriptor.
```

DftiCreateDescriptorDM
Allocates memory for the descriptor data structure
and preliminarily initializes it.
Syntax
status = DftiCreateDescriptorDM(comm, \&handle, v1, v2, dim, size);
status = DftiCreateDescriptorDM(comm, \&handle, v1, v2, dim, sizes);

```

\section*{Include Files}
```

- mkl_cdft.h

```

\section*{Input Parameters}
```

comm
v1 Precision of the transform.
v2 Type of the forward domain. Must be DFTI_COMPLEX for complex-to-
complex transforms or DFTI_REAL for real--to-complex transforms.
Dimension of the transform.
Length of the transform in a one-dimensional case.
Lengths of the transform in a multi-dimensional case.

```

\section*{Output Parameters}
```

handle

```

Pointer to the descriptor handle of transform. If the function completes successfully, the pointer to the created handle is stored in the variable.

\section*{Description}

This function allocates memory in a particular MPI process for the descriptor data structure and instantiates it with default configuration settings with respect to the precision, domain, dimension, and length of the desired transform. The domain is understood to be the domain of the forward transform. The result is a pointer to the created descriptor. This function is slightly different from the "initialization" function DftiCommitDescriptorDM in a more traditional software packages or libraries used for computing the FFT. This function does not perform any significant computation work, such as twiddle factors computation, because the default configuration settings can still be changed using the function DftiSetValueDM.

The value of the parameter v1 is specified through named constants DFTI_SINGLE and DFTI_DOUBLE. It corresponds to precision of input data, output data, and computation. A setting of DFTI_SINGLE indicates single-precision floating-point data type and a setting of DFTI_DOUBLE indicates double-precision floatingpoint data type.

The parameter dim is a simple positive integer indicating the dimension of the transform.
For one-dimensional transforms, length is a single integer value of the parameter size having type MKL_LONG; for multi-dimensional transforms, length is supplied with the parameter sizes, which is an array of integers having type MKL_LONG.

\section*{Return Values}

The function returns DFTI_NO_ERROR when completes successfully. In this case, the pointer to the created descriptor handle is stored in handle. If the function fails, it returns a value of another error class constant (for the list of constants, refer to Error Codes).

\section*{Prototype}
```

MKL_LONG DftiCreateDescriptorDM(MPI_Comm,DFTI_DESCRIPTOR_DM_HANDLE*,
enum DFTI_CONFIG_VALUE,enum DFTI_CONFIG_VALUE,MKL_LONG,...);

```

\section*{DftiCommitDescriptorDM \\ Performs all initialization for the actual FFT computation.}

\section*{Syntax}
status = DftiCommitDescriptorDM(handle);

\section*{Include Files}
- mkl_cdft.h

\section*{Input Parameters}
handle
The descriptor handle. Must be valid, that is, created in a call to DftiCreateDescriptorDM.

\section*{Description}

The cluster FFT interface requires a function that completes initialization of a previously created descriptor before the descriptor can be used for FFT computations in a particular MPI process. The DftiCommitDescriptorDM function performs all initialization that facilitates the actual FFT computation. For the current implementation, it may involve exploring many different factorizations of the input length to search for a highly efficient computation method.

Any changes of configuration parameters of a committed descriptor via the set value function (see Descriptor Configuration Functions) requires a re-committal of the descriptor before a computation function can be invoked. Typically, this committal function is called right before a computation function call (see FFT Computation Functions).

\section*{Return Values}

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to Error Codes).

\section*{Prototype}
```

MKL_LONG DftiCommitDescriptorDM(DFTI_DESCRIPTOR_DM_HANDLE handle);

```

\section*{DftiFreeDescriptorDM}

Frees memory allocated for a descriptor.

\section*{Syntax}
```

status = DftiFreeDescriptorDM(\&handle);

```

Include Files
- mkl_cdft.h

\section*{Input Parameters}
handle
The descriptor handle. Must be valid, that is, created in a call to DftiCreateDescriptorDM.

\section*{Output Parameters}
handle

The descriptor handle. Memory allocated for the handle is released on output.

\section*{Description}

This function frees up all memory allocated for a descriptor in a particular MPI process. Call the DftiFreeDescriptorDM function to delete the descriptor handle. Upon successful completion of DftiFreeDescriptorDM the descriptor handle is no longer valid.

\section*{Return Values}

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to Error Codes).

\section*{Prototype}
```

MKL_LONG DftiFreeDescriptorDM(DFTI_DESCRIPTOR_DM_HANDLE *handle);

```

\section*{Cluster FFT Computation Functions}

There are two functions in this category: compute the forward transform and compute the backward transform.

DftiComputeForwardDM
Computes the forward FFT.
```

Syntax
status = DftiComputeForwardDM(handle, in_X, out_X);
status = DftiComputeForwardDM(handle, in_out_X);

```

Include Files
- mkl_cdft.h

Input Parameters
```

handle
in_X, in_out_X

```

\section*{Output Parameters}
```

out_X, in_out_X

```

Local part of output data. Array of complex values. Refer to Distributing Data among Processes on how to allocate the array.

\section*{Description}

The DftiComputeForwardDM function computes the forward FFT. Forward FFT is the transform using the factor \(e^{-i 2 \pi / n}\).

Before you call the function, the valid descriptor, created by DfticreateDescriptorDM, must be configured and committed using the DftiCommitDescriptorDM function.

The computation is carried out by an internal call to the DftiComputeForward function. So, the functions have very much in common, and details not explicitly mentioned below can be found in the description of DftiComputeForward.

The local part of input data, as well as the local part of the output data, is an appropriate sequence of real or complex values (each complex value consists of two real numbers: real part and imaginary part) that a particular process stores. See Distributing Data Among Processes for details.

Refer to Configuration Settings for the list of configuration parameters that the descriptor passes to the function.
The configuration parameter DFTI_PRECISION determines the precision of input data, output data, and transform: a setting of DFTI_SINGLE indicates single-precision floating-point data type and a setting of DFTI_DOUBLE indicates double-precision floating-point data type.

The configuration parameter DFTI_PLACEMENT informs the function whether the computation should be inplace. If the value of this parameter is DFTI_INPLACE (default), you must call the function with two parameters, otherwise you must supply three parameters. If DFTI_PLACEMENT = DFTI_INPLACE and three parameters are supplied, then the third parameter is ignored.

\section*{Caution}

Even in case of an out-of-place transform, local array of input data in_x may be changed. To save data, make its copy before calling DftiComputeForwardDM.

In case of an in-place transform, DftiComputeForwardDM dynamically allocates and deallocates a work buffer of the same size as the local input/output array requires.

\section*{NOTE}

You can specify your own workspace of the same size through the configuration parameter CDFT_WORKSPACE to avoid redundant memory allocation.

\section*{Return Values}

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to Error Codes).

\section*{Prototype}
```

MKL_LONG DftiComputeForwardDM(DFTI_DESCRIPTOR_DM_HANDLE handle, void *in_X,...);

```

\section*{DftiComputeBackwardDM}

Computes the backward FFT.
Syntax
```

status = DftiComputeBackwardDM(handle, in_X, out_X);

```
status = DftiComputeBackwardDM(handle, in_out_X);

Include Files
- mkl_cdft.h

Input Parameters
handle
in_X, in_out_X

The descriptor handle.
Local part of input data. Array of complex values. Refer to Distributing Data among Processes on how to allocate and initialize the array.

\section*{Output Parameters}
```

out_X, in_out_X

```

Local part of output data. Array of real or complex values (depending on the forward domain type. Refer to Distributing Data among Processes on how to allocate the array.

\section*{Description}

The DftiComputeBackwardDM function computes the backward FFT. Backward FFT is the transform using the factor \(e^{i 2 \pi / n}\).

Before you call the function, the valid descriptor, created by DftiCreateDescriptorDM, must be configured and committed using the DftiCommitDescriptorDM function.

The computation is carried out by an internal call to the DftiComputeBackward function. So, the functions have very much in common, and details not explicitly mentioned below can be found in the description of DftiComputeBackward.

The local part of input data, as well as the local part of the output data, is an appropriate sequence of real or complex values (each complex value consists of two real numbers: real part and imaginary part) that a particular process stores. See Distributing Data among Processes for details.
Refer to Configuration Settings for the list of configuration parameters that the descriptor passes to the function.

The configuration parameter DFTI_PRECISION determines the precision of input data, output data, and transform: a setting of DFTI_SINGLE indicates single-precision floating-point data type and a setting of DFTI_DOUBLE indicates double-precision floating-point data type.

The configuration parameter DFTI_PLACEMENT informs the function whether the computation should be inplace. If the value of this parameter is DFTI_INPLACE (default), you must call the function with two parameters, otherwise you must supply three parameters. If DFTI_PLACEMENT = DFTI_INPLACE and three parameters are supplied, then the third parameter is ignored.

\section*{Caution}

Even in case of an out-of-place transform, local array of input data in_x may be changed. To save data, make its copy before calling DftiComputeBackwardDM.

In case of an in-place transform, DftiComputeBackwardDM dynamically allocates and deallocates a work buffer of the same size as the local input/output array requires.

\section*{NOTE}

You can specify your own workspace of the same size through the configuration parameter CDFT_WORKSPACE to avoid redundant memory allocation.

\section*{Return Values}

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to Error Codes).

\section*{Prototype}
```

MKL_LONG DftiComputeBackwardDM(DFTI_DESCRIPTOR_DM_HANDLE handle, void *in_X,...);

```

\section*{Cluster FFT Descriptor Configuration Functions}

There are two functions in this category: the value-setting function \(D f t i S e t V a l u e D M\) sets one particular configuration parameter to an appropriate value, and the value-getting function DftiGetValueDM reads the value of one particular configuration parameter.
Some configuration parameters used by cluster FFT functions originate from the conventional FFT interface (see Configuration Settings for details).

Other configuration parameters are specific to the cluster FFT. Integer values of these parameters have type MKL_LONG. The exact type of the configuration parameters being floating-point scalars is float or double (matching DFTI_PRECISION). The configuration parameters whose values are named constants have the enum type. They are defined in the mkl_cdft. \(h\) header file.

The names of the configuration parameters specific to the cluster FFT interface have the CDFT prefix.

DftiSetValueDM
Sets one particular configuration parameter with the specified configuration value.

\section*{Syntax}
```

status = DftiSetValueDM (handle, param, value);

```

Include Files
- mkl_cdft.h

\section*{Input Parameters}
```

handle The descriptor handle. Must be valid, that is, created in a call to
DfticreateDescriptorDM.
param
value
Name of a parameter to be set up in the descriptor handle. See
Table "Settable Configuration Parameters" for the list of available
parameters.
Value of the parameter.

```

\section*{Description}

This function sets one particular configuration parameter with the specified configuration value. The configuration parameter is one of the named constants listed in the table below, and the configuration value must have the corresponding type. See Configuration Settings for details of the meaning of each setting and for possible values of the parameters whose values are named constants.

\section*{Settable Configuration Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Parameter Name & Data Type & Description & Default Value \\
\hline DFTI_FORWARD_SCALE & Floating-point scalar & Scale factor of forward transform. & 1.0 \\
\hline DFTI_BACKWARD_SCALE & Floating-point scalar & Scale factor of backward transform. & 1.0 \\
\hline DFTI_PLACEMENT & Named constant & Placement of the computation result. & DFTI_INPLACE \\
\hline DFTI_ORDERING & Named constant & Scrambling of data order. & DFTI_ORDERED \\
\hline CDFT_WORKSPACE & Array of an appropriate type & Auxiliary buffer, a userdefined workspace. Enables saving memory during inplace computations. & NULL (allocate workspace dynamically). \\
\hline DFTI_PACKED_FORMAT & Named constant & Packed format for storing conjugate-even sequence (in the case of a real forward domain). & \begin{tabular}{l}
- DFTI_PERM_FORMAT - default and the only available value for one-dimensional transforms \\
- DFTI_CCE_FORMAT default and the only available value for multi-dimensional transforms
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Parameter Name & Data Type & Description & Default Value \\
\hline DFTI_TRANSPOSE & Named constant & This parameter determines how the output data is located for multi-dimensional transforms. If the parameter value is DFTI_NONE, the data is located in a usual manner described in this document. If the value is DFTI_ALLOW, the last (first) global transposition is not performed for a forward (backward) transform. & DFTI_NONE \\
\hline
\end{tabular}

\section*{Return Values}

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to Error Codes).

\section*{Prototype}
```

MKL_LONG DftiSetValueDM(DFTI_DESCRIPTOR_DM_HANDLE handle, int param,...);

```

\section*{DftiGetValueDM}

Gets the value of one particular configuration parameter.

\section*{Syntax}
```

status = DftiGetValueDM(handle, param, \&value);

```

Include Files
- mkl_cdft.h

\section*{Input Parameters}
handle
param

The descriptor handle. Must be valid, that is, created in a call to DftiCreateDescriptorDM.
Name of a parameter to be retrieved from the descriptor. See Table "Retrievable Configuration Parameters" for the list of available parameters.

\section*{Output Parameters}
value
Value of the parameter.

\section*{Description}

This function gets the configuration value of one particular configuration parameter. The configuration parameter is one of the named constants listed in the table below, and the configuration value is the corresponding appropriate type, which can be a named constant or a native type. Possible values of the named constants can be found in Table "Configuration Parameters" and relevant subsections of the Configuration Settings section.

Retrievable Configuration Parameters
\begin{tabular}{lll}
\hline Parameter Name & Data Type & Description \\
\hline DFTI_PRECISION & Named constant & \begin{tabular}{l} 
Precision of computation, input data and \\
output data.
\end{tabular} \\
DFTI_DIMENSION & Integer scalar & Dimension of the transform
\end{tabular}

\section*{Return Values}

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to Error Codes).

\section*{Prototype}
```

MKL_LONG DftiGetValueDM(DFTI_DESCRIPTOR_DM_HANDLE handle, int param,...);

```

\section*{Error Codes}

All the cluster FFT functions return an integer value denoting the status of the operation. These values are identified by named constants. Each function returns DFTI_NO_ERROR if no errors were encountered during execution. Otherwise, a function generates an error code. In addition to FFT error codes, the cluster FFT interface has its own ones. The named constants specific to the cluster FFT interface have the CDFT prefix in their names. Table "Error Codes that Cluster FFT Functions Return" lists error codes that the cluster FFT functions may return.
Error Codes that Cluster FFT Functions Return
\begin{tabular}{|c|c|}
\hline Named Constants & Comments \\
\hline DFTI_NO_ERROR & No error. \\
\hline DFTI_MEMORY_ERROR & Usually associated with memory allocation. \\
\hline DFTI_INVALID_CONFIGURATION & Invalid settings of one or more configuration parameters. \\
\hline DFTI_INCONSISTENT_CONFIGURA TION & Inconsistent configuration or input parameters. \\
\hline ```
DFTI_NUMBER_OF_THREADS_ERRO
R
``` & Number of OMP threads in the computation function is not equal to the number of OMP threads in the initialization stage (commit function). \\
\hline DFTI_MULTITHREADED_ERROR & Usually associated with a value that OMP routines return in case of errors. \\
\hline DFTI_BAD_DESCRIPTOR & Descriptor is unusable for computation. \\
\hline DFTI_UNIMPLEMENTED & Unimplemented legitimate settings; implementation dependent. \\
\hline DFTI_MKL_INTERNAL_ERROR & Internal library error. \\
\hline DFTI_1D_LENGTH_EXCEEDS_INT3 2 & Length of one of the dimensions exceeds \(2^{32}-1\) (4 bytes). \\
\hline CDFT_SPREAD_ERROR & Data cannot be distributed (For more information, see Distributing Data among Processes.) \\
\hline CDFT_MPI_ERROR & MPI error. Occurs when calling MPI. \\
\hline
\end{tabular}

\section*{PBLAS Routines}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Libraryimplements the PBLAS (Parallel Basic Linear Algebra Subprograms) routines from the ScaLAPACK package for distributed-memory architecture. PBLAS is intended for using in vectorvector, matrix-vector, and matrix-matrix operations to simplify the parallelization of linear codes. The design of PBLAS is as consistent as possible with that of the BLAS. The routine descriptions are arranged in several sections according to the PBLAS level of operation:
- PBLAS Level 1 Routines (distributed vector-vector operations)
- PBLAS Level 2 Routines (distributed matrix-vector operations)
- PBLAS Level 3 Routines (distributed matrix-matrix operations)

Each section presents the routine and function group descriptions in alphabetical order by the routine group name; for example, the p?asum group, the p?axpy group. The question mark in the group name corresponds to a character indicating the data type (\(s, d, c\), and \(z\) or their combination); see Routine Naming Conventions.

\section*{NOTE}

PBLAS routines are provided only with Intel® oneAPI Math Kernel Library (oneMKL) versions for Linux* and Windows* OSs.

Generally, PBLAS runs on a network of computers using MPI as a message-passing layer and a set of prebuilt communication subprograms (BLACS), as well as a set of PBLAS optimized for the target architecture. The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) version of PBLAS is optimized for Intel® processors. For the detailed system and environment requirements seeInte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Release Notes and Intel oneAPI Math Kernel Library (oneMKL) Developer Guide.

For full reference on PBLAS routines and related information, see http://www.netlib.org/scalapack/html/ pblas_qref.html.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{PBLAS Routines Overview}

The model of the computing environment for PBLAS is represented as a one-dimensional array of processes or also a two-dimensional process grid. To use PBLAS, all global matrices or vectors must be distributed on this array or grid prior to calling the PBLAS routines.

PBLAS uses the two-dimensional block-cyclic data distribution as a layout for dense matrix computations. This distribution provides good work balance between available processors, as well as gives the opportunity to use PBLAS Level 3 routines for optimal local computations. Information about the data distribution that is required to establish the mapping between each global array and its corresponding process and memory location is contained in the so called array descriptor associated with each global array. Table "Content of the array descriptor for dense matrices" gives an example of an array descriptor structure.

\section*{Content of Array Descriptor for Dense Matrices}
\begin{tabular}{lll}
\hline Array Element \# & Name & Definition \\
\hline 1 & dtype & Descriptor type (=1 for dense matrices) \\
2 & \(c t x t\) & BLACS context handle for the process grid \\
3 & \(m\) & Number of rows in the global array \\
4 & \(n\) & Number of columns in the global array \\
5 & \(m b\) & Row blocking factor \\
6 & \(n b\) & Column blocking factor \\
7 & rsrc & Process row over which the first row of the global array is distributed \\
8 & csrc & Process column over which the first column of the global array is \\
& Ild & distributed \\
9 & Leading dimension of the local array
\end{tabular}

The number of rows and columns of a global dense matrix that a particular process in a grid receives after data distributing is denoted by LOCr() and LOCC(), respectively. To compute these numbers, you can use the ScaLAPACK tool routine numroc.

After the block-cyclic distribution of global data is done, you may choose to perform an operation on a submatrix of the global matrix \(A\), which is contained in the global subarray sub (\(A\)), defined by the following 6 values (for dense matrices):
```

m The number of rows of sub (A)
n The number of columns of sub (A)
a A pointer to the local array containing the entire global array A
ia The row index of sub (A) in the global array
ja The column index of sub (A) in the global array
desca
The number of rows of sub ( $A$ )
The number of columns of sub ( $A$ )
A pointer to the local array containing the entire global array $A$
The row index of sub (A) in the global array
The column index of sub ( $A$ ) in the global array
The array descriptor for the global array $A$

```

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides the PBLAS routines with interface similar to the interface used in the Netlib PBLAS (see http://www.netlib.org/scalapack/html/pblas_qref.html).

\section*{PBLAS Routine Naming Conventions}

The naming convention for PBLAS routines is similar to that used for BLAS routines (see Routine Naming Conventions). A general rule is that each routine name in PBLAS, which has a BLAS equivalent, is simply the BLAS name prefixed by initial letter \(p\) that stands for "parallel".

The Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PBLAS routine names have the following structure:
```

p <character> <name> <mod> ( )

```

The <character> field indicates the Fortran data type:
\begin{tabular}{ll}
s & real, single precision \\
c & complex, single precision \\
d & real, double precision \\
z & complex, double precision \\
i & integer
\end{tabular}

Some routines and functions can have combined character codes, such as sc or dz .
For example, the function pscasum uses a complex input array and returns a real value.
The <name> field, in PBLAS level 1, indicates the operation type. For example, the PBLAS level 1 routines p?dot, p?swap, p?copy compute a vector dot product, vector swap, and a copy vector, respectively.
In PBLAS level 2 and 3, <name> reflects the matrix argument type:
\begin{tabular}{ll}
ge & general matrix \\
sy & symmetric matrix \\
he & Hermitian matrix \\
tr & triangular matrix
\end{tabular}

In PBLAS level 3, the <name>=tran indicates the transposition of the matrix.
The <mod> field, if present, provides additional details of the operation. The PBLAS level 1 names can have the following characters in the <mod> field:
```

c conjugated vector
u
unconjugated vector

```

The PBLAS level 2 names can have the following additional characters in the <mod> field:
mv matrix-vector product
\begin{tabular}{ll}
sv & solving a system of linear equations with matrix-vector operations \\
r & rank-1 update of a matrix \\
r2 & rank-2 update of a matrix.
\end{tabular}

The PBLAS level 3 names can have the following additional characters in the <mod> field:
\begin{tabular}{ll}
mm & matrix-matrix product \\
sm & solving a system of linear equations with matrix-matrix operations \\
\(r k\) & rank- \(k\) update of a matrix \\
\(r 2 k\) & rank- \(2 k\) update of a matrix.
\end{tabular}

The examples below show how to interpret PBLAS routine names:
\begin{tabular}{ll}
pddot & <p> <d> <dot>: double-precision real distributed vector-vector dot product \\
pcdotc & <p> <c> <dot> <c>: complex distributed vector-vector dot product, conjugated \\
pscasum & \begin{tabular}{l}
<p> <sc> <asum>: sum of magnitudes of distributed vector elements, single \\
precision real output and single precision complex input
\end{tabular} \\
psdotu & \begin{tabular}{l}
<p> <c> <dot> <u>: distributed vector-vector dot product, unconjugated, \\
complex
\end{tabular} \\
pztrmm & \begin{tabular}{l}
<p> <s> <ge> <mv>: distributed matrix-vector product, general matrix, single \\
precision
\end{tabular} \\
& \begin{tabular}{l}
<p> <z> <tr> <mm>: distributed matrix-matrix product, triangular matrix, \\
double-precision complex.
\end{tabular}
\end{tabular}

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{PBLAS Level 1 Routines}

PBLAS Level 1 includes routines and functions that perform distributed vector-vector operations. Table "PBLAS Level 1 Routine Groups and Their Data Types" lists the PBLAS Level 1 routine groups and the data types associated with them.

\section*{PBLAS Level 1 Routine Groups and Their Data Types}
\begin{tabular}{lll}
\hline \begin{tabular}{l}
Routine or \\
Function Group
\end{tabular} & Data Types & Description \\
\hline p?amax & \(s, d, c, z\) & \begin{tabular}{l}
Calculates an index of the distributed vector element with \\
maximum absolute value
\end{tabular} \\
p?asum & \(s, d, s c, d z\) & Calculates sum of magnitudes of a distributed vector \\
p?axpy & \(s, d, c, z\) & Calculates distributed vector-scalar product \\
p?copy & \(s, d, c, z\) & Copies a distributed vector \\
p?dot & \(s, d\) & Calculates a dot product of two distributed real vectors
\end{tabular}
\begin{tabular}{lll}
\hline \begin{tabular}{l}
Routine or \\
Function Group
\end{tabular} & Data Types & Description \\
\hline p?dotc & \(c, z\) & \begin{tabular}{l}
Calculates a dot product of two distributed complex \\
vectors, one of them is conjugated
\end{tabular} \\
p?dotu & c, z & \begin{tabular}{l}
Calculates a dot product of two distributed complex \\
vectors
\end{tabular} \\
p?nrm2 & s,d, sc, dz & \begin{tabular}{l}
Calculates the 2-norm (Euclidean norm) of a distributed \\
vector
\end{tabular} \\
p?scal & s,d,c,z,cs, zd & Calculates a product of a distributed vector by a scalar \\
p?swap & s,d,c,z & Swaps two distributed vectors
\end{tabular}
```

p?amax
Computes the global index of the element of a
distributed vector with maximum absolute value.

```

\section*{Syntax}
```

void psamax (const MKL_INT *n , float *amax, MKL_INT *indx , const float *x , const

```
void psamax (const MKL_INT *n , float *amax, MKL_INT *indx , const float *x , const
MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx);
MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx);
void pdamax (const MKL_INT *n , double *amax, MKL_INT *indx , const double *x , const
void pdamax (const MKL_INT *n , double *amax, MKL_INT *indx , const double *x , const
MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx);
MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx);
void pcamax (const MKL_INT *n , MKL_Complex8 *amax , MKL_INT *indx , const MKL_Complex8
void pcamax (const MKL_INT *n , MKL_Complex8 *amax , MKL_INT *indx , const MKL_Complex8
*x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT
*x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT
*inCx);
*inCx);
void pzamax (const MKL_INT *n , MKL_Complex16 *amax , MKL_INT *indx , const
void pzamax (const MKL_INT *n , MKL_Complex16 *amax , MKL_INT *indx , const
MKL_Complex16 *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const
MKL_Complex16 *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const
MKL_INT *incx);
```

MKL_INT *incx );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The functions p?amax compute global index of the maximum element in absolute value of a distributed vector sub (\(x\)),
where sub(x) denotes \(X(i x, j x: j x+n-1)\) if \(i n c x=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx= 1 .

\section*{Input Parameters}
n

X
(global) The length of distributed vector sub (x), \(n \geq 0\).
(local)
Array, size (jx-1)*m_x + ix+(n-1)*abs(incx)).
This array contains the entries of the distributed vector sub (x).
ix, jx
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub \((X)\), respectively.
```

descx
incx

```

\section*{Output Parameters}
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.

\section*{(global).}

Maximum absolute value (magnitude) of elements of the distributed vector only in its scope.
(global) The global index of the maximum element in absolute value of the distributed vector sub (\(x\)) only in its scope.
p?asum
Computes the sum of magnitudes of elements of a
distributed vector.

\section*{Syntax}
```

void psasum (const MKL_INT *n , float *asum , const float *x , const MKL_INT *ix ,
const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx );
void pdasum (const MKL_INT *n, double *asum, const double *x , const MKL_INT *ix ,
const MKL_INT *jx, const MKL_INT *descx , const MKL_INT *incx );
void pscasum (const MKL_INT *n , float *asum, const MKL_Complex8 *x , const MKL_INT
*ix , const MKL_INT *jx, const MKL_INT *descx , const MKL_INT *incx );
void pdzasum (const MKL_INT *n , double *asum , const MKL_Complex16 *x , const MKL_INT
*ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx );

```

\section*{Include Files}
```

- mkl_pblas.h

```

\section*{Description}

The functions p?asum compute the sum of the magnitudes of elements of a distributed vector sub (x), where sub (x) denotes \(X(i x, j x: j x+n-1)\) if \(i n c x=m_{-} x\), and \(x(i x: i x+n-1, j x)\) if incx= 1 .

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & (global) The length of distributed vector sub \((x), n \geq 0\). \\
\(x\) & (local) \\
Array, size \(\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)\). \\
& This array contains the entries of the distributed vector sub \((x)\). \\
(global) The row and column indices in the distributed matrix \(X\) indicating \\
descx & \begin{tabular}{l}
the first row and the first column of the submatrix sub \((X)\), respectively.
\end{tabular} \\
& \begin{tabular}{l}
(global and local) array of dimension 9. The array descriptor of the \\
distributed matrix \(X\).
\end{tabular}
\end{tabular}
(global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.

\section*{Output Parameters}
asum (local) and pscasum.
Contains the sum of magnitudes of elements of the distributed vector only in its scope.

\section*{p?axpy \\ Computes a distributed vector-scalar product and adds the result to a distributed vector.}

\section*{Syntax}
```

void psaxpy (const MKL INT *n , const float *a , const float *x , const MKL INT *ix ,
const MKL_INT *jx, const MKL_INT *descx, const MKL_INT *incx , float *y , const
MKL_INT *iy, const MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pdaxpy (const MKL_INT *n , const double *a , const double *x , const MKL_INT *ix ,
const MKL_INT *jx, const MKL_INT *descx, const MKL_INT *incx, double *y, const
MKL_INT *iy, const MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pcaxpy (const MKL_INT *n , const MKL_Complex8 *a , const MKL_Complex8 *x , const
MKL_INT *ix, const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx ,
MKL_Complex8 *y , const MKL_INT *iy , const MKL_INT *jy , const MKL_INT *descy , const
MKL_INT *incy );
void pzaxpy (const MKL_INT *n , const MKL_Complex16 *a , const MKL_Complex16 *x , const
MKL_INT *ix, const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx ,
MKL_Complex16 *y , const MKL_INT *iy , const MKL_INT *jy , const MKL_INT *descy , const
MKL_INT *incy );

```

Include Files
- mkl_pblas.h

\section*{Description}

The p?axpy routines perform the following operation with distributed vectors:
```

sub(y) := sub(y) + a*sub(x)

```
where:
\(a\) is a scalar;
sub (\(x\)) and sub (\(y\)) are \(n\)-element distributed vectors.
sub(x) denotes \(X(i x, j x: j x+n-1)\) if incx=m_x, and \(X(i x: i x+n-1, j x)\) if incx= 1 ;
sub (y) denotes \(Y(i y, j y: j y+n-1)\) if incy=m_y, and \(Y(i y: i y+n-1, j y)\) if incy= 1 .
Input Parameters
```

n
(global) The length of distributed vectors, }n\geq0\mathrm{ .
(local)

```

Specifies the scalar \(a\).
(local)
Array, size \(\left.(j x-1){ }^{*} m_{-} x+i x+(n-1) * a b s(i n c x)\right)\).
This array contains the entries of the distributed vector sub (x).
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub \((X)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero. (local)

Array, size \(\left.(j y-1) * m_{-} y+i y+(n-1) * a b s(i n c y)\right)\).
This array contains the entries of the distributed vector sub \((y)\).
(global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((Y)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and \(m_{_} y\). incy must not be zero.

\section*{Output Parameters}
y
Overwritten by sub (y) := sub (y) \(+a^{\star} \operatorname{sub}(x)\).

\section*{p?copy}

Copies one distributed vector to another vector.

\section*{Syntax}
```

void picopy (const MKL_INT *n , const MKL_INT *x , const MKL_INT *ix , const MKL_INT
*jx , const MKL_INT *descx , const MKL_INT *incx , MKL_INT *y , const MKL_INT *iy ,
const MKL_INT *jy, const MKL_INT *descy , const MKL_INT *incy );
void pscopy (const MKL_INT *n , const float *x , const MKL_INT *ix , const MKL_INT
*jx , const MKL_INT *descx , const MKL_INT *incx , float *y , const MKL_INT *iy , const
MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pdcopy (const MKL_INT *n , const double *x , const MKL_INT *ix , const MKL_INT
*jx , const MKL_INT *descx , const MKL_INT *incx, double *y , const MKL_INT *iy ,
const MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pccopy (const MKL_INT *n, const MKL_Complex8 *x , const MKL_INT *ix , const
MKL_INT *jx, const MKL_INT *descx , const MKL_INT *incx , MKL_Complex8 *y , const
MKL_INT *iy, const MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pzcopy (const MKL_INT *n , const MKL_Complex16 *x , const MKL_INT *ix , const
MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx , MKL_Complex16 *y , const
MKL_INT *iy, const MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?copy routines perform a copy operation with distributed vectors defined as
```

sub (y) = sub (x),

```
where sub (\(x\)) and sub (\(y\)) are \(n\)-element distributed vectors.
```

sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1;
sub(y) denotes Y(iy, jy:jy+n-1) if incy=m_y, and Y(iy: iy+n-1, jy) if incy= 1.

```

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & (global) The length of distributed vectors, \(n \geq 0\). \\
\hline \multirow[t]{3}{*}{\(x\)} & (local) \\
\hline & Array, size (jx-1)* \(m_{-} x+i x+(n-1) * a b s(i n c x)\)). \\
\hline & This array contains the entries of the distributed vector sub (x). \\
\hline ix, jx & (global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub \((X)\), respectively. \\
\hline descx & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\). \\
\hline incx & (global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m x\). incx must not be zero. \\
\hline \multirow[t]{3}{*}{Y} & (local) \\
\hline & Array, size (jy-1)*m_y +iy+(n-1)*abs(incy)). \\
\hline & This array contains the entries of the distributed vector sub (y). \\
\hline iy, jy & (global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub (Y), respectively. \\
\hline descy & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\). \\
\hline incy & (global) Specifies the increment for the elements of sub \((y)\). Only two values are supported, namely 1 and m_y. incy must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
y
Overwritten with the distributed vector sub (x).
```

p?dot
Computes the dot product of two distributed real
vectors.

```

\section*{Syntax}
```

void psdot (const MKL_INT *n , float *dot , const float *x , const MKL_INT *ix , const
MKL_INT *jx, const MKL_INT *descx , const MKL_INT *incx , const float *y , const
MKL_INT *iy, const MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pddot (const MKL_INT *n, double *dot, const double *x , const MKL_INT *ix ,
const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx , const double *y ,
const MKL_INT *iy, const MKL_INT *jy, const MKL_INT *descy , const MKL_INT *incy );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The ?dot functions compute the dot product dot of two distributed real vectors defined as
```

dot = sub(x)'*sub (y)

```
where sub (\(x\)) and sub (\(y\)) are \(n\)-element distributed vectors.
```

sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1;
sub(y) denotes Y(iy, jy:jy+n-1) if incy=m_y, and Y(iy: iy+n-1, jy) if incy= 1.

```

\section*{Input Parameters}
n
x
ix, jx
descx
incx

Y
iy, jy
descy
incy
(global) The length of distributed vectors, \(n \geq 0\). (local)

Array, size (jx-1)*m_x + ix+(n-1)*abs(incx)).
This array contains the entries of the distributed vector sub (x).
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub \((X)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.
(local)
Array, size (jy-1)*m_y + iy+(n-1)*abs(incy)).
This array contains the entries of the distributed vector sub \((y)\).
(global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((Y)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and m_y. incy must not be zero.

\section*{Output Parameters}

> dot

\section*{(local)}

Dot product of sub (x) and sub (y) only in their scope.
```

p?dotc
Computes the dot product of two distributed complex
vectors, one of them is conjugated.
Syntax

```
```

void pcdotc (const MKL_INT *n , MKL_Complex8 *dotc , const MKL_Complex8 *x , const

```
void pcdotc (const MKL_INT *n , MKL_Complex8 *dotc , const MKL_Complex8 *x , const
MKL_INT *ix, const MKL_INT *jx, const MKL_INT *descx, const MKL_INT *incx , const
MKL_INT *ix, const MKL_INT *jx, const MKL_INT *descx, const MKL_INT *incx , const
MKL_Complex8 *y , const MKL_INT *iy, const MKL_INT *jy , const MKL_INT *descy , const
MKL_Complex8 *y , const MKL_INT *iy, const MKL_INT *jy , const MKL_INT *descy , const
MKL_INT *incy);
MKL_INT *incy);
void pzdotc (const MKL_INT *n , MKL_Complex16 *dotc , const MKL_Complex16 *x , const
void pzdotc (const MKL_INT *n , MKL_Complex16 *dotc , const MKL_Complex16 *x , const
MKL_INT *ix, const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx , const
MKL_INT *ix, const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx , const
MKL_Complex16 *y , const MKL_INT *iy , const MKL_INT *jy , const MKL_INT *descy , const
MKL_Complex16 *y , const MKL_INT *iy , const MKL_INT *jy , const MKL_INT *descy , const
MKL_INT *incy);
```

MKL_INT *incy );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?dotc functions compute the dot product dotc of two distributed vectors, with one vector conjugated:
```

dotc = conjg(sub (x)')*sub (y)

```
where sub (\(x\)) and sub (\(y\)) are \(n\)-element distributed vectors.
```

sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1;
sub(y) denotes Y(iy, jy:jy+n-1) if incy=m_y, and Y(iy: iy+n-1, jy) if incy= 1.

```

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & (global) The length of distributed vectors, \(n \geq 0\). \\
\hline \multirow[t]{3}{*}{\(x\)} & (local) \\
\hline & Array, size (jx-1)*m_x + ix+(n-1)*abs(incx)). \\
\hline & This array contains the entries of the distributed vector sub (\(x\)). \\
\hline ix, jx & (global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub \((X)\), respectively. \\
\hline descx & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\). \\
\hline incx & (global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and m_x. incx must not be zero. \\
\hline Y & (local) \\
\hline & Array, size (jy-1)*m_y +iy+(n-1)*abs(incy)). \\
\hline
\end{tabular}

This array contains the entries of the distributed vector sub \((y)\).
iy, jy
descy
incy
(global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((Y)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and \(m_{_} y\). incy must not be zero.

\section*{Output Parameters}
dotc
(local)
Dot product of sub (x) and sub (y) only in their scope.

\section*{p?dotu}

Computes the dot product of two distributed complex vectors.

Syntax
```

void pcdotu (const MKL_INT *n , MKL_Complex8 *dotu, const MKL_Complex8 *x , const
MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx , const
MKL_Complex8 *y , const MKL_INT *iy, const MKL_INT *jy , const MKL_INT *descy , const
MKL_INT *incy );
void pzdotu (const MKL_INT *n , MKL_Complex16 *dotu , const MKL_Complex16 *x , const
MKL_INT *ix, const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx , const
MKL_Complex16 *y , const MKL_INT *iy , const MKL_INT *jy , const MKL_INT *descy , const
MKL_INT *incy );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?dotu functions compute the dot product dotu of two distributed vectors defined as
```

dotu = sub (x)'*sub (y)

```
where sub (\(x\)) and sub (\(y\)) are \(n\)-element distributed vectors.
```

sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1;
sub(y) denotes Y(iy, jy:jy+n-1) if incy=m_y, and Y(iy: iy+n-1, jy) if incy= 1.

```

\section*{Input Parameters}
\(n\)
(global) The length of distributed vectors, \(n \geq 0\).
(local)
Array, size \(\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)\).
This array contains the entries of the distributed vector sub (x).
```

ix, jx
descx
incx
Y
iy, jy
descy
incy

```
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub \((X)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.
(local)
Array, size (jy-1)*m_y + iy+(n-1)*abs(incy)).
This array contains the entries of the distributed vector sub \((y)\).
(global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub (\(Y\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) Specifies the increment for the elements of sub (\(y\)). Only two values are supported, namely 1 and m_y. incy must not be zero.

\section*{Output Parameters}
```

dotu

```
(local)
Dot product of sub (x) and sub (y) only in their scope.

\section*{p?nrm2}

Computes the Euclidean norm of a distributed vector.

\section*{Syntax}
```

void psnrm2 (const MKL_INT *n , float *norm2 , const float *x , const MKL_INT *ix ,
const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx );
void pdnrm2 (const MKL_INT *n , double *norm2, const double *x , const MKL_INT *ix ,
const MKL_INT *jx, const MKL_INT *descx , const MKL_INT *incx );
void pscnrm2 (const MKL_INT *n , float *norm2, const MKL_Complex8 *x , const MKL_INT
*ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx );
void pdznrm2 (const MKL_INT *n , double *norm2 , const MKL_Complex16 *x , const MKL_INT
*ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?nrm2 functions compute the Euclidean norm of a distributed vector sub (x), where sub (\(x\)) is an \(n\)-element distributed vector.
```

sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1.

```

\section*{Input Parameters}
```

n
X
ix, jx
descx
incx

```

\section*{Output Parameters}

\author{
norm2
}
(global) The length of distributed vector sub (\(x\)), \(n \geq 0\).
(local)
Array, size (\(j x-1\)) *m_x \(x+i x+(n-1) * a b s(i n c x))\).
This array contains the entries of the distributed vector sub (\(x\)).
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (\(X\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (\(x\)). Only two values are supported, namely 1 and \(m_{\text {_ }}\). incx must not be zero.
(local) and pscnrm2.
Contains the Euclidean norm of a distributed vector only in its scope.
```

p?scal
Computes a product of a distributed vector by a
scalar.

```

\section*{Syntax}
```

void psscal (const MKL_INT *n , const float *a , float *x , const MKL_INT *ix , const
MKL_INT *jx, const MKL_INT *descx , const MKL_INT *incx );
void pdscal (const MKL_INT *n , const double *a , double *x , const MKL_INT *ix , const
MKL_INT *jx, const MKL_INT *descx , const MKL_INT *incx );
void pcscal (const MKL_INT *n , const MKL_Complex8 *a , MKL_Complex8 *x , const MKL_INT
*ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx );
void pzscal (const MKL_INT *n , const MKL_Complex16 *a , MKL_Complex16 *x , const
MKL_INT *ix, const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx );
void pcsscal (const MKL_INT *n , const float *a , MKL_Complex8 *x , const MKL_INT *ix ,
const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx );
void pzdscal (const MKL_INT *n , const double *a, MKL_Complex16 *x , const MKL_INT
*ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?scal routines multiplies a \(n\)-element distributed vector sub \((x)\) by the scalar \(a\) :
```

sub (x) = a*sub (x),

```
where sub(x) denotes \(x(i x, j x: j x+n-1)\) if incx=m_x, and \(x(i x: i x+n-1, j x)\) if \(i n c x=1\).

\section*{Input Parameters}
```

n
a
x
ix, jx
descx
incx

```
(global) The length of distributed vector sub (x), \(n \geq 0\).
(global) and pcsscal
Specifies the scalar \(a\).
(local)
Array, size \(\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)\).
This array contains the entries of the distributed vector sub \((x)\).
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (\(X\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (\(x\)). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.

Overwritten by the updated distributed vector sub (\(x\))
p?swap
Swaps two distributed vectors.

\section*{Syntax}
```

void psswap (const MKL_INT *n , float *x , const MKL_INT *ix , const MKL_INT *jx ,
const MKL_INT *descx , const MKL_INT *incx , float *y, const MKL_INT *iy , const
MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pdswap (const MKL_INT *n , double *x, const MKL_INT *ix , const MKL_INT *jx ,
const MKL_INT *descx , const MKL_INT *incx, double *y, const MKL_INT *iy, const
MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pcswap (const MKL_INT *n , MKL_Complex8 *x , const MKL_INT *ix , const MKL_INT
*jx , const MKL_INT *descx , const MKL_INT *incx, MKL_Complex8 *y , const MKL_INT
*iy , const MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pzswap (const MKL_INT *n , MKL_Complexl6 *x , const MKL_INT *ix , const MKL_INT
*jx , const MKL_INT *descx , const MKL_INT *incx, MKL_Complex16 *y , const MKL_INT
*iy , const MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

Given two distributed vectors sub (\(x\)) and sub (\(y\)) , the p? swap routines return vectors sub (\(y\)) and sub (\(x\)) swapped, each replacing the other.
Here sub (\(x\)) denotes \(X(i x, j x: j x+n-1\)) if incx=m_x, and \(X(i x: i x+n-1, j x)\) if incx=1; sub (y) denotes \(Y(i y, j y: j y+n-1)\) if incy=m_y, and \(Y(i y: i y+n-1, j y)\) if incy= 1 .

\section*{Input Parameters}
n
X
ix, jx
descx
incx

Y
iy, jy
descy
incy
(global) The length of distributed vectors, \(n \geq 0\).
(local)
Array, size (jx-1)*m_x +ix+(n-1)*abs(incx)).
This array contains the entries of the distributed vector sub (\(x\)).
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (\(X\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (\(x\)). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.
(local)
Array, size (jy-1)*m_y +iy+(n-1)*abs(incy)).
This array contains the entries of the distributed vector sub \((y)\).
(global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((Y)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) Specifies the increment for the elements of sub (\(y\)). Only two values are supported, namely 1 and m_y. incy must not be zero.

\section*{Output Parameters}

X
Overwritten by distributed vector sub (y).
Overwritten by distributed vector sub (x).

\section*{PBLAS Level 2 Routines}

This section describes PBLAS Level 2 routines, which perform distributed matrix-vector operations. Table "PBLAS Level 2 Routine Groups and Their Data Types" lists the PBLAS Level 2 routine groups and the data types associated with them.

\section*{PBLAS Level 2 Routine Groups and Their Data Types}
\begin{tabular}{lll}
\hline Routine Groups & Data Types & Description \\
\hline p?gemv & \(s, d, c, z\) & Matrix-vector product using a distributed general matrix \\
p?agemv & \(s, d, c, z\) & \begin{tabular}{l}
Matrix-vector product using absolute values for a \\
distributed general matrix
\end{tabular} \\
p?ger & \(s, d\) & Rank-1 update of a distributed general matrix \\
p?gerc & \(c, z\) & \begin{tabular}{l}
Rank-1 update (conjugated) of a distributed general \\
matrix
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Routine Groups & Data Types & Description \\
\hline p?geru & C, z & Rank-1 update (unconjugated) of a distributed general matrix \\
\hline p?hemv & c, z & Matrix-vector product using a distributed Hermitian matrix \\
\hline p?ahemv & c, z & Matrix-vector product using absolute values for a distributed Hermitian matrix \\
\hline p?her & c, z & Rank-1 update of a distributed Hermitian matrix \\
\hline p?her2 & c, z & Rank-2 update of a distributed Hermitian matrix \\
\hline p?symv & \(s, d\) & Matrix-vector product using a distributed symmetric matrix \\
\hline p?asymv & \(s, d\) & Matrix-vector product using absolute values for a distributed symmetric matrix \\
\hline p?syr & \(s, d\) & Rank-1 update of a distributed symmetric matrix \\
\hline p?syr2 & \(s, d\) & Rank-2 update of a distributed symmetric matrix \\
\hline p?trmv & s, d, c, z & Distributed matrix-vector product using a triangular matrix \\
\hline p?atrmv & s, d, c, z & Distributed matrix-vector product using absolute values for a triangular matrix \\
\hline p?trsv & s, d, c, z & Solves a system of linear equations whose coefficients are in a distributed triangular matrix \\
\hline
\end{tabular}

\section*{p?gemv}

Computes a distributed matrix-vector product using a
general matrix.

\section*{Syntax}
```

void psgemv (const char *trans, const MKL_INT *m, const MKL_INT *n , const float
*alpha, const float *a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT
*desca , const float *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT
*descx , const MKL_INT *incx , const float *beta, float *y , const MKL_INT *iy , const
MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pdgemv (const char *trans, const MKL_INT *m, const MKL_INT *n , const double
*alpha, const double *a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT
*desca , const double *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT
*descx , const MKL_INT *incx , const double *beta, double *y , const MKL_INT *iy ,
const MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pcgemv (const char *trans, const MKL_INT *m, const MKL_INT *n , const
MKL_Complex8 *alpha , const MKL_Complex8 *a , const MKL_INT *ia , const MKL_INT *ja ,
const MKL_INT *desca , const MKL_Complex8 *x , const MKL_INT *ix , const MKL_INT *jx ,
const MKL_INT *descx , const MKL_INT *incx , const MKL_Complex8 *beta , MKL_Complex8
*y , const MKL_INT *iy, const MKL_INT *jy, const MKL_INT *descy , const MKL_INT
*incy );
void pzgemv (const char *trans, const MKL_INT *m, const MKL_INT *n , const
MKL_Complex16 *alpha , const MKL_Complex16 *a, const MKL_INT *ia , const MKL_INT *ja ,
const MKL_INT *desca, const MKL_Complex16 *x, const MKL_INT *ix , const MKL_INT *jx ,

```
```

const MKL_INT *descx , const MKL_INT *incx , const MKL_Complex16 *beta , MKL_Complex16
*y , const MKL_INT *iy, const MKL_INT *jy, const MKL_INT *descy , const MKL_INT
*incy );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?gemv routines perform a distributed matrix-vector operation defined as
```

    sub(y) := alpha*sub (A)*sub (x) + beta*sub (y),
    ```
or
```

sub(y) := alpha*sub (A)'*sub(x) + beta*sub (y),

```
or
```

sub(y) := alpha*conjg(sub(A)')*sub(x) + beta*sub (y),

```
where
alpha and beta are scalars,
```

sub(A) is a m-by-n submatrix, sub(A) = A(ia:ia+m-1, ja:ja+n-1),

```
sub (\(x\)) and sub (\(y\)) are subvectors.
When trans \(=\) 'N' or 'n', sub (x) denotes \(X(i x, j x: j x+n-1)\) if incx \(=m_{-} x\), and \(X(i x: i x+n-1, j x)\)
if incx \(=1\), sub \((y)\) denotes \(Y(i y, j y: j y+m-1)\) if incy \(=m_{y} y\), and \(Y(i y: i y+m-1\), jy) if incy \(=1\).
When trans \(=\) 'T' or 't', or 'C', or 'c', sub \((x)\) denotes \(X(i x, j x: j x+m-1)\) if incx \(=m_{-} x\), and \(X(i x:\)
\(i x+m-1, j x)\) if incx \(=1\), sub (y) denotes \(Y(i y, j y: j y+n-1)\) if incy \(=m_{y} y\), and \(Y(i y\) : iy+m-1, jy) if
incy \(=1\).

\section*{Input Parameters}
trans
m
\(n\)
alpha
\(a\)
(global) Specifies the operation:
```

if trans= 'N' or 'n', then sub(y) := alpha*sub(A)'*sub(x) +
beta*sub (y);
if trans= 'T' or 't', then sub (y) := alpha*sub(A)'*sub (x) +
beta*sub(y);
if trans= 'C' or 'c', then sub(y) := alpha*conjg(subA)')*sub(x) +
beta*sub (y).

```
(global) Specifies the number of rows of the distributed matrix sub (A), \(m \geq 0\).
(global) Specifies the number of columns of the distributed matrix sub (A), \(n \geq 0\).
(global)
Specifies the scalar alpha.
(local)
Array, size (lld_a, LOCq(ja+n-1)). Before entry this array must contain the local pieces of the distributed matrix sub (A).
```

ia, ja
desca
X
ix, jx
descx
incx
beta
Y
iy, jy
descy
incy

```

\section*{Output Parameters}

Y
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)
Array, size (\(j x-1\)) \(\left.\boldsymbol{*}_{m_{-}} x+i x+(n-1) * a b s(i n c x)\right)\) when trans \(={ }^{\prime} \mathrm{N}^{\prime}\) or ' n ', and (\(j x-1\)) *m_ \(x+i x+(m-1) * a b s(i n c x)\)) otherwise.
This array contains the entries of the distributed vector sub \((x)\).
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (\(x\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and m_x. incx must not be zero.
(global)
Specifies the scalar beta. When beta is set to zero, then sub (y) need not be set on input.
(local)
Array, size (jy-1)*m_y +iy+(m-1)*abs(incy)) when trans = 'N' or ' \(n\) ', and (\(j y-1\)) *m_y \(+i y+(n-1) * a b s(i n c y)\)) otherwise.
This array contains the entries of the distributed vector sub \((y)\).
(global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub (\(y\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and m_y. incy must not be zero.

Overwritten by the updated distributed vector sub (\(y\)) .

\section*{p?agemv}

Computes a distributed matrix-vector product using absolute values for a general matrix.

\section*{Syntax}
```

void psagemv (const char *trans , const MKL_INT *m, const MKL_INT *n , const float
*alpha, const float *a, const MKL_INT *ia, const MKL_INT *ja, const MKL_INT
*desca , const float *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT
*descx , const MKL_INT *incx , const float *beta, float *y , const MKL_INT *iy , const
MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );

```
```

void pdagemv (const char *trans, const MKL_INT *m, const MKL_INT *n , const double
*alpha, const double *a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT
*desca , const double *x , const MKL_INT *ix, const MKL_INT *jx , const MKL_INT
*descx , const MKL_INT *incx , const double *beta, double *y , const MKL_INT *iy ,
const MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pcagemv (const char *trans, const MKL_INT *m, const MKL_INT *n , const
MKL_Complex8 *alpha, const MKL_Complex8 *a, const MKL_INT *ia , const MKL_INT *ja,
const MKL_INT *desca, const MKL_Complex8 *x, const MKL_INT *ix , const MKL_INT *jx ,
const MKL_INT *descx , const MKL_INT *incx , const MKL_Complex8 *beta, MKL_Complex8
*y , const MKL_INT *iy, const MKL_INT *jy, const MKL_INT *descy , const MKL_INT
*incy );
void pzagemv (const char *trans, const MKL_INT *m, const MKL_INT *n , const
MKL_Complex16 *alpha, const MKL_Complex16 *a , const MKL_INT *ia , const MKL_INT *ja,
const MKL_INT *desca , const MKL_Complex16 *x, const MKL_INT *ix , const MKL_INT *jx ,
const MKL_INT *descx , const MKL_INT *incx , const MKL_Complex16 *beta , MKL_Complex16
*y , const MKL_INT *iy, const MKL_INT *jy , const MKL_INT *descy , const MKL_INT
*incy );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The \(p\) ? agemv routines perform a distributed matrix-vector operation defined as
```

sub(y) := abs(alpha)*abs(sub(A)')*abs(sub (x)) + abs(beta*sub (y)),
or
sub(y) := abs(alpha)*abs(sub(A)')*abs(sub (x)) + abs(beta*sub (y)),
or
sub(y) := abs(alpha)*abs(conjg(sub (A)'))*abs(sub(x)) + abs(beta*sub(y)),

```
where
alpha and beta are scalars,
sub(A) is a m-by-n submatrix, \(\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)\),
sub (\(x\)) and sub (\(y\)) are subvectors.
When trans \(=\) ' \(N\) ' or 'n',
sub (x) denotes \(x(i x: i x, j x: j x+n-1)\) if incx \(=m_{-} x\), and
\(x(i x: i x+n-1, j x: j x)\) if \(i n c x=1\),
sub (y) denotes \(Y(i y: i y, j y: j y+m-1)\) if incy \(=m _y\), and
Y(iy:iy+m-1, jy:jy) if incy \(=1\).
When trans \(=\) 'T' or 't', or 'C', or 'c',
sub (x) denotes \(x(i x: i x, j x: j x+m-1)\) if incx \(=m_{-} x\), and
X(ix:ix+m-1, jx:jx) if incx = 1,
sub (y) denotes \(Y(i y: i y, j y: j y+n-1)\) if incy \(=m_{-} y\), and
Y(iy:iy+m-1, jy:jy) if incy \(=1\).

\section*{Input Parameters}
trans
m
n
alpha
a
ia, ja
desca

X
ix, jx
descx
incx
beta
y
(global) Specifies the operation:
```

if trans= 'N' or 'n', then sub(y) := | alpha|*|sub(A) |*|sub(x) | +
| beta*sub (y) |
if trans= 'T' or 't', then sub(y) := | alpha|*|sub(A)'|*|sub(x) | +
| beta*sub (y) |
if trans= 'C' or 'C', then sub (y) := | alpha|*|sub (A)'|*|sub(x) | +
|beta*sub (y) |.

```
(global) Specifies the number of rows of the distributed matrix sub \((A)\), \(m \geq 0\).
(global) Specifies the number of columns of the distributed matrix sub (\(A\)), \(n \geq 0\).
(global)
Specifies the scalar alpha.
(local)
Array, size (Ild_a, LOCq(ja+n-1)). Before entry this array must contain the local pieces of the distributed matrix sub (A).
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)
Array, size \(\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)\) when trans \(=N^{\prime}\) 'or 'n', and (jx-1)*m_x +ix+(m-1)*abs(incx)) otherwise.

This array contains the entries of the distributed vector sub (x).
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub \((x)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.
(global)
Specifies the scalar beta. When beta is set to zero, then sub (\(y\)) need not be set on input.
(local)
Array, size \(\left.(j y-1) * m_{_} y+i y+(m-1) * a b s(i n c y)\right)\) when trans \(=N^{\prime}\) 'or 'n', and (jy-1)*m_y +iy+(n-1)*abs(incy)) otherwise.

This array contains the entries of the distributed vector sub \((y)\).
```

iy, jy (global) The row and column indices in the distributed matrix }Y\mathrm{ indicating the first row and the first column of the submatrix sub $(y)$, respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix $Y$.
(global) Specifies the increment for the elements of sub ( $y$ ). Only two values are supported, namely 1 and m_y. incy must not be zero.

```

\section*{Output Parameters}
y
Overwritten by the updated distributed vector sub (y).

\section*{p?ger}

Performs a rank-1 update of a distributed general matrix.

\section*{Syntax}
```

void psger (const MKL_INT *m , const MKL_INT *n , const float *alpha, const float *x ,
const MKL_INT *ix, const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx ,
const float *y, const MKL_INT *iy, const MKL_INT *jy, const MKL_INT *descy, const
MKL_INT *incy, float *a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT
*desca );
void pdger (const MKL_INT *m, const MKL_INT *n, const double *alpha, const double
*x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT
*incx , const double *y , const MKL_INT *iy, const MKL_INT *jy , const MKL_INT
*descy , const MKL_INT *incy , double *a , const MKL_INT *ia , const MKL_INT *ja ,
const MKL_INT *desca );

```

Include Files
- mkl_pblas.h

\section*{Description}

The p?ger routines perform a distributed matrix-vector operation defined as
```

sub(A) := alpha*sub (x)*sub (y)' + sub (A),

```
where:
alpha is a scalar,
sub (A) is a m-by-n distributed general matrix, sub \((A)=A(i a: i a+m-1, j a: j a+n-1)\),
sub \((x)\) is an \(m\)-element distributed vector, \(\operatorname{sub}(y)\) is an \(n\)-element distributed vector,
sub (x) denotes \(X(i x, j x: j x+m-1)\) if incx \(=m_{-} x\), and \(X(i x: i x+m-1, j x)\) if incx \(=1\),
sub (y) denotes \(Y(i y, j y: j y+n-1)\) if \(i n c y=m_{_} y\), and \(Y(i y: i y+n-1, j y)\) if incy \(=1\).

\section*{Input Parameters}
m
(global) Specifies the number of rows of the distributed matrix sub (A), \(m \geq 0\).
\begin{tabular}{|c|c|}
\hline \(n\) & (global) Specifies the number of columns of the distributed matrix sub (A), \(n \geq 0\). \\
\hline alpha & (global) \\
\hline & Specifies the scalar alpha. \\
\hline \(x\) & (local) \\
\hline & Array, size at least (jx-1)* \(m_{-} x+i x+(m-1) * a b s(i n c x)\)). \\
\hline & This array contains the entries of the distributed vector sub (x). \\
\hline ix, jx & (global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub \((x)\), respectively. \\
\hline descx & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\). \\
\hline incx & (global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero. \\
\hline y & (local) \\
\hline & Array, size at least (jy-1)*m_y +iy+(n-1)*abs(incy)). \\
\hline & This array contains the entries of the distributed vector sub (y). \\
\hline iy, jy & (global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively. \\
\hline descy & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\). \\
\hline incy & (global) Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and \(m_{_} y\). incy must not be zero. \\
\hline a & (local) \\
\hline & Array, size (lld_a, LOCq(ja+n-1)). \\
\hline & Before entry this array contains the local pieces of the distributed matrix sub (A). \\
\hline ia, ja & (global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively. \\
\hline desca & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
Overwritten by the updated distributed matrix sub (A).
p?gerc
Performs a rank-1 update (conjugated) of a distributed general matrix.

\section*{Syntax}
```

void pcgerc (const MKL_INT *m , const MKL_INT *n , const MKL_Complex8 *alpha , const
MKL_Complex8 *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const
MKL_INT *incx , const MKL_Complex8 *y , const MKL_INT *iy , const MKL_INT *jy , const
MKL_INT *descy , const MKL_INT *incy , MKL_Complex8 *a , const MKL_INT *ia , const
MKL_INT *ja , const MKL_INT *desca );
void pzgerc (const MKL_INT *m , const MKL_INT *n , const MKL_Complexl6 *alpha , const
MKL_Complex16 *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const
MKL_INT *incx , const MKL_Complex16 *y , const MKL_INT *iy, const MKL_INT *jy , const
MKL_INT *descy , const MKL_INT *incy , MKL_Complex16 *a , const MKL_INT *ia , const
MKL_INT *ja , const MKL_INT *desca );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?gerc routines perform a distributed matrix-vector operation defined as
```

sub(A) := alpha*sub (x)*conjg(sub(y)') + sub(A),

```
where:
alpha is a scalar,
```

sub(A) is a m-by-n distributed general matrix, sub (A) = A(ia:ia+m-1, ja:ja+n-1),

```
sub \((x)\) is an \(m\)-element distributed vector, \(\operatorname{sub}(y)\) is ann-element distributed vector,
sub (\(x\)) denotes \(x\left(i x, j x: j x+m-1\right.\)) if incx \(=m_{-} x\), and \(x(i x: i x+m-1, j x)\) if incx \(=1\),
sub (y) denotes \(Y(i y, j y: j y+n-1)\) if incy \(=m_{_} y\), and \(Y(i y: i y+n-1, j y)\) if incy \(=1\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & (global) Specifies the number of rows of the distributed matrix sub (A), \(m \geq\) 0. \\
\hline \(n\) & (global) Specifies the number of columns of the distributed matrix sub (A), \(n \geq 0\). \\
\hline alpha & (global) \\
\hline & Specifies the scalar alpha. \\
\hline \(x\) & (local) \\
\hline & Array, size at least (jx-1)* \(m_{-} x+i x+(n-1) * a b s(i n c x)\)). \\
\hline & This array contains the entries of the distributed vector sub (\(x\)). \\
\hline ix, jx & (global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub \((x)\), respectively. \\
\hline descx & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\). \\
\hline incx & (global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m\) _ incx must not be zero. \\
\hline
\end{tabular}
```

y
iy, jy
descy
incy
a
ia, ja
desca
(local)
Array, size at least $\left.(j y-1){ }^{*} m \_y+i y+(n-1) * a b s(i n c y)\right)$.
This array contains the entries of the distributed vector sub $(y)$.
(global) The row and column indices in the distributed matrix $Y$ indicating the first row and the first column of the submatrix sub $(y)$, respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix $Y$.
(global) Specifies the increment for the elements of sub ( $y$ ). Only two values are supported, namely 1 and m_y. incy must not be zero.
(local)
Array, size at least (lld_a, LOCq (ja+n-1)). Before entry this array contains the local pieces of the distributed matrix sub (A).
(global) The row and column indices in the distributed matrix $A$ indicating the first row and the first column of the submatrix sub ( $A$ ), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix $A$.

```

\section*{Output Parameters}
a
p?geru
Performs a rank-1 update (unconjugated) of a distributed general matrix.

\section*{Syntax}
```

void pcgeru (const MKL_INT *m , const MKL_INT *n , const MKL_Complex8 *alpha , const
MKL_Complex8 *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const
MKL_INT *incx , const MKL_Complex8 *y , const MKL_INT *iy , const MKL_INT *jy, const
MKL_INT *descy , const MKL_INT *incy , MKL_Complex8 *a , const MKL_INT *ia, const
MKL_INT *ja , const MKL_INT *desca );
void pzgeru (const MKL_INT *m, const MKL_INT *n , const MKL_Complexl6 *alpha , const
MKL_Complex16 *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const
MKL_INT *incx , const MKL_Complex16 *y , const MKL_INT *iy, const MKL_INT *jy , const
MKL_INT *descy , const MKL_INT *incy , MKL_Complex16 *a , const MKL_INT *ia, const
MKL_INT *ja , const MKL_INT *desca );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?geru routines perform a matrix-vector operation defined as
\[
\operatorname{sub}(A):=\operatorname{alpha*} \operatorname{sub}(x) * \operatorname{sub}(y)^{\prime}+\operatorname{sub}(A),
\]
where:
alpha is a scalar,
sub (A) is a m-by-n distributed general matrix, sub \((A)=A(i a: i a+m-1, j a: j a+n-1)\), sub (x) is an \(m\)-element distributed vector, \(\operatorname{sub}(y)\) is an \(n\)-element distributed vector,
```

sub(x) denotes X(ix, jx:jx+m-1) if incx = m_x, and X(ix: ix+m-1, jx) if incx = 1,
sub (y) denotes Y(iy, jy:jy+n-1) if incy = m_y, and Y(iy: iy+n-1, jy) if incy = 1.

```

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & (global) Specifies the number of rows of the distributed matrix sub (\(A\)) , \(m \geq\) 0. \\
\hline \(n\) & (global) Specifies the number of columns of the distributed matrix sub (A), \(n \geq 0\). \\
\hline \multirow[t]{2}{*}{alpha} & (global) \\
\hline & Specifies the scalar alpha. \\
\hline \multirow[t]{3}{*}{\(x\)} & (local) \\
\hline & Array, size at least (jx-1)* \(m_{\sim} x+i x+(n-1) * a b s(i n c x)\)). \\
\hline & This array contains the entries of the distributed vector sub (x). \\
\hline ix, jx & (global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (\(x\)), respectively. \\
\hline descx & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\). \\
\hline incx & (global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-x}\). incx must not be zero. \\
\hline \multirow[t]{3}{*}{Y} & (local) \\
\hline & Array, size at least (jy-1)*m_y +iy+(n-1)*abs(incy)). \\
\hline & This array contains the entries of the distributed vector sub (y) \\
\hline iy, jy & (global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively. \\
\hline descy & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\). \\
\hline incy & (global) Specifies the increment for the elements of sub (\(y\)). Only two values are supported, namely 1 and m_y. incy must not be zero. \\
\hline a & (local) \\
\hline
\end{tabular}

Array, size at least (Ild_a, LOCq(ja+n-1)). Before entry this array contains the local pieces of the distributed matrix sub (A).
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).

\section*{Output Parameters}
a
Overwritten by the updated distributed matrix sub (A).

\section*{p?hemv}

Computes a distributed matrix-vector product using a
Hermitian matrix.

\section*{Syntax}
```

void pchemv (const char *uplo, const MKL_INT *n , const MKL_Complex8 *alpha , const
MKL_Complex8 *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca , const
MKL_Complex8 *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const
MKL_INT *incx , const MKL_Complex8 *beta , MKL_Complex8 *y , const MKL_INT *iy , const
MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pzhemv (const char *uplo, const MKL_INT *n , const MKL_Complex16 *alpha , const
MKL_Complex16 *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca , const
MKL_Complex16 *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const
MKL_INT *incx , const MKL_Complex16 *beta , MKL_Complex16 *y , const MKL_INT *iy ,
const MKL_INT *jy, const MKL_INT *descy , const MKL_INT *incy );

```

Include Files
- mkl_pblas.h

\section*{Description}

The p?hemv routines perform a distributed matrix-vector operation defined as
```

sub(y) := alpha*sub(A)*sub(x) + beta*sub(y),

```
where:
alpha and beta are scalars,
```

sub (A) is a n-by-n Hermitian distributed matrix, sub (A)=A(ia:ia+n-1, ja:ja+n-1),

```
sub (\(x\)) and sub (\(y\)) are distributed vectors.
sub (x) denotes \(X(i x, j x: j x+n-1)\) if incx \(=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\),
sub (y) denotes \(Y(i y, j y: j y+n-1)\) if \(i n c y=m _y\), and \(Y(i y: i y+n-1, j y)\) if incy \(=1\).

Input Parameters
```

uplo
n
alpha
a
(global) Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub $(A)$ is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub $(A)$ is used.
If uplo = 'L' or 'l', then the low triangular part of the sub $(A)$ is used.
(global) Specifies the order of the distributed matrix sub (A), $n \geq 0$.
(global)
Specifies the scalar alpha.
(local)

```

Array, size (lld_a, \(\operatorname{LOCq}(j a+n-1))\). This array contains the local pieces of the distributed matrix sub (\(A\)) .

Before entry when uplo = 'U' or 'u', the n-by-n upper triangular part of the distributed matrix sub (\(A\)) must contain the upper triangular part of the Hermitian distributed matrix and the strictly lower triangular part of sub (A) is not referenced, and when uplo = 'L' or 'l', the \(n\)-by-n lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the Hermitian distributed matrix and the strictly upper triangular part of sub \((A)\) is not referenced.
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)
Array, size at least \(\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)\).
This array contains the entries of the distributed vector sub (\(x\)).
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub \((x)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.
(global)
Specifies the scalar beta. When beta is set to zero, then sub (\(y\)) need not be set on input.
(local)
Array, size at least \(\left.(j y-1) * m_{-} y+i y+(n-1) * a b s(i n c y)\right)\).
This array contains the entries of the distributed vector sub \((y)\).
(global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) Specifies the increment for the elements of sub (\(y\)). Only two values are supported, namely 1 and m_y. incy must not be zero.

\section*{Output Parameters}
y
Overwritten by the updated distributed vector sub (y).

\section*{p?ahemv}

Computes a distributed matrix-vector product using absolute values for a Hermitian matrix.

\section*{Syntax}
```

void pcahemv (const char *uplo, const MKL_INT *n , const MKL_Complex8 *alpha , const
MKL_Complex8 *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca , const
MKL_Complex8 *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const
MKL_INT *incx , const MKL_Complex8 *beta , MKL_Complex8 *y , const MKL_INT *iy , const
MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pzahemv (const char *uplo, const MKL_INT *n , const MKL_Complexl6 *alpha , const
MKL_Complex16 *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca , const
MKL_Complex16 *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const
MKL_INT *incx , const MKL_Complexl6 *beta , MKL_Complex16 *y , const MKL_INT *iy ,
const MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?ahemv routines perform a distributed matrix-vector operation defined as
```

sub(y) := abs(alpha) *abs(sub(A))*abs(sub(x)) + abs(beta*sub(y)),

```
where:
alpha and beta are scalars,
```

sub (A) is a n-by-n Hermitian distributed matrix, sub (A)=A(ia:ia+n-1, ja:ja+n-1),

```
sub (\(x\)) and sub (\(y\)) are distributed vectors.
sub (x) denotes \(X(i x, j x: j x+n-1)\) if \(i n c x=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\),
sub (y) denotes \(Y(i y, j y: j y+n-1)\) if incy \(=m_{y} y\), and \(Y(i y\) : iy+n-1, jy) if incy \(=1\).

\section*{Input Parameters}
```

uplo
n
alpha
a
(global) Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub $(A)$ is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub $(A)$ is used.
If uplo = 'L' or 'l', then the low triangular part of the sub (A) is used.
(global) Specifies the order of the distributed matrix $\operatorname{sub}(A), n \geq 0$.
(global)
Specifies the scalar alpha.
(local)
Array, size (Ild_a, LOCq(ja+n-1)). This array contains the local pieces of the distributed matrix sub ( $A$ ) .
Before entry when uplo = 'U' or 'u', the $n$-by-n upper triangular part of the distributed matrix sub ( $A$ ) must contain the upper triangular part of the Hermitian distributed matrix and the strictly lower triangular part of sub ( $A$ ) is not referenced, and when uplo = 'L' or 'l', the $n$-by-n lower

```
triangular part of the distributed matrix sub (A) must contain the lower triangular part of the Hermitian distributed matrix and the strictly upper triangular part of sub \((A)\) is not referenced.
ia, ja
desca

X
ix, jx
descx
incx
beta
y
iy, jy
descy
incy
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub \((A)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)
Array, size at least \(\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)\).
This array contains the entries of the distributed vector sub (x).
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (\(x\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (\(x\)). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.
(global)
Specifies the scalar beta. When beta is set to zero, then sub (\(y\)) need not be set on input.
(local)
Array, size at least \(\left.(j y-1) * m_{-} y+i y+(n-1) * a b s(i n c y)\right)\).
This array contains the entries of the distributed vector sub \((y)\).
(global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) Specifies the increment for the elements of sub (\(y\)). Only two values are supported, namely 1 and m_y. incy must not be zero.

\section*{Output Parameters}
y
Overwritten by the updated distributed vector sub (y).

\section*{p?her}

Performs a rank-1 update of a distributed Hermitian
matrix.

\section*{Syntax}
```

void pcher (const char *uplo, const MKL_INT *n, const float *alpha, const
MKL_Complex8 *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const
MKL_INT *incx , MKL_Complex8 *a , const MKL_INT *ia, const MKL_INT *ja, const MKL_INT
*desca );

```
```

void pzher (const char *uplo, const MKL_INT *n, const double *alpha, const
MKL_Complex16 *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const
MKL_INT *incx , MKL_Complex16 *a , const MKL_INT *ia, const MKL_INT *ja, const
MKL_INT *desca );

```

Include Files
- mkl_pblas.h

\section*{Description}

The p?her routines perform a distributed matrix-vector operation defined as
```

sub(A) := alpha*sub(x)*conjg(sub(x)') + sub(A),

```
where:
alpha is a real scalar,
sub (\(A\)) is a \(n-b y-n\) distributed Hermitian matrix, sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\),
sub \((x)\) is distributed vector.
sub (\(x\)) denotes \(x(i x, j x: j x+n-1)\) if incx \(=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\).
Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & (global) Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub (\(A\)) is used: \\
\hline & If uplo = 'U' or 'u', then the upper triangular part of the sub \((A)\) is used. \\
\hline & If uplo = 'L' or 'l', then the low triangular part of the sub (A) is used. \\
\hline \(n\) & (global) Specifies the order of the distributed matrix sub (\(A\)), \(n \geq 0\). \\
\hline \multirow[t]{2}{*}{alpha} & (global) \\
\hline & Specifies the scalar alpha. \\
\hline \multirow[t]{3}{*}{\(x\)} & (local) \\
\hline & Array, size at least (jx-1)* \(m_{-} x+i x+(n-1) * a b s(i n c x)\)). \\
\hline & This array contains the entries of the distributed vector sub (x). \\
\hline ix, jx & (global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (x), respectively. \\
\hline descx & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\). \\
\hline incx & (global) Specifies the increment for the elements of sub (\(x\)). Only two values are supported, namely 1 and m_x. incx must not be zero. \\
\hline \multirow[t]{3}{*}{a} & (local) \\
\hline & Array, size (lld_a, LOCq(ja+n-1)). This array contains the local pieces of the distributed matrix sub (\(A\)). \\
\hline & Before entry with uplo = 'U' or 'u', the \(n\)-by-n upper triangular part of the distributed matrix sub (A) must contain the upper triangular part of the Hermitian distributed matrix and the strictly lower triangular part of sub (\(A\)) \\
\hline
\end{tabular}
ia, ja
desca
is not referenced, and with uplo = 'L' or 'l', the \(n\)-by-n lower triangular part of the distributed matrix sub (\(A\)) must contain the lower triangular part of the Hermitian distributed matrix and the strictly upper triangular part of sub \((A)\) is not referenced.
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).

\section*{Output Parameters}
a
With uplo = 'U' or 'u', the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated distributed matrix sub (\(A\)).

With uplo = 'L' or 'l', the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated distributed matrix sub (A).
p?her2
Performs a rank-2 update of a distributed Hermitian
matrix.

\section*{Syntax}
```

void pcher2 (const char *uplo, const MKL_INT *n , const MKL_Complex8 *alpha , const
MKL_Complex8 *x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const
MKL_INT *incx , const MKL_Complex8 *y, const MKL_INT *iy , const MKL_INT *jy , const
MKL_INT *descy, const MKL_INT *incy , MKL_Complex8 *a , const MKL_INT *ia , const
MKL_INT *ja , const MKL_INT *desca );
void pzher2 (const char *uplo , const MKL_INT *n , const MKL_Complex16 *alpha , const
MKL_Complex16 *x , const MKL_INT *ix , const MKL_INT *jx, const MKL_INT *descx , const
MKL_INT *incx , const MKL_Complex16 *y , const MKL_INT *iy, const MKL_INT *jy , const
MKL_INT *descy , const MKL_INT *incy , MKL_Complex16 *a , const MKL_INT *ia , const
MKL_INT *ja , const MKL_INT *desca );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?her2 routines perform a distributed matrix-vector operation defined as
```

sub(A) := alpha*sub (x)* conj(sub (y)') + conj(alpha)*sub (y)*conj(sub (x)') + sub (A),

```
where:

\section*{alpha is a scalar,}
sub \((A)\) is a \(n-b y-n\) distributed Hermitian matrix, sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\),
sub (\(x\)) and sub (\(y\)) are distributed vectors.
sub (\(x\)) denotes \(x(i x, j x: j x+n-1)\) if \(i n c x=m_{-}\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\),
sub (y) denotes \(Y(i y, j y: j y+n-1)\) if incy \(=m_{-} y\), and \(Y(i y: i y+n-1, j y)\) if incy \(=1\).

\section*{Input Parameters}
uplo
n
alpha
x
ix, jx
descx
incx

Y
iy, jy
descy
incy
a
ia, ja
desca

\section*{Output Parameters}
a
With uplo = 'U' or 'u', the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated distributed matrix sub (A).

With uplo = 'L' or 'l', the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated distributed matrix sub (A).

\section*{p?symv}

Computes a distributed matrix-vector product using a symmetric matrix.

\section*{Syntax}
```

void pssymv (const char *uplo, const MKL_INT *n , const float *alpha , const float
*a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT *desca , const float *x ,
const MKL_INT *ix, const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx ,
const float *beta, float *y , const MKL_INT *iy, const MKL_INT *jy, const MKL_INT
*descy , const MKL_INT *incy );
void pdsymv (const char *uplo, const MKL_INT *n, const double *alpha, const double
*a, const MKL_INT *ia, const MKL_INT *ja, const MKL_INT *desca , const double *x ,
const MKL_INT *ix, const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx ,
const double *beta, double *y, const MKL_INT *iy, const MKL_INT *jy , const MKL_INT
*descy , const MKL_INT *incy );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?symv routines perform a distributed matrix-vector operation defined as
```

sub(y) := alpha*sub(A)*sub(x) + beta*sub(y),

```
where:
alpha and beta are scalars,
sub (A) is a \(n\)-by- \(n\) symmetric distributed matrix, sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\),
sub (\(x\)) and sub (\(y\)) are distributed vectors.
sub (\(x\)) denotes \(X\left(i x, j x: j x+n-1\right.\)) if incx \(=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\),
sub (y) denotes \(Y(i y, j y: j y+n-1)\) if \(i n c y=m _y\), and \(Y(i y: i y+n-1, j y)\) if incy \(=1\).
Input Parameters
uplo
(global) Specifies whether the upper or lower triangular part of the symmetric distributed matrix sub (\(A\)) is used:

If uplo = 'U' or 'u', then the upper triangular part of the sub \((A)\) is used.
\(n\)
alpha
a
ia, ja
desca
x
\(i x, j x\)
descx
incx
beta

Y
iy, jy
descy
incy

If uplo = 'L' or 'l', then the low triangular part of the sub \((A)\) is used.
(global) Specifies the order of the distributed matrix sub (\(A\)), \(n \geq 0\).
(global)
Specifies the scalar alpha.
(local)
Array, size (lld_a, \(\operatorname{LOCq}(j a+n-1))\). This array contains the local pieces of the distributed matrix sub (\(A\)).

Before entry when uplo = 'U' or 'u', the \(n\)-by-n upper triangular part of the distributed matrix sub (\(A\)) must contain the upper triangular part of the symmetric distributed matrix and the strictly lower triangular part of sub (\(A\)) is not referenced, and when uplo = 'L' or 'l', the \(n\)-by-n lower triangular part of the distributed matrix sub (\(A\)) must contain the lower triangular part of the symmetric distributed matrix and the strictly upper triangular part of sub \((A)\) is not referenced.
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)
Array, size at least \(\left.(j x-1){ }^{*} m_{-} x+i x+(n-1) * a b s(i n c x)\right)\).
This array contains the entries of the distributed vector sub (\(x\)).
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (\(x\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and m_x. incx must not be zero.
(global)
Specifies the scalar beta. When beta is set to zero, then sub (y) need not be set on input.
(local)
Array, size at least \(\left.(j y-1){ }^{*} m_{-} y+i y+(n-1) * a b s(i n c y)\right)\).
This array contains the entries of the distributed vector sub \((y)\).
(global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(y)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and m_y. incy must not be zero.

\section*{Output Parameters}
y
Overwritten by the updated distributed vector sub (y).
p?asymv
Computes a distributed matrix-vector product using absolute values for a symmetric matrix.

\section*{Syntax}
```

void psasymv (const char *uplo, const MKL_INT *n, const float *alpha , const float
*a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT *desca , const float *x ,
const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx ,
const float *beta, float *y , const MKL_INT *iy, const MKL_INT *jy, const MKL_INT
*descy , const MKL_INT *incy );
void pdasymv (const char *uplo, const MKL_INT *n, const double *alpha , const double
*a, const MKL_INT *ia, const MKL_INT *ja, const MKL_INT *desca , const double *x ,
const MKL_INT *ix, const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx ,
const double *beta, double *y , const MKL_INT *iy, const MKL_INT *jy , const MKL_INT
*descy , const MKL_INT *incy );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?symv routines perform a distributed matrix-vector operation defined as
```

sub(y) := abs(alpha)*abs(sub(A))*abs(sub(x)) + abs(beta*sub(y)),

```
where:
alpha and beta are scalars,
```

sub(A) is a n-by-n symmetric distributed matrix, sub (A)=A(ia:ia+n-1, ja:ja+n-1),

```
sub (\(x\)) and sub (\(y\)) are distributed vectors.
sub (x) denotes \(X(i x, j x: j x+n-1)\) if incx \(=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\),
sub (y) denotes \(Y(i y, j y: j y+n-1)\) if \(i n c y=m _y\), and \(Y(i y: i y+n-1, j y)\) if incy \(=1\).

Input Parameters
```

uplo (global) Specifies whether the upper or lower triangular part of the
symmetric distributed matrix sub (A) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub (A) is
used.
If uplo = 'L' or 'l', then the low triangular part of the sub (A) is used.
(global) Specifies the order of the distributed matrix sub (A), n\geq0.
(global)
Specifies the scalar alpha.
(local)

```
\begin{tabular}{|c|c|}
\hline ia, ja & (global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively. \\
\hline desca & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\). \\
\hline \multirow[t]{3}{*}{\(x\)} & (local) \\
\hline & Array, size at least (jx-1)* \(m_{-} x+i x+(n-1) * a b s(i n c x)\)). \\
\hline & This array contains the entries of the distributed vector sub (x). \\
\hline ix, jx & (global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (x), respectively. \\
\hline descx & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\). \\
\hline incx & (global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero. \\
\hline \multirow[t]{2}{*}{beta} & (global) \\
\hline & Specifies the scalar beta. When beta is set to zero, then sub (\(y\)) need not be set on input. \\
\hline \multirow[t]{3}{*}{Y} & (local) \\
\hline & Array, size at least (jy-1)*m_y +iy+(n-1)*abs(incy)). \\
\hline & This array contains the entries of the distributed vector sub (y). \\
\hline iy, jy & (global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively. \\
\hline descy & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\). \\
\hline incy & (global) Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and \(m-y\). incy must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
y
Overwritten by the updated distributed vector sub (y).

\footnotetext{
p?syr
Performs a rank-1 update of a distributed symmetric matrix.
}

\section*{Syntax}
```

void pssyr (const char *uplo, const MKL_INT *n , const float *alpha, const float *x ,
const MKL_INT *ix, const MKL_INT *jx , const MKL_INT *descx , const MKL_INT *incx ,
float *a, const MKL_INT *ia , const MKL_INT *ja, const MKL_INT *desca );
void pdsyr (const char *uplo, const MKL_INT *n, const double *alpha, const double
*x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT
*incx , double *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?syr routines perform a distributed matrix-vector operation defined as
```

sub(A) := alpha*sub (x)*sub (x)' + sub (A),

```
where:

\section*{alpha is a scalar,}
```

sub (A) is a n-by-n distributed symmetric matrix, sub (A)=A(ia:ia+n-1, ja:ja+n-1),

```
sub (\(x\)) is distributed vector.
sub (x) denotes \(X(i x, j x: j x+n-1)\) if \(i n c x=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\),

\section*{Input Parameters}
```

uplo
n
alpha
x
ix, jx
descx
incx
a
(global) Specifies whether the upper or lower triangular part of the symmetric distributed matrix sub ( $A$ ) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub $(A)$ is used.
If uplo = 'L' or 'l', then the low triangular part of the sub $(A)$ is used.
(global) Specifies the order of the distributed matrix $\operatorname{sub}(A), n \geq 0$.
(global)
Specifies the scalar alpha.
(local)
Array, size at least $\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub ( $x$ ).
(global) The row and column indices in the distributed matrix $X$ indicating the first row and the first column of the submatrix sub ( $x$ ), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix $X$.
(global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and m_x. incx must not be zero.
(local)
Array, size (Ild_a, LOCq(ja+n-1)). This array contains the local pieces of the distributed matrix sub ( $A$ ).

```
ia, ja
desca

Before entry with uplo = 'U' or 'u', the \(n\)-by-n upper triangular part of the distributed matrix sub (\(A\)) must contain the upper triangular part of the symmetric distributed matrix and the strictly lower triangular part of sub (\(A\)) is not referenced, and with uplo = 'L' or ' 1 ', the \(n\)-by- \(n\) lower triangular part of the distributed matrix sub (\(A\)) must contain the lower triangular part of the symmetric distributed matrix and the strictly upper triangular part of sub (\(A\)) is not referenced.
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).

\section*{Output Parameters}
a
With uplo = 'U' or 'u', the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated distributed matrix sub (A).

With uplo = 'L' or 'l', the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated distributed matrix sub (A).
p?syr2
Performs a rank-2 update of a distributed symmetric matrix.

\section*{Syntax}
```

void pssyr2 (const char *uplo , const MKL_INT *n , const float *alpha, const float
*x , const MKL_INT *ix, const MKL_INT *jx , const MKL_INT *descx , const MKL_INT
*incx , const float *y , const MKL_INT *iy, const MKL_INT *jy , const MKL_INT *descy ,
const MKL_INT *incy, float *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT
*desca );
void pdsyr2 (const char *uplo , const MKL_INT *n , const double *alpha , const double
*x , const MKL_INT *ix , const MKL_INT *jx , const MKL_INT *descx , const MKL_INT
*incx , const double *y , const MKL_INT *iy , const MKL_INT *jy , const MKL_INT
*descy , const MKL_INT *incy , double *a , const MKL_INT *ia , const MKL_INT *ja,
const MKL_INT *desca );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?syr2 routines perform a distributed matrix-vector operation defined as
```

sub(A) := alpha*sub (x)*sub (y)'+ alpha*sub (y)*sub (x)' + sub (A),

```
where:
alpha is a scalar,
sub (A) is a \(n\)-by-n distributed symmetric matrix, sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\),
sub (\(x\)) and sub (\(y\)) are distributed vectors.
```

sub(x) denotes X(ix, jx:jx+n-1) if incx = m_x, and X(ix: ix+n-1, jx) if incx = 1,
sub(y) denotes Y(iy, jy:jy+n-1) if incy = m_y, and Y(iy: iy+n-1, jy) if incy = 1.

```

\section*{Input Parameters}

n
alpha

X
ix, jx
descx
incx

Y
iy, jy
descy
incy
a
(global) Specifies whether the upper or lower triangular part of the distributed symmetric matrix sub (\(A\)) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub \((A)\) is used.
If uplo = 'L' or 'l', then the low triangular part of the sub \((A)\) is used.
(global) Specifies the order of the distributed matrix \(\operatorname{sub}(A), n \geq 0\).
(global)
Specifies the scalar alpha.
(local)
Array, size at least \(\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)\).
This array contains the entries of the distributed vector sub (x).
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (\(x\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.
(local)
Array, size at least \(\left.(j y-1) * m_{-} y+i y+(n-1) * a b s(i n c y)\right)\).
This array contains the entries of the distributed vector sub \((y)\).
(global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) Specifies the increment for the elements of sub (\(y\)). Only two values are supported, namely 1 and m_y. incy must not be zero.
(local)
Array, size (lld_a, \(\operatorname{LOCq}(j a+n-1))\). This array contains the local pieces of the distributed matrix sub (\(A\)).

Before entry with uplo = 'U' or 'u', the n-by-n upper triangular part of the distributed matrix sub (A) must contain the upper triangular part of the distributed symmetric matrix and the strictly lower triangular part of sub (\(A\)) is not referenced, and with uplo = 'L' or 'l', the \(n\)-by-n lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the distributed symmetric matrix and the strictly upper triangular part of sub \((A)\) is not referenced.
```

ia, ja
desca

```

\section*{Output Parameters}
a
With uplo = 'U' or 'u', the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated distributed matrix sub (A).
With uplo = 'L' or 'l', the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated distributed matrix sub (A).
p?trmv
Computes a distributed matrix-vector product using a
triangular matrix.

\section*{Syntax}
```

void pstrmv (const char *uplo, const char *trans, const char *diag, const MKL_INT
*n , const float *a, const MKL_INT *ia, const MKL_INT *ja, const MKL_INT *desca,
float *x, const MKL_INT *ix, const MKL_INT *jx , const MKL_INT *descx , const MKL_INT
*incx );
void pdtrmv (const char *uplo, const char *trans, const char *diag, const MKL_INT
*n , const double *a, const MKL_INT *ia, const MKL_INT *ja, const MKL_INT *desca,
double *x, const MKL_INT *ix, const MKL_INT *jx, const MKL_INT *descx, const
MKL_INT *incx );
void pctrmv (const char *uplo, const char *trans, const char *diag, const MKL_INT
*n , const MKL_Complex8 *a , const MKL_INT *ia, const MKL_INT *ja, const MKL_INT
*desca , MKL_Complex8 *x , const MKL_INT *ix, const MKL_INT *jx , const MKL_INT
*descx , const MKL_INT *incx );
void pztrmv (const char *uplo, const char *trans, const char *diag, const MKL_INT
*n , const MKL_Complex16 *a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT
*desca, MKL_Complex16 *x , const MKL_INT *ix, const MKL_INT *jx, const MKL_INT
*descx , const MKL_INT *incx );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?trmv routines perform one of the following distributed matrix-vector operations defined as
```

sub(x) := sub (A)*sub (x), or sub (x) :=sub (A)'*sub (x), or sub (x) := conjg(sub (A)')*sub (x),

``` where:
sub (A) is a \(n-b y-n\) unit, or non-unit, upper or lower triangular distributed matrix, sub (A) \(=A(\) ia:ia+n-1, ja:ja+n-1),
sub \((x)\) is an \(n\)-element distributed vector.
sub (\(x\)) denotes \(x\left(i x, j x: j x+n-1\right.\)) if incx \(=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\),

\section*{Input Parameters}
uplo
trans
diag
\(n\)
a
ia, ja
desca

X
ix, jx
descx
incx
(global) Specifies whether the distributed matrix sub (\(A\)) is upper or lower triangular:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or 'l', then the matrix is low triangular.
(global) Specifies the form of op (sub (A)) used in the matrix equation:
if transa \(=\) ' \(N\) ' or ' \(n\) ', then \(\operatorname{sub}(x):=\operatorname{sub}(A) * \operatorname{sub}(x)\);
if transa \(=\) ' \(T\) ' or 't', then \(\operatorname{sub}(x):=\operatorname{sub}(A)\) '*sub \((x)\);
if transa \(=\) ' C' or ' \(C\) ', then sub \((x):=\operatorname{conjg}(\operatorname{sub}(A)\) ')*sub \((x)\).
(global) Specifies whether the matrix sub (A) is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag = 'N' or ' n ', then the matrix is not unit triangular.
(global) Specifies the order of the distributed matrix sub (A), \(n \geq 0\).
(local)
Array, size at least (lld_a, LOCq(1, ja+n-1)).
Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub (\(A\)), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix sub \((A)\) is not referenced.

Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub (\(A\)), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix sub \((A)\) is not referenced.

When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub (\(A\)) are not referenced either, but are assumed to be unity.
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)
Array, size at least \(\left.(j x-1){ }^{*} m_{-} x+i x+(n-1) * a b s(i n c x)\right)\).
This array contains the entries of the distributed vector sub \((x)\).
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.

\section*{Output Parameters}

X
Overwritten by the transformed distributed vector sub (x).

\section*{p?atrmv}

Computes a distributed matrix-vector product using absolute values for a triangular matrix.

\section*{Syntax}
```

void psatrmv (const char *uplo, const char *trans, const char *diag, const MKL_INT
*n, const float *alpha, const float *a , const MKL_INT *ia, const MKL_INT *ja ,
const MKL_INT *desca , const float *x, const MKL_INT *ix , const MKL_INT *jx , const
MKL_INT *descx , const MKL_INT *incx , const float *beta , float *y , const MKL_INT
*iy , const MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pdatrmv (const char *uplo, const char *trans, const char *diag , const MKL_INT
*n , const double *alpha, const double *a , const MKL_INT *ia , const MKL_INT *ja,
const MKL_INT *desca , const double *x , const MKL_INT *ix , const MKL_INT *jx , const
MKL_INT *descx , const MKL_INT *incx , const double *beta, double *y , const MKL_INT
*iy , const MKL_INT *jy , const MKL_INT *descy , const MKL_INT *incy );
void pcatrmv (const char *uplo, const char *trans, const char *diag , const MKL_INT
*n , const MKL_Complex8 *alpha, const MKL_Complex8 *a, const MKL_INT *ia, const
MKL_INT *ja , const MKL_INT *desca , const MKL_Complex8 *x , const MKL_INT *ix , const
MKL_INT *jx, const MKL_INT *descx , const MKL_INT *incx , const MKL_Complex8 *beta ,
MKL_Complex8 *y , const MKL_INT *iy , const MKL_INT *jy , const MKL_INT *descy , const
MKL_INT *incy );
void pzatrmv (const char *uplo, const char *trans, const char *diag , const MKL_INT
*n , const MKL_Complex16 *alpha, const MKL_Complex16 *a, const MKL_INT *ia, const
MKL_INT *ja, const MKL_INT *desca, const MKL_Complex16 *x , const MKL_INT *ix , const
MKL_INT *jx, const MKL_INT *descx , const MKL_INT *incx , const MKL_Complexl6 *beta ,
MKL_Complex16 *y , const MKL_INT *iy , const MKL_INT *jy , const MKL_INT *descy , const
MKL_INT *incy );

```

Include Files
- mkl_pblas.h

\section*{Description}

The p?atrmv routines perform one of the following distributed matrix-vector operations defined as
\(\operatorname{sub}(y) \quad:=\operatorname{abs}(a l p h a) * a b s(s u b(A)) * a b s(\operatorname{sub}(x))+\operatorname{abs}(b e t a * s u b(y))\), or
sub \((y) \quad:=\operatorname{abs}(a l p h a) * a b s\left(s u b(A)^{\prime}\right) * a b s(s u b(x))+a b s(b e t a * s u b(y))\), or
\(\operatorname{sub}(y) \quad:=\operatorname{abs}(a l p h a) * a b s\left(\operatorname{conjg}\left(\operatorname{sub}(A)^{\prime}\right)\right) * a b s(\operatorname{sub}(x))+\operatorname{abs}(b e t a * s u b(y))\),
where:
alpha and beta are scalars,
sub (A) is a \(n-b y-n\) unit, or non-unit, upper or lower triangular distributed matrix, sub \((A)=A(i a: i a+n-1\), ja:ja+n-1),
sub (\(x\)) is an \(n\)-element distributed vector.
sub (x) denotes \(X(i x, j x: j x+n-1)\) if incx \(=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\).

\section*{Input Parameters}
uplo
trans
diag
n
alpha
a
ia, ja
desca

X
(global) Specifies whether the distributed matrix sub (A) is upper or lower triangular:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or 'l', then the matrix is low triangular.
(global) Specifies the form of op (sub (A)) used in the matrix equation:
```

if trans = 'N' or 'n', then sub(y) := |alpha|*|sub(A)|*|sub (x) |+|
beta*sub(y)|;
if trans = 'T' or 't', then sub(y) := |alpha|*|sub(A)'|*|sub(x)|
+|beta*sub(y)|;
if trans = 'C' or 'c', then sub(y) := |alpha|*|conjg(sub(A)')|*|
sub(x)|+|beta*sub (y) |.

```
(global) Specifies whether the matrix sub (\(A\)) is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag \(=\) ' \(N\) ' or ' \(n\) ', then the matrix is not unit triangular.
(global) Specifies the order of the distributed matrix sub (A), \(n \geq 0\).
(global)
Specifies the scalar alpha.
(local)
Array, size at least (Ild_a, LOCq(1, ja+n-1)).
Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub (\(A\)), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix sub (A) is not referenced.

Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub (\(A\)), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix sub \((A)\) is not referenced.

When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub (\(A\)) are not referenced either, but are assumed to be unity.
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)
Array, size at least \(\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)\).
This array contains the entries of the distributed vector sub (x).
\begin{tabular}{|c|c|}
\hline ix, jx & (global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (\(x\)), respectively. \\
\hline descx & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\). \\
\hline incx & (global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m _x\). incx must not be zero. \\
\hline \multirow[t]{2}{*}{beta} & (global) \\
\hline & Specifies the scalar beta. When beta is set to zero, then sub (\(y\)) need not be set on input. \\
\hline \multirow[t]{3}{*}{Y} & (local) \\
\hline & Array, size \(\left.(j y-1) * m _y+i y+(m-1) * a b s(i n c y)\right)\) when trans \(={ }^{\prime} N\) ' or 'n', and (jy-1)*m_y +iy+(n-1)*abs(incy)) otherwise. \\
\hline & This array contains the entries of the distributed vector sub (y). \\
\hline iy, jy & (global) The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively. \\
\hline descy & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(Y\). \\
\hline incy & (global) Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and m_y. incy must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
y
Overwritten by the transformed distributed vector sub (y).

\section*{p?trsv}

Solves a system of linear equations whose coefficients are in a distributed triangular matrix.

\section*{Syntax}
```

void pstrsv (const char *uplo, const char *trans, const char *diag, const MKL_INT
*n , const float *a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT *desca,
float *x , const MKL_INT *ix, const MKL_INT *jx , const MKL_INT *descx , const MKL_INT
*incx );
void pdtrsv (const char *uplo, const char *trans, const char *diag , const MKL_INT
*n , const double *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca ,
double *x , const MKL_INT *ix, const MKL_INT *jx, const MKL_INT *descx , const
MKL_INT *incx );
void pctrsv (const char *uplo, const char *trans, const char *diag, const MKL_INT
*n , const MKL_Complex8 *a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT
*desca , MKL_Complex8 *x , const MKL_INT *ix, const MKL_INT *jx , const MKL_INT
*descx , const MKL_INT *incx );
void pztrsv (const char *uplo, const char *trans, const char *diag, const MKL_INT
*n , const MKL_Complex16 *a , const MKL_INT *ia, const MKL_INT *ja, const MKL_INT
*desca , MKL_Complex16 *x , const MKL_INT *ix, const MKL_INT *jx , const MKL_INT
*descx , const MKL_INT *incx );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?trsv routines solve one of the systems of equations:
```

sub(A)*sub (x) = b, or sub (A)'*sub (x) = b, or conjg(sub (A)')*sub (x) = b,

```
where:
sub (A) is a \(n-b y-n\) unit, or non-unit, upper or lower triangular distributed matrix, sub (A) \(=A(\) ia:ia+ \(n-1\), ja:ja+n-1),
\(b\) and sub (x) are \(n\)-element distributed vectors,
sub(x) denotes \(X(i x, j x: j x+n-1)\) if \(i n c x=m_{-} x\), and \(X(i x: i x+n-1, j x)\) if incx \(=1\),.
The routine does not test for singularity or near-singularity. Such tests must be performed before calling this routine.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & (global) Specifies whether the distributed matrix sub (\(A\)) is upper or lower triangular: \\
\hline & if uplo = 'U' or 'u', then the matrix is upper triangular; \\
\hline & if uplo = 'L' or 'l', then the matrix is low triangular. \\
\hline \multirow[t]{4}{*}{trans} & (global) Specifies the form of the system of equations: \\
\hline & if transa \(=\) ' \(N\) ' or ' n ', then \(\operatorname{sub}(A) * \operatorname{sub}(x)=b\); \\
\hline & if transa \(=\) 'T' or 't', then sub (A)'*sub \((x)=b\); \\
\hline & if transa \(=\) 'C' or 'c', then conjg (sub (A)')*sub \((x)=b\). \\
\hline \multirow[t]{3}{*}{diag} & (global) Specifies whether the matrix sub (\(A\)) is unit triangular: \\
\hline & if diag = 'U' or 'u' then the matrix is unit triangular; \\
\hline & if diag = 'N' or 'n', then the matrix is not unit triangular. \\
\hline \(n\) & (global) Specifies the order of the distributed matrix sub (\(A\)), \(n \geq 0\). \\
\hline \multirow[t]{5}{*}{a} & (local) \\
\hline & Array, size at least (lld_a, LOCq (1, ja+n-1)). \\
\hline & Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub (\(A\)), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix sub (A) is not referenced. \\
\hline & Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub (\(A\)), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix \(\operatorname{sub}(A)\) is not referenced. \\
\hline & When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub (\(A\)) are not referenced either, but are assumed to be unity. \\
\hline
\end{tabular}
```

ia, ja
desca
X
ix, jx
descx
incx

```

\section*{Output Parameters}
\(x\)
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)
Array, size at least \(\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)\).
This array contains the entries of the distributed vector sub \((x)\). Before entry, sub (\(x\)) must contain the \(n\)-element right-hand side distributed vector \(b\).
(global) The row and column indices in the distributed matrix \(X\) indicating the first row and the first column of the submatrix sub (\(x\)), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and m_x. incx must not be zero.

Overwritten with the solution vector.

\section*{PBLAS Level 3 Routines}

The PBLAS Level 3 routines perform distributed matrix-matrix operations. Table "PBLAS Level 3 Routine Groups and Their Data Types" lists the PBLAS Level 3 routine groups and the data types associated with them.

\section*{PBLAS Level 3 Routine Groups and Their Data Types}
\begin{tabular}{lll}
\hline Routine Group & Data Types & Description \\
\hline p?geadd & \(s, d, c, z\) & Distributed matrix-matrix sum of general matrices \\
p?tradd & s, d, c, z & Distributed matrix-matrix sum of triangular matrices \\
p?gemm & s, d, c, z & Distributed matrix-matrix product of general matrices \\
p?hemm & c, z & Distributed matrix-matrix product, one matrix is Hermitian \\
p?herk & c, z & Rank-k update of a distributed Hermitian matrix \\
p?her2k & c, z & Matrix-matrix product of distributed symmetric matrices \\
p?symm & s, d, c, z & Rank-k update of a distributed symmetric matrix \\
p?syrk & s, d, c, z & Rank-2k update of a distributed symmetric matrix \\
p?syr2k & Transposition of a real distributed matrix \\
p?tran & c, z & Transposition of a complex distributed matrix (conjugated) \\
p?tranc & Transposition of a complex distributed matrix \\
p?tranu & &
\end{tabular}
\begin{tabular}{lll}
\hline Routine Group & Data Types & Description \\
\hline\(p ? t r m m\) & \(s, d, c, z\) & Distributed matrix-matrix product, one matrix is triangular \\
\(p ? t r s m\) & \(s, d, c, z\) & \begin{tabular}{l}
Solution of a distributed matrix equation, one matrix is \\
triangular
\end{tabular} \\
\hline
\end{tabular}
```

p?geadd
Performs sum operation for two distributed general
matrices.
Syntax
void psgeadd (const char *trans, const MKL_INT *m, const MKL_INT *n , const float
*alpha, const float *a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT
*desca , const float *beta , float *c , const MKL_INT *ic , const MKL_INT *jc , const
MKL_INT *descc );
void pdgeadd (const char *trans, const MKL_INT *m, const MKL_INT *n , const double
*alpha, const double *a, const MKL_INT *ia, const MKL_INT *ja , const MKL_INT
*desca , const double *beta , double *c , const MKL_INT *ic, const MKL_INT *jc , const
MKL_INT *descc );
void pcgeadd (const char *trans , const MKL_INT *m, const MKL_INT *n , const
MKL_Complex8 *alpha, const MKL_Complex8 *a, const MKL_INT *ia , const MKL_INT *ja,
const MKL_INT *desca, const MKL_Complex8 *beta, MKL_Complex8 *c , const MKL_INT *ic ,
const MKL_INT *jc , const MKL_INT *descc );
void pzgeadd (const char *trans, const MKL_INT *m, const MKL_INT *n , const
MKL_Complex16 *alpha, const MKL_Complex16 *a , const MKL_INT *ia , const MKL_INT *ja,
const MKL_INT *desca , const MKL_Complex16 *beta , MKL_Complex16 *c , const MKL_INT
*ic , const MKL_INT *jc , const MKL_INT *descc );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?geadd routines perform sum operation for two distributed general matrices. The operation is defined as
```

sub(C):=beta*sub(C) + alpha*op(sub(A)),

```
where:
op \((x)\) is one of op \((x)=x\), or op \((x)=x^{\prime}\),
alpha and beta are scalars,
sub (C) is an m-by-n distributed matrix, sub (C) \(=C(i c: i c+m-1, j c: j c+n-1)\).
sub \((A)\) is a distributed matrix, sub \((A)=A(i a: i a+n-1, j a: j a+m-1)\).

\section*{Input Parameters}
trans
(global) Specifies the operation:
\[
\begin{aligned}
& \text { if trans }=\text { 'N' or 'n', then op }(\operatorname{sub}(A)):=\operatorname{sub}(A) ; \\
& \text { if trans }=' T \text { ' or 't', then op }(\operatorname{sub}(A)):=\operatorname{sub}(A) ' ;
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline & if trans \(=\) ' C' or ' C ', then op (sub (\(A\))) : \(=\operatorname{sub}(A)\) '. \\
\hline m & (global) Specifies the number of rows of the distributed matrix sub (\(C\)) and the number of columns of the submatrix \(\operatorname{sub}(A), m \geq 0\). \\
\hline \(n\) & (global) Specifies the number of columns of the distributed matrix sub (\(C\)) and the number of rows of the submatrix sub (A), \(n \geq 0\). \\
\hline alpha & (global) \\
\hline & Specifies the scalar alpha. \\
\hline a & (local) \\
\hline & Array, size (lld_a, LOCq(ja+m-1)). This array contains the local pieces of the distributed matrix sub (\(A\)). \\
\hline ia, ja & (global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively. \\
\hline desca & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\). \\
\hline beta & (global) \\
\hline & Specifies the scalar beta. \\
\hline & When beta is equal to zero, then sub (\(C\)) need not be set on input. \\
\hline C & (local) \\
\hline & Array, size (lld_c, LOCq(jc+n-1)). \\
\hline & This array contains the local pieces of the distributed matrix sub (\(C\)) . \\
\hline ic, jc & (global) The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub (\(C\)), respectively. \\
\hline descc & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(C\). \\
\hline
\end{tabular}

\section*{Output Parameters}
c
Overwritten by the updated submatrix.
p?tradd
Performs sum operation for two distributed triangular matrices.

\section*{Syntax}
```

void pstradd (const char *uplo, const char *trans , const MKL_INT *m , const MKL_INT
*n , const float *alpha, const float *a , const MKL_INT *ia, const MKL_INT *ja ,
const MKL_INT *desca, const float *beta, float *c , const MKL_INT *ic , const MKL_INT
*jc , const MKL_INT *descc );
void pdtradd (const char *uplo, const char *trans , const MKL_INT *m , const MKL_INT
*n , const double *alpha, const double *a , const MKL_INT *ia, const MKL_INT *ja,
const MKL_INT *desca , const double *beta, double *C , const MKL_INT *ic , const
MKL_INT *jc , const MKL_INT *descc );

```
```

void pctradd (const char *uplo , const char *trans, const MKL_INT *m , const MKL_INT
*n , const MKL_Complex8 *alpha , const MKL_Complex8 *a , const MKL_INT *ia , const
MKL_INT *ja, const MKL_INT *desca , const MKL_Complex8 *beta, MKL_Complex8 *c , const
MKL_INT *ic, const MKL_INT *jc , const MKL_INT *descc );
void pztradd (const char *uplo, const char *trans, const MKL_INT *m, const MKL_INT
*n , const MKL_Complex16 *alpha, const MKL_Complex16 *a, const MKL_INT *ia, const
MKL_INT *ja, const MKL_INT *desca, const MKL_Complex16 *beta , MKL_Complex16 *c ,
const MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?tradd routines perform sum operation for two distributed triangular matrices. The operation is defined as
```

sub (C) :=beta*sub (C) + alpha*op (sub (A)),

```
where:
op \((x)\) is one of \(o p(x)=x\), or op \((x)=x^{\prime}\), or op \((x)=\operatorname{conjg}\left(x^{\prime}\right)\).
alpha and beta are scalars,
sub (C) is an m-by-n distributed matrix, sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\).
sub \((A)\) is a distributed matrix, sub \((A)=A(i a: i a+n-1, j a: j a+m-1)\).

\section*{Input Parameters}
uplo
trans
m
\(n\)
alpha
a
(global) Specifies whether the distributed matrix sub (\(C\)) is upper or lower triangular:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or 'l', then the matrix is low triangular.
(global) Specifies the operation:
if trans \(=\) ' \(N\) ' or 'n', then op (sub (\(A\))) := sub \((A)\);
if trans \(=\) 'T' or 't', then op (sub \((A)):=\operatorname{sub}(A)\) ';

(global) Specifies the number of rows of the distributed matrix sub (\(C\)) and the number of columns of the submatrix sub (A), \(m \geq 0\).
(global) Specifies the number of columns of the distributed matrix sub (C) and the number of rows of the submatrix \(\operatorname{sub}(A), n \geq 0\).
(global)
Specifies the scalar alpha.
(local)
Array, size (lld_a, LOCq (ja+m-1)). This array contains the local pieces of the distributed matrix sub (\(A\)).
\begin{tabular}{|c|c|}
\hline ia, ja & (global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (A), respectively. \\
\hline desca & (global and local) array of dimension 9 . The array descriptor of the distributed matrix \(A\). \\
\hline beta & (global) \\
\hline & Specifies the scalar beta. \\
\hline c & When beta is equal to zero, then sub (\(C\)) need not be set on input. (local) \\
\hline & Array, size (lld_c, LOCq(\(\mathrm{jc}^{\text {c }}\) - -1\()\)). \\
\hline & This array contains the local pieces of the distributed matrix sub (\(C\)). \\
\hline ic, jc & (global) The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub (\(C\)), respectively. \\
\hline descc & (global and local) array of dimension 9 . The array descriptor of the distributed matrix \(C\). \\
\hline
\end{tabular}

\section*{Output Parameters}
c
Overwritten by the updated submatrix.

\section*{p?gemm}

Computes a scalar-matrix-matrix product and adds the result to a scalar-matrix product for distributed matrices.

\section*{Syntax}
```

void psgemm (const char *transa , const char *transb , const MKL_INT *m , const MKL_INT
*n , const MKL_INT *k , const float *alpha, const float *a , const MKL_INT *ia , const
MKL_INT *ja, const MKL_INT *desca , const float *b , const MKL_INT *ib , const MKL_INT
*jb, const MKL_INT *descb , const float *beta , float *c , const MKL_INT *ic , const
MKL_INT *jc , const MKL_INT *descc );
void pdgemm (const char *transa , const char *transb , const MKL_INT *m , const MKL_INT
*n , const MKL_INT *k , const double *alpha , const double *a , const MKL_INT *ia ,
const MKL_INT *ja, const MKL_INT *desca, const double *b, const MKL_INT *ib , const
MKL_INT *jb, const MKL_INT *descb , const double *beta , double *C , const MKL_INT
*ic, const MKL_INT *jc , const MKL_INT *descc );
void pcgemm (const char *transa , const char *transb , const MKL_INT *m , const MKL_INT
*n , const MKL_INT *k , const MKL_Complex8 *alpha , const MKL_Complex8 *a , const
MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca , const MKL_Complex8 *b , const
MKL_INT *ib, const MKL_INT *jb , const MKL_INT *descb , const MKL_Complex8 *beta ,
MKL_Complex8 *C , const MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc );
void pzgemm (const char *transa , const char *transb , const MKL_INT *m , const MKL_INT
*n , const MKL_INT *k , const MKL_Complex16 *alpha , const MKL_Complex16 *a , const
MKL_INT *ia, const MKL_INT *ja , const MKL_INT *desca , const MKL_Complex16 *b , const
MKL_INT *ib , const MKL_INT *jb , const MKL_INT *descb , const MKL_Complex16 *beta ,
MKL_Complex16 *C , const MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?gemm routines perform a matrix-matrix operation with general distributed matrices. The operation is defined as
```

sub(C) := alpha*op(sub(A))*op(sub (B)) + beta*sub(C),

```
where:
\(\mathrm{op}(x)\) is one of \(\mathrm{op}(x)=x\), or op \((x)=x^{\prime}\),
alpha and beta are scalars,
sub \((A)=A(i a: i a+m-1, j a: j a+k-1)\), sub \((B)=B(i b: i b+k-1, j b: j b+n-1)\), and \(\operatorname{sub}(C)=C(i c: i c+m-1\), \(j c: j c+n-1)\), are distributed matrices.

\section*{Input Parameters}
```

transa

```
(global) Specifies the form of op (sub (A)) used in the matrix multiplication:
```

if transa = 'N' or 'n', then op(sub(A)) = sub(A);
if transa = 'T' or 't', then op(sub (A)) = sub(A)';
if transa = 'C' or 'c', then op(sub(A)) = sub(A)'.

```
(global) Specifies the form of op (sub (\(B\))) used in the matrix multiplication:
```

if transb = 'N' or 'n', then op(sub (B) ) = sub (B);
if transb = 'T' or 't', then op(sub (B)) = sub(B)';
if transb = 'C' or 'c', then op(sub (B)) = sub(B)'.

```
(global) Specifies the number of rows of the distributed matrices op (sub (A)) and sub (\(C\)), \(m \geq 0\).
(global) Specifies the number of columns of the distributed matrices op (sub (B)) and sub (\(C\)), \(n \geq 0\).

The value of \(n\) must be at least zero.
(global) Specifies the number of columns of the distributed matrix op (sub (A)) and the number of rows of the distributed matrix op (sub (B)).

The value of \(k\) must be greater than or equal to 0 .
(global)
Specifies the scalar alpha.
When alpha is equal to zero, then the local entries of the arrays \(a\) and \(b\) corresponding to the entries of the submatrices sub (\(A\)) and sub (\(B\)) respectively need not be set on input.
(local)
Array, size lld_a by kla, where kla is LOCc (ja+k-1) when transa = 'N' or ' \(n\) ', and is LOCq (ja+m-1) otherwise. Before entry this array must contain the local pieces of the distributed matrix sub (\(A\)).
\begin{tabular}{|c|c|}
\hline ia, ja & (global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively \\
\hline desca & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\). \\
\hline \multirow[t]{2}{*}{b} & (local) \\
\hline & Array, size \(l l d _b\) by \(k l b\), where \(k l b\) is \(\operatorname{LOCc}(j b+n-1)\) when transb \(=\) ' \(N\) ' or ' \(n\) ', and is LOCq (\(j b+k-1\)) otherwise. Before entry this array must contain the local pieces of the distributed matrix sub (\(B\)). \\
\hline i.b, jb & (global) The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub (\(B\)), respectively \\
\hline descb & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(B\). \\
\hline \multirow[t]{3}{*}{beta} & (global) \\
\hline & Specifies the scalar beta. \\
\hline & When beta is equal to zero, then sub (\(C\)) need not be set on input. \\
\hline \multirow[t]{2}{*}{c} & (local) \\
\hline & Array, size (\(11 d _a, \operatorname{LOCq}(j c+n-1)\)). Before entry this array must contain the local pieces of the distributed matrix sub (\(C\)). \\
\hline ic, jc & (global) The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub (\(C\)), respectively \\
\hline descc & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(C\). \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten by the m-by-n distributed matrix
alpha*op(sub (A))*op(sub(B)) + beta*sub (C).

\section*{p?hemm}

Performs a scalar-matrix-matrix product (one matrix operand is Hermitian) and adds the result to a scalarmatrix product.

\section*{Syntax}
```

void pchemm (const char *side , const char *uplo, const MKL_INT *m , const MKL_INT
*n , const MKL_Complex8 *alpha, const MKL_Complex8 *a, const MKL_INT *ia, const
MKL_INT *ja , const MKL_INT *desca , const MKL_Complex8 *b , const MKL_INT *ib , const
MKL_INT *jb , const MKL_INT *descb , const MKL_Complex8 *beta , MKL_Complex8 *C , const
MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc );
void pzhemm (const char *side , const char *uplo , const MKL_INT *m , const MKL_INT
*n , const MKL_Complex16 *alpha, const MKL_Complex16 *a, const MKL_INT *ia , const
MKL_INT *ja , const MKL_INT *desca , const MKL_Complex16 *b , const MKL_INT *ib , const
MKL_INT *jb, const MKL_INT *descb , const MKL_Complex16 *beta, MKL_Complex16 *c ,
const MKL_INT *ic , cons̄t MKL_INT *jc , const MKL_INT *descc );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?hemm routines perform a matrix-matrix operation with distributed matrices. The operation is defined as
```

sub (C):=alpha*sub (A)*sub (B)+ beta*sub (C),

```
or
```

sub (C):=alpha*sub (B)*sub (A) + beta*sub (C),

```
where:
```

alpha and beta are scalars,
sub(A) is a Hermitian distributed matrix, sub (A)=A(ia:ia+m-1, ja:ja+m-1), if side = 'L', and
sub(A)=A(ia:ia+n-1, ja:ja+n-1), if side = 'R'.
sub (B) and sub (C) are m-by-n distributed matrices.
sub (B)=B(ib:ib+m-1, jb:jb+n-1), sub (C)=C(ic:ic+m-1, jc:jc+n-1).

```

\section*{Input Parameters}
side
uplo
m
n
alpha
a
(global) Specifies whether the Hermitian distributed matrix sub (A) appears on the left or right in the operation:
if side \(=\) 'L' or 'l', then sub (C) := alpha*sub(A) *sub (B) + beta*sub (C) ;
if side \(=\) ' R ' or 'r', then sub (C) : = alpha*sub (\(B\)) *sub (\(A\)) + beta*sub (C).
(global) Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub (\(A\)) is used:
if uplo = 'U' or 'u', then the upper triangular part is used;
if uplo = 'L' or 'l', then the lower triangular part is used.
(global) Specifies the number of rows of the distribute submatrix sub (C), \(m \geq 0\).
(global) Specifies the number of columns of the distribute submatrix sub (\(C\)), \(n \geq 0\).
(global)
Specifies the scalar alpha.
(local)
Array, size (lld_a, LOCq(ja+na-1)).
Before entry this array must contain the local pieces of the symmetric distributed matrix \(\operatorname{sub}(A)\), such that when uplo \(=\) 'U' or 'u', the na-byna upper triangular part of the distributed matrix sub (\(A\)) must contain the upper triangular part of the Hermitian distributed matrix and the strictly lower triangular part of sub (A) is not referenced, and when uplo = 'L' or
\begin{tabular}{|c|c|}
\hline ia, ja & (global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (\(A\)), respectively \\
\hline desca & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\). \\
\hline \multirow[t]{2}{*}{b} & (local) \\
\hline & Array, size (lld_b, LOCq(jb+n-1)). Before entry this array must contain the local pieces of the distributed matrix sub (B). \\
\hline ib, jb & (global) The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub (\(B\)), respectively. \\
\hline descb & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(B\). \\
\hline \multirow[t]{3}{*}{beta} & (global) \\
\hline & Specifies the scalar beta. \\
\hline & When beta is set to zero, then \(\operatorname{sub}(C)\) need not be set on input. \\
\hline \multirow[t]{2}{*}{C} & (local) \\
\hline & Array, size (\(11 d _c, \operatorname{LOCq}(j c+n-1)\)). Before entry this array must contain the local pieces of the distributed matrix sub (C). \\
\hline ic, jc & (global) The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub (\(C\)), respectively \\
\hline descc & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(C\). \\
\hline
\end{tabular}

\section*{Output Parameters}
c
Overwritten by the m-by-n updated distributed matrix.
```

p?herk
Performs a rank-k update of a distributed Hermitian
matrix.

```

\section*{Syntax}
```

void pcherk (const char *uplo, const char *trans, const MKL_INT *n , const MKL_INT

```
void pcherk (const char *uplo, const char *trans, const MKL_INT *n , const MKL_INT
*k , const float *alpha, const MKL_Complex8 *a , const MKL_INT *ia , const MKL_INT
*k , const float *alpha, const MKL_Complex8 *a , const MKL_INT *ia , const MKL_INT
*ja, const MKL_INT *desca, const float *beta, MKL_Complex8 *c , const MKL_INT *ic ,
*ja, const MKL_INT *desca, const float *beta, MKL_Complex8 *c , const MKL_INT *ic ,
const MKL_INT *jc , const MKL_INT *descc);
const MKL_INT *jc , const MKL_INT *descc);
void pzherk (const char *uplo, const char *trans, const MKL_INT *n , const MKL_INT
void pzherk (const char *uplo, const char *trans, const MKL_INT *n , const MKL_INT
*k , const double *alpha, const MKL_Complex16 *a, const MKL_INT *ia, const MKL_INT
*k , const double *alpha, const MKL_Complex16 *a, const MKL_INT *ia, const MKL_INT
*ja, const MKL_INT *desca , const double *beta, MKL_Complex16 *c, const MKL_INT
*ja, const MKL_INT *desca , const double *beta, MKL_Complex16 *c, const MKL_INT
*ic , const MKL_INT *jc , const MKL_INT *descc);
```

*ic , const MKL_INT *jc , const MKL_INT *descc );

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?herk routines perform a distributed matrix-matrix operation defined as
```

sub(C):=alpha*sub (A)*conjg(sub (A)')+ beta*sub(C),
or

```
```

sub(C):=alpha*conjg(sub (A)')*sub(A)+ beta*sub (C),

```
where:
alpha and beta are scalars,
```

sub(C) is an n-by-n Hermitian distributed matrix, sub (C)=C(ic:ic+n-1, jc:jc+n-1).

```
sub (\(A\)) is a distributed matrix, sub (A) =A(ia:ia+n-1, ja:ja+k-1), if trans = 'N' or 'n', and sub \((A)=A(i a: i a+k-1, j a: j a+n-1)\) otherwise.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & (global) Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub (\(C\)) is used: \\
\hline & If uplo = 'U' or 'u', then the upper triangular part of the sub \((C)\) is used. \\
\hline & If uplo = 'L' or 'l', then the low triangular part of the sub (\(C\)) is used. \\
\hline \multirow[t]{3}{*}{trans} & (global) Specifies the operation: \\
\hline & \[
\begin{aligned}
& \text { if trans }=\text { 'N' or 'n', then sub }(C):=\text { alpha*sub }(A) * \operatorname{conjg}(\operatorname{sub}(A) \text { ') } \\
& + \text { beta*sub }(C) \text {; }
\end{aligned}
\] \\
\hline & ```
if trans = 'C' or 'C', then sub(C) := alpha*conjg(sub (A)')*sub (A)
+ beta*sub (C).
``` \\
\hline \(n\) & (global) Specifies the order of the distributed matrix sub ( \(C\) ), \(n \geq 0\). \\
\hline k & (global) On entry with trans \(=\) ' \(N\) ' or ' \(n\) ', \(k\) specifies the number of columns of the distributed matrix sub (A), and on entry with trans \(={ }^{\prime} T\) ' or 't' or 'C' or 'c', \(k\) specifies the number of rows of the distributed matrix sub (A), \(k \geq 0\). \\
\hline \multirow[t]{2}{*}{alpha} & (global) \\
\hline & Specifies the scalar alpha. \\
\hline \multirow[t]{2}{*}{a} & (local) \\
\hline & Array, size (lld_a, kla), where kla is LOCq(ja+k-1) when trans = 'N' or ' n ', and is LOCq (ja+n-1) otherwise. Before entry with trans \(=\) ' N ' or ' \(n\) ', this array contains the local pieces of the distributed matrix sub ( \(A\) ). \\
\hline ia, ja & (global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively. \\
\hline desca & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\). \\
\hline
\end{tabular}
```

beta
c
ic, jc
descc

```

\section*{Output Parameters}
c
With uplo = 'U' or 'u', the upper triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.

With uplo = 'L' or 'l', the lower triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.

\section*{p?her2k}

Performs a rank-2k update of a Hermitian distributed
matrix.

\section*{Syntax}
```

void pcher2k (const char *uplo, const char *trans, const MKL_INT *n , const MKL_INT
*k , const MKL_Complex8 *alpha, const MKL_Complex8 *a , const MKL_INT *ia , const
MKL_INT *ja , const MKL_INT *desca , const MKL_Complex8 *b , const MKL_INT *ib , const
MKL_INT *jb, const MKL_INT *descb, const float *beta, MKL_Complex8 *c , const
MKL_INT *ic, const MKL_INT *jc , const MKL_INT *descc);
void pzher 2k (const char *uplo, const char *trans, const MKL_INT *n , const MKL_INT
*k , const MKL_Complex16 *alpha , const MKL_Complex16 *a , const MKL_INT *ia , const
MKL_INT *ja, const MKL_INT *desca , const MKL_Complex16 *b , const MKL_INT *ib , const
MKL_INT *jb, const MKL_INT *descb, const double *beta, MKL_Complexl6 *c , const
MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc);

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?her \(2 k\) routines perform a distributed matrix-matrix operation defined as
```

sub (C):=alpha*sub (A)*conjg(sub (B)') + conjg(alpha)*sub (B)*conjg(sub (A)') +beta*sub (C),
or

```
\(\operatorname{sub}(C):=a l p h a * \operatorname{conjg}(\operatorname{sub}(A) ') * \operatorname{sub}(A)+\operatorname{conjg}(a l p h a) * \operatorname{conjg}(\operatorname{sub}(B) ') * \operatorname{sub}(A)+b e t a * \operatorname{sub}(C)\),
where:
alpha and beta are scalars,
sub \((C)\) is an \(n\)-by- \(n\) Hermitian distributed matrix, sub \((C)=C(i c: i c+n-1, j c: j c+n-1)\).
sub \((A)\) is a distributed matrix, sub \((A)=A(i a: i a+n-1, j a: j a+k-1)\), if trans \(={ }^{\prime} N^{\prime}\) or ' \(n\) ', and sub \((A)=\) A(ia:ia+k-1, ja:ja+n-1) otherwise.
sub ( \(B\) ) is a distributed matrix, sub \((B)=B(i b: i b+n-1, j b: j b+k-1)\), if trans \(=\) ' \(N\) ' or ' \(n\) ', and sub \((B)=B(i b: i b+k-1, j b: j b+n-1)\) otherwise.

\section*{Input Parameters}
uplo
trans
\(n\)
k
alpha
a
ia, ja
desca
b
ib, jb
(global) Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub \((C)\) is used:

If uplo = 'U' or 'u', then the upper triangular part of the sub \((C)\) is used.

If uplo = 'L' or 'l', then the low triangular part of the sub ( \(C\) ) is used.
(global) Specifies the operation:
if trans \(=\) ' \(N\) ' or 'n', then sub \((C):=\) alpha*sub \((A) * \operatorname{conjg}\left(\operatorname{sub}(B)^{\prime}\right)\)
+ conjg(alpha)*sub \((B)^{*}\) conjg (sub (A)') +beta*sub (C);
if trans \(=\) ' \(C^{\prime}\) or \({ }^{\prime} C^{\prime}\), then sub \((C):=a l p h a^{*} \operatorname{conjg}\left(\operatorname{sub}(A)^{\prime}\right) \star \operatorname{sub}(A)\)
+ conjg(alpha)*conjg(sub ( \(\left.B)^{\prime}\right)^{*} \operatorname{sub}(A)+\) beta*sub (C).
(global) Specifies the order of the distributed matrix \(\operatorname{sub}(C), n \geq 0\).
(global) On entry with trans \(=\) ' \(N\) ' or ' \(n\) ', \(k\) specifies the number of columns of the distributed matrices sub ( \(A\) ) and sub ( \(B\) ), and on entry with trans \(=\) ' \(C\) ' or ' \(C\) ' , \(k\) specifies the number of rows of the distributed matrices sub ( \(A\) ) and sub ( \(B\) ), \(k \geq 0\).
(global)
Specifies the scalar alpha.
(local)
Array, size (lld_a, kla), where kla is LOCq(ja+k-1) when trans = 'N' or 'n', and is LOCq (ja+n-1) otherwise. Before entry with trans \(={ }^{\prime} N\) ' or ' \(n\) ', this array contains the local pieces of the distributed matrix sub ( \(A\) ).
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub \((A)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)
Array, size (lld_b, klb), where \(k l b\) is LOCq ( \(j b+k-1\) ) when trans \(={ }^{\prime} N^{\prime}\) or 'n', and is LOCq ( \(j b+n-1\) ) otherwise. Before entry with trans \(={ }^{\prime} N\) ' or ' \(n\) ', this array contains the local pieces of the distributed matrix sub ( \(B\) ).
(global) The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub ( \(B\) ), respectively.
\begin{tabular}{ll} 
descb & (global and local) array of dimension 9. The array descriptor of the \\
distributed matrix \(B\). \\
beta & (global) \\
Specifies the scalar beta. \\
\(C\) & (local) \\
& Array, size (Ild_c, LOCq \((j c+n-1))\).
\end{tabular}
Before entry with uplo = 'U' or 'u', this array contains \(n\)-by-n upper triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly lower triangular part is not referenced.
Before entry with uplo = 'L' or 'l', this array contains n-by-n lower triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly upper triangular part is not referenced.
(global) The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(C\).

\section*{Output Parameters}
c
With uplo = 'U' or 'u', the upper triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.

With uplo = 'L' or 'l', the lower triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.

\section*{p?symm}

Performs a scalar-matrix-matrix product (one matrix operand is symmetric) and adds the result to a scalarmatrix product for distribute matrices.

\section*{Syntax}
```

void pssymm (const char *side , const char *uplo, const MKL_INT *m , const MKL_INT
*n , const float *alpha, const float *a , const MKL_INT *ia, const MKL_INT *ja ,
const MKL_INT *desca, const float *b, const MKL_INT *ib, const MKL_INT *jb , const
MKL_INT *descb, const float *beta , float *c, const MKL_INT *ic , const MKL_INT *jc ,
const MKL_INT *descc);
void pdsymm (const char *side, const char *uplo, const MKL_INT *m, const MKL_INT
*n , const double *alpha, const double *a, const MKL_INT *ia, const MKL_INT *ja,
const MKL_INT *desca, const double *b, const MKL_INT *ib, const MKL_INT *jb, const
MKL_INT *descb, const double *beta, double *c , const MKL_INT *ic , const MKL_INT
*jc , const MKL_INT *descc);
void pcsymm (const char *side , const char *uplo, const MKL_INT *m , const MKL_INT
*n , const MKL_Complex8 *alpha, const MKL_Complex8 *a, const MKL_INT *ia, const
MKL_INT *ja, const MKL_INT *desca , const MKL_Complex8 *b , const MKL_INT *ib , const
MKL_INT *jb, const MKL_INT *descb, const MKL_Complex8 *beta, MKL_Complex8 *c , const
MKL_INT *ic, const MKL_INT *jc , const MKL_INT *descc);

```
```

void pzsymm (const char *side , const char *uplo, const MKL_INT *m , const MKL_INT
*n , const MKL_Complex16 *alpha, const MKL_Complex16 *a , const MKL_INT *ia , const
MKL_INT *ja, const MKL_INT *desca , const MKL_Complex16 *b , const MKL_INT *ib , const
MKL_INT *jb , const MKL_INT *descb , const MKL_Complexl6 *beta , MKL_Complexl6 *c ,
const MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc);

```

Include Files
- mkl_pblas.h

\section*{Description}

The p?symm routines perform a matrix-matrix operation with distributed matrices. The operation is defined as
```

 sub (C):=alpha*sub (A)*sub (B)+ beta*sub (C),
    ```
or
```

sub (C):=alpha*sub (B)*sub (A) + beta*sub (C),

```
where:
alpha and beta are scalars,
sub ( \(A\) ) is a symmetric distributed matrix, sub \((A)=A(i a: i a+m-1, j a: j a+m-1)\), if side \(=\) 'L', and sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\), if side \(=\) 'R'.
sub ( \(B\) ) and sub ( \(C\) ) are m-by-n distributed matrices.
sub \((B)=B(i b: i b+m-1, j b: j b+n-1)\), sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\).

\section*{Input Parameters}
side
uplo
m
n
alpha
a
(global) Specifies whether the symmetric distributed matrix sub ( \(A\) ) appears on the left or right in the operation:
if side \(=\) 'L' or 'l', then sub(C) := alpha*sub(A) *sub(B) + beta*sub (C) ;
if side = 'R' or 'r', then sub(C) := alpha*sub (B) *sub(A) + beta*sub ( \(C\) ).
(global) Specifies whether the upper or lower triangular part of the symmetric distributed matrix sub ( \(A\) ) is used:
if uplo = 'U' or 'u', then the upper triangular part is used;
if uplo = 'L' or 'l', then the lower triangular part is used.
(global) Specifies the number of rows of the distribute submatrix sub ( \(C\) ), \(m \geq 0\).
(global) Specifies the number of columns of the distribute submatrix sub ( \(C\) ) , \(m \geq 0\).
(global)
Specifies the scalar alpha.
(local)
Array, size (lld_a, LOCq(ja+na-1)).
```

ia, ja
desca
b
i.b, jb
descb
beta

```
C
ic, jc
descc

Before entry this array must contain the local pieces of the symmetric distributed matrix sub (A), such that when uplo = 'U' or 'u', the na-byna upper triangular part of the distributed matrix sub ( \(A\) ) must contain the upper triangular part of the symmetric distributed matrix and the strictly lower triangular part of sub \((A)\) is not referenced, and when uplo = 'L' or ' l', the na-by-na lower triangular part of the distributed matrix sub ( \(A\) ) must contain the lower triangular part of the symmetric distributed matrix and the strictly upper triangular part of sub \((A)\) is not referenced.
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)
Array, size (lld_b, LOCq (jb+n-1) ). Before entry this array must contain the local pieces of the distributed matrix sub ( \(B\) ).
(global) The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub ( \(B\) ), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(B\).
(global)
Specifies the scalar beta.
When beta is set to zero, then sub ( \(C\) ) need not be set on input.
(local)
Array, size (Ild_c, LOCq( \(j C+n-1\) ) ). Before entry this array must contain the local pieces of the distributed matrix sub ( \(C\) ).
(global) The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub \((C)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(C\).

\section*{Output Parameters}

C
Overwritten by the m-by-n updated matrix.

\section*{p?syrk}

Performs a rank-k update of a symmetric distributed
matrix.

\section*{Syntax}
```

void pssyrk (const char *uplo, const char *trans, const MKL_INT *n , const MKL_INT
*k , const float *alpha, const float *a , const MKL_INT *ia , const MKL_INT *ja ,
const MKL_INT *desca, const float *beta , float *cc, const MKL_INT *ic , const MKL_INT
*jc , const MKL_INT *descc);

```
```

void pdsyrk (const char *uplo, const char *trans, const MKL_INT *n , const MKL_INT
*k , const double *alpha, const double *a, const MKL_INT *ia , const MKL_INT *ja,
const MKL_INT *desca , const double *beta, double *c, const MKL_INT *ic , const
MKL_INT *jc , const MKL_INT *descc);
void pcsyrk (const char *uplo, const char *trans, const MKL_INT *n , const MKL_INT
*k , const MKL_Complex8 *alpha, const MKL_Complex8 *a, const MKL_INT *ia, const
MKL_INT *ja, const MKL_INT *desca , const MKL_Complex8 *beta, MKL_Complex8 *c , const
MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc);
void pzsyrk (const char *uplo, const char *trans, const MKL_INT *n , const MKL_INT
*k , const MKL_Complex16 *alpha, const MKL_Complex16 *a , const MKL_INT *ia , const
MKL_INT *ja , const MKL_INT *desca , const MKL_Complex16 *beta , MKL_Complex16 *c ,
const MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc);

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?syrk routines perform a distributed matrix-matrix operation defined as
```

sub (C):=alpha*sub (A)*sub (A)'+ beta*sub (C),
or

```
```

sub (C):=alpha*sub (A)'*sub (A) + beta*sub (C),

```
```

sub (C):=alpha*sub (A)'*sub (A) + beta*sub (C),

```
where:
alpha and beta are scalars,
sub (C) is an \(n-b y-n\) symmetric distributed matrix, sub \((C)=C(i c: i c+n-1, j c: j c+n-1)\).
sub (A) is a distributed matrix, sub(A) =A(ia:ia+n-1, ja:ja+k-1), if trans = 'N' or 'n', and sub \((A)=A(i a: i a+k-1, j a: j a+n-1)\) otherwise.

\section*{Input Parameters}
uplo
trans
n
k
(global) Specifies whether the upper or lower triangular part of the symmetric distributed matrix sub ( \(C\) ) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub \((C)\) is used.
If uplo = 'L' or 'l', then the low triangular part of the sub \((C)\) is used.
(global) Specifies the operation:
if trans \(=\) 'N' or 'n', then sub (C) :=alpha*sub \((A) * \operatorname{sub}(A)\) ' + beta*sub (C) ;
if trans \(=\) 'T' or 't', then sub(C) := alpha*sub (A)'*sub(A) + beta*sub (C).
(global) Specifies the order of the distributed matrix sub ( \(C\) ), \(n \geq 0\).
(global) On entry with trans \(=\) ' \(N\) ' or ' \(n\) ', \(k\) specifies the number of columns of the distributed matrix sub ( \(A\) ), and on entry with trans \(=\) ' T ' or ' \(t\) ' , \(k\) specifies the number of rows of the distributed matrix sub ( \(A\) ), \(k \geq\) 0.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{alpha
a} & (global) \\
\hline & Specifies the scalar alpha. \\
\hline & (local) \\
\hline a & Array, size (lld_a, kla), where kla is LOCq(ja+k-1) when trans = ' \(N\) ' or 'n', and is LOCq ( \(j a+n-1\) ) otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', this array contains the local pieces of the distributed matrix sub ( \(A\) ). \\
\hline ia, ja & (global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively. \\
\hline desca & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\). \\
\hline \multirow[t]{2}{*}{beta} & (global) \\
\hline & Specifies the scalar beta. \\
\hline \multirow[t]{4}{*}{c} & (local) \\
\hline & Array, size (lld_c, LOCq(jc+n-1)). \\
\hline & Before entry with uplo = 'U' or 'u', this array contains \(n\)-by-n upper triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly lower triangular part is not referenced. \\
\hline & Before entry with uplo = 'L' or 'l', this array contains n-by-n lower triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly upper triangular part is not referenced. \\
\hline ic, jc & (global) The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively. \\
\hline descc & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(C\). \\
\hline
\end{tabular}

\section*{Output Parameters}

C
With uplo = 'U' or 'u', the upper triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.
With uplo = 'L' or 'l', the lower triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.

\section*{p?syr2k}

Performs a rank-2k update of a symmetric distributed matrix.

\section*{Syntax}
```

void pssyr2k (const char *uplo, const char *trans, const MKL_INT *n , const MKL_INT
*k, const float *alpha, const float *a, const MKL_INT *ia, const MKL_INT *ja,
const MKL_INT *desca , const float *b , const MKL_INT *ib, const MKL_INT *jb , const
MKL_INT *descb, const float *beta, float *cc, const MKL_INT *ic , const MKL_INT *jc ,
const MKL_INT *descc);

```
```

void pdsyr2k (const char *uplo, const char *trans, const MKL_INT *n , const MKL_INT
*k, const double *alpha, const double *a, const MKL_INT *ia , const MKL_INT *ja,
const MKL_INT *desca , const double *b, const MKL_INT *ib, const MKL_INT *jb , const
MKL_INT *descb, const double *beta, double *c, const MKL_INT *ic , const MKL_INT
*jc , const MKL_INT *descc);
void pcsyr2k (const char *uplo, const char *trans, const MKL_INT *n, const MKL_INT
*k , const MKL_Complex8 *alpha, const MKL_Complex8 *a, const MKL_INT *ia, const
MKL_INT *ja, const MKL_INT *desca , const MKL_Complex8 *b , const MKL_INT *ib , const
MKL_INT *jb, const MKL_INT *descb, const MKL_Complex8 *beta, MKL_Complex8 *c , const
MKL_INT *ic, const MKL_INT *jc , const MKL_INT *descc);
void pzsyr2k (const char *uplo , const char *trans, const MKL_INT *n , const MKL_INT
*k , const MKL_Complex16 *alpha , const MKL_Complex16 *a , const MKL_INT *ia , const
MKL_INT *ja, const MKL_INT *desca , const MKL_Complex16 *b , const MKL_INT *ib , const
MKL_INT *jb, const MKL_INT *descb , const MKL_Complex16 *beta , MKL_Complex16 *C ,
const MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc);

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?syr 2 k routines perform a distributed matrix-matrix operation defined as
```

sub (C):=alpha*sub (A)*sub (B)'+alpha*sub (B)*sub (A)'+ beta*sub (C),
or
sub (C):=alpha*sub (A)'*sub (B) +alpha*sub (B)'*sub (A) + beta*sub (C),

```
where:
alpha and beta are scalars,
sub (C) is an \(n-b y-n\) symmetric distributed matrix, sub (C) \(=C\) (ic:ic+n-1, jc:jc+n-1).
sub (A) is a distributed matrix, sub(A) =A(ia:ia+n-1, ja:ja+k-1), if trans = 'N' or 'n', and sub \((A)=A(i a: i a+k-1, j a: j a+n-1)\) otherwise.
sub ( \(B\) ) is a distributed matrix, sub \((B)=B(i b: i b+n-1, j b: j b+k-1)\), if trans \(={ }^{\prime} N^{\prime}\) or ' \(n^{\prime}\), and sub \((B)=B(i b: i b+k-1, j b: j b+n-1)\) otherwise.

\section*{Input Parameters}
uplo
trans
(global) Specifies whether the upper or lower triangular part of the symmetric distributed matrix sub ( \(C\) ) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub \((C)\) is used.

If uplo = 'L' or 'l', then the low triangular part of the sub \((C)\) is used.
(global) Specifies the operation:
if trans \(=\) 'N' or 'n', then sub ( \(C\) ) \(:=\) alpha*sub \((A) * \operatorname{sub}(B)\) ' + alpha*sub( \(B)^{*}\) sub (A)' + beta*sub (C);
if trans \(=\) 'T' or 't', then sub(C) \(:=\) alpha*sub ( \(B\) )'*sub \((A)+\) alpha*sub ( \(A\) )'*sub ( \(B\) ) + beta*sub ( \(C\) ).
\(n\) k
alpha
a
ia, ja
desca
\(b\)
ib, jb
descb
beta

C
ic, jc
descc
(global) Specifies the order of the distributed matrix sub (C), \(n \geq 0\).
(global) On entry with trans \(=\) ' \(N\) ' or ' \(n\) ', \(k\) specifies the number of columns of the distributed matrices sub ( \(A\) ) and sub ( \(B\) ), and on entry with trans \(=\) 'T' or ' \(t\) ', \(k\) specifies the number of rows of the distributed matrices sub ( \(A\) ) and \(\operatorname{sub}(B), k \geq 0\).
(global)
Specifies the scalar alpha.
(local)
Array, size (lld_a, kla), where kla is LOCq(ja+k-1) when trans = 'N' or ' n ', and is LOCq (ja+n-1) otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', this array contains the local pieces of the distributed matrix sub (A).
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)
Array, size (lld_b, klb), where \(k l b\) is LOCq ( \(j b+k-1\) ) when trans \(={ }^{\prime} N^{\prime}\) or 'n', and is L̄̄Cq ( \(j b+n-1\) ) otherwise. Before entry with trans \(={ }^{\prime} N\) ' or ' \(n\) ', this array contains the local pieces of the distributed matrix sub ( \(B\) ).
(global) The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub ( \(B\) ), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(B\).
(global)
Specifies the scalar beta.
(local)
Array, size (lld_c, LOCq(jc+n-1)).
Before entry with uplo = 'U' or 'u', this array contains \(n\)-by-n upper triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly lower triangular part is not referenced.

Before entry with uplo = 'L' or 'l', this array contains n-by-n lower triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly upper triangular part is not referenced.
(global) The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub \((C)\), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(C\).

\section*{Output Parameters}

With uplo = 'U' or 'u', the upper triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.

With uplo = 'L' or 'l', the lower triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.
p? tran
Transposes a real distributed matrix.

\section*{Syntax}
```

void pstran (const MKL_INT *m , const MKL_INT *n, const float *alpha , const float
*a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT *desca , const float *beta,
float *C , const MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc);
void pdtran (const MKL_INT *m, const MKL_INT *n , const double *alpha , const double
*a , const MKL_INT *ia, const MKL_INT *ja, const MKL_INT *desca, const double
*beta, double *c , const MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc);

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?tran routines transpose a real distributed matrix. The operation is defined as
```

sub(C):=beta*sub(C) + alpha*sub(A)',

```
where:
alpha and beta are scalars,
sub (C) is an m-by-n distributed matrix, sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\).
sub \((A)\) is a distributed matrix, sub \((A)=A(i a: i a+n-1, j a: j a+m-1)\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & (global) Specifies the number of rows of the distributed matrix \(\operatorname{sub}(C), m \geq\) 0. \\
\hline \(n\) & (global) Specifies the number of columns of the distributed matrix sub (C), \(n \geq 0\). \\
\hline alpha & (global) \\
\hline & Specifies the scalar alpha. \\
\hline a & (local) \\
\hline & Array, size (lld_a, \(\operatorname{LOCq}(j a+m-1))\). This array contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\). \\
\hline ia, ja & (global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively. \\
\hline desca & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\). \\
\hline beta & (global) \\
\hline & Specifies the scalar beta. \\
\hline
\end{tabular}

When beta is equal to zero, then sub ( \(C\) ) need not be set on input.
(local)
Array, size (lld_c, LOCq(jc+n-1)).
This array contains the local pieces of the distributed matrix sub ( \(C\) ).
(global) The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(C\).

\section*{Output Parameters}

C
Overwritten by the updated submatrix.

\section*{p?tranu}

Transposes a distributed complex matrix.

\section*{Syntax}
```

void pctranu (const MKL_INT *m, const MKL_INT *n , const MKL_Complex8 *alpha , const
MKL_Complex8 *a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT *desca , const
MKL_Complex8 *beta , MKL_Complex8 *c , const MKL_INT *ic , const MKL_INT *jc , const
MKL_INT *descc);
void pztranu (const MKL_INT *m , const MKL_INT *n , const MKL_Complex16 *alpha , const
MKL_Complex16 *a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT *desca , const
MKL_Complex16 *beta , MKL_Complex16 *c , const MKL_INT *ic , const MKL_INT *jc , const
MKL_INT *descc);

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?tranu routines transpose a complex distributed matrix. The operation is defined as
```

sub(C):=beta*sub(C) + alpha*sub(A)',

```
where:
alpha and beta are scalars,
sub \((C)\) is an \(m\)-by- \(n\) distributed matrix, sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\).
sub ( \(A\) ) is a distributed matrix, sub (A) =A(ia: ia+n-1, ja:ja+m-1).

\section*{Input Parameters}
m
(global) Specifies the number of rows of the distributed matrix sub ( \(C\) ), \(m \geq\) 0.
(global) Specifies the number of columns of the distributed matrix sub (C), \(n \geq 0\).
alpha
(global)

Specifies the scalar alpha.
(local)
Array, size (lld_a, LOCq(ja+m-1)). This array contains the local pieces of the distributed matrix sub ( \(A\) ) .
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).
(global)
Specifies the scalar beta.
When beta is equal to zero, then sub ( \(C\) ) need not be set on input.
(local)
Array, size (lld_c, LOCq(jc+n-1)).
This array contains the local pieces of the distributed matrix sub ( \(C\) ).
(global) The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(C\).

\section*{Output Parameters}
c
Overwritten by the updated submatrix.
p?tranc
Transposes a complex distributed matrix, conjugated.

\section*{Syntax}
```

void pctranc (const MKL_INT *m , const MKL_INT *n , const MKL_Complex8 *alpha , const
MKL_Complex8 *a , const MKL_INT *ia, const MKL_INT *ja, const MKL_INT *desca , const
MKL_Complex8 *beta , MKL_Complex8 *C , const MKL_INT *ic , const MKL_INT *jc , const
MKL_INT *descc);
void pztranc (const MKL_INT *m , const MKL_INT *n , const MKL_Complex16 *alpha , const
MKL_Complex16 *a , const MKL_INT *ia, const MKL_INT *ja, const MKL_INT *desca , const
MKL_Complex16 *beta , MKL_Complex16 *C , const MKL_INT *ic , const MKL_INT *jc , const
MKL_INT *descc);

```

Include Files
- mkl_pblas.h

\section*{Description}

The p?tranc routines transpose a complex distributed matrix. The operation is defined as
```

sub(C):=beta*sub(C) + alpha*conjg(sub(A)'),

```
where:

\section*{alpha and beta are scalars,}
```

sub (C) is an m-by-n distributed matrix, sub (C)=C(ic:ic+m-1, jc:jc+n-1).

```
sub \((A)\) is a distributed matrix, sub \((A)=A(i a: i a+n-1, j a: j a+m-1)\).

\section*{Input Parameters}
m
\(n\)
alpha
a
ia, ja
desca
beta

C
ic, jc
descc
(global) Specifies the number of rows of the distributed matrix sub ( \(C\) ), \(m \geq\) 0.
(global) Specifies the number of columns of the distributed matrix sub ( \(C\) ), \(n \geq 0\).
(global)
Specifies the scalar alpha.
(local)
Array, size (Ild_a, LOCq(ja+m-1)). This array contains the local pieces of the distributed matrix sub ( \(A\) ).
(global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\).
(global)
Specifies the scalar beta.
When beta is equal to zero, then sub ( \(C\) ) need not be set on input.
(local)
Array, size (lld_c, LOCq(jc+n-1)).
This array contains the local pieces of the distributed matrix sub \((C)\).
(global) The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(C\).

\section*{Output Parameters}

C
Overwritten by the updated submatrix.

\section*{p?trmm}

Computes a scalar-matrix-matrix product (one matrix operand is triangular) for distributed matrices.

\section*{Syntax}
```

void pstrmm (const char *side , const char *uplo, const char *transa , const char
*diag , const MKL_INT *m , const MKL_INT *n , const float *alpha, const float *a ,
const MKL_INT *ia, const MKL_INT *ja, const MKL_INT *desca , float *b, const MKL_INT
*ib , const MKL_INT *jb , const MKL_INT *descb);

```
```

void pdtrmm (const char *side , const char *uplo, const char *transa , const char
*diag , const MKL_INT *m , const MKL_INT *n , const double *alpha, const double *a,
const MKL_INT *ia, const MKL_INT *ja, const MKL_INT *desca, double *b, const
MKL_INT *ib, const MKL_INT *jb , const MKL_INT *descb);
void pctrmm (const char *side , const char *uplo, const char *transa, const char
*diag , const MKL_INT *m , const MKL_INT *n , const MKL_Complex8 *alpha, const
MKL_Complex8 *a , const MKL_INT *ia, const MKL_INT *ja, const MKL_INT *desca ,
MKL_Complex8 *b , const MKL_INT *ib, const MKL_INT *jb, const MKL_INT *descb);
void pztrmm (const char *side , const char *uplo, const char *transa, const char
*diag , const MKL_INT *m , const MKL_INT *n , const MKL_Complex16 *alpha, const
MKL_Complex16 *a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT *desca,
MKL_Complex16 *b , const MKL_INT *ib , const MKL_INT *jb , const MKL_INT *descb);

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?trmm routines perform a matrix-matrix operation using triangular matrices. The operation is defined as
```

sub(B) := alpha*op(sub (A))*sub (B)

```
or
```

sub(B) := alpha*sub (B)*op(sub (A))

```
where:
alpha is a scalar,
sub ( \(B\) ) is an m-by-n distributed matrix, sub \((B)=B(i b: i b+m-1, j b: j b+n-1)\).
\(A\) is a unit, or non-unit, upper or lower triangular distributed matrix, sub \((A)=A(i a: i a+m-1\), ja: ja+m-1), if side \(=\) 'L' or 'l', and sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\), if side \(=\) 'R' or 'r'.
op (sub \((A))\) is one of op (sub \((A))=\operatorname{sub}(A), \operatorname{or} \operatorname{op}(\operatorname{sub}(A))=\operatorname{sub}(A)^{\prime}, \operatorname{or} \operatorname{op}(\operatorname{sub}(A))=\)
conjg(sub (A)').

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline side & (global) Specifies whether op (sub (A)) appears on the left or right sub ( \(B\) ) in the operation: \\
\hline & if side \(=\) 'L' or 'l', then sub (B) : = alpha*op (sub (A) )*sub \\
\hline & if side \(=\) 'R' or 'r', then sub (B) : = alpha*sub ( \(B\) )*op(sub \\
\hline uplo & (global) Specifies whether the distributed matrix sub ( \(A\) ) is upper triangular: \\
\hline & if uplo = 'U' or 'u', then the matrix is upper triangular; \\
\hline & if uplo = 'L' or 'l', then the matrix is low triangular. \\
\hline transa & (global) Specifies the form of op (sub ( \(A\) ) ) used in the matrix mult \\
\hline & if transa \(=\) 'N' or 'n', then op (sub (A) ) = sub ( \(A\) ) ; \\
\hline & if transa \(=\) 'T' or 't', then op (sub (A) ) = sub (A)' ; \\
\hline & if transa \(=\) ' C' or 'c', then op(sub (A) ) = conjg (sub (A)'). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline diag & (global) Specifies whether the matrix sub ( \(A\) ) is unit triangular: \\
\hline & if diag = 'U' or 'u' then the matrix is unit triangular; \\
\hline & if diag = 'N' or 'n', then the matrix is not unit triangular. \\
\hline m & (global) Specifies the number of rows of the distributed matrix sub ( \(B\) ), \(m \geq\) 0. \\
\hline \(n\) & (global) Specifies the number of columns of the distributed matrix sub (B), \(n \geq 0\). \\
\hline alpha & (global) \\
\hline & Specifies the scalar alpha. \\
\hline & When alpha is zero, then the arrayb need not be set before entry. \\
\hline a & (local) \\
\hline & Array, size Ild_a by \(k a\), where \(k a\) is at least LOCq (1, ja+m-1) when side \(=\) 'L' or 'l' and is at least Locq(1, ja+n-1) when side = 'R' or 'r'. \\
\hline & Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub (A), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix sub \((A)\) is not referenced. \\
\hline & Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub ( \(A\) ), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix sub \((A)\) is not referenced. \\
\hline & When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub ( \(A\) ) are not referenced either, but are assumed to be unity. \\
\hline ia, ja & (global) The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively. \\
\hline desca & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(A\). \\
\hline b & (local) \\
\hline & Array, size (lld_b, LOCq (1, jbb+n-1) ). \\
\hline & Before entry, this array contains the local pieces of the distributed matrix sub ( \(B\) ). \\
\hline ib, jb & (global) The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub \((B)\), respectively. \\
\hline descb & (global and local) array of dimension 9. The array descriptor of the distributed matrix \(B\). \\
\hline
\end{tabular}

\section*{Output Parameters}
b
Overwritten by the transformed distributed matrix.
```

p?trsm
Solves a distributed matrix equation (one matrix
operand is triangular).

```

\section*{Syntax}
```

void pstrsm (const char *side , const char *uplo, const char *transa , const char
*diag , const MKL_INT *m, const MKL_INT *n , const float *alpha, const float *a ,
const MKL_INT *ia, const MKL_INT *ja, const MKL_INT *desca, float *b, const MKL_INT
*ib, const MKL_INT *jb , const MKL_INT *descb);
void pdtrsm (const char *side , const char *uplo, const char *transa, const char
*diag, const MKL_INT *m , const MKL_INT *n , const double *alpha , const double *a,
const MKL_INT *ia, const MKL_INT *ja, const MKL_INT *desca, double *b, const
MKL_INT *ib, const MKL_INT *jb , const MKL_INT *descb);
void pctrsm (const char *side , const char *uplo, const char *transa , const char
*diag , const MKL_INT *m, const MKL_INT *n , const MKL_Complex8 *alpha, const
MKL_Complex8 *a, const MKL_INT *ia, const MKL_INT *ja, const MKL_INT *desca,
MKL_Complex8 *b , const MKL_INT *ib , const MKL_INT *jb , const MKL_INT *descb);
void pztrsm (const char *side, const char *uplo, const char *transa, const char
*diag, const MKL_INT *m, const MKL_INT *n , const MKL_Complexl6 *alpha, const
MKL_Complex16 *a , const MKL_INT *ia, const MKL_INT *ja , const MKL_INT *desca ,
MKL Complex16 *b , const MKL INT *ib , const MKL INT *jb , const MKL INT *descb);

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?trsm routines solve one of the following distributed matrix equations:
```

op(sub(A))*X = alpha*sub(B),

```
or
\(X^{*} \mathrm{op}(\operatorname{sub}(A))=\) alpha*sub \((B)\),
where:

\section*{alpha is a scalar,}
\(X\) and sub ( \(B\) ) are \(m\)-by-n distributed matrices, sub \((B)=B(i b: i b+m-1, j b: j b+n-1)\);
\(A\) is a unit, or non-unit, upper or lower triangular distributed matrix, sub \((A)=A(i a: i a+m-1, j a: j a+m-1)\), if side \(=\) 'L' or 'l', and sub \((A)=A(i a: i a+n-1\), ja:ja+n-1), if side = 'R' or 'r';
\(\operatorname{op}(\operatorname{sub}(A))\) is one of op \((\operatorname{sub}(A))=\operatorname{sub}(A), \operatorname{orop}(\operatorname{sub}(A))=\operatorname{sub}(A)^{\prime}, \operatorname{orop}(\operatorname{sub}(A))=\) conjg(sub (A)').
The distributed matrix sub \((B)\) is overwritten by the solution matrix \(X\).

\section*{Input Parameters}
side
(global) Specifies whether op (sub (A)) appears on the left or right of \(X\) in the equation:
```

if side = 'L' or 'l', then op(sub (A))*X = alpha*sub (B);
if side = 'R' or 'r', then X*op(sub (A)) = alpha*sub (B).

```
```

uplo
transa
diag
m
n
alpha
a
ia, ja
desca
b
(global) Specifies whether the distributed matrix sub (A) is upper or lower triangular:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or 'l', then the matrix is low triangular.
(global) Specifies the form of op (sub (A)) used in the matrix equation:
if transa $=$ ' N ' or ' n ', then op (sub (A)) $=\operatorname{sub}(A)$;
if transa $=$ ' T ' or 't', then op(sub (A)) = sub (A)';
if transa $=$ 'C' or 'c', then op(sub (A)) $=\operatorname{conjg}(\operatorname{sub}(A)$ ').
(global) Specifies whether the matrix $\operatorname{sub}(A)$ is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if $d i a g=$ ' N ' or ' n ', then the matrix is not unit triangular.
(global) Specifies the number of rows of the distributed matrix sub (B), $m \geq$ 0.
(global) Specifies the number of columns of the distributed matrix sub (B), $n \geq 0$.
(global)
Specifies the scalar alpha.
When alpha is zero, then a is not referenced and b need not be set before entry.
(local)
Array, size lld_a by ka, where $k a$ is at least LOCq (1, ja+m-1) when side $=$ 'L' or 'l' and is at least LOCq(1, ja+n-1) when side = 'R' or 'r'.
Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub (A), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix sub (A) is not referenced.
Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub (A), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix sub (A) is not referenced.
When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub (A) are not referenced either, but are assumed to be unity.
(global) The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix A.
(local)
Array, size (Ild_b, LOCq (1, jb+n-1)).

```

Before entry, this array contains the local pieces of the distributed matrix sub ( \(B\) ).
ib, jb
descb
(global) The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub ( \(B\) ), respectively.
(global and local) array of dimension 9. The array descriptor of the distributed matrix \(B\).

\section*{Partial Differential Equations Support}

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides tools for solving Partial Differential Equations (PDE). These tools are Trigonometric Transform interface routines (seeTrigonometric Transform Routines) and Poisson Solver (see Fast Poisson Solver Routines).

Poisson Solver is designed for fast solving of simple Helmholtz, Poisson, and Laplace problems. The solver is based on the Trigonometric Transform interface, which is, in turn, based on the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Fast Fourier Transform (FFT) interface (refer toFourier Transform Functions), optimized for Intel \({ }^{\circledR}\) processors.
Direct use of the Trigonometric Transform routines may be helpful to those who have already implemented their own solvers similar to the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Poisson Solver. As it may be hard enough to modify the original code so as to make it work with Poisson Solver, you are encouraged to use fast (staggered) sine/cosine transforms implemented in the Trigonometric Transform interface to improve performance of your solver.
Both Trigonometric Transform and Poisson Solver routines can be called from C and Fortran.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Trigonometric Transform Routines}

In addition to the Fast Fourier Transform (FFT) interface, described in Fast Fourier Transforms, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) supports theReal Discrete Trigonometric Transforms (sometimes called real-toreal Discrete Fourier Transforms) interface. In this document, the interface is referred to as TT interface. It implements a group of routines ( \(T\) routines) used to compute sine/cosine, staggered sine/cosine, and twice staggered sine/cosine transforms (referred to as staggered2 sine/cosine transforms, for brevity). The \(T T\) interface provides much flexibility of use: you can adjust routines to your particular needs at the cost of manually tuning routine parameters or just call routines with default parameter values. The current Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) implementation of the TT interface can be used in solving partial differential equations and contains routines that are helpful for Fast Poisson and similar solvers.

For the list of Trigonometric Transforms currently implemented in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) TT interface, seeTransforms Implemented.

If you have got used to the FFTW interface (www.fftw.org), you can call the TT interface functions through real-to-real FFTW to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) wrappers without changing FFTW function calls in your code (refer toFFTW to Intel \({ }^{\circledR}\) MKL Wrappers for FFTW 3.x for details). However, you are strongly encouraged to use the native TT interface for better performance. Another reason why you should use the
wrappers cautiously is that \(T\) and the real-to-real FFTW interfaces are not fully compatible and some features of the real-to-real FFTW, such as strides and multidimensional transforms, are not available through wrappers.

\section*{Trigonometric Transforms Implemented}
\(\Pi\) routines allow computing the following transforms:
Forward sine transform
\(F(k)=\frac{2}{n} \sum_{i=1}^{n-1} f(i) \sin \frac{k i \pi}{n}, k=1, \ldots, n-1\)
Backward sine transform
\(f(i)=\sum_{k=1}^{n-1} F(k) \sin \frac{k i \pi}{n}, i=1, \ldots, n-1\)
Forward staggered sine transform
\(F(k)=\frac{1}{n} \sin \frac{(2 k-1) \pi}{2} f(n)+\frac{2}{n} \sum_{i=1}^{n-1} f(i) \sin \frac{(2 k-1) i \pi}{2 n}, k=1, \ldots, n\)
Backward staggered sine transform
\(f(i)=\sum_{k=1}^{n} F(k) \sin \frac{(2 k-1) i \pi}{2 n}, i=1, \ldots, n\)
Forward staggered2 sine transform
\(F(k)=\frac{2}{n} \sum_{i=1}^{n} f(i) \sin \frac{(2 k-1)(2 i-1) \pi}{4 n}, k=1, \ldots, n\)
Backward staggered2 sine transform
\(f(i)=\sum_{k=1}^{n} F(k) \sin \frac{(2 k-1)(2 i-1) \pi}{4 n}, i=1, \ldots, n\)
Forward cosine transform
\(F(k)=\frac{1}{n}[f(o)+f(n) \cos k \pi]+\frac{2}{n} \sum_{i=1}^{n-1} f(i) \cos \frac{k i \pi}{n}, k=0, \ldots, n\)
Backward cosine transform
\(f(i)=\frac{1}{2}[F(o)+F(n) \cos i \pi]+\sum_{k=1}^{n-1} F(k) \cos \frac{k i \pi}{n}, i=0, \ldots, n\)
Forward staggered cosine transform
\(F(k)=\frac{1}{n} f(0)+\frac{2}{n} \sum_{i=1}^{n-1} f(i) \cos \frac{(2 k+1) i \pi}{2 n}, k=0, \ldots, n-1\)
Backward staggered cosine transform
\(f(i)=\sum_{k=0}^{n-1} F(k) \cos \frac{(2 k+1) i \pi}{2 n}, i=0, \ldots, n-1\)
Forward staggered 2 cosine transform
\(F(k)=\frac{2}{n} \sum_{i=1}^{n} f(i) \cos \frac{(2 k-1)(2 i-1) \pi}{4 n}, k=1, \ldots, n\)

Backward staggered2 cosine transform
\(f(i)=\sum_{k=1}^{n} F(k) \cos \frac{(2 k-1)(2 i-1) \pi}{4 n}, i=1, \ldots, n\)

\section*{NOTE}

The size of the transform \(n\) can be any integer greater or equal to 2 .

\section*{Sequence of Invoking TT Routines}

Computation of a transform using TT interface is conceptually divided into four steps, each of which is performed via a dedicated routine. Table "TT Interface Routines" lists the routines and briefly describes their purpose and use.
Most TT routines have versions operating with single-precision and double-precision data. Names of such routines begin respectively with "s" and "d". The wildcard "?" stands for either of these symbols in routine names.

\section*{TT Interface Routines}
\begin{tabular}{ll} 
Routine & Description \\
\hline ?_init_trig_transform & \begin{tabular}{l} 
Initializes basic data structures of Trigonometric \\
Transforms.
\end{tabular} \\
?_commit_trig_transform & \begin{tabular}{l} 
Checks consistency and correctness of user-defined data \\
and creates a data structure to be used by Intel® oneAPI \\
Math Kernel Library (oneMKL) FFT interface \({ }^{1}\).
\end{tabular} \\
?_forward_trig_transform & \begin{tabular}{l} 
Computes a forward/backward Trigonometric Transform of \\
a specified type using the appropriate formula (see
\end{tabular} \\
freackward_trig_transform & \begin{tabular}{l} 
Transforms Implemented).
\end{tabular} \\
\hline
\end{tabular}
\({ }^{1}\) TT routines call Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface for better performance.
To find a transformed vector for a particular input vector only once, the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) TT interface routines are normally invoked in the order in which they are listed inTable "TT Interface Routines".

\section*{NOTE}

Though the order of invoking \(T\) routines may be changed, it is highly recommended to follow the above order of routine calls.

The diagram in Figure "Typical Order of Invoking TT Interface Routines" indicates the typical order in which \(\Pi\) interface routines can be invoked in a general case (prefixes and suffixes in routine names are omitted).
__border__top

\section*{Typical Order of Invoking TT Interface Routines}


A general scheme of using \(\Pi\) routines for double-precision computations is shown below. A similar scheme holds for single-precision computations with the only difference in the initial letter of routine names.
```

 d_init_trig_transform(&n, &tt_type, ipar, dpar, &ir);
 /* Change parameters in ipar if necessary. */
/* Note that the result of the Transform will be in f. If you want to preserve the data stored
in f,
save it to another location before the function call below */
d_commit_trig_transform(f, \&handle, ipar, dpar, \&ir);
d_forward_trig_transform(f, \&handle, ipar, dpar, \&ir);
d_backwar\overline{d_trig_transform(f, \&handle, ipar, dpar, \&ir);}
free_trig_transform(\&handle, ipar, \&ir);
/* here the user may clean the memory used by f, dpar, ipar */

```

You can find examples of code that uses TT interface routines to solve one-dimensional Helmholtz problem in the examples \(\backslash\) pdettc \(\backslash\) source folderin your Intel® oneAPI Math Kernel Library (oneMKL) directory.

\section*{Trigonometric Transform Interface Description}

All types in this documentation are either standard C types float and double or MKL_INT integer type. For more information on the C types, refer to C Datatypes Specific to oneMKL and the Intel® oneAPI Math Kernel Library (oneMKL) Developer Guide. To better understand usage of the types, see examples in the examples \(\backslash\) pdettc \(\backslash\) source folderin your Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory.

\section*{Routine Options}

All \(\Pi\) routines use parameters to pass various options to one another. These parameters are arrays ipar, dpar and spar. Values for these parameters should be specified very carefully (see Common Parameters). You can change these values during computations to meet your needs.

\section*{WARNING}

To avoid failure or incorrect results, you must provide correct and consistent parameters to the routines.

\section*{User Data Arrays}
\(\pi\) routines take arrays of user data as input. For example, user arrays are passed to the routine d_forward_trig_transformto compute a forward Trigonometric Transform. To minimize storage requirements and improve the overall run-time efficiency, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) \(T T\) routines do not make copies of user input arrays.

\section*{NOTE}

If you need a copy of your input data arrays, you must save them yourself.

For better performance, align your data arrays as recommended in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide (search the document for coding techniques to improve performance).

\section*{TT Routines}

The section gives detailed description of \(\Pi\) routines, their syntax, parameters and values they return. Double-precision and single-precision versions of the same routine are described together.
TT routines call Intel \({ }^{\otimes}\) oneAPI Math Kernel Library (oneMKL) FFT interface (described inFFT Functions), which enhances performance of the routines.

\section*{?_init_trig_transform}

Initializes basic data structures of a Trigonometric
Transform.

\section*{Syntax}
```

void d_init_trig_transform(MKL_INT *n, MKL_INT *tt_type, MKL_INT ipar[], double dpar[],
MKL_INT *stat);
void s_init_trig_transform(MKL_INT *n, MKL_INT *tt_type, MKL_INT ipar[], float spar[],
MKL_INT *stat);

```

Include Files
- mkl.h

\section*{Input Parameters}
n
MKL_INT*. Contains the size of the problem, which should be a positive integer greater than 1. Note that data vector of the transform, which other TT routines will use, must have size \(n+1\) for all but staggered2 transforms. Staggered2 transforms require the vector of size \(n\).
```

tt_type

```

MKL_INT*. Contains the type of transform to compute, defined via a set of named constants. The following constants are available in the current implementation of TT interface: MKL_SINE_TRANSFORM, MKL_STAGGERED_SINE_TRANSFORM, MKL_STAGGERED2_SINE_TRANSFORM; MKL_COSINE_TRANSFORM, MKL_STAGGERED_COSINE_TRANSFORM, MKL_STAGGERED2_COSINE_TRANSFORM.

\section*{Output Parameters}
ipar
dpar
spar
stat

MKL_INT array of size 128. Contains integer data needed for Trigonometric Transform computations.
double array of size \(5 n / 2+2\). Contains double-precision data needed for Trigonometric Transform computations.
float array of size \(5 n / 2+2\). Contains single-precision data needed for Trigonometric Transform computations.

MKL_INT*. Contains the routine completion status, which is also written to ipar[6]. The status should be 0 to proceed to other \(\Pi T\) routines.

\section*{Description}

The ?_init_trig_transform routine initializes basic data structures for Trigonometric Transforms of appropriate precision. After a call to ?_init_trig_transform, all subsequently invoked \(T\) routines use values of ipar and dpar (spar) array parameters returned by ?_init_trig_transform. The routine initializes the entire array ipar. In the dpar or spar array, ?_init_trig_transform initializes elements that do not depend upon the type of transform. For a detailed description of arrays ipar, dpar and spar, refer to Common Parameters. You can skip a call to the initialization routine in your code. For more information, see Caveat on Parameter Modifications.

\section*{Return Values}
```

stat=0

```
stat \(=-99999\)

The routine successfully completed the task. In general, to proceed with computations, the routine should complete with this stat value.
The routine failed to complete the task.
?_commit_trig_transform
Checks consistency and correctness of user's data as well as initializes certain data structures required to perform the Trigonometric Transform.

\section*{Syntax}
```

void d_commit_trig_transform(double f[], DFTI_DESCRIPTOR_HANDLE *handle, MKL_INT
ipar[], double dpar[], MKL_INT *stat);
void s_commit_trig_transform(float f[], DFTI_DESCRIPTOR_HANDLE *handle, MKL_INT ipar[],
float spar[], MKL_INT *stat);

```

Include Files
- mkl.h

Input Parameters
f
```

double for d_commit_trig_transform,
float for s_commit_trig_transform,

```
array of size \(n\) for staggered 2 transforms and of size \(n+1\) for all other transforms, where \(n\) is the size of the problem. Contains data vector to be transformed. Note that the following values should be 0.0 up to rounding errors:
- \(\quad f[0]\) and \(f[n]\) for sine transforms
- \(\quad f[n]\) for staggered cosine transforms
- \(\quad f[0]\) for staggered sine transforms.

Otherwise, the routine will produce a warning, and the result of the computations for sine transforms may be wrong. These restrictions meet the requirements of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Poisson Solver, which the TT interface is primarily designed for (for details, seeFast Poisson Solver Routines).

MKL_INT array of size 128. Contains integer data needed for Trigonometric Transform computations.
double array of size \(5 n / 2+2\). Contains double-precision data needed for Trigonometric Transform computations. The routine initializes most elements of this array.
float array of size \(5 n / 2+2\). Contains single-precision data needed for Trigonometric Transform computations. The routine initializes most elements of this array.

\section*{Output Parameters}
handle
ipar
dpar
spar
stat

DFTI_DESCRIPTOR_HANDLE*. The data structure used by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface (for details, refer toFFT Functions).

Contains integer data needed for Trigonometric Transform computations. On output, ipar [6] is updated with the stat value.

Contains double-precision data needed for Trigonometric Transform computations. On output, the entire array is initialized.

Contains single-precision data needed for Trigonometric Transform computations. On output, the entire array is initialized.

MKL_INT*. Contains the routine completion status, which is also written to ipar[6].

\section*{Description}

The routine ?_commit_trig_transform checks consistency and correctness of the parameters to be passed to the transform routines ?_forward_trig_transform and/or?_backward_trig_transform. The routine also initializes the following data structures: handle, dpar in case of d_commit_trig_transform, and spar in case of s_commit_trig_transform. The ?_commit_trig_transform routine initializes only those elements of dpar or spar that depend upon the type of transform, defined in the ?_init_trig_transform routine and passed to ?_commit_trig_transform with the ipar array. The size of the problem n, which determines sizes of the array parameters, is also passed to the routine with the ipar array and defined in the previously called ?_init_trig_transform routine. For a detailed description of arrays ipar, dpar and spar, refer to Common Parameters. The routine performs only a basic check for correctness and consistency
of the parameters. If you are going to modify parameters of \(T T\) routines, see Caveat on Parameter Modifications. Unlike ? _init_trig_transform, you must call the ?_commit_trig_transform routine in your code.

\section*{Return Values}
```

stat= 11
stat= 10
stat=1
stat=0
stat= -100
stat=-1000
stat=-10000
The routine produced some warnings and made some changes in the parameters to achieve their correctness and/or consistency. You may proceed with computations by assigning ipar [6]=0 if you are sure that the parameters are correct.
The routine made some changes in the parameters to achieve their correctness and/or consistency. You may proceed with computations by assigning ipar [6]=0 if you are sure that the parameters are correct.
The routine produced some warnings. You may proceed with computations by assigning ipar [6]=0 if you are sure that the parameters are correct.
The routine completed the task normally.
The routine stopped for any of the following reasons:

- An error in the user's data was encountered.
- Data in ipar, dpar or spar parameters became incorrect and/or inconsistent as a result of modifications.
The routine stopped because of an FFT interface error.
The routine stopped because the initialization failed to complete or the parameter ipar [0] was altered by mistake.

```

\section*{NOTE}

Although positive values of stat usually indicate minor problems with the input data and Trigonometric Transform computations can be continued, you are highly recommended to investigate the problem first and achieve stat=0.

\section*{?_forward_trig_transform}

Computes the forward Trigonometric Transform of type specified by the parameter.

\section*{Syntax}
```

void d_forward_trig_transform(double f[], DFTI_DESCRIPTOR_HANDLE *handle, MKL_INT
ipar[], double dpar[], MKL_INT *stat);
void s_forward_trig_transform(float f[], DFTI_DESCRIPTOR_HANDLE *handle, MKL_INT
ipar[], float spar[], MKL_INT *stat);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
```

f double ford_forward_trig_transform,
float for s_forward_trig_transform,

```
array of size \(n\) for staggered 2 transforms and of size \(n+1\) for all other transforms, where \(n\) is the size of the problem. On input, contains data vector to be transformed. Note that the following values should be 0.0 up to rounding errors:
- \(\quad f[0]\) and \(f[n]\) for sine transforms
- \(\quad f[n]\) for staggered cosine transforms
- \(\quad f[0]\) for staggered sine transforms.

Otherwise, the routine will produce a warning, and the result of the computations for sine transforms may be wrong. The above restrictions meet the requirements of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Poisson Solver, which the TT interface is primarily designed for (for details, seeFast Poisson Solver Routines).

DFTI_DESCRIPTOR_HANDLE*. The data structure used by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface (for details, seeFFT Functions).

MKL_INT array of size 128. Contains integer data needed for Trigonometric Transform computations.
double array of size \(5 n / 2+2\). Contains double-precision data needed for Trigonometric Transform computations.
float array of size \(5 n / 2+2\). Contains single-precision data needed for Trigonometric Transform computations.

\section*{Output Parameters}
\(f\)
ipar
stat

Contains the transformed vector on output.
Contains integer data needed for Trigonometric Transform computations. On output, ipar [6] is updated with the stat value.

MKL_INT*. Contains the routine completion status, which is also written to ipar[6].

\section*{Description}

The routine computes the forward Trigonometric Transform of type defined in the ?_init_trig_transform routine and passed to ? forward_trig_transform with the ipar array. The size of the problem n, which determines sizes of the array parameters, is also passed to the routine with the ipar array and defined in the previously called ?_init_trig_transform routine. The other data that facilitates the computation is created by ?_commit_trig_transform and supplied in dpar or spar. For a detailed description of arrays ipar, dpar and spar, refer to Common Parameters. The routine has a commit step, which calls the ?_commit_trig_transform routine. The transform is computed according to formulas given in Transforms Implemented. The routine replaces the input vector \(f\) with the transformed vector.

\section*{NOTE}

If you need a copy of the data vector \(f\) to be transformed, make the copy before calling the ?_forward_trig_transform routine.

\section*{Return Values}
```

stat=0
stat= -100

```
stat \(=-1000\)
stat \(=-10000\)

The routine completed the task normally.
The routine stopped for any of the following reasons:
- An error in the user's data was encountered.
- Data in ipar, dpar or spar parameters became incorrect and/or inconsistent as a result of modifications.

The routine stopped because of an FFT interface error.
The routine stopped because its commit step failed to complete or the parameter ipar[0] was altered by mistake.
> ?_backward_trig_transform
> Computes the backward Trigonometric Transform of type specified by the parameter.

\section*{Syntax}
```

void d_backward_trig_transform(double f[], DFTI_DESCRIPTOR_HANDLE *handle, MKL_INT
ipar[], double dpar[], MKL_INT *stat);
void s_backward_trig_transform(float f[], DFTI_DESCRIPTOR_HANDLE *handle, MKL_INT
ipar[], float spar[], MKL_INT *stat);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
```

f

```
double for d_backward_trig_transform,
float for s_backward_trig_transform,
array of size \(n\) for staggered 2 transforms and of size \(n+1\) for all other transforms, where \(n\) is the size of the problem. On input, contains data vector to be transformed. Note that the following values should be 0.0 up to rounding errors:
- \(f[0]\) and \(f[n]\) for sine transforms
- \(\quad f[n]\) for staggered cosine transforms
- \(\quad f[0]\) for staggered sine transforms.

Otherwise, the routine will produce a warning, and the result of the computations for sine transforms may be wrong. The above restrictions meet the requirements of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Poisson Solver, which the TT interface is primarily designed for (for details, seeFast Poisson Solver Routines).
```

handle
ipar
dpar
spar

```

\section*{Output Parameters}

DFTI_DESCRIPTOR_HANDLE*. The data structure used by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface (for details, seeFFT Functions).

MKL_INT array of size 128. Contains integer data needed for Trigonometric Transform computations.
double array of size \(5 n / 2+2\). Contains double-precision data needed for Trigonometric Transform computations.
float array of size \(5 n / 2+2\). Contains single-precision data needed for Trigonometric Transform computations.

\section*{f}
ipar
stat
Contains the transformed vector on output.
Contains integer data needed for Trigonometric Transform computations. On output, ipar [6] is updated with the stat value.

MKL_INT*. Contains the routine completion status, which is also written to ipar[6].

\section*{Description}

The routine computes the backward Trigonometric Transform of type defined in the ? _init_trig_transform routine and passed to ?_backward_trig_transform with the ipar array. The size of the problem \(n\), which determines sizes of the array parameters, is also passed to the routine with the ipar array and defined in the previously called ?_init_trig_transform routine. The other data that facilitates the computation is created by ?_commit_trig_transform and supplied in dpar or spar. For a detailed description of arrays ipar, dpar and spar, refer to Common Parameters. The routine has a commit step, which calls the ?_commit_trig_transform routine. The transform is computed according to formulas given in Transforms Implemented. The routine replaces the input vector \(f\) with the transformed vector.

\section*{NOTE}

If you need a copy of the data vector \(f\) to be transformed, make the copy before calling the ?_backward_trig_transform routine.

\section*{Return Values}
```

stat=0
stat= -100
stat=-1000
stat= -10000

```

The routine completed the task normally.
The routine stopped for any of the following reasons:
- An error in the user's data was encountered.
- Data in ipar, dpar or spar parameters became incorrect and/or inconsistent as a result of modifications.

The routine stopped because of an FFT interface error.
The routine stopped because its commit step failed to complete or the parameter ipar [0] was altered by mistake.
```

free_trig_transform
Cleans the memory allocated for the data structure
used by the FFT interface.

```
Syntax
void free_trig_transform(DFTI_DESCRIPTOR_HANDLE *handle, MKL_INT ipar[], MKL_INT
*stat) ;
Include Files
- mkl.h

\section*{Input Parameters}
```

ipar

```
handle

\section*{Output Parameters}
```

handle The data structure used by Intel}\mp@subsup{}{}{\circledR}\mathrm{ oneAPI Math Kernel Library
(oneMKL) FFT interface. Memory allocated for the structure is released
on output.
Contains integer data needed for Trigonometric Transform
computations. On output, ipar [6] is updated with the stat value.
MKL_INT*. Contains the routine completion status, which is also
written to ipar[6].
handle
ipar Contains integer data needed for Trigonometric Transform computations. On output, ipar [6] is updated with the stat value.
stat MKL_INT*. Contains the routine completion status, which is also written to ipar[6].

```

\section*{Description}

The free_trig_transform routine cleans the memory used by the handlestructure, needed for Intel \({ }^{\circledR}\)
The free_trig_transform routine cleans the memory used by the handlestructure, needed for Intel \({ }^{\circledR}\)
oneAPI Math Kernel Library (oneMKL) FFT functions. To release the memory allocated for other parameters, include cleaning of the memory in your code.

\section*{Return Values}
```

```
stat=0 The routine completed the task normally.
```

```
stat=0 The routine completed the task normally.
stat=-1000 The routine stopped because of an FFT interface error.
stat=-1000 The routine stopped because of an FFT interface error.
stat= -99999
```

stat= -99999

```
The routine failed to complete the task.
```

MKL_INT array of size 128. Contains integer data needed for Trigonometric Transform computations.

DFTI_DESCRIPTOR_HANDLE*. The data structure used by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface (for details, refer toFFT Functions).

Common Parameters of the Trigonometric Transforms

This section provides description of array parameters that hold TT routine options: ipar, dpar and spar.

NOTE

Initial values are assigned to the array parameters by the appropriate ?_init_trig_transform and ?_commit_trig_transform routines.

MKL_INT array of size 128, holds integer data needed for Trigonometric Transform computations. Its elements are described in Table "Elements of the ipar Array":

Elements of the ipar Array

Index

Description

Contains the size of the problem to solve. The ? init_trig_transform routine sets ipar [0]=n, and all subsequently called TT routines use ipar[0] as the size of the transform.

1

5

6

7

8
2

Contains error messaging options:

- ipar[1]=-1 indicates that all error messages will be printed to the file MKL_Trig_Transforms_log.txt in the folder from which the routine is called. If the file does not exist, the routine tries to create it. If the attempt fails, the routine prints information that the file cannot be created to the standard output device.
- ipar[1]=0 indicates that no error messages will be printed.
- ipar[1]=1 (default) indicates that all error messages will be printed to the preconnected default output device (usually, screen).
In case of errors, each T routine assigns a non-zero value to stat regardless of the ipar[1] setting.

Contains warning messaging options:

- ipar[2]=-1 indicates that all warning messages will be printed to the file MKL_Trig_Transforms_log.txt in the directory from which the routine is called. If the file does not exist, the routine tries to create it. If the attempt fails, the routine prints information that the file cannot be created to the standard output device.
- ipar[2]=0 indicates that no warning messages will be printed.
- ipar[2]=1 (default) indicates that all warning messages will be printed to the preconnected default output device (usually, screen).
In case of warnings, the stat parameter will acquire a non-zero value regardless of the ipar[2] setting.

4 Reserved for future use.
Contains the type of the transform. The ?_init_trig_transform routine sets ipar[5] =tt_type, and all subsequently \bar{c} called $\bar{T} T$ routines use ipar [5] as the type of the transform.
Contains the stat value returned by the last completed Π routine. Used to check that the previous call to a Π routine completed with stat $=0$.

Informs the ?_commit_trig_transform routines whether to initialize data structures dpar (spar) and handle. ipar[7]=0 indicates that the routine should skip the initialization and only check correctness and consistency of the parameters. Otherwise, the routine initializes the data structures. The default value is 1 .
The possibility to check correctness and consistency of input data without initializing data structures dpar, spar and handle enables avoiding performance losses in a repeated use of the same transform for different data vectors. Note that you can benefit from the opportunity that ipar [7] gives only if you are sure to have supplied proper tolerance value in the dpar or spar array. Otherwise, avoid tuning this parameter.
Contains message style options for Π routines. Specifically, if ipar [8] is non-zero, Π routines print the messages in C-style notations. The default value is 1 .

| Index | Description |
| :--- | :--- |
| 9 | When specifying message style options, be aware that by default, numbering of
 elements in C arrays starts at 0 . For example, "parameter ipar[0]=3 should be an
 even integer" is a C-style message. The use of ipar [8] enables you to view
 messages in a more convenient style. |
| Specifies the number of OpenMP threads to run TT routines in the OpenMP
 environment of the Intel® oneAPI Math Kernel Library (oneMKL) Poisson Solver. The
 default value is 1. You are highly recommended not to alter this value. See
 alsoCaveat on Parameter Modifications. | |
| 10 | Specifies the mode of compatibility with FFTW. The default value is 0. Set the value to
 1 to invoke compatibility with FFTW. In the latter case, results will not be normalized,
 because FFTW does not do this. It is highly recommended not to alter this value, but
 rather use real-to-real FFTW to MKL wrappers, described in FFTW to Intel® MKL |
| Wrappers for FFTW 3.x. See also Caveat on Parameter Modifications. | |

NOTE

While you can declare the ipar array as MKL_INT ipar[11], for future compatibility you should declare ipar as MKL_INT ipar[128].

Arrays dpar and spar are the same except in the data precision:

| dpar | double array of size $5 n / 2+2$, holds data needed for double-precision routines to perform TT computations. This array is initialized in the
 d_init_trig_transform and d_commit_trig_transform routines. |
| :---: | :---: |
| spar | float array of size $5 n / 2+2$, holds data needed for single-precision routines to perform Π computations. This array is initialized in the
 s_init_trig_transform and
 _commit_trig_transform routines. |

As dpar and spar have similar elements in respective positions, the elements are described together in Table "Elements of the dpar and spar Arrays":

Elements of the dpar and spar Arrays

| Index | Description |
| :---: | :---: |
| 0 | Contains the first absolute tolerance used by the appropriate ? _commit_trig_transform routine. For a staggered cosine or a sine transform, $f[n]$ should be equal to 0.0 and for a staggered sine or a sine transform, $f[0]$ should be equal to 0.0 . The ?_commit_trig_transform routine checks whether absolute values of these parameters are below dpar [0] ${ }_{n}$ or $\operatorname{spar}[0]{ }_{n} n_{\text {, }}$, depending on the routine precision. To suppress warnings resulting from tolerance checks, set dpar [0] or spar [0] to a sufficiently large number. |
| 1 | Reserved for future use. |
| 2 through $5 n / 2+1$ | Contain tabulated values of trigonometric functions. Contents of the elements depend upon the type of transform tt_type, set up in the ?_commit_trig_transform routine:
 - If $t t$ _type=MKL_SINE_TRANSFORM, the transform uses only the first $n / 2$ array elements, which contain tabulated sine values.
 - If $t t$ _ type=MKL_STAGGERED_SINE_TRANSFORM, the transform uses only the first $3 n / 2$ array elements, which contain tabulated sine and cosine values. |

Index Description

- If $t t$ _type $=$ MKL_STAGGERED2_SINE_TRANSFORM, the transform uses all the $5 n / 2$ array elements, which contain tabulated sine and cosine values.
- If $t t$ _type=MKL_COSINE_TRANSFORM, the transform uses only the first n array elements, which contain tabulated cosine values.
- If $t t$ type=MKL_STAGGERED_COSINE_TRANSFORM, the transform uses only the first $\overline{3} n / 2$ elements, which contain tabulated sine and cosine values.
- If t t_type=MKL_STAGGERED2_COSINE_TRANSFORM, the transform uses all the $5 n / 2$ elements, which contain tabulated sine and cosine values.

NOTE

To save memory, you can define the array size depending upon the type of transform.

Caveat on Parameter Modifications

Flexibility of the Π interface enables you to skip a call to the ?_init_trig_transform routine and to initialize the basic data structures explicitly in your code. You may also need to modify the contents of ipar, dpar and spar arrays after initialization. When doing so, provide correct and consistent data in the arrays. Mistakenly altered arrays cause errors or wrong computation. You can perform a basic check for correctness and consistency of parameters by calling the ?_commit_trig_transform routine; however, this does not ensure the correct result of a transform but only reduces the chance of errors or wrong results.

NOTE

To supply correct and consistent parameters to Π routines, you should have considerable experience in using the Π interface and good understanding of elements that the ipar, spar and dpar arrays contain and dependencies between values of these elements.

However, in rare occurrences, even advanced users might fail to compute a transform using Π routines after the parameter modifications. In cases like these, refer for technical support at http://www.intel.com/ software/products/support/ .

WARNING

The only way that ensures proper computation of the Trigonometric Transforms is to follow a typical sequence of invoking the routines and not change the default set of parameters. So, avoid modifications of ipar, dpar and spar arrays unless a strong need arises.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Trigonometric Transform Implementation Details

Several aspects of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) TT interface are platform-specific and language-specific. To promote portability across platforms and ease of use across different languages, Intel oneAPI Math Kernel Library (oneMKL) provides you with the Π language-specific header file to include in your code:

- mkl_trig_transforms.h, to be used together with mkl_dfti.h.

NOTE

- Use of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) TT software without including the above language-specific header files is not supported.

Header File

The header file below defines the following function prototypes:

```
void d_init_trig_transform(MKL_INT *, MKL_INT *, MKL_INT *, double *, MKL_INT *);
void d_commīt_trig_transform(double *, DFTI_DESCRIPTOR_HANDLE *, MKL_INT *, double *, MKL_INT
*);
void d_forward_trig_transform(double *, DFTI_DESCRIPTOR_HANDLE *, MKL_INT *, double *, MKL_INT
*);
void d_backward_trig_transform(double *, DFTI_DESCRIPTOR_HANDLE *, MKL_INT *, double *, MKL_INT
*);
void s_init_trig_transform(MKL_INT *, MKL_INT *, MKL_INT *, float *, MKL_INT *);
void s_commit_trig_transform(float *, DFTI_DESCRIPTOR_HANDLE *, MKL_INT *, float *, MKL_INT *);
void s_forward_trig_transform(float *, DFTI_DESCRIPTOR_HANDLE *, MK___INT *, float *, MKL_INT *);
void s_backward_trig_transform(float *, DFTI_DESCRIPTOR_HANDLE *, MKL_INT *, float *, MKL_INT
*);
void free_trig_transform(DFTI_DESCRIPTOR_HANDLE *, MKL_INT *, MKL_INT *);
```


Fast Poisson Solver Routines

In addition to the Real Discrete Trigonometric Transforms (TT) interface (refer to Trigonometric Transform Routines), Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) supports thethe Poisson Solver interface. This interface implements a group of routines (Poisson Solver routines) used to compute a solution of Laplace, Poisson, and Helmholtz problems of a special kind using discrete Fourier transforms. Laplace and Poisson problems are special cases of a more general Helmholtz problem. The problems that are solved by the Poisson Solver interface are defined more exactly in Poisson Solver Implementation. The Poisson Solver interface provides much flexibility of use: you can call routines with the default parameter values or adjust routines to your particular needs by manually tuning routine parameters. You can adjust the style of error and warning messages to a Cnotation by setting up a dedicated parameter. This adds convenience to debugging, because you can read information in the way that is natural for your code. The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Poisson Solver interface currently contains only routines that implement the following solvers:

- Fast Laplace, Poisson and Helmholtz solvers in a Cartesian coordinate system
- Fast Poisson and Helmholtz solvers in a spherical coordinate system.

Poisson Solver Implementation

Poisson Solver routines enable approximate solving of certain two-dimensional and three-dimensional problems. Figure "Structure of the Poisson Solver" shows the general structure of the Poisson Solver.

border__top

Structure of the Poisson Solver

NOTE

Although in the Cartesian case, both periodic and non-periodic solvers are also supported, they use the same interfaces.

Sections below provide details of the problems that can be solved using Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Poisson Solver.

Two-Dimensional Problems

Notational Conventions

The Poisson Solver interface description uses the following notation for boundaries of a rectangular domain a_{x} $<x<b_{x}, a_{y}<y<b_{y}$ on a Cartesian plane:
$b d_{-} a_{x}=\left\{x=a_{x}, a_{y} \leq y \leq b_{y}\right\}, b d_{-} b_{x}=\left\{x=b_{x}, a_{y} \leq y \leq b_{y}\right\}$
$b d _a_{y}=\left\{a_{x} \leq x \leq b_{x}, y=a_{y}\right\}, b d_{-} b_{y}=\left\{a_{x} \leq x \leq b_{x}, y=b_{y}\right\}$.
The following figure shows these boundaries:

The wildcard "+" may stand for any of the symbols $a_{x}, b_{x}, a_{y}, b_{y}$, so $b d_{-}+$denotes any of the above boundaries.
The Poisson Solver interface description uses the following notation for boundaries of a rectangular domain $a_{\varphi}<\varphi<b_{\varphi}, a_{\theta}<\theta<b_{\theta}$ on a sphere $0 \leq \varphi \leq 2 \pi, 0 \leq \theta \leq \pi$:
$b d_{-} a_{\varphi}=\left\{\varphi=a_{\varphi}, a_{\theta} \leq \theta \leq b_{\theta}\right\}, b d_{-} b_{\varphi}=\left\{\varphi=b_{\varphi}, a_{\theta} \leq \theta \leq b_{\theta}\right\}$,
$b d_{-} a_{\theta}=\left\{a_{\varphi} \leq \varphi \leq b_{\varphi}, \theta=a_{\theta}\right\}, b d_{-} b_{\theta}=\left\{a_{\varphi} \leq \varphi \leq b_{\varphi}, \theta=b_{\theta}\right\}$.
The wildcard " \sim " may stand for any of the symbols $a_{\varphi}, b_{\varphi}, a_{\theta}, b_{\theta}$, so $b d_{-} \sim$ denotes any of the above boundaries.

Two-dimensional Helmholtz problem on a Cartesian plane

The two-dimensional (2D) Helmholtz problem is to find an approximate solution of the Helmholtz equation
$-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}+q u=f(x, y), q=$ const ≥ 0
in a rectangle, that is, a rectangular domain $a_{x}<x<b_{x}, a_{y}<y<b_{y}$, with one of the following boundary conditions on each boundary bd_+:

- The Dirichlet boundary condition
$u(x, y)=G(x, y)$
- The Neumann boundary condition
$\frac{\partial u}{\partial n}(x, y)=g(x, y)$
where
$n=-x$ on $b d_{-} a_{x}, n=x$ on $b d_{-} b_{x,}$
$n=-y$ on $b d_{-} a_{y}, n=y$ on $b d_{-} b_{y}$.
- Periodic boundary conditions

$$
u\left(a_{x}, y\right)=u\left(b_{x}, y\right), \frac{\partial}{\partial x} u\left(a_{x}, y\right)=\frac{\partial}{\partial x} u\left(b_{x}, y\right)
$$

$$
u\left(x, a_{y}\right)=u\left(x, b_{y}\right), \frac{\partial}{\partial y} u\left(x, a_{y}\right)=\frac{\partial}{\partial y} u\left(x, b_{y}\right)
$$

Two-dimensional Poisson problem on a Cartesian plane

The Poisson problem is a special case of the Helmholtz problem, when $q=0$. The 2D Poisson problem is to find an approximate solution of the Poisson equation
$-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=f(x, y)$
in a rectangle $a_{x}<x<b_{x}, a_{y}<y<b_{y}$ with the Dirichlet, Neumann, or periodic boundary conditions on each boundary $b d_{-}+$. In case of a problem with the Neumann boundary condition on the entire boundary, you can find the solution of the problem only up to a constant. In this case, the Poisson Solver will compute the solution that provides the minimal Euclidean norm of a residual.

Two-dimensional (2D) Laplace problem on a Cartesian plane

The Laplace problem is a special case of the Helmholtz problem, when $q=0$ and $f(x, y)=0$. The 2D Laplace problem is to find an approximate solution of the Laplace equation
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
in a rectangle $a_{x}<x<b_{x}, a_{y}<y<b_{y}$ with the Dirichlet, Neumann, or periodic boundary conditions on each boundary bd_+.

Helmholtz problem on a sphere

The Helmholtz problem on a sphere is to find an approximate solution of the Helmholtz equation
$-\Delta_{s} u+q u=f, q=$ const ≥ 0,
$\Delta_{s}=\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)$
in a domain bounded by angles $a_{\varphi} \leq \varphi \leq b_{\varphi}, a_{\theta} \leq \theta \leq b_{\theta}$ (spherical rectangle), with boundary conditions for particular domains listed in Table "Details of Helmholtz Problem on a Sphere".

Details of Helmholtz Problem on a Sphere

| Details of Helmholtz Problem on a Sphere | Boundary condition | Periodic/non-
 periodic case |
| :--- | :--- | :--- |
| Rectangular, that is, $b_{\varphi}-a_{\varphi}<2 \pi$ and b_{θ} Homogeneous Dirichlet boundary
 $-a_{\theta}<\pi$ | non-periodic
 conditions on each boundary $b d_{-} \sim$ | |
| Where $a_{\varphi}=0, b_{\varphi}=2 \pi$, and $b_{\theta}-a_{\theta}<\pi$ | Homogeneous Dirichlet boundary
 conditions on the boundaries $b d _a_{\theta}$ and
 $b d_{-} b_{\theta}$ | periodic |

Poisson problem on a sphere

The Poisson problem is a special case of the Helmholtz problem, when $q=0$. The Poisson problem on a sphere is to find an approximate solution of the Poisson equation

$$
-\Delta_{s} u=f, \Delta_{s}=\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)
$$

in a spherical rectangle $a_{\varphi} \leq \varphi \leq b_{\varphi}, a_{\theta} \leq \theta \leq b_{\theta}$ in cases listed in Table "Details of Helmholtz Problem on a Sphere". The solution to the Poisson problem on the entire sphere can be found up to a constant only. In this case, Poisson Solver will compute the solution that provides the minimal Euclidean norm of a residual.

Approximation of 2D problems

To find an approximate solution for any of the 2D problems, in the rectangular domain a uniform mesh can be defined for the Cartesian case as:
$\left\{x_{i}=a_{x}+i h_{x}, y_{j}=a_{y}+j h_{y}\right\}$,
$i=0, \ldots, n_{x}, j=0, \ldots, n_{y}, h_{x}=\frac{b_{x}-a_{x}}{n_{x}}, h_{y}=\frac{b_{y}-a_{y}}{n_{y}}$
and for the spherical case as:
$\left\{\phi_{i}=a_{\phi}+i h_{\phi}, \theta_{j}=a_{\theta}+j h_{\theta}\right\}$,
$i=0, \ldots, n_{\phi}, j=0, \ldots, n_{\theta}, h_{\phi}=\frac{b_{\phi}-a_{\phi}}{n_{\phi}}, h_{\theta}=\frac{b_{\theta}-a_{\theta}}{n_{\theta}}$.
The Poisson Solver uses the standard five-point finite difference approximation on this mesh to compute the approximation to the solution:

- In the Cartesian case, the values of the approximate solution will be computed in the mesh points $\left(x_{i}, y_{j}\right)$ provided that you can supply the values of the right-hand side $f(x, y)$ in these points and the values of the appropriate boundary functions $G(x, y)$ and/or $g(x, y)$ in the mesh points laying on the boundary of the rectangular domain.
- In the spherical case, the values of the approximate solution will be computed in the mesh points $\left(\varphi_{i}, \theta_{j}\right)$ provided that you can supply the values of the right-hand side $f(\varphi, \theta)$ in these points.

NOTE

The number of mesh intervals n_{φ} in the φ direction of a spherical mesh must be even in the periodic case. The Poisson Solver does not support spherical meshes that do not meet this condition.

Three-Dimensional Problems

Notational Conventions

The Poisson Solver interface description uses the following notation for boundaries of a parallelepiped domain $a_{x}<x<b_{x}, a_{y}<y<b_{y}, a_{z}<z<b_{z}$:
$b d_{-} a_{x}=\left\{x=a_{x}, a_{y} \leq y \leq b_{y}, a_{z} \leq z \leq b_{z}\right\}, b d_{-} b_{x}=\left\{x=b_{x}, a_{y} \leq y \leq b_{y}, a_{z} \leq z \leq b_{z}\right\}$,
$b d_{-} a_{y}=\left\{a_{x} \leq x \leq b_{x}, y=a_{y}, a_{z} \leq z \leq b_{z}\right\}, b d_{-} b_{y}=\left\{a_{x} \leq x \leq b_{x}, y=b_{y}, a_{z} \leq z \leq b_{z}\right\}$,
$b d_{-} a_{z}=\left\{a_{x} \leq x \leq b_{x}, a_{y} \leq y \leq b_{y}, z=a_{z}\right\}, b d_{-} b_{x}=\left\{a_{x} \leq x \leq b_{x}, a_{y} \leq y \leq b_{y}, z=b_{z}\right\}$.
The following figure shows these boundaries:

The wildcard "+" may stand for any of the symbols $a_{x}, b_{x}, a_{y}, b_{y}, a_{z}, b_{z}$, so $b d_{-}+$denotes any of the above boundaries.

Three-dimensional (3D) Helmholtz problem

The 3D Helmholtz problem is to find an approximate solution of the Helmholtz equation
$-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial^{2} u}{\partial z^{2}}+q u=f(x, y, z), q=$ const ≥ 0
in a parallelepiped, that is, a parallelepiped domain $a_{x}<x<b_{x}$, $a_{y}<y<b_{y}, a_{z}<z<b_{z}$, with one of the following boundary conditions on each boundary bd_+:

- The Dirichlet boundary condition
$u(x, y, z)=G(x, y, z)$
- The Neumann boundary condition
$\frac{\partial u}{\partial n}(x, y, z)=g(x, y, z)$
where
$n=-x$ on $b d_{-} a_{x}, n=x$ on $b d_{-} b_{x}$,
$n=-y$ on $b d _a_{y}, n=y$ on $b d_{-} b_{y}$,
$n=-z$ on $b d_{-} a_{z}, n=z$ on $b d_{-} b_{z}$.
- Periodic boundary conditions
$u\left(a_{x}, y, z\right)=u\left(b_{x}, y, z\right), \frac{\partial}{\partial x} u\left(a_{x}, y, z\right)=\frac{\partial}{\partial x} u\left(b_{x}, y, z\right)$,
$u\left(x, a_{y}, z\right)=u\left(x, b_{y}, z\right), \frac{\partial}{\partial y} u\left(x, a_{y}, z\right)=\frac{\partial}{\partial y} u\left(x, b_{y}, z\right)$,

$$
u\left(x, y, a_{z}\right)=u\left(x, y, b_{z}\right), \frac{\partial}{\partial z} u\left(x, y, a_{z}\right)=\frac{\partial}{\partial z} u\left(x, y, b_{z}\right)
$$

Three-dimensional (3D) Poisson problem

The Poisson problem is a special case of the Helmholtz problem, when $q=0$. The 3D Poisson problem is to find an approximate solution of the Poisson equation
$-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial^{2} u}{\partial z^{2}}=f(x, y, z)$
in a parallelepiped $a_{x}<x<b_{x}, a_{y}<y<b_{y}, a_{z}<z<b_{z}$ with the Dirichlet, Neumann, or periodic boundary conditions on each boundary bd_+.

Three-dimensional (3D) Laplace problem

The Laplace problem is a special case of the Helmholtz problem, when $q=0$ and $f(x, y, z)=0$. The 3D Laplace problem is to find an approximate solution of the Laplace equation
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$
in a parallelepiped $a_{x}<x<b_{x}, a_{y}<y<b_{y}, a_{z}<z<b_{z}$ with the Dirichlet, Neumann, or periodic boundary conditions on each boundary bd_+.

Approximation of 3D problems

To find an approximate solution for each of the 3D problems, a uniform mesh can be defined in the parallelepiped domain as:
$\left\{x_{i}=a_{x}+i h_{x}, y_{j}=a_{y}+j h_{y}, z_{k}=a_{z}+j h_{z}\right\}$,
where
$i=0, \ldots, n_{x}, j=0, \ldots, n_{y}, k=0, \ldots, n_{z}$,
$h_{x}=\frac{b_{x}-a_{x}}{n_{x}}, h_{y}=\frac{b_{y}-a_{y}}{n_{y}}, h_{z}=\frac{b_{z}-a_{z}}{n_{z}}$.
The Poisson Solver uses the standard seven-point finite difference approximation on this mesh to compute the approximation to the solution. The values of the approximate solution will be computed in the mesh points $\left(x_{i}, y_{j}, z_{k}\right)$, provided that you can supply the values of the right-hand side $f(x, y, z)$ in these points and the values of the appropriate boundary functions $G(x, y, z)$ and/or $g(x, y, z)$ in the mesh points laying on the boundary of the parallelepiped domain.

Sequence of Invoking Poisson Solver Routines

NOTE

This description always shows the solution process for the Helmholtz problem, because Fast Poisson Solvers and Fast Laplace Solvers are special cases of Fast Helmholtz Solvers (see Poisson Solver Implementation).

The Poisson Solver interface enables you to compute a solution of the Helmholtz problem in four steps. Each step is performed by a dedicated routine. Table "Poisson Solver Interface Routines" lists the routines and briefly describes their purpose.
Most Poisson Solver routines have versions operating with single-precision and double-precision data. Names of such routines begin respectively with "s" and "d". The wildcard "?" stands for either of these symbols in routine names. The routines for the Cartesian coordinate system have 2D and 3D versions. Their names end respectively in "2D" and "3D". The routines for spherical coordinate system have periodic and non-periodic versions. Their names end respectively in "p" and "np".

Poisson Solver Interface Routines

| Routine | Description |
| :---: | :---: |
| ?_init_Helmholtz_2D/?_init_Helmholtz_3D/ ? init_sph_p/?_init_sph_np | Initializes basic data structures for Fast Helmholtz Solver in the 2D/3D/periodic/ non-periodic case, respectively. |
| ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D/ ?_commit_sph_p/?_commit_sph_np | Checks consistency and correctness of input data and initializes data structures for the solver, including those used by the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface ${ }^{1}$. |
| ?_Helmholtz_2D/?_Helmholtz_3D/?_sph_p/? sph_np | Computes an approximate solution of the 2D/3D/periodic/non-periodic Helmholtz problem (see Poisson Solver Implementation) specified by the parameters. |
| free_Helmholtz_2D/free_Helmholtz_3D/ free_sph_p/free_sph_np | Releases the memory used by the data structures needed for calling the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface ${ }^{1}$. |

${ }^{1}$ Poisson Solver routines call the Intel® oneAPI Math Kernel Library (oneMKL) FFT interface for better performance.
To find an approximate solution of Helmholtz problem only once, the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Poisson Solver interface routines are normally invoked in the order in which they are listed inTable "Poisson Solver Interface Routines".

NOTE

Though the order of invoking Poisson Solver routines may be changed, it is highly recommended to follow the above order of routine calls.

The diagram in Figure "Typical Order of Invoking Poisson Solver Routines" indicates the typical order in which Poisson Solver routines can be invoked in a general case.
__border__top

Typical Order of Invoking Poisson Solver Routines

A general scheme of using Poisson Solver routines for double-precision computations in a 3D Cartesian case is shown below. You can change this scheme to a scheme for single-precision computations by changing the initial letter of the Poisson Solver routine names from "d" to "s". You can also change the scheme below from the 3D to 2D case by changing the ending of the Poisson Solver routine names.

```
d_init_Helmholtz_3D(&ax, &bx, &ay, &by, &az, &bz, &nx, &ny, &nz, BCtype, ipar, dpar, &stat);
/* change parameters in ipar and/or dpar if necessary. */
/* note that the result of the Fast Helmholtz Solver will be in f. If you want to keep the data
that is stored in f, save it to another location before the function call below */
d_commit_Helmholtz_3D(f, bd_ax, bd_bx, bd_ay, bd_by, bd_az, bd_bz, &xhandle, &yhandle, ipar,
dpar, &stat);
d_Helmholtz_3D(f, bd_ax, bd_bx, bd_ay, bd_by, bd_az, bd_bz, &xhandle, &yhandle, ipar, dpar,
&stat);
free_Helmholtz_3D (&xhandle, &yhandle, ipar, &stat);
/* here you may clean the memory used by f, dpar, ipar */
```

A general scheme of using Poisson Solver routines for double-precision computations in a spherical periodic case is shown below. You can change this scheme to a scheme for single-precision computations by changing the initial letter of the Poisson Solver routine names from "d" to "s". You can also change the scheme below to a scheme for a non-periodic case by changing the ending of the Poisson Solver routine names from " p " to "np".

```
d_init_sph_p(&ap,&bp,&at,&bt,&np,&nt,&q,ipar,dpar, &stat);
/* change parameters in ipar and/or dpar if necessary. */
/* note that the result of the Fast Helmholtz Solver will be in f. If you want to keep the data
that is stored in f, save it to another location before the function call below */
d_commit_sph_p(f,&handle_s,&handle_c,ipar,dpar,&stat);
d_sph_p(\overline{f,&handle_s,&handle_c,ipar,dpar,&stat);}
free_sph_p(&handle_s,&handle_c,ipar,&stat);
/* hère you may clēan the memory used by f, dpar, ipar */
```

You can find examples of code that uses Poisson Solver routines to solve Helmholtz problem (in both Cartesian and spherical cases) in the examples \backslash pdepoissonc \backslash source folderin your Intel® oneAPI Math Kernel Library (oneMKL) directory.

Fast Poisson Solver Interface Description

All numerical types in this section are either standard C types float and double or MKL_INT integer type. For more information on the C types, refer to C Datatypes Specific to oneMKL and the Inte ${ }^{\circledR}{ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide. To better understand usage of the types, see examples in the examples \backslash pdepoissonc \backslash source folderin your Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory.

Routine Options

All Poisson Solver routines use parameters for passing various options to the routines. These parameters are arrays ipar, dpar, and spar. Values for these parameters should be specified very carefully (see Common Parameters). You can change these values during computations to meet your needs. For more details, see the descriptions of specific routines.

WARNING

To avoid failure or incorrect results, you must provide correct and consistent parameters to the routines.

User Data Arrays

Poisson Solver routines take arrays of user data as input. For example, the d_Helmholtz_3Droutine takes user arrays to compute an approximate solution to the 3D Helmholtz problem. To minimize storage requirements and improve the overall run-time efficiency, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Poisson Solver routines do not make copies of user input arrays.

NOTE

If you need a copy of your input data arrays, you must save them yourself.

For better performance, align your data arrays as recommended in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide (search the document for coding techniques to improve performance).

Routines for the Cartesian Solver

The section describes Poisson Solver routines for the Cartesian case, their syntax, parameters, and return values. All flavors of the same routine are described together: single- and double-precision and 2D and 3D.

NOTE

Some of the routine parameters are used only in the 3D Fast Helmholtz Solver.

Poisson Solver routines call Intel® oneAPI Math Kernel Library (oneMKL) FFT routines (described inFFT Functions), which enhance performance of the Poisson Solver routines.
?_init_Helmholtz_2D/?_init_Helmholtz_3D
Initializes basic data structures of the Fast 2D/3D
Helmholtz Solver.

Syntax

```
void d_init_Helmholtz_2D (const double * ax, const double * bx, const double * ay,
const double * by, const MKL_INT * nx, const MKL_INT * ny, const char * BCtype, const
double * q, MKL_INT * ipar, double * dpar, MKL_INT * stat);
void s_init_Helmholtz_2D (const float * ax, const float * bx, const float * ay, const
float * by, const MKL_INT * nx, const MKL_INT * ny, const char * BCtype, const float *
q, MKL_INT * ipar, float * spar, MKL_INT * stat);
void d_init_Helmholtz_3D (const double * ax, const double * bx, const double * ay,
const double * by, const double * az, const double * bz, const MKL_INT * nx, const
MKL_INT * ny, const MKL_INT * nz, const char * BCtype, const double * q, MKL_INT *ipar,
double * dpar, MKL_INT * stat);
void s_init_Helmholtz_3D (const float * ax, const float * bx, const float * ay, const
float * by, const float * az, const float * bz, const MKL_INT * nx, const MKL_INT * ny,
const MKL_INT * nz, const char * BCtype, const float * q, MKL_INT * ipar, float * spar,
MKL_INT * stat);
```


Include Files

- mkl.h

Input Parameters

double* ford_init_Helmholtz_2D/d_init_Helmholtz_3D,
float* for s_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the leftmost boundary of the domain along the x axis.
double* for d_init_Helmholtz_2D/d_init_Helmholtz_3D,
float* fors_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the rightmost boundary of the domain along the x axis.
double* ford_init_Helmholtz_2D/d_init_Helmholtz_3D,
float* fors_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the leftmost boundary of the domain along the y axis.
double* ford_init_Helmholtz_2D/d_init_Helmholtz_3D,
float* fors_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the rightmost boundary of the domain along the y axis.
double* for d_init_Helmholtz_3D,
float* for s_init_Helmholtz_3D.
The coordinate of the leftmost boundary of the domain along the z axis. This parameter is needed only for the ?_init_Helmholtz_3D routine.
double* for d_init_Helmholtz_3D,
float* for s_init_Helmholtz_3D.
The coordinate of the rightmost boundary of the domain along the zaxis. This parameter is needed only for the ?_init_Helmholtz_3D routine.

MKL_INT*. The number of mesh intervals along the x-axis.
MKL_INT*. The number of mesh intervals along the y-axis.
MKL_INT*. The number of mesh intervals along the z-axis. This parameter is needed only for the ?_init_Helmholtz_3D routine.
char*. Contains the type of boundary conditions on each boundary. Must contain four characters for ?_init_Helmholtz_2D and six characters for ?_init_Helmholtz_3D. Each of the characters can be 'N' (Neumann boundary condition), 'D' (Dirichlet boundary condition), or 'P' (periodic boundary conditions). Specify the types of boundary conditions for the boundaries in the following order: $b d_{-} a_{x}, b d_{-} b_{x}$, $b d _a_{y}, b d_{-} b_{y}, b d_{-} a_{z}$, and $b d_{-} b_{z}$. Specify periodic boundary conditions on the respective boundaries in pairs (for example, 'PPDD' or 'NNPP' in the 2D case). The types of boundary conditions for the last two boundaries are needed only in the 3D case.
q

```
double* ford_init_Helmholtz_2D/d_init_Helmholtz_3D,
float* fors_init_Helmholtz_2D/s_init_Helmholtz_3D.
```

The constant Helmholtz coefficient. Note that to solve Poisson or Laplace problem, you should set the value of q to 0 .

Output Parameters

ipar
MKL_INT array of size 128. Contains integer data to be used by Fast Helmholtz Solver (for details, refer to ipar).
double array of size $5^{*} n x / 2+7$ in the 2D case or $5^{*}(n x+n y) / 2+9$ in the 3D case. Contains double-precision data to be used by Fast Helmholtz Solver (for details, refer to dpar and spar).
float array of size $5^{*} n x / 2+7$ in the 2 D case or $5^{*}(n x+n y) / 2+9$ in the 3D case. Contains single-precision data to be used by Fast Helmholtz Solver (for details, refer to dpar and spar).

MKL_INT*. Routine completion status, which is also written to ipar[0]. Continue to call other Poisson Solver routines only if the status is 0 .

Description

The ?_init_Helmholtz_2D/?_init_Helmholtz_3D routines initialize basic data structures for Poisson Solver computations of the appropriate precision. All routines invoked after a call to
a ?_init_Helmholtz_2D/?_init_Helmholtz_3D routine use values of the ipar, dpar and spar array parameters returned by the routine. Detailed description of the array parameters can be found in Common Parameters.

Caution

Data structures initialized and created by 2D flavors of the routine cannot be used by 3D flavors of any Poisson Solver routines, and vice versa.

You can skip calls to these routines in your code. However, see Caveat on Parameter Modifications for information on initializing the data structures.

Return Values

```
stat=0
stat= -99999
The routine successfully completed the task. In general, to proceed with computations, the routine should complete with this stat value.
The routine failed to complete the task because of a fatal error.
```

> _commit_Helmholtz_2D/?_commit_Helmholtz_3D
> Checks consistency and correctness of input data and initializes certain data structures required to solve 2D/3D Helmholtz problem.

Syntax

```
void d_commit_Helmholtz_2D (double * f, const double * bd_ax, const double * bd_bx,
const double * bd_ay, const double * bd_by, DFTI_DESCRIPTOR_HANDLE * xhandle, MKL_INT *
ipar, double * dpar, MKL_INT * stat );
```

```
void s_commit_Helmholtz_2D (float * f, const float * bd_ax, const float * bd_bx, const
float * bd_ay, const float * bd_by, DFTI_DESCRIPTOR_HANDLE * xhandle, MKL_INT * ipar,
float * spar, MKL_INT * stat );
void d_commit_Helmholtz_3D (double * f, const double * bd_ax, const double * bd_bx,
const double * bd_ay, const double * bd_by, const double * bd_az, const double * bd_bz,
DFTI_DESCRIPTOR_HANDLE * xhandle, DFTI_DESCRIPTOR_HANDLE * yhandle, MKL_INT * ipar,
double * dpar, MKL_INT * stat );
void s_commit_Helmholtz_3D (float * f, const float * bd_ax, const float * bd_bx, const
float * bd_ay, const float * bd_by, const float * bd_az, const float * bd_bz,
DFTI_DESCRIPTOR_HANDLE * xhandle, DFTI_DESCRIPTOR_HANDLE * yhandle, MKL_INT * ipar,
float * spar, MKL_INT * stat );
```

Include Files

- mkl.h

Input Parameters

f

```
double* ford_commit_Helmholtz_2D/d_commit_Helmholtz_3D,
float* fors_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
```

Contains the right-hand side of the problem packed in a single vector:

- 2D problem: The size of the vector for the is $(n x+1) *(n y+1)$. The value of the right-hand side in the mesh point (i, j) is stored in $f[i$ $\left.+j^{*}(n x+1)\right]$.
- 3D problem: The size of the vector for the is $(n x+1) *(n y+1) *(n z$ $+1)$. The value of the right-hand side in the mesh point (i, j, k) is stored in $f\left[i+j^{*}(n x+1)+k^{*}(n x+1)^{*}(n y+1)\right]$.

Note that to solve the Laplace problem, you should set all the elements of the array f to 0 .

Note also that the array f may be altered by the routine. To preserve the f vector, save it to another memory location.

MKL_INT array of size 128. Contains integer data to be used by the Fast Helmholtz Solver (for details, refer to ipar).
double array of size depending on the dimension of the problem:

- 2D problem: $5^{*} n x / 2+7$
- 3D problem: $5^{*}(n x+n y) / 2+9$

Contains double-precision data to be used by the Fast Helmholtz Solver (for details, refer to dpar and spar).
float array of size depending on the dimension of the problem:

- 2D problem: $5^{*} n x / 2+7$
- 3D problem: $5^{*}(n x+n y) / 2+9$

Contains single-precision data to be used by the Fast Helmholtz Solver (for details, refer to dpar and spar).
bd_ax

```
double* ford_commit_Helmholtz_2D/d_commit_Helmholtz_3D,
float* for s_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
```

bd_bx
bd_ay
bd_by
bd_az
bd_bz

Contains values of the boundary condition on the leftmost boundary of the domain along the x-axis (for more information, refer to a detailed description of bd_ax).
double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D, float* fors_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
Contains values of the boundary condition on the rightmost boundary of the domain along the x-axis (for more information, refer to a detailed description of bd_bx).
double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D, float* fors_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
Contains values of the boundary condition on the leftmost boundary of the domain along the y-axis (for more information, refer to a detailed description of bd_ay).
double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D, float* for s_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
Contains values of the boundary condition on the rightmost boundary of the domain along the y-axis (for more information, refer to a detailed description of bd_by).
double* for d_commit_Helmholtz_3D,
float* for s_commit_Helmholtz_3D.
Used only by ?_commit_Helmholtz_3D. Contains values of the boundary condition on the leftmost boundary of the domain along the z-axis (for more information, refer to a detailed description of bd_az).
double* for d_commit_Helmholtz_3D,
float* for s_commit_Helmholtz_3D.
Used only by ?_commit_Helmholtz_3D. Contains values of the boundary condition on the rightmost boundary of the domain along the z-axis (for more information, refer to a detailed description of bd_bz).

Output Parameters

```
f
ipar
dpar
spar
xhandle, yhandle
```

Contains right-hand side of the problem, possibly altered on output.
Contains integer data to be used by Fast Helmholtz Solver. Modified on output as explained in ipar.

Contains double-precision data to be used by Fast Helmholtz Solver. Modified on output as explained in dpar and spar.

Contains single-precision data to be used by Fast Helmholtz Solver. Modified on output as explained in dpar and spar.

DFTI_DESCRIPTOR_HANDLE*. Data structures used by the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface (for details, refer toFFT Functions). yhandle is used only by ?_commit_Helmholtz_3D.

```
stat
```

MKL_INT*. Routine completion status, which is also written to ipar[0]. Continue to call other Poisson Solver routines only if the status is 0 .

Description

The ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routines check the consistency and correctness of the parameters to be passed to the solver routines ? Helmholtz_2D/?_Helmholtz_3D. They also initialize the xhandle and yhandle data structures, ipar array, and dpar or spar array, depending upon the routine precision. Refer to Common Parameters to find out which particular array elements the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routines initialize and to what values these elements are initialized.
The routines perform only a basic check for correctness and consistency. If you are going to modify parameters of Poisson Solver routines, see Caveat on Parameter Modifications.
Unlike ?_init_Helmholtz_2D/?_init_Helmholtz_3D, you must call
the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routines in your code. Values of ax, bx, ay, by, $a z$, and $b z$ are passed to the routines with the spar/dpar array, and values of $n x, n y, n z$, and BCtype are passed with the ipar array.

Return Values

```
stat=1 The routine completed without errors but with warnings.
stat=0 The routine successfully completed the task.
stat= -100
stat= -1000
stat= -10000
stat= -99999
```

?_Helmholtz_2D/?_Helmholtz_3D
Computes the solution of the 2D/3D Helmholtz problem specified by the parameters.

Syntax

```
void d_Helmholtz_2D (double * f, const double * bd_ax, const double * bd_bx, const
double * bd_ay, const double *bd_by, DFTI_DESCRIPTOR_HANDLE * xhandle, MKL_INT * ipar,
const double * dpar, MKL_INT * stat );
void s_Helmholtz_2D (float * f, const float * bd_ax, const float * bd_bx, const float *
bd_ay, const float * bd_by, DFTI_DESCRIPTOR_HANDLE * xhandle, MKL_INT * ipar, const
float * spar, MKL_INT * stat );
void d_Helmholtz_3D (double * f, const double * bd_ax, const double * bd_bx, const
double * bd_ay, const double *bd_by, const double * bd_az, const double * bd_bz,
DFTI_DESCRIPTOR_HANDLE * xhandle, DFTI_DESCRIPTOR_HANDLE * yhandle, MKL_INT * ipar,
const double * dpar, MKL_INT * stat );
```

```
void s_Helmholtz_3D (float * f, const float * bd_ax, const float * bd_bx, const float *
bd_ay, const float * bd_by, const float * bd_az, const float * bd_bz,
DFTI_DESCRIPTOR_HANDLE * xhandle, DFTI_DESCRIPTOR_HANDLE * yhandle, MKL_INT * ipar,
const float * spar, MKL_INT * stat );
```

Include Files

- mkl.h

Input Parameters

f
double* for d_Helmholtz_2D/d_Helmholtz_3D, float* fors_Helmholtz_2D/s_Helmholtz_3D.
Contains the right-hand side of the problem packed in a single vector and modified by the
appropriate ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D
routine. Note that an attempt to substitute the original right-hand side vector, which was passed to
the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine, at this point results in an incorrect solution.

- 2D problem: the size of the vector is $(n x+1)^{*}(n y+1)$. The value of the modified right-hand side in the mesh point (i, j) is stored in $f[i$ $\left.+j^{*}(n x+1)\right]$.
- 3D problem: the size of the vector is $(n x+1)^{*}(n y+1) *(n z+1)$. The value of the modified right-hand side in the mesh point (i, j, k) is stored in $f\left[i+j^{*}(n x+1)+k^{*}(n x+1)^{*}(n y+1)\right]$.
xhandle, yhandle
ipar
dpar
spar
bd_ax

DFTI_DESCRIPTOR_HANDLE*. Data structures used by the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface (for details, refer toFFT Functions). yhandle is used only by ?_Helmholtz_3D.

MKL_INT array of size 128. Contains integer data to be used by Fast Helmholtz Solver (for details, refer to ipar).
double array of size depending on the dimension of the problem:

- 2D problem: $5^{*} n x / 2+7$
- 3D problem: $5 *(n x+n y) / 2+9$

Contains double-precision data to be used by Fast Helmholtz Solver (for details, refer to dpar and spar).
float array of size depending on the dimension of the problem:

- 2D problem: $5^{*} n x / 2+7$
- 3D problem: $5^{*}(n x+n y) / 2+9$

Contains single-precision data to be used by Fast Helmholtz Solver (for details, refer to dpar and spar).

```
double* ford_Helmholtz_2D/d_Helmholtz_3D,
float* fors_Helmholtz_2D/s_Helmholtz_3D.
```

Contains values of the boundary condition on the leftmost boundary of the domain along the x-axis (for more information, refer to a detailed description of bd_ax).

```
bd_bx
bd_ay
bd_by
bd_az
bd_bz
```


NOTE

To avoid incorrect computation results, do not change arrays bd_ax,bd_bx,bd_ay,bd_by, bd_az, bd_bz between a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine and a subsequent call to the appropriate ?_Helmholtz_2D/?_Helmholtz_3D routine.

Output Parameters

| f | |
| :--- | :--- |
| xhandle, yhandle | On output, contains the approximate solution to the problem packed
 the same way as the right-hand side of the problem was packed on
 input. |
| ipar | Data structures used by the Intel® oneAPI Math Kernel Library
 (oneMKL) FFT interface. Although the addresses do not change, the
 structures are modified on output. |
| Contains integer data to be used by Fast Helmholtz Solver. Modified on | |
| output as explained in ipar. | |

```
stat
```

MKL_INT*. Routine completion status, which is also written to ipar [0]. Continue to call other Poisson Solver routines only if the status is 0 .

Description

The ?_Helmholtz_2D/?_Helmholtz_3D routines compute the approximate solution of the Helmholtz problem defined in the previous calls to the corresponding initialization and commit routines. The solution is computed according to formulas given in Poisson Solver Implementation. The f parameter, which initially holds the packed vector of the right-hand side of the problem, is replaced by the computed solution packed in the same way. Values of $a x, b x, a y, b y, a z$, and $b z$ are passed to the routines with the spar/dpar array, and values of $n x, n y, n z$, and BCtype are passed with the ipar array.

Return Values

```
stat=1 The routine completed without errors but with some warnings.
The routine successfully completed the task.
The routine stopped because division by zero occurred. It usually happens if the data in the dpar or spar array was altered by mistake.
The routine stopped because the sufficient memory was unavailable for the computations.
The routine stopped because an error in the input data was found or the data in the dpar, spar, or ipar array was altered by mistake.
The routine stopped because of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT or TT interface error.
The routine stopped because the initialization failed to complete or the parameter ipar[0] was altered by mistake.
The routine failed to complete the task because of a fatal error.
stat \(=-99999\)
```

free_Helmholtz_2D/free_Helmholtz_3D
Releases the memory allocated for the data structures used by the FFT interface.

Syntax

```
void free_Helmholtz_2D(DFTI_DESCRIPTOR_HANDLE* xhandle, MKL_INT* ipar, MKL_INT* stat);
void free_Helmholtz_3D(DFTI_DESCRIPTOR_HANDLE* xhandle, DFTI_DESCRIPTOR_HANDLE*
yhandle, MKL_INT* ipar, MKL_INT* stat);
```

Include Files

- mkl.h

Input Parameters

xhandle, yhandle
ipar

Output Parameters

```
xhandle, yhandle
ipar
stat
```


Description

The free_Helmholtz_2D-free_Helmholtz_3D routine releases the memory used by the xhandle and yhandlestructures, which are needed for calling the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT functions. To release memory allocated for other parameters, include memory release statements in your code.

Return Values

```
stat=0 The routine successfully completed the task.
stat=-1000 The routine stopped because of an Intel}\mp@subsup{}{}{\circledR}\mathrm{ oneAPI Math
    Kernel Library (oneMKL) FFT or TT interface error.
    The routine failed to complete the task because of a fatal
    error.
```


Routines for the Spherical Solver

The section describes Poisson Solver routines for the spherical case, their syntax, parameters, and return values. All flavors of the same routine are described together: single- and double-precision and periodic (having names ending in " p ") and non-periodic (having names ending in "np").
These Poisson Solver routines also call the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT routines (described inFFT Functions), which enhance the performance of the Poisson Solver routines.

```
?_init_sph_p/?_init_sph_np
Initializes basic data structures of the periodic and
non-periodic Fast Helmholtz Solver on a sphere.
Syntax
void d_init_sph_p (const double * ap, const double * at, const double * bp, const
double * bt, const MKL_INT * np, const MKL_INT *nt, const double * q, MKL_INT * ipar,
double * dpar, MKL_INT * stat );
```

```
void s_init_sph_p (const float * ap, const float * at, const float * bp, const float *
bt, const MKL_INT * np, const MKL_INT * nt, const float * q, MKL_INT * ipar, float *
spar, MKL_INT * stat );
void d_init_sph_np (const double * ap, const double * at, const double * bp, const
double * bt, const MKL_INT * np, const MKL_INT *nt, const double * q, MKL_INT * ipar,
double * dpar, MKL_INT * stat );
void s_init_sph_np (const float * ap, const float * at, const float * bp, const float *
bt, const MKL_INT * np, const MKL_INT * nt, const float * q, MKL_INT * ipar, float *
spar, MKL_INT * stat );
```


Include Files

- mkl.h

Input Parameters

ap
bp
at
bt
np
nt
q
double* for d_init_sph_p/d_init_sph_np, float* for s_init_sph_p/s_init_sph_np.

The coordinate (angle) of the leftmost boundary of the domain along the φ-axis.
double* for d_init_sph_p/d_init_sph_np,
float* fors_init_sph_p/s_init_sph_np.
The coordinate (angle) of the rightmost boundary of the domain along the φ-axis.
double* for d_init_sph_p/d_init_sph_np,
float* fors_init_sph_p/s_init_sph_np.
The coordinate (angle) of the leftmost boundary of the domain along the θ-axis.
double* for d_init_sph_p/d_init_sph_np,
float* for s_init_sph_p/s_init_sph_np.
The coordinate (angle) of the rightmost boundary of the domain along the θ-axis.

MKL_INT*. The number of mesh intervals along the φ-axis. Must be even in the periodic case.

MKL_INT*. The number of mesh intervals along the θ-axis.
double* for d_init_sph_p/d_init_sph_np,
float* for s_init_sph_p/s_init_sph_np.
The constant Helmholtz coefficient. To solve the Poisson problem, set the value of q to 0 .

Output Parameters

ipar
MKL_INT array of size 128. Contains integer data to be used by Fast Helmholtz Solver on a sphere (for details, refer to ipar).

```
dpar double array of size 5*np/2+nt+10. Contains double-precision data
    to be used by Fast Helmholtz Solver on a sphere (for details, refer to
    dpar and spar).
    float array of size 5*np/2+nt+10. Contains single-precision data to
    be used by Fast Helmholtz Solver on a sphere (for details, refer to
    dpar and spar).
    MKL_INT*. Routine completion status, which is also written to
    ipar[0]. Continue to call other Poisson Solver routines only if the
    status is 0.
```


Description

The ?_init_sph_p/?_init_sph_np routines initialize basic data structures for Poisson Solver computations. All routines invoked after a call to a ?_init_Helmholtz_2D/?_init_Helmholtz_3D routine use values of the ipar, dpar, and spar array parameters returned by the routine. A detailed description of the array parameters can be found in Common Parameters.

Caution

Data structures initialized and created by periodic flavors of the routine cannot be used by non-periodic flavors of any Poisson Solver routines for Helmholtz Solver on a sphere, and vice versa.

You can skip calls to these routines in your code. However, see Caveat on Parameter Modifications for information on initializing the data structures.

Return Values

```
stat=0 The routine successfully completed the task. In general, to
                                    proceed with computations, the routine should complete
                                    with this stat value.
The routine failed to complete the task because of fatal error.
```


?_commit_sph_p/?_commit_sph_np
 Checks consistency and correctness of input data and initializes certain data structures required to solve the periodic/non-periodic Helmholtz problem on a sphere.

Syntax

```
void d_commit_sph_p(double* f, DFTI_DESCRIPTOR_HANDLE* handle_s,
DFTI_DESCRIPTOR_HANDLE* handle_c, MKL_INT* ipar, double* dpar, MKL_INT* stat);
void s_commit_sph_p(float* f, DFTI_DESCRIPTOR_HANDLE* handle_s, DFTI_DESCRIPTOR_HANDLE*
handle_c, MKL_INT* ipar, float* spar, MKL_INT* stat);
void d_commit_sph_np(double* f, DFTI_DESCRIPTOR_HANDLE* handle, MKL_INT* ipar, double*
dpar, MKL_INT* stat);
void s_commit_sph_np(float* f, DFTI_DESCRIPTOR_HANDLE* handle, MKL_INT* ipar, float*
spar, MKL_INT* stat);
```


Include Files

- mkl.h

Input Parameters

```
f
```

ipar
dpar
spar

Output Parameters

stat
double* for d_commit_sph_p/d_commit_sph_np,
float* for s_commit_sph_p/s_commit_sph_np.
Contains the right-hand side of the problem packed in a single vector. The size of the vector is $(n p+1)^{*}(n t+1)$ and value of the right-hand side in the mesh point (i, j) is stored in $f\left[i+j^{*}(n p+1)\right]$.

Note that the array f may be altered by the routine. Save this vector to another memory location if you want to preserve it.

MKL_INT array of size 128. Contains integer data to be used by the Fast Helmholtz Solver on a sphere (for details, refer to ipar).
double array of size $5{ }^{*} n p / 2+n t+10$. Contains double-precision data to be used by the Fast Helmholtz Solver on a sphere (for details, refer to dpar and spar).
float array of size $5^{*} n p / 2+n t+10$. Contains single-precision data to be used by the Fast Helmholtz Solver on a sphere (for details, refer to dpar and spar).

Contains the right-hand side of the problem, possibly altered on output.

Contains integer data to be used by the Fast Helmholtz Solver on a sphere. Modified on output as explained in ipar.

Contains double-precision data to be used by the Fast Helmholtz Solver on a sphere. Modified on output as explained in dpar and spar.

Contains single-precision data to be used by the Fast Helmholtz Solver on a sphere. Modified on output as explained in dpar and spar.

DFTI_DESCRIPTOR_HANDLE*. Data structures used by the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface (for details, refer toFFT Functions). handle_s and handle_c are used only in ?_commit_sph_p and handle is used only in ?_commit_sph_np.

MKL_INT*. Routine completion status, which is also written to ipar[0]. Continue to call other Poisson Solver routines only if the status is 0 .

Description

The ?_commit_sph_p/?_commit_sph_np routines check consistency and correctness of the parameters to be passed to the solver routines ? sph_p/?_sph_np, respectively. They also initialize certain data structures. The routine ?_commit_sph_p initializes structures handle_s and handle_c, and ? _commit_sph_np initializes handle. The routines also initialize the ipar array and dpar or spar array,
depending upon the routine precision. Refer to Common Parameters to find out which particular array elements the ?_commit_sph_p/?_commit_sph_np routines initialize and to what values these elements are initialized.
The routines perform only a basic check for correctness and consistency. If you are going to modify parameters of Poisson Solver routines, see Caveat on Parameter Modifications.
Unlike ?_init_sph_p/?_init_sph_np, you must call the ?_commit_sph_p/?_commit_sph_np routines. Values of $n p$ and $n t$ are passed to each of the routines with the ipar array.

Return Values

```
stat=1 The routine completed without errors but with warnings.
stat=0 The routine successfully completed the task.
stat= -100
stat= -1000
stat= -10000
stat=-99999
```

?_sph_p/?_sph_np
Computes the solution of the spherical Helmholtz
problem specified by the parameters.

Syntax

```
void d_sph_p(double* f, DFTI_DESCRIPTOR_HANDLE* handle_s, DFTI_DESCRIPTOR_HANDLE*
handle_c, MKL_INT* ipar, double* dpar, MKL_INT* stat);
void s_sph_p(float* f, DFTI_DESCRIPTOR_HANDLE* handle_s, DFTI_DESCRIPTOR_HANDLE*
handle_c, MKL_INT* ipar, float* spar, MKL_INT* stat);
void d_sph_np(double* f, DFTI_DESCRIPTOR_HANDLE* handle, MKL_INT* ipar, double* dpar,
MKL_INT* stat);
void s_sph_np(float* f, DFTI_DESCRIPTOR_HANDLE* handle, MKL_INT* ipar, float* spar,
MKL_INT* stat);
```


Include Files

- mkl.h

Input Parameters

f

$$
\begin{aligned}
& \text { double* for d_sph_p/d_sph_np, } \\
& \text { float* for s_sph_p/s_sph_np. }
\end{aligned}
$$

```
handle_s, handle_c, handle
```

ipar
dpar
spar

Output Parameters

```
f
Mandle_s, handle_c, handle
```

Contains the right-hand side of the problem packed in a single vector and modified by the appropriate ?_commit_sph_p/?_commit_sph_np routine. Note that an attempt to substitute the original right-hand side vector, which was passed to the ?_commit_sph_p/?_commit_sph_np routine, at this point results in an incorrect solution.

The size of the vector is $(n p+1) *(n t+1)$ and the value of the modified right-hand side in the mesh point (i, j) is stored in $f\left[i+j^{*}(n p+1)\right]$.

DFTI_DESCRIPTOR_HANDLE*. Data structures used by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface (for details, refer toFFT Functions). handle_s and handle_c are used only in ?_sph_p and handle is used only in ?_sph_np.

MKL_INT array of size 128. Contains integer data to be used by the Fast Helmholtz Solver on a sphere (for details, refer to ipar).
double array of size $5^{*} n p / 2+n t+10$. Contains double-precision data to be used by the Fast Helmholtz Solver on a sphere (for details, refer to dpar and spar).
float array of size $5^{*} n p / 2+n t+10$. Contains single-precision data to be used by the Fast Helmholtz Solver on a sphere (for details, refer to dpar and spar).

On output, contains the approximate solution to the problem packed the same way as the right-hand side of the problem was packed on input.

Data structures used by the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface.

Contains integer data to be used by the Fast Helmholtz Solver on a sphere. Modified on output as explained in ipar.

Contains double-precision data to be used by the Fast Helmholtz Solver on a sphere. Modified on output as explained in dpar and spar.

Contains single-precision data to be used by the Fast Helmholtz Solver on a sphere. Modified on output as explained in dpar and spar.

MKL_INT*. Routine completion status, which is also written to ipar [0]. Continue to call other Poisson Solver routines only if the status is 0 .

Description

The sph_p/sph_np routines compute the approximate solution on a sphere of the Helmholtz problem defined in the previous calls to the corresponding initialization and commit routines. The solution is computed according to the formulas given in Poisson Solver Implementation. The f parameter, which initially holds the packed vector of the right-hand side of the problem, is replaced by the computed solution packed in the same way. Values of $n p$ and $n t$ are passed to each of the routines with the ipar array.

Return Values

```
stat=1
stat=0
stat= -2
stat= -3
stat= -100
stat= -1000
stat= -10000
stat= -99999
```

free_sph_p/free_sph_np
Releases the memory allocated for the data structures
used by the FFT interface.

Syntax

```
void free_sph_p(DFTI_DESCRIPTOR_HANDLE* handle_s, DFTI_DESCRIPTOR_HANDLE* handle_c,
MKL_INT* ipar, MKL_INT* stat);
void free_sph_np(DFTI_DESCRIPTOR_HANDLE* handle, MKL_INT* ipar, MKL_INT* stat);
```

Include Files

- mkl.h

Input Parameters

```
handle_s, handle_c, handle
ipar
```


Output Parameters

```
handle_s, handle_c, handle
```

Data structures used by the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface. Memory allocated for the structures is released on output.

```
ipar Contains integer data to be used by Fast Helmholtz Solver on a
    sphere. On output, the status of the routine call is written to ipar [0].
    MKL_INT*. Routine completion status, which is also written to
    ipar[0].
```


Description

The free_sph_p/free_sph_np routine releases the memory used by the handle_s, handle_c or handlestructures, needed for calling the Intel oneAPI Math Kernel Library (oneMKL) FFT functions. To release memory allocated for other parameters, include memory release statements in your code.

Return Values

```
stat=0
stat= -1000
stat= -99999
The routine successfully completed the task.
The routine stopped because of an Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT or TT interface error.
The routine failed to complete the task because of a fatal error.
```


Common Parameters for the Poisson Solver

ipar

ipar MK__INT array of size 128, holds integer data needed for Fast Helmholtz Solver (both for Cartesian and spherical coordinate systems). Its elements are described in Table "Elements of the ipar Array":

NOTE

Initial values can be assigned to the array parameters by the

```
appropriate ?_init_Helmholtz_2D/?_init_Helmholtz_3D/?_init_sph_p/?_init_sph_np
```

 routines.

Elements of the ipar Array

Index Description

0
Contains status value of the last Poisson Solver routine called. In general, it should be 0 on exit from a routine to proceed with the Fast Helmholtz Solver. The element has no predefined values. This element can also be used to inform
the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D/ ?_commit_sph_p/?_commit_sph_np routines of how the Commit step of the computation should be carried out (see Figure "Typical Order of Invoking Poisson Solver Routines"). A nonzero value of ipar[0] with decimal representation

$$
\overline{a b c}=100 a+10 b+c
$$

$=100 a+10 b+c$, where each of a, b, and c is equal to 0 or 9 , indicates that some parts of the Commit step should be omitted.

- If $c=9$, the routine omits checking of parameters and initialization of the data structures.
- If $b=9$,

Index Description

- In the Cartesian case, the routine omits the adjustment of the right-hand side vector f to the Neumann boundary condition (multiplication of boundary values by 0.5 as well as incorporation of the boundary function g) and/or the Dirichlet boundary condition (setting boundary values to 0 as well as incorporation of the boundary function G).
- For the Helmholtz solver on a sphere, the routine omits computation of the spherical weights for the dpar/spar array.
- If $a=9$, the routine omits the normalization of the right-hand side vector f. Depending on the solver, the normalization means:
- 2D Cartesian case: multiplication by $h_{y}{ }^{2}$, where h_{y} is the mesh size in the y direction (for details, see Poisson Solver Implementation).
- 3D (Cartesian) case: multiplication by $h_{z}{ }^{2}$, where h_{z} is the mesh size in the z direction.
- Helmholtz solver on a sphere: multiplication by $h_{\theta}{ }^{2}$, where h_{θ} is the mesh size in the θ direction (for details, see Poisson Solver Implementation).
Using ipar[0] you can adjust the routine to your needs and improve efficiency in solving multiple Helmholtz problems that differ only in the right-hand side. You must be cautious when using this method, because any misunderstanding of the commit process may cause incorrect results or program failure (see also Caveat on Parameter Modifications).

3 through Internal parameters. standard output device.

Contains error messaging options:

- ipar [1]=-1 indicates that all error messages are printed to the MKL_Poisson_Library_log.txt file in the folder from which the routine is called. If the
 information that the file cannot be created to the standard output device (usually, screen).
- ipar[1]=0 indicates that no error messages will be printed.
- ipar[1]=1 is the default value. It indicates that all error messages are printed to the

In case of errors, the stat parameter contains a non-zero value on exit from a routine regardless of the ipar[1] setting.

Parameters 6 through 11 are used only in the Cartesian case.
6 Takes this value:

- 2, if BCtype [0]='P'
- 1, if BCtype [0]='N'
- 0, if BCtype [0]='D'
- -1, otherwise

7 Takes this value:

- 2, if BCtype [1]='P'

Index Description

- 1, if BCtype [1] ='N'
- 0 , if BCtype [1]='D'
- -1, otherwise

Takes this value:

- 2, if BCtype [2] ='P'
- 1, if BCtype [2] ='N'
- 0, if BCtype [2] ='D'
- -1 , otherwise

9 Takes this value:

- 2, if BCtype [3] ='P'
- 1, if BCtype [3]='N'
- 0, if BCtype [3] ='D'
- -1 , otherwise

10 Takes this value:

- 2, if BCtype [4] ='P'
- 1, if BCtype [4] ='N'
- 0 , if BCtype [4] =' D^{\prime}
- -1 , otherwise

11 Takes this value:

- 2, if BCtype [5]='P'
- 1, if BCtype [5] ='N'
- 0, if BCtype [5] ='D'
- -1, otherwise

12 Takes the value of

- $n x$, that is, the number of intervals along the x-axis, in the Cartesian case.
- $n p$, that is, the number of intervals along the φ-axis, in the spherical case.

13 Takes the value of

- ny, that is, the number of intervals along the y-axis, in the Cartesian case
- $n t$, that is, the number of intervals along the θ-axis, in the spherical case.

14 Takes the value of $n z$, the number of intervals along the z-axis. This parameter is used only in the 3D case (Cartesian).

15 Internal parameters which define the internal partitioning of the dpar/spar array. through
22
The values of ipar[21]-ipar[119] are assigned regardless of the dimension of the problem for the Cartesian solver or of whether the solver on a sphere is periodic.

Contains message style options. Specifically:

- ipar [21]=0 indicates that Poisson Solver routines prints the messages in Fortran-style notations.
- ipar[21]=1 (default) indicates that Poisson Solver routines prints the messages in Cstyle notations.

| Index | Description | | |
|---|---|---|---|
| 24 | Contains the number of OpenMP threads to be used for computations in a multithreaded
 environment. The default value is 1 in the serial mode, and the result returned by the
 mkl_get_max_threads function otherwise. |
| 25 | Internal parameters which define the internal partitioning of the dpar/spar array. |
| through | |
| 28 | |\quad| Takes the value of ipar [18]+1, which specifies the internal partitioning of the dpar/spar |
| :--- |
| 25 |\quad| array in the periodic Cartesian case. |
| :--- |

NOTE

While you can declare the ipar array as MKL_INT ipar[120], for future compatibility you should declare ipar as MKL_INT ipar[128].

dpar and spar

Arrays dpar and spar are the same except in the data precision:

> dpar Holds data needed for double-precision Fast Helmholtz Solver computations.

- For the Cartesian solver, double array of size $5^{*} n x / 2+7$ in the 2D case or $5 *(n x+n y) / 2+9$ in the 3D case; initialized in the d_init_Helmholtz_2D/d_init_Helmholtz_3D and d_commit_Helmholtz_2D/d_commit_Helmholtz_3D routines.
- For the spherical solver, double array of size $5^{*} n p / 2+n t+10$; initialized in the d_init_sph_p/d_init_sph_np and d_commit_sph_p/d_commit_sph_np routines.

Holds data needed for single-precision Fast Helmholtz Solver computations.

- For the Cartesian solver, float array of size $5 *_{n x} / 2+7$ in the 2D case or $5 *(n x+n y) / 2+9$ in the 3D case; initialized in the
s_init_Helmholtz_2D/s_init_Helmholtz_3D and s_commit_Helmholtz_2D/s_commit_Helmholtz_3D routines.
- For the spherical solver, float array of size $5 * n p / 2+n t+10$; initialized in the s_init_sph_p/s_init_sph_np and s_commit_sph_p/s_commit_sph_np routines.

Because dpar and spar have similar elements in each position, the elements are described together in Table "Elements of the dpar and spar Arrays":
Elements of the dpar and spar Arrays

Index
 Description

0
In the Cartesian case, contains the length of the interval along the x-axis right after a call to the ? init_Helmholtz_2D/?_init_Helmholtz_3D routine or the mesh size h_{x} in the x direction (for details, see Poisson Solver Implementation) after a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine.
In the spherical case, contains the length of the interval along the φ-axis right after a call to the ?_init_sph_p/?_init_sph_np routine or the mesh size h_{φ} in the φ direction (for \bar{r} details, see Poisson Solver Implementation) after a call to the ? commit_sph_p/?_commit_sph_np routine.

In the Cartesian case, contains the length of the interval along the y-axis right after a call to the ? init_Helmholtz_2D/?_init_Helmholtz_3D routine or the mesh size h_{y} in the y direction (for details, see Poisson Solver Implementation) after a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine.
In the spherical case, contains the length of the interval along the θ-axis right after a call to the ? init_sph_p/?_init_sph_np routine or the mesh size h_{θ} in the θ direction (for details, see Poisson Solver Implementation) after a call to the ?_commit_sph_p/?_commit_sph_np routine.

In the Cartesian case, contains the length of the interval along the z-axis right after a call to the ? init_Helmholtz_2D/?_init_Helmholtz_3D routine or the mesh size h_{z} in the z direction (for details, see Poisson Solver Implementation) after a call to the ? commit_Helmholtz_2D/?_commit_Helmholtz_3D routine. In the Cartesian solver, this parameter is used only in the 3D case.

In the spherical solver, contains the coordinate of the leftmost boundary along the θ axis after a call to the ?_init_sph_p/?_init_sph_np routine.

Contains the value of the coefficient q after a call to the
?_init_Helmholtz_2D/?_init_Helmholtz_3D/?_init_sph_p/?_init_sph_np routine.

| Index | Description |
| :---: | :---: |
| 4 | Contains the tolerance parameter after a call to the
 ?_init_Helmholtz_2D/?_init_Helmholtz_3D/?_init_sph_p/?_init_sph_np routine.
 - In the Cartesian case, this value is used only for the pure Neumann boundary conditions (BCtype="NNNN" in the 2D case; BCtype="NNNNNN" in the 3D case). This is a special case, because the right-hand side of the problem cannot be arbitrary if the coefficient q is zero. The Poisson Solver verifies that the classical solution exists (up to rounding errors) using this tolerance. In any case, the Poisson Solver computes the normal solution, that is, the solution that has the minimal Euclidean norm of residual. Nevertheless, the ? _Helmholtz_2D/?_Helmholtz_3D routine informs you that the solution may not exist in a classical sense (up to rounding errors).
 - In the spherical case, the value is used for the special case of a periodic problem on the entire sphere. This special case is similar to the Cartesian case with pure Neumann boundary conditions. Here the Poisson Solver computes the normal solution as well. The parameter is also used to detect whether the problem is periodic up to rounding errors. |
| | The default value for this parameter is $1.0 \mathrm{E}-10$ in case of double-precision computations or $1.0 \mathrm{E}-4$ in case of single-precision computations. You can increase the value of the tolerance, for instance, to avoid the warnings that may appear. |
| ipar[15]-1
 through
 ipar[16]-1 | In the Cartesian case, contain the spectrum of the one-dimensional (1D) problem along the x-axis after a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine.
 In the spherical case, contains the spectrum of the 1D problem along the φ-axis after a call to the ?_commit_sph_p/?_commit_sph_np routine. |
| ipar[17]-1
 through
 ipar[18]-1 | In the Cartesian case, contain the spectrum of the 1D problem along the y-axis after a call to the ?_commit_Helmholtz_3D routine. These elements are used only in the 3D case.
 In the spherical case, contains the spherical weights after a call to the ?_commit_sph_p/?_commit_sph_np routine. |
| ipar[19]-1
 through
 ipar[20]-1 | Take the values of the (staggered) sine/cosine in the mesh points:
 - along the x-axis after a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine for a Cartesian solver
 - along the φ-axis after a call to the ?_commit_sph_p/?_commit_sph_np routine for a spherical solver. |
| ipar[21]-1
 through
 ipar[22]-1 | Take the values of the (staggered) sine/cosine in the mesh points:
 - along the y-axis after a call to the ?_commit_Helmholtz_3D routine for a Cartesian 3D solver
 - along the φ-axis after a call to the ?_commit_sph_p routine for a spherical periodic solver.
 These elements are not used in the 2D Cartesian case and in the non-periodic spherical case. |
| $\begin{aligned} & \text { ipar }[25]-1 \\ & \text { through } \\ & \text { ipar }[26]-1 \end{aligned}$ | Take the values of the (staggered) sine/cosine in the mesh points along the x-axis after a call to the ? \qquad commit_Helmholtz_2D/? commit Helmholtz 3D routine. These elements are used only in the periodic Cartesian case. |

| Index | Description |
| :--- | :--- |
| ipar [27]-1 | Take the values of the (staggered) sine/cosine in the mesh points along the x-axis |
| through | after a call to the ? commit_Helmholtz_3D routine. These elements are used only in
 ipar[28] |

NOTE

You may define the array size depending upon the type of the problem to solve.

Caveat on Parameter Modifications

Flexibility of the Poisson Solver interface enables you to skip calls to the ? init_Helmholtz_2D/?_init_Helmholtz_3D/?_init_sph_p/?_init_sph_np routine and to initialize the basic data structures explicitly in your code. You may also $\overline{\text { need }}$ to mō \bar{d} ify contents of the ipar, dpar, and spar arrays after initialization. When doing so, provide correct and consistent data in the arrays. Mistakenly altered arrays cause errors or incorrect results. You can perform a basic check for correctness and consistency of parameters by calling the ? commit_Helmholtz_2D/?_commit_Helmholtz_3D routine; however, this does not ensure the correct solution but only reduces the chance of errors or wrong results.

NOTE

To supply correct and consistent parameters to Poisson Solver routines, you should have considerable experience in using the Poisson Solver interface and good understanding of the solution process, as well as elements contained in the ipar, spar, and dpar arrays and dependencies between values of these elements.

In rare occurrences when you fail in tuning parameters for the Fast Helmholtz Solver, refer for technical support at http://www.intel.com/software/products/support/ .

WARNING

The only way that ensures a proper solution of a Helmholtz problem is to follow a typical sequence of invoking the routines and not change the default set of parameters. So, avoid modifications of ipar, dpar, and spar arrays unless it is necessary.

Parameters That Define Boundary Conditions

Poisson Solver routines for the Cartesian solver use the following common parameters to define the boundary conditions.
Parameters to Define Boundary Conditions for the Cartesian Solver

| Parameter | Description |
| :---: | :---: |
| bd_ax | double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D and d_Helmholtz_2D/d_Helmholtz_3D, |
| | float* for s_commit_Helmholtz_2D/s_commit_Helmholtz_3D and s_Helmholtz_2D/s_Helmholtz_3D. |
| | Contains values of the boundary condition on the leftmost boundary of the domain along the x-axis.
 - 2D problem: the size of the array is ny+1. Its contents depend on the boundary conditions as follows: |

Parameter Description

- Dirichlet boundary condition (value of BCtype[0] is 'D'): values of the function G (ax, $\left.y_{j}\right), j=0, \ldots, n y$.
- Neumann boundary condition (value of BCtype[0] is ' N '): values of the function $g\left(a x, y_{j}\right), j=0, \ldots, n y$.
The value corresponding to the index j is placed in bd ax[j].
- 3D problem: the size of the array is $(n y+1)^{*}(n z+1)$. Its contents depend on the boundary conditions as follows:
- Dirichlet boundary condition (value of BCtype[0] is ' D '): values of the function $G(a x$, $\left.y_{j}, z_{k}\right), j=0, \ldots, n y, k=0, \ldots, n z$.
- Neumann boundary condition (value of BCtype[0] is ' N '): the values of the function $g\left(a x, y_{j}, z_{k}\right), j=0, \ldots, n y, k=0, \ldots, n z$.
The values are packed in the array so that the value corresponding to indices (j, k) is placed in bd_ax[j+k*(ny+1)].
For periodic boundary conditions (the value of BCtype[0] is ' P '), this parameter is not used, so it can accept a dummy pointer.

```
bd_bx double* ford_commit_Helmholtz_2D/d_commit_Helmholtz_3D and
d_Helmholtz_2D/d_Helmholtz_3D,
float* fors_commit_Helmholtz_2D/s_commit_Helmholtz_3D and
s_Helmholtz_2D/s_Helmholtz_3D.
```

Contains values of the boundary condition on the rightmost boundary of the domain along the x-axis.

- 2D problem: the size of the array is $n y+1$. Its contents depend on the boundary conditions as follows:
- Dirichlet boundary condition (value of BCtype[1] is ' D '): values of the function $G(b x$, $\left.y_{j}\right), j=0, \ldots, n y$.
- Neumann boundary condition (value of BCtype[1] is ' N '): values of the function $g\left(b x, y_{j}\right), j=0, \ldots, n y$.
The value corresponding to the index j is placed in $b d_{-} b x[j]$.
- 3D problem: the size of the array is $(n y+1)^{*}(n z+1)$. Its contents depend on the boundary conditions as follows:
- Dirichlet boundary condition (value of BCtype[1] is ' D '): values of the function $G(b x$, y_{j}, z_{k}), $j=0, \ldots, n y, k=0, \ldots, n z$.
- Neumann boundary condition (value of BCtype[1] is ' N '): values of the function $g\left(b x, y_{j}, z_{k}\right), j=0, \ldots, n y, k=0, \ldots, n z$.
The values are packed in the array so that the value corresponding to indices (j, k) is placed in bd_bx[j+k*(ny+1)].
For periodic boundary conditions (the value of BCtype[1] is ' P '), this parameter is not used, so it can accept a dummy pointer.
bd_ay

```
double* ford_commit_Helmholtz_2D/d_commit_Helmholtz_3D and
d_Helmholtz_2D/d_Helmholtz_3D,
float* for s_commit_Helmholtz_2D/s_commit_Helmholtz_3D and
s_Helmholtz_2D/s_Helmholtz_3D.
```

Contains values of the boundary condition on the leftmost boundary of the domain along the y-axis.

- 2D problem: the size of the array is $n x+1$. Its contents depend on the boundary conditions as follows:

Parameter Description

- Dirichlet boundary condition (value of BCtype[2] is 'D'): values of the function $G\left(x_{i}\right.$, ay), $i=0, \ldots, n x$.
- Neumann boundary condition (value of BCtype[2] is ' N '): values of the function $g\left(x_{i}\right.$, ay), $i=0, \ldots, n x$.
The value corresponding to the index i is placed in bd_ay $[i]$.
- 3D problem: the size of the array is $(n x+1)^{*}(n z+1)$. Its contents depend on the boundary conditions as follows:
- Dirichlet boundary condition (value of BCtype[2] is 'D'): values of the function $G\left(x_{i}, a y, z_{k}\right), i=0, \ldots, n x, k=0, \ldots, n z$.
- Neumann boundary condition (value of BCtype[2] is ' N '): values of the function $g\left(x_{i}, a y, z_{k}\right), i=0, \ldots, n x, k=0, \ldots, n z$.
The values are packed in the array so that the value corresponding to indices (i, k) is placed in bd_ay[i+k* $(n x+1)]$.
For periodic boundary conditions (the value of BCtype[2] is ' P '), this parameter is not used, so it can accept a dummy pointer.
bd_by double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D and d_Helmholtz_2D/d_Helmholtz_3D,
float* for s_commit_Helmholtz_2D/s_commit_Helmholtz_3D and s_Helmholtz_2D/s_Helmholtz_3D.
Contains values of the boundary condition on the rightmost boundary of the domain along the y-axis.
- 2D problem: the size of the array is $n x+1$. Its contents depend on the boundary conditions as follows:
- Dirichlet boundary condition (value of BCtype[3] is 'D'): values of the function $G\left(x_{i}\right.$, by), $i=0, \ldots, n x$.
- Neumann boundary condition (value of BCtype[3] is ' N '): values of the function $g\left(x_{i}\right.$, by), $i=0, \ldots, n x$.
The value corresponding to the index i is placed in bd_by $[i]$.
- 3D problem: the size of the array is $(n x+1)^{*}(n z+1)$. Its contents depend on the boundary conditions as follows:
- Dirichlet boundary condition (value of BCtype[3] is ' D '): values of the function $G\left(x_{i}, b y, z_{k}\right), i=0, \ldots, n x, k=0, \ldots, n z$.
- Neumann boundary condition (value of BCtype[3] is ' N '): values of the function $g\left(x_{i}, b y, z_{k}\right), i=0, \ldots, n x, k=0, \ldots, n z$.
The values are packed in the array so that the value corresponding to indices (i,k) is placed in bd_by[i+k* $(n x+1)]$.
For periodic boundary conditions (the value of BCtype[3] is ' P '), this parameter is not used, so it can accept a dummy pointer.
bd_az
double* ford_commit_Helmholtz_3D and d_Helmholtz_3D,
float* for s_commit_Helmholtz_3D and s_Helmholtz_3D.
Used only by ?_commit_Helmholtz_3D and ?_Helmholtz_3D. Contains values of the boundary condition on the leftmost boundary of the domain along the z-axis.
The size of the array is $(n x+1) *(n y+1)$. Its contents depend on the boundary conditions as follows:
- Dirichlet boundary condition (value of BCtype[4] is ' D '): values of the function $G\left(x_{i}\right.$, $\left.y_{j}, a z\right), i=0, \ldots, n x, j=0, \ldots, n y$.

Parameter Description

- Neumann boundary condition (value of BCtype[4] is ' N '), values of the function $g\left(x_{i}\right.$, $\left.y_{j}, a z\right), i=0, \ldots, n x, j=0, \ldots, n y$.
The values are packed in the array so that the value corresponding to indices (i, j) is placed in bd_az[i+j*(nx+1)].
For periodic boundary conditions (the value of BCtype[4] is ' P '), this parameter is not used, so it can accept a dummy pointer.
double* ford_commit_Helmholtz_3D and d_Helmholtz_3D,
float* for s_commit_Helmholtz_3D and s_Helmholtz_3D.
Used only by ?_commit_Helmholtz_3D and ?_Helmholtz_3D. Contains values of the boundary condition on the rightmost boundary of the domain along the z-axis.
The size of the array is $(n x+1)^{*}(n y+1)$. Its contents depend on the boundary conditions as follows:
- Dirichlet boundary condition (value of BCtype[5] is 'D'): values of the function $G\left(x_{i}\right.$, $\left.y_{j}, b z\right), i=0, \ldots, n x, j=0, \ldots, n y$.
- Neumann boundary condition (value of BCtype[5] is ' N '): values of the function $g\left(x_{i}\right.$, $\left.y_{j, b z}\right), i=0, \ldots, n x, j=0, \ldots, n y$.
The values are packed in the array so that the value corresponding to indices (i, j) is placed in bd_bz[i+j*(nx+1)].

For periodic boundary conditions (the value of BCtype[5] is ' P '), this parameter is not used, so it can accept a dummy pointer.

See Also

```
?_commit_Helmholtz_2D/?_commit_Helmholtz_3D
```

?_Helmholtz_2D/?_Helmholtz_3D

Poisson Solver Implementation Details

Several aspects of the Intel® oneAPI Math Kernel Library (oneMKL) Poisson Solver interface are platformspecific and language-specific. To promote portability of the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Poisson Solver interface across platforms and ease of use across different languages, Intel® oneAPI Math Kernel Library (oneMKL) provides you with the Poisson Solver language-specific header file to include in your code:

- mkl_poisson.h, to be used together with mkl_dfti.h.

NOTE

- Use of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Poisson Solver software without including the above language-specific header files is not supported.

Header File

The header file defines the function prototypes for the Cartesian and spherical solver available in specific function descriptions.

Nonlinear Optimization Problem Solvers

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides tools for solving nonlinear least squares problems using the Trust-Region (TR) algorithms. The general nonlinear solver workflow and naming conventions are described here:

- Nonlinear Solver Organization and Implementation
- Nonlinear Solver Routine Naming Conventions

The solver routines are grouped according to their purpose as follows:

- Nonlinear Least Squares Problem without Constraints
- Nonlinear Least Squares Problem with Linear (Boundary) Constraints
- Jacobian Matrix Calculation Routines

For more information on the key concepts required to understand the use of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) nonlinear least squares problem solver routines, see [Conn00].

Nonlinear Solver Organization and Implementation

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) solver routines for nonlinear least squares problems use reverse communication interfaces (RCI). That means you need to provide the solver with information required for the iteration process, for example, the corresponding Jacobian matrix, or values of the objective function. RCI removes the dependency of the solver on specific implementation of the operations. However, it does require that you organize a computational loop.

Typical order for invoking RCI solver routines

Initialize parameters and allocate memory

Perform iteration

Get information about iteration process

Release memory

The nonlinear least squares problem solver routines, or Trust-Region (TR) solvers, are implemented with threading support. You can manage the threads using Threading Control Functions. The TR solvers use BLAS and LAPACK routines, and offer the same parallelism as those domains. The ?jacobi and ?jacobix routines of Jacobi matrix calculations are parallel. These routines (?jacobi and ?jacobix) make calls to the usersupplied functions with different x parameters for multiple threads.

Memory Allocation and Handles

To make the TR solver routines easy to use, you are not required to allocate temporary working storage. The solver allocates all temporary memory internally. To allow multiple users to access the solver simultaneously, the solver keeps track of the storage allocated for a particular application by using a data object called a handle. Each TR solver routine creates, uses, or deletes a handle. The handle datatype definition can be found in mkl.h (or mkl_rci.h/mkl_rci_win.h).

Include one of the mentioned headers and declare the handle as :

```
_TRNSP_HANDLE_t handle;
```

or
_TRNSPBC_HANDLE_t handle;
The first declaration is used for nonlinear least squares problems without boundary constraints, and the second is used for nonlinear least squares problems with boundary constraints.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Nonlinear Solver Routine Naming Conventions

The TR routine names have the following structure:

```
<character><name>_<action>( )
```

where

- <character> indicates the data type:

| s | float |
| :--- | :--- |
| d | double |

- <name> indicates the task type:
trnlsp nonlinear least squares problem without constraints
trnlspbc nonlinear least squares problem with boundary constraints
jacobi computation of the Jacobian matrix using central differences
- <action> indicates an action on the task:

| init | initializes the solver |
| :--- | :--- |
| check | checks correctness of the input parameters |
| solve | solves the problem
 get |
| retrieves the number of iterations, the stop criterion, the initial residual, | |
| and the final residual | |

Nonlinear Least Squares Problem without Constraints

The nonlinear least squares problem without constraints can be described as follows:

$$
\min _{x \in R^{n}}\|F(x)\|_{2}^{2}=\min _{x \in R^{n}}\|y-f(x)\|_{2}^{2}, y \in R^{m}, x \in R^{n}, f: R^{n} \rightarrow R^{m}, m \geq n,
$$

where
$F(x): R^{n} \rightarrow R^{m}$ is a twice differentiable function in R^{n}.
Solving a nonlinear least squares problem means searching for the best approximation to the vector y with the model function $f_{i}(x)$ and nonlinear variables x. The best approximation means that the sum of squares of residuals $y_{i}-f_{i}(x)$ is the minimum.
 Library (oneMKL) directory. Specifically, see ex_nlsqp_f.fex_nlsqp_c.c.
RCI TR Routines

| Routine Name | Operation |
| :--- | :--- |
| ?trnlsp_init | Initializes the solver. |
| ?trnlsp_check | Checks correctness of the input parameters. |
| ?trnlsp_solve | Solves a nonlinear least squares problem using the Trust-Region
 algorithm. |
| ?trnlsp_get | Retrieves the number of iterations, stop criterion, initial residual, and
 final residual. |
| ?trnlsp_delete | Releases allocated data. |

?trnlsp_init
 Initializes the solver of a nonlinear least squares problem.

Syntax

```
MKL_INT strnlsp_init (_TRNSP_HANDLE_t* handle, const MKL_INT* n, const MKL_INT* m,
const float* x, const float* eps, const MKL_INT* iter1, const MKL_INT* iter2, const
float* rs);
MKL_INT dtrnlsp_init (_TRNSP_HANDLE_t* handle, const MKL_INT* n, const MKL_INT* m,
const double* x, const double* eps, const MKL_INT* iter1, const MKL_INT* iter2, const
double* rs);
```


Include Files

- mkl.h

Description

The ?trnlsp_init routine initializes the solver.
After initialization, all subsequent invocations of the ?trnlsp_solve routine should use the values of the handle returned by ?trnlsp_init. This handle stores internal data, including pointers to the arrays x and $e p s$. It is important to not move or deallocate these arrays until after calling the ?trnlsp_delete routine.
The eps array contains a number indicating the stopping criteria:

| $e p s$ Value | Description |
| :--- | :--- |
| 0 | $\Delta<e p s[0]$ |
| $\mathbf{1}$ | $\|\|F(x)\|\|_{2}<e p s[1]$ |
| $\mathbf{2}$ | The Jacobian matrix is singular. |
| | $\left\|\mid J(x)_{\left[m^{\star}(j-1) \ldots m^{\star} j-1\right]\| \|_{2}<e p s[2], j=1, \ldots, n}\right.$ |
| $\mathbf{3}$ | $\|\|s\|\|_{2}<e p s[3]$ |
| 4 | $\|\|F(x)\|\|_{2}-\|\|F(x)-J(x) s\|\|_{2}<e p s[4]$ |

eps Value Description

5
The trial step precision. If eps[5] $=0$, then the trial step meets the required precision ($\leq 1.0 * 10^{-10}$).

Note:

- $J(x)$ is the Jacobian matrix.
- Δ is the trust-region area.
- $F(x)$ is the value of the functional.
- s is the trial step.

Input Parameters

| n | Length of x. |
| :---: | :---: |
| m | Length of $F(x)$. |
| x | Array of size n. Initial guess. A reference to this array is stored in handle for later use and modification by ?trnlsp_solve |
| | . ${ }^{\text {c }}$ |
| eps | Array of size 6; contains stopping criteria. See the values in the Description section. |
| | A reference to this array is stored in handle for later use by ?trnlsp_solve |
| | |
| iter1 | Specifies the maximum number of iterations. |
| iter2 | Specifies the maximum number of iterations of trial step calculation. |
| rs | Definition of initial size of the trust region (boundary of the trial step). The recommend minimum value is 0.1 , and the recommended maximum value is 100.0. Based on your knowledge of the objective function and initial guess you can increase or decrease the initial trust region. It can influence the iteration process, for example, the direction of the iteration process and the number of iterations. If you set rs to 0.0 , the solver uses the default value, which is 100.0 . |

Output Parameters

```
handle Type _TRNSP_HANDLE_t.
    Indicates task completion status.
    - res = TR_SUCCESS - the routine completed the task normally.
    - res = TR_INVALID_OPTION - there was an error in the input parameters.
- res = TR_OUT_OF_MEMORY - there was a memory error.
TR_SUCCESS,TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in the
mkI_rci.h inclu\overline{de file.}
```


See Also

?trnlsp_solve

?trnlsp_check

Checks the correctness of handle and arrays containing Jacobian matrix, objective function, and stopping criteria.

Syntax

MKL_INT strnlsp_check (_TRNSP_HANDLE_t* handle, const MKL_INT* n, const MKL_INT* m, const float* fjac, const float* fvec, const float* eps, MKL_INT* info);

MKL_INT dtrnlsp_check (_TRNSP_HANDLE_t* handle, const MKL_INT* n, const MKL_INT* m, const double* fjac, const double* fvec, const double* eps, MKL_INT* info);

Include Files

- mkl.h

Description

The ?trnlsp_check routine checks the arrays passed into the solver as input parameters. If an array contains any INF or NaN values, the routine sets the flag in output array info(see the description of the values returned in the Output Parameters section for the info array).

Input Parameters

handle
n
m
fjac
fvec
eps

Output Parameters

info

```
Type _TRNSPBC_HANDLE_t.
Length of \(x\).
Length of \(F(x)\).
Array of size \(m\) by \(n\). Contains the Jacobian matrix of the function.
Array of size \(m\). Contains the function values at \(x\), where \(f \operatorname{vec}[i]=\left(y_{i}-\right.\) \(\left.f_{i}(x)\right)\).
Array of size 6; contains stopping criteria. See the values in the Description section of the ?trnlsp_init.
```

Array of size 6.
Results of input parameter checking:

| Parameter | Used for | Val
 ue | Description |
| :--- | :--- | :--- | :--- |
| info[0] | Flags for
 handle | 0 | The handle is valid. |
| | | 1 | The handle is not allocated. |
| info[1] | Flags for
 fjac | 0 | The fjac array is valid. |
| | | 1 | The fjac array is not allocated |
| | | 2 | The fjac array contains NaN. |

| Parameter | Used for | Val ue | Description |
| :---: | :---: | :---: | :---: |
| info[2] | Flags for
 fvec | 0 | The fvec array is valid. |
| | | 1 | The fvec array is not allocated |
| | | 2 | |
| | | 3 | The $f^{\text {vec }}$ array contains Inf. |
| info[3] | Flags for eps | 0 | The eps array is valid. |
| | | 1 | The eps array is not allocated |
| | | 2 | The eps array contains NaN. |
| | | 3 | The eps array contains Inf. |
| | | 4 | The eps array contains a value less than or equal to zero. |

Information about completion of the task. res $=$ TR_SUCCESS - the routine completed the task normally. TR_SUCCESS is defined in the mkl_rci.h include file.

?trnlsp_solve

Solves a nonlinear least squares problem using the $T R$ algorithm.

Syntax

```
MKL_INT strnlsp_solve (_TRNSP_HANDLE_t* handle, float* fvec, float* fjac, MKL_INT*
RCI_Request);
MKL_INT dtrnlsp_solve (_TRNSP_HANDLE_t* handle, double* fvec, double* fjac, MKL_INT*
RCI_Request);
```


Include Files

- mkl.h

Description

The ?trnlsp_solve routine uses the TR algorithm to solve nonlinear least squares problems.
The problem is stated as follows:

$$
\min _{x \in Z^{n}}\|F(x)\|_{2}^{2}=\min _{x \in R^{n}}\|y-f(x)\|_{2}^{2}, y \in R^{m}, x \in R^{n}, f: R^{n} \rightarrow R^{m}, m \geq n
$$

where

- $F(x): R^{n} \rightarrow R^{m}$
- $m \geq n$

From a current point $x_{\text {current }}$, the algorithm uses the trust-region approach:

$$
\min _{x \in \mathbb{R}^{n}}\left\|F\left(x_{\text {current }}\right)+J\left(x_{\text {currert }}\right)\left(x_{\text {new }}-x_{\text {current }}\right)\right\|_{2}^{2} \quad \text { subject to }\left\|x_{\text {new }}-x_{\text {current }}\right\| \leq \Delta_{\text {current }}
$$

to get $x_{\text {new }}=x_{\text {current }}+s$ that satisfies

$$
\min _{x \in E^{n}}\left\|J^{T}(x) J^{T}(x) s+J^{T} F(x)\right\|_{2}^{2}
$$

where

- $J(x)$ is the Jacobian matrix
- s is the trial step
- $\left|\mid s \|_{2} \leq \Delta_{\text {current }}\right.$
- Δ is the trust-region area.

The $R C I_{-}$Request parameter provides additional information:

| RCI_Request Value | Description | | | |
|---|---|---|---|---|
| 2 | Request to calculate the Jacobian matrix and put the result into fjac |
| 1 | Request to recalculate the function at vector x and put the result into $f_{\text {vec }}$ |
| 0 | One successful iteration step on the current trust-region radius (that does not mean that the value of x has changed) |
| -1 | The algorithm has exceeded the maximum number of iterations |
| -2 | $\Delta<\operatorname{eps}[0]$ |
| -3 | $\left\|\|F(x)\| \\|_{2}<\operatorname{eps}[1]\right.$ |
| -4 | The Jacobian matrix is singular. |
| | $\\|\left.\mathcal{J}(x)\left[m^{*}(j-1) \ldots m^{*} j-1\right]\right\|_{2}<\operatorname{eps}[2], j=1, \ldots, n$ |
| -5 | $\|\|s\|\|_{2}<\operatorname{eps}[3]$ |
| -6 | $\left\\|F(x)\left\|\left.\right\|_{2}-\\|F(x)-J(x) s \mid\\|_{2}<\operatorname{eps}[4]\right.\right.$ |

NOTE

If it is possible to combine computations of the function and the jacobian (RCI_Request $=1$ and 2), you can do that and provide both updated values for fvec and fjac as fulfillment of RCI_Request $=1$ (and do nothing for RCI_Request $=2$).

Input Parameters

handle
fvec

Type_TRNSP_HANDLE_t.
Array of size m. Contains the function values at X, where $f_{v e c}[i]=\left(y_{i}-\right.$ $f_{i}(x)$).
fjac

Output Parameters

fvec Array of size m. Updated function evaluated at x .
RCI_Request
res

Informs about the task stage.

See the Description section for the parameter values and their meaning.
Indicates the task completion.

Array of size m by n. Contains the Jacobian matrix of the function.
res $=$ TR_SUCCESS - the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.h include file.

```
?trnlsp_get
Retrieves the number of iterations, stop criterion,
initial residual, and final residual.
```


Syntax

```
MKL_INT strnlsp_get(_TRNSP_HANDLE_t* handle, MKL_INT* iter, MKL_INT* st_cr, float* rl,
float* r2);
MKL_INT dtrnlsp_get (_TRNSP_HANDLE_t* handle, MKL_INT* iter, MKL_INT* st_cr, double*
r1, double* r2);
```


Include Files

- mkl.h

Description

The routine retrieves the current number of iterations, the stop criterion, the initial residual, and final residual.

The initial residual is the value of the functional $(||y-f(x)||)$ of the initial x values provided by the user.
The final residual is the value of the functional $(||y-f(x)||)$ of the final x resulting from the algorithm operation.

The st_cr parameter contains a number indicating the stop criterion:

| $s t$ cr Value | Description | |
|---|---|---|
| 1 | The algorithm has exceeded the maximum number of iterations |
| 2 | $\Delta<\operatorname{eps}[0]$ |
| 3 | $\|\|F(x)\|\|_{2}<\operatorname{eps}[1]$ |
| 4 | The Jacobian matrix is singular. |
| | $\\|\left.\mathcal{J}(x)_{\left[m^{\star}(j-1) \ldots m^{\star} j-1\right]}\right\|_{2}<\operatorname{eps}[2], j=1, \ldots, n$ |
| 5 | $\|\|s\|\|_{2}<\operatorname{eps}[3]$ |
| 6 | $\|\|F(x)\|\|_{2}-\|\|F(x)-J(x) s\|\|_{2}<\operatorname{eps}[4]$ |

Note:

- $J(x)$ is the Jacobian matrix.
- Δ is the trust-region area.
- $F(x)$ is the value of the functional.
- s is the trial step.

Input Parameters

```
handle Type _TRNSP_HANDLE_t.
```


Output Parameters

| iter | Contains the current number of iterations. |
| :---: | :---: |
| st_cr | Contains the stop criterion. |
| | See the Description section for the parameter values and their meanings. |
| r1 | Contains the residual, ($\|\|y-f(x)\|\|$) given the initial x. |
| r2 | Contains the final residual, that is, the value of the functional $(\|\|y-f(x)\|\|)$ of the final x resulting from the algorithm operation. |
| res | Indicates the task completion. |
| | res $=$ TR_SUCCESS - the routine completed the task normally. |
| | TR_SUCCESS is defined in the mkl_rci.h include file. |

?trnlsp_delete

Releases allocated data.

Syntax

```
MKL_INT strnlsp_delete(_TRNSP_HANDLE_t* handle);
MKL_INT dtrnlsp_delete(_TRNSP_HANDLE_t* handle);
```

Include Files

- mkl.h

Description

The ? trnlsp_delete routine releases all memory allocated for the handle. Only after calling this routine is it safe for the user to move or deallocate the memory referenced by x and eps.
This routine flags memory as not used, but to actually release all memory you must call the support function mkl_free_buffers.

Input Parameters
handle Type _TRNSP_HANDLE_t.

Output Parameters

res
Indicates the task completion.
res $=$ TR_SUCCESS means the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.h include file.

Nonlinear Least Squares Problem with Linear (Bound) Constraints

The nonlinear least squares problem with linear bound constraints is very similar to the nonlinear least squares problem without constraints but it has the following constraints:

 Library (oneMKL) directory. Specifically, see ex_nlsqp_bc_c.c.

NOTE There are two options for handling the boundary constraints enabled through the parameter array, see the description of eps[4]

RCI TR Routines for Problem with Bound Constraints

| Routine Name | Operation |
| :--- | :--- |
| ?trnlspbc_init | Initializes the solver. |
| ?trnlspbc_check | Checks correctness of the input parameters. |
| ?trnlspbc_solve | Solves a nonlinear least squares problem using RCI and the Trust-
 Region algorithm.
 ?trnlspbc_get |
| Retrieves the number of iterations, stop criterion, initial residual, and
 final residual. | |
| ?trnlspbc_delete | Releases allocated data. |

?trnlspbc_init

Initializes the solver of nonlinear least squares problem with linear (boundary) constraints.

Syntax

```
MKL_INT strnlspbc_init (_TRNSPBC_HANDLE_t* handle, const MKL_INT* n, const MKL_INT* m,
const float* x, const float* LW, const float* UP, const float* eps, const MKL_INT*
iter1, const MKL_INT* iter2, const float* rs);
MKL_INT dtrnlspbc_init (_TRNSPBC_HANDLE_t* handle, const MKL_INT* n, const MKL_INT* m,
const double* x, const double* LW, const double* UP, const double* eps, const MKL_INT*
iter1, const MKL_INT* iter2, const double* rs);
```


Description

The ?trnlspbc_init routine initializes the solver.
After initialization, all subsequent invocations of the ?trnlspbc_solve routine should use the values of the handle returned by ?trnlspbc_init. This handle stores internal data, including pointers to the arrays x, $L W, U P$, and eps. It is important to not move or deallocate these arrays until after calling the ?trnlspbc_delete routine.
The eps array contains a number indicating the stopping criteria:

eps Value Description

0

1

2

3
4

5
$\Delta<\operatorname{eps}[0]$
$||F(x)||_{2}<\operatorname{eps}[1]$
The Jacobian matrix is singular.
$\left|\left|J(x)_{\left[m^{\star}(j-1) \ldots m^{\star} j-1\right]}\right|_{2}<\operatorname{eps}[2], j=1, \ldots, n\right.$
$||s||_{2}<e p s[3]$
$||F(x)||_{2}-||F(x)-J(x) s||_{2}<|e p s[4]|$

NOTE

If eps[4] > 0, an extra scaling is applied to ' s ' after it has been selected, to ensure that it does not leave the specified domain, but scales it down to not cross the boundary. This preserves the solution inside the boundary, but may result in getting stuck in a local minimum on the boundary and exiting early due to this stopping criteria

If eps[4] < 0, extra scaling is not applied, which may result in the solution, x, leaving the domain. If this occurs, try starting over with a different initial condition. precision ($\leq 1.0 * 10^{-10}$).

Note:

- $J(x)$ is the Jacobian matrix.
- Δ is the trust-region area.
- $F(x)$ is the value of the functional.
- s is the trial step.

Input Parameters

| n | Length of x. |
| :---: | :---: |
| m | Length of $F(x)$. |
| x | Array of size n. Initial guess. A reference to this array is stored in handle for later use and modification by ?trnlspbc_solve. |
| LW | Array of size n. |
| | Contains low bounds for $x\left(/ w_{i}<x_{i}\right)$. A reference to this array is stored in handle for later use by ?trnlspbc_solve. |
| $U P$ | Array of size n. |
| | Contains upper bounds for $x\left(u p_{i}>x_{i}\right)$. A reference to this array is stored in handle for later use by ?trnlspbc_solve. |
| eps | Array of size 6; contains stopping criteria. See the values in the Description section. A reference to this array is stored in handle for later use by ?trnlspbc_solve. |

$$
\begin{array}{ll}
\text { iter1 } & \text { Specifies the maximum number of iterations. } \\
\text { iter2 } & \text { Specifies the maximum number of iterations of trial step calculation. } \\
\text { rs } & \begin{array}{l}
\text { Definition of initial size of the trust region (boundary of the trial step). The } \\
\text { recommended minimum value is } 0.1, \text { and the recommended maximum value is } \\
\\
\text { 100.0. Based on your knowledge of the objective function and initial guess you } \\
\text { can increase or decrease the initial trust region. It can influence the iteration } \\
\text { process, for example, the direction of the iteration process and the number of } \\
\text { iterations. If you set rs to } 0.0, \text { the solver uses the default value, which is } 100.0 .
\end{array}
\end{array}
$$

Output Parameters

handle
res
Type _TRNSPBC_HANDLE_t.
Informs about the task completion.

- res $=$ TR_SUCCESS - the routine completed the task normally.
- res $=$ TR_INVALID_OPTION - there was an error in the input parameters.
- res = TR_OUT_OF_MEMORY - there was a memory error.

TR_SUCCESS, TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in the mkl_rci.h include file.

?trnlspbc_check
 Checks the correctness of handle and arrays containing Jacobian matrix, objective function, lower and upper bounds, and stopping criteria.

Syntax

```
MKL_INT strnlspbc_check (_TRNSPBC_HANDLE_t* handle, const MKL_INT* n, const MKL_INT* m,
const float* fjac, const float* fvec, const float* LW, const float* UP, const float*
eps, MKL_INT* info);
MKL_INT dtrnlspbc_check (_TRNSPBC_HANDLE_t* handle, const MKL_INT* n, const MKL_INT* m,
const double* fjac, const double* fvec, const double* LW, const double* UP, const
double* eps, MKL_INT* info);
```


Include Files

- mkl.h

Description

The ?trnlspbc_check routine checks the arrays passed into the solver as input parameters. If an array contains any INF or NaN values, the routine sets the flag in output array info(see the description of the values returned in the Output Parameters section for the info array).

Input Parameters

| handle | Type_TRNSPBC_HANDLE_t. |
| :--- | :--- |
| n | Length of x. |
| m | Length of $F(x)$. |

| fjac | Array of size m by n. Contains the Jacobian matrix of the function. |
| :---: | :---: |
| fvec | Array of size m. Contains the function values at x, where $f \operatorname{vec}[i]=\left(y_{i}-\right.$ $\left.f_{i}(x)\right)$. |
| LW | Array of size n. |
| | Contains low bounds for $x\left(/ w_{i}<x_{i}\right)$. |
| UP | Array of size n. |
| | Contains upper bounds for $x\left(u p_{i}>x_{i}\right)$. |
| eps | Array of size 6; contains stopping criteria. See the values in the Description |

Output Parameters

info
Array of size 6.
Results of input parameter checking:

| Parameter | Used for | Val ue | Description |
| :---: | :---: | :---: | :---: |
| info[0] | Flags for handle | 0 | The handle is valid. |
| | | 1 | The handle is not allocated. |
| info[1] | Flags for fjac | 0 | The fjac array is valid. |
| | | 1 | The $f j a c$ array is not allocated |
| | | 2 | The fjac array contains NaN. |
| | | 3 | The fjac array contains Inf. |
| info[2] | Flags for fvec | 0 | The fvec array is valid. |
| | | 1 | The $f_{\text {vec }}$ array is not allocated |
| | | 2 | The $f^{\text {vec }}$ array contains NaN. |
| | | 3 | The fvec array contains Inf. |
| info[3] | Flags for LW | 0 | The LW array is valid. |
| | | 1 | The LW array is not allocated |
| | | 2 | The LW array contains NaN. |
| | | 3 | The LW array contains Inf. |
| | | 4 | The lower bound is greater than the upper bound. |
| info[4] | Flags for up | 0 | The up array is valid. |
| | | 1 | The up array is not allocated |

| Parameter | Used for | Val ue | Description |
| :---: | :---: | :---: | :---: |
| | | 2 | The up array contains NaN. |
| | | 3 | The up array contains Inf. |
| | | 4 | The upper bound is less than the lower bound. |
| info[5] | Flags for eps | 0 | The eps array is valid. |
| | | 1 | The eps array is not allocated |
| | | 2 | The eps array contains NaN. |
| | | 3 | The eps array contains Inf. |
| | | 4 | The eps array contains a value less than or equal to zero. |

Information about completion of the task.
res $=T R$ _SUCCESS - the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.h include file.

?trnlspbc_solve

Solves a nonlinear least squares problem with linear (bound) constraints using the Trust-Region algorithm.

Syntax

MKL_INT strnlspbc_solve (_TRNSPBC_HANDLE_t* handle, float* fvec, float* fjac, MKL_INT*
RCI_Request);
MKL_INT dtrnlspbc_solve (_TRNSPBC_HANDLE_t* handle, double* fvec, double* fjac, MKL_INT* RCI_Request);

Include Files

- mkl.h

Description

The ?trnlspbc_solve routine, based on RCI, uses the Trust-Region algorithm to solve nonlinear least squares problems with linear (bound) constraints. The problem is stated as follows:

$$
\min _{x \in Z^{n}}\|F(x)\|_{2}^{2}=\min _{x \in Z^{n}}\|y-f(x)\|_{2}^{2}, y \in R^{m}, x \in R^{n}, f: R^{n} \rightarrow R^{m}, m \geq n
$$

where

```
l}\mp@subsup{i}{i}{}\leq\mp@subsup{x}{i}{}\leq\mp@subsup{u}{i}{
i = 1, ..., n.
```

The RCI_Request parameter provides additional information:

| RCI_Request Value | Description | |
|---|---|---|
| 2 | Request to calculate the Jacobian matrix and put the result into fjac |
| 1 | Request to recalculate the function at vector X and put the result into fvec |
| 0 | One successful iteration step on the current trust-region radius (that does not mean that the value of x has changed) |
| -1 | The algorithm has exceeded the maximum number of iterations |
| -2 | $\Delta<\operatorname{eps}[0]$ |
| -3 | $\|\|F(x)\|\|_{2}<\operatorname{eps}[1]$ |
| -4 | The Jacobian matrix is singular. |
| | $\\|\left.\mathcal{J}(x)_{\left[m^{\star}(j-1) \ldots m^{*} j-1\right]}\right\|_{2}<\operatorname{eps}[2], j=1, \ldots, n$ |
| -5 | $\|\|s\|\|_{2}<e p s[3]$ |
| -6 | $\|\|F(x)\|\|_{2}-\|\|F(x)-J(x) s\|\|_{2}<\|\operatorname{eps}[4]\|$ |

Note:

- $J(x)$ is the Jacobian matrix.
- Δ is the trust-region area.
- $F(x)$ is the value of the functional.
- s is the trial step.

Input Parameters

```
handle Type _TRNSPBC_HANDLE_t.
fvec Array of size m. Contains the function values at X, where fvec[i] = ( y 
    fi
    Array of size m by n. Contains the Jacobian matrix of the function.
```


Output Parameters

```
fvec
```

RCI_Request
res

Array of size m. Updated function evaluated at x.
Informs about the task stage.
See the Description section for the parameter values and their meaning.
Informs about the task completion.
res $=T R _S U C C E S S$ means the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.h include file.

?trnlspbc_get

Retrieves the number of iterations, stop criterion, initial residual, and final residual.

Syntax

```
MKL_INT strnlspbc_get (_TRNSPBC_HANDLE_t* handle, MKL_INT* iter, MKL_INT* st_cr, float*
r1, float* r2);
MKL_INT dtrnlspbc_get (_TRNSPBC_HANDLE_t* handle, MKL_INT* iter, MKL_INT* st_cr,
double* r1, double* r2);
```


Include Files

- mkl.h

Description

The routine retrieves the current number of iterations, the stop criterion, the initial residual, and final residual.
The st_cr parameter contains a number indicating the stop criterion:

| st_cr Value | Description | |
|---|---|---|
| 1 | The algorithm has exceeded the maximum number of iterations |
| 2 | $\Delta<\operatorname{eps}[0]$ |
| 3 | $\|\|F(x)\|\|_{2}<\operatorname{eps}[1]$ |
| 4 | The Jacobian matrix is singular. |
| | $\\|\left. J(x)_{\left[m^{\star}(j-1) \ldots m^{\star} j-1\right]}\right\|_{2}<\operatorname{eps}[2], j=1, \ldots, n$ |
| 5 | $\|\|s\|\|_{2}<\operatorname{eps}[3]$ |
| 6 | $\|\|F(x)\|\|_{2}-\| \| F(x)-J(x) s \\|_{2}<\operatorname{eps}[4]$ |

Note:

- $J(x)$ is the Jacobian matrix.
- Δ is the trust-region area.
- $F(x)$ is the value of the functional.
- s is the trial step.

Input Parameters

```
handle
    Type _TRNSPBC_HANDLE_t.
```


Output Parameters

```
iter Contains the current number of iterations.
st_cr Contains the stop criterion.
    See the Description section for the parameter values and their meanings.
r1 Contains the residual, (|| - f(x)||) given the initial x.
r2 Contains the final residual, that is, the value of the function (||y - f(x)||) of
    the final }x\mathrm{ resulting from the algorithm operation.
    Informs about the task completion.
```

 res \(=T R\) _SUCCESS - the routine completed the task normally.
 $$
\text { TR_SUCCESS is defined in the mkl_rci. } \mathrm{h} \text { include file. }
$$

```
?trnlspbc_delete
Releases allocated data.
```


Syntax

```
MKL_INT strnlspbc_delete (_TRNSPBC_HANDLE_t* handle);
MKL_INT dtrnlspbc_delete (_TRNSPBC_HANDLE_t* handle);
```


Include Files

- mkl.h

Description

The ? trnlspbc_delete routine releases all memory allocated for the handle. Only after calling this routine is it safe for the user to move or deallocate the memory referenced by $x, L W, U P$, and eps.

NOTE

This routine flags memory as not used, but to actually release all memory you must call the support function mkl_free_buffers.

Input Parameters

```
handle Type _TRNSPBC_HANDLE_t.
```


Output Parameters

Informs about the task completion.
res $=T R$ _SUCCESS means the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.h include file.

Jacobian Matrix Calculation Routines

This section describes routines that compute the Jacobian matrix using the central difference algorithm. Jacobian matrix calculation is required to solve a nonlinear least squares problem and systems of nonlinear equations (with or without linear bound constraints). Routines for calculation of the Jacobian matrix have the "Black-Box" interfaces, where you pass the objective function via parameters. Your objective function must have a fixed interface.

Jacobian Matrix Calculation Routines

| Routine Name | Operation |
| :--- | :--- |
| ?jacobi_init | Initializes the solver. |
| ?jacobi_solve | Computes the Jacobian matrix of the function on the basis of RCI
 using the central difference algorithm. |
| ?jacobi_delete | Removes data. |

| Routine Name | Operation |
| :--- | :--- |
| ?jacobi | Computes the Jacobian matrix of the fcn function using the central
 difference algorithm. |
| ?jacobix | Presents an alternative interface for the ? jacobi function enabling
 you to pass additional data into the objective function. |

?jacobi_init
Initializes the solver for Jacobian calculations.

Syntax

```
MKL_INT sjacobi_init (_JACOBIMATRIX_HANDLE_t* handle, const MKL_INT* n, const MKL_INT*
m, const float* x, const float* fjac, const float* eps);
MKL_INT djacobi_init (_JACOBIMATRIX_HANDLE_t* handle, const MKL_INT* n, const MKL_INT*
m, const double* x, const double* fjac, const double* eps);
```


Include Files

- mkl.h

Description

The routine initializes the solver.

Input Parameters

```
n Length of }x\mathrm{ .
m Length of F.
x
eps
fjac
Length of \(x\).
Length of \(F\).
Array of size \(n\). Vector, at which the function is evaluated.
A reference to this array is stored in handle for later use and modification by ?jacobi_solve.
Precision of the Jacobian matrix calculation.
Array of size \(m\) by \(n\). Contains the Jacobian matrix of the function.
A reference to this array is stored in handle for later use and modification by ?jacobi_solve.
```


Output Parameters

TR_SUCCESS, TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in the mkl_rci.h include file.

?jacobi_solve
Computes the Jacobian matrix of the function using
$\underline{R C I}$ and the central difference algorithm.

Syntax

```
MKL_INT sjacobi_solve (_JACOBIMATRIX_HANDLE_t* handle, float* fl, float* f2, MKL_INT*
RCI Request);
MKL_INT djacobi_solve (_JACOBIMATRIX_HANDLE_t* handle, double* fl, double* f2, MKL_INT*
RCI_Request);
```


Include Files

- mkl.h

Description

The ?jacobi_solve routine computes the Jacobian matrix of the function using RCI and the central difference algorothm.

See usage examples in the examples\solverc \source folderof your Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory. Specifically, see sjacobi_rci_c.c and djacobi_rci_c.c.

Input Parameters

handle Type _JACOBIMATRIX_HANDLE_t.
RCI_Request
Set to 0 before the first call to ? jacobi_solve.

Output Parameters

```
f1
f2 Array of size m. Contains the updated function values at x eps
```

RCI_Request
res

Contains the updated function values at $x+e p s$.
Array of size m. Contains the updated function values at $x-e p s$.
Provides information about the task completion. When equal to 0 , the task has completed successfully.

RCI_Request= 1 indicates that you should compute the function values at the current x point and put the results into $f 1$.

RCI_Request $=2$ indicates that you should compute the function values at the current x point and put the results into $f 2$.

Indicates the task completion status.

- res $=$ TR_SUCCESS - the routine completed the task normally.
- res $=$ TR_INVALID_OPTION - there was an error in the input parameters.

TR_SUCCESS and TR_INVALID_OPTION are defined in the mkl_rci.h include file.

See Also

?jacobi_init

?jacobi_delete
 Releases allocated data.

Syntax

```
MKL_INT sjacobi_delete (_JACOBIMATRIX_HANDLE_t* handle);
MKL_INT djacobi_delete (_JACOBIMATRIX_HANDLE_t* handle);
```


Include Files

- mkl.h

Description

The ? jacobi_delete routine releases all memory allocated for the handle. Only after calling this routine is it safe for the user to move or deallocate the memory referenced by x and fjac.
This routine flags memory as not used, but to actually release all memory you must call the support function mkl_free_buffers.

Input Parameters

```
handle Type _JACOBIMATRIX_HANDLE_t.
```


Output Parameters

res Informs about the task completion. res $=T R$ _SUCCESS means the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.h include file.

```
?jacobi
Computes the Jacobian matrix of the objective
function using the central difference algorithm.
Syntax
MKL_INT sjacobi (USRFCNS fcn, const MKL_INT* n, const MKL_INT* m, float* fjac, float*
x, float* eps);
MKL_INT djacobi (USRFCND fcn, const MKL_INT* n, const MKL_INT* m, double* fjac, double*
x, double* eps);
```


Include Files

- mkl.h

Description

The ?jacobi routine computes the Jacobian matrix for function $f_{C n}$ using the central difference algorithm. This routine has a "Black-Box" interface, where you input the objective function via parameters. Your objective function must have a fixed interface.
See calling and usage examples in the examples \backslash solverc \backslash source folderof your Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory. Specifically, see ex_nlsqp_c.c and ex_nlsqp_bc_c.c.

Input Parameters

fen
n
m

X
eps

Output Parameters

fjac
res

User-supplied subroutine to evaluate the function that defines the least squares problem. Called as $\mathrm{fcn}(m, n, x, f)$ with the following parameters:

| Parameter Type | Description |
| :--- | :--- |
| Input Parameters | Pointer to the length of f.
 m
 n |
| Pointer to the length of x. | |
| Output Parameters | Array of size n. Vector, at which the
 function is evaluated. The fcn function
 should not change this parameter. |
| f | Array of size $m ;$ contains the function
 values at x. |

You need to declare fon as extern in the calling program.
Length of X.
Length of F.
Array of size n. Vector at which the function is evaluated.
Precision of the Jacobian matrix calculation.

Array of size m by n. Contains the Jacobian matrix of the function.
Indicates task completion status.

- res $=$ TR_SUCCESS - the routine completed the task normally.
- res = TR_INVALID_OPTION - there was an error in the input parameters.
- res = TR_OUT_OF_MEMORY - there was a memory error.

TR_SUCCESS, TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in the mkl_rci.h include file.

See Also

?jacobix

? jacobix

Alternative interface for? jacobi function for passing
additional data into the objective function.

Syntax

```
MKL_INT sjacobix (USRFCNXS fcn, const MKL_INT* n, const MKL_INT * m, float* fjac,
float* x, float* eps, void* user_data);
MKL_INT djacobix (USRFCNXD fcn, const MKL_INT* n, const MKL_INT * m, double* fjac,
double* x, double* eps, void* user_data);
```


Include Files

- mkl.h

Description

The ? jacobix routine presents an alternative interface for the ?jacobi function that enables you to pass additional data into the objective function $f_{C n}$.
See calling and usage examples in the examples \backslash solverc \backslash source folderof your Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory. Specifically, see ex_nlsqp_c_x.c and ex_nlsqp_bc_c_x.c.

Input Parameters

$f_{C n}$

n
m
X
eps
user_data
User-supplied subroutine to evaluate the function that defines the least squares problem. Called as $\operatorname{fcn}\left(m, n, x, f, u s e r _d a t a\right)$ with the following parameters:
Parameter \quad Description

Input Parameters
$m \quad$ Pointer to the length of f.
$n \quad$ Pointer to the length of x.
$x \quad$ Array of size n. Vector, at which the function is evaluated. The $f \mathrm{fn}$ function should not change this parameter.
user_data Pointer to your additional data, if any. Otherwise, a dummy argument.

Output Parameters

f
Array of size m; contains the function values at x.

You need to declare fon as extern in the calling program.
Length of X.
Length of F.
Array of size n. Vector at which the function is evaluated.
Precision of the Jacobian matrix calculation.
Pointer to your additional data. If there is no additional data, this is a dummy argument.

Output Parameters

fjac
res
Array of size m by n). Contains the Jacobian matrix of the function.
Indicates task completion status.

- res $=$ TR_SUCCESS - the routine completed the task normally.
- res $=$ TR_INVALID_OPTION - there was an error in the input parameters.
- res = TR_OUT_OF_MEMORY - there was a memory error.

TR_SUCCESS, TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in the mkl_rci.h include file.

See Also

?jacobi

Support Functions

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) support functions are subdivided into the following groups according to their purpose:
Version Information
Threading Control
Error Handling
Character Equality Testing
Timing
Memory Management
Single Dynamic Library Control
Conditional Numerical Reproducibility Control
Miscellaneous
The following table lists Intel oneAPI Math Kernel Library (oneMKL) support functions.
oneMKL Support Functions
Function Name Operation

Version Information
mkl_get_version
mkl_get_version_string

Threading Control

```
mkl_set_num_threads
mkl_domain_set_num_threads
mkl_set_num_threads_local
mkl_set_dynamic
mkl_get_max_threads
mkl_domain_get_max_threads
mkl_get_dynamic
```

Returns the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) version.

Returns the Intel® oneAPI Math Kernel Library (oneMKL) version in a character string.

Specifies the number of OpenMP* threads to use.
Specifies the number of OpenMP* threads for a particular function domain.

Specifies the number of OpenMP* threads for all Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions on the current execution thread.

Enables Intel® oneAPI Math Kernel Library (oneMKL) to dynamically change the number of OpenMP* threads.

Gets the number of OpenMP* threads targeted for parallelism.

Gets the number of OpenMP* threads targeted for parallelism for a particular function domain.

Determines whether Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) is enabled to dynamically change the number of OpenMP* threads.

| Function Name | Operation |
| :--- | :--- |
| mkl_set_num_stripes | Specifies the number of partitions along the leading
 dimension of the output matrix for parallel ?gemm
 functions. |
| mkl_get_num_stripes | Gets the number of partitions along the leading
 dimension of the output matrix for parallel ?gemm |
| functions. | |
| Error Handling | |
| merbla | Error handling function called by BLAS, LAPACK, Vector |
| Math, and Vector Statistics functions. | |

| Function Name | Operation |
| :---: | :---: |
| mkl_calloc | Allocates and initializes an aligned memory buffer. |
| mkl_realloc | Changes the size of memory buffer allocated by mkl_malloc/mkl_calloc. |
| mkl_free | Frees the aligned memory buffer allocated by mkl_malloc/mkl_calloc. |
| mkl_set_memory_limit | On Linux, sets the limit of memory that Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) can allocate for a specified type of memory. |
| Single Dynamic Library (SDL) Control | |
| mkl_set_interface_layer | Sets the interface layer for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) at run time. |
| mkl_set_threading_layer | Sets the threading layer for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) at run time. |
| mkl_set_xerbla | Replaces the error handling routine. Use with the Single Dynamic Library . |
| mkl_set_progress | Replaces the progress information routine. |
| mkl_set_pardiso_pivot | Replaces the routine handling Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO pivots with a user-defined routine. Use with the Single Dynamic Library (SDL). |
| Conditional Numerical Reproducibility (CNR) Control | |
| mkl_cbwr_set | Configures the CNR mode of Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL). |
| mkl_cbwr_get | Returns the current CNR settings. |
| mkl_cbwr_get_auto_branch | Automatically detects the CNR code branch for your platform. |
| Miscellaneous | |
| mkl_progress | Provides progress information. |
| mkl_enable_instructions | |
| mkl_set_env_mode | Set up the mode that ignores environment settings specific to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL). |
| mkl_verbose | Enable or disable Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Verbose mode. |
| mkl_verbose_output_file | Write output in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Verbose mode to a file. |
| mkl_set_mpi | Sets the implementation of the message-passing interface to be used by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL). |
| mkl_finalize | Terminates Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) execution environment and frees resources allocated by the library. |

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Version Information

Intel® oneAPI Math Kernel Library (oneMKL) providestwo methods for extracting information about the library version number:

- extracting a version string using the mkl_get_version_string function
- using the mkl_get_version function to obtain an MKLVersion structure that contains the version information
A makefile is also provided to automatically build the examples and output summary files containing the version information for the current library.

mkl_get_version

Returnsthe Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) version.

Syntax

```
void mkl_get_version( MKLVersion* pVersion );
```


Include Files

- mkl.h

Output Parameters

```
pVersion Pointer to the MKLVersion structure.
```


Description

The mkl_get_versionfunction collects information about the active C version of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) software and returns this information in a structure ofmKLVersion type by the pVersion address. The MKLVersion structure type is defined in the mkl_types.h file. The following fields of the MKLVersion structure are available:

| MajorVersion | is the major number of the current library version. |
| :--- | :--- |
| MinorVersion | is the minor number of the current library version. |
| UpdateVersion | is the update number of the current library version. |
| ProductStatus | is the status of the current library version. Possible variants are "Beta"
 or "Product". |
| Build | is the string that contains the build date and the internal build
 number. |
| Platform | is the string that contains the current architecture. Possible variants
 are "IA- 32 architecture" or "Intel (R) 64 architecture". |

is the processor optimization. Normally it is targeted for the processor installed on your system and based on the detection of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) library that is optimal for the installed processor. In the Conditional Numerical Reproducibility (CNR) mode, the processor optimization matches the selected CNR branch.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

mkl_get_version Usage

```
#include <stdio.h>
#include <stdlib.h>
#include "mkl.h"
int main(void)
    {
        MKLVersion Version;
        mkl_get_version(&Version);
        printf("Major version: %d\n",Version.MajorVersion);
        printf("Minor version: %d\n",Version.MinorVersion);
        printf("Update version: %d\n",Version.UpdateVersion);
        printf("Product status: %s\n",Version.ProductStatus);
        printf("Build: %s\n",Version.Build);
        printf("Platform: %s\n",Version.Platform);
        printf("Processor optimization: %s\n",Version.Processor);
        printf("==================================================================\n");
        printf("\n");
        return 0;
    }
```

Output:

| Major Version | 11 |
| :--- | :--- |
| Minor Version | 0 |
| Update Version | 2 |
| Product status | Product |
| Build | 20121113 |
| Platform | Intel(R) 64 architecture |
| Processor optimization | Intel(R) Core(TM) i7 Processor |

See Also

Conditional Numerical Reproducibility Control
mkl_get_version_string
Returns the Inte/® oneAPI Math Kernel Library
(oneMKL) version in a character string.

Syntax

```
void mkl_get_version_string (char* buf, int len);
```


Include Files

- mkl.h

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| buf | char* | Source string |
| len | int | Length of the source string |

Description

The function returns a string that contains the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) version.
For usage details, see the code example below:

Example

```
#include <stdio.h>
#include "mkl.h"
int main(void)
{
    int len=198;
    char buf[198];
    mkl_get_version_string(buf, len);
    printf("%s\n",búf);
    printf("\n");
    return 0;
}
```


Threading Control

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides functions for OpenMP* threading control, discussed in this section.

> Important
> If Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) operates within the Intel ${ }^{\circledR}$ Threading Building Blocks (Intel ${ }^{\circledR}$ TBB) execution environment, the environment variables for OpenMP* threading control, such asOMP_NUM_THREADS, and Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions discussed in this section have no effect. If the Intel TBB threading technology is used, control the number of threads through the Intel TBB application programming interface. Read the documentation for the t.bb: :task_scheduler_init class at https://www.threadingbuildingblocks.org/docs/doxygen/ a00150.html to find out how to specify the number of Intel TBB threads.

If Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) operates within an OpenMP* execution environment, you can control the number of threads for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) using OpenMP* runtime library routines and environment variables (see the OpenMP* specification for details). Additionally Intel® oneAPI

Math Kernel Library (oneMKL) providesoptiona/threading control functions and environment variables that enable you to specify the number of threads for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) and to control dynamic adjustment of the number of threadsindependentlyof the OpenMP* settings. The settings made with the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) threading control functions and environment variables do not affect OpenMP* settings but take precedence over them.
If functions are used, Intel® oneAPI Math Kernel Library (oneMKL) environment variables may control Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) threading. For details of those environment variables, see the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide.
You can specify the number of threads for Intel® oneAPI Math Kernel Library (oneMKL) function domains with the mkl_set_num_threads or mkl_domain_set_num_threads function. While mkl_set_num_threads specifies the number of threads for the entire Intel ${ }^{8}$ oneAPI Math Kernel Library (oneMKL),
mkl _domain_set_num_threads does it for a specific function domain. The following table lists the function domains that support independent threading control. The table also provides named constants to pass to threading control functions as a parameter that specifies the function domain.
oneMKL Function Domains

| Function Domain | Named Constant |
| :--- | :--- |
| Basic Linear Algebra Subroutines (BLAS) | MKL_DOMAIN_BLAS |
| Fast Fourier Transform (FFT) functions, except Cluster FFT functions | MKL_DOMAIN_FFT |
| Vector Math (VM) functions | MKL_DOMAIN_VML |
| Parallel Direct Solver (PARDISO) functions | MKL_DOMAIN_PARDISO |
| All Intel® oneAPI Math Kernel Library (oneMKL) functions except the
 functions from the domains where the number of threads is set
 explicitly. | MKL_DOMAIN_ALL |

Warning

Do not increase the number of OpenMP threads used for cluster_sparse_solver between the first call and the factorization or solution phase. Because the minimum amount of memory required for out-ofcore execution depends on the number of OpenMP threads, increasing it after the initial call can cause incorrect results.

Both mkl_set_num_threads and mkl_domain_set_num_threads functions set the number of threads for all subsequent calls to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) from all applications threads. Use themkl_set_num_threads_local function to specify different numbers of threads for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) on different execution threads of your application. The thread-local settings take precedence over the global settings. However, the thread-local settings may have undesirable side effects (see the description of themkl_set_num_threads_local function for details).

By default, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) canadjust the specified number of threads dynamically. For example, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) may use fewer threads if the size of the computation is not big enough or not create parallel regions when running within an OpenMP* parallel region. Although Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) may actually use a different number of threads from the number specified, the library does not create parallel regions with more threads than specified. If dynamic adjustment of the number of threads is disabled, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) attempts to use the specified number of threads in internal parallel regions (for more information, see the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide). Use the mkl_set_dynamic function to control dynamic adjustment of the number of threads.
mkl_set_num_threads
Specifies the number of OpenMP* threads to use.

Syntax

```
void mkl_set_num_threads( int nt );
```

Include Files

- mkl.h

Input Parameters

| Name | Type |
| :--- | :--- |
| nt | int |

Description

$n t>0$ - The number of threads suggested by the user.
$n t \leq 0$ - Invalid value, which is ignored.

Description

This function enables you to specify how many OpenMP threads Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) should use for internal parallel regions. If this number is not set (default), Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions use the default number of threads for the OpenMP run-time library. The specified number of threads applies:

- To all Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions except the functions from the domains where the number of threads is set withmkl_domain_set_num_threads
- To all execution threads except the threads where the number of threads is set with mkl_set_num_threads_local
The number specified is a hint, and Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) may actually use a smaller number.

NOTE

This function takes precedence over the MKL_NUM_THREADS environment variable.

Example

```
#include "mkl.h"
mkl_set_num_threads (4);
my_compute_using_mkl(); // Intel MKL uses up to 4 OpenMP threads
```

mkl_domain_set_num_threads
Specifies the number of OpenMP* threads for a particular function domain.

Syntax

```
int mkl_domain_set_num_threads (int nt, int domain);
```


Include Files

```
- mkl.h
```


Input Parameters

Name
 Type

$n t$
int

Description

$n t>0$ - The number of threads suggested by the user.

| Name | Type | Description |
| :--- | :--- | :--- |
| | $n t=0-$ The default number of threads for the OpenMP | |
| | | |
| | run-time library. | |
| domain | $n t<0-$ Invalid value, which is ignored. | |
| | | The named constant that defines the targeted domain. |

Description

This function specifies how many OpenMP threads a particular function domain of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) should use. If this number is not set (default) or if it is set to zero in a call to this function, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) uses the default number of threads for the OpenMP run-time library. The number of threads specified applies to the specified function domain on all execution threads except the threads where the number of threads is set withmkl_set_num_threads_local. For a list of supported values of the domain argument, see Table "Intel MKL Function Domains".

The number of threads specified is only a hint, and Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) may actually use a smaller number.

NOTE

This function takes precedence over the MKL_DOMAIN_NUM_THREADS environment variable.

Return Values

| Name | Type |
| :--- | :--- |
| ierr | int |

Description

1 - Indicates no error, execution is successful.
0 - Indicates a failure, possibly because of invalid input parameters.

Example

```
#include "mkl.h"
mkl_domain_set_num_threads (4, MKL_DOMAIN_BLAS) ;
my_compute_using_mkl_blas(); // Intel MKL BLAS functions use up to 4 threads
my_compute_using_mkl_dft(); // Intel MKL FFT functions use the default number of threads
```

mkl_set_num_threads_local
Specifies the number of OpenMP* threads for all Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions on the current execution thread.

Syntax

```
int mkl_set_num_threads_local( int nt );
```


Include Files

- mkl.h

Input Parameters

| Name | Type |
| :--- | :--- |
| nt | int |

Description

$n t>0$ - The number of threads for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions to use on the current execution thread.
$n t=0-A$ request to reset the thread-local number of threads and use the global number.

Description

This function sets the number of OpenMP threads that Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions should request for parallel computation. The number of threads is thread-local, which means that it only affects the current execution thread of the application. If the thread-local number is not set or if this number is set to zero in a call to this function, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions use the global number of threads. You can set the global number of threads using themkl_set_num_threads or mkl_domain_set_num_threads function.
The thread-local number of threads takes precedence over the global number: if the thread-local number is non-zero, changes to the global number of threads have no effect on the current thread.

Caution

If your application is threaded with OpenMP* andparallelization of Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) is based on nested OpenMP parallelism,different OpenMP parallel regions reuse OpenMP threads. Therefore a thread-local setting in one OpenMP parallel region may continue to affect not only the master thread after the parallel region ends, but also subsequent parallel regions. To avoid performance implications of this side effect, reset the thread-local number of threads before leaving the OpenMP parallel region (see Examples for how to do it).

Return Values

| Name | Type |
| :--- | :--- |
| save_nt | int |

Description

The value of the thread-local number of threads that was used before this function call. Zero means that the global number of threads was used.

Examples

This example shows how to avoid the side effect of a thread-local number of threads by reverting to the global setting:

```
#include "omp.h"
#include "mkl.h"
...
mkl_set_num_threads(16);
my_\overline{compute_using_mkl(); // Intel MKL functions use up to 16 threads}
#pragma omp parallel num_threads(2)
{
    if (0 == omp_get_thread_num())
        mkl_set_num_threads_local(4);
    else
        mkl_set_num_threads_local(12);
```

```
    my_compute_using_mkl(); // Intel MKL functions use up to 4 threads on thread 0
// and up to 12 threads on thread 1
}
my_compute_using_mkl(); // Intel MKL functions use up to 4 threads (!)
mkl_set_num_threads_local( 0 ); // make master thread use global setting
my_compute_using_mkl(); // Intel MKL functions use up to 16 threads
```

This example shows how to avoid the side effect of a thread-local number of threads by saving and restoring the existing setting:

```
#include "mkl.h"
void my_compute( int nt )
{
    int save = mkl_set_num_threads_local( nt ); // save the Intel` oneAPI Math Kernel Library
(oneMKL) number of threads
    my_compute_using_mkl(); // Intel MKL functions use up to nt threads on this thread
    mkl_set_num_threads_local( save ); // restore the Intel }\mp@subsup{}{}{\circledR}\mathrm{ oneAPI Math Kernel Library (oneMKL)
number of threads
}
```

mkl_set_dynamic
Enables Intel® oneAPI Math Kernel Library (oneMKL) to dynamically change the number of OpenMP* threads.

Syntax

```
void mkl_set_dynamic (int flag);
```


Include Files

- mkl.h

Input Parameters

| Name | Type |
| :--- | :--- |
| flag | int |

Description

flag $=0$ - Requests disabling dynamic adjustment of the number of threads.
flag $\neq 0$ - Requests enabling dynamic adjustment of the number of threads.

Description

This function indicates whether Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) can dynamically change the number of OpenMP threads or should avoid doing this. The setting applies to all Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions on all execution threads. This function takes precedence over theMKL_DYNAMIC environment variable.

Dynamic adjustment of the number of threads is enabled by default. Specifically, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) may use fewer threads in parallel regions than the number returned by themkl_get_max_threadsfunction. Disabling dynamic adjustment of the number of threads does not ensure that Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) actually uses the specified number of threads, although the library attempts to use that number.

```
Tip
If you call Intel}\mp@subsup{}{}{\circledR}\mathrm{ oneAPI Math Kernel Library (oneMKL) from within an OpenMP parallel
region and want to create internal parallel regions, either disable dynamic adjustment of the
number of threads or set the thread-local number of threads
(seemkl_set_num_threads_local for how to do it).
```


Example

```
#include "mkl.h"
...
mkl_set_num_threads( 8 );
#pragma omp parallel
{
    my_compute_with_mkl(); // Intel MKL uses 1 thread, being called from OpenMP parallel
region
    mkl_set_dynamic( 0 ); // disable adjustment of the number of threads
    my_compute_with_mkl(); // Intel MKL uses 8 threads
}
```

mkl_get_max_threads
Gets the number of OpenMP* threads targeted for parallelism.

Syntax

```
int mkl_get_max_threads (void);
```


Include Files

- mkl.h

Description

This function returns the number of OpenMP threads available for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) to use in internal parallel regions.

Return Values

Name Type

Description

The maximum number of threads for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions to use in internal parallel regions.

Example

```
#include "mkl.h"
if (1 == mkl_get_max_threads()) puts("Intel MKL does not employ threading");
```


See Also

```
mkl_set_dynamic
mkl_get_dynamic
```

```
mkl_domain_get_max_threads
Gets the number of OpenMP* threads targeted for
parallelism for a particular function domain.
```


Syntax

```
int mkl_domain_get_max_threads (int domain);
```

```
int mkl_domain_get_max_threads (int domain);
```

Include Files

- mkl.h

Input Parameters

| Name | Type |
| :--- | :--- |
| domain | int |

Description

The named constant that defines the targeted domain.

Description

Computational functions of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) function domain defined by thedomain parameter use the value returned by this function as a limit of the number of OpenMP threads they should request for parallel computations. The mkl_domain_get_max_threads function returns the thread-local number of threads or, if that value is zero or not set, the global number of threads. To determine this number, the function inspects the environment settings and return values of the function calls below in the order they are listed until it finds a non-zero value:

- A call to mkl_set_num_threads_local
- The last of the calls to mkl_set_num_threads or mkl_domain_set_num_threads(..., MKL_DOMAIN_ALL)
- A call to mkl_domain_set_num_threads(..., domain)
- The MKL_DOMAIN_NUM_THREADS environment variable with the MKL_DOMAIN_ALL tag
- The MKL_DOMAIN_NUM_THREADS environment variable (with the specific domain tag)
- The MKL_NUM_THREADS environment variable
- A call to omp_set_num_threads
- The OMP_NUM_THREADS environment variable

Actual number of threads used by the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) computational functions may vary depending on the problem size and on whether dynamic adjustment of the number of threads is enabled (see the description ofmkl_set_dynamic). For a list of supported values of the domain argument, see Table "Intel MKL Function Domains".

Return Values

| Name | Type |
| :--- | :--- |
| $n t$ | int |

Example

```
#include "mkl.h"
if (1 < mkl_domain_get_max_threads (MKL_DOMAIN_BLAS))
puts("Intel MKL BLAS functions employ threading");
```

mkl_get_dynamic
Determines whether Inte』® oneAPI Math Kernel Library (oneMKL) is enabled to dynamically change the number of OpenMP* threads.

Syntax

```
int mkl_get_dynamic(void);
```


Include Files

- mkl.h

Description

This function returns the status of dynamic adjustment of the number of OpenMP* threads. To determine this status, the function inspects the return value of the following function call and if it is undefined, inspects the environment setting below:

- A call to mkl_set_dynamic
- The MKL_DYNAMIC environment variable

NOTE

Dynamic adjustment of the number of threads is enabled by default.

The dynamic adjustment works as follows. Suppose that the mkl_get_max_threads function returns the number of threads equal to N. If dynamic adjustment is enabled, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) may request up toNthreads, depending on the size of the problem. If dynamic adjustment is disabled, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) requests exactly N threads for internal parallel regions (provided it uses a threaded algorithm with at least Ncomputations that can be done in parallel). However, the OpenMP* runtime library may be configured to supply fewer threads than Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) requests, depending on the OpenMP* setting of dynamic adjustment.

Return Values

Name Type

ret int

Description

0 - Dynamic adjustment of the number of threads is disabled.

1 - Dynamic adjustment of the number of threads is enabled.

Example

```
#include "mkl.h"
int nt = mkl_get_max_threads();
if (1 == mkl_get_dynamic())
printf("Intel MKL may use less than %i threads for a large problem", nt);
else
printf("Intel MKL should use %i threads for a large problem", nt);
```

```
mkl_set_num_stripes
```

Specifies the number of partitions along the leading dimension of the output matrix for parallel ?gemm functions.

Syntax

```
void mkl_set_num_stripes( int ns );
```


Include Files

- mkl.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| ns | int | $n s>0-$ Specifies the number of partitions to use. |
| | $n s=0-$ Instructs Intel oneAPI Math Kernel Library | |
| | | |
| | | |
| | $n s<0-$ Invalid value; ignored. | |

Description

This function enables you to specify the number of stripes, or partitions along the leading dimension of the output matrix, for parallel ?gemmfunctions. If this number is not set (default) or if it is set to zero, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL)?gemm functions use the default partitioning algorithm. The specified number of partitions only applies to ? gemm functions.

The number specified is a hint, and Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) may actually use a smaller number.

NOTE

This function takes precedence over the mKL_NUM_STRIPES environment variable.

Example

```
#include "mkl.h"
mkl_set_num_stripes(4);
dgemm(...); // Intel MKL uses up to 4 stripes for dgemm
```


See Also

```
mkl_get_num_stripes
```

mkl_get_num_stripes
Gets the number of partitions along the leading
dimension of the output matrix for parallel ?gemm
functions.

Syntax

```
int mkl get num stripes(void);
```


Include Files

- mkl.h

Description

This function returns the number of stripes, that is, partitions along the leading dimension of the output matrix, for parallel ? gemm functions. The number of partitions only applies to ?gemm functions.
The number returned is a hint, and Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) may actually use a smaller number.

Return Values

| Name | Type | Description |
| :--- | :--- | :--- |
| ns | int | The number of stripes for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library
 (oneMKL)? gemm functions to use. |

Example

```
#include "mkl.h"
int ns = mkl_get_num_stripes();
if (ns > 0) printf("Intel MKL uses %d number of stripes\n", ns);
```


See Also

mkl_set_num_stripes

Error Handling

Error Handling for Linear Algebra Routines

xerbla
Error handling function called by BLAS, LAPACK, Vector Math, and Vector Statistics functions.

Syntax

```
void xerbla( const char * srname, const int* info, const int len );
```


Include Files

- mkl.h

Input Parameters

| Name | Type |
| :--- | :--- |
| srname | const char* |
| info | const int* |
| len | const int |

Description

The name of the routine that called xerbla
The position of the invalid parameter in the parameter list of the calling function or an error code

Length of the source string

Description

The xerbla function is an error handler for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) BLAS, LAPACK, Vector Math, and Vector Statistics functions. These functions call xerbla if an issue is encountered on entry or during the function execution.
xerbla operates as follows:

1. Prints a message that depends on the value of the info parameter as explained in the following table.

NOTE

A specific message can differ from the listed messages in numeric values and/or function names.
2. Returns to the calling application.

Error Messages Printed by xerbla

| Value of info | Error Message |
| :--- | :--- |
| $\mathbf{1 0 0 1}$ | Intel MKL ERROR: Incompatible optional parameters on entry to
 DGEMM. |
| $\mathbf{1 0 0 0}$ or 1089 | Intel MKL INTERNAL ERROR: Insufficient workspace available in
 function CGELSD. |
| Other | Intel MKL INTERNAL ERROR: Condition 1 detected in function DLASD8. |

Note that xerbla is an internal function. You can change or disable printing of an error message by providing your own xerbla function. The following examples illustrate usage of xerbla.

Example

```
void xerbla(char* srname, int* info, int len){
// srname - name of the function that called xerbla
// info - position of the invalid parameter in the parameter list
// len - length of the name in bytes
printf("\nXERBLA is called :%s: %d\n",srname,*info);
}
```


See Also

mkl_set_xerbla

pxerbla

Error handling routine called by ScaLAPACK routines.

Syntax

```
void pxerbla (MKL_INT* ictxt, char* srname, MKL_INT* info, MKL_INT srname_len);
```


Include Files

- mkl_scalapack.h

Input Parameters

ictxt
(local)

MKL INT*
The BLACS context handle, indicating the global context of the operation. The context itself is global.
srname
info
srname_len
(global)
char*
The name of the routine that called pxerbla.
(global)
MKL_INT*
The position of the invalid parameter in the parameter list of the calling routine.
(global)
MKL_INT
The length of the calling routine name.

Description

This routine is an error handler for the ScaLAPACK routines. It is called if an input parameter has an invalid value. A message is printed and program execution continues. For ScaLAPACK driver and computational routines, a RETURN statement is issued following the call to pxerbla.

Control returns to the higher-level calling routine, and you can determine how the program should proceed. However, in the specialized low-level ScaLAPACK routines (auxiliary routines that are Level 2 equivalents of computational routines), the call to pxerbla() is immediately followed by a call to BLACS_ABORT () to terminate program execution since recovery from an error at this level in the computation is not possible.
It is always good practice to check for a non-zero value of info on return from a ScaLAPACK routine. Installers may consider modifying this routine in order to call system-specific exception-handling facilities.

LAPACKE_xerbla
Error handling function called by the C interface to LAPACK functions.

Syntax

```
void LAPACKE_xerbla( const char * name, lapack_int info );
```


Include Files

- mkl.h

Input Parameters

| Name | Type |
| :--- | :--- |
| name | const char* |
| info | lapack_int |

Description

The name of the routine that called LAPACKE_xerbla
The position of the invalid parameter in the parameter list of the calling function or an error code

Description

The LAPACKE_xerblafunction is an error handler for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) LAPACKE functions (the C interface to LAPACK functionality). If a LAPACKE function encounters an issue on entry or during the function execution, it callsLAPACKE_xerbla to print an error message and return an error code.

NOTE

The LAPACKE_xerbla routine does not replace the xerbla routine. For instance, if an issue occurs when a LAPACK function is called by a LAPACKE function, the LAPACK function calls xerbla.

Error Messages Printed by LAPACKE_xerbla

| Value of info | Example Error Message |
| :--- | :--- |
| LAPACK_WORK_MEMORY_ERROR | Not enough memory to allocate work array
 in LAPACKE_dgees |
| LAPACK_TRANSPOSE_MEMORY_ERROR | Not enough memory to transpose matrix in |
| <0 | LAPACKE_dgetrf_work |

NOTE

LAPACKE_xerbla is an internal function. You can change or disable printing of an error message by providing your own LAPACKE_xerblafunction. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) does not provide functionality for dynamic replacement of LAPACKE_xerbla.

See Also

xerbla

Handling Fatal Errors

A fatal error is a circumstance under which Intel ${ }^{8}$ oneAPI Math Kernel Library (oneMKL) cannot continue the computation. For example, a fatal error occurs when Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) cannot load a dynamic library or confronts an unsupported CPU type. In case of a fatal error, the default Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) behavior is to print an explanatory message to the console and call an internal function that terminates the application with a call to the systemexit () function. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) enables you to override this behavior by setting a custom handler of fatal errors. The custom error handler can be configured to throw a C++ exception, set a global variable indicating the failure, or otherwise handle cannot-continue situations. It is not necessary for the custom error handler to call the systemexit () function. Once execution of the error handler completes, a call to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) returns to the calling program without performing any computations and leaves no memory allocated by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) and no thread synchronization pending on return.

To specify a custom fatal error handler, call the mkl_set_exit_handler function.
mkl_set_exit_handler
Sets the custom handler of fatal errors.
Syntax
int mkl_set_exit_handler (MKLExitHandler myexit);

Include Files

- mkl.h

Input Parameters

Name Prototype Description

```
myexit void (*myexit)(int why);
```

The error handler to set.

Description

This function sets the custom handler of fatal errors. If the input parameter is NULL, the system exit () function is set.

The following example shows how to use a custom handler of fatal errors in your C++ application:

```
#include "mkl.h"
void my_exit(int why) {
    throw my_exception();
}
int ComputationFunction()
{
    mkl_set_exit_handler( my_exit );
    try {
        compute_using_mkl();
    }
    catch (const my_exception& e) {
        handle_exception();
    }
}
```


Character Equality Testing

Isame
Tests two characters for equality regardless of the
case.

Syntax

```
int lsame( const char* ca, const char* cb, int lca, int lcb );
```

Include Files

- mkl.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| $c a, c b$ | const char* | Pointers to the single characters to be compared |
| $l c a, l c b$ | int | Lengths of the input character strings, equal to one. |

Description

This logical function checks whether two characters are equal regardless of the case.

Return Values

Name Type

Description

Result of the comparison:

- a non-zero value if $c a$ is the same letter as $c b$, maybe except for the case.
- zero if $c a$ and $c b$ are different letters for whatever cases.

Isamen

Tests two character strings for equality regardless of the case.

Syntax

MKL_INTlsamen (const MKL_INT* n, const char* ca, const char* cb);
Include Files

- mkl.h

Input Parameters

| Name | Type |
| :--- | :--- |
| n | const MKL_INT* |
| $c a, c b$ | const char* |

Description

Pointer to the number of characters in $c a$ and $c b$ to be compared.
ca, cb const char*
Character strings of length at least n to be compared. Only the first n characters of each string will be accessed.

Description

This logical function tests whether the first n letters of one string are the same as the first n letters of the other string, regardless of the case.

Return Values

Name Type

val

Description

Result of the comparison:

- a non-zero value if the first n letters in $c a$ and $c b$ character strings are equal, maybe except for the case, or if the length of character string $c a$ or $c b$ is less than n.
- zero if the first n letters in $c a$ and $c b$ character strings are different for whatever cases.

Timing

second/dsecnd

Returns elapsed time in seconds. Use to estimate real time between two calls to this function.

Syntax

```
float second( void );
double dsecnd( void );
```


Include Files

- mkl.h

Description

The second/dsecnd function returns time in seconds to be used to estimate real time between two calls to the function. The difference between these functions is in the precision of the floating-point type of the result: while second returns the single-precision type, dseend returns the double-precision type.

Use these functions to measure durations. To do this, call each of these functions twice. For example, to measure performance of a routine, call the appropriate function directly before a call to the routine to be measured, and then after the call of the routine. The difference between the returned values shows real time spent in the routine.
Initializations may take some time when the second/dsecnd function runs for the first time. To eliminate the effect of this extra time on your measurements, make the first call to second/dsecnd in advance.
Do not use second to measure short time intervals because the single-precision format is not capable of holding sufficient timer precision.

Return Values

| Name | Type | Description |
| :--- | :--- | :--- |
| val | float for second
 double for dsecnd | Elapsed real time in seconds |

mkl_get_cpu_clocks

Returns elapsed CPU clocks.
Syntax
void mkl_get_cpu_clocks (unsigned MKL_INT64 *clocks);
Include Files

- mkl.h

Output Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| clocks | unsigned MKL_INT64 | Elapsed CPU clocks |

Description

The mkl_get_cpu_clocks function returns the elapsed CPU clocks.
This may be useful when timing short intervals with high resolution. The mkl_get_cpu_clocks function is also applied in pairs like second/dsecnd. Note that out-of-order code execution on IA- 32 or Intel ${ }^{\circledR} 64$ architecture processors may disturb the exact elapsed CPU clocks value a little bit, which may be important while measuring extremely short time intervals.

```
Product and Performance Information
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision #20201201
```

mkl_get_cpu_frequency
Returns the current CPU frequency value in GHz .
Syntax
doublemkl_get_cpu_frequency(void);

Include Files

- mkl.h

Description

The function mkl_get_cpu_frequency returns the current CPU frequency in GHz .

NOTE

The returned value may vary from run to run if power management or Intel® Turbo Boost Technology is enabled.

Return Values

| Name | Type | Description |
| :--- | :--- | :--- |
| freq | double | Current CPU frequency value in GHz |

mkl_get_max_cpu_frequency
Returns the maximum CPU frequency value in GHz .
Syntax
double mkl_get_max_cpu_frequency(void);
Include Files

- mkl.h

Description

The function mkl_get_max_cpu_frequency returns the maximum CPU frequency in GHz.

Return Values

| Name | Type | Description |
| :--- | :--- | :--- |
| freq | double | Maximum CPU frequency value in GHz |

mkl_get_clocks_frequency
Returns the frequency value in GHz based on constant-rate Time Stamp Counter.

Syntax

```
double mkl_get_clocks_frequency (void);
```

Include Files

- mkl.h

Description

The function mkl_get_clocks_frequency returns the CPU frequency value (in GHz) based on constant-rate Time Stamp Counter (TSC). Use of the constant-rate TSC ensures that each clock tick is constant even if the CPU frequency changes. Therefore, the returned frequency is constant.

NOTE

Obtaining the frequency may take some time when mkl_get_clocks_frequency is called for the first time. The same holds for functions second/dsecnd, which call
mkl_get_clocks_frequency.

Return Values

| Name | Type | Description |
| :--- | :--- | :--- |
| freq | double | Frequency value in GHz |

See Also

second/dsecnd

Memory Management

This section describes the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) memory functions. See theIntel® oneAPI Math Kernel Library (oneMKL) Developer Guide for more memory usage information.

```
mkl_free_buffers
```

Frees unused memory allocated by the Intel® oneAPI
Math Kernel Library (oneMKL) on the Host.

Syntax

```
void mkl_free_buffers (void);
```


Include Files

- mkl.h

Description

To improve performance of Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) on CPU, the Memory Allocator uses per-thread memory pools where buffers may be collected for fast reuse. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) also allocates temporary buffers on the host memory to improve performance of GPU kernels. The mkl_free_buffers function frees both types of memory.

See theInte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide for details.
You should call mkl_free_buffers after the last call to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions. In large applications, if you suspect that the memory may get insufficient, you may call this function earlier, but anticipate a drop in performance that may occur due to reallocation of buffers for subsequent calls to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Usage of mkl_free_buffers with FFT Functions

```
DFTI_DESCRIPTOR_HANDLE hand1;
DFTI_DESCRIPTOR_HANDLE hand2;
void mkl_free_buffers(void);
. . . . .
/* Using Intel MKL FFT */
Status = DftiCreateDescriptor(&hand1, DFTI_SINGLE, DFTI_COMPLEX, dim, m1);
Status = DftiCommitDescriptor(hand1);
Status = DftiComputeForward(hand1, s_array1);
Status = DftiCreateDescriptor(&hand2, DFTI_SINGLE, DFTI_COMPLEX, dim, m2);
Status = DftiCommitDescriptor(hand2);
Status = DftiFreeDescriptor(&hand1);
Status = DftiComputeBackward(hand2, s_array2));
Status = DftiFreeDescriptor(&hand2);
/* Here you finish using Intel MKL FFT */
/* Memory leak will be triggered by any memory control tool */
/* Use mkl_free_buffers() to avoid memory leaking */
mkl_free_buffers();
```

mkl_thread_free_buffers
Frees unused memory allocated by the Intel® oneAPI
Math Kernel Library (oneMKL) Memory Allocator in the
current thread.
Syntax
void mkl_thread_free_buffers (void);

Include Files

- mkl.h

Description

To improve performance of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL), the Memory Allocator uses perthread memory pools where buffers may be collected for fast reuse. Themkl_thread_free_buffers function frees unused memory allocated by the Memory Allocator in the current thread only.

You should call mkl_thread_free_buffersafter the last call to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions in the current thread. In large applications, if you suspect that the memory may get insufficient, you may call this function earlier, but anticipate a drop in performance that may occur due to reallocation of buffers for subsequent calls to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions.

```
See Also
mkl_free_buffers
mkl_disable_fast_mm
Turns off the Intel® oneAPI Math Kernel Library
(oneMKL) Memory Allocator for Intel® oneAPI Math
Kernel Library (oneMKL) functions to directly use the
systemmalloc/free functions.
```

Syntax
int mkl_disable_fast_mm (void);

Include Files

- mkl.h

Description

The mkl_disable_fast_mmfunction turns the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Memory Allocator off for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions to directly use the systemmalloc/
freefunctions. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Memory Allocator uses per-thread memory pools where buffers may be collected for fast reuse. The Memory Allocator is turned on by default for better performance. To turn it off, you can use themkl_disable_fast_mm function or the MKL_DISABLE_FAST_MM environment variable (See the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide for details.) Call
 allocation of memory buffers.

NOTE

Turning the Memory Allocator off negatively impacts performance of some Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) routines, especially for small problem sizes.

Return Values

| Name | Type | Description |
| :---: | :---: | :---: |
| mm | int | 1 - The Memo off. |
| | | 0 - Turning the |
| mkl_mem_stat | | |
| Reports the status of the Intel® oneAPI Math Kernel Library (oneMKL) Memory Allocator. | | |
| Syntax | | |
| MKL_INT64 mkl_mem_stat (int* AllocatedBuffers); | | |
| Include | | |

- mkl.h

Output Parameters

Name

AllocatedBuffers

Type

int

Description

The number of buffers allocated by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).

Description

The function returns the number of buffers allocated by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) and the amount of memory in these buffers. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) can allocate the memory buffers internally or in a call tomkl_malloc/mkl_calloc. If no buffers are allocated at the moment, the mkl _mem_stat function returns 0 . Call mkl_mem_statto check the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) memory status.

NOTE

If you free all the memory allocated in calls to mkl_malloc or mkl_calloc and then call mkl_free_buffers, a subsequent call to mkl_mem_stat normally returns 0 .

Return Values

Name

AllocatedBytes

Type

MKL_INT64

Description

The amount of allocated memory (in bytes).

See Also

Usage Example for the Memory Functions
mkl_peak_mem_usage
Reports the peak memory allocated by the Intel ${ }^{\circledR}$
oneAPI Math Kernel Library (oneMKL) Memory
Allocator.
Syntax
MKL_INT64 mkl_peak_mem_usage (intmode);
Include Files

- mkl.h

Input Parameters

Name

Type

mode
int

Description

Requested mode of the function's operation. Possible values:

- MKL_PEAK_MEM_ENABLE - start gathering the peak memory data
- MKL_PEAK_MEM_DISABLE - stop gathering the peak memory data
- MKL_PEAK_MEM - return the peak memory

Name Type

Description

- MKL_PEAK_MEM_RESET - return the peak memory and reset the counter to start gathering the peak memory data from scratch

Description

The mkl_peak_mem_usagefunction reports the peak memory allocated by the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Memory Allocator.
Gathering the peak memory data is turned off by default. If you need to know the peak memory, explicitly turn the data gathering mode on by calling the function with the MKL_PEAK_MEM_ENABLE value of the parameter. Use the MKL_PEAK_MEM and MKL_PEAK_MEM_RESET values only when the data gathering mode is turned on. Otherwise the function returns $-\overline{1}$. The \bar{d} data $\overline{\text { g }}$ gathering mode leads to performance degradation, so when the mode is turned on, you can turn it off by calling the function with the MKL_PEAK_MEM_DISABLE value of the parameter.

NOTE

- If Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) is running in a threaded mode, themkl_peak_mem_usage function may return different amounts of memory from run to run.
- The function reports the peak memory for the entire application, not just for the calling thread.

Return Values

Name

AllocatedBytes

Type

MKL_INT64

Description

The peak memory allocated by the Memory Allocator (in bytes) or -1 in case of errors.

See Also

Usage Example for the Memory Functions
mkl_malloc
Allocates an aligned memory buffer.

Syntax

```
void* mkl_malloc (size_t alloc_size, int alignment);
```


Include Files

- mkl.h

Input Parameters

| Name | Type |
| :--- | :--- |
| alloc_size | size_t |
| alignment | int |

Description

Size of the buffer to be allocated.
Alignment of the buffer.

Description

The function allocates an alloc_size-byte buffer aligned on the alignment-byte boundary.

If alignment is not a power of 2 , the 64 -byte alignment is used.

Return Values

| Name | Type | Description |
| :--- | :--- | :--- |
| a_ptr | void* | Pointer to the allocated buffer if alloc_size ≥ 1, |
| | | NULL if alloc_size <1. |

```
See Also
mkl_free
Usage Example for the Memory Functions
mkl_calloc
Allocates and initializes an aligned memory buffer.
Syntax
void* mkl_calloc (size_t num, size_t size, int alignment);
```

Include Files

- mkl.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| num | size_t | The number of elements in the buffer to be
 allocated. |
| size | size_t | The size of the element. |
| alignment | int | Alignment of the buffer. |

Description

The function allocates a num*size-byte buffer, aligned on the alignment-byte boundary, and initializes the buffer with zeros.

If alignment is not a power of 2 , the 64 -byte alignment is used.

Return Values

| Name | Type | Description |
| :--- | :--- | :--- |
| a_ptr | void* | Pointer to the allocated buffer if size ≥ 1, |
| | | NULL if size <1. |

```
See Also
mkl_malloc
mkl_realloc
mkl_free
Usage Example for the Memory Functions
```


mkl_realloc

Changes the size of memory buffer allocated by mkl_malloc/mkl_calloc.

Syntax

```
void* mkl_realloc (void *ptr, size_t size);
```

Include Files

- mkl.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| ptr | void* | Pointer to the memory buffer allocated by the
 mkl_malloc or mkl_calloc function or a NULL
 pointer. |
| size | size_t | New size of the buffer. |

Description

The function changes the size of the memory buffer allocated by the mkl_malloc or mkl_calloc function to size bytes. The first bytes of the returned buffer up to the minimum of the old and new sizes keep the content of the input buffer. The returned memory buffer can have a different location than the input one. If ptr is NULL, the function works as mkl_malloc.

Return Values

Name

a_ptr void*

See Also

```
mkl_malloc
mkl_calloc
mkl_free
Usage Example for the Memory Functions
mkl_free
Frees the aligned memory buffer allocated by
mkl_malloc/mkl_calloc.
mkl_malloc
mkl_calloc
mkl_free
Usage Example for the Memory Functions
mkl_free
Frees the aligned memory buffer allocated by mkl_malloc/mkl_calloc.
```


Syntax
 Sy

```
void mkl_free (void *a_ptr);
```


Include Files

- mkl.h

Description

- Pointer to the re-allocated buffer if reallocation is successful.
- NULL if re-allocation is unsuccessful.

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| a_ptr | void* | Pointer to the buffer to be freed. |

Description

The function frees the buffer pointed by a_ptr and allocated by the mkl_malloc() or mkl_calloc() function and does nothing if a_ptr is NULL.

See Also

mkl_malloc
mkl_calloc
Usage Example for the Memory Functions
mkl_set_memory_limit
On Linux, sets the limit of memory that Inte ${ }^{\circledR}$ oneAPI
Math Kernel Library (oneMKL) can allocate for a specified type of memory.

Syntax

```
int mkl_set_memory_limit (int mem_type, size_t limit);
```


Include Files

- mkl.h

Input Parameters

| Name | Type | Description |
| :--- | :--- | :--- |
| mem_type | int | Type of memory to limit. Possible values:
 MKL_MEM_MCDRAM - Multi-Channel Dynamic Random Access
 Memory (MCDRAM). |
| limit | size_t | Memory limit in megabytes. |

Description

This function sets the limit for the amount of memory that Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) can allocate for the specified memory type. The limit bounds both internal allocations (inside Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) computation routines) and external allocations (in a call tomkl_malloc, mkl _calloc, or mkl_realloc). By default no limit is set for memory allocation.

Call mkl_set_memory_limitat most once, prior to calling any other Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) function in your application except mkl_set_interface_layer and mkl_set_threading_layer.

NOTE

- Allocation in MCDRAM requires libmemkind and libjemalloc dynamic libraries which are a part of Intel ${ }^{\circledR}$ Manycore Platform Software Package (Inte ${ }^{\circledR}$ MPSP) for Linux*.
- The mkl_set_memory_limit function takes precedence over the MKL_FAST_MEMORY_LIMIT environment variable.

Return Values

Type

int

Description

Status of the function completion:

- 1 - the limit is set
- 0 - the limit is not set

See Also

mkl_malloc
mkl_calloc
mkl_realloc
Usage Example for the Memory Functions

Usage Example for the Memory Functions

```
#include <stdio.h>
#include <mkl.h>
int main(void) {
    double *a, *b, *c;
    int n, i;
    double alpha, beta;
    MKL_INT64 AllocatedBytes;
    int N_AllocatedBuffers;
    alpha = 1.1; beta = -1.2;
    n = 1000;
    mkl_peak_mem_usage (MKL_PEAK_MEM_ENABLE);
    a = (dou\overline{ble*)}mkl_mallo\overline{c}(n*n`
    b = (double*)mkl_malloc(n*n*sizeof(double),64);
    c = (double*)mkl_calloc(n*n,sizeof(double),64);
    for (i=0;i<(n*n);i++) {
        a[i] = (double) (i+1);
        b[i] = (double)(-i-1);
    }
    dgemm("N","N",&n,&n,&n,&alpha,a,&n,b,&n,&beta,c,&n);
    AllocatedBytes = mkl_mem_stat(&N_AllocatedBuffers);
    printf("\nDGEMM uses %d b
    mkl_free_buffers();
    mkl_free(a);
    mkl_free(b);
    mkl_free(c);
    AllocatedBytes = mkl_mem_stat(&N_AllocatedBuffers);
    if (AllocatedBytes > 0) {
        printf("\nMKL memory leak!");
            printf("\nAfter mkl_free_buffers there are %d bytes in %d buffers",
                    AllocatedBytes,N_AllocatedBuffers);
    }
    printf("\nPeak memory allocated by Intel MKL memory allocator %d bytes. Start to count new
memory peak",
                    mkl peak mem usage (MKL PEAK MEM RESET));
    a = (double*)mkl_malloc(n*n*sizeof(double),64);
    a = (double*)mkl_realloc(a,2*n*n*sizeof(double));
```

```
    mkl_free(a);
    printf("\nPeak memory allocated by Intel MKL memory allocator after reset of peak memory
counter %d bytes\n",
    mkl_peak_mem_usage (MKL_PEAK_MEM) );
    return 0;
}
```


Single Dynamic Library Control

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides the Single Dynamic Library (SDL), which enables setting the interface and threading layer for Intel® oneAPI Math Kernel Library (oneMKL) at run time. SeeInte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide for details of SDL and layered model concept. This section describes the functions supporting SDL.
mkl_set_interface_layer
Sets the interface layer for Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) at run time. Use with the Single
Dynamic Library.

Syntax

```
int mkl_set_interface_layer (int required_interface);
```


Include Files

- mkl.h

Input Parameters

Name

required_interface int

Description

Determines the interface layer. Possible values depend on the system architecture. Some of the values are only available on Linux* OS:

- Intel ${ }^{\circledR} 64$ architecture:

MKL_INTERFACE_LP64 for the Intel LP64 interface.
MKL_INTERFACE_ILP64 for the Intel ILP64 interface.
MKL_INTERFACE_LP64+MKL_INTERFACE_GNU for the GNU* LP64 interface on Linux OS.

MKL_INTERFACE_ILP64+MKL_INTERFACE_GNU for the GNU ILP64 interface on Linux OS.

- IA-32 architecture:

MKL_INTERFACE_LP64 for the Intel interface on Linux OS.
MKL_INTERFACE_LP64+MKL_INTERFACE_GNU or
MKL_INTERFACE_GNU for the GNU interface on Linux OS.

Description

If you are using the Single Dynamic Library (SDL), the mkl_set_interface_layerfunction sets the specified interface layer for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) at run time.

Call this function prior to calling any other Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) function in your application exceptmkl_set_threading_layer. You can call mkl_set_interface_layer and mkl_set_threading_layer in any order.
The mkl_set_interface_layer function takes precedence over the MKL_INTERFACE_LAYER environment variable.

See Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide for the layered model concept and usage details of the SDL.

Return Values

Type

Description

int - Current interface layer if it is set in a call to mkl_set_interface_layer or specified by environment variables or defaults.

Possible values are specified in Input Parameters.

- -1 , if the layer was not specified prior to the call and the input parameter is incorrect.
mkl_set_threading_layer
Sets the threading layer for Inte ${ }^{\circledR}$ oneAPI Math Kernel
Library (oneMKL) at run time. Use with the Single
Dynamic Library (SDL).
Syntax

```
int mkl_set_threading_layer (int required_threading);
```


Include Files

- mkl.h

Input Parameters

Name

required_threading

Type

int

Description

Determines the threading layer. Possible values:
MKL_THREADING_INTEL for Intel threading.
MKL_THREADING_SEQUENTIALfor the sequential mode of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).
MKL_THREADING_TBB for threading with the Intel ${ }^{\circledR}$ Threading Building Blocks.
MKL_THREADING_PGI for PGI threading on Windows* or Linux* operating system only. Do not use this value with the SDL for Inte ${ }^{\circledR}$ Many Integrated Core (Intel ${ }^{\circledR}$ MIC) Architecture.

NOTE PGI* support is deprecated and will be removed in the oneMKL 2025.0 release.

Name Type Description

MKL_THREADING_GNU for GNU threading on Linux* operating system only. Do not use this value with the SDL for Intel MIC Architecture.

Description

If you are using the Single Dynamic Library (SDL), the mkl_set_threading_layerfunction sets the specified threading layer for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) at run time.
Call this function prior to calling any other Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) function in your application except mkl_set_interface_layer.
You can call mkl_set_threading_layer and mkl_set_interface_layer in any order.
The mkl_set_threading_layer function takes precedence over the MKL_THREADING_LAYER environment variable.

See Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide for the layered model concept and usage details of the SDL.

Return Values

Type

```
int
```


Description

- Current threading layer if it is set in a call to mkl_set_threading_layer or specified by environment variables or defaults. Possible values are specified in Input Parameters.
- -1, if the layer was not specified prior to the call and the input parameter is incorrect.
mkl_set_xerbla
Replaces the error handling routine. Use with the
Single Dynamic Library .
Syntax

```
XerblaEntry mkl_set_xerbla (XerblaEntry new_xerbla_ptr);
```


Include Files

- mkl.h

Input Parameters

Name Type Description

new_xerbla_ptr XerblaEntry Pointer to the error handling routine to be used.

Description

The mkl_set_xerblafunction replaces the error handling routine that is called by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions with the routine specified by the parameter.
See Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide for details about SDL.

Return Values

The function returns the pointer to the replaced error handling routine.

See Also

```
xerbla
```

mkl_set_progress
Replaces the progress information routine.

Syntax

```
ProgressEntry mkl_set_progress (ProgressEntry new_progress_ptr);
```

Include Files

- mkl.h

Input Parameters

Name Type Description

new_progress_ptr ProgressEntry Pointer to the progress information routine to be used.

Description

The mkl_set_progress function replaces the currently used progress information routine with the routine specified by the parameter.
Usually a user-supplied mkl_progress function redefines the default mkl_progress function automatically. However, you must call mkl_set_progress to replace the default mkl_progress on Windows* in any of the following cases:

- You are using the Single Dynamic Library (SDL) mkl_rt.lib.
- You link dynamically with ScaLAPACK.

See Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide for details of SDL.

Return Values

The function returns the pointer to the replaced progress information routine.

See Also

mkl_progress
mkl_set_pardiso_pivot
Replaces the routine handling Intel ${ }^{\circledR}$ oneAPI Math
Kernel Library (oneMKL) PARDISO pivots with a user-
defined routine. Use with the Single Dynamic Library (SDL).

Syntax
PardisopivotEntry mkl_set_pardiso_pivot (PardisopivotEntry new_pardiso_pivot_ptr);
Include Files

- mkl.h

Input Parameters

```
Name Type Description
new_pardiso_pivot_pt Pardisopivo Pointer to the pivot setting routine to be used.
r tentry
```


Description

If you are using the Single Dynamic Library (SDL), the mkl_set_pardiso_pivotfunction replaces the pivot setting routine that is called by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions with the routine specified by the parameter.

See Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide for usage details of the SDL.

Return Values

Type

PardisopivotEntry

```
See Also
mkl_pardiso_pivot
```


Conditional Numerical Reproducibility Control

The CNR mode of Intel® oneAPI Math Kernel Library (oneMKL) ensures bitwise reproducible results from run to run of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions on a fixed number of threads for a specific Intel instruction set architecture (ISA) under the following conditions:

- Calls to Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) occur in a single executable
- The number of computational threads used by the library does not change in the run

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) offers both functions and environment variables to support conditional numerical reproducibility. See theInte® oneAPI Math Kernel Library (oneMKL) Developer Guide for more information on bitwise reproducible results of computations and for details about the environment variables.
The support functions enable you to configure the CNR mode and also provide information on the current and optimal CNR branch on your system. Usage Examples for CNR Support Functions illustrate usage of these functions.

Important

Call the functions that define the behavior of CNR before any of the math library functions that they control.

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides named constants for use as input and output parameters of the functions instead of integer values. SeeNamed Constants for CNR Control for a list of the named constants.
Although you can configure the CNR mode using either the support functions or the environment variables, the functions offer more flexible configuration and control than the environment variables. Settings specified by the functions take precedence over the settings specified by the environment variables.
Use Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) in the CNR mode only in case a need for bitwise reproducible results is critical. Otherwise, run Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) as usual to avoid performance degradation.

While you can supply unaligned input and output data to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions running in the CNR mode, use of aligned data is recommended. Refer toReproducibility Conditions for more details.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201
mkl_cbwr_set
Configures the CNR mode of Intel ${ }^{\circledR}$ oneAPI Math
Kernel Library (oneMKL).

Syntax

```
int mkl cbwr set (int setting);
```

Include Files

- mkl.h

Input Parameters

Name Type

setting int

Description

CNR branch to set. See Named Constants for CNR Control for a list of named constants that specify the settings.

Description

The mkl_cbwr_set function configures the CNR mode. In this release, it sets the CNR branch and turns on the CNR mode.

NOTE

Settings specified by the mkl_cbwr_set function take precedence over the settings specified by the MKL_CBWR environment variable.

Return Values

| Name | Type |
| :--- | :--- |
| status | int |

Description

The status of the function completion:

- MKL_CBWR_SUCCESS - the function completed successfully.
- MKL_CBWR_ERR_INVALID_INPUT - an invalid setting is requested.
- MKL_CBWR_ERR_UNSUPPORTED_BRANCH - the input value of the branch does not match the instruction set architecture (ISA) of your system. See Named Constants for CNR Control for more details.

Name Type Description

- MKL_CBWR_ERR_MODE_CHANGE_FAILURE - the mkl_cbwr_setfunction requested to change the current CNR branch after a call to some Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) function other than a CNR function.

See Also

Usage Examples for CNR Support Functions
mkl_cbwr_get
Returns the current CNR settings.
Syntax

```
int mkl_cbwr_get (int option);
```

Include Files

- mkl.h

Input Parameters

| Name | Type |
| :--- | :--- |
| option | int |

Description

Specifies the CNR settings requested. Named constants define possible values of option:

- MKL_CBWR_BRANCH - returns the current CNR branch only.
- MKL_CBWR_ALL - returns all CNR settings including strict CNR setting.

Description

The mkl_cbwr_get function returns the requested CNR settings. The function returns MKL_CBWR_ERR_INVALID_INPUT if an invalid option is specified.

NOTE

To enable CNR mode, use the mkl_cbwr_set function or environment variables. For more details, see the Inte® oneAPI Math Kernel Library (oneMKL) Developer Guide.

Return Values

Name Type

setting int

Description

Requested CNR settings. See Named Constants for CNR Control for a list of named constants that specify the settings.

If the value of the option parameter is not permitted, contains the MKL_CBWR_ERR_INVALID_INPUT error code.

```
See Also
Usage Examples for CNR Support Functions
mkl_cbwr_set
mkl_cbwr_get_auto_branch
Automatically detects the CNR code branch for your
platform.
Syntax
int mkl_cbwr_get_auto_branch (void);
Include Files
- mkl.h
```


Description

The mkl_cbwr_get_auto_branch function uses a run-time CPU check to return a CNR branch that is optimized for the processor where the program is currently running.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

Return Values

Name Type

Description

Automatically detected CNR branch. May be any specific branch listed in Named Constants for CNR Control.

See Also

Usage Examples for CNR Support Functions

Named Constants for CNR Control

Use the conditional numerical reproducibility (CNR) functionality in Intel® oneAPI Math Kernel Library (oneMKL) to obtain reproducible results from MKL routines. When enabling CNR, you choose a specific code branch of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) that corresponds to the instruction set architecture (ISA) that you target. Use these named constants to specify the code branch and other CNR options.

| Named Constant | Value | Description |
| :--- | :--- | :--- |
| CNR Branches | 0 | Disable CNR mode |
| MKL_CBWR_OFF | 1 | CNR mode is disabled |
| MKL_CBWR_BRANCH_OFF | 2 | Choose branch automatically. CNR mode uses the
 standard ISA-based dispatching model while
 ensuring fixed cache sizes, deterministic reductions,
 and static scheduling |
| MKL_CBWR_AUTO | 3 | Intel® Streaming SIMD Extensions 2 (Intel® SSE2)
 without rcpps/rsqrtps instructions |

| Named Constant | Value | Description |
| :--- | :--- | :--- |
| MKL_CBWR_SSE2 | 4 | Intel SSE2 |
| MKL_CBWR_SSE3 | 5 | DEPRECATED. Intel® Streaming SIMD Extensions 3
 (Intel® SSE3). This setting is kept for backward
 compatibility and is equivalent to MKL_CBWR_SSE2. |
| MKL_CBWR_SSSE3 | 6 | Supplemental Streaming SIMD Extensions 3
 (SSSE3) |
| MKL_CBWR_SSE4_1 | 7 | Intel® Streaming SIMD Extensions 4-1 (SSE4-1) |
| MKL_CBWR_SSE4_2 | 8 | Intel® Streaming SIMD Extensions 4-2 (SSE4-2) |

When specifying the CNR branch with the named constants, be aware of the following:

- Reproducible results are provided under Reproducibility Conditions.
- Settings other than MKL_CBWR_AUTO or MKL_CBWR_COMPATIBLE are available only for Intel processors.
- Intel and Intel compatible CPUs have a few instructions, such as approximation instructions rcpps/rsqrtps, that may return different results. Setting the branch to MKL_CBWR_COMPATIBLEensures that Intel® oneAPI Math Kernel Library (oneMKL) does not use these instructions and forces a single Intel SSE2-only code path to be executed.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

See Also
Usage Examples for CNR Support Functions

Reproducibility Conditions

To get reproducible results from run to run, ensure that the number of threads is fixed and constant. Specifically:

- If you are running your program with OpenMP* parallelization on different processors, explicitly specify the number of threads.
- To ensure that your application has deterministic behavior with OpenMP* parallelization and does not adjust the number of threads dynamically at run time, set MKL_DYNAMIC and OMP_DYNAMIC to FALSE. This is especially needed if you are running your program on different systems.
- If you are running your program with the Intel ${ }^{\circledR}$ Threading Building Blocks parallelization, numerical reproducibility is not guaranteed.

Strict CNR Mode

In strict CNR mode, oneAPI Math Kernel Library provides bitwise reproducible results for a limited set of functions and code branches even when the number of threads changes. These routines and branches support strict CNR mode (64-bit libraries only):

- ?gemm, ?symm, ?hemm, ?trsm, and their CBLAS equivalents (cblas_?gemm, cblas_?symm, cblas_?hemm, and cblas_?trsm.
- Intel ${ }^{\circledR}$ Advanced Vector Extensions 2 (Intel ${ }^{\circledR}$ AVX2) or Intel ${ }^{\circledR}$ Advanced Vector Extensions 512 (Intel ${ }^{\circledR}$ AVX-512).
When using other routines or CNR branches,oneAPI Math Kernel Library operates in standard (non-strict) CNR mode, subject to the restrictions described above. Enabling strict CNR mode can reduce performance.

NOTE

- As usual, you should align your data, even in CNR mode, to obtain the best possible performance. While CNR mode also fully supports unaligned input and output data, the use of it might reduce the performance of some oneAPI Math Kernel Library functions on earlier Intel processors. To ensure proper alignment of arrays, allocate memory for them using mkl_malloc/mkl_calloc.
- Conditional Numerical Reproducibility does not ensure that bitwise-identical NāN values are generated when the input data contains NaN values.
- If dynamic memory allocation fails on one run but succeeds on another run, you may fail to get reproducible results between these two runs.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

See Also

mkl_malloc
mkl_calloc

Usage Examples for CNR Support Functions

The following examples illustrate usage of support functions for conditional numerical reproducibility.
Setting Automatically Detected CNR Branch

```
#include <mkl.h>
int main(void) {
    int my_cbwr_branch;
```

```
    /* Find the available MKL_CBWR_BRANCH automatically */
    my_cbwr_branch = mkl_cbwr_get_auto_branch();
    /* User code without Intel MKL calls */
    /* Piece of the code where CNR of Intel MKL is needed */
    /* The performance of Intel MKL functions might be reduced for CNR mode */
    if (mkl_cbwr_set(my_cbwr_branch)!=MKL_CBWR_SUCCESS) {
        printf("Error in setting MKL_CBWR_BRANCH! Aborting...\n");
        return;
    }
/* CNR calls to Intel MKL + any other code */
}
```


Use of the mkl_cbwr_get Function

```
#include <mkl.h>
int main(void) {
    int my_cbwr_branch;
    /* Piece of the code where CNR of Intel MKL is analyzed */
    my_cbwr_branch = mkl_cbwr_get(MKL_CBWR_BRANCH);
    switch (my_cbwr_branch) {
        case MKL_CBWR_AUTO:
            /* actions in case of automatic mode */
            break;
        case MKL_CBWR_SSSE3:
            /* actions for SSSE3 code */
            break;
        default:
            /* all other cases */
    }
    /* User code */
}
```


Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Miscellaneous

mkl_progress
Provides progress information.

Syntax

```
int mkl_progress (int* thread_process, int* step, char* stage, int lstage);
```


Include Files

- mkl.h

Input Parameters

\author{
Name
 ```
thread_pr const int*

``` \\ ocess \\ step const int* \\ stage const char* \\ lstage int
}

\section*{Description}

Indicates the number of thread or process the progress routine is called from:
- The thread number for non-cluster components linked with OpenMP threading layer
- Zero for non-cluster components linked with sequential threading layer
- The process number (MPI rank) for cluster components

Pointer to the linear progress indicator that shows the amount of work done. Increases from 0 to the linear size of the problem during the computation.

Message indicating the name of the routine or the name of the computation stage the progress routine is called from.

The length of a stage string excluding the trailing NULL character.

\section*{Description}

The mkl_progress function is intended to track progress of a lengthy computation and/or interrupt the computation. By default this routine does nothing but the user application can redefine it to obtain the computation progress information. You can set it to perform certain operations during the routine computation, for instance, to print a progress indicator. A non-zero return value may be supplied by the redefined function to break the computation.

\section*{NOTE}

The user-defined mkl_progress function must be thread-safe.

Some Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions from LAPACK, ScaLAPACK, DSS/PARDISO, and Parallel Direct Sparse Solver for Clusters regularly call themkl_progress function during the computation. Refer to the description of a specific function from those domains to see whether the function supports this feature or not.

If a LAPACK function returns info=-1002, the function was interrupted by mkl_progress. Because ScaLAPACK does not support interruption of the computation, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) ignores any value returned bymkl_progress.

While a user-supplied mkl_progress function usually redefines the default mkl_progress function automatically, some configurations require calling the mkl_set_progress function to replace the default
 of the following cases:
- You are using the Single Dynamic Library (SDL) mkl_rt.lib.
- You link dynamically with ScaLAPACK.

\section*{Warning}

The mkl_progress function supports OpenMP*/TBB threading and sequential execution for specific routines.

\section*{Return Values}
\begin{tabular}{lll} 
Name & Type & Description \\
stopflag int & \begin{tabular}{l} 
The stopping flag. A non-zero flag forces the routine to be \\
interrupted. The zero flag is the default return value.
\end{tabular}
\end{tabular}

\section*{Example}

The following example prints the progress information to the standard output device:
```

\#include <stdio.h>
\#include <string.h>
\#define BUFLEN 16
int mkl progress(int* thread process, int* step, char* stage, int lstage)
{
char buf[BUFLEN];
if(lstage >= BUFLEN) lstage = BUFLEN-1;
strncpy(buf, stage, lstage);
buf[lstage] = '\0';
printf("In thread %i, at stage %s, steps passed %i\n", *thread_process, buf, *step);
return 0;
}

```

\section*{mkl_enable_instructions}

Enables dispatching for new Intel® architectures or restricts the set of Intel \({ }^{\circledR}\) instruction sets available for dispatching. The mkl_enable_instructions function must be called only once, before any other Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions.

\section*{Syntax}
```

int mkl_enable_instructions (int isa);

```

\section*{Input Parameters}
Name Type

\section*{Description}

The latest Inte \({ }^{\circledR}\) instruction-set architecture (ISA) for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) to dispatch.
\begin{tabular}{|c|c|}
\hline MKL_ENABLE_AVX512 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) \\
\hline MKL_ENABLE_AVX512_E1 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) with support for Intel \({ }^{\circledR}\) Deep Learning Boost (Intel \({ }^{\circledR}\) DL Boost). \\
\hline MKL_ENABLE_AVX512_E2 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) with support for Intel Deep Learning Boost (Intel \({ }^{\circledR}\) DL \\
\hline
\end{tabular}

\section*{Name Type Description}
\begin{tabular}{|c|c|}
\hline & Boost), EVEX-encoded AES, and Carry-Less Multiplication Quadword instructions \\
\hline MKL_ENABLE_AVX512_E3 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) with support for Intel Deep Learning Boost (Intel \({ }^{\circledR}\) DL Boost) and bfloat16 \\
\hline MKL_ENABLE_AVX512_E4 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) with support for INT8, BF16, FP16 (limited) instructions, and Intel \({ }^{\circledR}\) Advanced Matrix Extensions (Intel \({ }^{\circledR}\) AMX) with INT8 and BF16 \\
\hline MKL_ENABLE_AVX512_E5 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) with support for INT8, BF16, FP16 (limited) instructions, and Intel \({ }^{\circledR}\) Advanced Matrix Extensions (Intel \({ }^{\circledR}\) AMX) with INT8, BF16, and FP16 \\
\hline
\end{tabular}

NOTE Not dispatched by default.
\begin{tabular}{|c|c|}
\hline MKL_ENABLE_AVX2 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 2 (Intel \({ }^{\circledR}\) AVX2) \\
\hline MKL_ENABLE_AVX2_E1 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 2 (Intel \({ }^{\circledR}\) AVX2) with support for Intel \({ }^{\otimes}\) Deep Learning Boost (Intel \({ }^{\circledR}\) DL Boost) \\
\hline MKL_ENABLE_SSE4_2 & \begin{tabular}{l}
Intel \({ }^{\circledR}\) Streaming SIMD \\
Extensions 4.2 (Intel \({ }^{\circledR}\) SSE4.2)
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) does run-time processor dispatching to identify appropriate internal code paths to traverse for Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions called by the application. The mkl_enable_instructions function controls the behavior of the dispatcher to do either of the following:
- Enable dispatching for new Intel architectures.

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) does not dispatch instruction sets that do not have silicon available at time of the product launch. Callmkl_enable_instructions to enable dispatching the code path for such an ISA in a simulator environment or on hardware that supports this ISA.
- Restrict the set of Intel instruction sets available for dispatching.

Call mkl_enable_instructions to restrict dispatching to code paths for earlier ISA. For example, if the hardware supports Intel AVX, a call to mkl_enable_instructions with the MKL_ENABLE_SSE4_2 parameter forces the dispatcher to use the Intel SSE4-2 code path.
If the system does not support the instruction set specified by the isa parameter or if the system is based on a non-Intel architecture, mkl_enable_instructions does nothing and returns zero.
Settings specified by the mkl_enable_instructions function set an upper limit to settings specified by the mkl_cbwr_set function.

You can use the MKL_ENABLE_INSTRUCTIONS environment variable instead of calling mkl_enable_instructions (for more details, see the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide); however, the settings specified by the function take precedence over the settings specified by the environment variable.

\section*{Return Values}
\begin{tabular}{ll} 
Name & Type \\
irc & int
\end{tabular}

\section*{Description}

Function completion status:
1 - Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) dispatches the code path for the specified ISA by default.
0 - The request is rejected. Usually this occurs if mkl_enable_instructions was called:
- After another Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) function
- On a non-Intel architecture
- With an incompatible ISA specified

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{mkl_set_env_mode}

Sets up the mode that ignores environment settings specific to Inte/® oneAPI Math Kernel Library (oneMKL).

\section*{Syntax}
```

int mkl_set_env_mode(int mode);

```

Include Files
- mkl.h

\section*{Input Parameters}
Name Type
mode int

\section*{Description}

Specifies what mode to set. For details, see Description. Possible values:
- 0-Do nothing.

Use this value to query the current environment mode.
- 1 - Make Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) ignore environment settings specific to the library.

\section*{Description}

In the default environment mode, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) can control its behavior using environment variables for threading, memory management, Conditional Numerical Reproducibility, automatic offload, and so on. Themkl_set_env_mode function sets up the environment mode that ignores all settings specified by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) environment variables exceptmic_LD_LIBRARY_PATH and MKLROOT.

\section*{Return Values}

Name Type
current_m int
ode

\section*{Description}

Environment mode that was used before the function call:
- 0 - Default
- 1 - Ignore environment settings specific to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).
mkl_verbose
Enables or disables Intel® oneAPI Math Kernel Library
(oneMKL) Verbose mode.
Syntax
```

int mkl_verbose (int enable);

```

\section*{Include Files}
- mkl.h

Input Parameters

\section*{Name Type}
enable int

\section*{Description}

Desired state of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Verbose mode. Indicates whether printing Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) function call information should be turned on or off. Possible values:
- 0 - disable the Verbose mode
- 1 - enable the Verbose mode (GPU application: enable the Verbose mode without timing)
- 2 - enable the Verbose mode (GPU application: enable the Verbose mode with synchronous timing)

\section*{Description}

This function enables or disables the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Verbose mode, in which computational functions print call description information. For details of the Verbose mode, see theIntel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide, available in the Intel \({ }^{\circledR}\) Software Documentation Library.

\section*{NOTE}

The setting for the Verbose mode specified by the mkl_verbose function takes precedence over the setting specified by the MKL_VERBOSE environment variable.

\section*{Return Values}
\begin{tabular}{ll} 
Name & Type \\
status & int
\end{tabular}

\section*{Description}
- If the requested operation completed successfully, contains previous state of the verbose mode:
- 0 - Verbose mode was disabled
- 1 - Verbose mode was enabled (GPU application: Verbose mode was enabled without timing)
- 2 - Verbose mode was enabled (GPU application:

Verbose mode was enabled with synchronous timing)
- If the function failed to complete the operation because of an incorrect input parameter, equals -1 .

\author{
See Also \\ Intel Software Documentation Library \\ mkl_verbose_output_file \\ Write output in Intel oneAPI Math Kernel Library (oneMKL) Verbose mode to a file.
}

\section*{Syntax}
int mkl_verbose_output_file (const char*filename);

\section*{Include Files}
- mkl.h

Input Parameters

\section*{Name Type}
filename char

\section*{Description}

Name of file. Specify the complete path of the output file.

\section*{Description}

This function writes the output in Verbose mode to the file specified in the path.
If the write operation is successful, the function returns 0 .
If the file does not exist or cannot be opened, the write operation is unsuccessful. The function returns 1 and defaults to \(\mathrm{mkl} l_{\text {_ }}\) verbose behavior by printing to stdout.

\section*{NOTE}

You can alternatively use MKL_VERBOSE_OUTPUT_FILE environment variable instead of calling the mkl_verbose_output_file function. If you want to use the environment variable option, you must set it to the complete path of the output file.

Important The setting for the verbose output file specified by the mkl_verbose_output_file function takes precedence over the setting specified by the MKL_VERBOSE_OUTPUT_FILE environment variable.

For more information on the Verbose mode, see the Inte oneAPI Math Kernel Library (oneMKL) Developer Guide, available in the Intel \({ }^{\circledR}\) Software Documentation Library.

\section*{Return Values}
Name Type
status int
See Also
Intel Software Documentation Library
mkl_set_mpi

Sets the implementation of the message-passing interface to be used by Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).

\section*{Syntax}
```

int mkl_set_mpi (int vendor, const char *custom_library_name);

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
vendor & int
\end{tabular}

\section*{Description}

Specifies the implementation of the message-passing interface (MPI) to use:

Possible values:
- MKL_BLACS_CUSTOM - a custom MPI library. Requires a prebuilt custom MPI BLACS library.
- MKL_BLACS_MSMPI - Microsoft MPI library.
- MKL_BLACS_INTELMPI - Inte \({ }^{\circledR}\) MPI library.
- MKL_BLACS_MPICH - MPICH MPI library.
```

Name Type
custom_li const char *
brary_nam
evendor

```

\section*{Description}

The filename (without a directory name) of the custom BLACS dynamic library to use. This library must be located in the directory with your application executable or with Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) dynamic libraries. Can benulL or an empty string.

\section*{Description}

Call this function to set the MPI implementation to be used by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) on Windows* OS when dynamic Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) libraries are used. For all other configurations, the function returns an error indicating that you cannot set the MPI implementation. You can specify your own prebuilt dynamic BLACS library for a custom MPI by settingvendor to MKL_BLACS_CUSTOM and optionally passing the name of the custom BLACS dynamic library. If the custom_library_path parameter is NULLor an empty string, Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) uses the default platformspecific library name:mkl_blacs_custom_lp64.dll or mkl_blacs_custom_ilp64.dll, depending on whether the BLACS interface linked against your application is LP64 or ILP64.

\section*{Return Values}
```

Name Type Description
status int
The return status:

- 0 - The function completed successfully.
- -1 - The vendor parameter is invalid.
- -2 - The custom_library_name parameter is invalid.
- -3 - The MPI library cannot be set at this point.

```

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{mkl_finalize}

Terminates Inte \({ }^{\circledR}\) oneAPI Math Kernel Library
(oneMKL) execution environment and frees resources allocated by the library.

\section*{Syntax}
```

void mkl_finalize(void);

```

\section*{Include Files}
- mkl.h

\section*{Description}

This function frees resources allocated by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL). Once this function is called, the application can no longer call Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions other thanmkl_finalize.

In particular, the mkl_finalizefunction enables you to free resources when a third-party shared library is statically linked to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL). To avoid resource leaks that may happen when a shared library is loaded and unloaded multiple times, callmkl_finalize each time the library is unloaded. The recommended method to do this depends on the operating system:
- On Linux* or macOS*, place the call into a shared library destructor.
- On Windows*, call mkl_finalize from the DLL_PROCESS_DETACH handler of DllMain.

\section*{NOTE}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) shared libraries automatically perform finalization when they are unloaded. If an application is statically linked to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL), the operating system frees all resources allocated by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) during termination of the process associated with the application.

\section*{BLACS Routines}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Libraryimplements FORTRAN 77 routines from the BLACS (Basic Linear Algebra Communication Subprograms) package. These routines are used to support a linear algebra oriented message passing interface that may be implemented efficiently and uniformly across a large range of distributed memory platforms.
The BLACS routines make linear algebra applications both easier to program and more portable. For this purpose, they are used in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) intended for the Linux* and Windows* OSs as the communication layer of ScaLAPACK and Cluster FFT.
On computers, a linear algebra matrix is represented by a two dimensional array (2D array), and therefore the BLACS operate on 2D arrays. See description of the basic matrix shapes in a special topic.
The BLACS routines implemented in Intel® oneAPI Math Kernel Library (oneMKL) are of four categories:
- Combines
- Point to Point Communication
- Broadcast
- Support.

The Combines take data distributed over processes and combine the data to produce a result. The Point to Point routines are intended for point-to-point communication and Broadcast routines send data possessed by one process to all processes within a scope.
The Support routines perform distinct tasks that can be used for initialization, destruction, information, and miscellaneous tasks.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Matrix Shapes}

The BLACS routines recognize the two most common classes of matrices for dense linear algebra. The first of these classes consists of general rectangular matrices, which in machine storage are 2D arrays consisting of \(m\) rows and \(n\) columns, with a leading dimension, Ida, that determines the distance between successive columns in memory.
The general rectangular matrices take the following parameters as input when determining what array to operate on:
\begin{tabular}{ll}
\(m\) & (input) INTEGER. The number of matrix rows to be operated on. \\
\(n\) & (input) INTEGER. The number of matrix columns to be operated on. \\
\(a\) & (input/output) TYPE (depends on routine), array of dimension (lda, \(n\) ). \\
A pointer to the beginning of the (sub)array to be sent. \\
lda & (input) INTEGER. The distance between two elements in matrix row.
\end{tabular}

The second class of matrices recognized by the BLACS are trapezoidal matrices (triangular matrices are a sub-class of trapezoidal). Trapezoidal arrays are defined by \(m, n\), and \(I d a\), as above, but they have two additional parameters as well. These parameters are:
```

uplo
diag
(input) CHARACTER*1. Indicates whether the matrix is upper or lower trapezoidal, as discussed below.
(input) CHARACTER*1 . Indicates whether the diagonal of the matrix is unit diagonal (will not be operated on) or otherwise (will be operated on).

```

The shape of the trapezoidal arrays is determined by these parameters as follows:
__border__top
Trapezoidal Arrays Shapes


The packing of arrays, if required, so that they may be sent efficiently is hidden, allowing the user to concentrate on the logical matrix, rather than on how the data is organized in the system memory.

\section*{Repeatability and Coherence}

Floating point computations are not exact on almost all modern architectures. This lack of precision is particularly problematic in parallel operations. Since floating point computations are inexact, algorithms are classified according to whether they are repeatable and to what degree they guarantee coherence.
- Repeatable: a routine is repeatable if it is guaranteed to give the same answer if called multiple times with the same parallel configuration and input.
- Coherent: a routine is coherent if all processes selected to receive the answer get identical results.

\section*{NOTE}

Repeatability and coherence do not effect correctness. A routine may be both incoherent and nonrepeatable, and still give correct output. But inaccuracies in floating point calculations may cause the routine to return differing values, all of which are equally valid.

\section*{Repeatability}

Because the precision of floating point arithmetic is limited, it is not truly associative: \((a+b)+c\) might not be the same as \(a+(b+c)\). The lack of exact arithmetic can cause problems whenever the possibility for reordering of floating point calculations exists. This problem becomes prevalent in parallel computing due to race conditions in message passing. For example, consider a routine which sums numbers stored on different processes. Assume this routine runs on four processes, with the numbers to be added being the process numbers themselves. Therefore, process 0 has the value \(0: 0\), process 1 has the value \(1: 0\), and son on.

One algorithm for the computation of this result is to have all processes send their process numbers to process 0; process 0 adds them up, and sends the result back to all processes. So, process 0 would add a number to 0:0 in the first step. If receiving the process numbers is ordered so that process 0 always receives the message from process 1 first, then 2 , and finally 3 , this results in a repeatable algorithm, which evaluates the expression \(((0: 0+1: 0)+2: 0)+3: 0\).
However, to get the best parallel performance, it is better not to require a particular ordering, and just have process 0 add the first available number to its value and continue to do so until all numbers have been added in. Using this method, a race condition occurs, because the order of the operation is determined by the order in which process 0 receives the messages, which can be effected by any number of things. This implementation is not repeatable, because the answer can vary between invocations, even if the input is the same. For instance, one run might produce the sequence \(((0: 0+1: 0)+2: 0)+3: 0\), while a subsequent run could produce \(((0: 0+2: 0)+1: 0)+3: 0\). Both of these results are correct summations of the given numbers, but because of floating point roundoff, they might be different.

\section*{Coherence}

A routine produces coherent output if all processes are guaranteed to produce the exact same results. Obviously, almost no algorithm involving communication is coherent if communication can change the values being communicated. Therefore, if the parallel system being studied cannot guarantee that communication between processes preserves values, no routine is guaranteed to produce coherent results.

If communication is assumed to be coherent, there are still various levels of coherent algorithms. Some algorithms guarantee coherence only if floating point operations are done in the exact same order on every node. This is homogeneous coherence: the result will be coherent if the parallel machine is homogeneous in its handling of floating point operations.
A stronger assertion of coherence is heterogeneous coherence, which does not require all processes to have the same handling of floating point operations.

In general, a routine that is homogeneous coherent performs computations redundantly on all nodes, so that all processes get the same answer only if all processes perform arithmetic in the exact same way, whereas a routine which is heterogeneous coherent is usually constrained to having one process calculate the final result, and broadcast it to all other processes.

\section*{Example of Incoherence}

An incoherent algorithm is one which does not guarantee that all processes get the same result even on a homogeneous system with coherent communication. The previous example of summing the process numbers demonstrates this kind of behavior. One way to perform such a sum is to have every process broadcast its number to all other processes. Each process then adds these numbers, starting with its own. The calculations performed by each process receives would then be:
- Process \(0:((0: 0+1: 0)+2: 0)+3: 0\)
- Process \(1:((1: 0+2: 0)+3: 0)+0: 0\)
- Process \(2:((2: 0+3: 0)+0: 0)+1: 0\)
- Process \(3:((3: 0+0: 0)+1: 0)+0: 0\)

All of these results are equally valid, and since all the results might be different from each other, this algorithm is incoherent. Notice, however, that this algorithm is repeatable: each process will get the same result if the algorithm is called again on the same data.

\section*{Example of Homogeneous Coherence}

Another way to perform this summation is for all processes to send their data to all other processes, and to ensure the result is not incoherent, enforce the ordering so that the calculation each node performs is \(((0: 0+1: 0)+2: 0)+3: 0\). This answer is the same for all processes only if all processes do the floating point arithmetic in the same way. Otherwise, each process may make different floating point errors during the addition, leading to incoherence of the output. Notice that since there is a specific ordering to the addition, this algorithm is repeatable.

\section*{Example of Heterogeneous Coherence}

In the final example, all processes send the result to process 0 , which adds the numbers and broadcasts the result to the rest of the processes. Since one process does all the computation, it can perform the operations in any order and it will give coherent results as long as communication is itself coherent. If a particular order is not forced on the the addition, the algorithm will not be repeatable. If a particular order is forced, it will be repeatable.

\section*{Summary}

Repeatability and coherence are separate issues which may occur in parallel computations. These concepts may be summarized as:
- Repeatability: The routine will yield the exact same result if it run multiple times on an identical problem. Each process may get a different result than the others (i.e., repeatability does not imply coherence), but that value will not change if the routine is invoked multiple times.
- Homogeneous coherence: All processes selected to possess the result will receive the exact same answer if:
- Communication does not change the value of the communicated data.
- All processes perform floating point arithmetic exactly the same.
- Heterogeneous coherence: All processes will receive the exact same answer if communication does not change the value of the communicated data.

In general, lack of the associative property for floating point calculations may cause both incoherence and non-repeatability. Algorithms that rely on redundant computations are at best homogeneous coherent, and algorithms in which one process broadcasts the result are heterogeneous coherent. Repeatability does not imply coherence, nor does coherence imply repeatability.
Since these issues do not effect the correctness of the answer, they can usually be ignored. However, in very specific situations, these issues may become very important. A stopping criteria should not be based on incoherent results, for instance. Also, a user creating and debugging a parallel program may wish to enforce repeatability so the exact same program sequence occurs on every run.

In the BLACS, coherence and repeatability apply only in the context of the combine operations. As mentioned above, it is possible to have communication which is incoherent (for instance, two machines which store floating point numbers differently may easily produce incoherent communication, since a number stored on machine A may not have a representation on machine B). However, the BLACS cannot control this issue. Communication is assumed to be coherent, which for communication implies that it is also repeatable.
For combine operations, the BLACS allow you to set flags indicating that you would like combines to be repeatable and/or heterogeneous coherent (see blacs_get and blacs_set for details on setting these flags).

If the BLACS are instructed to guarantee heterogeneous coherency, the BLACS restrict the topologies which can be used so that one process calculates the final result of the combine, and if necessary, broadcasts the answer to all other processes.

If the BLACS are instructed to guarantee repeatability, orderings will be enforced in the topologies which are selected. This may result in loss of performance which can range from negligible to serious depending on the application.
A couple of additional notes are in order. Incoherence and nonrepeatability can arise as a result of floating point errors, as discussed previously. This might lead you to suspect that integer calculations are always repeatable and coherent, since they involve exact arithmetic. This is true if overflow is ignored. With overflow taken into consideration, even integer calculations can display incoherence and non-repeatability. Therefore, if the repeatability or coherence flags are set, the BLACS treats integer combines the same as floating point combines in enforcing repeatability and coherence guards.

By their nature, maximization and minimization should always be repeatable. In the complex precisions, however, the real and imaginary parts must be combined in order to obtain a magnitude value used to do the comparison (this is typically \(|r|+|i|\) or \(\operatorname{sqr}\left(r^{2}+i^{2}\right)\) ). This allows for the possibility of heterogeneous incoherence. The BLACS therefore restrict which topologies are used for maximization and minimization in the complex routines when the heterogeneous coherence flag is set.

\section*{BLACS Combine Operations}

This topic describes BLACS routines that combine the data to produce a result.
In a combine operation, each participating process contributes data that is combined with other processes' data to produce a result. This result can be given to a particular process (called the destination process), or to all participating processes. If the result is given to only one process, the operation is referred to as a leave-on-one combine, and if the result is given to all participating processes the operation is referenced as a leave-on-all combine.
At present, three kinds of combines are supported. They are:
- element-wise summation
- element-wise absolute value maximization
- element-wise absolute value minimization
of general rectangular arrays.

Note that a combine operation combines data between processes. By definition, a combine performed across a scope of only one process does not change the input data. This is why the operations (max/min/sum) are specified as element-wise. Element-wise indicates that each element of the input array will be combined with the corresponding element from all other processes' arrays to produce the result. Thus, a \(4 \times 2\) array of inputs produces a \(4 \times 2\) answer array.
When the max/min comparison is being performed, absolute value is used. For example, -5 and 5 are equivalent. However, the returned value is unchanged; that is, it is not the absolute value, but is a signed value instead. Therefore, if you performed a BLACS absolute value maximum combine on the numbers \(-5,3\), 1,8 the result would be -8 .
The initial symbol ? in the routine names below masks the data type:
\begin{tabular}{ll} 
i & integer \\
s & single precision real \\
d & double precision real \\
c & single precision complex \\
z & double precision complex.
\end{tabular}

\section*{BLACS Combines}
\begin{tabular}{ll}
\hline Routine name & Results of operation \\
\hline gamx2d & \begin{tabular}{l} 
Entries of result matrix will have the value of the greatest absolute \\
value found in that position.
\end{tabular} \\
gamn2d & \begin{tabular}{l} 
Entries of result matrix will have the value of the smallest absolute \\
value found in that position.
\end{tabular} \\
gsum2d & Entries of result matrix will have the summation of that position. \\
\hline
\end{tabular}
?gamx2d
Performs element-wise absolute value maximization.

\section*{Syntax}
```

call igamx2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call sgamx2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call dgamx2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call cgamx2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call zgamx2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)

```

\section*{Input Parameters}
\begin{tabular}{ll} 
i contxt & INTEGER. Integer handle that indicates the context. \\
scope & CHARACTER*1. Indicates what scope the combine should proceed on. \\
top & Limited to ROW, COLUMN, or ALL. \\
\(m\) & CHARACTER*1. Communication pattern to use during the combine \\
& Operation. \\
\(n\) & INTEGER. The number of matrix rows to be combined. \\
& INTEGER. The number of matrix columns to be combined.
\end{tabular}
a

Ida
rcflag
rdest
cdest

TYPE array (Ida, n). Matrix to be compared with to produce the maximum.

INTEGER. The leading dimension of the matrix \(A\), that is, the distance between two successive elements in a matrix row.

INTEGER.
If rcflag \(=-1\), the arrays ra and ca are not referenced and need not exist. Otherwise, rcflag indicates the leading dimension of these arrays, and so must be \(\geq m\).

INTEGER.
The process row coordinate of the process that should receive the result. If rdest or cdest \(=-1\), all processes within the indicated scope receive the answer.

INTEGER.
The process column coordinate of the process that should receive the result. If rdest or cdest \(=-1\), all processes within the indicated scope receive the answer.

\section*{Output Parameters}
a

TYPE array (lda, \(n\) ). Contains the result if this process is selected to receive the answer, or intermediate results if the process is not selected to receive the result.

INTEGER array (rcflag, n).
If rcflag \(=-1\), this array will not be referenced, and need not exist. Otherwise, it is an integer array (of size at least rcflag x \(n\) ) indicating the row index of the process that provided the maximum. If the calling process is not selected to receive the result, this array will contain intermediate (useless) results.

INTEGER array (rcflag, n).
If rcflag \(=-1\), this array will not be referenced, and need not exist. Otherwise, it is an integer array (of size at least rcflag x \(n\) ) indicating the row index of the process that provided the maximum. If the calling process is not selected to receive the result, this array will contain intermediate (useless) results.

\section*{Description}

This routine performs element-wise absolute value maximization, that is, each element of matrix \(A\) is compared with the corresponding element of the other process's matrices. Note that the value of \(A\) is returned, but the absolute value is used to determine the maximum (the 1-norm is used for complex numbers). Combines may be globally-blocking, so they must be programmed as if no process returns until all have called the routine.

\author{
See Also \\ Examples of BLACS Routines Usage
}
```

?gamn2d
Performs element-wise absolute value minimization.

```

\section*{Syntax}
```

call igamn2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call sgamn2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call dgamn2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call cgamn2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call zgamn2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)

```

Input Parameters
\begin{tabular}{ll} 
icontxt & INTEGER. Integer handle that indicates the context. \\
scope & CHARACTER*1. Indicates what scope the combine should proceed on. \\
top & Limited to ROW, COLUMN, or ALL. \\
& CHARACTER*1. Communication pattern to use during the combine \\
\(m\) & operation. \\
\(n\) & INTEGER. The number of matrix rows to be combined. \\
\(a\) & INTEGER. The number of matrix columns to be combined. \\
& TYPE array (lda, n). Matrix to be compared with to produce the \\
minimum.
\end{tabular}

INTEGER. The leading dimension of the matrix \(A\), that is, the distance between two successive elements in a matrix row.

INTEGER.
If rcflag \(=-1\), the arrays ra and ca are not referenced and need not exist. Otherwise, rcflag indicates the leading dimension of these arrays, and so must be \(\geq m\).

INTEGER.
The process row coordinate of the process that should receive the result. If rdest or cdest \(=-1\), all processes within the indicated scope receive the answer.

INTEGER.
The process column coordinate of the process that should receive the result. If rdest or cdest \(=-1\), all processes within the indicated scope receive the answer.

\section*{Output Parameters}
\(a\)

TYPE array (lda, n). Contains the result if this process is selected to receive the answer, or intermediate results if the process is not selected to receive the result.

INTEGER array (rcflag, n).

If rcflag \(=-1\), this array will not be referenced, and need not exist. Otherwise, it is an integer array (of size at least rcflag \(\times n\) ) indicating the row index of the process that provided the minimum. If the calling process is not selected to receive the result, this array will contain intermediate (useless) results.
```

INTEGER array (rcflag, n).

```

If rcflag \(=-1\), this array will not be referenced, and need not exist. Otherwise, it is an integer array (of size at least rcflag \(\times n\) ) indicating the row index of the process that provided the minimum. If the calling process is not selected to receive the result, this array will contain intermediate (useless) results.

\section*{Description}

This routine performs element-wise absolute value minimization, that is, each element of matrix \(A\) is compared with the corresponding element of the other process's matrices. Note that the value of \(A\) is returned, but the absolute value is used to determine the minimum (the 1-norm is used for complex numbers). Combines may be globally-blocking, so they must be programmed as if no process returns until all have called the routine.

\author{
See Also \\ Examples of BLACS Routines Usage
}

\section*{?gsum2d}

Performs element-wise summation.

\section*{Syntax}
```

call igsum2d(icontxt, scope, top, m, n, a, lda, rdest, cdest)
call sgsum2d(icontxt, scope, top, m, n, a, lda, rdest, cdest)
call dgsum2d(icontxt, scope, top, m, n, a, lda, rdest, cdest)
call cgsum2d(icontxt, scope, top, m, n, a, lda, rdest, cdest)
call zgsum2d(icontxt, scope, top, m, n, a, lda, rdest, cdest)

```

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline icontxt & INTEGER. Integer handle that indicates the context. \\
\hline scope & CHARACTER*1. Indicates what scope the combine should proceed on. Limited to ROW, COLUMN, or ALL. \\
\hline top & CHARACTER*1. Communication pattern to use during the combine operation. \\
\hline m & INTEGER. The number of matrix rows to be combined. \\
\hline \(n\) & INTEGER. The number of matrix columns to be combined. \\
\hline a & TYPE array ( Ida, \(n\) ). Matrix to be added to produce the sum. \\
\hline Ida & INTEGER. The leading dimension of the matrix \(A\), that is, the distance between two successive elements in a matrix row. \\
\hline
\end{tabular}
```

rdest
cdest

```

INTEGER.
The process row coordinate of the process that should receive the result. If rdest or cdest \(=-1\), all processes within the indicated scope receive the answer.

INTEGER.
The process column coordinate of the process that should receive the result. If rdest or cdest \(=-1\), all processes within the indicated scope receive the answer.

\section*{Output Parameters}
a
TYPE array (lda, n). Contains the result if this process is selected to receive the answer, or intermediate results if the process is not selected to receive the result.

\section*{Description}

This routine performs element-wise summation, that is, each element of matrix \(A\) is summed with the corresponding element of the other process's matrices. Combines may be globally-blocking, so they must be programmed as if no process returns until all have called the routine.

\section*{See Also}

Examples of BLACS Routines Usage

\section*{BLACS Point To Point Communication}

This topic describes BLACS routines for point to point communication.
Point to point communication requires two complementary operations. The send operation produces a message that is then consumed by the receive operation. These operations have various resources associated with them. The main such resource is the buffer that holds the data to be sent or serves as the area where the incoming data is to be received. The level of blocking indicates what correlation the return from a send/receive operation has with the availability of these resources and with the status of message.

\section*{Non-blocking}

The return from the send or receive operations does not imply that the resources may be reused, that the message has been sent/received or that the complementary operation has been called. Return means only that the send/receive has been started, and will be completed at some later date. Polling is required to determine when the operation has finished.
In non-blocking message passing, the concept of communication/computation overlap (abbreviated C/C overlap) is important. If a system possesses C/C overlap, independent computation can occur at the same time as communication. That means a nonblocking operation can be posted, and unrelated work can be done while the message is sent/received in parallel. If C/C overlap is not present, after returning from the routine call, computation will be interrupted at some later date when the message is actually sent or received.

\section*{Locally-blocking}

Return from the send or receive operations indicates that the resources may be reused. However, since this only depends on local information, it is unknown whether the complementary operation has been called. There are no locally-blocking receives: the send must be completed before the receive buffer is available for re-use.

If a receive has not been posted at the time a locally-blocking send is issued, buffering will be required to avoid losing the message. Buffering can be done on the sending process, the receiving process, or not done at all, losing the message.

\section*{Globally-blocking}

Return from a globally-blocking procedure indicates that the operation resources may be reused, and that complement of the operation has at least been posted. Since the receive has been posted, there is no buffering required for globally-blocking sends: the message is always sent directly into the user's receive buffer.

Almost all processors support non-blocking communication, as well as some other level of blocking sends. What level of blocking the send possesses varies between platforms. For instance, the Intel \({ }^{\circledR}\) processors support locally-blocking sends, with buffering done on the receiving process. This is a very important distinction, because codes written assuming locally-blocking sends will hang on platforms with globallyblocking sends. Below is a simple example of how this can occur:
```

IAM = MY_PROCESS_ID()
IF (IAM .EQ. O) THEN
SEND TO PROCESS 1
RECV FROM PROCESS 1
ELSE IF (IAM .EQ. 1) THEN
SEND TO PROCESS O
RECV FROM PROCESS 0
END IF

```

If the send is globally-blocking, process 0 enters the send, and waits for process 1 to start its receive before continuing. In the meantime, process 1 starts to send to 0 , and waits for 0 to receive before continuing. Both processes are now waiting on each other, and the program will never continue.

The solution for this case is obvious. One of the processes simply reverses the order of its communication calls and the hang is avoided. However, when the communication is not just between two processes, but rather involves a hierarchy of processes, determining how to avoid this kind of difficulty can become problematic.
For this reason, it was decided the BLACS would support locally-blocking sends. On systems natively supporting globally-blocking sends, non-blocking sends coupled with buffering is used to simulate locallyblocking sends. The BLACS support globally-blocking receives.

In addition, the BLACS specify that point to point messages between two given processes will be strictly ordered. If process 0 sends three messages (label them \(A, B\), and \(C\) ) to process 1 , process 1 must receive \(A\) before it can receive \(B\), and message \(C\) can be received only after both \(A\) and \(B\). The main reason for this restriction is that it allows for the computation of message identifiers.

Note, however, that messages from different processes are not ordered. If processes 0, . . ., 3 send messages \(A, . . ., D\) to process 4 , process 4 may receive these messages in any order that is convenient.

\section*{Convention}

The convention used in the communication routine names follows the template \(3 x x y y 2 d\), where the letter in the ? position indicates the data type being sent, \(x x\) is replaced to indicate the shape of the matrix, and the yy positions are used to indicate the type of communication to perform:
```

integer
single precision real
double precision real
single precision complex

```
```

z double precision complex
ge The data to be communicated is stored in a general rectangular matrix.
tr The data to be communicated is stored in a trapezoidal matrix.
sd Send. One process sends to another.
rv Receive. One process receives from another.

```

\section*{BLACS Point To Point Communication}
\begin{tabular}{ll} 
Routine name & Operation performed \\
\hline gesd2d & Take the indicated matrix and send it to the destination process. \\
trsd2d & \\
gerv2d & Receive a message from the process into the matrix. \\
trrv2d & \\
\hline
\end{tabular}

As a simple example, the pseudo code given above is rewritten below in terms of the BLACS. It is further specifed that the data being exchanged is the double precision vector \(X\), which is 5 elements long.
```

CALL GRIDINFO(NPROW, NPCOL, MYPROW, MYPCOL)
IF (MYPROW.EQ.O .AND. MYPCOL.EQ.O) THEN
CALL DGESD2D(5, 1, X, 5, 1, 0)
CALL DGERV2D(5, 1, X, 5, 1, 0)
ELSE IF (MYPROW.EQ.1 .AND. MYPCOL.EQ.0) THEN
CALL DGESD2D(5, 1, X, 5, 0, 0)
CALL DGERV2D(5, 1, X, 5, 0, 0)
END IF

```

\section*{?gesd2d}

Takes a general rectangular matrix and sends it to the destination process.

\section*{Syntax}
```

call igesd2d(icontxt, m, n, a, lda, rdest, cdest)
call sgesd2d(icontxt, m, n, a, lda, rdest, cdest)
call dgesd2d(icontxt, m, n, a, lda, rdest, cdest)
call cgesd2d(icontxt, m, n, a, lda, rdest, cdest)
call zgesd2d(icontxt, m, n, a, lda, rdest, cdest)

```

\section*{Input Parameters}
```

icontxt
INTEGER. Integer handle that indicates the context.

```
\(m, n, a, 1 d a\)
rdest
cdest

Describe the matrix to be sent. See Matrix Shapes for details.

\section*{INTEGER.}

The process row coordinate of the process to send the message to.
INTEGER.
The process column coordinate of the process to send the message to.

\section*{Description}

This routine takes the indicated general rectangular matrix and sends it to the destination process located at \(\{\) RDEST, CDEST\} in the process grid. Return from the routine indicates that the buffer (the matrix \(A\) ) may be reused. The routine is locally-blocking, that is, it will return even if the corresponding receive is not posted.

\section*{See Also}

Examples of BLACS Routines Usage

\section*{?trsd2d}

Takes a trapezoidal matrix and sends it to the destination process.

\section*{Syntax}
```

call itrsd2d(icontxt, uplo, diag, m, n, a, lda, rdest, cdest)
call strsd2d(icontxt, uplo, diag, m, n, a, lda, rdest, cdest)
call dtrsd2d(icontxt, uplo, diag, m, n, a, lda, rdest, cdest)
call ctrsd2d(icontxt, uplo, diag, m, n, a, lda, rdest, cdest)
call ztrsd2d(icontxt, uplo, diag, m, n, a, lda, rdest, cdest)

```

\section*{Input Parameters}
```

icontxt INTEGER. Integer handle that indicates the context.
uplo, diag,m, Describe the matrix to be sent. See Matrix Shapes for details.
n, a, lda
rdest

```
cdest INTEGER.

The process column coordinate of the process to send the message to.

\section*{Description}

This routine takes the indicated trapezoidal matrix and sends it to the destination process located at \{RDEST, CDEST\} in the process grid. Return from the routine indicates that the buffer (the matrix \(A\) ) may be reused. The routine is locally-blocking, that is, it will return even if the corresponding receive is not posted.

\section*{?gerv2d \\ Receives a message from the process into the general rectangular matrix.}

Syntax
```

call igerv2d(icontxt, m, n, a, lda, rsrc, csrc)
call sgerv2d(icontxt, m, n, a, lda, rsrc, csrc)
call dgerv2d(icontxt, m, n, a, lda, rsrc, csrc)
call cgerv2d(icontxt, m, n, a, lda, rsrc, csrc)
call zgerv2d(icontxt, m, n, a, lda, rsrc, csrc)

```

\section*{Input Parameters}
```

icontxt
m, n, lda
rsrc
csrc
INTEGER. Integer handle that indicates the context.
Describe the matrix to be sent. See Matrix Shapes for details.
INTEGER.
The process row coordinate of the source of the message.
INTEGER.
The process column coordinate of the source of the message.

```

\section*{Output Parameters}
a
An array of dimension (lda, \(n\) ) to receive the incoming message into.

\section*{Description}

This routine receives a message from process \(\{R S R C, C S R C\}\) into the general rectangular matrix \(A\). This routine is globally-blocking, that is, return from the routine indicates that the message has been received into \(A\).

\section*{See Also}

Examples of BLACS Routines Usage

\section*{?trrv2d}

Receives a message from the process into the trapezoidal matrix.

\section*{Syntax}
```

call itrrv2d(icontxt, uplo, diag, m, n, a, lda, rsrc, csrc)
call strrv2d(icontxt, uplo, diag, m, n, a, lda, rsrc, csrc)
call dtrrv2d(icontxt, uplo, diag, m, n, a, lda, rsrc, csrc)
call ctrrv2d(icontxt, uplo, diag, m, n, a, lda, rsrc, csrc)
call ztrrv2d(icontxt, uplo, diag, m, n, a, lda, rsrc, csrc)

```

Input Parameters
```

icontxt
uplo, diag, m, n, lda
rsrc
csrc INTEGER.
The process column coordinate of the source of the message.

```

\section*{Output Parameters}

An array of dimension (lda, n) to receive the incoming message into.

\section*{Description}

This routine receives a message from process \(\{R S R C, C S R C\}\) into the trapezoidal matrix \(A\). This routine is globally-blocking, that is, return from the routine indicates that the message has been received into \(A\).

\section*{BLACS Broadcast Routines}

This topic describes BLACS broadcast routines.
A broadcast sends data possessed by one process to all processes within a scope. Broadcast, much like point to point communication, has two complementary operations. The process that owns the data to be broadcast issues a broadcast/send. All processes within the same scope must then issue the complementary broadcast/receive.

The BLACS define that both broadcast/send and broadcast/receive are globally-blocking. Broadcasts/ receives cannot be locally-blocking since they must post a receive. Note that receives cannot be locallyblocking. When a given process can leave, a broadcast/receive operation is topology dependent, so, to avoid a hang as topology is varied, the broadcast/receive must be treated as if no process can leave until all processes have called the operation.

Broadcast/sends could be defined to be locally-blocking. Since no information is being received, as long as locally-blocking point to point sends are used, the broadcast/send will be locally blocking. However, defining one process within a scope to be locally-blocking while all other processes are globally-blocking adds little to the programmability of the code. On the other hand, leaving the option open to have globally-blocking broadcast/sends may allow for optimization on some platforms.
The fact that broadcasts are defined as globally-blocking has several important implications. The first is that scoped operations (broadcasts or combines) must be strictly ordered, that is, all processes within a scope must agree on the order of calls to separate scoped operations. This constraint falls in line with that already in place for the computation of message IDs, and is present in point to point communication as well.

A less obvious result is that scoped operations with SCOPE = 'ALL' must be ordered with respect to any other scoped operation. This means that if there are two broadcasts to be done, one along a column, and one involving the entire process grid, all processes within the process column issuing the column broadcast must agree on which broadcast will be performed first.

The convention used in the communication routine names follows the template ?xxyy 2 d , where the letter in the ? position indicates the data type being sent, \(x x\) is replaced to indicate the shape of the matrix, and the yy positions are used to indicate the type of communication to perform:
```

i integer
single precision real
double precision real
single precision complex
double precision complex
The data to be communicated is stored in a general rectangular matrix.
The data to be communicated is stored in a trapezoidal matrix.
Broadcast/send. A process begins the broadcast of data within a scope.
Broadcast/receive A process receives and participates in the broadcast of data
within a scope.

```

\section*{BLACS Broadcast Routines}
\begin{tabular}{ll} 
Routine name & Operation performed \\
\hline gebs2d & Start a broadcast along a scope.
\end{tabular}

\section*{Routine name Operation performed}
trbs2d
gebr2d Receive and participate in a broadcast along a scope.
trbr2d

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{?gebs2d}

Starts a broadcast along a scope for a general rectangular matrix.

\section*{Syntax}
```

call igebs2d(icontxt, scope, top, m, n, a, lda)
call sgebs2d(icontxt, scope, top, m, n, a, lda)
call dgebs2d(icontxt, scope, top, m, n, a, lda)
call cgebs2d(icontxt, scope, top, m, n, a, lda)
call zgebs2d(icontxt, scope, top, m, n, a, lda)

```

\section*{Input Parameters}
icontxt
scope
top
\(m, n, a, I d a\)

INTEGER. Integer handle that indicates the context.
CHARACTER*1. Indicates what scope the broadcast should proceed on. Limited to 'Row', 'Column', or 'All'.

CHARACTER*1. Indicates the communication pattern to use for the broadcast.

Describe the matrix to be sent. See Matrix Shapes for details.

\section*{Description}

This routine starts a broadcast along a scope. All other processes within the scope must call broadcast/ receive for the broadcast to proceed. At the end of a broadcast, all processes within the scope will possess the data in the general rectangular matrix \(A\).
Broadcasts may be globally-blocking. This means no process is guaranteed to return from a broadcast until all processes in the scope have called the appropriate routine (broadcast/send or broadcast/receive).

\section*{See Also}

Examples of BLACS Routines Usage

\section*{?trbs2d}

Starts a broadcast along a scope for a trapezoidal matrix.

\section*{Syntax}
```

call itrbs2d(icontxt, scope, top, uplo, diag, m, n, a, lda)

```
```

call strbs2d(icontxt, scope, top, uplo, diag, m, n, a, lda)
call dtrbs2d(icontxt, scope, top, uplo, diag, m, n, a, lda)
call ctrbs2d(icontxt, scope, top, uplo, diag, m, n, a, lda)
call ztrbs2d(icontxt, scope, top, uplo, diag, m, n, a, lda)

```

\section*{Input Parameters}
```

icontxt INTEGER. Integer handle that indicates the context.
scope CHARACTER*1. Indicates what scope the broadcast should proceed on.
Limited to 'Row', 'Column', or 'All'.
CHARACTER*1. Indicates the communication pattern to use for the
broadcast.
uplo, diag,m, Describe the matrix to be sent. See Matrix Shapes for details.
n, a, lda

```

\section*{Description}

This routine starts a broadcast along a scope. All other processes within the scope must call broadcast/ receive for the broadcast to proceed. At the end of a broadcast, all processes within the scope will possess the data in the trapezoidal matrix \(A\).

Broadcasts may be globally-blocking. This means no process is guaranteed to return from a broadcast until all processes in the scope have called the appropriate routine (broadcast/send or broadcast/receive).

\section*{?gebr2d}

Receives and participates in a broadcast along a scope for a general rectangular matrix.

\section*{Syntax}
```

call igebr2d(icontxt, scope, top, m, n, a, lda, rsrc, csrc)
call sgebr2d(icontxt, scope, top, m, n, a, lda, rsrc, csrc)
call dgebr2d(icontxt, scope, top, m, n, a, lda, rsrc, csrc)
call cgebr2d(icontxt, scope, top, m, n, a, lda, rsrc, csrc)
call zgebr2d(icontxt, scope, top, m, n, a, lda, rsrc, csrc)

```

\section*{Input Parameters}
```

icontxt INTEGER. Integer handle that indicates the context.
scope CHARACTER*1. Indicates what scope the broadcast should proceed on.
Limited to 'Row', 'Column', or 'All'.
CHARACTER*1. Indicates the communication pattern to use for the
broadcast.
Describe the matrix to be sent. See Matrix Shapes for details.
INTEGER.
The process row coordinate of the process that called broadcast/send.

```

INTEGER.
The process column coordinate of the process that called broadcast/ send.

\section*{Output Parameters}
a
An array of dimension ( \(I d a, n\) ) to receive the incoming message into.

\section*{Description}

This routine receives and participates in a broadcast along a scope. At the end of a broadcast, all processes within the scope will possess the data in the general rectangular matrix \(A\). Broadcasts may be globallyblocking. This means no process is guaranteed to return from a broadcast until all processes in the scope have called the appropriate routine (broadcast/send or broadcast/receive).
```

See Also
Examples of BLACS Routines Usage

```

\section*{?trbr2d}
```

Receives and participates in a broadcast along a scope for a trapezoidal matrix.

```

\section*{Syntax}
```

call itrbr2d(icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc)
call strbr2d(icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc)
call dtrbr2d(icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc)
call ctrbr2d(icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc)
call ztrbr2d(icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc)

```

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline icontxt & INTEGER. Integer handle that indicates the context. \\
\hline scope & CHARACTER*1. Indicates what scope the broadcast should proceed on. Limited to 'Row', 'Column', or 'All'. \\
\hline top & CHARACTER*1. Indicates the communication pattern to use for the broadcast. \\
\hline uplo, diag, m, n, lda & Describe the matrix to be sent. See Matrix Shapes for details. \\
\hline rsrc & INTEGER. \\
\hline & The process row coordinate of the process that called broadcast/send. \\
\hline csrc & INTEGER. \\
\hline & The process column coordinate of the process that called broadcast/ send. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
An array of dimension (lda, \(n\) ) to receive the incoming message into.

\section*{Description}

This routine receives and participates in a broadcast along a scope. At the end of a broadcast, all processes within the scope will possess the data in the trapezoidal matrix \(A\). Broadcasts may be globally-blocking. This means no process is guaranteed to return from a broadcast until all processes in the scope have called the appropriate routine (broadcast/send or broadcast/receive).

\section*{BLACS Support Routines}

The support routines perform distinct tasks that can be used for:
Initialization
Destruction
Information Purposes
Miscellaneous Tasks.

\section*{Initialization Routines}

This topic describes BLACS routines that deal with grid/context creation, and processing before the grid/ context has been defined.
\begin{tabular}{ll}
\hline BLACS Initialization Routines & \\
\hline Routine name & Operation performed \\
\hline blacs_pinfo & Returns the number of processes available for use. \\
blacs_setup & Gets values that BLACS use for internal defaults. \\
blacs_get & Sets values that BLACS use for internal defaults. \\
blacs_set & Assigns available processes into BLACS process grid. \\
blacs_gridinit & Maps available processes into BLACS process grid. \\
blacs_gridmap &
\end{tabular}

\section*{blacs_pinfo}

Returns the number of processes available for use.

\section*{Syntax}
```

call blacs_pinfo(mypnum, nprocs)

```

\section*{Output Parameters}
mypnum
nprocs

\section*{Description}

This routine is used when some initial system information is required before the BLACS are set up. On all platforms except PVM, nprocs is the actual number of processes available for use, that is, nprows * npcols <= nprocs. In PVM, the virtual machine may not have been set up before this call, and therefore no parallel machine exists. In this case, nprocs is returned as less than one. If a process has been spawned via the
keyboard, it receives mypnum of 0 , and all other processes get mypnum of -1 . As a result, the user can distinguish between processes. Only after the virtual machine has been set up via a call to BLACS_SETUP, this routine returns the correct values for mypnum and nprocs.

\author{
See Also \\ Examples of BLACS Routines Usage \\ blacs_setup \\ Allocates virtual machine and spawns processes.
}

\section*{Syntax}
```

call blacs_setup(mypnum, nprocs)

```

\section*{Input Parameters}

INTEGER. On the process spawned from the keyboard rather than from pvmspawn, this parameter indicates the number of processes to create when building the virtual machine.

\section*{Output Parameters}
mypnum
nprocs

INTEGER. An integer between 0 and (nprocs - 1) that uniquely identifies each process.

INTEGER. For all processes other than spawned from the keyboard, this parameter means the number of processes available for BLACS use.

\section*{Description}

This routine only accomplishes meaningful work in the PVM BLACS. On all other platforms, it is functionally equivalent to blacs_pinfo. The BLACS assume a static system, that is, the given number of processes does not change. PVM supplies a dynamic system, allowing processes to be added to the system on the fly.
blacs_setup is used to allocate the virtual machine and spawn off processes. It reads in a file called blacs_setup. dat, in which the first line must be the name of your executable. The second line is optional, but if it exists, it should be a PVM spawn flag. Legal values at this time are 0 (PvmTaskDefault), 4 (PvmTaskDebug), 8 (PvmTaskTrace), and 12 (PvmTaskDebug + PvmTaskTrace). The primary reason for this line is to allow the user to easily turn on and off PVM debugging. Additional lines, if any, specify what machines should be added to the current configuration before spawning nprocs-1 processes to the machines in a round robin fashion.
nprocs is input on the process which has no PVM parent (that is, mypnum=0), and both parameters are output for all processes. So, on PVM systems, the call to blacs_pinfo informs you that the virtual machine has not been set up, and a call to blacs_setup then sets up the machine and returns the real values for mypnum and nprocs.
Note that if the file blacs_setup. dat does not exist, the BLACS prompt the user for the executable name, and processes are spawned to the current PVM configuration.

\section*{See Also \\ Examples of BLACS Routines Usage}
blacs_get
Gets values that BLACS use for internal defaults.

\author{
Syntax \\ ```
call blacs_get( icontxt, what, val )
``` \\ Input Parameters
}
icontxt
what

INTEGER. On values of what that are tied to a particular context, this parameter is the integer handle indicating the context. Otherwise, ignored.

INTEGER. Indicates what BLACS internal(s) should be returned in val. Present options are:
- what \(=0\) : Handle indicating default system context.
- what \(=1\) : The BLACS message ID range.
- what \(=2\) : The BLACS debug level the library was compiled with.
- what \(=10\) : Handle indicating the system context used to define the BLACS context whose handle is icontxt.
- what = 11 : Number of rings multiring broadcast topology is presently using.
- what \(=12\) : Number of branches general tree broadcast topology is presently using.
- what \(=13\) : Number of rings multiring combine topology is presently using.
- what \(=14\) : Number of branches general tree combine topology is presently using.
- what \(=15\) : Whether topologies are forced to be repeatable or not. A non-zero return value indicates that topologies are being forced to be repeatable. See Repeatability and Coherence for more information about repeatability.
- what \(=16\) : Whether topologies are forced to be heterogenous coherent or not. A non-zero return value indicates that topologies are being forced to be heterogenous coherent. See Repeatability and Coherence for more information about coherence.

\section*{Output Parameters}
val
INTEGER. The value of the BLACS internal.

\section*{Description}

This routine gets the values that the BLACS are using for internal defaults. Some values are tied to a BLACS context, and some are more general. The most common use is in retrieving a default system context for input into blacs_gridinit or blacs_gridmap.

Some systems, such as MPI*, supply their own version of context. For those users who mix system code with BLACS code, a BLACS context should be formed in reference to a system context. Thus, the grid creation routines take a system context as input. If you wish to have strictly portable code, you may use blacs_get to retrieve a default system context that will include all available processes. This value is not tied to a BLACS context, so the parameter icontxt is unused.
blacs_get returns information on three quantities that are tied to an individual BLACS context, which is passed in as icontxt. The information that may be retrieved is:
- The handle of the system context upon which this BLACS context was defined
- The number of rings for \(T O P=\) ' M ' (multiring broadcast/combine)
- The number of branches for \(T O P=\) ' \(T\) ' (general tree broadcast/general tree gather).
- Whether topologies are being forced to be repeatable or heterogenous coherent.
```

See Also
Examples of BLACS Routines Usage
blacs_set
Sets values that BLACS use for internal defaults.

```

\section*{Syntax}
```

call blacs_set( icontxt, what, val )

```

Input Parameters
icontxt
what
val

INTEGER. For values of what that are tied to a particular context, this parameter is the integer handle indicating the context. Otherwise, ignored.

INTEGER. Indicates what BLACS internal(s) should be set. Present values are:
- \(1=\) Set the BLACS message ID range
- 11 = Number of rings for multiring broadcast topology to use
- \(12=\) Number of branches for general tree broadcast topology to use
- 13 = Number of rings for multiring combine topology to use
- \(14=\) Number of branches for general tree combine topology to use
- \(15=\) Force topologies to be repeatable or not
- 16 = Force topologies to be heterogenous coherent or not

INTEGER. Array of dimension (*). Indicates the value(s) the internals should be set to. The specific meanings depend on what values, as discussed in Description below.

\section*{Description}

This routine sets the BLACS internal defaults depending on what values:
```

what = 1 Setting the BLACS message ID range.
If you wish to mix the BLACS with other message-passing packages, restrict the
BLACS to a certain message ID range not to be used by the non-BLACS routines.
The message ID range must be set before the first call to blacs_gridinit or
blacs_gridmap. Subsequent calls will have no effect. Because the message ID
range is not tied to a particular context, the parameter icontxt is ignored, and
val is defined as:
VAL (input) INTEGER array of dimension (2)
VAL (1) : The smallest message ID (also called message type or message tag)
the BLACS should use.
VAL (2) : The largest message ID (also called message type or message tag)
the BLACS should use.
Set number of rings for TOP = 'M' (multiring broadcast).This quantity is tied to
a context, so icontxt is used, and val is defined as:

```

VAL (input) INTEGER array of dimension (1)
VAL (1) : The number of rings for multiring topology to use.
what \(=12\)
what \(=13\)
what \(=14\)
what \(=15\)
what \(=16\)

Set number of branches for TOP = 'T' (general tree broadcast). This quantity is tied to a context, so icontxt is used, and val is defined as:
VAL (input) INTEGER array of dimension (1)
VAL (1) : The number of branches for general tree topology to use.
Set number of rings for \(\mathrm{TOP}=\mathrm{I}^{\mathrm{M}}\) ' (multiring combine). This quantity is tied to a context, so icontxt is used, and val is defined as:

VAL (input) INTEGER array of dimension (1)
VAL (1) : The number of rings for multiring topology to use.
Set number of branches for \(T O P=\) ' \(T\) ' (general tree gather). This quantity is tied to a context, so icontxt is used, and val is defined as:

VAL (input) INTEGER array of dimension (1)
VAL (1) : The number of branches for general tree topology to use.
Force topologies to be repeatable or not (see Repeatability and Coherence for more information about repeatability).

VAL (input) INTEGER array of dimension (1)
VAL \((1)=0\) (default) \(\quad\) Topologies are not required to be repeatable.
VAL \((1) \neq 0 \quad\) All used topologies are required to be repeatable, which might degrade performance.

Force topologies to be heterogenous coherent or not (see Repeatability and Coherence for more information about coherence).

VAL (input) INTEGER array of dimension (1)
\(\operatorname{VAL}(1)=0\) (default) Topologies are not required to be heterogenous coherent.

VAL \((1) \neq 0 \quad\) All used topologies are required to be heterogenous coherent, which might degrade performance.
blacs_gridinit
Assigns available processes into BLACS process grid.
Syntax
call blacs_gridinit(icontxt, layout, nprow, npcol)
Input Parameters
icontxt INTEGER. Integer handle indicating the system context to be used in creating the BLACS context. Call blacs_get to obtain a default system context.
layout
CHARACTER*1. Indicates how to map processes to BLACS grid. Options are:
\begin{tabular}{ll}
& \(\bullet R^{\prime}:\) Use row-major natural ordering \\
nprow & • 'C' : Use column-major natural ordering \\
npcol & INTEGER. Indicates how many process rows the process grid should \\
& contain. \\
& INTEGER. Indicates how many process columns the process grid \\
& should contain.
\end{tabular}

\section*{Output Parameters}
icontxt
INTEGER. Integer handle to the created BLACS context.

\section*{Description}

All BLACS codes must call this routine, or its sister routine blacs_gridmap. These routines take the available processes, and assign, or map, them into a BLACS process grid. In other words, they establish how the BLACS coordinate system maps into the native machine process numbering system. Each BLACS grid is contained in a context, so that it does not interfere with distributed operations that occur within other grids/ contexts. These grid creation routines may be called repeatedly to define additional contexts/grids.
The creation of a grid requires input from all processes that are defined to be in this grid. Processes belonging to more than one grid have to agree on which grid formation will be serviced first, much like the globally blocking sum or broadcast.

These grid creation routines set up various internals for the BLACS, and one of them must be called before any calls are made to the non-initialization BLACS.

Note that these routines map already existing processes to a grid: the processes are not created dynamically. On most parallel machines, the processes are "created" when you run your executable. When using the PVM BLACS, if the virtual machine has not been set up yet, the routine blacs_setup should be used to create the virtual machine.

This routine creates a simple nprow \(x\) npcol process grid. This process grid uses the first nprow * npcol processes, and assigns them to the grid in a row- or column-major natural ordering. If these process-to-grid mappings are unacceptable, call blacs_gridmap.
```

See Also
Examples of BLACS Routines Usage
blacs_get
blacs_gridmap
blacs_setup

```
blacs_gridmap
Maps available processes into BLACS process grid.
Syntax
```

call blacs_gridmap( icontxt, usermap, ldumap, nprow, npcol )

```

Input Parameters
icontxt
INTEGER. Integer handle indicating the system context to be used in creating the BLACS context. Call blacs_get to obtain a default system context.
```

usermap
Idumap
nprow
npcol
INTEGER. Array, dimension (Idumap, npcol), indicating the process-to-grid mapping.
INTEGER. Leading dimension of the 2D array usermap. Idumap $\geq$ nprow.
INTEGER. Indicates how many process rows the process grid should contain.
INTEGER. Indicates how many process columns the process grid should contain.

```

\section*{Output Parameters}
icontxt
INTEGER. Integer handle to the created BLACS context.

\section*{Description}

All BLACS codes must call this routine, or its sister routine blacs_gridinit. These routines take the available processes, and assign, or map, them into a BLACS process grid. In other words, they establish how the BLACS coordinate system maps into the native machine process numbering system. Each BLACS grid is contained in a context, so that it does not interfere with distributed operations that occur within other grids/ contexts. These grid creation routines may be called repeatedly to define additional contexts/grids.

The creation of a grid requires input from all processes that are defined to be in this grid. Processes belonging to more than one grid have to agree on which grid formation will be serviced first, much like the globally blocking sum or broadcast.
These grid creation routines set up various internals for the BLACS, and one of them must be called before any calls are made to the non-initialization BLACS.

Note that these routines map already existing processes to a grid: the processes are not created dynamically. On most parallel machines, the processes are actual processors (hardware), and they are "created" when you run your executable. When using the PVM BLACS, if the virtual machine has not been set up yet, the routine blacs_setup should be used to create the virtual machine.

This routine allows the user to map processes to the process grid in an arbitrary manner. usermap (i,j) holds the process number of the process to be placed in \(\{i, j\}\) of the process grid. On most distributed systems, this process number is a machine defined number between \(0 \ldots\) nprow- 1 . For PVM, these node numbers are the PVM TIDS (Task IDs). The blacs_gridmap routine is intended for an experienced user. The blacs_gridinit routine is much simpler. blacs_gridinit simply performs a gridmap where the first nprow * npcol processes are mapped into the current grid in a row-major natural ordering. If you are an experienced user, blacs_gridmap allows you to take advantage of your system's actual layout. That is, you can map nodes that are physically connected to be neighbors in the BLACS grid, etc. The blacs_gridmap routine also opens the way for multigridding: you can separate your nodes into arbitrary grids, join them together at some later date, and then re-split them into new grids. blacs_gridmap also provides the ability to make arbitrary grids or subgrids (for example, a "nearest neighbor" grid), which can greatly facilitate operations among processes that do not fall on a row or column of the main process grid.
```

See Also
Examples of BLACS Routines Usage
blacs_get
blacs_gridinit
blacs_setup

```

\section*{Destruction Routines}

This topic describes BLACS routines that destroy grids, abort processes, and free resources.

\section*{BLACS Destruction Routines}
\begin{tabular}{ll}
\hline Routine name & Operation performed \\
\hline blacs_freebuff & Frees BLACS buffer. \\
blacs_gridexit & Frees a BLACS context. \\
blacs_abort & Aborts all processes. \\
blacs_exit & Frees all BLACS contexts and releases all allocated memory. \\
\hline
\end{tabular}
blacs_freebuff
Frees BLACS buffer.
Syntax
call blacs_freebuff(icontxt, wait)
Input Parameters
icontxt INTEGER. Integer handle that indicates the BLACS context.
wait INTEGER. Parameter indicating whether to wait for non-blocking operations or not. If equals 0 , the operations should not be waited for; free only unused buffers. Otherwise, wait in order to free all buffers.

\section*{Description}

This routine releases the BLACS buffer.
The BLACS have at least one internal buffer that is used for packing messages. The number of internal buffers depends on what platform you are running the BLACS on. On systems where memory is tight, keeping this buffer or buffers may become expensive. Call freebuff to release the buffer. However, the next call of a communication routine that requires packing reallocates the buffer.

The wait parameter determines whether the BLACS should wait for any non-blocking operations to be completed or not. If wait \(=0\), the BLACS free any buffers that can be freed without waiting. If wait is not 0 , the BLACS free all internal buffers, even if non-blocking operations must be completed first.
blacs_gridexit
Frees a BLACS context.
Syntax
```

call blacs_gridexit( icontxt )

```

\section*{Input Parameters}
icontxt
INTEGER. Integer handle that indicates the BLACS context to be freed.

\section*{Description}

This routine frees a BLACS context.
Release the resources when contexts are no longer needed. After freeing a context, the context no longer exists, and its handle may be re-used if new contexts are defined.
blacs_abort
Aborts all processes.

\section*{Syntax}
```

call blacs_abort( icontxt, errornum )

```

Input Parameters
icontxt INTEGER. Integer handle that indicates the BLACS context to be aborted.

INTEGER. User-defined integer error number.

\section*{Description}

This routine aborts all the BLACS processes, not only those confined to a particular context.
Use blacs_abort to abort all the processes in case of a serious error. Note that both parameters are input, but the routine uses them only in printing out the error message. The context handle passed in is not required to be a valid context handle.
```

blacs_exit
Frees all BLACS contexts and releases all allocated
memory.
Syntax
call blacs_exit( continue )
Input Parameters

```
continue

INTEGER. Flag indicating whether message passing continues after the BLACS are done. If continue is non-zero, the user is assumed to continue using the machine after completing the BLACS. Otherwise, no message passing is assumed after calling this routine.

\section*{Description}

This routine frees all BLACS contexts and releases all allocated memory.
This routine should be called when a process has finished all use of the BLACS. The continue parameter indicates whether the user will be using the underlying communication platform after the BLACS are finished. This information is most important for the PVM BLACS. If continue is set to 0 , then pvm_exit is called; otherwise, it is not called. Setting continue not equal to 0 indicates that explicit PVM send/recvs will be called after the BLACS routines are used. Make sure your code calls pvm_exit. PVM users should either call blacs_exit or explicitly call pvm_exit to avoid PVM problems.

\section*{See Also}

Examples of BLACS Routines Usage

\section*{Informational Routines}

This topic describes BLACS routines that return information involving the process grid.

\section*{BLACS Informational Routines}
\begin{tabular}{ll}
\hline Routine name & Operation performed \\
\hline blacs_gridinfo & Returns information on the current grid. \\
blacs_pnum & Returns the system process number of the process in the process grid. \\
blacs_pcoord & Returns the row and column coordinates in the process grid. \\
\hline
\end{tabular}
blacs_gridinfo
Returns information on the current grid.
Syntax
```

call blacs_gridinfo( icontxt, nprow, npcol, myprow, mypcol )

```

Input Parameters
```

icontxt INTEGER. Integer handle that indicates the context.

```

\section*{Output Parameters}
nprow
npcol
myprow
mypcol

INTEGER. Number of process rows in the current process grid.
INTEGER. Number of process columns in the current process grid.
INTEGER. Row coordinate of the calling process in the process grid.
INTEGER. Column coordinate of the calling process in the process grid.

\section*{Description}

This routine returns information on the current grid. If the context handle does not point at a valid context, all quantities are returned as -1 .

\section*{See Also}

Examples of BLACS Routines Usage
blacs_pnum
Returns the system process number of the process in the process grid.

Syntax
```

call blacs_pnum( icontxt, prow, pcol )

```

Input Parameters
icontxt
prow
pcol

INTEGER. Integer handle that indicates the context.
INTEGER. Row coordinate of the process the system process number of which is to be determined.

INTEGER. Column coordinate of the process the system process number of which is to be determined.

\section*{Description}

This function returns the system process number of the process at \(\{P R O W, P C O L\}\) in the process grid.
```

See Also
Examples of BLACS Routines Usage
blacs_pcoord
Returns the row and column coordinates in the
process grid.
Syntax
call blacs_pcoord( icontxt, pnum, prow, pcol )
Input Parameters
icontxt INTEGER. Integer handle that indicates the context.
pnum INTEGER. Process number the coordinates of which are to be
determined. This parameter stand for the process number of the
underlying machine, that is, it is a tid for PVM.

```

\section*{Output Parameters}
prow
INTEGER. Row coordinates of the pnum process in the BLACS grid.
pcol
INTEGER. Column coordinates of the pnum process in the BLACS grid.

\section*{Description}

Given the system process number, this function returns the row and column coordinates in the BLACS process grid.

\section*{See Also}

Examples of BLACS Routines Usage

\section*{Miscellaneous Routines}

This topic describes blacs_barrier routine.

\section*{BLACS Informational Routines}
\begin{tabular}{ll}
\hline Routine name & Operation performed \\
\hline blacs_barrier & \begin{tabular}{l}
Holds up execution of all processes within the indicated scope until \\
they have all called the routine.
\end{tabular} \\
\hline
\end{tabular}
blacs_barrier
Holds up execution of all processes within the indicated scope.

Syntax
```

call blacs_barrier( icontxt, scope )

```

Input Parameters
icontxt
INTEGER. Integer handle that indicates the context.
scope CHARACTER*1. Parameter that indicates whether a process row (scope='R'), column ('C'), or entire grid ('A') will participate in the barrier.

\section*{Description}

This routine holds up execution of all processes within the indicated scope until they have all called the routine.

\section*{Examples of BLACS Routines Usage}

\section*{Data Fitting Functions}

Data Fitting functions in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provide spline-based interpolation capabilities that you can use to approximate functions, function derivatives or integrals, and perform cell search operations.
The Data Fitting component is task based. The task is a data structure or descriptor that holds the parameters related to a specific Data Fitting operation. You can modify the task parameters using the task editing functionality of the library.

For definition of the implemented operations, see Mathematical Conventions.
Data Fitting routines use the following workflow to process a task:
1. Create a task or multiple tasks.
2. Modify the task parameters.
3. Perform a Data Fitting computation.
4. Destroy the task or tasks.

All Data Fitting functions fall into the following categories:
Task Creation and Initialization Routines - routines that create a new Data Fitting task descriptor and initialize the most common parameters, such as partition of the interpolation interval, values of the vector-valued function, and the parameters describing their structure.
Task Configuration Routines - routines that set, modify, or query parameters in an existing Data Fitting task.
Computational Routines - routines that perform Data Fitting computations, such as construction of a spline, interpolation, computation of derivatives and integrals, and search.
Task Destructors - routines that delete Data Fitting task descriptors and deallocate resources.
You can access the Data Fitting routines through the Fortran and C89/C99 language interfaces. You can also use the C89 interface with more recent versions of C/C++, or the Fortran 90 interface with programs written in Fortran 95.
 Fitting header files:
- mkl_df.h

You can find examples that demonstrate usage of Data Fitting routines in the \$ \{MKL\}/examples/ datafittingc directory.

\section*{Data Fitting Function Naming Conventions}

The interface of the Data Fitting functions, types, and constants are case-sensitive and can be in lowercase, uppercase, and mixed case.
The names of all routines have the following structure:
df[datatype]<base_name>
where
- dfis a prefix indicating that the routine belongs to the Data Fitting component of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).
- [datatype] field specifies the type of the input and/or output data and can be s (for the single precision real type), d (for the double precision real type), or \(i\) (for the integer type). This field is omitted in the names of the routines that are not data type dependent.
- <base_name> field specifies the functionality the routine performs. For example, this field can be NewTask1D, Interpolate1D, or DeleteTask

\section*{Data Fitting Function Data Types}

The Data Fitting component provides routines for processing single and double precision real data types. The results of cell search operations are returned as a generic integer data type.
All Data Fitting routines use the following data type:

\section*{Type Data Object}

DFTaskPtr
Pointer to a task

\section*{NOTE}

The actual size of the generic integer type is platform-dependent. Before compiling your application, you need to set an appropriate byte size for integers. For details, see section Using the ILP64 Interface vs. LP64 Interface of the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide.

\section*{Mathematical Conventions for Data Fitting Functions}

This section explains the notation used for Data Fitting function descriptions. Spline notations are based on the terminology and definitions of [deBoor2001]. The Subbotin quadratic spline definition follows the conventions of [StechSub76]. The quasi-uniform partition definition is based on [Schumaker2007].
Mathematical Notation in the Data Fitting Component
\begin{tabular}{|c|c|}
\hline Concept & Mathematical Notation \\
\hline \begin{tabular}{l}
Partition of interpolation interval \([a, b]\), where \\
- \(x_{i}\) denotes breakpoints. \\
- \(\left[x_{i}, x_{i+1}\right.\)) denotes a sub-interval (cell) of size \(\Delta_{i}=x_{i+1}-x_{i}\).
\end{tabular} & \(\left\{x_{i}\right\}_{i=1, \ldots, n,}\) where \(a=x_{1}<x_{2}<\ldots<x_{n}=b\) \\
\hline Quasi-uniform partition of interpolation interval [a, b] & \begin{tabular}{l}
Partition \(\left\{x_{i}\right\}_{i=1, \ldots, n}\) which meets the constraint with a constant \(C\) defined as
\[
1 \leq M / m \leq C
\] \\
where \\
- \(M=\max _{i=1, \ldots, n-1}\left(\Delta_{i}\right)\) \\
- \(m=\min _{i=1, \ldots, n-1}\left(\Delta_{i}\right)\) \\
- \(\Delta_{i}=x_{i+1}-x_{i}\)
\end{tabular} \\
\hline Vector-valued function of dimension \(p\) being fit & \(f(x)=\left(f_{1}(x), \ldots, f_{p}(x)\right)\) \\
\hline Piecewise polynomial (PP) function \(f\) of order \(k+1\) & \begin{tabular}{l}
\[
f(x):=P_{i}(x), \text { if } x \in\left[x_{i}, x_{i+1}\right), i=1, \ldots, n-1
\] \\
where
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{cc}
\hline Concept & \multicolumn{1}{c}{ Mathematical Notation } \\
\hline & \(\bullet P_{i}\left(x_{i}\right)=f\left(x_{i}\right), P_{i}\left(x_{i+1}\right)=f\left(x_{i+1}\right)\) \\
& \(\bullet(x)\) is a continuously differentiable polynomial of the second \\
& degree on \(\left[t_{i}, t_{i+1}\right), i=1, \ldots, n\).
\end{tabular}

Piecewise cubic Hermite interpolant

Piecewise cubic Bessel interpolant

Piecewise cubic Akima interpolant

Piecewise natural cubic interpolant

Not-a-knot boundary condition.

Free-end boundary condition.
\[
P_{i}(x)=c_{1, i}+c_{2, i}\left(x-x_{i}\right)+c_{3, i}\left(x-x_{i}\right)^{2}+c_{4, i}\left(x-x_{i}\right)^{3}
\]
where
- \(x \in\left[x_{i}, x_{i+1}\right)\)
- \(c_{1, i}=f\left(x_{i}\right)\)
- \(c_{2, i}=s_{i}\)
- \(c_{3, i}=\left(\left[x_{i}, x_{i+1}\right] f-s_{i}\right) /\left(\Delta x_{i}\right)-c_{4, i}\left(\Delta x_{i}\right)\)
- \(c_{4, i}=\left(s_{i}+s_{i+1}-2\left[x_{i}, x_{i+1}\right] f\right) /\left(\Delta x_{i}\right)^{2}\)
- \(i=1, \ldots, n-1\)
- \(s_{i}=f^{(1)}\left(x_{i}\right)\)
\(P_{i}(x)=c_{1, i}+c_{2, i}\left(x-x_{i}\right)+c_{3, i}\left(x-x_{i}\right)^{2}+c_{4, i}\left(x-x_{i}\right)^{3}\),
where
- \(x \in\left[x_{i}, x_{i+1}\right)\)
- \(c_{1, i}=f\left(x_{i}\right)\)
- \(c_{2, i}=s_{i}\)
- \(c_{3, i}=\left(\left[x_{i}, x_{i+1}\right] f-s_{i}\right) /\left(\Delta x_{i}\right)-c_{4, i}\left(\Delta x_{i}\right)\)
- \(c_{4, i}=\left(s_{i}+s_{i+1}-2\left[x_{i}, x_{i+1}\right] f\right) /\left(\Delta x_{i}\right)^{2}\)
- \(i=1, \ldots, n-1\)
- \(s_{i}=\left(\Delta x_{i}\left[x_{i-1}, x_{i}\right] f+\Delta x_{i-1}\left[x_{i}, x_{i+1}\right] f\right) /\left(\Delta x_{i}+\Delta x_{i+1}\right)\)
\(P_{i}(x)=c_{1, i}+c_{2, i}\left(x-x_{i}\right)+c_{3, i}\left(x-x_{i}\right)^{2}+c_{4, i}\left(x-x_{i}\right)^{3}\),
where
- \(x \in\left[x_{i}, x_{i+1}\right)\)
- \(c_{1, i}=f\left(x_{i}\right)\)
- \(c_{2, i}=s_{i}\)
- \(c_{3, i}=\left(\left[x_{i}, x_{i+1}\right] f-s_{i}\right) /\left(\Delta x_{i}\right)-c_{4, i}\left(\Delta x_{i}\right)\)
- \(c_{4, i}=\left(s_{i}+s_{i+1}-2\left[x_{i}, x_{i+1}\right] f\right) /\left(\Delta x_{i}\right)^{2}\)
- \(i=1, \ldots, n-1\)
- \(s_{i}=\left(w_{i+1}\left[x_{i-1}, x_{i}\right] f+w_{i-1}\left[x f_{i}, x_{i+1}\right] f\right) /\left(w_{i+1}+w_{i-1}\right)\),
where
\[
w_{i}=\left|\left[x_{i}, x_{i+1}\right] f-\left[x_{i-1}, x_{i}\right] f\right|
\]
\(P_{i}(x)=c_{1, i}+c_{2, i}\left(x-x_{i}\right)+c_{3, i}\left(x-x_{i}\right)^{2}+c_{4, i}\left(x-x_{i}\right)^{3}\),
where
- \(x \in\left[x_{i}, x_{i+1}\right)\)
- \(c_{1, i}=f\left(x_{i}\right)\)
- \(c_{2, i}=s_{i}\)
- \(c_{3, i}=\left(\left[x_{i}, x_{i+1}\right] f-s_{i}\right) /\left(\Delta x_{i}\right)-c_{4, i}\left(\Delta x_{i}\right)\)
- \(c_{4, i}=\left(s_{i}+s_{i+1}-2\left[x_{i}, x_{i+1}\right] f\right) /\left(\Delta x_{i}\right)^{2}\)
- \(i=1, \ldots, n-1\)
- Parameter \(s_{i}\) depends on the condition that the interpolant is twice continuously differentiable: \(P_{i-1}^{(2)}\left(x_{i}\right)=P_{i}^{(2)}\left(x_{i}\right)\).

Parameters \(s_{1}\) and \(s_{n}\) provide \(P_{1}=P_{2}\) and \(P_{n-1}=P_{n}\), so that the first and the last interior breakpoints are inactive.
\(f^{\prime \prime}\left(x_{1}\right)=f^{\prime \prime}\left(x_{n}\right)=0\)
\begin{tabular}{|c|c|}
\hline Concept & Mathematical Notation \\
\hline Look-up interpolator for discrete set of points \(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\). & \[
y(x)= \begin{cases}y_{1}, & \text { if } x=x_{1} \\ y_{2}, & \text { if } x=x_{2} \\ & \cdots \\ y_{n}, & \text { if } x=x_{n} \\ \text { error, } & \text { otherwise }\end{cases}
\] \\
\hline Step-wise constant continuous right interpolator. & \[
y(x)=\left\{\begin{array}{cc}
y_{1}, & \text { if } x_{1} \leq x<x_{2} \\
y_{2}, & \text { if } x_{2} \leq x<x_{3} \\
\ldots \\
y_{n-1}, & \text { if } x_{n-1} \leq x<x_{n} \\
y_{n}, & \text { if } x=x_{n}
\end{array}\right.
\] \\
\hline Step-wise constant continuous left interpolator. & \[
y(x)=\left\{\begin{array}{cc}
y_{1}, & \text { if } x=x_{1} \\
y_{2}, & \text { if } x_{1}<x \leq x_{2} \\
y_{3}, & \text { if } x_{2}<x \leq x_{3} \\
\ldots \\
y_{n}, & \text { if } x_{n-1}<x \leq x_{n}
\end{array}\right.
\] \\
\hline
\end{tabular}

\section*{Data Fitting Usage Model}

Consider an algorithm that uses the Data Fitting functions. Typically, such algorithms consist of four steps or stages:
1. Create a task. You can call the Data Fitting function several times to create multiple tasks.
```

status = dfdNewTask1D( \&task, nx, x, xhint, ny, y, yhint );

```
2. Modify the task parameters.
```

status = dfdEditPPSpline1D( task, s_order, c_type, bc_type, bc, ic_type, ic,
scoeff, scoeffhint );

```
3. Perform Data Fitting spline-based computations. You may reiterate steps 2-3 as needed.
```

status = dfdInterpolatelD(task, estimate, method, nsite, site, sitehint, ndorder,
dorder, datahint, r, rhint, cell );

```
4. Destroy the task or tasks.
```

status = dfDeleteTask( \&task );

```

\section*{See Also}

Data Fitting Usage Examples

\section*{Data Fitting Usage Examples}

The examples below illustrate several operations that you can perform with Data Fitting routines.
You can get source code for similar examples in the . \examples \(\backslash\) datafittingcsubdirectory of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) installation directory.

The following example demonstrates the construction of a linear spline using Data Fitting routines. The spline approximates a scalar function defined on non-uniform partition. The coefficients of the spline are returned as a one-dimensional array:

\section*{Example of Linear Spline Construction}
```

\#include "mkl.h"
\#define N 500 /* Size of partition, number of breakpoints */
\#define SPLINE_ORDER DF_PP_LINEAR /* Linear spline to construct */
int main()
{
int status; /* Status of a Data Fitting operation */
DFTaskPtr task; /* Data Fitting operations are task based */
/* Parameters describing the partition */
MKL_INT nx; /* The size of partition x */
dou\overline{ble x[N]; /* Partition x */}
MKL_INT xhint; /* Additional information about the structure of breakpoints */
/* Parameters describing the function */
MKL_INT ny; /* Function dimension */
doub\overline{le y[N]; /* Function values at the breakpoints */}
MKL_INT yhint; /* Additional information about the function */
/* Parameters describing the spline */
MKL_INT s_order; /* Spline order */
MKL INT s type; /* Spline type */
MKL_INT ic_type; /* Type of internal conditions */
double* ic; /* Array of internal conditions */
MKL_INT bc_type; /* Type of boundary conditions */
double* bc; /* Array of boundary conditions */
double scoeff[(N-1)* SPLINE_ORDER]; /* Array of spline coefficients */
MKL_INT scoeffhint; /* Additional information about the coefficients */
/* Initialize the partition */
nx = N;
/* Set values of partition x */
...
xhint = DF_NO_HINT; /* No additional information about the function is provided.
By default, the partition is non-uniform. */
/* Initialize the function */
ny = 1; /* The function is scalar. */
/* Set function values */
yhint = DF_NO_HINT; /* No additional information about the function is provided. */
/* Create a Data Fitting task */
status = dfdNewTask1D( \&task, nx, x, xhint, ny, y, yhint );
/* Check the Data Fitting operation status */
...
/* Initialize spline parameters */
s_order = DF_PP_LINEAR; /* Spline is of the second order. */
s_type = DF_PP_DEFAULT; /* Spline is of the default type. */

```
```

/* Define internal conditions for linear spline construction (none in this example) */
ic_type = DF_NO_IC;
ic = NULL;
/* Define boundary conditions for linear spline construction (none in this example) */
bc_type = DF_NO_BC;
bc = NULL;
scoeffhint = DF_NO_HINT; /* No additional information about the spline. */
/* Set spline parameters in the Data Fitting task */
status = dfdEditPPSpline1D( task, s_order, s_type, bc_type, bc, ic_type,
ic, scoeff, scoeffhint );
/* Check the Data Fitting operation status */
...
/* Use a standard computation method to construct a linear spline: */
/* P
/* The library packs spline coefficients to array scoeff. */
/* scoeff[2*i+0]=Cci,0 and scoeff[2*i+1]=Cci,1, i=0,..., N-2 */
status = dfdConstruct1D( task, DF_PP_SPLINE, DF_METHOD_STD );
/* Check the Data Fitting operation status */
/* Process spline coefficients */
...
/* Deallocate Data Fitting task resources */
status = dfDeleteTask( \&task ) ;
/* Check the Data Fitting operation status */
...
return 0 ;
}

```

The following example demonstrates cubic spline-based interpolation using Data Fitting routines. In this example, a scalar function defined on non-uniform partition is approximated by Bessel cubic spline using not-a-knot boundary conditions. Once the spline is constructed, you can use the spline to compute spline values at the given sites. Computation results are packed by the Data Fitting routine in row-major format.

\section*{Example of Cubic Spline-Based Interpolation}
```

\#include "mkl.h"
\#define NX 100 /* Size of partition, number of breakpoints */
\#define NSITE 1000 /* Number of interpolation sites */
\#define SPLINE_ORDER DF_PP_CUBIC /* A cubic spline to construct */
int main()
{
int status; /* Status of a Data Fitting operation */
DFTaskPtr task; /* Data Fitting operations are task based */
/* Parameters describing the partition */
MKL_INT nx; /* The size of partition x */
doub}le x[NX]; /* Partition x */
MKL_INT xhint; /* Additional information about the structure of breakpoints */

```
```

/* Parameters describing the function */
MKL_INT ny; /* Function dimension */
double y[NX]; /* Function values at the breakpoints */
MKL_INT yhint; /* Additional information about the function */
/* Parameters describing the spline */
MKL_INT s_order; /* Spline order */
MKL_INT s_type; /* Spline type */
MKL_INT ic_type; /* Type of internal conditions */
double* ic; /* Array of internal conditions */
MKL_INT bc_type; /* Type of boundary conditions */
double* bc; /* Array of boundary conditions */
double scoeff[(NX-1)* SPLINE_ORDER]; /* Array of spline coefficients */
MKL_INT scoeffhint; /* Additional information about the coefficients */
/* Parameters describing interpolation computations */
MKL INT nsite; /* Number of interpolation sites */
doub\overline{le site[NSITE]; /* Array of interpolation sites */}
MKL_INT sitehint; /* Additional information about the structure of
interpolation sites */
MKL_INT ndorder, dorder; /* Parameters defining the type of interpolation */
double* datahint; /* Additional information on partition and interpolation sites */
double r[NSITE]; /* Array of interpolation results */
MKL_INT rhint; /* Additional information on the structure of the results */
MKL_INT* cell; /* Array of cell indices */
/* Initialize the partition */
nx = NX;
/* Set values of partition x */
...
xhint = DF_NON_UNIFORM_PARTITION; /* The partition is non-uniform. */
/* Initialize the function */
ny = 1; /* The function is scalar. */
/* Set function values */
yhint = DF_NO_HINT; /* No additional information about the function is provided. */
/* Create a Data Fitting task */
status = dfdNewTask1D( \&task, nx, x, xhint, ny, y, yhint );
/* Check the Data Fitting operation status */
/* Initialize spline parameters */
s order = DF PP CUBIC; /* Spline is of the fourth order (cubic spline). */
s_type = DF_\overline{PP_}\overline{B}ESSEL; /* Spline is of the Bessel cubic type. */
/* Define internal conditions for cubic spline construction (none in this example) */
ic_type = DF_NO_IC;
ic = NULL;

```
```

    /* Use not-a-knot boundary conditions. In this case, the is first and the last
    interior breakpoints are inactive, no additional values are provided. */
    bc_type = DF_BC_NOT_A_KNOT;
    bc = NULL;
    scoeffhint = DF_NO_HINT; /* No additional information about the spline. */
    /* Set spline parameters in the Data Fitting task */
    status = dfdEditPPSpline1D( task, s_order, s_type, bc_type, bc, ic_type,
            ic, scoēff, scoefffhint );
    /* Check the Data Fitting operation status */
    ...
    /* Use a standard method to construct a cubic Bessel spline: */
    /* P
    /* The library packs spline coefficients to array scoeff: */
    /* scoeff[4*i+0] = C ci,0, scoef[4*i+1] = C ci,1, */
    /* scoeff[4*i+2] = c ci,2, scoef[4*i+1] = c ci,3, */
    /* i=0,...,N-2 */
    status = dfdConstruct1D( task, DF_PP_SPLINE, DF_METHOD_STD );
    /* Check the Data Fitting operation status */
    /* Initialize interpolation parameters */
    nsite = NSITE;
    /* Set site values */
    ...
    sitehint = DF_NON_UNIFORM_PARTITION; /* Partition of sites is non-uniform */
    /* Request to compute spline values */
    ndorder = 1;
    dorder = 1;
    datahint = DF_NO_APRIORI_INFO; /* No additional information about breakpoints or
    sites is provided. */
    rhint = DF_MATRIX_STORAGE_ROWS; /* The library packs interpolation results
        in row-major format. */
    cell = NULL; /* Cell indices are not required. */
    /* Solve interpolation problem using the default method: compute the spline values
    at the points site(i), i=0,..., nsite-1 and place the results to array r */
    status = dfdInterpolate1D( task, DF_INTERP, DF_METHOD_PP, nsite, site,
    sitehint, ndorder, &dorder, datahint, r, rhint, cell );
    /* Check Data Fitting operation status */
    /* De-allocate Data Fitting task resources */
    status = dfDeleteTask( &task );
    /* Check Data Fitting operation status */
    ...
    return 0;
    }

```

The following example demonstrates how to compute indices of cells containing given sites. This example uses uniform partition presented with two boundary points. The sites are in the ascending order.

\section*{Example of Cell Search}
```

\#include "mkl.h"
\#define NX 100 /* Size of partition, number of breakpoints */
\#define NSITE 1000 /* Number of interpolation sites */
int main()
{
int status; /* Status of a Data Fitting operation */
DFTaskPtr task; /* Data Fitting operations are task based */
/* Parameters describing the partition */
MKL_INT nx; /* The size of partition x */
float x[2]; /* Partition x is uniform and holds endpoints
of interpolation interval [a, b] */
MKL_INT xhint; /* Additional information about the structure of breakpoints */
/* Parameters describing the function */
MKL_INT ny; /* Function dimension */
float *y; /* Function values at the breakpoints */
MKL_INT yhint; /* Additional information about the function */
/* Parameters describing cell search */
MKL_INT nsite; /* Number of interpolation sites */
float site[NSITE]; /* Array of interpolation sites */
MKL_INT sitehint; /* Additional information about the structure of sites */
float* datahint; /* Additional information on partition and interpolation sites */
MKL_INT cell[NSITE]; /* Array for cell indices */
/* Initialize a uniform partition */
nx = NX;
/* Set values of partition x: for uniform partition, */
/* provide end-points of the interpolation interval [-1.0,1.0] */
x[0] = -1.0f; x[1] = 1.0f;
xhint = DF_UNIFORM_PARTITION; /* Partition is uniform */
/* Initialize function parameters */
/* In cell search, function values are not necessary and are set to zero/NULL values */
ny = 0;
y = NULL;
yhint = DF_NO_HINT;
/* Create a Data Fitting task */
status = dfsNewTask1D( \&task, nx, x, xhint, ny, y, yhint );
/* Check Data Fitting operation status */
...
/* Initialize interpolation (cell search) parameters */
nsite = NSITE;
/* Set sites in the ascending order */
...
sitehint = DF_SORTED_DATA; /* Sites are provided in the ascending order. */
datahint = DF_NO_APRİORI_INFO; /* No additional information

```
```

            about breakpoints/sites is provided.*/
    /* Use a standard method to compute indices of the cells that contain
interpolation sites. The library places the index of the cell containing
site(i) to the cell(i), i=0,...,nsite-1 */
status = dfsSearchCells1D( task, DF_METHOD_STD, nsite, site, sitehint,
datahint, cell );
/* Check Data Fitting operation status */
/* Process cell indices */
...
/* Deallocate Data Fitting task resources */
status = dfDeleteTask( \&task );
/* Check Data Fitting operation status */
...
return 0;
}

```

\section*{Data Fitting Function Task Status and Error Reporting}

The Data Fitting routines report a task status through integer values. Negative status values indicate errors, while positive values indicate warnings. An error can be caused by invalid parameter values or a memory allocation failure.
The status codes have symbolic names predefined in the header file as macros via the \#define statements. If no error occurred, the function returns the DF_STATUS_OK code defined as zero:
```

\#define DF_STATUS_OK 0

```

In case of an error, the function returns a non-zero error code that specifies the origin of the failure. Header files define the following status codes:

\section*{Status Codes in the Data Fitting Component}

\section*{Status Code Description}

\section*{Common Status Codes}
```

DF_STATUS_OK
DF_ERROR_NULL_TASK
DF_ERROR_MEM_FAILURE
DF_ERROR_METHOD_NOT_SUPPORTED
DF_ERROR_COMP_TYPE_NOT_SUPPORTED
DF_ERROR_NULL_PTR

```

Operation completed successfully.
Data Fitting task is a NULL pointer.
Memory allocation failure.
Requested method is not supported.
Requested computation type is not supported.
Pointer to parameter is null.

\section*{Data Fitting Task Creation and Initialization, and Generic Editing Operations}
```

DF_ERROR_BAD_NX
DF_ERROR_BAD_X
DF_ERROR_BAD_X_HINT

```

Invalid number of breakpoints.
Array of breakpoints is invalid.
Invalid hint describing the structure of the partition.
Status Code Description
```

DF_ERROR_BAD_NY
DF_ERROR_BAD_Y
DF_ERROR_BAD_Y_HINT

```

\section*{Data Fitting Task-Specific Editing Operations}

\section*{Data Fitting Computation Operations}
```

DF_ERROR_BAD_NSITE
DF_ERROR_BAD_SITE
DF_ERROR_BAD_SITE_HINT
DF_ERROR_BAD_NDORDER
DF_ERROR_BAD_DORDER
DF_ERROR_BAD_DATA_HINT

```
```

DF_ERROR_BAD_SPLINE_ORDER

```
DF_ERROR_BAD_SPLINE_ORDER
DF_ERROR_BAD_SPLINE_TYPE
DF_ERROR_BAD_SPLINE_TYPE
DF_ERROR_BAD_IC_TYPE
DF_ERROR_BAD_IC_TYPE
DF_ERROR_BAD_IC
DF_ERROR_BAD_IC
DF_ERROR_BAD_BC_TYPE
DF_ERROR_BAD_BC_TYPE
DF_ERROR_BAD_BC
DF_ERROR_BAD_BC
DF_ERROR_BAD_PP_COEFF
DF_ERROR_BAD_PP_COEFF
DF_ERROR_BAD_PP_COEFF_HINT
DF_ERROR_BAD_PP_COEFF_HINT
DF_ERROR_BAD_PERIODIC_VAL
DF_ERROR_BAD_PERIODIC_VAL
DF_ERROR_BAD_DATA_ATTR
DF_ERROR_BAD_DATA_ATTR
DF_ERROR_BAD_DATA_IDX
```

DF_ERROR_BAD_DATA_IDX

```

Invalid dimension of vector-valued function \(y\).
Array of function values is invalid.
Invalid flag describing the structure of function \(y\)

Invalid spline order.
Invalid spline type.
Type of internal conditions used for spline construction is invalid.

Array of internal conditions for spline construction is not defined.

Type of boundary conditions used in spline construction is invalid.

Array of boundary conditions for spline construction is not defined.

Array of piecewise polynomial spline coefficients is not defined.

Invalid flag describing the structure of the piecewise polynomial spline coefficients.

Function values at the endpoints of the interpolation interval are not equal as required in periodic boundary conditions.

Invalid attribute of the pointer to be set or modified in Data Fitting task descriptor with the df ?
EditIdxPtr task editor.
Index of the pointer to be set or modified in the Data Fitting task descriptor with the df ? EditIdxPtr task editor is out of the pre-defined range.

Invalid number of interpolation sites.
Array of interpolation sites is not defined.
Invalid flag describing the structure of interpolation sites.

Invalid size of the array defining derivative orders to be computed at interpolation sites.

Array defining derivative orders to be computed at interpolation sites is not defined.

Invalid flag providing additional information about partition or interpolation sites.
\begin{tabular}{ll}
\hline Status Code & Description \\
\hline DF_ERROR_BAD_INTERP & \begin{tabular}{l}
Array of spline-based interpolation results is not \\
defined.
\end{tabular} \\
DF_ERROR_BAD_INTERP_HINT & \begin{tabular}{l}
Invalid flag defining the structure of spline-based \\
interpolation results.
\end{tabular} \\
DF_ERROR_BAD_CELL_IDX & \begin{tabular}{l}
Array of indices of partition cells containing \\
interpolation sites is not defined.
\end{tabular} \\
DF_ERROR_BAD_NLIM & \begin{tabular}{l}
Invalid size of arrays containing integration limits.
\end{tabular} \\
DF_ERROR_BAD_LLIM & \begin{tabular}{l}
Array of the left-side integration limits is not \\
defined.
\end{tabular} \\
DF_ERROR_BAD_RLIM & \begin{tabular}{l}
Array of the right-side integration limits is not \\
defined.
\end{tabular} \\
DF_ERROR_BAD_INTEGR & \begin{tabular}{l}
Array of spline-based integration results is not \\
defined.
\end{tabular} \\
DF_ERROR_BAD_INTEGR_HINT & \begin{tabular}{l}
Invalid flag providing the structure of the array of \\
spline-based integration results.
\end{tabular} \\
DF_ERROR_BAD_LOOKUP_INTERP_SITE & \begin{tabular}{l}
Bad site provided for interpolation with look-up \\
interpolator.
\end{tabular} \\
\hline
\end{tabular}

\section*{NOTE}

The routine that estimates piecewise polynomial cubic spline coefficients can return internal error codes related to the specifics of the implementation. Such error codes indicate invalid input data or other issues unrelated to Data Fitting routines.

\section*{Data Fitting Task Creation and Initialization Routines}

Task creation and initialization routines are functions used to create a new task descriptor and initialize its parameters. The Data Fitting component provides the df?NewTask1D routine that creates and initializes a new task descriptor for a one-dimensional Data Fitting task.

\section*{df?NewTask1D}

Creates and initializes a new task descriptor for a onedimensional Data Fitting task.

\section*{Syntax}
```

status = dfsNewTask1D(\&task, nx, x, xhint, ny, y, yhint)
status = dfdNewTask1D(\&task, nx, x, xhint, ny, y, yhint)

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \(n \mathrm{x}\) & const MKL_INT & Number of breakpoints representing partition of interpolation interval [a, b]. \\
\hline \(x\) & ```
const float* for
dfsNewTask1D
const double* for
dfdNewTask1D
``` & \begin{tabular}{l}
One-dimensional array containing the strictly sorted breakpoints from interpolation interval [a, b]. The structure of the array is defined by parameter xhint: \\
- If partition is non-uniform or quasi-uniform, the array should contain \(n x\) strictly ordered values. \\
- If partition is uniform, the array should contain two entries that represent endpoints of interpolation interval [a, b].
\end{tabular} \\
\hline
\end{tabular}
xhint const MKL_INT
\(\begin{array}{ll}\text { ny } & \text { const MKL_INT } \\ y & \text { const float* for dfsNewTask }\end{array}\)
const double* for dfdNewTask
const MKL_INT

\section*{Caution}

The array must be strictly sorted. If it is unordered, the results of data fitting routines are not correct.

A flag describing the structure of partition \(x\). For the list of possible values of xhint, see table "Hint Values for Partition x". If you set the flag to the DF_NO_HINT value, the library interprets the partition as non-uniform.

Dimension of vector-valued function \(y\).
Vector-valued function \(y\), array of size \(n x^{*} n y\).
The storage format of function values in the array is defined by the value of flag yhint.

A flag describing the structure of array \(y\). Valid hint values are listed in table "Hint Values for Vector-Valued Function \(y^{\prime \prime}\). If you set the flag to the DF_NO_HINT value, the library assumes that all ny coordinates of the vector-valued function \(y\) are provided and stored in row-major format.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
task & DFTaskPtr \\
status & int
\end{tabular}

\section*{Description}

Descriptor of the task.
Status of the routine:
- DF_STATUS_OK if the task is created successfully.
- Non-zero error code if the task creation failed. See "Task Status and Error Reporting" for error code definitions.

\section*{Description}

The df?NewTask1D routine creates and initializes a new Data Fitting task descriptor with user-specified parameters for a one-dimensional Data Fitting task. The \(x\) and \(n x\) parameters representing the partition of interpolation interval \([a, b]\) are mandatory. If you provide invalid values for these parameters, such as a NULL pointer \(x\) or the number of breakpoints smaller than two, the routine does not create the Data Fitting task and returns an error code.

If you provide a vector-valued function \(y\), make sure that the function dimension \(n y\) and the array of function values \(y\) are both valid. If any of these parameters are invalid, the routine does not create the Data Fitting task and returns an error code.

If you store coordinates of the vector-valued function \(y\) in non-contiguous memory locations, you can set the yhint flag to DF_1ST_COORDINATE, and pass only the first coordinate of the function into the task creation routine. After successful creation of the Data Fitting task, you can pass the remaining coordinates using the df?EditIdxPtr task editor.

If the routine fails to create the task descriptor, it returns a NULL task pointer.
The routine supports the following hint values for partition \(x\) :

\section*{Hint Values for Partition \(x\)}
\begin{tabular}{ll}
\hline Value & Description \\
\hline DF_NON_UNIFORM_PARTITION & Partition is non-uniform. \\
DF_QUASI_UNIFORM_PARTITION & Partition is quasi-uniform. \\
DF_UNIFORM_PARTITION & Partition is uniform. \\
DF_NO_HINT & \begin{tabular}{l} 
No hint is provided. By default, partition is interpreted as non- \\
uniform.
\end{tabular} \\
\hline
\end{tabular}

The routine supports the following hint values for the vector-valued function:
Hint Values for Vector-Valued Function \(y\)
\begin{tabular}{ll}
\hline Value & Description \\
\hline DF_MATRIX_STORAGE_ROWS & Data is stored in row-major format according to C conventions. \\
DF_MATRIX_STORAGE_COLS & \begin{tabular}{l} 
Data is stored in column-major format according to Fortran \\
conventions.
\end{tabular} \\
DF_1ST_COORDINATE & The first coordinate of vector-valued data is provided. \\
DF_NO_HINT & \begin{tabular}{l} 
No hint is provided. By default, the coordinates of vector-valued \\
function \(y\) are provided and stored in row-major format.
\end{tabular} \\
\hline
\end{tabular}

\section*{NOTE}

You must preserve the arrays \(x\) (breakpoints) and \(y\) (vector-valued functions) through the entire workflow of the Data Fitting computations for a task, as the task stores the addresses of the arrays for spline-based computations.

\section*{Task Configuration Routines}

In order to configure tasks, you can use task editors and task query routines.

Task editors initialize or change the predefined Data Fitting task parameters. You can use task editors to initialize or modify pointers to arrays or parameter values.

Task editors can be task-specific or generic. Task-specific editors can modify more than one parameter related to a specific task. Generic editors modify a single parameter at a time.
The Data Fitting component of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides the following task editors:
Data Fitting Task Editors
\begin{tabular}{lll}
\hline Editor & Description & Type \\
\hline df? & \begin{tabular}{l} 
Changes parameters of the piecewise polynomial \\
Epline.
\end{tabular} & Task-specific \\
df?EditPtr & Changes a pointer in the task descriptor. & Generic \\
dfiEditVal & \begin{tabular}{l} 
Changes a value in the task descriptor. \\
df?EditIdxPtr
\end{tabular} & \begin{tabular}{l} 
Changes a coordinate of data represented in \\
matrix format, such as a vector-valued function or \\
spline coefficients.
\end{tabular} \\
\hline
\end{tabular}

Task query routines are used to read the predefined Data Fitting task parameters. You can use task query routines to read the values of pointers or parameters.

Task query routines are generic (not task-specific), allowing you to read a single parameter at a time.
The Data Fitting component of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides the following task query routines:
Data Fitting Task Query Routines
\begin{tabular}{lll}
\hline Editor & Description & Type \\
\hline df?QueryPtr & Queries a pointer in the task descriptor. & Generic \\
dfiQueryVal & Queries a value in the task descriptor. & Generic \\
df?QueryIdxPtr & \begin{tabular}{l} 
Queries a coordinate of data represented in matrix \\
format, such as a vector-valued function or spline \\
coefficients.
\end{tabular} & Generic \\
\hline
\end{tabular}
df?EditPPSpline1D
Modifies parameters representing a spline in a Data
Fitting task descriptor.
Syntax
```

status = dfsEditPPSpline1D(task, s_order, s_type, bc_type, bc, ic_type, ic, scoeff,
scoeffhint)
status = dfdEditPPSpline1D(task, s_order, s_type, bc_type, bc, ic_type, ic, scoeff,
scoeffhint)

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline task & DFTaskPtr \\
\hline s_order & const MKL_INT \\
\hline s_type & const MKL_INT \\
\hline bc_type & const MKL_INT \\
\hline bc & const float* for dfsEditPPSpline1D const double* for dfdEditPPSpline1D \\
\hline ic_type & const MKL_INT \\
\hline ic & const float* for dfsEditPPSpline1D const double* for dfdEditPPSpline1D \\
\hline scoeff & const float* for dfsEditPPSpline1D const double* for dfdEditPPSpline1D \\
\hline
\end{tabular}

\section*{Description}

Descriptor of the task.
Spline order. The parameter takes one of the values described in table "Spline Orders Supported by Data Fitting Functions".

Spline type. The parameter takes one of the values described in table "Spline Types Supported by Data Fitting Functions".

Type of boundary conditions. The parameter takes one of the values described in table "Boundary Conditions Supported by Data Fitting Functions".

Pointer to boundary conditions. The size of the array is defined by the value of parameter bc_type:
- If you set free-end or not-a-knot boundary conditions, pass the NULL pointer to this parameter.
- If you combine boundary conditions at the endpoints of the interpolation interval, pass an array of two elements.
- If you set a boundary condition for the default quadratic spline or a periodic condition for Hermite or the default cubic spline, pass an array of one element.

Type of internal conditions. The parameter takes one of the values described in table "Internal Conditions Supported by Data Fitting Functions".

A non-NULL pointer to the array of internal conditions. The size of the array is defined by the value of parameter ic_type:
- If you set first derivatives or second
derivatives internal conditions
(ic_type=DF_IC_1ST_DER or
ic_type=DF_IC_2ND_DER), pass an array of \(n-1\) derivative values at the internal points of the interpolation interval.
- If you set the knot values internal condition for Subbotin spline (ic_type=DF_IC_Q_KNOT) and the knot partition is non-uniform, pass an array of \(n+1\) elements.
- If you set the knot values internal condition for Subbotin spline (ic_type=DF_IC_Q_KNOT) and the knot partition is uniform, pass an array of four elements.

Spline coefficients. An array of size \(n y^{\star} s_{\text {_order }}{ }^{\star}(n x-1)\). The storage format of the coefficients in the array is defined by the value of flag scoeffhint.

\section*{Name Type \\ scoeffhint const MKL_INT}

\section*{Description}

A flag describing the structure of the array of spline coefficients. For valid hint values, see table "Hint Values for Spline Coefficients". The library stores the coefficients in row-major format. The default value is DF_NO_HINT.

\section*{Description}

Status of the routine:
- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

\section*{Description}

The editor modifies parameters that describe the order, type, boundary conditions, internal conditions, and coefficients of a spline. The spline order definition is provided in the "Mathematical Conventions" section. You can set the spline order to any value supported by Data Fitting functions. The table below lists the available values:

\section*{Spline Orders Supported by the Data Fitting Functions}
\begin{tabular}{|c|c|}
\hline Order & Description \\
\hline DF_PP_STD & Artificial value. Use this value for look-up and stepwise constant interpolants only. \\
\hline DF_PP_LINEAR & Piecewise polynomial spline of the second order (linear spline). \\
\hline DF_PP_QUADRATIC & Piecewise polynomial spline of the third order (quadratic spline). \\
\hline DF_PP_CUBIC & Piecewise polynomial spline of the fourth order (cubic spline). \\
\hline
\end{tabular}

To perform computations with a spline not supported by Data Fitting routines, set the parameter defining the spline order and pass the spline coefficients to the library in the supported format. For format description, see figure "Row-major Coefficient Storage Format".
The table below lists the supported spline types:
Spline Types Supported by Data Fitting Functions
\begin{tabular}{ll}
\hline Type & Description \\
\hline\(D F \_P P_{-}\)DEFAULT & \begin{tabular}{l} 
The default spline type. You can use this type with \\
linear, quadratic, or user-defined splines.
\end{tabular} \\
DF_PP_SUBBOTIN & \begin{tabular}{l} 
Quadratic splines based on Subbotin algorithm, \\
[StechSub76].
\end{tabular} \\
DF_PP_NATURAL & Natural cubic spline.
\end{tabular}
\begin{tabular}{ll}
\hline Type & Description \\
\hline DF_PP_HERMITE & Hermite cubic spline. \\
DF_PP_BESSEL & Bessel cubic spline. \\
DF_PP_AKIMA & Akima cubic spline. \\
DF_LOOKUP_INTERPOLANT & Look-up interpolant. \\
DF_CR_STEPWISE_CONST_INTERPOLANT & Continuous right step-wise constant interpolant. \\
DF_CL_STEPWISE_CONST_INTERPOLANT & Continuous left step-wise constant interpolant. \\
\hline
\end{tabular}

If you perform computations with look-up or step-wise constant interpolants, set the spline order to the DF_PP_STD value.
Construction of specific splines may require boundary or internal conditions. To compute coefficients of such splines, you should pass boundary or internal conditions to the library by specifying the type of the conditions and providing the necessary values. For splines that do not require additional conditions, such as linear splines, set condition types to \(D F_{-} N O \quad B C\) and \(D F_{-} N O \quad I C\), and pass NULL pointers to the conditions. The table below defines the supported boundary conditions:

Boundary Conditions Supported by Data Fitting Functions
\begin{tabular}{lll}
\hline Boundary Condition & Description & Spline \\
\hline DF_NO_BC & No boundary conditions provided. & All \\
DF_BC_NOT_A_KNOT & Not-a-knot boundary conditions. & \begin{tabular}{l} 
Akima, Bessel, Hermite, natural \\
cubic
\end{tabular} \\
DF_BC_FREE_END & Free-end boundary conditions. & \begin{tabular}{l} 
Akima, Bessel, Hermite, natural \\
cubic, quadratic Subbotin
\end{tabular} \\
DF_BC_1ST_LEFT_DER & \begin{tabular}{l} 
The first derivative at the left \\
endpoint.
\end{tabular} & \begin{tabular}{l} 
Akima, Bessel, Hermite, natural \\
cubic, quadratic Subbotin
\end{tabular} \\
DF_BC_1ST_RIGHT_DER & \begin{tabular}{l} 
The first derivative at the right \\
endpoint.
\end{tabular} & \begin{tabular}{l} 
Akima, Bessel, Hermite, natural \\
cubic, quadratic Subbotin
\end{tabular} \\
DF_BC_2ST_LEFT_DER & \begin{tabular}{l} 
The second derivative at the left \\
endpoint.
\end{tabular} & \begin{tabular}{l} 
Akima, Bessel, Hermite, natural \\
cubic, quadratic Subbotin
\end{tabular} \\
DF_BC_2ND_RIGHT_DER & The second derivative at the right & Akima, Bessel, Hermite, natural \\
endpic, quadratic Subbotin
\end{tabular}

\section*{NOTE}

To construct a natural cubic spline, pass these settings to the editor:
- DF_PP_CUBIC as the spline order,
- DF_PP_NATURAL as the spline type, and
- DF_BC_FREE_END as the boundary condition.

To construct a cubic spline with other boundary conditions, pass these settings to the editor:
- DF_PP_CUBIC as the spline order,
- DF_PP_NATURAL as the spline type, and
- the required type of boundary condition.

For Akima, Hermite, Bessel, and default cubic splines use the corresponding type defined in Table Spline Types Supported by Data Fitting Functions.

You can combine the values of boundary conditions with a bitwise or operation. This permits you to pass combinations of first and second derivatives at the endpoints of the interpolation interval into the library. To pass a first derivative at the left endpoint and a second derivative at the right endpoint, set the boundary conditions to DF_BC_1ST_LEFT_DER OR DF_BC_2ND_RIGHT_DER.
You should pass the combined boundary conditions as an array of two elements. The first entry of the array contains the value of the boundary condition for the left endpoint of the interpolation interval, and the second entry - for the right endpoint. Pass other boundary conditions as arrays of one element.

For the conditions defined as a combination of valid values, the library applies the following rules to identify the boundary condition type:
- If not required for spline construction, the value of boundary conditions is ignored.
- Not-a-knot condition has the highest priority. If set, other boundary conditions are ignored.
- Free-end condition has the second priority after the not-a-knot condition. If set, other boundary conditions are ignored.
- Periodic boundary condition has the next priority after the free-end condition.
- The first derivative has higher priority than the second derivative at the right and left endpoints.

If you set the periodic boundary condition, make sure that function values at the endpoints of the interpolation interval are identical. Otherwise, the library returns an error code. The table below specifies the values to be provided for each type of spline if the periodic boundary condition is set.
Boundary Requirements for Periodic Conditions
\begin{tabular}{lll}
\hline Spline Type & \begin{tabular}{l} 
Periodic Boundary Condition \\
Support
\end{tabular} & Boundary Value \\
\hline Linear & Yes & Not required \\
Default quadratic & No & \\
Subbotin quadratic & No & Not required \\
Natural cubic & Yes & Not required \\
Bessel & Yes & Not required \\
Akima & Yes & First derivative \\
Hermite cubic & Yes & Second derivative \\
\hline Default cubic & Yes & \\
\hline
\end{tabular}

Internal conditions supported in the Data Fitting domain that you can use for the ic_type parameter are the following:
Internal Conditions Supported by Data Fitting Functions
\begin{tabular}{lll}
\hline Internal Condition & Description & Spline \\
\hline DF_NO_IC & No internal conditions provided. & \\
DF_IC_1ST_DER & \begin{tabular}{l} 
Array of first derivatives of size \\
\(n-2\), where \(n\) is the number of \\
breakpoints. Derivatives are \\
applicable to each coordinate of \\
the vector-valued function.
\end{tabular} & Hermite cubic \\
& \begin{tabular}{l} 
Array of second derivatives of \\
size n-2, where \(n\) is the number \\
of breakpoints. Derivatives are \\
applicable to each coordinate of
\end{tabular} & Default cubic \\
the vector-valued function. & \\
\hline DF_IC_Q_KNOT & \begin{tabular}{ll} 
Knot array of size \(n+1\), where \(n\) \\
is the number of breakpoints.
\end{tabular} & Subbotin quadratic
\end{tabular}

To construct a Subbotin quadratic spline, you have three options to get the array of knots in the library:
- If you do not provide the knots, the library uses the default values of knots \(t=\left\{t_{i}\right\}, i=0, \ldots, n\) according to the rule: \(t_{0}=x_{0}, t_{n}=x_{n-1}, t_{i}=\left(x_{i}+x_{i-1}\right) / 2, i=1, \ldots, n-1\).
- If you provide the knots in an array of size \(n+1\), the knots form a non-uniform partition. Make sure that the knot values you provide meet the following conditions:
\(t_{0}=x_{0}, t_{n}=x_{n-1}, t_{i} \in\left(x_{i-1}, x_{i}\right), i=1, \ldots, n-1\).
- If you provide the knots in an array of size 4, the knots form a uniform partition
\(t_{0}=x_{0}, t_{1}=I, t_{2}=r, t_{3}=x_{n-1}\), where \(I \in\left(x_{0}, x_{1}\right)\) and \(r \in\left(x_{n-2}, x_{n-1}\right)\).
In this case, you need to set the value of the ic_type parameter holding the type of internal conditions to DF_IC_Q_KNOT OR DF_UNIFORM_PARTITION.

\section*{NOTE}

Since the partition is uniform, perform an OR operation with the DF_UNIFORM_PARTITION partition hint value described in Table Hint Values for Partition x.

For computations based on look-up and step-wise constant interpolants, you can avoid calling the df? EditPPSpline1D editor and directly call one of the routines for spline-based computation of spline values, derivatives, or integrals. For example, you can call the df?Construct1D routine to construct the required spline with the given attributes, such as order or type.
The memory location of the spline coefficients is defined by the scoeff parameter. Make sure that the size of the array is sufficient to hold \(n y^{*} s_{\text {_order }}{ }^{*}(n x-1)\) values.

The df?EditPPSpline1D routine supports the following hint values for spline coefficients:

Hint Values for Spline Coefficients
\begin{tabular}{ll}
\hline Order & Description \\
\hline DF_1ST_COORDINATE & \begin{tabular}{l} 
The first coordinate of vector-valued data is \\
provided.
\end{tabular} \\
DF_NO_HINT & \begin{tabular}{l} 
No hint is provided. By default, all sets of spline \\
coefficients are stored in row-major format.
\end{tabular} \\
\hline
\end{tabular}

The coefficients for all coordinates of the vector-valued function are packed in memory one by one in successive order, from function \(y 1\) to function \(y n y\).
Within each coordinate, the library stores the coefficients as an array, in row-major format:
\(c_{1,0}, c_{1,1}, \ldots, c_{1, k}, c_{2,0}, c_{2,1}, \ldots, c_{2, k}, \ldots, c_{n-1,0}, c_{n-1,1}, \ldots, c_{n-1, k}\)
Mapping of the coefficients to storage in the scoeff array is described below, where \(c_{i, j}\) is the \(j\) th coefficient of the function
\[
P_{i}(x)=c_{i, 0}+c_{i, 1}\left(x-x_{i}\right)+\ldots+c_{i, k}\left(x-x_{i}\right)^{k}
\]

See Mathematical Conventions for more details on nomenclature and interpolants.

\section*{Row-major Coefficient Storage Format}


If you store splines corresponding to different coordinates of the vector-valued function at non-contiguous memory locations, do the following:
1. Set the scoeffhint flag to DF_1ST_COORDINATE and provide the spline for the first coordinate.
2. Pass the spline coefficients for the remaining coordinates into the Data Fitting task using the df?

EditIdxPtr task editor.
Using the df?EditPPSpline1D task editor, you can provide to the Data Fitting task an already constructed spline that you want to use in computations. To ensure correct interpretation of the memory content, you should set the following parameters:
- Spline order and type, if appropriate. If the spline is not supported by the library, set the s_type parameter to DF_PP_DEFAULT.
- Pointer to the array of spline coefficients in row-major format.
- The scoeffhint parameter describing the structure of the array:
- Set the scoeffhint flag to the DF_1ST_COORDINATE value to pass spline coefficients stored at different memory locations. In this case, you can set the parameters that describe boundary and internal conditions to zero.
- Use the default value DF_NO_HINT for all other cases.

Before passing an already constructed spline into the library, you should call the dfiEditVal task editor to provide the dimension of the spline DF_NY. See table "Parameters Supported by the dfiEditVal Task Editor" for details.
After you provide the spline to the Data Fitting task, you can run computations that use this spline.

\section*{NOTE}

You must preserve the arrays bc (boundary conditions), ic (internal conditions), and scoeff (spline coefficients) through the entire workflow of the Data Fitting computations for a task, as the task stores the addresses of the arrays for spline-based computations.
```

df?EditPtr
Modifies a pointer to an array held in a Data Fitting
task descriptor.
Syntax
status = dfsEditPtr(task, ptr_attr, ptr)
status = dfdEditPtr(task, ptr_attr, ptr)

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
task & DFTaskPtr & Descriptor of the task. \\
ptr_attr & const MKL_INT & \begin{tabular}{l} 
The parameter to change. For details, see the Pointer \\
\\
Attribute column in table "Pointers Supported by the df? \\
EditPtr Task Editor".
\end{tabular} \\
& const float* for dfsEditPtr \\
& const double* for dfdEditPtr
\end{tabular}\(\quad\)\begin{tabular}{ll} 
New pointer. For details, see the Purpose column in table
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
status & int & Status of the routine:
\end{tabular}
- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

\section*{Description}

The df?EditPtr editor replaces the pointer of type ptr_attr stored in a Data Fitting task descriptor with a new pointer ptr. The table below describes types of pointers supported by the editor:

Pointers Supported by the df?EditPtr Task Editor
\begin{tabular}{ll}
\hline Pointer Attribute & Purpose \\
\hline DF_X & \begin{tabular}{l} 
Partition \(x\) of the interpolation interval, an array of strictly sorted \\
breakpoints.
\end{tabular} \\
\begin{tabular}{ll} 
Caution \\
The array must be strictly sorted. If it is unordered, the results of data \\
fitting routines are not correct.
\end{tabular} \\
& \begin{tabular}{l} 
Vector-valued function \(y\)
\end{tabular} \\
DF_IC & \begin{tabular}{l} 
Internal conditions for spline construction. For details, see table \\
"Internal Conditions Supported by Data Fitting Functions".
\end{tabular} \\
DF_BC & \begin{tabular}{l} 
Boundary conditions for spline construction. For details, see table \\
"Boundary Conditions Supported by Data Fitting Functions".
\end{tabular} \\
\hline
\end{tabular}

You can use df?EditPtr to modify different types of pointers including pointers to the vector-valued function and spline coefficients stored in contiguous memory. Use the df?EditIdxPtr editor if you need to modify pointers to coordinates of the vector-valued function or spline coefficients stored at non-contiguous memory locations.
If you modify a partition of the interpolation interval, then you should call the dfiEditVal task editor with the corresponding value of DF_XHINT, even if the structure of the partition remains the same.
If you pass a NULL pointer to the df?EditPtr task editor, the task remains unchanged and the routine returns an error code. For the predefined error codes, please see "Task Status and Error Reporting".

\section*{NOTE}

You must preserve the arrays \(x\) (breakpoints), \(y\) (vector-valued functions), bc (boundary conditions), ic (internal conditions), and scoeff (spline coefficients) through the entire workflow of the Data Fitting computations which use those arrays, as the task stores the addresses of the arrays for spline-based computations.

\section*{dfiEditVal}

\section*{Modifies a parameter value in a Data Fitting task descriptor.}

\section*{Syntax}
```

status = dfiEditVal(task, val_attr, val)

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
task & DFTaskPtr & Descriptor of the task.
\end{tabular}
\begin{tabular}{ll} 
Name & Type \\
val_attr & const MKL_INT \\
val & const MKL_INT
\end{tabular}

\section*{Output Parameters}

\section*{Description}

The parameter to change. See table "Parameters Supported by the dfiEditVal Task Editor".

A new parameter value. See table "Parameters Supported by the dfiEditVal Task Editor".
\begin{tabular}{ll} 
Name & Type \\
status & int
\end{tabular}

\section*{Description}

Status of the routine:
- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

\section*{Description}

The dfiEditVal task editor replaces the parameter of type val_attr stored in a Data Fitting task descriptor with a new value val. The table below describes valid types of parameter val_attr supported by the editor:

Parameters Supported by the dfiEditVal Task Editor
\begin{tabular}{ll}
\hline Parameter Attribute & Purpose \\
\hline DF_NX & Number of breakpoints \\
DF_XHINT & \begin{tabular}{l} 
A flag describing the structure of partition. See table "Hint Values \\
for Partition \(x\) " for the list of available values.
\end{tabular} \\
DF_NY & Dimension of the vector-valued function \\
DF_YHINT & \begin{tabular}{l} 
A flag describing the structure of the vector-valued function. See \\
table "Hint Values for Vector Function \(y\) " for the list of available \\
values.
\end{tabular} \\
DF_SPLINE_ORDER & \begin{tabular}{l} 
Spline order. See table "Spline Orders Supported by Data Fitting \\
Functions" for the list of available values.
\end{tabular} \\
DF_BC_TYPE & \begin{tabular}{l} 
Spline type. See table "Spline Types Supported by Data Fitting \\
Functions" for the list of available values.
\end{tabular} \\
\hline DF_IC_TYPE & \begin{tabular}{l} 
Type of boundary conditions used in spline construction. See table \\
"Boundary Conditions Supported by Data Fitting Functions" for the \\
list of available values.
\end{tabular} \\
\hline Type of internal conditions used in spline construction. See table
\end{tabular}

If you pass a zero value for the parameter describing the size of the arrays that hold coefficients for a partition, a vector-valued function, or a spline, the parameter held in the Data fitting task remains unchanged and the routine returns an error code. For the predefined error codes, see "Task Status and Error Reporting".

Possible Values for the DF_CHECK_FLAG Parameter
\begin{tabular}{|ll|}
\hline Value & Description \\
\hline DF_ENABLE_CHECK_FLAG & \begin{tabular}{l} 
Checks the correctness of parameters of Data \\
Fitting computational routines (default mode).
\end{tabular} \\
DF_DISABLE_CHECK_FLAG & \begin{tabular}{l} 
Disables checking of the correctness of parameters \\
of Data Fitting computational routines.
\end{tabular} \\
\hline
\end{tabular}

Use DF_CHECK_FLAG for val_attr in order to control validation of parameters of Data Fitting computational routines such as df?Construct1D, df?Interpolate1D/df?InterpolateEx1D, and df?
SearchCells1D/df?SearchCellsEx1D, which can perform better with a small number of interpolation sites or integration limits (fewer than one dozen). The default mode, with checking of parameters enabled, should be used as you develop a Data Fitting-based application. After you complete development you can disable parameter checking in order to improve the performance of your application.
If you modify the parameter describing dimensions of the arrays that hold the vector-valued function or spline coefficients in contiguous memory, you should call the df? EditPtr task editor with the corresponding pointers to the vector-valued function or spline coefficients even when this pointer remains unchanged. Call the df?EditIdxPtr editor if those arrays are stored in non-contiguous memory locations.

You must call the dfiEditVal task editor to edit the structure of the partition DF_XHINT every time you modify a partition using df?EditPtr, even if the structure of the partition remains the same.
```

df?EditIdxPtr
Modifies a pointer to the memory representing a
coordinate of the data stored in matrix format.
Syntax
status = dfsEditIdxPtr(task, ptr_attr, idx, ptr)
status = dfdEditIdxPtr(task, ptr_attr, idx, ptr)

```

\section*{Include Files}
- mkl.h

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
task & DFTaskPtr \\
ptr_attr & const MKL_INT \\
idx & const MKL_INT \\
\(p t r\) & \begin{tabular}{l} 
const float* for \\
dfsEditIdxPtr
\end{tabular}
\end{tabular}

\section*{Description}

Descriptor of the task.
Type of the data to be modified. The parameter takes one of the values described in "Data Attributes Supported by the df?EditIdxPtr Task Editor".

Index of the coordinate whose pointer is to be modified.
Pointer to the data that holds values of coordinate \(i d x\). For details, see table "Data Attributes Supported by the df? EditIdxPtr Task Editor".

\section*{Name \\ Type \\ ```
const double* for
``` \\ dfdEditIdxPtr}

\section*{Description}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
status & int
\end{tabular}

\section*{Description}

Status of the routine:
- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

\section*{Description}

The routine modifies a pointer to the array that holds the idx coordinate of vector-valued function \(y\) or the pointer to the array of spline coefficients corresponding to the given coordinate.

You can use the editor if you need to pass into a Data Fitting task or modify the pointer to coordinates of the vector-valued function or spline coefficients held at non-contiguous memory locations. Do not use the editor for coordinates at contiguous memory locations in row-major format.
Before calling this editor, make sure that you have created and initialized the task using a task creation function or a relevant editor such as the generic or specific df?EditPPSpline1D editor.

Data Attributes Supported by the df?EditIdxPtr Task Editor
\begin{tabular}{ll}
\hline Data Attribute & Description \\
\hline\(D F _Y\) & Vector-valued function \(y\) \\
\(D F _P P _S C O E F F\) & Piecewise polynomial spline coefficients \\
\hline
\end{tabular}

When using df?EditIdxPtr, you might receive an error code in the following cases:
- You passed an unsupported parameter value into the editor.
- The value of the index exceeds the predefined value that equals the dimension ny of the vector-valued function.
- You pass a NULL pointer to the editor. In this case, the task remains unchanged.
- You pass a pointer to the \(i d x\) coordinate of the vector-valued function you provided to contiguous memory in column-major format.
The code example below demonstrates how to use the editor for providing values of a vector-valued function stored in two non-contiguous arrays:
```

\#define NX 1000 /* number of break points */
\#define NY 2 /* dimension of vector-valued function */
int main()
{
DFTaskPtr task;
double x[NX];
double y1[NX], y2[NX]; /* vector-valued function is stored as two arrays */
/* Provide first coordinate of two-dimensional function y into creation routine */
status = dfdNewTask1D( \&task, NX, x, DF_NON_UNIFORM_PARTITION, NY, y1,
DF_1ST_COORDINATE );
/* Provide second coordiante of two-dimensional function */

```
```

    status = dfdEditIdxPtr(task, DF_Y, 1, y2 );
    }

```
df?QueryPtr
Reads a pointer to an array held in a Data Fitting task
descriptor.
Syntax
```

status = dfsQueryPtr(task, ptr_attr, ptr)
status = dfdQueryPtr(task, ptr_attr, ptr)

```

Include Files
- mkl.h

Input Parameters
\begin{tabular}{ll}
Name & Type \\
task & DFTaskPtr \\
ptr_attr & const MKL_INT
\end{tabular}

\section*{Description}

Descriptor of the task.
The parameter to query. The query routine supports pointer attributes described in the table "Pointers Supported by the df?EditPtr Task Editor". For details, see the Pointer Attribute column in the table.

\section*{Description}

Pointer to array returned by the query routine. For details, see the Purpose column in table "Pointers Supported by the df?EditPtr Task Editor".

Status of the routine:
- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

\section*{Description}

The df?QueryPtr routine returns the pointer of type ptr_attr stored in a Data Fitting task descriptor as parameter ptr. Attributes of the pointers supported by the query function are identical to those supported by the editor df?EditPtr editor in the table "Pointers Supported by the df?EditPtr Task Editor".

You can use df?QueryPtr to read different types of pointers including pointers to the vector-valued function and spline coefficients stored in contiguous memory.
dfiQueryVal
Reads a parameter value in a Data Fitting task descriptor.
```

Syntax
status = dfiQueryVal(task, val_attr, val)

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
task & DFTaskPtr & Descriptor of the task. \\
val_attr & const MKL_INT & \begin{tabular}{l}
The parameter to query. The query function supports the \\
parameter attributes described in "Parameters Supported \\
by the dfiEditVal Task Editor".
\end{tabular}
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
val & MKL_INT \\
& \\
status & int
\end{tabular}

\section*{Description}

The parameter value returned by the query function. See table "Parameters Supported by the dfiEditVal Task Editor".

Status of the routine:
- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

\section*{Description}

The dfiQueryVal routine returns a parameter of type val_attr stored in a Data Fitting task descriptor as parameter val. The query function supports the parameter attributes described in "Parameters Supported by the dfiEditVal Task Editor".
df?QueryIdxPtr
Reads a pointer to the memory representing a coordinate of the data stored in matrix format.

\section*{Syntax}
```

status = dfsQueryIdxPtr(task, ptr_attr, idx, ptr)
status = dfdQueryIdxPtr(task, ptr_attr, idx, ptr)

```

Include Files
- mkl.h

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
task & DFTaskPtr & Descriptor of the task.
\end{tabular}

\section*{Name Type \\ Description}
ptr_attr const MKL_INT
idx const MKL_INT

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
ptr & float* for dfsQueryIdxPtr \\
& double* for dfdQueryIdxPtr \\
status & int
\end{tabular}

\section*{Description}

Status of the routine:

Pointer attribute to query. The parameter takes one of the attributes described in "Data Attributes Supported by the df?EditIdxPtr Task Editor".

Index of the coordinate of the pointer to query.

Pointer to the data that holds values of coordinate idx returned. For details, see table "Data Attributes Supported by the df?EditIdxPtr Task Editor".
- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

\section*{Description}

The routine returns a pointer to the array that holds the \(i d x\) coordinate of vector-valued function \(y\) or the pointer to the array of spline coefficients corresponding to the given coordinate.
You can use the query routine if you need the pointer to coordinates of the vector-valued function or spline coefficients held at non-contiguous memory locations or at a contiguous memory location in row-major format (the default storage format for spline coefficients).

Before calling this query routine, make sure that you have created and initialized the task using a task creation function or a relevant editor such as the generic or specific df?EditPPSpline1D editor.

When using df?QueryIdxPtr, you might receive an error code in the following cases:
- You passed an unsupported parameter value into the editor.
- The value of the index exceeds the predefined value that equals the dimension ny of the vector-valued function.
- You request the pointer to the \(i d x\) coordinate of the vector-valued function you provided to contiguous memory in column-major format.

\section*{Data Fitting Computational Routines}

Data Fitting computational routines are functions used to perform spline-based computations, such as:
- spline construction
- computation of values, derivatives, and integrals of the predefined order
- cell search

Once you create a Data Fitting task and initialize the required parameters, you can call computational routines as many times as necessary.
The table below lists the available computational routines:

Data Fitting Computational Routines
\begin{tabular}{|c|c|}
\hline Routine & Description \\
\hline df?Construct1D & Constructs a spline for a one-dimensional Data Fitting task. \\
\hline df?Interpolate1D & Computes spline values and derivatives. \\
\hline df?InterpolateEx1D & Computes spline values and derivatives by calling user-provided interpolants. \\
\hline df? Integrate1D & Computes spline-based integrals. \\
\hline df?IntegrateEx1D & Computes spline-based integrals by calling userprovided integrators. \\
\hline df?SearchCells1D & Finds indices of cells containing interpolation sites. \\
\hline df?SearchCellsEx1D & Finds indices of cells containing interpolation sites by calling user-provided cell searchers. \\
\hline
\end{tabular}

If a Data Fitting computation completes successfully, the computational routines return the DF_STATUS_OK code. If an error occurs, the routines return an error code specifying the origin of the failure. Some possible errors are the following:
- The task pointer is NULL.
- Memory allocation failed.
- The computation failed for another reason.

For the list of available status codes, see "Task Status and Error Reporting".

\section*{NOTE}

Data Fitting computational routines do not control errors for floating-point conditions, such as overflow, gradual underflow, or operations with Not a Number (NaN) values.
df?Construct1D

\section*{Syntax}

Constructs a spline of the given type.
```

status = dfsConstruct1D(task, s_format, method)
status = dfdConstruct1D(task, s_format, method)

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
task & DFTaskPtr \\
s_format & const MKL_INT \\
method & const MKL_INT
\end{tabular}

\section*{Description}

Descriptor of the task.
Spline format. The supported value is \(\mathrm{DF}_{-} \mathrm{PP}\) _ SPLINE. \(^{\text {S }}\)
Construction method. The supported value is
DF_METHOD_STD.

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
status & int
\end{tabular}

\section*{Description}

Status of the routine:
- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

\section*{Description}

Before calling df?Construct1D, you need to create and initialize the task, and set the parameters representing the spline. Then you can call the df?construct1D routine to construct the spline. The format of the spline is defined by parameter s_format. The method for spline construction is defined by parameter method. Upon successful construction, the spline coefficients are available in the user-provided memory location in the format you set through the Data Fitting editor. For the available storage formats, see table "Hint Values for Spline Coefficients".
df?Interpolate1D/df?InterpolateEx1D
Runs data fitting computations.

\section*{Syntax}
```

status = dfsInterpolatelD(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell)
status = dfdInterpolatelD(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell)
status = dfsInterpolateExlD(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell, le_cb, le_params, re_cb, re_params, i_cb, i_params, search_cb,
search_params)
status = dfdInterpolateEx1D(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell, le_cb, le_params, re_cb, re_params, i_cb, i_params, search_cb,
search_params)

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
task & DFTaskPtr & Descriptor of the task. \\
type & const MKL_INT & \begin{tabular}{l}
Type of spline-based computations. The parameter takes \\
one or more values combined with an or operation. For the \\
list of possible values, see table "Computation Types \\
Supported by the df? Interpolate1D/ df? Interpolate1D \\
Routines".
\end{tabular} \\
method & const MKL_INT & \begin{tabular}{l}
Computation method. The supported value is \\
\\
\end{tabular} \\
& & DF_METHOD_PP.
\end{tabular}

cell MKL_INT*

\section*{Description}

Number of interpolation sites.
Array of interpolation sites of size nsite. The structure of the array is defined by the sitehint parameter:
- If sites form a non-uniform partition, the array should contain nsite values.
- If sites form a uniform partition, the array should contain two entries that represent the left and the right interpolation sites. The first entry of the array contains the left-most interpolation point. The second entry of the array contains the right-most interpolation point.

A flag describing the structure of the interpolation sites. For the list of possible values of sitehint, see table "Hint Values for Interpolation Sites". If you set the flag to DF_NO_HINT, the library interprets the site-defined partition as non-uniform.

Maximal derivative order increased by one to be computed at interpolation sites.

Array of size ndorder that defines the order of the derivatives to be computed at the interpolation sites. If all the elements in dorder are zero, the library computes the spline values only. If you do not need interpolation computations, set ndorder to zero and pass a NULL pointer to dorder.

Array that contains additional information about the structure of partition \(x\) and interpolation sites. This data helps to speed up the computation. If you provide a NULL pointer, the routine uses the default settings for computations. For details on the datahint array, see table "Structure of the datahint Array".

Array for results. If you do not need spline-based interpolation, set this pointer to NULL.

A flag describing the structure of the results. For the list of possible values of rhint, see table "Hint Values for the rhint Parameter". If you set the flag to DF_NO_HINT, the library stores the result in row-major format.

Array of cell indices in partition \(x\) that contain the interpolation sites. Provide this parameter as input if type is DF_INTERP_USER_CELL. If you do not need cell indices, set this parameter to NULL.
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \(l e _c b\) & constdfsInterpCallBack for dfsInterpolateEx1D constdfdInterpCallBack for dfdinterpolateEx1D & \begin{tabular}{l}
User-defined callback function for extrapolation at the sites to the left of the interpolation interval. \\
Set to NULL if you are not supplying a callback function.
\end{tabular} \\
\hline le_params & const void* & \begin{tabular}{l}
Pointer to additional user-defined parameters passed by the library to the le_cb function. \\
Set to NULL if there are no additional parameters or if you are not supplying a callback function.
\end{tabular} \\
\hline \(r e _c b\) & constdfsInterpCallBack for dfsInterpolateEx1D constdfdInterpCallBack for dfdInterpolateEx1D & \begin{tabular}{l}
User-defined callback function for extrapolation at the sites to the right of the interpolation interval. \\
Set to NULL if you are not supplying a callback function.
\end{tabular} \\
\hline re_params & const void* & \begin{tabular}{l}
Pointer to additional user-defined parameters passed by the library to the re_cb function. \\
Set to NULL if there are no additional parameters or if you are not supplying a callback function.
\end{tabular} \\
\hline i_cb & ```
constdfsInterpCallBack
for dfsInterpolateEx1D
constdfdInterpCallBack
for dfdInterpolateEx1D
``` & \begin{tabular}{l}
User-defined callback function for interpolation within the interpolation interval. \\
Set to NULL if you are not supplying a callback function.
\end{tabular} \\
\hline i_params & const void* & \begin{tabular}{l}
Pointer to additional user-defined parameters passed by the library to the i_cb function. \\
Set to NULL if there are no additional parameters or if you are not supplying a callback function.
\end{tabular} \\
\hline search_cb & ```
constdfsSearchCellsCal
lBack for
dfsInterpolateEx1D
constdfdSearchCellsCal
lBack for
dfdInterpolateEx1D
``` & \begin{tabular}{l}
User-defined callback function for computing indices of cells that can contain interpolation sites. \\
Set to NULL if you are not supplying a callback function.
\end{tabular} \\
\hline search_params & const void* & \begin{tabular}{l}
Pointer to additional user-defined parameters passed by the library to the search_cb function. \\
Set to NULL if there are no additional parameters or if you are not supplying a callback function.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
status & int & Status of the routine:
\end{tabular}

\section*{Name Type Description}
- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

Contains results of computations at the interpolation sites.

\section*{Caution}

The df?Interpolate1D/df?InterpolateEx1D routines do not support in-place computations. You must provide non-aliasing memory locations for the site input parameter and the \(r\) output parameter.

\section*{cell}

Array of cell indices in partition \(x\) that contain the interpolation sites, which is computed if type is DF_CELL.

\section*{Description}

The df?Interpolate1D/df?InterpolateEx1D routine performs spline-based computations with userdefined settings. The routine supports two types of computations for interpolation sites provided in array site:

Computation Types Supported by the df?Interpolate1D/df?InterpolateEx1D Routines
\begin{tabular}{ll}
\hline Type & Description \\
\hline DF_INTERP & \begin{tabular}{l}
Compute derivatives of predefined order. The \\
derivative of the zero order is the spline value.
\end{tabular} \\
DF_INTERP_USER_CELL & \begin{tabular}{l}
Compute derivatives of predefined order given \\
user-provided cell indices. The derivative of the \\
zero order is the spline value.
\end{tabular} \\
& \begin{tabular}{l}
For this type of the computations you should \\
provide a valid cell array, which holds the indices \\
of cells in the site array containing relevant \\
interpolation sites.
\end{tabular} \\
DF_CELL & \begin{tabular}{l}
Compute indices of cells in partition \(x\) that contain \\
the sites.
\end{tabular} \\
\hline
\end{tabular}

If the indices of cells which contain interpolation types are available before the call to df?Interpolate1D/ df?InterpolateEx1D, you can improve performance by using the DF_INTERP_USER_CELL computation type.

\section*{NOTE}

If you pass any combination of DF_INTERP, DF_INTERP_USER_CELL, and DF_CELL computation types to the routine, the library uses the DF_INTERP_USER_CELL computation mode.

If you specify DF_INTERP_USER_CELL computation mode and a user-defined callback function for computing cell indices to df?InterpolateEx1D, the library uses the DF_INTERP_USER_CELL computation mode, and the call-back function is not called.

If the sites do not belong to interpolation interval \([a, b]\), the library uses:
- polynomial \(P_{0}\) of the spline constructed on interval \(\left[x_{0}, x_{1}\right]\) for computations at the sites to the left of \(a\).
- polynomial \(P_{n-2}\) of the spline constructed on interval \(\left[x_{n-2}, x_{n-1}\right]\) for computations at the sites to the right of \(b\).

Interpolation sites support the following hints:
Hint Values for Interpolation Sites
\begin{tabular}{ll}
\hline Value & Description \\
\hline DF_NON_UNIFORM_PARTITION & Partition is non-uniform. \\
DF_UNIFORM_PARTITION & Partition is uniform. \\
DF_SORTED_DATA & \begin{tabular}{l}
Interpolation sites are sorted in the ascending order and define \\
a non-uniform partition.
\end{tabular} \\
DF_NO_HINT & \begin{tabular}{l}
No hint is provided. By default, the partition defined by \\
interpolation sites is interpreted as non-uniform.
\end{tabular} \\
\hline
\end{tabular}

\section*{NOTE}

If you pass a sorted array of interpolation sites to the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL), set the sitehint parameter to the DF_SORTED_DATA value. The library uses this information when choosing the search algorithm and ignores any other data hints about the structure of the interpolation sites.

Data Fitting computation routines can use the following hints to speed up the computation:
- DF_UNIFORM_PARTITION describes the structure of breakpoints and the interpolation sites.
- DF_QUASI_UNIFORM_PARTITION describes the structure of breakpoints.

Pass the above hints to the library when appropriate.
For spline-based interpolation, you should set the derivatives whose values are required for the computation. You can provide the derivatives by setting the dorder array of size ndorder as follows:
dorder \([i]=\left\{\begin{array}{l}1, \text { if derivative of the } i-\text { th order is required } \quad i=0, \ldots, \text { ndorder }-1 \\ 0, \text { otherwise }\end{array}\right.\)
Orders of derivatives \(i_{d}(d=0,1, . ., n d e r-1)\), corresponding to non-zero derivatives to be calculated, form the array \(\left\{i_{d}\right\}\) of length nder \(\leq\) ndorder.
The storage format for the interpolation results is specified using the rhint parameter values. For each storage format, Table Hint Values for the rhint Parameter describes how to get the result \(R\left(j, s, i_{d}\right)\) from array \(r\), for function index \(j(0 \leq j \leq y n-1)\), site number \(s(0 \leq s \leq n s i t e-1)\), and derivative index \(i_{d}(0 \leq d \leq n d e r-\) \(1)\), where \(y n\) is the number of functions, nsite is the number of sites, and nder is the total number of nonzero derivatives for interpolation. The array \(r\) can be either a one-dimensional array of size ny*nder*nsite or a three-dimensional array with the dimensions described in the table.
\begin{tabular}{|c|c|c|}
\hline Value & Location of \(R\left(\boldsymbol{j}, s, i_{d}\right)\), Onedimensional Array Storage & Location of \(R\left(j, s, i_{d}\right)\), Threedimensional Array Storage \\
\hline ```
DF_MATRIX_STORAGE_FU
NCS_SITES_DERS
(DF_MATRIX_STORAGE_R
OWS)
``` & \(r[d+n d e r *(s+n s i t e * j)]\) & ```
r[j][s][d]
r declared as r[ny][nsite]
[nder].
``` \\
\hline ```
DF_MATRIX_STORAGE_FU
NCS_DERS_SITES
(DF_MATRIX_STORAGE_C
OLS)
``` & \(r[s+n s i t e *(d+n d e r * j)]\) & ```
r[j][d][s]
r declared as r[ny] [nder]
[nsite].
``` \\
\hline DF_MATRIX_STORAGE_SI TES_FUNCS_DERS & \(r\left[d+n d e r *\left(j+n y^{*} s\right)\right]\) & ```
r[s][j][d]
r declared as r[nsite] [ny]
[nder].
``` \\
\hline DF_MATRIX_STORAGE_SI TES_DERS_FUNCS & \(r\left[j+n y^{*}(d+n d e r * s)\right]\) & ```
r[s][d][j]
rdeclared as r[nsite][nder]
[ny].
``` \\
\hline DF_NO_HINT & No hint is provided. By default, the results DF_MATRIX_STORAGE_FUNCS_SITES_DERS. & re stored as in rhint \(=\) \\
\hline
\end{tabular}

The following figures show the structure of the storage formats. Each shows sequential memory layout line by line, left to right.
- Storage in rfor rhint \(=\) DF MATRIX STORAGE FUNCS SITES DERS (DF MATRIX STORAGE ROWS):
\[
\begin{array}{cccc}
R\left(0,0, i_{0}\right) & R\left(0,0, i_{1}\right) & \ldots & R\left(0,0, i_{n d e r}-1\right) \\
R\left(0,1, i_{0}\right) & R\left(0,1, i_{1}\right) & \ldots & R\left(0,1, i_{n d e r-1}\right) \\
\ldots & \ldots & \ldots & \ldots \\
R\left(0, \text { nsite }-1, i_{0}\right) & R\left(0, \text { nsite }-1, i_{1}\right) & \ldots & R\left(0, \text { nsite }-1, i_{\text {nder }-1}\right)
\end{array}
\]
\[
R\left(1,0, i_{0}\right) \quad R\left(1,0, i_{1}\right) \quad \ldots \quad R\left(1,0, i_{n d e r-1}\right)
\]
\[
R\left(1,1, i_{0}\right) \quad R\left(1,1, i_{1}\right) \quad \ldots \quad R\left(1,1, i_{n d e r-1}\right)
\]
\[
R\left(1, \text { nsite }-1, i_{0}\right) R\left(1, \text { nsite }-1, i_{1}\right) \ldots R\left(1, \text { nsite }-1, i_{\text {nder }-1}\right)
\]
- Storage in rfor rhint = DF_MATRIX_STORAGE_FUNCS_DERS_SITES (DF_MATRIX_STORAGE_COLS):

- Storage in rfor rhint = DF_MATRIX_STORAGE_SITES_FUNCS_DERS:

- Storage in rfor rhint = DF_MATRIX_STORAGE_SITES_DERS_FUNCS:
\[
\begin{array}{cccc}
R\left(0,0, i_{0}\right) & R\left(1,0, i_{0}\right) & \ldots & R\left(n y-1,0, i_{0}\right) \\
R\left(0,0, i_{1}\right) & R\left(1,0, i_{1}\right) & \ldots & R\left(n y-1,0, i_{1}\right) \\
\ldots & \ldots & \ldots & \ldots \\
R\left(0,0, i_{n d e r-1}\right) & R\left(1,0, i_{n d e r-1}\right) & \ldots & R\left(n y-1,0, i_{n d e r-1}\right)
\end{array}
\]
\[
\begin{array}{cccc}
R\left(0,1, i_{0}\right) & R\left(1,1, i_{0}\right) & \ldots & R\left(n y-1,1, i_{0}\right) \\
R\left(0,1, i_{1}\right) & R\left(1,1, i_{1}\right) & \ldots & R\left(n y-1,1, i_{1}\right) \\
\ldots & \ldots & \ldots & \ldots \\
R\left(0,1, i_{n d e r-1}\right) & R\left(1,1, i_{n d e r-1}\right) & \ldots & R\left(n y-1,1, i_{n d e r-1}\right)
\end{array}
\]

To speed up Data Fitting computations, use the datahint parameter that provides additional information about the structure of the partition and interpolation sites. This data represents a floating-point or a double array with the following structure:

\section*{Structure of the datahint Array}
\begin{tabular}{ll}
Element Number & Description \\
\hline 0 & Task dimension \\
1 & Type of additional information \\
2 & Reserved field \\
3 & The total number \(q\) of elements containing additional information. \\
4 & Element \((1)\) \\
\(\ldots\) & \(\ldots\) \\
\(q+3\) & Element \((q)\) \\
\hline
\end{tabular}

Data Fitting computation functions support the following types of additional information for datahint[1]:
Types of Additional Information
\begin{tabular}{lll}
\hline Type & Element Number & Parameter \\
\hline DF_NO_APRIORI_INFO & 0 & \begin{tabular}{l}
No parameters are provided. \\
Information about the data \\
structure is absent.
\end{tabular} \\
DF_APRIORI_MOST_LIKELY_CELL & 1 & \begin{tabular}{l}
Index of the cell that is likely to \\
contain interpolation sites.
\end{tabular} \\
\hline
\end{tabular}

To compute indices of the cells that contain interpolation sites, provide the pointer to the array of size nsite for the results. The library supports the following scheme of cell indexing for the given partition \(\left\{x_{i}\right\}\), \(i=1, \ldots, n x\) :
cell[j] \(=i\), if site[j] \(\in\left[x_{i}, x_{i+1}\right), i=0, \ldots, n x-2\),
cell[j] \(=n x-1\), if site \([j] \in\left[x_{n x-1}, x_{n x}\right]\),
cell[j] \(=n x\), if site[j] \(\in\left(x_{n x}, x_{n x+1}\right]\),
where
- \(x_{0}=-\infty\)
- \(x_{n x+1}=+\infty\)
- \(j=0, \ldots\), nsite-1

To perform interpolation computations with spline types unsupported in the Data Fitting component, use the extended version of the routine df? InterpolateEx1D. With this routine, you can provide user-defined callback functions for computations within, to the left of, or to the right of interpolaton interval [\(a, b\)]. The callback functions compute indices of the cells that contain the specified interpolation sites or can serve as an approximation for computing the exact indices of such cells.
If you do not pass any function for computations at the sites outside the interval \([a, b]\), the routine uses the default settings.

\section*{See Also}

Mathematical Conventions for Data Fitting Functions
df?InterpCallBack
df?SearchCellsCallBack
df?Integrate1D/df?IntegrateEx1D
Computes a spline-based integral.

\section*{Syntax}
```

status = dfsIntegratelD(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint)
status = dfdIntegratelD(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint)
status = dfsIntegrateEx1D(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint, le_cb, le_params, re_cb, re_params, i_cb, i_params, search_cb,
search_params)
status = dfdIntegrateExlD(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint, le_cb, le_params, re_cb, re_params, i_cb, i_params, search_cb,
search_params)

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline task & DFTaskPtr & Descriptor of the task. \\
\hline method & const MKL_INT & Integration method. The supported value is \(\mathrm{DF}_{\text {_ }} \mathrm{METHOD}\) PP. \\
\hline nlim & const MKL_INT & Number of pairs of integration limits. \\
\hline Ilim & const float* for dfsIntegrate1D/ dfsIntegrateEx1D const double* for dfdIntegrate1D/ dfdIntegrateEx1D & Array of size nlim that defines the left-side integration limits. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline Ilimhint & const MKL_INT \\
\hline rlim & const float* for dfsIntegrate1D/ dfsIntegrateEx1D const double* for dfdIntegrate1D/ dfdIntegrateEx1D \\
\hline rlimhint & const MKL_INT \\
\hline Idatahint & const float* for dfsIntegrate1D/ dfsIntegrateEx1D const double* for dfdIntegrate1D/ dfdintegrateEx1D \\
\hline rdatahint & const float* for dfsIntegrate1D/ dfsIntegrateEx1D const double* for dfdIntegrate1D/ dfdIntegrateEx1D \\
\hline rhint & const MKL_INT \\
\hline
\end{tabular}

Ie_cb constdfsIntegrCallBack for dfsIntegrateEx1D
constdfdIntegrCallBack for dfdintegrateEx1D
le_params const void*

\section*{Description}

A flag describing the structure of the left-side integration limits llim. For the list of possible values of llimhint, see table "Hint Values for Integration Limits". If you set the flag to the DF_NO_HINT value, the library assumes that the leftside integration limits define a non-uniform partition.

Array of size nlim that defines the right-side integration limits.

A flag describing the structure of the right-side integration limits rlim. For the list of possible values of rlimhint, see table "Hint Values for Integration Limits". If you set the flag to the DF_NO_HINT value, the library assumes that the right-side integration limits define a non-uniform partition.

Array that contains additional information about the structure of partition \(x\) and left-side integration limits. For details on the Idatahint array, see table "Structure of the datahint Array" in the description of the df?
Interpolate1D function.

Array that contains additional information about the structure of partition \(x\) and right-side integration limits. For details on the rdatahint array, see table "Structure of the datahint Array" in the description of the df? Interpolate1D function.

A flag describing the structure of the results. For the list of possible values of rhint, see table "Hint Values for Integration Results". If you set the flag to the DF_NO_HINT value, the library stores the results in row-major format.

User-defined callback function for integration on interval [llim[i], min(rlim[i], a)) for llim[i] <a.

Set to NULL if you are not supplying a callback function.

Pointer to additional user-defined parameters passed by the library to the le_cb function.
Set to NULL if there are no additional parameters or if you are not supplying a callback function.
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline re_cb & ```
constdfsInterpCallBack
for dfsIntegrateEx1D
constdfdInterpCallBack
for dfdIntegrateEx1D
``` \\
\hline re_params & const void* \\
\hline i_cb & ```
constdfsIntegrCallBack
for dfsIntegrateEx1D
constdfdIntegrCallBack
for dfdIntegrateEx1D
``` \\
\hline i_params & const void* \\
\hline search_cb & ```
constdfsSearchCellsCal
lBack for
dfsIntegrateEx1D
constdfdSearchCellsCal
lBack for
dfdIntegrateEx1D
``` \\
\hline search_par & const void* \\
\hline
\end{tabular}

\section*{Description}

User-defined callback function for integration on interval [max(llim[i], b), rlim[i]) for rlim[i] \(\geq b\).

Set to NULL if you are not supplying a callback function.

Pointer to additional user-defined parameters passed by the library to the re_cb function.
Set to NULL if there are no additional parameters or if you are not supplying a callback function.

User-defined callback function for integration on interval [max(a, llim[i], ), min(rlim[i], b)).

Set to NULL if you are not supplying a callback function.

Pointer to additional user-defined parameters passed by the library to the i_cb function.

Set to NULL if there are no additional parameters or if you are not supplying a callback function.

User-defined callback function for computing indices of cells that can contain interpolation sites.

Set to NULL if you are not supplying a callback function.

Pointer to additional user-defined parameters passed by the library to the search_cb function.
Set to NULL if there are no additional parameters or if you are not supplying a callback function.

\section*{Description}

Status of the routine:
- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

Array of integration results. The size of the array should be sufficient to hold nlim*ny values, where ny is the dimension of the vector-valued function. The integration results are packed according to the settings in rhint.

\section*{Name Type Description}

\section*{Caution}

The df?Integrate1D/df?IntegrateEx1D routines do not support in-place computations. You must provide non-aliasing memory locations for the llim and rlim input parameters and the \(r\) output parameter.

\section*{Description}

The df?Integrate1D/df?IntegrateEx1D routine computes spline-based integral on user-defined intervals
\[
I(i, j)=\int_{\mu_{1}}^{n_{1}} f_{j}(x) d x
\]
,
where \(r l_{i}=r \lim [i], I_{i}=\operatorname{llim}[i]\), and \(i=0, \ldots, n y-1\).
If rlim[i] < llim[i], the routine returns
\[
I(i, j)=-\int_{x_{4}}^{\pi_{1}} f_{j}(x) d x
\]

The routine supports the following hint values for integration results:
Hint Values for Integration Results
\begin{tabular}{ll} 
Value & Description \\
\hline DF_MATRIX_STORAGE_ROWS & Data is stored in row-major format according to C conventions. \\
DF_MATRIX_STORAGE_COLS & \begin{tabular}{l} 
Data is stored in column-major format according to Fortran \\
conventions.
\end{tabular} \\
\(D F_{-} \mathrm{NO}_{-} H I N T\) & \begin{tabular}{l} 
No hint is provided. By default, the coordinates of vector-valued \\
function y are provided and stored in row-major format.
\end{tabular} \\
\hline
\end{tabular}

A common structure of the storage formats for the integration results is as follows:
- Row-major format
\begin{tabular}{lll}
\(I(0,0)\) & \(\ldots\) & \(I(0, n l i m-1)\) \\
\(\ldots\) & \(\ldots\) & \(\ldots\) \\
\(I(n y-1,0)\) & \(\ldots\) & \(I(n y-1, n l i m-1)\)
\end{tabular}
- Column-major format
\begin{tabular}{lll}
\(I(0,0)\) & \(\ldots\) & \(I(n y-1,0)\) \\
\(\ldots\) & \(\ldots\) & \(\ldots\) \\
\(I(0, n l i m-1)\) & \(\ldots\) & \(I(n y-1, n l i m-1)\)
\end{tabular}

Using the llimhint and rlimhint parameters, you can provide the following hint values for integration limits:

Hint Values for Integration Limits
\begin{tabular}{ll}
\hline Value & Description \\
\hline DF_SORTED_DATA & \begin{tabular}{l} 
Integration limits are sorted in the ascending order and define a \\
non-uniform partition.
\end{tabular} \\
DF_NON_UNIFORM_PARTITION & Partition defined by integration limits is non-uniform. \\
DF_UNIFORM_PARTITION & Partition defined by integration limits is uniform. \\
DF_NO_HINT & \begin{tabular}{l} 
No hint is provided. By default, partition defined by integration \\
limits is interpreted as non-uniform.
\end{tabular} \\
\end{tabular}

To compute integration with splines unsupported in the Data Fitting component, use the extended version of the routine df? IntegrateEx1D. With this routine, you can provide user-defined callback functions that compute:
- integrals within, to the left of, or to the right of the interpolation interval \([a, b]\)
- indices of cells that contain the provided integration limits or can serve as an approximation for computing the exact indices of such cells
If you do not pass callback functions, the routine uses the default settings.

\author{
See Also \\ Mathematical Conventions for Data Fitting Functions \\ df?Interpolate1D/df?InterpolateEx1D
}
df?IntegrCallBack
df?SearchCellsCallBack
df?SearchCells1D/df?SearchCellsEx1D
Searches sub-intervals containing interpolation sites.

\section*{Syntax}
```

status = dfsSearchCellslD(task, method, nsite, site, sitehint, datahint, cell)
status = dfdSearchCellslD(task, method, nsite, site, sitehint, datahint, cell)
status = dfsSearchCellsExlD(task, method, nsite, site, sitehint, datahint, cell,
search_cb, search_params)
status = dfdSearchCellsEx1D(task, method, nsite, site, sitehint, datahint, cell,
search_cb, search_params)

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
task & DFTaskPtr & Descriptor of the task.
\end{tabular}
```

Name
method
nsite
site

```

\section*{Name}
```

method
nsite
site

```

\section*{Type}
```

const MKL_INT
const MKL_INT*
const float* for
dfsSearchCells1D/
dfsSearchCellsEx1D
const double* for
dfdSearchCells1D/
dfdSearchCellsEx1D

```
search_pa const void*
rams const void*
rams
```

sitehint const MKL_INT
datahint const float* for
dfsSearchCells1D/
dfsSearchCellsEx1D
const double* for
dfdSearchCells1D/
dfdSearchCellsEx1D
search_cb constdfsSearchCellsCallBac
k for dfsSearchCellsEx1D
constdfdSearchCellsCallBac
k for dfdSearchCellsEx1D
const MKL_INT
datahint
const float* for
dfsSearchCells1D/
dfsSearchCellsEx1D
const double* for
dfdSearchCells1D/
dfdSearchCellsEx1D
search_cb
constdfsSearchCellsCallBac k for dfsSearchCellsEx1D constdfdSearchCellsCallBac

```
\begin{tabular}{ll} 
Name & Type \\
status & int \\
& \\
cell & MKL_INT*
\end{tabular}

\section*{Output Parameters}

\section*{Description}

Search method. The supported value is DF_METHOD_STD.
Number of interpolation sites.
Array of interpolation sites of size nsite. The structure of the array is defined by the sitehint parameter:
- If the sites form a non-uniform partition, the array should contain nsite values.
- If the sites form a uniform partition, the array should contain two entries that represent the left-most and the right-most interpolation sites. The first entry of the array contains the left-most interpolation point. The second entry of the array contains the right-most interpolation point.

A flag describing the structure of the interpolation sites. For the list of possible values of sitehint, see table "Hint Values for Interpolation Sites". If you set the flag to DF_NO_HINT, the library interprets the site-defined partition as non-uniform.

Array that contains additional information about the structure of the partition and interpolation sites. This data helps to speed up the computation. If you provide a NULL pointer, the routine uses the default settings for computations. For details on the datahint array, see table "Structure of the datahint Array".

User-defined callback function for computing indices of cells that can contain interpolation sites.

Set to NULL if you are not supplying a callback function.

Pointer to additional user-defined parameters passed by the library to the search_cb function.

Set to NULL if there are no additional parameters or if you are not supplying a callback function.

\section*{Description}

Status of the routine:
- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

Array of cell indices in the partition that contain the interpolation sites.

\section*{Description}

The df?SearchCells1D/df?SearchCellsEx1D routines return array cell of indices of sub-intervals (cells) in the partition that contain interpolation sites available in array site. For details on the cell indexing scheme, see the description of the df? Interpolate1D/df? InterpolateEx1D computation routines.

Use the datahint parameter to provide additional information about the structure of the partition and/or interpolation sites. The definition of the datahint parameter is availalbe in the description of the df? Interpolate1D/df?InterpolateEx1D computation routines.

For description of the user-defined callback for computation of cell indices, see df?SearchCellsCallBack.
```

See Also
Mathematical Conventions for Data Fitting Functions
df?Interpolate1D/df?InterpolateEx1D
df?SearchCellsCallBack
df?InterpCallBack
A callback function for user-defined interpolation to be
passed into df?InterpolateEx1D.
Syntax
status = dfsInterpCallBack(n, cell, site, r, user_params, library_params)
status = dfdInterpCallBack(n, cell, site, r, user_params, library_params)

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
\(n\) & long long* & Number of interpolation sites. \\
cell & long long* & \begin{tabular}{l} 
Array of size \(n\) containing indices of the cells to which the \\
interpolation sites in array site belong.
\end{tabular} \\
site & \begin{tabular}{l} 
float* for dfsInterpCallBack \\
double* for \\
dfdInterpCallBack
\end{tabular} & Array of interpolation sites of size \(n\).
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline status & int & \begin{tabular}{l}
The status returned by the callback function: \\
- Zero indicates successful completion of the callback operation. \\
- A negative value indicates an error. \\
- A positive value indicates a warning. \\
See "Task Status and Error Reporting" for error code definitions.
\end{tabular} \\
\hline \(r\) & ```
float* for dfsInterpCallBack
double* for
dfdInterpCallBack
``` & Array of the computed interpolation results packed in rowmajor format. \\
\hline
\end{tabular}

\section*{Description}

When passed into the df?InterpolateEx1D routine, this function performs user-defined interpolation operation.

The library_params parameter allows the library to provide extra parameters. Currently no parameters are provided.
```

See Also
df?interpolate1d/df?interpolateex1d
df?searchcellscallback
df?IntegrCallBack
A callback function that you can pass into df?
IntegrateEx1D to define integration computations.
Syntax
status = dfsIntegrCallBack(n, lcell, llim, rcell, rlim, r, user_params, library_params)
status = dfdIntegrCallBack(n, lcell, llim, rcell, rlim, r, user_params, library_params)

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(n\) & long long* & Number of pairs of integration limits. \\
long long* & \begin{tabular}{l}
Array of size \(n\) with indices of the cells that contain the left- \\
side integration limits in array llim.
\end{tabular} \\
& \begin{tabular}{ll}
float* for dfsIntegrCallBack \\
double* for \\
dfdintegrCallBack
\end{tabular} & Array of size \(n\) that holds the left-side integration limits.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline rcell & long long* & Array of size \(n\) with indices of the cells that contain the right-side integration limits in array rlim. \\
\hline rlim & ```
float* for dfsIntegrCallBack
double* for
dfdIntegrCallBack
``` & Array of size \(n\) that holds the right-side integration limits. \\
\hline user_para ms & void* & Pointer to user-defined parameters of the callback function. \\
\hline library_p arams & dfIntegrCallBackLibraryPar ams* & Pointer to library-defined parameters of the callback function. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
status & int \\
r & \begin{tabular}{l} 
float* for dfsIntegrCallBack \\
double* for \\
dfdIntegrCallBack
\end{tabular}
\end{tabular}

\section*{Description}

The status returned by the callback function:
- Zero indicates successful completion of the callback operation.
- A negative value indicates an error.
- A positive value indicates a warning.

See "Task Status and Error Reporting" for error code definitions.

Array of integration results. For packing the results in rowmajor format, follow the instructions described in \(d f\) ? Interpolate1D/df?InterpolateEx1D.

\section*{Description}

When passed into the \(d f\) ? IntegrateEx1D routine, this function defines integration computations. If at least one of the integration limits is outside the interpolation interval [ \(a, b\) ], the library decomposes the integration into sub-intervals that belong to the extrapolation range to the left of \(a\), the extrapolation range to the right of \(b\), and the interpolation interval \([a, b]\), as follows:
- If the left integration limit is to the left of the interpolation interval (Ilim<a), the df? IntegrateEx1D routine passes llim as the left integration limit and \(\min (r l i m, a)\) as the right integration limit to the user-defined callback function.
- If the right integration limit is to the right of the interpolation interval (rlim>b), the df? IntegrateEx1D routine passes max \((\operatorname{llim}, b)\) as the left integration limit and rlim as the right integration limit to the user-defined callback function.
- If the left and the right integration limits belong to the interpolation interval, the df? IntegrateExid routine passes them to the user-defined callback function unchanged.

The value of the integral is the sum of integral values obtained on the sub-intervals.
The library_params parameter allows the library to provide extra parameters. Currently no parameters are provided.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201
```

See Also
df?Integrate1D/df?IntegrateEx1D
df?IntegrCallBack
df?SearchCellsCallBack
df?SearchCellsCallBack
A callback function for user-defined search to be
passed into df?InterpolateEx1D,
df?IntegrateEx1D, or df?SearchCellsEx1D.

```

\section*{Syntax}
```

status = dfsSearchCellsCallBack(n, site, cell, flag, user_params, library_params)
status = dfdSearchCellsCallBack(n, site, cell, flag, user_params, library_params)

```

\section*{Include Files}
- mkl.h

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & long long* \\
site & \begin{tabular}{l} 
float* for \\
dfsSearchCellsCallBack
\end{tabular} \\
& \begin{tabular}{l} 
double* for \\
dfdSearchCellsCallBack
\end{tabular} \\
flag & int*
\end{tabular}
user_para void*
ms

\section*{Description}

Number of interpolation sites or integration limits.
Array, size \(n\), of interpolation sites or integration limits.

Array of size \(n\), with values set as follows:
- If the cell with index cell[i] contains site[i], set flag[i] to 1.
- Otherwise, set flag[i] to zero. In this case, the library interprets the index as an approximation and computes the index of the cell containing site [i] by using the provided index as a starting point for the search.

Pointer to user-defined parameters of the callback function.
\begin{tabular}{lll} 
Name & Type & Description \\
library_p & dfSearchCallBackLibraryPar \\
arams & ams* & \begin{tabular}{l} 
Pointer to library-defined parameters of the callback \\
function.
\end{tabular}
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
status & int
\end{tabular}
cell long long*

\section*{Description}

The status returned by the callback function:
- Zero indicates successful completion of the callback operation.
- A negative value indicates an error.
- The DF_STATUS_EXACT_RESULT status indicates that cell indices returned by the callback function are exact. In this case, you do not need to initialize entries of the flag array.
- A positive value indicates a warning.

See "Task Status and Error Reporting" for error code definitions.

Array of size \(n\) that returns indices of the cells computed by the callback function.

\section*{Description}

When passed into the df?InterpolateEx1D, df?IntegrateEx1D, or df?SearchCellsEx1D routine, this function performs a user-defined search.
The library_params parameter allows the library to provide extra parameters. The df?InterpolateEx1D, and df?SearchCellsEx1D routines do not provide extra parameters and set library_params to NULL. The df? IntegrateEx1D routines use this parameter to specify which type of integration limits, left or right, are provided for the callback. To do this the library declares the dfSearchCallBackLibraryParams structure. It currently contains one field, limit_type_flag, of type int. The field is set by the library to one of two possible values: DF_INTEGR_SEARCH_CB_LLIM_FLAG if the left integration limits are provided, or DF_INTEGR_SEARCH_CB_RLIM_FLAG if the right integration limits are provided.
```

See Also
df?Interpolate1D/df?InterpolateEx1D
df?InterpCallBack

```

\section*{Data Fitting Task Destructors}

Task destructors are routines used to delete task descriptors and deallocate the corresponding memory resources. The Data Fitting task destructor dfDeleteTask destroys a Data Fitting task and frees the memory.
dfDeleteTask
Destroys a Data Fitting task object and frees the memory.
```

Syntax
status = dfDeleteTask(\&task)

```

Include Files
- mkl.h

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
task & DFTaskPtr & Descriptor of the task to destroy.
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
status & int
\end{tabular}

\section*{Description}

Status of the routine:
- DF_STATUS_OK if the task is deleted successfully.
- Non-zero error code if the operation failed. See "Task Status and Error Reporting" for error code definitions.

\section*{Description}

Given a pointer to a task descriptor, this routine deletes the Data Fitting task descriptor and frees the memory allocated for the structure. If the task is deleted successfully, the routine sets the task pointer to NULL. Otherwise, the routine returns an error code.

\section*{Appendix A: Linear Solvers Basics}

Many applications in science and engineering require the solution of a system of linear equations. This problem is usually expressed mathematically by the matrix-vector equation, \(A x=b\), where \(A\) is an \(m\)-by- \(n\) matrix, \(x\) is the \(n\) element column vector and \(b\) is the \(m\) element column vector. The matrix \(A\) is usually referred to as the coefficient matrix, and the vectors \(x\) and \(b\) are referred to as the solution vector and the right-hand side, respectively.
Basic concepts related to solving linear systems with sparse matrices are described in Sparse Linear Systems and various storage schemes for sparse matrices are described in Sparse Matrix Storage Formats.

\section*{Sparse Linear Systems}

In many real-life applications, most of the elements in \(A\) are zero. Such a matrix is referred to as sparse. Conversely, matrices with very few zero elements are called dense. For sparse matrices, computing the solution to the equation \(A x=b\) can be made much more efficient with respect to both storage and computation time, if the sparsity of the matrix can be exploited. The more an algorithm can exploit the sparsity without sacrificing the correctness, the better the algorithm.
Generally speaking, computer software that finds solutions to systems of linear equations is called a solver. A solver designed to work specifically on sparse systems of equations is called a sparse solver. Solvers are usually classified into two groups - direct and iterative.
Iterative Solvers start with an initial approximation to a solution and attempt to estimate the difference between the approximation and the true result. Based on the difference, an iterative solver calculates a new approximation that is closer to the true result than the initial approximation. This process is repeated until the difference between the approximation and the true result is sufficiently small. The main drawback to iterative solvers is that the rate of convergence depends greatly on the values in the matrix \(A\). Consequently, it is not possible to predict how long it will take for an iterative solver to produce a solution. In fact, for ill-
conditioned matrices, the iterative process will not converge to a solution at all. However, for well-conditioned matrices it is possible for iterative solvers to converge to a solution very quickly. Consequently, if an application involves well-conditioned matrices iterative solvers can be very efficient.
Direct Solvers, on the other hand, factor the matrix \(A\) into the product of two triangular matrices and then perform a forward and backward triangular solve.
This approach makes the time required to solve a systems of linear equations relatively predictable, based on the size of the matrix. In fact, for sparse matrices, the solution time can be predicted based on the number of non-zero elements in the array \(A\).

\section*{Matrix Fundamentals}

A matrix is a rectangular array of either real or complex numbers. A matrix is denoted by a capital letter; its elements are denoted by the same lower case letter with row/column subscripts. Thus, the value of the element in row \(i\) and column \(j\) in matrix \(A\) is denoted by \(a(i, j)\). For example, a 3 by 4 matrix \(A\), is written as follows:


Note that with the above notation, we assume the standard Fortran programming language convention of starting array indices at 1 rather than the \(C\) programming language convention of starting them at 0 .
A matrix in which all of the elements are real numbers is called a real matrix. A matrix that contains at least one complex number is called a complex matrix. A real or complex matrix \(A\) with the property that \(a(i, j)=\) \(a(j, i)\), is called a symmetric matrix. A complex matrix \(A\) with the property that \(a(i, j)=\operatorname{conj}(a(j, i))\), is called a Hermitian matrix. Note that programs that manipulate symmetric and Hermitian matrices need only store half of the matrix values, since the values of the non-stored elements can be quickly reconstructed from the stored values.
A matrix that has the same number of rows as it has columns is referred to as a square matrix. The elements in a square matrix that have same row index and column index are called the diagonal elements of the matrix, or simply the diagonal of the matrix.
The transpose of a matrix \(A\) is the matrix obtained by "flipping" the elements of the array about its diagonal. That is, we exchange the elements \(a(i, j)\) and \(a(j, i)\). For a complex matrix, if we both flip the elements about the diagonal and then take the complex conjugate of the element, the resulting matrix is called the Hermitian transpose or conjugate transpose of the original matrix. The transpose and Hermitian transpose of a matrix \(A\) are denoted by \(A^{T}\) and \(A^{H}\) respectively.
A column vector, or simply a vector, is a \(n \times 1\) matrix, and a row vector is a \(1 \times n\) matrix. A real or complex matrix \(A\) is said to be positive definite if the vector-matrix product \(x^{T} A x\) is greater than zero for all non-zero vectors \(x\). A matrix that is not positive definite is referred to as indefinite.
An upper (or lower) triangular matrix, is a square matrix in which all elements below (or above) the diagonal are zero. A unit triangular matrix is an upper or lower triangular matrix with all 1 's along the diagonal.
A matrix \(P\) is called a permutation matrix if, for any matrix \(A\), the result of the matrix product \(P A\) is identical to \(A\) except for interchanging the rows of \(A\). For a square matrix, it can be shown that if \(P A\) is a permutation of the rows of \(A\), then \(A P^{T}\) is the same permutation of the columns of \(A\). Additionally, it can be shown that the inverse of \(P\) is \(P^{T}\).
In order to save space, a permutation matrix is usually stored as a linear array, called a permutation vector, rather than as an array. Specifically, if the permutation matrix maps the \(i\)-th row of a matrix to the \(j\)-th row, then the \(i\)-th element of the permutation vector is \(j\).

A matrix with non-zero elements only on the diagonal is called a diagonal matrix. As is the case with a permutation matrix, it is usually stored as a vector of values, rather than as a matrix.

\section*{Direct Method}

For solvers that use the direct method, the basic technique employed in finding the solution of the system \(A x\) \(=b\) is to first factor \(A\) into triangular matrices. That is, find a lower triangular matrix \(L\) and an upper triangular matrix \(U\), such that \(A=L U\). Having obtained such a factorization (usually referred to as an \(L U\) decomposition or \(L U\) factorization), the solution to the original problem can be rewritten as follows.
\[
\begin{array}{ll} 
& A x=b \\
\Rightarrow & L U x=b \\
\Rightarrow \quad & L(U x)=b
\end{array}
\]

This leads to the following two-step process for finding the solution to the original system of equations:
1. Solve the systems of equations \(L y=b\).
2. Solve the system \(U x=y\).

Solving the systems \(L y=b\) and \(U x=y\) is referred to as a forward solve and a backward solve, respectively.
If a symmetric matrix \(A\) is also positive definite, it can be shown that \(A\) can be factored as \(L L^{T}\) where \(L\) is a lower triangular matrix. Similarly, a Hermitian matrix, \(A\), that is positive definite can be factored as \(A=L L^{H}\). For both symmetric and Hermitian matrices, a factorization of this form is called a Cholesky factorization.
In a Cholesky factorization, the matrix \(U\) in an \(L U\) decomposition is either \(L^{T}\) or \(L^{H}\). Consequently, a solver can increase its efficiency by only storing \(L\), and one-half of \(A\), and not computing \(U\). Therefore, users who can express their application as the solution of a system of positive definite equations will gain a significant performance improvement over using a general representation.
For matrices that are symmetric (or Hermitian) but not positive definite, there are still some significant efficiencies to be had. It can be shown that if \(A\) is symmetric but not positive definite, then \(A\) can be factored as \(A=L D L^{T}\), where \(D\) is a diagonal matrix and \(L\) is a lower unit triangular matrix. Similarly, if \(A\) is Hermitian, it can be factored as \(A=L D L^{H}\). In either case, we again only need to store \(L, D\), and half of \(A\) and we need not compute \(U\). However, the backward solve phases must be amended to solving \(L^{T} X=D^{-1} y\) rather than \(L^{T} X=y\).

\section*{Fill-In and Reordering of Sparse Matrices}

Two important concepts associated with the solution of sparse systems of equations are fill-in and reordering. The following example illustrates these concepts.

Consider the system of linear equation \(A x=b\), where \(A\) is a symmetric positive definite sparse matrix, and \(A\) and \(b\) are defined by the following:
\[
A=\left[\begin{array}{ccccc}
9 & \frac{3}{2} & 6 & \frac{3}{4} & 3 \\
\frac{3}{2} & \frac{1}{2} & \star & \star & \star \\
6 & \star & 12 & \star & \star \\
\frac{3}{4} & \star & \star & \frac{5}{8} & \star \\
3 & \star & \star & \star & 16
\end{array}\right], B=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right]
\]

A star (*) is used to represent zeros and to emphasize the sparsity of \(A\). The Cholesky factorization of \(A\) is: \(A\) \(=L L^{T}\), where \(L\) is the following:
\[
L=\left[\begin{array}{ccccc}
3 & \star & \star & \star & t \\
\frac{1}{2} & \frac{1}{2} & t & t & t \\
2 & -2 & 2 & t & t \\
\frac{1}{4} & \frac{1}{-4} & \frac{1}{-2} & \frac{1}{2} & t \\
-1 & -1 & -2 & -3 & 1
\end{array}\right]
\]

Notice that even though the matrix \(A\) is relatively sparse, the lower triangular matrix \(L\) has no zeros below the diagonal. If we computed \(L\) and then used it for the forward and backward solve phase, we would do as much computation as if \(A\) had been dense.

The situation of \(L\) having non-zeros in places where \(A\) has zeros is referred to as fill-in. Computationally, it would be more efficient if a solver could exploit the non-zero structure of \(A\) in such a way as to reduce the fill-in when computing \(L\). By doing this, the solver would only need to compute the non-zero entries in \(L\). Toward this end, consider permuting the rows and columns of \(A\). As described in Matrix Fundamentals, the permutations of the rows of \(A\) can be represented as a permutation matrix, \(P\). The result of permuting the rows is the product of \(P\) and \(A\). Suppose, in the above example, we swap the first and fifth row of \(A\), then swap the first and fifth columns of \(A\), and call the resulting matrix \(B\). Mathematically, we can express the process of permuting the rows and columns of \(A\) to get \(B\) as \(B=P A P^{T}\). After permuting the rows and columns of \(A\), we see that \(B\) is given by the following:


Since \(B\) is obtained from \(A\) by simply switching rows and columns, the numbers of non-zero entries in \(A\) and \(B\) are the same. However, when we find the Cholesky factorization, \(B=L L^{\top}\), we see the following:


The fill-in associated with \(B\) is much smaller than the fill-in associated with \(A\). Consequently, the storage and computation time needed to factor \(B\) is much smaller than to factor \(A\). Based on this, we see that an efficient sparse solver needs to find permutation \(P\) of the matrix \(A\), which minimizes the fill-in for factoring \(B=P A P^{T}\), and then use the factorization of \(B\) to solve the original system of equations.

Although the above example is based on a symmetric positive definite matrix and a Cholesky decomposition, the same approach works for a general \(L U\) decomposition. Specifically, let \(P\) be a permutation matrix, \(B=\) \(P A P^{T}\) and suppose that \(B\) can be factored as \(B=L U\). Then
\[
\begin{array}{ll}
A x=b & \Rightarrow \\
P A\left(P^{-1} P\right) x=P b & \Rightarrow \\
P A\left(P^{T} P\right) x=P b & \Rightarrow \\
\left(P A P^{T}\right)(P X)=P b & \Rightarrow \\
B(P X)=P b & \Rightarrow \\
L U(P X)=P b &
\end{array}
\]

It follows that if we obtain an \(L U\) factorization for \(B\), we can solve the original system of equations by a three step process:
1. Solve \(L y=P b\).
2. Solve \(U z=y\).
3. Set \(x=P^{T} z\).

If we apply this three-step process to the current example, we first need to perform the forward solve of the systems of equation \(L y=P b\) :
\[
L Y=\left[\begin{array}{ccccc}
4 & \star & \star & \star & \star \\
\star & \frac{1}{\sqrt{2}} & \star & \star & \star \\
\star & \star & 2(\sqrt{3}) & \star & \star \\
\star & \star & \star & \frac{\sqrt{10}}{4} & \star \\
& & & & \sqrt{\frac{3}{5}} \\
\frac{3}{4} & \frac{3}{\sqrt{2}} & \sqrt{3} & \frac{3}{\sqrt{10}} & \frac{\sqrt{4}}{4}
\end{array}\right]+\left[\begin{array}{c}
y^{1} \\
y^{2} \\
y^{3} \\
y^{4} \\
y^{5}
\end{array}\right]=\left[\begin{array}{l}
5 \\
2 \\
3 \\
4 \\
1
\end{array}\right]
\]

This gives:
\[
Y^{T}=\frac{5}{4}, 2 \sqrt{2}, \frac{\sqrt{3}}{2}, \frac{16}{\sqrt{10}}, \frac{-979 \sqrt{\frac{3}{5}}}{12}
\]

The second step is to perform the backward solve, \(U z=y\). Or, in this case, since a Cholesky factorization is used, \(L^{T} z=y\).
\[
\left[\begin{array}{ccccc}
4 & \star & \star & * & * \\
\star & \frac{1}{\sqrt{2}} & \star & \star & * \\
\star & \star & 2(\sqrt{3}) & \star & \star \\
\star & \star & \star & \frac{\sqrt{10}}{4} & \star \\
\frac{3}{4} & \frac{3}{\sqrt{2}} & \sqrt{3} & \frac{3}{\sqrt{10}} & \frac{\sqrt{\frac{3}{5}}}{4}
\end{array}\right]^{T} *\left[\begin{array}{c}
z 1 \\
z 2 \\
z 3 \\
z 4 \\
z 5
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{4} \\
2(\sqrt{2}) \\
\frac{\sqrt{3}}{2} \\
\frac{16}{\sqrt{10}} \\
-979 \sqrt{\frac{3}{5}} \\
\frac{12}{}
\end{array}\right]
\]

This gives
\[
z^{T}=\frac{123}{2}, 983, \frac{1961}{12}, 398, \frac{-979}{3} .
\]

The third and final step is to set \(x=P^{T} z\). This gives
\[
X^{T}=\frac{-979}{3}, 983, \frac{1961}{12}, 398, \frac{123}{2} .
\]

\section*{Sparse Matrix Storage Formats}

It is more efficient to store only the non-zero elements of a sparse matrix. There are a number of common storage formats used for sparse matrices, but most of them employ the same basic technique. That is, store all non-zero elements of the matrix into a linear array and provide auxiliary arrays to describe the locations of the non-zero elements in the original matrix.

\section*{Storage Formats for the Direct Sparse Solvers}

Storing the non-zero elements of a sparse matrix into a linear array is done by walking down each column (column-major format) or across each row (row-major format) in order, and writing the non-zero elements to a linear array in the order they appear in the walk.
- DSS Symmetric Matrix Storage
- DSS Nonsymmetric Matrix Storage
- DSS Structurally Symmetric Matrix Storage
- DSS Distributed Symmetric Matrix Storage

\section*{Sparse Matrix Storage Formats for Sparse BLAS Levels 2 and Level 3}

These sections describe in detail the sparse matrix storage formats supported in the current version of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3.
- Sparse BLAS CSR Matrix Storage
- Sparse BLAS CSC Matrix Storage
- Sparse BLAS Coordinate Matrix Storage
- Sparse BLAS Diagonal Matrix Storage
- Sparse BLAS Skyline Matrix Storage
- Sparse BLAS BSR Matrix Storage

\section*{DSS Symmetric Matrix Storage}

For symmetric matrices, it is necessary to store only the upper triangular half of the matrix (upper triangular format) or the lower triangular half of the matrix (lower triangular format).

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) direct sparse solvers use a row-major upper triangular storage format: the matrix is compressed row-by-row and for symmetric matrices only non-zero elements in the upper triangular half of the matrix are stored.

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) sparse matrix storage format for direct sparse solvers is specified by three arrays:values, columns, and rowIndex. The following table describes the arrays in terms of the values, row, and column positions of the non-zero elements in a sparse matrix.
values A real or complex array that contains the non-zero elements of a sparse matrix. The non-zero elements are mapped into the values array using the row-major upper triangular storage mapping described above.
columns Element \(i\) of the integer array columns is the number of the column that contains the \(i\)-th element in the values array.

Element \(j\) of the integer array rowIndex gives the index of the element in the values array that is first non-zero element in a row \(j\).

The length of the values and columns arrays is equal to the number of non-zero elements in the matrix.
As the rowIndex array gives the location of the first non-zero element within a row, and the non-zero elements are stored consecutively, the number of non-zero elements in the \(i\)-th row is equal to the difference of rowIndex[i] and rowIndex[i+1].

To have this relationship hold for the last row of the matrix, an additional entry (dummy entry) is added to the end of rowIndex. Its value is equal to the number of non-zero elements plus one. This makes the total length of the rowIndex array one larger than the number of rows in the matrix.

\section*{NOTE}

The Intel® \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) sparse storage scheme for the direct sparse solvers supports both one-based indexing and zero-based indexing.

Consider the symmetric matrix \(A\) :
\(A=\left(\begin{array}{ccccc}1 & -1 & * & -3 & * \\ -1 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -3 & * & 6 & 7 & * \\ * & * & 4 & * & -5\end{array}\right)\)
Only elements from the upper triangle are stored. The actual arrays for the matrix \(A\) are as follows:
Storage Arrays for a Symmetric Matrix
\begin{tabular}{lllllllllll} 
\\
one-based indexing & & & & & & & & \\
values & \(=\) & \((1\) & -1 & -3 & 5 & 4 & 6 & 4 & 7 & \(-5)\) \\
columns & \((1\) & 2 & 4 & 2 & 3 & 4 & 5 & 4 & \(5)\) \\
rowIndex & \(=\) & \((1\) & 4 & 5 & 8 & 9 & \(10)\) & & &
\end{tabular}
zero-based indexing
\begin{tabular}{lllllllllll} 
values & \(=\) & \((1\) & -1 & -3 & 5 & 4 & 6 & 4 & 7 & \(-5)\) \\
columns & \(=\) & \((0\) & 1 & 3 & 1 & 2 & 3 & 4 & 3 & \(4)\) \\
rowIndex & \(=\) & \((0\) & 3 & 4 & 7 & 8 & \(9)\) & & & \\
\hline
\end{tabular}

\section*{Storage Format Restrictions}

The storage format for the sparse solver must conform to two important restrictions:
- the non-zero values in a given row must be placed into the values array in the order in which they occur in the row (from left to right);
- no diagonal element can be omitted from the values array for any symmetric or structurally symmetric matrix.

The second restriction implies that if symmetric or structurally symmetric matrices have zero diagonal elements, then they must be explicitly represented in the values array.

\section*{DSS Nonsymmetric Matrix Storage}

For a non-symmetric or non-Hermitian matrix, all non-zero elements need to be stored. Consider the nonsymmetric matrix \(B\) :
\(\left(\begin{array}{ccccc}1 & -1 & * & -3 & * \\ -2 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & * & * & -5\end{array}\right)\)
The matrix \(B\) has 13 non-zero elements, and all of them are stored as follows:

\section*{Storage Arrays for a Non-Symmetric Matrix}
\begin{tabular}{llllllllllllllll}
\hline \begin{tabular}{l} 
one-based \\
indexing \\
values
\end{tabular} & \(=\) & \((1\) & -1 & -3 & -2 & 5 & 4 & 6 & 4 & -4 & 2 & 7 & 8 & \(-5)\) \\
columns & \(=\) & \((1\) & 2 & 4 & 1 & 2 & 3 & 4 & 5 & 1 & 3 & 4 & 2 & \(5)\) \\
rowIndex & \(=\) & \((1\) & 4 & 6 & 9 & 12 & \(14)\) & & & & & & \\
\begin{tabular}{llllllllllll} 
\\
zero-based \\
indexing
\end{tabular} & & & & & & & & & & & & & & & \\
values
\end{tabular}

\section*{Storage Format Restrictions}

The storage format for the sparse solver must conform to two important restrictions:
- the non-zero values in a given row must be placed into the values array in the order in which they occur in the row (from left to right);
- no diagonal element can be omitted from the values array for any symmetric or structurally symmetric matrix.

The second restriction implies that if symmetric or structurally symmetric matrices have zero diagonal elements, then they must be explicitly represented in the values array.

\section*{DSS Structurally Symmetric Matrix Storage}

Direct sparse solvers can also solve symmetrically structured systems of equations. A symmetrically structured system of equations is one where the pattern of non-zero elements is symmetric. That is, a matrix has a symmetric structure if \(a_{j, i}\) is not zero if and only if \(a_{i, j}\) is not zero. From the point of view of the solver software, a "non-zero" element of a matrix is any element stored in the values array, even if its value is
equal to 0 . In that sense, any non-symmetric matrix can be turned into a symmetrically structured matrix by carefully adding zeros to the values array. For example, the above matrix \(B\) can be turned into a symmetrically structured matrix by adding two non-zero entries:
\(B=\left(\begin{array}{ccccc}1 & -1 & * & 3 & * \\ -2 & 5 & * & * & 0 \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & 0 & * & -5\end{array}\right)\)
The matrix \(B\) can be considered to be symmetrically structured with 15 non-zero elements and represented as:
Storage Arrays for a Symmetrically Structured Matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline one-based indexing & & & & & & & & & & & & & & & & \\
\hline values & = & (1) & -1 & -3 & -2 & 5 & 0 & 4 & 6 & 4 & -4 & 2 & 7 & 8 & 0 & -5) \\
\hline columns & = & (1 & 2 & 4 & 1 & 2 & 5 & 3 & 4 & 5 & 1 & 3 & 4 & 2 & 3 & 5) \\
\hline rowIndex & = & (1 & 4 & 7 & 10 & 13 & 16) & & & & & & & & & \\
\hline \multicolumn{17}{|l|}{zero-based indexing} \\
\hline values & = & (1 & -1 & -3 & -2 & 5 & 0 & 4 & 6 & 4 & -4 & 2 & 7 & 8 & 0 & -5) \\
\hline columns & = & (0) & 1 & 3 & 0 & 1 & 4 & 2 & 3 & 4 & 0 & 2 & 3 & 1 & 2 & 4) \\
\hline rowIndex & \(=\) & (0 & 3 & 6 & 9 & 12 & 15) & & & & & & & & & \\
\hline
\end{tabular}

\section*{Storage Format Restrictions}

The storage format for the sparse solver must conform to two important restrictions:
- the non-zero values in a given row must be placed into the values array in the order in which they occur in the row (from left to right);
- no diagonal element can be omitted from the values array for any symmetric or structurally symmetric matrix.

The second restriction implies that if symmetric or structurally symmetric matrices have zero diagonal elements, then they must be explicitly represented in the values array.

\section*{DSS Distributed Symmetric Matrix Storage}

The distributed assembled matrix input format can be used by the Parallel Direct Sparse Solver for Clusters Interface.

In this format, the symmetric input matrix \(A\) is divided into sequential row subsets, or domains. Each domain belongs to an MPI process. Neighboring domains can overlap. For such intersection between two domains, the element values of the full matrix can be obtained by summing the respective elements of both domains.
As in the centralized format, the distributed format uses three arrays to describe the input data, but the values, columns, and rowIndex arrays on each processor only describe the domain belonging to that particular processor and not the entire matrix.
For example, consider a symmetric matrix \(A\) :
\(A=\left(\begin{array}{ccccc}\mathbf{6} & \mathbf{- 1} & * & -\mathbf{3} & * \\ -\mathbf{1} & \mathbf{5} & * & * & * \\ * & * & \mathbf{1 1} & \mathbf{5} & \mathbf{4} \\ -3 & * & 5 & \mathbf{1 0} & * \\ * & * & 4 & * & \mathbf{5}\end{array}\right)\)
This array could be distributed between two domains corresponding to two MPI processes, with the first containing rows 1 through 3 , and the second containing rows 3 through 5 .

\section*{NOTE}

For the symmetric input matrix, it is not necessary to store the values from the lower triangle.
\(A_{\text {Domain } 1}=\left(\begin{array}{cccccc}\mathbf{6} & -\mathbf{1} & * & -\mathbf{3} & * \\ -1 & \mathbf{5} & * & * & * \\ * & * & \mathbf{3} & * & \mathbf{2}\end{array}\right)\)
Distributed Storage Arrays for a Symmetric Matrix, Domain 1
\(\left.\left.\begin{array}{llllllll}\hline \text { one-based indexing } & & & & & & \\ \text { values } & = & (6 & -1 & -3 & 5 & 3 & 2) \\ \text { columns } & = & (1 & 2 & 4 & 2 & 3 & 5) \\ \text { rowIndex } & = & (1 & 4 & 5 & 7) & & \\ \text { zero-based indexing } & & & (6 & -1 & -3 & 5 & 3\end{array}\right] 2\right)\)
\(A_{\text {Domain } 2}=\left(\begin{array}{ccccc}* & * & \mathbf{8} & \mathbf{5} & \mathbf{2} \\ -3 & * & 5 & \mathbf{1 0} & * \\ * & * & 4 & * & \mathbf{5}\end{array}\right)\)
Distributed Storage Arrays for a Symmetric Matrix, Domain 2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{one-based indexing} \\
\hline values & = & (8) & 5 & 2 & 10 & 5) \\
\hline columns & = & (3) & 4 & 5 & 4 & 5) \\
\hline rowIndex & = & (1 & 4 & 5 & 6) & \\
\hline \multicolumn{7}{|l|}{zero-based indexing} \\
\hline values & = & (8) & 5 & 2 & 10 & 5) \\
\hline columns & = & (2 & 3 & 4 & 3 & 4) \\
\hline rowIndex & = & (0 & 3 & 4 & 5) & \\
\hline
\end{tabular}

The third row of matrix \(A\) is common between domain 1 and domain 2 . The values of row 3 of matrix \(A\) are the sums of the respective elements of row 3 of matrix \(A_{\text {Domain1 }}\) and row 1 of matrix \(A_{\text {Domain2 }}\).

\section*{Storage Format Restrictions}

The storage format for the sparse solver must conform to two important restrictions:
- the non-zero values in a given row must be placed into the values array in the order in which they occur in the row (from left to right);
- no diagonal element can be omitted from the values array for any symmetric or structurally symmetric matrix.

The second restriction implies that if symmetric or structurally symmetric matrices have zero diagonal elements, then they must be explicitly represented in the values array.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Sparse BLAS CSR Matrix Storage Format}

The Intel® oneAPI Math Kernel Library (oneMKL) Sparse BLAS compressed sparse row (CSR) format is specified by four arrays:
- values
- columns
- pointerB
- pointerE

In addition, each sparse matrix has an associated variable, indexing, which specifies if the matrix indices are 0 -based (indexing=0) or 1-based (indexing=1). These are descriptions of the arrays in terms of the values, row, and column positions of the non-zero elements in a sparse matrix \(A\).
values A real or complex array that contains the non-zero elements of \(A\). Values of the non-zero elements of \(A\) are mapped into the values array using the row-major storage mapping described above.
columns
Element \(i\) of the integer array columns is the number of the column in \(A\) that contains the \(i\)-th value in the values array.
pointerB Element \(j\) of this integer array gives the index of the element in the values array that is first non-zero element in a row \(j\) of \(A\). Note that this index is equal to pointerB[j]-indexing.
pointerE
An integer array that contains row indices, such that pointere[j]-1-indexing is the index of the element in the values array that is last non-zero element in a row \(j\) of \(A\).

The length of the values and columns arrays is equal to the number of non-zero elements in \(A\).The length of the pointerB and pointerE arrays is equal to the number of rows in \(A\).

\section*{NOTE}

Note that the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS routines support the CSR format both with one-based indexing and zero-based indexing.

You can represent the matrix \(B\)
\(B=\left(\begin{array}{ccccc}1 & -1 & * & -3 & * \\ -2 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & * & * & -5\end{array}\right)\)
in the CSR format as:

\section*{Storage Arrays for a Matrix in CSR Format}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{one-based indexing} \\
\hline values & \(=\) & (1) & -1 & -3 & -2 & 5 & 4 & 6 & 4 & -4 & 2 & 7 & 8 & -5) \\
\hline columns & = & (1 & 2 & 4 & 1 & 2 & 3 & 4 & 5 & 1 & 3 & 4 & 2 & 5) \\
\hline pointerB & = & (1 & 4 & 6 & 9 & 12) & & & & & & & & \\
\hline pointerE & = & (4 & 6 & 9 & 12 & 14) & & & & & & & & \\
\hline \multicolumn{15}{|l|}{zero-based indexing} \\
\hline values & \(=\) & (1) & -1 & -3 & -2 & 5 & 4 & 6 & 4 & -4 & 2 & 7 & 8 & -5) \\
\hline columns & = & (0) & 1 & 3 & 0 & 1 & 2 & 3 & 4 & 0 & 2 & 3 & 1 & 4) \\
\hline pointerB & \(=\) & (0) & 3 & 5 & 8 & 11) & & & & & & & & \\
\hline pointerE & = & (3 & 5 & 8 & 11 & 13) & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Additionally, you can define submatrices with different pointerB and pointerE arrays that share the same values and columns arrays of a CSR matrix. For example, you can represent the lower right \(3 \times 3\) submatrix of \(B\) as:

\section*{Storage Arrays for a Matrix in CSR Format}
one-based indexing
\begin{tabular}{lllll} 
subpointerB & \(=\) & \((6\) & 10 & \(13)\) \\
subpointerE & \(=\) & \((9\) & 12 & \(14)\)
\end{tabular}
zero-based indexing
}
\begin{tabular}{lllll} 
subpointerB & \(=\) & \((5\) & 9 & \(12)\) \\
subpointerE & \(=\) & \((8\) & 11 & \(13)\)
\end{tabular}

NOTE The CSR matrix must have a monotonically increasing row index. That is, pointerB[i] \(\leq\) pointerB[j] and pointerE[i] \(\leq\) pointerE[j] for all indices \(i<j\).

This storage format is used in the NIST Sparse BLAS library [Rem05].

\section*{Three Array Variation of CSR Format}

The storage format accepted for the direct sparse solvers is a variation of the CSR format. It also is used in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 both with one-based indexing and zerobased indexing. The above matrix \(B\) can be represented in this format (referred to as the 3-array variation of the CSR format or CSR3) as:

Storage Arrays for a Matrix in CSR Format (3-Array Variation)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{one-based indexing} \\
\hline values & = & (1 & -1 & -3 & -2 & 5 & 4 & 6 & 4 & -4 & 2 & 7 & 8 & -5) \\
\hline columns & = & (1 & 2 & 4 & 1 & 2 & 3 & 4 & 5 & 1 & 3 & 4 & 2 & 5) \\
\hline rowIndex & = & (1 & 4 & 6 & 9 & 12 & 14) & & & & & & & \\
\hline \multicolumn{15}{|l|}{zero-based indexing} \\
\hline values & \(=\) & (1 & -1 & -3 & -2 & 5 & 4 & 6 & 4 & -4 & 2 & 7 & 8 & -5) \\
\hline columns & = & (0) & 1 & 3 & 0 & 1 & 2 & 3 & 4 & 0 & 2 & 3 & 1 & 4) \\
\hline rowIndex & = & (0) & 3 & 5 & 8 & 11 & 13) & & & & & & & \\
\hline
\end{tabular}

The 3-array variation of the CSR format has a restriction: all non-zero elements are stored continuously, that is the set of non-zero elements in the row \(J\) goes just after the set of non-zero elements in the row \(J-1\).

There are no such restrictions in the general (NIST) CSR format. This may be useful, for example, if there is a need to operate with different submatrices of the matrix at the same time. In this case, it is enough to define the arrays pointerB and pointerE for each needed submatrix so that all these arrays are pointers to the same array values.

By definition, the array rowIndex from the Table "Storage Arrays for a Non-Symmetric Example Matrix" is related to the arrays pointerB and pointerE from the Table "Storage Arrays for an Example Matrix in CSR Format", and you can see that
```

pointerB[i] = rowIndex[i] for i=0, ..4;
pointerE[i] = rowIndex[i+1] for i=0, ..4.

```

This enables calling a routine that has values, columns, pointerB and pointerE as input parameters for a sparse matrix stored in the format accepted for the direct sparse solvers. For example, a routine with the interface:
```

 void name_routine(.... , double *values, MKL_INT *columns, MKL_INT *pointerB, MKL_INT
 *pointerE, ...)

```
can be called with parameters values, columns, rowIndex as follows:
```

name_routine(.... , values, columns, rowIndex, rowIndex+1, ...).

```

\section*{Sparse BLAS CSC Matrix Storage Format}

The compressed sparse column format (CSC) is similar to the CSR format, but the columns are used instead the rows. In other words, the CSC format is identical to the CSR format for the transposed matrix. The CSR format is specified by four arrays: values, columns, pointer \(B\), and pointerE. The following table describes the arrays in terms of the values, row, and column positions of the non-zero elements in a sparse matrix \(A\).
values A real or complex array that contains the non-zero elements of \(A\). Values of the non-zero elements of \(A\) are mapped into the values array using the columnmajor storage mapping.
rows
Element \(i\) of the integer array rows is the number of the row in \(A\) that contains the \(i\)-th value in the values array.

Element \(j\) of this integer array gives the index of the element in the values array that is first non-zero element in a column \(j\) of \(A\). Note that this index is equal to pointerB[j]-indexing for Inspector-executor Sparse BLAS CSC arrays.
pointerE
An integer array that contains column indices, such that pointere[j]indexing is the index of the element in the values array that is last non-zero element in a column \(j\) of \(A\).

The length of the values and columns arrays is equal to the number of non-zero elements in \(A\). The length of the pointerB and pointerE arrays is equal to the number of columns in \(A\).

\section*{NOTE}

Note that the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS routines support the CSC format both with one-based indexing and zero-based indexing.

For example, consider matrix \(B\) :
\(B=\left(\begin{array}{ccccc}1 & -1 & * & -3 & * \\ -2 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & * & * & -5\end{array}\right)\)
It can be represented in the CSC format as:
Storage Arrays for a Matrix in CSC Format
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{one-based indexing} \\
\hline values & \(=\) & (1 & -2 & -4 & -1 & 5 & 8 & 4 & 2 & -3 & 6 & 7 & 4 & -5) \\
\hline rows & = & (1 & 2 & 4 & 1 & 2 & 5 & 3 & 4 & 1 & 3 & 4 & 3 & 5) \\
\hline pointerB & = & (1 & 4 & 7 & 9 & 12) & & & & & & & & \\
\hline pointerE & = & (4 & 7 & 9 & 12 & 14) & & & & & & & & \\
\hline \multicolumn{15}{|l|}{zero-based indexing} \\
\hline values & \(=\) & (1) & -2 & -4 & -1 & 5 & 8 & 4 & 2 & -3 & 6 & 7 & 4 & -5) \\
\hline rows & = & (0) & 1 & 3 & 0 & 1 & 4 & 2 & 3 & 0 & 2 & 3 & 2 & 4) \\
\hline pointerB & = & (0) & 3 & 6 & 8 & 11) & & & & & & & & \\
\hline pointerE & \(=\) & (3 & 6 & 8 & 11 & 13) & & & & & & & & \\
\hline
\end{tabular}

\section*{Sparse BLAS Coordinate Matrix Storage Format}

The coordinate format is the most flexible and simplest format for the sparse matrix representation. Only non-zero elements are stored, and the coordinates of each non-zero element are given explicitly. Many commercial libraries support the matrix-vector multiplication for the sparse matrices in the coordinate format.
The Intel® \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) coordinate format is specified by three arrays:values, rows, and column, and a parameter nnz which is number of non-zero elements in A. All three arrays have dimension \(n n z\). The following table describes the arrays in terms of the values, row, and column positions of the non-zero elements in a sparse matrix \(A\).
values A real or complex array that contains the non-zero elements of \(A\) in any order.

Element \(i\) of the integer array rows is the number of the row in \(A\) that contains the \(i\)-th value in the values array.
columns
Element \(i\) of the integer array columns is the number of the column in \(A\) that contains the \(i\)-th value in the values array.

\section*{NOTE}

Note that the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS routines support the coordinate format both with one-based indexing and zero-based indexing.

For example, the sparse matrix \(C\)
\(C=\left(\begin{array}{ccccc}1 & -1 & -3 & 0 & 0 \\ -2 & 5 & 0 & 0 & 0 \\ 0 & 0 & 4 & 6 & 4 \\ -4 & 0 & 2 & 7 & 0 \\ 0 & 8 & 0 & 0 & -5\end{array}\right)\)
can be represented in the coordinate format as follows:
Storage Arrays for an Example Matrix in case of the coordinate format
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{one-based indexing} \\
\hline values & \(=\) & (1 & -1 & -3 & -2 & 5 & 4 & 6 & 4 & -4 & 2 & 7 & 8 & -5) \\
\hline rows & = & (1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 & 4 & 5 & 5) \\
\hline columns & = & (1 & 2 & 3 & 1 & 2 & 3 & 4 & 5 & 1 & 3 & 4 & 2 & 5) \\
\hline \multicolumn{15}{|l|}{zero-based indexing} \\
\hline values & = & (1) & -1 & -3 & -2 & 5 & 4 & 6 & 4 & -4 & 2 & 7 & 8 & -5) \\
\hline rows & = & (0) & 0 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 4 & 4) \\
\hline columns & = & (0) & 1 & 2 & 0 & 1 & 2 & 3 & 4 & 0 & 2 & 3 & 1 & 4) \\
\hline
\end{tabular}

\section*{Sparse BLAS Diagonal Matrix Storage Format}

If the sparse matrix has diagonals containing only zero elements, then the diagonal storage format can be used to reduce the amount of information needed to locate the non-zero elements. This storage format is particularly useful in many applications where the matrix arises from a finite element or finite difference discretization. The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) diagonal storage format is specified by two arrays:values and distance, and two parameters: ndiag, which is the number of non-empty diagonals, and Ival, which is the declared leading dimension in the calling (sub)programs. The following table describes the arrays values and distance:
\begin{tabular}{ll} 
values & \begin{tabular}{l} 
A real or complex two-dimensional array is dimensioned as \(/ v a l\) \\
column of it contains the non-zero elements of certain diagonal of \(A\). The key \\
point of the storage is that each element in values retains the row number of the \\
original matrix. To achieve this diagonals in the lower triangular part of the \\
matrix are padded from the top, and those in the upper triangular part are \\
padded from the bottom. Note that the value of distance[i] is the number of \\
elements to be padded for diagonal \(i\).
\end{tabular} \\
distance & \begin{tabular}{l} 
An integer array with dimension ndiag. Element \(i\) of the array distance is the \\
distance between \(i\)-diagonal and the main diagonal. The distance is positive if the \\
diagonal is above the main diagonal, and negative if the diagonal is below the \\
main diagonal. The main diagonal has a distance equal to zero.
\end{tabular}
\end{tabular}

The above matrix \(C\) can be represented in the diagonal storage format as follows:
distance \(=\left(\begin{array}{lllll}-3 & -1 & 0 & 1 & 2\end{array}\right)\)
values \(=\left(\begin{array}{ccccc}* & * & 1 & -1 & -3 \\ * & -2 & 5 & 0 & 0 \\ * & 0 & 4 & 6 & 4 \\ -4 & 2 & 7 & 0 & * \\ 8 & 0 & -5 & * & *\end{array}\right)\)
where the asterisks denote padded elements.
When storing symmetric, Hermitian, or skew-symmetric matrices, it is necessary to store only the upper or the lower triangular part of the matrix.
For the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) triangular solver routines elements of the arraydistance must be sorted in increasing order. In all other cases the diagonals and distances can be stored in arbitrary order.

\section*{Sparse BLAS Skyline Matrix Storage Format}

The skyline storage format is important for the direct sparse solvers, and it is well suited for Cholesky or LU decomposition when no pivoting is required.
The skyline storage format accepted in Intel® oneAPI Math Kernel Library (oneMKL) can store only triangular matrix or triangular part of a matrix. This format is specified by two arrays:values and pointers. The following table describes these arrays:
values
pointers

A scalar array. For a lower triangular matrix it contains the set of elements from each row of the matrix starting from the first non-zero element to and including the diagonal element. For an upper triangular matrix it contains the set of elements from each column of the matrix starting with the first non-zero element down to and including the diagonal element. Encountered zero elements are included in the sets.

An integer array with dimension ( \(m+1\) ), where \(m\) is the number of rows for lower triangle (columns for the upper triangle). pointers]i] - pointers[0]+1 gives the index of element in values that is first non-zero element in row (column) \(i\). The value of pointers[m] is set to nnz+pointers[0], where \(n n z\) is the number of elements in the array values.

For example, consider the matrix \(C\) :
\(C=\left(\begin{array}{ccccc}1 & -1 & -3 & 0 & 0 \\ -2 & 5 & 0 & 0 & 0 \\ 0 & 0 & 4 & 6 & 4 \\ -4 & 0 & 2 & 7 & 0 \\ 0 & 8 & 0 & 0 & -5\end{array}\right)\)
The low triangle of the matrix \(C\) given above can be stored as follows:
```

values = [llllllllllllll
pointers = [lllllll}

```
and the upper triangle of this matrix \(C\) can be stored as follows:
```

values =[[[1 -1 5

```

This storage format is supported by the NIST Sparse BLAS library [Rem05].
Note that the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS routines operating with the skyline storage format do not support general matrices.

\section*{Sparse BLAS BSR Matrix Storage Format}

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) block compressed sparse row (BSR) format for sparse matrices is specified by four arrays:values, columns, pointerB, and pointerE. The following table describes these arrays.
\[
\begin{array}{ll}
\text { values } & \begin{array}{l}
\text { A real array that contains the elements of the non-zero blocks of a sparse matrix. } \\
\text { The elements are stored block-by-block in row-major order. A non-zero block is } \\
\text { the block that contains at least one non-zero element. All elements of non-zero } \\
\text { blocks are stored, even if some of them are equal to zero. Within each non-zero } \\
\text { block elements are stored in column-major order in the case of one-based } \\
\text { indexing, and in row-major order in the case of the zero-based indexing. }
\end{array} \\
\text { columns } & \begin{array}{l}
\text { Element } i \text { of the integer array columns is the number of the column in the block } \\
\text { matrix that contains the } i \text {-th non-zero block. }
\end{array} \\
\text { pointerB } & \begin{array}{l}
\text { Element } j \text { of this integer array gives the index of the element in the columns } \\
\text { array that is first non-zero block in a row } j \text { of the block matrix. }
\end{array} \\
\text { pointerE } & \begin{array}{l}
\text { Element } j \text { of this integer array gives the index of the element in the columns } \\
\text { array that contains the last non-zero block in a row } j \text { of the block matrix plus } 1 .
\end{array}
\end{array}
\]

The length of the values array is equal to the number of all elements in the non-zero blocks, the length of the columns array is equal to the number of non-zero blocks. The length of the pointerB and pointerE arrays is equal to the number of block rows in the block matrix.

\section*{NOTE}

Note that the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse BLAS routines support BSR format both with one-based indexing and zero-based indexing.

For example, consider the sparse matrix \(D\)
\(D=\left(\begin{array}{cccccc}1 & 0 & 6 & 7 & * & * \\ 2 & 1 & 8 & 2 & * & * \\ * & * & 1 & 4 & * & * \\ * & * & 5 & 1 & * & * \\ * & * & 4 & 3 & 7 & 2 \\ * & * & 0 & 0 & 0 & 0\end{array}\right)\)
If the size of the block equals 2 , then the sparse matrix \(D\) can be represented as a \(3 \times 3\) block matrix \(E\) with the following structure:
\[
E=\left(\begin{array}{ccc}
L & M & * \\
* & N & * \\
* & P & Q
\end{array}\right)
\]
where
\[
L=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right), M=\left(\begin{array}{ll}
6 & 7 \\
8 & 2
\end{array}\right), N=\left(\begin{array}{ll}
1 & 4 \\
5 & 1
\end{array}\right), P=\left(\begin{array}{ll}
4 & 3 \\
0 & 0
\end{array}\right), \quad Q=\left(\begin{array}{ll}
7 & 2 \\
0 & 0
\end{array}\right)
\]

The matrix \(D\) can be represented in the BSR format as follows: one-based indexing
```

values =((1 2 2 0 1 6 6 8 7 2 1 5 4 4 1 4 0 0 3 0 7 0
columns =((1 2 2 2 2 3)
pointerB = ((1 3 4)
pointerE = (3 4 6)

```
zero-based indexing
```

values = [1 0 2 1 6 7 8 2 1 4 5 1 4 3 0 0 7 2 0 0]
columns = [lllllll
pointerB = [l0}3023][
pointerE = [$$
\begin{array}{lll}{2}&{3}&{5}\end{array}
$$]

```

This storage format is supported by the NIST Sparse BLAS library [Rem05].

\section*{Three Array Variation of BSR Format}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) supports the variation of the BSR format that is specified by three arrays:values, columns, and rowIndex. The following table describes these arrays.
```

values A real array that contains the elements of the non-zero blocks of a sparse matrix.
The elements are stored block by block in row-major order. A non-zero block is
the block that contains at least one non-zero element. All elements of non-zero
blocks are stored, even if some of them is equal to zero. Within each non-zero
block the elements are stored in column major order in the case of the one-
based indexing, and in row major order in the case of the zero-based indexing.
columns Element i of the integer array columns is the number of the column in the block
matrix that contains the i-th non-zero block.
Element j of this integer array gives the index of the element in the columns
array that is first non-zero block in a row j of the block matrix.

```

The length of the values array is equal to the number of all elements in the non-zero blocks, the length of the columns array is equal to the number of non-zero blocks.

As the rowIndex array gives the location of the first non-zero block within a row, and the non-zero blocks are stored consecutively, the number of non-zero blocks in the \(i\)-th row is equal to the difference of rowIndex[i] and rowIndex[i+1].

To retain this relationship for the last row of the block matrix, an additional entry (dummy entry) is added to the end of rowIndex with value equal to the number of non-zero blocks plus one. This makes the total length of the rowIndex array one larger than the number of rows of the block matrix.
The above matrix \(D\) can be represented in this 3-array variation of the BSR format as follows:
```

one-based indexing

```
```

values = [lllllllllllllllllllllll

```
values = [lllllllllllllllllllllll
    columns =[[llllll
    columns =[[llllll
    rowIndex = [[lllll
```

 rowIndex = [[lllll
    ```
zero-based indexing
```

values =[$$
\begin{array}{lllllllllllllllllllll}{1}&{0}&{2}&{1}&{6}&{7}&{8}&{2}&{1}&{4}&{5}&{1}&{4}&{3}&{0}&{0}&{7}&{2}&{0}&{0}\end{array}
$$]
columns =[[lllllll}
rowIndex = [$$
\begin{array}{llll}{0}&{2}&{3}&{5}\end{array}
$$]

```

When storing symmetric matrices, it is necessary to store only the upper or the lower triangular part of the matrix.

For example, consider the symmetric sparse matrix F:
\(F=\left(\begin{array}{cccccc}1 & 0 & 6 & 7 & * & * \\ 2 & 1 & 8 & 2 & * & * \\ 6 & 8 & 1 & 4 & * & * \\ 7 & 2 & 5 & 2 & * & * \\ * & * & * & * & 7 & 2 \\ * & * & * & * & 0 & 0\end{array}\right)\)
If the size of the block equals 2 , then the sparse matrix \(F\) can be represented as a \(3 \times 3\) block matrix \(G\) with the following structure:
\(G=\left(\begin{array}{ccc}L & M & * \\ M^{\prime} & N & * \\ * & * & Q\end{array}\right)\)
where
\(L=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right), M=\left(\begin{array}{ll}6 & 7 \\ 8 & 2\end{array}\right), M^{\prime}=\left(\begin{array}{ll}6 & 8 \\ 7 & 2\end{array}\right), N=\left(\begin{array}{ll}1 & 4 \\ 5 & 2\end{array}\right)\), and \(Q=\left(\begin{array}{ll}7 & 2 \\ 0 & 0\end{array}\right)\)
The symmetric matrix \(F\) can be represented in this 3-array variation of the BSR format (storing only the upper triangular part) as follows:
one-based indexing
```

values =}[$$
\begin{array}{llllllllllllllllll}{1}&{2}&{0}&{1}&{6}&{8}&{7}&{2}&{1}&{5}&{4}&{2}&{7}&{0}&{2}&{0}\end{array}
$$
columns =[[lllll}
rowIndex = [[1

```
zero-based indexing
```

values =}[$$
\begin{array}{lllllllllllllllll}{1}&{0}&{2}&{1}&{6}&{7}&{8}&{2}&{1}&{4}&{5}&{2}&{7}&{2}&{0}&{0}\end{array}
$$
columns =[[llllll}
rowIndex = [$$
\begin{array}{llll}{0}&{2}&{3}&{4}\end{array}
$$]

```

\section*{Variable BSR Format}

A variation of BSR3 is variable block compressed sparse row format. For a trust level \(t, 0 \leq t \leq 100\), rows similar up to \(t\) percent are placed in one supernode.

\section*{Appendix B: Routine and Function Arguments}

The major arguments in the BLAS routines are vector and matrix, whereas VM functions work on vector arguments only. The sections that follow discuss each of these arguments and provide examples.

\section*{Vector Arguments in BLAS}

Vector arguments are passed in one-dimensional arrays. The array dimension (length) and vector increment are passed as integer variables. The length determines the number of elements in the vector. The increment (also called stride) determines the spacing between vector elements and the order of the elements in the array in which the vector is passed.
A vector of length \(n\) and increment incx is passed in a one-dimensional array \(x\) whose values are defined as
```

x[0], x[|incx|], ..., x[(n-1)* |incx|]

```

If incx is positive, then the elements in array \(x\) are stored in increasing order. If incx is negative, the elements in array \(x\) are stored in decreasing order with the first element defined as \(x[(n-1) * \mid\) incx|]. If incx is zero, then all elements of the vector have the same value, \(x[0]\). The size of the one-dimensional array that stores the vector must always be at least
```

idimx = 1 + (n-1)* | incx |

```

\section*{Example. One-dimensional Real Array}

Let \(x[0: 6]\) be the one-dimensional real array
\[
x=[1.0,3.0,5.0,7.0,9.0,11.0,13.0]
\]

If \(\operatorname{incx}=2\) and \(n=3\), then the vector argument with elements in order from first to last is [1.0, 5.0, 9.0].

If incx \(=-2\) and \(n=4\), then the vector elements in order from first to last is \([13.0,9.0,5.0,1.0]\).
If incx \(=0\) and \(n=4\), then the vector elements in order from first to last is \([1.0,1.0,1.0,1.0]\).
One-dimensional substructures of a matrix, such as the rows, columns, and diagonals, can be passed as vector arguments with the starting address and increment specified.

Storage of the \(m-b y-n\) matrix can be based on either column-major ordering where the increment between elements in the same column is 1 , the increment between elements in the same row is \(m\), and the increment between elements on the same diagonal is \(m+1\); or row-major ordering where the increment between elements in the same row is 1 , the increment between elements in the same column is \(n\), and the increment between elements on the same diagonal is \(n+1\).

\section*{Example. Two-dimensional Real Matrix}

Let \(a\) be a real \(5 \times 4\) matrix declared as .
To scale the third column of \(a\) by 2.0 , use the BLAS routine sscal with the following calling sequence:
```

cblas_sscal (5, 2.0, a[2], 4)

```

To scale the second row, use the statement:
```

cblas_sscal (4, 2.0, a[4], 1)

```

To scale the main diagonal of a by 2.0 , use the statement:
```

cblas_sscal (4, 2.0, a[0], 5)

```

\section*{NOTE}

The default vector argument is assumed to be 1 .

\section*{Vector Arguments in Vector Math}

Vector arguments of classic VM mathematical functions are passed in one-dimensional arrays with unit vector increment. It means that a vector of length \(n\) is passed contiguously in an array a whose values are defined as
\(a[0], a[1], \ldots, a[n-1]\).
Strided VM mathematical functions allow using positive increments for all input and output vector arguments.
To accommodate for arrays with other increments, or more complicated indexing, VM contains auxiliary Pack/ Unpack functions that gather the array elements into a contiguous vector and then scatter them after the computation is complete.

Generally, if the vector elements are stored in a one-dimensional array a as
\(a[m 0], \quad a[m 1], \ldots, a[m n-1]\)
and need to be regrouped into an array \(y\) as
\(y[k 0], y[k 1], \ldots, y[k n-1],\).
VM Pack/Unpack functions can use one of the following indexing methods:

\section*{Positive Increment Indexing}
\(\mathrm{kj}=\) incy * \(j, \mathrm{mj}=\) inca * \(j, j=0, \ldots, n-1\).
Constraint: incy > 0 and inca > 0 .
For example, setting incy \(=1\) specifies gathering array elements into a contiguous vector.
This method is similar to that used in BLAS, with the exception that negative and zero increments are not permitted.

\section*{Index Vector Indexing}
kj = iy[j], mj = ia[j], j = 0,..., n-1.
where ia and iy are arrays of length \(n\) that contain index vectors for the input and output arrays a and \(y\), respectively.

\section*{Mask Vector Indexing}

Indices \(k j, m j\) are such that:
\(\operatorname{my}[k j] \neq 0, \operatorname{ma}[m j] \neq 0, j=0, \ldots, n-1\).
where ma and my are arrays that contain mask vectors for the input and output arrays a and \(y\), respectively.

\section*{Vector Mathematical Functions}

\section*{Matrix Arguments}

Matrix arguments of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library routines can be stored in arrays, using the following storage schemes:
- conventional full storage
- packed storage for Hermitian, symmetric, or triangular matrices
- band storage for band matrices
- rectangular full packed storage for symmetric, Hermitian, or triangular matrices as compact as the Packed storage while maintaining efficiency by using Level 3 BLAS/LAPACK kernels.
Full storage is the simplest scheme. . A matrix \(A\) is stored in a one-dimensional array \(a\), with the matrix element \(a_{\mathrm{ij}}\) stored in the array element \(a[i-1+(j-1) * l d a]\), where \(l d a\) is the leading dimension of array \(a\).

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the relevant triangle are stored; the remaining elements of the array need not be set.
Routines that handle symmetric or Hermitian matrices allow for either the upper or lower triangle of the matrix to be stored in the corresponding elements of the array:
if uplo ='U', \(\quad a_{\mathrm{ij}}\) is stored as described for \(i \leq j\), other elements of a need not be set.
\[
\text { if uplo ='L', } \quad a_{i j} \text { is stored as described for } j \leq i, \text { other elements of a need not be set. }
\]

Packed storage allows you to store symmetric, Hermitian, or triangular matrices more compactly: the relevant triangle (again, as specified by the argument uplo) is packed by columns in a one-dimensional array \(a p:\)
if uplo ='U', \(a_{\mathrm{ij}}\) is stored in \(\operatorname{ap}[i-1+j(j-1) / 2]\) for \(i \leq j\)
if uplo ='L', \(a_{\mathrm{ij}}\) is stored in \(a p[i-1+(2 * n-j) *(j-1) / 2]\) for \(j \leq i\).
In descriptions of LAPACK routines, arrays with packed matrices have names ending in \(p\).
Band storage is as follows: an \(m\)-by- \(n\) band matrix with \(k l\) non-zero sub-diagonals and \(k u\) non-zero superdiagonals is stored compactly in an array ab with \((k l+k u+1) * n\) elements. Thus,
\(a_{i j}\) is stored in \(a b(k u+1+i-j, j)\) for \(\max (1, j-k u) \leq i \leq \min (n, j+k l)\).
Use the band storage scheme only when \(k l\) and \(k u\) are much less than the matrix size \(n\). Although the routines work correctly for all values of \(k l\) and \(k u\), using the band storage is inefficient if your matrices are not really banded.
The band storage scheme is illustrated by the following example, when
\[
m=n=6, k l=2, k u=1
\]

Array elements marked * are not used by the routines:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Banded matrix A} & \multicolumn{6}{|c|}{Band storage of A} \\
\hline \(\left[a_{11}\right.\) & \(a_{12}\) & 0 & 0 & 0 & 0 & & & & & & \\
\hline \(a_{21}\) & \(a_{22}\) & \(a_{23}\) & 0 & 0 & 0 & * & \(\mathrm{a}_{12}\) & \(a_{23}\) & \(a_{34}\) & \(a_{45}\) & \(a_{56}\) \\
\hline \(a_{31}\) & \(a_{32}\) & \(a_{33}\) & \(a_{34}\) & 0 & 0 & \(a_{11}\) & \(a_{22}\) & \(a_{33}\) & \(a_{44}\) & \(a_{55}\) & \(a_{66}\) \\
\hline 0 & \(a_{42}\) & \(a_{43}\) & \(a_{44}\) & \(a_{45}\) & 0 & \(a_{21}\) & \(a_{32}\) & \(a_{43}\) & \(a_{54}\) & \(a_{65}\) & * \\
\hline 0 & 0 & \(a_{53}\) & \(a_{54}\) & \(a_{55}\) & \(a_{56}\) & \(a_{31}\) & \(a_{42}\) & \(a_{53}\) & \(a_{64}\) & * & * \\
\hline 0 & 0 & 0 & \(a_{64}\) & \(a_{65}\) & \(a_{66}\) & & & & & & \\
\hline
\end{tabular}

When a general band matrix is supplied for \(L U\) factorization, space must be allowed to store \(k l\) additional super-diagonals generated by fill-in as a result of row interchanges. This means that the matrix is stored according to the above scheme, but with \(k l+k u\) super-diagonals. Thus,
\(a_{i j}\) is stored in \(a b(k l+k u+1+i-j, j)\) for \(\max (1, j-k u) \leq i \leq \min (n, j+k l)\).
The band storage scheme for LU factorization is illustrated by the following example, whenm \(=n=6, \mathrm{kI}=\) 2, \(k u=1\) :
\[

\]

Array elements marked＊are not used by the routines；elements marked＋need not be set on entry，but are required by the LU factorization routines to store the results．The input array will be overwritten on exit by the details of the LU factorization as follows：
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\stackrel{\text {－}}{-1}\) & － & － & 퐃 & ＊ & ＊ \\
\hline 感 & 盙 & \％ & － & ＊ & 뭋 \\
\hline \[
{ }_{5}^{6}
\] & － & 岁 & ¢ & － & 꿏 \\
\hline \[
\frac{\mathrm{F}}{5}
\] & \[
\begin{aligned}
& \text { F } \\
&
\end{aligned}
\] & 号 & 今1 & 5 & － \\
\hline ＊ & \[
8_{0}^{8}
\] & 每 & H1 & －5 & 5 \\
\hline 퐃 & \(\stackrel{\text {＊}}{ \pm}\) & \[
\underbrace{1-1}_{1}
\] &  &  & S \\
\hline
\end{tabular}
where \(u_{i j}\) are the elements of the upper triangular matrix \(U\) ，and \(m_{i j}\) are the multipliers used during factorization．

Triangular band matrices are stored in the same format，with either \(k l=0\) if upper triangular，or \(k u=0\) if lower triangular．For symmetric or Hermitian band matrices with \(k\) sub－diagonals or super－diagonals，you need to store only the upper or lower triangle，as specified by the argument uplo：
if uplo \(=\)＇U＇，\(a_{i j}\) is stored in \(a b(k+1+i-j, j)\) for \(\max (1, j-k) \leq i \leq j\)
if uplo \(=\)＇L＇，\(a_{i j}\) is stored in \(a b(1+i-j, j)\) for \(j \leq i \leq \min \left(n_{1} j+k\right)\) ．
In descriptions of LAPACK routines，arrays that hold matrices in band storage have names ending in \(b\) ．
In Fortran，column－major ordering of storage is assumed．This means that elements of the same column occupy successive storage locations．

Three quantities are usually associated with a two-dimensional array argument: its leading dimension, which specifies the number of storage locations between elements in the same row, its number of rows, and its number of columns. For a matrix in full storage, the leading dimension of the array must be at least as large as the number of rows in the matrix.
A character transposition parameter is often passed to indicate whether the matrix argument is to be used in normal or transposed form or, for a complex matrix, if the conjugate transpose of the matrix is to be used.

The values of the transposition parameter for these three cases are the following:
\[
\begin{array}{ll}
' N \text { ' or 'n' } & \text { normal (no conjugation, no transposition) } \\
' T \text { ' or 't' } & \text { transpose } \\
{ }^{\prime} C^{\prime} \text { or ' } C \text { ' } & \text { conjugate transpose. }
\end{array}
\]

\section*{Example. Two-Dimensional Complex Array}

Suppose \(A(1: 5,1: 4)\) is the complex two-dimensional array presented by matrix
\(\left[\begin{array}{llll}(1.1,0.11) & (1.2,0.12) & (1.3,0.13) & (1.4,0.14) \\ (2.1,0.21) & (2.2,0.22) & (2.3,0.23) & (1.4,0.24) \\ (3.1,0.31) & (3.2,0.32) & (3.3,0.33) & (1.4,0.34) \\ (4.1,0.41) & (4.2,0.42) & (4.3,0.43) & (1.4,0.44) \\ (5.1,0.51) & (5.2,0.52) & (5.3,0.53) & (1.4,0.54)\end{array}\right]\)

Let transa be the transposition parameter, \(m\) be the number of rows, \(n\) be the number of columns, and \(/ d a\) be the leading dimension. Then if
transa \(=' N^{\prime}, m=4, n=2\), and \(I d a=5\), the matrix argument would be
\[
\left[\begin{array}{ll}
(1.1,0.11) & (1.2,0.12) \\
(2.1,0.21) & (2.2,0.22) \\
(3.1,0.31) & (3.2,0.32) \\
(4.1,0.41) & (4.2,0.42)
\end{array}\right]
\]

If transa \(=' T ', m=4, n=2\), and \(l d a=5\), the matrix argument would be
\[
\left[\begin{array}{llll}
(1.1,0.11) & (2.1,0.21) & (3.1,0.31) & (4.1,0.41) \\
(1.2,0.12) & (2.2,0.22) & (3.2,0.32) & (4.2,0.42)
\end{array}\right]
\]

If transa \(=' C\) ', \(m=4, n=2\), and \(l d a=5\), the matrix argument would be
\[
\left[\begin{array}{cccc}
(1.1,-0.11) & (2.1,-0.21) & (3.1,-0.31) & (4.1,-0.41) \\
(1.2,-0.12) & (2.2,-0.22) & (3.2,-0.32) & (4.2,-0.42)
\end{array}\right]
\]

Note that care should be taken when using a leading dimension value which is different from the number of rows specified in the declaration of the two-dimensional array. For example, suppose the array \(A\) above is declared as a complex 5-by-4 matrix.
Then if transa \(=' N ', m=3, n=4\), and \(l d a=4\), the matrix argument will be
\[
\left[\begin{array}{llll}
(1.1,0.11) & (5.1,0.51) & (4.2,0.42) & (3.3,0.33) \\
(2.1,0.21) & (1.2,0.12) & (5.2,0.52) & (4.3,0.43) \\
(3.1,0.31) & (2.2,0.22) & (1.3,0.13) & (5.3,0.53)
\end{array}\right]
\]

Rectangular Full Packed storage allows you to store symmetric, Hermitian, or triangular matrices as compact as the Packed storage while maintaining efficiency by using Level 3 BLAS/LAPACK kernels. To store an \(n\)-by- \(n\) triangle (and suppose for simplicity that \(n\) is even), you partition the triangle into three parts: two \(n / 2\)-by- \(n / 2\) triangles and an \(n / 2\)-by- \(n / 2\) square, then pack this as an \(n\)-by- \(n / 2\) rectangle (or \(n / 2\)-by- \(n\) rectangle), by transposing (or transpose-conjugating) one of the triangles and packing it next to the other triangle. Since the two triangles are stored in full storage, you can use existing efficient routines on them.
There are eight cases of RFP storage representation: when \(n\) is even or odd, the packed matrix is transposed or not, the triangular matrix is lower or upper. See below for all the eight storage schemes illustrated:
\(n\) is odd, \(A\) is lower triangular
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Full format} \\
\hline \(a_{11}\) & X & X & X & X & X & x \\
\hline & & X & X & X & X & X \\
\hline & \(\mathrm{a}_{32}\) & \(\mathrm{a}_{33}\) & X & X & X & X \\
\hline \(\mathrm{a}_{41}\) & \(\mathrm{a}_{42}\) & \(\mathrm{a}_{43}\) & \(a_{44}\) & X & X & X \\
\hline \(\mathrm{a}_{51}\) & \(\mathrm{a}_{52}\) & \(\mathrm{a}_{53}\) & \(\mathrm{a}_{54}\) & \(a_{55}\) & X & X \\
\hline \(a_{61}\) & \(a_{62}\) & \(a_{63}\) & \(\mathrm{a}_{64}\) & \(a_{65}\) & \(a_{66}\) & X \\
\hline \(\mathrm{a}_{71}\) & \(\mathrm{a}_{72}\) & \(\mathrm{a}_{73}\) & \(\mathrm{a}_{74}\) & \(a_{75}\) & \(a_{76}\) & \(a_{77}\) \\
\hline
\end{tabular}
\begin{tabular}{llllllll} 
RFP (not transposed) & RFP (transposed) \\
\(a_{11}\) & \(a_{55}\) & \(a_{65}\) & \(a_{75}\) & \\
\(a_{21}\) & \(a_{22}\) & \(a_{66}\) & \(a_{76}\) & \(a_{11}\) & \(a_{21}\) & \(a_{31}\) & \(a_{41}\) \\
\(a_{\mathbf{5 1}}\) & \(\mathbf{a}_{\mathbf{6 1}}\) & \(\mathbf{a}_{\mathbf{7 1}}\) \\
\(a_{31}\) & \(a_{32}\) & \(a_{33}\) & \(a_{77}\) & \(a_{55}\) & \(a_{22}\) & \(a_{32}\) & \(a_{42}\) \\
\(a_{\mathbf{5 2}}\) & \(\mathbf{a}_{\mathbf{6 2}}\) & \(\mathbf{a}_{\mathbf{7 2}}\) \\
\(a_{41}\) & \(a_{42}\) & \(a_{43}\) & \(a_{44}\) & \(a_{65}\) & \(a_{66}\) & \(a_{33}\) & \(a_{43}\)
\end{tabular} \(\mathbf{a}_{\mathbf{5 3}} \mathbf{a}_{\mathbf{6 3}} \mathbf{a}_{\mathbf{7 3}}\)
\(n\) is even, \(A\) is lower triangular

\(n\) is odd, \(A\) is upper triangular

\(n\) is even, \(A\) is upper triangular

Full format
\(\begin{array}{cccccc}a_{11} & a_{12} & a_{13} & \mathbf{a}_{\mathbf{1 4}} & \mathbf{a}_{\mathbf{1 5}} & \mathbf{a}_{\mathbf{1 6}} \\ X & a_{22} & a_{23} & \mathbf{a}_{\mathbf{2 4}} & \mathbf{a}_{\mathbf{2 5}} & \mathbf{a}_{\mathbf{2 6}} \\ X & X & a_{33} & \mathbf{a}_{\mathbf{3 4}} & \mathbf{a}_{\mathbf{3 5}} & \mathbf{a}_{\mathbf{3 6}} \\ x & X & X & a_{44} & a_{45} & a_{46} \\ X & X & X & X & a_{55} & a_{56} \\ X & X & X & X & X & a_{66}\end{array}\)

RFP (not transposed)
\begin{tabular}{lll}
\(\mathbf{a}_{14}\) & \(\mathbf{a}_{\mathbf{1 5}}\) & \(\mathbf{a}_{\mathbf{1 6}}\) \\
\(\mathbf{a}_{\mathbf{2 4}}\) & \(\mathbf{a}_{\mathbf{2 5}}\) & \(\mathbf{a}_{\mathbf{2 6}}\) \\
\(\mathbf{a}_{\mathbf{3 4}}\) & \(\mathbf{a}_{\mathbf{3 5}}\) & \(\mathbf{a}_{\mathbf{3 6}}\) \\
\(a_{44}\) & \(a_{45}\) & \(a_{46}\) \\
\(a_{11}\) & \(a_{55}\) & \(a_{56}\) \\
\(a_{12}\) & \(a_{22}\) & \(a_{66}\) \\
\(a_{13}\) & \(a_{23}\) & \(a_{33}\)
\end{tabular}

RFP (transposed)
\(\mathbf{a}_{\mathbf{1 4}} \quad \mathbf{a}_{\mathbf{2 4}} \quad \mathbf{a}_{\mathbf{3 4}} a_{44} \quad a_{11} \quad a_{12} \quad a_{13}\) \(\mathbf{a}_{\mathbf{1 5}} \quad \mathbf{a}_{\mathbf{2 5}} \quad \mathbf{a}_{\mathbf{3 5}} \quad a_{45} \quad a_{55} \quad a_{22} \quad a_{23}\) \(\mathbf{a}_{\mathbf{1 6}} \quad \mathbf{a}_{\mathbf{2 6}} \quad \mathbf{a}_{\mathbf{3 6}} \quad a_{46} \quad a_{56} \quad a_{66} \quad a_{33}\)

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides a number of routines such as?hfrk, ?sfrk performing BLAS operations working directly on RFP matrices, as well as some conversion routines, for instance, ?tpttf goes from the standard packed format to RFP and ? trttf goes from the full format to RFP.
Please refer to the Netlib site for more information.
Note that in the descriptions of LAPACK routines, arrays with RFP matrices have names ending in \(£ \mathrm{p}\).

\section*{Appendix C: FFTW Interface to Intel \({ }^{\oplus}\) Math Kernel Library}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) offers FFTW2 and FFTW3 interfaces to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Fast Fourier Transform and Trigonometric Transform functionality. The purpose of these interfaces is to enable applications using FFTW (www.fftw.org) to gain performance with Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) without changing the program source code.
Both FFTW2 and FFTW3 interfaces are provided in open source as FFTW wrappers to Intel® oneAPI Math Kernel Library (oneMKL). For ease of use, FFTW3 interface is also integrated in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).

\section*{FFTW Notational Conventions}

This appendix typically employs path notations for Windows* OS.

\section*{FFTW2 Interface to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library}

This section describes a collection of \(C\) and Fortran wrappers providing FFTW 2.x interface to Intel \({ }^{8}\) oneAPI Math Kernel Library (oneMKL). The wrappers translate calls to FFTW 2.x functions into the calls of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Fast Fourier Transform interface (FFT interface).
Note that Intel® oneAPI Math Kernel Library (oneMKL) FFT interface operates on both single- and doubleprecision floating-point data types.
Because of differences between FFTW and Intel® \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT functionalities, there are restrictions on using wrappers instead of the FFTW functions. Some FFTW functions have empty wrappers. However, many typical FFTs can be computed using these wrappers.

Refer to Fourier Transform Functions, for better understanding the effects from the use of the wrappers.

\section*{Wrappers Reference}

The section provides a brief reference for the FFTW 2.x C interface. For details please refer to the original FFTW 2.x documentation available at www.fftw.org.
Each FFTW function has its own wrapper. Some of them, which are not expressly listed in this section, are empty and do nothing, but they are provided to avoid link errors and satisfy the function calls.

\section*{See Also}

Limitations of the FFTW2 Interface to Intel® oneAPI Math Kernel Library (oneMKL)

\section*{One-dimensional Complex-to-complex FFTs}

The following functions compute a one-dimensional complex-to-complex Fast Fourier transform.
```

fftw_plan fftw_create_plan(int n, fftw_direction dir, int flags);
fftw_plan fftw_create_plan_specific(int n, fftw_direction dir, int flags, fftw_complex
*in, int istride, fftw_complex *out, int ostride);
void fftw(fftw_plan plan, int howmany, fftw_complex *in, int istride, int idist,
fftw_complex *out, int ostride, int odist);
void fftw_one(fftw_plan plan, fftw_complex *in, fftw_complex *out);
void fftw_destroy_plan(fftw_plan plan);

```

\section*{Multi-dimensional Complex-to-complex FFTs}

The following functions compute a multi-dimensional complex-to-complex Fast Fourier transform.
```

fftwnd_plan fftwnd_create_plan(int rank, const int *n, fftw_direction dir, int flags);
fftwnd_plan fftw2d_create_plan(int nx, int ny, fftw_direction dir, int flags);
fftwnd_plan fftw3d_create_plan(int nx, int ny, int nz, fftw_direction dir, int flags);
fftwnd_plan fftwnd_create_plan_specific(int rank, const int *n, fftw_direction dir, int
flags, fftw_complex *in, int istride, fftw_complex *out, int ostride);
fftwnd_plan fftw2d_create_plan_specific(int nx, int ny, fftw_direction dir, int flags,
fftw_complex *in, int istride, fftw_complex *out, int ostride);
fftwnd_plan fftw3d_create_plan_specific(int nx, int ny, int nz, fftw_direction dir, int
flags, fftw_complex *in, int istride, fftw_complex *out, int ostride);
void fftwnd(fftwnd_plan plan, int howmany, fftw_complex *in, int istride, int idist,
fftw_complex *out, int ostride, int odist);
void fftwnd_one(fftwnd_plan plan, fftw_complex *in, fftw_complex *out);
void fftwnd_destroy_plan(fftwnd_plan plan);

```

\section*{One-dimensional Real-to-half-complex/Half-complex-to-real FFTs}

Half-complex representation of a conjugate-even symmetric vector of size \(N\) in a real array of the same size \(N\) consists of \(N / 2+1\) real parts of the elements of the vector followed by non-zero imaginary parts in the reverse order. Because the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface does not currently support this representation, all wrappers of this kind are empty and do nothing.
Nevertheless, you can perform one-dimensional real-to-complex and complex-to-real transforms using rfftwnd functions with rank=1.

\section*{See Also}

Multi-dimensional Real-to-complex/complex-to-real FFTs

\section*{Multi-dimensional Real-to-complex/Complex-to-real FFTs}

The following functions compute multi-dimensional real-to-complex and complex-to-real Fast Fourier transforms.
```

rfftwnd_plan rfftwnd_create_plan(int rank, const int *n, fftw_direction dir, int
flags);
rfftwnd_plan rfftw2d_create_plan(int nx, int ny, fftw_direction dir, int flags);
rfftwnd_plan rfftw3d_create_plan(int nx, int ny, int nz, fftw_direction dir, int
flags);
rfftwnd_plan rfftwnd_create_plan_specific(int rank, const int *n, fftw_direction dir,
int flags, fftw_real *in, int istride, fftw_real *out, int ostride);
rfftwnd_plan rfftw2d_create_plan_specific(int nx, int ny, fftw_direction dir, int
flags, fftw_real *in, int istride, fftw_real *out, int ostride);
rfftwnd_plan rfftw3d_create_plan_specific(int nx, int ny, int nz, fftw_direction dir,
int flags, fftw_real *in, int istride, fftw_real *out, int ostride);
void rfftwnd_real_to_complex(rfftwnd_plan plan, int howmany, fftw_real *in, int
istride, int idist, fftw_complex *out, int ostride, int odist);
void rfftwnd_complex_to_real(rfftwnd_plan plan, int howmany, fftw_complex *in, int
istride, int idist, fftw_real *out, int ostride, int odist);
void rfftwnd_one_real_to_complex(rfftwnd_plan plan, fftw_real *in, fftw_complex *out);
void rfftwnd_one_complex_to_real(rfftwnd_plan plan, fftw_complex *in, fftw_real *out);
void rfftwnd_destroy_plan(rfftwnd_plan plan);

```

\section*{Multi-threaded FFTW}

This section discusses multi-threaded FFTW wrappers only. MPI FFTW wrappers, available only with Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) for the Linux* and Windows* operating systems, are described in a separate section.
Unlike the original FFTW interface, every computational function in the FFTW2 interface to Intel® oneAPI Math Kernel Library (oneMKL) provides multithreaded computation by default, with the maximum number of threads permitted in FFT functions (see "Techniques to Set the Number of Threads" in Intel® oneAPI Math Kernel Library (oneMKL) Developer Guide). To limit the number of threads, call the threaded FFTW computational functions:
```

void fftw_threads(int nthreads, fftw_plan plan, int howmany, fftw_complex *in, int
istride, int idist, fftw_complex *out, int ostride, int odist);
void fftw_threads_one(int nthreads, rfftwnd_plan plan, fftw_complex *in, fftw_complex
*Out);
void rfftwnd_threads_real_to_complex(int nthreads, rfftwnd_plan plan, int howmany,
fftw_real *in}, int istride, int idist, fftw_complex *out, iñt ostride, int odist)

```

Compared to its non-threaded counterpart, every threaded computational function has threads_ as the second part of its name and additional first parameter nthreads. Set the nthreads parameter to the thread limit to ensure that the computation requires at most that number of threads.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{FFTW Support Functions}

The FFTW wrappers provide memory allocation functions to be used with FFTW:
```

void* fftw_malloc(size_t n);
void fftw_free(void** X);

```

The fftw_malloc wrapper aligns the memory on a 16-byte boundary.
If fftw_malloc fails to allocate memory, it aborts the application. To override this behavior, set a global variable fftw_malloc_hook and optionally the complementary variable fftw_free_hook:
```

void *(*fftw_malloc_hook) (size_t n);
void (*fftw_free_hook) (void *p);

```

The wrappers use the function \(f f t w\) _die to abort the application in cases when a caller cannot be informed of an error otherwise (for example, in computational functions that return void). To override this behavior, set a global variable fftw_die_hook:
```

void (*fftw_die_hook)(const char *error_string);

```
void fftw_die(const char *s);

\section*{Limitations of the FFTW2 Interface to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL)}

The FFTW2 wrappers implement the functionality of only those FFTW functions that Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) can reasonably support. Other functions are provided as no-operation functions, whose only purpose is to satisfy link-time symbol resolution. Specifically, no-operation functions include:
- Real-to-half-complex and respective backward transforms
- Print plan functions
- Functions for importing/exporting/forgetting wisdom
- Most of the FFTW functions not covered by the original FFTW2 documentation

Because the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) implementation of FFTW2 wrappers does not use plan and plan node structures declared in \(f f t w . h\), the behavior of an application that relies on the internals of the plan structures defined in that header file is undefined.
FFTW2 wrappers define plan as a set of attributes, such as strides, used to commit the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT descriptor structure. If an FFTW2 computational function is called with attributes different from those recorded in the plan, the function attempts to adjust the attributes of the plan and recommit the descriptor. So, repeated calls of a computational function with the same plan but different strides, distances, and other parameters may be performance inefficient.
Plan creation functions disregard most planner flags passed through the flags parameter. These functions take into account only the following values of flags:
- FFTW_IN_PLACE

If this value of flags is supplied, the plan is marked so that computational functions using that plan ignore the parameters related to output (out, ostride, and odist). Unlike the original FFTW interface, the wrappers never use the out parameter as a scratch space for in-place transforms.
- FFTW_THREADSAFE

If this value of flags is supplied, the plan is marked read-only. An attempt to change attributes of a read-only plan aborts the application.

FFTW wrappers are generally not thread safe. Therefore, do not use the same plan in parallel user threads simultaneously.

\section*{Installing FFTW2 Interface Wrappers}

Wrappers are delivered as source code, which you must compile to build the wrapper library. Then you can substitute the wrapper and Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) libraries for the FFTW library. The source code for the wrappers, makefiles, and files with lists of wrappers are located in the . \interfaces \(\backslash f f t w 2 x c s u b d i r e c t o r y\) in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory.

\section*{Creating the Wrapper Library}

Two header files are used to compile the C wrapper library: fftw2_mkl.h and fftw.h. The fftw2_mkl.h file
 (oneMKL) directory.
 oneAPI Math Kernel Library (oneMKL) directory, slightly differs from the original FFTW (www.fftw.org) header filefftw.h.

The source code for the wrappers, makefiles, and files with lists of functions are located in the . \interfaces \(\backslash f f t w 2 x c\) subdirectory in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory.
A wrapper library contains wrappers for complex and real transforms in a serial and multi-threaded mode for double- or single-precision floating-point data types. A makefile parameter manages the data type.
Parameters of a makefile also specify the platform (required), compiler, and data precision. The makefile comment heading provides the exact description of these parameters.
To build the library, run the make command on Linux* OS and macOS* or the nmake command on Windows* OS with appropriate parameters.

For example, on Linux OS the command
make libintel64
builds a double-precision wrapper library for Intel® 64 architecture based applications using the Intel® oneAPI DPC++/C++ Compiler or the Intel \({ }^{\circledR}\) Fortran Compiler (Compilers and data precision are chosen by default.)
Each makefile creates the library in the directory with Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) libraries corresponding to the platform used. For example,./lib/ia32 (on Linux OS and macOS) or . \lib\ia32 (on Windows* OS).

In the names of a wrapper library, the suffix corresponds to the compiler used and the letter preceding the underscore is " c " for the C programming language.
For example,
fftw2xc_intel.lib (on Windows OS); libfftw2xc_intel.a (on Linux OS and macOS);
fftw2xc_ms.lib (on Windows OS); libfftw2xc_gnu.a (on Linux OS and macOS).

\section*{Application Assembling}

Use the necessary original FFTW (www.fftw.org) header files without any modifications. Use the created wrapper library and the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) library instead of the FFTW library.

\section*{Running FFTW2 Interface Wrapper Examples}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides examples to demonstrate how to use the MPI FFTW wrapper library. The source code for the examples, makefiles used to run them, and files with lists of examples are located in the . \examples \(\backslash f f t w 2 x c\) subdirectory in the Intel® oneAPI Math Kernel Library (oneMKL) directory . To build examples, several additional files are needed: fftw.h, fftw_threads.h,
rfftw.h, and rfftw_threads.h. These files are distributed with permission from FFTW and are available in . \include \(\backslash f f t w\). The original files can also be found in FFTW 2.1.5 at http://www.fftw.org/ download.html.

An example makefile uses the function parameter in addition to the parameters of the corresponding wrapper library makefile (see Creating a Wrapper Library). The makefile comment heading provides the exact description of these parameters.
An example makefile normally invokes examples. However, if the appropriate wrapper library is not yet created, the makefile first builds the library the same way as the wrapper library makefile does and then proceeds to examples.
If the parameter function=<example_name> is defined, only the specified example runs. Otherwise, all examples from the appropriate subdirectory run. The subdirectory . \_results is created, and the results are stored there in the <example_name>. res files.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{MPI FFTW2 Wrappers}

MPI FFTW wrappers for FFTW 2 are available only with Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) for the Linux* and Windows* operating systems.

\section*{MPI FFTW Wrappers Reference}

The section provides a reference for MPI FFTW C interface.

\section*{Complex MPI FFTW}

\section*{Complex One-dimensional MPI FFTW Transforms}
```

fftw_mpi_plan fftw_mpi_create_plan(MPI_Comm comm, int n, fftw_direction dir, int
flags);
void fftw_mpi(fftw_mpi_plan p, int n_fields, fftw_complex *local_data, fftw_complex
*work);
void fftw_mpi_local_sizes(fftw_mpi_plan p, int *local_n, int *local_start, int
*local_n_after_transform, int *local_start_after_transform, int *total_local_size);
void fftw_mpi_destroy_plan(fftw_mpi_plan plan);

```

\section*{Argument restrictions:}
- Supported values of flags are FFTW_ESTIMATE, FFTW_MEASURE, FFTW_SCRAMBLED_INPUT and FFTW_SCRAMBLED_OUTPUT. The same algorithm corresponds to all these values of the flags parameter. If any other flags value is supplied, the wrapper library reports an error 'CDFT error in wrapper: unknown flags'.
- The only supported value of \(n_{-} f i e l d s\) is 1 .

\section*{Complex Multi-dimensional MPI FFTW Transforms}
```

fftwnd_mpi_plan fftw2d_mpi_create_plan(MPI_Comm comm, int nx, int ny, fftw_direction
dir, int flags);
fftwnd_mpi_plan fftw3d_mpi_create_plan(MPI_Comm comm, int nx, int ny, int nz,
fftw_direction dir, int flags);
fftwnd_mpi_plan fftwnd_mpi_create_plan(MPI_Comm comm, int dim, int *n, fftw_direction
dir, int flags);
void fftwnd_mpi(fftwnd_mpi_plan p, int n_fields, fftw_complex *local_data, fftw_complex
*work, fftwnd_mpi_output_order output_order);
void fftwnd_mpi_local_sizes(fftwnd_mpi_plan p, int *local_nx, int *local_x_start, int
*local_ny_after_transpose, int *local_y_start_after_transpose, int *total_local_size);
void fftwnd_mpi_destroy_plan(fftwnd_mpi_plan plan);

```

\section*{Argument restrictions:}
- Supported values of flags are FFTW_ESTIMATE and FFTW_MEASURE. If any other value of flags is supplied, the wrapper library reports an error 'CDFT error in wrapper: unknown flags'.
- The only supported value of \(n_{-} f i e l d s\) is 1 .

\section*{Real MPI FFTW}

\section*{Real-to-Complex MPI FFTW Transforms}
```

rfftwnd_mpi_plan rfftw2d_mpi_create_plan(MPI_Comm comm, int nx, int ny, fftw_direction
dir, int flags);
rfftwnd_mpi_plan rfftw3d_mpi_create_plan(MPI_Comm comm, int nx, int ny, int nz,
fftw_direction dir, int flags);
rfftwnd_mpi_plan rfftwnd_mpi_create_plan(MPI_Comm comm, int dim, int *n, fftw_direction
dir, int flags);
void rfftwnd_mpi(rfftwnd_mpi_plan p, int n_fields, fftw_real *local_data, fftw_real
*work, fftwnd_mpi_output_order output_order);
void rfftwnd_mpi_local_sizes(rfftwnd_mpi_plan p, int *local_nx, int *local_x_start, int
*local_ny_after_transpose, int *local_y_start_after_transpose, int *total_local_size);
void rfftwnd_mpi_destroy_plan(rfftwnd_mpi_plan plan);

```

\section*{Argument restrictions:}
- Supported values of flags are FFTW_ESTIMATE and FFTW_MEASURE. If any other value of flags is supplied, the wrapper library reports an error 'CDFT error in wrapper: unknown flags'.
- The only supported value of \(n_{-}\)fields is 1 .

\section*{NOTE}
- Function rfftwnd_mpi_create_plan can be used for both one-dimensional and multi-dimensional transforms.
- Both values of the output_order parameter are supported: FFTW_NORMAL_ORDER and FFTW_TRANSPOSED_ORDER.

\section*{Creating MPI FFTW2 Wrapper Library}

The source code for the wrappers, makefiles, and files with lists of wrappers are located in the . \interfaces \(\backslash f f t w 2 x\) ccdft subdirectory in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory.

A wrapper library contains C wrappers for Complex One-dimensional MPI FFTW Transforms and Complex Multi-dimensional MPI FFTW Transforms. The library also contains empty C wrappers for Real Multidimensional MPI FFTW Transforms. For details, see MPI FFTW Wrappers Reference.
Parameters of a makefile specify the platform (required), compiler, and data precision. Specifying the platform is required. The makefile comment heading provides the exact description of these parameters.
To build the library, run the make command on Linux* OS and macOS* or the nmake command on Windows* OS with appropriate parameters.

For example, on Linux OS the command
make libintel64
builds a double-precision wrapper library for Intel \({ }^{\circledR} 64\) architecture based applications using Intel MPI and the Intel \({ }^{\circledR}\) oneAPI DPC++/C++ Compiler (compilers and data precision are chosen by default.).
A makefile creates the wrapper library in the directory with the Intel® oneAPI Math Kernel Library (oneMKL) libraries corresponding to the used platform. For example,./lib/ia32 (on Linux OS) or . \lib li ia32 (on Windows* OS).
In the wrapper library names, the suffix corresponds to the used data precision. For example,
fftw2x_cdft_SINGLE.lib on Windows OS;
libfftw2x_cdft_DOUBLE.a on Linux OS.

\section*{Application Assembling with MPI FFTW Wrapper Library}

Use the necessary original FFTW (www.fftw.org) header files without any modifications. Use the created MPI
FFTW wrapper library and the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) library instead of the FFTW library.

\section*{Running MPI FFTW2 Wrapper Examples}

There are some examples that demonstrate how to use the MPI FFTW wrapper library for FFTW2. The source C code for the examples, makefiles used to run them, and files with lists of examples are located in
 build examples, one additional file, fftw_mpi.h, is needed. This file is distributed with permission from FFTW and is available in . \include\fftw. The original file can also be found in FFTW 2.1 .5 at http:// www.fftw.org/download.html.
Parameters for the example makefiles are described in the makefile comment headings and are similar to the parameters of the wrapper library makefiles (see Creating MPI FFTW Wrapper Library).
The table below lists examples available in the . \examples \(\backslash f f t w 2 x \_c d f t \backslash\) source subdirectory.
Examples of MPI FFTW Wrappers
\begin{tabular}{|c|c|}
\hline Source file for the example & Description \\
\hline wrappers_c1d.c & One-dimensional Complex MPI FFTW transform, using plan \(=\) fftw_mpi_create_plan(...) \\
\hline wrappers_c2d.c & Two-dimensional Complex MPI FFTW transform, using plan \(=\) fftw2d_mpi_create_plan(...) \\
\hline wrappers_c3d.c & Three-dimensional Complex MPI FFTW transform, using plan \(=\) fftw3d_mpi_create_plan(...) \\
\hline wrappers_c \(4 \mathrm{~d} . \mathrm{c}\) & Four-dimensional Complex MPI FFTW transform, using plan \(=\) fftwnd_mpi_create_plan(...) \\
\hline
\end{tabular}
```

Source file for the example Description
wrappers_rld.c
wrappers_r2d.c
wrappers_r3d.c
wrappers_r4d.c

```

Description
One-dimensional Real MPI FFTW transform, using plan = rfftw_mpi_create_plan(...)

Two-dimensional Real MPI FFTW transform, using plan = rfftw2d_mpi_create_plan(...)

Three-dimensional Real MPI FFTW transform, using plan = rfftw3d_mpi_create_plan(...)

Four-dimensional Real MPI FFTW transform, using plan = rfftwnd_mpi_create_plan(...)

\section*{FFTW3 Interface to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library}

This section describes a collection of FFTW3 wrappers to Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL). The wrappers translate calls of FFTW3 functions to the calls of the Intel® oneAPI Math Kernel Library (oneMKL) Fourier transform (FFT) or Trigonometric Transform (TT) functions. The purpose of FFTW3 wrappers is to enable developers whose programs currently use the FFTW3 library to gain performance with the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Fourier transforms without changing the program source code.

The FFTW3 wrappers provide a limited functionality compared to the original FFTW 3.x library, because of differences between FFTW and Intel® oneAPI Math Kernel Library (oneMKL) FFT and TT functionality. This section describes limitations of the FFTW3 wrappers and hints for their usage. Nevertheless, many typical FFT tasks can be performed using the FFTW3 wrappers to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).

The FFTW3 wrappers are integrated in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL). The only change required to use Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) through the FFTW3 wrappers is to link your application using FFTW3 against Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).

A reference implementation of the FFTW3 wrappers is also provided in open source. You can find it in the interfaces directory of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) distribution. You can use the reference implementation to create your own wrapper library (see Building Your Own Wrapper Library)

See also these resources:

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Release Notes
www.fftw.org
Fourier Transform Functions

Trigonometric Transform Routines
for the version of the FFTW3 library supported by the wrappers.
for a description of the FFTW interface.
for a description of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface.
for a description of Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) TT interface.

\section*{Using FFTW3 Wrappers}

The FFTW3 wrappers are a set of functions and data structures depending on one another. The wrappers are not designed to provide the interface on a function-per-function basis. Some FFTW3 wrapper functions are empty and do nothing, but they are present to avoid link errors and satisfy function calls.
This document does not list the declarations of the functions that the FFTW3 wrappers provide (you can find the declarations in the fftw 3 . h header file). Instead, this section comments on particular limitations of the wrappers and provides usage hints:. These are some known limitations of FFTW3 wrappers and their usage in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).
- The FFTW3 wrappers do not support long double precision because Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT functions operate only on single- and double-precision floating-point data types (float and double, respectively). Therefore the functions with prefix fftwl_, supporting the long double data type, are not provided.
- The wrappers provide equivalent implementation for double- and single-precision functions (those with prefixes fftw_ and fftwf_, respectively). So, all these comments equally apply to the double- and single-precision functions and will refer to functions with prefix \(f f t w\), , that is, double-precision functions, for brevity.
- The FFTW3 interface that the wrappers provide is defined in the fftw3.h header file. This file is borrowed from the FFTW3.x package and distributed within Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) with permission. Additionally, the fftw3_mkl.h header file defines supporting structures and supplementary constants and macros.
- Actual functionality of the plan creation wrappers is implemented in guru64 set of functions. Basic interface, advanced interface, and guru interface plan creation functions call the guru64 interface functions. So, all types of the FFTW3 plan creation interface in the wrappers are functional.
- Plan creation functions may return a NULL plan, indicating that the functionality is not supported. So, please carefully check the result returned by plan creation functions in your application. In particular, the following problems return a NULL plan:
- c2r and r2c problems with a split storage of complex data.
- r2r problems with kind values FFTW_R2HC, FFTW_HC2R, and FFTW_DHT. The only supported r2r kinds are even/odd DFTs (sine/cosine transforms).
- Multidimensional r2r transforms.
- Transforms of multidimensional vectors. That is, the only supported values for parameter howmany_rank in guru and guru64 plan creation functions are 0 and 1.
- Multidimensional transforms with rank > MKL_MAXRANK.
- The MKL_RODFT00 value of the kind parameter is introduced by the FFTW3 wrappers. For better performance, you are strongly encouraged to use this value rather than FFTW_RODFT00. To use this kind value, provide an extra first element equal to 0.0 for the input/output vectors. Consider the following example:
```

plan1 = fftw_plan_r2r_1d(n, in1, out1, FFTW_RODFT00, FFTW_ESTIMATE);
plan2 = fftw_plan_r2r_1d(n, in2, out2, MKL_RODFTO0, FFTW_ESTIMATE);

```

Both plans perform the same transform, except that the in2/out2 arrays have one extra zero element at location 0. For example, if \(n=3\), in \(1=\{x, y, z\}\) and out \(1=\{u, v, w\}\), then in \(2=\{0, x, y, z\}\) and out \(2=\{0, u, v, w\}\).
- The flags parameter in plan creation functions is always ignored. The same algorithm is used regardless of the value of this parameter. In particular, flags values FFTW_ESTIMATE, FFTW_MEASURE, etc. have no effect.
- For multithreaded plans, use normal sequence of calls to the fftw_init_threads() and fftw_plan_with_nthreads() functions (refer to FFTW documentation).
- Memory allocation function fftw_malloc returns memory aligned at a 16-byte boundary. You must free the memory with fftw_free.
- The FFTW3 wrappers to Intel® \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) use the 32-bit int type in both LP64 and ILP64 interfaces of Intel® oneAPI Math Kernel Library (oneMKL). Use guru64 FFTW3 interfaces for 64bit sizes.
- The wrappers typically indicate a problem by returning a NULL plan. In a few cases, the wrappers may report a descriptive message of the problem detected. By default the reporting is turned off. To turn it on, set variable fftw3_mkl.verbose to a non-zero value, for example:
```

\#include "fftw3.h"
\#include "fftw3_mkl.h"
fftw3_mkl.verbose = 0;
plan = fftw_plan_r2r(...);

```
- The following functions are empty:
- For saving, loading, and printing plans
- For saving and loading wisdom
- For estimating arithmetic cost of the transforms.
- Do not use macro FFTW_DLL with the FFTW3 wrappers to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).
- Do not use negative stride values. Though FFTW3 wrappers support negative strides in the part of advanced and guru FFTW interface, the underlying implementation does not.
- Do not set a FFTW2 wrapper library before a FFTW3 wrapper library or Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) in your link line application. All libraries define "fftw_destroy_plan" symbol and linkage in incorrect order results into expected errors.

\section*{Building Your Own FFTW3 Interface Wrapper Library}

The FFTW3 wrappers to Intel® oneAPI Math Kernel Library (oneMKL) are delivered both integrated in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) and as source code, which can be compiled to build a standalone wrapper library with exactly the same functionality. Normally you do not need to build the wrappers yourself.

The source code for the wrappers, makefiles, and files with lists of functions are located in the . \interfaces \(\backslash f f t w 3 x c\) subdirectory in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory.

To build the wrappers,
1. Change the current directory to the wrapper directory
2. Run the make command on Linux* OS and macOS* or the nmake command on Windows* OS with a required target and optionally several parameters.

The target libia32 or libintel 64 defines the platform architecture, and the other parameters specify the compiler, size of the default integer type, and placement of the resulting wrapper library. You can find a detailed and up-to-date description of the parameters in the makefile.
In the following example, the make command is used to build the FFTW3 C wrappers to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) for use from the GNU gcc* compiler on Linux OS based on Intel \({ }^{\circledR} 64\) architecture:
```

cd interfaces/fftw3xc
make libintel64 compiler=gnu INSTALL_DIR=/my/path

```

This command builds the wrapper library and places the result, named libfftw3xc_gnu.a, into the /my/ path directory. The name of the resulting library is composed of the name of the compiler used and may be changed by an optional parameter INSTALL_LIBNAME.

\section*{Building an Application With FFTW3 Interface Wrappers}

Normally, the only change needed to build your application with FFTW3 wrappers replacing original FFTW library is to add Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) at the link stage (see section"Linking Your Application with Inte \({ }^{\circledR}\) oneAPI Math Kernel Library" in the Inte® \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide).

If you recompile your application, add subdirectory include \(\backslash f f t w\) to the search path for header files to avoid FFTW3 version conflicts.
Sometimes, you may have to modify your application according to the following recommendations:
- The application requires
\#include "fftw3.h",
which it probably already includes.
- The application does not require
\#include "mkl_dfti.h" .
- The application does not require
\#include "fftw3_mkl.h".
It is required only in case you want to use the MKL_RODFTOO constant.
- If the application does not check whether a NULL plan is returned by plan creation functions, this check must be added, because the FFTW3 to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) wrappers do not provide \(100 \%\) of FFTW3 functionality.

\section*{Running FFTW3 Interface Wrapper Examples}

There are some examples that demonstrate how to use the wrapper library. The source code for the examples, makefiles used to run them, and files with lists of examples are located in the . \examples \fftw3xc subdirectory in the Intel® oneAPI Math Kernel Library (oneMKL) directory.
Parameters of the example makefiles are similar to the parameters of the wrapper library makefiles. Example makefiles normally build and invoke the examples. If the parameter function=<example_name> is defined, then only the specified example will run. Otherwise, all examples will be executed. Results of running the examples are saved in subdirectory . \_results in files with extension .res.
For detailed information about options for the example makefile, refer to the makefile.

\section*{MPI FFTW3 Wrappers}

This section describes a collection of MPI FFTW wrappers to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL). MPI FFTW wrappers are available only with Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) for the Linux* and Windows* operating systems.
These wrappers translate calls of MPI FFTW functions to the calls of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) cluster Fourier transform (CFFT) functions. The purpose of the wrappers is to enable users of MPI FFTW functions improve performance of the applications without changing the program source code.
Although the MPI FFTW wrappers provide less functionality than the original FFTW3 because of differences between MPI FFTW and Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) CFFT, the wrappers cover many typical CFFT use cases.

The MPI FFTW wrappers are provided as source code. To use the wrappers, you need to build your own wrapper library (see Building Your Own Wrapper Library).
See also these resources:
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Release Notes
www.fftw.org
Cluster FFT Functions
for the version of the FFTW3 library supported by the wrappers.
for a description of the MPI FFTW interface.
for a description of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) CFFT interface.

\section*{Building Your Own Wrapper Library}

The MPI FFTW wrappers for FFTW3 are delivered as source code, which can be compiled to build a wrapper library.
The source code for the wrappers, makefiles, and files with lists of functions are located in subdirectory . \interfaces \(\backslash f f t w 3 x \_c d f t\) in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory.

To build the wrappers,
1. Change the current directory to the wrapper directory
2. Run the make command on Linux* OS or the nmake command on Windows* OS with a required target and optionally several parameters.
The target libia32 or libintel 64 defines the platform architecture, and the other parameters specify the compiler, size of the default INTEGER type, as well as the name and placement of the resulting wrapper library. You can find a detailed and up-to-date description of the parameters in the makefile.
In the following example, the make command is used to build the MPI FFTW wrappers to Intel® oneAPI Math Kernel Library (oneMKL) for use from the GNU C compiler on Linux OS based on Intel \({ }^{\circledR} 64\) architecture:
```

cd interfaces/fftw3x_cdft
make libintel64 compiler=gnu mpi=openmpi INSTALL_DIR=/my/path

```

This command builds the wrapper library using the GNU gcc compiler so that the final executable can use Open MPI, and places the result, named libfftw3x_cdft_DOUBLE.a, into directory /my/path.

\section*{Building an Application}

Normally, the only change needed to build your application with MPI FFTW wrappers replacing original FFTW3 library is to add Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) and the wrapper library at the link stage (see section "Linking Your Application with Inte \({ }^{\circledR}\) oneAPI Math Kernel Library" in the Intel® oneAPI Math Kernel Library (oneMKL) Developer Guide).

When you are recompiling your application, add subdirectory include \(\backslash f f t w\) to the search path for header files to avoid FFTW3 version conflicts.

\section*{Running Examples}

There are some examples that demonstrate how to use the MPI FFTW wrapper library for FFTW3. The source code for the examples, makefiles used to run them, and files with lists of examples are located in the . \examples \(\backslash f f t w 3 x\) ccdft subdirectory in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory.
Parameters of the example makefiles are similar to the parameters of the wrapper library makefiles. Example makefiles normally build and invoke the examples. Results of running the examples are saved in subdirectory . \_results in files with extension .res.

For detailed information about options for the example makefile, refer to the makefile.

\section*{See Also \\ Building Your Own Wrapper Library}

\section*{Appendix D: Code Examples}

This appendix presents code examples of using some Intel® oneAPI Math Kernel Library (oneMKL) routines and functions.

Please refer to respective sections in the document for detailed descriptions of function parameters and operation.

\section*{BLAS Code Examples}

\section*{Example. Using BLAS Level 1 Function}

The following example illustrates a call to the BLAS Level 1 function sdot. This function performs a vectorvector operation of computing a scalar product of two single-precision real vectors \(x\) and \(y\).

\section*{Parameters}
```

n
incx
incy

```
```

\#include <stdio.h>

```
#include <stdio.h>
#include <stdlib.h>
#include <stdlib.h>
#include "mkl_example.h"
#include "mkl_example.h"
int main()
int main()
{
{
    MKL_INT n, incx, incy, i;
```

 MKL_INT n, incx, incy, i;
    ```
```

float *x, *y;
float res;
MKL_INT len_x, len_y;
n = 5;
incx = 2;
incy = 1;
len_x = 1+(n-1)*abs(incx);
len_y = 1+(n-1) *abs(incy);
x = (float *)calloc(len_x, sizeof(float));
y = (float *)calloc(len_y, sizeof(float));
if(x == NULL || y == NULL) {
printf("\n Can't allocate memory for arrays\n");
return 1;
}
for (i = 0; i < n; i++) {
x[i*abs(incx)] = 2.0;
y[i*abs(incy)] = 1.0;
}
res = cblas_sdot(n, x, incx, y, incy);
printf("\n SDOT = %7.3f", res);
free(x);
free(y) ;
return 0;
}

```

As a result of this program execution, the following line is printed:
SDOT \(=10.000\)

\section*{Example. Using BLAS Level 1 Routine}

The following example illustrates a call to the BLAS Level 1 routine scopy. This routine performs a vectorvector operation of copying a single-precision real vector \(x\) to a vector \(y\).

\section*{Parameters}
```

n
inCx
incy

```
```

\#include <stdio.h>

```
#include <stdio.h>
#include <stdlib.h>
#include <stdlib.h>
#include "mkl_example.h"
#include "mkl_example.h"
int main()
int main()
{
{
    MKL_INT n, incx, incy, i;
    MKL_INT n, incx, incy, i;
        float *x, *y;
```

 float *x, *y;
    ```
Specifies the number of elements in vectors \(x\) and \(y\).
Specifies the increment for the elements of \(x\).
Specifies the increment for the elements of \(y\).
```

MKL_INT len_x, len_y;
n = 3;
incx = 3;
incy = 1;
len_x = 10;
len_y = 10;
x = (float *)calloc(len_x, sizeof(float));
y = (float *)calloc(len_y, sizeof(float));
if(x == NULL || y == NULL) {
printf("\n Can't allocate memory for arrays\n");
return 1;
}
for (i = 0; i < 10; i++) {
x[i] = i + 1;
}
cblas_scopy(n, x, incx, y, incy);
Print output data */
printf("\n\n OUTPUT DATA");
PrintVectorS(FULLPRINT, n, y, incy, "Y");
free(x);
free(y);
return 0;

```
\}

As a result of this program execution, the following line is printed:
\(Y=1.000004 .000007 .00000\)

\section*{Example. Using BLAS Level 2 Routine}

The following example illustrates a call to the BLAS Level 2 routine sger. This routine performs a matrixvector operation
\[
a:=a l p h a^{\star} x^{\star} y^{\prime}+a .
\]

\section*{Parameters}
```

alpha Specifies a scalar alpha.
x
y n-element vector.
a m-by-n matrix.

```
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "mkl_example.h"
int main()
{
MKL_INT m, n, lda, incx, incy, i, j;
MKL_INT rmaxa, cmaxa;

```
```

float alpha;
float *a, *x, *y;
CBLAS_LAYOUT layout;
MKL_INT len_x, len_y;
m = 2;
n = 3;
lda = 5;
incx = 2;
incy = 1;
alpha = 0.5;
layout = CblasRowMajor;
len_x = 10;
len_y = 10;
rmaxa = m + 1;
cmaxa = n;
a = (float *)calloc(rmaxa*cmaxa, sizeof(float));
x = (float *)calloc(len x, sizeof(float));
y = (float *)calloc(len_y, sizeof(float));
if(a == NULL || x == NULL || y == NULL) {
printf("\n Can't allocate memory for arrays\n");
return 1;
}
if(layout == CblasRowMajor)
lda=cmaxa;
else
lda=rmaxa;
for (i = 0; i < 10; i++) {
x[i] = 1.0;
y[i] = 1.0;
}
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
a[i + j*lda] = j + 1;
}
}
cblas_sger(layout, m, n, alpha, x, incx, y, incy, a, lda);
PrintArrayS(\&layout, FULLPRINT, GENERAL_MATRIX, \&m, \&n, a, \&lda, "A");
free(a);
free(x);
free(y);
return 0;
}

```

As a result of this program execution, matrix \(a\) is printed as follows:
Matrix A:
1.500002 .500003 .50000
1.500002 .500003 .50000

\section*{Example. Using BLAS Level 3 Routine}

The following example illustrates a call to the BLAS Level 3 routine ssymm. This routine performs a matrixmatrix operation
```

c := alpha*a*b' + beta*c.

```

\section*{Parameters}
\begin{tabular}{ll} 
alpha & Specifies a scalar alpha. \\
beta & Specifies a scalar beta. \\
a & Symmetric matrix \\
b & \(m\)-by-n matrix \\
c & \(m\)-by-n matrix
\end{tabular}
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "mkl_example.h"
int main(int argc, char *argv[])
{
MKL_INT m, n, i, j;
MKL_INT lda, ldb, ldc;
MKL_INT rmaxa, cmaxa, rmaxb, cmaxb, rmaxc, cmaxc;
float alpha, beta;
float *a, *b, *c;
CBLAS_LAYOUT layout;
CBLAS_SIDE side;
CBLAS_UPLO uplo;
MKL_INT ma, na, typeA;
uplo = 'u';
side = 'l';
layout = CblasRowMajor;
m = 3;
n = 2;
lda = 3;
ldb = 3;
ldc = 3;
alpha = 0.5;
beta = 2.0;
if(side == CblasLeft) {
rmaxa = m + 1;
cmaxa = m;
ma =m;
na =m;
} else {
rmaxa = n + 1;
cmaxa = n;
ma = n;
na = n;
}
rmaxb = m + 1;
cmaxb = n;
rmaxc = m + 1;
cmaxc = n;

```
```

a = (float *)calloc(rmaxa*cmaxa, sizeof(float));
b = (float *)calloc(rmaxb*cmaxb, sizeof(float));
c = (float *)calloc(rmaxc*cmaxc, sizeof(float));
if (a == NULL || b == NULL || c == NULL) {
printf("\n Can't allocate memory arrays");
return 1;
}
if(layout == CblasRowMajor) {
lda=cmaxa;
ldb=cmaxb;
ldc=cmaxc;
} else {
lda=rmaxa;
ldb=rmaxb;
ldc=rmaxc;
}
if (uplo == CblasUpper) typeA = UPPER_MATRIX;
else typeA = LOWER MATRIX;
for (i = 0; i < m; i++) {
for (j = 0; j < m; j++) {
a[i + j*lda] = 1.0;
}
}
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
c[i + j*ldc] = 1.0;
b[i + j*ldb] = 2.0;
}
}
cblas_ssymm(layout, side, uplo, m, n, alpha, a, lda,
b, ldb, beta, c, ldc);
printf("\n\n OUTPUT DATA");
PrintArrayS(\&layout, FULLPRINT, GENERAL_MATRIX, \&m, \&n, c, \&ldc, "C");
free(a);
free(b);
free(c);
return 0;
}

```

As a result of this program execution, matrix \(c\) is printed as follows:
Matrix C:
5.000005 .00000
5.000005 .00000
5.000005 .00000

The following example illustrates a call from a C program to the Fortran version of the complex BLAS Level 1 function \(z d o t c()\). This function computes the dot product of two double-precision complex vectors.

\section*{Example. Calling a Complex BLAS Level 1 Function from C}

In this example, the complex dot product is returned in the structure \(c\).
```

\#include <cstdio>
\#include "mkl_blas.h"
\#define N 5
void main()
{
int n, inca = 1, incb = 1, i;
MKL_Complex16 a[N], b[N], C;
void zdotc();
n = N;
for(i = 0; i < n; i++){
a[i].real = (double)i; a[i].imag = (double)i * 2.0;
b[i].real = (double)(n - i); b[i].imag = (double)i * 2.0;
}
zdotc(\&c, \&n, a, \&inca, b, \&incb);
printf("The complex dot product is: (%6.2f, %6.2f)\n", c.real, c.imag);
}

```

\section*{NOTE}

Instead of calling BLAS directly from C programs, you might wish to use the \(C\) interface to the Basic Linear Algebra Subprograms (CBLAS) implemented in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL). SeeC Interface Conventions for more information.

\section*{Fourier Transform Functions Code Examples}

This section presents code examples for functions described in the "FFT Functions" and "Cluster FFT Functions" subsections in the "Fourier Transform Functions" section. The examples are grouped in subsections
- Examples for FFT Functions, including Examples of Using Multi-Threading for FFT Computation
- Examples for Cluster FFT Functions
- Auxiliary data transformations.

\section*{FFT Code Examples}

This section presents examples of using the FFT interface functions described in "Fourier Transform Functions".
Here are the examples of two one-dimensional computations. These examples use the default settings for all of the configuration parameters, which are specified in "Configuration Settings".

\section*{One-dimensional In-place FFT}
```

/* C example, float _Complex is defined in C9X */
\#include "mkl_dfti.h"
float _Complex c2c_data[32];
float r}\mp@subsup{\mathrm{ 2c_data[34];}}{\mathrm{ ;}}{
DFTI_DESCRIPTOR_HANDLE my_desc1_handle = NULL;
DFTI_DESCRIPTOR_HANDLE my_desc2_handle = NULL;
MKL_LONG status;
/* ...put values into c2c_data[i] 0<=i<=31 */
/* ...put values into r2c_data[i] 0<=i<=31 */

```
```

status = DftiCreateDescriptor(\&my_desc1_handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32);
status = DftiCommitDescriptor(my_desc1_handle);
status = DftiComputeForward(my_desc1_handle, c2c_data);
status = DftiFreeDescriptor(\&my_desc1_handle);
/* result is c2c_data[i] 0<=i<=31 */
status = DftiCreateDescriptor(\&my_desc2_handle, DFTI_SINGLE,
DFTI_REAL, 1, 32);
status = DftiCommitDescriptor(my_desc2_handle);
status = DftiComputeForward(my_desc2_handle, r2c_data);
status = DftiFreeDescriptor(\&my_desc2_handle);
/* result is the complex value r2c_data[i] 0<=i<=31 */
/* and is stored in CCS format*/

```

\section*{One-dimensional Out-of-place FFT}
```

/* C example, float _Complex is defined in C9X */
\#include "mkl_dfti.h"
float _Complex c2c_input[32];
float _Complex c2c_output[32];
float r2c_input[32];
float r2c_output[34];
DFTI_DESCRIPTOR_HANDLE my_desc1_handle = NULL;
DFTI_DESCRIPTOR_HANDLE my_desc2_handle = NULL;
MKL_LONG status;
/* ...put values into c2c_input[i] 0<=i<=31 */
/* ...put values into r2c_input[i] 0<=i<=31 */
status = DftiCreateDescriptor(\&my_desc1_handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32);
status = DftiSetValue(my_desc1_handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE);
status = DftiCommitDescriptor(my_desc1_handle);
status = DftiComputeForward(my_desc1_handle, c2c_input, c2c_output);
status = DftiFreeDescriptor(\&my_desc1_handle);
/* result is c2c_output[i] 0<=i<=31 */
status = DftiCreateDescriptor(\&my_desc2_handle, DFTI_SINGLE,
DFTI_REAL, 1, 32);
Status = DftiSetValue(my_desc1_handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE);
status = DftiCommitDescriptor(my_desc2_handle);
status = DftiComputeForward(my_desc2_hāndle, r2c_input, r2c_output);
status = DftiFreeDescriptor(\&my_desc2_handle);
/* result is the complex r2c_data[i] 0<=i<=31 and is stored in CCS format*/

```

\section*{Two-dimensional FFT}
```

/* C99 example */
\#include "mkl_dfti.h"
/* complex data in, complex data out */
float _Complex c2c_data[32][100];
/* real data in, complex data out */
float r2c_data[34][102];

```
```

DFTI_DESCRIPTOR_HANDLE my_desc1_handle = NULL;
DFTI_DESCRIPTOR_HANDLE my_desc2_handle = NULL;
MKL_LONG status;MKL_LONG dim_sizes[2] = {32, 100};
/* ...put values into c2c_data[i][j] 0<=i<=31, 0<=j<=99 */
/* ...put values into r2c_data[i][j] 0<=i<=31, 0<=j<=99 */
status = DftiCreateDescriptor(\&my_desc1_handle, DFTI_SINGLE,
DFTI_COMP\overline{LEX, 2, dim_sízes);}
status = DftiCommitDescriptor(my_desc1_handle);
status = DftiComputeForward(my_desc1_handle, c2c_data);
status = DftiFreeDescriptor(\&my_desc1_handle);
/* result is the complex value ch2c_data[i][j], 0<=i<=31, 0<=j<=99 */
status = DftiCreateDescriptor(\&my_\overline{desc2_handle, DFTI_SINGLE,}
DFTI_REAL, 2, dim_sizes);
status = DftiCommitDescriptor(my_desc2_handle);
status = DftiComputeForward(my_desc2_handle, r2c_data);
status = DftiFreeDescriptor(\&my_desc\overline{2}_handle);
/* result is the complex r2c_data[i][\overline{j}] 0<=i<=31, 0<=j<=99
and is stored in CCS format*/

```

The following example demonstrates how you can change the default configuration settings by using the DftiSetValue function.
For instance, to preserve the input data after the FFT computation, the configuration of DFTI_PLACEMENT should be changed to "not in place" from the default choice of "in place."
The code below illustrates how this can be done:

\section*{Changing Default Settings}
```

/* C99 example */
\#include "mkl_dfti.h"
float _Complex x_in[32], x_out[32];
DFTI_DESCRIPTOR_HANDLE my_desc_handle = NULL;
MKL_LONG status;
/* ...put values into x_in[i] 0<=i<=31 */
status = DftiCreateDescriptor(\&my_desc_handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32);
status = DftiSetValue(my_desc_handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE);
status = DftiCommitDescriptor(my_desc_handle);
status = DftiComputeForward(my_desc_handle, x_in, x_out);
status = DftiFreeDescriptor(\&my_desc_handle);
/* result is the complex value \overline{x_out[i], 0<=i<=31 */}

```

\section*{Using Status Checking Functions}

This example illustrates the use of status checking functions described in "Fourier Transform Functions".
```

/* C99 example */
\#include "mkl_dfti.h"
DFTI_DESCRIPTOR_HANDLE desc = NULL;

```
```

MKL_LONG status;
/* ...descriptor creation and other code */
status = DftiCommitDescriptor(desc);
if (status \&\& !DftiErrorClass(status, DFTI_NO_ERROR))
{
printf('Error: %s\n', DftiErrorMessage(status));
}

```

\section*{Computing 2D FFT by One-Dimensional Transforms}

Below is an example where a 20-by-40 two-dimensional FFT is computed explicitly using one-dimensional transforms.
```

/* C */
\#include "mkl_dfti.h"
float _Complex data[20][40];
MKL_LONGG status;
DFTI_DESCRIPTOR_HANDLE desc_handle_dim1 = NULL;
DFTI_DESCRIPTOR_HANDLE desc_handle_dim2 = NULL;
/* ...put values into data[i][j] 0<=i<=19, 0<=j<=39 */
status = DftiCreateDescriptor(\&desc_handle_dim1, DFTI_SINGLE,
DFTI_COMPLEX, 1, 20);
status = DftiCreateDescriptor(\&desc_handle_dim2, DFTI_SINGLE,
DFTI_COMPLEX, 1, 40);
/* perform 40 one-dimensional transforms along 1st dimension */
/* note that the 1st dimension data are not unit-stride */
MKL_LONG stride[2] = {0, 40};
status = DftiSetValue(desc_handle_dim1, DFTI_NUMBER_OF_TRANSFORMS, 40);
status = DftiSetValue(desc_handle_dim1, DFTI_INPUT_DISTANCE, 1);
status = DftiSetValue(desc_handle_dim1, DFTI_OUTPUT_DISTANCE, 1);
status = DftiSetValue(desc_handle_dim1, DFTI_INPUT_STRIDES, stride);
status = DftiSetValue(desc_handle_dim1, DFTI_OUTPUT__STRIDES, stride);
status = DftiCommitDescriptor(desc_handle_dim1);
status = DftiComputeForward(desc_handle_dim1, data);
/* perform 20 one-dimensional transforms along 2nd dimension */
/* note that the 2nd dimension is unit stride */
status = DftiSetValue(desc_handle_dim2, DFTI_NUMBER_OF_TRANSFORMS, 20);
status = DftiSetValue(desc_handle_dim2, DFTI_INPUT_DISTANCE, 40);
status = DftiSetValue(desc_handle_dim2, DFTI_OUTPUT_DISTANCE, 40);
status = DftiCommitDescriptor(desc_handle_dim2);
status = DftiComputeForward(desc_handle_dim2, data);
status = DftiFreeDescriptor(\&desc_handle_dim1);
status = DftiFreeDescriptor(\&desc_handle_dim2);

```

The following code illustrates real multi-dimensional transforms with CCE format storage of conjugate-even complex matrix. Example "Three-Dimensional REAL FFT (C Interface)" is three-dimensional out-of-place transform in C interface.

\section*{Three-Dimensional REAL FFT}
```

/* C99 example */
\#include "mkl_dfti.h"
float input[32][100][19];
float Complex output[32][100][10]; /* 10 = 19/2 + 1 */
DFTI_DESCRIPTOR_HANDLE my_desc_handle = NULL;
MKL_LONG status;
MKL_LONG dim_sizes[3] = {32, 100, 19};
MKL_LONG strídes_out[4] = {0, 100*10*1, 10*1, 1};
//...put values into input[i][j][k] 0<=i<=31; 0<=j<=99, 0<=k<=9
status = DftiCreateDescriptor(\&my_desc_handle,
DFTI_SINGLE, DFTI_REAL, 3, dim_sizes);
status = DftiSetValue(my_desc_handle,
DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX);
status = DftiSetValue(my_desc_handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE);
status = DftiSetValue(my_desc_handle, DFTI_OUTPUT_STRIDES, strides_out);
status = DftiCommitDescriptor(my_desc_handle);
status = DftiComputeForward(my_desc_handle, input, output);
status = DftiFreeDescriptor(\&my_desc_handle);
/* result is the complex output[i][j][k] 0<=i<=31; 0<=j<=99, 0<=k<=9
and is stored in CCE format. */

```

\section*{Examples of Using OpenMP* Threading for FFT Computation}

The following sample program shows how to employ internal OpenMP* threading in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) for FFT computation.
To specify the number of threads inside Intel® oneAPI Math Kernel Library (oneMKL), use the following settings:
set MKL_NUM_THREADS = 1 for one-threaded mode;
set MKL_NUM_THREADS = 4 for multi-threaded mode.
Using oneMKL Internal Threading Mode (C Example)
```

/* C99 example */
\#include "mkl_dfti.h"
float data[200][100];
DFTI_DESCRIPTOR_HANDIE fft = NULL;
MKL_LONG dim_siz̄es[2] = {200, 100};
/* ...put values into data[i][j] 0<=i<=199, 0<=j<=99 */
DftiCreateDescriptor(\&fft, DFTI_SINGLE, DFTI_REAL, 2, dim_sizes);
DftiCommitDescriptor(fft);
DftiComputeForward(fft, data);
DftiFreeDescriptor(\&fft);

```

The following Example "Using Parallel Mode with Multiple Descriptors Initialized in a Parallel Region" and Example "Using Parallel Mode with Multiple Descriptors Initialized in One Thread" illustrate a parallel customer program with each descriptor instance used only in a single thread.

Specify the number of OpenMP threads for Example "Using Parallel Mode with Multiple Descriptors Initialized in a Parallel Region" like this:
set MKL_NUM_THREADS = 1 for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) to work in the single-threaded mode (recommended);
set OMP_NUM_THREADS \(=4\) for the customer program to work in the multi-threaded mode.

\section*{Using Parallel Mode with Multiple Descriptors Initialized in a Parallel Region}

Note that in this example, the program can be transformed to become single-threaded at the customer level but using parallel mode within Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL). To achieve this, you must set the parameter DFTI_NUMBER_OF_TRANSFORMS = 4 and to set the corresponding parameter DFTI_INPUT_DISTANCE = 5000 .
```

/* C99 example */
\#include "mkl_dfti.h"
\#include <omp.h>
\#define ARRAY_LEN(a) sizeof(a)/sizeof(a[0])
// 4 OMP threads, each does 2D FFT 50x100 points
MKL_Complex8 data[4][50][100];
int nth = ARRAY_LEN(data);
MKL_LONG dim_sizes[2] = {
ARRAY_LEN(data[0]),
ARRAY_LEN(data[0][0])
}; /* {50, 100} */
int th;
/* ...put values into data[i][j][k] 0<=i<=3, 0<=j<=49, 0<=k<=99 */
// assume data is initialized and do 2D FFTs
\#pragma omp parallel for shared(dim_sizes, data)
for (th = 0; th < nth; ++th)
{
DFTI_DESCRIPTOR_HANDLE myFFT = NULL;
DftiCreateDescriptor(\&myFFT, DFTI_SINGLE, DFTI_COMPLEX, 2, dim_sizes);
DftiCommitDescriptor(myFFT);
DftiComputeForward(myFFT, data[th]);
DftiFreeDescriptor(\&myFFT);
}

```

Specify the number of OpenMP threads for Example "Using Parallel Mode with Multiple Descriptors Initialized in One Thread" like this:
set MKL_NUM_THREADS \(=1\) for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) to work in the single-threaded mode (obligatory);
set OMP_NUM_THREADS = 4 for the customer program to work in the multi-threaded mode.
Using Parallel Mode with Multiple Descriptors Initialized in One Thread
```

/* C99 example */
\#include "mkl_dfti.h"
\#include <omp.h>\#
define ARRAY_LEN(a) sizeof(a)/sizeof(a[0])
// 4 OMP threads, each does 2D FFT 50x100 points
MKL_Complex8 data[4][50][100];
int nth = ARRAY_LEN(data);
MKL_LONG dim_sizes[2] = {

```
```

 ARRAY_LEN(data[0]),
 ARRAY_LEN(data[0][0])
 }; /* {50, 100} */
DFTI_DESCRIPTOR_HANDLE FFT[ARRAY_LEN(data)];
int th;
/* ...put values into data[i][j][k] 0<=i<=3, 0<=j<=49, 0<=k<=99 */
for (th = 0; th < nth; ++th)
DftiCreateDescriptor(\&FFT[th], DFTI_SINGLE, DFTI_COMPLEX, 2, dim_sizes);
for (th = 0; th < nth; ++th)
DftiCommitDescriptor(FFT[th]);
// assume data is initialized and do 2D FFTs
\#pragma omp parallel for shared(FFT, data)
for (th = 0; th < nth; ++th)
DftiComputeForward(FFT[th], data[th]);
for (th = 0; th < nth; ++th)
DftiFreeDescriptor(\&FFT[th]);

```

The following Example "Using Parallel Mode with a Common Descriptor" illustrates a parallel customer program with a common descriptor used in several threads.

\section*{Using Parallel Mode with a Common Descriptor}
```

\#include "mkl_dfti.h"
\#include <omp.h>
\#define ARRAY_LEN(a) sizeof(a)/sizeof(a[0])
// 4 OMP threads, each does 2D FFT 50x100 points
MKL_Complex8 data[4][50][100];
int nth = ARRAY_LEN(data);
MKL_LONG len[2] = {ARRAY_LEN(data[0]), ARRAY_LEN(data[0][0])};
DFTI_DESCRIPTOR_HANDLE FFT;
int th;
/* ...put values into data[i][j][k] 0<=i<=3, 0<=j<=49, 0<=k<=99 */
DftiCreateDescriptor(\&FFT, DFTI_SINGLE, DFTI_COMPLEX, 2, len);
DftiCommitDescriptor(FFT);
// assume data is initialized and do 2D FFTs
\#pragma omp parallel for shared(FFT, data)
for (th = 0; th < nth; ++th)
DftiComputeForward(FFT, data[th]);
DftiFreeDescriptor(\&FFT);

```

\section*{Examples for Cluster FFT Functions}

The following C example computes a 2-dimensional out-of-place FFT using the cluster FFT interface:

\section*{2D Out-of-place Cluster FFT Computation}
```

/* C99 example */
\#include "mpi.h"
\#include "mkl_cdft.h"
DFTI_DESCRIPTOR_DM_HANDLE desc = NULL;

```
```

MKL_LONG v, i, j, n, s;
Complex *in, *out;
MKL_LONG dim_sizes[2] = {nx, ny};
MPI_Init(...);
/* Create descriptor for 2D FFT */
DftiCreateDescriptorDM(MPI_COMM_WORLD,
\&desc, DFTI_DOUBLE, DFTI_COMPLEX, 2, dim_sizes);
/* Ask necessary length of in and out arrays and allocate memory */
DftiGetValueDM(desc,CDFT_LOCAL_SIZE,\&V);
in = (Complex*) malloc(v*sizeof(Complex));
out = (Complex*) malloc(v*sizeof(Complex));
/* Fill local array with initial data. Current process performs n rows,
O row of in corresponds to s row of virtual global array */
DftiGetValueDM(desc, CDFT_LOCAL_NX, \&n);
DftiGetValueDM(desc, CDFT_LOCAL_X_START, \&s);
/* Virtual global array globalIN is defined by function f as
globalin[i*ny+j]=f(i,j) */
for(i = 0; i < n; ++i)
for(j = 0; j < ny; ++j) in[i*ny+j] = f(i+s,j);
/* Set that we want out-of-place transform (default is DFTI_INPLACE) */
DftiSetValueDM(desc, DFTI_PLACEMENT, DFTI_NOT_INPLACE);
/* Commit descriptor, calculate FFT, free descriptor */
DftiCommitDescriptorDM(desc);
DftiComputeForwardDM(desc, in, out);
/* Virtual global array globalOUT is defined by function g as
globalOUT[i*ny+j]=g(i,j) Now out contains result of FFT. out[i*ny+j]=g(i+s,j) */
DftiFreeDescriptorDM(\&desc);
free(in);
free(out);
MPI_Finalize();

```

\section*{1D In-place Cluster FFT Computations}

The C example below illustrates one-dimensional in-place cluster FFT computations effected with a userdefined workspace:
```

/* C99 example */
\#include "mpi.h"
\#include "mkl_cdft.h"
DFTI_DESCRIPTOR_DM_HANDLE desc = NULL;
MKL_LONG N, v, i, n_out, s_out;
Complex *in, *work;
MPI_Init(...);
/* Create descriptor for 1D FFT */
DftiCreateDescriptorDM(MPI_COMM_WORLD, \&desc, DFTI_DOUBLE, DFTI_COMPLEX, 1, N);
/* Ask necessary length of array and workspace and allocate memory */
DftiGetValueDM(desc,CDFT_LOCAL_SIZE,\&V);
in = (Complex*) malloc(v*sizeof(Complex));
work = (Complex*) malloc(v*sizeof(Complex));
/* Fill local array with initial data. Local array has n elements,
O element of in corresponds to s element of virtual global array */
DftiGetValueDM(desc, CDFT_LOCAL_NX, \&n);
DftiGetValueDM(desc, CDFT_LOCAL_X_START, \&S);
/* Set work array as a workspace */

```
```

DftiSetValueDM(desc, CDFT_WORKSPACE, work);
/* Virtual global array globalIN is defined by function f as globalIN[i]=f(i) */
for(i = 0; i < n; ++i) in[i] = f(i+s);
/* Commit descriptor, calculate FFT, free descriptor */
DftiCommitDescriptorDM(desc);
DftiComputeForwardDM(desc,in);
DftiGetValueDM(desc, CDFT_LOCAL_OUT_NX, \&n_out);
DftiGetValueDM(desc, CDFT_LOCAL_OUT_X_START, \&S_out);
/* Virtual global array globalOUT is \overline{ defined by function g as globalouT[i]=g(i)}
Now in contains result of FFT. Local array has n_out elements,
O element of in corresponds to s_out element of virtual global array.
in[i]==g(i+s_out) */
DftiFreeDescriptorDM(\&desc);
free(in);
free(work);
MPI_Finalize();

```

\section*{Auxiliary Data Transformations}

This section presents \(C\) examples for conversion from the Cartesian to polar representation of complex data and vice versa.

Conversion from Cartesian to polar representation of complex data
```

// Cartesian->polar conversion of complex data
// Cartesian representation: z = re + I*im
// Polar representation: z = r * exp(I*phi)
\#include <mkl_vml.h>
void
variant1_Cartesian2Polar(int n,const double *re,const double *im,
double *r,double *phi)
{
vdHypot(n,re,im,r); // compute radii r[]
vdAtan2(n,im,re,phi); // compute phases phi[]
}
void
variant2_Cartesian2Polar(int n,const MKL_Complex16 *z,double *r,double *phi,
double *temp_re,double *temp_im)
{
vzAbs(n,z,r); // compute radii r[]
vdPackI(n, (double*)z + 0, 2, temp_re);
vdPackI(n, (double*)z + 1, 2, temp_im);
vdAtan2(n,temp_im,temp_re,phi); // compute phases phi[]
}

```

\section*{Conversion from polar to Cartesian representation of complex data}
```

// Polar->Cartesian conversion of complex data.
// Polar representation: z = r * exp(I*phi)
// Cartesian representation: z = re + I*im
\#include <mkl_vml.h>
void

```
```

variant1_Polar2Cartesian(int n,const double *r,const double *phi,
double *re,double *im)
{
vdSinCos(n,phi,im,re); // compute direction, i.e. z[]/abs(z[])
vdMul(n,r,re,re); // scale real part
vdMul(n,r,im,im); // scale imaginary part
}
void
variant2_Polar2Cartesian(int n,const double *r,const double *phi,
MKL_Complex16 *z,
double *temp_re,double *temp_im)
{
vdSinCos(n,phi,temp_im,temp_re); // compute direction, i.e. z[]/abs(z[])
vdMul(n,r,temp_im,temp_im); // scale imaginary part
vdMul(n,r,temp_re,temp_re); // scale real part
vdUnpackI(n,temp_re,(double*)z + 0, 2); // fill in result.re
vdUnpackI(n,temp_im,(double*)z + 1, 2); // fill in result.im
}

```

\section*{Appendix F: oneMKL Functionality}

This appendix provides an overview of the Intel® oneAPI Math Kernel Library (oneMKL) functionality on the different devices.

\section*{BLAS Functionality}

C
\begin{tabular}{|c|c|c|}
\hline Functionality & CPU & OpenMP Offload Intel GPU \\
\hline Level 1 BLAS (standard) & All & All \\
\hline Level 2 BLAS (standard) & All & All \\
\hline Level 3 BLAS (standard) & All & All \\
\hline \multirow[t]{7}{*}{BLAS Extensions and Specializations} & \{AXPY,GEMM,TRSM\}_BATCH (group and strided) & \{AXPY,GEMM,TRSM\}_BATCH (group and strided) \\
\hline & GEMMT, AXPBY, GEMM3M & GEMMT \\
\hline & Integer GEMM (s8u8) & N/A \\
\hline & Bfloat16 GEMM & N/A \\
\hline & JIT GEMM API & N/A \\
\hline & PACK GEMM API & N/A \\
\hline & COMPACT GEMM API & N/A \\
\hline
\end{tabular}

\section*{Transposition Functionality}
\begin{tabular}{|lll|}
\hline Functionality & CPU & \begin{tabular}{l} 
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline In-place dense matrix transpose & Yes & No \\
Out-of-place dense matrix transpose & Yes & No \\
In-place dense matrix add & Yes & No \\
Out-of-place dense matrix copy & Yes & No \\
\hline
\end{tabular}

\section*{LAPACK Functionality}

NOTE All of the DPC++ LAPACK computational routines have a corresponding *_scratchpad_size function for calculating the required amount of scratchpad space.
LU Factorization Routines
\begin{tabular}{|lll|}
\hline Functionality & CPU & OpenMP Offload Intel GPU \\
\hline getrf & Yes & Yes \\
getrs & Yes & Yes \\
getri & Yes & Yes \\
\hline
\end{tabular}

\section*{Cholesky Factorization Routines}
\begin{tabular}{|lll|}
\hline Functionality & CPU & OpenMP Offload Intel GPU \\
\hline potrf & Yes & Yes \\
potrs & Yes & Yes \\
potri & Yes & Yes \\
\hline
\end{tabular}

Orthogonal Factorization Routines
\begin{tabular}{|lll|}
\hline Functionality & CPU & OpenMP Offload Intel GPU \\
\hline geqrf & Yes & Yes \\
\(\{\) or,un\}gqr & Yes & Yes \\
\(\{\) or,un\}mqr & Yes & Yes \\
gerqf & Yes & No \\
\(\{\) or,un\}mrq & Yes & No \\
\hline
\end{tabular}

Other Linear Equation Routines
\begin{tabular}{|lll|}
\hline Functionality & CPU & OpenMP Offload Intel GPU \\
\hline trtrs & Yes & Yes \\
\(\{\) sy,he\}trf & Yes & No \\
\hline
\end{tabular}

Symmetric Eigenvalue Routines
\begin{tabular}{|lll|}
\hline Functionality & CPU & OpenMP Offload Intel GPU \\
\hline\(\{s y\), he \(\} e v\) & Yes & Yes
\end{tabular}
\begin{tabular}{|lll|}
\hline Functionality & CPU & OpenMP Offload Intel GPU \\
\hline\(\{\) sy,he\}evd & Yes & Yes \\
\(\{\) sy,he\}evx & Yes & Yes \\
\(\{\) sy,he\}trd & Yes & Yes \\
\(\{\) or,un\}gtr & Yes & No \\
\(\{\) or,un\}mtr & Yes & No \\
steqr & Yes & Yes \\
\hline
\end{tabular}
Generalized Symmetric Eigenvalue Routines
\begin{tabular}{|lll|}
\hline Functionality & CPU & OpenMP Offload Intel GPU \\
\hline\(\{s y\), he \(\}\) gvd & Yes & Yes \\
\(\{s y\), he \(\} g v x\) & Yes & Yes \\
\hline
\end{tabular}

Singular Value Routines
\begin{tabular}{|lll|}
\hline Functionality & CPU & OpenMP Offload Intel GPU \\
\hline gesvd & Yes & Yes \\
gebrd & Yes & Yes \\
\{or,un\}gbr & Yes & No \\
\hline
\end{tabular}

Batched LAPACK Routines
\begin{tabular}{|lll|}
\hline Functionality & CPU & OpenMP Offload Intel GPU (ILP64 Interface) \\
\hline getrf_batch & Strided & Strided \\
getrfnp_batch & Strided & Strided \\
getrs_batch & Strided & Strided \\
getrsnp_batch & Strided & Strided \\
getri_batch & No & No \\
potrf_batch & No & No \\
potrs_batch & No & No \\
geqrf_batch & No & No \\
\{or,un\}gqr_batch & No & No \\
\hline
\end{tabular}

Other LAPACK Routines
\begin{tabular}{|ll|}
\hline CPU & OpenMP Offload Intel GPU \\
\hline Yes & No \\
\hline
\end{tabular}

\section*{DFT Functionality}

DFTI Interfaces
\begin{tabular}{|lll|}
\hline Functionality & CPU & \begin{tabular}{l} 
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline Complex-to-Complex FFT transformations & Yes, 1D through 7D & Yes, 1D through 3D
\end{tabular}
\begin{tabular}{|lll|}
\hline Functionality & CPU & \begin{tabular}{l} 
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline Real-to-Complex FFT transformations & Yes, 1D through 7D & Yes, 1D through 3D \\
\hline FFTW3 Interfaces & CPU & \begin{tabular}{l} 
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline Functionality & Yes, 1D through 7D & Yes, 1D through 3D \\
\hline Complex-to-Complex FFT transformations & Yes, 1D through 7D & No \\
\hline Real-to-Complex FFT transformations & CPU & \begin{tabular}{l} 
OpenMP Offload Intel \\
FFTW2 Interfaces
\end{tabular} \\
\hline Functionality & Yes, 1D through 7D & No \\
\hline Complex-to-Complex FFT transformations & Yes, 1D through 7D & No \\
\hline Real-to-Complex FFT transformations & &
\end{tabular}

\section*{Sparse BLAS Functionality}

In the following table for functionality, sm = sparse matrix, \(\mathrm{dm}=\) dense matrix, \(\mathrm{sv}=\) sparse vector, \(\mathrm{dv}=\) dense vector, sc = scalar.
In the following table for operations, dense vectors \(=x, y\), sparse vectors \(=w, v\), dense matrices \(=X, Y\), sparse matrices \(=A, B, C\), and scalars = alpha, beta, \(d\).
Level 1
\begin{tabular}{|c|c|c|c|}
\hline Functionality & Operations & CPU & OpenMP Offload Intel GPU \\
\hline Sparse Vector - Dense Vector addition (AXPY) & \(\mathrm{y}<-\operatorname{alpha} * \mathrm{w}+\mathrm{y}\) & Yes & No \\
\hline \multirow[t]{3}{*}{Sparse Vector - Sparse Vector Dot product (SPDOT) (sv.sv -> sc)} & d <- dot (w, v) & N/A & N/A \\
\hline & \(\operatorname{dot}(\mathrm{w}, \mathrm{v})=\operatorname{sum}\left(\mathrm{w}_{\mathrm{i}}{ }^{*} \mathrm{v}_{\mathrm{i}}\right)\) & No & No \\
\hline & \(\operatorname{dot}(\mathrm{w}, \mathrm{v})=\operatorname{sum}\left(\operatorname{conj}\left(\mathrm{w}_{\mathrm{i}}\right) * \mathrm{v}_{\mathrm{i}}\right)\) & No & No \\
\hline \multirow[t]{3}{*}{Sparse Vector - Dense Vector Dot product (SPDOT) (sv.dv -> sc)} & \(\mathrm{d}<-\operatorname{dot}(\mathrm{w}, \mathrm{x})\) & N/A & N/A \\
\hline & \(\operatorname{dot}(\mathrm{w}, \mathrm{v})=\operatorname{sum}\left(\mathrm{w}_{\mathrm{i}} * \mathrm{v}_{\mathrm{i}}\right)\) & Yes & No \\
\hline & \(\operatorname{dot}(\mathrm{w}, \mathrm{v})=\operatorname{sum}\left(\operatorname{conj}\left(\mathrm{w}_{\mathrm{i}}\right) * \mathrm{v}_{\mathrm{i}}\right)\) & Yes & No \\
\hline \multirow[t]{3}{*}{Dense Vector - Sparse Vector Conversion (sv <-> dv)} & - & N/A & N/A \\
\hline & \(\mathrm{x}=\) scatter \((\mathrm{w})\) & Yes & No \\
\hline & \(\mathrm{w}=\) gather \((\mathrm{x}\), wind x ) & Yes & No \\
\hline
\end{tabular}

In the following table for functionality, sm = sparse matrix, \(\mathrm{dm}=\) dense matrix, \(\mathrm{sv}=\) sparse vector, \(\mathrm{dv}=\) dense vector, sc = scalar.

In the following table for operations, dense vectors \(=x, y\), sparse vectors \(=w, v\), dense matrices \(=X, Y\), sparse matrices \(=A, B, C\), and scalars = alpha, beta, d.

Level 2
\begin{tabular}{|c|c|c|c|}
\hline Functionality & Operations & CPU & OpenMP Offload Intel GPU \\
\hline \multirow[t]{4}{*}{```
General Matrix-Vector
multiplication (GEMV) (sm*dv-
>dv)
```} & \[
\begin{aligned}
& y<- \text { beta*y }+ \text { alpha } * \\
& \text { op(A)*x }
\end{aligned}
\] & N/A & N/A \\
\hline & \(o p(A)=A\) & Yes & No \\
\hline & \(o p(A)=A^{\top}\) & Yes & No \\
\hline & \(o p(A)=A^{H}\) & Yes & No \\
\hline \multirow[t]{4}{*}{```
Symmetric Matrix-Vector
multiplication (SYMV) (sm*dv-
>dv)
```} & \[
\begin{aligned}
& y<- \text { beta } * y+\text { alpha } * \\
& \text { op(A) }{ }^{*} x
\end{aligned}
\] & N/A & N/A \\
\hline & \(o p(A)=A\) & Yes & No \\
\hline & \(o p(A)=A^{\top}\) & Yes & No \\
\hline & \(o p(A)=A^{H}\) & Yes & No \\
\hline \multirow[t]{4}{*}{```
Triangular Matrix-Vector
multiplication (TRMV) (sm*dv-
>dv)
```} & \[
\begin{aligned}
& y<- \text { beta*y }+ \text { alpha } * \\
& \text { op(A)*x }
\end{aligned}
\] & N/A & N/A \\
\hline & \(o p(A)=A\) & Yes & No \\
\hline & \(o p(A)=A^{\top}\) & Yes & No \\
\hline & \(o p(A)=A^{H}\) & Yes & No \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { General Matrix-Vector mult with } \\
& \text { dot product (GEMVDOT) (sm*dv- } \\
& >\text { dv, dv.dv->sc) }
\end{aligned}
\]} & \[
\begin{aligned}
& y<-\operatorname{beta}^{*} y+\operatorname{alpha} * \\
& o p(A)^{*} x, d=\operatorname{dot}(x, y)
\end{aligned}
\] & N/A & N/A \\
\hline & \(o p(A)=A\) & Yes & No \\
\hline & \(o p(A)=A^{\top}\) & Yes & No \\
\hline & \(o p(A)=A^{H}\) & Yes & No \\
\hline \multirow[t]{4}{*}{Triangular Solve (TRSV) (inv(sm)*dv -> dv)} & solve for \(y, o p(A) * y=\) alpha*x & N/A & N/A \\
\hline & \(o p(A)=A\) & Yes & No \\
\hline & \(o p(A)=A^{\top}\) & Yes & No \\
\hline & \(o p(A)=A^{H}\) & Yes & No \\
\hline
\end{tabular}

In the following table for functionality, sm = sparse matrix, \(\mathrm{dm}=\) dense matrix, \(\mathrm{sv}=\) sparse vector, \(\mathrm{dv}=\) dense vector, sc = scalar.
In the following table for operations, dense vectors \(=x, y\), sparse vectors \(=w, v\), dense matrices \(=X, Y\), sparse matrices = A, B, C, and scalars = alpha, beta, d.
Level 3
\begin{tabular}{|llll|}
\hline Functionality & Operations & CPU & \begin{tabular}{l}
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline \begin{tabular}{lll}
General Sparse Matrix - Dense \\
Matrix Multiplication (GEMM) \\
\((\) sm*dm->dm)
\end{tabular} & \begin{tabular}{l}
\(Y<-\) alpha*op \((A) * o p(X)+\) \\
beta*Y
\end{tabular} & N/A & N/A \\
& \(o p(A)=A, o p(X)=X\) & Yes & No \\
& \(o p(A)=A^{\top}, o p(X)=X\) & Yes & No \\
& \(o p(A)=A^{H}, o p(X)=X\) & Yes & No \\
& & &
\end{tabular}

\begin{tabular}{|llll|}
\hline Functionality & Operations & CPU & OpenMP Offload Intel \\
GPU
\end{tabular}

In the following table for functionality, sm = sparse matrix, \(\mathrm{dm}=\) dense matrix, \(\mathrm{sv}=\) sparse vector, \(\mathrm{dv}=\) dense vector, sc = scalar.
In the following table for operations, dense vectors \(=x, y\), sparse vectors \(=w, v\), dense matrices \(=X, Y\), sparse matrices \(=A, B, C\), and scalars = alpha, beta, \(d\).

Other
\begin{tabular}{|c|c|c|c|}
\hline Functionality & Operations & CPU & OpenMP Offload Intel GPU \\
\hline Symmetric Gauss-Seidel Preconditioner (SYMGS) (update
\[
A * x=b, A=L+D+U)
\] & \[
\begin{aligned}
& x 0<-x^{*} \text { alpha; }(L \\
& +D)^{*} x 1=b-U^{*} x 0 ;(U \\
& +D)^{*} x=b-L^{*} x 1
\end{aligned}
\] & Yes & No \\
\hline Symmetric Gauss-Seidel Preconditioner with Matrix-Vector product (SYMGS_MV) (update A*x=b, \(\mathrm{A}=\mathrm{L}+\mathrm{D}+\mathrm{U}\)) & \begin{tabular}{l}
x0 <- x*alpha; (L \\
+D)*x1=b-U*x0; (U \\
\(+D)^{*} x=b-L^{*} x 1 ; y=A * x\)
\end{tabular} & Yes & No \\
\hline LU Smoother (LU_SMOOTHER) (update \(A^{*} x=b, A=L+D+U\), E~inv(D)) & \[
\begin{aligned}
& \mathrm{r}=\mathrm{b}-\mathrm{A} * \mathrm{x} ;(\mathrm{L}+\mathrm{D}) * \mathrm{E}^{*}(\mathrm{U} \\
& +\mathrm{D}) * \mathrm{dx}=\mathrm{r} ; \mathrm{y}=\mathrm{x}+\mathrm{dr}
\end{aligned}
\] & Yes & No \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Functionality & Operations & CPU & \begin{tabular}{l}
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline Sparse Matrix Add (ADD) & \(\mathrm{C}<-\) alpha*op(A)+B & Yes & No \\
& \(o p(A)=A^{\top}\) & Yes & No \\
& \(o p(A)=A^{H}\) & Yes & No \\
\hline
\end{tabular}

In the following table for operations, dense vectors \(=x, y\), sparse vectors \(=w, v\), dense matrices \(=X, Y\), sparse matrices = A, B, C, and scalars = alpha, beta, d.
Helper Functions
\begin{tabular}{|llll|}
\hline Functionality & Operations & CPU & OpenMP Offload Intel GPU \\
\hline Sort Indices of Matrix (ORDER) & N/A & Yes & No \\
\begin{tabular}{l}
Transpose of Sparse Matrix \\
(TRANSPOSE)
\end{tabular} & \begin{tabular}{l}
A <- op(A) with op=trans or \\
conjtrans
\end{tabular} & N/A & N/A \\
& \begin{tabular}{l}
transpose CSR/CSC matrix
\end{tabular} & Yes & No \\
& transpose BSR matrix & Yes & No \\
\begin{tabular}{l}
Sparse Matrix Format Converter \\
(CONVERT)
\end{tabular} & N/A & Yes & No \\
\begin{tabular}{ll}
Dense to Sparse Matrix Format \\
Converter (CONVERT)
\end{tabular} & N/A & Yes & No \\
Copy Matrix Handle (COPY) & N/A & Yes & No \\
Create CSR Matrix Handle & N/A & Yes & No \\
Create CSC Matrix Handle & N/A & No \\
Create COO Matrix Handle & N/A & Yes & No \\
Create BSR Matrix Handle & N/A & Yes & No \\
Export CSR Matrix & \begin{tabular}{ll}
Allows access to internal data \\
in the CSR Matrix handle
\end{tabular} & Yes & No \\
Export CSC Matrix & Allows access to internal data & Yes & No \\
in the CSC Matrix handle & Yes & No \\
\hline
\end{tabular}

In the following table for functionality, sm = sparse matrix, \(\mathrm{dm}=\) dense matrix, \(\mathrm{sv}=\) sparse vector, \(\mathrm{dv}=\) dense vector, sc = scalar.

In the following table for operations, dense vectors \(=x, y\), sparse vectors \(=w, v\), dense matrices \(=X, Y\), sparse matrices = A, B, C, and scalars = alpha, beta, d.
Optimize Stages
\(\left.\begin{array}{|lll|}\hline \text { Functionality } & \text { Operations } & \text { CPU }\end{array} \begin{array}{l}\text { OpenMP Offload Intel } \\ \text { GPU }\end{array}\right]\)
\begin{tabular}{|llll|}
\hline Functionality & Operations & CPU & \begin{tabular}{l}
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline Add GEMV hint and optimize & N/A & Yes & No \\
Add SYMV hint and optimize & N/A & Yes & No \\
Add TRMV hint and optimize & N/A & Yes & No \\
add TRSV hint and optimize & N/A & Yes & No \\
add GEMM hint and optimize & N/A & Yes & No \\
add TRSM hint and optimize & N/A & Yes & No \\
add DOTMV hint and optimize & N/A & Yes & No \\
add SYMGS hint and optimize & N/A & No \\
add SYMGS_MV hint and optimize & N/A & Yes & No \\
add LU_SMOOTHER hint and optimize & N/A & No \\
\hline
\end{tabular}

\section*{Sparse Solvers Functionality}
\begin{tabular}{|lll|}
\hline Functionality & CPU & \begin{tabular}{l}
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline Sparse Cholesky Factorization & Yes & No \\
Sparse LU Factorization & Yes & No \\
Sparse QR factorization & Yes & No \\
Hermitian/Symmetric Eigensolver on intervals for Sparse Matrices & Yes & No \\
Extremal Eigensolvers for Sparse Matrix & Yes & No \\
Poisson Solver & Yes & No \\
Trust Region Solver & Yes & No \\
\hline
\end{tabular}

\section*{Random Number Generators Functionality}
Engines
\begin{tabular}{|lll|}
\hline Functionality & CPU & \begin{tabular}{l}
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline MRG32K3A & Yes & Yes \\
MT2203 & Yes & Yes \\
MT19937 & Yes & Yes \\
PHILOX4X32X10 & Yes & Yes \\
SOBOL & Yes & Yes \\
ARS5 & Yes & No \\
MCG59 & Yes & Yes \\
NIEDERR & Yes & No
\end{tabular}
\begin{tabular}{|lll|}
\hline Functionality & CPU & \begin{tabular}{l}
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline MCG31 & Yes & Yes \\
WH & Yes & No \\
SFMT19937 & Yes & No \\
R250 & Yes & No \\
NONDETERM & Yes & No \\
DABSTRACT & Yes & No \\
SABSTRACT & Yes & No \\
IABSTRACT & Yes & No \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Functionality & CPU & OpenMP Offload Intel GPU \\
\hline Uniform (single/double/integer) & Yes & Yes \\
\hline UniformBits32 & Yes & Yes \\
\hline \multicolumn{3}{|l|}{UniformBits64} \\
\hline Lognormal (single/double) & Yes & Yes \\
\hline Gaussian (single/double) & Yes & Yes \\
\hline Poisson & Yes & Yes \\
\hline UniformBits & Yes & Yes \\
\hline Bernoulli & Yes & Yes \\
\hline Beta (single/double) & Yes & No \\
\hline Binomial & Yes & No \\
\hline ChiSquare (single/double) & Yes & No \\
\hline Exponential (single/double) & Yes & Yes \\
\hline Gamma (single/double) & Yes & No \\
\hline Geometric & Yes & Yes \\
\hline Gumbel (single/double) & Yes & Yes \\
\hline Hyper Geometric & Yes & No \\
\hline Laplace (single/double) & Yes & Yes \\
\hline Multinomial & Yes & No \\
\hline Negative Binomial & Yes & No \\
\hline PoissonV & Yes & No \\
\hline Rayleigh (single/double) & Yes & Yes \\
\hline Weibull (single/double) & Yes & Yes \\
\hline Cauchy (single/double) & Yes & Yes \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Functionality & CPU & \begin{tabular}{l}
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline GaussianMV (single/double) & Yes & Yes \\
\hline
\end{tabular}

\section*{Vector Math Functionality}
\begin{tabular}{|lll|}
\hline Functionality & CPU & \begin{tabular}{l}
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline Vector Math Functions, Single Precision & Yes & Yes* \\
Vector Math Functions, Double Precision & Yes & Yes* \\
Vector Math Functions, Single Precision Complex & Yes & No \\
Vector Math Functions, Double Precision Complex & Yes & No \\
\hline
\end{tabular}
OpenMP offload to the GPU is implemented in the Linux OS, but not in the Windows* OS. The Windows OS implementation will be available in a future release.

\section*{Data Fitting Functionality}

Splines, Spline Type
\begin{tabular}{|lll|}
\hline Functionality & CPU & \begin{tabular}{l}
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline default (linear/quadratic/cubic) & Yes & No \\
subbotin & Yes & No \\
natural & Yes & No \\
hermite & Yes & No \\
akima & Yes & No \\
bessel & Yes & No \\
hyman & Yes & No \\
lookup interpolant & Yes & No \\
cr stepwise const interpolant & Yes & No \\
cl stepwise const interpolant & Yes & No \\
\hline
\end{tabular}

\section*{Computation Routines}
\begin{tabular}{|lll|}
\hline Functionality & CPU & \begin{tabular}{l}
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline Construct1D & Yes & No \\
Interpolate1D/Interpolate1DEx & Yes & No \\
Integrate1D/Integrate1DEx & Yes & No \\
SearchCells1D/SearchCells1DEx & Yes & No \\
InterpolationCallBack & Yes & No \\
IntegrateCallBack & Yes & No
\end{tabular}
\begin{tabular}{|lll|}
\hline Functionality & CPU & \begin{tabular}{l}
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline SearchCellsCallBack & Yes & No \\
\hline
\end{tabular}

\section*{Summary Statistics Functionality}
\begin{tabular}{|c|c|c|}
\hline Functionality & CPU & OpenMP Offload Intel GPU \\
\hline min & Yes & No \\
\hline max & Yes & No \\
\hline raw sum & Yes & No \\
\hline \multicolumn{3}{|l|}{2nd order raw sum} \\
\hline \multicolumn{3}{|l|}{3 rd order raw sum} \\
\hline \multicolumn{3}{|l|}{4th order raw sum} \\
\hline 2nd order central sum & Yes & No \\
\hline \multicolumn{3}{|l|}{3 rd order central sum} \\
\hline \multicolumn{3}{|l|}{4th order central sum} \\
\hline mean & Yes & No \\
\hline \multicolumn{3}{|l|}{2nd order raw moment} \\
\hline \multicolumn{3}{|l|}{3rd order raw moment} \\
\hline \multicolumn{3}{|l|}{4th order raw moment} \\
\hline 2nd order central moment & Yes & No \\
\hline \multicolumn{3}{|l|}{3rd order central moment} \\
\hline \multicolumn{3}{|l|}{4th order central moment} \\
\hline kurtosis & Yes & No \\
\hline skewness & Yes & No \\
\hline variation coefficient & Yes & No \\
\hline covariance matrix & Yes & No \\
\hline correlation matrix & Yes & No \\
\hline cross-product matrix & Yes & No \\
\hline pooled covariance matrix & Yes & No \\
\hline pooled mean & Yes & No \\
\hline group covariance matrix & Yes & No \\
\hline group mean & Yes & No \\
\hline quantiles & Yes & No \\
\hline order statistics & Yes & No \\
\hline robust covariance matrix & Yes & No \\
\hline ouliers detection & Yes & No \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Functionality & CPU & \begin{tabular}{l}
OpenMP Offload Intel \\
GPU
\end{tabular} \\
\hline partial covariance matrix & Yes & No \\
partial covariance matrix & Yes & No \\
missing values & Yes & No \\
parameterized correlation matrix & Yes & No \\
stream quantiles & Yes & No \\
mean absolute deviation & Yes & No \\
median absolute deviation & Yes & No \\
sorted observations & Yes & No \\
\hline
\end{tabular}

\section*{Bibliography}

For more information about the BLAS, Sparse BLAS, LAPACK, ScaLAPACK, Sparse Solver, Extended Eigensolver, VM, VS, FFT, and Non-Linear Optimization Solvers functionality, refer to the following publications:
- BLAS Level 1
C. Lawson, R. Hanson, D. Kincaid, and F. Krough. Basic Linear Algebra Subprograms for Fortran Usage, ACM Transactions on Mathematical Software, Vol.5, No. 3 (September 1979) 308-325.
- BLAS Level 2
J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An Extended Set of Fortran Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, Vol.14, No. 1 (March 1988) 1-32.
- BLAS Level 3
J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling. A Set of Level 3 Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software (December 1989).
- Sparse BLAS
D. Dodson, R. Grimes, and J. Lewis. Sparse Extensions to the FORTRAN Basic Linear Algebra Subprograms, ACM Transactions on Math Software, Vol.17, No. 2 (June 1991).
D. Dodson, R. Grimes, and J. Lewis. Algorithm 692: Model Implementation and Test Package for the Sparse Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, Vol.17, No. 2 (June 1991).
[Duff86]
I.S.Duff, A.M.Erisman, and J.K.Reid. Direct Methods for Sparse Matrices. Clarendon Press, Oxford, UK, 1986.
[CXML01]
[Rem05]
Compaq Extended Math Library. Reference Guide, Oct.2001.
K.Remington. A NIST FORTRAN Sparse Blas User's Guide. (available on http:// math.nist.gov/~KRemington/fspblas/)
[Saad94] Y.Saad. SPARSKIT: A Basic Tool-kit for Sparse Matrix Computation. Version 2, 1994.(http://www.cs.umn.edu/~saad)
[Saad96] Y.Saad. Iterative Methods for Linear Systems. PWS Publishing, Boston, 1996.
- LAPACK
[AndaPark94]
A. A. Anda and H. Park. Fast plane rotations with dynamic scaling, SIAM J. matrix Anal. Appl., Vol. 15 (1994), pp. 162-174.
[Baudin12] M. Baudin, R. Smith. A Robust Complex Division in Scilab, available from http://www.arxiv.org, arXiv:1210.4539v2 (2012).
[Bischof00]
[Demmel92]
[Demmel12]
[deRijk98]
[Dhillon04]
[Dhillon04-02]
[Dhillon97]
[Drmac08-1]
[Drmac08-2]
[Drmac08-3]
[Drmac08-4]
[Elmroth00]
[Golub96]
[LUG]
[Kahan66]
C. H. Bischof, B. Lang, and X. Sun. Algorithm 807: The SBR toolbox-software for successive band reduction, ACM Transactions on Mathematical Software, Vol. 26, No. 4, pages 602-616, December 2000.
J. Demmel and K. Veselic. Jacobi's method is more accurate than QR, SIAM J. Matrix Anal. Appl. 13(1992):1204-1246.
J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou. Communication-optimal parallel and sequential QR and LU factorizations, SIAM Journal on Scientific Computing, Vol. 34, No 1, 2012.
P. P. M. De Rijk. A one-sided Jacobi algorithm for computing the singular value decomposition on a vector computer, SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371.
I. Dhillon, B. Parlett. Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices, Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
I. Dhillon, B. Parlett. Orthogonal Eigenvectors and *Relative Gaps, SIAM Journal on Matrix Analysis and Applications, Vol. 25, 2004. (Also LAPACK Working Note 154.)
I. Dhillon. A new \(O\left(n^{\prime} 2\right)\) algorithm for the symmetric tridiagonal eigenvalue/ eigenvector problem, Computer Science Division Technical Report No. UCB/ CSD-97-971, UC Berkeley, May 1997.
Z. Drmac and K. Veselic. New fast and accurate Jacobi SVD algorithm I, SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. LAPACK Working note 169.
Z. Drmac and K. Veselic. New fast and accurate Jacobi SVD algorithm II, SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. LAPACK Working note 170.
Z. Drmac and K. Bujanovic. On the failure of rank-revealing QR factorization software - a case study, ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28. LAPACK Working note 176.
Z. Drmac. Implementation of Jacobi rotations for accurate singular value computation in floating point arithmetic, SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222.
E. Elmroth and F. Gustavson. Applying Recursion to Serial and Paralle/ QR Factorization Leads to Better Performance, IBM J. Research \& Development, Vol. 44, No. 4, 2000, pp 605-624.
G. Golub and C. Van Loan. Matrix Computations, Johns Hopkins University Press, Baltimore, third edition,1996.
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide, Third Edition, Society for Industrial and Applied Mathematics (SIAM), 1999.
W. Kahan. Accurate Eigenvalues of a Symmetric Tridiagonal Matrix, Report CS41, Computer Science Dept., Stanford University, July 21, 1966.
[Marques06]
[Sutton09]
- ScaLAPACK
[SLUG]
O.Marques, E.J.Riedy, and Ch.Voemel. Benefits of IEEE-754 Features in Modern Symmetric Tridiagonal Eigensolvers, SIAM Journal on Scientific Computing, Vol.28, No.5, 2006. (Tech report version in LAPACK Working Note 172 with the same title.)

Brian D. Sutton. Computing the complete CS decomposition, Numer. Algorithms, 50(1):33-65, 2009.
L. Blackford, J. Choi, A.Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K.Stanley, D. Walker, and R. Whaley. ScaLAPACK Users' Guide, Society for Industrial and Applied Mathematics (SIAM), 1997.

\section*{- Sparse Solver}
[Duff99]
[Dong95]
[Li99]
[Liu85]
[Menon98]
[Saad03]
[Schenk00]
[Schenk03]
[Schenk04]
[Schenk00-2] O. Schenk, K. Gartner, and W. Fichtner. Efficient Sparse LU Factorization with Left-right Looking Strategy on Shared Memory Multiprocessors. BIT, 40(1):158-176, 2000.
[Schenk01] O. Schenk and K. Gartner. Sparse Factorization with Two-Level Scheduling in PARDISO. In Proceeding of the 10th SIAM conference on Parallel Processing for Scientific Computing, Portsmouth, Virginia, March 12-14, 2001.
[Schenk02] O. Schenk and K. Gartner. Two-level scheduling in PARDISO: Improved Scalability on Shared Memory Multiprocessing Systems. Parallel Computing, 28:187-197, 2002.
I. S. Duff and J. Koster. The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices. SIAM J. Matrix Analysis and Applications, 20(4):889-901, 1999.
J. Dongarra, V.Eijkhout, A.Kalhan. Reverse Communication Interface for Linear Algebra Templates for Iterative Methods. UT-CS-95-291, May 1995. http:// www.netlib.org/lapack/lawnspdf/lawn99.pdf
X.S. Li and J.W. Demmel. A Scalable Sparse Direct Solver Using Static Pivoting. In Proceeding of the 9th SIAM conference on Parallel Processing for Scientific Computing, San Antonio, Texas, March 22-34,1999.
J.W.H. Liu. Modification of the Minimum-Degree algorithm by multiple elimination. ACM Transactions on Mathematical Software, 11(2):141-153, 1985.
R. Menon L. Dagnum. OpenMP: An Industry-Standard API for Shared-Memory Programming. IEEE Computational Science \& Engineering, 1:46-55, 1998. http://www.openmp.org.
Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd edition, SIAM, Philadelphia, PA, 2003.
O. Schenk. Scalable Parallel Sparse LU Factorization Methods on Shared Memory Multiprocessors. PhD thesis, ETH Zurich, 2000.
O. Schenk and K. Gartner. Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO. Journal of Future Generation Computer Systems, 20(3):475-487, 2004.
O. Schenk and K. Gartner. On Fast Factorization Pivoting Methods for Sparse Symmetric Indefinite Systems. Technical Report, Department of Computer Science, University of Basel, 2004, submitted.
[Sonn89] P. Sonneveld. CGS, a Fast Lanczos-Type Solver for Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 10:36-52, 1989.
[Young71] D.M.Young. Iterative Solution of Large Linear Systems. New York, Academic Press, Inc., 1971.

\section*{- Extended Eigensolver}
[Polizzi09]
[Polizzi12]
[Bai00]
[Sleijpen96]
- VS
[AVX]
[Billor00]
[Bratley87]
[Bratley88]
[Bratley92]
[BMT]
[Coddington94]
[Fritsch80] Fritsch, F. N and Carlson, R. E. Monotone Piecewise Cubic Interpolation. SIAM Journal on Numerical Analysis (SIAM) 17 (2): 238-246, 1980.

Gentle, James E. Random Number Generation and Monte Carlo Methods, Springer-Verlag New York, Inc., 1998.

Hyman, J. M. Accurate monotonicity preserving cubic interpolation, SIAM J. Sci. Stat. Comput. 4, 645-654, 1983.

Intel. Intel® 64 and IA-32 Architectures Software Developer's Manual. 3 vols.
L'Ecuyer, Pierre. Uniform Random Number Generation. Annals of Operations Research, 53, 77-120, 1994.

L'Ecuyer, Pierre. Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure. Mathematics of Computation, 68, 225, 249-260, 1999.

L'Ecuyer, Pierre. Good Parameter Sets for Combined Multiple Recursive Random Number Generators. Operations Research, 47, 1, 159-164, 1999.
[L'Ecuyer01] L'Ecuyer, Pierre. Software for Uniform Random Number Generation: Distinguishing the Good and the Bad. Proceedings of the 2001 Winter Simulation Conference, IEEE Press, 95-105, Dec. 2001.
[Kirkpatrick81] Kirkpatrick, S., and Stoll, E. A Very Fast Shift-Register Sequence Random Number Generator. Journal of Computational Physics, V. 40. 517-526, 1981.
[Knuth81] Knuth, Donald E. The Art of Computer Programming, Volume 2, Seminumerical Algorithms. 2nd edition, Addison-Wesley Publishing Company, Reading, Massachusetts, 1981.
[Maronna02]
[Matsumoto98]
[Matsumoto00]
[NAG]
[Rocke96]
[Saito08]
[Salmon11]
[Schafer97]
[Sobol76]
[SSL Notes]
[VS Notes]
[VS Data]

\section*{- VM}
[C99]
Maronna, R.A., and Zamar, R.H., Robust Multivariate Estimates for HighDimensional Datasets, Technometrics, 44, 307-317, 2002.

Matsumoto, M., and Nishimura, T. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, Pages 3-30, January 1998.

Matsumoto, M., and Nishimura, T. Dynamic Creation of Pseudorandom Number Generators, 56-69, in: Monte Carlo and Quasi-Monte Carlo Methods 1998, Ed. Niederreiter, H. and Spanier, J., Springer 2000, http:// www.math.sci.hiroshima-u.ac.jp/\%7Em-mat/MT/DC/dc.html.

NAG Numerical Libraries. http://www.nag.co.uk/numeric/ numerical_libraries.asp

David M. Rocke, Robustness properties of S-estimators of multivariate location and shape in high dimension. The Annals of Statistics, 24(3), 1327-1345, 1996.

Saito, M., and Matsumoto, M. SIMD-oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number Generator. Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer, Pages 607-622, 2008.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html
Salmon, John K., Morales, Mark A., Dror, Ron O., and Shaw, David E., Parallel Random Numbers: As Easy as 1, 2, 3. SC '11 Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, 2011.
Schafer, J.L., Analysis of Incomplete Multivariate Data. Chapman \& Hall, 1997.
Sobol, I.M., and Levitan, Yu.L. The production of points uniformly distributed in a multidimensional cube. Preprint 40, Institute of Applied Mathematics, USSR Academy of Sciences, 1976 (In Russian).

Inte \({ }^{\circledR}\) oneMKL Summary Statistics Application Notes, a document present on the Intel \({ }^{\circledR}\) oneMKL product at https://www.intel.com/content/www/us/en/ developer/tools/oneapi/onemkl-documentation.html
Inte \({ }^{\circledR}\) oneMKL Vector Statistics Notes, a document present on the Intel \({ }^{\circledR}\) oneMKL product at https://www.intel.com/content/www/us/en/developer/ tools/oneapi/onemkl-documentation.html Inte \({ }^{\circledR}\) oneMKL Vector Statistics Performance, a document present on the Intel® oneMKL product at https://www.intel.com/content/www/us/en/developer/ tools/oneapi/onemkl-documentation.html
[Muller97]
[IEEE754]
[VM Data]

\section*{- FFT}
- Optimization Solvers
[Conn00] A. R. Conn, N. I.M. Gould, P. L. Toint.Trust-region Methods.SIAM Society for Industrial \& Applied Mathematics, Englewood Cliffs, New Jersey, MPS-SIAM Series on Optimization edition, 2000.

\section*{- Data Fitting Functions}
[deBoor2001]
[Schumaker2007]
[StechSub76]
Carl deBoor. A Practical Guide to Splines. Revised Edition. Springer-Verlag New York Berlin Heidelberg, 2001.
Larry L Schumaker. Spline Functions: Basic Theory. \(3^{\text {rd }}\) Edition. Cambridge University Press, Cambridge, 2007.
S.B. Stechhkin, and Yu Subbotin. Splines in Numerical Mathematics. Izd. Nauka, Moscow, 1976.

For a reference implementation of BLAS, sparse BLAS, LAPACK, and ScaLAPACK packages visit www.netlib.org.

\section*{Glossary}
\begin{tabular}{ll}
\(A^{H}\) & \begin{tabular}{l}
Denotes the conjugate transpose of a general matrix \(A\). See also \\
conjugate matrix.
\end{tabular} \\
\(A^{T}\) & \begin{tabular}{l}
Denotes the transpose of a general matrix \(A\). See also transpose. \\
band matrix \\
A general \(m\)-by- \(n\) matrix \(A\) such that \(a_{i j}=0\) for \(|i-j|>l\), \\
where \(1<1<\min (m, n)\). For example, any tridiagonal matrix is a \\
band matrix.
\end{tabular} \\
band storage & \begin{tabular}{l}
A special storage scheme for band matrices. A matrix is stored in a \\
two-dimensional array: columns of the matrix are stored in the \\
corresponding columns of the array, and diagonals of the matrix are \\
stored in rows of the array.
\end{tabular} \\
BLAS & \begin{tabular}{l}
Abbreviation for Basic Linear Algebra Subprograms. These \\
subprograms implement vector, matrix-vector, and matrix-matrix \\
operations.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
BRNG & \begin{tabular}{l}
Abbreviation for Basic Random Number Generator. Basic random \\
number generators are pseudorandom number generators imitating \\
i.i.d. random number sequences of uniform distribution. Distributions \\
other than uniform are generated by applying different transformation
\end{tabular} \\
techniques to the sequences of random numbers of uniform \\
distribution. \\
& \\
& Standardized mechanism that allows a user to include a user-designed \\
& BRNG into the VSL and use it along with the predefined VSL basic \\
generators.
\end{tabular}
eigenvalue problem
eigenvector
elementary reflector(Householder
matrix)
factorization

FFTs
full storage

Hermitian matrix

I
identity matrix
i.i.d.
in-place

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL)
inverse matrix
\(L Q\) factorization

A problem of finding non-zero vectors \(x\) and numbers \(\lambda\) (for a given square matrix \(A\)) such that \(A x=\lambda x\). Here the numbers \(\lambda\) are called the eigenvalues of the matrix \(A\) and the vectors \(x\) are called the eigenvectors of the matrix \(A\).

See eigenvalue problem.
Matrix of a general form \(H=I-\tau v v^{\mathrm{T}}\), where \(v\) is a column vector and \(\tau\) is a scalar. In LAPACK elementary reflectors are used, for example, to represent the matrix \(Q\) in the \(Q R\) factorization (the matrix \(Q\) is represented as a product of elementary reflectors).

Representation of a matrix as a product of matrices. See also BunchKaufman factorization, Cholesky factorization, \(L U\) factorization, \(L Q\) factorization, \(Q R\) factorization, Schur factorization.

Abbreviation for Fast Fourier Transforms. See"Fourier Transform Functions".

A storage scheme allowing you to store matrices of any kind. A matrix \(A\) is stored in a two-dimensional array \(a\), with the matrix element \(a_{i j}\) stored in the array element \(a(i, j)\).

A square matrix \(A\) that is equal to its conjugate matrix \(A^{H}\). The conjugate \(A^{H}\) is defined as follows: \(\left(A^{\mathrm{H}}\right)_{i j}=\left(a_{j i}\right)^{*}\).

See identity matrix.
A square matrix I whose diagonal elements are 1, and off-diagonal elements are 0 . For any matrix \(A, A I=A\) and \(I A=A\).

Independent Identically Distributed.
Qualifier of an operation. A function that performs its operation inplace takes its input from an array and returns its output to the same array.

Abbreviation for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library.

The matrix denoted as \(A^{-1}\) and defined for a given square matrix \(A\) as follows: \(A A^{-1}=A^{-1} A=I\). \(A^{-1}\) does not exist for singular matrices \(A\).

Representation of an \(m\)-by-n matrix \(A\) as \(A=L Q\) or \(A=\left(\begin{array}{ll}L & 0\end{array}\right) Q\). Here \(Q\) is an \(n\)-by- \(n\) orthogonal (unitary) matrix. For \(m \leq n, L\) is an \(m\) -by- \(m\) lower triangular matrix with real diagonal elements; for \(m>n\),

\author{
\(L U\) factorization
}
machine precision

MPI

MPICH
orthogonal matrix
packed storage

PDF
positive-definite matrix
pseudorandom number generator
\(Q R\) factorization
where \(L_{1}\) is an \(n\)-by- \(n\) lower triangular matrix, and \(L_{2}\) is a rectangular matrix.

Representation of a general \(m\)-by- \(n\) matrix \(A\) as \(A=P L U\), where \(P\) is a permutation matrix, \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>n\)) and \(U\) is upper triangular (upper trapezoidal if \(m<n\)).

The number \(\varepsilon\) determining the precision of the machine representation of real numbers. For Intel \({ }^{\circledR}\) architecture, the machine precision is approximately \(10^{-7}\) for single-precision data, and approximately \(10^{-15}\) for double-precision data. The precision also determines the number of significant decimal digits in the machine representation of real numbers. See also double precision and single precision.

Message Passing Interface. This standard defines the user interface and functionality for a wide range of message-passing capabilities in parallel computing.

A freely available, portable implementation of MPI standard for message-passing libraries.

A real square matrix \(A\) whose transpose and inverse are equal, that is, \(A^{\mathrm{T}}=A^{-1}\), and therefore \(A A^{\mathrm{T}}=A^{\mathrm{T}} A=I\). All eigenvalues of an orthogonal matrix have the absolute value 1.

A storage scheme allowing you to store symmetric, Hermitian, or triangular matrices more compactly. The upper or lower triangle of a matrix is packed by columns in a one-dimensional array.

Probability Density Function. The function that determines probability distribution for univariate or multivariate continuous random variable \(X\). The probability density function \(f(x)\) is closely related with the cumulative distribution function \(F(x)\).
For univariate distribution the relation is

For multivariate distribution the relation is
\[
F\left(x_{1}, x_{2}, \ldots, x_{n 2}\right)=\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} \ldots \int_{-\infty}^{x_{n}} f\left(t_{1}, t_{2}, \ldots, t_{n 2}\right) d t_{1} d t_{2} \ldots d t_{n 2}
\]

A square matrix \(A\) such that \(A x \cdot x>0\) for any non-zero vector \(x\). Here • denotes the dot product.

A completely deterministic algorithm that imitates truly random sequences.

Representation of an \(m\)-by-n matrix \(A\) as \(A=Q R\), where \(Q\) is an \(m\) -by- \(m\) orthogonal (unitary) matrix, and \(R\) is \(n\)-by- \(n\) upper triangular with real diagonal elements (if \(m \geq n\)) or trapezoidal (if \(m<n\)) matrix.
\begin{tabular}{|c|c|}
\hline random stream & An abstract source of independent identically distributed random numbers of uniform distribution. In this manual a random stream points to a structure that uniquely defines a random number sequence generated by a basic generator associated with a given random stream. \\
\hline RNG & Abbreviation for Random Number Generator. In this manual the term "random number generators" stands for pseudorandom number generators, that is, generators based on completely deterministic algorithms imitating truly random sequences. \\
\hline Rectangular Full Packed (RFP) storage & A storage scheme combining the full and packed storage schemes for the upper or lower triangle of the matrix. This combination enables using half of the full storage as packed storage while maintaining efficiency by using Level 3 BLAS/LAPACK kernels as the full storage. \\
\hline s & When found as the first letter of routine names, s indicates the use of the single-precision real data type. \\
\hline ScaLAPACK & Stands for Scalable Linear Algebra PACKage. \\
\hline Schur factorization & Representation of a square matrix \(A\) in the form \(A=Z T Z^{H}\). Here \(T\) is an upper quasi-triangular matrix (for complex \(A\), triangular matrix) called the Schur form of \(A\); the matrix \(Z\) is orthogonal (for complex \(A\), unitary). Columns of \(Z\) are called Schur vectors. \\
\hline single precision & A floating-point data type. On Intel® processors, this data type allows you to store real numbers \(x\) such that \(1.18 * 10^{-38}<|x|<\) \(3.40 * 10^{38}\). For this data type, the machine precision \((\varepsilon)\) is approximately \(10^{-7}\), which means that single-precision numbers usually contain no more than 7 significant decimal digits. For more information, refer to Inte \({ }^{\circledR} 64\) and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture. \\
\hline singular matrix & A matrix whose determinant is zero. If \(A\) is a singular matrix, the inverse \(A^{-1}\) does not exist, and the system of equations \(A x=b\) does not have a unique solution (that is, there exist no solutions or an infinite number of solutions). \\
\hline singular value & The numbers defined for a given general matrix \(A\) as the eigenvalues of the matrix \(A A^{H}\). See also SVD. \\
\hline SMP & Abbreviation for Symmetric MultiProcessing. Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) offers performance gains through parallelism provided by the SMP feature. \\
\hline sparse BLAS & Routines performing basic vector operations on sparse vectors. Sparse BLAS routines take advantage of vectors' sparsity: they allow you to store only non-zero elements of vectors. See BLAS. \\
\hline sparse vectors & Vectors in which most of the components are zeros. \\
\hline storage scheme & The way of storing matrices. See full storage, packed storage, and band storage. \\
\hline SVD & Abbreviation for Singular Value Decomposition. See also Singular value decomposition section in "LAPACK Auxiliary and Utility Routines". \\
\hline symmetric matrix & A square matrix \(A\) such that \(a_{i j}=a_{j i}\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline transpose & The transpose of a given matrix \(A\) is a matrix \(A^{\mathrm{T}}\) such that \(\left(A^{\mathrm{T}}\right)_{\mathrm{ij}}=\) \(a_{j i}\) (rows of \(A\) become columns of \(A^{\top}\), and columns of \(A\) become rows of \(A^{\top}\)). \\
\hline trapezoidal matrix & A matrix \(A\) such that \(A=\left(A_{1} A_{2}\right)\), where \(A_{1}\) is an upper triangular matrix, \(A_{2}\) is a rectangular matrix. \\
\hline triangular matrix & A matrix \(A\) is called an upper (lower) triangular matrix if all its subdiagonal elements (superdiagonal elements) are zeros. Thus, for an upper triangular matrix \(a_{i j}=0\) when \(i>j\); for a lower triangular matrix \(a_{i j}=0\) when \(i<j\). \\
\hline tridiagonal matrix & A matrix whose non-zero elements are in three diagonals only: the leading diagonal, the first subdiagonal, and the first super-diagonal. \\
\hline unitary matrix & A complex square matrix \(A\) whose conjugate and inverse are equal, that is, that is, \(A^{\mathrm{H}}=A^{-1}\), and therefore \(A A^{\mathrm{H}}=A^{\mathrm{H}} A=I\). All eigenvalues of a unitary matrix have the absolute value 1. \\
\hline VML & Abbreviation for Vector Mathematical Library. See"Vector Mathematical Functions". \\
\hline VSL & Abbreviation for Vector Statistical Library. See"Statistical Functions". \\
\hline z & When found as the first letter of routine names, z indicates the use of the double-precision complex data type. \\
\hline
\end{tabular}

\section*{Notices and Disclaimers}

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.
\({ }^{\bullet}\) Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

\section*{Third Party Content}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library includes content from several 3rd party sources that was originally governed by the licenses referenced below:
- Portions \({ }^{\oplus}\) Copyright 2001 Hewlett-Packard Development Company, L.P.
- Sections on the Linear Algebra PACKage (LAPACK) routines include derivative work portions that have been copyrighted:
\({ }^{\circ}\) 1991, 1992, and 1998 by The Numerical Algorithms Group, Ltd.
- Intel \({ }^{\circledR}\) oneAPI Math Kernel Library supports LAPACK 3.5 set of computational, driver, auxiliary and utility routines under the following license:
Copyright \({ }^{\ominus}\) 1992-2011 The University of Tennessee and The University of Tennessee Research Foundation. All rights reserved.

Copyright \({ }^{\odot}\) 2000-2011 The University of California Berkeley. All rights reserved.
Copyright \({ }^{\bullet}\) 2006-2012 The University of Colorado Denver. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution.
- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

The copyright holders provide no reassurances that the source code provided does not infringe any patent, copyright, or any other intellectual property rights of third parties. The copyright holders disclaim any liability to any recipient for claims brought against recipient by any third party for infringement of that parties intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The original versions of LAPACK from which that part of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library was derived can be obtained from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
- The original versions of the Basic Linear Algebra Subprograms (BLAS) from which the respective part of Inte \({ }^{\circledR}\) oneAPI Math Kernel Library was derived can be obtained from http://www.netlib.org/blas/ index.html.
- XBLAS is distributed under the following copyright:

Copyright \({ }^{\odot}\) 2008-2009 The University of California Berkeley. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution.
- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- The original versions of the Basic Linear Algebra Communication Subprograms (BLACS) from which the respective part of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library was derived can be obtained from http:// www.netlib.org/blacs/index.html. The authors of BLACS are Jack Dongarra and R. Clint Whaley.
- The original versions of Scalable LAPACK (ScaLAPACK) from which the respective part of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library was derived can be obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.
- The original versions of the Parallel Basic Linear Algebra Subprograms (PBLAS) routines from which the respective part of Inte \({ }^{\circledR}\) oneAPI Math Kernel Library was derived can be obtained from http:// www.netlib.org/scalapack/html/pblas_qref.html.
- PARDISO (PARallel DIrect SOlver)* in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library was originally developed by the Department of Computer Science at the University of Basel (http://www.unibas.ch). It can be obtained at http://www.pardiso-project.org.
- The Extended Eigensolver functionality is based on the Feast solver package and is distributed under the following license:

Copyright \({ }^{\bullet}\) 2009, The Regents of the University of Massachusetts, Amherst.
Developed by E. Polizzi
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- Some Fast Fourier Transform (FFT) functions in this release of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library have been generated by the SPIRAL software generation system (http://www.spiral.net/) under license from Carnegie Mellon University. The authors of SPIRAL are Markus Puschel, Jose Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo.
- Open MPI is distributed under the New BSD license, listed below.

Most files in this release are marked with the copyrights of the organizations who have edited them. The copyrights below are in no particular order and generally reflect members of the Open MPI core team who have contributed code to this release. The copyrights for code used under license from other parties are included in the corresponding files.
Copyright © 2004-2010 The Trustees of Indiana University and Indiana University Research and Technology Corporation. All rights reserved.

Copyright \({ }^{\odot}\) 2004-2010 The University of Tennessee and The University of Tennessee Research Foundation. All rights reserved.

Copyright \({ }^{\odot}\) 2004-2010 High Performance Computing Center Stuttgart, University of Stuttgart. All rights reserved.

Copyright \({ }^{\odot}\) 2004-2008 The Regents of the University of California. All rights reserved.
Copyright © 2006-2010 Los Alamos National Security, LLC. All rights reserved.
Copyright © 2006-2010 Cisco Systems, Inc. All rights reserved.
Copyright \({ }^{\odot}\) 2006-2010 Voltaire, Inc. All rights reserved.
Copyright © 2006-2011 Sandia National Laboratories. All rights reserved.
Copyright \({ }^{\odot}\) 2006-2010 Sun Microsystems, Inc. All rights reserved. Use is subject to license terms.
Copyright © 2006-2010 The University of Houston. All rights reserved.
Copyright © 2006-2009 Myricom, Inc. All rights reserved.
Copyright \({ }^{\odot}\) 2007-2008 UT-Battelle, LLC. All rights reserved.
Copyright © 2007-2010 IBM Corporation. All rights reserved.
Copyright © 1998-2005 Forschungszentrum Juelich, Juelich Supercomputing Centre, Federal Republic of Germany

Copyright © 2005-2008 ZIH, TU Dresden, Federal Republic of Germany
Copyright \({ }^{\circ} 2007\) Evergrid, Inc. All rights reserved.
Copyright © 2008 Chelsio, Inc. All rights reserved.
Copyright © 2008-2009 Institut National de Recherche en Informatique. All rights reserved.
Copyright \({ }^{\odot} 2007\) Lawrence Livermore National Security, LLC. All rights reserved.
Copyright © 2007-2009 Mellanox Technologies. All rights reserved.
Copyright © 2006-2010 QLogic Corporation. All rights reserved.
Copyright \({ }^{\odot}\) 2008-2010 Oak Ridge National Labs. All rights reserved.
Copyright © 2006-2010 Oracle and/or its affiliates. All rights reserved.
Copyright © 2009 Bull SAS. All rights reserved.
Copyright \({ }^{\odot} 2010\) ARM Itd. All rights reserved.
Copyright © 2010-2011 Alex Brick . All rights reserved.
Copyright \({ }^{\odot} 2012\) The University of Wisconsin-La Crosse. All rights reserved.
Copyright © 2013-2014 Intel, Inc. All rights reserved.
Copyright © 2011-2014 NVIDIA Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution.
- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

The copyright holders provide no reassurances that the source code provided does not infringe any patent, copyright, or any other intellectual property rights of third parties. The copyright holders disclaim any liability to any recipient for claims brought against recipient by any third party for infringement of that parties intellectual property rights.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- The Safe C Library is distributed under the following copyright:

\section*{Copyright (c)}

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- HPL Copyright Notice and Licensing Terms

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgement: This product includes software developed at the University of Tennessee, Knoxville, Innovative Computing Laboratories.
4. The name of the University, the name of the Laboratory, or the names of its contributors may not be used to endorse or promote products derived from this software without specific written permission.```

[^0]: ?getri
 Computes the inverse of an LU-factored general matrix.

[^1]: lda

[^2]: Product and Performance Information
 Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
 PerformanceIndex.
 Notice revision \#20201201

[^3]: VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

